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ABSTRACT

SAFE SOFTWARE SYSTEM DEVELOPMENT FRAMEWORK FOR MINI
UNMANNED AERIAL SYSTEMS

Altan, Onder
M.S., Department of Aerospace Engineering

Supervisor : Prof. Dr. Nafiz Alemdaroglu

September 2014, pages

Due to the rapid growth of the utilization of Mini Unmanned Aerial Systems (MUAS)
in populated areas, system safety concerns regarding these systems are becoming
more important more than ever. Reliability and robustness of the software systems
(SS), which are embedded within MUASSs to handle their autonomy, should be as-
sured by applying safe development methodologies. This thesis introduces a unique
and comprehensive software framework for design, implementation and testing of
MUAS software systems, which ensures desired software system safety is achieved
with reasonable effort by prioritizing and applying software safety (software airwor-
thiness) concept.

The proposed software framework increases software reliability as it simplifies and
assures the implementation of fault detection, tolerance and recovery mechanisms,
and focuses on software system robustness by identifying failure conditions of the
software in MUASSs. Besides, as the framework focuses on simple development ap-
proach, it tries to reduce efforts undertaken to perform safety analysis and reviews
in the development life cycle. In addition to design and implementation methodolo-
gies provided by the framework; mission based, full autonomous and simple testing
methodology (Assassin Process Method, APM) is introduced in the framework to im-
prove entire software system safety. Moreover, autonomous APM helps small MUAS
teams during development phase by providing human readable test verification results



as a test assessment report.

Through this thesis, the framework as well as the philosophy behind why such frame-
work is necessary, important and unique is explained in detail. Finally, all contri-
butions of the idea to safe software development for MUASSs are presented through
a prototype in which the verification and tests of the intended software system have
been performed. In the prototype, a MUAS’s software system, which is developed by
using the suggested framework for a created case, is embedded into a hardware archi-
tecture, and using hardware-in-the-loop (HIL) simulation as a real-time integration
environment, system verification process is iterated for safe software system devel-
opment steps introduced in the framework.

Keywords: Software Airworthiness, Software System Safety, Real Time Operating
Systems, Software Reliability, Hardware-in-the-loop Simulation, Safe Software Sys-
tem Design, Software Development Life-Cycle, Mission-based Testing, Assassin Pro-
cess Method-APM
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MINI INSANSIZ HAVA ARACLARI ICIN GUVENLI YAZILIM GELISTIRME
ISKELETI

Altan, Onder
Yiiksek Lisans, Havacilik ve Uzay Miihendisligi Boliimii
Tez Yoneticisi : Prof. Dr. Nafiz Alemdaroglu

Eyliil 2014 , [132]sayfa

Mini Insansiz Ugan Sistemler’in (MIUS), sayilarindaki ve insanli bolgelerdeki ope-
rasyonel kullanimlarinin belirgin artigsina bagl olarak, bu sistemlerin giivenligi konu-
sundaki cekinceler, hi¢ olmadig1 kadar 6nemli bir tartisma konusu haline gelmistir.
Buna bagh olarak MIUS’lara entegre edilen ve onlarm otonom kontrol edilmesini
saglayan alt sistemleri olan yazilim sistemleri de, genel sistem giivenligini diisiiniile-
rek ve teminat altina alarak gelistirilmelidir. Bu tez ¢calismasinda; hedeflenen yazilim
sistem giivenliine, makul bir caba harcayarak erisilmesini, yazilim sistem giivenligi
konseptini Oncelikli goriip, uygulayarak garantilemeyi amaglayan; yazilim tasarim,
kodlama ve entegrasyon siirecleri igin gelistirilmis benzersiz ve kapsamli bir Giivenli
Yazilim Gelistirme Iskeleti tanitilmaktadir.

Onerilen Yazilim Iskeleti, yazilim giivenilirli§ini; yapisindaki hata tanima, hata to-
leranst ve sistem geri kazanim mekanizmalariyla arttirmakta, bunun yaninda da ta-
nimlanmis hata durumlari icin MiUS yazilim sisteminin dayaniklihigim gelistirmeye
odaklanmaktadir. Bu tezde, yazilim gelistirme iskeletince saglanan yazilim tasarim
ve kodlama metotlarina ek olarak; tiim MIUS sistem giivenligini arttiran gérev bazli,
tam otonom test yontemi Suikast Islem Methodu (SIM) énerilmistir. Otonom SIM,
ufak MIUS gelistirme ekiplerine, sistem giivenligi degerlendirme agsamalarinda; ko-
lay okunup anlasilabilir test dogrulama sonuglar1 ve degerlendirme raporlart almala-
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rint saglayarak, yardimci olur.

Bu tezde, yazilim iskeletinin MIUS’lar igin gerekliliginin tartisilmasinin yani sira,
boyle bir yapinin neden dnemli ve benzersiz oldugu da detayli bir sekilde anlatilmis-
tir. Son olarak, tezde tanitilan konseptin, MIUS lar i¢in Giivenli Yazilim Gelistirmeye
olan katkilar1; donanim-dongiide simiilasyon yontemiyle kurulan entegrasyon ortami
ve onun iizerinde gelistirilen yazilim sisteminin olusturulup, dogrulama c¢alismalari
ve testlerin gerceklendigi bir 6rnek durum calismasi iizerinde uygulanarak gozlem-
lenmis, iskeletin faydalar1 ve literatiire olan katkilar1 detaylariyla sunulmustur.

Anahtar Kelimeler: Yazilim Ucusaelverisliligi, Yazilim Sistem Giivenligi, Ger¢ek Za-
manli Isletim Sistemi, Yazilim Giivenilirligi, Donanim Dongiide Simiilasyon, Giiven-
lik Durum Caligmasi, Giivenli Yazilim Sistem Tasarimi, Yazilim Gelistirme Dongiisii,
Gorev Tabanl Test, Suikastci Islem Metodu-SIM
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CHAPTER 1

INTRODUCTION

Mini Unmanned Arial Systems (MUAS) can be defined as a type of small aircraft
that does not carry human operator on board and they have been in use for various
applications for a few decades now. Nowadays, there is an increasing demand for de-
veloping MUAS:S for both civilian and military applications due to their wide range of
usage, e.g., surveillance, reconnaissance, search and rescue, agricultural monitoring

and air photography.

The autonomy for MUASS is sustained by using an efficient and reliable Flight Con-
trol System (FCS) or autopilot, which handles lots of tasks such as sensor fusion,
communications, path planning, trajectory generation, trajectory regulation, coopera-
tive tactics, task allocation and scheduling[2,15]. As the MUASS are used in the above
mentioned fields more frequently; problems related to more complex and real-time
control and navigation have to be solved by the system software mostly to achieve

precise and effective MUAS.

As the complexity of MUAS’s increases, the complexity of the autonomous flight
requirements, which are controlled by software sub-system, increases as well. This
increasing trend in autonomy together with the drastic growth in available number
of MUASSs enforces both authorities and industry to question the safety of these au-
tonomous systems. In order to achieve some safety confidence level, safety engineer-
ing methodologies applied on manned aerial vehicles become essential and significant

for software systems as well[[1].

Although there exists software development guidelines, accepted by aviation author-



ities such as DO-178B, MIL-STD-882 etc., having safer aerial systems, and their
implications to MUASSs do not seem very practical without overburdening the entire
MUAS development process. As they are so generic,and they focus on development
life cycle instead of being a cook book with instructions, they also support the best
engineering practices rather than mandating an architecture or specific methodology.
Applying such guidelines to MUAS software development processes seems imprac-
tical and inefficient when small aerial system development paradigm has been taken

into consideration.

This thesis introduces a systematic and intelligent software framework to achieve a
safer software system for MUASs without overburdening the entire software develop-
ment process. The framework provides an architecture and some methods to design,
implement and test the software system, as well as satisfying safety requirements in
a cost efficient way. In addition to its contributions to design and implementation
phases of the entire development process, unique testing methodology, i.e. — Assas-
sin Process Method (APM), which is specifically proposed within this study, suggests
an efficient, successful and innovative software verification feature of the framework

to achieve software airworthiness for MUASSs.

The concept proof of the framework is realized by applying it to a created safety
case for Autonomous Flight Control System (AFCS) onto an onboard computer for
a fixed-wing MUAV. Through this case, a prototype implementing the framework is
also developed as a proof-of-concept implementation. Hence, not only capabilities
but also the efficiency and accuracy of the framework are evaluated at a concrete
level. In this manner, after realization of the framework with a MUAS software sys-
tem prototype, it is proved that the efficiency of the framework and its ease of usability
increases software system safety in MUASSs and it can definitely be used as a com-
prehensive tool to reach generic software development milestones, which are design,

coding and testing.

In conclusion, generic software development life cycle followed to reach safer soft-
ware systems for MUASSs is iterated in this study and the gaps between the design, im-
plementation and testing milestones of the life cycle is fulfilled with the unique soft-

ware framework. Hence it is successfully indicated that the framework can achieve



not only the safety requirements but also more robust and reliable software system at

the end in a cost, effort and time effective way.

1.1 Background Of The Problem

Mini Unmanned Aerial Systems (MUASs) have wide range of usage areas in both
civilian and military applications. In recent years, especially small UAVs have been
using due to their robustness, high reliability and portability in warfare operations.
Design of FCSs (autopilots), which make a UAS autonomous, is one of the recent
research fields in the industry and academia, and there are various efforts to build a

MUASI6].

Due to the technological advances in computer processors, memory and other parts
of computer components, software systems in MUAS becomes more complex and
dominant increasingly. As complexity and significance of software increases, more
emphasis on software systems and their quality is started to be given. Although
for manned bigger aerial systems, software quality and software system safety are
achieved by following some well known guidelines such as DO-178B etc., however
following such guideline for MUASS is not practical due to the lack of resources.
Additionally, the commonly followed guideline for civil and military aviation soft-
ware development which is DO-178B only provides generic software life cycle with
milestones to reach but does not supply any requirements, specific descriptions and
regulations. As a result, not only lack of resources but also lack of know-how and ex-
perience of the small MUAS development teams about DO-178B prevents them from
reaching software safety as DO-178B is recognized as “the state of the art”, which

means the best engineering practice[24].

On the other hand, considering the enthusiasm for integrating them into civil appli-
cations and using them in the civil terrains and also with their growth in population,
MUASSs have to reach some level of safety and satisfy airworthiness requirements.
However, DO-178B or any other guidelines do not provide a direct road map with
detailed and specific requirements and methods to achieve a software safety neither

for manned aerial systems nor for MUASSs. Following these guidelines also becomes
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overwhelming as a whole for a small team of MUAS development. Considering the
facts mentioned above, while airworthiness practices for large aerial systems may be
similar to manned aircraft, it is clear that MUAS require a paradigm shift from the air-
worthiness practices of manned aircraft[4]. Furthermore an easy, flexible, systematic,
autonomous and comprehensive tool, framework or method are required to be devel-
oped for the benefit of aeronautics community and to motivate MUAS development

teams to stand at the safe zone during MUASSs software development process.

1.2 Statement Of The Problem

Due to the rapidly increasing roles of the software in not only manned aerial systems
but also MUASS, authorities, developers and academia started to put more emphasis
on software quality and safety. Although there are well known software assurance
guidelines accepted by authorities such as DO-178B etc., they are not very well ap-
plicable to the MUASSs because these guidelines are written so generic and their pro-
cesses are time consuming and time intensive[18]] which is definitely not acceptable

for MUAS development.

On the other hand caused by the great enthusiasm of aerospace community to develop
MUAS:Ss for both military and civil applications, many design and development teams
effort to have their own MUAS. Under these circumstances it is clear that the popu-
lation of MUAS on the market and daily life grows rapidly however one of the most
significant parts of the MUASs which are software systems are not being investigated
and studied very well to reach safer software system in systematic way neither in
industry nor in academia. As anticipated for the near future, MUAS are expected to
take place in sky more frequently with more complex capabilities and varying mission

profiles.

Under these circumstances in order to reach some level of safety maturity for soft-
ware system of MUAS, the projection of current guidelines to newer one should be
performed and a systematic way to reach the milestones provided by the guidelines
should be followed without overburdening and destroying the small aerial vehicle de-

sign and development paradigm. In this way, it is expected to ensure that even small
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development teams of MUASS reach a level of safety for their systems and they can
sustain it easily. It is obvious that easy and smart comprehensive framework might
help and motivate people, communities or organizations interested in MUAS devel-

opment.

1.3 Purpose Of The Study

The purpose of this thesis is to introduce a comprehensive software framework which
can be used to design, implement and test a safe software system for MUASSs in
systematic way by considering and satisfying the software system’s safety without
overburdening the entire development process. In addition to the realization of de-
sign, implementation and testing phases of SSS development process for MUAS, the
generic process milestones suggested by the well-known guidelines are also expected
to be followed in order to have a complete prototype of the framework. A hardware-
in-the-loop system is planned to be designed and implemented to show the accuracy
of the proposed framework in realistic simulation environment. Moreover, this study
aims to discuss whether using such inclusionary tool during the critical software de-
sign, coding and testing phases improves the safe software development process for

MUASSs with feasible effort and limited resources.

1.4 Significance Of The Study

This thesis study introduces a software framework which can be used during the soft-
ware development phase for MUASs applying safe system development aspects. The
generic safe software system development process mandates to reach four main mile-
stones which are software requirements, software design, software coding (imple-
mentation and testing), and software integration. The entire gaps between these mile-
stones are completed by developers. Considering these four milestones, the frame-
work is especially useful to accomplish design and coding tasks’ requirements in a
comprehensive, easy and efficient way. There are four significant contributions of this

study to the safe MUAS software development concept.
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First the framework allows design, coding and implementation activities to be per-
formed in a systematic way. At the same time, developers are still parallel with the
reference guidelines. Meanwhile, gaps between process’s milestones are filled by

applying the framework in a very easy and efficient way.

Second, this study technically puts most important software safety related definitions
on stage and handles problems related with these definitions with one and unique
framework. For example, during the software design process, framework’s multi-
process architecture eliminates single-point failures and increases modularity. As a
part of the architecture, fault detection, tolerance and recovery mechanisms improve
not only reliability but also robustness of the system. Furthermore, synchronization
issues caused by the multi-processing paradigm are eliminated with an easy way.
High level implementation of design reduces the complexity caused by low level

hardware interactions and complicated software design patterns.

The test method suggested in the framework is definitely the third contribution of the
thesis to both academia and industry. It is undeniable that software test process takes
a lot of time and consumes considerable effort during software development. Being
the most challenging part of the entire development process, testing is given a special
attention during the thesis study and Assassin Process Method, APM is developed.
Using autonomous, intelligent and easy APM method, all safety requirements can be
tested and the test results can be obtained without human interaction. Moreover, for
the non-test or non-software people, APM provides analytical test assessment reports.
As testing is a very complex part of the entire development process with many kinds
of methods, tools, systems and purposes; APM successfully ensures whether software

system is safe or not.

Apart from its contributions to design, implementation (coding) and testing processes,
this study also integrates safe software development philosophy to MUAS concept,
develops a prototype with a successful achievements and proves that even small teams
with less resource for MUAS development can reach some level of safety and sustain
the gained safety level to end of the life cycle. The result of the thesis shows that
engineering principles are still applicable during the safe software development for

MUASSs process and the comprehensive framework can accomplish safety require-



ments with a reasonable effort.

In conclusion, the software development framework proposed in this thesis provides
a comprehensive architecture and methods with easy usability for software design,
implementation and testing during safer MUASs development. Using the framework,
in a systematic way without spending much effort and dedicating excessive resources
to each software design, coding and testing tasks introduced by the safety assurance

guidelines can be reached satisfactorily.

1.5 Assumptions

For this study, the following assumptions are made;

e The aerial platform is assumed to be verified.

e Governing mathematical equations used in the literature, during MUAV mod-

eling phase of the platform assumed to be correct.
e All hardware components are assumed to be working properly.

e The safe case is constructed in order to implement the framework to only AFCS

subcomponent.
e Test cases are performed by using XPC Target simulation

e Software system safety processes are performed with an effort of satisfying

minimum requirements of safe system design

considering the scale of unmanned aerial vehicle.

1.6 Limitations

The aerial vehicle has physical limitation depending on its mission profile. Also, the
hardware, which is used during the study, has surely limitations (e.g., CPU capacity,

speed, data processing, buffer size).



This thesis proposes a framework to develop safe software system for MUAS and
creates a prototype as an end product. The prototype only realizes the requirements
which are determined by the thesis and obey the limitations provided in the case

definitions.

1.7 Terms And Definitions

Unmanned Aerial Vehicle (UAV) is an aircraft with no pilot on board. UAVs can be

remote controlled aircraft (e.g. flown by a pilot at a ground control station) or can
fly autonomously based on pre-programmed flight plans or more complex dynamic

automation systems.

Mini Unmanned Aerial Vehicle is an unmanned aerial vehicle small enough to be

man-portable.

Unmanned Aerial System is a term which is used by U.S Federal Aviation Admin-

istartion (FAA) to reflect the fact that complex UAV systems include ground stations
and other elements besides the actual air vehicles. Officially, the term *Unmanned
Aerial Vehicle’ was changed to *Unmanned Aircraft System’ to reflect the fact that
these complex systems include ground stations and other elements besides the actual

air vehicles.

Airworthiness is a demonstrated capability of an aircraft (e.g., unmanned Aircraft
system) or aircraft subsystem or component (including software) to function satisfac-

torily when used a maintained within prescribed limits (AR70-62).

Hardware-In-The-Loop Simulation (HIL) is a technique that is used in the develop-

ment and test of complex real-time embedded systems. HIL simulation provides an
effective platform by adding the complexity of the plant under control to the test
platform. The complexity of the plant under control is included in test and develop-
ment by adding a mathematical representation of all related dynamic systems. These
mathematical representations are referred to as the “plant simulation”. The embedded

system to be tested interacts with this plant simulation.
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1.8 Thesis Organization

In this chapter, brief introduction about the thesis study is given. Moreover, pur-
pose of the study is presented as developing a comprehensive framework to achieve
software system safety for MUASs which accomplishes design, coding and testing
processes of the entire development life cycle. In order to achieve goals of the study,
in Chapter 2 related studies and works in literature are synthesized. In chapter 3,
software airworthiness concept is introduced. Related terms and procedures are ex-
plained. Contribution of software system safety into an entire system is discussed.
Explanation of the framework’s architecture together with its detailed features is writ-
ten in Chapter 4. Assassin Process Method, APM for testing process is presented and
its unique contributions are stated in detail. In Chapter 5, a case for MUAS’s AFCS is
derived and the framework is applied to the case as a prototype. All the phases of the
case are explained, entire system definitions are given and framework implementation
steps are expressed. In the mean time the proof of concept is accomplished. In the
last Chapter 6, the conclusion of the thesis is declared and the works and results are

summarized.
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CHAPTER 2

LITERATURE SURVEY

2.1 Synthesize Of Literature Survey

2.1.1 Generic MUAS And Autonomy Concepts

In recent years, increasing demand on using MUAS in the real life for both civil-
ian and military purposes causes a significant growing effort for the researches on
autonomy[6l]. Together with the great advantages in materials, sensor technology,
data processing hardware, propulsion system and software techniques have made a

UAV design highly feasible[13, 19, [19].

Owing to the increasing demand on the MUAVs, the major part of the system, which
1s autonomy, becomes the growing area of research in the aerospace field recently [2].
Autopilot design using an onboard hardware and software together with COTS sensor,
data fusion and control algorithms is one of the common accurate ways followed in
the field[2]. The major requirement during the autopilot design following the onboard
system architecture is that handling the complexity of real-time processes due to the
series of concurrent tasks. In order to guarantee all the autopilot tasks complete within
predictable time duration and every process exactly perform its mission; autopilot

software is implemented in real-timel[/14].

The development of autonomous UAVs for real-world applications is a challenging
area of research in recent years. Issues caused by the critical requirements of the real-
time operations on multiple tasks for a successful onboard software design for UASs

can be carried out by using RTOS. Hong et al. states that using RTOS has significant
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impact on the performance of the autonomous flight. In their study, autopilot software
uses Linux as an operating system and RT-Linux as a RTOS in order to compare their
real time performances. When the results of the timing performances obtained by the
standard Linux and RT-Linux, it is obvious that RT-Linux has better performance than
standard one. Another study concludes that real-time operating system (RTOS) satis-
fies all the requirements to have stable, strictly real-time capable, easy-to-modify and
secure embedded real-time application for a UAV[22]. The implementation of control
and navigation solutions using the RTOS in the autopilot for UAVs is an efficient way

for stable, reliable and robust autopilot systems.

