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ABSTRACT 

 

 

A COMPARISON OF CLASSIFICATION ALGORITHMS FOR MOBILE MALWARE 

DETECTION: MARKET METADATA AS INPUT SOURCE  

 

 

 

Baltacı, Nuray 

M.S., Department of Information Systems 

Supervisor: Prof. Dr. Nazife Baykal 

Co-Supervisor: Assist. Prof. Dr. Cengiz Acartürk 

 

 

September 2014, 76 pages 

 

The prevalence of mobile devices has been catching the attention of malware authors especially 

for Android OS supported devices due to its user-centric security policy and open application 

development strategy for its official application market. In this study, an automated feature-

based static analysis method was applied to detect malicious mobile applications on Android 

devices. The main purpose of the study is to investigate the contribution of other application 

market metadata to the detection of malicious applications in addition to requested permissions. 

Hence, the information of applications presented on the official market when a user wants to 

download them was used as the feature set for training supervised classification algorithms. 

This feature set includes permissions requested from the user at the installation time, and other 

metadata about an application including but not limited to application category, download 

number category, and developer name. Additionally, different classification algorithms were 

compared in terms of their predictive accuracy and the effect of feature selection algorithms on 

the improvement of classification task was investigated. Naïve Bayes, k-nearest neighbor, J48 

and random forest were chosen as classification algorithms. As filter-based algorithms, Chi-

Square, Information Gain and ReliefF feature selection methods were utilized to reduce the 

number of attributes used to train those classification algorithms. 

 

Keywords: Mobile malware detection, Classification, Google market metadata, Machine 

learning  
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KÖTÜ AMAÇLI MOBİL YAZILIMLARIN TESPİTİ İÇİN KULLANILAN 

SINIFLANDIRMA ALGORİTMALARININ KIYASLANMASI: GİRDİ KAYNAĞI 

OLARAK MARKET META VERİSİ 
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Tez Yöneticisi: Prof. Dr. Nazife Baykal 

Ortak Tez Yöneticisi: Yrd. Doç. Dr. Cengiz Acartürk 

 

 

Eylül 2014, 76 sayfa 

 

 

 

Kullanıcı merkezli güvenlik politikası ve resmi uygulama marketi için açık uygulama geliştirme 

stratejisi nedeniyle Android işletim sistemi destekli cihazlar başta olmak üzere, mobil cihazların 

yaygınlaşması kötü amaçlı yazılım geliştiricilerin dikkatini çekmektedir. Bu çalışmada, Android 

cihazlardaki kötü amaçlı mobil uygulamaların tespiti için otomatik, özellik-tabanlı bir statik 

analiz yöntemi uygulanmıştır. Çalışmanın esas amacı, uygulama tarafından talep edilen izinlerin 

yanı sıra diğer market bilgilerinin zararlı yazılımların tespitine olan katkısını araştırmaktır. 

Dolayısıyla, uygulamalar kullanıcılar tarafından resmi marketten indirilirken uygulamalarla 

ilgili sunulan bilgiler özellik kümesi olarak güdümlü sınıflandırma algoritmalarının 

eğitilmesinde kullanılmak kullanılmıştır. Bu özellik kümesi, uygulamanın kurulması anında 

kullanıcıdan talep edilen izinleri ve uygulama kategorisi, indirilme sayısı kategorisi, geliştirici 

adı vb. gibi uygulamayla ilgili diğer meta verileri kapsamaktadır. Ek olarak, çeşitli 

sınıflandırma algoritmaları tahminlerinin doğruluğu açısından kıyaslanmış ve özellikle seçme 

algoritmalarının sınıflandırma görevinin iyileştirilmesi üzerine etkisi araştırılmıştır. 

Sınıflandırma algoritmaları olarak Naive Bayes, k- nearest neighbor, J48 ve random forest 

seçilmiştir. Birer filtre-tabanlı algoritma olan Chi-Square, Information Gain ve ReliefF özellik 

seçme yöntemlerinden ise bahsi geçen sınıflandırma algoritmalarının eğitilmesinde kullanılan 

niteliklerin sayısını azaltmak üzere faydalanılmıştır.  

Anahtar Kelimeler: Mobil zararlı yazılım tespiti, Sınıflandırma, Google market meta verisi, 

Makine öğrenimi 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1. Background of the Study  

Smartphones and tablets have been pervading in both daily use and business settings. Including 

desktops and laptops, conventional PC market is falling behind the market for mobile 

computing. Statistics reported by the Intelligence Research Service of Business Insider strongly 

support this fact that it was totally 28 percent of the world population who owned tablets and 

smartphones when compared to PC owners constituting the 20 percent at the end of 2013. (Blue 

Coat Systems, 2014)  In spite of their security vulnerabilities, mobile devices do not decrease 

the speed of pervasion.  (Blue Coat Systems, 2014) 

The ubiquitous usage of mobile devices has induced the burst of mobile application market 

because mobile applications enhance the capabilities of mobile devices and improve the 

customer experience. People take advantage of downloading these applications to their 

smartphones or other mobile devices for the purpose of amusement, shopping, online banking, 

business needs, tracking their daily supportive health practices and of almost any purpose one 

can imagine. This increasing demand for mobile applications is supplied by platforms of official 

vendors and third party markets. As they produce their official applications, they also realize the 

importance of the support to meet this demand by third party developers. However, this 

approach has some security risks because not only the legitimate developers but also malware 

(malicious software) authors upload applications to these markets. 

There are diverse incentives of hackers behind writing mobile malware. Authors may want to 

damage users in purpose of novelty and amusement. An example of mobile malware, Ikee.A 

changed the wallpaper of iPhones once infected the device and Smspacem, an SMS spam, 

targeted Android devices to send text messages against religion. Other inducements for hacking 

can be listed as selling user information (location of the user, contacts list, browser history and 

IMEI), stealing user credentials (like bank account credentials, credit card numbers, and account 

passwords), SMS spam, search engine optimization, ransom and making premium-rate calls and 

sending premium rate SMSs. Premium-rate SMSs sent from the phone without user consent can 

be hidden so craftily that the user may only understand after seeing his/her phone bill. ( Porter 

Felt, Finifter, Chin, Hanna, & Wagner, 2011) 
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Mobile application platform providers have different security precautions against the 

mischievousness of cybercriminals. Google applies an open strategy to let the developers 

publish their applications whilst Apple strictly reviews the products of their approved 

developers before releasing. (Bose, Hu, Shin, & Park, 2011)  Apple has been effective in their 

application provenance policy so, actual malware targeting non-jailbroken iOS (IPhone 

operating system) devices have not seen thus far. (Symantec, 2011) However, Google’s user 

report triggered review process for their application market and user centric permission system 

makes Google Play (formerly named as Android Market) and Android Operating System (OS) 

attractive for attackers. In 2012, attacks on Android devices constituted 95% of overall 

infections and with 32.8 million devices get infected, and doubled this amount compared to the 

past year. Attackers used application repackaging, SMS phishing and malicious URLs as 

exploitation methods of OS’s commonly. (Rapit7, 2013) Cybercriminals will continue their 

attacks in an evolving manner targeting Android OS owing to the unregulated application 

market structure and diversity of Android based devices. (Blue Coat Sytems, 2013) 

Mobile application platform providers are capable of removing malicious applications from the 

market quickly when detected and they have the right of remotely uninstalling these 

applications from the downloaded devices. Despite quick actions of them, the time window 

between the placement and detection of malicious application may cause unwanted damages to 

a lot of users. (Blue Coat Systems, 2014) For instance, attacks named as “Android.Rootcager, 

Android.Pjapps and Android.Bgserv” during 2010 and 2011, targeted legitimate applications by 

injecting malicious code into these applications and replacing the digital signatures with an 

uncertified ones. These trojanized applications which were put on the official Android Market 

or third-party markets harmed hundreds of thousands of users. (Symantec, 2011) Another threat 

on Google’s official market was discovered in early 2010 as malicious applications developed 

by the developer named Droid09. These applications deceived users by masquerading 

themselves as legitimate mobile banking applications and then stole banking credentials of users 

by using phishing techniques. (Sybase, 2011) After realizing, Google quickly removed 51 

applications belonging to the same developer.  (Symantec, 2012) 

1.2. Purpose of the Study and Research Questions 

In this study, the performance of different machine learning classification algorithms on Google 

metadata-based static analysis method is evaluated. Mainly, the contribution of Google Play 

Market specific application information to the effectiveness of Android permission-based 

detection model is questioned. Since Google metadata on Google Play market includes 

information about permissions required when downloading applications and other information 

like developer name, download number of application, user rates, minimum required Android 

API level and so on, the contribution of other Google data mentioned here is investigated by 

dividing dataset according to permission features and others. The performance comparison is 

made on these two dataset. Also, the effects of feature selection methods with filter approach on 

the performance of classification algorithms are observed. The following research questions are 

attempted to be answered throughout the study: 

1) Is it possible to accept Google Play market metadata as meaningful attribute for a 

supervised machine learning algorithm used for mobile malware detection? 

2) Which classification algorithm has the highest accuracy for the Android malware 

detection problem by using Google Play market metadata among Naïve Bayes, k 

nearest neighbor, random forest and J48? 
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3) Which classification algorithm, feature selection method and the number of selected 

features combination is most accurate in static detection of Android malware with 

Google metadata? Chi-Square, ReliefF and Information Gain Score are the feature 

selection methods used with classification algorithms. 

1.3. Significance of the Study 

Proliferation of mobile devices has caused the exploitation of them by cybercriminals to obtain 

immense amount of profit by confidential personal and financial information. People have been 

deserting PCs and increasingly preferring mobile devices as the means of accessing data. While 

using mobile devices, users utilize from mobile applications in order to perform tasks like 

sending SMS, surfing on the internet, making online banking transactions, taking pictures and 

so on. This makes mobile devices and applications prone to mobile malware because they are 

full of personal and financial data to gain access by cybercriminals. (Rapit7, 2013) Even in 

recent years, malware industry has shown inconceivable progression so that it turned into a 

highly illegal economy sustaining under supply and demand laws like traditional market-based 

economies. In this market, cybercriminals sell the data they steal, rent botnets, sell newly 

explored vulnerabilities and exploit kits. (Blue Coat Systems, 2014) 

Hackers have a wide range of subtle methods to harm mobile devices and trick users.  They can 

exploit the vulnerabilities of mobile operating systems like the ones enabling buffer overflows 

by sending more data than the memory can handle and causing the propagation of malware to 

other areas in the phone.  ( Lawton, 2008) Another example of hackers’ craftiness is that they 

can modify legitimate applications to include hidden channel and then leak information from the 

victim’s phone. This threat is called as man-in-the-middle attack and can be achieved by the 

installation of malicious certificates and reconfiguring proxy settings and performing other 

modifications. (HP, 2013) These are only some well-known examples to the weapons of 

cybercriminals and they add new ones into their ammunition every day. As counterattack to this 

growing army, security solutions proposed by researchers have been increasing. However this 

research field is immature and needs to be explored deeply. (La Polla, Martinelli, & Sgandurra, 

2013) 

The fast growth of mobile market, transformation of mobile malware into huge market economy 

and the low saturation of the mobile malware research field have made the way for realizing a 

study in mobile malware detection. In addition, the difference of official application market 

policies applied by mobile application platform and mobile OS providers have an effect on the 

proposed model in this study. For example, Apple Incorporation applies manual inspection of 

mobile applications by security experts before presenting them on the Apple Store. (Abu Samra, 

Yim, & Ghanem, 2013) On the other hand, Google has more passive security policy allowing 

anyone to publish application on their official market (Abu Samra, Yim, & Ghanem, 2013) 

despite their user reporting mechanism for suspicious applications and Bouncer for 

automatically scanning applications prior to upload. (Petsas, Voyatzis, Athanasopoulos, 

Polychronakis, & Ioannidis, 2014) This arises the question whether the applications’ metadata 

presented on the official application market can be used as the indication of malicious content or 

not. 

Additionally, when a user downloads an Android application to his phone, a list of permissions 

is presented by that application in non-technical language at installation time. Since Android has 

no middle way of granting permissions to applications, users have to grant access to all the 
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requested permissions if he wants to install the applications. Anroid’s permission system passes 

security risks on users and gives freedom of choice to decide on the safety of applications’ 

permissions. (Symantec, 2011) However, users are generally not competence enough to make 

decision about permissions, so guidance is needed before installing applications. This user 

centric approach may become challenging and users may be stimulated to accept every 

permission requested by an application causing security risks. (Bose, Hu, Shin, & Park, 2011) 

In the lights of the things mentioned above, the need for a static feature based mobile malware 

detection system for Android devices considering requested permissions and Google Market 

data, including developer name, download time, user ratings, and so on, became an incentive 

behind this study.  

1.4. Definition of Terms 

Hash value: Hash value, consisting of numerical and/or alphabetical values and fixed in size, is 

used to ensure the integrity of files (or message) and so to determine whether a file has been 

tampered while being sent through insecure channels. (Microsoft, 2014) 

IMEI: A unique number used to identify phones. 

Jailbroken device: For devices having Android OS, users can root devices by circumventing 

built-in limitations related to security and OS use of the devices. (USA Department of 

Commerce, 2012) 

Malware: Malware, short for malicious or malevolent software, is software used or 

programmed by attackers to disrupt computer operations, gather sensitive information, or gain 

access to private computer systems. 

Premium-rate phone calls and SMS: For the definition of this term, the following definition 

was adopted from the study of ( Porter Felt, Finifter, Chin, Hanna, & Wagner, 2011) (p. 6) 

“Legitimate premium-rate phone calls and SMS messages deliver valuable content, such as 

stock quotes, technical support, or adult services. The cost of a premium-rate call or SMS is 

charged to the sender's phone bill. Premium-rate calls can cost several dollars per minute, and 

premium-rate SMS messages can cost several dollars per message.” 

Search  Engine Optimization: For the definition of this term, the following definition was 

adopted from the study of ( Porter Felt, Finifter, Chin, Hanna, & Wagner, 2011) (p. 7) 

“Malware can be employed to improve a web site's ranking in search engine results. This type 

of malware sends web requests to the search engine for the target search term. The malware 

then fraudulently “clicks" on the search result that corresponds to the target web site. As a 

result, the web site's rank for that search term will increase. The value of fraudulent search 

engine optimization depends on how well the target site can capitalize on its increased visibility, 

but search engine optimization is a large and lucrative market.”  

Ransom: For the definition of this term, the following definition was adopted from the study of 

( Porter Felt, Finifter, Chin, Hanna, & Wagner, 2011) (7) “Mobile malware that seriously 

threatens or publicly embarrasses the user for profit”  
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

 

This chapter presents literature review and starts with the security policies and practices of the 

two widely used mobile device vendors and application platform providers. Following this, 

Android OS, application structure and permissions system are explained to shed light on the 

ground of the studies in this area. Finally, malware detection methods and the studies about 

them are presented. 

2.1. Application Market and Operating System Security Policies and 

Practices  

This section explains and compares the security policies and practices followed by the two 

pioneer vendors of mobile devices and their official application markets, namely Apple-

AppleStore and Android-GooglePlay. 

A software developer is required to register and pay annual licensing fee and then obtain a 

digital certificate of Apple to be able to release software for Apple products. On the other hand 

anyone can publish application on the official Android Market with Google’s passive 

publication mechanism. ( Wu , Mao, Wei, Lee, & Wu, 2012) Like iOS, Android OS requires 

digital signatures to install and run applications but the certificates are not Google-issued and 

the developers can generate digital signatures as often as they want, give any company name 

and contact information in the certificates they like and this makes the traceability of hackers 

virtually impossible. Google’s signature mechanism causes two problems. Since traceability of 

applications becomes harder, it gets easier to generate and distribute malware. In addition, by 

adding malicious code into an existing legitimate application and signing it with the anonymous 

certificate makes the addition of Trojan horses into benign applications an easy job for 

attackers. (Symantec, 2011) 

Apple reviews every application before publication and applies code signing model to prevent 

attackers from modifying or infecting benign applications. (Symantec, 2011) Google also 

checks applications simply but the process is not as strict as Apple’s process and adopts a 

strategy of deleting applications from the market after they are found to be malicious. (Bose, 

Hu, Shin, & Park, 2011)  ( Porter Felt, Finifter, Chin, Hanna, & Wagner, 2011)  ( Wu , Mao, 

Wei, Lee, & Wu, 2012) In such a strategy, hackers find the required time gap to download and 

to alter the legitimate application into a malware by injecting malicious code. This hijacking 



6 

 

method makes the ways simple for hackers and it gets even more difficult to detect malwares. 

(Symantec, 2012) 

In addition, Apple applies a kill switch to make malicious applications inactive because 

illegitimate applications may infect Apple devices despite their strict policy. Kill switch is a 

precaution taken to remotely deactivate or remove applications from the mobile devices by 

application platform providers in case of a malicious content is realized to guard mobile device 

users against security threats. Android uses a similar method with Apple’s kill switch to remove 

application from Android devices remotely. (Bose, Hu, Shin, & Park, 2011)   

Lastly, Android allows installing third-party applications that may increase the spread of 

Android malware. ( Wu , Mao, Wei, Lee, & Wu, 2012) 

To sum up, there are some differences and similarities of security policies among the two 

pioneer application platform (and OS) providers, Apple (iOS) and Google (Android). While 

Apple applies digital certification with annual fee for developers, Google’s certification is more 

flexible and causes the propagation of malware easily. In addition, Apple manually and strictly 

inspects the applications’ code before uploading them on the market, but Google applies more 

open reviewing strategy and removes the illegitimate applications from the market afterwards. 

Whereas Android allows the download of applications from third-party market, iOS restricts the 

users from this aspect. Both Google and Apple have kill switch mechanism to remove malicious 

applications remotely from mobile devices. 

