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submitted byRÜŞTÜ BERK GEZER in partial fulfillment of the requirements for
the degree ofMaster of Science in Aerospace Engineering Department, Middle
East Technical Universityby,

Prof. Dr. Canan Özgen
Dean, Graduate School ofNatural and Applied Sciences

Prof. Dr. Ozan Tekinalp
Head of Department,Aerospace Engineering

Assist. Prof. Dr. Ali Türker Kutay
Supervisor,Aerospace Engineering Department, METU

Examining Committee Members:

Prof. Dr. Ozan Tekinalp
Aerospace Engineering Department, METU

Assist. Prof. Dr. Ali Türker Kutay
Aerospace Engineering Department, METU

Prof. Dr. M. Kemal Leblebiciŏglu
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ABSTRACT

FOURIER SERIES BASED MODEL REFERENCE ADAPTIVE CONTROL

GEZER, RÜŞTÜ BERK

M.S., Department of Aerospace Engineering

Supervisor : Assist. Prof. Dr. Ali Türker Kutay

August 2014, 91 pages

Any signal in nature includes periodic signals with different frequencies and weight-
ings. Therefore, any signal can be represented using summation of simple periodic
functions. Representation of signals with periodic functions is called Fourier series
representation. This powerful utility of the Fourier series is aimed to be used for
adaptive control. In the direction of this aim, a novel approach for model reference
adaptive control is proposed in this thesis.

The Fourier series based model reference adaptive control represents an alternative for
uncertainty parametrizations used in model reference adaptive control. Commonly
designed MRAC schemes use known functions of system variables or in some cases
neural networks for uncertainty parametrization. In this study, these parametrization
methods are replaced with Fourier series.

The sine and cosine elements; which are functions of time with periods that are mul-
tipliers of precessors, are used as basis functions. An adaptation law for estimating
the weightings of the periodic functions is derived using Lyapunov stability principle.
The adaptive input is calculated by multiplying the periodic basis functions and the
estimated weights.

In this thesis, two other alternative for the proposed method are examined. These
alternatives are model following control and basic model reference adaptive control
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that uses known functions of system variables. These controllers are designed for
a sample problem. Robustness properties of the model following controller is an-
alyzed. Performances of these controllers are inspected under defined and random
disturbances, and the results are compared with the proposed controller.

The performance of the Fourier series based MRAC scheme is shown to be satisfac-
tory. The comparison of the results indicates that the proposed controller gives better
disturbance rejection for the same performance level.

Keywords: Adaptive Control, Fourier Series, Unknown Uncertainty, Disturbance Re-
jection

vi



ÖZ

FOUṘIER SEṘISİ TABANLI MODEL REFERANS ADAPTİF KONTROL

GEZER, RÜŞTÜ BERK

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Ali Türker Kutay

Ağustos 2014 , 91 sayfa

Doğada herhangi bir sinyal, farklı frekanslara ve ağırlıklara sahip periyodik sinyaller
içerir. Bu nedenle, herhangi bir sinyal basit periyodik fonksiyonların toplamı ile tem-
sil edilebilir. Sinyallerin periyodik fonksiyonlar ile gösterimine Forier serisi gösterimi
denir. Fourier serilerinin bu güçlü özelliğinin adaptif kontrolcü yapıları için kullanıl-
ması hedeflenmektedir. Bu hedefin doğrultusunda, bu tez çalışmasında Fourier serisi
tabanlı model referans adaptif kontrol yöntemi sunulmaktadır.

Fourier serisi tabanlı model referans adaptif kontrol yöntemi, model referans adaptif
kontrolde kullanılan belirsizlik parametrizasyonuna biralternatif sunmaktadır. Ge-
nelde tasarlanan MRAC yapıları belirsizlik parametrizasyonu için sistem dĕgişken-
lerinin bilinen foksiyonlarını ya da bazı durumlarda yapaysinir ăglarını kullanmak-
tadırlar. Bu çalışmada, bahsi geçen belirsizlik parametrizasyonları Fourier serisi ile
dĕgiştirilmektedir.

Taban fonksiyonu olarak, periyodları birbirinin çarpanı olan zaman fonksiyonu sinüs
ve cosinüs elemanları kullanılmaktadır. Lyapunov kararlılık presibi kullanılarak, bir
tahmini ăgırlık güncelleme kanunu türetilmektedir. Adaptif kontrolcü girdisi bu peri-
yodik taban fonksiyonları ile tahmini ağırlıkların çarpılması ile hesaplanmaktadır.

