

MORPHOLOGICAL EVOLUTION OF STRAINED ISOTROPIC THIN SOLID

FILM ON RIGID SUBSTRATE

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

SANAM HADDADIAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

METALLURGICAL AND MATERIALS ENGINEERING

JULY 2014

Approval of the thesis:

MORPHOLOGICAL EVOLUTION OF STRAINED ISOTROPIC THIN

SOLID FILM ON RIGID SUBSTRATE

submitted by SANAM HADDADIAN in partial fulfillment of the requirements for

the degree of Master of Science in Metallurgical and Materials Engineering

Department, Middle East Technical University by,

Prof. Dr. Canan Özgen ________________

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Hakan Gür ________________

Head of Department, Metallurgical and Materials Eng.

Prof. Dr. Kadri Aydınol ________________

Supervisor, Metallurgical and Materials Eng. Dept., METU

Prof. Dr. Tarık Oğurtanı ________________

Co-Supervisor, Metallurgical and Materials Eng. Dept., METU

Examining Committee Members:

Prof. Dr. Turgut Baştuğ ________________

Material Science and Nanotechnology Eng. Dept., TOBB ETU

Prof. Dr. Kadri Aydınol ________________

Metallurgical and Materials Eng. Dept., METU

Prof. Dr. Tarık Oğurtanı ________________

Metallurgical and Materials Eng. Dept., METU

Assist. Prof. Dr. Ersin Emre Ören ________________

Biomedical Eng. Dept., TOBB ETU

Assoc. Prof. Dr. Arcan Dericioğlu ________________

Metallurgical and Materials Eng. Dept., METU

 Date: ________________

iv

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

 Name, Last name: Sanam Haddadian

 Signature :

v

ABSTRACT

MORPHOLOGICAL EVOLUTION OF STRAINED ISOTROPIC THIN

SOLID FILM ON RIGID SUBSTRATE

Sanam Haddadian

 M.Sc., Department of Metallurgical and Materials Engineering

 Supervisor: Prof. Dr. Mehmet Kadri AYDINOL

 Co-Supervisor: Prof. Dr. Tarik OGURTANI

July 2014, 134 pages

In quantum dots (QD), the excitons are spatially confined and their energy spectrum,

which controls many physical properties of interest, can be adjusted over a wide

range by tuning composition, density, size, lattice strain and morphology. The

formation of QDs joined by a thin flat wetting layer, known as the Stranski-

Krastanow (SK) morphology, is a general growth mode observed in many

epitaxially-strained thin solid films. These features make semiconductor QDs

attractive for the design and fabrication of novel electronic, magnetic and photonic

devices. The success of this endeavor has mainly been enabled by research, leading

to reliable means for estimating forces in small material systems and by establishing

frameworks, in which the integrity and/or functionality of the systems is satisfied.

vi

The material failure continues to be a main technology-limiting barrier and thus, the

subject of capillary-driven morphological evolution of surfaces and interfaces;

especially under the action of applied force fields e.g., electrostatic and thermo-

mechanical, is still a challenging materials problem.

 Here we demonstrate the effects of strain relaxation on morphological evolution of

QDs and occurrence of wetting layer. Our study based on continuum level

dynamical simulations will be presented for the spontaneous evolution of an

isotropic isolated thin solid droplet on a rigid substrate under various stress fields.

The simulations showed that there is a threshold value for the stress level under

which the formation of isolated islands observed; whereas at higher stress levels we

observed the formation of SK-type islands connected with a very thin wetting layer.

Supported by TUBITAK grant no 111T343 and TUBA GEBIP.

Keywords: Thin films, thin film growth modes, quantum dots, surfaces and interfaces,

numerical modeling

vii

ÖZ

SERT ALTLIK ÜZERİNDE GERGİN İZOTROP İNCE KATI FİLMİN

MORFOLOJİK EVRİMİ

Sanam Haddadian

 Yüksek lisans, Metalurji ve Malzeme Mühendisliği Bölümü

 Tez Yöneticisi: Prof. Dr. Mehmet Kadri AYDINOL

 Ortak Tez Yöneticisi: Prof. Dr. Tarik OĞURTANI

Temmuz 2014, 134 sayfa

Kuantum noktalarda (QD), eksitonlar mekansal olarak sınırlanmıştır. Bu

malzemelerde, birçok fiziksel özelliği kontrol eden enerji spektrumu, kompozisyon,

yoğunluk, boyut, kafes gerginlik ve morfolojide değişikliklerle geniş bir aralıkta

ayarlanabilir. Ġnce düz bir ıslatma tabakasıyla birbirine bağlı olan kuantum

noktaların oluşumu, Stranski-Krastanow (SK) büyüme modu olarak adlandırılmış ve

bir çok epitaksiyel gergin ince katı filmde gözlemlenen genel bir durumdur. Bu

özellikler, yarı iletken quantum noktaları yeni elektronik, manyetik ve fotonik

cihazların tasarımı ve imalatı için cazip kılmaktadır. Bu çalışmaların başarısı,

ağırlıklı olarak bilimsel araştırmalara ve bu araştırmaların ortaya çıkardığı nano

boyutlu malzeme sistemlerindeki kuvvetleri tahmin ederek bu sistemlerin bütünlüğü

ve / veya işlevleri sağlamak amacıyla çerçeve oluşturulmasıyla sağlanmıştır.

viii

Malzeme kusurları, teknolojinin ana sınırlayıcı engeli olmaya devam etmektedir.

Yüzeyler ve arayüzeylerin kapilar odaklı morfolojik evrimi, özellikle uygulanan

kuvvet alanlarının etkisi altında, hala çözülmesi gereken önemli bir malzeme

sorunudur.

Bu araştırmada, sis-temdeki gerginliğin gevşemesinin quantum noktaların

morfolojik evrimi ve ıslatma tabakasının ortaya çıkması üzerine etkilerini

incelenmiştir. Süreklilik seviyedeki dinamik simülasyonlara dayalı bu çalışmamız,

katı bir altlık üzerinde izole edilmiş bir izotropik ince katı madde damlacığının

çeşitli gerilim alanları altında kendiliğinden evrimini göstermektedir. Simülasyon

bulgularının gösterdiği sonuca göre stres düzeyinin bir eşik değerin altında izole

adaların oluşumu gözlenmiştir. Daha yüksek gerilme seviyelerinde ise ince bir

ıslatma tabaka ile bağlantılı SK-tipi adaların oluşumu gözlenmiştir. Bu çalışma,

11T343 nolu TÜBĠTAK 1001 projesi ve Dr. Ören'in TÜBA GEBĠP projesi

tarafından desteklenmiştir.

Anahtar Kelimeler: Ġnce filmler, ince film büyütme modları, kuantum noktalar,

yüzeyler ve arayüzler, sayısal modelleme

ix

To My Family

x

ACKNOWLEDGMENTS

I wish to express my deepest gratitude to my supervisor Prof. Dr. Kadri Aydinol and

to my Co-supervisors Prof. Dr. Tarik Ogurtani and Assist. Prof. Dr. Ersin Emre

Oren for their guidance, advice, criticism, encouragements and insight throughout

the research.

I also would like to thank to supports by the Turkish Scientific and Technological

Research Council, TUBITAK through a research Grant No. 111T343 and Turkish

Academy of Sciences TUBA GEBIP Grant to Assist. Prof. Dr. Ersin Emre Oren.

xi

TABLE OF CONTENTS

ABSTRACT………………………………………………………………………….....v

ÖZ .. vii

ACKNOWLEDGMENTS……………………………………………………………...x

TABLE OF CONTENTS……………………………………………………………...xi

LIST OF TABLES………………………………………………………………xiii

LIST OF FIGURES …………………………………………………………….xiv

CHAPTERS

1. LITERATURE SURVEY .. 1

1.1. Overview .. 1

1.2. The effect of size on the electron confinement regime 3

1.3. Quantum dots applications ... 6

1.4. Quantum dots production methods .. 7

1.4.1. Colloidal synthesis ... 8

1.4.2. Lithography .. .8

1.4.3. Epitaxy 9

1.5. Epitaxial growth modes.. 10

1.6. Experimental observations ... 13

1.6.1. Nucleation and growth .. 14

1.6.2. Quantum dots composition .. 16

1.6.3. Shape transition of quantum dots ... 18

1.6.4. Effect of substrate on the evolution of quantum dots 20

1.6.5. Dislocation formation during the evolution of quantum dots 22

1.6.6. Diffusion and stabilization of quantum dots ... 24

1.6.7. Theoretical and modeling efforts .. 25

2. PHYSICAL AND MATHEMATICAL MODEL ... 29

xii

3. NUMERICAL PROCEDURES ... 37

3.1. Preparation of the initial system .. 37

3.2. Calculation of the turning angles at the nodes ... 38

3.3. Calculation of node curvatures ... 38

3.4. Calculation of the local line normal vectors ... 40

3.5. Calculation of the hoop stresses by using the indirect boundary element

method .. 41

3.6. Explicit Euler‟s method .. 46

3.7. Adaptive remeshing .. 46

4. RESULTS AND DISCUSSIONS ... 51

4.1. Determination of safe run parameters ... 51

4.2. The effect of triple junction mobility on the morphological evolution 55

4.3. Droplet simulation .. 57

4.3.1. QD evolution without stress ... 58

4.4. QD evolution with stress .. 65

5. CONCLUSIONS .. 81

5.1. Future studies ... 85

REFERENCES ... 87

APPENDICES

 A. PROGRAM CODE ... 99

xiii

LIST OF TABLES

TABLES

Table 4.1. Effect of the initial time step on the convergence of experiments 52

Table 4.2. Effect of the initial node number on the convergence of experiments 54

xiv

LIST OF FIGURES

FIGURES

Figure 1.1: The effect of QD size on the band gap zone ... 2

Figure 1.2: The fluorescence effect of an excited electron ... 2

Figure 1.3: The density of states for bulk material, quantum well, quantum wire and

quantum dot ... 6

Figure 1.4: Three different epitaxial growth modes .. 12

Figure 1.5: The SEM image of Si0.75Ge0.25/Si (001) system 14

Figure 1.6: (a) 3D view STM image of Pyramid and Dome shape InAs QDs on

GaAs(001) flat substrate .. 19

Figure 1.7: The figure in the right is the pyramid shape QD and the figure in the left

is the same QD after transition into dome shaped island ... 19

Figure 1.8: Different regions for the proper growth mode according to misfit

parameter (f) and binding energy .. 23

Figure 2.1: The side view of the droplet ... 30

Figure 3.1: The turning angle at the node ... 38

Figure 3.2: The unique circle that crosses through three successive nodes 39

Figure 3.3: The symbolization for 2D Kelvin solution ... 44

Figure 3.4: The profile evolution according to local line normal 47

Figure 3.5: Remeshing. .. 48

Figure 3.6: The numerical procedure of the program ... 49

Figure 4.1: The effect of different on the accuracy of computation process

for , , 53

xv

Figure 4.2: The effect of different node number on the accuracy of computation

process for , , . .. 55

Figure 4.3: The effect of different ̅ on the accuracy and normalized evolution

time of computation process .. 56

Figure 4.4: (a) Spontaneous formation of SK islands, (b) Normalized hoop stress of

nodes in final configuration, (c) time evolution of contact wetting angle, (d) time

evolution of fractional height and base length change. .. 58

Figure 4.5: The effect of wetting contact angle on the final morphology. 60

Figure 4.6: Zooming the Figure 4.4.a for better detection. 61

Figure 4.7: Time evolution of wetting contact angles for different values 62

Figure 4.8: 3D images of spontaneous SK islands for three different values

(a) (b) (c) ... 63

Figure 4.9: Time evolution of the change in fractional height of the islands for

different values ... 63

Figure 4.10: The effect of aspect ratio on the morphological evolution of quantum

dots .. 64

Figure 4.11: The effect of wetting contact angle on the final morphology............... 67

Figure 4.12: The effects of stress on the final morphology; in these simulations 68

Figure 4.13: The effect of stress on the island height of final morphology 69

Figure 4.14: The effects of stress on the morphological evolution of quantum dots 71

Figure 4.15: The effect of aspect ratio on the morphological evolution of quantum

dots .. 72

Figure 4.16: The effect of aspect ratio on the morphological evolution of quantum

dots for (a) , (b) .. 73

Figure 4.17: The phase diagram of various regions for different and values ... 74

Figure 4.18: The phase diagram of various regions for different and values .. 75

Figure 4.19: The evolution processes of single island region in phase diagram. 76

xvi

Figure 4.20: The phase diagram of various regions for different and values ... 78

Figure 4.21: The evolution processes of quadruplet island region in phase diagram.

 ... 79

Figure 4.22: The phase diagram for different and values that separates the

region with wetting layer and region without wetting layer diagram 80

1

CHAPTER 1

LITERATURE SURVEY

1.1. Overview

Quantum dots are nano-size semiconductors in which holes and electrons are

confined in all three spatial dimensions. Due to some similarity, sometimes, they are

called artificial atoms, however, the size is much bigger (1-100 nm for QD versus

0.1 nm for atoms). These nanostructures represent unique optical and electrical

properties, which are due to their small size, and are different in character to those of

the corresponding bulk material. In these particles, the addition or subtraction of an

electron changes its properties.

To know what is special with QDs, we need some background on semiconductors.

In bulk semiconductors, the presence of many atoms causes splitting of the

electronic energy levels, giving continuous energy bands separated by a Band gap.

Band gap is the forbidden zone for the electron existence. The portion of energy

levels above the band gap is called conduction band and below the band gap is

called valance band (Figure 1.1). Electrons gain the additional energy from external

sources such as electromagnetic radiation, electricity or heat and this, results in

electron jump to an unstable higher energy level. In an atom, the excited electron

loses its absorbed energy when falls back down to its original ground state. This

energy is released in the form of light (Figure 1.2). In bulk materials, due to existing

of large number of atoms, energy levels are close to each other; this makes

2

continuous energy bands. In a quantum dot, relatively few atoms are present, which

leads to discrete and quantized energy levels more like those of an atom. This is the

reason of why quantum dots are called “artificial atoms”.

Figure 1.1: The effect of QD size on the band gap zone

Figure 1.2: The fluorescence effect of an excited electron

3

Traditional semiconductors have many limitations. Their band gaps and energy

levels are not easily changed and their emission frequencies cannot be easily

manipulated as desired, which leads to expensive procedure for optical and electrical

quality adjustment.

Quantum dot‟s band gap changes with its size or composition and thus, the addition

or removal of just a few atoms could affect the band gap energy. Nowadays, these

nanostructure materials have become an interesting issue both in commercial and

scientific areas due to their special functions. However, there are a lot of unknown

about them.

The efficiency of QD based devices is extremely dependent on the positioning,

density and size of quantum dots. Therefore, in order to produce desirable self-

organized QDs, there should be great scientific information about QD nucleation,

growth and morphological change mechanisms. The information that is required for

understanding the mechanism will be helpful for developing new QD formation

techniques and designing of new QD based devices.

1.2. The effect of size on the electron confinement regime

The combination of the electron in the conduction band and the hole in the valance

band, which are held together by the electrostatic Coulomb force, is called exciton.

The quantum effect occurs if the dimension of the nano-crystal is smaller compared

to the natural length scale of the exciton (), which we call it the Bohr radius of the

particle.

4

 ⁄

where

 is the Bohr radius of the hydrogen atom

 is the size dependent dielectric constant

 is the mass of the particle

 is the rest mass of electron

And Bohr Radius of the hydrogen atom is

where

 is the permittivity of free space

 is the reduced plank constant

 is the electron charge

 is the speed of light in vacuum

 is the fine structure constant

For a nano-crystal, we calculate three individual Bohr radii as and for

electron, hole and exciton successively that each can be evaluated using the equation

1.1. In the case of exciton, the reduced mass of the electron-hole pair is used. In bulk

5

semi-conductors, the electron can move freely in all three directions. When the

length of material is reduced to the same order as the exciton radius, i.e. to a few

nanometers, quantum confinement effect occurs and the exciton properties are

modified. Depending on the dimension of the confinement, three types of confined

structures appears: two-dimensional quantum well (QW), one-dimensional quantum

wire (QR) and zero dimensional quantum dot (QD). If the size of a nano-crystal is

smaller than and , this is called „strong confinement

regime‟. If is larger than both and but smaller than ,

only the center of the mass motion is confined and it is called „weak confinement

regime‟ and finally if is between and , it is said to be in

„intermediate confinement regime‟. Hence, if the size of the quantum dot is small

enough that quantum confinement dominates (typically smaller than 10 nm), the

electronic and optical properties change and the fluorescent wavelength alters

relevant to the size of the nano-particle [1].

As discussed earlier, in bulk materials, electrons in conduction band are free to move

in all three spatial directions. Fabricating quantum well, quantum wire or quantum

dot could be done by encircling the material with a larger band gap material, which

leads to confining the electron either, in one, two or three dimensions respectively.

The density of states of quantum dots are discrete and hence they behave like real

atoms unlike to the bulk material, where the density of states is continuous (Figure

1.3).

6

Figure 1.3: The density of states for bulk material, quantum well, quantum wire and

quantum dot

1.3. Quantum dots applications

QDs with their special characteristics and electronic properties have become an

important candidate for development of many medical, electronic, photonic and

magnetic devices [2-4].

The thin wetting layer between QDs, which is grown within SK growth mode (this

mode will be explained later), provides a path for electrons to move freely between

islands. This transmission mechanism of SK mode make it suitable for electronic

and optoelectronic applications.

Some examples of this wide application area are photovoltaic devices that transform

the solar energy into electrical energy, Quantum computers, single electron

transistors, laser fabrication, etc. [5-7].

7

 Some particular advantages of single quantum dots are:

 Durability

 High efficiency

 Wide spectral range

 Compatible with chip-technology

 Electrical Pumping

 Strong interactions

1.4. Quantum dot production methods

Generally, there are two different approaches in the case of fabrication of quantum

dots, “top- down” and “bottom-up” approaches. The “top- down” approach is the

method of shaping the desired nanostructures by removing the extra material from

the bulk, where this method is costly and time consuming specially for the

production of nanostructures with large surface area. On the contrary, “bottom-up”

approach starts from atomic level and can produce nanostructures with new

chemical bonds [8].

There are several methods to produce quantum dots for different applications:

 Colloidal Synthesis

 Lithography

 Epitaxy:

 Patterned Growth

 Self-Organized Growth

8

1.4.1. Colloidal synthesis

The solution based synthetic chemistry for fabrication of QD is a powerful approach

to control the size and composition of nano-crystals. Typically, colloidal nano-

materials are synthesized by reacting inorganic salts or organometallic compounds

that follow consecutive stages: growth of the preferred nuclei, isolation of particles

reaching the desired size and post preparative treatments. This method is more

flexible in fabrication comparing to other methods like Atmospheric pressure

chemical vapor deposition (APCVD), which needs complex equipment and show

less productivity.

Colloidal nanostructures is produced in the form of nano-crystals, nano-rods, cubes,

prisms, which are suitable for biological and engineering applications such as light

emitting devices (LED s), photo detectors and biological imaging agents [8, 9].

In order to improve the stability and application of colloidal QDs, they are often

coated with a layer of organic passivation ligands (shell) with wider band gap called

core-shell model to isolate the exciton from non-radiative relaxation via surface

states that leads to wave length tuning and lifetime increasing [10].

1.4.2. Lithography

This is a top-down method, where quantum dots can be formed from two

dimensional quantum wells. Photolithography, scanning probe lithography, electron

beam lithography and nano-imprinting are among the most common methods for

producing nano-crystals with precise shape and size used for electronic applications.

9

The nano-imprint method is typically suitable for flat surfaces because the mold

mostly is made with rigid material. Haixiong Ge et al. fabricated a mold combining

a rigid polymer containing silicon as a patterning template on a flexible

polydimethylsiloxane polymer to allow the nano-scale imprinting on the curved

substrate, which can imprint features smaller than 30 nm [11].

Vikas Nandwana et al. utilized direct patterning lithography by using the functional

material as a negative resist. They claim that the final configuration have the same

optical properties as the un-patterned film. The fluorescence intensities and lifetime

were also unchanged [12].

1.4.3. Epitaxy

Semiconductor quantum dots can be fabricated by various epitaxial techniques such

as molecular beam epitaxy (MBE) or Metalorganic vapor phase epitaxy (MOVPE),

in which semiconductor compounds with smaller band gaps are grown on a surface

of a host material with larger band gap.

If the thickness of deposited material exceeds a critical value, the system refrains to

bear the extending stress, which results in the generation of coherently strained

islands with a wetting layer in between. This energy favorable process is known as

Stranski-Krastanov growth mode. These islands can be transformed subsequently to

make quantum dots.

The self-assembled island nucleation process and the position of quantum dots

cannot be controlled precisely. Since deterministic positioning of QDs is required

for many applications, several techniques have been under investigation in this

10

respect to improve the functionality of the epitaxial quantum dots. The most

advanced approach is to make holes on the substrate using lithographic methods and

growth of islands on the substrate. The holes alter the chemical potential of the

surface and increase the local growth rate of quantum dots [13].

1.5. Epitaxial growth modes

Epitaxial growth is a process of growing of a crystal on an underlying crystalline

surface, in which the deposited crystal is oriented by the lattice structure of the

substrate. When the substance of the substrate differs from the growing crystal, the

process is called hetero-epitaxy and if the substances are similar, it is called homo-

epitaxy.

 The word “epitaxy” derived from the Greek word “epi” meaning “on” and “taxis”

meaning “arrangement”, was introduced by Louis Royer, in 1928 to define this type

of growth occurring in nature or imitated in laboratories and to separate epitaxial

growth from non-crystalline and amorphous growth.

The morphology of the film depends on a number of factors, including the

deposition rates of the species, the surface temperature, the surface material, and its

crystallographic orientation [14-16].

It is generally accepted that, there are three possible modes of film surface

morphology that can appear through epitaxial growth process. These are referred to

as Frank-Van der Merwe (FM) morphology, Volmer-Weber (VW) morphology and

Stranski-Krastanov (SK) morphology.

11

There are also another two types of growth modes known as columnar growth mode

(CG mode) and step flow mode (SF), which are not in our field of interest.

In Frank-Van der Merwe (FM) mode, the atoms are strongly bounded to the

substrate than to each other. A new layer nucleation begins only after the completion

of the underneath layer. FM growth mode forms continuously and it can spread

growth steps over macroscopic distances. A Volmer-Weber (VW) growth mode

initially consists of a large number of surface nuclei, which grow into islands of

condensed phase. This happens when atoms of deposit are more strongly bounded to

each other than to the substrate.

The layer plus island or Stranski- Krastanov (SK) mode is considered as an

intermediate between the FM and VW modes and it is caused due to the significant

lattice mismatch between the film and the substrate. This lattice mismatch generates

an internal strain, which happens due to increasing the elastic energy caused by

increasing the layer thickness. The first deposited layer is smooth (FM growth

mode) but if the thickness of the layer exceeds a critical thickness, the system needs

to release the energy and subsequent island nucleation rapidly takes place (VW

growth mode) [17, 18], where the stress is released by the generation of misfit

dislocations. However, there is another state of Stranski-Krastanov morphology,

where the energy barrier for formation of coherent islands (islands without

dislocations) is very small compared to the energy need for dislocation nucleation

[19, 20].

12

Layer-by-Layer Stranski-Krastanov Island Growth

Figure 1.4: Three different epitaxial growth modes

Epitaxy occurs in such a way that the total energy of the system consisting of

substrate-crystal phases becomes minimal. The growth mode of the system also

depends on interfacial free energy and lattice mismatch.

In lattice matched systems there is a relation between interfacial energy γfs, epitaxial

layer surface energy γf and surface energy γs as γf +γfs<γs , which leads to formation

of Frank-van der Merwe growth mode. Alternatively, if there is γf +γfs>γs then

Volmer-Weber growth mode is observed. In a system with small interfacial energy

but large lattice mismatch, the system initially begins with FM mode but as layers

become thicker, the system prefers to reduce its large strain energy. This leads to

formation of isolated thick islands. Controlling the morphology during the hetero-

epitaxy process requires understanding the atomistic mechanisms [19, 21].

The characteristic features of strain induced 2D (layer by layer) to 3D (layer +

island) transformation during evolution of islands depend on the lattice misfit

between the epilayer and the substrate. During the SK growth of Ge on Si (001), the

formation of {105} facets that are elongated along the <100> directions with

rectangular bases having up to 8:1 aspect ratio, make a hut like morphology. The

evolution kinetics includes meta-stability, since they dissolve during annealing.

