

A COMPARISON OF CLASSIFICATION ALGORITHMS FOR MOBILE MALWARE

DETECTION: MARKET METADATA AS INPUT SOURCE

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

NURAY BALTACI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF INFORMATION SYSTEMS

SEPTEMBER 2014

A COMPARISON OF CLASSIFICATION ALGORITHMS FOR

MOBILE MALWARE DETECTION: MARKET METADATA AS

INPUT SOURCE

Submitted by Nuray Baltacı in partial fulfillment of the requirements for the degree of Master of

Science in Information Systems, Middle East Technical University by,

Prof. Dr. Nazife Baykal __________________________

Director, Informatics Institute

Prof. Dr. Yasemin Yardımcı Çetin __________________________

Head of Department, Information Systems

Prof. Dr. Nazife Baykal __________________________

Supervisor, Information Systems, METU

Assist. Prof. Dr. Cengiz Acartürk __________________________

Co-Supervisor, Cognitive Science, METU

Examining Committee Members

Assoc. Prof. Dr. Aysu Betin Can ________________________
Information Systems, METU

Prof. Dr. Nazife Baykal ________________________
Information Systems, METU

Assist. Prof. Dr. Aybar Can Acar ________________________

Medical Informatics, METU

Dr. Serkan Alkan _________________________

Medical Center, METU

Assist. Prof. Dr. Tuğba Taşkaya Temizel ________________________

Information Systems, METU

 Date: __________________________

iii

I hereby declare that all information in this document has been obtained and presented in

accordance with academic rules and ethical conduct. I also declare that, as required by

these rules and conduct, I have fully cited and referenced all material and results that are

not original to this work.

Name, Last name: Nuray Baltacı

Signature: _________________

iv

v

ABSTRACT

A COMPARISON OF CLASSIFICATION ALGORITHMS FOR MOBILE MALWARE

DETECTION: MARKET METADATA AS INPUT SOURCE

Baltacı, Nuray

M.S., Department of Information Systems

Supervisor: Prof. Dr. Nazife Baykal

Co-Supervisor: Assist. Prof. Dr. Cengiz Acartürk

September 2014, 76 pages

The prevalence of mobile devices has been catching the attention of malware authors especially

for Android OS supported devices due to its user-centric security policy and open application

development strategy for its official application market. In this study, an automated feature-

based static analysis method was applied to detect malicious mobile applications on Android

devices. The main purpose of the study is to investigate the contribution of other application

market metadata to the detection of malicious applications in addition to requested permissions.

Hence, the information of applications presented on the official market when a user wants to

download them was used as the feature set for training supervised classification algorithms.

This feature set includes permissions requested from the user at the installation time, and other

metadata about an application including but not limited to application category, download

number category, and developer name. Additionally, different classification algorithms were

compared in terms of their predictive accuracy and the effect of feature selection algorithms on

the improvement of classification task was investigated. Naïve Bayes, k-nearest neighbor, J48

and random forest were chosen as classification algorithms. As filter-based algorithms, Chi-

Square, Information Gain and ReliefF feature selection methods were utilized to reduce the

number of attributes used to train those classification algorithms.

Keywords: Mobile malware detection, Classification, Google market metadata, Machine

learning

vi

ÖZ

KÖTÜ AMAÇLI MOBİL YAZILIMLARIN TESPİTİ İÇİN KULLANILAN

SINIFLANDIRMA ALGORİTMALARININ KIYASLANMASI: GİRDİ KAYNAĞI

OLARAK MARKET META VERİSİ

Baltacı, Nuray

Yüksek Lisans, Bilişim Sistemleri Bölümü

Tez Yöneticisi: Prof. Dr. Nazife Baykal

Ortak Tez Yöneticisi: Yrd. Doç. Dr. Cengiz Acartürk

Eylül 2014, 76 sayfa

Kullanıcı merkezli güvenlik politikası ve resmi uygulama marketi için açık uygulama geliştirme

stratejisi nedeniyle Android işletim sistemi destekli cihazlar başta olmak üzere, mobil cihazların

yaygınlaşması kötü amaçlı yazılım geliştiricilerin dikkatini çekmektedir. Bu çalışmada, Android

cihazlardaki kötü amaçlı mobil uygulamaların tespiti için otomatik, özellik-tabanlı bir statik

analiz yöntemi uygulanmıştır. Çalışmanın esas amacı, uygulama tarafından talep edilen izinlerin

yanı sıra diğer market bilgilerinin zararlı yazılımların tespitine olan katkısını araştırmaktır.

Dolayısıyla, uygulamalar kullanıcılar tarafından resmi marketten indirilirken uygulamalarla

ilgili sunulan bilgiler özellik kümesi olarak güdümlü sınıflandırma algoritmalarının

eğitilmesinde kullanılmak kullanılmıştır. Bu özellik kümesi, uygulamanın kurulması anında

kullanıcıdan talep edilen izinleri ve uygulama kategorisi, indirilme sayısı kategorisi, geliştirici

adı vb. gibi uygulamayla ilgili diğer meta verileri kapsamaktadır. Ek olarak, çeşitli

sınıflandırma algoritmaları tahminlerinin doğruluğu açısından kıyaslanmış ve özellikle seçme

algoritmalarının sınıflandırma görevinin iyileştirilmesi üzerine etkisi araştırılmıştır.

Sınıflandırma algoritmaları olarak Naive Bayes, k- nearest neighbor, J48 ve random forest

seçilmiştir. Birer filtre-tabanlı algoritma olan Chi-Square, Information Gain ve ReliefF özellik

seçme yöntemlerinden ise bahsi geçen sınıflandırma algoritmalarının eğitilmesinde kullanılan

niteliklerin sayısını azaltmak üzere faydalanılmıştır.

Anahtar Kelimeler: Mobil zararlı yazılım tespiti, Sınıflandırma, Google market meta verisi,

Makine öğrenimi

vii

DEDICATION

I dedicate this thesis to my beloved parents, throughout my life being proud of all my

successes and prodding me, to the living memories of my father Kamil Baltacı and

always being nearest by me, pandering to my whims and praying for me, my precious

mother Neziha Baltacı. I also dedicate my thesis to my sisters Öznur Baltacı Oral and

Saliha Baltacı Akgün who have been encouraging and trusting me for all the time, most

importantly giving their valuable sisterhood.

viii

ACKNOWLEDGMENTS

First and foremost I am indebted to my thesis supervisor Prof. Dr. Nazife Baykal for her

motivation and support throughout my study. I owe a great debt of gratitude to my thesis co-

supervisor Assist. Prof. Dr. Cengiz Acartürk who has guided and encouraged me even from the

place he has been commissioned from miles away.

I cannot find the words to express the unconditional love and support of my mother Neziha

Baltacı. She has always been with me with her deepest faith and I have always overcome

challenges thanks to her. Also it would be understatement if I do not mention that my beloved

sisters Öznur Baltacı Oral and Saliha Baltacı Akgün have never let me quit whenever I felt

desperate. I am forever grateful to them. I want to thank to my cousin Dilara Avcı for her

fellowship and not leaving me alone in Ankara.

This thesis would have remained a dream had it not been for Kamil Akhüseyinoğlu. He helped

to develop the Java applications used to collect the data and guided me throughout the whole

study. He has always offered his encouragement and supported me spending sleepless nights. I

am thankful to him also because of his being always nearby me.

I would like to thank my friend and room-mate Şeyma Küçüközer for her valuable insights, and

becoming the driving force behind my thesis. She has always made me believe to complete my

study. My colleague Serhat Peker was also another supporter of me by always giving

recommendation to study in the library. I want to wish my special thanks to Informatics Institute

secretaries Sibel Gülnar and Hakan Güler as they came to my rescue whenever I am in trouble.

They all and my other colleagues, Pelin Canbaz, Ali Mert Ertuğrul, Özge Gürbüz, and Emre

Sezgin were the source of my exhilaration during my work. As my other friend, my cat Gofret

has always cheered me up and relaxed me.

It gives me great pleasure in acknowledging the participation in my defense, valuable feedbacks

and suggestions of my examining committee members, Assoc. Prof. Dr. Aysu Betin Can,

Assist. Prof. Dr. Aybar Can Acar, Dr. Serkan Alkan and Assist Prof. Dr. Tuğba Taşkaya

Temizel. I would also like to show my gratitude to the URAP (University Ranking by Academic

Performance) Research Laboratory members, especially to Prof. Dr. Ural Akbulut and Prof. Dr.

Canan Çilingir, for their concerns and close interest on my study.

Lastly, I also thank to The Scientific and Technical Research Council of Turkey (TÜBİTAK)

for the scholarship during my MSc study.

ix

TABLE OF CONTENTS

ABSTRACT .. v

ÖZ ... vi

ACKNOWLEDGMENTS .. viii

TABLE OF CONTENTS ... ix

LIST OF TABLES .. xii

LIST OF FIGURES .. xiv

LIST OF ABBREVIATIONS ... xv

CHAPTER 1 .. 1

INTRODUCTION ... 1

1.1. Background of the Study ... 1

1.2. Purpose of the Study and Research Questions .. 2

1.3. Significance of the Study ... 3

1.4. Definition of Terms ... 4

CHAPTER 2 .. 5

LITERATURE REVIEW .. 5

2.1. Application Market and Operating System Security Policies and Practices 5

2.2. Android Operating System ... 6

2.3. Android Application Structure ... 6

2.4. Android Permissions System .. 7

2.5. Malware Detection Methods .. 7

2.5.1. Dynamic (Behavior-Based) Analysis .. 8

2.5.2. Static Analysis ... 9

2.6. Summary .. 11

x

CHAPTER 3 ..13

RESEARCH METHODOLOGY ..13

3.1. Detection Method ..13

3.2. Classification and Feature Selection Algorithms ...14

3.2.1. Classification Algorithms ..14

3.2.2. Feature Selection Algorithms ..20

3.2.3. Summary for Selected Algorithms ...22

3.3. Data Collection ..23

3.4. Data Preprocess and Features for Machine Learning Algorithms27

3.5. Parameters Used to Evaluate Classification and Feature Selection Algorithms29

3.6. Pilot Study and Baseline Datasets ..30

3.7. Summary of Pilot Study ...36

3.8. Schematic Representation of the Research Methodology ..38

CHAPTER 4 ..39

RESULTS ..39

4.1. Brief Information about Datasets and Configuration for Algorithms39

4.2. Evaluation of Official Market Metadata ..43

4.3. Evaluation of Classification Algorithms ..43

4.4. Evaluation of Feature Selection Algorithms ..46

4.5. Summary of Findings ...49

CHAPTER 5 ..51

DISCUSSION AND CONCLUSION..51

5.1. Discussion and Conclusion ...51

5.2. Limitations and Further Research ...55

REFERENCES ..57

APPENDICES ...63

Appendix A: List of Application Categories and Application Download Ranges63

Appendix B: Histograms of Continuous Attributes ...64

Appendix C: Paired t-test Results for Comparison of Predictive Accuracies and Kappa

Statistics to Choose Baseline Datasets ...66

Appendix D: Histograms of Applications according to Market Related Features67

Appendix E: Accuracy and Kappa Statistic Results of All Classification and Feature

Selection Algorithms ...68

xi

Appendix F: Paired t-test Results for Comparison of Predictive Accuracies and Kappa

Statistics to Evaluate the Contribution of Official Market Metadata 70

Appendix G: Graphs for the Evaluation of Feature Selection Algorithms 73

xii

LIST OF TABLES

Table 1- The small sample dataset taken from the original work of (Quinlan J. , 1986)18

Table 2- Sample Confusion Matrix..29

Table 3-Results of Pilot Study ...31

Table 4- Results of feature selection algorithms on initial dataset ..32

Table 5- Comparison of detection results for balanced and imbalanced datasets33

Table 6- Comparison of detection results for datasets with different detection counts of malware

applications ..34

Table 7- Accuracy Comparison for balanced and imbalanced datasets with detection count=8 .35

Table 8-Kappa statistic comparison for balanced and imbalanced datasets with detection

count=8 ..35

Table 9- Configurations for classification and feature selection algorithms40

Table 10- Comparison of the prediction accuracy of Naive Bayes classifier with others44

Table 11-Comparison of the prediction accuracy of J48 classifier with others44

Table 12-Comparison of the prediction accuracy of Random Forest classifier with others44

Table 13- Comparison of the prediction accuracy of kNN classifier with others45

Table 14- Accuracy comparison of feature selection algorithms in combination with Naive

Bayes ..46

Table 15- Kappa statistic comparison of feature selection algorithms in combination with Naive

Bayes ..47

Table 16- Accuracy comparison of feature selection algorithms in combination with J4847

Table 17-Kappa statistic comparison of feature selection algorithms in combination with J48..47

Table 18- Accuracy comparison of feature selection algorithms in combination with Random

Forest ...48

Table 19- Accuracy comparison of feature selection algorithms in combination with kNN48

Table 20-Kappa statistic comparison of feature selection algorithms in combination with

Random Forest ...49

Table 21-Kappa statistic comparison of feature selection algorithms in combination with kNN

 ...49

Table 22- Summary of the methods and the findings of related studies to the proposed method

in this study ..54

Table 23- Paired t-test results for accuracy comparison to choose baseline datasets66

Table 24-Paired t-test results for kappa statistic comparison to choose baseline datasets66

Table 25- Accuracy and kappa statistic results for all combination of the chosen classification

and feature selection algorithms, and the number of features selected by feature selection

algorithms ..68

Table 26- Paired t-test results for accuracy comparison to evaluate the contribution of official

market metadata ...70

xiii

Table 27-Paired t-test results for kappa statistic comparison to evaluate the contribution of

official market metadata .. 71

xiv

LIST OF FIGURES

Figure 1- A sample decision tree taken from the original work of (Quinlan J. , 1986) and

constructed from the Saturday mornings dataset ...18

Figure 2- Random Forest representation (Benyamin, 2012) ..20

Figure 3- Developer name, application type and developer type information of the sample

application ..25

Figure 4- Average rating and star ratings of the sample application ...25

Figure 5- update date, size download range, minimum required Android OS, content rating of

the sample application ...25

Figure 6- Virus Total homepage ..26

Figure 7- Steps for the research methodology of the proposed study ..38

Figure 8- Graph showing the movements of accuracy, precision and area under ROC curve

evaluation parameters for the proposed dataset ...42

xv

LIST OF ABBREVIATIONS

API: Application Programming Interface

AV: Antivirus

DoS: Denial of Service

FNR: False Negative Rate

FPR: False Positive Rate

FS: Feature Selection

IDS: Intrusion Detection System

IMEI: The International Mobile Station Equipment Identity

iOS: IPhone operating system

kNN: k-nearest neighbor

Malware: Malicious Software

MAP: Maximum a posteriori

OS: Operating System

PC: Personal Computer

ROC: Receiver Operating Characteristic

SVM: Support Vector Machine

TNR: True Negative Rate

TPR: True Positive Rate

URI: Unique resource identifier

1

CHAPTER 1

INTRODUCTION

1.1. Background of the Study

Smartphones and tablets have been pervading in both daily use and business settings. Including

desktops and laptops, conventional PC market is falling behind the market for mobile

computing. Statistics reported by the Intelligence Research Service of Business Insider strongly

support this fact that it was totally 28 percent of the world population who owned tablets and

smartphones when compared to PC owners constituting the 20 percent at the end of 2013. (Blue

Coat Systems, 2014) In spite of their security vulnerabilities, mobile devices do not decrease

the speed of pervasion. (Blue Coat Systems, 2014)

The ubiquitous usage of mobile devices has induced the burst of mobile application market

because mobile applications enhance the capabilities of mobile devices and improve the

customer experience. People take advantage of downloading these applications to their

smartphones or other mobile devices for the purpose of amusement, shopping, online banking,

business needs, tracking their daily supportive health practices and of almost any purpose one

can imagine. This increasing demand for mobile applications is supplied by platforms of official

vendors and third party markets. As they produce their official applications, they also realize the

importance of the support to meet this demand by third party developers. However, this

approach has some security risks because not only the legitimate developers but also malware

(malicious software) authors upload applications to these markets.

There are diverse incentives of hackers behind writing mobile malware. Authors may want to

damage users in purpose of novelty and amusement. An example of mobile malware, Ikee.A

changed the wallpaper of iPhones once infected the device and Smspacem, an SMS spam,

targeted Android devices to send text messages against religion. Other inducements for hacking

can be listed as selling user information (location of the user, contacts list, browser history and

IMEI), stealing user credentials (like bank account credentials, credit card numbers, and account

passwords), SMS spam, search engine optimization, ransom and making premium-rate calls and

sending premium rate SMSs. Premium-rate SMSs sent from the phone without user consent can

be hidden so craftily that the user may only understand after seeing his/her phone bill. (Porter

Felt, Finifter, Chin, Hanna, & Wagner, 2011)

2

Mobile application platform providers have different security precautions against the

mischievousness of cybercriminals. Google applies an open strategy to let the developers

publish their applications whilst Apple strictly reviews the products of their approved

developers before releasing. (Bose, Hu, Shin, & Park, 2011) Apple has been effective in their

application provenance policy so, actual malware targeting non-jailbroken iOS (IPhone

operating system) devices have not seen thus far. (Symantec, 2011) However, Google’s user

report triggered review process for their application market and user centric permission system

makes Google Play (formerly named as Android Market) and Android Operating System (OS)

attractive for attackers. In 2012, attacks on Android devices constituted 95% of overall

infections and with 32.8 million devices get infected, and doubled this amount compared to the

past year. Attackers used application repackaging, SMS phishing and malicious URLs as

exploitation methods of OS’s commonly. (Rapit7, 2013) Cybercriminals will continue their

attacks in an evolving manner targeting Android OS owing to the unregulated application

market structure and diversity of Android based devices. (Blue Coat Sytems, 2013)

Mobile application platform providers are capable of removing malicious applications from the

market quickly when detected and they have the right of remotely uninstalling these

applications from the downloaded devices. Despite quick actions of them, the time window

between the placement and detection of malicious application may cause unwanted damages to

a lot of users. (Blue Coat Systems, 2014) For instance, attacks named as “Android.Rootcager,

Android.Pjapps and Android.Bgserv” during 2010 and 2011, targeted legitimate applications by

injecting malicious code into these applications and replacing the digital signatures with an

uncertified ones. These trojanized applications which were put on the official Android Market

or third-party markets harmed hundreds of thousands of users. (Symantec, 2011) Another threat

on Google’s official market was discovered in early 2010 as malicious applications developed

by the developer named Droid09. These applications deceived users by masquerading

themselves as legitimate mobile banking applications and then stole banking credentials of users

by using phishing techniques. (Sybase, 2011) After realizing, Google quickly removed 51

applications belonging to the same developer. (Symantec, 2012)

1.2. Purpose of the Study and Research Questions

In this study, the performance of different machine learning classification algorithms on Google

metadata-based static analysis method is evaluated. Mainly, the contribution of Google Play

Market specific application information to the effectiveness of Android permission-based

detection model is questioned. Since Google metadata on Google Play market includes

information about permissions required when downloading applications and other information

like developer name, download number of application, user rates, minimum required Android

API level and so on, the contribution of other Google data mentioned here is investigated by

dividing dataset according to permission features and others. The performance comparison is

made on these two dataset. Also, the effects of feature selection methods with filter approach on

the performance of classification algorithms are observed. The following research questions are

attempted to be answered throughout the study:

1) Is it possible to accept Google Play market metadata as meaningful attribute for a

supervised machine learning algorithm used for mobile malware detection?

2) Which classification algorithm has the highest accuracy for the Android malware

detection problem by using Google Play market metadata among Naïve Bayes, k

nearest neighbor, random forest and J48?

3

3) Which classification algorithm, feature selection method and the number of selected

features combination is most accurate in static detection of Android malware with

Google metadata? Chi-Square, ReliefF and Information Gain Score are the feature

selection methods used with classification algorithms.

