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ABSTRACT

FOURIER SERIES BASED MODEL REFERENCE ADAPTIVE CONTROL

GEZER, RUSTU BERK
M.S., Department of Aerospace Engineering
Supervisor : Assist. Prof. Dr. Ali Turker Kutay

August 2014] 91 pages

Any signal in nature includes periodic signals with difier&equencies and weight-
ings. Therefore, any signal can be represented using suomatsimple periodic
functions. Representation of signals with periodic fums is called Fourier series
representation. This powerful utility of the Fourier seris aimed to be used for
adaptive control. In the direction of this aim, a novel agmto for model reference
adaptive control is proposed in this thesis.

The Fourier series based model reference adaptive coap@sents an alternative for
uncertainty parametrizations used in model referencetagapontrol. Commonly
designed MRAC schemes use known functions of system vasailin some cases
neural networks for uncertainty parametrization. In thigly, these parametrization
methods are replaced with Fourier series.

The sine and cosine elements; which are functions of timle pgtiods that are mul-
tipliers of precessors, are used as basis functions. Antaiilap law for estimating
the weightings of the periodic functions is derived usingpynov stability principle.
The adaptive input is calculated by multiplying the pertodasis functions and the
estimated weights.

In this thesis, two other alternative for the proposed methe examined. These
alternatives are model following control and basic mod&nence adaptive control
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that uses known functions of system variables. These dtersare designed for
a sample problem. Robustness properties of the model foigpwontroller is an-

alyzed. Performances of these controllers are inspectddrudefined and random
disturbances, and the results are compared with the prdposgroller.

The performance of the Fourier series based MRAC schemevgrsto be satisfac-
tory. The comparison of the results indicates that the pgegaontroller gives better
disturbance rejection for the same performance level.

Keywords: Adaptive Control, Fourier Series, Unknown Unaierty, Disturbance Re-
jection
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FOURER SERSI TABANLI MODEL REFERANS ADAPTIF KONTROL

GEZER, RUSTU BERK
Yiksek Lisans, Havacilik ve Uzay MihendgIBolimi
Tez Yoneticisi : Yrd. Dog. Dr. Ali Turker Kutay

Agustos 2014[, 91 sayfa

Dogada herhangi bir sinyal, farkli frekanslara \graklara sahip periyodik sinyaller
icerir. Bu nedenle, herhangi bir sinyal basit periyodikksiyonlarin toplami ile tem-

sil edilebilir. Sinyallerin periyodik fonksiyonlar ile giferimine Forier serisi gosterimi
denir. Fourier serilerinin bu gucli 6zejinin adaptif kontrolct yapilari igin kullanil-
masI hedeflenmektedir. Bu hedefindoltusunda, bu tez ¢alismasinda Fourier serisi
tabanli model referans adaptif kontrol yéntemi sunulmaikta

Fourier serisi tabanli model referans adaptif kontrol gomt model referans adaptif
kontrolde kullanilan belirsizlik parametrizasyonuna aiternatif sunmaktadir. Ge-
nelde tasarlanan MRAC yapilari belirsizlik parametrizagy icin sistem dgisken-
lerinin bilinen foksiyonlarini ya da bazi durumlarda yagsyir aglarini kullanmak-
tadirlar. Bu ¢calismada, bahsi gecen belirsizlik paraireetyonlari Fourier serisi ile
degistiriimektedir.

Taban fonksiyonu olarak, periyodlari birbirinin ¢carpatarozaman fonksiyonu sinis
ve cosinus elemanlar kullaniimaktadir. Lyapunov kah&rpresibi kullanilarak, bir
tahmini airhk giincelleme kanunu tiretilmektedir. Adaptif kortid girdisi bu peri-
yodik taban fonksiyonlari ile tahminigarliklarin ¢carpiimasi ile hesaplanmaktadir.

Bu tez calismasinda 6nerilen methodun yaninda iki faitdraatif de incelenmekte-
dir. Bu alternatifler; model takibi ile kontrol ve sistemgigkenlerinin bilinen fonksi-
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yonlarini kullanan temel model referans adaptif kontral&u kontrolculer érnek bir
sistem icin tasarlanmaktadir. Model takip eden kontraleciigtrbuzluk 6zellikleri
analiz edilmektedir. Bu kontrolcllerin performanslamitali ve rastgele bozucular
altinda incelenmekte ve dnerilen kontrolcti ile kargitagnaktadir.

Fourier series tabanli MRAC yonteminin performansinimtatedici oldwgu gos-
terilmektedir. Karsilastirma sonuclari, 6énerilen koitinin daha iyi bir belirsizlik
giderme karakteri oldjunu ortaya koymaktadir.

Anahtar Kelimeler: Adaptif Kontrol, Fourier Serisi, Bilimeyen Belirsizlik, Bozucu
Etki Giderme
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CHAPTER 1

INTRODUCTION

Automatic control of a dynamic system is a topic that has bstadied for more
than a century. The centrifugal governor for steam engireedmontrol which was
conducted by James Clerk Maxwell in 18681[34] can be taketaseginning of
automatic control. One of the most famous applications@giltomatic control is the
flight control system of the Wright Brothers’ first flight in @9. In 1922, Minorsky
showed that differential equations describing the stgesinps dynamics can be used
for stabilization [35/ 17]. In 1932, a plain method for detémning the stability of
closed-loop systems was found by Nyquist [41]. In the 19¢@Gsfrequency response
approach to design close-loop control systems was deveélmpBode [58]. The root-
locus method was introduced in 1954 by Walter R. Evans, wfdoms the core of
the classical control theory together with the Bode diagrahese tools are used for
the design of the closed-loop control systems. The plant&edbon with classical

control theory are single-input-single-output plants.

The designed controllers using the classical control tiegtas were able to satisfy the
given requirements, but they were not shown to be optimahingerspective. But,
controllers that use control resources optimally is a labieterest for controller de-
sign; so, some sort of optimality was needed for contrall&tso, while the frequency
response analysis methods are strong tools for designagiesnput-single-output
systems, as plants started to have more inputs and outpatsged for the control
of multiple-input-multiple-output systems has arisen.ohder to meet these inter-
ests, modern control methods have been developed. Thedtdl feedback method

which uses the state-space form of the linear dynamicaésysimake controller de-



sign for multiple-input-multiple-output systems possibMoreover, this method has
carried the design procedure from the frequency domainddithe domain. This
gave insight to the designer about time response of theatatbut needed a lot of
computation. This improvement brought by the modern comiweory is applicable
with the availability of the digital computers. The optinwntrol theory for calcu-
lating optimal usage of the control resources was developerter to overcome the
optimality problem of the classical control theory [47] 49]e works of Pontryagin

and Bellman established the basis of modern control thety49] 6].

Both classical and modern control theories need a lineareiregresenting the sys-
tem dynamics. It is hard to linearize dynamical models ohhiggile aircraft, mis-
siles and other autonomous air vehicles that operate in a veidge of conditions,
since these vehicles have extremely nonlinear dynamice. ifiterest in designing
autopilots for such vehicles motivated the developmentdafpéive control theory,
and first steps were taken to automatically adjusting thdroler parameters to
changing aircraft dynamics during the flight [20]. Sevetatges on gain scheduling,
model reference adaptive control, and self tuning contredeaconducted in 1960s
[3,160,26]. There were some stability problems which arosle the usage of the de-
veloped adaptive control theory. Several researchersestunakstability of and modi-
fications on the adaptation mechanism of the adaptive dd@8p24,25/ 29| 37, 45].
After these studies, several improvements were added tthdwy, and efforts to

develop the adaptive control theory have continued to taegt day.

1.1 Literature Survey

Adaptive control theory can be organized in three methodsesé& methods are the

gain scheduling, the self tuning control and the model ezfee adaptive control.

The gain scheduling method comes out of the simple idea afgihg the gains of a
controller according to variations in the operation regirBeparate fixed gain con-
trollers are designed for various operation points, andgeies of the controllers
are changed according to subsidiary measurements. By #tisoah, it has become

possible to overcome parameter variations in the systerardigs by scheduling the
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controller gains. This method is very strong in the casesraviige parameters of
the plant changes with respect to a subsidiary variable wisi@available for mea-

surement. The Mach number or dynamic pressure are suchdgrgsiariables for

forward flight applications like aircraft or missile auttgis. Some examples of the
gain scheduling approach used in the practice can be foditdriature [36, 54, 11, 48].

An excessive explanation of the method is given in [50]. Theekdiagram of the

gain scheduling approach is shown in the Figuré 1.1.

Subsidiaw 3 GAIN

Measurement SCHEDULER

l

Reference Plant
Command “l  -oNTROLLER ﬁﬂ;ﬁf’ N PLANT Output o
Feedback

Figure 1.1: Block diagram of Gain Scheduling approach.

The idea of gain scheduling is easy to implement and adajativariations in the sys-
tem parameters that can be modeled prior to the applicatowever, this approach
is an open-loop adaptive design procedure and can not adafitto unpredicted
variations and out of design conditions. Also, in order tweha controller that is
tuned over all the application region, an enormous amourmtesfgn points might
be needed. For example, anti-air missiles can fly in a widgeai Mach numbers
and altitudes. Moreover, the inertia, mass and center ofitgraf missiles change
dramatically in flight. These variations of the system camoeleled, and for every
selected trim point a controller design can be conductethlly the resulting designs
can be joint each other by the use of gain scheduling methbd. disadvantage of
this procedure is that it consumes plenty of engineering-hwans. Even so, the gain
scheduling approach is one of the powerful adaptive coapptoaches that is widely
used in practice.

Another main approach of adaptive control is the self turdagtrol. In self tuning

control, an analytical relation between the plant pararsed@d controller gains is

3



evaluated. During the application, the varying system mpatars are identified by
using a parameter identification technique. These idetitfisstem parameters are
used to calculate adaptive controller gains via the arytelation evaluated. Sev-
eral identification methods such as least squares, maxinkeiihbod and extended
Kalman filtering can be used for parameter identificatior) B9. Furthermore, var-
ious analytical procedures which use system parametersofurol design can be
used for self tuning control, for example, gain-phase nmadgisign, linear quadratic
regulator, and so fori [42, 12]. The block diagram of the saliing control method
is shown in the Figure1.2.

|E Identified
ANALYTICAL P | PARAMETER

arameters
CONTROL
DESIGN _1 IDENTIFICATION
[Controller
Gains
Reference Slant
Command “l coNTROLLER ﬁ?};ﬂf‘ ANt Ougput
Feedback

Figure 1.2: Block diagram of Self Tuning Control.

This approach was originally proposed in[26] and explaicledrly in [4]. In [21],
self tuning control was applied to a rotorcraft for terraglidwing flight. Various
applications of the self tuning control on spacecrafts wonstrated in [52, 51,
13].

Model reference adaptive control (MRAC) is another methothe adaptive control
theory which was developed in 1950s [60) 43, 5]. The main wleB®IRAC is to

define a desired response by a reference model, and makeatiteoptput to match
the reference model output with the use of the adaptive elenrethis approach, the
error between the reference output and the plant outpuers iesdrive the adaptation
law. By the adaptation law, an adaptive control input is elated, and this input is
combined with the nominal controller input. The adaptive pathe MRAC is active

if the plant output drifts away from the reference model otignd is passive if two

outputs are close to each other. In this sense, MRAC is an awigmg controller on
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a nominal controller of any kind. The block diagram of the mla@éference adaptive

control is shown in the Figufe1.3.

Adaptive
3 REFERENCE Referehce Control ADAPTIVE Error
MODEL Output Input CONTROLLER
Reference Nominal
Command NOMINAL Control Control PLANT Plant N
CONTROLLER Input Output 4
Feedback

Figure 1.3: Block diagram of Model Reference Adaptive Cointr

MRAC can be separated into two parts. One of them is the meferenodel that is
used to define the desired performance of the closed-lodpraysThe other one is
the adaptive part of the MRAC, which can be divided into twonmaomponents.
These are the uncertainty parametrization and the weigtdatepaw. The uncertainty
parametrization component parametrizes the uncertairgyway that, it can be rep-
resented by multiplication of some ideal constant weights\ariable functions. The
weight update law component forms the update equation &wgight estimation of

the constant ideal weights of the uncertainty parametagzat

The weight update law depends on the Lyapunov stability gntyd32,/33]. The
first studies on the stability of MRAC weight update law wittetuse of Lyapunov
stability were in[[7/.44]. Many modifications to the weightdgte law can be found
in the literature. A damping pole has been added to the weiglate law by the
o modification [22]. A variable damping character has beerothiced by the
modification [37] where the damping increases as the normeoétror between the
reference model and the plant output increases. A projectiodification on the
weight update law that uses a bound depending on the Lyapeoumtion to project
the growing weights has been presented_in [46]. An optimatrob theory based
modification on weight update law has been given in [39, 40].

Adaptive loop recovery method protects the frequency doroharacteristics of the
closed-loop design even when the plant is under disturb@)d€]. A stiffness term
to the weight update law has been added by#hmodification [27]. A Kalman

5



filter modification has been developed for weight update lavictv uses Kalman
filter optimization method[[63]. Possible effects of theodistinuous disturbances
on the plant, such as, drop of a payload, have been smoothtgk lmerivative free
modification on weight update law of MRAC. The derivativeefmmodification has
been presented in [62, 64,/65] A modification on weight updlaepending on least
squares gradient method has been shown in [38]. So, thepdeary of studies on

the modifications and improvements of the weight update law.

For MRAC, the uncertainty on the system is needed to be mddgisome functions.
The variation of the disturbance acting on the system is teddgsing a multiplica-
tion of some ideal constant weights and variable functidiss uncertainty modeling
is called as uncertainty parametrization. There are sknegthods used in the liter-
ature for uncertainty parametrization. The most genertaldss realistic method to
parametrize the uncertainty is using known functions otesysvariables. This ap-
proach assumes that the unmodeled nonlinear or unknowar Ipeats of the system
dynamics are acting as uncertainties on the plant to beatdr And also, it as-
sumes that these uncertainties has a known structure fdwgniet system variables.
Therefore, the structure of the uncertainties is known t@®éunctions of system
variables and the unknown ideal weights of these functidhss type of uncertainty
parametrization applications has been used in numerotuslies, some of which are
[46,/9,[10] 31| 39, 40, 64, 61, 65]. Among the example refexeigiven for the use of
functions of system variables as uncertainty parametoizaiwo [46, 65] of them use
the input variable in these functions. Others form the ulagely parametrization by
functions of states of the system only. This distinction &asle which is explained
in the next section 112.