[22]] have a PID controller in their autopilot design. The onboard avionics system
is composed of an enclosure that is used to contain the onboard hardware, a PC/104
computer that handles the 1/0O signals and data processing, an inertial measurement
unit (IMU), GPS, sonar altimeter that obtains the height form the ground, a telemetry
system for data observations on the ground, and electric power system. Moreover, the
onboard software is developed under the RTOS called QNX Neutrino with the capa-
bilities of multitasking, threads, rapid context switching, and preemptive scheduling.
Using this configuration, successful results of the implementation of advanced and

sophisticated control and navigation algorithms for UAV system are reached.

The control algorithm running concurrently on the RTOS based onboard software
can be designed by following the classical controller design methodology[15]. In
the study, general UAV architecture and autopilot design is explained. In autopilot
design, a PID controller is used together with the 3-state Kalman Filter and Extended
Kalman Filter for compensation of the low data rate of GPS data. Kahraman (2010)
uses PID controller and attitude heading reference system (AHRS) as the navigation

mode.

2.1.2 Software System Safety Concept

Apart from the above mentioned engineering solutions and studies in academy which
focuses only on realization of autonomy concepts for small UASs, another real-life
related paradigm, system safety and assurance, is started to become very important,

especially after operations on national flight zones are initiated. It is obvious that due
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to the demand for software-controlled systems such that unmanned aerial systems,
space crafts, nuclear plants etc. are undeniably higher and their critical software
control functionality starts to dominate entire systems. As a fact that safety concerns
caused by the safety-critical software are started to be investigated for their effects
in case accidents occur. It is obviously critical that any failure in a safety critical
component might cause catastrophic results, deaths and injuries[12]]. As a result of
the safety concerns, to achieve an acceptable level of safety for software systems
used in critical applications, software safety engineering must be emphasized early in
the requirements definition and system conceptual design process. Safety-significant
software must then receive continuous emphasis from management and a continuing
integrated engineering analysis and testing process throughout the development and

operational lifecycles of the system[/1].

In order to develop software systems with a level of confidence, numerous directives,
regulations, standards or guidelines such that DO-178B, MIL-STD-498, MIL-STD-
882, MIL-STD-2167A, IEEE/EIA-12207, IEC 61508, and U.K . Defenses Standard
0-5 are introduced by authorities. Especially for civil aviation, DO-178B is the most
famous one and it is more comprehensive than the others. Although DO-178B pro-
vides guidance for the production of software for airborne systems and equipment
such that there is a level of confidence in the correct functioning of that software in
compliance with airworthiness requirements, it does not discuss specific development
methodologies or management activities[[10]. Further, it does not provide a complete
description of the system life cycle processes, including the system safety assessment
and validation processes or aircraft and engine certification processes, nor does it
cover operational aspects of software[20]. In common, all these guidelines, standards
or regulations introduce a life cycle for safe software system development and they
follow some milestones on that life cycle in order to achieve an assurance level. These
life cycles generally include the planning process, the software development process
(requirements, design, coding and integration) and the integral processes (verifica-
tion, configuration management, software quality assurance, and certification liaison).
DO-178B defines objectives for each of these processes as well as outlining a set of
activities for meeting the objectives additionally; the software life-cycle processes and

transition criteria between life-cycle processes in a generic sense without specifying
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any particular life-cycle model are discussed in it. Finally, it has to be emphasized
that DO-178B objectives do not directly deal with safety. Safety is dealt with at the
system level via the system safety assessment. DO-178B objectives help to verify
the correct implementation of safety-related requirements that flow from the system
safety assessment. Like any standard, DO-178B has good points and bad points (and

even a few errors) [[10].

When software development process is considered under the safety aspects, using
mentioned guidelines with traditional approach as done for manned aircrafts and large
UAV systems is time consuming, resource intensive so that not productive owing to
nature of synthesize, implementation and validation objectives [[16]]. While airworthi-
ness practices for large UAS may be similar to manned aircraft, it is clear that small

UAS require a paradigm shift from the airworthiness practices of manned aircraft [4].

Software development life cycle defined by well-known guidelines with four pro-
cesses of requirement, design, coding and testing is described briefly in the guidelines
and with generic words since they tend to vary substantially between various devel-
opment methodologies. Especially the testing and verification processes accounting
for more than half of the entire life cycle [10] is the bottleneck for the MUAS de-
velopment. In literature for MUAS developments and prototypes, verification of the
autopilot can be done in three major ways. First one is software simulation [23]]; next
one is the hardware-in-the-loop (HIL simulation) and the last one is real flight test
that uses the platform and onboard autopilot together as a whole system [2, 3]. How-
ever the purpose of these tests is commonly to ensure that implemented theories are
correct for that simulation rather than verifying the entire software product performs

its intended function and does not demonstrate any unintended actions.

2.1.3 RealTime Simulation Environment

As a test system, HIL simulation is widely used for autopilot researches. In the study
[2], it 1s indicated that HIL simulation decreases the cost of developing FCS and rapid
development of the FCS software. Due to the study, MUAV systems testing are very
expensive and involve risk of many crashes prior to the successful development of

the autopilot system. During the flight tests of an autopilot, there is a high risk of
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failure caused by the autopilot controller responses. In order to avoid these harmful
conditions, safer real-time simulations can be used. Rapid prototyping requires real
model or plant that is tested using simulated control. [2]] proposes two major parts for
the HIL simulation architecture which are simulated aircraft model developed using
Aerosim blockset and dSpace real time system. The aircraft model is developed using
Simulink in Matlab and dSpace is compatible with Simulink. The MPC 555 is used
as an embedded controller in the autopilot design and it interfaces with the dSpace.
It behaves like a virtual aircraft. The simulation results are expressed on the ground

control station (GCS) by transmitting the data via wireless network.

2.2 Conclusion

In literature, numerous studies about MUAS development, their autonomy and ex-
perimental prototypes can be found. Especially, as a trendy topic, implementation
of autonomous control and flight of the MUAS is studied many times and common
results which state software for such autonomous system requires real-time behavior
due to the critical importance at the data processing for reliable, robust and success-
ful autopilot system are published. Many control theory implementations for differ-
ent kinds of hardware-software combinations are discussed with a great enthusiasm.
In order to handle real-timing issues caused by the processing loads or hardware/-
software constraints or resource limitations, RTOS are investigated and as a result
accepted that they provide good performances for such safe real-time requirements

for autopilot systems development.

Considering the growing population of MUASSs and their increasing tendency to be
integrated into the national flight zones, safety of these systems started to be ques-
tioned. At that point, spontaneously, traditional standards, directives or guidelines
used in the development of manned aircrafts and large UAVs realization such that DO-
178B are coming to stage but due to their excessive and time consuming objectives
to be reached, applying these processes to a MUAS development seems not practical
and assessed inefficient. Moreover, being generic conceptual guidelines with mile-
stones and state-of-art procedures, DO-178B and likely standards are not practiced

for MUAS and their feasibility for such systems is suspected.
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As software development life cycle with four processes of requirements, design,
coding and testing, MUAS development requires a paradigm shift from traditional
generic life cycles to small system development life cycles with easy, feasible, sys-
tematic and comprehensive approach. However, neither in literature nor in industry
developing a safe small unmanned aerial system with safety constraints by following
a systematic way is not studied, experimented and discussed satisfactorily. Being a
challenging part, testing and verification of the software systems does not being per-
formed under safety approach systematically, instead HIL simulation or flight testing
are done to prove that system is realized rather done trying to ensure that system is

developed in a safe way.

In conclusion, one by one most of the sub parts of MUASs are being investigated
and studied both in academia and industry but safety seems to be underestimated in
common. It is crystal clear that as an engineering process, developing MUASs with
a safety compliance level requires systematic ways which can efficiently satisfy safe
development requirements and without devastating small unmanned aerial system de-

velopment paradigm.
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CHAPTER 3

SOFTWARE SYSTEM SAFETY CONCEPT

In this chapter, a different aspect of UAS development life cycle which is software
system safety will be discussed. This term relies on the concept of safety and in
general indicates that the airworthy UAS software failures are predictable and pre-
ventable. Additionally for an airborne system, failures will not be expected to have
hazard effect as they occur. Being a very generic term, safety, embodies specific
procedures to follow and terminology to identify recent system status. This special
concept of software airworthiness, becomes more important as the aerospace technol-
ogy proceeds and more complex software-integrated systems start expected to flight
in every field including civil areas. Besides, the focused design question changes from
"what is designed" to "how was designed" to have safe systems as a whole. Within

this chapter, related terminology and concept will be introduced in detail.

3.1 Opverview Of Software System Safety Concept

Software airworthiness depends on the works done for satisfying Software System

Safety (SSS). Formal definition of the airworthiness by (AR-70-62) is

A Demonstrated capability of an aircraft (e.g, Unmanned Aircraft System) or
aircraft subsystem or component (including software) to function satisfactorily when

used an maintained within prescribed limits.
Or by (ARP 4754A) is
The condition of an aircraft, aircraft system, or component in which it operates in a
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safe manner to accomplish its intended function.

Unmanned aerial systems are composed of several subsystem components all of which
has different safety expectations one by one or after their integration. Apart from
unmanned aerial systems, all kinds of applications which require special attention
as their failures cause death, serious injury or huge economical loss, safety concept
should be applied. Hence the software systems safety concept has a deep background
coming from real life issues and experiences, theoretical implications and trial-and-

error experiments.

Considering the increasing demand for complex autonomous systems, the importance
of software and firmware logic continue to play a significant and evolutionary role in
the operations and control of systems which need to be validated for an acceptable
safety level. Within 25 years, the expectation of engineers to have human control
for system component, which can cause hazard at operation has diminished due to
the fact that SSs are capable of handling such safety critical components reliably at
speeds unmatched by human operator. Besides, reliability and acceptable operation
time, and other factors such as increased versatility, higher performance capability,
greater efficiency, increased network interoperability, and decreased lifecycle cost

increases the usability of software systems into the safety critical systems [1].

Since the software components with high criticality levels integrated into more sys-
tems, additional software components which monitors and diagnoses the entire sys-
tem, are introduced. This fact, cause an extraordinar growth in the software function-
ality and complexity. Furthermore, as the systems become more depended to software
functionality, software specification errors, flaws in designs and algorithms, lack of
software system safety requirements and software implementation errors become sig-

nificantly important for entire system safety.

Another way looking, although software development part is cheaper than that of
hardware, agile technological improvements on processors field of art, requirements
of the SS can be changed easily and the expected functionality of the software might
be enlarge significantly by increasing software components’ complexity and cost
drastically. Moreover, not only the cost but also the SSS risks might ascend dra-

matically causing a serious doubt in verification authority.
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Considering the UAS within the scope of this study, it is definite that UAS will com-
pletely rely on the software that will try to successfully overcome the hard-real time
processing’s requirements accurately. At that point, it is important to express that
embedded systems differ from desktop systems with their quality of service (QoS)
aspects. In real-time embedded systems, for example, whole system failure can be
easily trigged by just missing a single processing deadline. Moreover, safety and

reliability requirements have significant importance on such systems.

Despite the seriousness and severity of safety and reliability requirements, design and
implementation processes of those terms are not a part of normal undergraduate and
graduate level curriculum. Moreover, most engineers fail to apply correct terms to
safety and reliability engineering processes and also they don’t even know the correct

terms to use[7]].

3.1.1 Safety Terms And Generic Concepts

Safety is a system property, a system issue! [1,[7].

In formal definition of (MIL-STD-882C) safety is freedom from those conditions
that can cause death, injury, occupational illness, damage to or loss of equipment or
property, or damage to the environment. A safe system is one that does not occur too
much risk to persons or equipments[7]. The term risk is a key parameter to identify

safety of a system.

[7] defines risk to be

a combination of the likelihood of an accident and the severity of the potential

consequences another way of saying the chance that something bad will happen.

In safety terminology “‘something bad” is named as mishap or accident. Mishap is
an unplanned event or series of events resulting in death, injury, occupational illness,
damage to or loss of equipment or property, or damage to the environment (MIL-
STD-882C). In addition to mishap; hazard is also a very important term used in the

process of designing a system which considers safety requirements. A hazard is
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A state or set of conditions of a system (or an object) that, together with other
conditions in the environment of the system (or object) will inevitably leads to an

accident (loss event).

Failures cause accidents to occur and prevent system to achieve its intended func-
tion within its performance constraints. Errors on the other hand are static condi-
tions which take place at the product life cycle and are inherent characteristics of the
system. In general failure states and errors are different kinds of faults which are

unsatisfactory system condition or state (Safety critical systems design).

There two other terms most commonly misused or confused which are reliability and
security. First of all, the common mistake in using reliability term is placing it as a

synonym of safety. Another saying, “safety is not reliability”’. Reliability is

a measure of the up time, or availability, of a system — specifically, it is the

probability that a computation will successfully complete before the system fails[7/].

If a system is defined as reliable it does not fail frequently, but makes no guarantees
what happens should it fail. Failing frequently, a system can be assessed as a safe
system by failing in a safe way without causing any mishap. On the other hand, a
system can have high reliability by running all the time, but it can consistently put

people at risk meaning so be reliable but not very safe.

[7] defines security as

Security deals with permitting and denying system access to appropriate individuals.
A secure system is one that is relatively immune to attempts, intentional or not, to

violate the security barriers set into place.

Before starting to design of an aircraft which is intended to be a safe system; safety-
critical term should also be introduced. During the life cycle —all phases of system’s
life, including design, research, development, test and evaluation, production, deploy-
ment (inventory), operations and support, and disposal (MIL-STD-882C) - of UAS
defining safety-critical parts of the system has a significant importance on system

safety. Safety-critical
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is a term applied to any condition, event, operation, process or item whose proper
recognition, control, performance or tolerance is essential to safe system operation
and support (e.g., safety-critical function, safety-critical path, or safety-critical

component.)

During the life cycle of a system design, redundant components (e.g., software, hard-

ware) can be used. Redundancy is defined by [[17] as

Provision of additional functional capability (hardware and associated softwware)

to provide at least two means of performing the same task.

As definition endorses redundant components can increase the operation time which
means an increase in reliability. However, when defining safety and reliability, it
is explained that reliability does not mean that safety or vice a versa. Additionally,
being a common way to reduce possible single point failures, redundancy puts ex-
tra complexity into fault-tolerant systems which may make systems more vulnerable
to additional failure modes that requires extra attention by developers[l]. So that,

intuitively redundancy is also not same with safety, it is only one contributing factor.

The entire system can be safe or not. Not the software, not the electronics, not the
mechanics can be safe. Stated in this way, safety is a system issue. It is undeniable
that each of these components has an impact of entire system’s safety as well as their

integration with each other does.

3.1.2 Software System Safety: Purpose And Methodology

Software system safety can be achieved by applying well defined milestones during
the SSS process by hand shaking the authority. In previous statement, two words
are safety-critical for understanding the SSS concept. First one is “process” which
identifies SSS as a time taking activity. Second one is “authority” meaning that all
actions taken during the life cycle should be assessed by someone else and inciden-

tally he/she/it will have an authorization for approval/rejection.

This SSS process is to reduce likelihood or severity of system hazards exposed by

poorly specified, designed, developed, or operated software in safety-critical applications|[1].
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Moreover technological improvements, changes in systems specifications, additional
functionality injections and risk assessment are all major operational fields of SSS

process.

3.1.2.1 Authority

Operations of systems (especially the aerial vehicle systems) depend on the autho-
rization of the appropriate authority. Considering the operational field and scope of
it, different authorities can enforce the system to obey different kinds of standards,

directives, regulations, and regulatory guides.

Authorities determine the safety levels and must-have/do requirements of systems,
subsystems or components in order to achieve desired non hazardous operations to

complete.

National/international governmental organizations and national/international nongovern-
mental authorities may provide standards for systems that have different kinds of
operational functionalities as well as different kinds of safety and assessment expec-

tations.

Due to the fact that this thesis study relies on the aerial vehicle systems, military/
civilian national/international aerospace/aeronautics authorities are the driving forces

for determination of certifying authority.

Considering the focus of this thesis study on software airworthiness; military stan-
dards MIL-STD 882D, or NASA-STD-8719-13B, or other governmental standard
DO-178B can be accepted as an authority for having certified UAS with airworthy

software component.

3.1.2.2 Interdisciplinary Team Work

Software safety (software airworthiness in the scope of this study) is an exact product
of a process which is sustained by coordinated teams working together. It is apparent

that software, safety and system engineering are vital players of the SSS team/[1]].
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Figure 3.1: Integration of Engineering Personnel and Processes

Neither safety engineers nor software engineers can accomplish an expected safety
level by themselves. Each team member must be aware of the importance of each
discipline’s functionality and their duties, responsibilities and tasks. Moreover, the
life cycle of project, commitments, meetings, reviews and analysis process are also

the facts that each member of SSS must be aware of Figure 3.1}

Responsibilities of each team member can be determined considering the culture and
structure of the organization and duty assignment should be performed depending on
the capability and experience of the person by management people. Definitions of
responsibilities of different disciplines can be made specific to the organization or

predefined instructions can be used as described in [17]].

Within the above mentioned organizational structure, Department of Defense, USA

states that a successful and credible SSS engineering program will include:

e A defined and established system safety engineering process

e A structured and disciplined software development process

e An established hardware and software systems engineering process

e An established hardware and software configuration control process

e An established software assurance and integrity process for safety-critical soft-
ware development and testing

e An established software system safety engineering hazard analysis process

e An integrated SSS team responsible for the identification, implementation, and
verification of safety-specific requirements in the design and code of the soft-

ware.

23



3.2 Accomplishing Software System Safety

Being subsystems of an entire system, software systems are exposed to the safety
assessment processes to accomplish software system safety. Even if safety processes
very well applied to software systems (SS), the integration of SS with other system
components can treat the system safety. Always remembering that fact, not only
safety of a component but also the safety of all components together must be exposed

to the same safety assessments.

Restating the system safety as an elimination of hazard occurrence risk within a sys-
tem, determination of hazard conditions and risk together with correlating those con-
ditions with subsystem components and functions can be seen as a starting point of
the system safety process. As well as determining hazard conditions for safety, un-
derstanding the causal factors for scary “hazard” conditions is also significant for a
healthy safety assessment. With this perspective, the causal factors of hazards can be

identified as below[1]].

Functional Hazard Causal Factors

Interface-Related Hazard Causal Factors

Zonal Hazard Causes

Data Interfaces

e COTS

Technology Issues

3.2.1 Effecting Factors of SSS

In earlier sections of the thesis, the motivation of the software safety was explained.
In summary, it can be paraphrased that importance of software increases due to the
expectations of people, governments or industries. As technological improvements
appeared in different fields, autonomous, intelligent and real-time behaving systems
are becoming more common so that more software depended. Because of that fact
safety questions for software driven systems are being asked more frequently as well

as being mandated to operate in a safe way by governmental authorities. Under these
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circumstances, during the safety process, safe requirements can be derived by consid-
ering the affecting factors of safe software in order to be aware of the possible hazards
and to eliminate the risks. [17] categories the factor affecting the software safety as

listed below:

Degree Of Control: The degree of control that the software exercises over safety-

critical functions in the system.

In case software itself is responsible for controlling or monitoring software-
critical services, or providing failure prevention services, or taking automatic
precautions, it must be paid extra attention and safety resources together with

detailed assessments must be ensured.
Complexity: The complexity of the software system. Greater complexity increases
the chances of errors.
Complexity increases with the increasing number of;
e safety related software requirements for hazards control,
e Subsystems controlled,

e Interacting, parallel executing processes,

e [ogical Operations.

Timing Criticality: timing criticality of hazardous control actions.

If a software system exceeds the time which is required to prevent hazard situ-
ation, then it causes hazard. That time constraint is determined by the require-

ments of entire system and hazard analysis.

3.2.2 General Rules For Safer Software

Software system safety cannot be reached by itself, another saying it cannot just hap-
pen. It is a team work of software engineers, safety engineer and other system related
people. The reason why there is much emphasis on “team work™ is that, in order to
satisfy safety requirements; the strong need for cooperation between software engi-
neers and other disciplined-engineers must be well understood and never be under-

estimated. Additionally, software system safety is a different aspect of entire system
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safety, so that people with safety background must consider the software design pro-
cesses and methodologies as well as the software developers who are unfamiliar with

the safety-critical systems.

The anticipated safe software system can be obtained by applying five rules given by

[17]. To have safe software systems;

1. Communicate
Have and Follow Good Software Engineering Practices and Procedures

Perform Safety and Development Analyses

Sl

Incorporate Appropriate Software Development Methodologies, Techniques And
Design Features

5. Caveat Emptor

3.2.2.1 Incorporate Appropriate Software Development Methodologies, Tech-

niques And Design Features

With many methodologies, techniques and design features, software development is a
complete process and considering the safety critical expectations and entire software
system requirements, appropriate approaches must be selected and implemented. Al-
though it is not feasible to list all software methodologies, techniques and design
features, some available and appropriate of them can be listed as below Figure (3.2
and detailed explanations of them can be obtained from software engineers, people

from software profession or software literature survey.

