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ABSTRACT 

 

 

MORPHOLOGICAL EVOLUTION OF STRAINED ISOTROPIC THIN 

SOLID FILM ON RIGID SUBSTRATE 

 

 

 

Sanam Haddadian 

 M.Sc., Department of Metallurgical and Materials Engineering 

 Supervisor:  Prof. Dr. Mehmet Kadri AYDINOL 

 Co-Supervisor: Prof. Dr. Tarik OGURTANI 

 

 

July 2014, 134 pages 

 

 

In quantum dots (QD), the excitons are spatially confined and their energy spectrum, 

which controls many physical properties of interest, can be adjusted over a wide 

range by tuning composition, density, size, lattice strain and morphology. The 

formation of QDs joined by a thin flat wetting layer, known as the Stranski-

Krastanow (SK) morphology, is a general growth mode observed in many 

epitaxially-strained thin solid films. These features make semiconductor QDs 

attractive for the design and fabrication of novel electronic, magnetic and photonic 

devices. The success of this endeavor has mainly been enabled by research, leading 

to reliable means for estimating forces in small material systems and by establishing 

frameworks, in which the integrity and/or functionality of the systems is satisfied.  
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The material failure continues to be a main technology-limiting barrier and thus, the 

subject of capillary-driven morphological evolution of surfaces and interfaces; 

especially under the action of applied force fields e.g., electrostatic and thermo-

mechanical, is still a challenging materials problem. 

 

 Here we demonstrate the effects of strain relaxation on morphological evolution of 

QDs and occurrence of wetting layer. Our study based on continuum level 

dynamical simulations will be presented for the spontaneous evolution of an 

isotropic isolated thin solid droplet on a rigid substrate under various stress fields. 

The simulations showed that there is a threshold value for the stress level under 

which the formation of isolated islands observed; whereas at higher stress levels we 

observed the formation of SK-type islands connected with a very thin wetting layer. 

Supported by TUBITAK grant no 111T343 and TUBA GEBIP. 

 

Keywords: Thin films, thin film growth modes, quantum dots, surfaces and interfaces, 

numerical modeling 
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ÖZ 

 

 

SERT ALTLIK ÜZERİNDE GERGİN İZOTROP İNCE KATI FİLMİN 

MORFOLOJİK EVRİMİ 
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Temmuz 2014, 134 sayfa 

 

 

Kuantum noktalarda (QD), eksitonlar mekansal olarak sınırlanmıştır. Bu 

malzemelerde, birçok fiziksel özelliği kontrol eden enerji spektrumu, kompozisyon, 

yoğunluk, boyut, kafes gerginlik ve morfolojide değişikliklerle geniş bir aralıkta 

ayarlanabilir. Ġnce düz bir ıslatma tabakasıyla birbirine bağlı olan kuantum 

noktaların oluşumu, Stranski-Krastanow (SK) büyüme modu olarak adlandırılmış ve 

bir çok epitaksiyel gergin ince katı filmde gözlemlenen genel bir durumdur. Bu 

özellikler, yarı iletken quantum noktaları yeni elektronik, manyetik ve fotonik 

cihazların tasarımı ve imalatı için cazip kılmaktadır. Bu çalışmaların başarısı, 

ağırlıklı olarak bilimsel araştırmalara ve bu araştırmaların ortaya çıkardığı nano 

boyutlu malzeme sistemlerindeki kuvvetleri tahmin ederek bu sistemlerin bütünlüğü 

ve / veya işlevleri sağlamak amacıyla çerçeve oluşturulmasıyla sağlanmıştır. 
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Malzeme kusurları, teknolojinin ana sınırlayıcı engeli olmaya devam etmektedir. 

Yüzeyler ve arayüzeylerin kapilar odaklı morfolojik evrimi, özellikle uygulanan 

kuvvet alanlarının etkisi altında, hala çözülmesi gereken önemli bir malzeme 

sorunudur. 

 

Bu araştırmada, sis-temdeki gerginliğin gevşemesinin quantum noktaların 

morfolojik evrimi ve ıslatma tabakasının ortaya çıkması üzerine etkilerini 

incelenmiştir. Süreklilik seviyedeki dinamik simülasyonlara dayalı bu çalışmamız, 

katı bir altlık üzerinde izole edilmiş bir izotropik ince katı madde damlacığının 

çeşitli gerilim alanları altında kendiliğinden evrimini göstermektedir. Simülasyon 

bulgularının gösterdiği sonuca göre stres düzeyinin bir eşik değerin altında izole 

adaların oluşumu gözlenmiştir. Daha yüksek gerilme seviyelerinde ise ince bir 

ıslatma tabaka ile bağlantılı SK-tipi adaların oluşumu gözlenmiştir. Bu çalışma, 

11T343 nolu TÜBĠTAK 1001 projesi ve Dr. Ören'in TÜBA GEBĠP projesi 

tarafından desteklenmiştir.  

 

Anahtar Kelimeler: Ġnce filmler, ince film büyütme modları, kuantum noktalar, 

yüzeyler ve arayüzler, sayısal modelleme 
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CHAPTER 1 

 

 

LITERATURE SURVEY 

 

 

1.1. Overview 

Quantum dots are nano-size semiconductors in which holes and electrons are 

confined in all three spatial dimensions. Due to some similarity, sometimes, they are 

called artificial atoms, however, the size is much bigger (1-100 nm for QD versus 

0.1 nm for atoms). These nanostructures represent unique optical and electrical 

properties, which are due to their small size, and are different in character to those of 

the corresponding bulk material. In these particles, the addition or subtraction of an 

electron changes its properties. 

 

To know what is special with QDs, we need some background on semiconductors. 

In bulk semiconductors, the presence of many atoms causes splitting of the 

electronic energy levels, giving continuous energy bands separated by a Band gap. 

Band gap is the forbidden zone for the electron existence. The portion of energy 

levels above the band gap is called conduction band and below the band gap is 

called valance band (Figure 1.1). Electrons gain the additional energy from external 

sources such as electromagnetic radiation, electricity or heat and this, results in 

electron jump to an unstable higher energy level. In an atom, the excited electron 

loses its absorbed energy when falls back down to its original ground state. This 

energy is released in the form of light (Figure 1.2). In bulk materials, due to existing 

of large number of atoms, energy levels are close to each other; this makes 
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continuous energy bands. In a quantum dot, relatively few atoms are present, which 

leads to discrete and quantized energy levels more like those of an atom. This is the 

reason of why quantum dots are called “artificial atoms”. 

 

 

Figure 1.1: The effect of QD size on the band gap zone 

 

 

Figure 1.2: The fluorescence effect of an excited electron 
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Traditional semiconductors have many limitations. Their band gaps and energy 

levels are not easily changed and their emission frequencies cannot be easily 

manipulated as desired, which leads to expensive procedure for optical and electrical 

quality adjustment.  

 

Quantum dot‟s band gap changes with its size or composition and thus, the addition 

or removal of just a few atoms could affect the band gap energy. Nowadays, these 

nanostructure materials have become an interesting issue both in commercial and 

scientific areas due to their special functions. However, there are a lot of unknown 

about them. 

 

The efficiency of QD based devices is extremely dependent on the positioning, 

density and size of quantum dots. Therefore, in order to produce desirable self-

organized QDs, there should be great scientific information about QD nucleation, 

growth and morphological change mechanisms. The information that is required for 

understanding the mechanism will be helpful for developing new QD formation 

techniques and designing of new QD based devices.  

 

1.2. The effect of size on the electron confinement regime 

The combination of the electron in the conduction band and the hole in the valance 

band, which are held together by the electrostatic Coulomb force, is called exciton. 

The quantum effect occurs if the dimension of the nano-crystal is smaller compared 

to the natural length scale of the exciton (  ), which we call it the Bohr radius of the 

particle. 
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    ⁄
                                                                                                                             

  

where  

   is the Bohr radius of the hydrogen atom 

   is the size dependent dielectric constant 

   is the mass of the particle 

   is the rest mass of electron  

And Bohr Radius of the hydrogen atom is 

 

   
     

 

   
 

 
 

    
                                                                                                 

                                                                                                  

where 

   is the permittivity of free space 

  is the reduced plank constant 

  is the electron charge 

  is the speed of light in vacuum 

  is the fine structure constant 

 

For a nano-crystal, we calculate three individual Bohr radii as       and      for 

electron, hole and exciton successively that each can be evaluated using the equation 

1.1. In the case of exciton, the reduced mass of the electron-hole pair is used. In bulk 
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semi-conductors, the electron can move freely in all three directions. When the 

length of material is reduced to the same order as the exciton radius, i.e. to a few 

nanometers, quantum confinement effect occurs and the exciton properties are 

modified. Depending on the dimension of the confinement, three types of confined 

structures appears: two-dimensional quantum well (QW), one-dimensional quantum 

wire (QR) and zero dimensional quantum dot (QD). If the size of a nano-crystal is 

smaller than       and                    , this is called „strong confinement 

regime‟. If   is larger than both   and    but smaller than                    , 

only the center of the mass motion is confined and it is called „weak confinement 

regime‟ and finally if   is between   and             , it is said to be in 

„intermediate confinement regime‟. Hence, if the size of the quantum dot is small 

enough that quantum confinement dominates (typically smaller than 10 nm), the 

electronic and optical properties change and the fluorescent wavelength alters 

relevant to the size of the nano-particle [1]. 

 

As discussed earlier, in bulk materials, electrons in conduction band are free to move 

in all three spatial directions. Fabricating quantum well, quantum wire or quantum 

dot could be done by encircling the material with a larger band gap material, which 

leads to confining the electron either, in one, two or three dimensions respectively.  

 

The density of states of quantum dots are discrete and hence they behave like real 

atoms unlike to the bulk material, where the density of states is continuous (Figure 

1.3). 
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Figure 1.3: The density of states for bulk material, quantum well, quantum wire and 

quantum dot 

 

1.3. Quantum dots applications 

QDs with their special characteristics and electronic properties have become an 

important candidate for development of many medical, electronic, photonic and 

magnetic devices [2-4]. 

  

The thin wetting layer between QDs, which is grown within SK growth mode (this 

mode will be explained later), provides a path for electrons to move freely between 

islands. This transmission mechanism of SK mode make it suitable for electronic 

and optoelectronic applications. 

 

Some examples of this wide application area are photovoltaic devices that transform 

the solar energy into electrical energy, Quantum computers, single electron 

transistors, laser fabrication, etc. [5-7]. 
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 Some particular advantages of single quantum dots are: 

 Durability 

 High efficiency 

 Wide spectral range  

 Compatible with chip-technology 

 Electrical Pumping 

 Strong interactions  

 

1.4. Quantum dot production methods 

Generally, there are two different approaches in the case of fabrication of quantum 

dots, “top- down” and “bottom-up” approaches. The “top- down” approach is the 

method of shaping the desired nanostructures by removing the extra material from 

the bulk, where this method is costly and time consuming specially for the 

production of nanostructures with large surface area. On the contrary, “bottom-up” 

approach starts from atomic level and can produce nanostructures with new 

chemical bonds [8]. 

 

There are several methods to produce quantum dots for different applications: 

 Colloidal Synthesis 

 Lithography 

 Epitaxy:  

 Patterned Growth 

 Self-Organized Growth 
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1.4.1. Colloidal synthesis 

The solution based synthetic chemistry for fabrication of QD is a powerful approach 

to control the size and composition of nano-crystals. Typically, colloidal nano-

materials are synthesized by reacting inorganic salts or organometallic compounds 

that follow consecutive stages: growth of the preferred nuclei, isolation of particles 

reaching the desired size and post preparative treatments. This method is more 

flexible in fabrication comparing to other methods like Atmospheric pressure 

chemical vapor deposition (APCVD), which needs complex equipment and show 

less productivity.  

 

Colloidal nanostructures is produced in the form of nano-crystals, nano-rods, cubes, 

prisms, which are suitable for biological and engineering applications such as light 

emitting devices (LED s), photo detectors and biological imaging agents [8, 9].  

 

In order to improve the stability and application of colloidal QDs, they are often 

coated with a layer of organic passivation ligands (shell) with wider band gap called 

core-shell model to isolate the exciton from non-radiative relaxation via surface 

states that leads to wave length tuning and lifetime increasing [10]. 

 

1.4.2. Lithography 

This is a top-down method, where quantum dots can be formed from two 

dimensional quantum wells. Photolithography, scanning probe lithography, electron 

beam lithography and nano-imprinting are among the most common methods for 

producing nano-crystals with precise shape and size used for electronic applications. 
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The nano-imprint method is typically suitable for flat surfaces because the mold 

mostly is made with rigid material. Haixiong Ge et al. fabricated a mold combining 

a rigid polymer containing silicon as a patterning template on a flexible 

polydimethylsiloxane polymer to allow the nano-scale imprinting on the curved 

substrate, which can imprint features smaller than 30 nm [11]. 

 

Vikas Nandwana et al. utilized direct patterning lithography by using the functional 

material as a negative resist. They claim that the final configuration have the same 

optical properties as the un-patterned film. The fluorescence intensities and lifetime 

were also unchanged [12]. 

 

1.4.3. Epitaxy 

Semiconductor quantum dots can be fabricated by various epitaxial techniques such 

as molecular beam epitaxy (MBE) or Metalorganic vapor phase epitaxy (MOVPE), 

in which semiconductor compounds with smaller band gaps are grown on a surface 

of a host material with larger band gap. 

 

If the thickness of deposited material exceeds a critical value, the system refrains to 

bear the extending stress, which results in the generation of coherently strained 

islands with a wetting layer in between. This energy favorable process is known as 

Stranski-Krastanov growth mode. These islands can be transformed subsequently to 

make quantum dots.  

 

The self-assembled island nucleation process and the position of quantum dots 

cannot be controlled precisely. Since deterministic positioning of QDs is required 

for many applications, several techniques have been under investigation in this 
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respect to improve the functionality of the epitaxial quantum dots. The most 

advanced approach is to make holes on the substrate using lithographic methods and 

growth of islands on the substrate. The holes alter the chemical potential of the 

surface and increase the local growth rate of quantum dots [13]. 

 

1.5. Epitaxial growth modes 

Epitaxial growth is a process of growing of a crystal on an underlying crystalline 

surface, in which the deposited crystal is oriented by the lattice structure of the 

substrate. When the substance of the substrate differs from the growing crystal, the 

process is called hetero-epitaxy and if the substances are similar, it is called homo-

epitaxy. 

 

 The word “epitaxy” derived from the Greek word “epi” meaning “on” and “taxis” 

meaning “arrangement”, was introduced by Louis Royer, in 1928 to define this type 

of growth occurring in nature or imitated in laboratories and to separate epitaxial 

growth from non-crystalline and amorphous growth. 

 

The morphology of the film depends on a number of factors, including the 

deposition rates of the species, the surface temperature, the surface material, and its 

crystallographic orientation [14-16]. 

 

It is generally accepted that, there are three possible modes of film surface 

morphology that can appear through epitaxial growth process. These are referred to 

as Frank-Van der Merwe (FM) morphology, Volmer-Weber (VW) morphology and 

Stranski-Krastanov (SK) morphology.  
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There are also another two types of growth modes known as columnar growth mode 

(CG mode) and step flow mode (SF), which are not in our field of interest. 

 

In Frank-Van der Merwe (FM) mode, the atoms are strongly bounded to the 

substrate than to each other. A new layer nucleation begins only after the completion 

of the underneath layer. FM growth mode forms continuously and it can spread 

growth steps over macroscopic distances. A Volmer-Weber (VW) growth mode 

initially consists of a large number of surface nuclei, which grow into islands of 

condensed phase. This happens when atoms of deposit are more strongly bounded to 

each other than to the substrate. 

 

The layer plus island or Stranski- Krastanov (SK) mode is considered as an 

intermediate between the FM and VW modes and it is caused due to the significant 

lattice mismatch between the film and the substrate. This lattice mismatch generates 

an internal strain, which happens due to increasing the elastic energy caused by 

increasing the layer thickness. The first deposited layer is smooth (FM growth 

mode) but if the thickness of the layer exceeds a critical thickness, the system needs 

to release the energy and subsequent island nucleation rapidly takes place (VW 

growth mode) [17, 18], where the stress is released by the generation of misfit 

dislocations. However, there is another state of Stranski-Krastanov morphology, 

where the energy barrier for formation of coherent islands (islands without 

dislocations) is very small compared to the energy need for dislocation nucleation 

[19, 20].  
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Layer-by-Layer                   Stranski-Krastanov                Island Growth 

Figure 1.4: Three different epitaxial growth modes 

 

Epitaxy occurs in such a way that the total energy of the system consisting of 

substrate-crystal phases becomes minimal. The growth mode of the system also 

depends on interfacial free energy and lattice mismatch. 

 

In lattice matched systems there is a relation between interfacial energy γfs, epitaxial 

layer surface energy γf and surface energy γs as γf +γfs<γs , which leads to formation 

of Frank-van der Merwe growth mode. Alternatively, if there is γf +γfs>γs then 

Volmer-Weber growth mode is observed. In a system with small interfacial energy 

but large lattice mismatch, the system initially begins with FM mode but as layers 

become thicker, the system prefers to reduce its large strain energy. This leads to 

formation of isolated thick islands. Controlling the morphology during the hetero-

epitaxy process requires understanding the atomistic mechanisms [19, 21]. 

 

The characteristic features of strain induced 2D (layer by layer) to 3D (layer + 

island) transformation during evolution of islands depend on the lattice misfit 

between the epilayer and the substrate. During the SK growth of Ge on Si (001), the 

formation of {105} facets that are elongated along the <100> directions with 

rectangular bases having up to 8:1 aspect ratio, make a hut like morphology. The 

evolution kinetics includes meta-stability, since they dissolve during annealing. 
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 The self-limiting growth mechanism slows down the growth kinetics of the larger 

islands compared to the small islands. Thus, smaller islands convert to bigger ones, 

while larger islands stay constant, which makes uniform island size distribution [22]. 

 

The Stranski-Krastanow (SK) growth is a desired mode for various applications due 

to less imperfection in their structure that decreases the loss of performance 

compared to other modes. This info has attracted significant attention in recent 

years. Despite of this huge interest, the structure and distribution during 

morphological evolution of QDs grown by SK mode is not understood exactly. 

 

1.6. Experimental observations 

Undoubted, there should be a quit good information and capability to produce QD 

with desirable properties to put it into use. To follow this job, many experimental 

[23,24], theoretical and modeling and simulation [25-27] efforts have been 

performed in the subject of heteroepitaxial growth of self-organized quantum dots. 

However, there are still many unsolved issues regarding the kinetics and 

thermodynamics of the formation and evolution of QDs. In many of these 

investigations, Ge and Si/Ge on Si(001) or InGaAs on GaAs(001) systems have 

been commonly used as the model systems. Figure 1.5 depicts the SEM image of 

heteroepitaxial QDs formation in Si0.75Ge0.25/Si(001) system. Here, quantum dots 

have 135 nm width and 80 nm height. 
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Figure 1.5: The SEM image of Si0.75Ge0.25/Si (001) system [28]. 

 

Over years, ordering and arranging of QDs was a challenging concept [29-31]. The 

overgrowth procedure of QDs can play an important role for spatial ordering of 

other QDs. Kiravittaya et al observed nano-holes, which start to appear due to strain 

effect, after 6 mL deposition of GaAs, in the middle of nanostructures. These holes 

have dimensions around 20-30 nm width and 1.5 nm depth and could be used as 

templates to guide the formation of closely spaced QDs [32]. However, the absolute 

positioning of QDs could be achieved by growth of QDs on a patterned substrate 

[33,34]. 

 

1.6.1. Nucleation and growth 

The surface roughening process and its subsequent island formation can be 

understood by a simplified energetic argument [35-37]. During island formation, the 

total strain energy of the thin film decreases while the surface total energy increases. 

In an isotropic film and substrate, for   >     , surface roughening is energetically 

favorable, where   is the perturbed wavelength and     is the critical wavelength 

depending on the surface energy and strain energy density of the initially flat film. 

However, when   <     , the perturbation will disappear and the surface will remain 

flat.  
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In other words, when the volume of an island is small, the surface energy of the side 

facets of the island plays an important role in preventing the island formation due to 

high ratio of the surface area to the volume. However, as the volume of the island 

exceeds a critical value, its significance diminishes and cannot stop the growth. 

 

When the surface energy anisotropy and elastic anisotropy are included, the critical 

wavelength may change with the elastic and surface energy anisotropies. Thus, 

tuning these anisotropy strengths will change the roughening kinetics and therefore 

affect the island morphology. However, in this scheme of growth, the driving force 

of instability at low misfits is still under debate [38].  

 

The size distribution of self-assembled QDs varies approximately in the range 

of     [21]. However, size homogeneity can be improved by tuning the growth 

conditions [39]. In InAs/Ga system, the lower growth rate induces larger QDs with 

better size homogeneity, which can be explained with the migration length of 

adatoms [39,40]. At low growth rate, the adatoms prefer to incorporate into existing 

QDs rather than forming new QD due to large migration length. In this case, better 

size homogeneity could be attained since adatoms can migrate longer so they have a 

higher chance of finding a suitable position with lower energy to be incorporated. 

Since larger QDs produce higher strain barriers, the adatoms prefer to incorporate 

into smaller QDs, which is called self-limiting growth.  

 

The kinetic of growth is also another unresolved question. Studies show that, the 

growth velocity of quantum dots (QDs) and other structures by selective area 

epitaxy, may strongly be depend on crystallographic orientation [41, 42]. 
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At low temperatures, the growth of InAs islands on GaAs substrate is simply due to 

accumulation of deposited material. However, at high temperatures, the volume of 

the islands exceeds the volume of deposited InAs on the substrate. Thus, the 

additional material comes from the wetting layer. This is a proof of the active role of 

wetting layers in the final stage of SK growth mode. Under the fixed amount of 

deposition, the growth of island needs the decrement of WL (wetting layer). As the 

surface energy density of the WL has a strong dependence on its thickness especially 

for thin WL, the growth of large islands becomes difficult and finally the system 

achieves equilibrium. Accordingly, it can be concluded that the thickness 

dependence surface energy of WL prevents the islands from growing up without 

limit and finally islands will have steady size [43, 44]. 

 

1.6.2. Quantum dots composition 

In the case of equilibrium for a given shape, size and average composition, the 

composition profile (CP) is calculated by minimizing the total free energy consists 

of elastic energy, entropic and chemical mixing energies. 