2.2. Android Operating System 

Running top of Linux kernel which is an open source Unix-like operating system, (wikipedia, 

2014) Android is a middleware and an operating system for mobile phones. ( Enck, Ongtang, & 

McDani, 2009) In Android OS, applications are strongly isolated from the system and each 

other by the customization of underlying Linux internals, and this mechanism is called 

sandboxing. ( Enck, Ongtang, & McDani, 2009)  (Bose, Hu, Shin, & Park, 2011)  Mobile 

applications for Android are written in Java language and execute on the OS with unique user 

and group identity (UID) assigned at installation time on their own Linux processes. ( 

Orthacker, et al., 2011)  (Bose, Hu, Shin, & Park, 2011)  ( Enck, Ongtang, & McDani, 2009) 

Assignment of UID to applications assures the sandboxing mechanism which restricts the 

access to the file system resources and memory. Applying a fine-grained permission system, 

Android compels restrictions on communication, share of resources and functions. If the user 

provides access to the required permissions demanded by applications, then applications can 

access to resources. Additionally, by the help of this isolation mechanism, the effects of buffer 

overflows are minimized. In other words, if an application is infected due to the exploitation of 

vulnerability in OS, other parts of the system and applications are protected. ( Enck, Ongtang, & 

McDani, 2009) 

2.3. Android Application Structure 

Android applications are packaged files which are called as apk files, and brought in zipped 

form. The assets and resources in the form of multimedia to be used for the user interfaces and 

functions, the Dalvik executable (dex file) containing byte code and the configuration file, 

Android Manifest file, are contained in an apk. ( Schreckling, Huber, Höhne, & Posegga, 2013) 
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There exist four types of basic components to be used to build an application which are 

activities, services, broadcast receivers and content providers. User interfaces are formed by 

activities and only one activity can be active at a time if an application contains many activities. 

Services are in job to fulfill background or time consuming tasks and are interacted by API 

functions by triggering remote calls. In order to share their data with other applications, 

applications use content providers and to retrieve this data, they use content resolvers. Content 

providers query data of another content provider by using URIs (unique resource identifier). 

Broadcast receivers provide the exchange of intent messages, intent to perform an action, 

between applications. ( Schreckling, Huber, Höhne, & Posegga, 2013) These four types of 

components use intent messages to communicate and their communication mechanism is called 

as IPC (inter-process communication). ( Enck, Ongtang, & McDani, 2009) 

2.4. Android Permissions System 

As it is stated in the Android OS part, applications face the restriction on system resources, 

functions and communication. To be able to access these restricted elements, applications must 

declare permissions in their manifest files. (Abu Samra, Yim, & Ghanem, 2013) (Bose, Hu, 

Shin, & Park, 2011) Several hardware devices like GPS and camera, sensitive parts of the OS 

like contacts and the parts of other applications to be accessed can be thought as the elements 

which have restrictions. For instance, to access the internet, “android.permission.INTERNET” 

statement should be placed in the manifest of an apk while the permission “android. 

Permission.READ CONTACTS” is used by an application to access the contacts of a user. (Abu 

Samra, Yim, & Ghanem, 2013) The user, who wants to install an application, should grant all of 

the permissions requested by that application at the installation time, not at the runtime, and 

there is no way to grant the some part of the permissions. ( Meurer & Wismüller, 2012) Those 

granted permissions are enforced when the application executes and the permissions which are 

not granted yield errors. (Bose, Hu, Shin, & Park, 2011)   

Android permissions are grouped into three categories according to their security risk levels as 

normal, dangerous and signature/system. ( Schreckling, Huber, Höhne, & Posegga, 2013) ( Zhu 

& Peiravian, 2013) ( Meurer & Wismüller, 2012) Normal permissions do not threaten the 

security of mobile devices and hence they are not asked to the user to be approved, in fact 

granted without notification. On the other hand, dangerous and system type permissions are 

approved by the user at install time because they have the control on the restriction of critical 

resources and private data. Signature or system permissions can be requested by only the 

applications pre-installed and signed by the device manufacturer and not accessible for normal 

developers because they control the access to the main system services and data. ( Schreckling, 

Huber, Höhne, & Posegga, 2013) ( Meurer & Wismüller, 2012) Beside these predefined 

permissions for Android applications, developers may also define their own permissions like in 

the case of having purpose to protect a content provider. ( Meurer & Wismüller, 2012) (Bose, 

Hu, Shin, & Park, 2011)   

2.5. Malware Detection Methods 

Static and dynamic analyses are the two main types of malware detection techniques that 

analyzes both PC and smartphone malware according to the way of code analysis. (Suarez-

Tangil , Tapiador, Peris-Lopez, & Blasco, 2014) ( Wu , Mao, Wei, Lee, & Wu, 2012) Static 

analysis is a detection method which comprise of unpacking and disassembling or decompiling 

the malware samples and inspecting the obtained code. On the other hand, dynamic analysis 
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handles specimens by running them in a controlled environment and tries to find out malicious 

behaviors. Dynamic and static analyses are conducted by extracting and analyzing a number of 

features as a result of sample inspection. From this point of view, by using several features as 

attributes, machine learning and data mining approaches have been introduced as automated 

malware analysis techniques to assist analysts in carrying out classification and clustering tasks.  

(Suarez-Tangil , Tapiador, Peris-Lopez, & Blasco, 2014) 

Wu , Mao, Wei, Lee, and Wu (2012) discuss malware detection as two different types as misuse 

detection and anomaly detection. Misuse detection is the method of applying rules or policies 

based on matching the signatures of malware with the ones in database. It precisely detects the 

Android malware in case of signature match but needs to update the signatures. Anomaly 

detection is defined as applying machine learning algorithms to learn behaviors of known 

malware and to predict unknown malware but it sometimes causes high false positive.  ( Wu , 

Mao, Wei, Lee, & Wu, 2012) 

2.5.1. Dynamic (Behavior-Based) Analysis 

A behavioral framework for detecting mobile viruses, worms and Trojans targeting Symbian 

OS is proposed by (Bose, Hu, Shin, & Park, 2008). A database of behavioral signatures is 

constructed by collecting system events and resource-access attempts made by the program and 

by applying temporal logic of causal knowledge (TLCK) method on those key behavior 

signatures of malwares reported to date. The interested behaviors are the ones presenting 

malicious activity like draining the battery, overwriting system files, installing a worm payload, 

sending infected messages etc. and these behaviors are not enough to label an application as 

malicious in isolation. Hence, the logical ordering of these activities in time is under inspection 

by using TLCK method. The monitoring layer is implemented on a Symbian emulator to collect 

run-time behavior signatures. A classifier, SVM (support vector machine), is trained from 

normal and malicious applications and evaluated on both emulated and real-world malicious 

data. Their results show high detection rates with novel malwares which have certainly 

matching behavioral patterns with the ones in the database.  (Bose, Hu, Shin, & Park, 2008) 

Another behavioral framework, Andromaly is a host-based and lightweight (in terms of CPU, 

memory and battery consumption) malware detection system designed to monitor and obtain 

events and features from the mobile device, and then to perform real-time anomaly detection. 

Andromaly uses system metrics such as CPU consumption, number of sent packets through the 

Wi-Fi, number of running processes, battery level etc. as behavioral features. Chi-Square, Fisher 

Score and Information Gain methods were applied to select features and as machine learning 

algorithms k-means, logistic regression, histograms, decision tree, Bayesian networks and Naïve 

Bayes were chosen. At the time of their analysis, there was not known Android malware 

sample, so they developed four malicious applications that perform DoS and information theft 

attacks. They evaluated the different combinations of feature selection methods, the predefined 

feature number and machine learning algorithms and compared their performances. According 

to the empirical results, Andromaly is effective for mobile malware detection and the best 

configuration is the Naïve Bayes trained with top 10 features selected by the Fisher Score 

algorithm. ( Shabtai, Kanonov, Elovici, Glezer, & Weiss, 2012) 

Behavioral-based detection systems may cause extra cost in deployment environment, because 

mobile handsets have limitation in terms of CPU and battery. To overcome this obstacle, 

(Damopoulos, Kambourakis, & Portokalidis, 2014) presents a proof-of-concept mobile IDS 



9 

 

(intrusion detection system) architecture deployed both on the host and the cloud. Their 

architecture consists of event sensors which collects events from the device to construct 

behavioral signatures [like system calls, inter-process communications, hardware sensors, API 

calls, system services (e.g. user SMS), and any library call], system managers to collect 

signatures and forward to decision engines, decision engines to fulfill detection mechanism on 

device, cloud manager to apply decision algorithms on the cloud. Their system decides based on 

sensitivity, which changes according to the user preferences on system sources to provide 

flexibility. Four different detection mechanisms from the previous work, namely SMS Profiler, 

iDMA, iTL and Touchstroke are used and then Random Forest algorithm is used as the 

classification algorithm. They use the Performance (CPU and memory consumption) and 

Timeliness (train and test time) metrics to evaluate the effectiveness of their real-time IDS. 

Cloud based detection is found to have lower training and testing time but overall detection time 

of cloud is worse than host-based detection because of communication delays. However CPU 

performance shows the battery lifetime is affected by on-device detection. As a result, they 

conclude that a hybrid solution performing the most heavyweight detection tasks on the cloud 

and the more time sensitive ones on the host would be a better solution. (Damopoulos, 

Kambourakis, & Portokalidis, 2014) 

2.5.2. Static Analysis 

URANOS, an application rewriting framework developed for Android devices by ( Schreckling, 

Huber, Höhne, & Posegga, 2013) lets the users of mobile phones to selectively deactivate the 

permissions of applications according to their preferences without rooting or manipulating their 

smartphones. This framework analyzes the byte code of the application in order to infer the 

required permissions during execution and compares with the permissions requested in the 

application manifest file. As a result of this on-device static analysis, excessive permissions are 

detected and shared with the user. According to the decision of the user whether to enable or 

disable permissions, URANOS rewrites the application byte code. This study expresses the 

importance of guidance by displaying excessive permissions to the users for helping them make 

informed decisions because granting excessive permissions to applications gives the way for 

new exploit techniques. ( Schreckling, Huber, Höhne, & Posegga, 2013) As another guide to the 

smartphone users, Kirin security service for devices with Android OS developed by ( Enck, 

Ongtang, & McDani, 2009) uses a set of predefined security rules and performs lightweight 

certification at install time. These rules are based on security configuration available in an 

application’s manifest file (permissions, intents, and application components) and defined 

clearly by specifying unwanted configurations and their combinations. Thus they followed 

security requirements engineering processes (identifying assets, functional requirements, 

determining assets’ security goals and threats, developing assets’ security requirements, 

determining security mechanism limitations and adjusting security rules accordingly) to specify 

rules and then proposed a security language to define their semantics. Results show that 

certification technique fails for only 1.6% of applications in their dataset hence Kirin can be 

reasonable for practically mitigate malware. ( Enck, Ongtang, & McDani, 2009) 

An Android application named as APEFS was also developed to guide the users to make 

decision while downloading applications from Google’s official market. This application does 

not require the root access to the phone and downloads applications via Google Play. In order to 

do so, APEFS parses needed information from the details page of the application like developer 

name, price, rating and the requested permissions. Users can define profiles in the APEFS 

according to their need of security and privacy and for nonprofessional users it includes pre-
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defined permission profiles. These profiles are used to filter the applications when a user 

searches the market and to find the ones which do not match the security level of the user 

among the already installed applications. Then user can delete those unsuitable applications 

from the phone. ( Meurer & Wismüller, 2012) 

DroidMat, developed by ( Wu , Mao, Wei, Lee, & Wu, 2012) is a system used as a static 

feature-based mechanism to detect Android malware by considering requested permissions, 

intent messages passing, API calls and components of applications (activity, service and 

receiver) as static information. The dataset used in the study includes 238 Android malware 

collected from a public Android dataset, Contagio mobile, and 1500 benign applications 

downloaded from official Android market and verified through the website of VirusTotal 

malware detection community . As the first step, K-means and EM clustering methods are used 

to enhance the malware modeling capability. The number of clusters is determined by using 

Singular Value Decomposition method. Then kNN (k-nearest neighbor) and Naïve Bayes 

algorithms are trained and tested to detect unknown malware samples. Different combinations 

of static features are tried and the feature set consisting of permissions, intent messages and API 

calls is found to be the most precise. Finally, the combination of k-means as the clustering and 

kNN with k=1 as classification algorithm is chosen as best result. ( Wu , Mao, Wei, Lee, & Wu, 

2012) 

In order to improve the prediction accuracy of the permission-based detection method, a 

framework having the combination of requested permissions and static API call behaviors as the 

feature set for machine learning classification tasks was proposed. ( Zhu & Peiravian, 2013)  

They utilized the validated dataset of a former study, Malware Genome Project, to make their 

analysis and built three benchmark datasets (one containing only permissions as feature set, the 

other one containing only API calls and the last one containing combination of them) to 

evaluate the contribution of static API calls. By extracting permissions from AndroidManifest 

file and API calls from class files, they used them as the attributes to train different 

classification methods which are SVM (support vector machine), decision tree and bagging 

algorithms. Bagging algorithm has the best performance for all of benchmark datasets and they 

ground this performance to the capability of bagging algorithm’s on imbalanced dataset in terms 

of class attribute. (Their dataset includes more benign applications than malicious applications) 

( Zhu & Peiravian, 2013) 

Those works mentioned above and the others which are not handled here are acceptable and 

effective enough to explain the malicious characteristics of Android applications by using 

combinations of Android permissions, native code, embedded applications, and application 

components. (Glodek & Harang, 2013) extended those works by adding the frequent 

combinations of such static features as training attributes for random forest classification 

algorithm. They chose random forest because of its high accuracy performance and 

computational efficiency. They also used the dataset of Malware Genome Project for labeled 

malwares and collected legitimate applications from third party markets randomly. They came 

to conclusion that the combinations of permissions seen frequently in the dataset improve 

previous results with true positive rates above 90% and with acceptable false positive rates. 

(Glodek & Harang, 2013) 

In one of the studies using static analysis technique, researchers apply a new method called 

Activation Patterns by extracting the permissions and other metadata (like description of 

application, download count, price and category of each application) of 130.211 applications 
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collected from Google’s official application market. They deeply inspect the permissions and 

their relations by executing semantic search queries to figure out anomalies and identify the 

clusters of similar applications according to permissions and descriptions of them with Growing 

Neural Gas clustering algorithm. By using activation patterns method they try to find out 

anomalies utilizing generated patterns. For example they look into the relationship between the 

description of and permissions requested by an application. As a result, their study constructed a 

solid basis for further anomaly detection of applications on the market and their clustering based 

on permissions were promising because of giving information about the typical usage of 

permissions by various application categories. (Bose, Hu, Shin, & Park, 2011) 

In their research, (Abu Samra, Yim, & Ghanem, 2013) use a dataset which includes 

approximately 188,000 applications downloaded from Google’s Android Market in November 

2011 by using web crawling technique for a former study. This dataset had been comprised of 

top free and top paid applications and then more applications obtained as a result of search done 

by using some random search terms in the Android Market were added to this dataset. The 

authors choose to study with applications under business and tools category and justify this 

selection as they interested in clustering data to two clusters as malicious and non-malicious 

applications. They use features extracted from xml files of decompressed apk.s and Android 

Market specific features (like app. Name, category, description, rating values, price etc.) to 

apply an unsupervised k-means clustering algorithm. The result of k-means algorithm obtained 

in this article is claimed to give good performance for clustering in Android applications to 

detect malicious applications. 

2.6. Summary 

The previous work on mobile malware detection is concentrated on two types of methods as 

dynamic and static analysis. Static analysis technique is the reverse engineering of samples 

which decompresses applications and inspects the static features of obtained application parts 

like byte code and permissions requested from users. Signature-based analysis method is the 

subtype of static analysis which compares the unknown samples with the known malware 

database and matches the signatures. In this study, a feature-based automated static analysis 

method is used to detect Android malware because of the low resistance of signature-based 

method to polymorphic and unseen malware. ( Zhu & Peiravian, 2013)  Another main type of 

detection method, dynamic analysis, examines the applications’ behaviors on run time by 

executing them. Since it requires complicated skills and manual investigation ( Wu , Mao, Wei, 

Lee, & Wu, 2012), it is not preferred in this study. The reason for choosing Android devices and 

its official market to inspect lies behind the security policies of them. These devices expose 

more threats because of the official market’s open strategy in terms of application reviews and 

user-centric permission grant mechanism for applications installed on them. (Bose, Hu, Shin, & 

Park, 2011)  ( Porter Felt, Finifter, Chin, Hanna, & Wagner, 2011)  ( Wu , Mao, Wei, Lee, & 

Wu, 2012) (Symantec, 2011) 

Several features have been used to conduct static analysis for mobile malware detection on 

Android devices in prior studies. Subsets of the combinations for permissions requested from 

users at install time, intent messages of applications to trigger events, main components of 

Android applications (content providers, broadcast receivers, activities, and services), and  API 

calls obtained as the result of byte code inspection were used by ( Enck, Ongtang, & McDani, 

2009) ( Wu , Mao, Wei, Lee, & Wu, 2012) ( Zhu & Peiravian, 2013) as inputs for their models. 

(Glodek & Harang, 2013) proposed the use of combinations for permissions seen frequently in 
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the dataset. Also in this study requested permissions are used as static features as the previous 

studies have proved their contribution in Android malware detection task. The other static 

features used by those studies could not be included in this study because all of the applications 

collected from the official market did not let to be decompressed. However, official application 

market metadata have been proposed in this study as additional features to requested 

permissions because the permissions are not sufficient to explain malicious behaviors on their 

own. ( Meurer & Wismüller, 2012) ( Enck, Ongtang, & McDani, 2009) There exist other studies 

using official market metadata as inputs for statically detecting Android malware like the ones 

performed by (Abu Samra, Yim, & Ghanem, 2013) and (Bose, Hu, Shin, & Park, 2011). 

However they applied unsupervised machine learning techniques, while in this study supervised 

classification algorithms are applied with and without feature selection algorithms and then their 

performances are compared. 
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This chapter explains the research methodology and the process to obtain the final baseline 

datasets. It starts with the explanatory information about detection methods, classification and 

feature selection algorithms and the justifications for the chosen method and algorithms. Then 

the following sections clarifies how the data were collected and processed to be used in 

algorithms, parameters for evaluating the performance of the models and concludes with a pilot 

study conducted to obtain the baseline datasets for further analyses. 