13

 The self-limiting growth mechanism slows down the growth kinetics of the larger

islands compared to the small islands. Thus, smaller islands convert to bigger ones,

while larger islands stay constant, which makes uniform island size distribution [22].

The Stranski-Krastanow (SK) growth is a desired mode for various applications due

to less imperfection in their structure that decreases the loss of performance

compared to other modes. This info has attracted significant attention in recent

years. Despite of this huge interest, the structure and distribution during

morphological evolution of QDs grown by SK mode is not understood exactly.

1.6. Experimental observations

Undoubted, there should be a quit good information and capability to produce QD

with desirable properties to put it into use. To follow this job, many experimental

[23,24], theoretical and modeling and simulation [25-27] efforts have been

performed in the subject of heteroepitaxial growth of self-organized quantum dots.

However, there are still many unsolved issues regarding the kinetics and

thermodynamics of the formation and evolution of QDs. In many of these

investigations, Ge and Si/Ge on Si(001) or InGaAs on GaAs(001) systems have

been commonly used as the model systems. Figure 1.5 depicts the SEM image of

heteroepitaxial QDs formation in Si0.75Ge0.25/Si(001) system. Here, quantum dots

have 135 nm width and 80 nm height.

14

Figure 1.5: The SEM image of Si0.75Ge0.25/Si (001) system [28].

Over years, ordering and arranging of QDs was a challenging concept [29-31]. The

overgrowth procedure of QDs can play an important role for spatial ordering of

other QDs. Kiravittaya et al observed nano-holes, which start to appear due to strain

effect, after 6 mL deposition of GaAs, in the middle of nanostructures. These holes

have dimensions around 20-30 nm width and 1.5 nm depth and could be used as

templates to guide the formation of closely spaced QDs [32]. However, the absolute

positioning of QDs could be achieved by growth of QDs on a patterned substrate

[33,34].

1.6.1. Nucleation and growth

The surface roughening process and its subsequent island formation can be

understood by a simplified energetic argument [35-37]. During island formation, the

total strain energy of the thin film decreases while the surface total energy increases.

In an isotropic film and substrate, for > , surface roughening is energetically

favorable, where is the perturbed wavelength and is the critical wavelength

depending on the surface energy and strain energy density of the initially flat film.

However, when < , the perturbation will disappear and the surface will remain

flat.

15

In other words, when the volume of an island is small, the surface energy of the side

facets of the island plays an important role in preventing the island formation due to

high ratio of the surface area to the volume. However, as the volume of the island

exceeds a critical value, its significance diminishes and cannot stop the growth.

When the surface energy anisotropy and elastic anisotropy are included, the critical

wavelength may change with the elastic and surface energy anisotropies. Thus,

tuning these anisotropy strengths will change the roughening kinetics and therefore

affect the island morphology. However, in this scheme of growth, the driving force

of instability at low misfits is still under debate [38].

The size distribution of self-assembled QDs varies approximately in the range

of [21]. However, size homogeneity can be improved by tuning the growth

conditions [39]. In InAs/Ga system, the lower growth rate induces larger QDs with

better size homogeneity, which can be explained with the migration length of

adatoms [39,40]. At low growth rate, the adatoms prefer to incorporate into existing

QDs rather than forming new QD due to large migration length. In this case, better

size homogeneity could be attained since adatoms can migrate longer so they have a

higher chance of finding a suitable position with lower energy to be incorporated.

Since larger QDs produce higher strain barriers, the adatoms prefer to incorporate

into smaller QDs, which is called self-limiting growth.

The kinetic of growth is also another unresolved question. Studies show that, the

growth velocity of quantum dots (QDs) and other structures by selective area

epitaxy, may strongly be depend on crystallographic orientation [41, 42].

16

At low temperatures, the growth of InAs islands on GaAs substrate is simply due to

accumulation of deposited material. However, at high temperatures, the volume of

the islands exceeds the volume of deposited InAs on the substrate. Thus, the

additional material comes from the wetting layer. This is a proof of the active role of

wetting layers in the final stage of SK growth mode. Under the fixed amount of

deposition, the growth of island needs the decrement of WL (wetting layer). As the

surface energy density of the WL has a strong dependence on its thickness especially

for thin WL, the growth of large islands becomes difficult and finally the system

achieves equilibrium. Accordingly, it can be concluded that the thickness

dependence surface energy of WL prevents the islands from growing up without

limit and finally islands will have steady size [43, 44].

1.6.2. Quantum dots composition

In the case of equilibrium for a given shape, size and average composition, the

composition profile (CP) is calculated by minimizing the total free energy consists

of elastic energy, entropic and chemical mixing energies.

In the SiGe/Si system, the larger alloy component (Ge) segregates on the tensile

region of top apex and upper corners, where strain is almost relaxed. On the other

hand, the Si element segregates to corner of the base. In this case, Ge concentration

decreases from the top to the base and base corners, which could be observed for all

QDs independent of the size and shape. By increasing the , which creates steeper

sidewalls, QDs decomposition degree increases compared to shallower QDs.

Considering the negligible diffusion in bulk due to high-energy barrier at typical

growth temperatures, Medhekar et al showed that even when the phase separation is

thermodynamically favorable, the complete segregation cannot be achieved and

entire dot could not reach the equilibrium [45]. However, the increased diffusion

also occurs in subsurface regions since energy barrier is greatly reduced at surfaces.

17

This allows local equilibrium CPs to be established in the near surface regions

during growth. Similarly, complete mixing is only seen for very shallow dots.

Consequently, the kinetic of the growth mode, which dictates the surface mass

transport and alloy mixing via surface diffusion at the growth process, becomes a

key factor in determining the kinetically limited CP.

Strain induced segregation in quantum dots can substantially reduce the critical size

for transition between the shapes with different facets. The critical volume for shape

transition depends on the surface energies of the facets. The total energy of the

decomposed dots is lower than the energy of the dots with uniform composition.

However, the reduction in the energy is greater for the steeper dot, resulting in

smaller critical size for transition in shape.

The composition profile depends strongly on the shape of the QD (slope, curvatures

and other geometric features). However, the temperature change does not make any

significant change on qualitative composition and just make slight change on

quantitative composition profile [46].

Shenoy et al. used irreversible thermodynamic for their composition and

morphological evolution model for fully faceted crystals. They established a two-

component system with individual velocity for each component. Material flow and

accordingly, the surface morphology could be determined based on the competition

between the mass exchange in bulk and surface due to differences in bulk and

surface chemical potentials including the size of the component and local stress field

[47].

18

Shaleev et.al [48] have investigated the Si1-xGex film growth with different Ge

concentrations on Si (001) surface. The results show that the Ge concentration

affects the misfit parameter between the film and the substrate and alters the critical

thickness for initiation of island formation.

1.6.3. Shape transition of quantum dots

Shape transition has been detected during island forming generally when the amount

of deposited material increases or the system evolves during in situ annealing.

Experimental observations revealed that during deposition, small QDs with pyramid

shapes start to make a morphological evolution to finally become a dome with a

much larger size [49, 50].

By using Scanning Electron Microscopy (SEM) [51, 52], High-Energy Energy

Diffraction (RHEED) [53] and Transition Electron Microscopy (TEM) [54] within

experimental investigations, it have been observed that for InAs/GaAs(001) systems

as well as SiGe/Si(001), the small InAs islands have pyramid shape including {137}

facets, while larger islands have {101} facets with dome shape. After transition from

pyramid to dome shape, the {101} facets with larger area and {111} facets with

smaller area at the base are observable. However, {137} facets still exist at the top

and the bottom of the dome [31, 32, 55] (Figure 1.6).

19

Figure 1.6: (a) 3D view STM image of Pyramid and Dome shape InAs QDs on

GaAs(001) flat substrate. Schematic representation of (b) a pyramid and (c) a dome

[32]

This Pyramid-Dome transition is also observed by Montalenti et.al. [56] and

Baribeau et.al. [57] in Si1-xGex/Si (001) system (Figure 1.7).

Figure 1.7: The figure in the right is the pyramid shape QD and the figure in the left

is the same QD after transition into dome shaped island (6ML Ge/Si(001) is

deposited in temperature of 650
o
C)

Spencer et al. investigated the transition path from pyramid to dome. For any given

volume, they minimized the E (energy) numerically of all possible shapes with

respect to motion of each facet normal to itself. They showed that although the

20

transition evolves from symmetric pyramids to symmetric domes, however, the

transition passes through a high asymmetric transition states pathway. The reason

for nucleation of steeper facet in one side instead of two side of the pyramid is due

to lower activation energy for this kind of transition instead of symmetric transition.

They also found that the kinetic of the transition depends on the size of the island

and it becomes faster with increasing the size [58].

1.6.4. Effect of substrate on the evolution of quantum dots

The substrate orientation is responsible for the appearance of specific bonding facets

on the islands that determine their shape, which in turn defines the electronic

structure.

On the other hand, the substrate structure and orientation influences the kinetic of

adsorption, migration, and incorporation of atoms in heteroepitaxy as well as can

directly influence the mechanism and velocity of strain relief, producing a change in

the island sizes, shape and distributions [59- 61].

The structure and orientation of the substrate certainly play a serious role in the

heteroepitaxial growth of highly mismatched systems. By changing the substrate, we

also expect a change in the symmetry of QDs if the growth is epitaxial. It has been

shown experimentally that on the high-symmetric GaAs (001) surface, the shape of

InAs QDs exhibit the same two mirror-symmetry planes as the bulk (001) substrate

[51,62].

21

Substrate affects the growth kinetics and morphological evolution of islands. As an

example, GaN island nucleation on AlN substrate shows a small delay compared to

nucleation on GaN substrate. Both form uniformly with hexagonal pyramidal shape.

However, in the case of highly lattice mismatched sapphire substrate, the nucleation

starts with a long delay also larger and fewer nuclei with prismatic shape form. This

effect of substrate can be understood as the effect of strain caused lattice mismatch

[63].

Studies done recently to investigate the effect of substrate strain on adatom binding

and Ehrlich-Schowoebel (ES) barriers for FCC metals show that the compressive

strain slows down the atomic exchange diffusion while increases the ES barrier.

However, tensile strain decreases the ES barrier and promotes the layer-by-layer

growth. Here, the ES barrier refers to the case when an atom that approaches the step

on the top side meets a barrier that can be even greater than the diffusion barrier on

the terrace EDiffusion.

This additional barrier ΔEES, known as Ehrlich–Schwoebel barrier, comes from the

case when crossing a step edge, an atom passes through the area with a low number

of nearest neighbors. This ES barrier makes the layer-by-layer growth difficult while

promoting the 3D island formation [64].

The investigation about the effect of substrate temperature during GaAs overgrowth

by photoluminescence spectroscopy (PL) shows that PL spectra of the QD over

grown at lower temperature (460 C) is significantly narrower and red shift compared

to QD over grown at 500 C.

22

The PL line width obtained from a QD ensemble is generally attributed to the

inhomogeneous broadening produced by the size and composition fluctuations of the

QD. The larger QDs with narrower size distribution provide longer wavelength

emission with narrower line width [40, 65, 66]. In addition, the low growth

temperature is expected to preserve the shape of buried QDs [40, 67].

Studies performed by Schmidt et al. [68] and Wang et al. [69] show that during

growth of QDs on Nano-wire surface below certain diameters, unlike in a traditional

planar growth substrate, misfit strain can propagate along the length of the wire and

cause self-organize growth in a periodic pattern to minimize the strain energy. Such

misfit strain guided epitaxial islands not only present a new type of periodic

nanostructures but also serve as periodic Nano-stresses providing a unique

opportunity toward strain-engineered materials with novel mechano-electronic

properties for applications such as thermo electronic and optoelectronic devices

[70,71].

1.6.5. Dislocation formation during the evolution of quantum dots

Dislocation formation is a phenomena reported in literature and observed as

thickness increases during deposition, which is due to strain relaxation [72, 73].

These defects are undesirable in electrical and optical applications as they act as

scattering sires, recombination centers and leakage paths. Considerable efforts have

been done to minimize the strain relaxation in heterostructure growth and to

minimize the probability of dislocation and other faults formation due to this reason

[19, 74, 75].

23

Katsuno et al. [76] established a table with different regions that present the proper

growth mode from 1ML to 3ML considering the dislocations as strain relaxation

sites. They believe that continuum elasticity may not give accurate results for small

length scales so they established a new 2D elastic lattice model to investigate the

lowest energy configuration and determine the equilibrium shapes by comparing

energies of various surface configurations with misfit parameter (f) and binding

energy. The result is given in Figure 1.8.

Figure 1.8: Different regions for the proper growth mode according to misfit

parameter (f) and binding energy

Here, SKD, FMD and VWD are various growth cases, where the dislocations are

observed. The authors claim that for the binding energy of the ordinary

semiconductor systems, small misfits lead to the island formation, since introduction

of a dislocation is energetically unfavorable. However, large misfits lead to

generation of dislocations.

In the region between the SK growth mode and FM growth mode with dislocation, a

special growth mode appears. When the layer thickness exceeds a critical thickness

24

needed for introduction of dislocations, islands forms on a dislocated layer. If the

layer thickness increases, it leads to change the equilibrium configuration from three

dimensional island growths on a wetting to a two dimensional flat layer growth,

which could be due to thickness dependent dislocation formation energy. The energy

gain by introducing the dislocation increases with increasing the thickness.

Therefore, at high coverage, layer-by-layer growth with dislocation is more

favorable than island formation.

1.6.6. Diffusion and stabilization of quantum dots

Wetting potential with the effect of limiting the valley-to-peak mass transport, which

leads to limiting the island height growth, plays an important role on morphology

stabilization of the surface as well as island coarsening and island size saturation.

In the coarsening process, as long as the wetting layer is not depleted, the

rearrangement of mass between different islands takes place, which cannot be

inhibited by the wetting effect. Therefore, in order to explain the island stabilization,

there must consider another factor that is taking role. For an undulated surface (i.e.,

in the region of islands surface), the strain energy is concentrated at surface valleys

but released at peaks; thus the diffusion would be the result of surface elastic energy

density gradient from valleys to peaks, which leads to island growth. On the other

hand, the stabilization effect of surface energy is in competition with this

morphological destabilization process, where domination of each of them could

determine the dynamics of island growth. Although the wetting potential still has the

function of sustaining the wetting layer between islands and restricting the diffusion

process, however, with increasing the dominance of the destabilization process, the

effect of wetting potential becomes weaker. Consequently, the wetting effect cannot

prevent the mass transport between islands, which is related to island migration or

coarsening effect. This process can be controlled by the higher-order elastic energy

25

terms describing island interaction and correlation. Thus, at late-times, the islands

height increases rapidly, which leads to appearance of islands with large aspect ratio

between height and width.

Strained surface islands form as a consequence of the evolution of surface

undulations, which occur due to the film morphological instability. Note that the rate

of formation and growth of these islands varies at different surface locations, which

is due to the nonlinear effects of elastic interaction. At the next stage, island

coarsening occurs, means the growth of some islands is at the expense of other

shrinking ones and hence the decrease of island density on the film surface. As time

passes, such coarsening processes become much slower, and the system would

approaches stable morphology with steady arrays of strained quantum dots. As

expected, this late-time state of film surface morphology is significantly dependent

on the value of film-substrate misfit strain, which results an increase of island

density and a decrease of island spacing for larger misfits [77].

1.7. Theoretical and modeling efforts

Many theoretical works have been performed hitherto for the aim of prediction of

QD size, number and density. However, the accuracy of these calculations was

limited due to lack of knowledge on the QD shape and formation processes [78-80].

Phase field simulation is one of the most popular simulation methods used for

surface behavior modeling. The significant advantage of this method is that the

explicit tracking of surface is unnecessary; furthermore, the long-range elastic

interactions of various structural defects are automatically taken into consideration

during evolution.

26

Although several phase field models have been developed to investigate the surface

evolution of stress induced islands, their stress fields could be solved using the

mechanical equilibrium equations considering the approximation of small

perturbation of the shear modulus [81, 82] or a proposed simple relaxation method

[83, 84].

Most of the numerical works done in order to simulate the morphology evolution of

surfaces and interfaces are based on nonlinear formulation. Both two and three-

dimensional Galerkin finite element methods are used for studying the surface

diffusion and displacement field for the modeling of the surface evolution behavior

[85-88].

The growth or formation of epitaxially strained solid films is represented in the

scope of problems so-called capillary and stress-driven shape and microstructural

evolution in solids. The first serious attempt to approach this issue was performed by

Asaro and Tiller [89]. By incorporating the elastic strain energy density (ESED)

with the so-called chemical potential, they developed an equilibrium thermostatic

model in order to express the morphology behavior of surfaces and interfaces during

stress corrosion cracking. The Asaro/Tiller (AT) theory is partly accountable in

isochoric systems, where the ESED is incorporated correctly with a positive sign in

the Helmholtz free energy density.

Grinfeld [90] applied the Gibbs-Duhem stability theory of thermodynamic

equilibrium for the isothermal and isochoric systems, characterized by the second

variance in the total Helmholtz free energy denoted as for the infinitesimal

perturbations on the surface morphology associated with the surface acoustic waves

generated in the non-hydrostatically stressed linear elastic solids in contact with their

27

melts. There are two common points in these theories; they both concern isochoric

systems, implicitly or explicitly and they both propose the existence of a critical

wave length, which above it, the flat free surface becomes unstable under the

sinusoidal perturbations if certain conditions prevail [35].

Spencer [91] and Tekalign and Spencer [92, 93] present very successful analyses in

order to explain the morphological instability of growing epitaxially strained

dislocation-free solid films. These analyses were based on the surface diffusion

driven by the capillary forces and misfit strains by elaborating various type of

wetting potentials associated with the thickness dependent surface specific free

energy considering the ESED parameter. They applied periodic boundary conditions

to all numerical and analytical studies reported in the literature according to the

work done by Kukta and Freund [94], on the equilibrium morphologies, in order to

obtain steady state solutions of the nonlinear free moving boundary value problem.

Their study is relied mostly on the instabilities initiated by white noise or small

amplitude initial perturbations, where the film thickness is smaller than the

wavelength of surface variations.

The present study is accomplished based on the theoretical development and

modeling procedure performed by project group (Oren ve Ogurtani) [95-98], which

is specified with prominent studies in investigating the evolution of surfaces and

interfaces. They demonstrated that without even imposing any external

perturbations, otherwise smooth surface of droplets, this isochoric composite system

(film/substrate) simultaneously evolves towards the stationary state in the absence of

the growth term by creating the SK islands or other proper morphologies depending

on the imposed external and internal parameters. Unfortunately, the application of

the rigid boundary conditions of any type to the computation domain restricts the

natural motions of the triple junction (TJ) that lines between the isolated islands and

28

the substrate, and thus, the spontaneous evolution kinetics of the ensemble towards

the possible stationary state morphologies are partially hindered. In our work, this

restriction on the TJ motion is eliminated by employing an irreversible

thermodynamic connection obtained by using the internal entropy production (IEP)

hypothesis [96].

Accordingly, a specific formulation is developed for temporal velocity of the TJ

singularity considering the wetting parameter, which depends only on the specific

surface Helmholtz free energies of the thin film, substrate and the interface between

them.

However, in the stationary regime, SK island describes strictly monotonic decrease

in the profile while approaching to the perfectly flat and highly extended platform

with a relatively sharp turn. This plateau corresponds to the wetting layer, which has

almost uniform thickness and has direct contact between individually formed SK

islands. This layer is very close to the prescribed thickness of the boundary layer,

namely fraction of a nanometer.

Thus, according to required unknown information in the scope of formation of

strained heteroepitaxial thin films, the purpose of this survey is to investigate the

film/substrate interface (in) stabilities and evolution of quantum dots through

computer simulation by utilizing the theoretical works of Ogurtani and Oren.

Consequently, in this project, it is aimed to precisely control the size, shape, position

and distribution of nano-crystalline quantum dots formed during molecular-beam

epitaxy (MBE) technique. The results are expected to be a guide for fabrication of

self-organized quantum dots that are suitable for technological devices.

29

CHAPTER 2

PHYSICAL AND MATHEMATICAL MODEL

A continuum theory based on the irreversible thermodynamics of surfaces and

interfaces developed by Ogurtani [96] and Ogurtani and Oren [98] is used to

simulate the evolution of epitaxial films, especially, the formation of the Stranski-

Krastanow islands through computer modeling. In this theory, the thickness

dependent surface Helmholtz free energy (for the isochoric systems) is taken into

account.

In our model, a single random droplet is taken to generate our initial system. The

droplet is presented with a symmetrical halve-wave length Cosine-function. The

height (i.e., amplitude) and width of the droplet is symbolized by and 2L,

respectively. Since simulations are performed in 2D space, no profile variation and

displacement in the film and the substrate takes place along the z axis (perpendicular

to the plane of the schematics in Figure 2.1.

30

Figure 2.1: The side view of the droplet

To simplify the numerical computations, the following assumptions are made: The

interface between the film and the substrate is assumed to be coherent. The top

surface is exposed to vapor environment with a vapor pressure that can be neglected.

Additionally, it is assumed that the film/substrate interface is smooth and the

substrate is rigid. These assumptions guarantee that the initial displacement along

the interface associated with the misfit strain stays constant during the evolution

process (i.e., Dirichlet boundary condition).

The droplet aspect ratio, is defined as the value of the width over the value of the

height ⁄ , is the temporal wetting contact angle between the film and

the substrate and varies in the range of ; while the zero degree

corresponds to perfect wetting, 180
o
 resembles to no wetting conditions.

In the normalized and scaled length space, the initial height of the peak is chosen as

the normalization parameter and thus ̅ . Therefore, in the normalized system

the initial shape of the droplet can be fully-defined by the aspect ratio only.

Similarly, to complete the predetermination of the initial morphology of the droplet,

another additional parameter is needed to determine the size of the droplet, which

corresponds to the intensity of the elastic strain energy density denoted by

 ⁄ . Here, is the height of the droplet in real space and

 is the characteristic

31

length for the isochoric systems that depends only on the material properties of the

film and the substrate including the misfit strain. If one takes

 as a length scaling

parameter (), then, according to our definition

, we will come up with

the result of . In real space, may be introduced as for a given value

of . Thus, can be calculated simply for a known value of and

 in real space

as follows:
 ⁄

 ⁄ so . Therefore, this dimensionless

parameter exclusively specifies the size while keeping the shape invariant (i.e.,

zooming); As a result of our normalization procedure, in the absence of the growth

term, the aspect ratio (i.e., shape) and the (i.e., size) are two basic values to

describe the morphology of the final stationary states.

According to this micro-discrete formulation based on the irreversible

thermodynamics of surfaces and interfaces, established by Ogurtani and Oren, the

evolution kinetics of the surfaces or interfaces can be defined in terms of normal

displacement velocities by solving the following free moving boundary value

problem in 2D space. ̅ describes the surface normal displacement velocities for

ordinary points and longitudinal velocity ̅ is related to the natural motion of the

triple junction points, which are the points that droplet, substrate and the vapor phase

encountered. During the evaluation, only normalized and scaled parameters and

variables are used, which are indicated by bar signs (the normalization procedure

will be represented later in this study).

 ̅

 ̅
* ̅

 ̅
(̅

 ̅ ̅ ̅ ̅ ̅ ̅ ̅)+

 ̅ (̅
 ̅ ̅ ̅ ̅ ̅ ̅)

 ̅ ̅ ̅ { }

32

Here, ̅ corresponds to the normalized anisotropic surface diffusion coefficient

with respect to the minimum surface diffusivity. ̅
 represents the thermal part of

the Helmholtz free energy of transformation for a flat interface assuming that the

isothermal processes are taking place in an isochoric system. In real space, it is

defined as ̂
 ̂

 ̂
 . The positive value corresponds to condensation of

the vapor phase or the growth of the droplet. ̂
 and ̂

 are the volumetric

Helmholtz free energy densities for the realistic vapor and bulk droplet phases,

respectively. The normalized hoop stress is denoted by ̅ ⁄ , where is

the exerted stress (misfit or uniaxial). The hoop stress in plane strain condition is

described by ̂ ̂ where is a 2D-stress tensor evaluated at the region just

adjacent to the surface layer and ̂ is the unit surface tangent vector.