 

In the SiGe/Si system, the larger alloy component (Ge) segregates on the tensile 

region of top apex and upper corners, where strain is almost relaxed. On the other 

hand, the Si element segregates to corner of the base. In this case, Ge concentration 

decreases from the top to the base and base corners, which could be observed for all 

QDs independent of the size and shape. By increasing the  , which creates steeper 

sidewalls, QDs decomposition degree increases compared to shallower QDs. 

Considering the negligible diffusion in bulk due to high-energy barrier at typical 

growth temperatures, Medhekar et al showed that even when the phase separation is 

thermodynamically favorable, the complete segregation cannot be achieved and 

entire dot could not reach the equilibrium [45]. However, the increased diffusion 

also occurs in subsurface regions since energy barrier is greatly reduced at surfaces. 
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This allows local equilibrium CPs to be established in the near surface regions 

during growth. Similarly, complete mixing is only seen for very shallow dots. 

Consequently, the kinetic of the growth mode, which dictates the surface mass 

transport and alloy mixing via surface diffusion at the growth process, becomes a 

key factor in determining the kinetically limited CP.  

 

Strain induced segregation in quantum dots can substantially reduce the critical size 

for transition between the shapes with different facets. The critical volume for shape 

transition depends on the surface energies of the facets. The total energy of the 

decomposed dots is lower than the energy of the dots with uniform composition. 

However, the reduction in the energy is greater for the steeper dot, resulting in 

smaller critical size for transition in shape.  

 

The composition profile depends strongly on the shape of the QD (slope, curvatures 

and other geometric features). However, the temperature change does not make any 

significant change on qualitative composition and just make slight change on 

quantitative composition profile [46]. 

 

Shenoy et al. used irreversible thermodynamic for their composition and 

morphological evolution model for fully faceted crystals. They established a two-

component system with individual velocity for each component. Material flow and 

accordingly, the surface morphology could be determined based on the competition 

between the mass exchange in bulk and surface due to differences in bulk and 

surface chemical potentials including the size of the component and local stress field 

[47].  
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Shaleev et.al [48] have investigated the Si1-xGex film growth with different Ge 

concentrations on Si (001) surface. The results show that the Ge concentration 

affects the misfit parameter between the film and the substrate and alters the critical 

thickness for initiation of island formation. 

 

1.6.3. Shape transition of quantum dots 

Shape transition has been detected during island forming generally when the amount 

of deposited material increases or the system evolves during in situ annealing. 

Experimental observations revealed that during deposition, small QDs with pyramid 

shapes start to make a morphological evolution to finally become a dome with a 

much larger size [49, 50].  

 

By using Scanning Electron Microscopy (SEM) [51, 52], High-Energy Energy 

Diffraction (RHEED) [53] and Transition Electron Microscopy (TEM) [54] within 

experimental investigations, it have been observed that for InAs/GaAs(001) systems 

as well as SiGe/Si(001), the small InAs islands have pyramid shape including {137} 

facets, while larger islands have {101} facets with dome shape. After transition from 

pyramid to dome shape, the {101} facets with larger area and {111} facets with 

smaller area at the base are observable. However, {137} facets still exist at the top 

and the bottom of the dome [31, 32, 55] (Figure 1.6). 
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Figure 1.6: (a) 3D view STM image of Pyramid and Dome shape InAs QDs on 

GaAs(001) flat substrate. Schematic representation of (b) a pyramid and (c) a dome 

[32] 

 

This Pyramid-Dome transition is also observed by Montalenti et.al. [56] and 

Baribeau et.al. [57] in Si1-xGex/Si (001) system (Figure 1.7). 

 

 

Figure 1.7: The figure in the right is the pyramid shape QD and the figure in the left 

is the same QD after transition into dome shaped island (6ML Ge/Si(001) is 

deposited in temperature of 650
o
C) 

 

Spencer et al. investigated the transition path from pyramid to dome. For any given 

volume, they minimized the E (energy) numerically of all possible shapes with 

respect to motion of each facet normal to itself. They showed that although the 
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transition evolves from symmetric pyramids to symmetric domes, however, the 

transition passes through a high asymmetric transition states pathway. The reason 

for nucleation of steeper facet in one side instead of two side of the pyramid is due 

to lower activation energy for this kind of transition instead of symmetric transition. 

They also found that the kinetic of the transition depends on the size of the island 

and it becomes faster with increasing the size [58]. 

 

1.6.4. Effect of substrate on the evolution of quantum dots 

The substrate orientation is responsible for the appearance of specific bonding facets 

on the islands that determine their shape, which in turn defines the electronic 

structure.  

 

On the other hand, the substrate structure and orientation influences the kinetic of 

adsorption, migration, and incorporation of atoms in heteroepitaxy as well as can 

directly influence the mechanism and velocity of strain relief, producing a change in 

the island sizes, shape and distributions [59- 61]. 

 

The structure and orientation of the substrate certainly play a serious role in the 

heteroepitaxial growth of highly mismatched systems. By changing the substrate, we 

also expect a change in the symmetry of QDs if the growth is epitaxial. It has been 

shown experimentally that on the high-symmetric GaAs (001) surface, the shape of 

InAs QDs exhibit the same two mirror-symmetry planes as the bulk (001) substrate 

[51,62]. 
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Substrate affects the growth kinetics and morphological evolution of islands. As an 

example, GaN island nucleation on AlN substrate shows a small delay compared to 

nucleation on GaN substrate. Both form uniformly with hexagonal pyramidal shape. 

However, in the case of highly lattice mismatched sapphire substrate, the nucleation 

starts with a long delay also larger and fewer nuclei with prismatic shape form. This 

effect of substrate can be understood as the effect of strain caused lattice mismatch 

[63]. 

 

Studies done recently to investigate the effect of substrate strain on adatom binding 

and Ehrlich-Schowoebel (ES) barriers for FCC metals show that the compressive 

strain slows down the atomic exchange diffusion while increases the ES barrier. 

However, tensile strain decreases the ES barrier and promotes the layer-by-layer 

growth. Here, the ES barrier refers to the case when an atom that approaches the step 

on the top side meets a barrier that can be even greater than the diffusion barrier on 

the terrace EDiffusion.  

 

This additional barrier ΔEES, known as Ehrlich–Schwoebel barrier, comes from the 

case when crossing a step edge, an atom passes through the area with a low number 

of nearest neighbors. This ES barrier makes the layer-by-layer growth difficult while 

promoting the 3D island formation [64]. 

 

The investigation about the effect of substrate temperature during GaAs overgrowth 

by photoluminescence spectroscopy (PL) shows that PL spectra of the QD over 

grown at lower temperature (460 C) is significantly narrower and red shift compared 

to QD over grown at 500 C. 
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The PL line width obtained from a QD ensemble is generally attributed to the 

inhomogeneous broadening produced by the size and composition fluctuations of the 

QD. The larger QDs with narrower size distribution provide longer wavelength 

emission with narrower line width [40, 65, 66]. In addition, the low growth 

temperature is expected to preserve the shape of buried QDs [40, 67]. 

 

Studies performed by Schmidt et al. [68] and Wang et al. [69] show that during 

growth of QDs on Nano-wire surface below certain diameters, unlike in a traditional 

planar growth substrate, misfit strain can propagate along the length of the wire and 

cause self-organize growth in a periodic pattern to minimize the strain energy. Such 

misfit strain guided epitaxial islands not only present a new type of periodic 

nanostructures but also serve as periodic Nano-stresses providing a unique 

opportunity toward strain-engineered materials with novel mechano-electronic 

properties for applications such as thermo electronic and optoelectronic devices 

[70,71]. 

 

1.6.5. Dislocation formation during the evolution of quantum dots 

Dislocation formation is a phenomena reported in literature and observed as 

thickness increases during deposition, which is due to strain relaxation [72, 73]. 

These defects are undesirable in electrical and optical applications as they act as 

scattering sires, recombination centers and leakage paths. Considerable efforts have 

been done to minimize the strain relaxation in heterostructure growth and to 

minimize the probability of dislocation and other faults formation due to this reason 

[19, 74, 75]. 
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Katsuno et al. [76] established a table with different regions that present the proper 

growth mode from 1ML to 3ML considering the dislocations as strain relaxation 

sites. They believe that continuum elasticity may not give accurate results for small 

length scales so they established a new 2D elastic lattice model to investigate the 

lowest energy configuration and determine the equilibrium shapes by comparing 

energies of various surface configurations with misfit parameter (f) and binding 

energy. The result is given in Figure 1.8. 

 

 

Figure 1.8: Different regions for the proper growth mode according to misfit 

parameter (f) and binding energy 

 

Here, SKD, FMD and VWD are various growth cases, where the dislocations are 

observed. The authors claim that for the binding energy of the ordinary 

semiconductor systems, small misfits lead to the island formation, since introduction 

of a dislocation is energetically unfavorable. However, large misfits lead to 

generation of dislocations.  

 

In the region between the SK growth mode and FM growth mode with dislocation, a 

special growth mode appears. When the layer thickness exceeds a critical thickness 



 

24 

needed for introduction of dislocations, islands forms on a dislocated layer. If the 

layer thickness increases, it leads to change the equilibrium configuration from three 

dimensional island growths on a wetting to a two dimensional flat layer growth, 

which could be due to thickness dependent dislocation formation energy. The energy 

gain by introducing the dislocation increases with increasing the thickness. 

Therefore, at high coverage, layer-by-layer growth with dislocation is more 

favorable than island formation. 

 

1.6.6. Diffusion and stabilization of quantum dots 

Wetting potential with the effect of limiting the valley-to-peak mass transport, which 

leads to limiting the island height growth, plays an important role on morphology 

stabilization of the surface as well as island coarsening and island size saturation.  

 

In the coarsening process, as long as the wetting layer is not depleted, the 

rearrangement of mass between different islands takes place, which cannot be 

inhibited by the wetting effect. Therefore, in order to explain the island stabilization, 

there must consider another factor that is taking role. For an undulated surface (i.e., 

in the region of islands surface), the strain energy is concentrated at surface valleys 

but released at peaks; thus the diffusion would be the result of surface elastic energy 

density gradient from valleys to peaks, which leads to island growth. On the other 

hand, the stabilization effect of surface energy is in competition with this 

morphological destabilization process, where domination of each of them could 

determine the dynamics of island growth. Although the wetting potential still has the 

function of sustaining the wetting layer between islands and restricting the diffusion 

process, however, with increasing the dominance of the destabilization process, the 

effect of wetting potential becomes weaker. Consequently, the wetting effect cannot 

prevent the mass transport between islands, which is related to island migration or 

coarsening effect. This process can be controlled by the higher-order elastic energy 
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terms describing island interaction and correlation. Thus, at late-times, the islands 

height increases rapidly, which leads to appearance of islands with large aspect ratio 

between height and width.  

 

Strained surface islands form as a consequence of the evolution of surface 

undulations, which occur due to the film morphological instability. Note that the rate 

of formation and growth of these islands varies at different surface locations, which 

is due to the nonlinear effects of elastic interaction. At the next stage, island 

coarsening occurs, means the growth of some islands is at the expense of other 

shrinking ones and hence the decrease of island density on the film surface. As time 

passes, such coarsening processes become much slower, and the system would 

approaches stable morphology with steady arrays of strained quantum dots. As 

expected, this late-time state of film surface morphology is significantly dependent 

on the value of film-substrate misfit strain, which results an increase of island 

density and a decrease of island spacing for larger misfits [77]. 

 

1.7. Theoretical and modeling efforts 

Many theoretical works have been performed hitherto for the aim of prediction of 

QD size, number and density. However, the accuracy of these calculations was 

limited due to lack of knowledge on the QD shape and formation processes [78-80]. 

 

Phase field simulation is one of the most popular simulation methods used for 

surface behavior modeling. The significant advantage of this method is that the 

explicit tracking of surface is unnecessary; furthermore, the long-range elastic 

interactions of various structural defects are automatically taken into consideration 

during evolution.  
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Although several phase field models have been developed to investigate the surface 

evolution of stress induced islands, their stress fields could be solved using the 

mechanical equilibrium equations considering the approximation of small 

perturbation of the shear modulus [81, 82] or a proposed simple relaxation method 

[83, 84]. 

 

Most of the numerical works done in order to simulate the morphology evolution of 

surfaces and interfaces are based on nonlinear formulation. Both two and three-

dimensional Galerkin finite element methods are used for studying the surface 

diffusion and displacement field for the modeling of the surface evolution behavior 

[85-88].  

 

The growth or formation of epitaxially strained solid films is represented in the 

scope of problems so-called capillary and stress-driven shape and microstructural 

evolution in solids. The first serious attempt to approach this issue was performed by 

Asaro and Tiller [89]. By incorporating the elastic strain energy density (ESED) 

with the so-called chemical potential, they developed an equilibrium thermostatic 

model in order to express the morphology behavior of surfaces and interfaces during 

stress corrosion cracking. The Asaro/Tiller (AT) theory is partly accountable in 

isochoric systems, where the ESED is incorporated correctly with a positive sign in 

the Helmholtz free energy density.  

 

Grinfeld [90] applied the Gibbs-Duhem stability theory of thermodynamic 

equilibrium for the isothermal and isochoric systems, characterized by the second 

variance in the total Helmholtz free energy denoted as       for the infinitesimal 

perturbations on the surface morphology associated with the surface acoustic waves 

generated in the non-hydrostatically stressed linear elastic solids in contact with their 
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melts. There are two common points in these theories; they both concern isochoric 

systems, implicitly or explicitly and they both propose the existence of a critical 

wave length, which above it, the flat free surface becomes unstable under the 

sinusoidal perturbations if certain conditions prevail [35]. 

 

Spencer [91] and Tekalign and Spencer [92, 93] present very successful analyses in 

order to explain the morphological instability of growing epitaxially strained 

dislocation-free solid films. These analyses were based on the surface diffusion 

driven by the capillary forces and misfit strains by elaborating various type of 

wetting potentials associated with the thickness dependent surface specific free 

energy considering the ESED parameter. They applied periodic boundary conditions 

to all numerical and analytical studies reported in the literature according to the 

work done by Kukta and Freund [94], on the equilibrium morphologies, in order to 

obtain steady state solutions of the nonlinear free moving boundary value problem. 

Their study is relied mostly on the instabilities initiated by white noise or small 

amplitude initial perturbations, where the film thickness is smaller than the 

wavelength of surface variations. 

 

The present study is accomplished based on the theoretical development and 

modeling procedure performed by project group (Oren ve Ogurtani) [95-98], which 

is specified with prominent studies in investigating the evolution of surfaces and 

interfaces. They demonstrated that without even imposing any external 

perturbations, otherwise smooth surface of droplets, this isochoric composite system 

(film/substrate) simultaneously evolves towards the stationary state in the absence of 

the growth term by creating the SK islands or other proper morphologies depending 

on the imposed external and internal parameters. Unfortunately, the application of 

the rigid boundary conditions of any type to the computation domain restricts the 

natural motions of the triple junction (TJ) that lines between the isolated islands and 
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the substrate, and thus, the spontaneous evolution kinetics of the ensemble towards 

the possible stationary state morphologies are partially hindered. In our work, this 

restriction on the TJ motion is eliminated by employing an irreversible 

thermodynamic connection obtained by using the internal entropy production (IEP) 

hypothesis [96]. 

 

Accordingly, a specific formulation is developed for temporal velocity of the TJ 

singularity considering the wetting parameter, which depends only on the specific 

surface Helmholtz free energies of the thin film, substrate and the interface between 

them.  

 

However, in the stationary regime, SK island describes strictly monotonic decrease 

in the profile while approaching to the perfectly flat and highly extended platform 

with a relatively sharp turn. This plateau corresponds to the wetting layer, which has 

almost uniform thickness and has direct contact between individually formed SK 

islands. This layer is very close to the prescribed thickness of the boundary layer, 

namely fraction of a nanometer.  

 

Thus, according to required unknown information in the scope of formation of 

strained heteroepitaxial thin films, the purpose of this survey is to investigate the 

film/substrate interface (in) stabilities and evolution of quantum dots through 

computer simulation by utilizing the theoretical works of Ogurtani and Oren. 

Consequently, in this project, it is aimed to precisely control the size, shape, position 

and distribution of nano-crystalline quantum dots formed during molecular-beam 

epitaxy (MBE) technique. The results are expected to be a guide for fabrication of 

self-organized quantum dots that are suitable for technological devices. 
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CHAPTER 2 

 

 

PHYSICAL AND MATHEMATICAL MODEL 

 

 

A continuum theory based on the irreversible thermodynamics of surfaces and 

interfaces developed by Ogurtani [96] and Ogurtani and Oren [98] is used to 

simulate the evolution of epitaxial films, especially, the formation of the Stranski-

Krastanow islands through computer modeling. In this theory, the thickness 

dependent surface Helmholtz free energy (for the isochoric systems) is taken into 

account. 

 

In our model, a single random droplet is taken to generate our initial system. The 

droplet is presented with a symmetrical halve-wave length Cosine-function. The 

height (i.e., amplitude) and width of the droplet is symbolized by    and 2L, 

respectively. Since simulations are performed in 2D space, no profile variation and 

displacement in the film and the substrate takes place along the z axis (perpendicular 

to the plane of the schematics in Figure 2.1.  
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Figure 2.1: The side view of the droplet 

To simplify the numerical computations, the following assumptions are made: The 

interface between the film and the substrate is assumed to be coherent. The top 

surface is exposed to vapor environment with a vapor pressure that can be neglected. 

Additionally, it is assumed that the film/substrate interface is smooth and the 

substrate is rigid. These assumptions guarantee that the initial displacement along 

the interface associated with the misfit strain    stays constant during the evolution 

process (i.e., Dirichlet boundary condition). 

 

The droplet aspect ratio,   is defined as the value of the width over the value of the 

height       ⁄ ,    is the temporal wetting contact angle between the film and 

the substrate and varies in the range of          ; while the zero degree 

corresponds to perfect wetting, 180
o
 resembles to no wetting conditions. 

 

In the normalized and scaled length space, the initial height of the peak is chosen as 

the normalization parameter and thus  ̅   . Therefore, in the normalized system 

the initial shape of the droplet can be fully-defined by the aspect ratio   only. 

Similarly, to complete the predetermination of the initial morphology of the droplet, 

another additional parameter is needed to determine the size of the droplet, which 

corresponds to the intensity of the elastic strain energy density denoted by   

   
 ⁄ . Here,    is the height of the droplet in real space and  

 
 is the characteristic 
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length for the isochoric systems that depends only on the material properties of the 

film and the substrate including the misfit strain. If one takes  
 
 as a length scaling 

parameter (  ), then, according to our definition       
 
, we will come up with 

the result of    . In real space,    may be introduced as       for a given value 

of  . Thus,    can be calculated simply for a known value of   and  
 
 in real space 

as follows:      
 ⁄     

 ⁄  so       . Therefore, this dimensionless 

parameter   exclusively specifies the size while keeping the shape invariant (i.e., 

zooming); As a result of our normalization procedure, in the absence of the growth 

term, the aspect ratio   (i.e., shape) and the   (i.e., size) are two basic values to 

describe the morphology of the final stationary states. 

 

According to this micro-discrete formulation based on the irreversible 

thermodynamics of surfaces and interfaces, established by Ogurtani and Oren, the 

evolution kinetics of the surfaces or interfaces can be defined in terms of normal 

displacement velocities by solving the following free moving boundary value 

problem in 2D space.  ̅    describes the surface normal displacement velocities for 

ordinary points and longitudinal velocity  ̅     is related to the natural motion of the 

triple junction points, which are the points that droplet, substrate and the vapor phase 

encountered. During the evaluation, only normalized and scaled parameters and 

variables are used, which are indicated by bar signs (the normalization procedure 

will be represented later in this study). 

 

 ̅    
 

  ̅
* ̅        

 

  ̅
(   ̅ 

     ̅      ̅    ̅    ̅  ̅   ̅  ̅ )+  

 ̅  (   ̅ 
     ̅      ̅    ̅  ̅   ̅  ̅ )                                                           

 

 ̅       ̅     ̅  {       }                                                                 
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Here,  ̅  corresponds to the normalized anisotropic surface diffusion coefficient 

with respect to the minimum surface diffusivity.    ̅ 
  represents the thermal part of 

the Helmholtz free energy of transformation for a flat interface assuming that the 

isothermal processes are taking place in an isochoric system. In real space, it is 

defined as   ̂  
       ̂ 

   ̂ 
  . The positive value corresponds to condensation of 

the vapor phase or the growth of the droplet.  ̂ 
  and  ̂ 

  are the volumetric 

Helmholtz free energy densities for the realistic vapor and bulk droplet phases, 

respectively. The normalized hoop stress is denoted by  ̅       ⁄  , where    is 

the exerted stress (misfit or uniaxial). The hoop stress in plane strain condition is 

described by     ̂     ̂ where    is a 2D-stress tensor evaluated at the region just 

adjacent to the surface layer and  ̂ is the unit surface tangent vector. 

 

Dimensionless parameters   and   are respectively, the intensities of the Elastic 

Strain Energy Density (ESED) and the Elastic Dipole Tensor Interaction (EDTI) 

contributions on the stress-driven surface drift diffusion.  ̅ is the curvilinear 

coordinate along the surface (arc length) in 2D space normalized with respect to    

(arbitrary length scale). As told previously,     may be selected as the peak height of 

the droplet or the ratio of the surface Helmholtz free energy of the film in the bulk to 

the elastic strain energy density [93] such as  
        . Here,         

     

    denotes ESED, which is associated with the nominal biaxial misfit stress 

considering the third dimension.  

 

The film thickness    is defined as the integrated film thickness, and it may be 

given by  ̅              for the scaled halve wave length Cosine-shape flat 

droplets, where  ̅   . 
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   ̅    ̅  is the height dependent surface free energy of the droplet and for an 

isochoric system, it depends on the local distance   between the surface layer and 

the substrate: 

  

  ̅      
       

   
 (

       

  
*
 

 
         ⁄                                                             

  

  , and    are the surface energy of the surface and droplet in the bulk form 

respectively and   is the characteristic length scale that determines the size of the 

transition region. The wetting potential  ̅  ̅  is defined as 

 

 ̅  ̅  
 

√   ̅ 
 

       

   

 ̅

 ̅   ̅ 
                                                                                

 

 ̅ is the normalized local curvature and is taken to be positive for a convex solid 

surface (rounded). Similarly, the positive direction of the surface displacement is 

assumed to be towards the vapor. The second group of terms in the equation (2.1) is 

related to the growth or phase transformation (condensation or evaporation) 

kinetics, which is not considered in this study but detailed information is given in 

Reference [95]. 