) ) Tool and Operating System Interface Design/Human
Software Lifecycles Software Configuration Mana gement
Selections Factors
. . . Coding Checklists, Standards, .
Design Methodelogies | Programming for Safety Integrating COTS Software
and Language restrictions
Design Pattems Language Selections Defensive Programming Fefactoring

Figure 3.2: Example To Incorporate Appropriate Software Development Methodolo-

gies, Techniques and Design Features
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3.2.3 Road Map To Software System Safety

With a strong emphasis on difficulty of software safety process, constructing a safe

software system can be broken up multistep plan [7].

Identify the hazards
Determine the risks
Define the safety measures
Create safety requirements
Create safe design
Implement safety

Assure the safety process

e A o T O e

Test, test, test

This roughly broken up multistep plan, lists the general conceptual process steps and

can be seen as a complete approach to reach safer software systems.

3.2.3.1 Determine The Risks

There are several factors to determine risks in systems. Before telling about these
factors, it should be recalled that determination of risk depends on the system and
environment that the system will operate. Coming back to the determination of risks,

the factors affecting the risk can be identified as;

e Severity of risk
e Number of times that damage might occur

e Potential for personal injury or environmental damage

Different authorities define risks within their scope of interest and state the severity
and occurrence probability of the hazard conditions with different levels implying dif-
ferent safety constraints. Besides, they put different safety-criticality levels (indexes

or risk indexes) to the hazard conditions.
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Severity Categories Hazard and related mishaps are elementary factors for deter-
mination of hazard severity. In addition to these two factors, severities of damage and

injury are also significant factors for hazard severity categories.

Within the concept of software airworthiness for UAS, military and non military gov-

ernmental agencies are in charge. In this thesis MIL-SDT-882 is a base and the sever-

ity category for software safety is suggested as in the Table 3.1.

Table 3.1: Mishap Severity Categories. - Suggested by MIL-STD 882

Description

Category

Environmental, Safety, and Health Result Criteria

Catastrophic

I

Could result in death, permanent total disability, loss ex-
ceeding $1M, or irreversible severe environmental damage
that violates law or regulation.

Critical

II

Could result in permanent partial disability, injuries or oc-
cupational illness that may result in hospitalization of at
least three personnel, loss exceeding $200K but less than
$1M, or reversible environmental damage causing a viola-
tion of law or regulation.

Marginal

II

Could result in injury or occupational illness resulting in
one or more lost work days(s), loss exceeding $10K but less
than $200K, or mitigatible environmental damage without
violation of law or regulation where restoration activities
can be accomplished.

Negligible

v

Could result in injury or illness not resulting in a lost work
day, loss exceeding $2K but less than $10K, or minimal en-
vironmental damage not violating law or regulation.

Probability Categories

Identification of probability of occurrence is another sig-

nificant factor for determination of risk. Being a statistical data, it cannot always be
possible to identify probabilistic result from system components. However in aerial

systems MIL-STD 882 categorizes is as in the Table[3.2]

Hazard Risk Index As a combination of hazard severity and probability concepts,
system risk index (for software airworthiness: safety critical index-SCI) can be used

to have hazard risk assessment. SCI helps SSS teams to understand same meanings,
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Table 3.2: Mishap Probability Levels. Suggested by MIL-STD 882

Description | Level | Specific Individual Item Fleet or Inventory

Frequent A Likely to occur often in the life of an item, | Continuously ex-
with a probability of occurrence greater | perienced.
than 10-1 in that life.

Probable B Will occur several times in the life of an | Will occur fre-
item, with a probability of occurrence less | quently.
than 10-1 but greater than 10-2 in that life.

Occasional | C Likely to occur sometime in the life of an | Will occur sev-
item, with a probability of occurrence less | eral times.
than 10-2 but greater than 10-3 in that life.

Remote D Unlikely but possible to occur in the life | Unlikely, but can
of an item, with a probability of occur- | reasonably be ex-
rence less than 10-3 but greater than 10-6 | pected to occur.
in that life.

consider same hazards with same mishaps and evaluate same software components

within the same criticality level. Besides, it helps safety people to develop and evalu-

ate software components with high SCI more rigorously.

Under these definitions and concepts risk assessment suggested in MIL-STD-882 can

be visualized as in the matrix given in Figure [3.3]

RISK ASSESSMENT MATRIX ]

(2)

“ e
“ “ sl ‘
e |

Catastrophic Critical Marginal Negligible
SEVENTY. [ (1) ] [ ] [ (3) ] [ (4) l

Remote Serio Medium Medium oW
(D) —
‘ — -
Improbable : i i ]
L] | \ [

Eliminated —
(F) = Eisk

Figure 3.3: Risk Assessment Matri

In addition to risk assessment, identifying Safety Integrity Level (SIL) to subsys-

tem components can help assessment and development of the system by determining

level-of-rigor of software in the entire system. There are several SIL-type software

assurance approaches. The most used approaches used in aerospace are MIL-STD-

882C and RTCA DO-178B. The purpose of these approaches is “to assess the severity
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of the systems safety-significant functions and the software’s control capability in the
context of the software’s ability to implement the functions” [1]] With the help of soft-
ware control categories (SCC), safety-significant software functions can be labeled.
After labeling software functions with respect to their control categories, during the
software design, development, test and verification processes required attention, and
assessment can be applied to the software. For a healthy SSS, entire team must re-
view the SCC to meet the objectives of the software safety. The SCC definitions of
MIL-STD and RTCA DO-178B are as given Figure[3.4]

| MiL-sTD-882C

~—

[ RTCA-DO-178B ]

(1) Software exercises autonomous control over potentially || (A) Software whose anomalous behavior, as shown by the
hazardous hardware systems, subsystems, or components || system safety assessment process, would cause or contribute
without the possibility of intervention to preclude the to a failure of system function resulting in a catastrophic
occurrence of a hazard. Failure of the software or a failure || failure condition for the aircraft.

to prevent an event leads directly to a hazards occurrence. .
(B) Software whose anomalous behavior, as shown by

(lla) Software exercises control over potentially hazardous the system safety assessment process, would cause or

hardware systems, subsystems, or components, allowing contribute to a failure of system function resulting in a
time for intervention by independent safety systems to hazardous/severe/major failure condition of the aircraft.
mitigate the hazard. However, these systems by themselves

are not considered adequate. (C) Software whose anomalous behavior, as shown by the

system safety assessment process, would cause or contribute
(lIb) Software item displays information requiring immediate | to a failure of system function resulting in a major failure
operator action to mitigate a hazard. Software failure will condition for the aircraft.

allow or fail to prevent the hazard's occurrence.
(D) Software whose anomalous behavior, as shown by the

(Ia) Software item issues commands over potentially system safety assessment process, would cause or contribute

hazardous hardware systems, subsystems, or components, | to a failure of system function resulting in a minor failure

requiring human action to complete the control function. condition for the aircraft.

There are several redundant, independent safety measures

for each hazardous event. (E) Software whose anomalous behavior, as shown by the
system safety assessment process, would cause or contribute

(llib) Software generates information of a safety critical to a failure of function with no effect on aircraft operational

nature used to make safety-critical decisions. There are capability or pilot workload. Once software has been

several redundant, independent safety measures for each || confirmed as level E by the certification authority, no further

hazardous event. guidelines of this document apply.

(IV) Software does not control safety-critical hardware
systems, subsystems, or components and does not provide
safety-critical information,

Figure 3.4: Software Control Categories Definitions by MIL-STD-882C And RTCA-
DO-178B
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CHAPTER 4

ARCHITECTURE OF SAFE SOFTWARE SYSTEM
DEVELOPMENT FRAMEWORK

4.1 Introduction

Being complex software controlled systems; MUASSs started to increase their exis-
tence rate in almost every operational field drastically. As a result, their quality and
safety are being questioned more frequently during development process by authori-

ties, end-users, developers and public.

Software . .
Requirements Software Design Process Sﬂfml:?m Coding ]nl;egmnon
Process rocess rocess
? A 2 i - } v \ \
H -I Reviews I- g -I Reviews I- ? -l Rc\’icwsJ- i 'I Reviews |— -I Reviews I-
= 3N | - 0
£ ) z z
?_ M Analyses JH & LH Analyses H 2 =M Analyses Analyses Analyses
£ ) £y y £z ) ) }
i @i o g
?-I Test Prep I— éiﬂu -| Test Prep I— 'E'E i Test Prep -| Test Prep |— Test Prep
2 ‘-| Test Exe I— :E" E ‘-l Test Exe |— g Test Exe ;: Y Test Exe E Y Test Fxe E
7 e 7 = %] Gl i

Figure 4.1: Software Development Life Cycle

In order to achieve acceptable safety level of confidence for software system, system
development processes are mandated by authorities to follow some guidelines during
development life cycle. The strongest point of such guidelines is verification with

combination of three tasks of review, analyses and test as shown in Figure d.1] The
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most famous guideline for aviation community, DO-178B, defines these three tasks

as [121]].

e Review: Provide a qualitative assessment of correctness.
e Analyses: Provide repeatable evidence of correctness
o Test:

v" Demonstrate that the software satisfy its high level and low level assess-

ments,
v" Gives confidence,

v' Acknowledges that test preparation can be as effective as test execution.

When such software system safety concepts are taken into consideration, general ten-
dency is to follow well-known standards, which are widely applied to manned or large
UASs mostly by industry as state-of-art approach. However, for MUAS development,
they are impractical to be followed due to their being generic software development
process guidelines and requiring excessive time and resources which definitely con-
flicts with the MUASs development paradigm. That conflicting situation between
existing safety directives’ development life cycle shown in Figured.1]and small UAS
development life cycle, enforces proposal of an easy and comprehensive solution to
reduce risks, achieve safety to a compliance level without overburdening MUASSs
development philosophy and preserve essence of these guidelines by accurately real-

izing their minimum objectives through sequential life cycle milestones.

4.1.1 Safe Software System Development Life Cycle Overview

As indicated in Figure SSS development life cycle contains four internal pro-
cesses such that Software Requirement, Software Design, Software Coding (Imple-

mentation) and Software Integration (Testing) processes.

With several tasks and documentations to accomplish, these processes enforce devel-
opers to fulfill all desired safety assurance level regulations at the milestones which

stand at the end of each processes life time.
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Although there is not exact to-do-list for task realization or recipe book for safe soft-
ware system development in the literature, before proceeding to technical details of
the SSSDF framework, important and generally anticipated set of milestones’ objec-

tives for design, coding and integration processes could be listed as below:

Design process of an entire safe software system development life cycle usually in-

cludes three milestones which are:

e Software Preliminary Design Review (PDR)
e Software Critical Design Review (CDR)

e Safety Review or other carrier- or program-specific system safety review
Coding process is expected to achieve below two objectives at the milestone as:

e Software code review or Formal Inspection
e Safety-Review
e Software code review or Formal Inspection

e Safety-Review
Integration process has

e Test readiness reviews

e Safety Verification Tracking Reports

All above mentioned milestone objectives can be achieved by fulfilling some tasks,
which are appropriate to realize intended objectives. Additionally, considering to
safety criticality level of software system, various combinations of these tasks can be

configured to reduce risks and increase safety maturity.

In general, the tasks which are expected to be met by each processes can be listed in
Figure 4.2 with red arrows directed from the process blocks. Remembering the fact
that these task lists is not the only configuration possible or the best, guidelines has
consensus that realizing such set of tasks increases system safety and reduces risks to
reach feasible safety level. Hence, under the scope of this thesis they can be seen as

the smallest set of logical and required tasks.
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Figure 4.2: Safe Software Development Life-Cyle Milestones And Tasks

4.1.2 Summary

In this thesis study a safe software system (SSS) development framework, which can
be used during the design, coding and integration (testing and verification) processes
of DO-178B and likely guidelines, is introduced for a MUAS development and its
contributions to the small UAS development life cycle is evaluated. Owing to reach
a level of confidence for developed software, the SSSDF introduces an architecture,
which covers all development processes and provides easy understandable, repeat-
able and simple methodology, to achieve safe system in an effective way. Further-
more, an intelligent, unique testing methodology, Assassin Process Method —APM,
is developed to make testing, verification and assessment objectives of the software
development processes easier, sustainable and automatic during small systems design

life cycle.



4.2 Safe Software System Development Framework Overview

Considering the software development life cycle mentioned in the previous chapters,
the framework proposed in this study tries to achieve design, coding and integration
milestones by implementing design, coding, testing and assessment components as

shown in Figure [4.3]

Safe Software System

Real-Time Operating System
Embedded Hardware

Figure 4.3: Safe Software System Architecture Overview

During MUAS software system development life time, SSSDF is constructed by using
micro-kernel-based Real-time Operating Systems such that QNX Neutrino, Integrity
etc. on top of a target embedded computer. Due to the modular, separated, flexible
and compact architecture of the framework, design and coding objectives can be im-
plemented in simple and effective way. Additionally, logical structure of the design
together with power of high level coding and implementation of POSIX1003.1 com-
pliance commands enables development teams to easily fulfill objectives related with

process’s review and data/structural flow assessments.

The first feature of framework to mention is all development activities except design
which are coding and integration are done concurrently on the integration environ-
ment. Apart from design, coding and integration tasks, as a very challenging and
discouraging activity, testing and its assessments can be performed with comprehen-
sive, dedicated, mission-based and real-time Assassin Process Method(APM). For
identified safety-related system and software requirements, test cases are created and
erroneous software test scenarios (assassinations of APM) are injected into the entire

integration environment by APM itself as indicated in Figure 4.4}

In this study, test cases follow the mission profile of the MUAS and every identified
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safety-related requirements are tested at one and complete real-time simulation of
MUAS’s mission. Being a transparent testing method, APM randomly creates all test
cases in real-time during simulation which is equal to the MUAS operation time until
all sequential test cases(assassinations) are completed. Then, APM’s Software Sys-
tem Safety Assessment GUI generates human understandable test assessment results
for all APM’s assassination missions with analytical representation. Hence, develop-
ment teams can easily ensure that whether they tested and verified all safety-related
requirements for a MUAS and they are safe for the safety conditions that they defined
before real-flight. Therefore, traceability between high level system requirements,
low level software requirements, test cases and source code, which are definitely reg-

ulations of design guidelines, become achieved in one simulation period of a MUAS.

M1: Software i
i Requirements M2:Design ~ M3:Coding M4:Integratign

High Level
System
Requirements

L4

System Safety
| Requirements

FRAMEWORK
IMPLEMENTATION

B

Figure 4.4: Safe Software Development Framework

Last but not least, in this study, propulsive enthusiasm to construct such framework
is to test MUAS software system with test cases which are created from system high
level requirements and software requirements focusing on safety related actions. In-
stead of constructing expensive and time taking requirement based testing team using

complex tools, simple and comprehensive and safety oriented development paradigm
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is generated. On the other hand, it is more than possible to cover every single require-
ment apart from safety related ones with APM approach because of its very flexible
architecture. Meanwhile, although APM tool prioritizes tests of safety-related re-
quirements, it is capable of being a requirement-based testing tool for MUAS’s soft-

ware system as well.

4.3 Framework Architecture

The safe software development framework focuses on design, coding and testing pro-
cesses and their safety assurance. By that means framework proposes architecture for
safe software development, especially for testing and verification. Moreover after-
development quantitative assessments of requirements coverage review and assess-

ment tasks are also done by framework automatically.
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Figure 4.5: Safe Software Development Framework’s Initial Architecture

Framework architecture can be easily traced at each development steps. As mostly de-
sired features; elimination of single point failures and increase in reliability of MUAS

software system become one of the major benefits of framework caused by its multi-
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process implementation. Executable code generated at the end of coding process
is tested in the integration environment for test cases derived from the software re-
quirements by using APM automatically. Being an isolated testing process, APM
is sustained to create fault condition in a transparent way, just like an assassination,
during the real-time simulation of software at system integration environment. Soft-
ware, which regularly logs it status during runtime with a simple rule-based logging
mechanism, is assessed after the completion of APM’s Assassination Mission by us-
ing GUI (Safe Software Assessment Tool) and all requirements which are traceable to
the test cases are tested automatically for all identified failure conditions. As a result,
overall percentage of the requirement coverage and corresponding safety percentile
of the software system is presented in a human understandable way. Furthermore all
these activities with various actions can be performed repeatedly at any time during
the development process without spending much time and disturbing the development

focus, motivation and workload [Figure - [5.10].

Detailed software framework architecture for each software development process is
explained in the following sections and all features as well as contributions of the

framework to safe MUASSs are presented.

4.4 Framework For Software Design Processes

A typical software system for a MUAS has capabilities of coordinating data acqui-
sition from sensors and interpretation of the data through flight control algorithms
and controlling aerial vehicle control surfaces. Additionally software is responsible
to keep track of that obtained data and observe system status to sustain system’s reli-
ability and robustness. During this thesis study, entire system development with the
suggested framework is substantiated considering the mentioned capabilities of the

MUAS assuming them as the minimum functionalities.

In order to have safe design, framework is generated for aiming for the below de-
sign capabilities which try to eliminate single point failures, achieve traceable design,
isolate safety-critical regions from entire software components and equip with fault

detection, identification as well as fault tolerance mechanisms.
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4.4.1 Design For High Modularity

In this thesis, focuses are given on attaining not only mentioned capabilities but also
safe software system development for MUASs. Owing to achieve desired safety level,
the framework is constructed on multi-process software design pattern with strict pro-
cess isolation to minimize risks due to single-point failures and increase software

system confidence.

Isolation of Software Components in
Micro-Kernel
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Figure 4.6: Micro-Kernel OS Architecture And Software Applications

In order to reach isolated software components at application level and eliminate risks
to crash of entire system, micro-kernel OS [Figure d.6]] is employed as a base layer to

the framework rather than monolithic kernel OSs.

Following simplest-is-the-best dialectic, all functionalities of MUAs software are as-
signed to a single process. Synchronous interoperability of the processes is achieved
by coordinator process of data acquisition timer running periodically and message-
passing mechanism of micro-kernel based realtime OS [Figure[4.7]]. In detail, as mes-
sage passing mechanism is applied to cooperating processes, execution of sequential
components becomes synchronized by blocking/unblocking intended software com-

ponents during runtime [Figure 4.§]l.

The SSSDF contains synchronous and asynchronous processes all of which are inde-
pendent from each other and fully isolated. Considering MUASS, it is clear that di-
rectly flight related processes with sensor data interpretation capabilities are members
of synchronous process flow and others with indirect/non-flight related functionalities

are belonging to the asynchronous flow.
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Due to the nature of control, navigation and guidance algorithms, periodic data pro-
cessing has crucial importance for a safe flight. This generic and rough discrimination
between processes as synchronous or asynchronous makes design of software devel-
opment easier by abstracting design components due to logical functionalities and

constructing structural flow between them in a very flexible and modular way.

4.4.2 Design For Reliability And Maintenance

With essential software capabilities of acquiring sensor data, flight control, continu-
ous system observation, data logging and system safety assurance mechanisms such
that fault-detection, fault-identification and recovery, the SSSDF architecture for a

MUAS is configured as indicated in Figure 4.9

Safety conditions can be separated as logical and structural from software design
perspective. For logical failures, data computation, computational performance of

software system or errornous data flow can be discussed. In case such failures occur,
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Figure 4.9: SSSDF’s Detail Architecture without APM

software is designed to apply fault tolerance mechanisms such that data manipula-
tion, syntactic data generation, tolerance time checking etc. From structural failure
perspective, in case software components crash due to non-detected failures or hard-
ware malfunctions etc., immediate recovery of the component is crucial. Framework
enables recovery of components and software execution continuity during safety tol-

erance time to achieve more reliable software.

At that moment, it is important to remember that analyzing all causes of failure and
elimination of all of them are essential for safe development. Considering this fact,
the significance of the suggested framework comes to stage as effort to sustain SSS
for mentioned failure identification and elimination tasks through conventional guide-
lines is impractical for small systems but with an intelligent framework, safety-related

conditions can be grouped and handled in comprehensive and conscious design.

In Figure 4.9] Data Acquisition Process (DAP) is coordinator and periodically waits

for sensor data to come. As data acquired, it is passed to next synchronous process of
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Flight Controller (FCP) which is responsible for flight control algorithm computation
and all flight related logical tasks. Flight related sensor data is processed in FCP and
data is used in flight algorithms. The next sequential software component is Data Log-
ging Process (DLP) of recording all raw data coming from sensors and all output data
which is generated by FCP at the end of each execution cycle. These three sequential
software component, which are DAP, FCP and DLP, works synchronously and peri-
odically. In addition to synchronization between these set of processes; each process
periodically send their status to Smart Watchdog Process (WDP) to guarantee con-
tinuous checks and send their status to Status Logger Process (SLP) to keep records
of all internal events appearing execution time. In case error conditions occur, WDP
informs Process Manager Process (PMP) to identify errors and take corresponding

safety actions.