3.1. Detection Method 

As it is stated in the literature review part, the two basic methods when investigating the 

malicious behaviors of software or mobile applications are the static and dynamic analysis 

(detection) methods. Dynamic detection method is applied by running an application on an 

isolated environment and observing behaviors of the application in order to discover the 

matching behavior profiles of applications with known malware.  (Bose, Hu, Shin, & Park, 

2008) Despite the fact that dynamic (behavioral) detection method is more resilient to 

polymorphic malware owing to the share of similar behavioral profiles of malware variants in 

the same family, (Bose, Hu, Shin, & Park, 2008) it requires complicated skills and so is costly 

and time consuming. ( Zhu & Peiravian, 2013) 

The chosen detection method in this study is static analysis because of the fact that whereas 

dynamic analysis can present better understanding of what is going on, but with high cost of 

deployment environment and manual probing, static analysis reduces the cost and improves the 

performance. ( Wu , Mao, Wei, Lee, & Wu, 2012) The proposed method is a kind of automated 

feature based static analysis by regarding permissions and other Google metadata information of 

Android applications. Under the static analysis, there exists a signature based detection method 

which has been implemented for many years by researchers and antivirus companies. Signature 

based detection method relies on the comparison of applications against a list of known 

malware and has low resistance on unseen, polymorphic, obfuscated and metamorphic malware. 

( Zhu & Peiravian, 2013) It is usually proper for post-infection cleanup ( Zhu & Peiravian, 

2013), so was not preferred in this study. Another drawback of signature based detection 

method is being inefficient in terms of battery power consumption which is a scarce resource on 

mobile devices because of requiring the comparison of each derived signature with the ones in 
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the database.  (Bose, Hu, Shin, & Park, 2008) Moreover, by using the features extracted from 

the applications, machine learning methods permit the automated detection of applications and 

have been found to be more accurate than the signature-based approach. (Shabtai, Fledel, & 

Elovici, 2010) (Suarez-Tangil , Tapiador, Peris-Lopez, & Blasco, 2014) Hence, instead of using 

the signature-based static detection method, a feature-based static analysis technique is 

preferred in the present study. 

To apply machine learning algorithms, Google metadata of Android applications on Google 

Play market including the requested permissions by applications at install time is chosen as 

feature set. Beside permissions, other metadata of applications were chosen because permissions 

are not sufficient to explain malicious behavior of applications on their own. ( Enck, Ongtang, 

& McDani, 2009) ( Meurer & Wismüller, 2012) A plausible explanation for this is given by ( 

Orthacker, et al., 2011). They claim that an application may capable of reaching the system 

resources which are not the permissions requested for at installation, by utilizing inter-process 

communication. Hence the applications have actually more capability than implied by their 

requested permissions owing to the spreading of permissions among them. 

3.2. Classification and Feature Selection Algorithms 

In this section, the supervised classification algorithms and feature selection methods chosen to 

answer the research questions are explained briefly and their advantages and disadvantages are 

given. They are selected to work with motivated by their advantages mentioned here and the 

former studies applied them. Also the implementation specific issues for classification and 

feature selection algorithms are handled here.  

3.2.1. Classification Algorithms 

3.2.1.1. Naïve Bayes 
In machine learning problems, an optimum hypothesis is aimed to be found among candidate 

hypotheses space H. Here the term optimum corresponds to have maximum probability for a 

hypothesis. Hypotheses question which class a test instance belongs to for classification tasks. 

For Bayesian learning algorithms, posterior probabilities of candidate hypothesis are calculated 

by using the below formula (Bayes theorem) and then a MAP (maximum a posteriori) 

hypothesis is selected among them. (Mitchell T. M., 1997) 

𝑝(ℎ|D) =
𝑝(D|ℎ)𝑝(ℎ)

𝑝(𝐷)
 

Here 𝑝(ℎ|D) represents the posterior probability of a hypothesis given the training data D. For 

this study 2 hypotheses are tested; whether an application belongs to malicious class or benign 

class. 𝑝(ℎ) denotes the prior probability of the hypothesis without any data provided. Any value 

based on background information can be assigned to this prior probability. If there is no such 

knowledge, then each class can be assumed to have equal probability for the prediction of a test 

instance.  𝑝(D|ℎ) is the probability of observed data given the hypothesis. In other words, it 

represents the multiplication of probabilities for attribute values a test sample have given the 

class value. Multiplication can be done owing to the independence assumption of each 

attributes. 𝑝(𝐷) is the probability of training data, without in conjunction with any class value. 

When it comes to select MAP hypothesis, 𝑝(𝐷) is left out because it does not have dependency 

on candidate hypothesis h. (Mitchell T. M., 1997) 
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The Naïve Bayes classifier makes an unrealistic assumption that each attribute (or feature, or 

predictor) is independent from each other and is equally important on the decision of class 

value. (Witten, Frank, & Hall, 2011) This can be seen as a drawback at the first glance. 

However this assumption does not decrease the accuracy of the algorithm seriously, Bayesian 

learning method works well in practice (Witten, Frank, & Hall, 2011) and it actually 

outperforms more complicated algorithms.  (Shmueli, Patel, & Bruce, 2010)  In addition, it is an 

easy, fast and computationally efficient classification algorithm (Shmueli, Patel, & Bruce, 2010) 

having a complexity value which is linearly proportional to the number of instances and 

attributes. (Elkan, 1997)  

However one problem exists about Naïve Bayes. If the one of the attribute categories does not 

exist in the training set, a test sample having that category value will have the zero probability 

and this attribute will “out vote” the other ones. (Shmueli, Patel, & Bruce, 2010)  Out voting of 

this probability to others can be explained by looking to the way  𝑝(D|ℎ) is calculated. As it is 

explained above, 𝑝(D|ℎ)  is denoted as the multiplication of the each attribute value’s 

probability based on the independence assumption of attributes. If one of the attributes has not 

occurred in the training set, its probability will be zero and cause 𝑝(D|ℎ) to be zero. To solve 

this problem, Laplace estimator is used. The logic behind Laplace estimator is to add a constant 

(simply 1) to each numerator of probabilities, and then the total amount which has been added 

to all numerators is added on to the denominators of probabilities. (Witten, Frank, & Hall, 2011) 

To clarify this, an example situation can be thought for this study. If we assume that in the 

training set, there was no malicious instance having the “Access bookmarks” permission, then 

its attribute count (numerator of conditional probability) would be zero. Hence, a test instance 

having the “Access bookmarks” permission would have the zero probability with respect to 

malicious class value no matter what other attribute probabilities are. To handle this problem, 

count of each attribute value (also the count of other permissions and official market metadata) 

can be increased by 1, and then the number of considered class value (in this case the number of 

malicious applications), as being the denominator, can be increased by total number of attributes 

(because each numerator for each attribute is increased by one). This approach has a 

disadvantage that there is complication about the amount of constant value added and so about 

the assignment of prior probabilities. However, if the training samples are admissible in amount, 

the prior probabilities do not make much difference in practice. In addition, people prefer to add 

1 to all initial counts for Laplace estimator. (Witten, Frank, & Hall, 2011) 

Naïve Bayes classifier specific implementation issue is to discretize numerical attributes; 

otherwise the algorithm does not run. Discretization process is explained in detail in the data 

preprocess part. 

3.2.1.2. k-Nearest Neighbor 

kNN is an instance based learning algorithm and instance based learning algorithms do not 

explicitly apply a target function on training data. The only task in terms of training for them is 

to hold training instances. When a new test instance is found, then the learning algorithm 

searches the stored training samples to label this test instance considering the target function. 

They are also called as “lazy learning” algorithm because of postponing the learning task until a 

new instance is encountered. The main idea of kNN is to calculate the distance of the queried 

sample to the training instances by using a distance function to find the identified number of 

nearest neighbors. Then the sample is assigned to a class according to the majority of classes 

which its nearest neighbors belong to. (Mitchell T. M., 1997)  
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The most conventional drawback of kNN is its high cost in computation time for making 

predictions on testing data because it computes the distances of all testing instances to all 

training instances. (Bhatia & Vandana, 2010)  (Witten, Frank, & Hall, 2011) So, in this study 

first adjustments on the dataset, to form final baseline datasets, were done by using 

computationally efficient Naïve Bayes algorithm instead of kNN. Another disadvantage of kNN 

algorithm is that it calculates the distance of a test instance considering all of the attributes in 

the dataset. In this approach, the most relevant attributes to classify instances are dominated by 

other useless features. This problem is also called as curse of dimensionality. (Mitchell T. M., 

1997) Therefore, the data points belonging to the same class in reality can be assigned to 

different classes as the result of misleading similarity measure. There are some counter 

measures to eliminate this problem. (Mitchell T. M., 1997) As the first option, the attributes can 

be given different weights according to their importance for the calculation of distances. Those 

weights are adjusted by using cross-validation method, leaving a proportion of training set to 

decide weights and changing iteratively this subset to test the results, in a way that the 

classification error will be minimized. The second option is to remove irrelevant features 

completely. This second method corresponds to set the weights of irrelevant features to zero in 

other approach. (Mitchell T. M., 1997) In this study, feature selection methods are preferred, not 

only to deal with this kNN-specific problem but also to prevent misleading of irrelevant features 

for other classifiers and decrease the computational complexity. 

Besides its disadvantages, kNN is advantageous from some aspects. First of all, it can be 

considered as a simple, easy to learn and effective learning algorithm. (Bhatia & Vandana, 

2010) (Witten, Frank, & Hall, 2011) Additionally, it can be adapted to wide range of practical 

problems. ( Dini , Martinelli, Saracino, & Sgandurra, 2012)  Another advantage of kNN is that 

new instances can be added to the training set anytime (Witten, Frank, & Hall, 2011) owing to 

the principles of lazy learning. Addition of extra training sample afterwards would not affect the 

learning task because learning occurs as being triggered by test samples. This delayed learning 

approach also lets the estimation of target function based on each new sample in a local way 

rather than generalizing them only once to the whole dataset. (Mitchell T. M., 1997) 

To implement kNN classification algorithm, one should consider the selection of distance 

function and k value (number of nearest neighbors). There exist different distance functions like 

Euclidean distance, Manhattan (city-block) distance, Chebyshev distance for numeric attributes 

and Jackard, Hamming distance for categorical attributes.  As it is stated at data preprocessing 

part, the arranged feature set completely consists of categorical variables, and then a distance 

function for categorical variables was needed. However in Weka, distance measures are limited, 

there are not all the functions one may want to use for calculations. In spite of being used for 

numeric values, Euclidean distance in Weka is adopted for categorical variables. It calculates 

the distance between data points with Euclidean formula by accepting the distance between two 

different categorical variables as 1 and the distance between the two same categories as 0. 

(Weka, 2009) Hence, Euclidean distance was chosen in this study to train k Nearest Neighbor. 

In addition, selection of the k parameter was fulfilled by Weka. It chooses the best smallest k 

among all the possible k values (from 1 to number of instances) giving minimum error rate. 

Additionally, before running kNN algorithm, numerical attributes should be normalized to 

prevent the dominance of attributes with high scaled values on the other ones. However, all the 

numerical attributes were converted to categorical attributes, so there is no need for such an 

operation in this study. 
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3.2.1.3. C4.5 Decision Tree 

C4.5 is a classification type decision tree algorithm that uses training set to build the model and 

make predictions on test instances. To construct C4.5 decision tree, information gain is used as 

the splitting criteria of the selected attributes. The tree consists of nodes which are the selected 

attributes and of edges for splitting the values of chosen attributes. Attributes with the highest 

information gain are chosen as nodes (splitting attributes). This process continues in a recursive 

manner until there is no improvement of information gain or the leaf nodes contain the instances 

having the same class value. The hypotheses space for this learning algorithm consists of 

candidate decision trees constructed from the same training set. This learning algorithm prefers 

short trees over longer and complex trees. (Quinlan J. , 1993) C4.5 is the extension of an earlier 

version of the decision tree, ID3 (Quinlan J. , 1986), developed to improve the ID3 tree 

algorithm. (Witten, Frank, & Hall, 2011)  (Mitchell T. M., 1997) In C4.5 issues like missing 

values, numerical attributes, computational complexity and costs, and overfitting have been 

handled. (Mitchell T. M., 1997) (Witten, Frank, & Hall, 2011) Pruning is the method of cutting 

the branches of the tree to avoid overfitting (Shmueli, Patel, & Bruce, 2010) which is caused by 

the noise in the data or the inadequacy of the training examples (Mitchell T. M., 1997), by 

regarding the classification error, so in this study pruning method is used for decision tree 

algorithm.  

In the article written by (Quinlan J. , 1986), a small training set about the decision of playing 

tennis on Saturday mornings was used to explain ID3 decision tree algorithm. This dataset 

includes 14 instances and 4 attributes named as outlook, temperature, humidity, and windy. The 

set of possible values for these attributes are as follows: 

 Outlook: {sunny, overcast, rain} 

 Temperature:{cool, mild, hot} 

 Humidity: {high, normal} 

 Windy: {true, false} 

The class attribute for this dataset is binary and has the values as “P” for the Saturday morning 

being suitable for playing tennis and “N” for the decision of not to play tennis. The following 

table presents this sample data used to construct the simple tree given in (Quinlan J. , 1986). 
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Table 1- The small sample dataset taken from the original work of (Quinlan J. , 1986) 

 

   

 

Figure 1- A sample decision tree taken from the original work of (Quinlan J. , 1986) and 

constructed from the Saturday mornings dataset 

The sample decision tree given at the figure above is one of the candidate hypotheses to be 

searched over and is constructed by using training data using the information gain calculations. 

The calculation of the information gain is done based on probabilities of class values 

proportional to whole instances belonging a specific attribute value (a branch). Once the tree is 

constructed, it can be utilized to classify test samples. Testing starts from the root node placed at 

the top of tree and goes through the sub-tree until reaching a leaf node. To clarify the process, a 

test sample could be thought having the following values in its feature set: 
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 Outlook, Temperature, Humidity, Windy = {rain, mild, normal, false} 

Test starts with the root node of the learned tree above. The test instance has the value of “rain” 

for the root node, outlook attribute, so for the next step the direction will be the most right 

branch towards the child node, windy. This node checks the test sample’s value for windy, and 

because it has value of “false”, selected branch of this node brings the instance to leaf, class 

value, labeled as “P”. As a result, for such a Saturday morning having temperature as mild, with 

normal humidity, rain and no wind, playing tennis would be preferred. 

C4.5 algorithm can be applied on both numerical and categorical variables and handle missing 

values. (Quinlan J. , 1993) Hence it does not require the preprocessing of data points. Despite 

requiring many data points to be constructed, C4.5 is computationally efficient and can be 

applied for large datasets after construction. (Koshal & Bag, 2012)  (Shmueli, Patel, & Bruce, 

2010) In addition, it provides a schematic representation which can easily be interpreted by 

users. (Shmueli, Patel, & Bruce, 2010)  Also, the selected decision trees can be converted to a 

set of rules to make them more readable. (Witten, Frank, & Hall, 2011) In this study, J48, the 

implementation of C4.5 in Weka is used to construct a classification tree and then prune it.  

3.2.1.4. Random Forest 

Random forest is an ensemble method which is constructed by several decision trees to vote on 

the classification (or regression) task and developed by (Breiman, 2001). The trees constructing 

the forest have impact on the response. (Horning, 2010) The main idea of the random forest, 

like other ensemble methods, is that weak learners come together and by joining their power, a 

stronger model giving better results is formed. (Horning, 2010) In random forests, splitting 

attributes are chosen randomly, so the correlation between trees is decreased resulting in 

improved prediction accuracy. In random forest algorithm, the number of trees and the features 

to construct trees are chosen by the user. However while training random forest in Weka, there 

is no necessity to choose the number of features, Weka fulfills this job by considering some 

function background. Hence, the default settings for random forest is used which also defines 

the number of trees as 10. Random forests improve the results of decision trees owing to their 

voting among the trees, random feature selection, and bagging technique used to construct 

training samples for each tree. Bagging technique means to construct new training sets from the 

original training set with replacement sampling, i.e. without removing the selected samples 

from the original set. To measure the generalization error, the internal error estimate of the 

algorithm, out of bag error is used. The idea underlying out of bag error is to use the bagged 

training sets (the data which are not used to construct the trees) to make out of bag estimations 

and then calculate their prediction errors. (Breiman, 2001).  They handle the overfitting 

problem, the sensitivity to outliers of decision trees, and so eliminate the need for pruning. ( Ali, 

Khan, Ahmad, & Maqsood, 2012) Overfitting is avoided by using the Strong Law of Large 

Numbers, because random forests always converge. (Breiman, 2001).  Additively, they are fast 

and can handle missing values like decision trees and asymmetrical data in terms of class 

values. (Benyamin, 2012) Below a representative figure for random forests can be seen:  
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Figure 2- Random Forest representation (Benyamin, 2012) 

In the above figure, the mechanism of random forests is demonstrated. The whole training set is 

split into several sub training set in a random way with replacement sampling as explained 

above.  Then, decision trees are constructed for each training sets by using the random subset of 

features. In each tree, the optimum split is found by using those random feature subsets as 

search space and information gain measure.  The above figure explains the construction of trees 

in a forest, but the process is not complete. After constructing trees, test samples are classified 

by each tree according to a decision tree classification procedure. Then, the final decision on the 

class of a test sample is given by voting among trees in the forest.  

3.2.2. Feature Selection Algorithms 

When working with a dataset with high dimensionality, as in this study, some of the attributes 

which are not relevant and necessary to build the model can cause overfitting and so reduces the 

generalizability of the algorithm. Also called as “curse of dimensionality”, this problem may 

mislead the algorithm, increase the computational complexity and time to complete running the 

algorithm. ( Shabtai, Kanonov, Elovici, Glezer, & Weiss, 2012) Hence the feature selection 

algorithms have three goals as to enhance the performance of the learning algorithm, to obtain a 

faster model by reducing the computational cost, and to achieve obtaining a deeper 

comprehension about the underlying processes. (Yu & Liu, 2003) (Bai, Wang, & Zou, 2014) To 

overcome these problems in this study, feature selection methods are applied on the dataset by 

reducing the dimensionality. 