For the parametrization of the uncertainty, another fratjyaused method is mod-
eling the uncertainty by universal function approximatofihe universal function
approximator used for the uncertainty parametrizatiohésrteural networks. There
are two types of neural networks used for uncertainty madeliOne of them is a
neural network using radial bases functions in a singlerlaggrample studies using
radial basis functions for uncertainty parametrization ba found in[[30, 15]. The
other type of neural network used for uncertainty paramation is sigmoidal acti-

vation function based layers. Studies using sigmoidaVatitin functions for neural



networks are shown in [8, 14, 27,111,/63] 19]. Both neural netvwypes are driven
by the system states. So, the uncertainty parametrizagiarsimg neural networks
also depends on system states only.

The difference between the parametrization via known fonstof system variables
and neural networks as universal approximators is, thertaiogy model is restricted
to a predefined model in one, but can be in any form of systetassta the other.
If the uncertainties on the system are guarantied to havetairtenodel, then us-
ing the known functions of system variables is advantagetfusot, then universal

approximators work fine.

1.2 Contribution of this Thesis

The study represented in this thesis proposes a novel migthodcertainty parametriza-
tion for model reference adaptive control scheme. The meponethod is estimating
the disturbance using periodic functions, and it is calledrier series based model

reference adaptive control.

Every periodic event in nature can be decomposed into sipgi®dic functions.

Summation of simple sine and cosine functions with freqieanthat are integer di-
visors of a selected period are used to represent the pegadnt. In the summation,
every single periodic function has its own weight, so thaltsum gives the value

corresponding the event itself.

This property of nature is used for adaptive control to pataize the disturbance
and uncertainty on the system. The parametrization meteed depends on Fourier
series. The periodic functions are functions of time, areddtaptation mechanism
tries to find the correct weightings that represent the distiice on system. So, by
using this information obtained by the Fourier series, thaml input is updated with

an adaptive input.

A question may arise that if the disturbance and uncertantyhe system are not
periodic, then how this method is assumed to be working. Gtestion is valid for

infinitely operating systems. However, for systems withiémperation time, a proper
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period for the Fourier series that is used in the adaptivérother, can be selected.
In other words, any signal that is defined in a finite time camdpeesented using a
longer period and assumed to be periodic with the selecteodo& he corresponding

Fourier series expansion represents the signal for itsatipgrtime correctly.

It is important to highlight some advantages of the propdsedrier series based
model reference adaptive control method. There are two ipmhadvantages of the
method. Both of the advantages contained in the uncertparymetrization scheme
of the proposed method. These are omitting assumptionshéostructure of the
uncertainty, and system state independency and only bamgion of time of the

uncertainty parametrization.

In most of the studies a certain model for the structure ofdis&urbance acting on
the system is assumed. This assumption covers all the sttidieare using known
functions of system variables for the parametrization. g assumption, the adap-
tive element is forced to find the disturbance in the set deéffoethe parametriza-
tion. For the case the disturbance does not hold with theagsemed structure, the
controller has problems to reject all of the disturbance.order to get rid of this
weakness of the adaptive controllers, an uncertainty petrézation by using Fourier
series as universal approximator is proposed. This is teedignificant advantage
of the idea. This advantage is also applies for the neuralar&tbased adaptation

schemes. However, the next advantage carries the propatedadone step further.

The second advantage of the proposed method is that thetaintgparametrization

is independent from the system states. This situation metluo aspects.

One of them, since the uncertainty parametrization pah@tdaptive element is not
a function of the system states, the consistent perturbaged of the learning mech-
anism is eliminated. Since, the periodic elements in tharpatrization are functions
of time, they are perturbed during the all operation timeer€fore, adaptation of the

system to any error on the system does not stop.

The second aspect of being independent from the systens sttiee proposed un-
certainty parametrization is that the algebraic loop probbf the adaptive element
is eliminated. For the case, when both the input and the systates excites un-



modeled effects on the system as disturbances, and the\edalgtment is formed
as function of these system variables, then an algebragdoours. The controller
input; which includes the adaptive input correction, efethe disturbance on the
system. Then, the adaptive input correction is calculatedding the pre-assumed
function of system variables which includes functions oftcol input. Hence, the
adaptive control input becomes dependent to itself whichmaean algebraic loop
occurs. This unwanted phenomena is omitted by using a wegriparametrization
which is independent of system states and inputs, and cafmaidject the disturbance

on the system.

To sum up, a novel approach for uncertainty parametrizatsmd in the model refer-
ence adaptive control is proposed in this study.

1.3 Thesis Structure

In the first chaptel]l, a brief introduction to the history loé tautomatic control is
given. Then, a literature survey including three main setiof the adaptive control
methods is presented. Finally, the contribution of thisihes expressed.

The second chapter 2 is called model following control. ia thapter, the model fol-
lowing control method belongs in the modern controller scbg is discussed. First,
a sample system for designing the controller is set. Thesigdef the model follow-
ing controller is conducted. Then, robustness analysisitichudes calculating dis-
turbance rejection and noise filtering performances of tbdehfollowing controller
is done. Then, the command following performance of therodiet is examined in
simulation examples section with step and sine wave commdfidally, a challeng-
ing disturbance case where the disturbance is not onlyifumof the system states is
exerted.

In the third chaptelr]3, the basic model reference adaptinéra@iols examined. The
adaptive control used in this chapter uses known functidrtbe system states as
uncertainty parametrization. First, the MRAC method igespnted. Then, the com-
mand following performance of the designed MRAC is inspeatéth simulations

for challenging disturbance case.



In the fourth chaptdr]4, the novel method; Fourier seriesthasodel reference adap-
tive control is proposed. First, the stability proof of the@posed method is repre-
sented. Then, the command following performance of theiEoseries based MRAC
is examined. The performance of the controller is comparigdl thve other two con-

trollers explained in the previous chapters.

In the final chaptelrl5, the thesis is concluded.
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CHAPTER 2

MODEL FOLLOWING CONTROL

Controlling a dynamical system is setting the transient steddy-state responses of
that system. The transient response of a system can be si#$o@d response if there
is a predefined character for the response of that systemexaonple, the desired
transient responses for channels and modes of the airptentetare defined by the
handling qualities [55]. Airplane controllers are desigrie imply these handling

gualities to the airplane response.

There are different classical and modern control appraaftdrecontrolling dynamic
systems with desired responses. The model following cb(&C) is the most
explicit one, when the desired response is taken as prinmesigd objective. In the
MFC, the desired response is defined as a reference mode gottiroller, and the
system output is forced to behave like the reference modpuouThe MFC method
has been established with the improvements in the modertnatdineory and some
examples can be found in [55,/57/ 2] 28, 56].

In this chapter, first a sample system model is definéd in 2.tide of the rest of the
study. Secondly, the MFC architecture is presentéd in 22tfandesign is discussed.
Thirdly, the robustness properties of the MFC is examin&3rby frequency domain
tools. IN2.4, linear simulation examples are presentedifiaally in[2.5 a challenging

unknown external disturbance effect on the system is inegec
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2.1 Sample System Model

In order to represent the controller methods discussedsrsthdy, a simple system
model is defined. This system model has two states. One of iéirectly driven
by the input, and the other one is the integral of the firsest@he equation regarding

the system model is

21(t) = u(t) +6(x(t),1), 1(0) =19, tE€Ry 2.1)
o (t) = 21 (1), z9(0) = 90, tER,.

This is the rolling motion model of a slender delta wing witing/ rock dynamics
defined in [53/.66]. The first state (f) € R is the roll rate, and the second state
x9(t) € R is the roll angle of the slender delta wing. The control inputhe system

is shown withu(t) € R. The equation(2]11) can be rewritten in matrix form as

() = Ax(t) + B(u(t) + 6(x(t), 1)) (2.2)

0 0
where A = [ ] is the system matrix, an®® =
10

1
] is the input matrix.

The vectorz(t) € R?**! is the state vector. The matched disturbad¢e(t),t))
on the system is a combination of the wing rock dynamigcgz(t)) and external
disturbancé. (t).

0(x(t), 1)) = duwr(2(t)) + dea(t) (2.3)

The wing rock dynamics is defined in [53] by
dwr (x(t)) = c1re + oy + aslza|ry + ay|zr |z + a5x§’. (2.4)

The equation representing wing rock dynamics is in a form tomstant aerody-
namic coefficients are multiplied with nonlinear functiasfghe system states. The
numerical values of the aerodynamic coefficients of the wotk area; = 0.1414,
ap = 0.5504, a3 = —0.0624, ay = 0.0095, andas = 0.0215 as selected in [66]. The

12



wing rock dynamics equation can be rewritten in vector fomficiows

5wr(x(t)):[041 Qg Q3 04 O ‘$2|$1

(2.5)

= af (x(1))

with o € RS and f (z(t)) € R5*!,

The external disturbancé.((t)) is a random disturbance which is function of time.
This disturbance is included to the system in order to reymethe wind and gust
effects that occur randomly on the air. By this addition, slgetem model has three
main components. The first component is the linear systenehvaich is assumed
to be known. The second component is the wing rock dynamiesdd by multi-
plication of known functions of system states and unknownstant aerodynamic
coefficients, and the third component is totally unknowrdam disturbance which

is a function of time. The block diagram for the sample systemdel is shown in the

Figure[2.1.
)I B x(t))|f .dt x(t)>
Ak
Sur (x(0))

a1x; + axxy + azlx; g + aglxg|xg + asxd |(—

u(t)

Figure 2.1: System model block diagram.

Another physical system need to be modeled is the controlasmt system. The
control actuator system shows the dynamics between the amwched control input
and the actuated control input of the system. For the maglelithe control actuator

system, a second order linear differential equation is uski equation is

be = Aco(t) + Bouc(t) (2.6)
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wherez.(t) € R**! is the state vector of control actuator system, afid) € R is the

commanded input to the system. The state vector is formetidwadtuated control

t 0 1
inputu(t) and its derivativei(t), z.(t) = w(?) A= is the
u(t) —w? —2Cw,

[

. 0 . . .
system matrix of the control actuator system, dhd- , | s the input matrix.
wc
The natural frequency of the control actuator system is shimyw,. and the damping
ratio is (.. The control actuator model for the system used in this stsidglected

with w. = 50 rad/s and(. = 0.7.

The system and control actuator model can be combined as,

(1) 00 1 0 21 (t) 0 1
N I ! I wit)+ | ° §(z(t),t). (2.7)
i(t) 00 0 1 u(t) 0 0
(t) 0 0 —w? —2Cw. U(t) w? 0

This combined system equation can be rewritten in shorten &s
Tp(t) = Apz,(t) + Bpuc(t) + Bad (x(t),t) (2.8)

whereA, € R** is the plant system matrix3, € R**! is the plant input matrix, and

By € R*! is the disturbance input matrix.

The controllability of the combined system shownl[in [2.8) t& examined by the

rank of the controllability matrix
C=|B, AB, A2B, AB,|. (2.9)

Since the controllability matri€ € R*** is full rank, the combined system is con-

trollable.

2.2 Design of Model Following Control

The system model representing the system dynamics is eotaifhe next step for
the MFC design is the selection of the reference model. Theetsen starts with
the desired natural frequency, and damping rati@,,. These criteria for the system

transient response form the desired dynamics of the refenerodel.

14



The reference model can be selected directly as a seconddifiéeential equation
with desired natural frequency and damping ratio; howeaves, preferred to select
the reference model using the system model. The system nsoslebwn to be con-
trollable; so, the eigenvalues of the system model can hmeglat desired locations
with the use of a full state feedback method. The gain caicuidor the full state
feedback is done using the Ackermann’s formula [42].

The plant model shown i (2.8) has four states. These stegaslarate, roll angle,

actuated control input and its derivative. In spite of thiigre are only two desired
criteria for design. Therefore, eigenvalues of the twoestatgarding the control
actuator system are kept at their original position and therwalues of the other
two states regarding the rigid body motion of the system #&aeeol at the desired

locations.

The desired locations for the eigenvalues are calculated the roots of the charac-

teristic equation of the desired dynamics
§% + 2Cawns + w2 = 0. (2.10)

These roots are, = —(,w, + 202 —w? and Xy = —(Guw, — 202 — w2,
Similarly, roots of the control actuator system ae= —(.w,. + /(2w? — w? and

A1 = —(w, — /2w? — w?. Roots of the two characteristic equations are the desired
eigenvalues for the reference model. Therefore, the ctarstic equation of the

reference model should be in the form
(S — )\1)(8 - )\2)(8 - )\3)(8 - )\4) =0. (211)

This condition can be satisfied by using the Ackermann’s tdanas mentioned be-
fore. Ackermann’s formula is used to calculated the necgdsdl state feedback
gains for a system to have the desired characteristic enuailhis formula for a

forth order system can be shown as
K, = [ 0 0 01 } C(Ap — MLuxa)(Ap — Xadusa)(Ap — Aglasa) (Ap — Malaxa). (2.12)

The matrix(C is the controllability matrix shown i (2.9), anfl,, € R*** is the

identity matrix. The calculated gain vectat. € R'** is the feedback gain vector to
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obtain the reference model dynamics. The equation regattareference model is

i, (t) = (4, — BpK,)z,.(t) + B,K,

0]
1
0 (2.13)
- 0 -
= A,x.(t) + Byr(t).

The system matrix of the reference modelds € R**#, and the input matrix is
B, € R**!, The state vector of the reference modelig) € R**!, and the reference

command ig(t) € R.

The desired natural frequency and damping ratio for theeafee model are selected
asw, = 0.4rad/s and(, = 0.707. The reference model controller gain is calculated
by the Ackermann’s formula a&’, = [ 0.57 0.16 0 0 ] . The last two gains in
the reference model controller gain vector are equal to; Znoe, last two states of
the system are wanted to protect their open-loop respoiibese states are the con-
troller actuator states and the eigenvalues regarding states are kept in the original

positions. The step response of the reference model is simotlve Figuré 2.P.