In addition, PMP is responsible for system diagnostics and overall system safety. Al-
though asynchronous processes waits for pulse messages from synchronous processes
(DAP, FCP and DLP), PMP can become coordinator process by setting proper syn-
chronization timers in case DAP crashes or any other failures. Another process which
accomplishes data flow between Ground Control Station and FCS is Ground Control
Communication Process (GCP) and it connects link between ground unit and flying

unit to establish healthy status information channel.

Under the thesis assumptions which limit the MUAS’s software system to perform
essential flight operation, the framework modularity is reached as mentioned above
using logical and abstract decomposition of MUAS functionalities. In terms of soft-
ware system safety, above mentioned architecture minimizes the efforts undertaken
during design reviews and assessments with framework’s nature of logical separation,
sequential organization due to intended functionalities and flexible modularity. More-
over, messages between isolated processes can be easily traced during design. Ad-
ditionally, data flow and internal software activities of all individual processes might
be tracked for entire system at each development step. Fault tolerance mechanisms
which are injected in to the design can be mapped, modified and observed in a sim-
ple way. Furthermore, reliability analyses can be done with less effort by following
design flow. As a result, this feature of framework enables any design and imple-

mentation modifications to become easier and to have much simpler maintenance
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activities at any time in development process.

4.4.3 Design For Traceability

Requirements traceability during software development life cycle is one of the most
significant expectations to establish safe software system and requires systematic ef-

fort to be achieved.

Development processes governed by the framework enforces logical design and sepa-
ration of software components regarding to their functionalities. This abstract logical
separation philosophy is implemented even to the smallest sub-components of the en-
tire software system. Meanwhile, all level systems requirements can be easily trace

on the software components during the design process.

Additionally, logically separated software components act as abstract groups of re-
quirements due to their functionalities and object-oriented architecture of each soft-
ware component also maps directly to the low-level software requirements. As each
software component aims to reach atomic-likely structure, logically isolated compo-

nents point directly corresponding high level requirements.

In terms of traceability between requirements and design, for all levels of require-
ments and software units bi-directional traceability can easily be achieved through
design process by using activity diagrams. Not only traceability but also the review
and assessments of the design process can be performed via simplex approach. De-
sign logical analysis can be performed at any time during design concurrently or at
the end of design process as entire software design relies on logical development

philosophy.

4.4.4 Design For Safety

Although safety is a very complex and multi-disciplinary concept which requires
careful consideration of system components and reasonable effort for tasks realiza-
tions, for MUAS development, safety requirements can always be investigated easily

through development framework during software life cycle.
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Comprehensive development framework always tries to ensure that each software unit
is implemented as expected and desired safety cautions are taken to sustain more reli-
able system. All separated software components have recovery mechanisms and fault
tolerance capabilities. Moreover specialized components such that smart watchdog
and process manager, can be used for monitoring purposes and can take initiative to
prevent failures. In the meanwhile, by using the framework, activities realted to track-
ing all these safety assurance mechanisms and covering all safety-related require-
ments in the design are guaranteed. Furthermore, at any time during the development
life cycle necessary modifications and functional/structural insertions are more than
possible to be realize as design encourages modular paradigm. In the meanwhile,
these features of framework provide isolation of safety contaminated components to

have fewer side effects in case of failures occur.

Additionally, not only separation of functional software units into isolated compo-
nents but also logical flows between these components can easily be built. Verifica-
tion of logical and structural flow’s behaviors and elimination of failures are crucial
expectations during SSS development. Using the framework in any levels of develop-
ment, flows can be tracked, modified and updated. Although testing will be discussed
in detail later, by using APM testing approach, various tests including flow analysis
and performance tests can be done in systematic and time effective way. Last but not
least design data analysis which is an important objective to realize at the design pro-
cess can be evaluated smoothly as design contains minimal hardware interrupts and
synchronization depends on the built-in inter process message passing mechanisms.
The framework uses hardware interrupts only in software timers for status checks and
software component malfunctions monitoring. This architecture of framework makes

entire software development process easy to assess in terms of safety.

Considering all the contributing factors discussed above, design architecture which is
suggested by the framework minimizes review effort undertaken at the design process
and increases conscious design during development life cycle with ease of safety

assessment.
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4.5 Framework For Software Coding Process

Owing to have more readable source code for easy code reviews and safety assess-
ment, software implementation process relies on more human understandable way of
(high level) coding of APIs. By the help of POSIX API provided by RTOS all coding
requirements can be accomplished successfully. Apart from high level implementa-
tion and POSIX dependability, software coding process aims to establish below gains

for safe MUAS software development.

4.5.1 Easy Implementation

Selection of programming language and coding style is one of the coding process
requirements. This framework implement C++ and uses OS’s high level implementa-

tion API. POSIX 1003.1 compliant implementation is strictly followed.

Implementation of modules in design with object oriented development methods
makes implementation simpler. As a widely used programming language, C++ is

tough almost in every departments of engineering and its semantic is easy to under-
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Figure 4.10: IPC Message Passing Implementation

Being one of the biggest drawbacks, implementation of cooperated modular compo-
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nents in a synchronous way is handled with message passing paradigm through IPC
API which is very abstract and easy to implement as shown in Figure d.10] Moreover,
this message passing methodology makes review of interfaces and data structural flow

straightforward.

4.5.2 Code For Easy Software Flow Analysis

Being a compulsory activity, flow analysis is crucial for safe development process.
After software design process, implementing the architecture is not enough itself.
Analyses of whether software flow between software components is accomplished
correctly and verification of each component’s interfaces with their corresponding

peers have to be performed.

Although the APM testing method is definitely convenient to achieve flow analyses
and its contributions will be discussed later on, implementation of framework also
makes verification process simpler due to its high level implementation. As software
components separated and isolated from each other every single component can be
unit tested up to their interfaces. As this framework becomes comprehensive tool for
safe development and each development processes are taken into account simultane-
ously during development life cycle, interface identification, data flow analysis and
behavioral analysis of software components can be reached easily by using activity
diagrams and IPC messages list together. Moreover implementation of software func-
tionalities in atomic way, software components can be investigated in terms of their
behavioral flow by human inspection and can be reviewed smoothly by tracking them

from high level system requirements.

4.5.3 Code For Simplicity

Software system complexity is important during the development process because it
can affect understandability, readability and maintainability of the code and it has to
be kept minimum. In order to decrease complexity of the system, object-oriented
paradigm is followed and also software modules are tried to be kept simplex with

basic and atomic functionalities.
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At that moment, a known paradox which is as the number of modules increases com-
plexity also increases comes to minds and conflicts with the framework’s statements.
Definitely there is trade-off to achieve less complex software systems with many num-
bers of components. However using the framework, software modules are separated
using abstract logical functionalities define in the high level system requirements and
coordination between modules are established using the RTOS IPC’s built-in meth-
ods. Additionally each component has one connection channels so that they have one
communication interface by which decreases complexity. This single-channeled ar-
chitecture of the software framework ensures that data flow and coordination between

modules is controlled by one-and-known connection interface.

Although system has modular architecture, flow between modules is unidirectional
and exactly deterministic. This very-known data flow between modules makes im-
plementation more simplistic. By the help of this simple architecture, reviews and

analyses can be done straightforwardly.

4.5.4 Code For Easy Testability

Testing is always possible at any time during the development life cycle due to the
framework’s architecture and APM. Modules can be tested either one by one or as a
whole. Especially message passing mechanism between coordinated modules which
is encouraged by the framework is a very flexible approach to test any parts of soft-

ware unit.

Another important coding process objective is to have defensive code which elim-
inates unidentified software flow and ensures that system behaves correctly during
operation. Due to the defensive programming, test side effects can be identified eas-
ily and weaknesses of software can be evaluated after APM runs its mission-based

assassination scenario.

Software components can easily be tested either to verify of data and design structure
or to ensure that system is performing as supposed to do so. Very flexible and intel-
ligent APM tool enables various kinds of tests and analytical test assessment results.

The detailed explanation of testing paradigm proposed in the framework is discussed

47



in the following sections of this chapter.

4.6 Framework For Software Integration Process

Testing is always the most struggling part of an entire development process and it can
be very overwhelming if not organized for reasonable objectives. As the framework
focuses on satisfying safety-related requirements, suggested usage of the framework
is to test every safety-related requirements in random order within a hardware-in-
the-loop simulation, which is setup for MUAS by considering its mission profile, in
an automatic way. In order to accomplish verification objectives, Assassin Process

Method (APM) is developed and used in the framework Figure [5.11]
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Figure 4.11: SSwD Framework’s Detail Architecture With APM Test Approach

Therefore, for each mission-based test scenario, different failure condition are trig-
gered by APM just like an assassination missions of an assassin and possibilities of
hazard occurrences which depend on software malfunctions can be tested in a short

time interval and without human interruption. Moreover, test results are assessed by
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the APM’s GUI automatically to provide analytic requirement coverage assessments

in human understandable way.

4.6.1 Test For Verification

In order to ensure that all software requirements are satisfied correctly and software
executes as desired, verification of the source code within integration environment

has to be performed.

Preliminary expectation is to ensure that software system is unit tested carefully and
all implemented functionality is working properly as identified in requirements phase.
The framework provides an interface to create test cases and all test cases can be run
repeatedly in an automatic way at any time of development life cycle by APM. Like a
mission-based testing, all requirements are verified throughout assassination scenar-
ios(missions) for created test cases which contains various parameters to check such
as fault injections, boundary checks, data flows and behavioral tests. Although Assas-
sin Process(AP) tries to verify software by constructing assassination missions, which
focus on testing of safety-related requriments, injected in to HILS environment; each
software, system and safety requirements can be tested one by one like a requirement

based testing due to the APM’s flexiability.

Not only testing software units but also ensuring that all requirements are covered via
tests is also very significant to reduce safety risks. Luckily one of the main features
of the APM is to provide a comprehensive test coverage assessment at any level of
development with its comprehensive, mission-based and repeatable testing capabili-

ties.

4.6.2 Test For Simplicity

Conventional testing requires team working because it consists many kinds of test-
ing objectives including creation of test cases, requirement traceability, test result
assessments, re —testing, regression testing, performance testing, integration testing,

safety- critical analyses of test results etc. That growing number of activities in test-
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ing process can easily make testing a discouraging activity. Even if there is time and
budget for these activities, each test types requires deep know-how and experience to
be constructed. So that, for MUAS’s software development, testing process has to be

investigated in a different approach to have a simpler solution.

Focusing especially for safety-critical requirements tests and safety assessments, APM
provides very flexible interface to verify software system for different aspects. With
APM, starting from design to coding, testing always takes part in the development life
cycle and automated testing in the integration environment can be performed easily.
Modular architecture of design and message passing IPC approach during develop-
ment with simple ruled-based system status logging, testing is imposed in all levels of
development life time with a minimum effort and provides healthy review period with
straightforward test results assessments. This smooth imposition makes not only unit
testing but also other kinds of testing feasible and accurate. Moreover using the same
programming language during testing and running APM, simplifies the testing due
to eliminating dependencies to another test tools or testing paradigm with different

expectations, time and experience.

4.6.2.1 Mission-Based Testing

When software safety concept is considered, the common way of verification is requirement-
based testing. As very generic and detailed paradigm, requirement-based testing can
be applied by many existing tools, methods and approaches. For MUAS develop-
ment, instead of following strict requirement-based testing, testing for safety-related
requirements is performed for a mission profile of MUAS for all safety requirements
at the integration environment using HILS. In that perspective, the testing method can
be described as mission based safety oriented automatic testing which takes place in
the realistic integration environment. Performing this repeatable, one-shot, mission
profile and safety-oriented testing, shows that whether system is robust to the failures,

has tolerance or reliable for software malfunctions.

This different approach to develop safer MUAS software system testing ensures whether
system performs as intended, stays in the tolerance limits, safety mechanisms work

properly and different combinations of occurring safety-related issues harms the en-
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tire system.

4.6.2.2 Develop And Test Concurrently

As testing is performed in integration environment for real-time simulation using
HILS, possible integration problems can be eliminated and early precautions can be
taken in case possible system integration problems occur. Being a very complex pro-

cess, integration becomes less affordable and less problematic by APM tool.

When integration process is taken into consideration, execution of source code in
hardware is not the only concern. Additionally, performance issues can be bottle neck
for entire process. All such problems can be observed during APM testing period and
risks can be reduced. Automated, mission-based execution nature of APM simplifies

integration process and eliminates risks caused by unidentified issues.

4.6.3 Test For Short-Time Constraints

Instead of one by one requirement-based testing, software is tested for the indented
safety-related requirements as a whole automatically with a mission-based approach.
Assassin process which is injected in to the software integration environment creates
all test conditions transparently just like an assassination. This automatic assassi-
nation scenario can be iterated many times and provides repeatability. Apart from
mission based automatic testing, safety related test conditions can be created ran-
domly in the testing process so that various combinations of faults conditions can be
tested. This also increases confidence level of software because random occurrence

of tests cases simulates real flight conditions more clearly and realistically.

Due to testing is performed for MUAS’s mission profile; APM only operates during
the mission time. All test cases are created and verified either sequentially or ran-
domly during testing period. That comprehensive approach simplifies time taking

testing activities and achieves every desired test objectives.

The significance of the framework is, tests can be applied to developed prototype at

any time and it does not require additional time to create test cases or complex system
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configuration to have these tests. Whenever software design or coding update/modi-
fication takes place, software maturity for safety terms can be automatically assessed
by performing safety related tests by APM. This very comprehensive and simple ap-

proach suggested by APM ensures whether intended software safety is achieved.

Though safety related requirements tests for a mission profile is performed by APM
and it is the strongest part of the method, requirement based testing is also more than
possible to be realized. In order to have requirement based testing, instead of creat-
ing assassination missions(APM test scenario) based on safety-related requirements
for mission-based tests, missions are created considering every single requirements.

Meanwhile APM becomes a test tool for requirement-based testing.

4.6.4 Test For Safety

Safety oriented testing suggested by the framework is the strongest part of the entire
development life cycle. As testing is very complex process, it requires different kinds
of tests like structural and logical tests. APM is definitely capable of performing var-
ious kinds of tests as discussed below. The most important feature of the framework
is that, in nature, APM tests entire software system at a time for all safety related
conditions in the real-time HILS environment and assesses the test results to indicate

risks.

Another important task is to ensure that source code is generated as described in the
design and all software requirements are included, tested and verified. In other saying,
requirements have to be traceable during the design and APM definitely achieves that

traceability [Figure 4.12]] due to its nature without special effort.

4.6.4.1 Structural And Logical Tests

Data and structural flow tests can be performed by APM. Reliability and robustness of
the software system evaluated by verifing system recovery and fault tolerance mecha-
nisms and their efficiency. Additionally interfaces between software components can

be tested and data flow through these interfaces can be verified with APM. As this
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Figure 4.12: APM Traceability Systematic

framework is created to develop MUAS with less resource and effort, logical analysis
is very important for development process. So that, data flow or logical components
are investigated in more detailed. Using APM, data flow between software compo-

nents are tested and data validities are checked as a part of data validation activity.

Last and very important feature of the APM is its regression testing capabilities. As
random and automatic tests are performed for mission-based test approach by APM
periodically for all identified safety-related requirements, each APM execution can
also be though as regression testing. Because APM always test software system as a
whole and it tests for the last configuration of the software system. At that point it can
be easily considered as regression testing which is really important and significant but

at the same time underestimated activities of the entire integration process.

4.6.5 Test For Automatic Assessment

With reviews, tests and assessment tasks each development process aims to guarantee
that reasonable effort is dedicated and endeavored for safety; additionally conscious

actions are taken in order to reach a confidence level.

Apart from implementation of software systems, assessment of the development pro-
cesses at each step with analytical evaluation has also crucial importance on entire
SSS.
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The major assessment parameters are traceability, requirements coverage and safety
confidence level assessments. Knowing the fact that safety confidence level assess-
ment is very complicated task with many sub tasks and complex parameters, entire
system safety can be assessed for identified safety requirements and corresponding

software requirements for MUASs.
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Figure 4.13: APM Assessment Tool’s GUI

APM method and its simple GUI automatically handle all safety related assessment
tasks. Requirements traceability coverage for corresponding high level system re-
quirements to low level software requirements with safety criticality tags is satisfied
by tracking all test cases (assassinations) up to system requirements. As a result,
APM returns analytical assessment results which show traceability percentage for

safety requirements and number of successfully/unsuccessfully tested items.

Considering the most significant statement about this framework which is software
safety for MUAS can be achieved with less resources and effort, APM and its au-
tomatic assessment GUI easily identifies, system safety requirements are satisfied to

what extend and how confidentially software can perform for safety tasks.
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4.6.6 Flexible Test Methodology

Flexible testing means any testing can be performed using the APM method for
MUAS software system which is integrated in HILS. Apart from compulsory tests
such as unit tests, structural and logical tests, other tests such as performance, data
flow, interface and safety-critical region tests can also be realized one-by-one or all

together with complete assassination scenario.

Design of APM enables tests of separate software modules due to their isolated imple-
mentation. As main purpose of this framework is to discuss whether MUAS software
is open to be developed for safety with reasonable effort and time, all tests are not
performed separately owing to decrease time and resource needs. With this level of
flexibility, APM definitely useful for test and assessment activities and proves its level

of confidence together with its accuracy.
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CHAPTER 5

MUAS SOFTWARE PROTOTYPING WITH SAFE SOFTWARE
SYSTEM DEVELOPMENT FRAMEWORK USING HILS

As software system safety for small UASs is discussed in this thesis, the safe software
system development framework (SSSDF) is developed to realize design, coding, inte-
gration, review and assessment task. Being small systems with many limitations and
time constraints, development of a SSS for MUAS is discussed with a new and unique
approach which is uniquely constructed within this thesis. In addition to creation
of framework and discussing its contributions to the entire system safety in theory,
proof of concept implementation of the framework is applied to an artificially created
MUAS development case and evaluation of success of the framework is sustained in

a concrete platform as a prototype implementation.

In the previous chapters, focus is given on explaining Safe Software System Devel-
opment Framework (SSSDF) and discussing its contributions to minimize risks and
increase software system confidence as well. In this chapter, more focus will be given
on how SSSDF is implemented and how safety process which starts from requirement
phase is integrated into the entire development life cycle. Therefore, proof-of-concept
prototype of MUAS software, which is developed under the safety regulations, is de-

viced and assessed.

5.1 Development Case Limitations

Safety case is developed under the below assumptions and limitations;
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5.2

MUAS software only capable of data acquisition, flight control algorithm com-

putation and keep logs of corresponding sensor data.

Safety requirements for MUAS software system are selected to demonstrate

capabilities of the framework.

In order to create a comprehensive case for MUAS software system devel-
opment, logically coherent requirements are identified and consistent MUAS

flight mission profile is constructed.

Hardware system development is out of this thesis scope; however to achieve
hardware in the loop simulation, COTS hardware configuration is selected as

explained later in the corresponding section.

During prototyping, free-in-charge QNX is selected as RTOS which has micro-

kernel architecture.

This thesis study does not aims to get full compliance to any known guidelines
of aeronautics instead it tries to ensure that safe development paradigms can be
projected from weighted and complex guidelines to simple and feasible road

map which gives confidence with reasonable effort and resource.

As this study aims to evaluate feasibility of safe software system development

for MUAS, effort and resources are always tried to be kept minimum.

Case Development

The safety case for MUAS development aims to ensure that the proposed framework

in the thesis is capable of improving software confidence and achieves generic safe

software development objectives in a systematic approach.

Providing MUAS’s requirements and drawing the prototype’s borders, safety case

contains each four software development processes which are requirements, design,

coding and integration. Moreover, software and hardware integration is performed in

addition to creation of MUAS software model in MATLAB to have hardware-in-the-

loop simulation. Remembering the fact that prototype uses HILS as the integration
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environment, Assassin Process Method (APM) is also integrated into the HILS to
fulfill software verification tasks. Therefore, hardware and software architectures are
constructed as a complete MUAS software system prototype which implements a

safety case for MUAS using the proposed framework.

5.2.1 Hardware Architecture

Safety case, which is created to demonstrate SSS development life cycle for a MUAS,
is constructed on the hardware units as shown in Figure[5.1] In the hardware archi-
tecture of the prototype there exist three components which are computation board,

real-time simulation computer and host computers.
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Figure 5.1: Software System Development Hardware Architecture

The computation board can be considered as framework integration hardware or flight
computer in aeronautics jargon. In this configuration it is Beagleboard-Xm Rev.
C board with ARM Cortex A8 architecture and capable of 1GHz processing in its
CPU. QNX Neutrino RTOS and software executable created within the framework

are downloaded on that board. At the same time, all APM tests are performed to-
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gether with HILS on it. Apart from embedded QNX RTOS on the board, the source
code development environment of QNX, which is QNX Momentics 6.5.0, is setup on

another host computer and Momentics manages all QNX configuration tasks.