Bu tez çalışmasında önerilen methodun yanında iki farklı alternatif de incelenmekte-
dir. Bu alternatifler; model takibi ile kontrol ve sistem değişkenlerinin bilinen fonksi-
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yonlarını kullanan temel model referans adaptif kontroldur. Bu kontrolcüler örnek bir
sistem için tasarlanmaktadır. Model takip eden kontrolcünün gürbüzlük özellikleri
analiz edilmektedir. Bu kontrolcülerin performansları tanımlı ve rastgele bozucular
altında incelenmekte ve önerilen kontrolcü ile karşılaştırılmaktadır.

Fourier series tabanlı MRAC yönteminin performansının tatmin edici oldŭgu gös-
terilmektedir. Karşılaştırma sonuçları, önerilen kontrolcünün daha iyi bir belirsizlik
giderme karakteri oldŭgunu ortaya koymaktadır.

Anahtar Kelimeler: Adaptif Kontrol, Fourier Serisi, Bilinmeyen Belirsizlik, Bozucu
Etki Giderme
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CHAPTER 1

INTRODUCTION

Automatic control of a dynamic system is a topic that has beenstudied for more

than a century. The centrifugal governor for steam engine speed control which was

conducted by James Clerk Maxwell in 1868 [34] can be taken as the beginning of

automatic control. One of the most famous applications of the automatic control is the

flight control system of the Wright Brothers’ first flight in 1903. In 1922, Minorsky

showed that differential equations describing the steering ships dynamics can be used

for stabilization [35, 17]. In 1932, a plain method for determining the stability of

closed-loop systems was found by Nyquist [41]. In the 1940s,the frequency response

approach to design close-loop control systems was developed by Bode [58]. The root-

locus method was introduced in 1954 by Walter R. Evans, whichforms the core of

the classical control theory together with the Bode diagram. These tools are used for

the design of the closed-loop control systems. The plants worked on with classical

control theory are single-input-single-output plants.

The designed controllers using the classical control techniques were able to satisfy the

given requirements, but they were not shown to be optimal in any perspective. But,

controllers that use control resources optimally is a logical interest for controller de-

sign; so, some sort of optimality was needed for controllers. Also, while the frequency

response analysis methods are strong tools for designs of single-input-single-output

systems, as plants started to have more inputs and outputs, the need for the control

of multiple-input-multiple-output systems has arisen. Inorder to meet these inter-

ests, modern control methods have been developed. The full state feedback method

which uses the state-space form of the linear dynamical systems make controller de-
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sign for multiple-input-multiple-output systems possible. Moreover, this method has

carried the design procedure from the frequency domain to the time domain. This

gave insight to the designer about time response of the controller but needed a lot of

computation. This improvement brought by the modern control theory is applicable

with the availability of the digital computers. The optimalcontrol theory for calcu-

lating optimal usage of the control resources was developedin order to overcome the

optimality problem of the classical control theory [47, 49].The works of Pontryagin

and Bellman established the basis of modern control theory [47, 49, 6].

Both classical and modern control theories need a linear model representing the sys-

tem dynamics. It is hard to linearize dynamical models of highly agile aircraft, mis-

siles and other autonomous air vehicles that operate in a wide range of conditions,

since these vehicles have extremely nonlinear dynamics. The interest in designing

autopilots for such vehicles motivated the development of adaptive control theory,

and first steps were taken to automatically adjusting the controller parameters to

changing aircraft dynamics during the flight [20]. Several studies on gain scheduling,

model reference adaptive control, and self tuning control were conducted in 1960s

[3, 60, 26]. There were some stability problems which arose with the usage of the de-

veloped adaptive control theory. Several researchers studied instability of and modi-

fications on the adaptation mechanism of the adaptive control [23, 24, 25, 29, 37, 45].

After these studies, several improvements were added to thetheory, and efforts to

develop the adaptive control theory have continued to the present day.

1.1 Literature Survey

Adaptive control theory can be organized in three methods. These methods are the

gain scheduling, the self tuning control and the model reference adaptive control.

The gain scheduling method comes out of the simple idea of changing the gains of a

controller according to variations in the operation regime. Separate fixed gain con-

trollers are designed for various operation points, and thegains of the controllers

are changed according to subsidiary measurements. By this method, it has become

possible to overcome parameter variations in the system dynamics by scheduling the
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controller gains. This method is very strong in the cases where the parameters of

the plant changes with respect to a subsidiary variable which is available for mea-

surement. The Mach number or dynamic pressure are such subsidiary variables for

forward flight applications like aircraft or missile autopilots. Some examples of the

gain scheduling approach used in the practice can be found inliterature [36, 54, 1, 48].