1.3. Significance of the Study

Proliferation of mobile devices has caused the exploitation of them by cybercriminals to obtain

immense amount of profit by confidential personal and financial information. People have been

deserting PCs and increasingly preferring mobile devices as the means of accessing data. While

using mobile devices, users utilize from mobile applications in order to perform tasks like

sending SMS, surfing on the internet, making online banking transactions, taking pictures and

so on. This makes mobile devices and applications prone to mobile malware because they are

full of personal and financial data to gain access by cybercriminals. (Rapit7, 2013) Even in

recent years, malware industry has shown inconceivable progression so that it turned into a

highly illegal economy sustaining under supply and demand laws like traditional market-based

economies. In this market, cybercriminals sell the data they steal, rent botnets, sell newly

explored vulnerabilities and exploit kits. (Blue Coat Systems, 2014)

Hackers have a wide range of subtle methods to harm mobile devices and trick users. They can

exploit the vulnerabilities of mobile operating systems like the ones enabling buffer overflows

by sending more data than the memory can handle and causing the propagation of malware to

other areas in the phone. (Lawton, 2008) Another example of hackers’ craftiness is that they

can modify legitimate applications to include hidden channel and then leak information from the

victim’s phone. This threat is called as man-in-the-middle attack and can be achieved by the

installation of malicious certificates and reconfiguring proxy settings and performing other

modifications. (HP, 2013) These are only some well-known examples to the weapons of

cybercriminals and they add new ones into their ammunition every day. As counterattack to this

growing army, security solutions proposed by researchers have been increasing. However this

research field is immature and needs to be explored deeply. (La Polla, Martinelli, & Sgandurra,

2013)

The fast growth of mobile market, transformation of mobile malware into huge market economy

and the low saturation of the mobile malware research field have made the way for realizing a

study in mobile malware detection. In addition, the difference of official application market

policies applied by mobile application platform and mobile OS providers have an effect on the

proposed model in this study. For example, Apple Incorporation applies manual inspection of

mobile applications by security experts before presenting them on the Apple Store. (Abu Samra,

Yim, & Ghanem, 2013) On the other hand, Google has more passive security policy allowing

anyone to publish application on their official market (Abu Samra, Yim, & Ghanem, 2013)

despite their user reporting mechanism for suspicious applications and Bouncer for

automatically scanning applications prior to upload. (Petsas, Voyatzis, Athanasopoulos,

Polychronakis, & Ioannidis, 2014) This arises the question whether the applications’ metadata

presented on the official application market can be used as the indication of malicious content or

not.

Additionally, when a user downloads an Android application to his phone, a list of permissions

is presented by that application in non-technical language at installation time. Since Android has

no middle way of granting permissions to applications, users have to grant access to all the

4

requested permissions if he wants to install the applications. Anroid’s permission system passes

security risks on users and gives freedom of choice to decide on the safety of applications’

permissions. (Symantec, 2011) However, users are generally not competence enough to make

decision about permissions, so guidance is needed before installing applications. This user

centric approach may become challenging and users may be stimulated to accept every

permission requested by an application causing security risks. (Bose, Hu, Shin, & Park, 2011)

In the lights of the things mentioned above, the need for a static feature based mobile malware

detection system for Android devices considering requested permissions and Google Market

data, including developer name, download time, user ratings, and so on, became an incentive

behind this study.

1.4. Definition of Terms

Hash value: Hash value, consisting of numerical and/or alphabetical values and fixed in size, is

used to ensure the integrity of files (or message) and so to determine whether a file has been

tampered while being sent through insecure channels. (Microsoft, 2014)

IMEI: A unique number used to identify phones.

Jailbroken device: For devices having Android OS, users can root devices by circumventing

built-in limitations related to security and OS use of the devices. (USA Department of

Commerce, 2012)

Malware: Malware, short for malicious or malevolent software, is software used or

programmed by attackers to disrupt computer operations, gather sensitive information, or gain

access to private computer systems.

Premium-rate phone calls and SMS: For the definition of this term, the following definition

was adopted from the study of (Porter Felt, Finifter, Chin, Hanna, & Wagner, 2011) (p. 6)

“Legitimate premium-rate phone calls and SMS messages deliver valuable content, such as

stock quotes, technical support, or adult services. The cost of a premium-rate call or SMS is

charged to the sender's phone bill. Premium-rate calls can cost several dollars per minute, and

premium-rate SMS messages can cost several dollars per message.”

Search Engine Optimization: For the definition of this term, the following definition was

adopted from the study of (Porter Felt, Finifter, Chin, Hanna, & Wagner, 2011) (p. 7)

“Malware can be employed to improve a web site's ranking in search engine results. This type

of malware sends web requests to the search engine for the target search term. The malware

then fraudulently “clicks" on the search result that corresponds to the target web site. As a

result, the web site's rank for that search term will increase. The value of fraudulent search

engine optimization depends on how well the target site can capitalize on its increased visibility,

but search engine optimization is a large and lucrative market.”

Ransom: For the definition of this term, the following definition was adopted from the study of

(Porter Felt, Finifter, Chin, Hanna, & Wagner, 2011) (7) “Mobile malware that seriously

threatens or publicly embarrasses the user for profit”

5

CHAPTER 2

LITERATURE REVIEW

This chapter presents literature review and starts with the security policies and practices of the

two widely used mobile device vendors and application platform providers. Following this,

Android OS, application structure and permissions system are explained to shed light on the

ground of the studies in this area. Finally, malware detection methods and the studies about

them are presented.

2.1. Application Market and Operating System Security Policies and

Practices

This section explains and compares the security policies and practices followed by the two

pioneer vendors of mobile devices and their official application markets, namely Apple-

AppleStore and Android-GooglePlay.

A software developer is required to register and pay annual licensing fee and then obtain a

digital certificate of Apple to be able to release software for Apple products. On the other hand

anyone can publish application on the official Android Market with Google’s passive

publication mechanism. (Wu , Mao, Wei, Lee, & Wu, 2012) Like iOS, Android OS requires

digital signatures to install and run applications but the certificates are not Google-issued and

the developers can generate digital signatures as often as they want, give any company name

and contact information in the certificates they like and this makes the traceability of hackers

virtually impossible. Google’s signature mechanism causes two problems. Since traceability of

applications becomes harder, it gets easier to generate and distribute malware. In addition, by

adding malicious code into an existing legitimate application and signing it with the anonymous

certificate makes the addition of Trojan horses into benign applications an easy job for

attackers. (Symantec, 2011)

Apple reviews every application before publication and applies code signing model to prevent

attackers from modifying or infecting benign applications. (Symantec, 2011) Google also

checks applications simply but the process is not as strict as Apple’s process and adopts a

strategy of deleting applications from the market after they are found to be malicious. (Bose,

Hu, Shin, & Park, 2011) (Porter Felt, Finifter, Chin, Hanna, & Wagner, 2011) (Wu , Mao,

Wei, Lee, & Wu, 2012) In such a strategy, hackers find the required time gap to download and

to alter the legitimate application into a malware by injecting malicious code. This hijacking

6

method makes the ways simple for hackers and it gets even more difficult to detect malwares.

(Symantec, 2012)

In addition, Apple applies a kill switch to make malicious applications inactive because

illegitimate applications may infect Apple devices despite their strict policy. Kill switch is a

precaution taken to remotely deactivate or remove applications from the mobile devices by

application platform providers in case of a malicious content is realized to guard mobile device

users against security threats. Android uses a similar method with Apple’s kill switch to remove

application from Android devices remotely. (Bose, Hu, Shin, & Park, 2011)

Lastly, Android allows installing third-party applications that may increase the spread of

Android malware. (Wu , Mao, Wei, Lee, & Wu, 2012)

To sum up, there are some differences and similarities of security policies among the two

pioneer application platform (and OS) providers, Apple (iOS) and Google (Android). While

Apple applies digital certification with annual fee for developers, Google’s certification is more

flexible and causes the propagation of malware easily. In addition, Apple manually and strictly

inspects the applications’ code before uploading them on the market, but Google applies more

open reviewing strategy and removes the illegitimate applications from the market afterwards.

Whereas Android allows the download of applications from third-party market, iOS restricts the

users from this aspect. Both Google and Apple have kill switch mechanism to remove malicious

applications remotely from mobile devices.

2.2. Android Operating System

Running top of Linux kernel which is an open source Unix-like operating system, (wikipedia,

2014) Android is a middleware and an operating system for mobile phones. (Enck, Ongtang, &

McDani, 2009) In Android OS, applications are strongly isolated from the system and each

other by the customization of underlying Linux internals, and this mechanism is called

sandboxing. (Enck, Ongtang, & McDani, 2009) (Bose, Hu, Shin, & Park, 2011) Mobile

applications for Android are written in Java language and execute on the OS with unique user

and group identity (UID) assigned at installation time on their own Linux processes. (

Orthacker, et al., 2011) (Bose, Hu, Shin, & Park, 2011) (Enck, Ongtang, & McDani, 2009)

Assignment of UID to applications assures the sandboxing mechanism which restricts the

access to the file system resources and memory. Applying a fine-grained permission system,

Android compels restrictions on communication, share of resources and functions. If the user

provides access to the required permissions demanded by applications, then applications can

access to resources. Additionally, by the help of this isolation mechanism, the effects of buffer

overflows are minimized. In other words, if an application is infected due to the exploitation of

vulnerability in OS, other parts of the system and applications are protected. (Enck, Ongtang, &

McDani, 2009)

2.3. Android Application Structure

Android applications are packaged files which are called as apk files, and brought in zipped

form. The assets and resources in the form of multimedia to be used for the user interfaces and

functions, the Dalvik executable (dex file) containing byte code and the configuration file,

Android Manifest file, are contained in an apk. (Schreckling, Huber, Höhne, & Posegga, 2013)

7

There exist four types of basic components to be used to build an application which are

activities, services, broadcast receivers and content providers. User interfaces are formed by

activities and only one activity can be active at a time if an application contains many activities.

Services are in job to fulfill background or time consuming tasks and are interacted by API

functions by triggering remote calls. In order to share their data with other applications,

applications use content providers and to retrieve this data, they use content resolvers. Content

providers query data of another content provider by using URIs (unique resource identifier).

Broadcast receivers provide the exchange of intent messages, intent to perform an action,

between applications. (Schreckling, Huber, Höhne, & Posegga, 2013) These four types of

components use intent messages to communicate and their communication mechanism is called

as IPC (inter-process communication). (Enck, Ongtang, & McDani, 2009)

2.4. Android Permissions System

As it is stated in the Android OS part, applications face the restriction on system resources,

functions and communication. To be able to access these restricted elements, applications must

declare permissions in their manifest files. (Abu Samra, Yim, & Ghanem, 2013) (Bose, Hu,

Shin, & Park, 2011) Several hardware devices like GPS and camera, sensitive parts of the OS

like contacts and the parts of other applications to be accessed can be thought as the elements

which have restrictions. For instance, to access the internet, “android.permission.INTERNET”

statement should be placed in the manifest of an apk while the permission “android.

Permission.READ CONTACTS” is used by an application to access the contacts of a user. (Abu

Samra, Yim, & Ghanem, 2013) The user, who wants to install an application, should grant all of

the permissions requested by that application at the installation time, not at the runtime, and

there is no way to grant the some part of the permissions. (Meurer & Wismüller, 2012) Those

granted permissions are enforced when the application executes and the permissions which are

not granted yield errors. (Bose, Hu, Shin, & Park, 2011)

Android permissions are grouped into three categories according to their security risk levels as

normal, dangerous and signature/system. (Schreckling, Huber, Höhne, & Posegga, 2013) (Zhu

& Peiravian, 2013) (Meurer & Wismüller, 2012) Normal permissions do not threaten the

security of mobile devices and hence they are not asked to the user to be approved, in fact

granted without notification. On the other hand, dangerous and system type permissions are

approved by the user at install time because they have the control on the restriction of critical

resources and private data. Signature or system permissions can be requested by only the

applications pre-installed and signed by the device manufacturer and not accessible for normal

developers because they control the access to the main system services and data. (Schreckling,

Huber, Höhne, & Posegga, 2013) (Meurer & Wismüller, 2012) Beside these predefined

permissions for Android applications, developers may also define their own permissions like in

the case of having purpose to protect a content provider. (Meurer & Wismüller, 2012) (Bose,

Hu, Shin, & Park, 2011)

2.5. Malware Detection Methods

Static and dynamic analyses are the two main types of malware detection techniques that

analyzes both PC and smartphone malware according to the way of code analysis. (Suarez-

Tangil , Tapiador, Peris-Lopez, & Blasco, 2014) (Wu , Mao, Wei, Lee, & Wu, 2012) Static

analysis is a detection method which comprise of unpacking and disassembling or decompiling

the malware samples and inspecting the obtained code. On the other hand, dynamic analysis

8

handles specimens by running them in a controlled environment and tries to find out malicious

behaviors. Dynamic and static analyses are conducted by extracting and analyzing a number of

features as a result of sample inspection. From this point of view, by using several features as

attributes, machine learning and data mining approaches have been introduced as automated

malware analysis techniques to assist analysts in carrying out classification and clustering tasks.

(Suarez-Tangil , Tapiador, Peris-Lopez, & Blasco, 2014)

Wu , Mao, Wei, Lee, and Wu (2012) discuss malware detection as two different types as misuse

detection and anomaly detection. Misuse detection is the method of applying rules or policies

based on matching the signatures of malware with the ones in database. It precisely detects the

Android malware in case of signature match but needs to update the signatures. Anomaly

detection is defined as applying machine learning algorithms to learn behaviors of known

malware and to predict unknown malware but it sometimes causes high false positive. (Wu ,

Mao, Wei, Lee, & Wu, 2012)

2.5.1. Dynamic (Behavior-Based) Analysis

A behavioral framework for detecting mobile viruses, worms and Trojans targeting Symbian

OS is proposed by (Bose, Hu, Shin, & Park, 2008). A database of behavioral signatures is

constructed by collecting system events and resource-access attempts made by the program and

by applying temporal logic of causal knowledge (TLCK) method on those key behavior

signatures of malwares reported to date. The interested behaviors are the ones presenting

malicious activity like draining the battery, overwriting system files, installing a worm payload,

sending infected messages etc. and these behaviors are not enough to label an application as

malicious in isolation. Hence, the logical ordering of these activities in time is under inspection

by using TLCK method. The monitoring layer is implemented on a Symbian emulator to collect

run-time behavior signatures. A classifier, SVM (support vector machine), is trained from

normal and malicious applications and evaluated on both emulated and real-world malicious

data. Their results show high detection rates with novel malwares which have certainly

matching behavioral patterns with the ones in the database. (Bose, Hu, Shin, & Park, 2008)

Another behavioral framework, Andromaly is a host-based and lightweight (in terms of CPU,

memory and battery consumption) malware detection system designed to monitor and obtain

events and features from the mobile device, and then to perform real-time anomaly detection.

Andromaly uses system metrics such as CPU consumption, number of sent packets through the

Wi-Fi, number of running processes, battery level etc. as behavioral features. Chi-Square, Fisher

Score and Information Gain methods were applied to select features and as machine learning

algorithms k-means, logistic regression, histograms, decision tree, Bayesian networks and Naïve

Bayes were chosen. At the time of their analysis, there was not known Android malware

sample, so they developed four malicious applications that perform DoS and information theft

attacks. They evaluated the different combinations of feature selection methods, the predefined

feature number and machine learning algorithms and compared their performances. According

to the empirical results, Andromaly is effective for mobile malware detection and the best

configuration is the Naïve Bayes trained with top 10 features selected by the Fisher Score

algorithm. (Shabtai, Kanonov, Elovici, Glezer, & Weiss, 2012)

Behavioral-based detection systems may cause extra cost in deployment environment, because

mobile handsets have limitation in terms of CPU and battery. To overcome this obstacle,

(Damopoulos, Kambourakis, & Portokalidis, 2014) presents a proof-of-concept mobile IDS

9

(intrusion detection system) architecture deployed both on the host and the cloud. Their

architecture consists of event sensors which collects events from the device to construct

behavioral signatures [like system calls, inter-process communications, hardware sensors, API

calls, system services (e.g. user SMS), and any library call], system managers to collect

signatures and forward to decision engines, decision engines to fulfill detection mechanism on

device, cloud manager to apply decision algorithms on the cloud. Their system decides based on

sensitivity, which changes according to the user preferences on system sources to provide

flexibility. Four different detection mechanisms from the previous work, namely SMS Profiler,

iDMA, iTL and Touchstroke are used and then Random Forest algorithm is used as the

classification algorithm. They use the Performance (CPU and memory consumption) and

Timeliness (train and test time) metrics to evaluate the effectiveness of their real-time IDS.

Cloud based detection is found to have lower training and testing time but overall detection time

of cloud is worse than host-based detection because of communication delays. However CPU

performance shows the battery lifetime is affected by on-device detection. As a result, they

conclude that a hybrid solution performing the most heavyweight detection tasks on the cloud

and the more time sensitive ones on the host would be a better solution. (Damopoulos,

Kambourakis, & Portokalidis, 2014)

2.5.2. Static Analysis

URANOS, an application rewriting framework developed for Android devices by (Schreckling,

Huber, Höhne, & Posegga, 2013) lets the users of mobile phones to selectively deactivate the

permissions of applications according to their preferences without rooting or manipulating their

smartphones. This framework analyzes the byte code of the application in order to infer the

required permissions during execution and compares with the permissions requested in the

application manifest file. As a result of this on-device static analysis, excessive permissions are

detected and shared with the user. According to the decision of the user whether to enable or

disable permissions, URANOS rewrites the application byte code. This study expresses the

importance of guidance by displaying excessive permissions to the users for helping them make

informed decisions because granting excessive permissions to applications gives the way for

new exploit techniques. (Schreckling, Huber, Höhne, & Posegga, 2013) As another guide to the

smartphone users, Kirin security service for devices with Android OS developed by (Enck,

Ongtang, & McDani, 2009) uses a set of predefined security rules and performs lightweight

certification at install time. These rules are based on security configuration available in an

application’s manifest file (permissions, intents, and application components) and defined

clearly by specifying unwanted configurations and their combinations. Thus they followed

security requirements engineering processes (identifying assets, functional requirements,

determining assets’ security goals and threats, developing assets’ security requirements,

determining security mechanism limitations and adjusting security rules accordingly) to specify

rules and then proposed a security language to define their semantics. Results show that

certification technique fails for only 1.6% of applications in their dataset hence Kirin can be

reasonable for practically mitigate malware. (Enck, Ongtang, & McDani, 2009)

An Android application named as APEFS was also developed to guide the users to make

decision while downloading applications from Google’s official market. This application does

not require the root access to the phone and downloads applications via Google Play. In order to

do so, APEFS parses needed information from the details page of the application like developer

name, price, rating and the requested permissions. Users can define profiles in the APEFS

according to their need of security and privacy and for nonprofessional users it includes pre-

10

defined permission profiles. These profiles are used to filter the applications when a user

searches the market and to find the ones which do not match the security level of the user

among the already installed applications. Then user can delete those unsuitable applications

from the phone. (Meurer & Wismüller, 2012)

DroidMat, developed by (Wu , Mao, Wei, Lee, & Wu, 2012) is a system used as a static

feature-based mechanism to detect Android malware by considering requested permissions,

intent messages passing, API calls and components of applications (activity, service and

receiver) as static information. The dataset used in the study includes 238 Android malware

collected from a public Android dataset, Contagio mobile, and 1500 benign applications

downloaded from official Android market and verified through the website of VirusTotal

malware detection community . As the first step, K-means and EM clustering methods are used

to enhance the malware modeling capability. The number of clusters is determined by using

Singular Value Decomposition method. Then kNN (k-nearest neighbor) and Naïve Bayes

algorithms are trained and tested to detect unknown malware samples. Different combinations

of static features are tried and the feature set consisting of permissions, intent messages and API

calls is found to be the most precise. Finally, the combination of k-means as the clustering and

kNN with k=1 as classification algorithm is chosen as best result. (Wu , Mao, Wei, Lee, & Wu,

2012)

In order to improve the prediction accuracy of the permission-based detection method, a

framework having the combination of requested permissions and static API call behaviors as the

feature set for machine learning classification tasks was proposed. (Zhu & Peiravian, 2013)

They utilized the validated dataset of a former study, Malware Genome Project, to make their

analysis and built three benchmark datasets (one containing only permissions as feature set, the

other one containing only API calls and the last one containing combination of them) to

evaluate the contribution of static API calls. By extracting permissions from AndroidManifest

file and API calls from class files, they used them as the attributes to train different

classification methods which are SVM (support vector machine), decision tree and bagging

algorithms. Bagging algorithm has the best performance for all of benchmark datasets and they

ground this performance to the capability of bagging algorithm’s on imbalanced dataset in terms

of class attribute. (Their dataset includes more benign applications than malicious applications)

(Zhu & Peiravian, 2013)

Those works mentioned above and the others which are not handled here are acceptable and

effective enough to explain the malicious characteristics of Android applications by using

combinations of Android permissions, native code, embedded applications, and application

components. (Glodek & Harang, 2013) extended those works by adding the frequent

combinations of such static features as training attributes for random forest classification

algorithm. They chose random forest because of its high accuracy performance and

computational efficiency. They also used the dataset of Malware Genome Project for labeled

malwares and collected legitimate applications from third party markets randomly. They came

to conclusion that the combinations of permissions seen frequently in the dataset improve

previous results with true positive rates above 90% and with acceptable false positive rates.