Step Response of the Reference Model
14r

121

0.81

Amplitude

0.6

0.4

0.2

0 5 10 15 20 25
Time (s)

Figure 2.2: Step response of the reference model.

The desired response of the system is defined by the refereadel, so, the step

response shown in Figure 2.2 is also the desired responke ofdsed-loop system.
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The plant dynamics equation (2.8) and the reference modeltiem [2.18) can be

combined as

. p(t)
T (t) = =
[ iy (t) ]

The state vector of the combined equation abowg,iss R®*!. This equation can be

/4p 04X4
O4X4 14r

B
Ty (t) + ?

04><1 r

O4x1
uc(t)+|: . }r(t). (2.14)

rewritten in more compact form as
Epr(t) = Aprpr (t) + Bprutie(t) + By (t). (2.15)

The system matrix of the combined systemijs € R®*®, the control input matrix is

B, € R¥1 and the reference command input matriBis, € R8*!,

The integral of the error between the plant roll angle andréfierence roll angle is
added to the system as an integral state. This integralistesitculated with the given
equation

i(t) = [ 0 —1 O1x3 1 O1x2 ] Tpr = Tpg — T2 (2.16)
The integral state itself is

T; = /t (Tyo — mo)dL. (2.17)

=0
Here the state; is the roll angle of the system as shown[in{2.1), and the statis

the second state in the state vector of the reference modahags equation shown

in (2.13) which corresponds to the reference value of tHargjle.

The integral state is added to the combined equation sho@hlA) as

i — Tpr _ Apr Ogx1 Zpr N
T 0 —1 Oixz3 1 O1xe 0 €

This equation is the open-loop equation of the total systnihfe design of MFC.

Bpru
0

B

ue(t) + SW ] r(t). (2.18)

Equation[(2.1B) can be rewritten in compact form as
s = Aots + Boyue(t) + Bor(t) (2.19)

where,z, € R%! is the state vector), € R**Y is the system matrixi3,, € R is
the control input matrix, and,, € R%*! is the reference command input matrix of

the open loop system equation.

The open-loop system equation is formed mathematicall2ih9). The states of

this open-loop model are roll ratg (), roll anglexs(t), actuated control input(t),
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derivative of the actuated control inpit), reference roll rate:, (t), reference roll
anglez,,(t), reference actuated control inpys(¢), derivative of the reference actu-
ated control input:,.4(¢), and error integrat;(¢). Among these only the first four are
physical states. The other five of them are synthetic sthtdsare calculated inside
the control computer. With this information and with thewasgtion of the physical
states can be measured, all of the states of the open-lotgmsgguation are available
for feedback.

The feedback gain of the MFC is calculated optimally. Thdroality is obtained
by minimization of a cost function. The selected cost fumttio be minimized is
guadratic in performance vector. The performance vectdorimed by the linear
combination of the selected system states and controlsngtdr this problem, the

performance vector is selected as

)= [ @ni—m) @o-) (o-u) (u-i) o u| (220

with z € R%!, The linear combination of the states included in the perforce
vector are penalized by selected weightings. The weightixnatin the form@), =

diag ([ Qe Quy Qu Qu Qu, Qu, D € R%*% . The cost function to be mini-
mized for obtaining the optimal controller gain is

J = / (ZT()Q.z(t))dt. (2.21)
t=0
This cost function can be transformed to the well known lirsggadratic regulation
cost function;
J = / (2L (W (t) + ul () Wyue(t) + 22! () Wayue(t)) dt. (2.22)
t=0

The performance vectar(t) is formed with the following relation
2(t) = C,a4(t) + Dyu(t) (2.23)

_I4><4 I4><4 O4><1

whereC, = | 0144 O1pa 1 € R is the selector matrix from the system
Oixa Opxa O
0 o .
states, and), = 1| ¢ R js the selector matrix from the system com-
1

manded control input. By inserting (2123) info (2.21), tlstcfunction equation can
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be rewritten as

J= / N ((Cotra(t) + Do) Q- (Cea(t) + Do(1))) d (2.24)

=0

which yields

J = / ((zL(®)CTQ. +ul (t)DLQ.) (C.as(t) + D.uc(t))) dt. (2.25)
t=0
Furthermore, the terms can be collected as
J = [ (#T(t)CTQ.Coay(t) + ul (t)DTQ.D.uc(t) + 22T (£)CTQ.D.u.(t)) dt. (2.26)

By comparing the equivalent terms in_(2.22) ahd (2.26), #lation between the

weight matrices can be found as
W, =CIQ.C. W,=DIQ.D, W,, =ClQ.D, (2.27)
wherel,, € R W, € R andW,, € R,
The optimal solution for the minimization of the cost furtiwith the control law
uc(t) = —Kuzy(t), (2.28)

gives the total gaid € R'*? of the MFC. The resulting controller gaiii is calcu-
lated by using the well known linear quadratic regulatiorthod. For this method,

first the Riccati equation
A X + XA, = (X Boy + Wau) W, 1B X + W) + W, (2.29)

is solved. HereX € R2* is the solution of the Riccati equation. Then, the controlle

gain is calculated with the relation
K =W, 1(BL X+ NT). (2.30)
So, the design is concluded.

The closed-loop equation for the MFC is found by replacirgagbmmanded control
input with (2.28) as
T5(t) = Aps(t) + Bow (—Kxs(t)) + Bopr(t)
= (Ao — Bou) ,(t) + Borr (1) (2.31)
= Aqxs(t) + Bar(t).
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The closed-loop system matrix i, € R?<°, and the closed-loop input matrix is
B, € Ro*1,

The block diagram of the MFC is shown in the Figlrel 2.3. As it ba seen from
the figure, the reference model is directly driven by theresfee command, and the
combined state vector is multiplied with the controllerrgéi in order to calculate

the commanded control input.

\ 4

SYSTEM

—-K u—C) AGTUATOR |-t { pLanT [HX

T J reFerence | Pr 1 X
— " MobEL -

S u

Figure 2.3: MFC block diagram.

For the given desired reference model criteria, the weigttim(). is selected as

0. 0 00 0 0
0 100 00 0 0
0 0 10 0 O

Q> = (2.32)
0O 0 01 0 0
0 0 0 0 1000 0
0O 0 00 0 1

The selection of thé)., is done by searching the weights while examining the time do-
main response and robustness properties of the designgdltam These properties

will be discussed in the following sections.

The resulting controller gaii’ is

K=[209 377 56 1 -209 317 —56 -1 -316|. (233)

The design of the MFC for the sample system is concluded Wwéltalculation of the

controller gaink'.
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2.3 Robustness Analysis

Robustness analysis of the MFC method is composed of twysesl The first one is
the disturbance rejection analysis, where the effect otlibeirbances on the system
are examined in the frequency domain. And the second one rsdilse filtering anal-
ysis. In this analysis, the noise rejection performancéefdontroller is examined.

2.3.1 Disturbance Rejection

The disturbance acting on the system model is defindd ih é88)z(¢), ). In order

to examine the effect of the disturbance on the system, atipeits such as refer-
ence command and noise are equaled to zero. Since the onlyanghe system is
the disturbance, transfer function from the disturbandéeaoll angle can be calcu-
lated. This transfer function gives the opportunity to exaarthe frequency domain

characteristic of disturbance rejection of the MFC.

The states of the reference model are kept zero under zen@enee command and
zero initial conditions. Therefore, for the disturbandgecdon analysis, the reference
model is ineffective. But the optimal controller design ane using the dynamics of
the reference model, so, the reference model is still affgt¢he disturbance rejection

performance via the controller gains.

The block diagram of the MFC with disturbanééz(¢),¢) acting on the system is
shown in the Figure 214.

8(x(®),t)
0
— ]

r = O ' REFERENCE: x‘l"

"""" " MODEL §°°7% U, | CONTROL 9y X
! ' CONTROLLER === ACTUATOR PLANT >
Lecenonn- : SYSTEM

U X

Figure 2.4: MFC disturbance rejection block diagram.

In order to examine the disturbance rejection performarfickeoMFC, the transfer

function from the disturbancgto the roll angler, is evaluated. The combined system
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equation given in(218) can be written in transfer functiomi with z,, = 04,.; as
Lp
st, = Apx, — B K Oax1 + Byo. (2.34)
% <_C:B2'rp)

where(C,, = [ 0 1 Opxo } The selection matrig’,, is used to select the roll angle
from the plant states,. The terms containing the state vector of the plgntan be

grouped together as

I4><4

SI4><4 - Ap + BpK 04><4 Tp = Bd6 (235)
% (_Cx2]4><4)
The plant state vectar, can be left alone by taking the inverse of the terms in the big

]4><4
parenthesis which isl,; = | sl — A, + B, K O4sca . With this

% (_Cx214><4)
replacement[(2.35) can be rewritten as

, = A1 B0, (2.36)

The roll angle can be selected from the plant state vectdr tivé relation shown as
Ty = CpyTp. (2.37)

So, the transfer function from the disturbamd® the roll angler, is calculated as

X2

(s) = Cou Ay Ba. (2.38)

T2+ ps

The numerical disturbance rejection transfer functiortherdesigned MFC is

T s3 +2507s% + 1.66 10%s

Z2(s) = . (2.39
o (s) s5 +2507s* 4+ 1.66 10*s3 + 5.22 10*s2 4+ 9.42 10*s + 7.91 10* ( )

The magnitude plot of the disturbance rejection transfection of MFC is shown in
the Figurd 2.b.

The magnitude change shown in the Fidure 2.5 displays thaérHance rejection per-

formance of the MFC design. This magnitude plot gives propoal information
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Magnitude Plot of Disturbance Rejection Transfer Function
O T T T
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Figure 2.5: Magnitude plot of disturbance rejection tranéfinction.

about how a disturbance acting on the system could be siggutéy the controller.
For a selected frequency in the Figlrel 2.5, the correspgrmiagnitude shows the
ratio of the size of the disturbance to its effect on the rodlla. The peak response of
the diagram appearsatirad/s. At this frequency, the controller conducts the distur-
bance most with a multiplier o£9.7dB. This is equivalent to a ratio of 0.33 between
the magnitude of the disturbance and the effect on the rglleariThis frequency is
the peak frequency of the magnitude plot of disturbancectieje transfer function.
Therefore, for the designed controller, the most effectlisturbance can occur at
2.1 rad/s. The disturbance rejection magnitude plot has a slope20fd B /decade
below the peak frequency and has a slope-df dB/decade above the peak fre-
guency. So, the robustness to disturbance increases fartgiaces with lower and
higher frequencies then the peak frequency.

The robustness to disturbance is one of the criteria thagad in the selection of the
weighting matrix for the performance vectbr (2.32). In aigai to this criterion, there

are more robustness and performance based criteria foetigrd

The robustness of the MFC method is shown to be better thae stassical and

optimal controllers widely used in the literature [18].
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2.3.2 Noise Filtering

Measurement devices are used to measure certain informagarding the states
of the system. For example, a gyroscope measures the terofrte system. The
output of the measurement device includes both the turnimédemation and some
meaningless oscillations. These meaningless oscil@oa called the noise on the
measurement. These noisy measurements are used as feagltieekontroller. By
this way, the noise acts on the system.

In order to control the system properly and calculate smaeotitrol commands, a
controller needs the noise on the feedback to be filtered. nbise filtering robust-
ness character plays its role in this stage. A good noiseiffitfecharacter results a
smoother control command. The noise filtering charactercafrdroller is examined
by the transfer function between the noise input to the ragl@ output of the system.

For the MFC all of the physical states of the sample systemeinsttbwn in [(2.17)
are assumed to be available. The synthetic states added gystem by the refer-
ence model and the integrator shown in the combined systaatieq [2.18) are also

available for feedback since they are calculated insidedinéroller.

For the physical system states, the first state corresponiie troll ratex;(¢). The
roll rate is measured by the gyroscope and noise due to thasumement is added
to the system by the measurement device. The second stake riglit anglez,(t).
The roll angle is calculated by integrating the roll ratettse state does not introduce
any additional noise into the system. The other two statesha control actuator
states ¢(t),u(t)). The controller angle is measured by the encoder. The encod
measurement device is an absolute device so the noiseatutes in the system
feedback is neglected in this study. Similarly, the noigeonfuced on the system
due to derivation of the encoder output is also neglecteeréfbre, for the physical
states of the sample system, noise is only introduced ondtheate measurement.
This noise is called as the noise on the first state of the myste(¢), and it is a

random oscillation with time.

For the synthetic states calculated in the controller, tssible noise occurring due

to computation is also neglected. Therefore, the only noisthe system is,,, (¢).
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The block diagram with the noise input to the system is shawthé Figuré 26.

REFERENCE
MODEL

CONTROLLER f—=—=3 ACTUATOR

uC CONTROL Iy

SYSTEM

u

3 PLANT

1

Figure 2.6: MFC noise filtering block diagram.

The open-loop system equation showriin (2.19) is

Ty = Aos + Boyue(t) + Bopr(t).

(2.40)

The control deflection command calculation equation (2i28pdated with the noise

input to the system as

(2.41)

The reference commandt) and the disturbance on the systéix:(¢),¢) shown in

the Figuré 2.4 are assumed to be zero. This assumption islonger to satisfy the

single input single output form of the plant. The only inpaithe system is the roll

rate measurement noisg, (¢), and the output is taken as the roll anglgt).
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The system equation with the above assumptions is

x1(t) + ng, (t)

iy = Aty — BouK . (2.42)

Equation [(2.42) can be rewritten in transfer function forynusing the relationsﬁ')
is s, and [()dt is 2. The system states and the noise input can be separatedeand th

equation can be rewritten as

1
sty = Apxs — BouKxs — By K % Ny, - (2.43)
O7x1
Collecting the inpuk,, and the states, in separate parts gives
1
(sloxg — Ao+ BouK)xs = =Bou K | 1 | my,. (2.44)
O7x1

The roll angler; can be selected from the system states with the followiragioed
x9 = Cp,Xs. (2.45)

The z, selection matrix i”,,, = [ 0 1 05x7 } . By using the relations shown in
(2.44) and[(2.45), the noise filtering transfer functiomirooisen,, to roll anglex.

is found as

X2

T S

(8) = _Cm52 (SIQXQ - Ao + BouK>_1BouK (246)

N,
O7x1
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The numerical transfer function calculated for the desigeantroller is

T —5.2210%*s — 9.42 10*

Mo, (8) = 5250757 1 1.66 1075 1 52210757 + 9.42 10%s + 7.91 107"

(2.47)

The noise filtering character of the MFC is examined by ushegroise filtering
transfer function. The magnitude plot of the noise filteriramsfer function[(2.47) is
shown in the Figure 27.