 

By applying the following assumptions, the equation (2.1) is converted to the form 

below. We assume that there is no anisotropy in diffusion and surface stiffness 

regime in the system. Additionally, there is also no transformation or growth 

phenomena considered during the evolution process. 

  



 

34 

 ̅    
 

  ̅
[
 

  ̅
(    ̅      ̅    ̅    ̅  ̅   ̅  ̅ )]                                                  

  

We can write this equation as 

  

  ̅    
 

  ̅
[
 

  ̅
   ]                                                                                                                 

  

where 

 

      ̅      ̅    ̅    ̅  ̅   ̅  ̅                                                                           

 

If we consider 

 

 ̅      ̅    ̅   ̅                                                                                                                       

 

Then      

 

  

    ̅      ̅   ̅     ̅  ̅                                                                                                                                 
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Again if we write  

 

     ̅     ̅  ̅                                                                                                               )                                                                                                                           

 

we obtain the following equation  

 

      ̅      ̅                                                                                                                                                

 

The wetting parameter   is defined as   [            ⁄ ], where    is the 

Helmholtz surface free energy of the substrate,     is the interfacial free energy 

between the droplet and the substrate, and      is the height dependent surface free 

energy of the droplet.    is the temporal dihedral or wetting contact angle and varies 

in the range of           ,.  ̅       is the normalized atomic volume in the 

particle representation by assuming tentatively that the scaling length is in the range 

of 10 atomic spacing (more details can be found in the papers [96, 98]). 

 

  ̅     is the ratio of the triple junction points mobility denoted by  ̂     to the 

surface mobility,  ̂ . Similarly,  ̅   is the normalized growth mobility, which in 

general may depend on the temperature and the surface stress [97]. 

 

In the present computer simulations similar to work done by Spencer [91] and his 

coworkers [92], we assumed that        for the wetting potential, which is 

acceptable for the coherent boundaries such as the interface between epitaxially 

grown film and the substrate. 
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We also scaled the time and space variables {   } in the following manner: the 

normalized time scale is introduced by      
     ̂ 

     ⁄  where,  ̂ 
  is an atomic 

mobility correspondent for the mass flow at the surface layer. 

 

 ̅        ̅        ̅           ̅          ̅ 
  

  ̂  
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⁄⁄⁄  

 

   
     

  

   
  

      
  

      
      

     
    

     
    

  
  

 
                            

                                                                                                                                   

The misfit strain    at the film/substrate interface is introduced as a Dirichlet 

boundary condition by specifying the displacement vector in 2D space as   

 ̂    (i.e., in 3D space     ̂      ̂    ), and taking the droplet center at the 

film/substrate interface as the origin of the coordinate system to avoid shifting. The 

applied stress is chosen as the biaxial stress               , where,    and 

   are Young modulus and Poisson ratio of the droplet shape film respectively.    

is the misfit strain at the film/ substrate interface. This subject is very suitable for 

the Indirect Boundary Element Method (IBEM) solution of the plain strain isotropic 

elasticity problems [99]. If we take           as the initial scaling data, only 

the actual value of the Poisson‟s ratio of the film is required for the computation of 

the normalized stress distribution. The values of {     } are embedded in the 

definition of  .  

 

In Chapter 3, the numerical methods applied to solve the partial differential 

equations, developed here, will be described in detail. 
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CHAPTER 3 

 

 

NUMERICAL PROCEDURES 

 

 

3.1. Preparation of the initial system 

The initial system is defined as a two-dimensional droplet shape film, which is 

introduced by using finite numbers of nodes on the outer surface with predetermined 

segment length. The positions of the nodes are determined using Cartesian 

coordinate according to the reference point. Although the model is two dimensional, 

to take the advantage of vector algebra, it is considered three-dimensional with zero 

value in z-axis. The vector is represented as  ⃗〈 〉  |
 
 
 
| 

 

Using vectors for determination of node positions simplifies the calculation of the 

segment length  , and centroid vectors,  ⃗  defined as: 

 

    |  ⃗〈 〉|    Where     ⃗〈 〉   ⃗〈   〉   ⃗〈 〉  (3.1) 

 

and 
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  ⃗ 

 
 ⃗〈   〉   ⃗〈 〉

 
                                                                                                                      

  

3.2. Calculation of the turning angles at the nodes 

The turning angles at the nodes are the angles between two vectors that connect 

three successive nodes as shown in the Figure 3.1. It is calculated using the 

definition of two vectors.   

 

Figure 3.1: The turning angle at the node   

                         

   

{
 
 

 
       *

  ⃗〈   〉    ⃗〈 〉

|  ⃗〈   〉||  ⃗〈 〉|
+                               ⃗〈   〉    ⃗〈 〉   

        *
  ⃗〈   〉    ⃗〈 〉

|  ⃗〈   〉||  ⃗〈 〉|
+                                                 

}
 
 

 
 

                        

                                                                                                                                     

3.3. Calculation of node curvatures 

The curvature at each node may be assessed using discrete geometric relationship 

based on the fundamental description of radius of curvature and normal vector. The 

procedure is based on the given geometric relationships;  
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Three distinct points in a plane determine a unique circle, where the curvature of a 

circle with radius  
 
 (radius of curvature) is calculated as    

 
. Figure 3.2 indicates 

such a circle that crosses through three consecutive nodes          . To evaluate 

the local curvature at node  , the following identities can be written down using the 

known values of the segment lengths,    and the segment turning angles   . 

 

Figure 3.2: The unique circle that crosses through three successive nodes, O is the 

center of the circle,      |  |,    |  |,               and       

                                                                  

 
 
 

    

        
                                                                                                                            

 

Where    is the angle   ̂  and it is very easy to see that this angle also equals B ̂  . 

Then, the curvature at the node i is given by: 
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The tangent of the angle    can be formulated as follows: 

 

        
|  |

|  |
 

|  |

|  |  |  |
 

|  |          

|  |  |  |         
 

|  |        

|  |  |  |        

 

 
            

 
 

   
 
 

           
 

       
  

    
        

                                                 

            

Using the equation (3.5), the local curvature is calculated as: 

                                                     

   

    (    ( 
       

  

    
        

))

    
                                                                                 

                                                                                                                           

3.4. Calculation of the local line normal vectors 

To evaluate the normal line vector at each node, we need the value of angle   ̂ ; 

from Figure 3.2, one can simply write  
 
    ⁄     . 

 

Multiplying the   ⃗〈 〉 (vector that connects the successive nodes) by anticlockwise 

rotation matrix will give us the vector along the local line normal vector as shown 

below:  

 

 ⃗⃗〈 〉  |

      
 
       

 
  

      
 
       

 
  

   

|    ⃗〈 〉                                                                                                                 
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3.5. Calculation of the hoop stresses by using the Indirect Boundary Element 

Method (IBEM) 

The quantum dots dynamics is driven by the capillary-induced surface drift-

diffusion. In this study, we applied the simplest implementation of the IBEM to 

evaluate the hoop stress at the free surface of the droplet, as well as along the 

interface between droplet and the substrate. In fact, it is also possible to generate the 

complete stress distribution field in the interior region of the sample as a byproduct. 

Here, Neumann (i.e., traction free boundary condition) and Dirichlet boundary 

conditions (i.e., prescribed displacements) are utilized, respectively, along the free 

surface of the droplet and at the interface between droplet and the substrate. 

Therefore, we have assumed that the substrate is rigid, and Dirichlet boundary 

conditions are applied all along the interface. Hence, the displacements are 

calculated from the misfit strain   , by          .  

 

In solid mechanics, there are some known relationships introduced between stress 

and strain in the material, where stress is defined as force per unit area inside a solid.  

 

The traction vectors acting on three plains, which are parallel to three axes, are 

defined as follows: 

                                                 

 ⃗  [

  

 ̈  

 ̈  

]    ⃗  *

 ̈  

  

 ̈  

+    ⃗  [
 ̈  

 ̈  
  

]                                                                                   

                                                                                                 

Infinitesimal strains are calculated in the x, y, and z directions (  ,         ), by 

using stress components as follows: 
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The stress-strain behavior in elastic material can be formulated by Hooke‟s law. For 

an isotropic material, calculations can be done in three dimensions. 
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 ̈        

 

 
 ̈        

 

 
 ̈                                                                                

 

Here, E is the elasticity modulus,   is the Poisson‟s ratio and G is the shear modulus. 

The relationship between them is given as 

 

  
 

      
                                                                                                                          

                                                                                                                                   

The governing differential equations are acquired from the condition of equilibrium. 

For plane strain conditions, the following can be written:  

 

   

  
 

  ̈  

  
                                                                                                                  

                                                                                                                           

   

  
 

  ̈  

  
                                                                                                                  

 

Here,    and    are body force components in x and y directions. Substitution of the 

equations, results in the following equations 
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The fundamental solution for two-dimensional plane strain problem, is calculated for 

point unit loads in x and y directions of magnitude 1, which are extended to infinity 

in both    directions. The solution was first performed by Lord Kelvin.  

 

Figure 3.3: The symbolization for 2D Kelvin solution 

 

The solutions for the displacements in x and y directions due to a unit load in x 

direction are calculated as follows: 

 

          [     
 

 
   

 ]                                                                                                  

 

                                                                                                                                 

 

            ⁄                                                                                                                                                                                                                                  

 

To use the IBEM, the solutions for the boundary stresses (tractions) are also 

required. These tractions act on the surface with an outward normal direction of n. 

By taking the derivative of the displacement solution, the fundamental solutions for 

strains are calculated. Accordingly, by applying the Hooke‟s law, the fundamental 

solutions for tractions also can be evaluated.  
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According to IBEM, the tractions at point Q due to a unit load at P in x direction 

arecalculated as:  

 

 ⃗⃗⃗        
  

 
        

                                                                                                

                                               

 ⃗⃗⃗        
  

 
*            [         ]+                                                             

                               

             ⁄               
 

 
                                                                

                          

Where   is illustrated in Figure 3.3. If we assume that there is no body force acting 

in the domain, then we can write: 

 

      ∫[ ⃗                          ]   

                ∫[      ⃗⃗⃗              ⃗⃗⃗       ]                                                  (3.31)    

 

Using matrix algebra, we obtain 

 

     ∫        ⃗      ∫  ⃗⃗⃗                                                                                                             
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Consequently, the hoop stresses are calculated according to equation (3.32), since 

through this two integral equations system, the tractions  ⃗ are directly related to the 

displacements in the boundary  . This achievement removes the need to compute 

fictitious forces. 

 

3.6. Explicit Euler’s Method 

Using Explicit Euler‟s method helps to perform the time integration of equation 

(2.1) in order to predict the surface evolution behavior at any run.  

 

The initial time step is selected in the range of (0.0005, 0.05). However, the time 

step does readjust at any run step according to the maximum surface velocity and 

minimum segment length such that at each run step, the displacement is kept 

constant, which leads to recalculation of the time step for the specific maximum 

node velocity. This so-called adapted time step auto-control mechanism combined 

with the self-recovery effect associated with the capillary term, guarantees the long 

time numerical stability and the accuracy of the explicit algorithm even after 

performing         steps. 

 

3.7. Adaptive Remeshing 

In order to keep the experiment time and accuracy in an acceptable level, adaptive 

remeshing is required during the simulation. To express in more detail, in the case of 

exceeding the segment lengths from a critical value, the system loses the accuracy. 

On the other hand, increasing the number of nodes increases the computation time.  
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These two statements indicate that in order to obtain optimum results, the size of 

segment lengths should be kept in the range between the prescribed minimum and 

maximum segment lengths            . If the distance between two successive 

nodes becomes longer than     , the mid-point is converted into a node as 

illustrated in Figure 3.5.a. 

 

Similarly, if the distance between two successive nodes becomes shorter than     , 

in order to control the nodes number, as shown in Figure 3.5.b the mid-point node 

replaces the two successive nodes. To increase the accuracy, the same procedure 

applies to the next segment length.  

 

The further node is removed from the mesh and the new segment is formed after 

such a node removal process, the new segment lengths have to be controlled whether 

it is longer than      or not. 

 

Figure 3.4: The profile evolution according to local line normal ( ̂ ),    is the 

segment length between two nodes and  ́  is the segment length after the 

displacement. 
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Figure 3.5: Remeshing for the cases of (a) the segment length is bigger than the 

maximum allowable segment length (b) the segment length is smaller than the 

minimum allowable segment length 

 

Finally, the node velocities are calculated by solving the governing equations (2.1) 

and (2.2). Thus, the new configuration of the system can be estimated as a result of 

small displacement in time due to velocity of the nodes. All the numerical procedure 

steps are repeated for this new configuration to evolve the system further in time. 

Figure 3.6 depicts the numerical procedure of this study. 
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Figure 3.6: The numerical procedure of the program 
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CHAPTER 4 

 

 

RESULTS AND DISCUSSION 

 

 

In this chapter, the effects of strain relaxation on morphological evolution of QDs 

and the spontaneous evolution of an isotropic isolated thin solid droplet on a rigid 

substrate under various stress fields will be demonstrated. Those results, presented 

within this chapter, have been obtained by using the program explained in Chapter 3, 

in detail. 

 

4.1. Determination of safe run parameters 

Before starting to run various simulation experiments, it is important to consider 

some precautions in order to save computation time and to avoid performing 

redundant experiments. There are two independent parameters in the numerical 

procedure that can affect the computation speed and accuracy of the expected 

results. These two parameters are the initial node number (   and the initial time 

step (    that describe in what detail the system is generated and the evolution 

speed, respectively. 

 

Increasing the node numbers and decreasing the time step, lead to enhance the 

accuracy of the evolutionary path and thus the final stable configuration and vice 

versa. However, this accuracy may need prolonged calculation times to be able to 

reach the final stable state, if present. This situation generates a demand for some 
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precautions to predetermine these parameters to obtain the optimum time and 

accuracy for the numerical calculations. As we will see later this safe parameter sets 

also depend on the evolution route of the quantum dots in other words the path of 

the process. 

 

Table 4.1. outlines the preliminary experiments that are carried out for various    

values. The other system parameters are chosen to cover various evolution paths. 

Here, by increasing the    values, we continuously monitored the QD morphology. 

In those experiments, we observed that there is a critical value for the initial time 

step, below which the final system morphology converges. To provide a clear view, 

we summarized the results in Table 4.1., where the  signs indicate the converged 

results (i.e., acceptable results) and  signs indicate the results deviates from the 

identical experiments conducted with smaller time steps (i.e., not acceptable). 

 

Table 4.1. Effect of the initial time step on the convergence of experiments  

Experiment \   0.0005 0.001 0.005 0.01 0.025 0.05 

      ̅               𝛌=0.017       

      ̅               𝛌=0.990       

      ̅               𝛌=0.017       

      ̅               𝛌=0.500       

      ̅               𝛌=0.707       

      ̅               𝛌=0.500       

      ̅               𝛌=0.017       

      ̅               𝛌=0.017       
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In Table 4.1, the results of a set of experiments carried out with different time steps 

are shown. The final configurations obtained with time steps           and    

     , are almost identical but when we increase the time step up to         , the 

final configuration deviates from the previous equilibrium configurations.  

 

The larger time steps make the QD morphology lose its symmetry and/or experience 

a different route during the evolution, which happens due to large value of    that 

causes numerical errors.  

 

 

Figure 4.1: The effect of different    on the accuracy of computation process 

for          ,         ,         . In these simulations, the input 

parameters are       ̅                                 

 

According to the information given in Table 4.1, the approximate best    for each 

individual experiment may be selected. However, to determine the acceptable    for 

future experiments, in which we cannot foresee the evolution path prior to carrying 

the simulation experiment, it is safer to choose the smallest    that fits for all the 

experiments, which is thus selected to be          . However, the computation 

time for the experiments should also be considered in order to choose the best result. 

For the smaller values of   (for which the relatively simple evolution routes 

observed), the real computation time difference between various    s may be 

negligible but at higher stress values, as the system becomes more and more 
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complex (more island number) the time saving parameter may become very 

important factor for the accuracy of the results. For example, for      , in the 

case of          , the time needed for the system to achieve the final 

configuration is approximately 3 days. However, if we decrease the    to       , 

the computation time increases to 4 days. According to this time difference, as we 

have the similar result, it is more convenient to select the lower CPU time 

consuming choice, which is         . 

 

Similarly, to determine the optimum node number (n), some preliminary 

experiments are performed. The results are summarized in Table 4.2. As the node 

number increases thus the segment length decreases, the accuracy of the numerical 

procedure increases as a cost of increased computation time.  

 

Table 4.2. Effect of the initial node number on the convergence of experiments 

Experiment \ Node number 40 60 80 100 

      ̅                𝛌 = 0.017     

      ̅                𝛌 = 0.990     

      ̅                𝛌 = 0.500     

      ̅                𝛌 = 0.017     

 

In Figure 4.2, the results of a set of experiments carried out with different initial 

node numbers are shown. The final configurations obtained with node numbers of 

80 and 100 are almost identical but when we decrease the node number to 60, the 

final configuration observed, turned out to be different from others.  
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Figure 4.2: The effect of different node number on the accuracy of computation 

process for      ,      ,     . In these simulations, the input parameters 

are       ̅                                 

 

Based on these results, the approximate best node number is chosen as 80. In this 

specific case, the approximate calculation time for no-stress experiments are less 

than 10 minutes and for the stress applied experiments, it varies between 1-7 days. 

The calculation period depends on the shape and the node number that change 

according to remeshing at each run step. Here, for      , in the case of node 

number = 80, the time needed for the system to achieve the final configuration is 

approximately 1 day and in the case of node number = 100, the time needed for the 

system to achieve the final configuration is approximately 3 days. As seen from 

these numbers it is crucial to work with the optimal node numbers. 

4.2. The effect of triple junction mobility on the morphological evolution 

As discussed earlier, the morphological evolution of islands is governed by the 

velocity equations, where the velocity is calculated for each node using equations 

2.1 and 2.2. Here,  ̅     is associated with the mobility of the triple junction points 

at the edges. It is expected that by increasing the TJ mobility, the process 

acceleration takes place. The results of preliminary experiments verify this 

hypothesis.  
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Figure 4.3: The effect of different  ̅    on the accuracy and normalized evolution 

time of computation process (a) the normalized evolution time for  ̅    = 1,  ̅    = 

2 are 10.856876 and 8.822997 respectively, where the input parameters are   
                          , (b) the normalized evolution time for 

 ̅    = 1,  ̅    = 2 are 29.792955 and 12.819254 respectively, where the input 

parameters are                               . 

 

Figure 4.3 indicates that the TJ mobility affects the kinetics of the evolution process 

rather than the final stable configuration. We carried out two sets of experiments that 

in both the TJ mobility values are changed. In the first set, where the stress level is 

chosen as      we observed both TJ mobility values converged into almost same 

morphologies. In the second set we increased the stress level to      and again 

observed a similar scenario. In both experiments, by increasing the mobility, the 

normalized time necessary to reach the stable state decreases 10% and 55 % 

respectively. However, this does not guarantee the reduction in the computation 

time. For example, some experiments show that the computation time increases in 

the case of larger mobility values. Thus, in order to choose a single mobility value to 

simplify the comparison between various experiments, it is decided to choose 

 ̅      , which may be a help to save the time or perhaps the accuracy of future 

experiments. 
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4.3. Droplet simulation 

In this thesis, we focused on the QD formation via nucleation by producing shallow 

droplets, rather than surface roughening route in which the island forms through 

morphological instability. Thus, the aim of these simulations is to investigate the 

effect of various materials properties on the morphological change of droplets placed 

on rigid substrates. These parameters include the stress, film aspect ratio, wetting 

parameter, interface thickness and contact angles that also depend on the surface 

energy difference between the droplet and the substrate. In the following 

subsections, we will investigate those parameters in two cases: First we will assume 

that the stress level is negligible, which will allow us to demonstrate the effect of 

other material properties. Then, we took into account the misfit stresses formed 

between the droplet and the rigid substrate systematically.  

 

In the following experiments, the final configurations associated with particular 

input parameters are demonstrated in a specific form. The final configuration is also 

represented by a Gaussian curve (i.e., second order) given by  (   ̅   ̅)  

              ̅  ⁄ , where  ̅ and  ̅  are halve-width and peak height in 

normalized space respectively. 

  

Here, Figure 4.4.a shows the initial (dashed line) and the final configuration of the 

droplet (solid red line). The stability of the final image is determined according to 

stability of some parameters such as fractional height, base extension and wetting 

contact angle, which are shown in Figure 4.4.c and 4.4.d that become constant after 

150 runs. Figure 4.4.b shows the hoop stress distribution in the morphology. Here, 

the final profile value of  ̅   and  ̅ are calculated to be 1.619 and 5.362, 

respectively. 
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Figure 4.4: (a) Spontaneous formation of SK islands, (b) Normalized hoop stress of 

nodes in final configuration, (c) time evolution of wetting contact angle, (d) time 

evolution of fractional height and base length change. In these simulations, the input 

parameters are       ̅                             

 

4.3.1. QD evolution without stress 

In this section, the results are obtained from a set of experiments performed under 

the condition that intensity of Elastic Strain Energy Density (ESED) value is taken 

to be zero, which means that there is negligible misfit stress between the film and 

the substrate. The real material parameters are inserted as input data, which here, is 

assumed to be the Ge thin film epitaxial growth on the Si substrate. Namely: 

                        (misfit strain),                       . 

These numbers imply a characteristic length of             , which is used to 

calculate the height and the base length of droplets corresponding to the strain 

energy intensity parameter for a given aspect ratio. If we take  ̅     and   ̅    

as the initial scaling data, then only the actual value of the Poisson‟s ratio of the film 

is required for the computation of the normalized stress distribution. The results of 
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this program simulates the evolution process of the flat thin film layer under the 

effect of various parameters, where the evolution may terminates in the stable SK 

(Stranski-Krastanov) islands or may result in disappearing of the hills and formation 

of FM (Frank-Van der Merwe) layer.  

 

To observe the effect of wetting contact angle on the final island morphology, the 

evolution of droplets were investigated by applying various   values. Here, the 

following relationship exists between the wetting contact angle   and the wetting 

parameter            . Figure 4.5 represents the final morphology of non-stressed 

droplets considering various wetting contact angles.  

 

It is obvious that as the contact angle increases (the slope becomes steeper), the 

height of the droplet increases due to constant volume of the droplet since there is no 

material deposition into or removal from the droplet system. The small angle leads 

to formation of shallower islands. There are two peculiar limits for TJ contact angle, 

which makes the system unstable, namely, 0 degree and 90 degree (Figure 4.5.b and 

4.5.c).  
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Figure 4.5: The effect of wetting contact angle on the final morphology. In these 

simulations, the input parameters are       ̅                        

 

In the case of 90-degree angle, the system tries to evolve to a very perfect 

semicircle. At the initial stages, the system shows the expecting evolution behavior. 