(Glodek & Harang, 2013)

In one of the studies using static analysis technique, researchers apply a new method called

Activation Patterns by extracting the permissions and other metadata (like description of

application, download count, price and category of each application) of 130.211 applications

11

collected from Google’s official application market. They deeply inspect the permissions and

their relations by executing semantic search queries to figure out anomalies and identify the

clusters of similar applications according to permissions and descriptions of them with Growing

Neural Gas clustering algorithm. By using activation patterns method they try to find out

anomalies utilizing generated patterns. For example they look into the relationship between the

description of and permissions requested by an application. As a result, their study constructed a

solid basis for further anomaly detection of applications on the market and their clustering based

on permissions were promising because of giving information about the typical usage of

permissions by various application categories. (Bose, Hu, Shin, & Park, 2011)

In their research, (Abu Samra, Yim, & Ghanem, 2013) use a dataset which includes

approximately 188,000 applications downloaded from Google’s Android Market in November

2011 by using web crawling technique for a former study. This dataset had been comprised of

top free and top paid applications and then more applications obtained as a result of search done

by using some random search terms in the Android Market were added to this dataset. The

authors choose to study with applications under business and tools category and justify this

selection as they interested in clustering data to two clusters as malicious and non-malicious

applications. They use features extracted from xml files of decompressed apk.s and Android

Market specific features (like app. Name, category, description, rating values, price etc.) to

apply an unsupervised k-means clustering algorithm. The result of k-means algorithm obtained

in this article is claimed to give good performance for clustering in Android applications to

detect malicious applications.

2.6. Summary

The previous work on mobile malware detection is concentrated on two types of methods as

dynamic and static analysis. Static analysis technique is the reverse engineering of samples

which decompresses applications and inspects the static features of obtained application parts

like byte code and permissions requested from users. Signature-based analysis method is the

subtype of static analysis which compares the unknown samples with the known malware

database and matches the signatures. In this study, a feature-based automated static analysis

method is used to detect Android malware because of the low resistance of signature-based

method to polymorphic and unseen malware. (Zhu & Peiravian, 2013) Another main type of

detection method, dynamic analysis, examines the applications’ behaviors on run time by

executing them. Since it requires complicated skills and manual investigation (Wu , Mao, Wei,

Lee, & Wu, 2012), it is not preferred in this study. The reason for choosing Android devices and

its official market to inspect lies behind the security policies of them. These devices expose

more threats because of the official market’s open strategy in terms of application reviews and

user-centric permission grant mechanism for applications installed on them. (Bose, Hu, Shin, &

Park, 2011) (Porter Felt, Finifter, Chin, Hanna, & Wagner, 2011) (Wu , Mao, Wei, Lee, &

Wu, 2012) (Symantec, 2011)

Several features have been used to conduct static analysis for mobile malware detection on

Android devices in prior studies. Subsets of the combinations for permissions requested from

users at install time, intent messages of applications to trigger events, main components of

Android applications (content providers, broadcast receivers, activities, and services), and API

calls obtained as the result of byte code inspection were used by (Enck, Ongtang, & McDani,

2009) (Wu , Mao, Wei, Lee, & Wu, 2012) (Zhu & Peiravian, 2013) as inputs for their models.

(Glodek & Harang, 2013) proposed the use of combinations for permissions seen frequently in

12

the dataset. Also in this study requested permissions are used as static features as the previous

studies have proved their contribution in Android malware detection task. The other static

features used by those studies could not be included in this study because all of the applications

collected from the official market did not let to be decompressed. However, official application

market metadata have been proposed in this study as additional features to requested

permissions because the permissions are not sufficient to explain malicious behaviors on their

own. (Meurer & Wismüller, 2012) (Enck, Ongtang, & McDani, 2009) There exist other studies

using official market metadata as inputs for statically detecting Android malware like the ones

performed by (Abu Samra, Yim, & Ghanem, 2013) and (Bose, Hu, Shin, & Park, 2011).

However they applied unsupervised machine learning techniques, while in this study supervised

classification algorithms are applied with and without feature selection algorithms and then their

performances are compared.

13

CHAPTER 3

RESEARCH METHODOLOGY

This chapter explains the research methodology and the process to obtain the final baseline

datasets. It starts with the explanatory information about detection methods, classification and

feature selection algorithms and the justifications for the chosen method and algorithms. Then

the following sections clarifies how the data were collected and processed to be used in

algorithms, parameters for evaluating the performance of the models and concludes with a pilot

study conducted to obtain the baseline datasets for further analyses.

3.1. Detection Method

As it is stated in the literature review part, the two basic methods when investigating the

malicious behaviors of software or mobile applications are the static and dynamic analysis

(detection) methods. Dynamic detection method is applied by running an application on an

isolated environment and observing behaviors of the application in order to discover the

matching behavior profiles of applications with known malware. (Bose, Hu, Shin, & Park,

2008) Despite the fact that dynamic (behavioral) detection method is more resilient to

polymorphic malware owing to the share of similar behavioral profiles of malware variants in

the same family, (Bose, Hu, Shin, & Park, 2008) it requires complicated skills and so is costly

and time consuming. (Zhu & Peiravian, 2013)

The chosen detection method in this study is static analysis because of the fact that whereas

dynamic analysis can present better understanding of what is going on, but with high cost of

deployment environment and manual probing, static analysis reduces the cost and improves the

performance. (Wu , Mao, Wei, Lee, & Wu, 2012) The proposed method is a kind of automated

feature based static analysis by regarding permissions and other Google metadata information of

Android applications. Under the static analysis, there exists a signature based detection method

which has been implemented for many years by researchers and antivirus companies. Signature

based detection method relies on the comparison of applications against a list of known

malware and has low resistance on unseen, polymorphic, obfuscated and metamorphic malware.

(Zhu & Peiravian, 2013) It is usually proper for post-infection cleanup (Zhu & Peiravian,

2013), so was not preferred in this study. Another drawback of signature based detection

method is being inefficient in terms of battery power consumption which is a scarce resource on

mobile devices because of requiring the comparison of each derived signature with the ones in

14

the database. (Bose, Hu, Shin, & Park, 2008) Moreover, by using the features extracted from

the applications, machine learning methods permit the automated detection of applications and

have been found to be more accurate than the signature-based approach. (Shabtai, Fledel, &

Elovici, 2010) (Suarez-Tangil , Tapiador, Peris-Lopez, & Blasco, 2014) Hence, instead of using

the signature-based static detection method, a feature-based static analysis technique is

preferred in the present study.

To apply machine learning algorithms, Google metadata of Android applications on Google

Play market including the requested permissions by applications at install time is chosen as

feature set. Beside permissions, other metadata of applications were chosen because permissions

are not sufficient to explain malicious behavior of applications on their own. (Enck, Ongtang,

& McDani, 2009) (Meurer & Wismüller, 2012) A plausible explanation for this is given by (

Orthacker, et al., 2011). They claim that an application may capable of reaching the system

resources which are not the permissions requested for at installation, by utilizing inter-process

communication. Hence the applications have actually more capability than implied by their

requested permissions owing to the spreading of permissions among them.

3.2. Classification and Feature Selection Algorithms

In this section, the supervised classification algorithms and feature selection methods chosen to

answer the research questions are explained briefly and their advantages and disadvantages are

given. They are selected to work with motivated by their advantages mentioned here and the

former studies applied them. Also the implementation specific issues for classification and

feature selection algorithms are handled here.

3.2.1. Classification Algorithms

3.2.1.1. Naïve Bayes
In machine learning problems, an optimum hypothesis is aimed to be found among candidate

hypotheses space H. Here the term optimum corresponds to have maximum probability for a

hypothesis. Hypotheses question which class a test instance belongs to for classification tasks.

For Bayesian learning algorithms, posterior probabilities of candidate hypothesis are calculated

by using the below formula (Bayes theorem) and then a MAP (maximum a posteriori)

hypothesis is selected among them. (Mitchell T. M., 1997)

𝑝(ℎ|D) =
𝑝(D|ℎ)𝑝(ℎ)

𝑝(𝐷)

Here 𝑝(ℎ|D) represents the posterior probability of a hypothesis given the training data D. For

this study 2 hypotheses are tested; whether an application belongs to malicious class or benign

class. 𝑝(ℎ) denotes the prior probability of the hypothesis without any data provided. Any value

based on background information can be assigned to this prior probability. If there is no such

knowledge, then each class can be assumed to have equal probability for the prediction of a test

instance. 𝑝(D|ℎ) is the probability of observed data given the hypothesis. In other words, it

represents the multiplication of probabilities for attribute values a test sample have given the

class value. Multiplication can be done owing to the independence assumption of each

attributes. 𝑝(𝐷) is the probability of training data, without in conjunction with any class value.

When it comes to select MAP hypothesis, 𝑝(𝐷) is left out because it does not have dependency

on candidate hypothesis h. (Mitchell T. M., 1997)

15

The Naïve Bayes classifier makes an unrealistic assumption that each attribute (or feature, or

predictor) is independent from each other and is equally important on the decision of class

value. (Witten, Frank, & Hall, 2011) This can be seen as a drawback at the first glance.

However this assumption does not decrease the accuracy of the algorithm seriously, Bayesian

learning method works well in practice (Witten, Frank, & Hall, 2011) and it actually

outperforms more complicated algorithms. (Shmueli, Patel, & Bruce, 2010) In addition, it is an

easy, fast and computationally efficient classification algorithm (Shmueli, Patel, & Bruce, 2010)

having a complexity value which is linearly proportional to the number of instances and

attributes. (Elkan, 1997)

However one problem exists about Naïve Bayes. If the one of the attribute categories does not

exist in the training set, a test sample having that category value will have the zero probability

and this attribute will “out vote” the other ones. (Shmueli, Patel, & Bruce, 2010) Out voting of

this probability to others can be explained by looking to the way 𝑝(D|ℎ) is calculated. As it is

explained above, 𝑝(D|ℎ) is denoted as the multiplication of the each attribute value’s

probability based on the independence assumption of attributes. If one of the attributes has not

occurred in the training set, its probability will be zero and cause 𝑝(D|ℎ) to be zero. To solve

this problem, Laplace estimator is used. The logic behind Laplace estimator is to add a constant

(simply 1) to each numerator of probabilities, and then the total amount which has been added

to all numerators is added on to the denominators of probabilities. (Witten, Frank, & Hall, 2011)

To clarify this, an example situation can be thought for this study. If we assume that in the

training set, there was no malicious instance having the “Access bookmarks” permission, then

its attribute count (numerator of conditional probability) would be zero. Hence, a test instance

having the “Access bookmarks” permission would have the zero probability with respect to

malicious class value no matter what other attribute probabilities are. To handle this problem,

count of each attribute value (also the count of other permissions and official market metadata)

can be increased by 1, and then the number of considered class value (in this case the number of

malicious applications), as being the denominator, can be increased by total number of attributes

(because each numerator for each attribute is increased by one). This approach has a

disadvantage that there is complication about the amount of constant value added and so about

the assignment of prior probabilities. However, if the training samples are admissible in amount,

the prior probabilities do not make much difference in practice. In addition, people prefer to add

1 to all initial counts for Laplace estimator. (Witten, Frank, & Hall, 2011)

Naïve Bayes classifier specific implementation issue is to discretize numerical attributes;

otherwise the algorithm does not run. Discretization process is explained in detail in the data

preprocess part.

3.2.1.2. k-Nearest Neighbor

kNN is an instance based learning algorithm and instance based learning algorithms do not

explicitly apply a target function on training data. The only task in terms of training for them is

to hold training instances. When a new test instance is found, then the learning algorithm

searches the stored training samples to label this test instance considering the target function.

They are also called as “lazy learning” algorithm because of postponing the learning task until a

new instance is encountered. The main idea of kNN is to calculate the distance of the queried

sample to the training instances by using a distance function to find the identified number of

nearest neighbors. Then the sample is assigned to a class according to the majority of classes

which its nearest neighbors belong to. (Mitchell T. M., 1997)

16

The most conventional drawback of kNN is its high cost in computation time for making

predictions on testing data because it computes the distances of all testing instances to all

training instances. (Bhatia & Vandana, 2010) (Witten, Frank, & Hall, 2011) So, in this study

first adjustments on the dataset, to form final baseline datasets, were done by using

computationally efficient Naïve Bayes algorithm instead of kNN. Another disadvantage of kNN

algorithm is that it calculates the distance of a test instance considering all of the attributes in

the dataset. In this approach, the most relevant attributes to classify instances are dominated by

other useless features. This problem is also called as curse of dimensionality. (Mitchell T. M.,

1997) Therefore, the data points belonging to the same class in reality can be assigned to

different classes as the result of misleading similarity measure. There are some counter

measures to eliminate this problem. (Mitchell T. M., 1997) As the first option, the attributes can

be given different weights according to their importance for the calculation of distances. Those

weights are adjusted by using cross-validation method, leaving a proportion of training set to

decide weights and changing iteratively this subset to test the results, in a way that the

classification error will be minimized. The second option is to remove irrelevant features

completely. This second method corresponds to set the weights of irrelevant features to zero in

other approach. (Mitchell T. M., 1997) In this study, feature selection methods are preferred, not

only to deal with this kNN-specific problem but also to prevent misleading of irrelevant features

for other classifiers and decrease the computational complexity.

Besides its disadvantages, kNN is advantageous from some aspects. First of all, it can be

considered as a simple, easy to learn and effective learning algorithm. (Bhatia & Vandana,

2010) (Witten, Frank, & Hall, 2011) Additionally, it can be adapted to wide range of practical

problems. (Dini , Martinelli, Saracino, & Sgandurra, 2012) Another advantage of kNN is that

new instances can be added to the training set anytime (Witten, Frank, & Hall, 2011) owing to

the principles of lazy learning. Addition of extra training sample afterwards would not affect the

learning task because learning occurs as being triggered by test samples. This delayed learning

approach also lets the estimation of target function based on each new sample in a local way

rather than generalizing them only once to the whole dataset. (Mitchell T. M., 1997)

To implement kNN classification algorithm, one should consider the selection of distance

function and k value (number of nearest neighbors). There exist different distance functions like

Euclidean distance, Manhattan (city-block) distance, Chebyshev distance for numeric attributes

and Jackard, Hamming distance for categorical attributes. As it is stated at data preprocessing

part, the arranged feature set completely consists of categorical variables, and then a distance

function for categorical variables was needed. However in Weka, distance measures are limited,

there are not all the functions one may want to use for calculations. In spite of being used for

numeric values, Euclidean distance in Weka is adopted for categorical variables. It calculates

the distance between data points with Euclidean formula by accepting the distance between two

different categorical variables as 1 and the distance between the two same categories as 0.

(Weka, 2009) Hence, Euclidean distance was chosen in this study to train k Nearest Neighbor.

In addition, selection of the k parameter was fulfilled by Weka. It chooses the best smallest k

among all the possible k values (from 1 to number of instances) giving minimum error rate.

Additionally, before running kNN algorithm, numerical attributes should be normalized to

prevent the dominance of attributes with high scaled values on the other ones. However, all the

numerical attributes were converted to categorical attributes, so there is no need for such an

operation in this study.

17

3.2.1.3. C4.5 Decision Tree

C4.5 is a classification type decision tree algorithm that uses training set to build the model and

make predictions on test instances. To construct C4.5 decision tree, information gain is used as

the splitting criteria of the selected attributes. The tree consists of nodes which are the selected

attributes and of edges for splitting the values of chosen attributes. Attributes with the highest

information gain are chosen as nodes (splitting attributes). This process continues in a recursive

manner until there is no improvement of information gain or the leaf nodes contain the instances

having the same class value. The hypotheses space for this learning algorithm consists of

candidate decision trees constructed from the same training set. This learning algorithm prefers

short trees over longer and complex trees. (Quinlan J. , 1993) C4.5 is the extension of an earlier

version of the decision tree, ID3 (Quinlan J. , 1986), developed to improve the ID3 tree

algorithm. (Witten, Frank, & Hall, 2011) (Mitchell T. M., 1997) In C4.5 issues like missing

values, numerical attributes, computational complexity and costs, and overfitting have been

handled. (Mitchell T. M., 1997) (Witten, Frank, & Hall, 2011) Pruning is the method of cutting

the branches of the tree to avoid overfitting (Shmueli, Patel, & Bruce, 2010) which is caused by

the noise in the data or the inadequacy of the training examples (Mitchell T. M., 1997), by

regarding the classification error, so in this study pruning method is used for decision tree

algorithm.

In the article written by (Quinlan J. , 1986), a small training set about the decision of playing

tennis on Saturday mornings was used to explain ID3 decision tree algorithm. This dataset

includes 14 instances and 4 attributes named as outlook, temperature, humidity, and windy. The

set of possible values for these attributes are as follows:

 Outlook: {sunny, overcast, rain}

 Temperature:{cool, mild, hot}

 Humidity: {high, normal}

 Windy: {true, false}

The class attribute for this dataset is binary and has the values as “P” for the Saturday morning

being suitable for playing tennis and “N” for the decision of not to play tennis. The following

table presents this sample data used to construct the simple tree given in (Quinlan J. , 1986).

18

Table 1- The small sample dataset taken from the original work of (Quinlan J. , 1986)

Figure 1- A sample decision tree taken from the original work of (Quinlan J. , 1986) and

constructed from the Saturday mornings dataset

The sample decision tree given at the figure above is one of the candidate hypotheses to be

searched over and is constructed by using training data using the information gain calculations.

The calculation of the information gain is done based on probabilities of class values

proportional to whole instances belonging a specific attribute value (a branch). Once the tree is

constructed, it can be utilized to classify test samples. Testing starts from the root node placed at

the top of tree and goes through the sub-tree until reaching a leaf node. To clarify the process, a

test sample could be thought having the following values in its feature set:

19

 Outlook, Temperature, Humidity, Windy = {rain, mild, normal, false}

Test starts with the root node of the learned tree above. The test instance has the value of “rain”

for the root node, outlook attribute, so for the next step the direction will be the most right

branch towards the child node, windy. This node checks the test sample’s value for windy, and

because it has value of “false”, selected branch of this node brings the instance to leaf, class

value, labeled as “P”. As a result, for such a Saturday morning having temperature as mild, with

normal humidity, rain and no wind, playing tennis would be preferred.

C4.5 algorithm can be applied on both numerical and categorical variables and handle missing

values. (Quinlan J. , 1993) Hence it does not require the preprocessing of data points. Despite

requiring many data points to be constructed, C4.5 is computationally efficient and can be

applied for large datasets after construction. (Koshal & Bag, 2012) (Shmueli, Patel, & Bruce,

2010) In addition, it provides a schematic representation which can easily be interpreted by

users. (Shmueli, Patel, & Bruce, 2010) Also, the selected decision trees can be converted to a

set of rules to make them more readable. (Witten, Frank, & Hall, 2011) In this study, J48, the

implementation of C4.5 in Weka is used to construct a classification tree and then prune it.

3.2.1.4. Random Forest

Random forest is an ensemble method which is constructed by several decision trees to vote on

the classification (or regression) task and developed by (Breiman, 2001). The trees constructing

the forest have impact on the response. (Horning, 2010) The main idea of the random forest,

like other ensemble methods, is that weak learners come together and by joining their power, a

stronger model giving better results is formed. (Horning, 2010) In random forests, splitting

attributes are chosen randomly, so the correlation between trees is decreased resulting in

improved prediction accuracy. In random forest algorithm, the number of trees and the features

to construct trees are chosen by the user. However while training random forest in Weka, there

is no necessity to choose the number of features, Weka fulfills this job by considering some

function background. Hence, the default settings for random forest is used which also defines

the number of trees as 10. Random forests improve the results of decision trees owing to their

voting among the trees, random feature selection, and bagging technique used to construct

training samples for each tree. Bagging technique means to construct new training sets from the

original training set with replacement sampling, i.e. without removing the selected samples

from the original set. To measure the generalization error, the internal error estimate of the

algorithm, out of bag error is used. The idea underlying out of bag error is to use the bagged

training sets (the data which are not used to construct the trees) to make out of bag estimations

and then calculate their prediction errors. (Breiman, 2001). They handle the overfitting

problem, the sensitivity to outliers of decision trees, and so eliminate the need for pruning. (Ali,

Khan, Ahmad, & Maqsood, 2012) Overfitting is avoided by using the Strong Law of Large

Numbers, because random forests always converge. (Breiman, 2001). Additively, they are fast

and can handle missing values like decision trees and asymmetrical data in terms of class

values. (Benyamin, 2012) Below a representative figure for random forests can be seen:

20

Figure 2- Random Forest representation (Benyamin, 2012)

In the above figure, the mechanism of random forests is demonstrated. The whole training set is

split into several sub training set in a random way with replacement sampling as explained

above. Then, decision trees are constructed for each training sets by using the random subset of

features. In each tree, the optimum split is found by using those random feature subsets as

search space and information gain measure. The above figure explains the construction of trees

in a forest, but the process is not complete. After constructing trees, test samples are classified

by each tree according to a decision tree classification procedure. Then, the final decision on the

class of a test sample is given by voting among trees in the forest.