Magnitude Plot of Noise Filtering Transfer Function
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Figure 2.7: Magnitude plot of noise filtering transfer fuoat

The magnitude plot of the noise filtering transfer functibnwss the effect of noise on
the roll angle. For different frequencies, the augmentetesy with controller passes
the noise in different levels. By examining the Figlrel 2.@ah easily be seen that
noise filtering performance of the controller increaseshasfitequency of the noise
increases. Since random noises oscillation occur on hagfuéncies, this character
is a good noise filtering character. The peak of the noise@ess's atl.6 rad/s fre-
guency. The magnitude of the multiplier at the peak poigt8siB. For the frequen-
cies below of the peak frequency, the noise pass has an atmastant magnitude.
The magnitude value for the low frequencies is arouriddB. This value wanted
to be lower for better noise filtering, but for the low freqagnmegime this value is
acceptable since most of the noise occurs on high frequenéier the frequencies
higher than the peak frequency, the magnitude plot has & sibp60 dB/decade.

27



This means for every tenth power of frequency the noise ipmgsed0 dB more.
Therefore, as the frequency of the noise increases, the fitiexing effect on the

measurement gets stronger.

2.4 Simulation Examples

The performance and the robustness of the designed centiokbxamined by simu-
lations. The plant model for the slender delta wing combingh the control actuator
model and disturbance input is given [In_(2.7). The distuceagcting on the system
is composed of two parts as mentione@in 2.1. The first paheftlisturbance is the
wing rock dynamics. The wing rock dynamics introduce exdemoment on the sys-
tem for roll angle and roll rates of the delta wing. The mathgoal relation between
states of the system and the wing disturbafiggx(¢)) is given in [2.4) and can be

repeated as
dwr(x(t)) = e + aox1 + ag|za|zy + ol |z + asxi’- (2.48)

The second part of the disturbance acting on the system iatitmm external dis-
turbance. The random external disturbangcgt) acting on the system is neglected
in this section and is going to be taken into account in thiefohg sectiori 2.6. So

the numerical details are also going to be mentioned in th@song section.

The noise acting on the measurement of the system rolhrate) is assumed as a
Gaussian distributed random signal with zero meanlatfit 4 rad/s variance.

The measurement device dynamics are neglected since ttemsydandwidth is
relatively lower than most of the gyroscope devices usedneasuring the roll rate.
Therefore, the roll rate information is assumed to be meabwithout lag. However,

the noise introducing effect of the device is kept in the datians.

The block diagram of the system with the wing rock dynamigsemmal disturbance

and measurement noise inputs is shown in the Figufe 2.8.

Two different reference command set is applied for the parémce inspection of the
MFC controller. The first one is a step sequence and the semoas a sine wave.
The results of the simulations are showh in 2.4.1[and2.4.2.
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2.4.1 Step Command

Figure 2.8: MFC block diagram for simulation.

The reference input to the system controlled with MFC isceldas a step sequence.

The magnitudes of the steps até deg with a period of50 secs. The plot of the step
command is shown in the Figure 2.9.

Step Command
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Figure 2.9: Step command input.

In order to examine the performance of the controller, titiflerent simulations are

done for the given step command. First, the both the dishadxmand noise input is

closed. The block diagram of the system for the first simatatif the step command
is shown in the Figure 2.10.
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Figure 2.10: MFC block diagram with no disturbance and noise

The step stair command, the response of the reference naodigihe response of the

controller are shown in the Figure 2]111.

Response of the MFC controller to step command with no disturbance and noise
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Figure 2.11: MFC response with no disturbance and noise.

In the figure, the black line corresponds to the stair stepncand input to the sys-
tem. The blue line, which can not be seen, since it is hidecutite green line; is
corresponds to the roll angle of the reference model. Thergliee is the roll angle

of the slender delta wing, which is obtained by using the MFC.

As it can be seen from the Figure 2.11, the controller camfothe reference model
perfectly where there are no disturbance and noise intedltw the system. This

result is an expected result and shows that the controllgdés done accurately.
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In the next simulation with step command, the disturbaneetduthe wing rock dy-
namicsd,, (x(t)) is introduced. This dynamics is defined[in{2.48) and areineat
dynamics. The block diagram used for the second simulas@hown in the Fig-

ure[2.12

r(t) u(t Control (ot
— MFC Actuator B *®) [.dt x(t)>
System
1
A K

Sur (x(D)

H a1x; + apxy + azlxgxg + aglx |x; + asxi
ny, (t)

Op<

Figure 2.12: MFC block diagram with wing rock dynamics.

The response of the controller for the step command, whdentimg rock dynamics

are acting to the system, is shown in the Fidurel2.13.

Response of the MFC controller to step command under wing rock dynamics
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Figure 2.13: MFC response to step command under the effeghgfrock dynamics.

The MFC is designed for being robust to the disturbances.s Tharacter of the
controller is examined in the section 2.3. The magnitude pfahe disturbance
rejection transfer function, which can be examined in thguFe[2.5, shows how

effectively the MFC can suppress disturbances acting osyeeem. This character
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of the controller also can be seen from the Figure|2.13. kfthure, the response of
the system, which is shown by the green line, has a reallydlasking performance
of the reference roll angle, which is shown by the blue liner the defined wing

rock dynamics, which is taken frorn [53,/66], the MFC is showmave satisfactory

disturbance rejection performance while following a ssé&p command.

Since the optimal model following controller is shown to ea/fulfilling disturbance
rejection performance, the effect of the noise on the sysseexamined. In order
to do that, the noise input to the system is opened. Therefloeethird simulation
with the step command is done by introducing both the wind tdhgamics and the
noise to the system. The block diagram referring to the fimaukation of the step
command is shown in the Figure 2114

r(t) u(t Control (¢
— MFC Actuator B *() [.dt x(%
System
T
A
Bwr (x()

H aix; + apxy + azlxglxg + aglxg|x + asxd

Ny, (t)

O
Figure 2.14: MFC block diagram with wing rock dynamics andseo

The response of the MFC to the step command defined in thedf&gg@runder the ef-
fect of the wing rock dynamics and the random measuremeséndgth the properties
given in[Z.4 is shown in the Figure 2]15.

The Figure_2.15 shows the disturbance rejection and notseiriiy performance of
the MFC at the same time. The controller performs in satisfgdevels for both
objectives. The response of the MFC, shown in figure with tieeig line, follows the

reference model roll angle response closely.

The three simulations done for the step command show thatE can control the

system under the effect of wing rock dynamics and random aneagent noise on the
roll rate. For an other command set, the MFC is examined ifdll@ving subsection

2.4.2.
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Response of the MFC controller to step command under wing rock dynamics and noise
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Figure 2.15: MFC response to step command under the effedhgfrock dynamics

and noise.

2.4.2 Sinusoidal Command

The reference input to the system controlled with MFC isdeldas a sine wave for
this subsection. The controller is shown to be robust fomthng rock dynamics and

measurement noise while following step command in the pres/subsection.

The sine wave command used in the simulation is selected/diadegrees ampli-

tude andg% H z frequency. The sine wave command is shown in the Figure 2.16.

The comparison for the responses of the MFC under no distaeband no noise,

under only wing rock disturbance, and under both wing roskuilbance and noise is
done in the previous subsection. The result of the comparsthat, the controller

can deal with both the wing rock disturbance and noise fqr sdenmand. Therefore,
for the sine wave command, only one simulation is done. kghnhulation, both the

wing rock disturbance and the noise are acting on the systemblock diagram for

the simulation is shown in the Figure 2114.

The response of the MFC for the given sine wave command foralhangle of the
slender delta wing is shown in the Figlire 2.17.
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Figure 2.16: Sine wave command input.

Response of the MFC controller to sine wave command under wing rock dynamics and noise
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Figure 2.17: MFC response to sine command under the effegingfrock dynamics

and noise.

In the Figurd_2.1]7, the sine wave command is shown with thekllae. The refer-
ence roll angle calculated by the reference model for hengsiee wave command

is shown by the blue line, and the roll angle response of th€ MFshown with the

green line.

By examining the figure, it can be said that the system cdettalith MFC is robust
to the defined wing rock dynamics and roll rate measuremesend his argument
states that the design done by using the linear design tesldted in a satisfactory
performance and robustness level. The linear design toalsate used for the design
are the optimal gain calculation with the linear quadragguiation and the frequency
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domain analysis tools. These tools are not available folimear controllers, but can
be used to state performance of the base controllers suclir@s M

2.5 Challenging Disturbance Case

The robustness and performance of the designed MFC isasztisy for the given
command following needs and disturbances and noise aatinigeosystem. In order
to examine controller’s robustness to the external distoeks, the difficulty of the

acting disturbance is increased.

In addition to the wing rock dynamics,,. (z(t)), the external disturbance, ()
which is only a function of time is defined. This disturbanseairandom distur-
bance, and it is only a function of time. This external distaurce is introduced to
the system in order to represent the effects due to wind astdayuthe system. The
random gust can occur for the slender delta wing, and cart teswlling moments
on the system. The disturbance input is taken as an equivajart with the aileron

deflection angle, therefore, its dimension is in degrees.

The block diagram representing the system controlled by M#®& disturbance and
noise inputs is shown in the Figure 2.8.

For the challenging disturbance case, the selected ektisharbancé.,.(¢) is shown
in the Figuré 2.18.

The random external disturbance shown in the Figurel 2. 1&laportant property
in terms of its frequency content. This external disturlgaisccreated by filtering out
high frequency content and the peak frequencies of the tiatarsin random exter-
nal disturbance is arounidrad/s. This frequency is where the disturbance rejection
magnitude plot of the MFC design makes a peak. Disturbinglésggned controller
at the frequency around its disturbance rejection trarfafestion makes a peak re-
sults in a challenging disturbances case. This is the méfiereince of the selected

random external disturbance than the acting wing rock dyceon the system.

The possible gust effects that is possible to occur on th&a dghg is simulated

with this external disturbance input. The external distmde has peaks arourd 0
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Figure 2.18: Random external disturbance.

degrees and-15 degrees. This numbers mean that, for that amount of gust, the
equivalent control input amount is that much degrees. Sactmgroller needs to
apply the exact opposite of the external disturbance inrdadeancel out the effect

of it on the system.

The system controlled with MFC is examined for the wing rogkamics disturbance
and roll rate measurement noise in the previous seCtidnThdre are two different
command set are used to inspect the robustness and pertrofthe controller.
These command sets are the step command which is formed &gty step com-
mands in different directions, and sinusoidal command wéttain magnitude and
frequency. Now, MFC is examined with the same command sdtsheuexternal

disturbance is included to the system.

The plot of the step command is shown in the Fiduré 2.9. A satmu is done in
order to obtain the the response of the system controlled MEC under the effect
of both the wing rock dynamic$,, (x(¢)) and the external disturbanég (¢), and the
roll rate measurement noisg, (t). The results for the roll angle tracking is shown in
the Figuré 2.109.
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Response of the MFC controller to step command under
wing rock dynamics, external disturbance and noise
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Figure 2.19: MFC response to step command under the effeghgfrock dynamics,

external disturbance and noise.

The step command in the Figure 2.19 is shown with the blaak lifihe reference
model roll angle response to the applied step command isrskatl the blue line.
The reference model response is exactly the same with thiepeereference model
responses, since the reference model is the same. The sespicthe MFC is shown
in the Figure_2.19 with green line. As it can be seen from theréighe response
of the controller is degraded when compared with the respshswn before. This
degradation is occurred due to the introduced externaldliahce on the system. This
disturbance result in a challenging case. Although the Mi~@esigned by regarding
the disturbance rejection robustness character of theaitamtto be high enough to
eliminate acting disturbances, the response of the cdéettrohder given command
set and disturbance input seem to have been spoiled. Thetnass of the controller
is also effecting the response, since the roll angle is satt® follow the reference

roll angle. However, the following performance is not datsory.

The wing rock dynamics are nonlinear in terms of the statédseodystem. In addition,
the introduced external disturbance is random in time setfeet of it may change

according to the states of the system. Therefore, the comsetnis changed similar
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to the previous section.

The plot of the sine wave command is shown in the Figure|2.1& Simulation is

repeated with the exact same external disturbapge) input to the system. The
wing rock dynamics and measurement noise are also introdadhis simulations.

Only the step command for the roll angle is changed to sineeveavnmand. The
result of the simulation is shown in the Figlire 2.20.

Response of the MFC controller to sine wave command under
wing rock dynamics, external disturbance and noise
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Figure 2.20: MFC response to sine command under the effeghgfrock dynamics,

external disturbance and noise.

The commanded sine wave input for the roll angle is shown thiéhblack line in

the Figurd 2.20. The reference model roll angle responséthtbcommanded sine
wave is shown with the blue line. The lag between the commésde wave and
the reference roll angle is introduced due to the filteririgatfof the reference model
used. This lag is a result of the designed controller. Thpaese of the system
controlled with the MFC is shown with the green line. The iaigle response of
the system is again diminished under the effect of the agp@ig¢ernal disturbance
when compared to the previous simulation done with the sidias command. The
effect of the external disturbance on the roll angle resparas followed from the

Figure[2.20.
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First of all, both of the figures Figufe 2]19 and Figure 2.26vskthat the system con-
trolled with MFC keeps its stability under the given wing kodynamics, external
disturbance input and roll rate measurement noise inpugpkg system stable is not
enough in most cases of controllers, so the problem leatie fodrformance degrada-
tion due to the disturbance acting on the system. Next csimiuor the simulation
results can be taken as the controller succeed to followeteeance model but with
unwanted disruptions in the response. These unwantedoting are occurred due

to the external disturbance acting on the system.