However, at a critical point some factors cause interruption in the program and the 

system could not reach the final stability. This interruption can be due to some 

computation errors or maybe some unknown disregarded physical factors. In zero 

degree case, the island tries to become stretched on the substrate until forming an 
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extremely thin layer, which can continue into infinity (perfect wetting condition). In 

this case, the upper surface nodes become very close to the bottom interfacial part 

nodes of the system. This situation may cause the developed program to fail in 

prolonged run times.  The last configurations before the breakdown of the 

experiments with limit values for wetting contact angles are also given in Figure 

4.5.b. and 4.5.c. To avoid these problems, we consider angles very close to the 

limits, which can give stable results. 8 degree and 89 degree are found 

experimentally as suitable limit data that can be used without any problem during 

numerical procedure.  

 

In order to have better visualization for   detection, Figure 4.6 is prepared by 

enlarging a small section of Figure 4.5.a with identical scaling axes. 

 

 
Figure 4.6: Zooming the Figure 4.4.a for better   detection. The input parameters 

are       ̅                       . 

 

The evolution behavior of the contact angle of each experiment vs. normalized time 

is represented in Figure 4.7. Here, if we take the wetting contact angle of the initial 

shape as     , all of the experiments with larger   s follow more or less a similar 

path. Their wetting contact angle increases until they reach their equilibrium wetting 
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angle  , dictated by the material properties. For the rest, two cases (    and    ), as the 

equilibrium   is smaller than the initial shape, they experience a decrement in 

wetting contact angle, which leads to formation of shallower islands. 

 

 
Figure 4.7: Time evolution of wetting contact angles for different   values. In these 

simulations, the input parameters are       ̅                         

 

Figure 4.8 shows the 3D images of the three different experiments (low, medium 

and high wetting contact angles), which give better visualization about island 

evolution. Here, the final stages of the islands are projected onto the initial 

configurations. The final height of the QD‟s for             are 3.3649, 

2.3121 and 0.8144 respectively. Here, we need to state that there is no change in the 

volume of the islands. The only reason for the shape alteration is the variation in 

wetting contact angle, since other parameters are considered to be constant. 

 

 



 

63 

 
Figure 4.8: 3D images of spontaneous SK islands for three different   values 

(a)        (b)        (c)     , in these simulations, the input parameters 

are       ̅                       . 

 

Figure 4.9 demonstrates the island height change with time over the course of the 

morphological evolution process. As we discussed earlier, the stability of this curve 

is an effective factor in the determination of the stable (final) system configuration. 

For the two exceptional cases (     and    ), the wetting contact angle curve shows no 

stability according to Figure 4.9.b, where we can see that the height of the islands 

alters continuously and make it difficult to obtain a stable system.  

 

 
Figure 4.9: Time evolution of the change in fractional height of the islands for 

different   values. In these simulations, the input parameters are       ̅     

                  . 
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In Figure 4.9.a, the approximate points that stability begins are depicted with dashed 

lines. The interesting point that is noticeable in Figure 4.9.a is that the necessary 

time to reach the equilibrium contact angle is decreasing as the final and initial 

contact angle differences increases. This behavior may happen due to   gradient 

between the initial and final configuration, where the initial system has a contact 

angle value of       . This   difference acts as a potential that affects the kinetic of 

the evolution process. However, on the other hand if the final equilibrium contact 

angle is less than the initial value; we experienced the longest time, required to reach 

the equilibrium QD configuration, among others. 

 

We also investigated the effect of the aspect ratio ( ) on the final morphology of the 

droplets and the results are indicated in Figure 4.10. 

 
Figure 4.10: The effect of aspect ratio on the morphological evolution of quantum 

dots, where in these simulations, the input parameters are        ̅     
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In Figure 4.10, 6 different   values are used while all the other system parameters 

are kept unchanged. According to our definition (     ̅ ⁄ ), by altering the  , we 

can change the initial shape of the droplet, since the  ̅  value is invariant and it is 

equal to 1, by decreasing the  , we actually decrease the width of the droplet, which 

finally forms a smaller quantum dot. As a result, if the misfit stress is negligible, the 

  parameter only affects the size or the scale of the stable island formation. 

 

4.3.2. QD evolution with stress 

In this section, we applied various levels of stress to the system, and similar to the 

previous section, we have investigated the evolution behavior of the droplets under 

the effect of     and  . Finally, we obtained an approximate 2-D phase diagram 

using different values of   and  , which shows the stability regions of the various 

final morphology traits. 

 

The morphological evolution stability of the system is very sensitive to the wetting 

contact angle, aspect ratio, applied stress and other material properties. Although, we 

know that the surface energy and surface diffusivity are function of crystallographic 

orientation (i.e. anisotropic), within the frame of this work, it is assumed that all the 

system parameters are isotropic. 

 

As we have shown in the previous subsection, if the misfit stress level is negligible, 

the final islands morphologies are dictated mostly by the equilibrium dihedral angle 

and we always have single islands without any fragmentation over the course of the 

simulations. However, when we start including the effect of the misfit stresses into 

our simulations, the overall picture is changed: fragmentation and formation of 

multiple islands, sometimes separated with a wetting layer resembling the formation 

of Stranski-Krastanow thin film growth mode, are appeared. From now on, we will 
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discuss those materials properties, which will result in various final stable 

morphologies.  

 

Figure 4.11 indicates the effect of the wetting contact angle on the final morphology 

of the QDs, where in this experiment the value of stress is chosen as     . In the 

case of       , similar to the no stress case we obtained a single isolated QD. 

However, when we compare this single QD case with the same one with no stress 

case (Figure 4.5.a), the effect of stress is obvious i.e. a sharper QD with almost twice 

peak height and half peak base length. Therefore, we state that with a proper control 

over the stress levels, one can control the aspect ratio of the stable QD formed and 

thus the energy spectrum, which in fact is technologically one of the most important 

outcomes.  

 

However, this is not the case for all equilibrium wetting angle values. When we start 

increasing the wetting angle to       , the final morphology stabilizes in doublet 

by fragmenting into two with similar size and shapes. By decreasing the wetting 

contact angle to       , the island numbers increases to four (i.e. quadruplet). In all 

cases, the overall volume is constant; thus as the islands fragment into more and 

more daughter islands, the islands size decrease (Figure 4.11.a).  

 

We also carried out simulation experiments for cases with higher wetting tendency 

(i.e. lower wetting angle). In Figure 4.11.b we present such two cases: for       , 

the initial droplet evolves into a quadruplet with similar islands but compared to the 

case in o89  , the edges are not very steep and bent outwards indicating a wetting 

layer formation. By decreasing the wetting contact angle further, we observed that 

the edges bent more. Finally, at a critical value, the wetting layer starts to appear. 
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The wetting layer formation is very obvious in      , where we will have 

quadruplet similar islands with a very thin layer, which is stretched from both edges. 

 

 

 
Figure 4.11: The effect of wetting contact angle on the final morphology. In these 

simulations, the input parameters are       ̅                      

    
 

Figure 4.12 depicts the effect of   on the morphological evolution of quantum dots. 

Considering that we assumed all the material properties are isotropic, the 

morphological change of the islands due to low stresses is limited. For low   values 

(       ), the result is always a single quantum dot but with larger aspect ratio 

compared to the initial shape, which is due to the height increment of the islands 

(Figure 4.12.a). However, for larger   values, the evolution behavior of the islands 

entirely changes and the single island divides into a dual island shape. As shown in 

Figure 4.12.a and 4.12.b, these two islands are distinct but identical. However, they 

are connected with a very thin wetting layer the length of which is stress dependent. 

By applying     , the distance between the islands of this dual shape becomes 

larger. By increasing the   value to    , we observed the formation of quintuplet 

distinct islands (Figure 4.12.b).  
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Figure 4.12: The effects of stress on the final morphology; in these simulations, the 

input parameters are       ̅                          

 

To understand the connection between the island height and the applied misfit stress 

level, we collected the data from various experiments and plotted them in Figure 

4.13. The separation point of the island into distinct islands can be recognized with a 

sudden decline in the height of the island. 

 

As a general tendency, as the stress level increases, the final height of the islands 

also increases but there are various threshold values above which we observe island 

fragmentation into two and more islands. Note that the threshold stress values for 

fragmentation are also a function of wetting angle thus the respective surface 

energies of the film and the substrate. 
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Figure 4.13: The effect of stress on the island height of final morphology; in these 

simulations, the input parameters are       ̅                      

    
 

Each experiment has its own path of evolution dictated by the initial parameters 

associated with both material characteristics and the environmental effects. Any 

shape transition path occurs in such a way to minimize the overall system energy. In 

some cases, we observe that two experiments with different initial parameters may 

come up with similar final stable configurations, however their path for shape 

transition are entirely different. Investigation about the transition paths will give us 

very interesting and beneficial results in controlling the QDs morphology. However, 

it is not within the scope of this project.  

 

In Figure 4.14, we demonstrated the evolution process of four different experiments, 

for which the final configurations are also compared in Figure 4.12. Here, we took 

snapshots of island morphology at various times. The time used here is a normalized 

unit-less number as discussed earlier and given by Eq. (2.12). 
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In Figure 4.14.c, we demonstrated the path of the wetting layer formation. Initially 

we observed the formation of ripples on the surface of the droplet and then those 

ripples evolve into three separate islands the one in the middle is smaller compared 

the other two. Finally, bigger islands consume the middle one while separating from 

each other but are connected with a thin wetting layer. The effect of   on the 

normalized time required for stability is also noticeable. 

 

 From figure 4.14 it can be seen that by increasing the value of   the stability time 

decreases. The   value acts as a potential that affects the kinetic of the evolution 

process. However, as mentioned before, this normalized time is different from the 

computation time needed for the program to find the stability point. Accordingly, in 

most of the cases by increasing the   value, the computation time increases.  
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Figure 4.14: The effects of stress on the morphological evolution of quantum dots 

for (a)      , (b)      , (c)    , (d)    ; in these simulations, the input 

parameters are      ̅                          

 

The effect of the aspect ratio of the initial droplet is another subject we concentrated 

within the scope of this thesis. To this end, we have carried out various experiments 

with different initial droplet sizes while keeping the applied stress as    . The 

morphological evolution recorded for these experiments is summarized in Figure 

4.15. By increasing the aspect ratio, island would have larger base length, which 

makes relatively shallower profiles. In longer base length islands, the island surface 

has the capacity to form more initial sinusoidal wave shapes as a result of the stress 

relaxation. Accordingly, the islands with larger aspect ratio have the chance to form 

more in number distinct islands.  
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Figure 4.15: The effect of aspect ratio on the morphological evolution of quantum 

dots, where in these simulations, the input parameters are  ̅             

                 

 

According to Figure 4.15, for small aspect ratios such as (     , one single island 

is the stable final configuration. The evolution process of this specific case is given 

in Figure 4.16.a. In this case, there are not much ripples formed on the droplet 

surface at early times. Thus, those ripples coalesce into one single island. On the 

other hand, we observed that by increasing the aspect ratio, the number of final 

stable islands increases.  

 

At the initial evolution stages of island with large aspect ratio (    ), the surface 

instability generates several surface ripples where any of them may have the 

potential to form final quantum dots. This is the case we observed in Figure 4.16.b.   
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Figure 4.16: The effect of aspect ratio on the morphological evolution of quantum 

dots for (a)     , (b)      where in these simulations, the input parameters are 

 ̅                              

 

As we have demonstrated above, both the island stability and the configuration of 

the stable islands is a function of various material properties especially the surface 

energies of the island and the substrate and the misfit stress levels in the system. To 

be able to provide a more clear view, we prepared a phase diagram (Figure 4.17) 

depicting the number of stable islands with respect to both the wetting parameter,   

and the stress parameter,  . In Figure 4.17, the different regions for island stability, 

which are determined according to island numbers of performed experiments in 

various values of   and   are shown. In this figure, we colored those different 

stability regions and also draw approximate boundaries between those regions for 

clarity. 

 

When we carefully inspect Figure 4.17, it can be seen that for small values of  , 

independent of the   values, we have single islands; this is in accord with our results 

for no or negligible stress levels presented in Section 4.3.1. However, as the stress 

level,  , increases, we start seeing island fragmentation and more islands as the 

stable final configurations.  
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The threshold value of the stress level necessary for fragmentation is a function of 

wetting parameter as clearly observable in Figure 4.17. For example for   values 

closer to zero this threshold value is around  = 0.6, however for      , the 

threshold value increases up to  = 1.2.  

 

 
Figure 4.17: The phase diagram of various regions for different   and   values 

 

There is also another order vertically for each   value. For example, in     

(limited area in Figure 4.17 with dashed line), this order is obvious. The profiles of 

this set of experiments were also given previously in Figure 4.11, where for small 

value of  , quadruplet island formation was observed. By increasing the   value, the 

number of islands increases. However, at a critical value, the island number starts to 

decrease and finally near    , the final morphology forms a quadruplet profile. 

The obvious difference between the small and large   value quadruplet profiles is 

the wetting layer formation as shown in Figure 4.11. 
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The wetting layer formation is very important and it is the main difference between 

isolated island formations (Volmer-Weber) versus connected island formations 

(Stranski-Krastanow). When we more accurately inspect the phase diagram 

developed in this work, it seems to have three distinct regions: lower part (<0.3); 

middle part (0.3<<0.9) and top part (0.9<) that are separated with dashed lines as 

shown in Figure 4.18. Within each one of these regions, the number of islands at 

equilibrium increases as   increases.  

 

Besides the number of stable islands formed, the morphology of the islands is also 

important. To better understand the morphological differences within those regions 

and evolution process of each region; two different set of experiments have been 

chosen.  

 

 

Figure 4.18: The phase diagram of various regions for different   and   values 
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The first set is associated with the single island number (low stress region), where 

the selected experiments are indicated in Figure 4.18 with green squares. The 

evolution processes of these selected experiments, A, B and C, respectively for 

lower, middle and upper parts are shown in Figure 4.19.  

 

 

 
Figure 4.19: The evolution processes of single island region in phase diagram. In 

these simulations, the input parameters are (a)                     (b) 

                  , (c)                   . 

 

As seen from Figure 4.19, all three cases A, B and C evolves into a single island but 

with different routes. First of all, case A from lower part directly evolves into a 

single isolated droplet (Figure 4.19.a). At high values of  , B from upper part 

(Figure 4.19.b), we come up with a single island but with a well formed wetting 

layer. An interesting circumstance happens at middle region of   that is for 
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experiment C (Figure 4.19.c): In this case, the droplet is separated into three distinct 

islands at the early times, and all are connected with wetting layers. The island in the 

middle is larger than the other two. The islands on each side are trying to move away 

further towards the sides. The energy balance between the surface free energies and 

interface energy are favorable for this phenomenon. However, it should be noticed 

that the size of moving islands decreases as the islands move further. The larger 

island in the middle gets larger by gaining the lost material from the side islands. At 

later times, at a critical time point, when the sizes of the satellite islands become 

smaller than a critical value, they no longer move away from the larger middle 

island but towards it. Later, the larger island dominates and completely consumes 

the material content of the smaller ones to form a single island with a well-defined 

equilibrium wetting angle.  

 

The second set of experiments is chosen among the stable quadruplet islands from 

moderate to high stress regions. Similar to the previous set, A, B and C experiments, 

respectively for lower, middle and upper parts are shown in Figure 4.20.  
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Figure 4.20: The phase diagram of various regions for different   and   values 

 

The similar phenomena happens as seen from Figure 4.21, where all three cases A, 

B and C evolves into a quadruple island but with different routes.   
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Figure 4.21: The evolution processes of quadruplet island region in phase diagram. 

In these simulations, the input parameters are (a)                     
(b)                  , (c)                    

 

As can be seen from Figure 4.21, all three cases A, B and C evolve into a quadruplet 

islands but with different routes. First of all, case A from lower part directly evolves 

into a quadruplet islands without the wetting layer formation in both sides (Figure 

4.21.a). At high values of  , B from upper part (Figure 4.21.b), we come up with a 

very similar formation but with a well formed wetting layer in both sides. An 

interesting circumstance happens at middle region of   that is for experiment C 

(Figure 4.21.c): In this case, the side islands move away to a certain point and again 

drift back to the middle and form a quadruplet island form with the equilibrium 

wetting angle. 
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Figure 4.22: The phase diagram for different   and   values that separates the 

region with wetting layer and region without wetting layer 

 

As mentioned previously, the formation of wetting layer at the edges of the quantum 

dots has a very significant importance for our studies, as they make quantum dots 

suitable for many applications. Accordingly, in figure 4.22 we separated the phase 

diagram with dashed lines into two regions to demonstrate the region that wetting 

layer formation is observed and the region without wetting layer. Here, green balls 

are associated to the experiments that wetting layer is formed and the rest are 

associated to the experiments without formation of wetting layers. It is obvious that 

at high values of   independent of   values we can gain wetting layers. 
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CHAPTER 5 

 

 

CONCLUSIONS 

 

  

Semi-conductor quantum dots show a significant potential in wide range of 

applications in technology. One of the most important aspects of quantum dots is the 

relationship between their size/morphology and electronic and photonic properties. 

Considering this relationship, understanding the mechanism of the formation of 

these nano particles and thus controlling the size, morphology and even organization 

is a very important technological and scientific problem. 

 

Our study is based on the new model introduced by Ogurtani and Oren (2001; 

2005), using continuum level dynamical simulations presented for the spontaneous 

evolution of an isolated thin solid droplet on a rigid substrate via computer 

simulation method. 

 

Here, in droplet simulation experiments, the effects of film aspect ratio, equilibrium 

angle between the droplet and the substrate (surface energy difference dependent) 

and stress on the morphological evolution of QDs and occurrence of wetting layer 

are investigated in detail. 
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The morphological evolution kinetic of an isochoric surface in the direction of the 

surface normal, is governed by normalized and scaled velocity vector (equation 2.1) 

and the velocity associated with the edges between substrate and droplet (triple 

junction) governed by (Equation 2.2) are called Vord and Vedge , respectively. 

 

The simulation is established for a 2-D system. At the initial stage, the film surface 

is defined by a symmetrical halve-wave length Cosine-function using finite nodes 

with specific segment length (Figure 2.1). The evolution of the surface occurs by 

displacement of the nodes and changing the node coordinates in 2D. The governing 

equations for displacement (equation 2.1 and equation 2.2) are solved using 

numerical procedure. The differential equations are solved using Euler finite 

difference method. 

 

To avoid the appearance of very short or very long segment lengths, the segment 

lengths should be controlled persistently and be able to be revised if required 

(remeshing). The normal vector and curvature of each node should be calculated 

after each run step. 

 

Finally, the velocity of each node is calculated using the governing equations. By 

applying the velocities, the small displacement of the nodes makes the final 

configuration of the system.  

 

By applying all the calculations on the final configuration, the morphological 

evolution of the system continues through time. C++ program is used to prepare the 

numerical procedure. The C++ code is given in the Appendix. The numerical 

procedure is also summarized schematically in Figure 3.6. 
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According to our definition (     ̅ ⁄ ), by altering the  , we can change the initial 

shape of the droplet, since the  ̅  value is invariant and it is equal to one, so by 

decreasing the  , we actually decrease the width of the droplet, which finally forms a 

smaller quantum dot. At the initial evolution stages of island with large aspect ratio, 

the surface instability makes surface hills, which happen due to internal stress. Any 

of these hills may have the potential to form a quantum dot. However, for islands 

with small aspect ratio there are not much hills at the initial configuration. 

 

To observe the effect of wetting parameter on the equilibrium morphology, the 

behavior of the system under the effect of different wetting parameters   is 

investigated. As we mentioned before, there is a relationship between equilibrium 

contact angle   and   wetting parameter as follows:           . During the 

surface evolution, the wetting angle changes through time where at the final stages it 

reaches a specific value and stays constant. If the wetting contact angle declines to 

an aspect ratio dependent critical value, the system is observed to form a wetting 

layer. This value is also a function of the internal stress of the system. 

 

The effect of stress on the system with isotropic properties, show that applying small 

values of stress cause a limited change on the configuration behavior. For low stress 

values, the final morphology shows a slight increment in the aspect ratio of the 

system. After reaching the stress to a critical level, the morphological behavior of 

the system changes entirely and the initial single droplet is divided in to two or more 

separated islands, which are connected with a thin wetting layer in between. This 

final configuration is called Stranski-Krastanow islands in the literature. 

 

To discover the internal stress and wetting parameter effects on the morphology, 

various experiments are performed by changing both parameters separately. This 
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group of experiments is given in Figure 4.17 as a phase diagram. This diagram is 

beneficial in determination of the stability regions of the islands that show in which 

region the droplet is going to separate into smaller islands and the island number in 

the case of separation. This phase diagram denotes the complexity of the system. In 

this complex system, the curves that divide the regions are noticeable. There is also 

another categorizing manner where divides the phase diagram into three parts of low 

and high wetting contact angles and the middle region in between that has the 

intermediate value of wetting contact angle value. In each region, by increasing the 

stress, the number of islands increases. All three regions show separately but similar 

behavior. This diagram can provide beneficial information about essential conditions 

required for production of specific QD. After applying essential tests to verify the 

validity of the results, the following results is gained from the set of experiments 

done during this project. 

 

The internal stress of the material and the wetting potential, have the effect of 

dividing the material into islands and forming the wetting layer respectively. In 

order for the wetting layer to be formed, there is a critical value for wetting potential 

where beyond, the wetting layer appears. In the domain of low wetting potential, the 

wetting layer only appears between islands. However, for high values of the wetting 

potential, the wetting layers form at the outer edges of the islands as well as islands 

interval. 

 

Consequently, according to the results of various experiments, the surface evolution 

of the thin films depends on the internal stress values, the equilibrium wetting 

contact angle between the film/substrate, surface stiffness and initial conditions of 

the system. This information is essential for providing the scientific fundamental 

knowledge for novel fabrication techniques of quantum dots. 
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5.1.    Future studies 

The performed experiments in the scope of this project revealed essential 

information about the evolution behavior of thin films under stress and the formation 

of the quantum dots. It is also important here to mention the missing points of this 

project, which could be survey issues in the future. 

 

This project indicates the effect of the internal stress on the morphological control of 

the quantum dots. In future, we can add the electromigration effects (the effect of the 

electrical field on the surface diffusion of the material) to our 2D program. The 

information in this issue can be helpful for island formation using electrical field as 

this technique can be easily applied.  