An excessive explanation of the method is given in [50]. The block diagram of the

gain scheduling approach is shown in the Figure 1.1.

PLANTCONTROLLER

GAIN 

SCHEDULER

Subsidiary 

Measurement

Control

Input

Plant

Output

Feedback

Reference 

Command

Figure 1.1: Block diagram of Gain Scheduling approach.

The idea of gain scheduling is easy to implement and adaptiveto variations in the sys-

tem parameters that can be modeled prior to the application.However, this approach

is an open-loop adaptive design procedure and can not adapt itself to unpredicted

variations and out of design conditions. Also, in order to have a controller that is

tuned over all the application region, an enormous amount ofdesign points might

be needed. For example, anti-air missiles can fly in a wide range of Mach numbers

and altitudes. Moreover, the inertia, mass and center of gravity of missiles change

dramatically in flight. These variations of the system can bemodeled, and for every

selected trim point a controller design can be conducted. Finally, the resulting designs

can be joint each other by the use of gain scheduling method. The disadvantage of

this procedure is that it consumes plenty of engineering man-hours. Even so, the gain

scheduling approach is one of the powerful adaptive controlapproaches that is widely

used in practice.

Another main approach of adaptive control is the self tuningcontrol. In self tuning

control, an analytical relation between the plant parameters and controller gains is

3



evaluated. During the application, the varying system parameters are identified by

using a parameter identification technique. These identified system parameters are

used to calculate adaptive controller gains via the analytical relation evaluated. Sev-

eral identification methods such as least squares, maximum likelihood and extended

Kalman filtering can be used for parameter identification [16, 59]. Furthermore, var-

ious analytical procedures which use system parameters forcontrol design can be

used for self tuning control, for example, gain-phase margin design, linear quadratic

regulator, and so fort [42, 12]. The block diagram of the selftuning control method

is shown in the Figure 1.2.

PLANTCONTROLLER

ANALYTICAL

CONTROL

DESIGN

Control

Input

Plant

Output

Feedback

Reference 

Command

PARAMETER

IDENTIFICATION

Identified

Parameters

Controller

Gains

Figure 1.2: Block diagram of Self Tuning Control.

This approach was originally proposed in [26] and explainedclearly in [4]. In [21],

self tuning control was applied to a rotorcraft for terrain following flight. Various

applications of the self tuning control on spacecrafts weredemonstrated in [52, 51,

13].

Model reference adaptive control (MRAC) is another method in the adaptive control

theory which was developed in 1950s [60, 43, 5]. The main ideaof MRAC is to

define a desired response by a reference model, and make the plant output to match

the reference model output with the use of the adaptive element. In this approach, the

error between the reference output and the plant output is used to drive the adaptation

law. By the adaptation law, an adaptive control input is calculated, and this input is

combined with the nominal controller input. The adaptive part of the MRAC is active

if the plant output drifts away from the reference model output and is passive if two

outputs are close to each other. In this sense, MRAC is an augmenting controller on
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a nominal controller of any kind. The block diagram of the model reference adaptive

control is shown in the Figure 1.3.

PLANT
NOMINAL

CONTROLLER

Reference 

Command

REFERENCE

MODEL

ADAPTIVE

CONTROLLER

Nominal 

Control

Input

Control

Input

Adaptive 

Control

Input

Error

Plant

Output

Feedback

Reference

Output

Figure 1.3: Block diagram of Model Reference Adaptive Control.

MRAC can be separated into two parts. One of them is the reference model that is

used to define the desired performance of the closed-loop system. The other one is

the adaptive part of the MRAC, which can be divided into two main components.

These are the uncertainty parametrization and the weight update law. The uncertainty

parametrization component parametrizes the uncertainty in a way that, it can be rep-

resented by multiplication of some ideal constant weights and variable functions. The

weight update law component forms the update equation for the weight estimation of

the constant ideal weights of the uncertainty parametrization.