HILS is sustained throughout XPC Target machine that is produced by Speedgoat
as indicated in Fig — 1011. This compact real-time computer only contains XPC
Target kernel as an OS on it to achieve good real-time performance. It is directly
connected to the BeagleBoard-Xm through communication interfaces and real-time
data between corresponding components are transferred to have real-time flight sim-
ulation. Additionally, there is a host computer for HILS simulation which contains
MATLAB Simulink MUAS mathematical dynamic model and simulation in the XPC

Target is controlled via this host computer.

The last hardware component is a simple desktop computer which has APM assess-
ment GUI on it. After developing source code and embedding it onto the BeagleBoard-
Xm and testing entire system with APM; test results, which are formatted as text files,

are downloaded to the APM GUI to generate test assessment results.

It is important to state that after setting up the mentioned hardware configuration
once at the beginning, all other development tasks can be handled as a piece of cake
without changing any parts of the configuration. In the meanwhile, this architecture

makes system development straightforward during the entire life cycle.

5.2.2 Software Architecture

Owing to create a prototype for MUAS software development using the framework,
software components which are required to be combined can be listed as shown in
Figure 5.2l On top a hardware layer, QNX Neutrino RTOS is built. As explained
in detailed why QNX is selected in the previous chapters, developed software appli-
cation which uses SSSDF is executed and validated. APM approach, which aims to
verify software system, might also be considered as another software application in

the architecture.

In addition to two software layers mentioned, the logical decomposition of MUAS

software can be visualized as in the Figure Although software application is
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Figure 5.2: Software Architecture

introduced as one component, it consists of various processes all of which are inter-
nal software subcomponents of entire MUAS software system. Therefore, prototype
consists of QNX RTOS at the lowest software layer and MUAS software application
developed using SSSDF on top operating system layer. At the highest layer, HILS
combines MUAS application with RTOS and APM’s process to achieve complete

system.

5.2.3 Applying Safe Software Development Framework To MUAS’s Flight Con-

trol Software

The software prototype wiht safety case which is created to demonstrate SSS life
cycle for Flight Control Software for MUAS development consists of each develop-
ment process as shown in Figure [5.4] Differing from the previous Figure Figure
[5.4] also contains Software Requirements Process which aims to integrate Software
System Safety Concept into the development life cycle. The reason why entire de-
velopment process are considered during the thesis is to have much realistic develop-
ment life cycle and to achieve MUAS software prototype that is developed using the
SSSDE. As an initial step of entire development life cycle, system and safety require-
ments are identified during the Requirements Process, additionally safety hazard and

risk analyses are performed to have much confident system. Furthermore, all anal-
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Figure 5.3: Logical View: Software Design Architecture

yses performed in the Requirements Process become the base requirements of the

prototype.

After completing Requirement Process, other development processes are also realized
by using the framework. All process tasks and milestone’s objectives are studied and

evaluated.

As every aerial system design starts with Operational Concept Document and High
Level System Requirements, this safety case is also started with System Requirements
Document [Appendix - A.1] which is also considered as concept description of the

MUAS to spend less effort and decrease the number of documentation.

5.2.3.1 Requirements Process

Initial Concept Design Initial Concept Design is an important step to identify sys-

tem and expectations. Considering the high level system requirements, overview of
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the software systems and connections between internal software components can be
build up from system development perspective as visualized in Figure [5.3] It helps
project team to identify what kinds of system requirements can be driven, what kinds
of safety requirements can be achieved and what kinds of risks can appear in the
software system. The MUAS consists of various system components one of which is
Automatic Flight Control System(AFCS) with software module developed to handle
all flight control tasks and ensure flight safety. This component is developed as a
prototype by following the SSSDF introduced in the thesis. Considering the MUAS
operational expectations given in Appendix — A.1, below logical system components
are created and logical decomposition of these components with respect to their func-

tionalities are described.
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From SSS development perspective, this ICD becomes a base for the logical design
approach dominated by the SSSDF and limits the entire system features. As seen
from the Figure [5.5] AFCS is developed using SSSDF and it is implemented onto
the Beagleboard-Xm as HILS is constructed to achieve realistic system integration
environment. Additionally, during prototyping, simplex GCS is created as a moni-
toring tool and it is used to demostrate communication between AFCS and GCS to

demonstrate comprehensive SSS development life cycle using SSSDF.

Functional Hazard Analyses Functional hazard analysis is important due to sev-
eral reasons to identify hazards and mishaps and also to identify safety-significant
functions. So that, comprising FHA in the software development life cycle as early as
possible is efficient and also beneficial for safe system design. The benefits of FHA

include but not limited to:
o Identification of physical attributes together with system functionality, data re-
quirements and logical structure.
e Identification of interfaces between subsystems
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e Identification of hazard and mishap conditions and related functions to them,

e Identification of subsystem severity,

o Identification of safety-significant functionalities.

In order to perform FHA, suggested template given in Table [5.6]is used. Within the

scope of this case study, FHA is only performed for the autopilot [Appendix A-2]

Major Safety- Mishaps Safety-
Consequences of | Severity of ;
NO | Component- | Functionality | Interfaces Significant of Significant SW
Loss of Function | Conseguence
SubSystem Function: | Hazards Modules
a)Flight Control | a)A/C g)Lossof A'C Catastrophic | ab, Deaths a)lavigation
e blAutonomous | Platform 3W componsnt
ight
J | B e R b) Ensine LJAFCS 5W
Svstem
¢} Sensor Control
Control

Preliminary Hazard Analysis

Figure 5.6: Example To Functional Hazard Analysis Table

Preliminary Hazard Analysis (PHA) stands in the

middle of safety and software engineering analysis and it is performed to identify

and prioritize the hazards, their causal factors, severity of the hazard conditions and

possible actions to prevent those hazards. Considering the physical and functional

system requirements and system’s capabilities, PHA is applied, and this assessment

process is followed to the end of the entire development life cycle to avoid hazard

conditions. In this study the metric used during the PHA is defined as in the Table

5.7.

Errant Air Vehicle —

errors or faults

System: Small Unmanned
Aircraft System

catastrop
hic

Preliminary Hazard List

1)Error in Flight
Control SW

Deaths or
injury of an
innocents or
loss of
equipment
due to the
crash

Operational

Analyst: Onder
ALTAN

Date: 26 Oct
2013

1) Identify safety-
critical SW functions

Figure 5.7: Example To Preliminary Hazard Analysis Table
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Being one of the crucial steps for safe design, detailed PHA which is created during
the prototyping is presented in the Appendix A Table A.1. After the PHA analysis,
considering the hazards and causal factors, safety-critical software components are
identified and labeled on the Software Requirements Document [Appendix C.1]. Be-
fore determination of the safety-critical software requirements and functions; listing
all causal factors is very helpful and accurate to discuss criticality levels of require-

ments systematically.

—t

Error in Flight Control SW

Error in sensor data

Error in Navigation SW

Mechanical failure in flight control fins
User Faults

Lh E=. Led ]

Incorrect user command

Failure in avionic processing components /HW

Loss of communication between air vehicle and ground svstem

LY=1 I - B

Instant environmental change

10 | Failure in parachute

11 | Failure in airbag mechanism

12 | Improper batteries

13 | Not completely charged batteries

14 | Error in hardware which causes extra batterv consumption

15 | Errorin battery monitoring

16 | User fault during launching

Figure 5.8: Table of Mishap Causal Factors

Apart from listing, creating a traceability matrix for hazards and causal factors be-
comes very useful document during the determination of safety-critical functions,
design process and determination of test cases when applying APM as well(Table[5.7]
& Table [5.8).

Risk Assessment and Software Safety Requirement Analyses After performing
System Requirements and FHL tasks, software requirements for FCS are established
by combining all requirements together. As software requirements are developed,

PHA actions and safety-critical regions in the software are labeled on the Software
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Requirements document to reach requirement traceability to safety requirements as

indicated in the below example Figure[5.9]

All risks and corresponding risk reduction recommendations on the PHA are ana-
lyzed and checked in this process. Remembering the fact that software requirements
are tested by APM method of SSSDF, they are very crucial for software verification

activities and APM assessments.

. E -Safe when thers is no heart beat message commg from - 2 .
T3. [ ASE shallnotify GCS aboutmode of the FCS durmg fight. {111,431 5.C
Pre-Fhight Mode Features
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T5. | ASE shallbeahle to receive ~I2ke-ofl | command from GLS when it iz i the Pre-Flight Mode. ERES 5.C
16, [ ASS shallmitialize FCS at Pre-Fhight Mode. 4114 s5.C
T7. [ ASE shallnotify GCS when FLS mitialization stafus 2s UK when mitialization 15 completad without any fzilurs. R 5.C
I8, [ ASE shallnotify GCS when FCS mitialization status as ERROR. when mitialization 15 completed with at l=ast one failurs. 41.6, 5.C
19. | ASE shallbe able to operate 2 user-defmed mission plan written m mission plan Iife. 414

T0. | ASS shallbeable to store 2 user-defmed mission plan. 114 s5.C

Figure 5.9: Samples From Software Requirements Document

To accomplish Requirements Process’s analyses activities, desired functionalities and
confidence level of AFCS are evaluated using PHA and FHA. Furthermore, software
requirements for the prototype are created and their safety criticalties are identified by
the PHA and FHA. Last but not least, feasibility of realization of system requirements
are assessed and prototype’s development limits are clearly drawn by considering the

thesis scope, limitations and motivation.

Summary As Requirements Process in the SSS development life cycle aims to
ensure that system is analyzed for its functionalities, performance and safety, and
software requirements are identified under these considerations to enable traceability

between safety requirements, systematic road is followed to achieve these goals.

First step is to identify system and its requirements. Second one is to evaluate system
for its safety and to create safety requirements. Third step is to combine all first
two steps to achieve software requirements with their safety-critical correspondence.
Last step is to analyze entire requirements for possible risks, risk reduction methods,

criticality levels and their overall confidence.
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This last step is definitely performed in the PHA phase which also performs system
safety analyses and uses FHA, and explained in the PHA document in [Appendix
- A.6]. Hence, requirement process is accomplished with the desired analyses and

reached the main assessment objectives successfully.

5.2.3.2 Design Process

Design Process is the initial state of the SSSDF and follows the Requirement Process
achieved beforehand. Being a starting point of entire framework’s life cycle, design
process aims to reach objectives listed in the previous Figure[5.4] At that moment it

is important to remind that SSSDF tracks the procedure indicated in the Figure [5.10]

Q
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s y
| / \ /
3 Software Safety ] i
_____ l\ Requirements [— | Requirements | |
] \ i | speweanc

. Embedded
r

Requirement Process L Software Design & Coding Processes s
g System L
Code [ Dais
n

Test Case
Functions

P -y S 7

created

Tests & Verification Processes

Figure 5.10: Design Architecture Overview

It is also important to remember that entire endeavor undertaken to develop a safe
software system for MUAS intends to minimize efforts, documentations, resource
supply, demand for specialized labour and extensive time requirements. So that, as it
will explained in the proceeding sections of the thesis, development process’s tasks

are achieved by combining various analyses tools and/or mixing some tasks with the
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others.

Apart from Design Process’s task, from process’s milestone perspective there exists
three objectives which are Preliminary Design Review (PDR), Critical Design Review
(CDR) and Safety Reviews as shown in Figure[5.4] As mentioned above, in order to
have minimal effort, PDR and CDR will be performed together and Safety Reviews
will be fulfilled.

Detail Design With Safety Concept Entire design process is initiated from the
system concept descriptions and logical decomposition of the system is indicated as in
Figure[5.5| and Figure [5.T1|respectively. Moreover, the requirements generated in the
Requirement Process are strictly tracked and integrated in to the design. Consistent
with the SSSDF approach, three actions are considered as the PDR’s initial materials.
At this moment, in order to accomplish review tasks, abstract functional features
of software system is listed and logical design architecture is assessed whether it is

capable of fulfilling safe software requirements.
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Preliminary logical design architecture schema is drawn in the above Fig — 1017 and
detail architectures of each component are shown in [Appendix — A.3, Design compo-
nents Activity Diagrams]. The significant component indicated in the preliminary de-
sign architecture [Figure[5.11]] is Assassin Process Method (APM) which is included
into the design process due to the nature of SSSDF. Although APM component aims
to fulfill verification and system integration tests which are the tasks belonging to the
Integration Process, it is included to the software design process from begining of
entire software life cycle. Meanwhile very important safety test and assessment tool,
APM, suggested by the SSSDF starts to take responsibility to decrease safety risks

during the development life cycle.

Figure 5.12: Detailed Design Overview Of FCS With SSwDF

Consistent with the Logical Design Architecture in Figure [5.11] detail designs of
each component are developed as shown in Figure [5.12] At this point, an activity
diagrams which represents work flows of stepwise activities and actions, additionally
overall control flow are used for analyze software design. Drawing a parallel with

the SSSDF’s abstract logical design paradigm, this UML tool is implemented to not
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only design tool but also an assessment tool during the development life cycle. Rather
than using very specific and complex representation instruments, which requires spe-
cialization in computer science and experience, flow-based, activity driven, logical

activity diagrams are applied to the design process.

Using the framework’s design process methodology, software and safety require-
ments generated in the previous are realized in the design in Figure [5.12] In the
design, each software component, which are indicated as distinct actions (repre-
sented as rounded rectangles), are constructed due to their functionalities and they
are strived for being atomic. As clearly seen from the design view, flow of every ac-
tion in the software system can be traced and connections between each component

can be tracked easily.

Moreover, safety contaminated regions of the software are colored with red and cor-
responding safety actions are taken within these component’s implementation. It is
also important that, every connection to these safety contaminated regions become
safety-related parts of the entire system which can also be tracked within the design

architecture easily.

Another very significant design activity, which is Inter Process Communication Mes-
sage Design is performed, and its contribution to the overall process is evaluated. As
indicated in the above figure, each software component contains message channels
and connections to them. It is also known that entire communication and synchro-
nization are established with this architecture in the framework. In order to accom-
plish design process tasks and design analyses, these IPC messages are also designed
and identified [Figure [5.13]]. Not surprisingly and consistent with the framework’s
philosophy, all messages have logical meaning and direct maps to the software re-

quirements, especially the ones with safety-criticality label.

Applying the above mentioned architecture into the entire design which consists of
isolated and logical software components, whole system flow becomes traceable from
beginning to end and understandable to the human analyses. Owing to simplify IPC
messages and software components (visualized in the activity diagram), sequential
behaviors of the system is analyzed with sequence diagrams [Figure[5.14]]. Sequence

diagrams created in the design process provides straightforward analysis opportuni-

71



Data Acquisition Process Msg
DATAACQUSITION_PROCESS_IS_READY
HEARTHBEAT_MSG_DATAACQUSITION_PROCESS
DATAACQUSITION_PROCESS_NO_SENSOR_DATA_IN_TIME
TERMINATION_OF_DATAAQCUSITION_PROCESS
TERMINATION_OF_FLIGHTCONTROL_PROCESS
RE_CREATION_OF_TERMINATED_FLIGHTCONTROL_PROCESS

Flight Controller Process Msg
FLIGHTCONTROLLER_PROCESS_IS_READY
HEARTHBEAT_MSG_FLIGHTCONTROLLER_PROCESS
FLIGHTCONTROLLER_PROCESS_CONTINUE_WHEN_NO_SENSOR_DATA
FLIGHTCONTROLLER_PROCESS_GET_INPUT_ZERO

FLIGHTCONTROLLER PROCESS_GET_INPUT_NAN
FLIGHTCONTROLLER_PROCESS_GET_INPUT_INFINITY
FLIGHTCONTROLLER_PROCESS_GET_INVALID_OUTPUT_DATA
FLIGHTCONTROLLER_PROCESS_SENSOR_DATA_AVAILABLE
FLIGHTCONTROLLER_PROCESS_SENSOR_DATA_NOT_AVAILABLE
FLIGHTCONTROLLER_PROCESS_IN_NOT_AVAILABLE_DATA_STATUS_FOR_TWO_SECONDS
FLIGHTCONTROLLER PROCESS_BEFORETAKEOFF_CHECKS_DURATION
FLIGHTCONTROLLER_PROCESS_BEFORETAKEOFF_CHECKS_FAILED
FLIGHTCONTROLLER PROCESS_TAKEOFF_CMD_ACCEPTED
FLIGHTCONTROLLER_PROCESS_TAKEOFF_CMD_REIECTED
FLIGHTCONTROLLER_PROCESS_BEFORETAKEOFF_CHECKS_OK
FLIGHTCONTROLLER PROCESS_REQUEST_SYSTEM_STATUS_FROM_PM
FLIGHTCONTROLLER_PROCESS_REQUEST_SYSTEM_STATUS_SYSTEM_IS_OK

FLIGHTCONTROLLER_PROCESS_REQUEST_SYSTEM_STATUS_SYSTEM_HAS_ERROR

Smart Watchdog Process Msg
HEARTHBEAT_MSG_MISSING_DATAACQUSITION_PROCESS
HEARTHBEAT_MSG_MISSING_FLIGHTCONTROLLER PROCESS
HEARTHBEAT_MSG_MISSING_DATALOGGER_PROCESS
TERMINATION_OF_DATAAQCUSITION_PROCESS

Ground Control Station Communication Process Msg
GC5_COMM_PROCESS_HEARTBEAT_MSG_RECEIVED
GCS_COMM_PROCESS_TAKEOFF_CMD_MSG_RECEIVED
GCS_COMM_PROCESS_LANDING_CMD_MSG_RECEIVED
GCS_COMM_PROCESS_PARACHUTE_OPEN_CMD_MSG_RECEIVED
GCS_MISSION_PLAN_RECEIVED

GCS_MISSION_PLAN_IS_INVALID

GCS_MISSION_PLAN_IS_STORED
GCS_MISSION_PLAN_CANNOT_BE_STORED
GCS_SEND_MSG_PACKET_FCS_STATUS_OK
GCS_SEND_MSG_PACKET_FCS_STATUS_FAIL_SAFE
GCS_SEND_MSG_PACKET FCS_STATUS FCS_PREFLIGHT
GCS_SEND_MSG_PACKET_FCS_STATUS_FCS_CRUISE
GCS_SEND_MSG_PACKET_FCS_STATUS_FCS_LANDING
GCS_SEND_MSG_PACKET FCS_STATUS_FCS_EMERGENCY LANDING
GCS_SEND_MSG_PACKET_FCS_STATUS_FCS_PARACHUTE_OPEN
GCS_SEND_MSG_PACKET_FCS_STATUS_INITIALIZATION_IS_OK
GCS_SEND_MSG_PACKET_FCS_STATUS_INITIALIZATION_FAILURE
GCS_SEND_MSG_PACKET_FCS_STATUS_MISSING_MISSION_PLAN_TAKEOFF_REJECTED

FCS_HEARTHBEAT_TO_GCS_SYSTEM_STATUS_OK
FCS_HEARTHBEAT_TO_GCS_SYSTEM_STATUS_WARNING
FCS_HEARTHBEAT TO_GCS_SYSTEM_STATUS_ERROR
FLIGHT_MODE_IS_PREFLIGHT

FLIGHT_MODE _I5_CRUISE

FLIGHT_MODE_IS_LANDING
FLIGHT_MODE_IS_EMERGENCY_LANDING
FLIGHT_SAFETY_MODE IS_FAIL_SAFE
FLIGHT_SAFETY_MODE_IS_NO_FAILURE
ALL_HEARTHBEAT_MSG_OK

FROM_GCS_HEARTBEAT MSG_IS_MISSING_FOR_FIFTEEN__ SECS

Process Manager Process Msg
*Smart Watchdog Process Msgs & Fail Safe Msgs

TERMINATION_OF_FLIGHTCONTROL_PROCESS
TERMINATION_OF_DATALOGGER_PROCESS
*ALL OTHER MESSAGES OF OTHER PROCESSES

System Status Logger Process Msg

*All messages

Figure 5.13: IPC Messages Between Software Components

ties. Moreover, safety analyses of the design process can be performed efficiently
on that tool by tracking internal messages which has safety-contaminated region in-
teraction. Being a “kill two birds with one stone” activity, sequence diagram clearly
indicates safety-critical regions and contaminated areas with in the design. Besides, it
emphasizes the safety actions which are mandatory to be taken to achieve safe system

[Figure[5.15]] by marking the conditional branches in the design.

Inevitable activities in safe design such as assessments and realization of milestone
objectives (PDR, CDR, safety assessments and design reviews etc.) are performed
using the above discussed design visualization tools. Human inspections are accom-
plished with a smooth iteration and all safety requirements are evaluated by tracing
them on the design. Each safety-critical/non-safety-critical requirement are contained
in the design process phases, and flow of entire system is tracked on easy traceable

design artifacts which are also needed for safety evaluations.