The simulations with challenging disturbance case leadddségner to a search of
finding better controllers for this problem. The possibl&igon for the problem is
searched in the adaptive control methods in the followiraptérs.
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CHAPTER 3

MODEL REFERENCE ADAPTIVE CONTROL

Model reference adaptive control (MRAC) method is one of tiest widely used
adaptive control method in the literature. Various exammethe MRAC method
can be found in 60, 43/5] 7,44,122,137] 46,39, 40] and mangreth

Similar to the model following control (MFC), the MRAC metthaises a reference
model to represent the desired system response. An adajgivent is used to ad-
just the controller input to the system for adapting the dgesnin the system and

unexpected disturbances.

For the basic MRAC, the uncertainty parametrization is doyesing known func-
tions of system variables. Using known functions of systarables is equal to
knowing the structure of disturbance, but trying to adapttieightings for the struc-
ture. Example studies where the uncertainty parametnizatidone by using known
functions of system variables can be found in [9,[10] 31, 8964 ,61| 45, 65].

This chapter is formed by two sections. In the first sectiba ldasic MRAC is repre-
sented. In the second section, the simulation is done fochh#enging case defined
in[2.8 by using the MRAC method. The performance of the cdietres discussed.

3.1 Representation of MRAC

The mathematical model representing the MRAC is given omaige system model.

Consider a general system model similar to the one giverdiag.
x(t) = Az(t) + Blu(t) + A(t)]. (3.1)
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The state vector is defined byt) € R™ and the control input is defined hyft) € R.
For the proceeding argument the general system is assunieécsingle input so
the control input isu(t) € R. The disturbance on the systemAgt) € R. The

disturbance is assumed to have the form
A(t) =Wp(x(t)). (3.2)

In (3.2) 5 (z(t)) represents the uncertainty parametrization for the disiure esti-
mation. This parametrization is done as functions of thiestaf the system. The con-
stantideal weight®/ is representing the weightings of the corresponding pairéaae

tion.

The control inputs(¢) to the system is calculated by using both the nominal cdetrol

and the adaptive controller as
u(t) = up(t) — uqq(t) (3.3)

with dimensionsu,(¢) € R for nominal control input and,.4(t) € R for adaptive

control input.

The nominal input.,(t) is calculated by a full-state feedback. This full-statedfee
back controller is

un(t) = —K,x(t) + K.Hr(t). (3.4)
Here the controller gain i&’, € R, The reference input to the system is assumed

to have dimension aof(¢) € R. The matrix for the reference input i§ € R™*!,

The control gaink,. is calculated in such a way that the closed loop system exuati
for the system controlled with the nominal controller résim the reference model.
This means the closed-loop response of the system cowtnwite the nominal con-

troller with out any disturbance on the system is equal taisred response.

Hence, the reference model used for the MRAC has the systaatieq as

t,.(t) = (A — BK,) z,.(t) + BK,Hr(t)
T (t) = Ayx,.(t) + Br(t).

(3.5)

The reference model state has the same dimension with thensgsate as.,.(t) €

R™*!. The reference model matrices as can be seen from the reéemeodel equation
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areA, = A — BK, € R"" as reference model system matrix add= BK,H €

R™*! as reference model input matrix.

The aim of the adaptive input is to cancel out the disturbamcthe system. There-
fore, the adaptive controller input has the same form of theettainty parametriza-
tion done for the disturbance. The uncertainty parametoizas formed by two mul-

tipliers where one of the is a vector formed by the known fiomg of the system
states and the other is weightings regarding each componéiné parametrization
vector. It is assumed that there are ideal weights for themainty but they are not
known by the controller so estimates of these weights are inse adaptive control

input. The adaptive control input is calculated as

A

Uaa(t) = W ()5 (x(t)) (3.6)

The estimated weighié/(t) have the same dimension with the ideal weights and they

are updated in every time step by the adaptive controller.
The weight update law for the MRAC is
W(t) = TB(t)e(t)T PB. (3.7)

In (8.7), the learning rate of the weight update is represgnithI". The learning rate
is a design selection. As the value of the learning rate ieeased, the weight is sen-
sitivity of the weight update law to the error between theaysstates and reference
model states increases. Therefore, the adaptation machanes to update weight
with high derivatives. This results a faster response ameasing the disturbance on
the system. Estimating the disturbance by updating thehieig faster results in a
higher learning rate. So, the design selection multiglief the weight update law is
called as the learning rate of the adaptation.

The error shown if (317) is equal to the error between theegystates and the refer-

ence model states. The equation for calculation of the &ror
e(t) = z(t) — z(t) (3.8)

wheree(t) € R™*!. This element in the update law is used to drive the adaptatio

mechanism. In case the error between the system statesfarehme model reaches
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to zero, the weightings corresponding the uncertaintyrpatazation are succeed to
be equal to the ideal weights. Therefore, adaptation stmpzeio error case. On the
other hand, as the error increases, the effect of it on thghwepdate law increases.
This results a higher derivative for weight update. The redrives the adaptation

mechanism this way.

The constant matrix® is calculated from the Lyapunov equation which is
ATP+ PA.+R=0. (3.9)

The reference model system matrx is used in the Lyapunov equation shown in
(3.9). The matrixR is a positive definite design selection matrix. The desigaer
select any matrix which is positive definite to manipulate #idaptation mechanism
of the MRAC.

The Lyapunov stability analysis is omitted in this discossiThe details of the stabil-
ity proof of the basic MRAC with uncertainty parametrizatiasing known functions
of the system states can be found in many numbers of refeseAcgmple explana-
tion for the proof can be found in [62].

The block diagram representing the MRAC is shown in the FEgul

r(t) Nominal Controller
u, (t) = =K, x(t) + K.Hr(t)

Plant x(t)
x(t) = Ax(t) + Bu(t)

A 4

A4
Reference Model Adaptive Controller
%) = A x, (8) + Bor(O)] | taa (8) = WB(x(2))

+(t) <(©) Tx(®
e(t) W (t)

_ Weight Updater
W(t) =TB(x(t))e(t)"PB

Disturbance

A(x(®) = WB(x(1))

Figure 3.1: MRAC block diagram.

As it can be seen from the figure the weight update law is driwethe error be-
tween the system states and the reference model statesddjpgva control input is
calculated by the updated weight and subtracted from th@madmontroller gain in
order to cancel out the uncertainty effect introduced bydiseurbance. The uncer-
tainty parametrizatio@ (x(t)) is assumed to be known and is formed by functions of

the system states. Therefore, both the weight update lavadagtive controller use
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system states as feedback.

The general overview of the model reference adaptive cbntethod is given in
this section. The performance of it for the defined probleith lvé examined in the

following sectior 3.2

3.2 Simulation for the Challenging Case with MRAC

In this section, the performance of the MRAC method undectialenging case de-
fined previously is inspected. The roll angle control of tlender delta wing system
is done by using the MRAC method. The challenging controbfem includes the
wing rock dynamics given irL(2.48). The wing rock disturbang. (¢) is calculated

by multiplying the function of system states with ideal weig This disturbance on
the system is ideal for using the MRAC method. This is becafiske fact that the

MRAC method also uses parametrization of the disturbancesimg known functions
of the system states.

The wing rock dynamics defined for the delta wing can be résnias

Our(t) = W§ (x(t))

= T2 + Qa1 + 043‘1’2‘1’1 + Oé4|.7}1|.751 + 045.7}:15.

(3.10)

The system state function vectd(z(t)) in (3.10) is

Ty
B(x(t) = |za|zy | - (3.11)

|$1|$1
)

The ideal weight vector whose elements correspond the alsnrethe system state

function vector is

W = 1 Oy Q3 G4 OOf ] . (312)
The numerical value of the ideal weights as mentionéd in Zkvts taken from[[66]
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W:|:Oé1 Qg (i3 Q4 QOf
(3.13)

2[0.1414 0.5504 —0.0624 0.0095 0.0215]

The system equation can be rewritten with the new expredsiothe wing rock
dynamics as
i(t) = Az(t) + B (u(t) + WB (z(t)) + dea()) . (3.14)

The system matrixd and the input matrix3 representing the rolling dynamics of a

0 0
A=
[1 0

The reference model representing the desired respondeusatad by using the pole

slender delta wing are

1 ]
B= . (3.15)

placement method as mentioned’in 2. The desired naturaldrery and damping
ratio for the reference model are selectedvas= 0.4 rad/s and(, = 0.707. The
reference model and the nominal controller gaifsare calculated by using the Ack-
ermann’s formula. The Ackermann’s formula is shown[in (R.1Zhe calculated
controller gains are

K, = [ 0.57 0.16] (3.16)

The reference model state space equation is

i,(t) = ([? 8} - {;] [0.57 0.16}>x,.(t)+ “} [0.57 0.16} [?] r(t)
. (3.17)

.| 057 —0.16 . 0.16 .
xr(t){ ) 0 ] T(t)+[ 0 ] (t)

So the reference model in compact form is
T.(t) = Ayx,.(t) + Bor(t). (3.18)
The nominal controller used in the MRAC is

un(t) = —K,z(t) + K, Hr(t) (3.19)

0
H= [ 1 ] (3.20)
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The numerical representation of the nominal controller is

wun(t) = — [ 0.57 0.16 ] +0.26 7 (t). (3.21)

The adaptive part of the MRAC is calculated with

Uaa(t) = W(t)B (x(t)) . (3.22)
The parametrization vectgt (z(t)) is assumed to be known. The dimension of the
vector is3 (z(t)) € R>*!. The dimension of the weightings of the parametrization
vector isW € R'*5. The estimated weights need to be calculated by the weight

update law. The weight update law is
W(t) = TB(t)e(t)” PB. (3.23)

The learning ratd” in the weight update law has the dimensione R>*° and is

selected as a design selection. For the MRAC design in tindlysthe learning rate is

selected as i i
10 0 0 0 O
0 10 0 0 O
'=10 0 10 0 0 (3.24)
0O 0 0 10 O
0 0 0 0 10 |

This selection is done by trial and errors. The trade off leetwincreasing and de-
creasing the learning rate is lying between the instalalitg insensitively. Increasing
the learning rate more than the selected value, the rolsssti¢he system decreases.
For further increase in the learning rate results in unstapstem under defined dis-
turbances. Lowering the learning rate results slower respdérom the adaptive ele-
ment so the adaptation becomes insensitive to the distoelsai\s a trade off study,

the learning rate shown i (3.124) is selected.

The matrixP in (3.23) is calculated by the Lyapunov equation showh iff)(3The R
matrix used in the Lyapunov equation is also an other degtgtgon. This matrix

is selected as
1000 O

R= . (3.25)
0 0.0l
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The selection of the? matrix effects the sensitivity of the adaptation on the lerro
Each diagonal element in the matrix corresponds to the elements in the error vec-
tor. The error vector is defined as the difference betweersystem states and the
reference model states. In the example of the slender délig, system states are
the roll rate and the roll angle. Therefore, by changing tlgahal elements of the
R matrix, the sensitivity of the adaptive law to the each of $listem states can be
manipulated. By trying several values for tRenatrix and examining the simulations

the values shown in (3.25) are selected.

For examining the challenging case, two sets of inputs u3éubse inputs are the
stair step command shown in the Figureg 2.9 and the sine wamenemd shown in the
Figure[2.16.

The simulations are done including wing rock dynamigs(x(t)) defined in[(3.1D),
external random disturbandg, (t) shown in the Figure 2.18, and the roll rate mea-

surement noise defined[in 2.4.

The block diagram of the system controlled by using the MRAGHhown in the
Figure[3.1. The control actuator system is not shown in tigisréi. It is also not
included to the design of the controller. However, the aardctuator system, with

the properties defined in 2.1, is used in the simulations.

The measurement of the states is assumed to be fast enouggléctnand the mea-
surement dynamics are neglected.

The response of the MRAC under the given disturbances arse i the step com-
mand is shown in the Figufe 3.2

As can be seen from the Figure 3.2, the model reference adaatntrol can not give
a satisfactory command following performance under defatistlirbances. This is
a result of the fact that the controller assumes a wrong tstrei¢or the uncertainty.
This can be shown simply by removing the external disturbaartd repeating the
same simulation with only wing rock dynamics acting. By nmakihis change in the

simulations is giving the MRAC full control of the disturb@mon the system.

Knowing the structure disturbance on the system is not a eegtering case for many
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Response of the MRAC to step command under
wing rock dynamics, external disturbance and noise
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Figure 3.2: MRAC response to step command under the effeangfrock dynamics,

external disturbance and noise.

of the applications especially those occurring on operTéie delta wing isopen to the
any kind of possible disturbances. For now on, just to seleeifdesigned controller
is capable of eliminating the wing rock dynamics by estimgtihe weightings of
the nonlinear functions of system states, a simulation wfitly wing rock dynamics
and measurement noise acting on the system is done. The caliskept as step
command. The response of the system to the step commandhia shthe Figuré 3.3

As can be seen from the Figurel3.3, the command trackingnpesfoce of the MRAC
increases fairly compared to the case where the exterrtatidice is acting.

The simulations with step command shows that, the MRAC ntettam not cancel
out the unwanted effect of the external disturbance actmthe system. The con-
troller has nonlinear component such as weight update laadaptive control input
calculation. Due to this non-linearity, an other simulatieith a different command

set is done. The next command set is the sine wave command.

The sine wave command is definedin 21.4.2, and plot of it is shiawhe Figuré 2.16.
The simulation of the system with wing rock dynamics, exaémlisturbance and
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Response of the MRAC to step command under
wing rock dynamics and noise
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Figure 3.3: MRAC response to step command under the effedingfrock dynamics

and noise.

measurement noise is done. The response of the MRAC to thevsive command

is shown in the Figure 3.4.

As it can be seen from the Figure 3.4, the controller desigisedy the MRAC method
is failed to follow the given sine command. This is an expecesult.

The MRAC is designed to overcome the uncertainties whictettae predefined
structure. The external disturbances that are not inclurdkde the uncertainty parametriza-

tion of the MRAC are cause impairment on the system respansgitzen command.

This situation is occurring due to the selection of the utaiety parametrization.
Assuming the disturbance acting on the system is a comburedién of the system

states and in addition assuming this function is known canlt@ response shown in
Figure[3.4.

The design of the MRAC controller is tried to be done in suchag that it can endure
the given disturbances. However, limiting the structuréhefdisturbance may act on

the system is not an helping choice.
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Response of the MRAC to sine wave command under
wing rock dynamics, external disturbance and noise

Command
Reference Model
MRAC

Roll Angle (deg)
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Figure 3.4: MRAC response to sine command under the effexcitaf rock dynamics,

external disturbance and noise.