The weight update law depends on the Lyapunov stability property [32, 33]. The

first studies on the stability of MRAC weight update law with the use of Lyapunov

stability were in [7, 44]. Many modifications to the weight update law can be found

in the literature. A damping pole has been added to the weightupdate law by the

σ modification [22]. A variable damping character has been introduced by thee

modification [37] where the damping increases as the norm of the error between the

reference model and the plant output increases. A projection modification on the

weight update law that uses a bound depending on the Lyapunovequation to project

the growing weights has been presented in [46]. An optimal control theory based

modification on weight update law has been given in [39, 40].

Adaptive loop recovery method protects the frequency domain characteristics of the

closed-loop design even when the plant is under disturbance[9, 10]. A stiffness term

to the weight update law has been added by theκ modification [27]. A Kalman
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filter modification has been developed for weight update law which uses Kalman

filter optimization method [63]. Possible effects of the discontinuous disturbances

on the plant, such as, drop of a payload, have been smoothed bythe derivative free

modification on weight update law of MRAC. The derivative free modification has

been presented in [62, 64, 65] A modification on weight updated depending on least

squares gradient method has been shown in [38]. So, there areplenty of studies on

the modifications and improvements of the weight update law.

For MRAC, the uncertainty on the system is needed to be modeled by some functions.

The variation of the disturbance acting on the system is modeled using a multiplica-

tion of some ideal constant weights and variable functions.This uncertainty modeling

is called as uncertainty parametrization. There are several methods used in the liter-

ature for uncertainty parametrization. The most general but less realistic method to

parametrize the uncertainty is using known functions of system variables. This ap-

proach assumes that the unmodeled nonlinear or unknown linear parts of the system

dynamics are acting as uncertainties on the plant to be controlled. And also, it as-

sumes that these uncertainties has a known structure formedby the system variables.

Therefore, the structure of the uncertainties is known to beas functions of system

variables and the unknown ideal weights of these functions.This type of uncertainty

parametrization applications has been used in numerously studies, some of which are

[46, 9, 10, 31, 39, 40, 64, 61, 65]. Among the example references given for the use of

functions of system variables as uncertainty parametrization, two [46, 65] of them use

the input variable in these functions. Others form the uncertainty parametrization by

functions of states of the system only. This distinction hasa role which is explained

in the next section 1.2.

For the parametrization of the uncertainty, another frequently used method is mod-

eling the uncertainty by universal function approximators. The universal function

approximator used for the uncertainty parametrization is the neural networks. There

are two types of neural networks used for uncertainty modeling. One of them is a

neural network using radial bases functions in a single layer. Example studies using

radial basis functions for uncertainty parametrization can be found in [30, 15]. The

other type of neural network used for uncertainty parametrization is sigmoidal acti-

vation function based layers. Studies using sigmoidal activation functions for neural
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networks are shown in [8, 14, 27, 11, 63, 19]. Both neural network types are driven

by the system states. So, the uncertainty parametrization by using neural networks

also depends on system states only.

The difference between the parametrization via known functions of system variables

and neural networks as universal approximators is, the uncertainty model is restricted

to a predefined model in one, but can be in any form of system states in the other.

If the uncertainties on the system are guarantied to have a certain model, then us-

ing the known functions of system variables is advantageous. If not, then universal

approximators work fine.

1.2 Contribution of this Thesis

The study represented in this thesis proposes a novel methodfor uncertainty parametriza-

tion for model reference adaptive control scheme. The proposed method is estimating

the disturbance using periodic functions, and it is called Fourier series based model

reference adaptive control.

Every periodic event in nature can be decomposed into simpleperiodic functions.

Summation of simple sine and cosine functions with frequencies that are integer di-

visors of a selected period are used to represent the periodic event. In the summation,

every single periodic function has its own weight, so the total sum gives the value

corresponding the event itself.

This property of nature is used for adaptive control to parametrize the disturbance

and uncertainty on the system. The parametrization method used depends on Fourier

series. The periodic functions are functions of time, and the adaptation mechanism

tries to find the correct weightings that represent the disturbance on system. So, by

using this information obtained by the Fourier series, the control input is updated with

an adaptive input.

A question may arise that if the disturbance and uncertaintyon the system are not

periodic, then how this method is assumed to be working. Thisquestion is valid for

infinitely operating systems. However, for systems with finite operation time, a proper
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period for the Fourier series that is used in the adaptive controller, can be selected.

In other words, any signal that is defined in a finite time can berepresented using a

longer period and assumed to be periodic with the selected period. The corresponding

Fourier series expansion represents the signal for its operating time correctly.