In this prototype, Appendix-B contains all artifacts to analyze whether system ful-
fills every requirements and takes corresponding actions. Furthermore, analysis of
software design processes are performed by considering framework’s safe design ac-
tions which encourage modular design with logical abstraction and simple isolated

software components decomposition to reduce safety risks and eliminate single point
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Figure 5.14: Data Acqiusition Process(DAP) Sequence Diagram

failures. Especially, it is shown in the thesis that software system covers all safety
requirements and applies fault tolerant mechanisms to prototype system as indicated
by IPC messages. By tracking IPC messages on both activity and sequence dia-
grams; safety-contaminated regions in the design are highlighted and special attention

is given to these regions to reduce failure risks.

5.2.3.3 Coding Process

In the framework, coding process is initiated with previous Design Process and relies
on the coding standards identified for software development [Appendix-C]. Coding
standard consists of various implementation directives to accomplish a safe coding

process. Being a best-practices document, coding standards are one of the most im-
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Figure 5.15: Flight Control Process (FCP) Sequence Diagram

portant reviews and formal inspection guideline for coding activities.

Coding process tasks shown in Figure [5.4] expects a software team to create source
code which strictly implements design, obeys coding standards and tests the source

code.

Similar to design approach of tracking IPC messages between logically decomposed
software components; data flow analysis, interrupt analysis and throughput analysis,

all of which are coding process’s tasks, can also be performed easily.

In the prototype, apart from status and safety messages, data is also transferred by IPC
mechanism. So that it is exactly known when sensor data is transferred from which

component to others. Considering this fact, sensor data comes at each 5 milliseconds
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to DAP in the prototype system and DAP sends data to FCP. Sequential process, FCP,
computes corresponding PID controller algorithm’s equations and sends its output
data to the A/C to control flight control surfaces. After sending data to A/C, both raw
sensor data and PID output data are send to DLP to write them into a log file. Mean-
while, periodic and synchronous data acquisition loop is established for the MUAS
and data analysis is achieved by tracking IPC messages which carry sensor data and

controller outputs.
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FLOAT32 psi;
FLOAT32 hdot;
FLOAT32 elevator;
FLOAT32 aileron;
FLOAT32 throttle;

G FLOAT32 rudder;
}

Figure 5.16: Data Flow Analyses For A/C’s Sensors Data

For this prototype developed using the SSSDF for MUAS’s flight control system, the
only data structure, which is carried on message channels, is sensor data shown in
Figure [5.16] Additionally, PID algorithm output data is also send to the A/C and is
added to the analysis part. Data structures indicated in the above figure are transferred
within the message channels and due to the blocking mechanism of IPC one data
is transferred at a time to the next software component synchronously. For each
transferred sensor data, message channel connections and flow order are reviewed
with human eye and ensured that systems works properly. Furthermore, as APM is
capable to verify software system with different types of tests, automated APM tests

also indicates that software has been implemented accurately under safe development
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paradigm.

To perform interface analysis, message channels are traced together with the data flow
because they are the natural communication interfaces implemented by RTOS itself.
In other words, by tracking messages on the communication channels, data and com-
ponents interface flow analysis can be performed together. On the other hand, internal
class architecture of the software components can be analyzed simply due to the com-
ponents’ atomic nature and fully isolated separation. As each software component
only contains an intended class hierarchy with strict object-oriented design approach
of separate header and implementation files, interface analyses can be inspected by
human-eyes smoothly. Moreover, safety related messages and data structures, which
are declared to be used for same functionality, are implemented as shared libraries to
quarantine the safety regions and decrease risks caused by implementation failures of

interfaces.

Only vulnerable review activity is code peer reviews during this process. Conflict-
ing with the MUAS development paradigm, code review can definitely seem an ex-
hausting activity. However, due to the enthusiasm of the framework, if it is strictly
mandated by an outsider to have code peer reviews, it is surely possible to achieve
as framework forces coders to follow coding standards and to apply very simple,
high level, OOP coding style in their source codes. Relying on the high level im-
plementation, simplex architecture of the framework for logical design and human

understandable coding makes code review process easier.

In order to fulfill analysis and review tasks and also process’s milestone objectives,
which are Software Code Review/Formal Inspection and safety reviews, the APM
method in the framework is also integrated into the Coding Process as done in design
process. The reason of this early integration is that APM tests and evaluates safety
of the software system as coding process proceeds not only unit tests but also for
safety requirements. By the meantime, clearly during coding process, APM is used
for unit testing as it can execute a test at a time. In addition to the APM, design
process analysis tools that are activity and sequence diagrams are also major in the the
coding process. As mentioned above paragraphs, nested analyses activities performed

instantaneously during the design and coding processes are followed on the activity
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and sequence diagrams generated for the software system, and safety of the system is

automatically obtained from APM as will be discussed in detail in the next chapter.

From safety perspective, the framework ensures that even if coding process has weak-
nesses, system safety still becomes protected by APM. In other words, for all safety
requirements and probability of failure risks, APM tests source code and evaluates
how the robust software system is achieved. It is shown in the prototype that coding
process can iteratively implies safety and reduces risks automatically as framework

suggested.

5.2.3.4 Integration Process And Software System Prototype

Being a last process of the entire software development life cycle, integration pro-
cess is definitely the most important process before release of software system as a
product. Integration process consists of various review and analysis tasks to ensure
system is ready to be delivered. In that manner, what is expected from the integration
process is to prove that the software is capable to satisfy all software requirements

and it reaches the desired level of confidence for the identified safety regulation.

In the previous chapters and in each development phase, APM takes part and con-
tributes to test, analyze and assess system safety. In chapter 4, significance of APM
and why it is useful for the safe software development are explained in detail. This
section not only represents the APM’s tests and tests results but also APM itself is
evaluated for its performance and practical effectiveness through the prototype. In
order to have successful evaluation, APM is discussed for testing and review perspec-

tives.

HILS As An Integration Environment

By using the SSSDF, efforts undertaken to achieve a desired level of confidence is
minimized as the framework incorporates integration process’s tasks into the entire
development life cycle with less effort and simplex way. In other words, although the

integration process is considered as another process in the life cycle, it starts from
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very being to end of it. The smart APM approach introduced in the framework is
applied to the life cycle, and it handles almost every tasks of the integration process

itself automatically.

Indicated in the hardware architecture section, hardware integration environment of
SSSDF consists of QNX board as a target computer and hardware-in-the-loop sim-
ulation setup for MUAS model and real-time operations. Entire design, coding and
test activities are completely integrated to this HILS setup. Moreover, APM applies
assassinations to HILS to test and verify that system is safe. In the prototype, dur-
ing development, HILS and APM together accomplished both creations of test cases
and verifications of software requirements automatically and provided human under-
standable verification assessment reports. Considering that fact, in the proceeding
section, integration means integration of SSSDF generated source code, APM tool,

Beagleboard-XM and XPC-Target to device a complete prototype.

In the prototype, coding process starts with creation of PMP, DAP and FCP in the
given order after the design process. Later, APM is implemented to realize SSSDF.
Due to the same coding approach of APM, implementing APM is nothing more im-
plementing DLP, which is the fourth software component implemented. Being an
isolated and transparent software component, APM coding is a piece of cake and
initial state of the integration process. Afterwards, WDP and GCP are coded and

integrated into the system, and all software components are realized.

Integration Process’s Test Approach & APM

Considering the DO-178B and similar software assurance guidelines in integration
process, software test cases are created for software requirements which are identified
in requirements phase. Up to now verification and test approach seems identical to
the well known guidelines and their approaches. However, in this study, APM takes
charges and all test cases are combined automatically executed by APM to verify
the software and assess whether systems successfully perform as described in the
requirements. Just like an assassination to the software system, created test cases

which are organized considering for the MUAS mission profile are executed either
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sequentially or randomly. Furthermore, APM tests entire requirements, especially
the ones with safety-related label, to ensure system safety is achieved and software

behaves as indented.

The software requirements, which are identified in the requirements process in the
prototype development life cycle, have a safety-critical label to indicate the risk of
corresponding requirement. Within this study, almost every software requirement is
marked as safety-critical meaning that system has to be tested and verified for all
requirements by APM to ensure that it is confident and safe. Therefore, after APM
integration, assassination scenarios are implemented in to the APM’s code block as

shown in Figure - to assure that all SC requirements are covered.

PREFLIGHT: : TARE-OFF SUCCESSFULNESS TEST
int TCF_1(UdpConnection FudpVietim, INT3Z coidVietim)
i

// Send Correct Niasion Plar

sendTakedffCommand[0] = 1616.0: //Fa

sendTakeCf fCommand[1] = 300.0;

sendTakeOffCommand[2] = 24.0; // N n Aircs
resultldpiend = uwdpVictim->JendUdplata(sendTakeOffCommand, 24);
sleep(3):

HzglendPulse (coidViceim, -1, (PULSE_CODE_FLIGHT CONTROLLER), FLIGHTCONTROLLER PROCESS BEFORETAREOFF_CHECES _DURATION) »
sleep (3):

/ Take-Off Cmel

sendTakeOffCommand (0] = 1515.0; //Packer Heace:
sendTakeOlfCommand[1] = 2.0;
sendTake0liCommand[2] = 1516.0; // k ontrol
resulcldpSend = udpWictim—>SendUdplata(sendTakeOffCommand, 24):

return resulcldpSend:

Figure 5.17: APM Code Segment - Example To Test Case Creation

Although APM approach enables both random and sequential execution, in this pro-
totype, random execution is applied. The reason why random execution of assassina-
tions is preferred is, randomized testing provides system developer to assess whether
random creation of failures has different impact on system safety. In this way, in ad-
dition to the sequential requirement based testing paradigm suggested by DO-178B
and other guidelines, various combinations of fail conditions are tested, and system

robustness is analyzed much confidentially for these failure conditions.

APM Mission contains many Test Case Functions (TCF, as in Figure - with
a numeric identifier such as TCP_# (exp: TCP_1). TCFs can definitely create test
conditions for several software requirements. Moreover, at assassination time, each

TCP_# is called in random order and executed in the mission.
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In the prototype, many APM Missions are executed during the development to test
internal development phases. To illustrate APM and its capabilities, three missions
are selected as representatives in this chapter. In the first mission scenario, a sub-
set of safety-critical requirements is focused and APM is executed to verify them.
Drawing a parallel with the framework’s philosophy, it is indicated that APM is an
efficient tool to test, verify and assess the selected set of software components and
requirements. Therefore, during the development time, as software components are
coded sequentially, APM can be applied for only coded functionality, and can test
their safety implications. At that point, before expressing the APM missions’ execu-
tions and their assessment results, a summary of what has been done in SSSDF phases
together with APM tests can be illustrated through the real system components and

structural flow [For SW Reqs. 32] as shown in the figures below [Figures[5.18] [5.19]

REQUIREMENTS PROCESS DESIGN & CODING PROCESS

System Reguirements safety Analyses

4.1.13 Control system shall apply fauk tolerance
for minimum 2 seconds loss of senser data
accuracy.

FHA & PHA

Software Requirements

32. ASS shall check every input values
of FC5's algorithm for:

* Zero input value

* Not-A-Number inputvalue

* Infinity input value

S D B By

ré

NI I I I NI EEE NN NN NN EEEE NN NN NS EEEEEE NN NN N EEEEEEEEEEEEEEEE IIIIIIIIII'III I‘
1 SOURCE ]
Software Test Cases i CODE I
[

321 | TC-31 I I

5 Sendinvalid senser data with ZERO values to FCS algorithm. |
1. Verify FCSidentifiesinvalid data andnts invalidity type I l
322 | IC-32 I

4 Sendinvahid sensor data vithNAN valuesto FCS algorithm. I
2 Verty FCSidenifiesinvalid datm andits inv aidity type 1 1

323 | TC-33

| Sendinvalid sensor data with INFINITY vahuesto FCS algorithm | i
2 Verify FCSidentifiesinvalid data andits invalidity tvpe J 1 ]
| TestCases.h '|

\

~ /

-

Figure 5.18: Prototype Development Process with APM Tool In HILS
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Figure 5.19: Prototype Development With APM Tool In HILS - Cont.

APM Mission - 1

The automatic APM’s assassination scenarios, which are created for the prototype’s

safety critical requirements, are listed in Mission Scenario — 1 in Appendix C explic-

itly. The result of the APM Mission -1 is also indicated in Figure [5.20]

In the above assessment figure, it is shown that, for 18 requirements to be tested,
16 requirements are successfully verified, and remaining 2 requirements are failed.
These failed test cases are corresponded with the Sw Reqs.-32, which is related to
the sensor data validity during FCS calculations, have safety-critical label. During
the APM execution, For NAN and ZERO values, system failed to change its status to
Fail-Safe. So that APM Assessment Tool returned the corresponding requirements as

Failed-To-Be-Verified. After that assessment, corresponding code segment is changed

and system is tested by APM one more time as development is proceeded.
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Figure 5.20: APM Mission-1 Assessment

APM Mission - 2

As software development proceeds, additional functionalities are coded and more re-
quirements are expected to be covered successfully by APM. In addition to the 18
requirements implemented and tested above, in this Mission - #2, 26 requirements
are tested. Furthermore, in the previous mission -#1, 2 requirements were failed in
the verification tests and the corresponding code changes had been performed to cor-
rect them, meaning that these 2 requirements are expected to be verified successfully
at this mission. When APM was applied to the 26 requirements (with additional 8

requirements to the Mission - #1), the result is pretty charming and is indicated in the
Figure[5.21]

As shown in the assessment report of APM Mission - #2 in the above figure, all 26

requirements are tested and all of them are verified successfully.

Apart from verifying all requirements successfully, the cool and significant benefit
of the APM, which is re-testing all previously tested requirements together with ad-
ditional ones, can be observed easily. This re-testing (regression test) of the entire

software system also assures that subsequent requirements have no failure effect on
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Figure 5.21: APM Mission-2 Assessment

the system and do not create side-effects on the previous healthy software applica-
tion. Furthermore, iterative testing approach applied by the APM proves that veri-
fication tasks in the development life cycle can be achieved easily and accurately at
any time during the process. Therefore, as SSSDF aims to device a simple devel-
opment paradigm for safe MUASS, this iterative and comprehensive mission-based
APM approach can be considered as a handy tool to have more confident software

systems.

APM Mission - 3 and 4

As the prototype aims to develop a flight control software for a MUAS, flight con-
trol algorithm (controller) is implemented into the MUAS’s software system. The
implemented controller is designed to perform altitude, speed and bank-angle hold

operations for a MUAS.

In missions 3 and 4, impact of the safe software development is assessed from another
perspective to discuss its importance. By changing the controllers (controller with

different performance characteristics), reliability of the MUAS and the impact of the

83



SSSDF to the entire system safety (considering reliability as an only parameter) is

evaluated.
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Figure 5.22: Good Performing Controller’s Altitude Hold Performance
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Figure 5.23: Bad Performing Controller’s Altitude Hold Performance

In first two of the figures, different flight controller algorithm (controllers) implemen-
tations are analyized for their altitude hold performances. Considering both of them,
it can be seem that, controller implemented in the Fig {5.22] performs better with re-
spect to the controller illustrated in Fig It is obvious that, for control-people,
the controller in the Fig {5.23]is a bad controller to implement when compared to
the controller in Fig {5.22] So, let say “good controller” for the better performing
controller in Fig and “Bad controller” for the other one. Both APM scenario

terminate with "kill engine" command.
In Mission - 3

[lustrating the algorihms which perform altitude hold operation, and trying to achieve

%100 airborne MUAS for a flight mission, the focus in this experiment is given to the
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effects of SSS implementation by using SSSDF and APM. So that, in order to identify
SSSDF’s impact to the entire system, some parts of the good controller’s source code
was changed to put software system vulnurable to some failure conditions. In another
saying, the code segments, which enable recovery mechanism, was commented out
and system kept open to these types of failures. Besides, both APM scenario terminate

with "kill engine" command to demostrate direct flight termination.

In fig {5.24] the response of the bad controller in the software system in which APM
executes to test, can be seen. It is clear that, the performance of the bad controller is

awful and can not be realized in a real MUAS.
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Figure 5.25: APM Applied to "Good Controller"

However, from “safety” perspective, MUAS was still airborne and did not crashed.
Moreover, the APM assessment for this software system is “% 100 Safe” as expected.

In this way, especially considering the civil purpose MUASSs , this characterisitic
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of the system is safe (when realiability of the system is evaluated as an only safety

parameter).
In Mission - 4

On the other hand, In Fig {5.25] good controller-implemented software system is
tested with APM and corresponding assessment result was given as %72,22. In the
figure, what can be inferred is system performs better than the previous controller
from algorithmic and perfomance perspective, however it fails to complete its mission
and crashes when an error condition is triggered by APM. The red squares marked
on the figures represents the instant times when system was crashed and continued
to operate for good-controller and bad-controller implemented systems respectively.
Therefore, although "good controller" has a better perfomance than the bad one, it is

not safe and has to be assured before start its flight operations.

Although this is not a controlled experiment, what is emphasized is to show that, as
well as the control algorithm itself, the way it is implemeted also has a great signif-
icance on the system safety. For this experiment, reliability of the system during its
flight operation is taken into accout as an only safety parameter. Under this circum-
stances, system is proved that SSSDF and APM could ensure system safety level for
different systems. Hence, remembering the fact that, for civil purposes, MUAS can
not crash in the populated areas and has to be assured that it will never crash. So that,
this experiment demonstrates that, SSSDF and APM helps developers to improve
confidence level of a MUAS’s software system by following an easy, systematic and

comprehensive approach.

5.2.4 Assessment Using SSSDF’s APM Assessment Tool

Test and verification activities performed by APM, which require time, effort, re-
source and experience, are mandatory to achieve a safe and airworthy MUAS. As
indicated in previous sections, APM handled verification tasks and responded with
assessment results for tested software requirements. Furthermore, traceability of the
requirements is achieved, additionally tests and requirements coverage are satisfied

as indicated in the APM Assessment GUI’s result monitor [Figure [5.21]].
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This characteristic of APM makes SSSDF intelligent, easy, comprehensive and safe
tool to develop safe MUAS. In this way, as each APM execution performed, system
is always tested repeatedly for all requirements, so that developers might always feel
themselves comfortable during development and at release times. In this way, APM

acts similar to the regression test performer.

Considering the above facts, it is clear that reviewing only source text files which
are supplied to APM Assessment GUI, software system safety can be analyzed for
entire flow, requirements and safety mechanisms. Moreover, human readable APM
Assessment results such as "%80 SAFE!" respresents system safety status clearly and
developers can use the tool confidently without gaining extensive expertise about SSS

test methodologies.
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CHAPTER 6

CONCLUSION

In this thesis Safe Software System Development Framework (SSSDF) for MUAS
development is introduced to achieve safer software systems and SSSDF is applied to
hardware with HILS setup to create a prototype, which demonstrates whether applica-
tion of this framework is accurate and efficient to accomplish safety goals. Moreover,
for software tests and verifications, a unique, automated and intelligent tool, Assas-
sin Process Method (APM) is introduced and used to improve software integration

process efficiency.

Considering the existing airborne SSS guidelines, which discuss and handle safety
concepts with generic, multi-stage and state-of-art approaches, SSS development for
mini unmanned aerial vehicles becomes impractical to be applied by using these
guidelines due to their extensive resource needs which conflicts with the MUAS de-
velopment paradigm. Although these guidelines are successfully processed during
the software development life cycle for bigger aerial systems, tight resource limita-
tions such as time, budget, work force, experience etc. for MUAS development and
also non-MUAS specific nature of these guidelines, enforce creation of practical SSS
framework for MUASSs. In the meantime, SSSDF can be considered as a projection of
known guidelines about software systems safety to MUASS, to specifically generate
more efficient, practical, comprehensive, motivating, safety-oriented, easy and accu-
rate development process. In this study, simplicity and efficiency of the SSSDF is
shown clearly after SSSDF is successfully implemented to a deviced MUAS software
system prototype.

SSSDF simplifies design and coding processes of MUAS’s software development life
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cycle as it provides smooth and straightforward methodologies which apply logical,
abstract and flow-based development steps to decrease complications and increase
understandability. This distinguishing nature of the SSSDF contributes to elimina-
tion of risks which might be caused by the complex architectural design and coding.
Furthermore, safety contaminated regions in the design can be easily identified and
traced by human eyes as SSSDF’s approach encourages system developers to peri-
odically review the software’s flow to cover safety-related requirements. Although
SSSDF does not suggest strict fault-identification and fault-tolerant algorithms to be
applied, it is perfectly capable to integrate corresponding mechanisms into itself to
achieve much confident software systems. Focusing on the reliability of the MUAS’s
software systems, SSSDF proves that it can handle single-point failures and isolate
safety contaminated regions from entire system. Additionally, isolated software com-
ponents recover themselves when failure conditions occur. Together with increased
reliability and reduced risks of single point failures, SSSDF improves robustness of
the entire software system as it spreads these practice to entire system and includes

safety notion in each development step.