3.2.2. Feature Selection Algorithms

When working with a dataset with high dimensionality, as in this study, some of the attributes

which are not relevant and necessary to build the model can cause overfitting and so reduces the

generalizability of the algorithm. Also called as “curse of dimensionality”, this problem may

mislead the algorithm, increase the computational complexity and time to complete running the

algorithm. (Shabtai, Kanonov, Elovici, Glezer, & Weiss, 2012) Hence the feature selection

algorithms have three goals as to enhance the performance of the learning algorithm, to obtain a

faster model by reducing the computational cost, and to achieve obtaining a deeper

comprehension about the underlying processes. (Yu & Liu, 2003) (Bai, Wang, & Zou, 2014) To

overcome these problems in this study, feature selection methods are applied on the dataset by

reducing the dimensionality.

Feature selections algorithms are categorized into two main types as filter and wrapper

approach according to the implementation way and dependence on class values. In the wrapper

21

approach, to select relevant features, the target learning algorithm is used. In this approach, the

searching algorithm solves optimization problem on the predictive accuracy of the chosen

learning algorithm by searching through the space of feature subsets. (Cunningham & Delany,

2007) However in filter approach, attributes are selected before applying a learning algorithm

independently by evaluating a predefined criterion like t-test, χ2-test and information gain. (Bai,

Wang, & Zou, 2014) Filter approach has advantages of being fast, generalizable and unbiased

from any classifier. (Shabtai, Kanonov, Elovici, Glezer, & Weiss, 2012) Additionally, a former

study comparing several feature selection methods of filter type is mentioned by (Geng, Liu,

Qin, & Li, 2007) to find Chi-Square and Information Gain as the most effective methods. (

Shabtai, Kanonov, Elovici, Glezer, & Weiss, 2012) also uses Information Gain and Chi-Square

methods to select most relevant features for conducting an anomaly detection study on mobile

devices with Android OS. Hence, in this study Chi-Square (Imam, Michalski, & Kerschberg,

1993) , Information Gain (Yang & Pedersen, 1997) and ReliefF (Kononenko, 1994) algorithms

are selected as filter type feature selection algorithms. Since in the filter approach the number of

features to be selected is required from the user, 10, 30 and 50 features are decided to be

selected to run feature selection algorithms.

3.2.2.1. ReliefF Feature Selection Method

ReliefF algorithm (Kononenko, 1994) is the extension of Relief algorithm (Kira & Rendell,

1992) which is limited to the classification problems with two class values. Unlike Relief,

ReliefF handles multi valued class attributes and noisy data. (Sikonja & Kononenko, 2003) The

logic of the ReliefF is very similar to kNN algorithm. The closest data points around of an

instance are expected to have similar attribute values with the instance questioned if they are the

members of same class. Those attributes are the relevant ones that the algorithm tries to find

out. (Yang & Li, 2006) The algorithm works as follows: A random instance is selected, and

then nearest-hit (the nearest points having the same class value with the random point) and

nearest-miss (the nearest points having the different class value with the random point) points

are found. To find the relevant features, a parameter is calculated for each feature by finding the

difference of the regarded attribute value between the chosen instance and the closest data

points. If the feature under investigation has a high relevance, it means that it separates different

classes successfully, then the difference parameter should be high for this relevant feature. (Kira

& Rendell, 1992) (Sikonja & Kononenko, 2003) (Yang & Li, 2006)

3.2.2.2. Chi-Square Feature Selection Method

The statistical χ2 test is used to test the null hypothesis whether or not two variables are

independent by evaluating the correlation between them. (Thabtah, Eljinini, Zamzeer, & Hadi,

2009) (Uysal & Gunal, 2012) (Novakovic, Strbac, & Bulatovic, 2011) Hence, in terms of

feature selection task, Chi-square test means testing the independency of an attribute to the class

values. The χ2 formula below is adopted to feature selection problem calculating the χ2 score

for each feature with respect to class value. It uses the observed (𝑁𝑡,𝐶) and expected (𝐸𝑡,𝐶)

occurrences of specific feature values (t) for the instances regarding the class value (C). t’s and

C’s having two values as 0 and 1 means that they represent the instances having/not having that

specific attribute value and class value. (Uysal & Gunal, 2012) (Thabtah, Eljinini, Zamzeer, &

Hadi, 2009) Higher values of χ2 requires the rejection of null hypothesis, (Novakovic, Strbac,

& Bulatovic, 2011) then it means that the feature being evaluated is relevant to the class values.

(Vryniotis, 2014)

22

χ2(𝑡, 𝐶) = ∑ ∑
(𝑁𝑡,𝐶 − 𝐸𝑡,𝐶)2

𝐸𝑡,𝐶
𝐶∈{0,1}𝑡∈{0,1}

The χ2 values for each feature are calculated in this manner and the features with high χ2 values

rejecting the null hypothesis are chosen as candidate features. Among candidate features, ones

with the highest score are chosen according to predefined number of features by ranking. (

Vryniotis, 2014)

3.2.2.3. Information Gain Feature Selection Method

Information Gain measure as a feature selection method is used to comprehend the contribution

of a feature to classification task by calculating the entropy gain when that feature used as

predictor. (Jamali, Bazmara, & Jafa, 2012) (Uysal & Gunal, 2012) Below is the formula used to

calculate information gain:

𝐼𝐺(𝑡) = − ∑ 𝑃(𝐶𝑖)𝑙𝑜𝑔𝑃(𝐶𝑖) + 𝑃(𝑡) ∑ 𝑃(𝐶𝑖|𝑡)𝑙𝑜𝑔𝑃(𝐶𝑖|𝑡) + 𝑃(𝑡̅) ∑ 𝑃(𝐶𝑖|𝑡̅)𝑙𝑜𝑔𝑃(𝐶𝑖|𝑡̅)

𝑀

𝑖=1

𝑀

𝑖=1

𝑀

𝑖=1

P(Ci) is the probability of class values, P(t) and P(𝑡) represents the presence or absence of a

feature value, P(Ci|t) and P(Ci|𝑡) are the conditional probabilities of class values given the

presence or absence of the regarded feature value. (Uysal & Gunal, 2012)

3.2.3. Summary for Selected Algorithms

In this study, Naïve Bayes, k-nearest neighbor, J48 (java implementation of C4.5 decision tree),

and random forest classification algorithms were chosen for Android malware detection by

using official market metadata as predictor. In addition, as it is explained in “Data Preprocess

and Features for Machine Learning Algorithms” part, the dataset used includes 861 features

which may include irrelevant and unnecessary attributes for classification task. This may cause

overfitting, mislead the learning algorithms, and increase the complexity and time needed to

complete the algorithms. In order to mitigate this, feature selection methods were applied and

the most relevant features selected by these methods were given as input to classification

algorithms.

The reason for selecting Naïve Bayes as a supervised learning algorithm in this study is mainly

its being a simple approach and a fast algorithm due to low computational complexity. (Witten,

Frank, & Hall, 2011) (Shmueli, Patel, & Bruce, 2010) Despite its simplicity, it works well in

practice and produces better or at least the similar results with more sophisticated algorithms.

(Witten, Frank, & Hall, 2011) Similarly, as another simple and effective method, kNN was

chosen. (Witten, Frank, & Hall, 2011) (Bhatia & Vandana, 2010) kNN owes its simplicity to its

training phase which only stores training examples and does nothing more in terms of learning.

Because of this advantage, new instances can be added to training set anytime (Witten, Frank, &

Hall, 2011) as another pro. The estimation of target function is made for each new test sample

locally and not for the whole dataset once. (Mitchell T. M., 1997) C4.5 was preferred because it

is computationally efficient, (Koshal & Bag, 2012) (Shmueli, Patel, & Bruce, 2010) easy to

23

interpret with the help of its schematic representation and rules presented (Witten, Frank, &

Hall, 2011) (Shmueli, Patel, & Bruce, 2010). Also because of handling missing values, both

numerical and categorical data (Quinlan J. , 1993), it does not require to preprocess the data.

Random forest learner (Breiman, 2001) is formed by several decision trees and has voting

mechanism among those trees. Hence, they are computationally efficient and handle missing

values like decision trees. Additionally, random forest handles the overfitting problem a

decision tree faces, and eliminates the need for pruning. (Breiman, 2001).

For feature selection algorithms, filter approach is adopted in this study because it is fast,

generalizable and unbiased from a learning algorithm unlike wrapper approach. (Yu & Liu,

2003) (Shabtai, Kanonov, Elovici, Glezer, & Weiss, 2012) The chosen Chi-Square, information

gain and reliefF algorithms are the common feature selection algorithms under filter approach,

hence they were preferred in this study. Also, the use of Chi-Square and information gain

algorithms was motivated by the study of (Shabtai, Kanonov, Elovici, Glezer, & Weiss, 2012)

which implements a real-time dynamic Android malware detection by comparing the

combination of several classification and feature selection algorithms, and the number of

features selected.

Other classification and feature selection algorithms instead of the chosen algorithms in this

study could have been preferred, but the selected algorithms were accepted as working

assumption. Implementation of different classification and feature selection algorithms for the

Android malware detection method proposed in this study is considered as the future work.

3.3. Data Collection

The aim of this study is to investigate whether or not Google Play, Google’s and Android’s

official application market, metadata of Android applications contribute to explain the malicious

behaviors when combined with the analysis of user permissions. In order to achieve this goal,

metadata of applications on Google Play were needed to be collected. First, a kind of web

automation and testing tool and a browser-based macro recorder, iMacros was used to collect

Google metadata and class (or target) values of Android applications. (iMacros) The data

collection processes were recorded and the macro codes of these processes produced by iMacros

were embedded into Microsoft Visual Basic in order to perform repetitive data collection tasks.

However, because of requiring much amount of time for retrieving tens of thousands of

applications’ data by clicking one by one, it turned into a burdensome task. Then a more

practical solution to this problem, using a web crawler and querying data directly from the

servers of Google Play was preferred. The Google Play Crawler was used for acquiring

requested permissions by applications and for downloading them as in the format of apk file.

(Demiröz, 2013) Permissions collected for the top free applications in each application category

consist of 851 different permissions in total, some of which includes developer-defined

permissions. This crawler does not give all of the information presented to a user when he visits

the Android application’s page on Google to download. So, a java application was implemented

to collect the other metadata of applications apart from permissions. Applications were

downloaded and their Google Play information was gathered on 17 June 2014. Approximate

total time for data collection was 12 hours The dataset contains top free applications from each

application category and totally 17244 applications on the date of collection. The mentioned

Google metadata of applications throughout this study includes the following information:

24

 Application category: Indicates the category of an application as defined by official

market. There are two main categories as application and game. Full list of categories

can be found at Appendix A

 Developer name: The name of an application developer on the official market.

Developer names can be personal names or company names, if the application is

developed by a company, or can belong to an institution like metropolitan

municipalities which presents applications for transportation services.

 Developer type: Represents whether an application is developed by a top developer on

official market or not or it is a type of editors’ choice application. Top developers are

promoted by Google and this is utilized by developers for advertisement and financial

gain, by users for finding more trustworthy applications. Editors’ choice applications

correspond to the applications as some of the best applications chosen by Google Team.

(Google, 2014) This attribute has three values for the dataset used in this study: Top

developer, Editors’ Choice Top Developer, Editors’ Choice.

 Star 5, Star 4, Star 3, Star 2, Star 1 rating counts: Display the count of stars for each star

number (1, 2, 3, 4, 5) given by users who download an application. There is no lower

limit to show star ratings for an application on its page. All of star ratings counts would

be zero if any user have not rated an application yet and will be displayed as zero for all

star ratings (1,2,3,4,5) on the application’s page. In addition, ratings presented on an

application’s page on Google are valid for all of the versions of it, i.e. they are lifetime

ratings for an application.

 Average rating of application: Derived from star rating counts of an application, it is

counted as weighted average of star ratings. Average rating can take 100 as maximum

value and 0 as minimum because an application may not be rated yet by any user. In

fact, the dataset used in this study includes such applications which have 0 star ratings

for all star levels and have 0 for average rating.

 Publish date of the current version of application: Developers can update their

applications presented on the market and so the version number of them. Then they can

upload those new versions of their applications on market. The label “Updated” at the

bottom right area of the application’s page displays the publish date of applications

most recent version.

 Size of application: This is a numeric attribute and contains values starting from 11 to

994,304 bytes for the dataset used in this study. However, for some applications this

area has “varies with device” value, hence discretization was applied as these

applications would fall into one category.

 Minimum required Android OS version: When developing Android applications,

developers are asked for the minimum required level of Android API. Android API is

an integer number and is used to compare the compatibility of an Android application

with Android platform on a mobile device. If a user’s mobile device hosts a system with

a lower API level than the API level stated as the minimum required for an application

to run on a device, then the regarded application would not run on the user’s device.

(developer.android.com, 2014)

 Content rating of application: Developers are required to choose proper content rating

of their applications while uploading them on the Google Play. Categories for content

rating in the dataset used in this study are “everyone, low maturity, high maturity,

medium maturity, and not rated” and Google has guideline for selecting them according

to the level of harm (like for gambling, violence, hate, alcohol, tobacco and drug, sexual

content) can be caused by content. (Google, 2014)

25

 Download number of application in form of range: It shows the total install number of

an application by users as an interval (e.g. 10,000-50,000) Full list of download ranges

can be found at Appendix A.

A sample interface for an application on Google Play can be seen at the following figures:

Figure 3- Developer name, application type and developer type information of the sample

application

Figure 4- Average rating and star ratings of the sample application

Figure 5- update date, size download range, minimum required Android OS, content rating of

the sample application

26

After collecting market-related information of applications (including permissions), it was the

second step to acquire the target values of applications, as malicious or benign, to be able to

train a supervised classification algorithm. For this purpose, Virus Total, a free online service

identifying malicious content with the contribution of several antivirus engines and web

scanners was appealed. (VirusTotal) Virus Total enables searching different malicious content,

like webpages by querying URLs, domains or IP addresses and files in many diverse format

(including apk files) uploaded by the user to the VirusTotal or queried by using the hash values

of files. To scan files by using hash values requires less time than uploading apk files to the web

site one by one, so by using the “shortcut” (VirusTotal) provided by VirusTotal and sending

http requests, the most recent reports of applications were obtained with hash values. According

to the analysis results of antivirus engines, three Virus Total-related attributes were added into

dataset:

 Analysis date of an apk file

 Number of AV engines which label the sample apk file as malicious

 Total number of AV engines which analyze the sample apk file

The first two data above was used to derive features for machine learning tasks, so the last one

was disregarded.

Figure 6- Virus Total homepage

 After this, a question arose how the hash values of the Android applications appearing in

Google Play can be found. As the first option, “APK Downloader” website was utilized to

query the md5 hash values of applications by using package names obtained in the first step.

(APK Downloader) Using this website is an easy way to get the md5 values of Android

application files and to download them; but the site imposes a quota by user and daily quota

27

which does not permits the generation of new apk files more than 1400. The author(s) of the

website proposes the use of Chrome extension of APK Downloader; however it only downloads

apk files, does not present md5 checksums. Hence, a second option to get the hash values of apk

files had to be implemented: writing a Java application which uses the proper methods in Java

by putting apk files into hash function and yielding fixed size hash values. Not only md5

checksums, but also sha256 checksums were calculated in order to validate the applications

which analysis results obtained from Virus Total are the same with the ones downloaded from

Google Play, because md5 checksum is questionable that some files may share the same md5.

(Wikipedia, 2014) Sha 256 is stronger than md5because of having 256 bits length whereas md5

is 128 bits in length and is used by VirusTotal when showing analysis results. To sum up, md5

and sha256 hash values of each application were calculated, the detection results of those

applications were queried by using md5 hashes and then the sha256 hashes given at the

detection result pages of Virus Total and the calculated ones were compared to ensure similarity

of apk files.

3.4. Data Preprocess and Features for Machine Learning Algorithms

In this study, to perform machine learning related tasks, Weka, open source data mining

software in java, was used. (Hall, Frank, Holmes, Pfahringer, Reutemann, & Witten, 2009) It

allows preprocessing data, training and testing supervised/ unsupervised learning algorithms,

visualizing data, conducting feature selection on attributes and experiments for comparison on

the results of different algorithms, and obtaining learning curves etc. Raw data collected from

market could not be used directly in Weka to apply the feature selection and classification

algorithms selected. First of all, some instances of applications had negative numbers in

malware detection count field (this feature corresponds to the number of AV engines which

identified the application as malware) by fault in collection process; these 12 instances were

excluded from dataset. Similarly, one instance had a date value in the size of application

column, so this one was omitted too. Finally, a dataset consisting of 17,321 instances was

obtained.

There were 2 attributes in the dataset holding instances with values in type of date, namely

analysis date of the application which was obtained from Virus Total and the publish date of

the application’s current version which is presented on the Google Play web page. This raw

information does not add meaningful information solely, so they were converted to days passed

after detection and publish date and two continuous variables were obtained. Additionally, some

of the developer names of applications on their Google Play webpage contain non-Latin

characters, like Cyril or Japanese. The developer names were changed with the ones in the

format of D1, D2, D3, and so on, up to 9321st developer because Weka cannot process this kind

of variables. In addition, star rating count information of applications was omitted from the

scope of the analyses because average rating of applications is calculated by the weighted

average of these numbers. Another arrangement on the data was to convert size of all

applications into bytes for the purpose of measuring them in the same unit. Any of the

remaining variables which are application category, developer type, minimum required Android

OS version, content rating, and the download range of the application was not subjected to

modification process because they had the standard and finite number of categories. Lastly, the

two Virus Total-related attributes, the number of AV engines which label the apk files as

malicious and the total number of AV engines which analyze the apk files, were handled. The

latter one was ruled out of the study because it does not contribute to the settings of the current

study. The former one was used to label instances as “malware” or “benign applications”. As it

28

will be discussed in the baseline datasets section in detail, different labeling methods were

experimented by changing the number of detection times.

After first arrangements on dataset mentioned above, discretization was applied on continuous

attributes (average rating of application, size of application, days passed after detection date and

days passed after publish date) in order to be able to train Naïve Bayes classification algorithm.

Discretization corresponds to lessen the number of values a continuous variable takes by

dividing the variable into a number of intervals. (Joita, 2010) There are two main types of

discretization algorithms as unsupervised which does not require class information to perform

discretization task and supervised which takes into account the class labels. (Dash, Paramguru,

& Dash, 2011) In this study, equal-frequency binning, one of the two classical unsupervised

discretization methods (the other one is equal-width), (Al-Ibrahim, 2011) is chosen because

“Unsupervised discretization algorithms are the simplest to use and implement. They only

require the user to specify the number of intervals and/or how many data points should be

included in any given interval.” (Cios, Pedrycz, Swiniarski, & Kurgan, 2007) (p. 237)

Moreover, equal-width discretization method may cause the loss of information after

discretization if the variables to be discretized are not evenly distributed. (Kotsiantis &

Kanellopoulos, 2006) The handled continuous attributes in this study are skewed and not evenly

distributed, so the equal frequency method is chosen. For seeing the distribution of those

attributes, histograms were drawn and can be found at Appendix B.

Equal frequency binning method divides the attributes into intervals after sorting them in a way

that each interval contains approximately the same number of data points. The number of

intervals are defined by user and there is no a proven optimum way of doing this job. (Mitov,

Ivanova, Markov, Velychko, Stanchev, & Vanhoof, 2008) However, three different approach

were considered while defining number of intervals; Juran’s rules for number of bins, square

root rule and Freedman–Diaconis' choice. According to Juran, if the number of data points is

more than 1000, then it may be suitable to select the number of bins between 11 and 20.

(QIMacros) Square root rule simply takes the square root of number of data points and round

this number up to find the number of intervals. Lastly, Freedman-Diaconis’ choice applies the

following formula to calculate the bin width:

ℎ = 2
𝐼𝑄𝑅(𝑥)

𝑛1/3

where the IQR(x) represents the inter quartile range of related variable and n represents the

number of data points. Then by subtracting the minimum value of the regarded variable from

the maximum value and dividing this range with the bin width, the number of intervals is

calculated. (Wikipedia, 2014)

Using Freedman-Diaconis’ rule produced very close results to the square root rule in terms of

the number of bins for days passed after detection date, days passed after publish date of an

applications’ current version and average rate of application. For size of application in bytes

attribute, Freedman-Diaconis’ rule produced approximately 1350 bins, which can be considered

as too many and the original logic of discretization disappears. As a result, giving the

approximate results with Freedman-Diaconis’ rule, square root rule was chosen to define the

number of intervals in order to use in equal frequency discretization method.