It is important to highlight some advantages of the proposedFourier series based

model reference adaptive control method. There are two prominent advantages of the

method. Both of the advantages contained in the uncertaintyparametrization scheme

of the proposed method. These are omitting assumptions for the structure of the

uncertainty, and system state independency and only being function of time of the

uncertainty parametrization.

In most of the studies a certain model for the structure of thedisturbance acting on

the system is assumed. This assumption covers all the studies that are using known

functions of system variables for the parametrization. By this assumption, the adap-

tive element is forced to find the disturbance in the set defined for the parametriza-

tion. For the case the disturbance does not hold with the pre-assumed structure, the

controller has problems to reject all of the disturbance. Inorder to get rid of this

weakness of the adaptive controllers, an uncertainty parametrization by using Fourier

series as universal approximator is proposed. This is the first significant advantage

of the idea. This advantage is also applies for the neural network based adaptation

schemes. However, the next advantage carries the proposed method one step further.

The second advantage of the proposed method is that the uncertainty parametrization

is independent from the system states. This situation produce two aspects.

One of them, since the uncertainty parametrization part of the adaptive element is not

a function of the system states, the consistent perturbation need of the learning mech-

anism is eliminated. Since, the periodic elements in the parametrization are functions

of time, they are perturbed during the all operation time. Therefore, adaptation of the

system to any error on the system does not stop.

The second aspect of being independent from the system states of the proposed un-

certainty parametrization is that the algebraic loop problem of the adaptive element

is eliminated. For the case, when both the input and the system states excites un-
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modeled effects on the system as disturbances, and the adaptive element is formed

as function of these system variables, then an algebraic loop occurs. The controller

input; which includes the adaptive input correction, effects the disturbance on the

system. Then, the adaptive input correction is calculated by using the pre-assumed

function of system variables which includes functions of control input. Hence, the

adaptive control input becomes dependent to itself which means an algebraic loop

occurs. This unwanted phenomena is omitted by using a uncertainty parametrization

which is independent of system states and inputs, and capable to reject the disturbance

on the system.

To sum up, a novel approach for uncertainty parametrizationused in the model refer-

ence adaptive control is proposed in this study.

1.3 Thesis Structure

In the first chapter 1, a brief introduction to the history of the automatic control is

given. Then, a literature survey including three main sections of the adaptive control

methods is presented. Finally, the contribution of this thesis is expressed.

The second chapter 2 is called model following control. In this chapter, the model fol-

lowing control method belongs in the modern controller schemes is discussed. First,

a sample system for designing the controller is set. Then, design of the model follow-

ing controller is conducted. Then, robustness analysis that includes calculating dis-

turbance rejection and noise filtering performances of the model following controller

is done. Then, the command following performance of the controller is examined in

simulation examples section with step and sine wave commands. Finally, a challeng-

ing disturbance case where the disturbance is not only function of the system states is

exerted.

In the third chapter 3, the basic model reference adaptive control is examined. The

adaptive control used in this chapter uses known functions of the system states as

uncertainty parametrization. First, the MRAC method is represented. Then, the com-

mand following performance of the designed MRAC is inspected with simulations

for challenging disturbance case.
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In the fourth chapter 4, the novel method; Fourier series based model reference adap-

tive control is proposed. First, the stability proof of the proposed method is repre-

sented. Then, the command following performance of the Fourier series based MRAC

is examined. The performance of the controller is compared with the other two con-

trollers explained in the previous chapters.

In the final chapter 5, the thesis is concluded.
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CHAPTER 2

MODEL FOLLOWING CONTROL

Controlling a dynamical system is setting the transient andsteady-state responses of

that system. The transient response of a system can be set to adesired response if there

is a predefined character for the response of that system. Forexample, the desired

transient responses for channels and modes of the airplane control are defined by the

handling qualities [55]. Airplane controllers are designed to imply these handling

qualities to the airplane response.

There are different classical and modern control approaches for controlling dynamic

systems with desired responses. The model following control (MFC) is the most

explicit one, when the desired response is taken as primary design objective. In the

MFC, the desired response is defined as a reference model in the controller, and the

system output is forced to behave like the reference model output. The MFC method

has been established with the improvements in the modern control theory and some

examples can be found in [55, 57, 2, 28, 56].

In this chapter, first a sample system model is defined in 2.1 for use of the rest of the

study. Secondly, the MFC architecture is presented in 2.2 and the design is discussed.