Dimensionless parameters and are respectively, the intensities of the Elastic

Strain Energy Density (ESED) and the Elastic Dipole Tensor Interaction (EDTI)

contributions on the stress-driven surface drift diffusion. ̅ is the curvilinear

coordinate along the surface (arc length) in 2D space normalized with respect to

(arbitrary length scale). As told previously, may be selected as the peak height of

the droplet or the ratio of the surface Helmholtz free energy of the film in the bulk to

the elastic strain energy density [93] such as
 . Here,

 denotes ESED, which is associated with the nominal biaxial misfit stress

considering the third dimension.

The film thickness is defined as the integrated film thickness, and it may be

given by ̅ for the scaled halve wave length Cosine-shape flat

droplets, where ̅ .

33

 ̅ ̅ is the height dependent surface free energy of the droplet and for an

isochoric system, it depends on the local distance between the surface layer and

the substrate:

 ̅

 (

*

 ⁄

 , and are the surface energy of the surface and droplet in the bulk form

respectively and is the characteristic length scale that determines the size of the

transition region. The wetting potential ̅ ̅ is defined as

 ̅ ̅

√ ̅

 ̅

 ̅ ̅

 ̅ is the normalized local curvature and is taken to be positive for a convex solid

surface (rounded). Similarly, the positive direction of the surface displacement is

assumed to be towards the vapor. The second group of terms in the equation (2.1) is

related to the growth or phase transformation (condensation or evaporation)

kinetics, which is not considered in this study but detailed information is given in

Reference [95].

By applying the following assumptions, the equation (2.1) is converted to the form

below. We assume that there is no anisotropy in diffusion and surface stiffness

regime in the system. Additionally, there is also no transformation or growth

phenomena considered during the evolution process.

34

 ̅

 ̅
[

 ̅
(̅ ̅ ̅ ̅ ̅ ̅ ̅)]

We can write this equation as

 ̅

 ̅
[

 ̅
]

where

 ̅ ̅ ̅ ̅ ̅ ̅ ̅

If we consider

 ̅ ̅ ̅ ̅

Then

 ̅ ̅ ̅ ̅ ̅

35

Again if we write

 ̅ ̅ ̅)

we obtain the following equation

 ̅ ̅

The wetting parameter is defined as [⁄], where is the

Helmholtz surface free energy of the substrate, is the interfacial free energy

between the droplet and the substrate, and is the height dependent surface free

energy of the droplet. is the temporal dihedral or wetting contact angle and varies

in the range of ,. ̅ is the normalized atomic volume in the

particle representation by assuming tentatively that the scaling length is in the range

of 10 atomic spacing (more details can be found in the papers [96, 98]).

 ̅ is the ratio of the triple junction points mobility denoted by ̂ to the

surface mobility, ̂ . Similarly, ̅ is the normalized growth mobility, which in

general may depend on the temperature and the surface stress [97].

In the present computer simulations similar to work done by Spencer [91] and his

coworkers [92], we assumed that for the wetting potential, which is

acceptable for the coherent boundaries such as the interface between epitaxially

grown film and the substrate.

36

We also scaled the time and space variables { } in the following manner: the

normalized time scale is introduced by
 ̂

 ⁄ where, ̂
 is an atomic

mobility correspondent for the mass flow at the surface layer.

 ̅ ̅ ̅ ̅ ̅

 ̂

 ̅

⁄⁄⁄

The misfit strain at the film/substrate interface is introduced as a Dirichlet

boundary condition by specifying the displacement vector in 2D space as

 ̂ (i.e., in 3D space ̂ ̂), and taking the droplet center at the

film/substrate interface as the origin of the coordinate system to avoid shifting. The

applied stress is chosen as the biaxial stress , where, and

 are Young modulus and Poisson ratio of the droplet shape film respectively.

is the misfit strain at the film/ substrate interface. This subject is very suitable for

the Indirect Boundary Element Method (IBEM) solution of the plain strain isotropic

elasticity problems [99]. If we take as the initial scaling data, only

the actual value of the Poisson‟s ratio of the film is required for the computation of

the normalized stress distribution. The values of { } are embedded in the

definition of .

In Chapter 3, the numerical methods applied to solve the partial differential

equations, developed here, will be described in detail.

37

CHAPTER 3

NUMERICAL PROCEDURES

3.1. Preparation of the initial system

The initial system is defined as a two-dimensional droplet shape film, which is

introduced by using finite numbers of nodes on the outer surface with predetermined

segment length. The positions of the nodes are determined using Cartesian

coordinate according to the reference point. Although the model is two dimensional,

to take the advantage of vector algebra, it is considered three-dimensional with zero

value in z-axis. The vector is represented as ⃗〈 〉 |

|

Using vectors for determination of node positions simplifies the calculation of the

segment length , and centroid vectors, ⃗ defined as:

 | ⃗〈 〉| Where ⃗〈 〉 ⃗〈 〉 ⃗〈 〉 (3.1)

and

38

 ⃗

 ⃗〈 〉 ⃗〈 〉

3.2. Calculation of the turning angles at the nodes

The turning angles at the nodes are the angles between two vectors that connect

three successive nodes as shown in the Figure 3.1. It is calculated using the

definition of two vectors.

Figure 3.1: The turning angle at the node

{

 *

 ⃗〈 〉 ⃗〈 〉

| ⃗〈 〉|| ⃗〈 〉|
+ ⃗〈 〉 ⃗〈 〉

 *
 ⃗〈 〉 ⃗〈 〉

| ⃗〈 〉|| ⃗〈 〉|
+

}

3.3. Calculation of node curvatures

The curvature at each node may be assessed using discrete geometric relationship

based on the fundamental description of radius of curvature and normal vector. The

procedure is based on the given geometric relationships;

39

Three distinct points in a plane determine a unique circle, where the curvature of a

circle with radius

 (radius of curvature) is calculated as

. Figure 3.2 indicates

such a circle that crosses through three consecutive nodes . To evaluate

the local curvature at node , the following identities can be written down using the

known values of the segment lengths, and the segment turning angles .

Figure 3.2: The unique circle that crosses through three successive nodes, O is the

center of the circle, | |, | |, and

Where is the angle ̂ and it is very easy to see that this angle also equals B ̂ .

Then, the curvature at the node i is given by:

40

The tangent of the angle can be formulated as follows:

| |

| |

| |

| | | |

| |

| | | |

| |

| | | |

Using the equation (3.5), the local curvature is calculated as:

 ((

))

3.4. Calculation of the local line normal vectors

To evaluate the normal line vector at each node, we need the value of angle ̂ ;

from Figure 3.2, one can simply write

 ⁄ .

Multiplying the ⃗〈 〉 (vector that connects the successive nodes) by anticlockwise

rotation matrix will give us the vector along the local line normal vector as shown

below:

 ⃗⃗〈 〉 |

| ⃗〈 〉

41

3.5. Calculation of the hoop stresses by using the Indirect Boundary Element

Method (IBEM)

The quantum dots dynamics is driven by the capillary-induced surface drift-

diffusion. In this study, we applied the simplest implementation of the IBEM to

evaluate the hoop stress at the free surface of the droplet, as well as along the

interface between droplet and the substrate. In fact, it is also possible to generate the

complete stress distribution field in the interior region of the sample as a byproduct.

Here, Neumann (i.e., traction free boundary condition) and Dirichlet boundary

conditions (i.e., prescribed displacements) are utilized, respectively, along the free

surface of the droplet and at the interface between droplet and the substrate.

Therefore, we have assumed that the substrate is rigid, and Dirichlet boundary

conditions are applied all along the interface. Hence, the displacements are

calculated from the misfit strain , by .

In solid mechanics, there are some known relationships introduced between stress

and strain in the material, where stress is defined as force per unit area inside a solid.

The traction vectors acting on three plains, which are parallel to three axes, are

defined as follows:

 ⃗ [

 ̈

 ̈

] ⃗ *

 ̈

 ̈

+ ⃗ [
 ̈

 ̈

]

Infinitesimal strains are calculated in the x, y, and z directions (,), by

using stress components as follows:

42

The stress-strain behavior in elastic material can be formulated by Hooke‟s law. For

an isotropic material, calculations can be done in three dimensions.

43

 ̈

 ̈

 ̈

Here, E is the elasticity modulus, is the Poisson‟s ratio and G is the shear modulus.

The relationship between them is given as

The governing differential equations are acquired from the condition of equilibrium.

For plane strain conditions, the following can be written:

 ̈

 ̈

Here, and are body force components in x and y directions. Substitution of the

equations, results in the following equations

 (

) (

 *(

)

(

 *(

) (

)

44

The fundamental solution for two-dimensional plane strain problem, is calculated for

point unit loads in x and y directions of magnitude 1, which are extended to infinity

in both directions. The solution was first performed by Lord Kelvin.

Figure 3.3: The symbolization for 2D Kelvin solution

The solutions for the displacements in x and y directions due to a unit load in x

direction are calculated as follows:

 [

]

 ⁄

To use the IBEM, the solutions for the boundary stresses (tractions) are also

required. These tractions act on the surface with an outward normal direction of n.

By taking the derivative of the displacement solution, the fundamental solutions for

strains are calculated. Accordingly, by applying the Hooke‟s law, the fundamental

solutions for tractions also can be evaluated.

45

According to IBEM, the tractions at point Q due to a unit load at P in x direction

arecalculated as:

 ⃗⃗⃗

 ⃗⃗⃗

* []+

 ⁄

Where is illustrated in Figure 3.3. If we assume that there is no body force acting

in the domain, then we can write:

 ∫[⃗]

 ∫[⃗⃗⃗ ⃗⃗⃗] (3.31)

Using matrix algebra, we obtain

 ∫ ⃗ ∫ ⃗⃗⃗

46

Consequently, the hoop stresses are calculated according to equation (3.32), since

through this two integral equations system, the tractions ⃗ are directly related to the

displacements in the boundary . This achievement removes the need to compute

fictitious forces.

3.6. Explicit Euler’s Method

Using Explicit Euler‟s method helps to perform the time integration of equation

(2.1) in order to predict the surface evolution behavior at any run.

The initial time step is selected in the range of (0.0005, 0.05). However, the time

step does readjust at any run step according to the maximum surface velocity and

minimum segment length such that at each run step, the displacement is kept

constant, which leads to recalculation of the time step for the specific maximum

node velocity. This so-called adapted time step auto-control mechanism combined

with the self-recovery effect associated with the capillary term, guarantees the long

time numerical stability and the accuracy of the explicit algorithm even after

performing steps.

3.7. Adaptive Remeshing

In order to keep the experiment time and accuracy in an acceptable level, adaptive

remeshing is required during the simulation. To express in more detail, in the case of

exceeding the segment lengths from a critical value, the system loses the accuracy.

On the other hand, increasing the number of nodes increases the computation time.

47

These two statements indicate that in order to obtain optimum results, the size of

segment lengths should be kept in the range between the prescribed minimum and

maximum segment lengths . If the distance between two successive

nodes becomes longer than , the mid-point is converted into a node as

illustrated in Figure 3.5.a.

Similarly, if the distance between two successive nodes becomes shorter than ,

in order to control the nodes number, as shown in Figure 3.5.b the mid-point node

replaces the two successive nodes. To increase the accuracy, the same procedure

applies to the next segment length.

The further node is removed from the mesh and the new segment is formed after

such a node removal process, the new segment lengths have to be controlled whether

it is longer than or not.

Figure 3.4: The profile evolution according to local line normal (̂), is the

segment length between two nodes and ́ is the segment length after the

displacement.

48

Figure 3.5: Remeshing for the cases of (a) the segment length is bigger than the

maximum allowable segment length (b) the segment length is smaller than the

minimum allowable segment length

Finally, the node velocities are calculated by solving the governing equations (2.1)

and (2.2). Thus, the new configuration of the system can be estimated as a result of

small displacement in time due to velocity of the nodes. All the numerical procedure

steps are repeated for this new configuration to evolve the system further in time.

Figure 3.6 depicts the numerical procedure of this study.

49

Figure 3.6: The numerical procedure of the program

50

51

CHAPTER 4

RESULTS AND DISCUSSION

In this chapter, the effects of strain relaxation on morphological evolution of QDs

and the spontaneous evolution of an isotropic isolated thin solid droplet on a rigid

substrate under various stress fields will be demonstrated. Those results, presented

within this chapter, have been obtained by using the program explained in Chapter 3,

in detail.

4.1. Determination of safe run parameters

Before starting to run various simulation experiments, it is important to consider

some precautions in order to save computation time and to avoid performing

redundant experiments. There are two independent parameters in the numerical

procedure that can affect the computation speed and accuracy of the expected

results. These two parameters are the initial node number (and the initial time

step (that describe in what detail the system is generated and the evolution

speed, respectively.

Increasing the node numbers and decreasing the time step, lead to enhance the

accuracy of the evolutionary path and thus the final stable configuration and vice

versa. However, this accuracy may need prolonged calculation times to be able to

reach the final stable state, if present. This situation generates a demand for some

52

precautions to predetermine these parameters to obtain the optimum time and

accuracy for the numerical calculations. As we will see later this safe parameter sets

also depend on the evolution route of the quantum dots in other words the path of

the process.

Table 4.1. outlines the preliminary experiments that are carried out for various

values. The other system parameters are chosen to cover various evolution paths.

Here, by increasing the values, we continuously monitored the QD morphology.

In those experiments, we observed that there is a critical value for the initial time

step, below which the final system morphology converges. To provide a clear view,

we summarized the results in Table 4.1., where the signs indicate the converged

results (i.e., acceptable results) and signs indicate the results deviates from the

identical experiments conducted with smaller time steps (i.e., not acceptable).

Table 4.1. Effect of the initial time step on the convergence of experiments

Experiment \ 0.0005 0.001 0.005 0.01 0.025 0.05

 ̅ 𝛌=0.017

 ̅ 𝛌=0.990

 ̅ 𝛌=0.017

 ̅ 𝛌=0.500

 ̅ 𝛌=0.707

 ̅ 𝛌=0.500

 ̅ 𝛌=0.017

 ̅ 𝛌=0.017

53

In Table 4.1, the results of a set of experiments carried out with different time steps

are shown. The final configurations obtained with time steps and

 , are almost identical but when we increase the time step up to , the

final configuration deviates from the previous equilibrium configurations.

The larger time steps make the QD morphology lose its symmetry and/or experience

a different route during the evolution, which happens due to large value of that

causes numerical errors.

Figure 4.1: The effect of different on the accuracy of computation process

for , , . In these simulations, the input

parameters are ̅

According to the information given in Table 4.1, the approximate best for each

individual experiment may be selected. However, to determine the acceptable for

future experiments, in which we cannot foresee the evolution path prior to carrying

the simulation experiment, it is safer to choose the smallest that fits for all the

experiments, which is thus selected to be . However, the computation

time for the experiments should also be considered in order to choose the best result.

For the smaller values of (for which the relatively simple evolution routes

observed), the real computation time difference between various s may be

negligible but at higher stress values, as the system becomes more and more

54

complex (more island number) the time saving parameter may become very

important factor for the accuracy of the results. For example, for , in the

case of , the time needed for the system to achieve the final

configuration is approximately 3 days. However, if we decrease the to ,

the computation time increases to 4 days. According to this time difference, as we

have the similar result, it is more convenient to select the lower CPU time

consuming choice, which is .

Similarly, to determine the optimum node number (n), some preliminary

experiments are performed. The results are summarized in Table 4.2. As the node

number increases thus the segment length decreases, the accuracy of the numerical

procedure increases as a cost of increased computation time.

Table 4.2. Effect of the initial node number on the convergence of experiments

Experiment \ Node number 40 60 80 100

 ̅ 𝛌 = 0.017

 ̅ 𝛌 = 0.990

 ̅ 𝛌 = 0.500

 ̅ 𝛌 = 0.017

In Figure 4.2, the results of a set of experiments carried out with different initial

node numbers are shown. The final configurations obtained with node numbers of

80 and 100 are almost identical but when we decrease the node number to 60, the

final configuration observed, turned out to be different from others.

55

Figure 4.2: The effect of different node number on the accuracy of computation

process for , , . In these simulations, the input parameters

are ̅

Based on these results, the approximate best node number is chosen as 80. In this

specific case, the approximate calculation time for no-stress experiments are less

than 10 minutes and for the stress applied experiments, it varies between 1-7 days.

The calculation period depends on the shape and the node number that change

according to remeshing at each run step. Here, for , in the case of node

number = 80, the time needed for the system to achieve the final configuration is

approximately 1 day and in the case of node number = 100, the time needed for the

system to achieve the final configuration is approximately 3 days. As seen from

these numbers it is crucial to work with the optimal node numbers.

4.2. The effect of triple junction mobility on the morphological evolution

As discussed earlier, the morphological evolution of islands is governed by the

velocity equations, where the velocity is calculated for each node using equations

2.1 and 2.2. Here, ̅ is associated with the mobility of the triple junction points

at the edges. It is expected that by increasing the TJ mobility, the process

acceleration takes place. The results of preliminary experiments verify this

hypothesis.

56

Figure 4.3: The effect of different ̅ on the accuracy and normalized evolution

time of computation process (a) the normalized evolution time for ̅ = 1, ̅ =

2 are 10.856876 and 8.822997 respectively, where the input parameters are
 , (b) the normalized evolution time for

 ̅ = 1, ̅ = 2 are 29.792955 and 12.819254 respectively, where the input

parameters are .

Figure 4.3 indicates that the TJ mobility affects the kinetics of the evolution process

rather than the final stable configuration. We carried out two sets of experiments that

in both the TJ mobility values are changed. In the first set, where the stress level is

chosen as we observed both TJ mobility values converged into almost same

morphologies. In the second set we increased the stress level to and again

observed a similar scenario. In both experiments, by increasing the mobility, the

normalized time necessary to reach the stable state decreases 10% and 55 %

respectively. However, this does not guarantee the reduction in the computation

time. For example, some experiments show that the computation time increases in

the case of larger mobility values. Thus, in order to choose a single mobility value to

simplify the comparison between various experiments, it is decided to choose

 ̅ , which may be a help to save the time or perhaps the accuracy of future

experiments.

57

4.3. Droplet simulation

In this thesis, we focused on the QD formation via nucleation by producing shallow

droplets, rather than surface roughening route in which the island forms through

morphological instability. Thus, the aim of these simulations is to investigate the

effect of various materials properties on the morphological change of droplets placed

on rigid substrates. These parameters include the stress, film aspect ratio, wetting

parameter, interface thickness and contact angles that also depend on the surface

energy difference between the droplet and the substrate. In the following

subsections, we will investigate those parameters in two cases: First we will assume

that the stress level is negligible, which will allow us to demonstrate the effect of

other material properties. Then, we took into account the misfit stresses formed

between the droplet and the rigid substrate systematically.

In the following experiments, the final configurations associated with particular

input parameters are demonstrated in a specific form. The final configuration is also

represented by a Gaussian curve (i.e., second order) given by (̅ ̅)

 ̅ ⁄ , where ̅ and ̅ are halve-width and peak height in

normalized space respectively.

Here, Figure 4.4.a shows the initial (dashed line) and the final configuration of the

droplet (solid red line). The stability of the final image is determined according to

stability of some parameters such as fractional height, base extension and wetting

contact angle, which are shown in Figure 4.4.c and 4.4.d that become constant after

150 runs. Figure 4.4.b shows the hoop stress distribution in the morphology. Here,

the final profile value of ̅ and ̅ are calculated to be 1.619 and 5.362,

respectively.

58

Figure 4.4: (a) Spontaneous formation of SK islands, (b) Normalized hoop stress of

nodes in final configuration, (c) time evolution of wetting contact angle, (d) time

evolution of fractional height and base length change. In these simulations, the input

parameters are ̅

4.3.1. QD evolution without stress

In this section, the results are obtained from a set of experiments performed under

the condition that intensity of Elastic Strain Energy Density (ESED) value is taken

to be zero, which means that there is negligible misfit stress between the film and

the substrate. The real material parameters are inserted as input data, which here, is

assumed to be the Ge thin film epitaxial growth on the Si substrate. Namely:

 (misfit strain), .

These numbers imply a characteristic length of , which is used to

calculate the height and the base length of droplets corresponding to the strain

energy intensity parameter for a given aspect ratio. If we take ̅ and ̅

as the initial scaling data, then only the actual value of the Poisson‟s ratio of the film

is required for the computation of the normalized stress distribution. The results of

59

this program simulates the evolution process of the flat thin film layer under the

effect of various parameters, where the evolution may terminates in the stable SK

(Stranski-Krastanov) islands or may result in disappearing of the hills and formation

of FM (Frank-Van der Merwe) layer.

To observe the effect of wetting contact angle on the final island morphology, the

evolution of droplets were investigated by applying various values. Here, the

following relationship exists between the wetting contact angle and the wetting

parameter . Figure 4.5 represents the final morphology of non-stressed

droplets considering various wetting contact angles.

It is obvious that as the contact angle increases (the slope becomes steeper), the

height of the droplet increases due to constant volume of the droplet since there is no

material deposition into or removal from the droplet system. The small angle leads

to formation of shallower islands. There are two peculiar limits for TJ contact angle,

which makes the system unstable, namely, 0 degree and 90 degree (Figure 4.5.b and

4.5.c).

60

Figure 4.5: The effect of wetting contact angle on the final morphology. In these

simulations, the input parameters are ̅

In the case of 90-degree angle, the system tries to evolve to a very perfect

semicircle. At the initial stages, the system shows the expecting evolution behavior.

However, at a critical point some factors cause interruption in the program and the

system could not reach the final stability. This interruption can be due to some

computation errors or maybe some unknown disregarded physical factors. In zero

degree case, the island tries to become stretched on the substrate until forming an

61

extremely thin layer, which can continue into infinity (perfect wetting condition). In

this case, the upper surface nodes become very close to the bottom interfacial part

nodes of the system. This situation may cause the developed program to fail in

prolonged run times. The last configurations before the breakdown of the

experiments with limit values for wetting contact angles are also given in Figure

4.5.b. and 4.5.c. To avoid these problems, we consider angles very close to the

limits, which can give stable results. 8 degree and 89 degree are found

experimentally as suitable limit data that can be used without any problem during

numerical procedure.

In order to have better visualization for detection, Figure 4.6 is prepared by

enlarging a small section of Figure 4.5.a with identical scaling axes.

Figure 4.6: Zooming the Figure 4.4.a for better detection. The input parameters

are ̅ .

The evolution behavior of the contact angle of each experiment vs. normalized time

is represented in Figure 4.7. Here, if we take the wetting contact angle of the initial

shape as , all of the experiments with larger s follow more or less a similar

path. Their wetting contact angle increases until they reach their equilibrium wetting

62

angle , dictated by the material properties. For the rest, two cases (and), as the

equilibrium is smaller than the initial shape, they experience a decrement in

wetting contact angle, which leads to formation of shallower islands.

Figure 4.7: Time evolution of wetting contact angles for different values. In these

simulations, the input parameters are ̅

Figure 4.8 shows the 3D images of the three different experiments (low, medium

and high wetting contact angles), which give better visualization about island

evolution. Here, the final stages of the islands are projected onto the initial

configurations. The final height of the QD‟s for are 3.3649,

2.3121 and 0.8144 respectively. Here, we need to state that there is no change in the

volume of the islands. The only reason for the shape alteration is the variation in

wetting contact angle, since other parameters are considered to be constant.

63

Figure 4.8: 3D images of spontaneous SK islands for three different values

(a) (b) (c) , in these simulations, the input parameters

are ̅ .

Figure 4.9 demonstrates the island height change with time over the course of the

morphological evolution process. As we discussed earlier, the stability of this curve

is an effective factor in the determination of the stable (final) system configuration.

For the two exceptional cases (and), the wetting contact angle curve shows no

stability according to Figure 4.9.b, where we can see that the height of the islands

alters continuously and make it difficult to obtain a stable system.

Figure 4.9: Time evolution of the change in fractional height of the islands for

different values. In these simulations, the input parameters are ̅

 .

64

In Figure 4.9.a, the approximate points that stability begins are depicted with dashed

lines. The interesting point that is noticeable in Figure 4.9.a is that the necessary

time to reach the equilibrium contact angle is decreasing as the final and initial

contact angle differences increases. This behavior may happen due to gradient

between the initial and final configuration, where the initial system has a contact

angle value of . This difference acts as a potential that affects the kinetic of

the evolution process. However, on the other hand if the final equilibrium contact

angle is less than the initial value; we experienced the longest time, required to reach

the equilibrium QD configuration, among others.