Finally, a dataset was obtained consisting attributes which are all nominal attributes. This final

dataset includes the following features:

29

 Application category (nominal attribute, having 43 sub categories)

 Content rating (nominal attribute, having 5 sub categories)

 Android version (nominal attribute, having 22 sub categories)

 Download number of an application (ordinal attribute in format of intervals, having 19

sub categories)

 Developer name of an application (nominal attribute, having 9321values)

 Developer type of an application (nominal attribute, having 4 sub categories)

 Size of an application in bytes (ordinal attribute, having 130 sub categories)

 Current average rating of an application (ordinal attribute, having 132 sub categories)

 Days passed after publish date of last version (ordinal attribute, having 130 sub

categories)

 Days passed after detection date (ordinal attribute, having 130 sub categories)

 851 Android permissions (binary attributes, having “yes” for the owned permissions by

applications, “no” for the not included ones)

 Target attribute (class variable in binary format, having “benign” value as negative, and

“malicious” value as positive samples)

3.5. Parameters Used to Evaluate Classification and Feature Selection

Algorithms

In machine learning studies, the performance of proposed models is evaluated by utilizing some

well-known metrics. After running classification algorithms, a matrix named as confusion

matrix is obtained including the actual and predicted number of instances with respect to class

values. The representation of a sample confusion matrix is provided below: (Mitchell M. ,

2010)

Table 2- Sample Confusion Matrix

 Predicted class

Positive Negative

Actual class Positive True Positive False Negative

Negative False Positive True Negative

In this study, malicious applications are accepted as positive instances and benign applications

as negative ones. Hence, the cells of the confusion matrix for this study can be interpreted as

follow:

 True Positive (TP): Number of malicious applications which correctly classified, a.k.a.

hit

 False Positive (FP): Number of benign applications which are incorrectly classified as

malicious, a.k.a. false alarm

 True Negative (TN): Number of benign applications which correctly classified, a.k.a.

correct rejection, a.k.a. miss

30

 False Negative (FN): Number of malicious applications which are incorrectly classified

as benign

These values provided by the confusion matrix are used to calculate performance measures for

the assessment of classification algorithms. The following measures derived from confusion

matrix (except kappa statistic) are adopted in this study: (Wikipedia, 2014)

 Accuracy (ACC) : Rate of correctly predicted applications to the total number of

applications

ACC= TP+ TN / (TP+ TN+ FP+ FN)

 True Positive Rate (TPR) : Rate of correctly predicted malicious applications to the

total number of malicious applications , a.k.a. recall rate

TPR= TP/P = TP / (TP+FN)

 False Positive Rate (FPR) : Rate of incorrectly predicted benign applications as

malicious, to the total number of benign applications

FPR= FP/N = FP / (FP+TN)

 True Negative Rate (TNR) : Rate of correctly predicted benign applications to the total

number of benign applications

TNR= TN/N = TN / (TN+FP)

 False Negative Rate (FNR) : Rate of incorrectly predicted malicious applications as

benign, to the total number of malicious applications

FNR= FN/P = FN / (TP+FN)

 Precision : Rate of correctly predicted malicious applications to the total number of

predictions as malicious, a.k.a. positive predictive value

Precision= TP/ (TP+ FP)

 Kappa statistic: This statistic is used to examine the compliance of predictions

according to class values. If the class values (benign, malicious) are in complete

agreement then the kappa statistic equals to 1 and the worst case is denoted by 0, so the

higher values of kappa statistic are preferable. (Abela, Angeles, Delas Alas, Tolentino,

& Gomez, 2013)

3.6. Pilot Study and Baseline Datasets

As the first step of the analyses, a prior study was carried out on the dataset including the whole

applications collected from the market (17,231 preprocessed applications). Since the dataset

includes too many observations, in order to obtain the results in a fast manner for a pilot study, a

classification algorithm with low computational complexity was needed and as mentioned in the

classification algorithms part, Naïve Bayes meets this requirement. If acceptable prediction

31

results had been obtained from Naïve Bayes classifier, then the conclusion would be drawn that

other classifiers would probably give similar results in terms of evaluation parameters.

There were 4,512 malicious and 12,719 benign applications in this initial dataset. The target

values were defined according to the detection count data collected from Virus Total. For this

initial set, applications having detection count greater than or equal to 2, i.e. which have been

identified as a malware by at least 2 AV engine were labeled as malicious applications. The

remaining applications were labeled as benign applications. In order to analyze the contribution

of other Google market metadata to the permissions of Android applications, two datasets were

constructed:

 One including only permission information

 The other including permissions+ other Google market metadata

Using 10-fold cross validation, Naïve Bayes classification algorithm for these two dataset was

run 10 times by changing the random number seed for every run used to split dataset. The

average results according to runs are shown below:

Table 3-Results of Pilot Study

Classifier Feature Set Accuracy TPR FPR Precision

Kappa

Statistic Class

Naive Bayes

Permissions

72.35% 0.85 0.63 0.79 0.24
B

72.35% 0.37 0.15 0.47 0.24
M

Permissions

+

other

Google Play

metadata

76.11% 0.84 0.46 0.84 0.38
B

76.11% 0.54 0.16 0.55 0.38
M

B denotes benign class value, M denotes malicious class value

This display format of parameters is the same Weka presents. For the ease of interpretation, one

should take into account that in this study, the malicious samples are regarded as positive, benign

ones are regarded as negative class values.

According to the results of initial analysis, when only permissions are used as predictors in

Naïve Bayes classification algorithm, 72.35% accuracy is obtained. If the other metadata of

applications collected from Google Play is added to the model, then the accuracy slightly

increases to 76.11%. However, the addition of Google Play metadata seriously increases the TP

rate (the percent of correctly detected malware samples) while decreasing FP rate (the percent

of benign samples incorrectly identified as malware). The contribution of the added attributes

can be realized clearly by comparing the kappa statistics. Despite the difference of accuracy

values give rough idea about the improvement of classification algorithm, kappa statistic

strengthens inferences. In other words, accuracy may increase but this improvement may be in

favor of only one class, but kappa statistic takes into account of the agreement between different

classes.

32

Another important inference from the results is a general problem about accuracy levels. These

accuracy levels can be taught as acceptable, but not satisfactory. As it is stated in feature

selection part, excessive number of features may mislead the learning algorithm and cause to

decrease the accuracy. Hence, to see the impact of reducing the number of features, three

chosen algorithms (chi-square, information gain and reliefF) were applied on the dataset

including all the applications collected and the Google Play market metadata together with

permissions. The number of features which would be selected by feature selection algorithms

was identified as 50 for initial study, because the aim was not to tune the parameters for feature

selection algorithms at this step. Again algorithms (Naïve Bayes with and without feature

selection algorithms) were run for 10 times, but without cross-validation due to the fact that big

datasets require high computation time for implementing cross validation. Instead 80% random

split of the data was used for training set and the remaining 20% for testing set. The results can

be seen at the table below:

Table 4- Results of feature selection algorithms on initial dataset

Classifier

FS

Algorithm Feature Set Accuracy TPR FPR Precision

Kappa

Statistic Class

Naive

Bayes

-

Permissions

+

other Google

metadata

75.97% 0.84 0.47 0.84 0.38
B

75.97% 0.53 0.16 0.54 0.38
M

Naive

Bayes

IG

Permissions

+

other Google

metadata

75.68% 0.83 0.46 0.84 0.37
B

75.68% 0.54 0.17 0.54 0.37
M

Naive

Bayes

CS

Permissions

+

other Google

metadata

75.65% 0.83 0.46 0.84 0.37 B

75.65% 0.54 0.17 0.54 0.37

M

Naive

Bayes

RfF

Permissions

+

other Google

metadata

76.21% 0.84 0.46 0.84 0.38 B

76.21% 0.54 0.16 0.55 0.38
M

B denotes benign class value, M denotes malicious class value

FS: Feature Selection, IG: Information Gain, CS: Chi-Square, RfF: ReliefF

When the results are examined, it is seen that the feature selection algorithms did not increase

the accuracy of the model except ReliefF, but with a slight increase. In addition, FP rates and

kappa statistics did not differ notably. To sum up, applying feature selection methods on this

dataset did not improve the results as wished, so another different method was needed for

increasing accuracy while decreasing or at least not increasing the false positive rate at the same

time. The dataset was imbalanced in terms of class attribute, consisting of 74% benign and 26%

malicious applications according to the defined detection number (by accepting the applications

which are identified as malware by more than or equal to 2 AV firms). As a first choice,

balancing the dataset was thought and the following 2 datasets were constructed as balanced

ones:

33

 A dataset including the same number of (4,512) malicious and benign applications:

Malicious applications were kept, only 4,512 benign applications were chosen

randomly among 12,719 benign applications.

 A dataset including the same number of malicious and benign applications under each

application category: For an application category, if there were more benign

applications than malicious ones, benign applications were chosen randomly as their

number became equal to the malicious ones. If the number of benign applications was

smaller than or equal to the number of malicious applications in an application

category, nothing was changed.

The table below shows the comparative results of these 2 datasets with the original dataset:

Table 5- Comparison of detection results for balanced and imbalanced datasets

Classifier Dataset Feature Set Accuracy TPR FPR Precision

Kappa

Statistic Class

Naive

Bayes İmbalance

d (original)

Permissions

+

other Google

metadata

75.97% 0.84 0.47 0.84 0.38 B

75.97% 0.53 0.16 0.54 0.38
M

Naive

Bayes

Malware

and Benign

equal

Permissions

+

other Google

metadata

68.36% 0.71 0.34 0.67 0.37 B

68.36% 0.66 0.29 0.69 0.37
M

Naive

Bayes

Malware

and Benign

equal for

each app

category

Permissions

+

other Google

metadata

73.67% 0.83 0.39 0.75 0.45
B

73.67% 0.61 0.17 0.71 0.45
M

B denotes benign class value, M denotes malicious class value

Both of the datasets has not shown an improvement in terms of prediction accuracy, but

balancing the number of malicious and benign applications under each application category

improves the false positive rate while not decreasing the accuracy of the model seriously. In

order to understand whether the contribution of false positive rate’s decrease to the class

agreement is statistically meaningful, a paired t- test on the kappa statistic of two datasets (the

original one and the one having the same number of malicious and benign applications under

each application category) was applied. According to the 5% confidence level, the balanced

dataset has a higher kappa statistic than the unbalanced dataset which is statistically significant.

As a result, this balancing option did not improve the accuracy but decreased the false positive

rate significantly; hence it should be kept aside for further uses.

As the second option for getting more accurate results together with lower false positive rates,

changing the labeling method of applications as malware or benign could be tried. In the first

original dataset, applications were labeled as malicious or benign if their detection count is

greater than or equal to 2. However, one cannot be so sure that the applications which are

claimed to be malicious by 2 AV engines are malware actually. Similarly, the applications

which are identified as malware by 1 AV engine may not be a benign application, but they were

labeled as benign in the former method. To sum up, the detection count criteria for labeling

applications as malware should be increased, and by only accepting the applications with zero

34

detection count as real benign ones, the remaining ambiguous applications should be eliminated

from the dataset. In order to decide this detection count level, experiments were conducted by

constructing datasets according to the principles mentioned above and applying Naïve Bayes

classifier on those datasets. This time again the classification algorithm was run 10 times for

each dataset by applying cross-validation because datasets got smaller and more suitable for

cross-validation. The results of experiments are given below:

Table 6- Comparison of detection results for datasets with different detection counts of malware

applications

Classifier Feature Set

Detection

Count Accuracy TPR FPR Precision

Kappa

Statistic Class

Naive

Bayes

Permissions

+

other Google

metadata 2

76.11% 0.84 0.46 0.84 0.379 B

76.11% 0.54 0.16 0.55 0.379
M

Permissions

+

other Google

metadata 3

79.53% 0.86 0.37 0.86 0.481 B

79.53% 0.63 0.14 0.61 0.481
M

Permissions

+

other Google

metadata 4

82.62% 0.88 0.36 0.90 0.508 B

82.62% 0.64 0.12 0.62 0.508
M

Permissions

+

other Google

metadata 5

84.87% 0.90 0.35 0.92 0.527 B

84.87% 0.65 0.10 0.54 0.527
M

Permissions

+

other Google

metadata 6

86.65% 0.91 0.36 0.93 0.526 B

86.65% 0.64 0.09 0.58 0.526
M

Permissions

+

other Google

metadata 7

88.84% 0.93 0.38 0.94 0.525 B

88.84% 0.62 0.07 0.57 0.525
M

Permissions

+

other Google

metadata 8

90.73% 0.943
0.40

3
0.95 0.516

B

90.73% 0.597
0.05

7
0.54 0.516

M

Permissions

+

other Google

metadata 9

91.79% 0.949
0.42

6
0.96 0.493

B

91.79% 0.574
0.05

1
0.51 0.493

M

Permissions

+

other Google

metadata 10

93.45% 0.961
0.43

5
0.97 0.501

B

93.45% 0.565
0.03

9
0.51 0.501

M

B denotes benign class value, M denotes malicious class value

35

It is seen clearly that when the number of detection is increased in order to label an application

as malware and the more ambiguous applications are removed, the prediction accuracy of the

model increases constantly. However, as the detection count continues to increase, false alarms

start to increase after some point because dataset becomes more imbalanced due to increasing

proportion of benign applications. This can also be seen from the kappa statistics that the

agreement between two classes deteriorates after detection count equals to 5. In order to choose

the final baseline datasets, paired t-test was applied on prediction accuracies and kappa statistics

of these datasets and can be found at Appendix C. All the increasing prediction accuracy seem

to have statistically significant difference from the former ones, this t-test does not enlighten so

much about the choice. Hence, when the t-test for kappa statistics is examined, the datasets

which have detection counts 5, 6, 7 and 8 are found to have statistically significant difference.

Among them, the dataset having the detection count as 8 is selected for further analysis because

of two reasons. First, it has less data points from others and this helps to decrease the

computation time. Second, the dataset with detection count equal to 8 is more accurate than the

others (datasets with detection count 5, 6 and 7).

After the selection of the dataset with detection count=8, then the effect of first balancing

method on the false positive rates and kappa statistic was questioned. The first method to

balance the dataset was to choose the equal number of benign and malicious applications under

each application category. Therefore, a new dataset had been constructed from the dataset which

had detection count equals to 8 by leaving the same number of benign and malicious

applications under each application category. Then Naïve Bayes classifier was run for 10 times

with 80 percent random partition of datasets for training data and the left for testing data.

Resulting prediction accuracies and kappa statistics were subjected to paired t-test to see

whether the difference between these parameters for two datasets is statistically significant.

Table 7- Accuracy Comparison for balanced and imbalanced datasets with detection count=8

 Datasets

Classifier

Detection

Count=8,

balanced

Detection

Count=8,

imbalanced

 Naïve

Bayes

80.65 90.74 v

 v: statistically better than the compared

value at 0.05 confidence level

Table 8-Kappa statistic comparison for balanced and imbalanced datasets with detection

count=8

 Datasets

Classifier

Detection

Count=8,

balanced

Detection

Count=8,

balanced

Naïve

Bayes

0.51 0.57 v

 v: statistically better than the compared

value at 0.05 confidence level

36

According to results, when the dataset was balanced, the accuracy of the model decreased from

90.74 to 80.65 and the difference is statistically significant at 0.05 confidence value. However,

the kappa statistic of the dataset increased from 0.51 to 0.57 and this difference is significant

too. This means that the balanced dataset is less accurate but produces this accuracy value with

higher agreement between benign and malicious class values and with less false positive rate.

Consequently, the balanced dataset with detection count=8 was decided to continue with for

further analysis and the final two baseline datasets were constructed:

 A dataset including only permissions as feature set, malicious applications which have

been identified as malware by more than or equal to 8 AV engines and benign

applications which have not been identified as malware by any of AV engines (and the

number of benign and malicious applications under each application category was

balanced as explained before in this section)

 A dataset including permissions together with other Google Play metadata as feature

set, malicious applications which have been identified as malware by more than or

equal to 8 AV engines and benign applications which have not been identified as

malware by any of AV engines (and the number of benign and malicious applications

under each application category was balanced as explained before in this section)

3.7. Summary of Pilot Study

Before applying all the classification and feature selection algorithms and their combinations

with the number of selected features, a pilot study was carried out to see the approximate

performance of the detection model proposed in this study. In order to obtain and compare

results in a fast manner, Naïve Bayes classifier was preferred. As the first step, whole dataset of

applications collected from the official market was used to apply Naïve Bayes learning

algorithm. Applications’ market related data was collected by writing a Java application for all

application categories defined by Google Play and for top free applications under each of them

(Those application categories can be found at Appendix A) . Permissions requested by

applications at install time were collected by using a Google Play crawler (Demiröz, 2013) and

applications were downloaded again utilizing this crawler. The reason for downloading

applications is to calculate their hash values in order to query them via an online free AV engine

(VirusTotal). After collecting applications, they were labeled according to the number AV

engines detecting them as malicious. If an application had been identified as malicious by more

than or equal to 2 AV engines, it was labeled as malicious, otherwise as benign, for the initial

phase. Two different datasets were used to investigate the contribution of official market

metadata; one of which only includes user permissions and the other includes user permissions

together with market metadata. These two datasets included the same number of instances,

consisting of 4512 malicious and 12719 benign applications. Naïve Bayes classifier was run 10

times for these two datasets with cross-validation. According to initial results, addition of

market metadata increased the accuracy of model 3.76% which is a slight difference, but the

amount of increase in TPR (0.165) and decrease in FPR (0.164) were acceptably high. This

means that despite insignificant improve in prediction accuracy, addition of market metadata

improved the agreement of class values (benign and malicious) on classification results.

However, the false positive rate was not acceptable enough yet and the prediction accuracy

could be improved more. The dataset included 861 features, so as the effect of excessive

number of features, classification algorithm could be misled. Therefore, 3 feature selection

algorithms (chi-square, information gain and reliefF) are used to select the most important 50

37

features to give Naïve Bayes classification algorithm as input. This time, the dataset with

proposed features was used by 80-20% split for training and testing sets. Results showed that

applying feature selection algorithms had not improved the prediction accuracy, FP rates and

kappa statistic notably. As another option to improve the results, balancing the dataset in terms

of class values was applied. According to the classification results for the datasets obtained by

balancing class values, balancing the number of malicious and benign applications under each

application category does not improve the accuracy but improves the false positive rate.

As the last operation to improve the prediction accuracy, an experiment was conducted by

changing the detection count used to label an application from 2 to 10. In this experiment,

market metadata was used as proposed and the only applications which had not been identified

as malicious by any AV engine were accepted as benign applications. The remaining ambiguous

applications were excluded from the datasets. When the results are examined, it is seen that the

dataset with detection count 8 best suits the needs with respect to prediction accuracy and kappa

statistic. Then on this dataset, balancing operation was done for the number of malicious and

benign applications under each application category. Despite obtaining a less accurate result

with the balanced dataset, a higher kappa statistic was achieved meaning the higher agreement

between class values and lower FPR. In addition, the resulting dataset is far smaller

(approximately 25% of the former one) than the former one allowing classification and feature

selection algorithms to require less time to be completed.

38

3.8. Schematic Representation of the Research Methodology

The figure below displays the processes of the research methodology applied in this study.

Permissions

GooglePlay

metadata

Classification

labels

Data

Preprocess

Initial

Datasets Md5 and

sha256 Hash

values of apk
files

Ready to
use

GooglePlay

crawler

Collect official

market metadata

Java application
development

Collect

permissions

requested by
apks

Java

application
developme

nt

Calculate

hash values
of apks

Query the
analysis results

of applications

on VirusTotal

Download

applications

Initial
analysis

with NB

Combining FS

algorithms with NB
Balancing benign

and malicious apps

Experiment to

decide detection

count

Final Baseline

Datasets

Final analyses with all
classification and FS

algorithms

Data Collection

and Feature

Extraction

Data

Preprocess

Pilot Study

 Main Study

Figure 7- Steps for the research methodology of the proposed study

39

CHAPTER 4

RESULTS

In this chapter the evaluation of results for the classification and feature selection algorithms on

the final baseline dataset is presented. First the contribution of official market on to the

requested permissions from users is evaluated in terms of the prediction performance of

machine learning algorithms. In addition, the selected classification algorithms are compared to

find the most accurate algorithm. Lastly, the effectiveness of feature selection algorithms is

evaluated and the best performing combination of classification and feature selection

algorithms, and the number of selected features is attested.

4.1. Brief Information about Datasets and Configuration for Algorithms

In order to explore the contribution of other official market metadata of Android applications to

the malware detection model which uses only requested permissions from users as feature set, 2

datasets were constructed in this study. The first dataset comprises only requested permissions

and the second one has additional information about applications presented by Google Play

Store. Those 9 additional features are listed in the previous chapter and detail information is

given about them. Apart from those features, one more additional feature, the days passed after

the detection date of a malicious application, was used as input for classification algorithms

taken from VirusTotal website. These datasets include malicious applications which have been

identified as malware by at least 8 or more AV engines on VirusTotal. Benign applications are

the ones which have not been identified as malicious by any of the AV engines on the date of

data collection. The remaining ambiguous applications were omitted from the dataset. As the

last arrangement on the data collected from application market, the number of malicious and

benign applications was balanced since it has been shown before in this study that balancing the

dataset causes the decrease of false alarms. These two datasets includes 2528 instances 907 of

which are malicious and the remaining 1621 ones are benign applications. Appendix D

illustrates the histograms of applications produced by Weka for attributes related to Google

market metadata.