Thirdly, the robustness properties of the MFC is examined in2.3 by frequency domain

tools. In 2.4, linear simulation examples are presented, and finally in 2.5 a challenging

unknown external disturbance effect on the system is inspected.
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2.1 Sample System Model

In order to represent the controller methods discussed in this study, a simple system

model is defined. This system model has two states. One of themis directly driven

by the input, and the other one is the integral of the first state. The equation regarding

the system model is

ẋ1(t) = u(t) + δ(x(t), t), x1(0) = x10, t ∈ R+

ẋ2(t) = x1(t), x2(0) = x20, t ∈ R+.
(2.1)

This is the rolling motion model of a slender delta wing with wing rock dynamics

defined in [53, 66]. The first statex1(t) ∈ R is the roll rate, and the second state

x2(t) ∈ R is the roll angle of the slender delta wing. The control inputon the system

is shown withu(t) ∈ R. The equation (2.1) can be rewritten in matrix form as

ẋ(t) = Ax(t) +B(u(t) + δ(x(t), t)) (2.2)

whereA =





0 0

1 0



 is the system matrix, andB =





1

0



 is the input matrix.

The vectorx(t) ∈ R
2×1 is the state vector. The matched disturbanceδ(x(t), t))

on the system is a combination of the wing rock dynamicsδwr(x(t)) and external

disturbanceδex(t).

δ(x(t), t)) = δwr(x(t)) + δex(t) (2.3)

The wing rock dynamics is defined in [53] by

δwr(x(t)) = α1x2 + α2x1 + α3|x2|x1 + α4|x1|x1 + α5x
3
1. (2.4)

The equation representing wing rock dynamics is in a form that constant aerody-

namic coefficients are multiplied with nonlinear functionsof the system states. The

numerical values of the aerodynamic coefficients of the wingrock areα1 = 0.1414,

α2 = 0.5504, α3 = −0.0624, α4 = 0.0095, andα5 = 0.0215 as selected in [66]. The
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wing rock dynamics equation can be rewritten in vector form as follows

δwr (x(t)) =
[

α1 α2 α3 α4 α5

]





















x2

x1

|x2|x1

|x1|x1

x3
1





















= αf (x(t))

(2.5)

with α ∈ R
1×5 andf (x(t)) ∈ R

5×1.

The external disturbance (δex(t)) is a random disturbance which is function of time.

This disturbance is included to the system in order to represent the wind and gust

effects that occur randomly on the air. By this addition, thesystem model has three

main components. The first component is the linear system model which is assumed

to be known. The second component is the wing rock dynamics formed by multi-

plication of known functions of system states and unknown constant aerodynamic

coefficients, and the third component is totally unknown random disturbance which

is a function of time. The block diagram for the sample systemmodel is shown in the

Figure 2.1.
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Figure 2.1: System model block diagram.

Another physical system need to be modeled is the control actuator system. The

control actuator system shows the dynamics between the commanded control input

and the actuated control input of the system. For the modeling of the control actuator

system, a second order linear differential equation is used. This equation is

ẋc = Acxc(t) +Bcuc(t) (2.6)
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wherexc(t) ∈ R
2×1 is the state vector of control actuator system, anduc(t) ∈ R is the

commanded input to the system. The state vector is formed by the actuated control

inputu(t) and its derivativėu(t), xc(t) =





u(t)

u̇(t)



. A =





0 1

−ω2
c −2ζcωc



 is the

system matrix of the control actuator system, andB =





0

ω2
c



 is the input matrix.

The natural frequency of the control actuator system is shown byωc and the damping

ratio is ζc. The control actuator model for the system used in this studyis selected

with ωc = 50 rad/s andζc = 0.7.

The system and control actuator model can be combined as,














ẋ1(t)

ẋ2(t)

u̇(t)

ü(t)















=















0 0 1 0

1 0 0 0

0 0 0 1

0 0 −ω2
c −2ζcωc





























x1(t)

x2(t)

u(t)

u̇(t)















+















0

0

0

ω2
c















uc(t) +















1

0

0

0















δ (x(t), t). (2.7)

This combined system equation can be rewritten in shorter form as

ẋp(t) = Apxp(t) +Bpuc(t) +Bdδ (x(t), t) (2.8)

whereAp ∈ R
4×4 is the plant system matrix,Bp ∈ R

4×1 is the plant input matrix, and

Bd ∈ R
4×1 is the disturbance input matrix.