Verification, test and assessment activities performed during the SSS realization cycle
are the most overwhelming, time taking and costly operations not only for MUASs
but also for bigger manned/unmanned systems. The SSSDF proposed in this study
handles these difficult tasks by effective and practical solutions by inventing a unique
Assassin Process Method (APM) as a tool to reach previously mentioned safety goals.
Being a comprehensive, user friendly, easy and automatic tool, APM accomplishes
its objectives easily due to its mission-based, real-time, integrated-to-system and
flow-oriented test and verification approaches. Moreover, human readable (under-
standable) safety assessments which are generated by the APM’s Assessment GUI
increases usability and accuracy of APM for small MUAS development teams. With
this nature of APM, software test assessments including requirement coverage and

traceability analysis can be performed with "a Blink".

During prototyping, SSSDF is strictly followed to generate MUAS’s SS with safety
objectives that are identified for the entire system. The success and accuracy of the
framework is investigated using the prototype for whether SSSDF can achieve SSS

by using the framework and by spending reasonable effort and time. Furthermore,
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prototype software is tested automatically in HILS environment using APM for soft-
ware requirements to increase confidence of the system and to reduce the identified
software system risks. Satisfactory APM test results and assessment reports are ac-
complished as SSSDF claims to provide by APM Assessment GUI. Hence, SSSDF
and its APM approach are evaluated for being an accurate, comprehensive and prac-

tical tool to realize safe software system development for MUASSs.

Considering all the features and contributions of the SSSDF and its APM approach,
additional evaluations can be performed for APM in the future to improve their con-
fidence levels. As APM injects additional process into the software system’s integra-
tion environment, it is expected to have a performance impact on the entire software
system due to its CPU utilization and memory usage. In this study, this challenge
is neglected as system executions with APM performs without causing any unex-
pected situations and malfunctions. However, from software engineering perspective,
APM’s exact perfomance impact has to be assessed, and so that has to be remarked
as a futurework. On the other hand, as critical systems are tested for their executions
under stress loads, this APM concept can also be considered as a kind of stress test-
ing. Restating the fact that, APM tests, which are performed in this thesis study and
prototyping, did not cause an obvious inaccuracy for system’s executions and perfor-
mance. Although APM’s process is not expected to have a significant perfomance
impact on the entire system, its effects have to be evaluated in the future studies to

take every system’s effecting parameters under control.

In conclusion, SSSDF framework has successfully applied SSS development phi-
losophy to small unmanned aerial system with its specific methodologies and tools.
Design, coding and integration activities of SSS development are all handled by com-
prehensive SSSDF with minimum effort proving that it is practical, efficient and ac-
curate to reduce risks and achieve safer software system. Moreover, the unique APM
approach contributes safety of an entire software system at any development phase
with its easy usability, automatic operability, and mission-based safety-critical re-
quirements’ verifications at real-time hardware integration environment. Human un-
derstandable APM assessments for software requirements’ tests increases motivation
of developers to include safety concept into their development process as SSSDF and

APM handles safe development objectives with systematic, straightforward and easy
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instructions. Drawing a parallel with small unmanned system development paradigm,
SSSDF approach suggested in the thesis is perfectly capable of handling safe software
development tasks and increases entire system safety satisfactorily with less resource

consumption.
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APPENDIX A

REQUIREMENTS PROCESS

A.1 System Description Document (Initial System Requirements)

MINI UNMANNED AERIAL SYSTEM (System Specifications Document)

System Components

(a) Unmanned Aerial Vehicle(UAV): It should be complete in all aspects of elec-
tronics, sensors, platform, control mechanism, on-board camera as a payload,
trans-receivers , on-board batteries and packing case etc.

(b) Ground Control Station: It should be complete in all aspects of hardware and
software to launch, navigate, trans-receive data, monitor UAV and GCS current
state, land and to have video from on-board camera as well as to complete
mission.

Physical Characteristics

(a) It should be man portable and light weight but also be sturdy not to be damaged
easily.

(b) It should have sufficient safety features for operators, crew and equipment’s
in the vicinity as well as in the environments which have possible civilization
interaction.

(c) It should be able to sustain minor adverse weather conditions such that light
wind, low humidity, light drizzle, etc. and recover safety.

(d) It should be packed in a way that environmental adverse effects can be elimi-
nated.

Operational Characteristics

(a) It should have the capability to take-off and land without any need to runway.
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(b) It should have the capability to flight autonomously with the mission that is
pre-programmed in GCS and the GCS undertakes the autonomous operations.

(c) Unmanned Aerial System should have the capability to communicate through
wireless communication between UAV and GCS.

(d) Each subsystem’s flight related parameters should be able to observe through
GCS.

(e) All on-board systems should be powered from rechargeable batteries to satisfy
desired endurance.

(f) It should have autonomous return home, etc. provisions to satisfy safety/con-
trol.

(g) Itshould have the capability of transmitting stable, real-time, continuous videos
and still images from payload to GCS within its operational range.

(h) It should have the some sort of caution/advisory mechanism together with fail
safe mechanism.

Operation and Maintenance

(a) Ease of Operation and Maintenance: It should be easy and simple to operate.
All components should be modular in nature with connectors for interchange
ability.

(b) Self Diagnostic Check: It should be capable of automatic hardware and soft-
ware self-checks every time before operation.

(c) Ruggedness: It should be sturdy and robust for everyday handling and usage
by soldiers.
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A.2 Autopilot System Technical Requirements

AUTOPILOT SYSTEM TECHNICAL REQUIREMENTS DOCUMENT

1 Air Vehicle Operational Conditions

1.1 Autopilot System shall be able to control the air vehicle under the following con-
ditions.

Min. 300m AGL (Above Ground Level)

Altitude Max. launch at 2500m AMSL (Above Mean Sea
Level)
Range Min 5 km
Endurance Min. 30 minutes

Speed Range 45-130 km'h speed range
Wind Speed Upto 25km'h

Take-off Type Hand Launched

Landing Type Belly Landing

® Re-chargeable on-board battery
+ DBattery with 12-18V dc, Max 1A

Figure A.1: Table Of Specifications

Power Supply

2 Ground Equipment & Data Link

2.1 Items of Ground Equipment and Data Link

2.1.1 Control/Telemetry Data Link Equipment for 2.4 GHz frequency range shall be
supplied.

2.1.2 Data Link

2.1.2.1 Control / Telemetry range
e The control/telemetry communication range shall not be less than 5 Kilometers.
2.1.2.2 Control / Telemetry Transmission

e Control Telemetry Link shall be duplex and shall include the following infor-
mation at minimum:

Uplink

a) Mission Plan

b) Flight Control Commands including velocity, altitude and heading com-
mands.
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c) Hearth Beat Message
Downlink

a) Vehicle Status Information including mission plan status, engine on/off
status.

b) System Flight Status (System OK, System Failure etc.)
c) System Telemetry
d) Hearth Beat Message

2.2 Ground Control Software Capabilities
2.2.1 Ground Control Software operator interface shall offer language customization.

2.2.2 The Ground Control Software shall provide means to create a mission plan to
perform flight.

2.2.3 The Ground Control Software shall monitor mission plan status.

2.2.4 The Ground Control Software shall provide means to reconfigure mission plan
during flight.

2.2.5 In real time, the Ground Control Software shall monitor the following on the
map/graph displayed at Ground Control Software at minimum:
a) Geographical position of the Aerial Vehicle, Target and the Ground Control

Software.

b) The slant range difference between the Ground Control Software and the Aerial
Vehicle.

¢) The payload sight (dashed on the map)
2.2.6 The Ground Control Software shall monitor following information at minimum:

a) Vehicle status including sensors status and data link connected status, engine
status, and operational limits exceeding status.

b) Aerial Platform Altitude AMSL

¢) Aerial Platform Altitude AGL

d) Navigation Solution (A/C attitude and position)

e) AGL Information (0-150m range at minimum)

f) Sensor Telemetry

2.2.7 The GCS shall calculate and monitor the bearing angle in degrees.

2.2.8 The Ground Control Software shall record telemetry data.
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2.2.9 Recorded telemetry data shall be replayed upon request by the operator at the
Ground Control Software.

2.2.10 GCS software shall represent AC orientation (pitch and roll) using the artificial
horizon.

3 Environment

3.1 The Control / Telemetry data monitoring rate on the GCS shall not be less than
1Hz.

4 Autonomy

4.1 Autonomous Operations

4.1.1 Control system accuracy / attitude accuracy shall be accomplished by dedicated
control algorithm in real-time.

4.1.2 Autopilot system shall perform AFCS algorithms to control A/C.

4.1.3 Autopilot system shall control A/C starting from it is powered to A/C lands and
unpowered.

4.1.4 In autonomous operation, the aerial vehicle shall only perform autonomous
flight for the GCS created and sent mission plan.

4.1.5 Autopilot shall flight A/C after it receives “Take-off” command from GCS.

4.1.6 Autopilot system shall enable A/C to take-off if system works properly for dur-
ing confident time.

4.1.7 Autopilot system shall be ready flight at maximum 2 minutes.

4.1.8 In autonomous operation mode, upon a single command at the ground control
Software, the mission shall be aborted and the Aerial Vehicle shall perform “Landing”
operation.

4.1.9 In autonomous operation mode, upon a single command at the GCS, the A/C
shall abort its ongoing mission and start executing the new mission transmitted from
the GCS through the data link.

4.1.10 In autonomous mode, altitude at waypoint should be reconfigurable from the
Ground Control Software.

4.1.11 In autonomous mode, airspeed at waypoint should be reconfigurable from the
Ground Control Software.

4.1.12 Autonomous system shall periodically notify GCS about its status as “OK” or
“Failure”.
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4.1.13 Control system shall apply fault tolerance for minimum 2 seconds loss of sen-
sor data accuracy.

4.1.14 Control system shall have Emergency Landing Mode when system has non-
tolerable failures.

4.1.15 Autopilot system shall record system status information in a log file.
4.1.16 Autopilot system shall record sensor and control data in a log file.
4.2 Autonomy In Link Loss Conditions

4.2.1 In case of link loss system shall notify GCS.

4.2.2 In all modes, upon link loss for a user specified time, the aerial vehicle shall
have the capability to perform autonomous landing to the take-off location (“‘back
to home”) or to another user specified landing point. SYSTEM should perform au-
tonomous landing.

4.2.3 In case of GPS signal loss, SYSTEM should follow Emergency Landing proce-
dure.

5 Development

5.1 Authorized operator should be able to change gain values/fine tune parameters
form Ground Control Software in case of a change on the platform.
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A.3 System Safety Assessment

A.3.1 Preliminary Hazard List

Hazard No

Hazard Name

Hazard Causal Factor

1

Errant Air Vehicle

1y
2)
3)
4)
5)

6)
7

8)

9)

Error in Flight Control SW
Error in sensors

Error in servos

Error in Navigation SW

Mechanical failure in flight
control fins

Maintenance faults

Intentionally send improper
user commands — user faults

Failure in avionic processing
components/HW

Loss of communication

Errant Flight on the
Flight Path

1y
2)
3)
4)
5)

6)

7

8)

9)
10)

Error in Flight Control SW
Error in sensor

Error in servos

Error in Navigation SW

Mechanical failure in flight
control fins

Intentionally send improper
user commands — user faults

Failure in avionic processing
components/HW

Failure to receive user com-
mand

Loss of communication

Operational/Environmental
limits exceed (strong wind etc.)

Exceeding operational
flight range

1y
2)
3)
4)
5)

6)

7)

8)

Error in Flight Control SW
Error in sensor

Error in servos

Error in Navigation SW

Failure to monitor A/C position
in GCS

Failure to receive user com-
mand

Operational/Environmental
limits exceeds

Loss of communication
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Errant Take-off

b
2)
3)
4)
5)
6)

7

8)

9)

User fault during launching
Error in Flight Control SW
Error in sensors

Error in servos

Error in Navigation SW
Mechanical failure in flight
control fins

Intentionally send improper
user commands — user faults
Failure in avionic processing
components /HW
Operational/Environmental
limits exceed (strong wind etc.)

Flight without mission
plan

2)

3)

4)

5)

0)

7

8)

Inadvertent erase mission plan
during flight

During re-planning erase the
mission plan and fail to install
new plan

Failure reading memory seg-
ment that keeps mission plans
Termination of process which
reads/writes mission plan
Intentionally send improper
user commands — user faults
Failure to monitor the comple-
tion of installing mission plan
Failure to check missing mis-
sion plan

Loss of communication

Failure to re-configure
mission plan

D

2)

3)

4)

During re-planning erase the
mission plan and fail to install
new plan

Termination of process which
reads/writes mission plan
Intentionally send improper
user commands — user faults

Loss of communication

Failure to process ‘“go
back home” command

D
2)

3)

4)

Loss of communication

Failure to receive/identify com-
mand message

Failure to send command from
GCS

Error in SW implementing
communication protocol
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Errant Landing

1y
2)
3)
4)
5)
6)
7
8)
9)
10)

1)
12)

13)

14)

15)

16)

Error in Flight Control SW
Error in sensors

Error in servos

Error in Navigation SW

Mechanical failure in flight
control fins

Intentionally send improper
user commands — user faults

Failure in avionic processing
components /HW

Failure in parachute
Failure in airbag mechanism

Operational/Environmental
limits exceed (strong wind etc.)

Loss of communication

Failure to receive user com-
mand

Failure to send command from
GCS

Failure to monitor A/C position
in GCS

Inadvertent erase mission plan
during flight

Missing landing mission plan

Failure to store take-off
position

y)

2)
3)
4)

Inadvertent erase mission plan
during flight

Error in sensors

Error in Navigation SW

Failure in avionic processing
components/HW

10

Exhaust Battery

1)
2)

3)

4)

Improper batteries

Not completely charged batter-
ies

Error in hardware which causes
extra battery consumption

Error in battery monitoring

Loss of communication
between autopilot and
GCS

1
2)
3)
4)

5)

Failure in heartbeat messages
Error in data link HW

Error in SW implementing
communication protocol
Failure in entire SW compo-
nents (autopilot and GCS)
Failure in OS to handle high
load SW operations
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12

Failure to monitor au-
topilot flight mode sta-
tus

D
2)
3)
4)

5)

Loss of communication
Failure in GCS

Error in SW implementing
communication protocol
Failure in the autopilot status
sending process

Failure in autopilot to detect its
status

13

Inadvertent  Take-off

mode on

b
2)

3)

Loss of communication
Intentionally send improper
user commands — user faults
Error in SW implementing
communication protocol

14

Inadvertent Landing

1)
2)

3)
4)
5)

Loss of communication

Intentionally send improper
user commands — user faults

Error in Flight Control SW
Error in sensors

Error in SW implementing
communication protocol

15

Inadvertent Emergency
kill engine mode on

b

2)
3)
4)
5)

Intentionally send improper
user commands — user faults

Error in Flight Control SW
Error in Navigation SW
Error in sensors

Error in SW implementing
communication protocol

16

Failure to activation of
kill engine mode off

1y
2)

3)
4)

Loss of communication
Intentionally send improper
user commands — user faults
Error in Flight Control SW

Error in SW implementing
communication protocol

17

Failure to monitor for
flight mode changes

b
2)
3)

Loss of communication
Failure in GCS

Error in SW implementing
communication protocol




18

Processing inadvertent
velocity, altitude and
heading commands at
autopilot

1
2)

3)

Error in SW implementing
communication protocol

Fail to check data appropriate-
ness

Errors in GCS implementation
for numeric data command in-
serts

Intentionally send improper
user commands — user faults

19

Failure to process user
velocity, altitude and
heading commands

1Y)
2)

3)

Loss of communication

Error in SW implementing
communication protocol
Intentionally send improper
user commands — user faults

20

Failure to send heart-
beat message

1y
2)

Loss of communication

Error in SW implementing
communication protocol

21

Failure to receive heart-
beat message

1y,
2)

Loss of communication

Error in SW implementing
communication protocol

22

Failure to modify gain
values parameters

1y,
2)

3)

4)

5)

Loss of communication

Fail to check data appropriate-
ness

Failure at autopilot memory to
save changes

Error in SW implementing
communication protocol
Failure in GCS

23

Failure to receive heart-
beat message

1y,
2)

3)

4)

Loss of communication

Fail to check data appropriate-
ness

Intentionally send improper
user commands — user faults

Ability to change at flight time
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A.4 Functional Hazard Analysis
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Figure A.2: Functional Hazard Analysis
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Figure A.3: Functional Hazard Analysis - Continue
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Figure A.4: Functional Hazard Analysis - Continue
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APPENDIX B

DESIGN PROCESS

B.1 Initial Concept Design

Avionics
Power AFCS
Sensors . Servos ' CPU i
GCS Communication

Component

Power for
GCsS

. Flight Control Software For MUAS

. Safety Regulations

- Ground Control Station Components

Figure B.1: Initial Concept Design
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B.2 Detail Design

B.2.1 Detail Design Overview - Activity Diagram

Figure B.2: Detail Design Activity Diagram
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B.2.2 Data Acquisition Process - DAP

Data Acquisition Process - DAP

-
Connect To
Data Port [

Listen Data
Port

Synch

Iz_Drata_Available

Send Data
To Next
Process

Ack Msg To
Mext
Process

|

Conn lo FCP

_ _ _~—_ppend Msqg
aflows ToFCP
Message Passing

Figure B.3: Data Acquisition Process - DAP

B.2.3 Flight Controller Process - FCP

(@ Flight Controller Process - FCP

Check Flight ]

System Status

Invalid

Check Data

Conn To WDP

Validty

Check Data
Validity

-7 Data Received PID Controller

Recv Msg | _ _ -
From DAP
Msg Chn| FCP

Ack Msg

Invalid

Received

PID Controller Output Data

Valid

Failure

Status

Conn

Figure B.4: Flight Controller Process - FCP
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B.2.4 Data Logger Process - DLP

Data Logger Process - DLP

. - Open Log
File

-
== Log Data

Figure B.5: Data Logger Process - DLP

B.2.5 Smart Watchdog Process - WDP

e Smart Watchdog Process - WDP N

Status Error

Has Time
Cornetraint

Recv From
DAP

Mo Status Emor

Check
Timeouts

N1

b
i

Recv From
FCP

Recv From
DOLP

h4

=
Inform PMP

Log Status

Conn To PMP

3

I I

: Send : Send

|_ =={Pulze To ; Puse To
PMP ->| s

Figure B.6: Smart Watchdog Process - WDP
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B.2.6 Process Manager Process - PMP

Recv From| _
WDP 1
1
1

Process Manager Process - PMP

. = Create Coor dinate Check Init
\Processes Processes Status

Emor Msg

=~ Identify
Messages

Signal ChnTo DAP

[To FCP

Program Starts

Save System
Status Info

Get System
Status Info D DOLE

ConnfTo SLP

Figure B.7: Process Manager Process - PMP

B.2.7 Status Logger Process - SLP

p:

Status Logger Process - SLP

MNot-Created

Recv From . =
DAP
Recv From Mag [Chn SLP
FCP Created
Recv From /J"’
WDP Keep Msg
Log

Fecv From
PMP

b

\/

| Re-try File
Creation

o

Figure B.8: Status Logger Process - SLP
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B.2.8 GCS Communication Process - GCP

Ground Station Comm Process - GCP
Recv From
GCS CommiE — —— —;
Port :
Y
Recv Msg - |ldentify GCS
From GCS Msg
\
et Hon-Periodic
P dic M
= fo FCP
Reve From
FL Comn [fo WDP
i Msg Chnt GCP
‘___;),. ~ficentityFes )~ (Send Msg To Send To GCS
1 msg | scs Comm Part
k- .