Using two baseline datasets, 4 different classification algorithms and 3 different feature

selection algorithms were run 10 times for each by randomly partitioning datasets. Cross-

validation was not preferred because totally 80 algorithms were run together with combinations

of classification and feature selection algorithms and this much algorithms would require more

time to complete if cross-validation was used. Partition was done in a manner that the datasets

40

included 80% training and 20% testing samples. First the classification algorithms, Naïve

Bayes, J48, random forest, k-nearest neighbor, were run solely and then feature selection

algorithms were run in combination with classification algorithms. Since the chosen feature

selection algorithms, namely Chi-Square, Information Gain and ReliefF are in the type of filter-

based approach, they require the predefined number of attributes to be selected. These numbers

required by feature selection algorithms were configured as 10, 30 and 50. As a result, the

following 40 algorithms were run 10 times for each of the two datasets (one with only

permissions and the other with Google Play Store metadata including permissions), comprising

totally 80 algorithms.

Table 9- Configurations for classification and feature selection algorithms

Classifier

Feature Selection

Algorithm

Selected

Features

Naive Bayes - -

Naive Bayes Chi-Square 10

Naive Bayes Chi-Square 30

Naive Bayes Chi-Square 50

Naive Bayes Information Gain 10

Naive Bayes Information Gain 30

Naive Bayes Information Gain 50

Naive Bayes ReliefF 10

Naive Bayes ReliefF 30

Naive Bayes ReliefF 50

J48 - -

J48 Chi-Square 10

J48 Chi-Square 30

J48 Chi-Square 50

J48 Information Gain 10

J48 Information Gain 30

J48 Information Gain 50

J48 ReliefF 10

J48 ReliefF 30

J48 ReliefF 50

Random forest - -

Random forest Chi-Square 10

Random forest Chi-Square 30

Random forest Chi-Square 50

Random forest Information Gain 10

Random forest Information Gain 30

Random forest Information Gain 50

Random forest ReliefF 10

41

Classifier

Feature Selection

Algorithm

Selected

Features

Random forest ReliefF 30

Random forest ReliefF 50

kNN - -

kNN Chi-Square 10

kNN Chi-Square 30

kNN Chi-Square 50

kNN Information Gain 10

kNN Information Gain 30

kNN Information Gain 50

kNN ReliefF 10

kNN ReliefF 30

kNN ReliefF 50

The full list of results for the algorithms listed at the table above is presented at Appendix E. As

it is explained in the parameters used for evaluation of algorithms part, kappa statistic gives

information about the agreement of two class values on the classification results. It embodies

the information provided by true positive, false positive, true negative and false negative. If the

kappa statistic is examined, those parameters are not required to be examined one by one. As a

result, evaluations made for all of the algorithms are based on their prediction accuracies and

kappa statistics by using paired t-tests. Precision and the area under ROC curve are not selected

as the parameters for making comparisons because they exhibit similar behaviors with accuracy

of the model. The graphic below displays the values of precision rate, area under ROC curve

and accuracy moving together for the proposed dataset in this study (the one including official

market metadata with permissions) and the algorithms listed above. Recall rate is also known as

true positive rate, so this parameter is not used to evaluate the performance of algorithms in this

study.

42

Figure 8- Graph showing the movements of accuracy, precision and area under ROC curve

evaluation parameters for the proposed dataset

J4
8

:
C

4
.5

D

ec
is

io
n

 T
re

e

k
N

N
:

k
 N

ea
re

st

N
ei

g
h

b
o
r

N
B

:N
ai

v
e

B
ay

es

R
F

:R
an

d
o
m

F
o

re
st

C

S
:

C
h
i-

S
q
u

ar
e

IG
:

In
fo

rm
at

io
n

G
ai

n

R
fF

:
R

el
ie

fF

43

4.2. Evaluation of Official Market Metadata

The main purpose of this study is to answer the question whether Google Play market metadata

plays a crucial role while detecting mobile malware and contributes to the detection model with

only Android permissions or not. To answer this question, comparisons should be made on two

baseline datasets with corresponding classification algorithms. The table at Appendix F presents

the comparison of prediction accuracies and kappa statistics for these datasets by displaying the

results of paired t-test.

When the results are examined for classification algorithms which are not accompanied by any

feature selection algorithm, it can be seen that the prediction accuracy of models improves in

half of them as the result of official market metadata addition to the model. Addition of market

metadata increases the accuracy from 75.79% to 80.65% for Naïve Bayes, from 83.94% to

85.86% for kNN. The accuracy of the model decreases slightly from 84.81% to 83.66% for

random forest when Google Play metadata is added on the permissions. However, the accuracy

gets worse a bit more for J48 by decreasing from 83.18% to 79.37%. According to paired t-test

results for these values, only the increase of prediction accuracy for Naïve Bayes classifier is

statistically significant at 0.05 confidence value. The inspection for the combinations of feature

selection algorithms with classification algorithms gives more enlightening information about

the predictive accuracy. It is seen that kNN does not improve the accuracy with the addition of

market metadata in a statistically significant manner when it is applied without a feature

selection algorithm. Yet it produces the statistically more significant accuracies with the

addition of market metadata when feature selection algorithms are applied before classification.

It gives the higher accuracies for all of the 3 feature selection algorithms, and for all of the 3

levels of selected feature numbers, except ReliefF with 50 features. Naïve Bayes yields more

accurate results for proposed detection method in all of 10 combinations. The addition of

market metadata decreases the accuracy of the model for all the combinations of J48 and feature

selection algorithms but the difference is statistically significant for only the feature selection

methods with the number of selected features is 10. Lastly, the random forest does not give

quite different accuracies for the two baseline datasets, albeit the dataset including market

metadata has higher accuracy than the other one as statistically significant for Information Gain

and ReliefF algorithms with 10 selected features.

Kappa statistic shows similar results with prediction accuracy of the model in terms of the effect

of official market metadata addition. However there are some different results about kappa

statistic. First, the kappa statistic for kNN without any feature selection algorithm points out an

improvement by increasing from 0.64 to 0.69 with statistical significance while the difference

for prediction accuracy does not have a difference statistically significant. Second, J48 is said

above to have significant degradation in terms of accuracy for 3 combinations (Chi-Square,

Information Gain and ReliefF algorithms with 10 features) while it has statistically significant

decrease in kappa statistic for only 1 combination (ReliefF algorithm with 10 features). Last,

though showing statistically significant increase in prediction accuracy for two classification-

feature selection algorithm combinations, random forest improves the kappa statistic in a

statistically significant manner for only one combination (Information Gain with 10 attributes).

4.3. Evaluation of Classification Algorithms

The second research question of this study aims to find the most accurate classification

algorithm among Naïve Bayes, k nearest neighbor, random forest and J48 for the task of

44

Android malware detection with a model comprising of Android permissions and official

application market metadata as features. To serve this purpose, paired t-tests were made for the

comparison of accuracy values belonging to 4 different classification algorithms on their own,

i.e. without any combination with feature selection algorithms. Following tables show the

paired t-test results for the comparison of precision values for each classification algorithm with

other 3 classification algorithms.

Table 10- Comparison of the prediction accuracy of Naive Bayes classifier with others

 Classifiers1

Dataset

Naïve

Bayes

J48 Random

Forest

kNN

Permissions+

other market

metadata

80.65 79.37 83.66 v 85.86 v

v: statistically better than the compared value at 0.05

confidence level

Table 11-Comparison of the prediction accuracy of J48 classifier with others

 Classifiers

Dataset

J48 Naïve

Bayes

Random

Forest

kNN

Permissions+
other market
metadata

79.37 80.65 83.66 v 85.86 v

v: statistically better than the compared value at 0.05

confidence level

Table 12-Comparison of the prediction accuracy of Random Forest classifier with others

 Classifiers

Dataset

Random

Forest

Naïve

Bayes

J48 kNN

Permissions+

other market

metadata

83.66 80.65* 79.37 85.86

*: statistically worse than the compared value at 0.05

confidence level

1 “ v ” represents being statistically better than the compared value at 0.05 confidence level and

“ * ” represents being statistically worse than the compared value at 0.05 confidence level

45

Table 13- Comparison of the prediction accuracy of kNN classifier with others

 Classifiers

Dataset

kNN Naïve

Bayes

J48 Random

Forest

Permissions+

other market

metadata

85.86 80.65* 79.37 83.66

*: statistically worse than the compared value at 0.05

confidence level

When Naïve Bayes is compared with other classification algorithms, it can be realized that the

precision accuracy of it is higher than J48 and lower than kNN and random forest algorithms.

According to this first comparison, the higher accuracy values of kNN and random forest

algorithms have statistically significant difference than Naïve Bayes at 0.05 confidence level.

Also it can be said that J48 has a lower accuracy than Naïve Bayes but the difference is not

statistically significant, so J48 can be applied too for the detection of Android malware by using

market metadata.

The second table compares the accuracy of J48 algorithm with the others and indicates that the

higher precision values which are statistically significant belong to random forest and kNN

algorithms. The third table presents the comparison of random forest algorithm with the

remaining algorithms. The accuracy value of random forest is lower than kNN and higher than

Naïve Bayes and J48. This table points out that Naïve Bayes has a lower precision accuracy

than random forest algorithm as a statistically significant manner. The last table is for the

comparison of the kNN with other algorithms chosen in this study. As it is seen from this table,

kNN has the highest accuracy among 4 classification algorithms. Again, the lower precision

value of Naïve Bayes has statistically significant difference from kNN.

The highest accuracy value of kNN classification algorithm among others used in this study is

obtained when the k parameter (the number of nearest neighbors) is equal to 1. This optimal

value of k is applicable for the configuration which the kNN algorithm is used without any

feature selection algorithm and is used for the dataset comprising permissions and other official

market metadata as feature set. k=1 is selected among the values starting from 1 to 100 by using

cross-validation method in a way that classification error is minimized while keeping k value

minimum. This result may seem satisfactory in terms of computation time, i.e. the possible

shortest computation time obtained in terms of number of neighbors. However using so small k

value might result the learned algorithm to be sensitive noise instances in the dataset. Hence,

when the evaluation results for the classification algorithms in this study are thought to be

utilized, this issue should be considered. (Witten, Frank, & Hall, 2011) claim that the optimum

value of k gets smaller when there is less noise in the dataset and the use of cross validation to

choose best k value usually gives perfect prediction results. When it is concerned that the focus

of this study is not to tune the k parameter for the kNN classification algorithm, the method

used to choose k value (also proposed by (Witten, Frank, & Hall, 2011)) should be accepted as

plausible.

To sum up, in this study 4 different classification algorithms are used to evaluate the

performance of Android malware detection method which uses permissions and official market

metadata as predictor attributes. These supervised learning algorithms are Naïve Bayes, J48,

46

random forest and kNN. Among these, kNN has the highest accuracy value which is statistically

significant than the accuracy value of Naïve Bayes algorithm.

4.4. Evaluation of Feature Selection Algorithms

The last goal of the study is to find the most accurate combination of classification algorithms,

feature selection algorithms, and the number of selected features. These combinations are listed

at the table given in the section 4.1. If the full results listed at Appendix F are examined, it can

clearly be seen that the combination having the highest accuracy among all is the kNN

classification algorithm which is applied on the dataset after selecting 10 features by using

Information Gain feature selection algorithm. This is the answer for the third research question.

Additively, each classification algorithm and their combinations with feature selection

algorithms are evaluated separately.

Table 14- Accuracy comparison of feature selection algorithms in combination with Naive

Bayes

 Combinations

Dataset

NB NB+CS

(10)

NB+

CS

(30)

NB+

CS

(50)

NB+

IG (10)

NB+

IG

(30)

NB+

IG

(50)

NB+

RfF

(10)

NB+

RfF

(30)

NB+

RfF

(50)

Permissions+

other market

metadata 80.65 83.68 v 80.97 80.49 83.94 v 81.07 80.51 82.65 82.39 80.51

v: statistically better than the compared value at 0.05 confidence level

CS: Chi-Square, IG: Information Gain, RfF: ReliefF, NB: Naive Bayes, RF: Random Forest, kNN:k-nearest

neighbor

According to the table above, feature selection algorithms generally improve the accuracy of the

model when compared to only applying Naïve Bayes, except the ones with the number of

features selected are 50. However, there are 2 combinations which are more accurate in a

statistically significant manner than the Naïve Bayes applied merely. These combinations are

Chi-Square and Information Gain feature selection algorithms with 10 features. In addition to

this, as the number of features selected increases, prediction accuracy decreases for these 3

feature selection algorithms. For Chi-Square and Information Gain algorithms; prediction

accuracy decreases more when the number of features selected increases from 10 to 30, when

compared to the increase of the number of features selected from 30 to 50. This can be seen

visually from the graph at Appendix G. ReliefF algorithm behaves differently from this point of

view because its discriminative point for the amount of decrease is the shift from 30 features to

50 features. The table below shows the paired t-test result for the comparison of kappa statistics

between Naïve Bayes and feature selection algorithms. Kappa statistic displays the similar

behaviors with the prediction accuracy of feature selection algorithms in combination with

Naïve Bayes. This can be recognized from the graph presented at Appendix G. For kappa

statistic, there are 3 combinations which are better in a statistically significant manner than the

Naïve Bayes applied merely. As in the accuracy results, Chi-Square and information gain

algorithms with 10 features have these higher kappa statistic values. Also ReliefF feature

selection algorithm with 10 features yields higher kappa statistic which is statistically

significant.

47

Table 15- Kappa statistic comparison of feature selection algorithms in combination with Naive

Bayes

 Combinations

Dataset

NB NB+

CS

(10)

NB+

CS

(30)

NB+

CS

(50)

NB+

IG

(10)

NB+

IG

(30)

NB+

IG

(50)

NB+

RfF

(10)

NB+

RfF

(30)

NB+

RfF

(50)

Permissions+

other market

metadata 0.57 0.64 v 0.58 0.57 0.65 v 0.59 0.57 0.62 v 0.62 0.57
v: statistically better than the compared value at 0.05 confidence level

For J48 classification algorithm, applied feature selection algorithms decrease accuracy values

for all combinations. The decrease of accuracy is statistically significant for Chi-Square and

information gain algorithms with 10 features. Hence, it may not be a good choice to apply one

of these feature selection algorithms if the prediction accuracy is considered. In addition to this,

all 3 feature selection algorithms produce very close accuracy values. The produced accuracies

are even equal for Chi-Square and information gain algorithms for the same number of selected

features. This is probably caused by the rationale of the decision tree. Independent from an

additional feature selection algorithm, decision tree applies feature selection by using

information gain parameter inside; it chooses the best attributes for classification. The table for

kappa statistic comparison of feature selection algorithms in combination with J48 also points

out that 3 feature selection algorithms give the same results when the numbers of selected

features are the same. However an important indication may be that the use of 30 features for

those feature selection algorithms serves the purpose of obtaining more balanced results (higher

kappa statistic value) than the results of pure J48 classification algorithm.

Table 16- Accuracy comparison of feature selection algorithms in combination with J48

 Combinations

Dataset

J48 J48+C

S (10)

J48+

CS

(30)

J48+

CS

(50)

J48+

IG (10)

J48+

IG

(30)

J48+

IG

(50)

J48+

RfF

(10)

J48+

RfF

(30)

J48+

RfF

(50)

Permissions+

other market

metadata 79.37 69.69 * 78.85 73.77 69.69 * 78.85 73.77 69.69 * 78.91 73.81

*: statistically worse than the compared value at 0.05 confidence level

Table 17-Kappa statistic comparison of feature selection algorithms in combination with J48

 Combinations

Dataset

J48 J48

+CS

(10)

J48+

CS

(30)

J48+

CS

(50)

J48+

IG

(10)

J48+

IG (30)

J48+

IG

(50)

J48+

RfF

(10)

J48+

RfF

(30)

J48+

RfF (50)

Permissions+

other market

metadata 0.56 0.42 0.58 0.47 0.42 0.58 0.47 0.42 0.58 0.47

48

When the tables of accuracy comparison for feature selection algorithms in combination with

kNN and random forest are examined, it is seen that none of the combinations has a statistically

significant difference than the mere classification algorithms. Additively, for random forest

algorithm, Chi-Square feature selection algorithm displays a regular increase when the number

of features increases from 10 to 50. However information gain algorithm does not present a

regular decrease or increase in prediction accuracy. Instead, it first decreases the accuracy from

10 features to 30 features and then increases from 30 to 50, but the differences are slight. Hence

for this study, the number of features selected for information gain feature selection algorithm

when applied with J48 does not matter from the accuracy point of view. In addition, the

accuracy of the J48algorithm in combination with ReliefF does not change too much when the

number of features selected is changed from 10 to 30. Yet the increase of the accuracy is more

apparent as the number of selected features increases from 30 to 50. For kNN, it can be claimed

that Chi-Square and information gain algorithms display the similar behaviors according to the

number of selected features and have close accuracy values. However, ReliefF algorithm when

applied together with kNN classification algorithm shows an increasing trend for accuracy

values in conjunction with increasing number of features. To visually clarify these conclusions,

graphs can be applied at Appendix G.

Table 18- Accuracy comparison of feature selection algorithms in combination with Random

Forest

 Combinations

Dataset

RF RF+CS

(10)

RF

+CS

(30)

RF

+CS

(50)

RF +

IG (10)

RF +

IG

(30)

RF +

IG

(50)

RF +

RfF

(10)

RF +

RfF

(30)

RF +

RfF

(50)

Permissions+

other market

metadata 83.66 81.74 82.28 82.85 82.93 82.59 82.75 81.8 81.92 83.26

Table 19- Accuracy comparison of feature selection algorithms in combination with kNN

 Combinations

Dataset

kNN kNN

+CS

(10)

kNN

+CS

(30)

kNN

+CS

(50)

kNN +

IG (10)

kNN

+

IG

(30)

kNN

+

IG

(50)

kNN +

RfF (10)

kNN

+

RfF

(30)

kNN

+

RfF

(50)

Permissions+

other market

metadata 85.86 86.41 85.7 85.32 86.47 85.66 85.4 84.49 85.82 86.03

Lastly, kappa statistics of feature selection algorithms in combination with random forest and

kNN classification algorithms are compared at the following two tables. None of the

combinations has higher kappa statistic value in a statistically significant manner than the pure

kNN and random forest algorithms. Combinations have very close kappa statistic values for

both of random forest and kNN classification algorithms. For kNN, selecting number of features

as 30 or 50 does not differ because they yield equal kappa statistic values for all 3 feature

selection algorithms.

49

Table 20-Kappa statistic comparison of feature selection algorithms in combination with

Random Forest

 Combinations

Dataset

RF RF+CS

(10)

RF

+CS

(30)

RF

+CS

(50)

RF +

IG (10)

RF +

IG

(30)

RF +

IG

(50)

RF +

RfF (10)

RF +

RfF

(30)

RF +

RfF

(50)

Permissions+

other market

metadata 0.62 0.57 0.59 0.6 0.6 0.59 0.6 0.57 0.58 0.61

Table 21-Kappa statistic comparison of feature selection algorithms in combination with kNN

 Combinations

Dataset

kNN kNN

+CS

(10)

kNN

+CS

(30)

kNN

+CS

(50)

kNN +

IG (10)

kNN

+

IG

(30)

kNN

+

IG

(50)

kNN +

RfF (10)

kNN

+

RfF

(30)

kNN

+

RfF

(50)

Permissions+

other market

metadata 0.69 0.7 0.68 0.68 0.7 0.68 0.68 0.66 0.69 0.69

4.5. Summary of Findings

The analysis studies conducted aimed to answer aforementioned 3 research questions. For the

first research question it has been found that the addition of official market metadata on Android

permissions as predictor variables improves the accuracy of the model and the agreement of

class values on the results for Naïve Bayes and kNN classification algorithms. According to the

results of random forest algorithm, addition of market data does not show the signs of

significant improvement. J48 is affected negatively with the addition of market metadata but

this effect was founded to be statistically insignificant. Two different datasets one of which

consisting of only Android permissions and the other one adding market metadata as predictor

attributes were used for the comparisons made to answer first research question. The second

research question investigates the most accurate classification algorithm among Naïve Bayes,

J48, random forest and kNN for the problem of Android malware detection using official

market metadata. To answer this question one baseline dataset which includes official market

metadata beside permissions is used. According to results, kNN has the best performance in

terms of prediction accuracy and its accuracy value is higher than the accuracy of Naïve Bayes

algorithm as statistically significant. The third and the last research question of this study is

about finding the most accurate combination of classification, feature selection algorithms and

the number of features selected for feature selection algorithms. Comparisons were made on the

dataset which comprise of official market metadata and requested permissions as feature set.

kNN classification algorithm applied together with Information Gain feature selection method

with 10 features yields the highest accuracy among 36 combinations. Also it is found that

applying a feature selection method does not improve the performance of classification

algorithms always. Also, selecting more or less features does not have an improving effect on

prediction results always.