The controllability of the combined system shown in (2.8) can be examined by the

rank of the controllability matrix

C =
[

Bp ApBp A2
pBp A3

pBp

]

. (2.9)

Since the controllability matrixC ∈ R
4×4 is full rank, the combined system is con-

trollable.

2.2 Design of Model Following Control

The system model representing the system dynamics is obtained. The next step for

the MFC design is the selection of the reference model. The selection starts with

the desired natural frequencyωn and damping ratioζn. These criteria for the system

transient response form the desired dynamics of the reference model.
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The reference model can be selected directly as a second order differential equation

with desired natural frequency and damping ratio; however,it is preferred to select

the reference model using the system model. The system modelis shown to be con-

trollable; so, the eigenvalues of the system model can be placed at desired locations

with the use of a full state feedback method. The gain calculation for the full state

feedback is done using the Ackermann’s formula [42].

The plant model shown in (2.8) has four states. These states are roll rate, roll angle,

actuated control input and its derivative. In spite of this,there are only two desired

criteria for design. Therefore, eigenvalues of the two states regarding the control

actuator system are kept at their original position and the eigenvalues of the other

two states regarding the rigid body motion of the system are placed at the desired

locations.

The desired locations for the eigenvalues are calculated from the roots of the charac-

teristic equation of the desired dynamics

s2 + 2ζnωns + ω2
n = 0. (2.10)

These roots areλ1 = −ζnωn +
√

ζ2nω
2
n − ω2

n andλ2 = −ζnωn −
√

ζ2nω
2
n − ω2

n.

Similarly, roots of the control actuator system areλ3 = −ζcωc +
√

ζ2cω
2
c − ω2

c and

λ4 = −ζcωc−
√

ζ2cω
2
c − ω2

c . Roots of the two characteristic equations are the desired

eigenvalues for the reference model. Therefore, the characteristic equation of the

reference model should be in the form

(s− λ1)(s− λ2)(s− λ3)(s− λ4) = 0. (2.11)

This condition can be satisfied by using the Ackermann’s formula as mentioned be-

fore. Ackermann’s formula is used to calculated the necessary full state feedback

gains for a system to have the desired characteristic equation. This formula for a

forth order system can be shown as

Kr =
[

0 0 0 1
]

C(Ap − λ1I4×4)(Ap − λ2I4×4)(Ap − λ3I4×4)(Ap − λ4I4×4). (2.12)

The matrixC is the controllability matrix shown in (2.9), andI4×4 ∈ R
4×4 is the

identity matrix. The calculated gain vectorKr ∈ R
1×4 is the feedback gain vector to
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obtain the reference model dynamics. The equation regarding the reference model is

ẋr(t) = (Ap −BpKr)xr(t) +BpKr















0

1

0

0















r(t)

= Arxr(t) +Brr(t).

(2.13)

The system matrix of the reference model isAr ∈ R
4×4, and the input matrix is

Br ∈ R
4×1. The state vector of the reference model isxr(t) ∈ R

4×1, and the reference

command isr(t) ∈ R.

The desired natural frequency and damping ratio for the reference model are selected

asωn = 0.4 rad/s andζn = 0.707. The reference model controller gain is calculated

by the Ackermann’s formula asKr =
[

0.57 0.16 0 0
]

. The last two gains in

the reference model controller gain vector are equal to zero; since, last two states of

the system are wanted to protect their open-loop responses.These states are the con-

troller actuator states and the eigenvalues regarding these states are kept in the original

positions. The step response of the reference model is shownin the Figure 2.2.
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Figure 2.2: Step response of the reference model.

The desired response of the system is defined by the referencemodel, so, the step

response shown in Figure 2.2 is also the desired response of the closed-loop system.
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The plant dynamics equation (2.8) and the reference model equation (2.13) can be

combined as

ẋpr(t) =





ẋp(t)

ẋr(t)



 =





Ap 04×4

04×4 Ar



 xpr(t) +





Bp

04×1



 uc(t) +





04×1

Br



 r(t). (2.14)

The state vector of the combined equation above isxpr ∈ R
8×1. This equation can be

rewritten in more compact form as

ẋpr(t) = Aprxpr(t) +Bpruuc(t) +Bprrr(t). (2.15)

The system matrix of the combined system isApr ∈ R
8×8, the control input matrix is

Bpru ∈ R
8×1, and the reference command input matrix isBprr ∈ R

8×1.