 

All of the calculations in the scope of this project are based on the assumption that 

all the material properties are isotropic. However, in the real world the material 

properties related the surface diffusivity and also the surface energy are anisotropic, 

which could be considered in further studies. 

 

Investigating the transition paths from initial droplet shape to the final configuration 

through time may give us beneficial knowledge about effective factors in 

minimizing the energy required for transition and also information about controlling 

the morphology of QDs. 

  

Another valuable future study proposition is to develop a three dimensional model, 

which can indicate more precise information about the real world. Moreover, in 3D 

equilibrium systems, the information about shape, size, internal stress distribution 

etc. can be used to calculate the QD optical and electrical properties. In this issue, 
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after obtaining the final morphology, the calculations about energy levels, wave 

functions and optical dipole matrix elements can be performed to simulate the 

electrical transport properties and photo excited carriers of the Quantum dot arrays. 
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APPENDIX A 

 

 

PROGRAM CODE 

 

 

1. #include <stdlib.h>   
2. #include <iostream>   
3. #include <fstream>   
4. #include <math.h>   
5. #include <stdio.h>   
6. #include <time.h>   
7. #include <iomanip>   
8. #include <string>   
9. #include <ctime>   
10. #include <cstdlib>   
11.    
12. using namespace std;   
13.    
14. ofstream out,kout;   
15. ifstream in;   
16.    
17. struct line   
18. {string name;};   
19.    
20. typedef double Number;   
21. typedef Number arr1[1001];   
22. typedef Number arr2[3][1001];   
23. typedef Number arr3[1001][1001];   
24. typedef Number arr4[3][3];   
25. const long double pi = 3.1415926535897932384626433832795;   
26. char line[256] = "";   
27. FILE *fp;   
28.  int   
29.     nupdown, nd,numContData=0,lastOutNum,   
30.     ms,nl,type,rem,contData,   
31.         nrem,nrup,nrdown,nrud,ndelru,   
32.         Modiv,Msin,nsw,mint,nu,t=0,mm,mpow,fmn;   
33.    
34.  Number   
35.         newdata,maxSeglenth,   
36.         ho,ro=1,sl,sln,sw,slw,Amp,   
37.         Cksi, ksi,   
38.         ym,poisson,delGb,Mb,Mg,Cepsilon,Csigma,   
39.         Aint,Bint,tphi,hfn,   
40.         gammaf,gammas,delw,lamdag,gfm,   
41.         epstime,Sigma,Eta,delta,   
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42.         rmax,rmin,   
43.         lamda,lamdau,kv,omega,epsx,rtphi,   
44.         dmean,vmax,   
45.         lamG,lammu,lamlamda,cc,c1,c2,c3,c4,cc1,cc2,   
46.         thetaR,thetaL,   
47.         velL,velR,deltat,timex,delrend,delrlower,delrfirst;   
48.    
49.  arr1   
50.     sup,sdown,Wpot,Wcal,   
51.         ulas,vect,   
52.         s,su,sd,sud,   
53.         teta,tetau,tetad,tetaw,   
54.         kapkap,kapkapup,kapkapdown,kapkapud,   
55.         xmu,ymu,mamu,   
56.         tn,   
57.         aqx,aqy,aqxy,aqz,Trq,hoop,Sighoop,   
58.         dif,theta,   
59.         omom,TauO,TauD,TauS,   
60.         vel,Psiu,   
61.         cffr,   
62.         mu,fieldi,fieldii,fieldt,   
63.         fieldin,fieldiin,fieldtn,   
64.         trqa,fsigma,ub,tarik,   
65.         strainenergy,tpot,tpotkap,   
66.         tpotint,tpotvo,tpotkapint,tpotkapvo,   
67.         velint,velvo,diffint,diffvo;   
68.    
69.  arr2   
70.         delrup,delrdown,   
71.     rupa,rup,rdown,rud,rm,                               //   
72.         rintvo,rgbup,rgbdown,                             //   
73.         delr,delru,delrd,delrud,                          //   
74.         anti,                                             //   
75.         lln,llnint,llnvo,                                 //   
76.         noc,nocint,nocvo,nocintvo,                        //   
77.         rcud,                                             //   
78.         trac,ru,ruprc;                                          //   
79.    
80.  arr3   
81.         tt,delu,fttbig,fuubig,sgbig,duubig;               //   
82.    
83.  arr4   
84.         ss,us,ttssx;                                      //   
85.    
86. string  sy,textName,outName;                                               

//   
87.    
88. inline Number sqr(Number x);   
89. inline int timer(int& m, int& e);   
90. inline Number dotpro(Number& a0, Number& a1, Number& a2, Number& b0, Number

& b1, Number& b2);   
91. inline Number magnitude(Number& a, Number& b, Number& c);   
92. inline Number arcsin(Number& okst);   
93. inline Number angle(Number& a0, Number& a1, Number& a2, Number& b0, Number&

 b1, Number& b2);   
94. inline Number area(int& n, arr2& r);   
95.    
96. void vectorpro(Number& a0, Number& a1, Number& a2, Number& b0, Number& b1, 

Number& b2);   
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97. void antirotma(Number& w);   
98. void trian(int colon,arr1 tek,arr3 cift);   
99. void uppart();   
100. void lowpart();   
101. void stacksvi(arr2& ru, int& nu, arr2& rd, int&nd);   
102. void stackv(arr1& f, int& fn, arr1& s, int& sn, arr1& r, int& rn); 

  
103. void stackv(arr2& f, int& fn, arr2& s, int& sn, arr2& r, int& rn); 

  
104. void delr1(int& nn, arr2& r,arr2& delr,arr1& s);   
105. void deldelr1(int& nn, int& looptype, arr2& r);   
106. void psir(int deln, arr2 delr);   // degistirildi...   
107. void psipsir(int& deln, arr2& delr, arr1& s);   
108. void kappa(arr1& s, arr1& teta, arr2& delr, int& n);   
109. void stacksab();   
110. void nocRT(arr1& s, arr2& delr, int nu, int nd);   
111. void rcc(arr2& r, int& n);   
112. void Sss(Number& rk0, Number& rk1, Number& rk2);   
113. void uu(Number& rk0, Number& rk1, Number& rk2);   
114. void ttss(Number& rk0, Number& rk1, Number& rk2, Number& nk0, Numbe

r& nk1, Number& nk2);   
115. void ftin(arr1& sup, arr2& delrup);   
116. void asym();   
117. void boundary();   
118. void pbfv();   
119. void fc();   
120. void dsglarge();   
121. void multa();   
122. void SigStress();   
123. void SigNodet();   
124. void durq();   
125. void multb();   
126. void ddif();   
127. void centerpoint();   
128. void remesh0();   
129. void remesh1();   
130. void remeshlower();   
131. void calnew();   
132. void calruv();   
133. void generate();   
134. void getparam();   
135. void getcontparam();   
136. void final();   
137. void ksitbir();   
138. void tbir();   
139. void clrscr(void);   
140. void recording();   
141. void recordtimestep();   
142. void needparam() ;   
143. void continues();   
144. void writeParam();   
145. void remeshEnd();   
146.    
147. int main()   
148. {   
149.   needparam();   
150.    
151.  writeParam();   
152.   if(!contData) generate();   
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153.   else continues();   
154.    
155.   final();   
156.   return 0;   
157. }   
158.    
159. void continues(){   
160.    
161. int nulll;   
162. Number nullll;   
163.    
164. in.open("cont.dat");   
165. in >> rup[0][0] >> rup[0][1] >> nrup >> nrdown >> t >> lastOutNum >

> timex >> dmean ;   
166.    
167.    
168.     nrud = nrup+nrdown;   
169.    
170. for(int i=1; i<nrup;i++){   
171. in >> rup[0][i]>> rup[1][i] ;   
172. }   
173.    
174. for(int i=0; i<nrdown;i++){   
175. in >> rdown[0][i]>> rdown[1][i] ;   
176. }   
177.    
178. in.close();   
179.    
180.     if (t < 256) mpow =pow(2,(double)lastOutNum);   
181.     else if (t < 1000) mpow =300+200*(lastOutNum-9);   
182.     else if (t < 10000) mpow =1000+500*(lastOutNum-13);   
183.     else if (t < 20000) mpow =10000+1000*(lastOutNum-31);   
184.     else if (t < 100000) mpow =20000+5000*(lastOutNum-41);   
185.     else mpow =100000+10000*(lastOutNum-57);   
186.    
187. }   
188.    
189. void int2str(int i){   
190. char  index[10][2] = {"0","1","2","3","4","5","6","7","8","9"};   
191. //      mynum = (string)index[temp/1000];   
192. //      temp -= (temp/1000)*1000;   
193.         textName = (string)index[i/100];   
194.         i -= (i/100)*100;   
195.         textName +=(string)index[i/10];   
196.         i -= (i/10)*10;   
197.         textName +=(string)index[i];   
198.         textName += "csl.dat";   
199. }   
200.    
201. // AUXILIARY FUNCTIONS & PROCEDURES   
202.    
203. inline Number sqr(Number x){   
204.     return x*x;   
205.     }   
206.    
207. // this function determines the record time steps   
208.    
209. inline int timer(int& m,int& e)   
210. {   
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211.   int powa = 1;   
212.   if (e != 0) for (int ki = 1; ki <= e; ki++)  powa *= m;   
213.   return powa;   
214. }   
215.    
216. //this function finds the dot product of two vectors   
217.    
218. inline Number dotpro(Number& a0, Number& a1, Number& a2, Number& b0

, Number& b1, Number& b2)   
219. {   
220.   return a0*b0+a1*b1+a2*b2;   
221. }   
222.    
223. //this function finds the magnitude of the vectors   
224.    
225. inline Number magnitude(Number& a, Number& b, Number& c)   
226. {   
227.   return sqrt(a * a + b * b + c * c);   
228. }   
229.    
230. //this function finds the arcsin(teta)   
231.    
232. inline Number arcsin(Number& okst)   
233. {   
234.   Number arcs, sens =0.0000000000001;   
235.    
236.   if (okst > 1-sens) arcs = pi/2;   
237.   if (okst < sens-1) arcs = -(pi/2) ;   
238.   if (okst < sens)   
239.     {   
240.     if (okst > -sens) arcs = 0;   
241.     }   
242.   if (okst <= 1 - sens)   
243.     {   
244.     if (okst >= sens) arcs = atan(1/sqrt(1/(sqr(okst))-1));   
245.     }   
246.   if (okst <= -sens)   
247.     {   
248.     if (okst >= sens-1) arcs = atan(1/sqrt(1/(sqr(okst))-1));   
249.     }   
250.    
251.   if (okst < 0)   
252.     {   
253.     if (okst > -1)  arcs = -arcs;   
254.     }   
255.  return arcs;   
256. }   
257.    
258. // this function finds the angle between two vectors   
259.    
260. inline Number angle(Number& a0, Number& a1, Number& a2, Number& b0,

 Number& b1, Number& b2)   
261. {   
262.   Number angles,dd,asr,dotp;   
263.   dotp = dotpro(a0,a1,a2,b0,b1,b2);   
264.   dd = magnitude(a0,a1,a2)*magnitude(b0,b1,b2);   
265.   asr = (a0*b1-a1*b0)/dd;   
266.   angles = arcsin(asr);   
267.   if (dotp<=0.0) angles = pi-angles;   
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268.   // if (angles > pi) angles  -= 2.0*pi;   
269.   // if ( angles < 0.0) angles += 2.0*pi ;   
270.   return angles;   
271. }   
272.    
273. // this function finds the surface void/hillock area   
274.    
275. inline Number area(int& n, arr2& r)   
276. {   
277.   Number t;   
278.    
279.   for (int ki = 0; ki <= n-2; ki++)   
280.     t += 0.5*(r[0][ki]*r[1][ki+1]-r[1][ki]*r[0][ki+1]);   
281.   t += 0.5*(r[0][n-1]*r[1][0]-r[1][n-1]*r[0][0]);   
282.   return t;   
283. }   
284.    
285. // this function finds the vector product of two vectors   
286.    
287. void vectorpro(Number& a0, Number& a1, Number& a2, Number& b0, Numb

er& b1, Number& b2)   
288. {   
289.   vect[0] = a1*b2-a2*b1;   
290.   vect[1] = -a0*b2+a2*b0;   
291.   vect[2] = a0*b1-a1*b0;   
292. }   
293.    
294. // production of a anticlockwise rotation matrix   
295.    
296. void antirotma(Number& w)   
297. {   
298.   anti[0][0] = cos(w);   
299.   anti[0][1] = -sin(w);   
300.   anti[0][2] = 0.0;   
301.   anti[1][0] = -anti[0][1];   
302.   anti[1][1] = anti[0][0];   
303.   anti[1][2] = 0.0;   
304.   anti[2][0] = 0.0;   
305.   anti[2][1] = 0.0;   
306.   anti[2][2] = 1.0;   
307. }   
308.    
309. // triangulation method in the solution of simulataneous set equati

ons   
310.    
311. void trian(int colon, arr1 tek, arr3 cift)   
312. {   
313.    
314.   Number tot,bol, trio[colon+2];   
315.   //arr3   trio;   
316.    
317.   for (int ki = 0; ki <= colon; ki++)   
318.     cift[ki][colon+1] = tek[ki];   
319.    
320.   for (int ki = 0; ki <= colon; ki++)   
321.     {   
322.         bol = cift[ki][ki];   
323.         for (int kj = 0; kj <= colon + 1; kj++) cift[ki][kj] /= bol

;   
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324.         for (int kk = ki; kk <= colon; kk++)   
325.         {   
326.             if (kk != ki)   
327.             {   
328.                 for (int kj = 0; kj <= colon + 1; kj++)   
329.                   trio[kj] = cift[ki][kj] * cift[kk][ki];   
330.                 for (int kj = 0; kj <= colon + 1; kj++)   
331.                   cift[kk][kj] -= trio[kj];   
332.             }   
333.         }   
334.     }   
335.    
336.   ulas[colon] = cift[colon][colon+1];   
337.   for (int ki = 1; ki <= colon; ki++)   
338.     {   
339.         tot = 0.0;   
340.         for (int kj = 1; kj <= ki; kj++)   
341.           tot += ulas[colon - kj + 1] * cift[colon - ki][colon -

 kj + 1];   
342.         ulas[colon - ki] = cift[colon - ki][colon+1] - tot;   
343.     }   
344. }   
345.    
346.    
347. // MAIN FUNCTIONS & PROCEDURES   
348.    
349. // this procedure generates the upper part of the strip in clockwis

e direction   
350.    
351. void uppart()   
352. {   
353.   for(int ki = 0; ki<= 2*Msin ; ki++)   
354.     {   
355.     rup[0][ki] = (ki-Msin)*sl/Msin;   
356.     rup[1][ki] = sw*cos(rup[0][ki]*pi/2/sl);   
357.     rup[2][ki] = 0;   
358.     }   
359.   nrup = 2*Msin+1;   
360.    
361. }   
362.    
363. // this procedure generates the lower part of the strip   
364.    
365. void lowpart()   
366. {   
367.     if (fmn>1){   
368.             for (int i=0; i<=2*fmn-1;i++){   
369.                     rdown[0][i] = -

((i+1)*(sl/Modiv)/fmn)+Modiv*(sl/Modiv);   
370.                     rdown[1][i] = 0;   
371.                     rdown[2][i] = 0;   
372.             }   
373.             for (int j=3; j<=2*Modiv-2; j++){   
374.                     rdown[0][2*fmn+j-3] = -(j-Modiv)*(sl/Modiv);   
375.                     rdown[1][2*fmn+j-3] = 0;   
376.                     rdown[2][2*fmn+j-3] = 0;   
377.             }   
378.             for (int k=0; k<=fmn-1; k++){   
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379.                     rdown[0][k+2*Modiv-4+2*fmn] = -
((k+1)*(sl/Modiv)/fmn)+rdown[0][2*Modiv-5+2*fmn];   

380.                     rdown[1][k+2*Modiv-4+2*fmn] = 0;   
381.                     rdown[2][k+2*Modiv-4+2*fmn] = 0;   
382.             }   
383.             for (int kj=0; kj<=fmn-2; kj++){   
384.                     rdown[0][kj+2*Modiv-4+3*fmn] = -

((kj+1)*(sl/Modiv)/fmn)+rdown[0][2*Modiv-5+3*fmn];   
385.                     rdown[1][kj+2*Modiv-4+3*fmn] = 0;   
386.                     rdown[2][kj+2*Modiv-4+3*fmn] = 0;   
387.             }   
388.             nrdown=2*Modiv+4*fmn-5;   
389.     }   
390.     else {   
391.   for(int ki = 1; ki<= 2*Modiv ; ki++)   
392.     {   
393.     rdown[0][ki-1] = -(ki-Modiv)*sl/Modiv;   
394.     rdown[1][ki-1] = 0;   
395.     rdown[2][ki-1] = 0;   
396.     }   
397.   nrdown = 2*Modiv-1;   
398.    
399. }   
400. }   
401.    
402. // this procedure combines the upper and lower parts   
403.    
404. void stacksvi(arr2& rup, int& nrup, arr2& rdown, int&nrdown)   
405. {   
406.   for (int kj = 0; kj <= nrup-1 ; kj++)   
407.     {   
408.     rud[0][kj] = rup[0][kj];   
409.     rud[1][kj] = rup[1][kj];   
410.     rud[2][kj] = rup[2][kj];   
411.     }   
412.   for (int kj = nrup; kj <= nrup+nrdown-1 ; kj++)   
413.     {   
414.     rud[0][kj] = rdown[0][kj-nrup];   
415.     rud[1][kj] = rdown[1][kj-nrup];   
416.     rud[2][kj] = rdown[2][kj-nrup];   
417.     }   
418.   nrud = nrup+nrdown;   
419. }   
420.    
421. // These correspond to the total upper and lower segmen lengths and

  vectors set   
422. void delr1(int& nn, arr2& r,arr2& delr,arr1& s)   
423. {   
424.   for (int ki = 0; ki <= nn-2; ki++)   
425.     for (int kj = 0; kj <= 2; kj++)   
426.       delr[kj][ki] = r[kj][ki+1]-r[kj][ki];   
427.    
428.   for (int ki = 0; ki <= nn-2; ki++)   
429.     s[ki] = magnitude(delr[0][ki],delr[1][ki],delr[2][ki]);   
430. }   
431.    
432. // this procedure calculates difference vectors between successive 

position   
433. // vectors and their magnitudes   
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434.    
435. void deldelr1(int& nn, int looptype, arr2& r)   
436. {   
437.   if (looptype==1) ndelru = nn-1;   
438.   if (looptype==0) ndelru = nn-2;   
439.    
440.   for (int ki = 0; ki <= ndelru; ki++)   
441.     {   
442.     if(looptype!=1)   
443.       {   
444.       for (int kj = 0; kj <= 2; kj++) delr[kj][ki] = r[kj][ki+1]-

r[kj][ki];   
445.       s[ki] = magnitude(delr[0][ki],delr[1][ki],delr[2][ki]);   
446.       }   
447.     else   
448.       {   
449.       if(ki==ndelru)   
450.         {   
451.     for (int kj = 0; kj <= 2; kj++) delr[kj][ki] = r[kj][0]-

r[kj][ki];   
452.     s[ki] = magnitude(delr[0][ki],delr[1][ki],delr[2][ki]);   
453.         }   
454.       else   
455.         {   
456.     for (int kj = 0; kj <= 2; kj++) delr[kj][ki] = r[kj][ki+1]-

r[kj][ki];   
457.     s[ki] = magnitude(delr[0][ki],delr[1][ki],delr[2][ki]);   
458.         }   
459.       }   
460.     }   
461. }   
462.    
463.    
464. // this procedure calculates the angle between the two successive 3

-d vectors   
465. // in a given set of vectors. the range -p and +p   
466.    
467. void psir(int deln, arr2 delr, arr1& s)   
468. {   
469.  for (int ki = 1; ki <= deln-1; ki++)   
470.     {   
471.     teta[ki] = -angle(delr[0][ki-1],delr[1][ki-1],delr[2][ki-

1],delr[0][ki],delr[1][ki],delr[2][ki]);   
472.     }   
473.   teta[0] = teta[1]-(teta[2]-teta[1])/s[1]*s[0];   
474.   teta[deln] = teta[deln-1]+(teta[deln-1]-teta[deln-2])/s[deln-

2]*s[deln-1];   
475. }   
476.    
477. // this procedure calculates the angle between the two successive 3

-d vectors   
478. // in a given set of vectors. the range -p and +p   
479.    
480. void psipsir(int deln, arr2& delr, arr1& s)   
481. {   
482.   for (int ki = 0; ki <= deln-1; ki++)   
483.     {   
484.    
485.     tetaw[ki] = asin(delr[1][ki]/s[ki]);   
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486.    
487.    
488.          if( tetaw[ki] < 0.0) tetaw[ki] += 2*pi;   
489.          if( tetaw[ki] > pi) tetaw[ki] -= 2*pi;   
490.    
491.     }   
492.   tetaw[deln] = -tetaw[0];   
493. }   
494.    
495. // this procedure calculates the local curvature and the local line

 normal vector   
496. // at any given node knowing the successive segment vector set   
497.    
498. // in this procedure:   
499. //                    kapkap : local curvature   
500. //                    lln    : local line normal   
501.    
502. void kappa(arr1& s, arr1& teta, arr2& delr, int n)   
503. {   
504.  arr1 alfa,beta;   
505.   arr2 no;   
506.   Number kapb;   
507.    
508.   for (int ki=1; ki<=n-1; ki++)   
509.     {   
510.      alfa[ki] = atan((sin(-teta[ki])*s[ki])/(s[ki-1]+cos(-

teta[ki])*s[ki]));   
511.      kapkap[ki] = 2*sin(alfa[ki])/s[ki];   
512.     }   
513.   //    alfa[0] = atan((sin(-teta[0])*s[0])/(s[n-1]+cos(-

teta[0])*s[0]));   
514.         kapkap[0] = kapkap[1]-(kapkap[2]-kapkap[1])/s[1]*s[0];   
515.     kapkap[n] = kapkap[n-1]+(kapkap[n-1]-kapkap[n-2])/s[n-2]*s[n-

1];   
516.    
517.   for (int ki=0; ki<=n-1; ki++)   
518.     {   
519.       beta[ki] = (pi-2*alfa[ki])*0.5;   
520.       kapb = -beta[ki];   
521.       antirotma(kapb);   
522.    
523.      if(ki == 0){   
524.        beta[ki] = (pi-2*alfa[n-1])*0.5;   
525.       kapb = -beta[ki];   
526.       antirotma(kapb);   
527.           }   
528.    
529.     for(int kj=0; kj<=2; kj++)   
530.       no[kj][ki] = dotpro(anti[kj][0],anti[kj][1],anti[kj][2],delr[