We also investigated the effect of the aspect ratio () on the final morphology of the

droplets and the results are indicated in Figure 4.10.

Figure 4.10: The effect of aspect ratio on the morphological evolution of quantum

dots, where in these simulations, the input parameters are ̅

65

In Figure 4.10, 6 different values are used while all the other system parameters

are kept unchanged. According to our definition (̅ ⁄), by altering the , we

can change the initial shape of the droplet, since the ̅ value is invariant and it is

equal to 1, by decreasing the , we actually decrease the width of the droplet, which

finally forms a smaller quantum dot. As a result, if the misfit stress is negligible, the

 parameter only affects the size or the scale of the stable island formation.

4.3.2. QD evolution with stress

In this section, we applied various levels of stress to the system, and similar to the

previous section, we have investigated the evolution behavior of the droplets under

the effect of and . Finally, we obtained an approximate 2-D phase diagram

using different values of and , which shows the stability regions of the various

final morphology traits.

The morphological evolution stability of the system is very sensitive to the wetting

contact angle, aspect ratio, applied stress and other material properties. Although, we

know that the surface energy and surface diffusivity are function of crystallographic

orientation (i.e. anisotropic), within the frame of this work, it is assumed that all the

system parameters are isotropic.

As we have shown in the previous subsection, if the misfit stress level is negligible,

the final islands morphologies are dictated mostly by the equilibrium dihedral angle

and we always have single islands without any fragmentation over the course of the

simulations. However, when we start including the effect of the misfit stresses into

our simulations, the overall picture is changed: fragmentation and formation of

multiple islands, sometimes separated with a wetting layer resembling the formation

of Stranski-Krastanow thin film growth mode, are appeared. From now on, we will

66

discuss those materials properties, which will result in various final stable

morphologies.

Figure 4.11 indicates the effect of the wetting contact angle on the final morphology

of the QDs, where in this experiment the value of stress is chosen as . In the

case of , similar to the no stress case we obtained a single isolated QD.

However, when we compare this single QD case with the same one with no stress

case (Figure 4.5.a), the effect of stress is obvious i.e. a sharper QD with almost twice

peak height and half peak base length. Therefore, we state that with a proper control

over the stress levels, one can control the aspect ratio of the stable QD formed and

thus the energy spectrum, which in fact is technologically one of the most important

outcomes.

However, this is not the case for all equilibrium wetting angle values. When we start

increasing the wetting angle to , the final morphology stabilizes in doublet

by fragmenting into two with similar size and shapes. By decreasing the wetting

contact angle to , the island numbers increases to four (i.e. quadruplet). In all

cases, the overall volume is constant; thus as the islands fragment into more and

more daughter islands, the islands size decrease (Figure 4.11.a).

We also carried out simulation experiments for cases with higher wetting tendency

(i.e. lower wetting angle). In Figure 4.11.b we present such two cases: for ,

the initial droplet evolves into a quadruplet with similar islands but compared to the

case in o89 , the edges are not very steep and bent outwards indicating a wetting

layer formation. By decreasing the wetting contact angle further, we observed that

the edges bent more. Finally, at a critical value, the wetting layer starts to appear.

67

The wetting layer formation is very obvious in , where we will have

quadruplet similar islands with a very thin layer, which is stretched from both edges.

Figure 4.11: The effect of wetting contact angle on the final morphology. In these

simulations, the input parameters are ̅

Figure 4.12 depicts the effect of on the morphological evolution of quantum dots.

Considering that we assumed all the material properties are isotropic, the

morphological change of the islands due to low stresses is limited. For low values

(), the result is always a single quantum dot but with larger aspect ratio

compared to the initial shape, which is due to the height increment of the islands

(Figure 4.12.a). However, for larger values, the evolution behavior of the islands

entirely changes and the single island divides into a dual island shape. As shown in

Figure 4.12.a and 4.12.b, these two islands are distinct but identical. However, they

are connected with a very thin wetting layer the length of which is stress dependent.

By applying , the distance between the islands of this dual shape becomes

larger. By increasing the value to , we observed the formation of quintuplet

distinct islands (Figure 4.12.b).

68

Figure 4.12: The effects of stress on the final morphology; in these simulations, the

input parameters are ̅

To understand the connection between the island height and the applied misfit stress

level, we collected the data from various experiments and plotted them in Figure

4.13. The separation point of the island into distinct islands can be recognized with a

sudden decline in the height of the island.

As a general tendency, as the stress level increases, the final height of the islands

also increases but there are various threshold values above which we observe island

fragmentation into two and more islands. Note that the threshold stress values for

fragmentation are also a function of wetting angle thus the respective surface

energies of the film and the substrate.

69

Figure 4.13: The effect of stress on the island height of final morphology; in these

simulations, the input parameters are ̅

Each experiment has its own path of evolution dictated by the initial parameters

associated with both material characteristics and the environmental effects. Any

shape transition path occurs in such a way to minimize the overall system energy. In

some cases, we observe that two experiments with different initial parameters may

come up with similar final stable configurations, however their path for shape

transition are entirely different. Investigation about the transition paths will give us

very interesting and beneficial results in controlling the QDs morphology. However,

it is not within the scope of this project.

In Figure 4.14, we demonstrated the evolution process of four different experiments,

for which the final configurations are also compared in Figure 4.12. Here, we took

snapshots of island morphology at various times. The time used here is a normalized

unit-less number as discussed earlier and given by Eq. (2.12).

70

In Figure 4.14.c, we demonstrated the path of the wetting layer formation. Initially

we observed the formation of ripples on the surface of the droplet and then those

ripples evolve into three separate islands the one in the middle is smaller compared

the other two. Finally, bigger islands consume the middle one while separating from

each other but are connected with a thin wetting layer. The effect of on the

normalized time required for stability is also noticeable.

 From figure 4.14 it can be seen that by increasing the value of the stability time

decreases. The value acts as a potential that affects the kinetic of the evolution

process. However, as mentioned before, this normalized time is different from the

computation time needed for the program to find the stability point. Accordingly, in

most of the cases by increasing the value, the computation time increases.

71

Figure 4.14: The effects of stress on the morphological evolution of quantum dots

for (a) , (b) , (c) , (d) ; in these simulations, the input

parameters are ̅

The effect of the aspect ratio of the initial droplet is another subject we concentrated

within the scope of this thesis. To this end, we have carried out various experiments

with different initial droplet sizes while keeping the applied stress as . The

morphological evolution recorded for these experiments is summarized in Figure

4.15. By increasing the aspect ratio, island would have larger base length, which

makes relatively shallower profiles. In longer base length islands, the island surface

has the capacity to form more initial sinusoidal wave shapes as a result of the stress

relaxation. Accordingly, the islands with larger aspect ratio have the chance to form

more in number distinct islands.

72

Figure 4.15: The effect of aspect ratio on the morphological evolution of quantum

dots, where in these simulations, the input parameters are ̅

According to Figure 4.15, for small aspect ratios such as (, one single island

is the stable final configuration. The evolution process of this specific case is given

in Figure 4.16.a. In this case, there are not much ripples formed on the droplet

surface at early times. Thus, those ripples coalesce into one single island. On the

other hand, we observed that by increasing the aspect ratio, the number of final

stable islands increases.

At the initial evolution stages of island with large aspect ratio (), the surface

instability generates several surface ripples where any of them may have the

potential to form final quantum dots. This is the case we observed in Figure 4.16.b.

73

Figure 4.16: The effect of aspect ratio on the morphological evolution of quantum

dots for (a) , (b) where in these simulations, the input parameters are

 ̅

As we have demonstrated above, both the island stability and the configuration of

the stable islands is a function of various material properties especially the surface

energies of the island and the substrate and the misfit stress levels in the system. To

be able to provide a more clear view, we prepared a phase diagram (Figure 4.17)

depicting the number of stable islands with respect to both the wetting parameter,

and the stress parameter, . In Figure 4.17, the different regions for island stability,

which are determined according to island numbers of performed experiments in

various values of and are shown. In this figure, we colored those different

stability regions and also draw approximate boundaries between those regions for

clarity.

When we carefully inspect Figure 4.17, it can be seen that for small values of ,

independent of the values, we have single islands; this is in accord with our results

for no or negligible stress levels presented in Section 4.3.1. However, as the stress

level, , increases, we start seeing island fragmentation and more islands as the

stable final configurations.

74

The threshold value of the stress level necessary for fragmentation is a function of

wetting parameter as clearly observable in Figure 4.17. For example for values

closer to zero this threshold value is around = 0.6, however for , the

threshold value increases up to = 1.2.

Figure 4.17: The phase diagram of various regions for different and values

There is also another order vertically for each value. For example, in

(limited area in Figure 4.17 with dashed line), this order is obvious. The profiles of

this set of experiments were also given previously in Figure 4.11, where for small

value of , quadruplet island formation was observed. By increasing the value, the

number of islands increases. However, at a critical value, the island number starts to

decrease and finally near , the final morphology forms a quadruplet profile.

The obvious difference between the small and large value quadruplet profiles is

the wetting layer formation as shown in Figure 4.11.

75

The wetting layer formation is very important and it is the main difference between

isolated island formations (Volmer-Weber) versus connected island formations

(Stranski-Krastanow). When we more accurately inspect the phase diagram

developed in this work, it seems to have three distinct regions: lower part (<0.3);

middle part (0.3<<0.9) and top part (0.9<) that are separated with dashed lines as

shown in Figure 4.18. Within each one of these regions, the number of islands at

equilibrium increases as increases.

Besides the number of stable islands formed, the morphology of the islands is also

important. To better understand the morphological differences within those regions

and evolution process of each region; two different set of experiments have been

chosen.

Figure 4.18: The phase diagram of various regions for different and values

76

The first set is associated with the single island number (low stress region), where

the selected experiments are indicated in Figure 4.18 with green squares. The

evolution processes of these selected experiments, A, B and C, respectively for

lower, middle and upper parts are shown in Figure 4.19.

Figure 4.19: The evolution processes of single island region in phase diagram. In

these simulations, the input parameters are (a) (b)

 , (c) .

As seen from Figure 4.19, all three cases A, B and C evolves into a single island but

with different routes. First of all, case A from lower part directly evolves into a

single isolated droplet (Figure 4.19.a). At high values of , B from upper part

(Figure 4.19.b), we come up with a single island but with a well formed wetting

layer. An interesting circumstance happens at middle region of that is for

77

experiment C (Figure 4.19.c): In this case, the droplet is separated into three distinct

islands at the early times, and all are connected with wetting layers. The island in the

middle is larger than the other two. The islands on each side are trying to move away

further towards the sides. The energy balance between the surface free energies and

interface energy are favorable for this phenomenon. However, it should be noticed

that the size of moving islands decreases as the islands move further. The larger

island in the middle gets larger by gaining the lost material from the side islands. At

later times, at a critical time point, when the sizes of the satellite islands become

smaller than a critical value, they no longer move away from the larger middle

island but towards it. Later, the larger island dominates and completely consumes

the material content of the smaller ones to form a single island with a well-defined

equilibrium wetting angle.

The second set of experiments is chosen among the stable quadruplet islands from

moderate to high stress regions. Similar to the previous set, A, B and C experiments,

respectively for lower, middle and upper parts are shown in Figure 4.20.

78

Figure 4.20: The phase diagram of various regions for different and values

The similar phenomena happens as seen from Figure 4.21, where all three cases A,

B and C evolves into a quadruple island but with different routes.

79

Figure 4.21: The evolution processes of quadruplet island region in phase diagram.

In these simulations, the input parameters are (a)
(b) , (c)

As can be seen from Figure 4.21, all three cases A, B and C evolve into a quadruplet

islands but with different routes. First of all, case A from lower part directly evolves

into a quadruplet islands without the wetting layer formation in both sides (Figure

4.21.a). At high values of , B from upper part (Figure 4.21.b), we come up with a

very similar formation but with a well formed wetting layer in both sides. An

interesting circumstance happens at middle region of that is for experiment C

(Figure 4.21.c): In this case, the side islands move away to a certain point and again

drift back to the middle and form a quadruplet island form with the equilibrium

wetting angle.

80

Figure 4.22: The phase diagram for different and values that separates the

region with wetting layer and region without wetting layer

As mentioned previously, the formation of wetting layer at the edges of the quantum

dots has a very significant importance for our studies, as they make quantum dots

suitable for many applications. Accordingly, in figure 4.22 we separated the phase

diagram with dashed lines into two regions to demonstrate the region that wetting

layer formation is observed and the region without wetting layer. Here, green balls

are associated to the experiments that wetting layer is formed and the rest are

associated to the experiments without formation of wetting layers. It is obvious that

at high values of independent of values we can gain wetting layers.

81

CHAPTER 5

CONCLUSIONS

Semi-conductor quantum dots show a significant potential in wide range of

applications in technology. One of the most important aspects of quantum dots is the

relationship between their size/morphology and electronic and photonic properties.

Considering this relationship, understanding the mechanism of the formation of

these nano particles and thus controlling the size, morphology and even organization

is a very important technological and scientific problem.

Our study is based on the new model introduced by Ogurtani and Oren (2001;

2005), using continuum level dynamical simulations presented for the spontaneous

evolution of an isolated thin solid droplet on a rigid substrate via computer

simulation method.

Here, in droplet simulation experiments, the effects of film aspect ratio, equilibrium

angle between the droplet and the substrate (surface energy difference dependent)

and stress on the morphological evolution of QDs and occurrence of wetting layer

are investigated in detail.

82

The morphological evolution kinetic of an isochoric surface in the direction of the

surface normal, is governed by normalized and scaled velocity vector (equation 2.1)

and the velocity associated with the edges between substrate and droplet (triple

junction) governed by (Equation 2.2) are called Vord and Vedge , respectively.

The simulation is established for a 2-D system. At the initial stage, the film surface

is defined by a symmetrical halve-wave length Cosine-function using finite nodes

with specific segment length (Figure 2.1). The evolution of the surface occurs by

displacement of the nodes and changing the node coordinates in 2D. The governing

equations for displacement (equation 2.1 and equation 2.2) are solved using

numerical procedure. The differential equations are solved using Euler finite

difference method.

To avoid the appearance of very short or very long segment lengths, the segment

lengths should be controlled persistently and be able to be revised if required

(remeshing). The normal vector and curvature of each node should be calculated

after each run step.

Finally, the velocity of each node is calculated using the governing equations. By

applying the velocities, the small displacement of the nodes makes the final

configuration of the system.

By applying all the calculations on the final configuration, the morphological

evolution of the system continues through time. C++ program is used to prepare the

numerical procedure. The C++ code is given in the Appendix. The numerical

procedure is also summarized schematically in Figure 3.6.

83

According to our definition (̅ ⁄), by altering the , we can change the initial

shape of the droplet, since the ̅ value is invariant and it is equal to one, so by

decreasing the , we actually decrease the width of the droplet, which finally forms a

smaller quantum dot. At the initial evolution stages of island with large aspect ratio,

the surface instability makes surface hills, which happen due to internal stress. Any

of these hills may have the potential to form a quantum dot. However, for islands

with small aspect ratio there are not much hills at the initial configuration.

To observe the effect of wetting parameter on the equilibrium morphology, the

behavior of the system under the effect of different wetting parameters is

investigated. As we mentioned before, there is a relationship between equilibrium

contact angle and wetting parameter as follows: . During the

surface evolution, the wetting angle changes through time where at the final stages it

reaches a specific value and stays constant. If the wetting contact angle declines to

an aspect ratio dependent critical value, the system is observed to form a wetting

layer. This value is also a function of the internal stress of the system.

The effect of stress on the system with isotropic properties, show that applying small

values of stress cause a limited change on the configuration behavior. For low stress

values, the final morphology shows a slight increment in the aspect ratio of the

system. After reaching the stress to a critical level, the morphological behavior of

the system changes entirely and the initial single droplet is divided in to two or more

separated islands, which are connected with a thin wetting layer in between. This

final configuration is called Stranski-Krastanow islands in the literature.

To discover the internal stress and wetting parameter effects on the morphology,

various experiments are performed by changing both parameters separately. This

84

group of experiments is given in Figure 4.17 as a phase diagram. This diagram is

beneficial in determination of the stability regions of the islands that show in which

region the droplet is going to separate into smaller islands and the island number in

the case of separation. This phase diagram denotes the complexity of the system. In

this complex system, the curves that divide the regions are noticeable. There is also

another categorizing manner where divides the phase diagram into three parts of low

and high wetting contact angles and the middle region in between that has the

intermediate value of wetting contact angle value. In each region, by increasing the

stress, the number of islands increases. All three regions show separately but similar

behavior. This diagram can provide beneficial information about essential conditions

required for production of specific QD. After applying essential tests to verify the

validity of the results, the following results is gained from the set of experiments

done during this project.

The internal stress of the material and the wetting potential, have the effect of

dividing the material into islands and forming the wetting layer respectively. In

order for the wetting layer to be formed, there is a critical value for wetting potential

where beyond, the wetting layer appears. In the domain of low wetting potential, the

wetting layer only appears between islands. However, for high values of the wetting

potential, the wetting layers form at the outer edges of the islands as well as islands

interval.

Consequently, according to the results of various experiments, the surface evolution

of the thin films depends on the internal stress values, the equilibrium wetting

contact angle between the film/substrate, surface stiffness and initial conditions of

the system. This information is essential for providing the scientific fundamental

knowledge for novel fabrication techniques of quantum dots.

85

5.1. Future studies

The performed experiments in the scope of this project revealed essential

information about the evolution behavior of thin films under stress and the formation

of the quantum dots. It is also important here to mention the missing points of this

project, which could be survey issues in the future.

This project indicates the effect of the internal stress on the morphological control of

the quantum dots. In future, we can add the electromigration effects (the effect of the

electrical field on the surface diffusion of the material) to our 2D program. The

information in this issue can be helpful for island formation using electrical field as

this technique can be easily applied.

All of the calculations in the scope of this project are based on the assumption that

all the material properties are isotropic. However, in the real world the material

properties related the surface diffusivity and also the surface energy are anisotropic,

which could be considered in further studies.

Investigating the transition paths from initial droplet shape to the final configuration

through time may give us beneficial knowledge about effective factors in

minimizing the energy required for transition and also information about controlling

the morphology of QDs.

Another valuable future study proposition is to develop a three dimensional model,

which can indicate more precise information about the real world. Moreover, in 3D

equilibrium systems, the information about shape, size, internal stress distribution

etc. can be used to calculate the QD optical and electrical properties. In this issue,

86

after obtaining the final morphology, the calculations about energy levels, wave

functions and optical dipole matrix elements can be performed to simulate the

electrical transport properties and photo excited carriers of the Quantum dot arrays.

87

REFERENCES

[1] V. I. Klimov, et al. (2000). "Optical Gain and Stimulated Emission in

Nanocrystal Quantum Dots." Science 290(5490): 314-317.

[2] P. Alivisatos (2004). "The use of nanocrystals in biological detection." Nature

Biotechnology 22(1): 47-52.

[3] X. Gao, L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons and S. Nie (2005).

"In vivo molecular and cellular imaging with quantum dots." Current Opinion

in Biotechnology 16(1): 63-72.

[4] H. Ahmed (2002). "Novel nanodevices for electronics: fabrication and

characteristics." Microelectronic Engineering 61–62(0): 3-4.

[5] O. Stier, et al. (1999). "Electronic and optical properties of strained quantum

dots modeled by 8-band k⋅p theory." Physical Review B 59(8): 5688-5701.

[6] M. S. Skolnick and D. J. Mowbray (2004). "Self-assembled semiconductor

quantum dots: Fundamental Physics and Device Applications." Annual

Review of Materials Research 34(1): 181-218.

[7] M. Kroutvar (2004). "Optically programmable electron spin memory using

semiconductor quantum dots." Nature 432(7013): 81-84

[8] D. Wang, T. Xie and Y. Li (2009). "Nanocrystals: Solution-based synthesis

and applications as nanocatalysts." Nano Research 2(1): 30-46.

[9] D. V. Talapin, J. S. Lee, M. V. Kovalenko and E. V. Shevchenko (2009).

"Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic

Applications." Chemical Reviews 110(1): 389-458.

88

[10] P. Reiss, M. Protière and L. Li (2009). "Core/Shell Semiconductor

Nanocrystals." Small 5(2): 154-168.

[11] W. W. Haixiong Ge, Zhiwei Li, Jizong Zhang, Yiming Shen, Changsheng

Yuan and Yanfeng Chen (2013). "Nanopatterning highly curved surfaces

using hybrid nanoimprint lithography." SPIE Newsroom: 1-3

[12] V. Nandwana, C. Subramani, Y.-C. Yeh, B. Yang, S. Dickert, M. D. Barnes,

M. T. Tuominen and V. M. Rotello (2011). "Direct patterning of quantum dot

nanostructuresviaelectron beam lithography." Journal of Materials Chemistry

21(42): 16859-16862

[13] M. Helfrich, P. Schroth, D. Grigoriev, S. Lazarev, R. Felici, T. Slobodskyy,

T. Baumbach and D. M. Schaadt (2012). "Growth and characterization of site-

selective quantum dots." physica status solidi (a) 209(12): 2387-2401.

[14] K. Shou-Yi, C. Wei-Chun, L. Fang-l, L. Woei-Tyng and H. Chien-Nan

(2011). Effect of growth parameters on surface morphology evolution of

MOMBE-grown InN. Nanoelectronics Conference (INEC), 2011 IEEE 4th

International.1-2

[15] P.-Y. Hsiao, Z.-H. Tsai, J.-H. Huang and G.-P. Yu (2009). "Strong

asymmetric effect of lattice mismatch on epilayer structure in thin-film

deposition." Physical Review B 79(15): 155414.

[16] J. Gao, W. Jie, Y. Yuan, T. Wang, G. Zha and J. Tong (2011). "Dependence

of film texture on substrate and growth conditions for CdTe films deposited by

close-spaced sublimation." Journal of Vacuum Science & Technology A:

Vacuum, Surfaces, and Films 29(5): 051507.

[17] M. H. Grabow and G. H. Gilmer (1988). "Thin film growth modes, wetting

and cluster nucleation." Surface Science 194(3): 333-346.

[18] D. Leonard, et al. (1994). "Critical layer thickness for self-assembled InAs

islands on GaAs." Physical Review B 50(16): 11687-11692.

89

[19] D. J. Eaglesham and M. Cerullo (1990). "Dislocation-free Stranski-Krastanow

growth of Ge on Si(100)." Physical Review Letters 64(16): 1943-1946.

[20] A. Madhukar, K. C. Rajkumar, L. Chen, S. Guha, K. Kaviani and R. Kapre

(1990). "Realization of low defect density, ultrathick, strained InGaAs/GaAs

multiple quantum well structures via growth on patterned GaAs (100)

substrates." Applied Physics Letters 57(19): 2007-2009.

[21] D. Leonard, M. Krishnamurthy, C. M. Reaves, S. P. Denbaars and P. M.

Petroff (1993). "Direct formation of quantum‐sized dots from uniform

coherent islands of InGaAs on GaAs surfaces." Applied Physics Letters

63(23): 3203-3205.

[22] Y. Mo, D. E. Savage, B. S. Swartzentruber and M. G. Lagally (1990).

"Kinetic pathway in Stranski-Krastanov growth of Ge on Si(001)." Phys Rev

Lett 65(8): 1020-1023.

[23] Y. Zhang, et al. (2002). "Evolution of Ge/Si(100) island morphology at high

temperature." Applied Physics Letters 80(19): 3623-3625.

[24] D. E. Jesson, K. M. Chen, S. J. Pennycook, T. Thundat and R. J. Warmack

(1996). "Morphological evolution of strained films by cooperative nucleation."

Physical Review Letters 77(7): 1330-1333.

[25] Y. Obayashi and K. Shintani (1998). "Directional dependence of surface

morphological stability of heteroepitaxial layers." Journal of Applied Physics

84(6): 3141-3146.

[26] Y. W. Zhang and A. F. Bower (2001). "Three-dimensional analysis of shape

transitions in strained-heteroepitaxial islands." Applied Physics Letters 78(18):

2706-2708

[27] A. A. Golovin, M. S. Levine, T. V. Savina and S. H. Davis (2004). "Faceting

instability in the presence of wetting interactions: A mechanism for the

formation of quantum dots." Physical Review B 70(23): 235342.