Feature selections algorithms are categorized into two main types as filter and wrapper 

approach according to the implementation way and dependence on class values. In the wrapper 
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approach, to select relevant features, the target learning algorithm is used.  In this approach, the 

searching algorithm solves optimization problem on the predictive accuracy of the chosen 

learning algorithm by searching through the space of feature subsets. (Cunningham & Delany, 

2007) However in filter approach, attributes are selected before applying a learning algorithm 

independently by evaluating a predefined criterion like t-test, χ2-test and information gain. (Bai, 

Wang, & Zou, 2014) Filter approach has advantages of being fast, generalizable and unbiased 

from any classifier. ( Shabtai, Kanonov, Elovici, Glezer, & Weiss, 2012) Additionally, a former 

study comparing several feature selection methods of filter type is mentioned by ( Geng, Liu, 

Qin, & Li, 2007) to find Chi-Square and Information Gain as the most effective methods. ( 

Shabtai, Kanonov, Elovici, Glezer, & Weiss, 2012) also uses Information Gain and Chi-Square 

methods to select most relevant features for conducting an anomaly detection study on mobile 

devices with Android OS. Hence, in this study Chi-Square (Imam, Michalski, & Kerschberg, 

1993) , Information Gain (Yang & Pedersen, 1997) and ReliefF (Kononenko, 1994) algorithms 

are selected as filter type feature selection algorithms. Since in the filter approach the number of 

features to be selected is required from the user, 10, 30 and 50 features are decided to be 

selected to run feature selection algorithms. 

3.2.2.1. ReliefF Feature Selection Method 

ReliefF algorithm (Kononenko, 1994) is the extension of Relief algorithm (Kira & Rendell, 

1992) which is limited to the classification problems with two class values. Unlike Relief, 

ReliefF handles multi valued class attributes and noisy data. ( Sikonja & Kononenko, 2003) The 

logic of the ReliefF is very similar to kNN algorithm.  The closest data points around of an 

instance are expected to have similar attribute values with the instance questioned if they are the 

members of same class. Those attributes are the relevant ones that the algorithm tries to find 

out. (Yang & Li, 2006) The algorithm works as follows: A random instance is selected, and 

then nearest-hit (the nearest points having the same class value with the random point) and 

nearest-miss (the nearest points having the different class value with the random point) points 

are found. To find the relevant features, a parameter is calculated for each feature by finding the 

difference of the regarded attribute value between the chosen instance and the closest data 

points. If the feature under investigation has a high relevance, it means that it separates different 

classes successfully, then the difference parameter should be high for this relevant feature. (Kira 

& Rendell, 1992) ( Sikonja & Kononenko, 2003) (Yang & Li, 2006) 

3.2.2.2. Chi-Square Feature Selection Method 

The statistical χ2  test is used to test the null hypothesis whether or not two variables are 

independent by evaluating the correlation between them. (Thabtah, Eljinini, Zamzeer, & Hadi, 

2009) ( Uysal & Gunal, 2012)  (Novakovic, Strbac, & Bulatovic, 2011)  Hence, in terms of 

feature selection task, Chi-square test means testing the independency of an attribute to the class 

values. The χ2 formula below is adopted to feature selection problem calculating the χ2 score 

for each feature with respect to class value. It uses the observed (𝑁𝑡,𝐶) and expected (𝐸𝑡,𝐶) 

occurrences of specific feature values (t) for the instances regarding the class value (C). t’s and 

C’s having two values as 0 and 1 means that they represent the instances having/not having that 

specific attribute value and class value. ( Uysal & Gunal, 2012) (Thabtah, Eljinini, Zamzeer, & 

Hadi, 2009) Higher values of  χ2 requires the rejection of null hypothesis, (Novakovic, Strbac, 

& Bulatovic, 2011) then it means that the feature being evaluated is relevant to the class values. 

( Vryniotis, 2014) 
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χ2(𝑡, 𝐶) = ∑ ∑
(𝑁𝑡,𝐶 − 𝐸𝑡,𝐶)2

𝐸𝑡,𝐶
𝐶∈{0,1}𝑡∈{0,1}

 

 

 

 

The χ2 values for each feature are calculated in this manner and the features with high χ2 values 

rejecting the null hypothesis are chosen as candidate features. Among candidate features, ones 

with the highest score are chosen according to predefined number of features by ranking. ( 

Vryniotis, 2014) 

3.2.2.3. Information Gain Feature Selection Method 

Information Gain measure as a feature selection method is used to comprehend the contribution 

of a feature to classification task by calculating the entropy gain when that feature used as 

predictor. (Jamali, Bazmara, & Jafa, 2012) ( Uysal & Gunal, 2012) Below is the formula used to 

calculate information gain: 

𝐼𝐺(𝑡) = − ∑ 𝑃(𝐶𝑖)𝑙𝑜𝑔𝑃(𝐶𝑖) + 𝑃(𝑡) ∑ 𝑃(𝐶𝑖|𝑡)𝑙𝑜𝑔𝑃(𝐶𝑖|𝑡) + 𝑃(𝑡̅) ∑ 𝑃(𝐶𝑖|𝑡̅)𝑙𝑜𝑔𝑃(𝐶𝑖|𝑡̅)

𝑀

𝑖=1

𝑀

𝑖=1

𝑀

𝑖=1

 

 

P(Ci) is the probability of class values, P(t) and P( 𝑡) represents the presence or absence of a 

feature value, P(Ci|t) and P(Ci|𝑡) are the conditional probabilities of class values given the 

presence or absence of the regarded feature value. ( Uysal & Gunal, 2012) 

3.2.3. Summary for Selected Algorithms 

In this study, Naïve Bayes, k-nearest neighbor, J48 (java implementation of C4.5 decision tree), 

and random forest classification algorithms were chosen for Android malware detection by 

using official market metadata as predictor. In addition, as it is explained in “Data Preprocess 

and Features for Machine Learning Algorithms” part, the dataset used includes 861 features 

which may include irrelevant and unnecessary attributes for classification task. This may cause 

overfitting, mislead the learning algorithms, and increase the complexity and time needed to 

complete the algorithms. In order to mitigate this, feature selection methods were applied and 

the most relevant features selected by these methods were given as input to classification 

algorithms.   

The reason for selecting Naïve Bayes as a supervised learning algorithm in this study is mainly 

its being a simple approach and a fast algorithm due to low computational complexity. (Witten, 

Frank, & Hall, 2011) (Shmueli, Patel, & Bruce, 2010) Despite its simplicity, it works well in 

practice and produces better or at least the similar results with more sophisticated algorithms.  

(Witten, Frank, & Hall, 2011)  Similarly, as another simple and effective method, kNN was 

chosen. (Witten, Frank, & Hall, 2011)  (Bhatia & Vandana, 2010) kNN owes its simplicity to its 

training phase which only stores training examples and does nothing more in terms of learning. 

Because of this advantage, new instances can be added to training set anytime (Witten, Frank, & 

Hall, 2011) as another pro. The estimation of target function is made for each new test sample 

locally and not for the whole dataset once. (Mitchell T. M., 1997) C4.5 was preferred because it 

is computationally efficient, (Koshal & Bag, 2012)  (Shmueli, Patel, & Bruce, 2010)  easy to 
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interpret with the help of its schematic representation and rules presented (Witten, Frank, & 

Hall, 2011) (Shmueli, Patel, & Bruce, 2010). Also because of handling missing values, both 

numerical and categorical data (Quinlan J. , 1993), it does not require to preprocess the data. 

Random forest learner (Breiman, 2001) is formed by several decision trees and has voting 

mechanism among those trees. Hence, they are computationally efficient and handle missing 

values like decision trees. Additionally, random forest handles the overfitting problem a 

decision tree faces, and eliminates the need for pruning. (Breiman, 2001).   

For feature selection algorithms, filter approach is adopted in this study because it is fast, 

generalizable and unbiased from a learning algorithm unlike wrapper approach. (Yu & Liu, 

2003) ( Shabtai, Kanonov, Elovici, Glezer, & Weiss, 2012) The chosen Chi-Square, information 

gain and reliefF algorithms are the common feature selection algorithms under filter approach, 

hence they were preferred in this study. Also, the use of Chi-Square and information gain 

algorithms was motivated by the study of ( Shabtai, Kanonov, Elovici, Glezer, & Weiss, 2012) 

which implements a real-time dynamic Android malware detection by comparing the 

combination of several classification and feature selection algorithms, and the number of 

features selected. 

Other classification and feature selection algorithms instead of the chosen algorithms in this 

study could have been preferred, but the selected algorithms were accepted as working 

assumption. Implementation of different classification and feature selection algorithms for the 

Android malware detection method proposed in this study is considered as the future work. 

3.3. Data Collection 

The aim of this study is to investigate whether or not Google Play, Google’s and Android’s 

official application market, metadata of Android applications contribute to explain the malicious 

behaviors when combined with the analysis of user permissions. In order to achieve this goal, 

metadata of applications on Google Play were needed to be collected. First, a kind of web 

automation and testing tool and a browser-based macro recorder, iMacros was used to collect 

Google metadata and class (or target) values of Android applications. (iMacros) The data 

collection processes were recorded and the macro codes of these processes produced by iMacros 

were embedded into Microsoft Visual Basic in order to perform repetitive data collection tasks. 

However, because of requiring much amount of time for retrieving tens of thousands of 

applications’ data by clicking one by one, it turned into a burdensome task. Then a more 

practical solution to this problem, using a web crawler and querying data directly from the 

servers of Google Play was preferred. The Google Play Crawler was used for acquiring 

requested permissions by applications and for downloading them as in the format of apk file. 

(Demiröz, 2013) Permissions collected for the top free applications in each application category 

consist of 851 different permissions in total, some of which includes developer-defined 

permissions. This crawler does not give all of the information presented to a user when he visits 

the Android application’s page on Google to download. So, a java application was implemented 

to collect the other metadata of applications apart from permissions. Applications were 

downloaded and their Google Play information was gathered on 17 June 2014. Approximate 

total time for data collection was 12 hours The dataset contains top free applications from each 

application category and totally 17244 applications on the date of collection. The mentioned 

Google metadata of applications throughout this study includes the following information:  
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 Application category: Indicates the category of an application as defined by official 

market. There are two main categories as application and game. Full list of categories 

can be found at Appendix A 

 Developer name: The name of an application developer on the official market. 

Developer names can be personal names or company names, if the application is 

developed by a company, or can belong to an institution like metropolitan 

municipalities which presents applications for transportation services. 

 Developer type: Represents whether an application is developed by a top developer on 

official market or not or it is a type of editors’ choice application. Top developers are 

promoted by Google and this is utilized by developers for advertisement and financial 

gain, by users for finding more trustworthy applications. Editors’ choice applications 

correspond to the applications as some of the best applications chosen by Google Team. 

(Google, 2014) This attribute has three values for the dataset used in this study: Top 

developer, Editors’ Choice Top Developer, Editors’ Choice. 

 Star 5, Star 4, Star 3, Star 2, Star 1 rating counts: Display the count of stars for each star 

number (1, 2, 3, 4, 5) given by users who download an application. There is no lower 

limit to show star ratings for an application on its page.  All of star ratings counts would 

be zero if any user have not rated an application yet and will be displayed as zero for all 

star ratings (1,2,3,4,5) on the application’s page. In addition, ratings presented on an 

application’s page on Google are valid for all of the versions of it, i.e. they are lifetime 

ratings for an application.  

 Average rating of application: Derived from star rating counts of an application, it is 

counted as weighted average of star ratings. Average rating can take 100 as maximum 

value and 0 as minimum because an application may not be rated yet by any user. In 

fact, the dataset used in this study includes such applications which have 0 star ratings 

for all star levels and have 0 for average rating. 

 Publish date of the current version of application: Developers can update their 

applications presented on the market and so the version number of them. Then they can 

upload those new versions of their applications on market. The label “Updated” at the 

bottom right area of the application’s page displays the publish date of applications 

most recent version.  

 Size of application: This is a numeric attribute and contains values starting from 11 to 

994,304 bytes for the dataset used in this study. However, for some applications this 

area has “varies with device” value, hence discretization was applied as these 

applications would fall into one category. 

 Minimum required Android OS version: When developing Android applications, 

developers are asked for the minimum required level of Android API.  Android API is 

an integer number and is used to compare the compatibility of an Android application 

with Android platform on a mobile device. If a user’s mobile device hosts a system with 

a lower API level than the API level stated as the minimum required for an application 

to run on a device, then the regarded application would not run on the user’s device. 

(developer.android.com, 2014) 

 Content rating of application: Developers are required to choose proper content rating 

of their applications while uploading them on the Google Play. Categories for content 

rating in the dataset used in this study are “everyone, low maturity, high maturity, 

medium maturity, and not rated” and Google has guideline for selecting them according 

to the level of harm (like for gambling, violence, hate, alcohol, tobacco and drug, sexual 

content) can be caused by content. (Google, 2014) 



25 

 

 Download number of application in form of range: It shows the total install number of 

an application by users as an interval (e.g. 10,000-50,000) Full list of download ranges 

can be found at Appendix A. 

A sample interface for an application on Google Play can be seen at the following figures: 

 

Figure 3- Developer name, application type and developer type information of the sample 

application 

 

 

Figure 4- Average rating and star ratings of the sample application 

 

Figure 5- update date, size download range, minimum required Android OS, content rating of 

the sample application 
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After collecting market-related information of applications (including permissions), it was the 

second step to acquire the target values of applications, as malicious or benign, to be able to 

train a supervised classification algorithm. For this purpose, Virus Total, a free online service 

identifying malicious content with the contribution of several antivirus engines and web 

scanners was appealed. (VirusTotal) Virus Total enables searching different malicious content, 

like webpages by querying URLs, domains or IP addresses and files in many diverse format 

(including apk files) uploaded by the user to the VirusTotal or queried by using the hash values 

of files. To scan files by using hash values requires less time than uploading apk files to the web 

site one by one, so by using the “shortcut” (VirusTotal) provided by VirusTotal and sending 

http requests, the most recent reports of applications were obtained with hash values. According 

to the analysis results of antivirus engines, three Virus Total-related attributes were added into 

dataset: 

 Analysis date of an apk file 

 Number of AV engines which label the sample apk file as malicious 

 Total number of AV engines which analyze the sample apk file 

The first two data above was used to derive features for machine learning tasks, so the last one 

was disregarded. 

 

Figure 6- Virus Total homepage 

 After this, a question arose how the hash values of the Android applications appearing in 

Google Play can be found. As the first option, “APK Downloader” website was utilized to 

query the md5 hash values of applications by using package names obtained in the first step. 

(APK Downloader) Using this website is an easy way to get the md5 values of Android 

application files and to download them; but the site imposes a quota by user and daily quota 
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which does not permits the generation of new apk files more than 1400. The author(s) of the 

website proposes the use of Chrome extension of APK Downloader; however it only downloads 

apk files, does not present md5 checksums. Hence, a second option to get the hash values of apk 

files had to be implemented: writing a Java application which uses the proper methods in Java 

by putting apk files into hash function and yielding fixed size hash values. Not only md5 

checksums, but also sha256 checksums were calculated in order to validate the applications 

which analysis results obtained from Virus Total are the same with the ones downloaded from 

Google Play, because md5 checksum is questionable that some files may share the same md5. 

(Wikipedia, 2014) Sha 256 is stronger than md5because of having 256 bits length whereas md5 

is 128 bits in length and is used by VirusTotal when showing analysis results. To sum up, md5 

and sha256 hash values of each application were calculated, the detection results of those 

applications were queried by using md5 hashes and then the sha256 hashes given at the 

detection result pages of Virus Total and the calculated ones were compared to ensure similarity 

of apk files. 

3.4. Data Preprocess and Features for Machine Learning Algorithms 

In this study, to perform machine learning related tasks, Weka, open source data mining 

software in java, was used. ( Hall, Frank, Holmes, Pfahringer, Reutemann, & Witten, 2009) It 

allows preprocessing data, training and testing supervised/ unsupervised learning algorithms, 

visualizing data, conducting feature selection on attributes and experiments for comparison on 

the results of different algorithms, and obtaining learning curves etc. Raw data collected from 

market could not be used directly in Weka to apply the feature selection and classification 

algorithms selected. First of all, some instances of applications had negative numbers in 

malware detection count field (this feature corresponds to the number of AV engines which 

identified the application as malware) by fault in collection process; these 12 instances were 

excluded from dataset. Similarly, one instance had a date value in the size of application 

column, so this one was omitted too. Finally, a dataset consisting of 17,321 instances was 

obtained. 

There were 2 attributes in the dataset holding instances with values in type of date, namely 

analysis date of the application which was obtained from Virus Total and the publish date of  

the application’s current version which is presented on the Google Play web page. This raw 

information does not add meaningful information solely, so they were converted to days passed 

after detection and publish date and two continuous variables were obtained. Additionally, some 

of the developer names of applications on their Google Play webpage contain non-Latin 

characters, like Cyril or Japanese. The developer names were changed with the ones in the 

format of D1, D2, D3, and so on, up to 9321st developer because Weka cannot process this kind 

of variables. In addition, star rating count information of applications was omitted from the 

scope of the analyses because average rating of applications is calculated by the weighted 

average of these numbers. Another arrangement on the data was to convert size of all 

applications into bytes for the purpose of measuring them in the same unit. Any of the 

remaining variables which are application category, developer type, minimum required Android 

OS version, content rating, and the download range of the application  was not subjected to 

modification process because they had the standard and finite number of categories. Lastly, the 

two Virus Total-related attributes, the number of AV engines which label the apk files as 

malicious and the total number of AV engines which analyze the apk files, were handled. The 

latter one was ruled out of the study because it does not contribute to the settings of the current 

study. The former one was used to label instances as “malware” or “benign applications”. As it 
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will be discussed in the baseline datasets section in detail, different labeling methods were 

experimented by changing the number of detection times.  

After first arrangements on dataset mentioned above, discretization was applied on continuous 

attributes (average rating of application, size of application, days passed after detection date and 

days passed after publish date) in order to be able to train Naïve Bayes classification algorithm. 

Discretization corresponds to lessen the number of values a continuous variable takes by 

dividing the variable into a number of intervals.  (Joita, 2010)  There are two main types of 

discretization algorithms as unsupervised which does not require class information to perform 

discretization task and supervised which takes into account the class labels. (Dash, Paramguru, 

& Dash, 2011) In this study, equal-frequency binning, one of the two classical unsupervised 

discretization methods (the other one is equal-width), (Al-Ibrahim, 2011)  is chosen because 

“Unsupervised discretization algorithms are the simplest to use and implement. They only 

require the user to specify the number of intervals and/or how many data points should be 

included in any given interval.” (Cios, Pedrycz, Swiniarski, & Kurgan, 2007) (p. 237) 

Moreover, equal-width discretization method may cause the loss of information after 

discretization if the variables to be discretized are not evenly distributed. (Kotsiantis & 

Kanellopoulos, 2006) The handled continuous attributes in this study are skewed and not evenly 

distributed, so the equal frequency method is chosen. For seeing the distribution of those 

attributes, histograms were drawn and can be found at Appendix B. 