Figure B.9: GCS Communication Process - GCP

B.3 Assassin Process Method- APM

'/F Assassin Process - AP
Browse Victim
— Processes
Choose Test
Case Chn| Connect Send
. ._ _____ Assassin
Mo incoming IR e Msg
Msg - Msg Chn \ wsend s
Run Test Case (‘
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Final

&

Figure B.10: Assassin Process Method - APM
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APPENDIX C

CODING & INTEGRATION PROCESS

C.1 Software Requirements & Test Cases

DEFINITIONS AND TERMS
Autopilot Software System, ASS: ASS is the software which handles all flight related operation on a MUAS automatically
by software itself.
Aireraft, A/C: Aircraft is the intended small aerial vehicle for which the ASS is developed during the MUAS development
process.
Flight Control Software, FCS: FCS is the subcomponent of ASS which handles flight control algorithm computations and
algorithm related operations.
AUTOPILOT SOFTWARE SYSTEM (ASS) FLIGHT MODES
1. ASS shall have the following flight modes during the operation. 11,413
* Pre-Flight
» Cruise
¢ Landing
Z Pre-Flight Mode is the first mode of software svstem when it is powered and A’C s on the ground. 4.13
3 Cruise Mode is the second mode after Pre-Flight when A/'C is flying autonomously. 113
4. Landing Mode is the mode when A/C quits cruise mode and performs landing operation. 413
ASSFLIGHT SAFETY MODES
-1 * Fail-Safe 4.1.12, s.C
® Emergency Landing 4.1.13.4.1.14
6. Fail-Safe Mode 15 a flight mode when system detects failure'failures in the system which might cause A/C to crash, loss, 4.1.12, s.C
damage, injury etc. and triesto prevent/'minimize effect/effects of failure/failures. 4.1.13,4.1.14
A Emergency Landing 1s a mode when A/C starts to land due to the fatlure conditions which occur during flight. 4.1.12 S.C
ASS FEATURES
8. ASS shall start its operation at Pre-Flight mode when system power is given for the first fime. 4.1.3
B |ICL
1 1. Verify svstem mode status is Pre-Flight Mode when the power to the system is given first time.
9, ASS shall operate at least 30 minutes. 1.1
2 1 S 1 6
1. Verify that ASS executes at least 30 mimites without halting after system is powered.
10. ASS shall be ready at minimum 2 minutes to operate. 4.1.7
10.1 | TC-3: Verifv that ASS initialization process and Pre-Flight durarion take maximum 2 minutes.
1. Power on system.
2. Start time count from power on to beginning of READY TO_TAKEOFF status,
3. Check time duration is less than 2 minutes.

Figure C.1: Test Cases & Software Requirements, Part-1
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11. ASS shall recerve heart beat message from GCS at 1Hz 31 5.C
11.1 | TC-4: Venifv that ASS recerve heartbeat message from GCS at | HZ

1. After power on, wait for 30 seconds and count the number of received heartbeat messages.

2. Verifv that ASS received 30 heartbeat messages

12. ASS shall change its flight mode to Fail-Safe when there is no heart beat ! ing from GCS for 15 seconds. 423 5.C
12.1 | TC-3: Verify that ASS changes its safety mode to Fail-Safe when sequential heartbeat messages are missing for 15 seconds.

1. Close connection berween GCS and ASS for 15 second and verify that ASS safety mode changes Fail-Safe.

13. ASS shall notify GCS about flight mode of the FCS during flight. 4.1.12, 421 5.C
13.1 | TC-6: Verify ASS notifies GCS about ASS’s flight status.

1. Verify ASS sends Pre-Flight mode status to GCS after power on

2. Verify ASS sends Cruise mode status when Take-Off command received.

3. Verifv ASS sends Landing Mode status when Land command isreceived.

14. ASS shall notify GCS about safety mode of the FCS during flight. 41.12.421 5.C
141 | TC-7:

1. Verify ASS sends Fail-5afe mode status when is in Fail-Safe mode.

2. Verify ASS send Emergency Landing mode status when system is in Fail-Safe Mode for 2 seconds and in Emergency

Landing mode.
Pre-Flight Mode Features
15 ASS shall notify GCS that system mode is “Pre-Flight”. 4.13 5.C
TC-8:
1. Verify ASS sends Pre-Flight mode status when is in Pre-Flight mode.
16. ASS shall be able to apply “Take-off” command received from GCS when it is in the Pre-Flight Mode. 4.1.5 5.C
16.1 | TC-9:

2. Verifv system is not in Pre-Flight mode.

3. Send take-off command to FCS

4. Verify FCS does not apply Take-off Command.

16.2 | TC-10:

1. Verify system is in Pre-Flight mode.

2. Send take-off command to FCS

3. Verifv FCS applies Take-Off Command.

17 ABS shall mitialize FCS at Pre-Flight Mode. 4.1.6
17.1 | TC-11:

1. Power on the system

Figure C.2: Test Cases & Software Requirements, Part-2

2. Count for 15 seconds.

3. Check Pre-Flight Initialization Status is OK.
17.2 | TC-12:

1. Verify that FCS valid mission plan.

2. Prevent sensor data arrivals 1o FCS.

3. Imitiate Pre-Flight check operations.

4. Verify FCS Pre-Flight Mode 1s Failure.
17.3 | TC-13:

1. Verify that FCS valid mission plan.

2. Send invalid data to FCS.

3. Initiate Pre-Flight checl operations.

4. Venify FCS Pre-Flight Mode 1s Falure.

18. ASS shall notify GCS when FCS initialization status as OK when initialization is completed without any failure. 4.1.6 5.€
18.1 | TC-14:
1. Verify FCS generates Pre-Flight iitialization status message when imitialization is OK.
19. ASS shall notifyy GCS when FCS mitialization status as ERROR when initialization is completed with at least one failure. 4.1.6, 5.C
19.1 | TC-15:
1. Verify FCS generates Pre-Flight initialization status message when initialization has fafled.
20. ASS shall be able to operate a user-defined mission plan written in mission plan file. 414
20.1 | TC-16:

1. Send Mission Plan to FCS.

2. Verify FCS operates at altitude and speed defined on mission plan.

21 ASS shall be able to stors a user-defined mission plan. 414 5.C
211 | TC-17:

1. Send Mission Plan to FCS.

2. Verifv FCS saved the mission plan.

22, ASS shall permit flight operation only a mission plan is stored on the ASS. 4.1.4 5.C
22.1 | TC-18:

1. After power on and Pre-Flight initialization status is ok, verify that there is no mission plan saved inFCS.

2. Send Take-Off command.

3. Verifv FCS denied take-off.

22.2 | TC-19:

1. After power on and Pre-Flight mitialization status is ok, send invalid mission plan to FCS.

Figure C.3: Test Cases & Software Requirements, Part-3
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2. Send Take-Off command.
3. Verifv FCS denied take-off.
22.3 | TC20:
1. After power on and Pre-Flight mitialization status is ok, send valid mission plan to FCS.
2. Send Take-Off command
3. Verify FCS accepted take-off command and FCS flight mode is cruise.
230 ASS shall notify GCS that operation is net permitted without any mission plan on ASS. 4.1.4 5.C
231 | TC-21:
1. Verify that FCS gend notification in case Take-Off command is rejected due to the improper mission plan status.
24, ASS shall fly at altitude defined at mission plan. 4.1.4,4.1.9, 5.C
4.1.10
241 | TC-22:
1. Verify that A/'C flights at the altitude defined in mission plan.
25. ASS chall fly at speed defined at mission plan. 4.1.4,4.1.9, 5.C
4.1.11
25.1 | TC-23:
1- Verifv that A'C flights with the speed defined in mission plan.
26. ASS shall check sensor data format and validity for 30 seconds in the Pre-Flight mode and store the status of it. 4.1.4,4.1.6 5.C
26.1 | TC-24:
1. Power on the system.
2. Count for 30 seconds.
3. Verifv FCS denied receives valid data from sensors.
4. Verify that Pre-Flight data validitv status 1s OK.
26.2 | TC-25:
1. Change FCS's status to power on stafus.
2. Send invalid data for 30 seconds.
3. Count for 30 seconds.
4. Verify that Pre-Flight data validity status is Error.
27. ABS shall only permit flight operation when FCS initialization and data format/validity checks are performed and GCS user | 4.1.6,4.1.5 5.C
“Take-Off” command is received.
27.1 | TC-26:
1. Put FCS into power on state.
2. Send valid mission plan.
Figure C.4: Test Cases & Software Requirements, Part-4
3. Enable valid sensor dara to arrive FCS
4. Send Take-off command.
5. Verify that FCS is in Cruise Mode.
Cruise Mode Features
28. ASS shall notify GCS that system mode is “Cruise”. 4.1.3 5.C
28.1 | TC-27:
1. Verify that FCS send Cruise notification to GCS
29 ASS shall perform FCS algorithms to control A'C’s fins. 411,412 5.C
29.1 | TC-28:
1. Verify that FCS algorithm 1s implemented in to the ASS.
30. ASS shall receive sensor data at 200 Hz from corresponding hardware components to use it m FCS algorithm. 4.1.1,4.1.2 5.C
30.1 | TC-29:
1. Put FCS into power on state.
3L ASS shall check sensor data format and validity before using it mFCS. 4.1.6,4.1.13 5.C
311 | TC-30:

1. Send invalid sensor data to FCs algorithm.
2. Verify FCS identifies invalid data.

32. ASS shall check every mput values of FCS's algorithm for 4.1.13 s.C
* zeroinput value

* Not-A-Number input value (NAN)

¢ Infinity input value

321 | TC-3L:

3. Send invalid sensor data with ZERO wvalues to FCS algorithm
1. Verify FCS identifies invalid data and its invalidity type.

32.2 | TC-32:
4. Send invalid sensor data with NAN values to FCS algorithm
2. Verify FCS identifies invalid data and its invalidity type.
323 | TC-33:
1. Send mvalid sensor data with INFINITY values to FCS algorithm.
2. Verify FCS identifies invalid data and its invalidity type.
35 ASS shall check FCS's outpur data validity. 4.1.13 5.€
331 | TC-34:

1. Send invalid sensor data to FCs algorithm.

Figure C.5: Test Cases & Software Requirements, Part-5
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2. Verify FCS identifies invalid data.

3. Verify that FCs algorithm output dara is fault rolerant data.
33.2 | TC-35:

1. Send valid sensor data to FCs algorithm.

2. Check output data for its validity.

34, ASS shall check every output data of FCS for 4.1.13 5.€
* zero input vaiue

+ Not-A-Number input value

» Infinity input value

34.1 | TC-36:

1. Send invalid sensor data with ZERO wvalues to FCS algorithm.

2. Verify FCS identifies invalid data and its invalidity type.

342 | TC-37:

1. Send invalid sensor data with NAN values to FCS algorithm.

2. Verify FCS identifies invalid data and its invalidity type.

34.3 | TC-38:

1. Send invalid sensor data with INFINITY values to FCS algorithm.
2. Verify FCS identifies invalid data and its invalidity type.

35. ASS shall use default FCS control gamn values when system 1mitialization. 4.1.6 5.C
35.1 | TC-39:
1. Verify that FCS control gains do not contain zero values for Proportional, Integral and Derivative coefficients at the
same time.
36. ASS shall be reliable for 5 second in case loss or invalid sensor data for FCS as an input. 4.1.13,4.1.41 5.C
36.1 | TC-40:

1. Change FCS data status to SENSOR. DATA LOSS for 5 seconds.
2. Verify FCS identified SENSOR_DATA LOSS condition.

3. Verify FCS changed its safetv status to Fail-Safe.

36.2 | TC-41:

1. Send invalid ZERO valued data to FCS for 5 seconds.

2. Verify FCS identifiad SENSOR_DATA_LOSS condition.

3. Verify FCS changed its safetv status to Fail-Safe.

36.3 | TC-42:

1. Send invalid ZERO valued data 1o FCS for 5 seconds.

Figure C.6: Test Cases & Software Requirements, Part-6

2. Verify FCS identified INVALID NAN VALUE condition.

3. Verify FCS changed its safety status to Fail-Safe.

36.4 | TC-43:

1. Send invalid ZERO valued data to FCS for 5 seconds.

2. Verify FCS identified INVALID INFINITY_VALUE condition.
3. Venify FCS changed 1ts safety status to Fail-Safe.

3% ASS shall achieve reliability of FCS when no sensor data is available or data is invalid by using the last correct sensor data as | 4.1.13 5.C
an input to FCS.
371 | TC-44:

1. Supply invalid data to FCS for 5 seconds.

2. Verify that FCS output data is updated with the last successful data during 3 second.

3. Venify FCS safety status changed to Fail-Safe.

38. ASS shall notify GCS when FCS has a failure in validity of FCS algorithm input and output data. 4.1.12 5.C
38.1 | TC-45:

1. Change FCS safety status to Fail-Safe.

2. Verifv FCS notifies GCS for Fail-Safe Status Msg.

39. ASS shall change its flight mode to Fail-Safe when sensor data to FCS is not available due to the data loss or invalid 4.1.13 5.C
conditions.
30.1 | TC46:

1. Change FCS data status to SENSOR_DATA_LOSS for 5 seconds.
2. Verify FCS identified SENSOR_DATA_LOSS condition.

3. Verifv FCS changed its safety status to Fail-Safe.

30.2 | TC-47:

1. Send invalid ZERO valued data to FCS for 5 seconds.

2. Verify FCS identified SENSOR_DATA_LOSS condition.

3. Verify FCS changed its safety status to Fail-Safe.

30.3 | TC-48:

1. Send invalid ZERO valued data to FCS for 5 seconds.

2 Verify FCS identified INVAILID NAN_VALUE condition

3. Verifv FCS changed its safetv status to Fail-Safe.

394 | TC-49:

1. Send invalid ZERO valued data to FCS for 5 seconds

2. Verify FCS identified INVALID INFINITY VALUE condition.

Figure C.7: Test Cases & Software Requirements, Part-7
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3. Verify FCS changed its safety status to Fail-Safe
40. ASS shall generate error ge to GCS when FCS output data generated for A/'C’s control surfaces isinvalid. . 4.1.12 5.C
40.1 | TC-50:
1. Create invalid FCS’s algorithm output data condition.
2. Verify FCS notifies GCS when FCS’s algorithm generates invalid data.
41. ASS shall change its flight mode to Fail-Safe when FCS algorithm’s output data is not available. 4.1.13 5.C
41.1 | TC-51:
1. Create invalid FCS’s algorithm output data condition.
2. Verifv FCS changes its Safety Status to Fail-Safz.
42, ASS shall log the sensor raw data to a log file during flight mission. 4.1.16
42.1 | TC-52:
1. Start ASS.
2. Save sensor data to log file.
3. Atthe end of the flight, count number of data samples and verify that its equal to the Zexecutiontime*200
43. ASS shall log the FCS output data to a log file. 4.1.16
43.1 | TC-53:
1. Start ASS.
2. Save sensor data to log file.
3. Atthe end of the flight, count number of data samples and verify that its equal to the Zexecutiontime*200
44 ASS shall log erroneous software conditions into a software status log file. 4.1.15
4.1 | TC-34:
1. Verify that for every error condition, corresponding error message is logged in the log file.
45 ASS shall be able to receive “Land” command from GCS. 4.1.3 5.C ||
45.1 | TC-55:
1. TC-Send Land command to ASS.
2. Verifv FCS flight mode starus changed to “Landing™.
Landing Mode Features
46. ASS shall apply landing procedure. 4.1.3,4.1.8
46.1 | TC-36:
1. Verify FCS flight mode status changed to “Landing”.
47. ASS shall notify GCS that system mode is “Landing”. 4.1.12 5.C
47.1 | TC-5T:
1. Verify FCS notifies GSC as Flight mode is “Landing™.

Figure C.8: Test Cases & Software Requirements, Part-8

Safety Mode Features

48,

ASS shall notify GCS when system changes its safery mode to Fail-Safe.

41.12

3.C

18.1

TC-38:
2. Create Fail-Safe conditions.
3. Verify FCS changss its safery status to Fail-Safe.

40,

ASS shall only perform Emergency Landing after system stays in Fail-Safe mode for minimum 2 second.

4.1.13,4.1.14

s8.C

40.1

TC-59:
1. Change ASS safety status to Fail-Safe.
2. Count for 2 seconds.
3. Verify safety status changed toe Emergency Landing.

ASS shall operate Emergency Landing procedure when FCS crash occurs for more than 3 seconds.

4.1.14

5.C

TC-60:
1. Crash FCS two software components at the same time.
2. Venify that FCS cannot recover 1tself for 5 seconds.
3. Verify safety status changed to Emergency Landing.

5L

ASS shall stops engine in emergency landing mode.

4.1.14

3.C

511

TC-61:
1. Change safety status to Emergency landing.
2. Verify FCS throttle command is zero.

52.

ASS shall notify GCS when system changes its safety mode to Fail-Safe Landing.

4.1.12

8.C

321

TC-62:
1. Change safery stats to Emergency landing.
2. Verify FCS notifies GCS about Emergency Landing Mode status.

Figure C.9: Test Cases & Software Requirements, Part-9
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C.2 APM Assessment Text Files

C.2.1 APM Software Requirements Text File

Start: Cont.-1 Cont. -2
SoftwareRequirements.ixt
REQ-& + +
REQ-8-TC-15 REQ-25 REG-38
& REQ-25-TC-15 REQ-28-TC-2
+ REQ-25-TC-17 REQ-28-TC-2
REQ-10 i REQ-38-TC-4
REQ-10-TC-1 + #
it REQ-26 +
+ REQ-26-TC-1 RECQ-43
REQ-11 & REQ-43-TC-15
REQ-11-TC-2 + #
it REQ-27 +
+ RECQ-27-TC-1 RECQ-47
REQ-16 # REQ-A7-TC-2
REQ-16-TC-15 + REQ-47-TC-2
it REQ-31 REQ-47-TC4
+ REQ-21-TC-2 REQ-47-TC-11
REQ-17 REQ-21-TC-4 REQ-47-TC-12
REQ-17-TC-15 REQ-21-TC-5 REQ-47-TC-13
& 14 #
+ + +
REQ-20 REQ-35 REQ-438
REQ-20-TC-1 REQ-35-TC-2 REQ-A8-TC-6
i REQ-25-TC-4 #
+ REQ-35-TC-5 +
REQ-21 REQ-35-TC-11 RE(-51
REQ-21-TC-1 & BREQ-51-TC-&
REQ-21-TC-15 + #
REQ-21-TC-18 REQ-36
& REQ-36-TC-11

14

Figure C.10: APM Software Requirements Text File
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C.2.2

APM Software Test Cases Text File

Start: Cont. -1 Cont. -2 Cont. -3
APM_SoftwareTestCases.Ixt
+ + + +
% PREFLIGHT TEST: TAKE-OFF TC-8 % PREFLIGHT TC-4
COMMAMD WITHOUT TC-8-1/104 TEST: REJECT TC-4-1/102
S SUCCESFULL INITIALZATION TC-8-1/51 TAKE-OFF TC-4-1/3010
STATUS TC-8-4/5001 % DUETO TC-4-1/3011
TC-15 TC-8-1/5002 MISSIMNG PLAN TC-2-4/3011
TC-15-6/1516 TC-B-4/121 TC-1 #
TC-15-1/1516 TC-8-6/1516 TC-1-6/1616 +
TC-15-1/511 TC-B-1/1516 TC-1-1/1616 TC-5
# TC-8-1/511 TC-1-1/1618 TC-5-1/104
+ # TC-1-4/100 TC-5-1/3010
% PREFLIGHT TEST: INWALID + TC-1-1/50 TC-5-1/3011
MISSION PLAMN TC-9 TC-1-4/5001 TC-5-4/3011
TC-17 TC-9-1/103 TC-1-1/5002 #
TC-17-6/1616 TC-9-1/51 TC-1-6/1516 +
TC-17-6/1617 TC-9-4/5001 TC-1-1/1516 TC-11
TC-17-1/1619 TC-9-1/5002 TC-1-1/510 TC-11-4/30
# TC-9-4/121 TC-1-1/3002 TC-11-1/101
+ TC-9-6/1516 TC-1-4/3002 TC-11-4/5
TC-14 TC-8-1/1516 # #
TC-14-4,100 TC-9-1/511 + +
TC-14-1/51 # %30 CRLISE: TC-12
TC-14-4,/5001 + MI551G TC-12-4/31
TC-14-1/5002 TC-18 HEARTBEAT & TC-12-4f6
TC-14-6/1516 TC-18-150 FAIL-SAFE TC-12-1/3011
TC-14-1/1516 TC-18-4/5001 % MODE CHAMNGE | TC-12-4/3011
TC-14-1/511 TC-18-1/5002 TC-2 #
# TC-18-6/1616 TC-2-1/100 +
+ TC-18-6/1617 TC-2-1/3011 TC-13
TC-7 TC-18-1/1619 TC-2-4/3011 TC-13-4/32
TC-7-1/102 TC-18-6/1516 # TC-13-1/32
TC-7-1f51 TC-18-1/1516 |+ TC-13-4/7
TC-7-4/5001 TC-18-1/511 %o CRLNSE: #
TC-7-1/5002 # IMWALID MAMN +
TC-7-4/121 DATA INPUTTD | TC-6
TC-7-6/1516 FCS TC-6-1/2501
TC-7-1/1516 TC-3 TC-6-1/3010
TC-7-1/511 TC-3-1/103 TC-6-4/3010
# TC-3-1/3010 TC-6-1/3004

TC-3-1/3011 TC-6-4/3004

TC-3-4/3011 #

#

Figure C.11: APM Software Test Cases Text File
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C.2.3 APM Assassination Mission Report Text File

Start: Cont.-1
AssassinationReport.txt

- -
TC-15 TC-2
# #

- -
TC-17 TC-3
# #

+ +
TC-14 TC-4
# #

+ +
TC-7 TC-5
# #

+ +
TC-3 TC-11
# #

+ +
TC-9 TC-12
# #

+ +
TC-18 TC-13
= =

+ +
TC-1 TC-6
= #

Figure C.12: APM Assassination Mission Report Text File
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