0][ki-1],delr[1][ki-1],delr[2][ki-1]);   
531.    
532.     for(int kj=0; kj<=2; kj++)   
533.       lln[kj][ki] = no[kj][ki]/magnitude(no[0][ki],no[1][ki],no[2][

ki]);   
534.     }   
535.    
536.     for(int kj=0; kj<=2; kj++)   
537.     {   
538.       lln[kj][0] = lln[kj][1];   
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539.       lln[kj][n] = lln[kj][n-1];   
540.     }   
541. }   
542.    
543. // This procedure combines the upper and lower parts   
544.    
545. void stacksab()   
546. {   
547.   for (int kj = 0; kj <= nrup-1 ; kj++)   
548.     kapkapud[kj] = kapkapup[kj];   
549.   for (int kj = nrup; kj <= nrup+nrdown-1 ; kj++)   
550.     kapkapud[kj] = kapkapdown[kj-nrup];   
551.   nrud = nrup+nrdown;   
552. }   
553.    
554.    
555. // this procedure calculates the normal unit vectors at the centroi

ds   
556. // for the upper and lower cut interfaces plus the void.   
557. // Directions towards the interconnect material}   
558. //                          {noc : the centroid normal vector}   
559.    
560. void nocRT(arr1& s, arr2& delr, int nu, int nd)   
561. {   
562.   arr1 kz;   
563.    
564.   kz[0]=0;   
565.   kz[1]=0;   
566.   kz[2]=-1;   
567.    
568.   for (int kj = 0; kj <= nu-2; kj++)   
569.     {   
570.       vectorpro(kz[0],kz[1],kz[2],delr[0][kj],delr[1][kj],delr[2][k

j]);   
571.       noc[0][kj] = vect[0]/s[kj];   
572.       noc[1][kj] = vect[1]/s[kj];   
573.       noc[2][kj] = vect[2]/s[kj];   
574.     }   
575.   kz[0]=0;   
576.   kz[1]=0;   
577.   kz[2]=1;   
578.   for (int kj = nu-1; kj <= nu+nd-1; kj++)   
579.     {   
580.       vectorpro(kz[0],kz[1],kz[2],delr[0][kj],delr[1][kj],delr[2][k

j]);   
581.       noc[0][kj] = -vect[0]/s[kj];   
582.       noc[1][kj] = -vect[1]/s[kj];   
583.       noc[2][kj] = -vect[2]/s[kj];   
584.     }   
585. }   
586.    
587. // this procedure calculates the centroid position vectors for the 

  
588. // upper and lower regions   
589.    
590.    
591. void rcc(arr2& r, int& n)   
592. {   
593.   for(int ki=0; ki<=n-1; ki++)   
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594.     for(int kj=0; kj<=2; kj++)   
595.       {   
596.       if (ki==n-1)   
597.         rcud[kj][ki] = (r[kj][0] + r[kj][ki])*0.5;   
598.       else   
599.         rcud[kj][ki] = (r[kj][ki+1] + r[kj][ki])*0.5;   
600.       }   
601. }   
602.    
603.    
604. // STRESS CALCULATIONS   
605.    
606. // INDIRECT BOUNDARY ELEMENT METOD   
607.    
608. // UNIAXIAL TENSION or COMPRESSION along the X-

axis (Plain Strain Assumption)   
609.    
610. // Most of the calculations done by pseudo vectors assuming that th

e shear strain   
611. // is defined by e(i,j)=u(i,j)+u(j,i) where  i NQE j otherwise e(i,

i)= u(i,i).   
612. // In the case of scientific notation using tensor or dyadics strai

n components are   
613. // defined by e(i,j)= 1/2(u(i,j) + u(j,i) ).   
614.    
615. // Because of this disctinction between engineering and scientific 

definitions there   
616. // are many mistakes in the literature especially in Beer and Watso

n formulas for   
617. // strain and stress (pages  488 and 489).   
618.    
619. // This program calculates the stress connection S matrix (3x2) at 

a point Q for unit   
620. // load situated at the point P. For a given connection vector rk (

RK=QP) and poisson is   
621. // the Poisson's ratio   
622.    
623. void Sss(Number& rk0, Number& rk1, Number& rk2)   
624. {   
625.   Number rx,ry,srk;   
626.    
627.   srk = magnitude(rk0,rk1,rk2);   
628.   rx = rk0/srk;   
629.   ry = rk1/srk;   
630.   ss[0][0] = c2*(c3*rx+2*rx*rx*rx)/srk;   
631.   ss[0][1] = c2*(-c3*ry+2*rx*rx*ry)/srk;   
632.   ss[1][0] = c2*(-c3*rx+2*rx*ry*ry)/srk;   
633.   ss[1][1] = c2*(c3*ry+2*ry*ry*ry)/srk;   
634.   ss[2][0] = c2*(c3*ry+2*rx*rx*ry)/srk;   
635.   ss[2][1] = c2*(c3*rx+2*rx*ry*ry)/srk;   
636. }   
637.    
638. // This program calculates the displacement matrix due to a unit fo

rce which is rk apart   
639. // from the point of interest. Here n  is the poisson's ratio. E is

 the Young Modulus should   
640. // be taken as equal to unity and the load should renormalized with

 respect to the Young Modulus.   
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641. // The unit lenght should be so chosen that the void may lie  compl
etely inside of a square   

642. // determined by the unit length.   
643.    
644. void uu(Number& rk0, Number& rk1, Number& rk2)   
645. {   
646.   us[0][0] = cc*(-(3-

4*poisson)*log(magnitude(rk0,rk1,rk2))+sqr(rk0)/sqr(magnitude(rk0,rk1,rk2))
);   

647.   us[1][1] = cc*(-(3-
4*poisson)*log(magnitude(rk0,rk1,rk2))+sqr(rk1)/sqr(magnitude(rk0,rk1,rk2))
);   

648.   us[0][1] = cc*(rk0*rk1/sqr(magnitude(rk0,rk1,rk2)));   
649.   us[1][0] = us[0][1];   
650. }   
651.    
652. // This program calculates the TRACTION function associated with an

 unit force situated at   
653. // P and acting at point Q. (rk=QP VECTOR). where  nk  is the unit 

ouward  normal at  Q,   
654. // which is given by minus NocRT. The surface of the interconnect i

ncluding internal void   
655.    
656. void ttss(Number& rk0, Number& rk1, Number& rk2, Number& nk0, Numbe

r& nk1, Number& nk2)   
657. {   
658.   Number rx;   
659.   arr4 ts,ta;   
660.    
661.   rx = magnitude(rk0,rk1,rk2);   
662.   ts[0][0] = ((1-

2*poisson)+2*sqr(rk0/rx))*(rk0*nk0+rk1*nk1+rk2*nk2)/(sqr(rx));   
663.   ts[1][1] = ((1-

2*poisson)+2*sqr(rk1/rx))*(rk0*nk0+rk1*nk1+rk2*nk2)/(sqr(rx));   
664.   ts[0][1] = 2*rk0*rk1*(rk0*nk0+rk1*nk1+rk2*nk2)/sqr(sqr(rx));   
665.   ts[1][0] = ts[0][1];   
666.    
667.   ta[0][1] = (1-2*poisson)*(rk1*nk0-rk0*nk1)/sqr(rx);   
668.   ta[1][0] = -ta[0][1];   
669.   ta[0][0] = 0;   
670.   ta[1][1] = 0;   
671.    
672.    
673.   for(int ki=0; ki<=1; ki++)   
674.     for(int kj=0; kj<=1; kj++)   
675.       ttssx[kj][ki] = c2*(ts[ki][kj]+ta[ki][kj]);   
676. }   
677.    
678. // This is an elastostatic connection matrix utilizing the element 

centroids,   
679. // M is the (odd) number of subsegment used in the integration proc

edure   
680.    
681. // In the following program Nor is the outward normal vector (from 

body to the   
682. // surroundings) at the segment centroids. This program has two par

ts. boundary   
683. // displacement (Dirichlet ) and traction (Neuman) parts namely.   
684.    
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685. // For the present application we are using mixed everywhere.   
686.    
687. void ftin(arr1& sup, arr2& delr)   
688. {   
689.   arr2 rcc,nox;   
690.   arr4 ttssa,ttssb,ttssk,ttsst,uua,uub,uusk,uuss;   
691.    
692.    
693.   for(int ki=0; ki<=nrud-1; ki++)   
694.     for(int kj=0; kj<=2; kj++)   
695.       {   
696.     nox[kj][ki] = -noc[kj][ki];   
697.       }   
698.    
699.   for(int ki=0; ki<=nrup-2; ki++)   
700.     for(int kj=0; kj<=nrud-1; kj++)   
701.       {   
702.       if (ki==kj)   
703.         {   
704.         fttbig[ki*2][kj*2] = 0.5;   
705.         fttbig[ki*2][kj*2+1] = 0;   
706.         fttbig[ki*2+1][kj*2] = 0;   
707.         fttbig[ki*2+1][kj*2+1] = 0.5;   
708.         }   
709.       else   
710.         {   
711.             for(int kk=0; kk<=mint; kk++)   
712.               for(int kl=0; kl<=2; kl++)   
713.             rcc[kl][kk] = rud[kl][kj]-

rcud[kl][ki]+kk*delr[kl][kj]/mint;   
714.    
715.         ttss(rcc[0][0],rcc[1][0],rcc[2][0],nox[0][ki],nox[1][ki],no

x[2][ki]);   
716.    
717.    
718.             for(int kik=0; kik<=1; kik++)   
719.               for(int kjk=0; kjk<=1; kjk++)   
720.                 ttssa[kik][kjk] = ttssx[kik][kjk];   
721.    
722.    
723.             ttss(rcc[0][mint],rcc[1][mint],rcc[2][mint],nox[0][ki],

nox[1][ki],nox[2][ki]);   
724.    
725.             for(int kik=0; kik<=1; kik++)   
726.               for(int kjk=0; kjk<=1; kjk++)   
727.                 ttssb[kik][kjk] = ttssx[kik][kjk];   
728.    
729.         ttsst[0][0] = 0.5*(ttssa[0][0]+ttssb[0][0]);   
730.         ttsst[0][1] = 0.5*(ttssa[0][1]+ttssb[0][1]);   
731.         ttsst[1][0] = 0.5*(ttssa[1][0]+ttssb[1][0]);   
732.         ttsst[1][1] = 0.5*(ttssa[1][1]+ttssb[1][1]);   
733.    
734.             for(int kk=1; kk<=mint-1; kk++)   
735.           {   
736.           ttss(rcc[0][kk],rcc[1][kk],rcc[2][kk],nox[0][ki],nox[1][k

i],nox[2][ki]);   
737.               for(int kik=0; kik<=1; kik++)   
738.                 for(int kjk=0; kjk<=1; kjk++)   
739.                   ttssk[kik][kjk] = ttssx[kik][kjk];   
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740.           ttsst[0][0] += ttssk[0][0];   
741.           ttsst[0][1] += ttssk[0][1];   
742.           ttsst[1][0] += ttssk[1][0];   
743.           ttsst[1][1] += ttssk[1][1];   
744.           }   
745.    
746.             fttbig[ki*2][kj*2] = sup[kj]*ttsst[0][0]/mint;   
747.             fttbig[ki*2][kj*2+1] = sup[kj]*ttsst[0][1]/mint;   
748.             fttbig[ki*2+1][kj*2] = sup[kj]*ttsst[1][0]/mint;   
749.             fttbig[ki*2+1][kj*2+1] =  sup[kj]*ttsst[1][1]/mint;   
750.         }   
751.       }   
752.   for(int ki=nrup-1; ki<=nrud-1; ki++)   
753.     for(int kj=0; kj<=nrud-1; kj++)   
754.       {   
755.         for(int kk=0; kk<=mint; kk++)   
756.           for(int kl=0; kl<=2; kl++)   
757.         rcc[kl][kk] = rud[kl][kj]-

rcud[kl][ki]+kk*delr[kl][kj]/mint;   
758.    
759.         uu(rcc[0][0],rcc[1][0],rcc[2][0]);   
760.    
761.         for(int kik=0; kik<=1; kik++)   
762.           for(int kjk=0; kjk<=1; kjk++)   
763.             uua[kik][kjk] = us[kik][kjk];   
764.    
765.         uu(rcc[0][mint],rcc[1][mint],rcc[2][mint]);   
766.    
767.         for(int kik=0; kik<=1; kik++)   
768.           for(int kjk=0; kjk<=1; kjk++)   
769.             uub[kik][kjk] = us[kik][kjk];   
770.    
771.     uuss[0][0] = 0.5*(uua[0][0]+uub[0][0]);   
772.     uuss[0][1] = 0.5*(uua[0][1]+uub[0][1]);   
773.     uuss[1][0] = 0.5*(uua[1][0]+uub[1][0]);   
774.     uuss[1][1] = 0.5*(uua[1][1]+uub[1][1]);   
775.    
776.         for(int kk=1; kk<=mint-1; kk++)   
777.       {   
778.       uu(rcc[0][kk],rcc[1][kk],rcc[2][kk]);   
779.           for(int kik=0; kik<=1; kik++)   
780.             for(int kjk=0; kjk<=1; kjk++)   
781.               uusk[kik][kjk] = us[kik][kjk];   
782.       uuss[0][0] += uusk[0][0];   
783.       uuss[0][1] += uusk[0][1];   
784.       uuss[1][0] += uusk[1][0];   
785.       uuss[1][1] += uusk[1][1];   
786.       }   
787.    
788.     fttbig[ki*2][kj*2] = sup[kj]*uuss[0][0]/mint;   
789.     fttbig[ki*2][kj*2+1] = sup[kj]*uuss[0][1]/mint;   
790.     fttbig[ki*2+1][kj*2] = sup[kj]*uuss[1][0]/mint;   
791.     fttbig[ki*2+1][kj*2+1] =  sup[kj]*uuss[1][1]/mint;   
792.       }   
793. }   
794.    
795. // This program considers, the  droplet  surface is  free from the 

traction forces.   
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796. // Lower interface surface is restrained by the substrade due to th
e misfit strain.   

797. // Where the tractions and displacements are calculated at centroid
 positions.   

798. // The ends points of Droplet surface are placed at the interfaces,
 therefore the stress   

799. // calculated later at the nodes should include these points as wel
l as!!!   

800.    
801. // This is a very critical point because the same points are also b

elong to the traction free sector.   
802. // Best thing is to avoid that by taking interface ends very close 

to the droplet ends!!!   
803.    
804. void asym()   
805. {   
806.   for(int ki=0; ki<=nrup-2; ki++)   
807.     {   
808.     trac[0][ki] = 0;   
809.     trac[1][ki] = 0;   
810.     trac[2][ki] = 1;   
811.     }   
812.   for(int ki=nrup-1; ki<=nrup+nrdown-1; ki++)   
813.     {   
814.     trac[0][ki] = epsx*rcud[0][ki];   
815.     trac[1][ki] = 0;   
816.     trac[2][ki] = epsx;   
817.     }   
818.   for(int ki=0; ki<=nrud-1; ki++)   
819.       tn[ki] = -

(trac[0][ki]*noc[0][ki]+trac[1][ki]*noc[1][ki]+trac[2][ki]*noc[2][ki]);   
820. }   
821.    
822. // This is the boundary condition pseudo-vector   
823.    
824. void boundary()   
825. {   
826.   int ii;   
827.   for(int ki=0; ki<=2*nrud-2; ki+=2)   
828.     {   
829.     ii = ki/2;   
830.     trqa[ki] = trac[0][ii];   
831.     }   
832.   for(int ki=1; ki<=2*nrud-1; ki+=2)   
833.     {   
834.     ii = (ki-1)/2;   
835.     trqa[ki] = trac[1][ii];   
836.     }   
837.    
838. }   
839.    
840. // The following matrix equation calculates the pseudo-

boundary force vector (pbfv)   
841. // which results zero net traction, in  the presence of thermal hyd

rostatic   
842. // stress system, at the void-

interconnect interface assuming that one has   
843. // plain strain situation.   
844.    
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845. // This corresponds to force intensities situated at the centroids 
of the segments   

846.    
847. void pbfv()   
848. {   
849.   trian(nrud*2-1,trqa,fttbig);   
850.  for(int ki=0; ki<=2*nrud-1; ki++)   
851.     fsigma[ki] = ulas[ki];   
852. }   
853.    
854.    
855. // This program separates the x- and y-

 components of the load vectors   
856.    
857. void fc()   
858. {   
859.   for(int ki=0; ki<=nrud-1; ki++)   
860.     {   
861.      xmu[ki]=fsigma[2*ki];   
862.      ymu[ki]=fsigma[2*ki+1];   
863.      mamu[ki]=sqrt(xmu[ki] * xmu[ki] + ymu[ki] * ymu[ki]);   
864.     }   
865. }   
866.    
867. // The following program calculates the displacement matrix   
868. // around the external and internal boundaries   
869.    
870. void dsglarge()   
871. {   
872.   arr2 rcc,nox;   
873.   arr4 uussa,uussb,uussk,uusst,gssa,gssb,gssk,gsst;   
874.    
875.   for(int ki=0; ki<=nrud-1; ki++)   
876.     for(int kj=0; kj<=nrud-1; kj++)   
877.       {   
878.       if (ki==kj)   
879.     {   
880.         gsst[0][0] = 0;   
881.         gsst[0][1] = 0;   
882.     gsst[1][0] = 0;   
883.     gsst[1][1] = 0;   
884.     gsst[2][0] = 0;   
885.     gsst[2][1] = 0;   
886.     }   
887.       else   
888.         {   
889.         for(int kk=0; kk<=mint; kk++)   
890.           for(int kl=0; kl<=2; kl++)   
891.         rcc[kl][kk] = rud[kl][kj]-

rcud[kl][ki]+kk*delr[kl][kj]/mint;   
892.    
893.     Sss(rcc[0][0],rcc[1][0],rcc[2][0]);   
894.         for(int kik=0; kik<=2; kik++)   
895.           for(int kjk=0; kjk<=1; kjk++)   
896.             gssa[kik][kjk] = ss[kik][kjk];   
897.    
898.     Sss(rcc[0][mint],rcc[1][mint],rcc[2][mint]);   
899.         for(int kik=0; kik<=2; kik++)   
900.           for(int kjk=0; kjk<=1; kjk++)   
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901.             gssb[kik][kjk] = ss[kik][kjk];   
902.    
903.     gsst[0][0] = 0.5*(gssa[0][0]+gssb[0][0]);   
904.         gsst[0][1] = 0.5*(gssa[0][1]+gssb[0][1]);   
905.     gsst[1][0] = 0.5*(gssa[1][0]+gssb[1][0]);   
906.     gsst[1][1] = 0.5*(gssa[1][1]+gssb[1][1]);   
907.     gsst[2][0] = 0.5*(gssa[2][0]+gssb[2][0]);   
908.     gsst[2][1] = 0.5*(gssa[2][1]+gssb[2][1]);   
909.    
910.         for(int kk=1; kk<=mint-1; kk++)   
911.       {   
912.       Sss(rcc[0][kk],rcc[1][kk],rcc[2][kk]);   
913.           for(int kik=0; kik<=2; kik++)   
914.             for(int kjk=0; kjk<=1; kjk++)   
915.               gssk[kik][kjk] = ss[kik][kjk];   
916.       gsst[0][0] += gssk[0][0];   
917.       gsst[0][1] += gssk[0][1];   
918.       gsst[1][0] += gssk[1][0];   
919.       gsst[1][1] += gssk[1][1];   
920.           gsst[2][0] += gssk[2][0];   
921.       gsst[2][1] += gssk[2][1];   
922.           }   
923.         sgbig[ki*3][kj*2] = s[kj]*gsst[0][0]/mint;   
924.         sgbig[ki*3][kj*2+1] = s[kj]*gsst[0][1]/mint;   
925.     sgbig[ki*3+1][kj*2] = s[kj]*gsst[1][0]/mint;   
926.     sgbig[ki*3+1][kj*2+1] = s[kj]*gsst[1][1]/mint;   
927.         sgbig[ki*3+2][kj*2] = s[kj]*gsst[2][0]/mint;   
928.     sgbig[ki*3+2][kj*2+1] = s[kj]*gsst[2][1]/mint;   
929.         }   
930.       }   
931.    
932.    
933.   // for(int ki=0; ki<=3*nrud-1; ki++)   
934.     // {   
935.     // ub[ki]=0;   
936.     // for(int kj=0; kj<=2*nrud-1; kj++)   
937.     // ub[ki] += sgbig[ki][kj]*fsigma[kj];   
938.     // }   
939. }   
940.    
941. // Matrix multiplication ssbig x fsigma   
942.    
943. void multa()   
944. {   
945.   for(int ki=0; ki<=3*nrud-1; ki++)   
946.     {   
947.     ub[ki]=0;   
948.     for(int kj=0; kj<=2*nrud-1; kj++)   
949.     ub[ki] += sgbig[ki][kj]*fsigma[kj];   
950.     }   
951. }   
952. // This program separates the components of the stress every where 

 for the plane strain state.   
953.    
954. void SigStress()   
955. {   
956.   int ii;   
957.    
958.   for(int ki=0; ki<=3*nrud-2; ki+=3)   
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959.     {   
960.     ii = ki/3;   
961.     aqx[ii] = ub[ki];   
962.     aqy[ii] = ub[ki+1];   
963.     aqxy[ii] = ub[ki+2];   
964.     aqz[ii] = poisson*(aqx[ii]+aqy[ii]);   
965.     Trq[ii] = (1+poisson) * (aqx[ii]+aqy[ii]);   
966.     hoop[ii] = delr[0][ii]*(aqx[ii]*delr[0][ii]+aqxy[ii]*delr[1][ii

]);   
967.     hoop[ii] = hoop[ii]+delr[1][ii]*(aqxy[ii]*delr[0][ii]+aqy[ii]*d

elr[1][ii]);   
968.     hoop[ii] = hoop[ii]/(delr[0][ii]*delr[0][ii]+delr[1][ii]*delr[1

][ii]);   
969.    
970.     }   
971. }   
972.    
973. // This program converts  the stress calculated at the centroid pos

itions to the nodes   
974.    
975. void SigNodet()   
976. {   
977.   for(int ki=1; ki<=nrud-1; ki++)   
978.     Sighoop[ki] = (hoop[ki-1]*s[ki]+hoop[ki]*s[ki-1])/(s[ki]+s[ki-