The robustness and performance of the MRAC can be improvedsing several
modification terms that are introduce in the literature. Ideer, in the scope of this

study, simulations using these modifications are omitted.

In stead of applying modification terms on the MRAC, a new utaiety parametriza-
tion method is proposed. This method is explained in dataihe following chapter

i

In the chaptdrl3, the representation of the well known MRA@whcertainty parametriza-
tion using known functions of system states is done. Thenulsitions for the chal-
lenging case raised [n 2.5 is conducted. Finally, the naisfaatory results of the

simulations for the MRAC are demonstrated.
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CHAPTER 4

FOURIER SERIES BASED MRAC

Any function that is periodic can be represented with a Fergeries. Representing a
function with a Fourier series means forming that functigrubing simple periodic
functions. These periodic functions are sine and cosinetims. Summation of
these simple sine and cosine functions with a certain wigighesults in any periodic
function.

In this chapter, a novel method for uncertainty paramedionais proposed. This

approach depends the powerful representation competétioe Bourier series.

The disturbance acting on the system is assumed to haveoajgarature. Moreover,
an attempt to satisfy this assumption is done by manipujdtie period of the peri-
odic function. The periodic disturbance is estimated uiegpowerful Fourier series.
This estimation mechanism is used as basis to the modeéreieradaptive control.
In other words, the uncertainty on the system is parameltbyaising Fourier series.
The sine and cosine functions forming the Fourier seriekepeas variable vector in
the adaptive element and the weightings are estimated tchntia¢ disturbance and
cancel its effect on the system.

In this chapter, first the stability proof of the proposed Imoekis shown. After that,
performance of the novel method proposed is examined fochléienging case by
using simulation. Next, the effect of unmodeled dynamicm$pected. Then, the
effect of the sampling time used to calculate the contratiputs is examined. Then,
a mathematical comparison for disturbance rejection ciaraf the controller is

done. Finally, the controller is examined with differentiazhallenging random dis-
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turbances.

4.1 Stability Proof for Fourier Series Based MRAC

Considering the general nonlinear dynamical system giyen b
i(t) = Az(t) + Blu(t) + A®t)], z(0)=mz9 t€R, (4.1)

wherezx(t) € R" is the state vector(t) € R™ is the control input vector)(t) € R™
is uncertainty,A € R"*" is a known system matrix, anB € R"*™ is a known

control input matrix.

Assumption 4.1.1 The uncertainty\(t) is periodic function with a period df, so it

can be represented by Fourier series.

A function f(¢) is called periodic if it repeats itself in a period. The refpet char-
acter of a functiory (¢) can be shown by the equation given[in {4.2).

f@)=f(t+T) (4.2)

A known example of periodic function is shown in the Figur8.4.

This assumption is not a restrictive assumption since angtion with a finite op-
eration time can be taken as a periodic function. For exantplee the function
f(t) = t which is clearly not a periodic function, and state that faisction has a
finite operation time so that(t) =t Vt € [0,¢]. If so, the functionf(¢) can be
perfectly represented with a Fourier series expansiomdmeg enough period and

series length. The equation for the Fourier series exparnsishown in
al 2 2
fO)=ZF(t)=a+ ; },COS (k?t) + bysin (k?t) ) (4.3)

The coefficientsyy, ai, andb;,, are called as Fourier series coefficients. The index
k shows the coefficient number, aldd shows the series length. The Fourier series
coefficientsay, ai, andb, can be calculated by the equations showriinl (4[4)] (4.5),
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Figure 4.1: Periodic function.

and [4.6), respectively.

1 T/2
ay = — f(t)dt (4.4)
T J 1)
2 [T/2 2
a = 7 _T/Zf(t)cos(/{:Tt)dt (4.5)
2 [T/2 o
b, = — t)sin(k—1t)dt 4,
F= T _mf( )sin( T )d (4.6)

These coefficients are scalar constant for given funcfion

The selection of the period of the Fourier series expansamiiical since it affects
the representation of the functigiit) with the expansion equation (4.3). The period
T should be at least 3 times longer than the operation times rEtation can be seen
in the Figure 4.P.

As seen in the Figulffe 4.2, selecting the period of the Fosages expansion 3 times

longer than the operation time gives satisfactory reptasien.
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Fourier Series Representation Change with Period
T T T T T T T

1.2

— (1)

_0'2 | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t/t

Figure 4.2: Fourier series representatiory ¢f).

The length of the Fourier series is also an effective compbokthe expansion. The
effect of the series length is shown in the Figuré 4.3.

Fourier Series Representation Change with Series Length
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Figure 4.3: The effect of the series length for Fourier Sergpresentation of (¢).

The error of the Fourier series expansion is
e(t) = f(t) — F(t). (4.7)

The errore(t) decreases as the series lengthincreases as can be seen in the Fig-
ure[4.3. On the other hand, as the series length increasesndwf the coefficients

used for the expansion inevitably increases.

The uncertainty\(¢) shown in general nonlinear dynamical system givefin (4ah) c

be represented with Assumption4]1.1 as follows;

N
2w
A(t) = [ao + Z akcos(/f?t

k=1

)+ bksm(ﬁ%tﬂ +e(t) (4.8)
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The error made by the Fourier series expansion has the sanansions with the
uncertainty, which is € R™, and the Fourier series coefficients have the following
dimensionsg, € R™*!, q;, € R™*!, b, € R™*! for k € [1, N]. The summation
operation used ir_(4.8) can be replaced with vector muttiion. The Fourier series
coefficients form the first vector of constants and the haim@unctions of times
form the second variable vector. This representation oltheertainty is shown in

@.9).

A(t):[ao @ ay .. ax b by .. bN} cos (Nz?ﬂt) +e(t) (4.9)

Equation[(4.B) can be represented in compact form by
A(t) = WTB(t) +e(t) (4.10)

whereW € R™*? is the Fourier series weights of the uncertainty, &g e RP*! is
the cosine and sine functions vector with increasing fragies. The dimensionis

related with the series lengthi asp = 2N + 1.

The desired response of the system is represented withltbeiftg reference model,
F(t) = A (t) + Bpr(t), 1,(0) =2(0) =z t€R, (4.11)

wherez,, (t) € R™*! is the reference model state vectdt,) € R™*! is the reference
input to the system4,, € R™*" is the reference system matrix, aig, € R"*" is

the reference input matrix. The reference system matyjxs Hurwitz.
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Reference model matrices are obtained from system modeicesivith the linear
relation shown in[(4.12).

An=A—-BK, B,=BK, (4.12)

The gaink; € R™*" is the state feedback gain of the nominal controller and #ue g
K, € R™ " is the reference input gain. The gdif is selected in such a way that it
guaranties that the reference system model matfjxs Hurwitz.

The augmenting control law for the adaptive controller isvgh in (4.13).
u(t) = un(t) — uqq(t) (4.13)

The control inputu,, € R™*! stands for the nominal and,; ¢ R™*! stands for the

adaptive controller inputs.

Nominal controller input:,, uses both the feedback gai and reference input gain

K,. The equation of the nominal feedback control law is showih4).
un(t) = =K x(t) + Kor(t) (4.14)

The adaptive controller input has the same form with the dat#y A(¢) on the

system. The equation far, (1) is;
uaa(t) = W (1) B(1). (4.15)

The estimated Weightﬁ/(t) € R™*? used in the adaptive controller input are the

estimations of the adaptation for the Fourier series coeffis.

The error between the system states and the reference ntatdd s defined as the
error of the system with
e(t) = z(t) — xp(t). (4.16)

wheree(t) € R"*! is the error state vector.

The dynamics of the error staté) is examined by subtracting the dynamic equation

of the reference model{4111) from the system dynanfics (FH error dynamics is
é(t) = (t)—am(t) = Ax(t)+Blun(t) —uad(t) +A(t)]| — Apxm (t) — Bnr(t). (4.17)
The uncertainty\(¢) is replaced by[{4-10) and the result is
é(t) = Ax(t) + Blun(t) — wag(t) + WEB(t) +e(t)] — Apam(t) — Bpr(t). (4.18)
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The equation(4.18) can be reorganized as follows

é(t) = Ax(t) — BK x(t) + BKar(t) — Bugg(t) + BWTB(t) + Be(t)
— Apxy(t) — Byr(t),

(4.19)

and by replacing corresponding terms [in (4.19) by the ref®esystem and input
matrix according to the relation shown [n (4.12), the ergmaimic equation takes the

following form

é(t) = Apx(t) + Bnr(t) — BW ()T A(t) + BWTB(t) + Be(t)

(4.20)
— A (t) — Bpr(t).
From the definition of the error state the equation can beittenras
é(t) = Ape(t) — BW(t) — W)TB(t) + Be(t). (4.21)

The error of the weight is defined by the difference betweenRburier series coef-
ficients representing the uncertainty and the estimatedht®i The equation for the
weight error il (t) = W (t) — W. Putting the weight erroi¥/ (¢) in to @.21) gives

é(t) = Ape(t) — BW ()T B(t) + Be(t). (4.22)

Assumption 4.1.2 Here it is assumed that for the time being, the Fourier segles

pansion can represent the uncertainty perfectly and makesnor
e(t) =0. (4.23)

This assumption is relaxed below discussions.

4.1.1 Parameric Uncertainty

The stability of the proposed controller is inspected urtderparametric uncertainty

assumption.

Theorem 4.1.1 For the Lyapunov function candidate
V(e(t), W(t)) = %e(t)TPe(t) + %tr(W(t)TF_lW(t)), (4.24)
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and for the weight update law
W(t) = TB(t)e(t)" PB (4.25)
with the Lyapunov function properties
Vie(t), W (t)) >0 and V(e(t), W(t)) <0 (4.26)

the controller
U= Uy — Ugg = —K13(t) + Kor(t) — WIB(H) (4.27)

is stable under the Assumption 4]12= 0).

The proof of this theorem is discussed in several studiesaahetailed version of it

can be found at AppendiX A.

4.1.2 Non-parametric Uncertainty

Assuming the Fourier series expansion to be perfectly sgptéeng the uncertainty on
the system is a restrictive assumption and needed to besteld@kerefore, Assump-

tion[4.1.2 is removed and becomes
e #0, (4.28)
and the weight update law is modified with the following edurat

W(t)=T <B(t)e(t)TPB - O—W(t)) . (4.29)

Theorem 4.1.2 For the Lyapunov function candidate
V(e(t), W(t)) = %e(t)TPe(t) + %tr(W(t)TF_lﬁ/(t)), (4.30)
and the weight update law

W(t) =T (5(t)e(t)TPB . aW(t)) . (4.31)

if for any value of(t¢) one of the bound conditions

2
aWir
le®ll2 > (‘E*HPBHF)Q ) sl
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or

( ot ) W\ | W]
~ 2 l)\min(}%) W F W F
> 2 4.33
¥ 1) > 0 () + 1 (4.39
holds the controller

U= Uy — Ugg = — K 2(t) + Kor(t) — WTB(2) (4.34)

is stable.

The proof of this theorem is discussed in several studiesaahetailed version of it

can be found at Appendix B.

4.2 Simulation for the Challenging Case with Fourier SerieBased MRAC

In this section, first the design of the Fourier series basBd\Wl is discussed. Next,
the simulation results compared with the controllers noemdd in the previous chap-

ters are shown.

4.2.1 Fourier Series Based MRAC Design for Sample System

The Fourier series based MRAC design is done for the sleneléa ding system

model represented in 2.1. The system model equation is

x(t) = x(t) + ! (w(t) + Owr (2(t)) + dez()) - (4.35)
10 0

For the reference model design, the same desired charadelected. The desired
natural frequency and damping ratio for the reference madelkselected as,, =
0.4 rad/s and(, = 0.707.

The reference model has the same form shownin (3.5).

The nominal part of the controller is the same with the sekceference model. The
gains for the nominal controller is calculated by using tloikérmann’s formula. The

calculated gains for the system to have the desired chasditie in the closed loop
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response are
K, = [ 057 0.16 ] . (4.36)

The nominal controller is in the form

un(t) = —K,x(t) + K, Hr(t) (4.37)

whereH =
1

The adaptive control element is formed with the FouriereseriThe Fourier series
based basis function is collection of the sine and cosimedevith different frequen-

cies. The basis function vector for a series lengtivag

B(t) = | o8 (N?t) . (4.38)

The basis function has the dimensior20f + 1. This dimension is found a¥ terms

for cosine functions)N terms for sine functions andterm for bias.

For the design of the controller for delta wing system, threesdength of the Fourier

series is selected @6 = 10. Therefore, the basis function has the dimensiohlof

Next thing to be selected for the design of the Fourier sdveesed MRAC is the
longest period of the periodic functions in the basis fumttvector. This period
selection should be done by taking the operating time ofyetesn into account. The
simulations for the roll control of slender delta wing is @dor 50 seconds. As itis

shown in the Figuré 412, the period of the Fourier series Ishibe selected at least
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3 times longer than the operation time. In order to have gue@performance, the

periodT of the Fourier series is selected’As= 200sec.

The Fourier series is formed by selecting both the seriegtheN and the period’.
Now, the adaptive controller parameters selected.

The learning rate for the weight update law is selected as
['=210""Ipxn. (4.39)

The matrix/,; 2 is the identity matrix of dimensionl x 21.

The design selection matrik of the Lyapunov equation is selected as

1000 0O
R = . (4.40)
0 0.01

The selection of thé? matrix is exactly the same with the selection of tRenatrix
used in the MRAC design done in the previous chdgter 3. Thptagacontrol input
is calculated as

uad(t) = W()B(1). (4.41)
The weighting vectoF/(¢) is the estimation of the ideal weights of the ideal Fourier
series. This vector can be shown as

W(t) = [ ap ap G ... Qg [;1 [;2 610 } . (4.42)
The weight update law is
W(t) =T (5(t)e(t)TPB - O—W(t)) . (4.43)

where the damping modification term is selectedas 100. The block diagram of
the Fourier series based MRAC for the system defined is showreiFiguré 414

The robustness and performance of the designed controletiscussed in the fol-

lowing section.