90

[28] T. Wiebach, M. Schmidbauer, M. Hanke, H. Raidt, R. Köhler and H. Wawra

(2000). "Strain and composition in SiGe nanoscale islands studied by x-ray

scattering." Physical Review B 61(8): 5571-5578.

[29] O. G. Schmidt, S. Kiravittaya, Y. Nakamura, H. Heidemeyer, R. Songmuang,

C. Müller, N. Y. Jin-Phillipp, K. Eberl, H. Wawra, S. Christiansen, H.

Gräbeldinger and H. Schweizer (2002). "Self-assembled semiconductor

nanostructures: climbing up the ladder of order." Surface Science 514(1–3):

10-18.

[30] V. A. Shchukin and D. Bimberg (1999). "Spontaneous ordering of

nanostructures on crystal surfaces." Reviews of Modern Physics 71(4): 1125-

1171.

[31] J. Stangl, V. Holý and G. Bauer (2004). "Structural properties of self-

organized semiconductor nanostructures." Reviews of Modern Physics 76(3):

725-783.

[32] S. Kiravittaya, R. Songmuang, A. Rastelli, H. Heidemeyer and O. G. Schmidt

(2006). "Multi-scale ordering of self-assembled InAs/GaAs(001) quantum

dots." Nanoscale Research Letters 1(1): 1-10.

[33] H. Lee, J. A. Johnson, J. S. Speck and P. M. Petroff (2000). "Controlled

ordering and positioning of InAs self-assembled quantum dots." Journal of

Vacuum Science & Technology B 18(4): 2193-2196.

[34] A. Pascale, I. Berbezier, A. Ronda and P. C. Kelires (2008). "Self-assembly

and ordering mechanisms of Ge islands on prepatterned Si(001)." Physical

Review B 77(7): 075311.

[35] D. J. Srolovitz (1989). "On the stability of surfaces of stressed solids." Acta

Metallurgica 37(2): 621-625.

[36] H. Gao and W. D. Nix (1999). "Surface roughening of heteroepitaxial thin

films." Annual Review of Materials Science 29(1): 173-209.

91

[37] H. T. Johnson and L. B. Freund (1997). "Mechanics of coherent and

dislocated island morphologies in strained epitaxial material systems." Journal

of Applied Physics 81(9): 6081-6090.

[38] A. Oral and R. Ellialtioglu (1995). "Initial stages of SiGe epitaxy on Si(001)

studied by scanning tunneling microscopy." Surface Science 323(3): 295-303.

[39] H. Heidemeyer, S. Kiravittaya, C. Müller, N. Y. Jin-Phillipp and O. G.

Schmidt (2002). "Closely stacked InAs/GaAs quantum dots grown at low

growth rate." Applied Physics Letters 80(9): 1544-1546.

[40] R. Songmuang, S. Kiravittaya and O. G. Schmidt (2003). "Formation of

lateral quantum dot molecules around self-assembled nanoholes." Applied

Physics Letters 82(17): 2892-2894.

[41] Q. Sun, C. D. Yerino, B. Leung, J. Han and M. E. Coltrin (2011).

"Understanding and controlling heteroepitaxy with the kinetic Wulff plot: A

case study with GaN." Journal of Applied Physics 110(5): 053517.

[42] K. Hiramatsu, K. Nishiyama, M. Onishi, H. Mizutani, M. Narukawa, A.

Motogaito, H. Miyake, Y. Iyechika and T. Maeda (2000). "Fabrication and

characterization of low defect density GaN using facet-controlled epitaxial

lateral overgrowth (FACELO)." Journal of Crystal Growth 221(1–4): 316-326.

[43] J. G. Belk, D. W. Pashley, C. F. McConville, B. A. Joyce and T. S. Jones

(1998). "Surface morphology during strain relaxation in the growth of InAs on

GaAs(110)." Surface Science 410(1): 82-98.

[44] X. L. Li (2010) "Thermodynamic analysis on the stability and evolution

mechanism of self-assembled quantum dots." Applied Surface Science

256(12): 4023-4026.

[45] N. V. Medhekar, V. Hegadekatte and V. B. Shenoy (2008). "Composition

Maps in Self-Assembled Alloy Quantum Dots." Physical Review Letters

100(10): 106104.

http://adsabs.harvard.edu/cgi-bin/author_form?author=Li,+X&fullauthor=Li,%20X.%20L.&charset=UTF-8&db_key=PHY

92

[46] X. B. Niu, et al. (2011). "Nonequilibrium Composition Profiles of Alloy

Quantum Dots and their Correlation with the Growth Mode." Physical Review

Letters 107(7): 076101.

[47] V. B. Shenoy (2011). "Evolution of morphology and composition in three-

dimensional fully faceted strained alloy crystals." Journal of the Mechanics

and Physics of Solids 59(5): 1121-1130.

[48] M. V. Shaleev, A. V. Novikov, D. V. Yurasov, J. M. Hartmann, O. A.

Kuznetsov, D. N. Lobanov and Z. F. Krasilnik (2013). "Transition from the

two- to three-dimensional growth of Ge films upon deposition onto relaxed

SiGe/Si(001) buffer layers." Semiconductors 47(3): 427-432.

[49] I. Mukhametzhanov, Z. Wei, R. Heitz and A. Madhukar (1999). "Punctuated

island growth: An approach to examination and control of quantum dot

density, size, and shape evolution." Applied Physics Letters 75(1): 85-87.

[50] G. Medeiros-Ribeiro, A. M. Bratkovski, T. I. Kamins, D. A. A. Ohlberg and

R. S. Williams (1998). "Shape transition of germanium nanocrystals on a

silicon (001) surface from pyramids to domes." Science 279(5349): 353-355.

[51] J. Márquez, L. Geelhaar and K. Jacobi (2001). "Atomically resolved structure

of InAs quantum dots." Applied Physics Letters 78(16): 2309-2311

[52] G. Costantini, A. Rastelli, C. Manzano, P. Acosta-Diaz, G. Katsaros, R.

Songmuang, O. G. Schmidt, H. v. Känel and K. Kern (2005). "Pyramids and

domes in the InAs/GaAs(0 0 1) and Ge/Si(0 0 1) systems." Journal of Crystal

Growth 278(1–4): 38-45.

[53] Y. Suzuki, T. Kaizu and K. Yamaguchi (2004). "Controlled stacking growth

of uniform InAs quantum dots by molecular beam epitaxy." Physica E: Low-

dimensional Systems and Nanostructures 21(2–4): 555-559.

[54] V. M. Ustinov, E. R. Weber, S. Ruvimov, Z. Liliental-Weber, A. E. Zhukov,

A. Y. Egorov, A. R. Kovsh, A. F. Tsatsul‟nikov and P. S. Kop‟ev (1998).

93

"Effect of matrix on InAs self-organized quantum dots on InP substrate."

Applied Physics Letters 72(3): 362-364.

[55] A. Rastelli, H. Von Känel, B. J. Spencer and J. Tersoff (2003). "Prepyramid-

to-pyramid transition of SiGe islands on Si(001)." Physical Review B 68(11):

115301.

[56] F. Montalenti, P. Raiteri, D. B. Migas, H. von Känel, A. Rastelli, C. Manzano,

G. Costantini, U. Denker, O. G. Schmidt, K. Kern and L. Miglio (2004).

"Atomic-Scale Pathway of the Pyramid-to-Dome Transition during Ge Growth

on Si(001)." Physical Review Letters 93(21): 216102.

[57] J.-M. Baribeau, X. Wu, N. L. Rowell and D. J. Lockwood (2006). "Ge dots

and nanostructures grown epitaxially on Si." Journal of Physics: Condensed

Matter 18(8): R139.

[58] B. J. Spencer and J. Tersoff (2013). "Symmetry breaking in shape transitions

of epitaxial quantum dots." Physical Review B 87(16): 161301.

[59] L. Geelhaar, Y. Temko, J. Márquez, P. Kratzer and K. Jacobi (2002). "Surface

structure of GaAs(2 5 11)." Physical Review B 65(15): 155308.

[60] J. Márquez, L. Geelhaar and K. Jacobi (2000). "Atomic structure of the

GaAs(1¯1¯3¯)B(8×1) surface reconstruction." Physical Review B 62(15):

9969-9972.

[61] Y. Temko, et al. (2003). “InAs quantum dots grown on the GaAs (1¯1¯3¯) B

surfaces: a comperative STM study." Physical Review B 68(16): 165310.

[62] H. Lee, R. Lowe-Webb, W. Yang and P. C. Sercel (1998). "Determination of

the shape of self-organized InAs/GaAs quantum dots by reflection high energy

electron diffraction." Applied Physics Letters 72(7): 812-814.

[63] F. Shahedipour-Sandvik, J. Grandusky, A. Alizadeh, C. Keimel, S. P. Ganti,

S. T. Taylor, S. F. LeBoeuf and P. Sharma (2005). "Strain dependent facet

94

stabilization in selective-area heteroepitaxial growth of GaN nanostructures."

Applied Physics Letters 87(23): 233108.

[64] S.C. Li, et al. (2006). "Determination of the Ehrlich-Schwoebel barrier in

epitaxial growth of thin films." Physical Review B 74(19): 195428.

[65] S. Kiravittaya, Y. Nakamura and O. G. Schmidt (2002). "Photoluminescence

linewidth narrowing of InAs/GaAs self-assembled quantum dots." Physica E:

Low-dimensional Systems and Nanostructures 13(2–4): 224-228.

[66] Y. Nakata, K. Mukai, M. Sugawara, K. Ohtsubo, H. Ishikawa and N.

Yokoyama (2000). "Molecular beam epitaxial growth of InAs self-assembled

quantum dots with light-emission at 1.3 μm." Journal of Crystal Growth

208(1–4): 93-99.

[67] A. Rastelli, E. Muller and H. von Kanel (2002). "Shape preservation of

Ge/Si(001) islands during Si capping." Applied Physics Letters 80(8): 1438-

1440.

[68] V. Schmidt, P. C. McIntyre and U. Gösele (2008). "Morphological instability

of misfit-strained core-shell nanowires." Physical Review B 77(23): 235302.

[69] H. Wang, et al. (2008). "Morphology of Epitaxial Core−Shell Nanowires."

Nano Letters 8(12): 4305-4311.

[70] S. Kwon, et al. (2012). "Misfit-Guided Self-Organization of Anticorrelated

Ge Quantum Dot Arrays on Si Nanowires." Nano Letters 12(9): 4757-4762.

[71] J. L. Taraci, et al. (2005). "Strain mapping in nanowires." Nanotechnology

16(10): 2365.

[72] Hsu P. S. Taraci, E. C. Young, A. E. Romanov, K. Fujito, S. P. DenBaars, S.

Nakamura and J. S. Speck (2011). "Misfit dislocation formation via pre-

existing threading dislocation glide in (112¯2) semipolar heteroepitaxy."

Applied Physics Letters 99(8): 081912.

95

[73] A. Bourret, et al. (2001). "Strain relaxation in (0001) AlN/GaN

heterostructures." Physical Review B 63(24): 245307.

[74] D. Zubia and S. D. Hersee (1999). "Nanoheteroepitaxy: The Application of

nanostructuring and substrate compliance to the heteroepitaxy of mismatched

semiconductor materials." Journal of Applied Physics 85(9): 6492-6496.

[75] I. A. Goldthorpe, A. F. Marshall and P. C. McIntyre (2008). "Synthesis and

Strain Relaxation of Ge-Core/Si-Shell Nanowire Arrays." Nano Letters 8(11):

4081-4086.

[76] H. Katsuno, M. Uwaha and Y. Saito (2008). "Heteroepitaxial growth modes

with dislocations in a two-dimensional elastic lattice model." Surface Science

602(22): 3461-3466.

[77] C. G. Gamage and Z.-F. Huang (2013). "Nonlinear dynamics of island

coarsening and stabilization during strained film heteroepitaxy." Physical

Review E 87(2): 022408.

[78] C. Ratsch and A. Zangwill (1993). "Equilibrium theory of the Stranski-

Krastanov epitaxial morphology." Surface Science 293(1–2): 123-131.

[79] C. Priester and M. Lannoo (1995). "Origin of Self-Assembled Quantum Dots

in Highly Mismatched Heteroepitaxy." Physical Review Letters 75(1): 93-96.

[80] L. G. Wang, et al. (2000). "Size, shape, and stability of InAs quantum dots on

the GaAs(001) substrate." Physical Review B 62(3): 1897-1904.

[81] K. Kassner, C. Misbah, J. Müller, J. Kappey and P. Kohlert (2001). "Phase-

field modeling of stress-induced instabilities." Physical Review E 63(3):

036117.

[82] J. Müller and M. Grant (1999). "Model of Surface Instabilities Induced by

Stress." Physical Review Letters 82(8): 1736-1739.

96

[83] J. J. Eggleston and P. W. Voorhees (2002). "Ordered growth of nanocrystals

via a morphological instability." Applied Physics Letters 80(2): 306-308.

[84] S. M. Wise, J. S. Lowengrub, J. S. Kim and W. C. Johnson (2004). "Efficient

phase-field simulation of quantum dot formation in a strained heteroepitaxial

film." Superlattices and Microstructures 36(1–3): 293-304.

[85] F. Long, S. P. A. Gill and A. C. F. Cocks (2001). "Effect of surface-energy

anisotropy on the kinetics of quantum dot formation." Physical Review B

64(12): 121307.

[86] P. Liu, Y. W. Zhang and C. Lu (2003). "Formation of self-assembled

heteroepitaxial islands in elastically anisotropic films." Physical Review B

67(16): 165414.

[87] C. h. Chiu (2004). "Stable and uniform arrays of self-assembled

nanocrystalline islands." Physical Review B 69(16): 165413.

[88] V. V. Kuryliuk and O. A. Korotchenkov (2013). "Features of the stress-strain

state of Si/SiO2/Ge heterostructures with germanium nanoislands of a limited

density." Semiconductors 47(8): 1031-1036.

[89] R. J. Asaro and W. A. Tiller (1972). "Interface morphology development

during stress corrosion cracking: Part I. Via surface diffusion." Metallurgical

Transactions 3(7): 1789-1796.

[90] M. A. Grinfel'd (1987). "Instability of the equilibrium of a nonhydrostatically

stressed body and a melt." Fluid Dynamics 22(2): 169-173.

[91] B. J. Spencer (1999). "Asymptotic derivation of the glued-wetting-layer

model and contact-angle condition for Stranski-Krastanow islands." Physical

Review B 59(3): 2011-2017.

97

[92] W. T. Tekalign and B. J. Spencer (2004). "Evolution equation for a thin

epitaxial film on a deformable substrate." Journal of Applied Physics 96(10):

5505-5512.

[93] W. T. Tekalign and B. J. Spencer (2007). "Thin-film evolution equation for a

strained solid film on a deformable substrate: Numerical steady states."

Journal of Applied Physics 102(7): 073503.

[94] R. V. Kukta and L. B. Freund (1997). "Minimum energy configuration of

epitaxial material clusters on a lattice-mismatched substrate." Journal of the

Mechanics and Physics of Solids 45(11–12): 1835-1860.

[95] T. O. Ogurtani, A. Celik and E. E. Oren (2010). "Morphological evolution in

a strained-heteroepitaxial solid droplet on a rigid substrate: Dynamical

simulations." Journal of Applied Physics 108(6): 063527.

[96] T. O. Ogurtani (2006). "Mesoscopic nonequilibrium thermodynamics of solid

surfaces and interfaces with triple junction singularities under the capillary and

electromigration forces in anisotropic three-dimensional space." The Journal

of Chemical Physics 124(14): 144706.

[97] T. O. Ogurtani (2006). "Unified theory of linear instability of anisotropic

surfaces and interfaces under capillary, electrostatic, and elastostatic forces:

The regrowth of epitaxial amorphous silicon." Physical Review B 74(15):

155422.

[98] T. O. Ogurtani and E. E. Oren (2005). "Irreversible thermodynamics of triple

junctions during the intergranular void motion under the electromigration

forces." International Journal of Solids and Structures 42(13): 3918-3952.

[99] T. Kundu (1993). "Introduction to finite and boundary element methods for

engineers (G. Beer and J. O. Watson, Wiley, New York, 1992. ISBN 0471

928135 522 pp.)." International Journal for Numerical and Analytical Methods

in Geomechanics 17(8): 600.

98

99

APPENDIX A

PROGRAM CODE

1. #include <stdlib.h>
2. #include <iostream>
3. #include <fstream>
4. #include <math.h>
5. #include <stdio.h>
6. #include <time.h>
7. #include <iomanip>
8. #include <string>
9. #include <ctime>
10. #include <cstdlib>
11.
12. using namespace std;
13.
14. ofstream out,kout;
15. ifstream in;
16.
17. struct line
18. {string name;};
19.
20. typedef double Number;
21. typedef Number arr1[1001];
22. typedef Number arr2[3][1001];
23. typedef Number arr3[1001][1001];
24. typedef Number arr4[3][3];
25. const long double pi = 3.1415926535897932384626433832795;
26. char line[256] = "";
27. FILE *fp;
28. int
29. nupdown, nd,numContData=0,lastOutNum,
30. ms,nl,type,rem,contData,
31. nrem,nrup,nrdown,nrud,ndelru,
32. Modiv,Msin,nsw,mint,nu,t=0,mm,mpow,fmn;
33.
34. Number
35. newdata,maxSeglenth,
36. ho,ro=1,sl,sln,sw,slw,Amp,
37. Cksi, ksi,
38. ym,poisson,delGb,Mb,Mg,Cepsilon,Csigma,
39. Aint,Bint,tphi,hfn,
40. gammaf,gammas,delw,lamdag,gfm,
41. epstime,Sigma,Eta,delta,

100

42. rmax,rmin,
43. lamda,lamdau,kv,omega,epsx,rtphi,
44. dmean,vmax,
45. lamG,lammu,lamlamda,cc,c1,c2,c3,c4,cc1,cc2,
46. thetaR,thetaL,
47. velL,velR,deltat,timex,delrend,delrlower,delrfirst;
48.
49. arr1
50. sup,sdown,Wpot,Wcal,
51. ulas,vect,
52. s,su,sd,sud,
53. teta,tetau,tetad,tetaw,
54. kapkap,kapkapup,kapkapdown,kapkapud,
55. xmu,ymu,mamu,
56. tn,
57. aqx,aqy,aqxy,aqz,Trq,hoop,Sighoop,
58. dif,theta,
59. omom,TauO,TauD,TauS,
60. vel,Psiu,
61. cffr,
62. mu,fieldi,fieldii,fieldt,
63. fieldin,fieldiin,fieldtn,
64. trqa,fsigma,ub,tarik,
65. strainenergy,tpot,tpotkap,
66. tpotint,tpotvo,tpotkapint,tpotkapvo,
67. velint,velvo,diffint,diffvo;
68.
69. arr2
70. delrup,delrdown,
71. rupa,rup,rdown,rud,rm, //
72. rintvo,rgbup,rgbdown, //
73. delr,delru,delrd,delrud, //
74. anti, //
75. lln,llnint,llnvo, //
76. noc,nocint,nocvo,nocintvo, //
77. rcud, //
78. trac,ru,ruprc; //
79.
80. arr3
81. tt,delu,fttbig,fuubig,sgbig,duubig; //
82.
83. arr4
84. ss,us,ttssx; //
85.
86. string sy,textName,outName;

//
87.
88. inline Number sqr(Number x);
89. inline int timer(int& m, int& e);
90. inline Number dotpro(Number& a0, Number& a1, Number& a2, Number& b0, Number

& b1, Number& b2);
91. inline Number magnitude(Number& a, Number& b, Number& c);
92. inline Number arcsin(Number& okst);
93. inline Number angle(Number& a0, Number& a1, Number& a2, Number& b0, Number&

 b1, Number& b2);
94. inline Number area(int& n, arr2& r);
95.
96. void vectorpro(Number& a0, Number& a1, Number& a2, Number& b0, Number& b1,

Number& b2);

101

97. void antirotma(Number& w);
98. void trian(int colon,arr1 tek,arr3 cift);
99. void uppart();
100. void lowpart();
101. void stacksvi(arr2& ru, int& nu, arr2& rd, int&nd);
102. void stackv(arr1& f, int& fn, arr1& s, int& sn, arr1& r, int& rn);

103. void stackv(arr2& f, int& fn, arr2& s, int& sn, arr2& r, int& rn);

104. void delr1(int& nn, arr2& r,arr2& delr,arr1& s);
105. void deldelr1(int& nn, int& looptype, arr2& r);
106. void psir(int deln, arr2 delr); // degistirildi...
107. void psipsir(int& deln, arr2& delr, arr1& s);
108. void kappa(arr1& s, arr1& teta, arr2& delr, int& n);
109. void stacksab();
110. void nocRT(arr1& s, arr2& delr, int nu, int nd);
111. void rcc(arr2& r, int& n);
112. void Sss(Number& rk0, Number& rk1, Number& rk2);
113. void uu(Number& rk0, Number& rk1, Number& rk2);
114. void ttss(Number& rk0, Number& rk1, Number& rk2, Number& nk0, Numbe

r& nk1, Number& nk2);
115. void ftin(arr1& sup, arr2& delrup);
116. void asym();
117. void boundary();
118. void pbfv();
119. void fc();
120. void dsglarge();
121. void multa();
122. void SigStress();
123. void SigNodet();
124. void durq();
125. void multb();
126. void ddif();
127. void centerpoint();
128. void remesh0();
129. void remesh1();
130. void remeshlower();
131. void calnew();
132. void calruv();
133. void generate();
134. void getparam();
135. void getcontparam();
136. void final();
137. void ksitbir();
138. void tbir();
139. void clrscr(void);
140. void recording();
141. void recordtimestep();
142. void needparam() ;
143. void continues();
144. void writeParam();
145. void remeshEnd();
146.
147. int main()
148. {
149. needparam();
150.
151. writeParam();
152. if(!contData) generate();

102

153. else continues();
154.
155. final();
156. return 0;
157. }
158.
159. void continues(){
160.
161. int nulll;
162. Number nullll;
163.
164. in.open("cont.dat");
165. in >> rup[0][0] >> rup[0][1] >> nrup >> nrdown >> t >> lastOutNum >

> timex >> dmean ;
166.
167.
168. nrud = nrup+nrdown;
169.
170. for(int i=1; i<nrup;i++){
171. in >> rup[0][i]>> rup[1][i] ;
172. }
173.
174. for(int i=0; i<nrdown;i++){
175. in >> rdown[0][i]>> rdown[1][i] ;
176. }
177.
178. in.close();
179.
180. if (t < 256) mpow =pow(2,(double)lastOutNum);
181. else if (t < 1000) mpow =300+200*(lastOutNum-9);
182. else if (t < 10000) mpow =1000+500*(lastOutNum-13);
183. else if (t < 20000) mpow =10000+1000*(lastOutNum-31);
184. else if (t < 100000) mpow =20000+5000*(lastOutNum-41);
185. else mpow =100000+10000*(lastOutNum-57);
186.
187. }
188.
189. void int2str(int i){
190. char index[10][2] = {"0","1","2","3","4","5","6","7","8","9"};
191. // mynum = (string)index[temp/1000];
192. // temp -= (temp/1000)*1000;
193. textName = (string)index[i/100];
194. i -= (i/100)*100;
195. textName +=(string)index[i/10];
196. i -= (i/10)*10;
197. textName +=(string)index[i];
198. textName += "csl.dat";
199. }
200.
201. // AUXILIARY FUNCTIONS & PROCEDURES
202.
203. inline Number sqr(Number x){
204. return x*x;
205. }
206.
207. // this function determines the record time steps
208.
209. inline int timer(int& m,int& e)
210. {

103

211. int powa = 1;
212. if (e != 0) for (int ki = 1; ki <= e; ki++) powa *= m;
213. return powa;
214. }
215.
216. //this function finds the dot product of two vectors
217.
218. inline Number dotpro(Number& a0, Number& a1, Number& a2, Number& b0