50

51

CHAPTER 5

DISCUSSION AND CONCLUSION

This chapter concludes the study by summarizing the adopted detection method, feature

selection and supervised classification algorithms used in this study, and the results obtained

from them are discussed. Also the contributions of the study are given and the limitations to

which the study is exposed are indicated. In addition, the future works are proposed to be

fulfilled which have not been handled under the scope of this study but may improve the

generalizability of the results for this study.

5.1. Discussion and Conclusion

There are a lot of methodologies developed by researchers to tackle with the mobile malware

detection problem. Especially Android devices are examined closer due to their open structures

and proneness to malicious applications because of the reasons discussed in section 2.1. To

carry out the mobile malware detection task, dynamic and static analysis methods are applied

mainly. Dynamic analysis method is not preferred in this study because of its high cost in

deployment environment, and requirement of complicated skills and manual investigating. (

Zhu & Peiravian, 2013) (Wu , Mao, Wei, Lee, & Wu, 2012) Instead, a feature-based

automated static analysis method is preferred. To automate detection task, supervised machine

learning algorithms are applied by using permissions requested from the user at application

install time and official market metadata as predictor variables. 4 different classification

algorithms, Naïve Bayes, k-nearest neighbor, J48 (java implementation of C4.5 decision tree)

and random forest (a kind of ensemble method) were chosen to be trained and make predictions

on the class values of unknown applications. Type of classification in this study is binary

classification and the class attribute has “benign” and “malicious” values to label applications.

Performances of algorithms are evaluated by using prediction accuracy and kappa statistic.

Before carrying out the main analyses, a pilot study was performed in order to see the feasibility

of the model. In this pilot study, two baseline datasets were used to evaluate the contribution of

52

official market metadata on permissions. One of them included only permissions as feature set

and the other one comprised of permissions together with official market metadata. To construct

these datasets, Google’s official application market and VirusTotal free online malware scanner

are utilized. Features to be used in classification algorithms, like permissions, developer names,

type of applications, download number of application etc., were collected from Google Play by

using a web crawler and a java application. Collected applications were labeled as malicious or

benign by scanning them at VirusTotal website. For the pilot study, applications were labelled

as malicious if they have been identified by 2 or more AV engines as malicious. The findings of

this pre-assessment showed that the addition of official market metadata to feature set improved

the accuracy and reduced the false alarms. The improvement of the detection results was

somehow acceptable but still the prediction accuracy and the false positive rate were not

satisfactory. Just as it would be done for a part of main study, feature selection methods applied

at this step. However, the application of feature selection algorithms for selecting the attributes

which would be used as input by classification algorithms did not produce significantly better

results.

To overcome the high false positive rates and to improve the prediction accuracy two options

were evaluated. First, the number of benign and malicious applications in the dataset was

balanced and by reducing the number of benign applications. Balancing the total number of

benign and malicious applications did not improve the detection results, but balancing them

under each application category decreased the false alarms. As the second option, labelling

method of applications as benign or malicious has been revised. Applications which have not

been identified as malicious by any of the antivirus engines were labeled as benign. To label

malicious applications, an experiment was conducted and the number of AV engines identifying

an application as malware was used as decision criteria. The detection count of malicious

applications was increased from 2 to 10 one by one and 9 different datasets were constructed.

While constructing these datasets, the ambiguous applications were omitted from the dataset.

For instance, to construct the dataset which includes malwares identified by 5 or more AV

engines, applications were labeled as benign if their detection count are zero and the remaining

ones which have detection count ranging from 1 to 4 were eliminated. In this experiment, the

prediction results of Naïve Bayes were used to select proper malware detection count. The

reason lying behind to choose Naïve Bayes for pilot studies and experiment is its low

computation time allowing a fast pre-assessment. The results of the experiments pointed out the

selection of the detection count as 8 to label malicious applications. Finally on this dataset

balancing operation was applied to reduce the false alarms by equalizing the number of

malicious and benign applications under each application category.

By using final baseline dataset, analyses were made to answer 3 research questions. The main

purpose of this study is to examine whether the contribution of official market metadata on

requested permissions is meaningful to classify applications. Previous studies has utilized

permissions, API calls, intent messages, and main components (content providers, broadcast

receivers, activities, and services) of Android applications (Enck, Ongtang, & McDani, 2009) (

Wu , Mao, Wei, Lee, & Wu, 2012) (Zhu & Peiravian, 2013) for statically analyzing them.

(Glodek & Harang, 2013) add the combinations of frequently used permissions and native code

as features for detecting Android malwares. Considering those studies and the claims that

Android permissions are not sufficient on their own to explain the malicious behaviors (Meurer

& Wismüller, 2012) (Enck, Ongtang, & McDani, 2009), official market metadata is proposed

as additional feature to the requested permissions in this study. (Abu Samra, Yim, & Ghanem,

2013) and (Bose, Hu, Shin, & Park, 2011) have also used official market metadata as static

53

features, but they applied unsupervised clustering techniques to categorize applications.

Differently, in this study permissions and official application market metadata were used as

features for training supervised classification algorithms.

In order to answer this first question, two baseline datasets were compared by applying

classification and feature selection algorithms. One of the datasets was the one obtained as final

baseline dataset and comprised of permissions together with official market metadata. The other

one was constructed from the final dataset in a way that it included only permissions as feature

set. When the results of classification algorithms and their combinations with feature selection

algorithms were examined, it has seen that the addition of market metadata increased the

accuracy of the model for Naïve Bayes and kNN classification algorithms. Their combinations

with feature selection algorithms also signed to increase of prediction accuracy and kappa

statistic. Obtaining higher kappa statistics means the proposed features provides a model with

less false alarms and more agreement between class values on classification results.

Additionally, random forest algorithm for the proposed model did not produce significantly

different classification results than the model with only permissions. It increased the prediction

accuracy of the model as statistically significant for some combinations (of classification and

feature selection algorithms) and decreased slightly for the remaining ones. However J48

algorithm was affected negatively by the addition of market metadata to the model. Most of the

combinations of feature selection algorithms with J48 showed a decrease of approximately 8%

in model accuracy. Yet according to paired t-test results, only 3 combinations worsened the

accuracy and 1 combination worsened the kappa statistic in a statistically significant way.

The second research question was about finding the most accurate classification algorithm

applied on the proposed dataset in this study. To answer this question, only the accuracies of

classification algorithms were compared without using their combinations with feature selection

algorithms. Results showed that the kNN outperformed the other 3 classification algorithms

with 85.86% accuracy value.

To answer the last research question, the effect of 3 feature selection algorithms on the

classification task of applications by using permissions and official market metadata was

investigated. As being type of filtered feature selection methods, Chi-Square, Information gain

and ReliefF algorithms were chosen. Since filtered feature selection methods require the number

of features to be selected from the implementer, different numbers were identified in order to

avoid the use of too many or few features. The identified numbers for the features to be selected

by feature selection algorithms were 10, 30 and 50. The third research question investigates the

most accurate combination of classification and feature selection algorithms, and the identified

number of features to be selected. According to the results, kNN yields the highest accuracy

when it is combined with Information Gain feature selection algorithm and 10 features are

selected.

Lastly, the results of this study and the other studies mentioned in the literature review part

which apply automated feature-based machine learning approach as static Android malware

detection method are presented at the table below. Each study applies different machine

learning algorithms on different datasets. Hence, it would not be plausible to compare them

exactly in terms of their prediction performance measures. However the results of the studies

obtained by using the datasets, feature sets, and the machine learning algorithms presented on

the table below would guide the researchers who intend to develop or apply a feature-based

static Android malware detection method. When the performance measures of this study are

54

compared the others at the table below, the accuracy and TPR are acceptable. However, the FPR

rate needs to be improved more to avoid false alarms. This drawback of the proposed model

may be caused by the method used to label applications as malicious or benign. In this study,

both the malicious and benign applications are labeled by querying the analysis results of them

on VirusTotal, but this is not a verified method by previous studies. The remaining studies

choose to study with the malicious applications proven before by other studies.

Table 22- Summary of the methods and the findings of related studies to the proposed method

in this study

Title of the Study Dataset Used Machine

Learning

Algorithms

Used

Features Used in

Selected

Classification

Algorithms

Results

Droidmat:

Android Malware

Detection through

Manifest and API

Call Tracing

Includes 238

Android malware

collected from a

public Android

dataset, Contagio

mobile, and 1500

benign applications

downloaded from

official Android

market and verified

through the website

of VirusTotal

malware detection

community .

kNN (with k=1)

and Naive

Bayes

classification

algorithms, EM

and K means

clustering

algorithms

(SVM to decide

number of

clusters)

Requested

permissions, intent

messages passing,

API calls and

components of

applications(activity,

service and

broadcast receiver)

The combination

of k means and

kNN was chosen

as having the

highest recall

rate=0.87 and

precision=0.97

Machine Learning

for Android

Malware

Detection Using

Permission and

API Calls

610 malware from

Malware Genome

Project2 (they

eliminated the

repetitive samples

among 1250

applications) and

1250 benign

applications

downloaded from

Google Play (top 50

free applications

under 25 application

categories)

SVM, Decision

tree and

Bagging

classification

algorithms

Permissions and API

calls

They claim that

the best

classification

algorithm is

Bagging in terms

of detection rate

(TPR). It has

96.39% accuracy,

94.9% precision

94.1% recall rate

with the regarded

features and the

dataset.

2 Y. Zhou and X. Jiang, Dissecting android malware: Characterization and evolution Security

and Privacy (SP), 2012 IEEE Symposium on Security and Privacy.

55

Title of the Study Dataset Used Machine

Learning

Algorithms

Used

Features Used in

Selected

Classification

Algorithms

Results

Rapid

Permissions-

based Detection

and Analysis of

Mobile Malware

Using Random

Decision Forests

Malicious

applications from

Malware Genome

Project (random 500

of them were

chosen) and 500

benign applications

downloaded from

3rd party markets.

Contagio mobile

website (16

malwares) for

testing the capability

of model for novel

malware.

Random forest

classification

algorithm

Requested

permissions,

broadcast receiver,

presence of

embedded Android

applications, native

code

TPR: 92%

FPR: 3%

Proposed method

in this study

2528 instances

collected from the

Android’s official

application market,

GooglePlay, and

labeled via

VirusTotal (907

malicious and 1621

benign applications)

Naïve Bayes,

J48, kNN, and

random forest

classification

algorithms,

Chi-Square,

Information

Gain and

ReliefF feature

selection

algorithms

Requested

permissions and

other metadata of

applications

presented on the

official market (like

app category,

developer name,

download range,

size of application)

The best

combination kNN

+ Information

Gain (with 10

features). It has

86.47% accuracy,

91.86% TPR,

23.17% FPR, 0.70

kappa statistic

To sum up, in this study mainly the contribution of official market metadata on explaining the

malicious behaviors of Android applications was investigated. The addition of market metadata

improved the accuracy and false alarms of the model which comprise of only Android

permissions for half of the selected classification algorithms (Naïve Bayes and kNN). In

addition to this, it was shown that a detection method can be built by using a free public data

provided by Google’s official application market and VirusTotal free online AV engine. The

other contribution of this study is to include all the free applications presented on the Google

Play without limiting to some application categories.

5.2. Limitations and Further Research

The dataset used to train and evaluate the performance of supervised machine learning

algorithms in this study contains the top free applications presented by Google’s official

application market. The paid applications might be used for analysis but the crawler used in this

study allows downloading only free applications, like other tools used for downloading Android

applications from official market. The official market is also open to malevolent developers

who download legitimate applications from the market and upload the repacked ones after

56

injecting malicious code into them. Since there is no reason for them not to apply this on their

paid applications, inspecting paid applications may make sense. On the other hand, hackers also

can be thought not to prefer paid applications to download and make them malicious for the

sake of cost and simplicity. Hence, for an application having a paid version may be sign of

being more trustable. At least, adding a feature to the dataset which indicates that an application

has a paid version or not may help to explain malicious behaviors of applications better. In

addition, if the Google Play presented the hash values of applications, without the need for

downloading and calculating hash values, paid applications would also be inspected by

querying them on VirusTotal.

Another limitation of the study is the use of Google’s official application market for mobile

malware detection task. The dataset can be extended in a way that it includes the applications

from other third-party application markets and/or websites. In spite of the fact that users are

required to root their smartphones to download Android applications from unofficial markets

and websites, they may prefer this for enhancing their phones’ capabilities.

The results of the study can be evaluated as acceptable in terms of accuracy, but the unexplained

part of the malicious behaviors by the proposed model is caused by some limitations. First, the

downloaded applications have not been reengineered to extract the part of the apk files.

Therefore, vital part of an apk, Android Manifest.xml, could not be examined to find out the

intent messages and application components (activities, services, content providers, and

broadcast receivers). Also the bytecode of an application could not be investigated to explore

the API calls. The reason for not choosing to decompress applications is that all the applications

presented on official market do not let to be reverse-engineered. This may be caused by some

applications’ being commercial products or brands of companies or being protected from piracy

by their developers and issued to copyrights. Second, due to the nature of static analysis, some

hidden capabilities of malwares could not be revealed. For instance, as it is stated by (Wu ,

Mao, Wei, Lee, & Wu, 2012) some Android malwares are capable of downloading the actual

payloads from remote sites by using the internet connection, so static detection methods are not

proficient enough in this regard.

As feature work, different classification and feature selection algorithms can be applied for

Android malware detection method proposed in this study. For example, (Zhu & Peiravian,

2013) argue that the use of ensemble learning methods may lead to better results for imbalanced

datasets because of their structure based on consensus. (Jamali, Bazmara, & Jafa, 2012) claim

compliance of some feature selection methods with specific classification algorithms.

Therefore, the accordance of feature selection and classification algorithms or other factors may

be regarded for the selection of those algorithms in the following studies. Additively, a

longitudinal study may be considered because it may strengthen the findings of the study. In

time, the number of AV engines analyzing the applications or the detection rate of malicious

applications can be changed, and also the ones found to be benign before can be labeled as

malicious. However, the loss of data should be considered in longitudinal study, because the

analysis results of some applications for some AV engines might be removed after a while

owing to time out. Also, some malicious applications with high detection number by AV

engines have become clean applications in time according to the analysis results on VirusTotal.

The reasons underlying this are not known precisely, but guessed as the clean of legitimate

applications from malicious codes if they have been injected into before and reload of them to

the market.

57

REFERENCES

Abela, K. J., Angeles, D. K., Delas Alas, J. R., Tolentino, R. J., & Gomez, M. A. (2013). The

Society of Digital Information and Wireless Communications. An Automated Malware

Detection System for Android using Behavior-based Analysis (s. 1-11).

Abu Samra, A., Yim, K., & Ghanem, O. (2013). 2013 Seventh International Conference on

Innovative Mobile and Internet Services in Ubiquitous Computing. Analysis of Clustering

Technique in Android Malware Detection (s. 729-733). IEEE.

Al-Ibrahim, A. (2011). Discretization of Continuous Attributes in Supervised Learning. The

Research Bulletin of Jordan ACM, s.158-166.

Ali,J., Khan, R., Ahmad, N., & Maqsood, I. (2012). Random Forests and Decision Trees. IJCSI

International Journal of Computer Science Issues.

APK Downloader. Retreived July, 2014, from APK Downloader: http://apps.evozi.com/apk-

downloader/

Bai,J., Wang, J., & Zou, G. (2014). A Malware Detection Scheme Based on Mining Format

Information. The Scientific World Journal.

Benyamin, D. (2012, November 10). A Gentle Introduction to Random Forests, Ensembles, and

Performance Metrics in a Commercial System. Retrieved July, 2014, from

http://citizennet.com/blog/2012/11/10/random-forests-ensembles-and-performance-metrics/

Bhatia, N., & Vandana. (2010). (IJCSIS) International Journal of Computer Science and

Information Security. Survey of Nearest Neighbor Techniques.

Blue Coat Systems. (2014). 2014 Mobile Malware Report. 20(1), 37-46.

Blue Coat Sytems. (2013, July 18). 2013 Mobile Malware Report. How Users Drive the Mobile

Threat Landscape.

Bose, A., Hu, X., Shin, K. G., & Park, T. (2008). MobiSys '08 Proceedings of the 6th

international conference on Mobile systems, applications, and services. Behavioral Detection of

Malware on Mobile Handsets. Colorado, USA: ACM.

Bose, A., Hu, X., Shin, K. G., & Park, T. (2011). Security and Privacy in Mobile Information

and Communication Systems Third International ICST Conference. Android Market Analysis

with Activation Patterns (s. 1-12). Aalborg, Denmark: Springer.

58

Breiman, L. (2001). Random Forests. Machine Learning 45, 5-32.

Cios,K., Pedrycz, W., Swiniarski, R., & Kurgan, L. (2007). Unsupervised Discretization

Algorithms. Data Mining: A Knowledge Discovery Approach (s. 237). in Springer.

Cunningham, P., & Delany, S. J. (2007). k-Nearest Neighbour Classifiers. UCD School of

Computer Science and Informatics.

Damopoulos, D., Kambourakis, G., & Portokalidis, G. (2014). EuroSec '14 Proceedings of the

Seventh European Workshop on System . The Best of Both Worlds. A Framework for the

Synergistic Operation of Host and Cloud Anomaly-based IDS for Smartphon

Dash,R., Paramguru, R., & Dash, R. (2011). Comparative Analysis of Supervised and

Unsupervised Discretization Techniques. International Journal of Advances in Science and

Technology.

Demiröz, A. (2013, June 11). Akdeniz/google-play-crawler. Retrieved July, 2014, from

https://github.com/Akdeniz/google-play-crawler/blob/master/README.md:

https://github.com/Akdeniz/google-play-crawler/blob/master/README.md

developer.android.com. (2014, Aug). API Guides. Retreived Aug, 2014, from Android

Developers.

Dini, G., Martinelli, F., Saracino, A., & Sgandurra, D. (2012). MMM-ACNS'12 Proceedings of

the 6th international conference on Mathematical Methods, Models and Architectures for

Computer Network Security. MADAM: a multi-level anomaly detector for android malware

Elkan, C. (1997). Boosting and Naive Bayesian Learning. San Diego.

Enck,W., Ongtang, M., & McDani, P. (2009). CCS '09 Proceedings of the 16th ACM

conference on Computer and communications security. On lightweight mobile phone

application certification (s. 235-245). Chicago, Illinois, USA: ACM.

Geng,X., Liu, T.-Y., Qin, T., & Li, H. (2007). SIGIR '07 Proceedings of the 30th annual

international ACM SIGIR conference on Research and development in information retrieval.

Feature selection for ranking (s. 407-414). Amsterdam, The Netherlands

Glodek, W., & Harang, R. (2013). Military Communications Conference, MILCOM 2013 -

2013 IEEE . rapid permission based detection and analysis of mobile malware using random

decision forests (s. 980-985). San Diego, CA : IEEE.

Google. (2014, Aug). Android Developer Help. Retreived Aug, 2014, from Google Support:

https://support.google.com/googleplay/android-developer/answer/1295940?hl=en

Google. (2014, Aug). Android Developer Help. Retreived 2014, Aug, from Google Support:

https://support.google.com/googleplay/android-

developer/answer/188189?hl=en&ref_topic=345098

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. (2009). SIGKDD

Explorations. The WEKA Data Mining Software: An Update.

59

Horning, N. (2010). International Conference on Geoinformatics for Spatial Infrastructure

Development in Earth and Allied Sciences 2010. Random Forests:An Algorithm For Image

Classification And Generation Ofcontinuous Data Sets. Hanoi, Vietnam.

HP. (2013, May). Designing a Defense for Mobile Applications Examining an ecosystem of

risk.

Imam,I., Michalski, R., & Kerschberg, L. (1993). In Proceeding of the First International

Workshop on Knowledge Discovery in Databases. Discovering attribute dependence in

databases. Washington D.C.

iMacros. Introducing iMacros. Retreived July, 2014, from iMacros wiki.

Jamali, I., Bazmara, M., & Jafa, S. (2012). Feature Selection in Imbalance data sets. IJCSI

International Journal of Computer Science Issues.

Joita, D. (2010). Unsupervised Static Discretization Methods In Data Mining. MegaByte.

Kira,K., & Rendell, L. A. (1992). ML92 Proceedings of the ninth international workshop on

Machine learning. A practical approach to feature selection (s. 249-256). Morgan Kaufmann.

Kononenko, I. (1994). Estimating attributes: Analysis and extensions of RELIEF. F. R.

Bergadano in, Machine Learning: ECML-94 (s. 171-182). Springer-Verlag.

Koshal, J., & Bag, M. (2012). Cascading of C4.5 Decision Tree and Support Vector Machine

for Rule Based Intrusion Detection System. International Journal of Computer Network and

Information Security, 8-20.