4.2.2 Simulation Results for the Challenging Case

The performance and disturbance rejection character aflésgned Fourier series
based MRAC is examined using simulations. Similar to theutations in the pre-

vious chapters, the simulation for the system controlleth i#ourier series based
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Figure 4.4: Fourier series based MRAC block diagram.

MRAC includes the wing rock dynamics, the external distadeand the roll rate

measurement noise.

The control command is applied to the control actuator systed the control deflec-

tion is calculated after passing control actuator systenaagvics.

The wing rock dynamics are the same dynamics defindd ih (Bidse dynamics are

€2
x1
dwr (z(t)) = | 0.1414 0.5504 —0.0624 0.0095 0.0215] |zo|zy | - (4.44)

\56‘1|$1

3
Ty

The external random disturbance that is modeled for theejtestt may occur on the
flightis also included into the system. The plot of the modessndom disturbance is
shown in the Figure 2.18. The effect of this disturbance #iagd at the control input
location of the system and controller is expected to get fithe unwanted effects

introduced by the external disturbance.

The measurement noise acting on the system is the same iseddan the previous

simulations. The character of the roll rate measuremesernisigiven in section 2.4.

Two different sets of commands are applied in the simulati@ne is the step com-
mand that is shown in the Figure .9. The other one is the save wommand shown
in the Figuré 2.16.
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The command tracking performance of the Fourier seriescb®H@AC under the
challenging case disturbance and noise for the step commasitbwn in the Fig-
ure[4.5.

Response of the FSE based MRAC to step command under
wing rock dynamics, external disturbance and noise

Command
Reference Model
FSE based MRAC

Roll Angle (deg)
o

-6 i I i I j
0 10 20 30 40 50

Time (sec)
Figure 4.5: Response of the Fourier series based MRAC tacst@mand under the

effect of wing rock dynamics, external disturbance andeois

The command following performance of the Fourier serieeddRAC design is
much better than the other controllers shown before. Thexetif the disturbance

acting on the system is almost totally removed from the syste

The comparison of the controllers is done. The MFC, the MRAG the Fourier
series based MRAC controllers’ responses to step commader ihe wing rock

dynamics, external disturbance and measurement noisb@n $n the Figuré 416.

As it can be seen from the Figure 4.6, the Fourier series bsi$®AC follows the

reference model roll angle really closely. The other adaptiontroller is failed to
follow the command satisfactorily. This failure is due te thelection of the un-
certainty parametrization. The linear controller augrednwith a reference model
succeeds to follow the reference model roll angle. Howdhergffect of the distur-
bance on the system can be seen from the response of the M#Gugh, the MFC

accomplished to follow the reference model, the disturbaeection performance is
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Comparison of the controllers’ responses
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Figure 4.6: Comparison of the controllers’ responses o sbenmand.

not satisfactory.

On the other hand, the response of the Fourier series bas&{CNERon the refer-
ence model roll angle. This response means that the cantiadts in the desired

performance level.

For the step command, the Fourier series based MRAC desstypoven to be robust to
the challenging disturbance case. This case is also exdmsgieg an other command

set. This command set is the sine wave command as mentiofaée be

The response of the Fourier series based MRAC to the sinensfhangle command
is shown in the Figure 4.7

The Figurd_4.l7 shows that the Fourier series based MRAC ulésilpws the refer-
ence model roll angle. All of the effects introduced by wingk dynamics, external
disturbance and measurement noise are rejected from fhan®sof the system. The

response is clear and following the reference model.

This result shows that the proposed controller is well chgpatdismissing introduced

disturbances on the system.
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Response of the FSE based MRAC to sine wave command under
wing rock dynamics, external disturbance and noise
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Figure 4.7: Response of the Fourier series based MRAC tacsimenand under the

effect of wing rock dynamics, external disturbance andeois

The simulation results for sine wave command of the MFC, tHeA@ and the

Fourier series based MRAC designs are compared. The caopas shown in the

Figure[4.8

In the Figuré 4.8, the sine wave command is shown with thekliae. The reference
model roll angle is shown with the blue line. The differenetvieen the command
and reference model occurs due to the bandwidth of the refenmodel. The desired

performance defined for the system is represented by theenefe model.

The roll angle response of the MFC is shown with the green Iifhes response fol-
lows the reference model response with some fluctuationssd fluctuations occurs

due to the effective external disturbance on the system.

The red line in the Figurle 4.8 shows the response of the baRi&®4 This controllers
is designed only regarding the wing rock dynamics. The MRA&Sigh can not adapt
the control input to the introduced external disturbandeeréfore, the response of it

fails to follow the reference model roll angle response.
The response of the Fourier series based MRAC is shown witrbtine in the
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Comparison of the controllers’ responses
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Figure 4.8: Comparison of the controllers’ responses te sammand.

N

Roll Angle (deg)
o

figure. As it can be seen from the figure, the response of thedfogeries based
MRAC design follows the reference model response closdig drror done with the

proposed controller is much less than the error done witlother two controllers.

4.3 Effects of Unmodeled Dynamics

In the design phase of the Fourier series based MRAC, theatadtuator system
dynamics are not taken into account. These dynamics arecgtedl However, in ap-
plications, the dynamics regarding the control actuatetesy are present. Therefore,
control actuation mechanism used for the controller is agdraunmodeled dynamic

for the design.

The effects of the unmodeled dynamics, which is the contctlaor dynamics in
the present case, is examined by adding different trangfatibns in the loop. The

control actuator system is located between the control canthand the actuated

controller input.

For examination of the effect of the unmodeled dynamics ersystem, four different
natural frequency for the control actuator system is seteciThe transfer function
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regarding the control actuator system is

u w2

= £ ) 4.45
() $2 + 2Cwes + w? ( )

Ue

The damping ratio for the control actuator systems is kepstant. The value for the
damping ratio is

(=07 (4.46)

The dynamics of the control actuator system is altered byging the natural fre-
guency. Using higher natural frequencies result in verydagiation so as the natural
frequency increased the effect of the unmodeled dynamidisrimished. Therefore,
the natural frequency selection for the unmodeled dynamidsne with in the low

range of frequencies. Selected natural frequencies are
we=8Hz w.=10Hz w.=15Hz w.,=20Hz. (4.47)

The Fourier series based MRAC is examined with the contrtoldor systems having
the selected natural frequencies. Simulations are doneler to compare the results
of the each case. The response of the controller to the stamaad for different
control actuator system natural frequencies is shown irfritpere[4.9.

Response for different actuator natural frequencies

Command
Reference Model
w =8 Hz

C
w =10 Hz

C
w =15Hz

Cc
w =20 Hz

Cc

Roll Angle (deg)
o

-6 i I i I i
0 10 20 30 40 50

Time (sec)

Figure 4.9: Different actuator natural frequencies.
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In the Figure 4.9, the black line shows the commanded rolleanghe blue line
shows response of the reference model to the commandedghd.arhe lines with
the colors green, red, magenta and cyan show the resporsefdtrier series based
MRAC with 8 Hz, 10 Hz, 15 Hz, 20 Hz actuator system natural fiestcies, respec-
tively. The response of the controllers with different attr natural frequencies are
really close to each other.

In the figure, big scale shows the response of the contrdiefween 0-50 seconds
of time and -6 degrees to 6 degrees roll angles. In the big siak not possible

to see the difference occurs due to unmodeled dynamics. der o0 see the small
difference between the responses, the small scale is itespethis scale shows the
time between 15 to 25 seconds and the roll angle variatiowdsst 4.98 degrees
to 5.02 degrees. As can be seen from the Figure 4.9, even isnth# scale, the

difference between the responses of the controller foewdfit unmodeled dynamics
is really small. This plot shows that the controller is rabtesunmodeled actuator

dynamics.

For the actuator dynamics with higher natural frequendies,response is almost
exactly same with the responses shown in the Figuie 4.9. tAawfer the frequencies
lower than8 H z, the response of the controller starts to vary. After somatpthe

stability of the controller is lost. Therefore, this figule@shows the robustness limit

of the controller for unmodeled dynamics.

4.4 Effects of Sampling Time for Fourier Series Based MRAC

The sampling time refers to the time step that the contralbenmand is calculated
as time passes. For every time step the command is calc@atkedctuated in order
to controller the system. As the sampling time decreasegsgiolution in time scale
increases. Decreasing the sampling time 100 times meanthéheontrol command

should be calculated 100 times more in a certain time.

The effect of the sampling time used for a controller playsimportant role for
real time applications. In real time applications, the pssor used in the control

computer need to compute all of the necessary computat@nsafculation of the
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control command. And, all of these computations must be doaee sampling time.
In case the computations can not fit in one sampling time, ¢timéral computer can
not calculate the next control command and a delay due todhmpuatation occurs.
This delay is totally unwanted, therefore, proper congrsllor processors for correct

sampling times are selected for applications.

Controllers which can run with lower sampling times withpetformance or robust-
ness loss, are stronger for real time applications. Thegssmrs that computes more
operations in certain time span are more expensive. In dodeave a practical con-

troller, lower sampling times are desired.

Responses with different simulation time steps

Command
Reference Model
al dt=1e-4
dt=1e-3
di=1le-2

P —S—-
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Figure 4.10: Responses with different sampling times.

The effect of the sampling time for the Fourier series bas&A\/ is inspected in
this section. The simulation with challenging disturbacese is repeated with 3
different sampling times. These sampling times@f®01, 0.001 and0.01 seconds.

The response of the controller to step command is shown iRithee4.10.

In the Figuré 4.110, the black line shows the commanded sfag for the roll angle.
The blue line shows the reference model response to the cathnide green line
shows the controller response with highest sampling timlee 3ampling time for
this simulation i9).1 milliseconds. The red line shows the simulation resultfwit
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millisecond sampling time. The magenta line has the lonasiding time in between

three simulations. The sampling time for that liné @smilliseconds.

As it can be seen from the figure, the designed controller eafopn almost exactly
same with higher and lower sampling times. The responseeotdntroller for0.1
milliseconds sampling time ant) milliseconds sampling time are almost on each

other that it can not be selected by inspecting the Figur@. 4.1

This property of the Fourier series based MRAC is very imguarand powerful prop-
erty, since, this enables usage for practical problems. dines possibility to use

cheaper processors in applications.

4.5 Disturbance Rejection Character of Fourier Series BaseMRAC

The disturbance rejection character of the model followdagtroller is inspected in
2.3 by using analytical methods. The transfer function fisturbance input to the
roll angle is calculated, and the magnitude plot of this gfanfunction is plotted.

This magnitude plot shows how the controller acts for a aedesturbance in certain
frequency. The amount of magnitude in the plot for that feegry corresponds the
ratio how the controller suppress the disturbance.

This method for disturbance rejection character analysisrot be applied for the
Fourier series based MRAC. The reason for that is the praposetroller contains
nonlinear elements. The transfer function approach iseaticontrol design tool.
However, a similar approach can be used to examine the ld&tae rejection char-
acter of the designed controller.

The idea of inspecting the disturbance rejection charadtidae controller is to under-
stand the amount of suppression done by the controller festardance with certain
frequency. In order to do that, periodic disturbances wilfteient frequencies can be
applied to the controller and the ratio with the output camispected.

There are few points need to be mentioned for this procedline.first one is that,
the controller should have no other input than the disturbamput. Therefore, com-

manded input, noise input or any other kind of disturbanpeit® are canceled out
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from the simulations. By this way, the only input into the tgys is set as the sinu-
soidal disturbance input. The next point is the amplitudénefsinusoidal disturbance
on the system. In the linear controller case, the searchne daly changing the fre-
guency of the periodic disturbance. However, for the desdgrontroller, this may

result in misleading conclusions. This is because of thetfat the design Fourier
series based MRAC is a nonlinear controller. In linear caldr case such as MFC,
the amplitude of the disturbance is not important since gsponse will grove lin-

early as the amplitude of the disturbance increases, ssfémafunction method can
be safely used. In nonlinear controller case, the resporsseanmay not change
depending on the amplitude of the disturbance input. Thesethe amplitude of the

disturbance should also be taken into consideration.

The disturbance rejection character of the Fourier seassthMRAC is inspected by
using sinusoidal disturbance inputs in 20 different frepies and 3 different ampli-
tudes. The disturbance rejection character of the desigoetioller compared with
the one of MFC is shown in the Figure 4111.

Magnitude Plot of Disturbance Rejection Character
O T T T
: : MFC
X sine amplitude 100
¥ sine amplitude 1
O sine amplitude 0.01

| |
B w
o o
T

Magnitude (dB)

|
a
o

3
T

®
1

70 z z z :

-80 L M | L M | L M | L M
10° 10" 10° 10" 10°
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Figure 4.11: Magnitude plot of disturbance rejection chima

In the Figuré 4.111, the black line shows the magnitude pltdi@tiisturbance rejection
transfer function of the controller designed using MFC rodth This plot is also
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shown in the Figur&2l5. The frequency range betwHgrt rad/s to10? rad/s is
separated into 20 equally logarithmic spaced pieces. At jgtént of each piece the
disturbance input roll angle output magnitude ratio testpplied. The results are
shown with the red points for different frequency and magpes. The red x points
shows the disturbance rejection ratio of the Fourier sé@sed MRAC for sinusoidal
input with amplitude ofl00 radians for every selected frequency. The red * points
represents the sinusoidal disturbance input with amitofdl radians. The red o

points represents the sinusoidal disturbance input witplitunde of(0.01 radians.

One result from the Figule 411 can be taken as the distueb@jection character
of the designed controller is linear with amplitude and érexacy of the sinusoidal
disturbance input within the selected range. The ratio ntade points are turned
out to be on each other for different amplitudes. This resstiows the linear nature

of the controller.

The other result from the magnitude plot of the disturbargection character of
the Fourier series based MRAC is that it has a better dishadeaejection than the
MFC designed for some part of the inspected frequency raige. most possible
disturbance occurs in this range so it can be said that thedf@eries based MRAC

is more robust to disturbances than MFC.

Before, with the simulations under challenging disturleanase, the Fourier series
based MRAC is shown to be more robust to unmodeled distudsaMith the present

analysis, it is also shown mathematically.