, Number& b1, Number& b2)
219. {
220. return a0*b0+a1*b1+a2*b2;
221. }
222.
223. //this function finds the magnitude of the vectors
224.
225. inline Number magnitude(Number& a, Number& b, Number& c)
226. {
227. return sqrt(a * a + b * b + c * c);
228. }
229.
230. //this function finds the arcsin(teta)
231.
232. inline Number arcsin(Number& okst)
233. {
234. Number arcs, sens =0.0000000000001;
235.
236. if (okst > 1-sens) arcs = pi/2;
237. if (okst < sens-1) arcs = -(pi/2) ;
238. if (okst < sens)
239. {
240. if (okst > -sens) arcs = 0;
241. }
242. if (okst <= 1 - sens)
243. {
244. if (okst >= sens) arcs = atan(1/sqrt(1/(sqr(okst))-1));
245. }
246. if (okst <= -sens)
247. {
248. if (okst >= sens-1) arcs = atan(1/sqrt(1/(sqr(okst))-1));
249. }
250.
251. if (okst < 0)
252. {
253. if (okst > -1) arcs = -arcs;
254. }
255. return arcs;
256. }
257.
258. // this function finds the angle between two vectors
259.
260. inline Number angle(Number& a0, Number& a1, Number& a2, Number& b0,

 Number& b1, Number& b2)
261. {
262. Number angles,dd,asr,dotp;
263. dotp = dotpro(a0,a1,a2,b0,b1,b2);
264. dd = magnitude(a0,a1,a2)*magnitude(b0,b1,b2);
265. asr = (a0*b1-a1*b0)/dd;
266. angles = arcsin(asr);
267. if (dotp<=0.0) angles = pi-angles;

104

268. // if (angles > pi) angles -= 2.0*pi;
269. // if (angles < 0.0) angles += 2.0*pi ;
270. return angles;
271. }
272.
273. // this function finds the surface void/hillock area
274.
275. inline Number area(int& n, arr2& r)
276. {
277. Number t;
278.
279. for (int ki = 0; ki <= n-2; ki++)
280. t += 0.5*(r[0][ki]*r[1][ki+1]-r[1][ki]*r[0][ki+1]);
281. t += 0.5*(r[0][n-1]*r[1][0]-r[1][n-1]*r[0][0]);
282. return t;
283. }
284.
285. // this function finds the vector product of two vectors
286.
287. void vectorpro(Number& a0, Number& a1, Number& a2, Number& b0, Numb

er& b1, Number& b2)
288. {
289. vect[0] = a1*b2-a2*b1;
290. vect[1] = -a0*b2+a2*b0;
291. vect[2] = a0*b1-a1*b0;
292. }
293.
294. // production of a anticlockwise rotation matrix
295.
296. void antirotma(Number& w)
297. {
298. anti[0][0] = cos(w);
299. anti[0][1] = -sin(w);
300. anti[0][2] = 0.0;
301. anti[1][0] = -anti[0][1];
302. anti[1][1] = anti[0][0];
303. anti[1][2] = 0.0;
304. anti[2][0] = 0.0;
305. anti[2][1] = 0.0;
306. anti[2][2] = 1.0;
307. }
308.
309. // triangulation method in the solution of simulataneous set equati

ons
310.
311. void trian(int colon, arr1 tek, arr3 cift)
312. {
313.
314. Number tot,bol, trio[colon+2];
315. //arr3 trio;
316.
317. for (int ki = 0; ki <= colon; ki++)
318. cift[ki][colon+1] = tek[ki];
319.
320. for (int ki = 0; ki <= colon; ki++)
321. {
322. bol = cift[ki][ki];
323. for (int kj = 0; kj <= colon + 1; kj++) cift[ki][kj] /= bol

;

105

324. for (int kk = ki; kk <= colon; kk++)
325. {
326. if (kk != ki)
327. {
328. for (int kj = 0; kj <= colon + 1; kj++)
329. trio[kj] = cift[ki][kj] * cift[kk][ki];
330. for (int kj = 0; kj <= colon + 1; kj++)
331. cift[kk][kj] -= trio[kj];
332. }
333. }
334. }
335.
336. ulas[colon] = cift[colon][colon+1];
337. for (int ki = 1; ki <= colon; ki++)
338. {
339. tot = 0.0;
340. for (int kj = 1; kj <= ki; kj++)
341. tot += ulas[colon - kj + 1] * cift[colon - ki][colon -

 kj + 1];
342. ulas[colon - ki] = cift[colon - ki][colon+1] - tot;
343. }
344. }
345.
346.
347. // MAIN FUNCTIONS & PROCEDURES
348.
349. // this procedure generates the upper part of the strip in clockwis

e direction
350.
351. void uppart()
352. {
353. for(int ki = 0; ki<= 2*Msin ; ki++)
354. {
355. rup[0][ki] = (ki-Msin)*sl/Msin;
356. rup[1][ki] = sw*cos(rup[0][ki]*pi/2/sl);
357. rup[2][ki] = 0;
358. }
359. nrup = 2*Msin+1;
360.
361. }
362.
363. // this procedure generates the lower part of the strip
364.
365. void lowpart()
366. {
367. if (fmn>1){
368. for (int i=0; i<=2*fmn-1;i++){
369. rdown[0][i] = -

((i+1)*(sl/Modiv)/fmn)+Modiv*(sl/Modiv);
370. rdown[1][i] = 0;
371. rdown[2][i] = 0;
372. }
373. for (int j=3; j<=2*Modiv-2; j++){
374. rdown[0][2*fmn+j-3] = -(j-Modiv)*(sl/Modiv);
375. rdown[1][2*fmn+j-3] = 0;
376. rdown[2][2*fmn+j-3] = 0;
377. }
378. for (int k=0; k<=fmn-1; k++){

106

379. rdown[0][k+2*Modiv-4+2*fmn] = -
((k+1)*(sl/Modiv)/fmn)+rdown[0][2*Modiv-5+2*fmn];

380. rdown[1][k+2*Modiv-4+2*fmn] = 0;
381. rdown[2][k+2*Modiv-4+2*fmn] = 0;
382. }
383. for (int kj=0; kj<=fmn-2; kj++){
384. rdown[0][kj+2*Modiv-4+3*fmn] = -

((kj+1)*(sl/Modiv)/fmn)+rdown[0][2*Modiv-5+3*fmn];
385. rdown[1][kj+2*Modiv-4+3*fmn] = 0;
386. rdown[2][kj+2*Modiv-4+3*fmn] = 0;
387. }
388. nrdown=2*Modiv+4*fmn-5;
389. }
390. else {
391. for(int ki = 1; ki<= 2*Modiv ; ki++)
392. {
393. rdown[0][ki-1] = -(ki-Modiv)*sl/Modiv;
394. rdown[1][ki-1] = 0;
395. rdown[2][ki-1] = 0;
396. }
397. nrdown = 2*Modiv-1;
398.
399. }
400. }
401.
402. // this procedure combines the upper and lower parts
403.
404. void stacksvi(arr2& rup, int& nrup, arr2& rdown, int&nrdown)
405. {
406. for (int kj = 0; kj <= nrup-1 ; kj++)
407. {
408. rud[0][kj] = rup[0][kj];
409. rud[1][kj] = rup[1][kj];
410. rud[2][kj] = rup[2][kj];
411. }
412. for (int kj = nrup; kj <= nrup+nrdown-1 ; kj++)
413. {
414. rud[0][kj] = rdown[0][kj-nrup];
415. rud[1][kj] = rdown[1][kj-nrup];
416. rud[2][kj] = rdown[2][kj-nrup];
417. }
418. nrud = nrup+nrdown;
419. }
420.
421. // These correspond to the total upper and lower segmen lengths and

 vectors set
422. void delr1(int& nn, arr2& r,arr2& delr,arr1& s)
423. {
424. for (int ki = 0; ki <= nn-2; ki++)
425. for (int kj = 0; kj <= 2; kj++)
426. delr[kj][ki] = r[kj][ki+1]-r[kj][ki];
427.
428. for (int ki = 0; ki <= nn-2; ki++)
429. s[ki] = magnitude(delr[0][ki],delr[1][ki],delr[2][ki]);
430. }
431.
432. // this procedure calculates difference vectors between successive

position
433. // vectors and their magnitudes

107

434.
435. void deldelr1(int& nn, int looptype, arr2& r)
436. {
437. if (looptype==1) ndelru = nn-1;
438. if (looptype==0) ndelru = nn-2;
439.
440. for (int ki = 0; ki <= ndelru; ki++)
441. {
442. if(looptype!=1)
443. {
444. for (int kj = 0; kj <= 2; kj++) delr[kj][ki] = r[kj][ki+1]-

r[kj][ki];
445. s[ki] = magnitude(delr[0][ki],delr[1][ki],delr[2][ki]);
446. }
447. else
448. {
449. if(ki==ndelru)
450. {
451. for (int kj = 0; kj <= 2; kj++) delr[kj][ki] = r[kj][0]-

r[kj][ki];
452. s[ki] = magnitude(delr[0][ki],delr[1][ki],delr[2][ki]);
453. }
454. else
455. {
456. for (int kj = 0; kj <= 2; kj++) delr[kj][ki] = r[kj][ki+1]-

r[kj][ki];
457. s[ki] = magnitude(delr[0][ki],delr[1][ki],delr[2][ki]);
458. }
459. }
460. }
461. }
462.
463.
464. // this procedure calculates the angle between the two successive 3

-d vectors
465. // in a given set of vectors. the range -p and +p
466.
467. void psir(int deln, arr2 delr, arr1& s)
468. {
469. for (int ki = 1; ki <= deln-1; ki++)
470. {
471. teta[ki] = -angle(delr[0][ki-1],delr[1][ki-1],delr[2][ki-

1],delr[0][ki],delr[1][ki],delr[2][ki]);
472. }
473. teta[0] = teta[1]-(teta[2]-teta[1])/s[1]*s[0];
474. teta[deln] = teta[deln-1]+(teta[deln-1]-teta[deln-2])/s[deln-

2]*s[deln-1];
475. }
476.
477. // this procedure calculates the angle between the two successive 3

-d vectors
478. // in a given set of vectors. the range -p and +p
479.
480. void psipsir(int deln, arr2& delr, arr1& s)
481. {
482. for (int ki = 0; ki <= deln-1; ki++)
483. {
484.
485. tetaw[ki] = asin(delr[1][ki]/s[ki]);

108

486.
487.
488. if(tetaw[ki] < 0.0) tetaw[ki] += 2*pi;
489. if(tetaw[ki] > pi) tetaw[ki] -= 2*pi;
490.
491. }
492. tetaw[deln] = -tetaw[0];
493. }
494.
495. // this procedure calculates the local curvature and the local line

 normal vector
496. // at any given node knowing the successive segment vector set
497.
498. // in this procedure:
499. // kapkap : local curvature
500. // lln : local line normal
501.
502. void kappa(arr1& s, arr1& teta, arr2& delr, int n)
503. {
504. arr1 alfa,beta;
505. arr2 no;
506. Number kapb;
507.
508. for (int ki=1; ki<=n-1; ki++)
509. {
510. alfa[ki] = atan((sin(-teta[ki])*s[ki])/(s[ki-1]+cos(-

teta[ki])*s[ki]));
511. kapkap[ki] = 2*sin(alfa[ki])/s[ki];
512. }
513. // alfa[0] = atan((sin(-teta[0])*s[0])/(s[n-1]+cos(-

teta[0])*s[0]));
514. kapkap[0] = kapkap[1]-(kapkap[2]-kapkap[1])/s[1]*s[0];
515. kapkap[n] = kapkap[n-1]+(kapkap[n-1]-kapkap[n-2])/s[n-2]*s[n-

1];
516.
517. for (int ki=0; ki<=n-1; ki++)
518. {
519. beta[ki] = (pi-2*alfa[ki])*0.5;
520. kapb = -beta[ki];
521. antirotma(kapb);
522.
523. if(ki == 0){
524. beta[ki] = (pi-2*alfa[n-1])*0.5;
525. kapb = -beta[ki];
526. antirotma(kapb);
527. }
528.
529. for(int kj=0; kj<=2; kj++)
530. no[kj][ki] = dotpro(anti[kj][0],anti[kj][1],anti[kj][2],delr[

0][ki-1],delr[1][ki-1],delr[2][ki-1]);
531.
532. for(int kj=0; kj<=2; kj++)
533. lln[kj][ki] = no[kj][ki]/magnitude(no[0][ki],no[1][ki],no[2][

ki]);
534. }
535.
536. for(int kj=0; kj<=2; kj++)
537. {
538. lln[kj][0] = lln[kj][1];

109

539. lln[kj][n] = lln[kj][n-1];
540. }
541. }
542.
543. // This procedure combines the upper and lower parts
544.
545. void stacksab()
546. {
547. for (int kj = 0; kj <= nrup-1 ; kj++)
548. kapkapud[kj] = kapkapup[kj];
549. for (int kj = nrup; kj <= nrup+nrdown-1 ; kj++)
550. kapkapud[kj] = kapkapdown[kj-nrup];
551. nrud = nrup+nrdown;
552. }
553.
554.
555. // this procedure calculates the normal unit vectors at the centroi

ds
556. // for the upper and lower cut interfaces plus the void.
557. // Directions towards the interconnect material}
558. // {noc : the centroid normal vector}
559.
560. void nocRT(arr1& s, arr2& delr, int nu, int nd)
561. {
562. arr1 kz;
563.
564. kz[0]=0;
565. kz[1]=0;
566. kz[2]=-1;
567.
568. for (int kj = 0; kj <= nu-2; kj++)
569. {
570. vectorpro(kz[0],kz[1],kz[2],delr[0][kj],delr[1][kj],delr[2][k

j]);
571. noc[0][kj] = vect[0]/s[kj];
572. noc[1][kj] = vect[1]/s[kj];
573. noc[2][kj] = vect[2]/s[kj];
574. }
575. kz[0]=0;
576. kz[1]=0;
577. kz[2]=1;
578. for (int kj = nu-1; kj <= nu+nd-1; kj++)
579. {
580. vectorpro(kz[0],kz[1],kz[2],delr[0][kj],delr[1][kj],delr[2][k

j]);
581. noc[0][kj] = -vect[0]/s[kj];
582. noc[1][kj] = -vect[1]/s[kj];
583. noc[2][kj] = -vect[2]/s[kj];
584. }
585. }
586.
587. // this procedure calculates the centroid position vectors for the

588. // upper and lower regions
589.
590.
591. void rcc(arr2& r, int& n)
592. {
593. for(int ki=0; ki<=n-1; ki++)

110

594. for(int kj=0; kj<=2; kj++)
595. {
596. if (ki==n-1)
597. rcud[kj][ki] = (r[kj][0] + r[kj][ki])*0.5;
598. else
599. rcud[kj][ki] = (r[kj][ki+1] + r[kj][ki])*0.5;
600. }
601. }
602.
603.
604. // STRESS CALCULATIONS
605.
606. // INDIRECT BOUNDARY ELEMENT METOD
607.
608. // UNIAXIAL TENSION or COMPRESSION along the X-

axis (Plain Strain Assumption)
609.
610. // Most of the calculations done by pseudo vectors assuming that th

e shear strain
611. // is defined by e(i,j)=u(i,j)+u(j,i) where i NQE j otherwise e(i,

i)= u(i,i).
612. // In the case of scientific notation using tensor or dyadics strai

n components are
613. // defined by e(i,j)= 1/2(u(i,j) + u(j,i)).
614.
615. // Because of this disctinction between engineering and scientific

definitions there
616. // are many mistakes in the literature especially in Beer and Watso

n formulas for
617. // strain and stress (pages 488 and 489).
618.
619. // This program calculates the stress connection S matrix (3x2) at

a point Q for unit
620. // load situated at the point P. For a given connection vector rk (

RK=QP) and poisson is
621. // the Poisson's ratio
622.
623. void Sss(Number& rk0, Number& rk1, Number& rk2)
624. {
625. Number rx,ry,srk;
626.
627. srk = magnitude(rk0,rk1,rk2);
628. rx = rk0/srk;
629. ry = rk1/srk;
630. ss[0][0] = c2*(c3*rx+2*rx*rx*rx)/srk;
631. ss[0][1] = c2*(-c3*ry+2*rx*rx*ry)/srk;
632. ss[1][0] = c2*(-c3*rx+2*rx*ry*ry)/srk;
633. ss[1][1] = c2*(c3*ry+2*ry*ry*ry)/srk;
634. ss[2][0] = c2*(c3*ry+2*rx*rx*ry)/srk;
635. ss[2][1] = c2*(c3*rx+2*rx*ry*ry)/srk;
636. }
637.
638. // This program calculates the displacement matrix due to a unit fo

rce which is rk apart
639. // from the point of interest. Here n is the poisson's ratio. E is

 the Young Modulus should
640. // be taken as equal to unity and the load should renormalized with

 respect to the Young Modulus.

111

641. // The unit lenght should be so chosen that the void may lie compl
etely inside of a square

642. // determined by the unit length.
643.
644. void uu(Number& rk0, Number& rk1, Number& rk2)
645. {
646. us[0][0] = cc*(-(3-

4*poisson)*log(magnitude(rk0,rk1,rk2))+sqr(rk0)/sqr(magnitude(rk0,rk1,rk2))
);

647. us[1][1] = cc*(-(3-
4*poisson)*log(magnitude(rk0,rk1,rk2))+sqr(rk1)/sqr(magnitude(rk0,rk1,rk2))
);

648. us[0][1] = cc*(rk0*rk1/sqr(magnitude(rk0,rk1,rk2)));
649. us[1][0] = us[0][1];
650. }
651.
652. // This program calculates the TRACTION function associated with an

 unit force situated at
653. // P and acting at point Q. (rk=QP VECTOR). where nk is the unit

ouward normal at Q,
654. // which is given by minus NocRT. The surface of the interconnect i

ncluding internal void
655.
656. void ttss(Number& rk0, Number& rk1, Number& rk2, Number& nk0, Numbe

r& nk1, Number& nk2)
657. {
658. Number rx;
659. arr4 ts,ta;
660.
661. rx = magnitude(rk0,rk1,rk2);
662. ts[0][0] = ((1-

2*poisson)+2*sqr(rk0/rx))*(rk0*nk0+rk1*nk1+rk2*nk2)/(sqr(rx));
663. ts[1][1] = ((1-

2*poisson)+2*sqr(rk1/rx))*(rk0*nk0+rk1*nk1+rk2*nk2)/(sqr(rx));
664. ts[0][1] = 2*rk0*rk1*(rk0*nk0+rk1*nk1+rk2*nk2)/sqr(sqr(rx));
665. ts[1][0] = ts[0][1];
666.
667. ta[0][1] = (1-2*poisson)*(rk1*nk0-rk0*nk1)/sqr(rx);
668. ta[1][0] = -ta[0][1];
669. ta[0][0] = 0;
670. ta[1][1] = 0;
671.
672.
673. for(int ki=0; ki<=1; ki++)
674. for(int kj=0; kj<=1; kj++)
675. ttssx[kj][ki] = c2*(ts[ki][kj]+ta[ki][kj]);
676. }
677.
678. // This is an elastostatic connection matrix utilizing the element

centroids,
679. // M is the (odd) number of subsegment used in the integration proc

edure
680.
681. // In the following program Nor is the outward normal vector (from

body to the
682. // surroundings) at the segment centroids. This program has two par

ts. boundary
683. // displacement (Dirichlet) and traction (Neuman) parts namely.
684.

112

685. // For the present application we are using mixed everywhere.
686.
687. void ftin(arr1& sup, arr2& delr)
688. {
689. arr2 rcc,nox;
690. arr4 ttssa,ttssb,ttssk,ttsst,uua,uub,uusk,uuss;
691.
692.
693. for(int ki=0; ki<=nrud-1; ki++)
694. for(int kj=0; kj<=2; kj++)
695. {
696. nox[kj][ki] = -noc[kj][ki];
697. }
698.
699. for(int ki=0; ki<=nrup-2; ki++)
700. for(int kj=0; kj<=nrud-1; kj++)
701. {
702. if (ki==kj)
703. {
704. fttbig[ki*2][kj*2] = 0.5;
705. fttbig[ki*2][kj*2+1] = 0;
706. fttbig[ki*2+1][kj*2] = 0;
707. fttbig[ki*2+1][kj*2+1] = 0.5;
708. }
709. else
710. {
711. for(int kk=0; kk<=mint; kk++)
712. for(int kl=0; kl<=2; kl++)
713. rcc[kl][kk] = rud[kl][kj]-

rcud[kl][ki]+kk*delr[kl][kj]/mint;
714.
715. ttss(rcc[0][0],rcc[1][0],rcc[2][0],nox[0][ki],nox[1][ki],no

x[2][ki]);
716.
717.
718. for(int kik=0; kik<=1; kik++)
719. for(int kjk=0; kjk<=1; kjk++)
720. ttssa[kik][kjk] = ttssx[kik][kjk];
721.
722.
723. ttss(rcc[0][mint],rcc[1][mint],rcc[2][mint],nox[0][ki],

nox[1][ki],nox[2][ki]);
724.
725. for(int kik=0; kik<=1; kik++)
726. for(int kjk=0; kjk<=1; kjk++)
727. ttssb[kik][kjk] = ttssx[kik][kjk];
728.
729. ttsst[0][0] = 0.5*(ttssa[0][0]+ttssb[0][0]);
730. ttsst[0][1] = 0.5*(ttssa[0][1]+ttssb[0][1]);
731. ttsst[1][0] = 0.5*(ttssa[1][0]+ttssb[1][0]);
732. ttsst[1][1] = 0.5*(ttssa[1][1]+ttssb[1][1]);
733.
734. for(int kk=1; kk<=mint-1; kk++)
735. {
736. ttss(rcc[0][kk],rcc[1][kk],rcc[2][kk],nox[0][ki],nox[1][k

i],nox[2][ki]);
737. for(int kik=0; kik<=1; kik++)
738. for(int kjk=0; kjk<=1; kjk++)
739. ttssk[kik][kjk] = ttssx[kik][kjk];

113

740. ttsst[0][0] += ttssk[0][0];
741. ttsst[0][1] += ttssk[0][1];
742. ttsst[1][0] += ttssk[1][0];
743. ttsst[1][1] += ttssk[1][1];
744. }
745.
746. fttbig[ki*2][kj*2] = sup[kj]*ttsst[0][0]/mint;
747. fttbig[ki*2][kj*2+1] = sup[kj]*ttsst[0][1]/mint;
748. fttbig[ki*2+1][kj*2] = sup[kj]*ttsst[1][0]/mint;
749. fttbig[ki*2+1][kj*2+1] = sup[kj]*ttsst[1][1]/mint;
750. }
751. }
752. for(int ki=nrup-1; ki<=nrud-1; ki++)
753. for(int kj=0; kj<=nrud-1; kj++)
754. {
755. for(int kk=0; kk<=mint; kk++)
756. for(int kl=0; kl<=2; kl++)
757. rcc[kl][kk] = rud[kl][kj]-

rcud[kl][ki]+kk*delr[kl][kj]/mint;
758.
759. uu(rcc[0][0],rcc[1][0],rcc[2][0]);
760.
761. for(int kik=0; kik<=1; kik++)
762. for(int kjk=0; kjk<=1; kjk++)
763. uua[kik][kjk] = us[kik][kjk];
764.
765. uu(rcc[0][mint],rcc[1][mint],rcc[2][mint]);
766.
767. for(int kik=0; kik<=1; kik++)
768. for(int kjk=0; kjk<=1; kjk++)
769. uub[kik][kjk] = us[kik][kjk];
770.
771. uuss[0][0] = 0.5*(uua[0][0]+uub[0][0]);
772. uuss[0][1] = 0.5*(uua[0][1]+uub[0][1]);
773. uuss[1][0] = 0.5*(uua[1][0]+uub[1][0]);
774. uuss[1][1] = 0.5*(uua[1][1]+uub[1][1]);
775.
776. for(int kk=1; kk<=mint-1; kk++)
777. {
778. uu(rcc[0][kk],rcc[1][kk],rcc[2][kk]);
779. for(int kik=0; kik<=1; kik++)
780. for(int kjk=0; kjk<=1; kjk++)
781. uusk[kik][kjk] = us[kik][kjk];
782. uuss[0][0] += uusk[0][0];
783. uuss[0][1] += uusk[0][1];
784. uuss[1][0] += uusk[1][0];
785. uuss[1][1] += uusk[1][1];
786. }
787.
788. fttbig[ki*2][kj*2] = sup[kj]*uuss[0][0]/mint;
789. fttbig[ki*2][kj*2+1] = sup[kj]*uuss[0][1]/mint;
790. fttbig[ki*2+1][kj*2] = sup[kj]*uuss[1][0]/mint;
791. fttbig[ki*2+1][kj*2+1] = sup[kj]*uuss[1][1]/mint;
792. }
793. }
794.
795. // This program considers, the droplet surface is free from the

traction forces.