1]);   
979.    
980.     Sighoop[0] = (hoop[nrud-1]*s[0]+hoop[0]*s[nrud-

1])/(s[0]+s[nrud-1]);   
981.    
982.    
983. }   
984.    
985. // The following program calculates the displacement matrix   
986. // around the external and internal boundaries   
987.    
988. void durq()   
989. {   
990.   arr2 rcc,nox;   
991.   arr4 uussa,uussb,uussk,uusst;   
992.    
993.   for(int ki=0; ki<=nrud-1; ki++)   
994.     for(int kj=0; kj<=nrud-1; kj++)   
995.       {   
996.         for(int kk=0; kk<=mint; kk++)   
997.           for(int kl=0; kl<=2; kl++)   
998.         rcc[kl][kk] = rud[kl][kj]-

rcud[kl][ki]+kk*delrud[kl][kj]/mint;   
999.    
1000.         uu(rcc[0][0],rcc[1][0],rcc[2][0]);   
1001.    
1002.         for(int kik=0; kik<=1; kik++)   
1003.           for(int kjk=0; kjk<=1; kjk++)   
1004.             uussa[kik][kjk] = us[kik][kjk];   
1005.    
1006.         uu(rcc[0][mint],rcc[1][mint],rcc[2][mint]);   
1007.    
1008.         for(int kik=0; kik<=1; kik++)   
1009.           for(int kjk=0; kjk<=1; kjk++)   
1010.             uussb[kik][kjk] = us[kik][kjk];   
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1011.    
1012.         uusst[0][0] = 0.5*(uussa[0][0]+uussb[0][0]);   
1013.         uusst[0][1] = 0.5*(uussa[0][1]+uussb[0][1]);   
1014.     uusst[1][0] = 0.5*(uussa[1][0]+uussb[1][0]);   
1015.     uusst[1][1] = 0.5*(uussa[1][1]+uussb[1][1]);   
1016.    
1017.         for(int kk=1; kk<=mint-1; kk++)   
1018.       {   
1019.       uu(rcc[0][kk],rcc[1][kk],rcc[2][kk]);   
1020.           for(int kik=0; kik<=1; kik++)   
1021.             for(int kjk=0; kjk<=1; kjk++)   
1022.               uussk[kik][kjk] = us[kik][kjk];   
1023.       uusst[0][0] += uussk[0][0];   
1024.       uusst[0][1] += uussk[0][1];   
1025.       uusst[1][0] += uussk[1][0];   
1026.       uusst[1][1] += uussk[1][1];   
1027.       }   
1028.         duubig[ki*2][kj*2] = s[kj]*uusst[0][0]/mint;   
1029.         duubig[ki*2][kj*2+1] = s[kj]*uusst[0][1]/mint;   
1030.         duubig[ki*2+1][kj*2] = s[kj]*uusst[1][0]/mint;   
1031.         duubig[ki*2+1][kj*2+1] = s[kj]*uusst[1][1]/mint;   
1032.       }   
1033.    
1034.   for(int ki=0; ki<=2*nrud-1; ki++)   
1035.     {   
1036.         ub[ki]=0;   
1037.         for(int kj=0; kj<=2*nrud-1; kj++){   
1038.             cout<<"";   
1039.             ub[ki] += duubig[ki][kj]*fsigma[kj];   
1040.         }   
1041.     }   
1042. }   
1043.    
1044. // Matrix multiplication duubig x fsigma   
1045.    
1046. void multb()   
1047. {   
1048. //cout << "here";   
1049.   for(int ki=0; ki<=2*nrud-1; ki++)   
1050.     {   
1051.     ub[ki]=0;   
1052.     for(int kj=0; kj<=2*nrud-1; kj++)   
1053.     ub[ki] += duubig[ki][kj]*fsigma[kj];   
1054.     }   
1055. }   
1056.    
1057. // Where B should be less then 1, 1/7 and 1/17 for 110, 100 and 111

 planes, otherwise one would have   
1058. // anomolous surface stiffness regime.   
1059.    
1060. // This program calculates the anistropic diffusion coefficients at

 the centroid positions which is   
1061. // important for the flux evaluations there! here mm is the symmetr

y fold number, fi is the tilt angle   
1062. // and A is the amplitude of the anistropic part of the diffusion c

oefficient.   
1063.    
1064. // mm=1 ->  two-fold symmetry  --> 110 plane   
1065. // mm=2 ->  four-fold symmetry --> 100 plane   
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1066. // mm=3 ->  six-fold symmetry  --> 111 plane   
1067.    
1068. void ddif()   
1069. {   
1070.   int ii,ki;   
1071.   arr1 ux,uy,delsc,epsc;   
1072.   arr2 ubn,delrc;   
1073.    
1074.   for(int ki=0; ki<=nrup-2; ki++)   
1075.       dif[ki] = 1 + Aint*cos(hfn*(tetaw[ki]-

rtphi))*cos(hfn*(tetaw[ki]-rtphi));   
1076.    
1077.   for(int ki=0; ki<=nrup-1; ki++)   
1078.     {   
1079.     if (ki == 0)   
1080.       theta[ki] = tetaw[0];   
1081.     else if (ki == nrup-1)   
1082.       theta[ki] = tetaw[nrup-2];   
1083.     else   
1084.       theta[ki] = (tetaw[ki]*s[ki-1]+tetaw[ki-1]*s[ki])/(s[ki-

1]+s[ki]);   
1085.     }   
1086.   thetaR = theta[nrup-1];   
1087.   thetaL = theta[0];   
1088.   for(int kj=0; kj<=nrup-1; kj++)   
1089.     {   
1090.     if (type == 0)   
1091.       {   
1092.         TauO[kj] = 1 + Bint*sin(hfn*(theta[kj]-

rtphi))*sin(hfn*(theta[kj]-rtphi));   
1093.         TauD[kj] = Bint*hfn*sin(2*hfn*(theta[kj]-rtphi));   
1094.         TauS[kj] = (1+Bint/2)*(1-(Bint*(1-

4*hfn*hfn)/(Bint+2)*cos(2*hfn*(theta[kj]-rtphi))));   
1095.       }   
1096.     else if (type == 1)   
1097.       {   
1098.         TauO[kj] = 1-Bint+Bint*(fabs(sin(0.5*hfn*(rtphi-

theta[kj])))+fabs(cos(0.5*hfn*(rtphi-theta[kj]))));   
1099.         TauD[kj] = 0.5*hfn*Bint*sin(0.5*hfn*(rtphi-

theta[kj]))*cos(0.5*hfn*(rtphi-theta[kj]));   
1100.         TauD[kj] = TauD[kj]*((1/fabs(sin(0.5*hfn*(rtphi-

theta[kj]))))-(1/fabs(cos(0.5*hfn*(rtphi-theta[kj])))));   
1101.         TauS[kj] = 1-Bint+Bint*(1-

0.25*hfn*hfn)*(fabs(sin(0.5*hfn*(rtphi-
theta[kj])))+fabs(cos(0.5*hfn*(rtphi-theta[kj]))));;   

1102.       }   
1103.     }   
1104. }   
1105.    
1106. //CENTER POINT   
1107.    
1108. void centerpoint()   
1109. {   
1110.     int ki;   
1111.     for (int ki=1; ki<=nrup-2; ki++)   
1112.     {   
1113.         ruprc[0][ki]=(((rup[1][ki]-rup[1][ki-1])/(rup[0][ki]-

rup[0][ki-1]))*((rup[1][ki+1]-rup[1][ki])/(rup[0][ki+1]-
rup[0][ki]))*(rup[1][ki+1]-rup[1][ki-1])+((rup[1][ki]-rup[1][ki-
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1])/(rup[0][ki]-rup[0][ki-1]))*(rup[0][ki]+rup[0][ki+1])-((rup[1][ki+1]-
rup[1][ki])/(rup[0][ki+1]-rup[0][ki]))*(rup[0][ki-
1]+rup[0][ki]))/(2*(((rup[1][ki]-rup[1][ki-1])/(rup[0][ki]-rup[0][ki-1]))-
((rup[1][ki+1]-rup[1][ki])/(rup[0][ki+1]-rup[0][ki]))));   

1114.         ruprc[1][ki]=-((rup[0][ki]-rup[0][ki-1])/(rup[1][ki]-
rup[1][ki-1]))*(ruprc[0][ki]-(rup[0][ki-1]+rup[0][ki])/2)+((rup[1][ki-
1]+rup[1][ki])/2);   

1115.     }   
1116.     ruprc[0][nrup-1]=(((rup[1][nrup-1]-rup[1][nrup-

2])/(rup[0][nrup-1]-rup[0][nrup-2]))*((rup[1][nrup]-rup[1][nrup-
1])/(rup[0][nrup]-rup[0][nrup-1]))*(rup[1][nrup]-rup[1][nrup-
2])+((rup[1][nrup-1]-rup[1][nrup-2])/(rup[0][nrup-1]-rup[0][nrup-
2]))*(rup[0][nrup-1]+rup[0][nrup])-((rup[1][nrup]-rup[1][nrup-
1])/(rup[0][nrup]-rup[0][nrup-1]))*(rup[0][nrup-2]+rup[0][nrup-
1]))/(2*(((rup[1][nrup-1]-rup[1][nrup-2])/(rup[0][nrup-1]-rup[0][nrup-2]))-
((rup[1][nrup]-rup[1][nrup-1])/(rup[0][nrup]-rup[0][nrup-1]))));   

1117.     ruprc[1][nrup-1]=-((rup[0][nrup-1]-rup[0][nrup-
2])/(rup[1][nrup-1]-rup[1][nrup-2]))*(ruprc[0][nrup-1]-(rup[0][nrup-
2]+rup[0][nrup-1])/2)+((rup[1][nrup-2]+rup[1][nrup-1])/2);   

1118. }   
1119.    
1120.    
1121.    
1122. // REMESHING   
1123.    
1124. // This procedure performs the remeshing by eliminating those   
1125. // segments smaller than rmin and dividing those which are   
1126. // greater than rmax into two parts and also keeps the grain   
1127. // boundary triple junction as a stable point.}   
1128.    
1129. // Remeshing without grain boundary, (asimetric)   
1130.    
1131. void remesh1() //MERT   
1132. {   
1133.   int nrem,kz,ki,kl,kk,kt,f;   
1134.   Number mag,mag1;   
1135.   arr2 delrm;   
1136.   f=0;   
1137.   delr1(nrup, rup,delru, su);   
1138.   psir(nrup-1,delru,su);   
1139.   kappa(su,teta,delru,nrup-1);   
1140.   nrem = nrup-1;   
1141.    
1142.   for(int kk=0;kk<=nrem;kk++)   
1143.   {   
1144.     rm[0][kk]=rup[0][kk];   
1145.     rm[1][kk]=rup[1][kk];   
1146.     rm[2][kk]=0;   
1147.   }   
1148.    
1149.   for(int ki=0; ki<=nrem-2; ki++)   
1150.     {   
1151.    
1152.     if (su[ki] >= rmax)   
1153.       {   
1154.       for(int kz=0; kz<=nrem-ki-1; kz++)   
1155.       {   
1156.         rm[0][nrem+1-kz+f]=rm[0][nrem-kz+f];   
1157.         rm[1][nrem+1-kz+f]=rm[1][nrem-kz+f];   
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1158.       }   
1159.    
1160.           for (kl=0;kl<=2;kl++)   
1161.           {   
1162.               delrm[kl][ki+f+1]=(rm[kl][ki+f+2]-

ruprc[kl][ki+1])+(rm[kl][ki+f]-ruprc[kl][ki+1]);   
1163.    
1164.           }   
1165.       for(int kj=0; kj<=2; kj++)   
1166.     {   
1167.         mag1=magnitude(delrm[0][ki+f+1],delrm[1][ki+f+1],delrm[2][k

i+f+1]);   
1168.         rm[kj][ki+f+1] = ruprc[kj][ki+1]+((1/kapkap[ki+1])*(kapkap[

ki+1])/fabs(kapkap[ki+1]))*delrm[kj][ki+f+1]/mag1;   
1169.      //   cout<< rm[kj][ki+f+1]<<"       "<<kapkap[ki+1]<<"        

   "<<f<<endl;   
1170.     }   
1171.       f=f+1;   
1172.       }   
1173.     }   
1174.   if (su[nrem-1] >= rmax)   
1175.   {   
1176.         rm[0][nrem+1+f]=rm[0][nrem+f];   
1177.         rm[1][nrem+1+f]=rm[1][nrem+f];   
1178.    
1179.         for (kl=0;kl<=2;kl++)   
1180.           {   
1181.               delrm[kl][nrem+f]=(rm[kl][nrem+f+1]-ruprc[kl][nrem-

1])+(rm[kl][nrem+f-1]-ruprc[kl][nrem-1]);   
1182.    
1183.           }   
1184.       for(int kj=0; kj<=2; kj++)   
1185.     {   
1186.         mag1=magnitude(delrm[0][nrem+f],delrm[1][nrem+f],delrm[2][n

rem+f]);   
1187.         rm[kj][nrem+f] = ruprc[kj][nrem-1]+((1/kapkap[nrem-

1])*(kapkap[nrem-1])/fabs(kapkap[nrem-1]))*delrm[kj][nrem+f]/mag1;   
1188.     }   
1189.       f=f+1;   
1190.    }   
1191.   for (kt=0;kt<=nrem+f;kt++)   
1192.   {   
1193.     rup[0][kt]=rm[0][kt];   
1194.     rup[1][kt]=rm[1][kt];   
1195.     rup[2][kt]=0;   
1196.   }   
1197.     nrup=nrem+f+1;   
1198. //  cout<<nrup<<endl;   
1199. }   
1200.    
1201. void remesh0()   //AYTAC   
1202. {   
1203.   int m, ka, crm,t=0;   
1204.   Number mag, temp1, temp2, temp3;   
1205.   arr2 rm;   
1206.    
1207. nrem = nrup-1;   
1208. ka = 2;   
1209.      for(int kj=0; kj<=2; kj++)   
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1210.            rm[kj][0] = rup[kj][0] ;   
1211.    
1212.    
1213.  delr1(nrup,rup,delrup,sup);   
1214.    
1215.  mag = magnitude(delrup[0][0],delrup[1][0],delrup[2][0]);   
1216.  if (mag >= rmax)   
1217.       {   
1218.       for(int kj=0; kj<=2; kj++)   
1219.         {   
1220.             rm[kj][1] = (rup[kj][0] + rup[kj][1])*0.5;   
1221.             rm[kj][2] = rup[kj][1];   
1222.         }   
1223.       ka = ka+1;   
1224.       }   
1225.  if (mag < rmax)   
1226.             {   
1227.     if (mag > rmin) {   
1228.          for(int kj=0; kj<=2; kj++)   
1229.            rm[kj][1] = rup[kj][1] ;   
1230.            }   
1231. }   
1232.    
1233. maxSeglenth = 0;   
1234.    
1235.    
1236.    
1237.   for(int ki=1; ki<=nrem-2; ki++)   
1238.     {   
1239.         if (ki>nrem-2-t) break;   
1240.     mag = magnitude(delrup[0][ki+t],delrup[1][ki+t],delrup[2][ki+t]

);   
1241.     if(maxSeglenth < mag) maxSeglenth = mag;   
1242.    
1243.     if (mag >= rmax)   
1244.       {   
1245.       for(int kj=0; kj<=2; kj++)   
1246.         {   
1247.             rm[kj][ka] = (rup[kj][ki+t] + rup[kj][ki+1+t])*0.5;   
1248.             rm[kj][ka+1] = rup[kj][ki+1+t];   
1249.         }   
1250.       ka = ka+2;   
1251.       }   
1252.       else if (mag < rmax)   
1253.         {   
1254.           if (mag <= rmin){   
1255.         for(int kj=0; kj<=2; kj++)   
1256. {   
1257.    
1258.            delrup[kj][ki-1] = delrup[kj][ki-

1]+delrup[kj][ki+t]/2;   
1259.            delrup[kj][ki] = delrup[kj][ki+1+t]+delrup[kj][ki+t]/2; 

  
1260.            rm[kj][ka-1] = (rup[kj][ki+t] + rup[kj][ki+1+t])*0.5;   
1261.            rm[kj][ka] = rup[kj][ki+2+t];   
1262.            }   
1263.            ka++;   
1264.            t++;   
1265.           }   
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1266.    
1267.       else if (mag > rmin)   
1268.             {   
1269.          for(int kj=0; kj<=2; kj++)   
1270.            rm[kj][ka] = rup[kj][ki+1+t] ;   
1271.          ka++ ;   
1272.            }   
1273.    
1274.    
1275.     }   
1276.     }   
1277.  crm = ka-1;   
1278.   mag = magnitude(delrup[0][nrem-1],delr[1][nrem-1],delr[2][nrem-

1]);   
1279.    
1280.   if (mag >= rmax)   
1281.     {   
1282.     for(int kj=0; kj<=2; kj++)   
1283.       {   
1284.       rm[kj][crm+1] = (rm[kj][crm]+ rup[kj][nrem])*0.5 ;   
1285.       rm[kj][crm+2] = rup[kj][nrem] ;   
1286.       }   
1287.     crm = crm+2;   
1288.     }   
1289.    
1290.     if (mag < rmax)   
1291.        {   
1292.         for(int kj=0; kj<=2; kj++)   
1293.         rm[kj][crm+1] = rup[kj][nrem];   
1294.         crm = crm+1;   
1295.        }   
1296.    
1297.   crm = crm+1;   
1298.    
1299.    
1300.    for(int ki = 0; ki< crm ; ki++)   
1301.     {   
1302.             rup[0][ki] = rm[0][ki];   
1303.             rup[1][ki] = rm[1][ki];   
1304.             rup[2][ki] = 0;   
1305.     }   
1306.    
1307.   nrup = crm;   
1308.    
1309.    // delr1(nrup,rup,delrup,sup);   
1310.    
1311.     // int jj = 0;   
1312.    // for(int ki = 0; ki< nrup ; ki++)   
1313.     // {   
1314.     // if(ki == 1){   
1315.         // mag = magnitude(delrup[0][ki-1],delrup[1][ki-

1],delrup[2][ki-1]);   
1316.         // if(mag > maxSeglenth/4){   
1317.                 // rup[0][jj] = rm[0][ki];   
1318.                 // rup[1][jj] = rm[1][ki];   
1319.                 // rup[2][jj] = 0;   
1320.                 // jj++;   
1321.             // }   
1322.     // }   
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1323.     // else if(ki == nrup-2){   
1324.         // mag = magnitude(delrup[0][ki],delrup[1][ki],delrup[2][ki

]);   
1325.         // if(mag > maxSeglenth/4){   
1326.                 // rup[0][jj] = rm[0][ki];   
1327.                 // rup[1][jj] = rm[1][ki];   
1328.                 // rup[2][jj] = 0;   
1329.                 // jj++;   
1330.             // }   
1331.     // }   
1332.     // else{   
1333.         // rup[0][jj] = rm[0][ki];   
1334.         // rup[1][jj] = rm[1][ki];   
1335.         // rup[2][jj] = 0;   
1336.         // jj++;   
1337.     // }   
1338.    
1339.     // }   
1340.    
1341.   // nrup = jj;   
1342.    
1343. }   
1344.    
1345.    
1346. void remeshEnd()   //AYTAC   
1347. {   
1348.   int m, ka, crm;   
1349.   Number mag, temp1, temp2, temp3;   
1350.   arr2 rm;   
1351.    
1352.   for(int ki=0; ki<nrup; ki++)   
1353.      for(int kj=0; kj<=2; kj++)   
1354.            rm[kj][ki] = rup[kj][ki] ;   
1355.    
1356.    
1357.    delr1(nrup,rup,delrup,sup);   
1358. maxSeglenth = 0;   
1359.    
1360.      for(int ki=0; ki<nrup; ki++){   
1361.        mag = magnitude(delrup[0][ki],delrup[1][ki],delrup[2][ki]); 

  
1362.     if(maxSeglenth < mag) maxSeglenth = mag;   
1363.     }   
1364.    
1365.    
1366. int jj = 0;   
1367.    for(int ki = 0; ki< nrup ; ki++)   
1368.     {   
1369.         if(ki == 1){   
1370.             mag = magnitude(delrup[0][ki-1],delrup[1][ki-

1],delrup[2][ki-1]);   
1371.             if(mag > maxSeglenth/4){   
1372.                     rup[0][jj] = rm[0][ki];   
1373.                     rup[1][jj] = rm[1][ki];   
1374.                     rup[2][jj] = 0;   
1375.                     jj++;   
1376.                 }   
1377.         }   
1378.         else if(ki == nrup-2){   
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1379.             mag = magnitude(delrup[0][ki],delrup[1][ki],delrup[2][k
i]);   

1380.             if(mag > maxSeglenth/4){   
1381.                     rup[0][jj] = rm[0][ki];   
1382.                     rup[1][jj] = rm[1][ki];   
1383.                     rup[2][jj] = 0;   
1384.                     jj++;   
1385.                 }   
1386.         }   
1387.         else{   
1388.             rup[0][jj] = rm[0][ki];   
1389.             rup[1][jj] = rm[1][ki];   
1390.             rup[2][jj] = 0;   
1391.             jj++;   
1392.         }   
1393.    
1394.     }   
1395.    
1396.   nrup = jj;   
1397.    
1398. }   
1399.    
1400.    
1401. void remeshlower()   
1402. {   
1403.     delrlower=fabs(rdown[0][2*fmn+5]-rdown[0][2*fmn+4]);   
1404.     int j,i,k;   
1405.     delrend=fabs(rdown[0][2*fmn-1]-rdown[0][2*fmn]);   
1406.     delrfirst=fabs(rdown[0][nrdown-2*fmn]-rdown[0][nrdown-2*fmn-