Equal frequency binning method divides the attributes into intervals after sorting them in a way 

that each interval contains approximately the same number of data points. The number of 

intervals are defined by user and there is no a proven optimum way of doing this job. (Mitov, 

Ivanova, Markov, Velychko, Stanchev, & Vanhoof, 2008) However, three different approach 

were considered while defining number of intervals; Juran’s rules for number of bins, square 

root rule and Freedman–Diaconis' choice. According to Juran, if the number of data points is 

more than 1000, then it may be suitable to select the number of bins between 11 and 20. 

(QIMacros) Square root rule simply takes the square root of number of data points and round 

this number up to find the number of intervals. Lastly, Freedman-Diaconis’ choice applies the 

following formula to calculate the bin width: 

ℎ = 2
𝐼𝑄𝑅(𝑥)

𝑛1/3
 

where the IQR(x) represents the inter quartile range of related variable and  n represents the 

number of data points. Then by subtracting the minimum value of the regarded variable from 

the maximum value and dividing this range with the bin width, the number of intervals is 

calculated. (Wikipedia, 2014) 

Using Freedman-Diaconis’ rule produced very close results to the square root rule in terms of 

the number of bins for days passed after detection date, days passed after publish date of an 

applications’ current version and average rate of application. For size of application in bytes 

attribute, Freedman-Diaconis’ rule produced approximately 1350 bins, which can be considered 

as too many and the original logic of discretization disappears. As a result, giving the 

approximate results with Freedman-Diaconis’ rule, square root rule was chosen to define the 

number of intervals in order to use in equal frequency discretization method. 

Finally, a dataset was obtained consisting attributes which are all nominal attributes. This final 

dataset includes the following features: 
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 Application category (nominal attribute, having 43 sub categories) 

 Content rating (nominal attribute, having 5 sub categories) 

 Android version (nominal attribute, having 22 sub categories) 

 Download number of an application (ordinal attribute in format of intervals, having 19 

sub categories) 

 Developer name of an application (nominal attribute, having 9321values) 

 Developer type of an application (nominal attribute, having 4 sub categories) 

 Size of an application in bytes (ordinal attribute, having 130 sub categories) 

 Current average rating of an application (ordinal attribute, having 132 sub categories) 

 Days passed after publish date of last version (ordinal attribute, having 130 sub 

categories) 

 Days passed after detection date (ordinal attribute, having 130 sub categories) 

 851 Android permissions (binary attributes, having “yes” for the owned permissions by 

applications, “no” for the not included ones) 

 Target attribute (class variable in binary format, having “benign” value as negative, and 

“malicious” value as positive samples) 

3.5. Parameters Used to Evaluate Classification and Feature Selection 

Algorithms 

In machine learning studies, the performance of proposed models is evaluated by utilizing some 

well-known metrics. After running classification algorithms, a matrix named as confusion 

matrix is obtained including the actual and predicted number of instances with respect to class 

values. The representation of a sample confusion matrix is provided below: ( Mitchell M. , 

2010) 

Table 2- Sample Confusion Matrix 

 Predicted class 

Positive Negative 

Actual class Positive True Positive False Negative 

Negative False Positive True Negative 

 

In this study, malicious applications are accepted as positive instances and benign applications 

as negative ones. Hence, the cells of the confusion matrix for this study can be interpreted as 

follow: 

 True Positive (TP): Number of malicious applications which correctly classified, a.k.a. 

hit 

 False Positive (FP): Number of benign applications which are incorrectly classified as 

malicious, a.k.a. false alarm 

 True Negative (TN): Number of benign applications which correctly classified, a.k.a. 

correct rejection, a.k.a. miss 
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 False Negative (FN): Number of malicious applications which are incorrectly classified 

as benign 

These values provided by the confusion matrix are used to calculate performance measures for 

the assessment of classification algorithms. The following measures derived from confusion 

matrix (except kappa statistic) are adopted in this study: (Wikipedia, 2014) 

 Accuracy (ACC) : Rate of correctly predicted applications to the total number of 

applications 

ACC= TP+ TN / (TP+ TN+ FP+ FN) 

 True Positive Rate (TPR) : Rate of correctly predicted malicious applications to the 

total number of malicious applications , a.k.a. recall rate 

TPR= TP/P = TP / (TP+FN) 

 False Positive Rate (FPR) : Rate of incorrectly predicted benign applications as 

malicious, to the total number of benign applications  

FPR= FP/N = FP / (FP+TN) 

 True Negative Rate (TNR) : Rate of correctly predicted benign applications to the total 

number of benign applications  

TNR= TN/N = TN / (TN+FP) 

 False Negative Rate (FNR) : Rate of incorrectly predicted malicious applications as 

benign, to the total number of malicious applications 

FNR= FN/P = FN / (TP+FN) 

 Precision : Rate of correctly predicted malicious applications to the total number of 

predictions as malicious, a.k.a. positive predictive value 

Precision= TP/ (TP+ FP) 

 Kappa statistic: This statistic is used to examine the compliance of predictions 

according to class values. If the class values (benign, malicious) are in complete 

agreement then the kappa statistic equals to 1 and the worst case is denoted by 0, so the 

higher values of kappa statistic are preferable. (Abela, Angeles, Delas Alas, Tolentino, 

& Gomez, 2013) 

3.6. Pilot Study and Baseline Datasets 

As the first step of the analyses, a prior study was carried out on the dataset including the whole 

applications collected from the market (17,231 preprocessed applications). Since the dataset 

includes too many observations, in order to obtain the results in a fast manner for a pilot study, a 

classification algorithm with low computational complexity was needed and as mentioned in the 

classification algorithms part, Naïve Bayes meets this requirement. If acceptable prediction 
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results had been obtained from Naïve Bayes classifier, then the conclusion would be drawn that 

other classifiers would probably give similar results in terms of evaluation parameters. 

There were 4,512 malicious and 12,719 benign applications in this initial dataset.  The target 

values were defined according to the detection count data collected from Virus Total. For this 

initial set, applications having detection count greater than or equal to 2, i.e. which have been  

identified as a malware by at least 2 AV engine were labeled as malicious applications. The 

remaining applications were labeled as benign applications. In order to analyze the contribution 

of other Google market metadata to the permissions of Android applications, two datasets were 

constructed: 

 One including only permission information 

 The other including permissions+ other Google market metadata 

Using 10-fold cross validation, Naïve Bayes classification algorithm for these two dataset was 

run 10 times by changing the random number seed for every run used to split dataset. The 

average results according to runs are shown below: 

Table 3-Results of Pilot Study 

Classifier Feature Set Accuracy TPR FPR Precision 

Kappa 

Statistic Class 

Naive Bayes 

Permissions 

72.35% 0.85 0.63 0.79 0.24 
B 

72.35% 0.37 0.15 0.47 0.24 
M 

Permissions

+ 

other 

Google Play 

metadata 

76.11% 0.84 0.46 0.84 0.38 
B 

76.11% 0.54 0.16 0.55 0.38 
M 

B denotes benign class value, M denotes malicious class value 

This display format of parameters is the same Weka presents. For the ease of interpretation, one 

should take into account that in this study, the malicious samples are regarded as positive, benign 

ones are regarded as negative class values.  

 

According to the results of initial analysis, when only permissions are used as predictors in 

Naïve Bayes classification algorithm, 72.35% accuracy is obtained. If the other metadata of 

applications collected from Google Play is added to the model, then the accuracy slightly 

increases to 76.11%.  However, the addition of Google Play metadata seriously increases the TP 

rate (the percent of correctly detected malware samples) while decreasing FP rate (the percent 

of benign samples incorrectly identified as malware).  The contribution of the added attributes 

can be realized clearly by comparing the kappa statistics. Despite the difference of accuracy 

values give rough idea about the improvement of classification algorithm, kappa statistic 

strengthens inferences. In other words, accuracy may increase but this improvement may be in 

favor of only one class, but kappa statistic takes into account of the agreement between different 

classes.  



32 

 

Another important inference from the results is a general problem about accuracy levels. These 

accuracy levels can be taught as acceptable, but not satisfactory. As it is stated in feature 

selection part, excessive number of features may mislead the learning algorithm and cause to 

decrease the accuracy. Hence, to see the impact of reducing the number of features, three 

chosen algorithms (chi-square, information gain and reliefF) were applied on the dataset 

including all the applications collected and the Google Play market metadata together with 

permissions. The number of features which would be selected by feature selection algorithms 

was identified as 50 for initial study, because the aim was not to tune the parameters for feature 

selection algorithms at this step. Again algorithms (Naïve Bayes with and without feature 

selection algorithms) were run for 10 times, but without cross-validation due to the fact that big 

datasets require high computation time for implementing cross validation. Instead 80% random 

split of the data was used for training set and the remaining 20% for testing set. The results can 

be seen at the table below: 

Table 4- Results of feature selection algorithms on initial dataset 

Classifier 

FS 

Algorithm Feature Set Accuracy TPR FPR Precision 

Kappa 

Statistic Class 

Naive 

Bayes 

- 

Permissions

+ 

other Google 

metadata 

75.97% 0.84 0.47 0.84 0.38 
B 

75.97% 0.53 0.16 0.54 0.38 
M 

Naive 

Bayes 

IG 

Permissions

+ 

other Google 

metadata 

75.68% 0.83 0.46 0.84 0.37 
B 

75.68% 0.54 0.17 0.54 0.37 
M 

Naive 

Bayes 

CS 

Permissions

+ 

other Google 

metadata 

75.65% 0.83 0.46 0.84 0.37 B 

75.65% 0.54 0.17 0.54 0.37 

M 

Naive 

Bayes 

RfF 

Permissions

+ 

other Google 

metadata 

76.21% 0.84 0.46 0.84 0.38 B 

76.21% 0.54 0.16 0.55 0.38 
M 

B denotes benign class value, M denotes malicious class value 

FS: Feature Selection, IG: Information Gain,  CS: Chi-Square,  RfF: ReliefF 

 

When the results are examined, it is seen that the feature selection algorithms did not increase 

the accuracy of the model except ReliefF, but with a slight increase. In addition, FP rates and 

kappa statistics did not differ notably. To sum up, applying feature selection methods on this 

dataset did not improve the results as wished, so another different method was needed for 

increasing accuracy while decreasing or at least not increasing the false positive rate at the same 

time. The dataset was imbalanced in terms of class attribute, consisting of 74% benign and 26% 

malicious applications according to the defined detection number (by accepting the applications 

which are identified as malware by more than or equal to 2 AV firms). As a first choice, 

balancing the dataset was thought and the following 2 datasets were constructed as balanced 

ones: 
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 A dataset including the same number of (4,512) malicious and benign applications: 

Malicious applications were kept, only 4,512 benign applications were chosen 

randomly among 12,719 benign applications. 

 A dataset including the same number of malicious and benign applications under each 

application category: For an application category, if there were more benign 

applications than malicious ones, benign applications were chosen randomly as their 

number became equal to the malicious ones. If the number of benign applications was 

smaller than or equal to the number of malicious applications in an application 

category, nothing was changed. 

The table below shows the comparative results of these 2 datasets with the original dataset: 

Table 5- Comparison of detection results for balanced and imbalanced datasets 

Classifier Dataset Feature Set Accuracy TPR FPR Precision 

Kappa 

Statistic Class 

Naive 

Bayes İmbalance

d (original) 

Permissions

+ 

other Google 

metadata 

75.97% 0.84 0.47 0.84 0.38 B 

75.97% 0.53 0.16 0.54 0.38 
M 

Naive 

Bayes 

# Malware 

and Benign 

equal 

Permissions

+ 

other Google 

metadata 

68.36% 0.71 0.34 0.67 0.37 B 

68.36% 0.66 0.29 0.69 0.37 
M 

Naive 

Bayes 

# Malware 

and Benign 

equal for 

each app 

category 

Permissions

+ 

other Google 

metadata 

73.67% 0.83 0.39 0.75 0.45 
B 

73.67% 0.61 0.17 0.71 0.45 
M 

B denotes benign class value, M denotes malicious class value 

 

Both of the datasets has not shown an improvement in terms of prediction accuracy, but 

balancing the number of malicious and benign applications under each application category 

improves the false positive rate while not decreasing the accuracy of the model seriously. In 

order to understand whether the contribution of false positive rate’s decrease to the class 

agreement is statistically meaningful, a paired t- test on the kappa statistic of two datasets (the 

original one and the one having the same number of malicious and benign applications under 

each application category) was applied. According to the 5% confidence level, the balanced 

dataset has a higher kappa statistic than the unbalanced dataset which is statistically significant. 

As a result, this balancing option did not improve the accuracy but decreased the false positive 

rate significantly; hence it should be kept aside for further uses. 

As the second option for getting more accurate results together with lower false positive rates, 

changing the labeling method of applications as malware or benign could be tried. In the first 

original dataset, applications were labeled as malicious or benign if their detection count is 

greater than or equal to 2. However, one cannot be so sure that the applications which are 

claimed to be malicious by 2 AV engines are malware actually. Similarly, the applications 

which are identified as malware by 1 AV engine may not be a benign application, but they were 

labeled as benign in the former method. To sum up, the detection count criteria for labeling 

applications as malware should be increased, and by only accepting the applications with zero 
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detection count as real benign ones, the remaining ambiguous applications should be eliminated 

from the dataset. In order to decide this detection count level, experiments were conducted by 

constructing datasets according to the principles mentioned above and applying Naïve Bayes 

classifier on those datasets. This time again the classification algorithm was run 10 times for 

each dataset by applying cross-validation because datasets got smaller and more suitable for 

cross-validation. The results of experiments are given below: 

Table 6- Comparison of detection results for datasets with different detection counts of malware 

applications 

Classifier Feature Set 

Detection 

Count Accuracy TPR FPR Precision 

Kappa 

Statistic Class 

Naive 

Bayes 

Permissions

+ 

other Google 

metadata 2 

76.11% 0.84 0.46 0.84 0.379 B 

76.11% 0.54 0.16 0.55 0.379 
M 

Permissions

+ 

other Google 

metadata 3 

79.53% 0.86 0.37 0.86 0.481 B 

79.53% 0.63 0.14 0.61 0.481 
M 

Permissions

+ 

other Google 

metadata 4 

82.62% 0.88 0.36 0.90 0.508 B 

82.62% 0.64 0.12 0.62 0.508 
M 

Permissions

+ 

other Google 

metadata 5 

84.87% 0.90 0.35 0.92 0.527 B 

84.87% 0.65 0.10 0.54 0.527 
M 

Permissions

+ 

other Google 

metadata 6 

86.65% 0.91 0.36 0.93 0.526 B 

86.65% 0.64 0.09 0.58 0.526 
M 

Permissions

+ 

other Google 

metadata 7 

88.84% 0.93 0.38 0.94 0.525 B 

88.84% 0.62 0.07 0.57 0.525 
M 

Permissions

+ 

other Google 

metadata 8 

90.73% 0.943 
0.40

3 
0.95 0.516 

B 

90.73% 0.597 
0.05

7 
0.54 0.516 

M 

Permissions

+ 

other Google 

metadata 9 

91.79% 0.949 
0.42

6 
0.96 0.493 

B 

91.79% 0.574 
0.05

1 
0.51 0.493 

M 

Permissions

+ 

other Google 

metadata 10 

93.45% 0.961 
0.43

5 
0.97 0.501 

B 

93.45% 0.565 
0.03

9 
0.51 0.501 

M 

B denotes benign class value, M denotes malicious class value 
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It is seen clearly that when the number of detection is increased in order to label an application 

as malware and the more ambiguous applications are removed, the prediction accuracy of the 

model increases constantly. However, as the detection count continues to increase, false alarms 

start to increase after some point because dataset becomes more imbalanced due to increasing 

proportion of benign applications. This can also be seen from the kappa statistics that the 

agreement between two classes deteriorates after detection count equals to 5. In order to choose 

the final baseline datasets, paired t-test was applied on prediction accuracies and kappa statistics 

of these datasets and can be found at Appendix C.  All the increasing prediction accuracy seem 

to have statistically significant difference from the former ones, this t-test does not enlighten so 

much about the choice. Hence, when the t-test for kappa statistics is examined, the datasets 

which have detection counts 5, 6, 7 and 8 are found to have statistically significant difference.  

Among them, the dataset having the detection count as 8 is selected for further analysis because 

of two reasons. First, it has less data points from others and this helps to decrease the 

computation time. Second, the dataset with detection count equal to 8 is more accurate than the 

others (datasets with detection count 5, 6 and 7).  

After the selection of the dataset with detection count=8, then the effect of first balancing 

method on the false positive rates and kappa statistic was questioned. The first method to 

balance the dataset was to choose the equal number of benign and malicious applications under 

each application category. Therefore, a new dataset had been constructed from the dataset which 

had detection count equals to 8 by leaving the same number of benign and malicious 

applications under each application category. Then Naïve Bayes classifier was run for 10 times 

with 80 percent random partition of datasets for training data and the left for testing data. 

Resulting prediction accuracies and kappa statistics were subjected to paired t-test to see 

whether the difference between these parameters for two datasets is statistically significant.  

Table 7- Accuracy Comparison for balanced and imbalanced datasets with detection count=8 

        Datasets 

 

Classifier 

Detection 

Count=8, 

balanced 

Detection 

Count=8, 

imbalanced 

 Naïve 

Bayes 

80.65 90.74 v 

 v: statistically better than the compared 

value at 0.05 confidence level 

 

Table 8-Kappa statistic comparison for balanced and imbalanced datasets with detection 

count=8 

  

 

 

 

 

        Datasets 

 

Classifier 

Detection 

Count=8, 

balanced 

Detection 

Count=8, 

balanced 

Naïve 

Bayes 

0.51 0.57 v 

 v: statistically better than the compared 

value at 0.05 confidence level 
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According to results, when the dataset was balanced, the accuracy of the model decreased from 

90.74 to 80.65 and the difference is statistically significant at 0.05 confidence value. However, 

the kappa statistic of the dataset increased from 0.51 to 0.57 and this difference is significant 

too. This means that the balanced dataset is less accurate but produces this accuracy value with 

higher agreement between benign and malicious class values and with less false positive rate. 