114

796. // Lower interface surface is restrained by the substrade due to th
e misfit strain.

797. // Where the tractions and displacements are calculated at centroid
 positions.

798. // The ends points of Droplet surface are placed at the interfaces,
 therefore the stress

799. // calculated later at the nodes should include these points as wel
l as!!!

800.
801. // This is a very critical point because the same points are also b

elong to the traction free sector.
802. // Best thing is to avoid that by taking interface ends very close

to the droplet ends!!!
803.
804. void asym()
805. {
806. for(int ki=0; ki<=nrup-2; ki++)
807. {
808. trac[0][ki] = 0;
809. trac[1][ki] = 0;
810. trac[2][ki] = 1;
811. }
812. for(int ki=nrup-1; ki<=nrup+nrdown-1; ki++)
813. {
814. trac[0][ki] = epsx*rcud[0][ki];
815. trac[1][ki] = 0;
816. trac[2][ki] = epsx;
817. }
818. for(int ki=0; ki<=nrud-1; ki++)
819. tn[ki] = -

(trac[0][ki]*noc[0][ki]+trac[1][ki]*noc[1][ki]+trac[2][ki]*noc[2][ki]);
820. }
821.
822. // This is the boundary condition pseudo-vector
823.
824. void boundary()
825. {
826. int ii;
827. for(int ki=0; ki<=2*nrud-2; ki+=2)
828. {
829. ii = ki/2;
830. trqa[ki] = trac[0][ii];
831. }
832. for(int ki=1; ki<=2*nrud-1; ki+=2)
833. {
834. ii = (ki-1)/2;
835. trqa[ki] = trac[1][ii];
836. }
837.
838. }
839.
840. // The following matrix equation calculates the pseudo-

boundary force vector (pbfv)
841. // which results zero net traction, in the presence of thermal hyd

rostatic
842. // stress system, at the void-

interconnect interface assuming that one has
843. // plain strain situation.
844.

115

845. // This corresponds to force intensities situated at the centroids
of the segments

846.
847. void pbfv()
848. {
849. trian(nrud*2-1,trqa,fttbig);
850. for(int ki=0; ki<=2*nrud-1; ki++)
851. fsigma[ki] = ulas[ki];
852. }
853.
854.
855. // This program separates the x- and y-

 components of the load vectors
856.
857. void fc()
858. {
859. for(int ki=0; ki<=nrud-1; ki++)
860. {
861. xmu[ki]=fsigma[2*ki];
862. ymu[ki]=fsigma[2*ki+1];
863. mamu[ki]=sqrt(xmu[ki] * xmu[ki] + ymu[ki] * ymu[ki]);
864. }
865. }
866.
867. // The following program calculates the displacement matrix
868. // around the external and internal boundaries
869.
870. void dsglarge()
871. {
872. arr2 rcc,nox;
873. arr4 uussa,uussb,uussk,uusst,gssa,gssb,gssk,gsst;
874.
875. for(int ki=0; ki<=nrud-1; ki++)
876. for(int kj=0; kj<=nrud-1; kj++)
877. {
878. if (ki==kj)
879. {
880. gsst[0][0] = 0;
881. gsst[0][1] = 0;
882. gsst[1][0] = 0;
883. gsst[1][1] = 0;
884. gsst[2][0] = 0;
885. gsst[2][1] = 0;
886. }
887. else
888. {
889. for(int kk=0; kk<=mint; kk++)
890. for(int kl=0; kl<=2; kl++)
891. rcc[kl][kk] = rud[kl][kj]-

rcud[kl][ki]+kk*delr[kl][kj]/mint;
892.
893. Sss(rcc[0][0],rcc[1][0],rcc[2][0]);
894. for(int kik=0; kik<=2; kik++)
895. for(int kjk=0; kjk<=1; kjk++)
896. gssa[kik][kjk] = ss[kik][kjk];
897.
898. Sss(rcc[0][mint],rcc[1][mint],rcc[2][mint]);
899. for(int kik=0; kik<=2; kik++)
900. for(int kjk=0; kjk<=1; kjk++)

116

901. gssb[kik][kjk] = ss[kik][kjk];
902.
903. gsst[0][0] = 0.5*(gssa[0][0]+gssb[0][0]);
904. gsst[0][1] = 0.5*(gssa[0][1]+gssb[0][1]);
905. gsst[1][0] = 0.5*(gssa[1][0]+gssb[1][0]);
906. gsst[1][1] = 0.5*(gssa[1][1]+gssb[1][1]);
907. gsst[2][0] = 0.5*(gssa[2][0]+gssb[2][0]);
908. gsst[2][1] = 0.5*(gssa[2][1]+gssb[2][1]);
909.
910. for(int kk=1; kk<=mint-1; kk++)
911. {
912. Sss(rcc[0][kk],rcc[1][kk],rcc[2][kk]);
913. for(int kik=0; kik<=2; kik++)
914. for(int kjk=0; kjk<=1; kjk++)
915. gssk[kik][kjk] = ss[kik][kjk];
916. gsst[0][0] += gssk[0][0];
917. gsst[0][1] += gssk[0][1];
918. gsst[1][0] += gssk[1][0];
919. gsst[1][1] += gssk[1][1];
920. gsst[2][0] += gssk[2][0];
921. gsst[2][1] += gssk[2][1];
922. }
923. sgbig[ki*3][kj*2] = s[kj]*gsst[0][0]/mint;
924. sgbig[ki*3][kj*2+1] = s[kj]*gsst[0][1]/mint;
925. sgbig[ki*3+1][kj*2] = s[kj]*gsst[1][0]/mint;
926. sgbig[ki*3+1][kj*2+1] = s[kj]*gsst[1][1]/mint;
927. sgbig[ki*3+2][kj*2] = s[kj]*gsst[2][0]/mint;
928. sgbig[ki*3+2][kj*2+1] = s[kj]*gsst[2][1]/mint;
929. }
930. }
931.
932.
933. // for(int ki=0; ki<=3*nrud-1; ki++)
934. // {
935. // ub[ki]=0;
936. // for(int kj=0; kj<=2*nrud-1; kj++)
937. // ub[ki] += sgbig[ki][kj]*fsigma[kj];
938. // }
939. }
940.
941. // Matrix multiplication ssbig x fsigma
942.
943. void multa()
944. {
945. for(int ki=0; ki<=3*nrud-1; ki++)
946. {
947. ub[ki]=0;
948. for(int kj=0; kj<=2*nrud-1; kj++)
949. ub[ki] += sgbig[ki][kj]*fsigma[kj];
950. }
951. }
952. // This program separates the components of the stress every where

 for the plane strain state.
953.
954. void SigStress()
955. {
956. int ii;
957.
958. for(int ki=0; ki<=3*nrud-2; ki+=3)

117

959. {
960. ii = ki/3;
961. aqx[ii] = ub[ki];
962. aqy[ii] = ub[ki+1];
963. aqxy[ii] = ub[ki+2];
964. aqz[ii] = poisson*(aqx[ii]+aqy[ii]);
965. Trq[ii] = (1+poisson) * (aqx[ii]+aqy[ii]);
966. hoop[ii] = delr[0][ii]*(aqx[ii]*delr[0][ii]+aqxy[ii]*delr[1][ii

]);
967. hoop[ii] = hoop[ii]+delr[1][ii]*(aqxy[ii]*delr[0][ii]+aqy[ii]*d

elr[1][ii]);
968. hoop[ii] = hoop[ii]/(delr[0][ii]*delr[0][ii]+delr[1][ii]*delr[1

][ii]);
969.
970. }
971. }
972.
973. // This program converts the stress calculated at the centroid pos

itions to the nodes
974.
975. void SigNodet()
976. {
977. for(int ki=1; ki<=nrud-1; ki++)
978. Sighoop[ki] = (hoop[ki-1]*s[ki]+hoop[ki]*s[ki-1])/(s[ki]+s[ki-

1]);
979.
980. Sighoop[0] = (hoop[nrud-1]*s[0]+hoop[0]*s[nrud-

1])/(s[0]+s[nrud-1]);
981.
982.
983. }
984.
985. // The following program calculates the displacement matrix
986. // around the external and internal boundaries
987.
988. void durq()
989. {
990. arr2 rcc,nox;
991. arr4 uussa,uussb,uussk,uusst;
992.
993. for(int ki=0; ki<=nrud-1; ki++)
994. for(int kj=0; kj<=nrud-1; kj++)
995. {
996. for(int kk=0; kk<=mint; kk++)
997. for(int kl=0; kl<=2; kl++)
998. rcc[kl][kk] = rud[kl][kj]-

rcud[kl][ki]+kk*delrud[kl][kj]/mint;
999.
1000. uu(rcc[0][0],rcc[1][0],rcc[2][0]);
1001.
1002. for(int kik=0; kik<=1; kik++)
1003. for(int kjk=0; kjk<=1; kjk++)
1004. uussa[kik][kjk] = us[kik][kjk];
1005.
1006. uu(rcc[0][mint],rcc[1][mint],rcc[2][mint]);
1007.
1008. for(int kik=0; kik<=1; kik++)
1009. for(int kjk=0; kjk<=1; kjk++)
1010. uussb[kik][kjk] = us[kik][kjk];

118

1011.
1012. uusst[0][0] = 0.5*(uussa[0][0]+uussb[0][0]);
1013. uusst[0][1] = 0.5*(uussa[0][1]+uussb[0][1]);
1014. uusst[1][0] = 0.5*(uussa[1][0]+uussb[1][0]);
1015. uusst[1][1] = 0.5*(uussa[1][1]+uussb[1][1]);
1016.
1017. for(int kk=1; kk<=mint-1; kk++)
1018. {
1019. uu(rcc[0][kk],rcc[1][kk],rcc[2][kk]);
1020. for(int kik=0; kik<=1; kik++)
1021. for(int kjk=0; kjk<=1; kjk++)
1022. uussk[kik][kjk] = us[kik][kjk];
1023. uusst[0][0] += uussk[0][0];
1024. uusst[0][1] += uussk[0][1];
1025. uusst[1][0] += uussk[1][0];
1026. uusst[1][1] += uussk[1][1];
1027. }
1028. duubig[ki*2][kj*2] = s[kj]*uusst[0][0]/mint;
1029. duubig[ki*2][kj*2+1] = s[kj]*uusst[0][1]/mint;
1030. duubig[ki*2+1][kj*2] = s[kj]*uusst[1][0]/mint;
1031. duubig[ki*2+1][kj*2+1] = s[kj]*uusst[1][1]/mint;
1032. }
1033.
1034. for(int ki=0; ki<=2*nrud-1; ki++)
1035. {
1036. ub[ki]=0;
1037. for(int kj=0; kj<=2*nrud-1; kj++){
1038. cout<<"";
1039. ub[ki] += duubig[ki][kj]*fsigma[kj];
1040. }
1041. }
1042. }
1043.
1044. // Matrix multiplication duubig x fsigma
1045.
1046. void multb()
1047. {
1048. //cout << "here";
1049. for(int ki=0; ki<=2*nrud-1; ki++)
1050. {
1051. ub[ki]=0;
1052. for(int kj=0; kj<=2*nrud-1; kj++)
1053. ub[ki] += duubig[ki][kj]*fsigma[kj];
1054. }
1055. }
1056.
1057. // Where B should be less then 1, 1/7 and 1/17 for 110, 100 and 111

 planes, otherwise one would have
1058. // anomolous surface stiffness regime.
1059.
1060. // This program calculates the anistropic diffusion coefficients at

 the centroid positions which is
1061. // important for the flux evaluations there! here mm is the symmetr

y fold number, fi is the tilt angle
1062. // and A is the amplitude of the anistropic part of the diffusion c

oefficient.
1063.
1064. // mm=1 -> two-fold symmetry --> 110 plane
1065. // mm=2 -> four-fold symmetry --> 100 plane

119

1066. // mm=3 -> six-fold symmetry --> 111 plane
1067.
1068. void ddif()
1069. {
1070. int ii,ki;
1071. arr1 ux,uy,delsc,epsc;
1072. arr2 ubn,delrc;
1073.
1074. for(int ki=0; ki<=nrup-2; ki++)
1075. dif[ki] = 1 + Aint*cos(hfn*(tetaw[ki]-

rtphi))*cos(hfn*(tetaw[ki]-rtphi));
1076.
1077. for(int ki=0; ki<=nrup-1; ki++)
1078. {
1079. if (ki == 0)
1080. theta[ki] = tetaw[0];
1081. else if (ki == nrup-1)
1082. theta[ki] = tetaw[nrup-2];
1083. else
1084. theta[ki] = (tetaw[ki]*s[ki-1]+tetaw[ki-1]*s[ki])/(s[ki-

1]+s[ki]);
1085. }
1086. thetaR = theta[nrup-1];
1087. thetaL = theta[0];
1088. for(int kj=0; kj<=nrup-1; kj++)
1089. {
1090. if (type == 0)
1091. {
1092. TauO[kj] = 1 + Bint*sin(hfn*(theta[kj]-

rtphi))*sin(hfn*(theta[kj]-rtphi));
1093. TauD[kj] = Bint*hfn*sin(2*hfn*(theta[kj]-rtphi));
1094. TauS[kj] = (1+Bint/2)*(1-(Bint*(1-

4*hfn*hfn)/(Bint+2)*cos(2*hfn*(theta[kj]-rtphi))));
1095. }
1096. else if (type == 1)
1097. {
1098. TauO[kj] = 1-Bint+Bint*(fabs(sin(0.5*hfn*(rtphi-

theta[kj])))+fabs(cos(0.5*hfn*(rtphi-theta[kj]))));
1099. TauD[kj] = 0.5*hfn*Bint*sin(0.5*hfn*(rtphi-

theta[kj]))*cos(0.5*hfn*(rtphi-theta[kj]));
1100. TauD[kj] = TauD[kj]*((1/fabs(sin(0.5*hfn*(rtphi-

theta[kj]))))-(1/fabs(cos(0.5*hfn*(rtphi-theta[kj])))));
1101. TauS[kj] = 1-Bint+Bint*(1-

0.25*hfn*hfn)*(fabs(sin(0.5*hfn*(rtphi-
theta[kj])))+fabs(cos(0.5*hfn*(rtphi-theta[kj]))));;

1102. }
1103. }
1104. }
1105.
1106. //CENTER POINT
1107.
1108. void centerpoint()
1109. {
1110. int ki;
1111. for (int ki=1; ki<=nrup-2; ki++)
1112. {
1113. ruprc[0][ki]=(((rup[1][ki]-rup[1][ki-1])/(rup[0][ki]-

rup[0][ki-1]))*((rup[1][ki+1]-rup[1][ki])/(rup[0][ki+1]-
rup[0][ki]))*(rup[1][ki+1]-rup[1][ki-1])+((rup[1][ki]-rup[1][ki-

120

1])/(rup[0][ki]-rup[0][ki-1]))*(rup[0][ki]+rup[0][ki+1])-((rup[1][ki+1]-
rup[1][ki])/(rup[0][ki+1]-rup[0][ki]))*(rup[0][ki-
1]+rup[0][ki]))/(2*(((rup[1][ki]-rup[1][ki-1])/(rup[0][ki]-rup[0][ki-1]))-
((rup[1][ki+1]-rup[1][ki])/(rup[0][ki+1]-rup[0][ki]))));

1114. ruprc[1][ki]=-((rup[0][ki]-rup[0][ki-1])/(rup[1][ki]-
rup[1][ki-1]))*(ruprc[0][ki]-(rup[0][ki-1]+rup[0][ki])/2)+((rup[1][ki-
1]+rup[1][ki])/2);

1115. }
1116. ruprc[0][nrup-1]=(((rup[1][nrup-1]-rup[1][nrup-

2])/(rup[0][nrup-1]-rup[0][nrup-2]))*((rup[1][nrup]-rup[1][nrup-
1])/(rup[0][nrup]-rup[0][nrup-1]))*(rup[1][nrup]-rup[1][nrup-
2])+((rup[1][nrup-1]-rup[1][nrup-2])/(rup[0][nrup-1]-rup[0][nrup-
2]))*(rup[0][nrup-1]+rup[0][nrup])-((rup[1][nrup]-rup[1][nrup-
1])/(rup[0][nrup]-rup[0][nrup-1]))*(rup[0][nrup-2]+rup[0][nrup-
1]))/(2*(((rup[1][nrup-1]-rup[1][nrup-2])/(rup[0][nrup-1]-rup[0][nrup-2]))-
((rup[1][nrup]-rup[1][nrup-1])/(rup[0][nrup]-rup[0][nrup-1]))));

1117. ruprc[1][nrup-1]=-((rup[0][nrup-1]-rup[0][nrup-
2])/(rup[1][nrup-1]-rup[1][nrup-2]))*(ruprc[0][nrup-1]-(rup[0][nrup-
2]+rup[0][nrup-1])/2)+((rup[1][nrup-2]+rup[1][nrup-1])/2);

1118. }
1119.
1120.
1121.
1122. // REMESHING
1123.
1124. // This procedure performs the remeshing by eliminating those
1125. // segments smaller than rmin and dividing those which are
1126. // greater than rmax into two parts and also keeps the grain
1127. // boundary triple junction as a stable point.}
1128.
1129. // Remeshing without grain boundary, (asimetric)
1130.
1131. void remesh1() //MERT
1132. {
1133. int nrem,kz,ki,kl,kk,kt,f;
1134. Number mag,mag1;
1135. arr2 delrm;
1136. f=0;
1137. delr1(nrup, rup,delru, su);
1138. psir(nrup-1,delru,su);
1139. kappa(su,teta,delru,nrup-1);
1140. nrem = nrup-1;
1141.
1142. for(int kk=0;kk<=nrem;kk++)
1143. {
1144. rm[0][kk]=rup[0][kk];
1145. rm[1][kk]=rup[1][kk];
1146. rm[2][kk]=0;
1147. }
1148.
1149. for(int ki=0; ki<=nrem-2; ki++)
1150. {
1151.
1152. if (su[ki] >= rmax)
1153. {
1154. for(int kz=0; kz<=nrem-ki-1; kz++)
1155. {
1156. rm[0][nrem+1-kz+f]=rm[0][nrem-kz+f];
1157. rm[1][nrem+1-kz+f]=rm[1][nrem-kz+f];

121

1158. }
1159.
1160. for (kl=0;kl<=2;kl++)
1161. {
1162. delrm[kl][ki+f+1]=(rm[kl][ki+f+2]-

ruprc[kl][ki+1])+(rm[kl][ki+f]-ruprc[kl][ki+1]);
1163.
1164. }
1165. for(int kj=0; kj<=2; kj++)
1166. {
1167. mag1=magnitude(delrm[0][ki+f+1],delrm[1][ki+f+1],delrm[2][k

i+f+1]);
1168. rm[kj][ki+f+1] = ruprc[kj][ki+1]+((1/kapkap[ki+1])*(kapkap[

ki+1])/fabs(kapkap[ki+1]))*delrm[kj][ki+f+1]/mag1;
1169. // cout<< rm[kj][ki+f+1]<<" "<<kapkap[ki+1]<<"

 "<<f<<endl;
1170. }
1171. f=f+1;
1172. }
1173. }
1174. if (su[nrem-1] >= rmax)
1175. {
1176. rm[0][nrem+1+f]=rm[0][nrem+f];
1177. rm[1][nrem+1+f]=rm[1][nrem+f];
1178.
1179. for (kl=0;kl<=2;kl++)
1180. {
1181. delrm[kl][nrem+f]=(rm[kl][nrem+f+1]-ruprc[kl][nrem-

1])+(rm[kl][nrem+f-1]-ruprc[kl][nrem-1]);
1182.
1183. }
1184. for(int kj=0; kj<=2; kj++)
1185. {
1186. mag1=magnitude(delrm[0][nrem+f],delrm[1][nrem+f],delrm[2][n

rem+f]);
1187. rm[kj][nrem+f] = ruprc[kj][nrem-1]+((1/kapkap[nrem-

1])*(kapkap[nrem-1])/fabs(kapkap[nrem-1]))*delrm[kj][nrem+f]/mag1;
1188. }
1189. f=f+1;
1190. }
1191. for (kt=0;kt<=nrem+f;kt++)
1192. {
1193. rup[0][kt]=rm[0][kt];
1194. rup[1][kt]=rm[1][kt];
1195. rup[2][kt]=0;
1196. }
1197. nrup=nrem+f+1;
1198. // cout<<nrup<<endl;
1199. }
1200.
1201. void remesh0() //AYTAC
1202. {
1203. int m, ka, crm,t=0;
1204. Number mag, temp1, temp2, temp3;
1205. arr2 rm;
1206.
1207. nrem = nrup-1;
1208. ka = 2;
1209. for(int kj=0; kj<=2; kj++)

122

1210. rm[kj][0] = rup[kj][0] ;
1211.
1212.
1213. delr1(nrup,rup,delrup,sup);
1214.
1215. mag = magnitude(delrup[0][0],delrup[1][0],delrup[2][0]);
1216. if (mag >= rmax)
1217. {
1218. for(int kj=0; kj<=2; kj++)
1219. {
1220. rm[kj][1] = (rup[kj][0] + rup[kj][1])*0.5;
1221. rm[kj][2] = rup[kj][1];
1222. }
1223. ka = ka+1;
1224. }
1225. if (mag < rmax)
1226. {
1227. if (mag > rmin) {
1228. for(int kj=0; kj<=2; kj++)
1229. rm[kj][1] = rup[kj][1] ;
1230. }
1231. }
1232.
1233. maxSeglenth = 0;
1234.
1235.
1236.
1237. for(int ki=1; ki<=nrem-2; ki++)
1238. {
1239. if (ki>nrem-2-t) break;
1240. mag = magnitude(delrup[0][ki+t],delrup[1][ki+t],delrup[2][ki+t]

);
1241. if(maxSeglenth < mag) maxSeglenth = mag;
1242.
1243. if (mag >= rmax)
1244. {
1245. for(int kj=0; kj<=2; kj++)
1246. {
1247. rm[kj][ka] = (rup[kj][ki+t] + rup[kj][ki+1+t])*0.5;
1248. rm[kj][ka+1] = rup[kj][ki+1+t];
1249. }
1250. ka = ka+2;
1251. }
1252. else if (mag < rmax)
1253. {
1254. if (mag <= rmin){
1255. for(int kj=0; kj<=2; kj++)
1256. {
1257.
1258. delrup[kj][ki-1] = delrup[kj][ki-

1]+delrup[kj][ki+t]/2;
1259. delrup[kj][ki] = delrup[kj][ki+1+t]+delrup[kj][ki+t]/2;

1260. rm[kj][ka-1] = (rup[kj][ki+t] + rup[kj][ki+1+t])*0.5;
1261. rm[kj][ka] = rup[kj][ki+2+t];
1262. }
1263. ka++;
1264. t++;
1265. }

123

1266.
1267. else if (mag > rmin)
1268. {
1269. for(int kj=0; kj<=2; kj++)
1270. rm[kj][ka] = rup[kj][ki+1+t] ;
1271. ka++ ;
1272. }
1273.
1274.
1275. }
1276. }
1277. crm = ka-1;
1278. mag = magnitude(delrup[0][nrem-1],delr[1][nrem-1],delr[2][nrem-

1]);
1279.
1280. if (mag >= rmax)
1281. {
1282. for(int kj=0; kj<=2; kj++)
1283. {
1284. rm[kj][crm+1] = (rm[kj][crm]+ rup[kj][nrem])*0.5 ;
1285. rm[kj][crm+2] = rup[kj][nrem] ;
1286. }
1287. crm = crm+2;
1288. }
1289.
1290. if (mag < rmax)
1291. {
1292. for(int kj=0; kj<=2; kj++)
1293. rm[kj][crm+1] = rup[kj][nrem];
1294. crm = crm+1;
1295. }
1296.
1297. crm = crm+1;
1298.
1299.
1300. for(int ki = 0; ki< crm ; ki++)
1301. {
1302. rup[0][ki] = rm[0][ki];
1303. rup[1][ki] = rm[1][ki];
1304. rup[2][ki] = 0;
1305. }
1306.
1307. nrup = crm;
1308.
1309. // delr1(nrup,rup,delrup,sup);
1310.
1311. // int jj = 0;
1312. // for(int ki = 0; ki< nrup ; ki++)
1313. // {
1314. // if(ki == 1){
1315. // mag = magnitude(delrup[0][ki-1],delrup[1][ki-