4.6 Simulations with Different Random Disturbances

The Fourier series based MRAC design is simulated undetecttahg disturbance
case. This case includes the wing rock dynamics, the sdlestiernal disturbance
and measurement noise. The performance of the controllestép command and

challenging disturbance case is shown in the Figure 4.5.

The external disturbance used in challenging disturbaase s a random distur-
bance and shown in the Figure 2.18. The performance of thgraes controllers
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MFC, MRAC and Fourier series based MRAC is compared undpraismmand and
challenging disturbance case and responses are shownFigtine[4.6.

In order to push the limits of the designed Fourier seriee@dRAC, the external
disturbancé., is made more challenging. Two new random disturbance areetkfi
These external disturbance cases are shown in the Figite 4.1

Random External Disturbances
20r : : I
— 1

ex

15+ n —_3 2

ex

6 3

ex

%, (deg)
o

-10 /
—15} “ : “ :

-20
0 10 20 30 40 50
Time (sec)

Figure 4.12: Random external disturbances.

The black line in the Figure_4.12 shows the external distutbaused in the chal-
lenging case. This disturbance is a good selection for casgawith the MFC and
MRAC controllers since neither one of them becomes unstaider this disturbance.
However, for the disturbance cases shown by blue and greesil the Figure 4.12,
the controller designed by using MFC and MRAC becomes ulestais it can be
seen from the Figuiie 4,112, the frequency content of the néweatkdisturbances,, 2
and),,3 contains higher components.

The response of the Fourier series based MRAC under the wokgdynamics, mea-
surement noise and the shown external disturbances isciesh& he command to the

controller is selected as the step command. The resulthavensn the Figuré 4.13.
In the Figurd_4.113, the black line shows the commanded irthetblue line shows
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Responses under different disturbances
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Figure 4.13: Responses under different random disturlsance

the reference model response. The green, red and magesgashow the responses

of the Fourier series MRAC under, 1, 6.2 andd,.3, respectively.

As it can be seen from the Figure 4.13, the design controdlerdiminish the effect

of the challenging external disturbances and wing rock dyos smoothly.
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CHAPTER 5

CONCLUSION

In this thesis, a novel approach for adaptive control; theri€o series based model
reference adaptive control method is represented. Iniaddid the new approach,
two controllers are designed. One of the controllers isgiesi using model fol-

lowing control, and the other one is designed using basicenederence adaptive

control.

The model following controller is a method that stands in th@dern control the-
ory. A reference model is defined for the controller and statiethe system are
augmented with the reference model system. Finally, astalle feedback control
system is obtained. The model following controller givesighto use well known
frequency domain design tools, since itis a linear corgrollThese tools are Bode
diagrams and magnitude plots. By using these diagrams,ahéwidth of the con-
troller, disturbance rejection character and noise filtgproperty is inspected. The
model following controller is designed to follow the givesference model closely in
addition with having good disturbance rejection charadthis controllers is used as
a baseline controller for the basic model reference adaptwtrol and more impor-
tantly Fourier series based model reference adaptiveaontr

The model following controllers performance and robustrtesdisturbances is also
examined by using simulations. For a certain case, the @tethas problems with

the introduced disturbance. This challenging case leadddhkign to adaptive control
field. This case is taken as a baseline case for using to centiparother adaptive

controllers.
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As an adaptive controller first, the basic MRAC method igitriehe designed MRAC
gives satisfactory results under certain disturbancesweder, for the challenging
case, the robustness of the MRAC is shown to be not fulfillibg. inferred from the
results of the challenging case simulations that the MRA@otcan not deal with
disturbances that are not defined in the parametrizatioarefbre, an alternative for
the uncertainty parametrization is needed.

The novel method of uncertainty parametrization is prodoséh Fourier series
based MRAC. In this method, the uncertainty parametripasodone using simple
sine and cosine functions. These functions are used asrsaiaproximators. This

form of approximator is called the Fourier series expansion

The Fourier series based MRAC is designed for the given sasysdtem. The per-
formance and robustness properties of the controller im@ed using simulations.
The challenging disturbance case which gives difficulteshe MFC and MRAC
methods is tried for Fourier series based MRAC. This caseas as baseline, since
the linear MFC could not succeed to overcome the introducsdrthance where the
disturbance rejection character of the MFC is evaluatetyacally.

The Fourier series based MRAC gives satisfactory resuttshi® challenging case.
The comparison with the MFC and the MRAC shows that the Foseees based
MRAC has better disturbance rejection character. Havitiggebdisturbance rejection
character for proposed controller is a result of using Fuseries as a universal

approximator for uncertainty parametrization.

Finally, it is concluded that the proposed method has prioigroperties for con-

troller designs on uncertain system that are open for eatelisturbances.

Future studies for the proposed controller can cover semsige sensitivity analy-
sis of the controller, analysis of the Fourier series patamsesuch as series length
and period on the performance and robustness of the canrtrdloreover, improve-
ments for the controller as applying onto output feedbadbl@ms and unmatched

disturbance cases are also will take place in the future svork
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APPENDIX A

PROOF OF LYAPUNQV STABILITY OF THE WEIGHT
UPDATE LAW FOR PARAMETRIC UNCERTAINTY

The Lyapunov function candidate for searching the stgtidunds of the proposed
controller is shown in(A]1).

V(e(t), W(t)) = %e(t)TPe(t) + %tr(W(t)TF_IW () (A.1)

The Lyapunov functioW(e(t), W (t)) is selected in quadratic form of its variables
e(t) andI¥ (t)). The matrixP € R™" shown in[[A.1) is the solution of the Lyapunov
equation shown in(Al2). The matrix-! € R™ ™ is the learning rate and design
selection which is always positive definite.

AP+ PA,+R=0 (A.2)

The matrix R € R™*" is a positive definite design selection which drives the Lya-

punov equation.

The derivative of the Lyapunov function candidate is asoioH;

V(e(t), W(t)) = %é(t)TPe(t) + %e(t)TPé(t) + %tr(W(t)TF_IW(t)) "3
4 %tr(W(t)TF_lﬁ/(t)). |
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The first two terms in[(AJ3) can be combined by maintainingriiation below

Pi(1xn)€mx1)

[é(nxl)]TP(nxn)e(nxl) = [é(nxn](Tlxn) Pi1xn)€mx1)

| Po(ixn)€(nx1) | (1)

i AT (A.4)

Pi(1xn)€nx1)

T .
= | Pitxm€inx1) Emx1) = [mx1)] Pl émx1)-

L Pn(l><7l)€(”><1) 4 (1xn)

The relation shown i (Al4) states thatfif= P7 thené(t)” Pe(t) = e(t) Pé(t). The
matrix P is symmetrical since it is the solution of the Lyapunov egqrashown in
(A.2). The trace operator has the following property

tr(M) = tr(M7T) (A.5)

So the third and fourth terms of the derivative of the Lyapufnction candidate
(A.3) can be combined with the selection of the learning vtk the property]’—! =
I'-T. Hence, the derivative of the Lyapunov function candidates$ the following
form;

V(e(t), W (1)) = e(t)T Pe(t) + tr (W(t)TF_lW(t)> (A.6)
The error dynamicg(¢) can be replaced with the equation shown[in (4.22) imple-
menting Assumption 4.1.2
V(e(), W(t) = e(t) P (Ame(t) = BW @) B(t)) +tr (W (6T W (1))
_ . . (A.7)
= e(t)TPAe(t) — e() " PBW ()T B(t) + tr (W(t)TF*W(t)) :
The first term can be expanded with the Lyapunov equation slim¢A.2) as follows;
V(e(t), W (1)) = 3e(®)T (ALP + PA,)e(t) - e(t)T PBW (&) B(t) + tr (W (H)TT-'W(1)).
(A.8)
And the expressiotA’ P + P A,,) can be replaced by R which gives;

V(e(t), W(t)) = —Le(t) Re(t) — e(t)T PBW (t)TB(t) + tr (W@)Tr—lv‘m)).
(A.9)
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The matrixR is a design selection and it is always positive definite; lse negative
of it is always negative definite. The first term &f (A.9) is duatic of e(¢) and
it is always less than zero far(t) # 0 and zero fore(t) = 0. The derivative of
the Lyapunov function candidate needs to be less than zemvésyt to guarantee
asymptotical stability. This condition dictates the reniag summation of two terms
of (A.9) to be equal to zero. This relation is shown in

()T PBW ()T B(t) = tr (W(t)TF_1W(t)> . (A.10)

The left side of the above equation can be transformed irtdathowing form using
the trace operator as follows

tr (W(t)Tﬁ(t)e(t)TPB> — tr (W@)Trlﬁvg)) . (A.11)
The same relation holds for the inner matrices of the traegaiprs at both sides, so
WTBt)et) PB = W ()T W (1), (A.12)

Simplifying T (¢) terms from both sides and keepifﬁzj(t) in one side gives the
following equation
W (t) =TB(t)e(t)' PB. (A.13)

The weight error igV (t) = W — W, and the ideal weight§/” are constant. The

derivative of the ideal weight i§” = 0, thus
(W(t) — V() = W(t) = W(t) = T8(t)e(t)T PB. (A.14)
From the above equation, the final form of the weight updateda
W(t) = TB(t)e(t)" PB (A.15)
with the Lyapunov function properties
V(e(t), W (t)) >0 and V(e(t), W(t)) <O0. (A.16)
So the controller
U= Uy — Ugq = — K 2(t) + Kor(t) — WTB(t) (A.17)

is stable with the weight update law shown[in (A.15) and uniderAssumption 4.112
(e =0).
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APPENDIX B

PROOF OF LYAPUNQV STABILITY OF THE WEIGHT
UPDATE LAW FOR NON-PARAMETRIC UNCERTAINTY

For stability proof, the same Lyapunov function candiddteven in [A.1) is used.
The derivative of the Lyapunov function candidate is the sawith (A.8). Placing
the error dynamics shown in_(4]22), and the weigth updateskaown in [4.2B) into
(A.6) gives the following equation

V(e(t), W (1)) = e(t)T P (Ame(t) — BWHTAE) + Bs(t))

] i (B.1)
+tr (W(t)TP‘lF (5(t)e(t)TPB - aW(t))) .
This equation simplifies to
Ve(t), W (1)) = (e(t)TPAme(t) —e(MTPBW BT B(t) + e(t)TPBs(t)> 62

+tr <W(t)Tﬂ(t)e(t)TPB - W(t)TUW(t)) .

The terme(t)” PBW (t)75(t) is equal to the ternr (I/T/(t)Tﬁ(t)e(t)TPB> so the

equation is
V(e(t), W(t)) = e(t)T PAne(t) + e(t)T PBe(t) — tr (W@)%—W@)) . (B3)

By using the Lyapunov equation shown [n_(A.2),the terfh” P A,,e(t) can be re-
placed with—2e(t)” Re(t) and the equation takes the form

Vie(t), W(t)) = —%e(t)TRe(t) + e(t)' PBe(t) — otr <W(t)TW(t)> . (B.4)

The estimated weigHﬁ/(t) in (B.4) can be replaced with the summation of weight
error and perfect weight/ () + .

V(e(t), W(t)) = —%e(t)TRe(t)+e(t)TPBs(t)—atr (W(t)T(W(t) + W)) . (B.5)
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The above equation can be reorganized as follows

V(e(t), W () = —Le(t)T Re(t) — otr (W(t)TW(t)) +e(t)TPBe(t) + tr (W(t)TW). (B.6)

In order to prove the stability of the proposed modificatittre bounds for deriva-
tive of the Lyapunov function candidate is less than zeraighbe found. For this
purpose, each term df (B.6) is examined. The first terni_Lin)(Ba& the following

relation

— Sl Re(t) < i D) elt) = ~SAuin(Re(E (B7)

where||.||2 stands for the Euclidian norm of a vector, ang,, is the minimum eigen-
value of the matrix?. The Frobenius normp.|| » of a matrix is equal to the square root
of the trace of the multiplication of its transpose and fts&b by using the definition

of the Frobenius norm the second term[in (B.6) can be rewréte
_otr (W(t)TW(t)) — oW ()2 (B.8)

By assigning an upper bound for error of the representation of the uncertainty by
the Fourier series expansion, and using the Euclidian aoldefius norms the third
term in (B.6) can be bounded with the following inequality

e(t)" PBe(t) < *||PB| p[le(t)]lo- (B.9)
Finally, the fourth term in[(BI6) has the following relation
otr (W(EW) < ollW [ W ()| r (B.10)

Combining the relation$ (Bl.7), (B.8), (B.9) aid (B.10) give

V(e(t), W(t) < — %Amm(R)He(t)H% — o |W)7 + e |1PBllelle)l
(B.11)

+o|[WeIW(©)r
The right side of the inequality contains two second orddyrmmamials of the vari-
ables||e(t)||, and || (t)||». These polynomials can be transformed to square of

differences.

(). i C Bl )
De(t). (1)) < — ((\/;Ammmne(wug) Pl + () )

) <(ﬁ”W“>“F)2 — oWV O + (UJ}))

+ _eIPBllr 2+(w>2
24/ Pnin( ) 2o

(B.12)
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So that is

V(e(t), W (1)) < - %)\mm(R)He(t)HQ _ _<IPBlle
21/ 3Amin(R)

- (e - 2Ae) %
()

, (B.13)

~ 2
The terms— < Din (Rl ()]} — W%) and — (ﬁ||W(t)||F - %)
are always negative or zero so this relation gives two boufuee bound is for the
value of the variable(t) and the other bound is fa#’(¢). Fore(t) if

) (auWuF)2 .
||€(t>|| > €>k”PBHF + 2y/o € ||PB||F

then for any value off W (¢)|| » the derivative of the Lyapunov function candidate has
the relatioriV(e(t), W (t)) < 0. Similarly for W (¢) if

(B.14)

2
( e |PBlr ) )
5 24/ Amin (R) W W
s () (WY Wl (g

then for any value o#(¢) the derivative of the Lyapunov function candidate has the
relationV(e(t), W (t)) < 0. So if the relations[{B.14) of (B.15) hold then then the
Lyapunov function candidate with the modified weight update satisfies the nec-

essary relations for bounded stability which are
V(e(t),W(t)) >0 and V(e(t),W(t)) <0. (B.16)

The statement in_(B.16) concludes the stability proof ofRbarier series expansion

based model reference adaptive control method.
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