Consequently, the balanced dataset with detection count=8 was decided to continue with for 

further analysis and the final two baseline datasets were constructed:  

 A dataset including only permissions as feature set, malicious applications which have 

been identified as malware by more than or equal to 8 AV engines and benign 

applications which have not been identified as malware by any of AV engines (and the 

number of benign and malicious applications under each application category was 

balanced as explained before in this section) 

 A dataset including permissions together with other Google Play metadata as feature 

set, malicious applications which have been identified as malware by more than or 

equal to 8 AV engines and benign applications which have not been identified as 

malware by any of AV engines (and the number of benign and malicious applications 

under each application category was balanced as explained before in this section)  

3.7. Summary of Pilot Study  

Before applying all the classification and feature selection algorithms and their combinations 

with the number of selected features, a pilot study was carried out to see the approximate 

performance of the detection model proposed in this study. In order to obtain and compare 

results in a fast manner, Naïve Bayes classifier was preferred. As the first step, whole dataset of 

applications collected from the official market was used to apply Naïve Bayes learning 

algorithm. Applications’ market related data was collected by writing a Java application for all 

application categories defined by Google Play and for top free applications under each of them 

(Those application categories can be found at Appendix A) . Permissions requested by 

applications at install time were collected by using a Google Play crawler (Demiröz, 2013) and 

applications were downloaded again utilizing this crawler. The reason for downloading 

applications is to calculate their hash values in order to query them via an online free AV engine 

(VirusTotal). After collecting applications, they were labeled according to the number AV 

engines detecting them as malicious. If an application had been identified as malicious by more 

than or equal to 2 AV engines, it was labeled as malicious, otherwise as benign, for the initial 

phase. Two different datasets were used to investigate the contribution of official market 

metadata; one of which only includes user permissions and the other includes user permissions 

together with market metadata. These two datasets included the same number of instances, 

consisting of 4512 malicious and 12719 benign applications. Naïve Bayes classifier was run 10 

times for these two datasets with cross-validation.  According to initial results, addition of 

market metadata increased the accuracy of model 3.76% which is a slight difference, but the 

amount of increase in TPR (0.165) and decrease in FPR (0.164) were acceptably high. This 

means that despite insignificant improve in prediction accuracy, addition of market metadata 

improved the agreement of class values (benign and malicious) on classification results. 

However, the false positive rate was not acceptable enough yet and the prediction accuracy 

could be improved more. The dataset included 861 features, so as the effect of excessive 

number of features, classification algorithm could be misled. Therefore, 3 feature selection 

algorithms (chi-square, information gain and reliefF) are used to select the most important 50 
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features to give Naïve Bayes classification algorithm as input. This time, the dataset with 

proposed features was used by 80-20% split for training and testing sets. Results showed that 

applying feature selection algorithms had not improved the prediction accuracy, FP rates and 

kappa statistic notably. As another option to improve the results, balancing the dataset in terms 

of class values was applied. According to the classification results for the datasets obtained by 

balancing class values, balancing the number of malicious and benign applications under each 

application category does not improve the accuracy but improves the false positive rate. 

As the last operation to improve the prediction accuracy, an experiment was conducted by 

changing the detection count used to label an application from 2 to 10. In this experiment, 

market metadata was used as proposed and the only applications which had not been identified 

as malicious by any AV engine were accepted as benign applications. The remaining ambiguous 

applications were excluded from the datasets. When the results are examined, it is seen that the 

dataset with detection count 8 best suits the needs with respect to prediction accuracy and kappa 

statistic. Then on this dataset, balancing operation was done for the number of malicious and 

benign applications under each application category. Despite obtaining a less accurate result 

with the balanced dataset, a higher kappa statistic was achieved meaning the higher agreement 

between class values and lower FPR. In addition, the resulting dataset is far smaller 

(approximately 25% of the former one) than the former one allowing classification and feature 

selection algorithms to require less time to be completed. 

  



38 

 

 

3.8. Schematic Representation of the Research Methodology  

The figure below displays the processes of the research methodology applied in this study.  
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Figure 7- Steps for the research methodology of the proposed study 
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CHAPTER 4 

 

 

RESULTS 

 

 

 

In this chapter the evaluation of results for the classification and feature selection algorithms on 

the final baseline dataset is presented. First the contribution of official market on to the 

requested permissions from users is evaluated in terms of the prediction performance of 

machine learning algorithms. In addition, the selected classification algorithms are compared to 

find the most accurate algorithm. Lastly, the effectiveness of feature selection algorithms is 

evaluated and the best performing combination of classification and feature selection 

algorithms, and the number of selected features is attested. 

4.1. Brief Information about Datasets and Configuration for Algorithms 

In order to explore the contribution of other official market metadata of Android applications to 

the malware detection model which uses only requested permissions from users as feature set, 2 

datasets were constructed in this study. The first dataset comprises only requested permissions 

and the second one has additional information about applications presented by Google Play 

Store. Those 9 additional features are listed in the previous chapter and detail information is 

given about them. Apart from those features, one more additional feature, the days passed after 

the detection date of a malicious application, was used as input for classification algorithms 

taken from VirusTotal website. These datasets include malicious applications which have been 

identified as malware by at least 8 or more AV engines on VirusTotal. Benign applications are 

the ones which have not been identified as malicious by any of the AV engines on the date of 

data collection. The remaining ambiguous applications were omitted from the dataset. As the 

last arrangement on the data collected from application market, the number of malicious and 

benign applications was balanced since it has been shown before in this study that balancing the 

dataset causes the decrease of false alarms. These two datasets includes 2528 instances 907 of 

which are malicious and the remaining 1621 ones are benign applications. Appendix D 

illustrates the histograms of applications produced by Weka for attributes related to Google 

market metadata. 

 

Using two baseline datasets, 4 different classification algorithms and 3 different feature 

selection algorithms were run 10 times for each by randomly partitioning datasets. Cross-

validation was not preferred because totally 80 algorithms were run together with combinations 

of classification and feature selection algorithms and this much algorithms would require more 

time to complete if cross-validation was used. Partition was done in a manner that the datasets 
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included 80% training and 20% testing samples. First the classification algorithms, Naïve 

Bayes, J48, random forest, k-nearest neighbor, were run solely and then feature selection 

algorithms were run in combination with classification algorithms. Since the chosen feature 

selection algorithms, namely Chi-Square, Information Gain and ReliefF are in the type of filter-

based approach, they require the predefined number of attributes to be selected. These numbers 

required by feature selection algorithms were configured as 10, 30 and 50. As a result, the 

following 40 algorithms were run 10 times for each of the two datasets (one with only 

permissions and the other with Google Play Store metadata including permissions), comprising 

totally 80 algorithms. 

Table 9- Configurations for classification and feature selection algorithms 

Classifier 

Feature Selection 

Algorithm 

# Selected 

Features 

Naive Bayes - - 

Naive Bayes Chi-Square 10 

Naive Bayes Chi-Square 30 

Naive Bayes Chi-Square 50 

Naive Bayes Information Gain 10 

Naive Bayes Information Gain 30 

Naive Bayes Information Gain 50 

Naive Bayes ReliefF 10 

Naive Bayes ReliefF 30 

Naive Bayes ReliefF 50 

J48 - - 

J48 Chi-Square 10 

J48 Chi-Square 30 

J48 Chi-Square 50 

J48 Information Gain 10 

J48 Information Gain 30 

J48 Information Gain 50 

J48 ReliefF 10 

J48 ReliefF 30 

J48 ReliefF 50 

Random forest - - 

Random forest Chi-Square 10 

Random forest Chi-Square 30 

Random forest Chi-Square 50 

Random forest Information Gain 10 

Random forest Information Gain 30 

Random forest Information Gain 50 

Random forest ReliefF 10 



41 

 

Classifier 

Feature Selection 

Algorithm 

# Selected 

Features 

Random forest ReliefF 30 

Random forest ReliefF 50 

kNN - - 

kNN Chi-Square 10 

kNN Chi-Square 30 

kNN Chi-Square 50 

kNN Information Gain 10 

kNN Information Gain 30 

kNN Information Gain 50 

kNN ReliefF 10 

kNN ReliefF 30 

kNN ReliefF 50 

 

The full list of results for the algorithms listed at the table above is presented at Appendix E.  As 

it is explained in the parameters used for evaluation of algorithms part, kappa statistic gives 

information about the agreement of two class values on the classification results. It embodies 

the information provided by true positive, false positive, true negative and false negative. If the 

kappa statistic is examined, those parameters are not required to be examined one by one. As a 

result, evaluations made for all of the algorithms are based on their prediction accuracies and 

kappa statistics by using paired t-tests. Precision and the area under ROC curve are not selected 

as the parameters for making comparisons because they exhibit similar behaviors with accuracy 

of the model. The graphic below displays the values of precision rate, area under ROC curve 

and accuracy moving together for the proposed dataset in this study (the one including official 

market metadata with permissions) and the algorithms listed above. Recall rate is also known as 

true positive rate, so this parameter is not used to evaluate the performance of algorithms in this 

study.   
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Figure 8- Graph showing the movements of accuracy, precision and area under ROC curve 

evaluation parameters for the proposed dataset 
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4.2. Evaluation of Official Market Metadata 

The main purpose of this study is to answer the question whether Google Play market metadata 

plays a crucial role while detecting mobile malware and contributes to the detection model with 

only Android permissions or not. To answer this question, comparisons should be made on two 

baseline datasets with corresponding classification algorithms. The table at Appendix F presents 

the comparison of prediction accuracies and kappa statistics for these datasets by displaying the 

results of paired t-test. 

When the results are examined for classification algorithms which are not accompanied by any 

feature selection algorithm, it can be seen that the prediction accuracy of models improves in 

half of them as the result of official market metadata addition to the model. Addition of market 

metadata increases the accuracy from 75.79% to 80.65% for Naïve Bayes, from 83.94% to 

85.86% for kNN. The accuracy of the model decreases slightly from 84.81% to 83.66% for 

random forest when Google Play metadata is added on the permissions. However, the accuracy 

gets worse a bit more for J48 by decreasing from 83.18% to 79.37%. According to paired t-test 

results for these values, only the increase of prediction accuracy for Naïve Bayes classifier is 

statistically significant at 0.05 confidence value. The inspection for the combinations of feature 

selection algorithms with classification algorithms gives more enlightening information about 

the predictive accuracy. It is seen that kNN does not improve the accuracy with the addition of 

market metadata in a statistically significant manner when it is applied without a feature 

selection algorithm. Yet it produces the statistically more significant accuracies with the 

addition of market metadata when feature selection algorithms are applied before classification. 

It gives the higher accuracies for all of the 3 feature selection algorithms, and for all of the 3 

levels of selected feature numbers, except ReliefF with 50 features. Naïve Bayes yields more 

accurate results for proposed detection method in all of 10 combinations. The addition of 

market metadata decreases the accuracy of the model for all the combinations of J48 and feature 

selection algorithms but the difference is statistically significant for only the feature selection 

methods with the number of selected features is 10. Lastly, the random forest does not give 

quite different accuracies for the two baseline datasets, albeit the dataset including market 

metadata has higher accuracy than the other one as statistically significant for Information Gain 

and ReliefF algorithms with 10 selected features.  

Kappa statistic shows similar results with prediction accuracy of the model in terms of the effect 

of official market metadata addition. However there are some different results about kappa 

statistic. First, the kappa statistic for kNN without any feature selection algorithm points out an 

improvement by increasing from 0.64 to 0.69 with statistical significance while the difference 

for prediction accuracy does not have a difference statistically significant. Second, J48 is said 

above to have significant degradation in terms of accuracy for 3 combinations (Chi-Square, 

Information Gain and ReliefF algorithms with 10 features) while it has statistically significant 

decrease in kappa statistic for only 1 combination (ReliefF algorithm with 10 features). Last, 

though showing statistically significant increase in prediction accuracy for two classification-

feature selection algorithm combinations, random forest improves the kappa statistic in a 

statistically significant manner for only one combination (Information Gain with 10 attributes). 

4.3. Evaluation of Classification Algorithms 

The second research question of this study aims to find the most accurate classification 

algorithm among Naïve Bayes, k nearest neighbor, random forest and J48 for the task of 
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Android malware detection with a model comprising of Android permissions and official 

application market metadata as features. To serve this purpose, paired t-tests were made for the 

comparison of accuracy values belonging to 4 different classification algorithms on their own, 

i.e. without any combination with feature selection algorithms. Following tables show the 

paired t-test results for the comparison of precision values for each classification algorithm with 

other 3 classification algorithms. 

 

Table 10- Comparison of the prediction accuracy of Naive Bayes classifier with others 

        Classifiers1 

 

Dataset 

Naïve 

Bayes 

J48 Random 

Forest 

kNN 

Permissions+ 

other market 

metadata 

80.65 79.37 83.66 v 85.86 v 

v: statistically better than the compared value at 0.05 

confidence level 

 

Table 11-Comparison of the prediction accuracy of J48 classifier with others 

        Classifiers 

 

Dataset 

J48 Naïve 

Bayes 

Random 

Forest 

kNN 

Permissions+ 
other market 
metadata 

79.37 80.65 83.66 v 85.86 v 

v: statistically better than the compared value at 0.05 

confidence level 

 

 

Table 12-Comparison of the prediction accuracy of Random Forest classifier with others 

        Classifiers 

 

Dataset 

Random 

Forest 

Naïve 

Bayes 

J48 kNN 

Permissions+ 

other market 

metadata 

83.66  80.65* 79.37 85.86  

*: statistically worse than the compared value at 0.05 

confidence level 

                                                      
1 “ v ” represents being statistically better than the compared value at 0.05 confidence level and 

“ * ” represents being statistically worse than the compared value at 0.05 confidence level 
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Table 13- Comparison of the prediction accuracy of kNN classifier with others 

        Classifiers 

 

Dataset 

kNN Naïve 

Bayes 

J48 Random 

Forest 

Permissions+ 

other market 

metadata 

85.86  80.65* 79.37 83.66  

*: statistically worse than the compared value at 0.05 

confidence level 

 

When Naïve Bayes is compared with other classification algorithms, it can be realized that the 

precision accuracy of it is higher than J48 and lower than kNN and random forest algorithms.  

According to this first comparison, the higher accuracy values of kNN and random forest 

algorithms have statistically significant difference than Naïve Bayes at 0.05 confidence level. 

Also it can be said that J48 has a lower accuracy than Naïve Bayes but the difference is not 

statistically significant, so J48 can be applied too for the detection of Android malware by using 

market metadata. 

The second table compares the accuracy of J48 algorithm with the others and indicates that the 

higher precision values which are statistically significant belong to random forest and kNN 

algorithms. The third table presents the comparison of random forest algorithm with the 

remaining algorithms. The accuracy value of random forest is lower than kNN and higher than 

Naïve Bayes and J48. This table points out that Naïve Bayes has a lower precision accuracy 

than random forest algorithm as a statistically significant manner.  The last table is for the 

comparison of the kNN with other algorithms chosen in this study. As it is seen from this table, 

kNN has the highest accuracy among 4 classification algorithms. Again, the lower precision 

value of Naïve Bayes has statistically significant difference from kNN. 

The highest accuracy value of kNN classification algorithm among others used in this study is 

obtained when the k parameter (the number of nearest neighbors) is equal to 1. This optimal 

value of k is applicable for the configuration which the kNN algorithm is used without any 

feature selection algorithm and is used for the dataset comprising permissions and other official 

market metadata as feature set. k=1 is selected among the values starting from 1 to 100 by using 

cross-validation method in a way that classification error is minimized while keeping k value 

minimum. This result may seem satisfactory in terms of computation time, i.e. the possible 

shortest computation time obtained in terms of number of neighbors. However using so small k 

value might result the learned algorithm to be sensitive noise instances in the dataset. Hence, 

when the evaluation results for the classification algorithms in this study are thought to be 

utilized, this issue should be considered. (Witten, Frank, & Hall, 2011) claim that the optimum 

value of k gets smaller when there is less noise in the dataset and the use of cross validation to 

choose best k value usually gives perfect prediction results. When it is concerned that the focus 

of this study is not to tune the k parameter for the kNN classification algorithm, the method 

used to choose k value (also proposed by (Witten, Frank, & Hall, 2011) ) should be accepted as 

plausible. 

To sum up, in this study 4 different classification algorithms are used to evaluate the 

performance of Android malware detection method which uses permissions and official market 

metadata as predictor attributes. These supervised learning algorithms are Naïve Bayes, J48, 
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random forest and kNN. Among these, kNN has the highest accuracy value which is statistically 

significant than the accuracy value of Naïve Bayes algorithm. 

4.4. Evaluation of Feature Selection Algorithms 

The last goal of the study is to find the most accurate combination of classification algorithms, 

feature selection algorithms, and the number of selected features. These combinations are listed 

at the table given in the section 4.1. If the full results listed at Appendix F are examined, it can 

clearly be seen that the combination having the highest accuracy among all is the kNN 

classification algorithm which is applied on the dataset after selecting 10 features by using 

Information Gain feature selection algorithm. This is the answer for the third research question. 

Additively, each classification algorithm and their combinations with feature selection 

algorithms are evaluated separately.  