1],delrup[2][ki-1]);
1316. // if(mag > maxSeglenth/4){
1317. // rup[0][jj] = rm[0][ki];
1318. // rup[1][jj] = rm[1][ki];
1319. // rup[2][jj] = 0;
1320. // jj++;
1321. // }
1322. // }

124

1323. // else if(ki == nrup-2){
1324. // mag = magnitude(delrup[0][ki],delrup[1][ki],delrup[2][ki

]);
1325. // if(mag > maxSeglenth/4){
1326. // rup[0][jj] = rm[0][ki];
1327. // rup[1][jj] = rm[1][ki];
1328. // rup[2][jj] = 0;
1329. // jj++;
1330. // }
1331. // }
1332. // else{
1333. // rup[0][jj] = rm[0][ki];
1334. // rup[1][jj] = rm[1][ki];
1335. // rup[2][jj] = 0;
1336. // jj++;
1337. // }
1338.
1339. // }
1340.
1341. // nrup = jj;
1342.
1343. }
1344.
1345.
1346. void remeshEnd() //AYTAC
1347. {
1348. int m, ka, crm;
1349. Number mag, temp1, temp2, temp3;
1350. arr2 rm;
1351.
1352. for(int ki=0; ki<nrup; ki++)
1353. for(int kj=0; kj<=2; kj++)
1354. rm[kj][ki] = rup[kj][ki] ;
1355.
1356.
1357. delr1(nrup,rup,delrup,sup);
1358. maxSeglenth = 0;
1359.
1360. for(int ki=0; ki<nrup; ki++){
1361. mag = magnitude(delrup[0][ki],delrup[1][ki],delrup[2][ki]);

1362. if(maxSeglenth < mag) maxSeglenth = mag;
1363. }
1364.
1365.
1366. int jj = 0;
1367. for(int ki = 0; ki< nrup ; ki++)
1368. {
1369. if(ki == 1){
1370. mag = magnitude(delrup[0][ki-1],delrup[1][ki-

1],delrup[2][ki-1]);
1371. if(mag > maxSeglenth/4){
1372. rup[0][jj] = rm[0][ki];
1373. rup[1][jj] = rm[1][ki];
1374. rup[2][jj] = 0;
1375. jj++;
1376. }
1377. }
1378. else if(ki == nrup-2){

125

1379. mag = magnitude(delrup[0][ki],delrup[1][ki],delrup[2][k
i]);

1380. if(mag > maxSeglenth/4){
1381. rup[0][jj] = rm[0][ki];
1382. rup[1][jj] = rm[1][ki];
1383. rup[2][jj] = 0;
1384. jj++;
1385. }
1386. }
1387. else{
1388. rup[0][jj] = rm[0][ki];
1389. rup[1][jj] = rm[1][ki];
1390. rup[2][jj] = 0;
1391. jj++;
1392. }
1393.
1394. }
1395.
1396. nrup = jj;
1397.
1398. }
1399.
1400.
1401. void remeshlower()
1402. {
1403. delrlower=fabs(rdown[0][2*fmn+5]-rdown[0][2*fmn+4]);
1404. int j,i,k;
1405. delrend=fabs(rdown[0][2*fmn-1]-rdown[0][2*fmn]);
1406. delrfirst=fabs(rdown[0][nrdown-2*fmn]-rdown[0][nrdown-2*fmn-

1]);
1407. if (delrend > delrlower*3/2 || delrfirst > delrlower*3/2)
1408. {
1409.
1410. if (delrend > delrlower*3/2){
1411. for (j=0; j<=2; j++){
1412. for (i=0;i<=nrdown-1-2*fmn;i++)
1413. {
1414. rdown[j][nrdown-i]=rdown[j][nrdown-i-1];
1415. }
1416. }
1417. rdown[0][2*fmn]=rdown[0][2*fmn+1]+delrlower;
1418. rdown[1][2*fmn]=0;
1419. rdown[2][2*fmn]=0;
1420. nrdown++;
1421. }
1422. if (delrfirst > delrlower*3/2){
1423. //rdown[0][nrdown-2*fmn]=rdown[0][nrdown-1]-delrlower;
1424. //rdown[1][nrdown]=0;
1425. //rdown[2][nrdown]=0;
1426. for (j=0; j<=2; j++){
1427. for (i=0;i<=2*fmn-1;i++)
1428. {
1429. rdown[j][nrdown-i]=rdown[j][nrdown-i-1];
1430. }
1431. }
1432. rdown[0][nrdown-2*fmn]=rdown[0][nrdown-2*fmn-1]-

delrlower;
1433. rdown[1][nrdown-2*fmn]=0;
1434. rdown[2][nrdown-2*fmn]=0;

126

1435.
1436. nrdown++;
1437. }
1438. }
1439. if (delrend < delrlower*1/4 || delrfirst < delrlower*1/4)
1440. {
1441. if (delrend < delrlower*1/4) {
1442. for (j=0; j<=2; j++)
1443. for (i=2*fmn;i<=nrdown-2;i++)
1444. {
1445. rdown[j][i]=rdown[j][i+1];
1446. }
1447. nrdown=nrdown-1;
1448. }
1449. if (delrfirst < delrlower*1/4){
1450. for (j=0; j<=2; j++)
1451. for (i=nrdown-2*fmn;i<=nrdown-1;i++)
1452. {
1453. rdown[j][i-1]=rdown[j][i];
1454. }
1455. nrdown=nrdown-1;
1456. }
1457. }
1458. // cout<<fmn<<endl;
1459. }
1460.
1461.
1462.
1463.
1464. // OGURTANI MODEL
1465. // Void- Grain Boundary Interactions
1466. // Under the Effect of Electron Wind and Thermal Stresses
1467. // by using Indirect BEM Calculations
1468.
1469. // Finite Strip
1470.
1471. // Interconnect node velocities
1472.
1473. void calnew()
1474. {
1475. vmax =0;
1476. // for(int kj=0; kj<=nrup-1; kj++)
1477. // vel[kj]=0;
1478.
1479. for(int kj=1; kj<=nrup-2; kj++)
1480. {
1481. vel[kj] = 2*(dif[kj]/s[kj]*(Psiu[kj+1]-Psiu[kj])-dif[kj-

1]/s[kj-1]*(Psiu[kj]-Psiu[kj-1]))*ho*ho/(s[kj]+s[kj-1])-
Mb*(delGb+(TauS[kj]*kapkap[kj]*Wcal[kj]-
Wpot[kj])*ho); // TauS[i]*kapkap[i]*Wcal[i]-Wpot[i]

1482. }
1483.
1484. vel[1] = 2*(dif[1]/s[1]*(Psiu[2]-Psiu[1]))*ho*ho/(s[1]+2*s[0])-

Mb*(delGb+(TauS[1]*kapkap[1]*Wcal[1]-
Wpot[1])*ho); // TauS[i]*kapkap[i]*Wcal[i]-Wpot[i]

1485. vel[nrup-2] = -2*(dif[nrup-3]/s[nrup-3]*(Psiu[nrup-2]-Psiu[nrup-
3]))*ho*ho/(2*s[nrup-2]+s[nrup-3])-Mb*(delGb+(TauS[nrup-2]*kapkap[nrup-
2]*Wcal[nrup-2]-Wpot[nrup-2])*ho); // TauS[i]*kapkap[i]*Wcal[i]-Wpot[i]

1486.

127

1487.
1488. vel[0] = Mg*delta/2/omega*(lamdag-(cos(thetaL)));
1489. vel[nrup-1] = Mg*delta/2/omega*(lamdag-(cos(thetaR)));
1490. velL = vel[0];
1491. velR = vel[nrup-1];
1492.
1493. for(int kj = 1; kj<nrup-

1; kj++) if(fabs(vel[kj]) > vmax) vmax = fabs(vel[kj]);
1494. }
1495.
1496. // Void node velocities
1497.
1498. void calruv()
1499. {
1500. for(int kj=1; kj<=nrup-2; kj++)
1501. {
1502. rup[0][kj]=rup[0][kj]+deltat*vel[kj]*lln[0][kj];
1503. rup[1][kj]=rup[1][kj]+deltat*vel[kj]*lln[1][kj];
1504. rup[2][kj]=rup[2][kj]+deltat*vel[kj]*lln[2][kj];
1505. }
1506. rup[0][0]=rup[0][0]-deltat*vel[0];
1507. rup[1][0]=rup[1][0];
1508. rup[2][0]=rup[2][0];
1509. for (int ki=0; ki<=2*fmn-1; ki++){
1510. rdown[0][ki]=rdown[0][ki]+deltat*vel[nrup-1];
1511. rdown[1][ki]=rdown[1][ki];
1512. rdown[2][ki]=rdown[2][ki];
1513. }
1514. rup[0][nrup-1]=rup[0][nrup-1]+deltat*vel[nrup-1];
1515. rup[1][nrup-1]=rup[1][nrup-1];
1516. rup[2][nrup-1]=rup[2][nrup-1];
1517. for (int j=nrdown-2*fmn; j<=nrdown-1; j++){
1518. rdown[0][j]=rdown[0][j]-deltat*vel[0];
1519. rdown[1][j]=rdown[1][j];
1520. rdown[2][j]=rdown[2][j];
1521. }
1522. }
1523.
1524. // this procedure generates the initial system
1525.
1526. void generate()
1527. {
1528. uppart();
1529. lowpart();
1530. }
1531.
1532. // this procedure gets the initial parameters from a file called An

isoDrop_Stress.dat
1533.
1534. void needparam(){
1535. fp = fopen("input.dat", "r");
1536. fgets(line, sizeof(line), fp);
1537. sscanf(line, "%d", &newdata); //int

1538. fgets(line, sizeof(line), fp);
1539. sscanf(line, "%d", &type); //int
1540. fgets(line, sizeof(line), fp);
1541. fgets(line, sizeof(line), fp);
1542. fgets(line, sizeof(line), fp);

128

1543. sscanf(line, "%Lg", &ho); //double

1544. fgets(line, sizeof(line), fp);
1545. sscanf(line, "%Lg", &sl); //double

1546. fgets(line, sizeof(line), fp);
1547. sscanf(line, "%Lg", &sw); //double

1548. fgets(line, sizeof(line), fp);
1549. sscanf(line, "%Lg", &Amp); //double

1550. fgets(line, sizeof(line), fp);
1551. sscanf(line, "%d", &Modiv); //int
1552. fgets(line, sizeof(line), fp);
1553. sscanf(line, "%d", &Msin); //int
1554. fgets(line, sizeof(line), fp);
1555. sscanf(line, "%d", &nsw); //int
1556. fgets(line, sizeof(line), fp);
1557. fgets(line, sizeof(line), fp);
1558. fgets(line, sizeof(line), fp);
1559. sscanf(line, "%Lg", &ksi); //double

1560. fgets(line, sizeof(line), fp);
1561. fgets(line, sizeof(line), fp);
1562. fgets(line, sizeof(line), fp);
1563. sscanf(line, "%Lg", &ym); //double

1564. fgets(line, sizeof(line), fp);
1565. sscanf(line, "%Lg", &poisson); //do

uble
1566. fgets(line, sizeof(line), fp);
1567. sscanf(line, "%Lg", &delGb); //int

1568. fgets(line, sizeof(line), fp);
1569. sscanf(line, "%Lg", &Mb); //double

1570. fgets(line, sizeof(line), fp);
1571. sscanf(line, "%Lg", &Mg); //double

1572. fgets(line, sizeof(line), fp);
1573. sscanf(line, "%d", &mint); //int
1574. fgets(line, sizeof(line), fp);
1575. sscanf(line, "%Lg", &Sigma); //doub

le
1576. fgets(line, sizeof(line), fp);
1577. sscanf(line, "%Lg", &Eta); //double

1578. fgets(line, sizeof(line), fp);
1579. fgets(line, sizeof(line), fp);
1580. fgets(line, sizeof(line), fp);
1581. sscanf(line, "%Lg", &Aint); //doubl

e
1582. fgets(line, sizeof(line), fp);
1583. sscanf(line, "%Lg", &Bint); //doubl

e
1584. fgets(line, sizeof(line), fp);
1585. sscanf(line, "%Lg", &rtphi); //int

1586. fgets(line, sizeof(line), fp);

129

1587. sscanf(line, "%Lg", &hfn); //double

1588. fgets(line, sizeof(line), fp);
1589. fgets(line, sizeof(line), fp);
1590. fgets(line, sizeof(line), fp);
1591. sscanf(line, "%d", &nl); //double
1592. fgets(line, sizeof(line), fp);
1593. fgets(line, sizeof(line), fp);
1594. sscanf(line, "%Lg", &gammaf); //dou

ble
1595. fgets(line, sizeof(line), fp);
1596. sscanf(line, "%Lg", &gammas); //dou

ble
1597. fgets(line, sizeof(line), fp);
1598. sscanf(line, "%Lg", &delw); //int
1599. fgets(line, sizeof(line), fp);
1600. sscanf(line, "%Lg", &lamdag); //dou

ble
1601. fgets(line, sizeof(line), fp);
1602. sscanf(line, "%Lg", &epstime); //do

uble
1603. fgets(line, sizeof(line), fp);
1604. sscanf(line, "%Lg", &delta); //doub

le
1605. fgets(line, sizeof(line), fp);
1606. fgets(line, sizeof(line), fp);
1607. fgets(line, sizeof(line), fp);
1608. sscanf(line, "%Lg", &rmin); //int
1609. fgets(line, sizeof(line), fp);
1610. sscanf(line, "%Lg", &rmax); //int
1611. fgets(line, sizeof(line), fp);
1612. fgets(line, sizeof(line), fp);
1613. sscanf(line, "%d", &rem); //int
1614. fgets(line, sizeof(line), fp);
1615. sscanf(line, "%d", &contData); //in

t
1616. fgets(line, sizeof(line), fp);
1617. sscanf(line, "%d", &fmn); //int
1618.
1619. if(ho == 0) ho = 0.95/sqrt(1+(4*sl*sl)) ;
1620.
1621. Amp = Amp*ho;
1622. gfm = (gammaf+gammas)/2/gammaf; //
1623. sl = sl*ho; // scaled strip length
1624. sw = sw*ho; // scaled strip width
1625.
1626. lamda = 2*sl/nsw; // normalized wave length
1627. lamdau = 2*Msin/nsw; // node # in each wave length
1628. kv = 2*pi/lamda; // normalized wave vector
1629.
1630. omega = delta*delta*delta; // the atomic volume
1631.
1632. epsx = 1-poisson; // the misfit strain energy
1633.
1634. rtphi = rtphi*pi/180; // texture tilt angle in rad
1635.
1636. dmean = lamda/lamdau; // mean segment length
1637. rmin = rmin*ho; // minimum segment length
1638. rmax = rmax*ho; // maximum segment length

130

1639.
1640. // Lamm coefficients of elasticity
1641. lamG = ym/(2*(1+poisson));
1642. lammu = ym/(2*(1+poisson)); // lamg and lammu are identical
1643.
1644. lamlamda = ym*poisson/((1+poisson)*(1-2*poisson));
1645. cc = 1/(8*pi*lamG*(1-poisson));
1646. c1 = 3-4*poisson;
1647. c2 = 1/(4*pi*(1-poisson));
1648. c3 = 1-2*poisson;
1649. c4 = 2;
1650.
1651. // Elastic Stiffness and Compliance Matrices given in various form

ats
1652. cc1 = ym*(1-poisson)/((1+poisson)*(1-2*poisson));
1653. cc2 = poisson/(1-poisson);
1654.
1655. deltat =epstime*dmean/1000;
1656. lastOutNum = 0;
1657. mpow =0;
1658. }
1659.
1660.
1661.
1662. void writeParam(){
1663.
1664. out.open("inputt.dat");
1665.
1666. out << newdata << endl;
1667. out << type << endl;
1668. out << ho << endl;
1669. out << sl << endl;
1670. out << sw << endl;
1671. out << Amp << endl;
1672. out << Modiv << endl;
1673. out << Msin << endl;
1674. out << nsw << endl;
1675. out << ksi << endl;
1676. out << ym << endl;
1677. out << poisson << endl;
1678. out << delGb << endl;
1679. out << Mb << endl;
1680. out << Mg << endl;
1681. out << mint << endl;
1682. out << Sigma << endl;
1683. out << Eta << endl;
1684. out << Aint << endl;
1685. out << Bint << endl;
1686. out << rtphi << endl;
1687. out << hfn << endl;
1688. out << nl << endl;
1689. out << gammaf << endl;
1690. out << gammas << endl;
1691. out << delw << endl;
1692. out << lamdag << endl;
1693. out << epstime << endl;
1694. out << delta << endl;
1695. out << rmin << endl;
1696. out << rmax << endl;

131

1697. out << rem << endl;
1698. out << contData << endl;
1699. out << fmn << endl; //int
1700.
1701. out.close();
1702. }
1703. // Program Restart Procedure
1704.
1705. void getcontparam()
1706. {
1707. Number sil;
1708.
1709. ifstream in;
1710. in.open("cont.txt");
1711.
1712. in >> ru[0][0] >> ru[1][0];
1713. in >> sil >> sil >> sil >> sil >> sil >> sil >> sil >> sil;
1714. in >> nu;
1715. in >> t >> ms>> timex >> mm;
1716.
1717. for(int i=1; i<=nu-1; i++){
1718. in >>ru[0][i] >>ru[1][i];
1719. in >> sil >> sil >> sil >> sil >> sil >> sil >> sil >> sil;
1720. }
1721.
1722. lowpart();
1723.
1724. }
1725.
1726.
1727. void recordtimestep(){
1728.
1729.
1730. if (t==mpow || t==nl){
1731.
1732. // time (&rawtime);
1733.
1734.
1735. int2str(lastOutNum);
1736.
1737. //textName = dirName+textName;//
1738. out << setiosflags(ios::showpoint);
1739. out.open(textName.c_str(),ios::trunc);
1740. //outName = ctime(&rawtime);
1741. // 1 // 2

 // 3
1742. out << setprecision(20) << rud[0][0]/1 <<" "<< rud[1][0]

/1 <<" "<< s[0]/1 <<" "
1743. // 4 // 5

 // 6
1744. << tetaw[0] <<" "<< kapkap[

0]*1 <<" "<< TauO[0] <<" "
1745. // 7 // 8

 // 9
1746. << TauS[0] <<" " << TauD[0

] <<" "<< dif[0] <<" "
1747. // 10 // 11

 // 12

132

1748. << tetau[0] <<" "<< hoop[0]
 <<" "<< Sighoop[0] <<" "

1749. // 13 // 14
 // 15

1750. << Psiu[0] <<" "<< vel[0]
 <<" "<< nrup <<" "

1751. // 16 // 17
 // 18

1752. << nrdown <<" " << t
 <<" "<< lastOutNum <<" "

1753. // 19 // 20
 // 21

1754. << timex <<" "<< nrud
 <<" "<< dmean

1755. << endl;
1756.
1757. for(int i=1; i<nrud;i++){
1758. out << setprecision(20)
1759. << rud[0][i]/1 <<" "<< rud[1][i]/1

 <<" " << s[i]/1 <<" "
1760. << tetaw[i] <<" "<< kapkap[i]*

1 <<" " << TauO[i] <<" "
1761. << TauS[i] <<" "<< TauD[i]

 <<" " << dif[i] <<" "
1762. << tetau[i] <<" "<< hoop[i]

 <<" " << Sighoop[i] <<" "
1763. << Psiu[i] <<" "<< vel[i]
1764. << endl;
1765. }
1766. out << endl ;
1767.
1768.
1769. out.close();
1770.
1771. lastOutNum++ ;
1772.
1773. if (t < 256) mpow =pow(2,(double)lastOutNum);
1774. else if (t < 1000) mpow =300+200*(lastOutNum-9);
1775. else if (t < 10000) mpow =1000+500*(lastOutNum-13);
1776. else if (t < 20000) mpow =10000+1000*(lastOutNum-31);
1777. else if (t < 100000) mpow =20000+5000*(lastOutNum-41);
1778. else /* if (t < 1000000) */ mpow =100000+10000*(lastOutNum-

57);
1779.
1780.
1781. }
1782.
1783. if (numContData==10000 || t==nl){
1784.
1785. //time (&rawtime);
1786.
1787. int2str(lastOutNum);
1788.
1789. textName = "cont.dat";//
1790. out << setiosflags(ios::showpoint);
1791. out.open(textName.c_str(),ios::trunc);
1792. //outName = ctime(&rawtime);
1793.

133

1794. out << setprecision(20) << rud[0][0] <<" "<< rud[1][0]<<"
"

1795. << nrup <<" " << nrdown <<" "<< t <<" "<< lastOutNum <<" "
<< timex <<" "

1796. << dmean << endl; //min max
1797.
1798. for(int i=1; i<nrud;i++){
1799. out << setprecision(20)
1800. << rud[0][i]<<" "<< rud[1][i]<< endl;
1801. }
1802. out << endl ;
1803.
1804. out.close();
1805. // clrscr();
1806.
1807. numContData = 0;
1808. }
1809.
1810. numContData++ ;
1811.
1812. }
1813.
1814.
1815. // MAIN PROGRAM Organization Procedure
1816.
1817.
1818.
1819. void final()
1820. {
1821.
1822. stacksvi(rup,nrup,rdown,nrdown);
1823.
1824. while(t < nl){
1825.
1826. delr1(nrup,rup,delrup,sup);
1827. psir(nrup-1,delrup,sup);
1828.
1829. for(int ki=0; ki<nrup; ki++) tetau[ki] = teta[ki];

1830.
1831. kappa(sup,teta,delrup,nrup-1);
1832.
1833. delr1(nrdown,rdown,delrdown,sdown);
1834. deldelr1(nrud,1,rud);
1835.
1836. psir(nrdown-1,delrdown,sdown);
1837. psipsir(nrup-1, delrup, sup);
1838. ddif() ;
1839.
1840. nocRT(s,delr,nrup,nrdown);
1841.
1842. rcc(rud,nrud);
1843.
1844. if(Sigma != 0 || Eta !=0){
1845. ftin(s,delr);
1846. asym() ;
1847. boundary() ;
1848. pbfv() ;
1849. fc();

134

1850. dsglarge();
1851. multa() ;
1852. SigStress() ;
1853. SigNodet() ;
1854. }
1855.
1856. // if (ksi==0)
1857. // for(int i=0; i<=nrup-1; i++)
1858. // fieldtn[i] =0.0;
1859.
1860.
1861. for(int i=0; i<nrup ;i++){
1862. Wpot[i] = (1/sqrt(1+sqr(tan(tetaw[ki]))))* (gammaf-

gammas)/(pi*gammaf)*(delw*ho)/(sqr(delw*ho)+sqr(rup[1][i]));
1863. // -lln[i][1] * (gammas-

gammaf)/pi*(deltaW*ho)/(sqr(deltaW*ho)+4*sqr(rud[i][1]));
1864. }
1865.
1866. for(int i=0; i<nrup ;i++){
1867. Wcal[i] = (gammas+gammaf)/(2*gammaf) - (gammas-

gammaf)/(pi*gammaf) * atan((rup[1][i]) / (delw*ho)) ;
1868. }
1869.
1870. for(int i=0; i<= nrup-1 ; i++){
1871. Psiu[i] = (kapkap[i]*Wcal[i]-Wpot[i])*ho;
1872. if(ksi != 0) Psiu[i] +=ksi*fieldtn[i];
1873. if(Sigma != 0 || Eta !=0) Psiu[i] += -

Sigma*Sighoop[i]*Sighoop[i]+Eta*Sighoop[i];
1874. }
1875.
1876. calnew();
1877.
1878. //{calculation of record time step}
1879.
1880. recordtimestep();
1881. deltat =epstime*dmean/vmax;
1882. calruv() ;
1883.
1884. if(rem == 1 && t%20==0)
1885. {
1886. remesh0();
1887. }
1888. if(rem == 2&& t%20==0)
1889. {
1890. centerpoint();
1891. remesh1();
1892. }
1893. remeshEnd();
1894. remeshlower();
1895. stacksvi(rup,nrup,rdown,nrdown);
1896. timex = timex+deltat;
1897. t++ ;
1898. if(lastOutNum>999) t = nl;
1899. }
1900.
1901. }