1]);   
1407.     if (delrend > delrlower*3/2 || delrfirst > delrlower*3/2)   
1408.     {   
1409.    
1410.         if (delrend > delrlower*3/2){   
1411.             for (j=0; j<=2; j++){   
1412.             for (i=0;i<=nrdown-1-2*fmn;i++)   
1413.             {   
1414.         rdown[j][nrdown-i]=rdown[j][nrdown-i-1];   
1415.             }   
1416.         }   
1417.         rdown[0][2*fmn]=rdown[0][2*fmn+1]+delrlower;   
1418.         rdown[1][2*fmn]=0;   
1419.         rdown[2][2*fmn]=0;   
1420.         nrdown++;   
1421.         }   
1422.         if (delrfirst > delrlower*3/2){   
1423.         //rdown[0][nrdown-2*fmn]=rdown[0][nrdown-1]-delrlower;   
1424.         //rdown[1][nrdown]=0;   
1425.         //rdown[2][nrdown]=0;   
1426.         for (j=0; j<=2; j++){   
1427.             for (i=0;i<=2*fmn-1;i++)   
1428.             {   
1429.         rdown[j][nrdown-i]=rdown[j][nrdown-i-1];   
1430.             }   
1431.         }   
1432.         rdown[0][nrdown-2*fmn]=rdown[0][nrdown-2*fmn-1]-

delrlower;   
1433.         rdown[1][nrdown-2*fmn]=0;   
1434.         rdown[2][nrdown-2*fmn]=0;   
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1435.    
1436.         nrdown++;   
1437.         }   
1438.     }   
1439.     if (delrend < delrlower*1/4 || delrfirst < delrlower*1/4)   
1440.     {   
1441.         if (delrend < delrlower*1/4) {   
1442.         for (j=0; j<=2; j++)   
1443.             for (i=2*fmn;i<=nrdown-2;i++)   
1444.             {   
1445.         rdown[j][i]=rdown[j][i+1];   
1446.             }   
1447.             nrdown=nrdown-1;   
1448.         }   
1449.         if (delrfirst < delrlower*1/4){   
1450.         for (j=0; j<=2; j++)   
1451.             for (i=nrdown-2*fmn;i<=nrdown-1;i++)   
1452.             {   
1453.         rdown[j][i-1]=rdown[j][i];   
1454.             }   
1455.             nrdown=nrdown-1;   
1456.         }   
1457.         }   
1458.         // cout<<fmn<<endl;   
1459.     }   
1460.    
1461.    
1462.    
1463.    
1464. // OGURTANI MODEL   
1465. // Void- Grain Boundary Interactions   
1466. // Under the Effect of Electron Wind and Thermal Stresses   
1467. // by using Indirect BEM Calculations   
1468.    
1469. // Finite Strip   
1470.    
1471. // Interconnect node velocities   
1472.    
1473. void calnew()   
1474. {   
1475. vmax =0;   
1476.   // for(int kj=0; kj<=nrup-1; kj++)   
1477.     // vel[kj]=0;   
1478.    
1479.   for(int kj=1; kj<=nrup-2; kj++)   
1480.     {   
1481.      vel[kj] = 2*(dif[kj]/s[kj]*(Psiu[kj+1]-Psiu[kj])-dif[kj-

1]/s[kj-1]*(Psiu[kj]-Psiu[kj-1]))*ho*ho/(s[kj]+s[kj-1])-
Mb*(delGb+(TauS[kj]*kapkap[kj]*Wcal[kj]-
Wpot[kj])*ho);  // TauS[i]*kapkap[i]*Wcal[i]-Wpot[i]   

1482.     }   
1483.    
1484.   vel[1] = 2*(dif[1]/s[1]*(Psiu[2]-Psiu[1]))*ho*ho/(s[1]+2*s[0])-

Mb*(delGb+(TauS[1]*kapkap[1]*Wcal[1]-
Wpot[1])*ho);  // TauS[i]*kapkap[i]*Wcal[i]-Wpot[i]   

1485.   vel[nrup-2] = -2*(dif[nrup-3]/s[nrup-3]*(Psiu[nrup-2]-Psiu[nrup-
3]))*ho*ho/(2*s[nrup-2]+s[nrup-3])-Mb*(delGb+(TauS[nrup-2]*kapkap[nrup-
2]*Wcal[nrup-2]-Wpot[nrup-2])*ho);  // TauS[i]*kapkap[i]*Wcal[i]-Wpot[i]   

1486.    
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1487.    
1488.   vel[0] = Mg*delta/2/omega*(lamdag-(cos(thetaL)));   
1489.   vel[nrup-1] = Mg*delta/2/omega*(lamdag-(cos(thetaR)));   
1490.   velL = vel[0];   
1491.   velR = vel[nrup-1];   
1492.    
1493.   for(int kj = 1; kj<nrup-

1; kj++)   if(fabs(vel[kj]) > vmax) vmax = fabs(vel[kj]);   
1494. }   
1495.    
1496. // Void node velocities   
1497.    
1498. void calruv()   
1499. {   
1500.   for(int kj=1; kj<=nrup-2; kj++)   
1501.     {   
1502.     rup[0][kj]=rup[0][kj]+deltat*vel[kj]*lln[0][kj];   
1503.     rup[1][kj]=rup[1][kj]+deltat*vel[kj]*lln[1][kj];   
1504.     rup[2][kj]=rup[2][kj]+deltat*vel[kj]*lln[2][kj];   
1505.     }   
1506.   rup[0][0]=rup[0][0]-deltat*vel[0];   
1507.   rup[1][0]=rup[1][0];   
1508.   rup[2][0]=rup[2][0];   
1509.       for (int ki=0; ki<=2*fmn-1; ki++){   
1510.         rdown[0][ki]=rdown[0][ki]+deltat*vel[nrup-1];   
1511.         rdown[1][ki]=rdown[1][ki];   
1512.         rdown[2][ki]=rdown[2][ki];   
1513.       }   
1514.   rup[0][nrup-1]=rup[0][nrup-1]+deltat*vel[nrup-1];   
1515.   rup[1][nrup-1]=rup[1][nrup-1];   
1516.   rup[2][nrup-1]=rup[2][nrup-1];   
1517.         for (int j=nrdown-2*fmn; j<=nrdown-1; j++){   
1518.         rdown[0][j]=rdown[0][j]-deltat*vel[0];   
1519.         rdown[1][j]=rdown[1][j];   
1520.         rdown[2][j]=rdown[2][j];   
1521.       }   
1522. }   
1523.    
1524. // this procedure generates the initial system   
1525.    
1526. void generate()   
1527. {   
1528.   uppart();   
1529.   lowpart();   
1530. }   
1531.    
1532. // this procedure gets the initial parameters from a file called An

isoDrop_Stress.dat   
1533.    
1534. void needparam(){   
1535.  fp = fopen("input.dat", "r");   
1536.     fgets(line, sizeof(line), fp);   
1537.                                 sscanf(line, "%d", &newdata); //int

   
1538.     fgets(line, sizeof(line), fp);   
1539.                                 sscanf(line, "%d", &type); //int   
1540. fgets(line, sizeof(line), fp);   
1541. fgets(line, sizeof(line), fp);   
1542.     fgets(line, sizeof(line), fp);   
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1543.                                 sscanf(line, "%Lg", &ho); //double 
  

1544.     fgets(line, sizeof(line), fp);   
1545.                                 sscanf(line, "%Lg", &sl); //double 

  
1546.     fgets(line, sizeof(line), fp);   
1547.                                 sscanf(line, "%Lg", &sw); //double 

  
1548.     fgets(line, sizeof(line), fp);   
1549.                                 sscanf(line, "%Lg", &Amp); //double

   
1550.     fgets(line, sizeof(line), fp);   
1551.                                 sscanf(line, "%d", &Modiv); //int   
1552.     fgets(line, sizeof(line), fp);   
1553.                                 sscanf(line, "%d", &Msin); //int   
1554.     fgets(line, sizeof(line), fp);   
1555.                                 sscanf(line, "%d", &nsw); //int   
1556. fgets(line, sizeof(line), fp);   
1557. fgets(line, sizeof(line), fp);   
1558.     fgets(line, sizeof(line), fp);   
1559.                                 sscanf(line, "%Lg", &ksi); //double

   
1560. fgets(line, sizeof(line), fp);   
1561. fgets(line, sizeof(line), fp);   
1562.     fgets(line, sizeof(line), fp);   
1563.                                 sscanf(line, "%Lg", &ym); //double 

  
1564.     fgets(line, sizeof(line), fp);   
1565.                                 sscanf(line, "%Lg", &poisson); //do

uble   
1566.     fgets(line, sizeof(line), fp);   
1567.                                 sscanf(line, "%Lg", &delGb); //int 

  
1568.     fgets(line, sizeof(line), fp);   
1569.                                 sscanf(line, "%Lg", &Mb); //double 

  
1570.     fgets(line, sizeof(line), fp);   
1571.                                 sscanf(line, "%Lg", &Mg); //double 

  
1572.     fgets(line, sizeof(line), fp);   
1573.                                 sscanf(line, "%d", &mint); //int   
1574.     fgets(line, sizeof(line), fp);   
1575.                                 sscanf(line, "%Lg", &Sigma); //doub

le   
1576.     fgets(line, sizeof(line), fp);   
1577.                                 sscanf(line, "%Lg", &Eta); //double

   
1578. fgets(line, sizeof(line), fp);   
1579. fgets(line, sizeof(line), fp);   
1580.     fgets(line, sizeof(line), fp);   
1581.                                 sscanf(line, "%Lg", &Aint); //doubl

e   
1582.     fgets(line, sizeof(line), fp);   
1583.                                 sscanf(line, "%Lg", &Bint); //doubl

e   
1584.     fgets(line, sizeof(line), fp);   
1585.                                 sscanf(line, "%Lg", &rtphi); //int 

  
1586.     fgets(line, sizeof(line), fp);   



 

129 

1587.                                 sscanf(line, "%Lg", &hfn); //double
   

1588. fgets(line, sizeof(line), fp);   
1589. fgets(line, sizeof(line), fp);   
1590.     fgets(line, sizeof(line), fp);   
1591.                                 sscanf(line, "%d", &nl); //double   
1592. fgets(line, sizeof(line), fp);   
1593.     fgets(line, sizeof(line), fp);   
1594.                                 sscanf(line, "%Lg", &gammaf); //dou

ble   
1595. fgets(line, sizeof(line), fp);   
1596.                                 sscanf(line, "%Lg", &gammas); //dou

ble   
1597.     fgets(line, sizeof(line), fp);   
1598.                                 sscanf(line, "%Lg", &delw); //int   
1599.     fgets(line, sizeof(line), fp);   
1600.                                 sscanf(line, "%Lg", &lamdag); //dou

ble   
1601.     fgets(line, sizeof(line), fp);   
1602.                                 sscanf(line, "%Lg", &epstime); //do

uble   
1603.     fgets(line, sizeof(line), fp);   
1604.                                 sscanf(line, "%Lg", &delta); //doub

le   
1605. fgets(line, sizeof(line), fp);   
1606. fgets(line, sizeof(line), fp);   
1607.     fgets(line, sizeof(line), fp);   
1608.                                 sscanf(line, "%Lg", &rmin); //int   
1609.     fgets(line, sizeof(line), fp);   
1610.                                 sscanf(line, "%Lg", &rmax); //int   
1611. fgets(line, sizeof(line), fp);   
1612.     fgets(line, sizeof(line), fp);   
1613.                                 sscanf(line, "%d", &rem); //int   
1614.     fgets(line, sizeof(line), fp);   
1615.                                 sscanf(line, "%d", &contData); //in

t   
1616.     fgets(line, sizeof(line), fp);   
1617.                                 sscanf(line, "%d", &fmn); //int   
1618.    
1619. if(ho == 0) ho = 0.95/sqrt(1+(4*sl*sl)) ;   
1620.    
1621.  Amp = Amp*ho;   
1622.  gfm = (gammaf+gammas)/2/gammaf;  //   
1623.  sl = sl*ho;                     //  scaled strip length   
1624.  sw = sw*ho;                     //  scaled strip width   
1625.    
1626.  lamda = 2*sl/nsw;               //  normalized wave length   
1627.  lamdau = 2*Msin/nsw;             //  node # in each wave length   
1628.  kv = 2*pi/lamda;                 //  normalized wave vector   
1629.    
1630.  omega = delta*delta*delta;       // the atomic volume   
1631.    
1632.  epsx = 1-poisson;                // the misfit strain energy   
1633.    
1634.  rtphi = rtphi*pi/180;            // texture tilt angle in rad   
1635.    
1636.  dmean = lamda/lamdau;            // mean segment length   
1637.  rmin = rmin*ho;               // minimum segment length   
1638.  rmax = rmax*ho;               // maximum segment length   
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1639.    
1640.  // Lamm coefficients of elasticity   
1641.  lamG = ym/(2*(1+poisson));   
1642.  lammu = ym/(2*(1+poisson));      // lamg and lammu are identical   
1643.    
1644.  lamlamda = ym*poisson/((1+poisson)*(1-2*poisson));   
1645.  cc = 1/(8*pi*lamG*(1-poisson));   
1646.  c1 = 3-4*poisson;   
1647.  c2 = 1/(4*pi*(1-poisson));   
1648.  c3 = 1-2*poisson;   
1649.  c4 = 2;   
1650.    
1651.  // Elastic Stiffness and Compliance Matrices given in various form

ats   
1652.  cc1 = ym*(1-poisson)/((1+poisson)*(1-2*poisson));   
1653.  cc2 = poisson/(1-poisson);   
1654.    
1655. deltat =epstime*dmean/1000;   
1656.   lastOutNum = 0;   
1657.   mpow =0;   
1658. }   
1659.    
1660.    
1661.    
1662. void writeParam(){   
1663.    
1664.     out.open("inputt.dat");   
1665.    
1666.     out << newdata << endl;   
1667.     out << type << endl;   
1668.     out << ho << endl;   
1669.     out << sl << endl;   
1670.     out << sw << endl;   
1671.     out << Amp << endl;   
1672.     out << Modiv << endl;   
1673.     out << Msin << endl;   
1674.     out << nsw << endl;   
1675.     out << ksi << endl;   
1676.     out << ym << endl;   
1677.     out << poisson << endl;   
1678.     out << delGb << endl;   
1679.     out << Mb << endl;   
1680.     out << Mg << endl;   
1681.     out << mint << endl;   
1682.     out << Sigma << endl;   
1683.     out << Eta << endl;   
1684.     out << Aint << endl;   
1685.     out << Bint << endl;   
1686.     out << rtphi << endl;   
1687.     out << hfn << endl;   
1688.     out << nl << endl;   
1689.     out << gammaf << endl;   
1690.     out << gammas << endl;   
1691.     out << delw << endl;   
1692.     out << lamdag << endl;   
1693.     out << epstime << endl;   
1694.     out << delta << endl;   
1695.     out << rmin << endl;   
1696.     out << rmax << endl;   
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1697.     out << rem << endl;   
1698.     out << contData << endl;   
1699.     out << fmn << endl; //int   
1700.    
1701.     out.close();   
1702. }   
1703. // Program Restart Procedure   
1704.    
1705. void getcontparam()   
1706. {   
1707. Number sil;   
1708.    
1709. ifstream in;   
1710. in.open("cont.txt");   
1711.    
1712. in >> ru[0][0] >> ru[1][0];   
1713. in >> sil >> sil >> sil >> sil >> sil >> sil >> sil >> sil;   
1714. in >> nu;   
1715. in >> t >> ms>> timex >> mm;   
1716.    
1717. for(int i=1; i<=nu-1; i++){   
1718.     in >>ru[0][i] >>ru[1][i];   
1719.     in >> sil >> sil >> sil >> sil >> sil >> sil >> sil >> sil;   
1720.         }   
1721.    
1722. lowpart();   
1723.    
1724. }   
1725.    
1726.    
1727. void recordtimestep(){   
1728.    
1729.    
1730.     if (t==mpow || t==nl){   
1731.    
1732.         //  time ( &rawtime );   
1733.    
1734.    
1735.         int2str(lastOutNum);   
1736.    
1737.         //textName = dirName+textName;//   
1738.         out << setiosflags(ios::showpoint);   
1739.         out.open(textName.c_str(),ios::trunc );   
1740.         //outName   = ctime(&rawtime);   
1741.                                 //      1           //      2      

     //      3   
1742.         out << setprecision(20) << rud[0][0]/1    <<" "<< rud[1][0]

/1  <<" "<< s[0]/1         <<"  "   
1743.                                 //      4           //      5      

     //      6   
1744.                                 << tetaw[0]         <<" "<< kapkap[

0]*1  <<" "<< TauO[0]        <<" "   
1745.                                 //      7           //      8      

     //      9   
1746.                                 << TauS[0]          <<" " << TauD[0

]     <<" "<< dif[0]         <<" "   
1747.                                 //      10          //      11     

     //      12   
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1748.                                 << tetau[0]       <<" "<< hoop[0]  
    <<" "<< Sighoop[0]     <<"  "   

1749.                                 //      13          //      14     
     //      15   

1750.                                 << Psiu[0]        <<" "<< vel[0]   
    <<" "<< nrup           <<" "   

1751.                                 //      16          //      17     
     //      18   

1752.                                 << nrdown         <<" " << t       
    <<" "<< lastOutNum     <<" "   

1753.                                 //      19          //      20     
     //      21   

1754.                                 << timex          <<" "<< nrud     
    <<" "<< dmean   

1755.                                 << endl;   
1756.    
1757.         for(int i=1; i<nrud;i++){   
1758.         out << setprecision(20)   
1759.                                 << rud[0][i]/1 <<" "<< rud[1][i]/1 

   <<" " << s[i]/1      <<" "   
1760.                                 << tetaw[i]      <<" "<< kapkap[i]*

1    <<" "   << TauO[i]     <<" "   
1761.                                 << TauS[i]       <<" "<< TauD[i]   

     <<" "   << dif[i]      <<" "   
1762.                                 << tetau[i]    <<" "<< hoop[i]     

   <<" " << Sighoop[i]  <<"  "   
1763.                                 << Psiu[i]     <<" "<< vel[i]   
1764.                                 << endl;   
1765.         }   
1766.         out << endl ;   
1767.    
1768.    
1769.         out.close();   
1770.    
1771.       lastOutNum++ ;   
1772.    
1773.         if (t < 256) mpow =pow(2,(double)lastOutNum);   
1774.     else if (t < 1000) mpow =300+200*(lastOutNum-9);   
1775.     else if (t < 10000) mpow =1000+500*(lastOutNum-13);   
1776.     else if (t < 20000) mpow =10000+1000*(lastOutNum-31);   
1777.     else if (t < 100000) mpow =20000+5000*(lastOutNum-41);   
1778.     else /* if (t < 1000000) */ mpow =100000+10000*(lastOutNum-

57);   
1779.    
1780.    
1781.     }   
1782.    
1783.     if (numContData==10000  || t==nl){   
1784.    
1785.         //time ( &rawtime );   
1786.    
1787.         int2str(lastOutNum);   
1788.    
1789.         textName = "cont.dat";//   
1790.         out << setiosflags(ios::showpoint);   
1791.         out.open(textName.c_str(),ios::trunc );   
1792.         //outName   = ctime(&rawtime);   
1793.    
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1794.         out << setprecision(20) << rud[0][0] <<" "<< rud[1][0]<<"  
"   

1795.         << nrup  <<" " << nrdown <<" "<< t <<" "<< lastOutNum <<" "
<< timex     <<" "   

1796.         << dmean   << endl; //min max   
1797.    
1798.         for(int i=1; i<nrud;i++){   
1799.         out << setprecision(20)   
1800.                 << rud[0][i]<<" "<< rud[1][i]<< endl;   
1801.         }   
1802.         out << endl ;   
1803.    
1804.         out.close();   
1805.     //  clrscr();   
1806.    
1807.       numContData = 0;   
1808.     }   
1809.    
1810.     numContData++ ;   
1811.    
1812. }   
1813.    
1814.    
1815. // MAIN PROGRAM Organization Procedure   
1816.    
1817.    
1818.    
1819. void final()   
1820. {   
1821.    
1822. stacksvi(rup,nrup,rdown,nrdown);   
1823.    
1824. while(t < nl){   
1825.    
1826. delr1(nrup,rup,delrup,sup);   
1827. psir(nrup-1,delrup,sup);   
1828.    
1829.                  for(int ki=0; ki<nrup; ki++) tetau[ki] = teta[ki];

   
1830.    
1831. kappa(sup,teta,delrup,nrup-1);   
1832.    
1833. delr1(nrdown,rdown,delrdown,sdown);   
1834. deldelr1(nrud,1,rud);   
1835.    
1836. psir(nrdown-1,delrdown,sdown);   
1837. psipsir(nrup-1, delrup, sup);   
1838. ddif() ;   
1839.    
1840. nocRT(s,delr,nrup,nrdown);   
1841.    
1842. rcc(rud,nrud);   
1843.    
1844.     if(Sigma != 0 || Eta !=0 ){   
1845.         ftin(s,delr);   
1846.         asym() ;   
1847.         boundary() ;   
1848.         pbfv() ;   
1849.         fc();   
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1850.         dsglarge();   
1851.         multa() ;   
1852.         SigStress() ;   
1853.         SigNodet() ;   
1854.     }   
1855.    
1856.     // if (ksi==0)   
1857.         // for(int i=0; i<=nrup-1; i++)   
1858.              // fieldtn[i] =0.0;   
1859.    
1860.    
1861.      for(int i=0; i<nrup ;i++){   
1862.             Wpot[i] = (1/sqrt(1+sqr(tan(tetaw[ki]))))* (gammaf-

gammas)/(pi*gammaf)*(delw*ho)/(sqr(delw*ho)+sqr(rup[1][i]));   
1863.             //  -lln[i][1] * (gammas-

gammaf)/pi*(deltaW*ho)/(sqr(deltaW*ho)+4*sqr(rud[i][1]));   
1864.             }   
1865.    
1866.      for(int i=0; i<nrup ;i++){   
1867.             Wcal[i] = (gammas+gammaf)/(2*gammaf) - (gammas-

gammaf)/(pi*gammaf) * atan( (rup[1][i]) / (delw*ho) )  ;   
1868.         }   
1869.    
1870.     for(int i=0; i<= nrup-1 ; i++){   
1871.     Psiu[i] = (kapkap[i]*Wcal[i]-Wpot[i])*ho;   
1872.     if(ksi != 0)    Psiu[i] +=ksi*fieldtn[i];   
1873.     if(Sigma != 0 || Eta !=0 )  Psiu[i] += -

Sigma*Sighoop[i]*Sighoop[i]+Eta*Sighoop[i];   
1874.         }   
1875.    
1876.     calnew();   
1877.    
1878. //{calculation of record time step}   
1879.    
1880.     recordtimestep();   
1881.     deltat =epstime*dmean/vmax;   
1882.     calruv() ;   
1883.    
1884.     if(rem == 1 && t%20==0)   
1885.     {   
1886.     remesh0();   
1887.     }   
1888.     if(rem == 2&& t%20==0)   
1889.     {   
1890.     centerpoint();   
1891.     remesh1();   
1892.     }   
1893.     remeshEnd();   
1894.     remeshlower();   
1895.     stacksvi(rup,nrup,rdown,nrdown);   
1896.     timex = timex+deltat;   
1897.     t++ ;   
1898.     if(lastOutNum>999) t = nl;   
1899. }   
1900.    
1901. }   

 