Table 14- Accuracy comparison of feature selection algorithms in combination with Naive 

Bayes 

       Combinations                                                                                                                                          

 

Dataset 

NB NB+CS 

(10) 

NB+

CS 

(30) 

NB+

CS 

(50) 

NB+ 

IG (10) 

NB+ 

IG 

(30) 

NB+ 

IG 

(50) 

NB+ 

RfF 

(10) 

NB+ 

RfF 

(30) 

NB+ 

RfF 

(50) 

Permissions+ 

other market 

metadata 80.65 83.68 v 80.97 80.49 83.94 v 81.07 80.51 82.65 82.39 80.51 

v: statistically better than the compared value at 0.05 confidence level 

CS: Chi-Square,  IG: Information Gain,  RfF: ReliefF,  NB: Naive Bayes,  RF: Random Forest,  kNN:k-nearest 

neighbor 

 

According to the table above, feature selection algorithms generally improve the accuracy of the 

model when compared to only applying Naïve Bayes, except the ones with the number of 

features selected are 50. However, there are 2 combinations which are more accurate in a 

statistically significant manner than the Naïve Bayes applied merely. These combinations are 

Chi-Square and Information Gain feature selection algorithms with 10 features. In addition to 

this, as the number of features selected increases, prediction accuracy decreases for these 3 

feature selection algorithms. For Chi-Square and Information Gain algorithms; prediction 

accuracy decreases more when the number of features selected increases from 10 to 30, when 

compared to the increase of the number of features selected from 30 to 50. This can be seen 

visually from the graph at Appendix G. ReliefF algorithm behaves differently from this point of 

view because its discriminative point for the amount of decrease is the shift from 30 features to 

50 features. The table below shows the paired t-test result for the comparison of kappa statistics 

between Naïve Bayes and feature selection algorithms. Kappa statistic displays the similar 

behaviors with the prediction accuracy of feature selection algorithms in combination with 

Naïve Bayes. This can be recognized from the graph presented at Appendix G. For kappa 

statistic, there are 3 combinations which are better in a statistically significant manner than the 

Naïve Bayes applied merely. As in the accuracy results, Chi-Square and information gain 

algorithms with 10 features have these higher kappa statistic values.  Also ReliefF feature 

selection algorithm with 10 features yields higher kappa statistic which is statistically 

significant. 
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Table 15- Kappa statistic comparison of feature selection algorithms in combination with Naive 

Bayes 

       Combinations                                                                                                                                          

 

Dataset 

NB NB+ 

CS 

(10) 

NB+

CS 

(30) 

NB+

CS 

(50) 

NB+ 

IG 

(10) 

NB+ 

IG 

(30) 

NB+ 

IG 

(50) 

NB+ 

RfF 

(10) 

NB+ 

RfF 

(30) 

NB+ 

RfF 

(50) 

Permissions+ 

other market 

metadata 0.57 0.64 v 0.58 0.57 0.65 v 0.59 0.57 0.62 v 0.62 0.57 
v: statistically better than the compared value at 0.05 confidence level 

 

 

For J48 classification algorithm, applied feature selection algorithms decrease accuracy values 

for all combinations. The decrease of accuracy is statistically significant for Chi-Square and 

information gain algorithms with 10 features. Hence, it may not be a good choice to apply one 

of these feature selection algorithms if the prediction accuracy is considered. In addition to this, 

all 3 feature selection algorithms produce very close accuracy values. The produced accuracies 

are even equal for Chi-Square and information gain algorithms for the same number of selected 

features. This is probably caused by the rationale of the decision tree. Independent from an 

additional feature selection algorithm, decision tree applies feature selection by using 

information gain parameter inside; it chooses the best attributes for classification. The table for 

kappa statistic comparison of feature selection algorithms in combination with J48 also points 

out that 3 feature selection algorithms give the same results when the numbers of selected 

features are the same. However an important indication may be that the use of 30 features for 

those feature selection algorithms serves the purpose of obtaining more balanced results (higher 

kappa statistic value) than the results of pure J48 classification algorithm. 

 

Table 16- Accuracy comparison of feature selection algorithms in combination with J48 

       Combinations                                                                                                                                          

 

Dataset 

J48 J48+C

S (10) 

J48+

CS 

(30) 

J48+

CS 

(50) 

J48+ 

IG (10) 

J48+ 

IG 

(30) 

J48+ 

IG 

(50) 

J48+ 

RfF 

(10) 

J48+ 

RfF 

(30) 

J48+ 

RfF 

(50) 

Permissions+ 

other market 

metadata 79.37 69.69 * 78.85 73.77 69.69 * 78.85 73.77 69.69 * 78.91 73.81 

*: statistically worse than the compared value at 0.05 confidence level 

 

 

Table 17-Kappa statistic comparison of feature selection algorithms in combination with J48 

       Combinations                                                                                                                                          

 

Dataset 

J48 J48

+CS 

(10) 

J48+

CS 

(30) 

J48+

CS 

(50) 

J48+ 

IG 

(10) 

J48+ 

IG (30) 

J48+ 

IG 

(50) 

J48+ 

RfF 

(10) 

J48+ 

RfF 

(30) 

J48+ 

RfF (50) 

Permissions+ 

other market 

metadata 0.56 0.42 0.58 0.47 0.42 0.58 0.47 0.42 0.58 0.47 
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When the tables of accuracy comparison for feature selection algorithms in combination with 

kNN and random forest are examined, it is seen that none of the combinations has a statistically 

significant difference than the mere classification algorithms. Additively, for random forest 

algorithm, Chi-Square feature selection algorithm displays a regular increase when the number 

of features increases from 10 to 50. However information gain algorithm does not present a 

regular decrease or increase in prediction accuracy. Instead, it first decreases the accuracy from 

10 features to 30 features and then increases from 30 to 50, but the differences are slight. Hence 

for this study, the number of features selected for information gain feature selection algorithm 

when applied with J48 does not matter from the accuracy point of view. In addition, the 

accuracy of the J48algorithm in combination with ReliefF does not change too much when the 

number of features selected is changed from 10 to 30. Yet the increase of the accuracy is more 

apparent as the number of selected features increases from 30 to 50. For kNN, it can be claimed 

that Chi-Square and information gain algorithms display the similar behaviors according to the 

number of selected features and have close accuracy values. However, ReliefF algorithm when 

applied together with kNN classification algorithm shows an increasing trend for accuracy 

values in conjunction with increasing number of features. To visually clarify these conclusions, 

graphs can be applied at Appendix G. 

 

Table 18- Accuracy comparison of feature selection algorithms in combination with Random 

Forest 

       Combinations                                                                                                                                          

 

Dataset 

RF RF+CS 

(10) 

RF 

+CS 

(30) 

RF 

+CS 

(50) 

RF + 

IG (10) 

RF + 

IG 

(30) 

RF + 

IG 

(50) 

RF + 

RfF 

(10) 

RF + 

RfF 

(30) 

RF + 

RfF 

(50) 

Permissions+ 

other market 

metadata 83.66 81.74 82.28 82.85 82.93 82.59 82.75 81.8 81.92 83.26 

 

 

Table 19- Accuracy comparison of feature selection algorithms in combination with kNN 

       Combinations                                                                                                                                          

 

Dataset 

kNN kNN 

+CS 

(10) 

kNN 

+CS 

(30) 

kNN 

+CS 

(50) 

kNN + 

IG (10) 

kNN 

+ 

IG 

(30) 

kNN 

+ 

IG 

(50) 

kNN + 

RfF (10) 

kNN 

+ 

RfF 

(30) 

kNN 

+ 

RfF 

(50) 

Permissions+ 

other market 

metadata 85.86 86.41 85.7 85.32 86.47 85.66 85.4 84.49 85.82 86.03 

 

Lastly, kappa statistics of feature selection algorithms in combination with random forest and 

kNN classification algorithms are compared at the following two tables. None of the 

combinations has higher kappa statistic value in a statistically significant manner than the pure 

kNN and random forest algorithms. Combinations have very close kappa statistic values for 

both of random forest and kNN classification algorithms. For kNN, selecting number of features 

as 30 or 50 does not differ because they yield equal kappa statistic values for all 3 feature 

selection algorithms.  
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Table 20-Kappa statistic comparison of feature selection algorithms in combination with 

Random Forest 

       Combinations                                                                                                                                          

 

Dataset 

RF RF+CS 

(10) 

RF 

+CS 

(30) 

RF 

+CS 

(50) 

RF + 

IG (10) 

RF + 

IG 

(30) 

RF + 

IG 

(50) 

RF + 

RfF (10) 

RF + 

RfF 

(30) 

RF + 

RfF 

(50) 

Permissions+ 

other market 

metadata 0.62 0.57 0.59 0.6 0.6 0.59 0.6 0.57 0.58 0.61 
 

 

Table 21-Kappa statistic comparison of feature selection algorithms in combination with kNN 

       Combinations                                                                                                                                          

 

Dataset 

kNN kNN 

+CS 

(10) 

kNN 

+CS 

(30) 

kNN 

+CS 

(50) 

kNN + 

IG (10) 

kNN 

+ 

IG 

(30) 

kNN 

+ 

IG 

(50) 

kNN + 

RfF (10) 

kNN 

+ 

RfF 

(30) 

kNN 

+ 

RfF 

(50) 

Permissions+ 

other market 

metadata 0.69 0.7 0.68 0.68 0.7 0.68 0.68 0.66 0.69 0.69 

 

4.5. Summary of Findings 

The analysis studies conducted aimed to answer aforementioned 3 research questions. For the 

first research question it has been found that the addition of official market metadata on Android 

permissions as predictor variables improves the accuracy of the model and the agreement of 

class values on the results for Naïve Bayes and kNN classification algorithms. According to the 

results of random forest algorithm, addition of market data does not show the signs of 

significant improvement. J48 is affected negatively with the addition of market metadata but 

this effect was founded to be statistically insignificant. Two different datasets one of which 

consisting of only Android permissions and the other one adding market metadata as predictor 

attributes were used for the comparisons made to answer first research question. The second 

research question investigates the most accurate classification algorithm among Naïve Bayes, 

J48, random forest and kNN for the problem of Android malware detection using official 

market metadata. To answer this question one baseline dataset which includes official market 

metadata beside permissions is used. According to results, kNN has the best performance in 

terms of prediction accuracy and its accuracy value is higher than the accuracy of Naïve Bayes 

algorithm as statistically significant. The third and the last research question of this study is 

about finding the most accurate combination of classification, feature selection algorithms and 

the number of features selected for feature selection algorithms. Comparisons were made on the 

dataset which comprise of official market metadata and requested permissions as feature set. 

kNN classification algorithm applied together with Information Gain feature selection method 

with 10 features yields the highest accuracy among 36 combinations. Also it is found that 

applying a feature selection method does not improve the performance of classification 

algorithms always. Also, selecting more or less features does not have an improving effect on 

prediction results always. 
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CHAPTER 5 

 

 

DISCUSSION AND CONCLUSION 

 

 

 

This chapter concludes the study by summarizing the adopted detection method, feature 

selection and supervised classification algorithms used in this study, and the results obtained 

from them are discussed. Also the contributions of the study are given and the limitations to 

which the study is exposed are indicated.  In addition, the future works are proposed to be 

fulfilled which have not been handled under the scope of this study but may improve the 

generalizability of the results for this study. 

5.1. Discussion and Conclusion 

There are a lot of methodologies developed by researchers to tackle with the mobile malware 

detection problem. Especially Android devices are examined closer due to their open structures 

and proneness to malicious applications because of the reasons discussed in section 2.1. To 

carry out the mobile malware detection task, dynamic and static analysis methods are applied 

mainly.  Dynamic analysis method is not preferred in this study because of its high cost in 

deployment environment, and requirement of complicated skills and manual investigating. ( 

Zhu & Peiravian, 2013)   ( Wu , Mao, Wei, Lee, & Wu, 2012)  Instead, a feature-based 

automated static analysis method is preferred. To automate detection task, supervised machine 

learning algorithms are applied by using permissions requested from the user at application 

install time and official market metadata as predictor variables. 4 different classification 

algorithms, Naïve Bayes, k-nearest neighbor, J48 (java implementation of C4.5 decision tree) 

and random forest (a kind of ensemble method) were chosen to be trained and make predictions 

on the class values of unknown applications. Type of classification in this study is binary 

classification and the class attribute has “benign” and “malicious” values to label applications. 

Performances of algorithms are evaluated by using prediction accuracy and kappa statistic. 

Before carrying out the main analyses, a pilot study was performed in order to see the feasibility 

of the model. In this pilot study, two baseline datasets were used to evaluate the contribution of 
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official market metadata on permissions. One of them included only permissions as feature set 

and the other one comprised of permissions together with official market metadata. To construct 

these datasets, Google’s official application market and VirusTotal free online malware scanner 

are utilized. Features to be used in classification algorithms, like permissions, developer names, 

type of applications, download number of application etc., were collected from Google Play by 

using a web crawler and a java application. Collected applications were labeled as malicious or 

benign by scanning them at VirusTotal website. For the pilot study, applications were labelled 

as malicious if they have been identified by 2 or more AV engines as malicious. The findings of 

this pre-assessment showed that the addition of official market metadata to feature set improved 

the accuracy and reduced the false alarms. The improvement of the detection results was 

somehow acceptable but still the prediction accuracy and the false positive rate were not 

satisfactory. Just as it would be done for a part of main study, feature selection methods applied 

at this step. However, the application of feature selection algorithms for selecting the attributes 

which would be used as input by classification algorithms did not produce significantly better 

results. 

To overcome the high false positive rates and to improve the prediction accuracy two options 

were evaluated. First, the number of benign and malicious applications in the dataset was 

balanced and by reducing the number of benign applications. Balancing the total number of 

benign and malicious applications did not improve the detection results, but balancing them 

under each application category decreased the false alarms. As the second option, labelling 

method of applications as benign or malicious has been revised. Applications which have not 

been identified as malicious by any of the antivirus engines were labeled as benign. To label 

malicious applications, an experiment was conducted and the number of AV engines identifying 

an application as malware was used as decision criteria. The detection count of malicious 

applications was increased from 2 to 10 one by one and 9 different datasets were constructed. 

While constructing these datasets, the ambiguous applications were omitted from the dataset. 

For instance, to construct the dataset which includes malwares identified by 5 or more AV 

engines, applications were labeled as benign if their detection count are zero and the remaining 

ones which have detection count ranging from 1 to 4 were eliminated. In this experiment, the 

prediction results of Naïve Bayes were used to select proper malware detection count. The 

reason lying behind to choose Naïve Bayes for pilot studies and experiment is its low 

computation time allowing a fast pre-assessment. The results of the experiments pointed out the 

selection of the detection count as 8 to label malicious applications. Finally on this dataset 

balancing operation was applied to reduce the false alarms by equalizing the number of 

malicious and benign applications under each application category. 

By using final baseline dataset, analyses were made to answer 3 research questions. The main 

purpose of this study is to examine whether the contribution of official market metadata on 

requested permissions is meaningful to classify applications. Previous studies has utilized 

permissions, API calls, intent messages, and main components (content providers, broadcast 

receivers, activities, and services) of Android applications ( Enck, Ongtang, & McDani, 2009) ( 

Wu , Mao, Wei, Lee, & Wu, 2012) ( Zhu & Peiravian, 2013) for statically analyzing them. 

(Glodek & Harang, 2013) add the combinations of frequently used permissions and native code 

as features for detecting Android malwares. Considering those studies and the claims that 

Android permissions are not sufficient on their own to explain the malicious behaviors ( Meurer 

& Wismüller, 2012) ( Enck, Ongtang, & McDani, 2009), official market metadata is proposed 

as additional feature to the requested permissions in this study. (Abu Samra, Yim, & Ghanem, 

2013) and (Bose, Hu, Shin, & Park, 2011) have also used official market metadata as static 
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features, but they applied unsupervised clustering techniques to categorize applications. 

Differently, in this study permissions and official application market metadata were used as 

features for training supervised classification algorithms.  

In order to answer this first question, two baseline datasets were compared by applying 

classification and feature selection algorithms. One of the datasets was the one obtained as final 

baseline dataset and comprised of permissions together with official market metadata. The other 

one was constructed from the final dataset in a way that it included only permissions as feature 

set. When the results of classification algorithms and their combinations with feature selection 

algorithms were examined, it has seen that the addition of market metadata increased the 

accuracy of the model for Naïve Bayes and kNN classification algorithms. Their combinations 

with feature selection algorithms also signed to increase of prediction accuracy and kappa 

statistic. Obtaining higher kappa statistics means the proposed features provides a model with 

less false alarms and more agreement between class values on classification results. 

Additionally, random forest algorithm for the proposed model did not produce significantly 

different classification results than the model with only permissions. It increased the prediction 

accuracy of the model as statistically significant for some combinations (of classification and 

feature selection algorithms) and decreased slightly for the remaining ones. However J48 

algorithm was affected negatively by the addition of market metadata to the model. Most of the 

combinations of feature selection algorithms with J48 showed a decrease of approximately 8% 

in model accuracy. Yet according to paired t-test results, only 3 combinations worsened the 

accuracy and 1 combination worsened the kappa statistic in a statistically significant way. 

The second research question was about finding the most accurate classification algorithm 

applied on the proposed dataset in this study. To answer this question, only the accuracies of 

classification algorithms were compared without using their combinations with feature selection 

algorithms. Results showed that the kNN outperformed the other 3 classification algorithms 

with 85.86% accuracy value. 

To answer the last research question, the effect of 3 feature selection algorithms on the 

classification task of applications by using permissions and official market metadata was 

investigated. As being type of filtered feature selection methods, Chi-Square, Information gain 

and ReliefF algorithms were chosen. Since filtered feature selection methods require the number 

of features to be selected from the implementer, different numbers were identified in order to 

avoid the use of too many or few features. The identified numbers for the features to be selected 

by feature selection algorithms were 10, 30 and 50. The third research question investigates the 

most accurate combination of classification and feature selection algorithms, and the identified 

number of features to be selected. According to the results, kNN yields the highest accuracy 

when it is combined with Information Gain feature selection algorithm and 10 features are 

selected. 

Lastly, the results of this study and the other studies mentioned in the literature review part 

which apply automated feature-based machine learning approach as static Android malware 

detection method are presented at the table below. Each study applies different machine 

learning algorithms on different datasets. Hence, it would not be plausible to compare them 

exactly in terms of their prediction performance measures. However the results of the studies 

obtained by using the datasets, feature sets, and the machine learning algorithms presented on 

the table below would guide the researchers who intend to develop or apply a feature-based 

static Android malware detection method. When the performance measures of this study are 
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compared the others at the table below, the accuracy and TPR are acceptable. However, the FPR 

rate needs to be improved more to avoid false alarms. This drawback of the proposed model 

may be caused by the method used to label applications as malicious or benign. In this study, 

both the malicious and benign applications are labeled by querying the analysis results of them 

on VirusTotal, but this is not a verified method by previous studies. The remaining studies 

choose to study with the malicious applications proven before by other studies.  