Kotsiantis, S., & Kanellopoulos, D. (2006). Discretization Techniques: A recent survey. GESTS

International Transactions on Computer Science and Engineering, 47-58.

La Polla, M., Martinelli, F., & Sgandurra, D. (2013, March 15). A Survey on Security for

Mobile Devices. IEEE.

Lawton, G. (2008, May). Is It Finally Time to Worry about Mobile Malware? IEEE .

Meurer, S., & Wismüller, R. (2012). Security and Privacy in Mobile Information and

Communication Systems- 4th International Conference, MobiSec 2012. APEFS: An

Infrastructure for Permission-Based Filtering of Android Apps (s. 1-11). Frankfurt am Main,

Germany

Microsoft. (2014, Aug). Ensuring Data Integrity with Hash Codes. Retreived Aug, 2014, from

Microsoft Developer Network: http://msdn.microsoft.com/en-

us/library/f9ax34y5%28v=vs.110%29.aspx

Mitchell, M. (2010, January 11). MachineLearningWinter2010/pdfslides. Retreived July, 2014,

from CS 445/545:Computer Science Departments Winter Quarter 2010:

http://web.cecs.pdx.edu/~mm/MachineLearningWinter2010/pdfslides/EvaluatingHypotheses.pd

f

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill Science/Engineering/Math.

60

Mitov, I., Ivanova, K., Markov, K., Velychko, V., Stanchev, P., & Vanhoof, K. (2008).

Comparison of Discretization Methods for Preprocessing Data. International Book Series

"Information Science and Computing" (s. 31-39).

Novakovic, J., Strbac, P., & Bulatovic, D. (2011). Toward Optimal Feature Selection Using

Ranking Methods and Classification Algorithms. Yugoslav Journal of Operations Research,

119-135.

Orthacker, C., Teufl, P., Kraxberger, S., Lackner, G., Gissing, M., Marsalek, A., et al. (2011).

Security and Privacy in Mobile Information and Communication Systems-Third International

ICST Conference, MobiSec 2011. Android Security Permissions

Petsas, T., Voyatzis, G., Athanasopoulos, E., Polychronakis, M., & Ioannidis, S. (2014).

EuroSec '14 Proceedings of the Seventh European Workshop on System Security. Rage against

the virtual machine: hindering dynamic analysis of Android malware

Porter Felt, A., Finifter, M., Chin, E., Hanna, S., & Wagner, D. (2011). SPSM '11 Proceedings

of the 1st ACM workshop on Security and privacy in smartphones and mobile devices. A

Survey of Mobile Malware in the Wild (pp. 3-14). New York: ACM.

QIMacros. How to Determine Histogram Bin Intervals. Retreived July, 2014, from QIMacros:

http://www.qimacros.com/quality-tools/how-to-determine-histogram-bin-interval/

Quinlan, J. (1986). Induction of Decision Trees. Machine Learning 1, 81-106.

Quinlan, J. (1993). C4.5: Programs for Machine Learning. San Mateo: CA: Morgan Kaufmann.

Rapit7. (2013, July 25). Mobile Security Guide: Protect Your Organization from Mobile

Malware .

Schreckling, D., Huber, S., Höhne, F., & Posegga, J. (2013). Information Security Theory and

Practice. Security of Mobile and Cyber-Physical Systems-7th IFIP WG 11.2 International

Workshop, WISTP 2013. URANOS: User-Guided Rewriting for Plugin-Enabled ANdroid

ApplicatiOn Security

Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., & Weiss, Y. (2012). “Andromaly”: a

behavioral malware detection framework for android devices. Journal of Intelligent Information

Systems, 161-190.

Shabtai, A., Fledel, Y., & Elovici, Y. (2010). 2010 International Conference on Computational

Intelligence and Security. Automated Static Code Analysis for Classifying Android

Applications Using Machine Learning (s. 329-333). Nanning: IEEE.

Shmueli, G., Patel, N. R., & Bruce, P. C. (2010). Data Mining For Business Intelligence:

Concepts, Techniques, and Applications in Microsoft Office Excel with XLMiner. John Wiley

& Sons.

Sikonja, M. R., & Kononenko, I. (2003). Theoretical and Empirical Analysis of ReliefF and

RReliefF. Machine Learning Journal, 23-69.

61

Suarez-Tangil , G., Tapiador, J., Peris-Lopez, P., & Blasco, J. (2014). Dendroid: A text mining

approach to analyzing and classifying code structures in Android malware families. Elsevier,

1104-1117.

Sybase. (2011, April 11). It’s All About Security: Things To Know Before You Open The

Doors To Smartphones And Tablets In Your Enterprise.

Symantec. (2011, June 28). A Window into Mobile Device Security . Examining the security

approaches employed in Apple’s iOS and Google’s Android.

Symantec. (2012, October). Securing the Mobile App Market. How Code Signing Can Bolster

Security for Mobile Applications.

Thabtah, F., Eljinini, M., Zamzeer, M., & Hadi, W. (2009). Naïve Bayesian Based on Chi

Square to Categorize Arabic Data. Communications of the IBIMA.

USA Department of Commerce. (2012, July). Guidelines for Managing and Securing Mobile

Devices in the Enterprise.

Uysal, A. K., & Gunal, S. (2012). A novel probabilistic feature selection method for text

classification. Elsevier Science Publishers, 226-235.

VirusTotal. Frequently Asked Questions. Retrieved July, 2014, from VirusTotal:

https://www.virustotal.com/en/faq/#shortcuts

VirusTotal. VirusTotal. Retreived July, 2014, from VirusTotal: https://www.virustotal.com/

Vryniotis, V. (2014, January 20). Using Feature Selection Methods in Text Classification.

Retreived July, 2014, from Machine Learning Blog&Software Development News:

http://blog.datumbox.com/using-feature-selection-methods-in-text-classification/

weka.(2009, March 17). How weka deal with categorical data . Retreived July, 2014, from

weka: http://weka.8497.n7.nabble.com/How-weka-deal-with-categorical-data-td3144.html

Wikipedia. (2014, July 12). Confusion Matrix. Retreived July, 2014, from Wikipedia:

http://en.wikipedia.org/wiki/Confusion_matrix

Wikipedia. (2014, July 8). Histogram. Retreived July, 2014, from Wikipedia:

http://en.wikipedia.org/wiki/Histogram

wikipedia. (2014, July 23). Linux kernel. Retreived July, 2014, from wikipedia:

http://en.wikipedia.org/wiki/Linux_kernel

Wikipedia. (2014, July 19). Wikipedia. Retreived July, 2014, from MD5:

http://en.wikipedia.org/wiki/MD5

Witten, I. H., Frank, E., & Hall, M. A. (2011). Data Mining: Practical Machine Learning Tools

and Techniques Third Edition. Burlington: Morgan Kaufmann.

Wu ,D.-J., Mao, C.-H., Wei, T.-E., Lee, H.-M., & Wu, K.-P. (2012). 2012 Seventh Asia Joint

Conference on Information Security. DroidMat: Android Malware Detection through Manifest

and API Calls Tracing (s. 62-69). Tokyo: IEEE.

62

Yang,J., & Li, Y.-P. (2006). International Conference on Intelligent Computing, ICIC 2006.

Orthogonal Relief Algorithm for Feature Selection (s. 227-234). Kunming, China: Springer.

Yang,Y., & Pedersen, J. (1997). Yang, Y., & Pedersen, J. O. (1997, July). A comparative study

on feature selection in text categorization. ICML, (s. 412-420).

Yu, L., & Liu, H. (2003). In Proceedings of ICML 2003. Feature Selection for High-

Dimensional Data: A Fast Correlation-Based Filter Solution, (s. 856-863). Washington D.C.

Zhu, X., & Peiravian, N. (2013). 2013 IEEE 25th International Conference on Tools with

Artificial Intelligence. Machine Learning for Android Malware Detection Using Permission and

API Calls (s. 300-305). Herndon, VA: IEEE.

63

APPENDICES

Appendix A: List of Application Categories and Application Download

Ranges

APPLICATION CATEGORIES DOWNLOAD RANGES

Application Type Game Type 1-5

Books and

Reference

Action

 5-10

Books and

Reference

Adventure

 10-50

Business Arcade 50-100

Comics Board 100-500

Communication Card 500-1,000

Education Casino 1,000-5,000

Entertainment Casual 5,000-10,000

Finance Educational 10,000-50,000

Health and Fitness Family 50,000-100,000

Libraries and Demo Music 100,000-500,000

Lifestyle Puzzle 500,000-1,000,000

Media and Video Racing 1,000,000-5,000,000

Medical Role

Playing

 5,000,000-10,000,000

Music and Audio Simulation 10,000,000-50,000,000

News and

Magazines

Sports

 50,000,000-100,000,000

Personalization Strategy 100,000,000-500,000,000

Photography Trivia 500,000,000-1,000,000,000

Productivity Wallpaper 1,000,000,000-5,000,000,000

Shopping Word

Social

Sports

Tools

Transportation

Travel

Wallpaper

Weather

64

Appendix B: Histograms of Continuous Attributes

65

66

Appendix C: Paired t-test Results for Comparison of Predictive Accuracies

and Kappa Statistics to Choose Baseline Datasets

Table 23- Paired t-test results for accuracy comparison to choose baseline datasets

 Datasets

Classifier

Detection

Count=3

Detection

Count=4

Detection

Count=5

Detection

Count=6

Detection

Count=7

Detection

Count=8

Detection

Count=9

Detection

Count=10

Naïve

Bayes

79.53 82.62v 84.87v 86.65v 88.84v 90.73v 91.79v 93.45v

v: statistically better than the compared value at 0.05 confidence level

*: statistically worse than the compared value at 0.05 confidence level

(Here the following columns are compared with the first column (dataset with detection

count=3). For instance, according to the results on this table, the dataset with detection count=7

is more accurate than the dataset with detection count=3 and the difference of accuracy values

between two datasets is statistically significant at 0.05 confidence value.)

Table 24-Paired t-test results for kappa statistic comparison to choose baseline datasets

 Datasets

Classifier

Detection

Count=3

Detection

Count=4

Detection

Count=5

Detection

Count=6

Detection

Count=7

Detection

Count=8

Detection

Count=9

Detection

Count=10

Naïve

Bayes

0.48 0.51 0.53v 0.53v 0.53v 0.52v 0.49 0.50

(Here the following columns are compared with the first column (dataset with detection

count=3). For instance, according to the results on this table, the dataset with detection count=7

has higher agreement between malicious and benign applications than the dataset with detection

count=3. The difference of kappa statistics between two datasets is statistically significant at

0.05 confidence value.)

67

Appendix D: Histograms of Applications according to Market Related

Features

*Developer name could not be visualized because it includes 1253 developers for this dataset.

Red represents benign, blue represents malicious applications.

68

Appendix E: Accuracy and Kappa Statistic Results of All Classification and

Feature Selection Algorithms

Table 25- Accuracy and kappa statistic results for all combination of the chosen classification

and feature selection algorithms, and the number of features selected by feature selection

algorithms

Classifier
Feature

Selection
Algorithm

Selected
Features

Results for the dataset
including only permissions

Results for the dataset
including permissions and

other Google Play
metadata

Accuracy Kappa Accuracy Kappa

NB - - 75.79 0.45 80.65 0.57

NB CS 10 75.41 0.45 83.68 0.64

NB CS 30 75.05 0.45 80.97 0.58

NB CS 50 75.47 0.45 80.49 0.57

NB IG 10 75.41 0.45 83.94 0.65

NB IG 30 75.05 0.45 81.07 0.59

NB IG 50 75.37 0.45 80.51 0.57

NB RfF 10 72.24 0.40 82.65 0.62

NB RfF 30 75.09 0.45 82.39 0.62

NB RfF 50 75.17 0.45 80.51 0.57

J48 - - 83.18 0.62 79.37 0.56

J48 CS 10 77.55 0.48 69.69 0.42

J48 CS 30 81.29 0.57 78.85 0.58

J48 CS 50 82.14 0.59 73.77 0.47

J48 IG 10 77.55 0.48 69.69 0.42

J48 IG 30 81.44 0.57 78.85 0.58

J48 IG 50 82.04 0.59 73.77 0.47

J48 RfF 10 78.16 0.50 69.69 0.42

J48 RfF 30 82.67 0.61 78.91 0.58

J48 RfF 50 82.85 0.61 73.81 0.47

RF - - 84.81 0.66 83.66 0.62

RF CS 10 77.82 0.49 81.74 0.57

RF CS 30 82.57 0.60 82.28 0.59

RF CS 50 83.44 0.63 82.85 0.60

RF IG 10 77.76 0.49 82.93 0.60

RF IG 30 82.95 0.61 82.59 0.59

69

Classifier
Feature

Selection
Algorithm

Selected
Features

Results for the dataset
including only permissions

Results for the dataset
including permissions and

other Google Play
metadata

Accuracy Kappa Accuracy Kappa

RF IG 50 83.32 0.62 82.75 0.60

RF RfF 10 77.86 0.50 81.80 0.57

RF RfF 30 84.00 0.64 81.92 0.58

RF RfF 50 85.30 0.67 83.26 0.61

kNN - - 83.94 0.64 85.86 0.69

kNN CS 10 77.61 0.48 86.41 0.70

kNN CS 30 81.92 0.59 85.70 0.68

kNN CS 50 82.89 0.61 85.32 0.68

kNN IG 10 77.61 0.48 86.47 0.70

kNN IG 30 82.04 0.59 85.66 0.68

kNN IG 50 82.85 0.61 85.40 0.68

kNN RfF 10 77.96 0.50 84.49 0.66

kNN RfF 30 83.34 0.62 85.82 0.69

kNN RfF 50 84.31 0.65 86.03 0.69

70

Appendix F: Paired t-test Results for Comparison of Predictive Accuracies

and Kappa Statistics to Evaluate the Contribution of Official Market

Metadata

Table 26- Paired t-test results for accuracy comparison to evaluate the contribution of official

market metadata

Classifier

Feature Selection

Algorithm

Selected

Features

Dataset with

only

permissions

Dataset including

permissions+ market

metadata

Naive Bayes - - 75.79 80.65 v

Naive Bayes Chi-Square 10 75.41 83.68 v

Naive Bayes Chi-Square 30 75.05 80.97 v

Naive Bayes Chi-Square 50 75.47 80.49 v

Naive Bayes Information Gain 10 75.41 83.94 v

Naive Bayes Information Gain 30 75.05 81.07 v

Naive Bayes Information Gain 50 75.37 80.51 v

Naive Bayes ReliefF 10 72.24 82.65 v

Naive Bayes ReliefF 30 75.09 82.39 v

Naive Bayes ReliefF 50 75.17 80.51 v

J48 - - 83.18 79.37

J48 Chi-Square 10 77.55 69.69 *

J48 Chi-Square 30 81.29 78.85

J48 Chi-Square 50 82.14 73.77

J48 Information Gain 10 77.55 69.69 *

J48 Information Gain 30 81.44 78.85

J48 Information Gain 50 82.04 73.77

J48 ReliefF 10 78.16 69.69 *

J48 ReliefF 30 82.67 78.91

J48 ReliefF 50 82.85 73.81

Random forest - - 84.81 83.66

Random forest Chi-Square 10 77.82 81.74

Random forest Chi-Square 30 82.57 82.28

Random forest Chi-Square 50 83.44 82.85

Random forest Information Gain 10 77.76 82.93 v

Random forest Information Gain 30 82.95 82.59

Random forest Information Gain 50 83.32 82.75

Random forest ReliefF 10 77.86 81.8 v

Random forest ReliefF 30 84 81.92

71

Classifier

Feature Selection

Algorithm

Selected

Features

Dataset with

only

permissions

Dataset including

permissions+ market

metadata

Random forest ReliefF 50 85.3 83.26

kNN - - 83.94 85.86

kNN Chi-Square 10 77.61 86.41 v

kNN Chi-Square 30 81.92 85.7 v

kNN Chi-Square 50 82.89 85.32 v

kNN Information Gain 10 77.61 86.47 v

kNN Information Gain 30 82.04 85.66 v

kNN Information Gain 50 82.85 85.4 v

kNN ReliefF 10 77.96 84.49 v

kNN ReliefF 30 83.34 85.82 v

kNN ReliefF 50 84.31 86.03

v: statistically better than the compared value at 0.05 confidence level

*: statistically worse than the compared value at 0.05 confidence level

Table 27-Paired t-test results for kappa statistic comparison to evaluate the contribution of

official market metadata

Classifier

Feature Selection

Algorithm

Selected

Features

Dataset with

only

permissions

Dataset including

permissions+ market

metadata

Naive Bayes - - 0.45 0.57 v

Naive Bayes Chi-Square 10 0.45 0.64 v

Naive Bayes Chi-Square 30 0.45 0.58 v

Naive Bayes Chi-Square 50 0.45 0.57 v

Naive Bayes Information Gain 10 0.45 0.65 v

Naive Bayes Information Gain 30 0.45 0.59 v

Naive Bayes Information Gain 50 0.45 0.57 v

Naive Bayes ReliefF 10 0.4 0.62 v

Naive Bayes ReliefF 30 0.45 0.62 v

Naive Bayes ReliefF 50 0.45 0.57 v

J48 - - 0.62 0.56

J48 Chi-Square 10 0.48 0.42

J48 Chi-Square 30 0.57 0.58

J48 Chi-Square 50 0.59 0.47

J48 Information Gain 10 0.48 0.42

72

Classifier

Feature Selection

Algorithm

Selected

Features

Dataset with

only

permissions

Dataset including

permissions+ market

metadata

J48 Information Gain 30 0.57 0.58

J48 Information Gain 50 0.59 0.47

J48 ReliefF 10 0.5 0.42 *

J48 ReliefF 30 0.61 0.58

J48 ReliefF 50 0.61 0.47

Random forest - - 0.66 0.62

Random forest Chi-Square 10 0.49 0.57

Random forest Chi-Square 30 0.6 0.59

Random forest Chi-Square 50 0.63 0.6

Random forest Information Gain 10 0.49 0.6 v

Random forest Information Gain 30 0.61 0.59

Random forest Information Gain 50 0.62 0.6

Random forest ReliefF 10 0.5 0.57

Random forest ReliefF 30 0.64 0.58

Random forest ReliefF 50 0.67 0.61

kNN - - 0.64 0.69 v

kNN Chi-Square 10 0.48 0.7 v

kNN Chi-Square 30 0.59 0.68 v

kNN Chi-Square 50 0.61 0.68 v

kNN Information Gain 10 0.48 0.7 v

kNN Information Gain 30 0.59 0.68 v

kNN Information Gain 50 0.61 0.68 v

kNN ReliefF 10 0.5 0.66 v

kNN ReliefF 30 0.62 0.69 v

kNN ReliefF 50 0.65 0.69

73

Appendix G: Graphs for the Evaluation of Feature Selection Algorithms

74

69.69

78.85

73.77

69.69

78.85

73.77

69.69

78.91

73.81

10 30 50

Number of features selected

Accuracy comparison of features selection algorithms for

J48

Chi-Square Information Gain ReliefF

0.42

0.58

0.47
0.42

0.58

0.47
0.42

0.58

0.47

10 30 50

Number of features selected

Kappa statistic comparison of features selection algorithms

for J48

Chi-Square Information Gain ReliefF

75

0.57

0.59

0.60.6

0.59

0.6

0.57

0.58

0.61

10 30 50

Number of features selected

Kappa statistic comparison of features selection algorithms

for Random Forest

Chi-Square Information Gain ReliefF

76

86.41

85.7

85.32

86.47

85.66
85.4

84.49

85.82
86.03

10 30 50

Accuracy comparison of features selection algorithms for

kNN

Chi-Square Information Gain ReliefF

77

TEZ FOTOKOPİSİ İZİN FORMU

ENSTİTÜ

Fen Bilimleri Enstitüsü 

 Sosyal Bilimler Enstitüsü 

 Uygulamalı Matematik Enstitüsü 

 Enformatik Enstitüsü X

 Deniz Bilimleri Enstitüsü 

 YAZARIN

 Soyadı : BALTACI

 Adı : NURAY

 Bölümü : BİLİŞİM SİSTEMLERİ

TEZİN ADI (İngilizce) : A COMPARISON OF CLASSIFICATION

ALGORITHMS FOR MOBILE MALWARE DETECTION: MARKET METADATA

AS INPUT SOURCE

 TEZİN TÜRÜ : Yüksek Lisans X Doktora 

1. Tezimin tamamından kaynak gösterilmek şartıyla fotokopi alınabilir. 

2. Tezimin içindekiler sayfası, özet, indeks sayfalarından ve/veya bir

bölümünden 

kaynak gösterilmek şartıyla fotokopi alınabilir.

3. Tezimden bir (1) yıl süreyle fotokopi alınamaz. X

TEZİN KÜTÜPHANEYE TESLİM TARİHİ : …………………….