Table 22- Summary of the methods and the findings of related studies to the proposed method 

in this study 

Title of the Study Dataset Used Machine 

Learning 

Algorithms 

Used 

Features Used in 

Selected 

Classification 

Algorithms 

Results 

Droidmat: 

Android Malware 

Detection through 

Manifest and API 

Call Tracing  

Includes 238 

Android malware 

collected from a 

public Android 

dataset, Contagio 

mobile, and 1500 

benign applications 

downloaded from 

official Android 

market and verified 

through the website 

of VirusTotal 

malware detection 

community . 

kNN (with k=1) 

and Naive 

Bayes 

classification 

algorithms, EM 

and K means 

clustering 

algorithms 

(SVM to decide 

number of 

clusters) 

Requested 

permissions, intent 

messages passing, 

API calls and 

components of 

applications(activity, 

service and 

broadcast receiver) 

The combination 

of k means and 

kNN was chosen 

as having the 

highest recall 

rate=0.87 and 

precision=0.97 

Machine Learning 

for Android 

Malware 

Detection Using 

Permission and 

API Calls 

610 malware from 

Malware Genome 

Project2 (they 

eliminated the 

repetitive samples 

among 1250 

applications) and 

1250 benign 

applications 

downloaded from 

Google Play (top 50 

free applications 

under 25 application 

categories) 

SVM, Decision 

tree and 

Bagging 

classification 

algorithms 

Permissions and API 

calls 

They claim that 

the best 

classification 

algorithm is 

Bagging in terms 

of detection rate 

(TPR). It has 

96.39% accuracy, 

94.9% precision 

94.1% recall rate 

with the regarded 

features and the 

dataset. 

                                                      
2 Y. Zhou and X. Jiang, Dissecting android malware: Characterization and evolution Security 

and Privacy (SP), 2012 IEEE Symposium on Security and Privacy. 
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Title of the Study Dataset Used Machine 

Learning 

Algorithms 

Used 

Features Used in 

Selected 

Classification 

Algorithms 

Results 

Rapid 

Permissions- 

based Detection 

and Analysis of 

Mobile Malware 

Using Random 

Decision Forests 

Malicious 

applications from 

Malware Genome 

Project (random 500 

of them were 

chosen) and 500 

benign applications 

downloaded from 

3rd party markets. 

Contagio mobile 

website (16 

malwares) for 

testing the capability 

of model for novel 

malware. 

Random forest 

classification 

algorithm 

Requested 

permissions, 

broadcast receiver, 

presence of 

embedded Android 

applications, native 

code 

TPR: 92% 

FPR: 3% 

Proposed method 

in this study 

2528 instances 

collected from the 

Android’s official 

application market, 

GooglePlay, and 

labeled via 

VirusTotal (907 

malicious and 1621 

benign applications) 

Naïve Bayes, 

J48, kNN, and 

random forest 

classification 

algorithms, 

Chi-Square, 

Information 

Gain and 

ReliefF feature 

selection 

algorithms 

Requested 

permissions and 

other metadata of 

applications 

presented on the 

official market (like 

app category, 

developer name, 

download range, 

size of application) 

The best 

combination kNN 

+ Information 

Gain (with 10 

features). It has 

86.47% accuracy, 

91.86% TPR, 

23.17% FPR, 0.70 

kappa statistic 

 

To sum up, in this study mainly the contribution of official market metadata on explaining the 

malicious behaviors of Android applications was investigated. The addition of market metadata 

improved the accuracy and false alarms of the model which comprise of only Android 

permissions for half of the selected classification algorithms (Naïve Bayes and kNN).  In 

addition to this, it was shown that a detection method can be built by using a free public data 

provided by Google’s official application market and VirusTotal free online AV engine. The 

other contribution of this study is to include all the free applications presented on the Google 

Play without limiting to some application categories.  

5.2. Limitations and Further Research 

The dataset used to train and evaluate the performance of supervised machine learning 

algorithms in this study contains the top free applications presented by Google’s official 

application market. The paid applications might be used for analysis but the crawler used in this 

study allows downloading only free applications, like other tools used for downloading Android 

applications from official market.  The official market is also open to malevolent developers 

who download legitimate applications from the market and upload the repacked ones after 
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injecting malicious code into them. Since there is no reason for them not to apply this on their 

paid applications, inspecting paid applications may make sense. On the other hand, hackers also 

can be thought not to prefer paid applications to download and make them malicious for the 

sake of cost and simplicity. Hence, for an application having a paid version may be sign of 

being more trustable. At least, adding a feature to the dataset which indicates that an application 

has a paid version or not may help to explain malicious behaviors of applications better. In 

addition, if the Google Play presented the hash values of applications, without the need for 

downloading and calculating hash values, paid applications would also be inspected by 

querying them on VirusTotal.  

Another limitation of the study is the use of Google’s official application market for mobile 

malware detection task. The dataset can be extended in a way that it includes the applications 

from other third-party application markets and/or websites. In spite of the fact that users are 

required to root their smartphones to download Android applications from unofficial markets 

and websites, they may prefer this for enhancing their phones’ capabilities.  

The results of the study can be evaluated as acceptable in terms of accuracy, but the unexplained 

part of the malicious behaviors by the proposed model is caused by some limitations. First, the 

downloaded applications have not been reengineered to extract the part of the apk files. 

Therefore, vital part of an apk, Android Manifest.xml, could not be examined to find out the 

intent messages and application components (activities, services, content providers, and 

broadcast receivers). Also the bytecode of an application could not be investigated to explore 

the API calls. The reason for not choosing to decompress applications is that all the applications 

presented on official market do not let to be reverse-engineered. This may be caused by some 

applications’ being commercial products or brands of companies or being protected from piracy 

by their developers and issued to copyrights. Second, due to the nature of static analysis, some 

hidden capabilities of malwares could not be revealed. For instance, as it is stated by ( Wu , 

Mao, Wei, Lee, & Wu, 2012) some Android malwares are capable of downloading the actual 

payloads from remote sites by using the internet connection, so static detection methods  are not 

proficient enough in this regard. 

As feature work, different classification and feature selection algorithms can be applied for 

Android malware detection method proposed in this study. For example, ( Zhu & Peiravian, 

2013) argue that the use of ensemble learning methods may lead to better results for imbalanced 

datasets because of their structure based on consensus. (Jamali, Bazmara, & Jafa, 2012) claim 

compliance of some feature selection methods with specific classification algorithms. 

Therefore, the accordance of feature selection and classification algorithms or other factors may 

be regarded for the selection of those algorithms in the following studies. Additively, a 

longitudinal study may be considered because it may strengthen the findings of the study. In 

time, the number of AV engines analyzing the applications or the detection rate of malicious 

applications can be changed, and also the ones found to be benign before can be labeled as 

malicious. However, the loss of data should be considered in longitudinal study, because the 

analysis results of some applications for some AV engines might be removed after a while 

owing to time out. Also, some malicious applications with high detection number by AV 

engines have become clean applications in time according to the analysis results on VirusTotal. 

The reasons underlying this are not known precisely, but guessed as the clean of legitimate 

applications from malicious codes if they have been injected into before and reload of them to 

the market.   
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Appendix A: List of Application Categories and Application Download 

Ranges 

APPLICATION CATEGORIES  DOWNLOAD RANGES 

     

Application Type  Game Type  1-5 

Books and 

Reference 

 
Action 

 5-10 

Books and 

Reference 

 
Adventure 

 10-50 

Business  Arcade  50-100 

Comics  Board  100-500 

Communication  Card  500-1,000 

Education  Casino  1,000-5,000 

Entertainment  Casual  5,000-10,000 

Finance  Educational  10,000-50,000 

Health and Fitness  Family  50,000-100,000 

Libraries and Demo  Music  100,000-500,000 

Lifestyle  Puzzle  500,000-1,000,000 

Media and Video  Racing  1,000,000-5,000,000 

Medical  Role 

Playing 

 5,000,000-10,000,000 

Music and Audio  Simulation  10,000,000-50,000,000 

News and 

Magazines 

 
Sports 

 50,000,000-100,000,000 

Personalization  Strategy  100,000,000-500,000,000 

Photography  Trivia  500,000,000-1,000,000,000 

Productivity  Wallpaper  1,000,000,000-5,000,000,000 

Shopping  Word   

Social     

Sports     

Tools     

Transportation     

Travel     

Wallpaper     

Weather     
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Appendix B: Histograms of Continuous Attributes 
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Appendix C: Paired t-test Results for Comparison of Predictive Accuracies 

and Kappa Statistics to Choose Baseline Datasets 

 

Table 23- Paired t-test results for accuracy comparison to choose baseline datasets 

        Datasets 

 

Classifier 

Detection 

Count=3 

Detection 

Count=4 

Detection 

Count=5 

Detection 

Count=6 

Detection 

Count=7 

Detection 

Count=8 

Detection 

Count=9 

Detection 

Count=10 

Naïve 

Bayes 

79.53 82.62v 84.87v 86.65v 88.84v 90.73v 91.79v 93.45v 

 

v: statistically better than the compared value at 0.05 confidence level  

*: statistically worse than the compared value at 0.05 confidence level 

(Here the following columns are compared with the first column (dataset with detection 

count=3). For instance, according to the results on this table, the dataset with detection count=7 

is more accurate than the dataset with detection count=3 and the difference of accuracy values 

between two datasets is statistically significant at 0.05 confidence value.) 

 

Table 24-Paired t-test results for kappa statistic comparison to choose baseline datasets 

        Datasets 

 

Classifier 

Detection 

Count=3 

Detection 

Count=4 

Detection 

Count=5 

Detection 

Count=6 

Detection 

Count=7 

Detection 

Count=8 

Detection 

Count=9 

Detection 

Count=10 

Naïve 

Bayes 

0.48 0.51 0.53v 0.53v 0.53v 0.52v 0.49 0.50 

 

(Here the following columns are compared with the first column (dataset with detection 

count=3). For instance, according to the results on this table, the dataset with detection count=7 

has higher agreement between malicious and benign applications than the dataset with detection 

count=3. The difference of kappa statistics between two datasets is statistically significant at 

0.05 confidence value.)  
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Appendix D: Histograms of Applications according to Market Related 

Features 

 

 

 

 

 

*Developer name could not be visualized because it includes 1253 developers for this dataset. 

Red represents benign, blue represents malicious applications. 
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Appendix E: Accuracy and Kappa Statistic Results of All Classification and 

Feature Selection Algorithms 

 
Table 25- Accuracy and kappa statistic results for all combination of the chosen classification 

and feature selection algorithms, and the number of features selected by feature selection 

algorithms 

Classifier 
Feature 

Selection 
Algorithm 

# 
Selected 
Features 

Results for the dataset 
including only permissions 

Results for the dataset 
including permissions and 

other Google Play 
metadata 

Accuracy Kappa Accuracy Kappa 

NB - - 75.79 0.45 80.65 0.57 

NB CS 10 75.41 0.45 83.68 0.64 

NB CS 30 75.05 0.45 80.97 0.58 

NB CS 50 75.47 0.45 80.49 0.57 

NB IG 10 75.41 0.45 83.94 0.65 

NB IG 30 75.05 0.45 81.07 0.59 

NB IG 50 75.37 0.45 80.51 0.57 

NB RfF 10 72.24 0.40 82.65 0.62 

NB RfF 30 75.09 0.45 82.39 0.62 

NB RfF 50 75.17 0.45 80.51 0.57 

J48 - - 83.18 0.62 79.37 0.56 

J48 CS 10 77.55 0.48 69.69 0.42 

J48 CS 30 81.29 0.57 78.85 0.58 

J48 CS 50 82.14 0.59 73.77 0.47 

J48 IG 10 77.55 0.48 69.69 0.42 

J48 IG 30 81.44 0.57 78.85 0.58 

J48 IG 50 82.04 0.59 73.77 0.47 

J48 RfF 10 78.16 0.50 69.69 0.42 

J48 RfF 30 82.67 0.61 78.91 0.58 

J48 RfF 50 82.85 0.61 73.81 0.47 

RF - - 84.81 0.66 83.66 0.62 

RF CS 10 77.82 0.49 81.74 0.57 

RF CS 30 82.57 0.60 82.28 0.59 

RF CS 50 83.44 0.63 82.85 0.60 

RF IG 10 77.76 0.49 82.93 0.60 

RF IG 30 82.95 0.61 82.59 0.59 
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Classifier 
Feature 

Selection 
Algorithm 

# 
Selected 
Features 

Results for the dataset 
including only permissions 

Results for the dataset 
including permissions and 

other Google Play 
metadata 

Accuracy Kappa Accuracy Kappa 

RF IG 50 83.32 0.62 82.75 0.60 

RF RfF 10 77.86 0.50 81.80 0.57 

RF RfF 30 84.00 0.64 81.92 0.58 

RF RfF 50 85.30 0.67 83.26 0.61 

kNN - - 83.94 0.64 85.86 0.69 

kNN CS 10 77.61 0.48 86.41 0.70 

kNN CS 30 81.92 0.59 85.70 0.68 

kNN CS 50 82.89 0.61 85.32 0.68 

kNN IG 10 77.61 0.48 86.47 0.70 

kNN IG 30 82.04 0.59 85.66 0.68 

kNN IG 50 82.85 0.61 85.40 0.68 

kNN RfF 10 77.96 0.50 84.49 0.66 

kNN RfF 30 83.34 0.62 85.82 0.69 

kNN RfF 50 84.31 0.65 86.03 0.69 
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Appendix F: Paired t-test Results for Comparison of Predictive Accuracies 

and Kappa Statistics to Evaluate the Contribution of Official Market 

Metadata 

 

Table 26- Paired t-test results for accuracy comparison to evaluate the contribution of official 

market metadata 

Classifier 

Feature Selection 

Algorithm 

# Selected 

Features 

Dataset with 

only 

permissions 

Dataset including 

permissions+ market 

metadata 

Naive Bayes - - 75.79 80.65 v 

Naive Bayes Chi-Square 10 75.41 83.68 v 

Naive Bayes Chi-Square 30 75.05 80.97 v 

Naive Bayes Chi-Square 50 75.47 80.49 v 

Naive Bayes Information Gain 10 75.41 83.94 v 

Naive Bayes Information Gain 30 75.05 81.07 v 

Naive Bayes Information Gain 50 75.37 80.51 v 

Naive Bayes ReliefF 10 72.24 82.65 v 

Naive Bayes ReliefF 30 75.09 82.39 v 

Naive Bayes ReliefF 50 75.17 80.51 v 

J48 - - 83.18 79.37 

J48 Chi-Square 10 77.55 69.69 * 

J48 Chi-Square 30 81.29 78.85 

J48 Chi-Square 50 82.14 73.77 

J48 Information Gain 10 77.55 69.69 * 

J48 Information Gain 30 81.44 78.85 

J48 Information Gain 50 82.04 73.77 

J48 ReliefF 10 78.16 69.69 * 

J48 ReliefF 30 82.67 78.91 

J48 ReliefF 50 82.85 73.81 

Random forest - - 84.81 83.66 

Random forest Chi-Square 10 77.82 81.74 

Random forest Chi-Square 30 82.57 82.28 

Random forest Chi-Square 50 83.44 82.85 

Random forest Information Gain 10 77.76 82.93 v 

Random forest Information Gain 30 82.95 82.59 

Random forest Information Gain 50 83.32 82.75 

Random forest ReliefF 10 77.86 81.8 v 

Random forest ReliefF 30 84 81.92 
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Classifier 

Feature Selection 

Algorithm 

# Selected 

Features 

Dataset with 

only 

permissions 

Dataset including 

permissions+ market 

metadata 

Random forest ReliefF 50 85.3 83.26 

kNN - - 83.94 85.86 

kNN Chi-Square 10 77.61 86.41 v 

kNN Chi-Square 30 81.92 85.7 v 

kNN Chi-Square 50 82.89 85.32 v 

kNN Information Gain 10 77.61 86.47 v 

kNN Information Gain 30 82.04 85.66 v 

kNN Information Gain 50 82.85 85.4 v 

kNN ReliefF 10 77.96 84.49 v 

kNN ReliefF 30 83.34 85.82 v 

kNN ReliefF 50 84.31 86.03 

 

v: statistically better than the compared value at 0.05 confidence level  

*: statistically worse than the compared value at 0.05 confidence level 

 

Table 27-Paired t-test results for kappa statistic comparison to evaluate the contribution of 

official market metadata 

 

Classifier 

Feature Selection 

Algorithm 

# Selected 

Features 

Dataset with 

only 

permissions 

Dataset including 

permissions+ market 

metadata 

Naive Bayes - - 0.45 0.57 v 

Naive Bayes Chi-Square 10 0.45 0.64 v 

Naive Bayes Chi-Square 30 0.45 0.58 v 

Naive Bayes Chi-Square 50 0.45 0.57 v 

Naive Bayes Information Gain 10 0.45 0.65 v 

Naive Bayes Information Gain 30 0.45 0.59 v 

Naive Bayes Information Gain 50 0.45 0.57 v 

Naive Bayes ReliefF 10 0.4 0.62 v 

Naive Bayes ReliefF 30 0.45 0.62 v 

Naive Bayes ReliefF 50 0.45 0.57 v 

J48 - - 0.62 0.56 

J48 Chi-Square 10 0.48 0.42 

J48 Chi-Square 30 0.57 0.58 

J48 Chi-Square 50 0.59 0.47 

J48 Information Gain 10 0.48 0.42 
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Classifier 

Feature Selection 

Algorithm 

# Selected 

Features 

Dataset with 

only 

permissions 

Dataset including 

permissions+ market 

metadata 

J48 Information Gain 30 0.57 0.58 

J48 Information Gain 50 0.59 0.47 

J48 ReliefF 10 0.5 0.42 * 

J48 ReliefF 30 0.61 0.58 

J48 ReliefF 50 0.61 0.47 

Random forest - - 0.66 0.62 

Random forest Chi-Square 10 0.49 0.57 

Random forest Chi-Square 30 0.6 0.59 

Random forest Chi-Square 50 0.63 0.6 

Random forest Information Gain 10 0.49 0.6 v 

Random forest Information Gain 30 0.61 0.59 

Random forest Information Gain 50 0.62 0.6 

Random forest ReliefF 10 0.5 0.57 

Random forest ReliefF 30 0.64 0.58 

Random forest ReliefF 50 0.67 0.61 

kNN - - 0.64 0.69 v 

kNN Chi-Square 10 0.48 0.7 v 

kNN Chi-Square 30 0.59 0.68 v 

kNN Chi-Square 50 0.61 0.68 v 

kNN Information Gain 10 0.48 0.7 v 

kNN Information Gain 30 0.59 0.68 v 

kNN Information Gain 50 0.61 0.68 v 

kNN ReliefF 10 0.5 0.66 v 

kNN ReliefF 30 0.62 0.69 v 

kNN ReliefF 50 0.65 0.69 
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Appendix G: Graphs for the Evaluation of Feature Selection Algorithms 
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