The integral of the error between the plant roll angle and thereference roll angle is

added to the system as an integral state. This integral stateis calculated with the given

equation

ẋi(t) =
[

0 −1 01×3 1 01×2

]

xpr = xr2 − x2. (2.16)

The integral state itself is

xi =

∫ t

t=0

(xr2 − x2)dt. (2.17)

Here the statex2 is the roll angle of the system as shown in (2.1), and the statexr2 is

the second state in the state vector of the reference model dynamics equation shown

in (2.13) which corresponds to the reference value of the roll angle.

The integral state is added to the combined equation shown in(2.14) as

ẋs =





ẋpr

ẋi



 =





Apr 08×1

0 −1 01×3 1 01×2 0









xpr

xi



+





Bpru

0



uc(t) +





Bprr

0



 r(t). (2.18)

This equation is the open-loop equation of the total system for the design of MFC.

Equation (2.18) can be rewritten in compact form as

ẋs = Aoxs +Bouuc(t) +Borr(t) (2.19)

where,xs ∈ R
9×1 is the state vector,A0 ∈ R

9×9 is the system matrix,Bou ∈ R
9×1 is

the control input matrix, andBor ∈ R
9×1 is the reference command input matrix of

the open loop system equation.

The open-loop system equation is formed mathematically in (2.19). The states of

this open-loop model are roll ratex1(t), roll anglex2(t), actuated control inputu(t),

17



derivative of the actuated control inputu̇(t), reference roll ratexr1(t), reference roll

anglexr2(t), reference actuated control inputxr3(t), derivative of the reference actu-

ated control inputxr4(t), and error integralxi(t). Among these only the first four are

physical states. The other five of them are synthetic states that are calculated inside

the control computer. With this information and with the assumption of the physical

states can be measured, all of the states of the open-loop system equation are available

for feedback.

The feedback gain of the MFC is calculated optimally. The optimality is obtained

by minimization of a cost function. The selected cost function to be minimized is

quadratic in performance vector. The performance vector isformed by the linear

combination of the selected system states and control inputs. For this problem, the

performance vector is selected as

z(t) =
[

(xr1 − x1) (xr2 − x2) (xr3 − u) (xr4 − u̇) xi uc

]T

(2.20)

with z ∈ R
6×1. The linear combination of the states included in the performance

vector are penalized by selected weightings. The weight matrix is in the formQz =

diag
([

Qx1
Qx2

Qu Qu̇ Qxi
Quc

])

∈ R
6×6 . The cost function to be mini-

mized for obtaining the optimal controller gain is

J =

∫ ∞

t=0

(zT (t)Qzz(t))dt. (2.21)

This cost function can be transformed to the well known linear quadratic regulation

cost function;

J =

∫ ∞

t=0

(

xT
s (t)Wxxs(t) + uT

c (t)Wuuc(t) + 2xT
s (t)Wxuuc(t)

)

dt. (2.22)

The performance vectorz(t) is formed with the following relation

z(t) = Czxs(t) +Dzuc(t) (2.23)

whereCz =









−I4×4 I4×4 04×1

01×4 01×4 1

01×4 01×4 0









∈ R
6×9 is the selector matrix from the system

states, andDz =





05×1

1



 ∈ R
6×1 is the selector matrix from the system com-

manded control input. By inserting (2.23) into (2.21), the cost function equation can
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be rewritten as

J =

∫ ∞

t=0

(

(Czxs(t) +Dzuc(t))
T Qz (Czxs(t) +Dzuc(t))

)

dt (2.24)

which yields

J =

∫ ∞

t=0

((

xT
s (t)C

T
z Qz + uT

c (t)D
T
z Qz

)

(Czxs(t) +Dzuc(t))
)

dt. (2.25)

Furthermore, the terms can be collected as

J =
∫∞
t=0

(

xT
s (t)C

T
z QzCzxs(t) + uT

c (t)D
T
z QzDzuc(t) + 2xT

s (t)C
T
z QzDzuc(t)

)

dt. (2.26)

By comparing the equivalent terms in (2.22) and (2.26), the relation between the

weight matrices can be found as

Wx = CT
z QzCz Wu = DT

z QzDz Wxu = CT
z QzDz (2.27)

whereWx ∈ R
9×9, Wu ∈ R andWxu ∈ R

9×1.

The optimal solution for the minimization of the cost function with the control law

uc(t) = −Kxs(t), (2.28)

gives the total gainK ∈ R
1×9 of the MFC. The resulting controller gainK is calcu-

lated by using the well known linear quadratic regulation method. For this method,

first the Riccati equation

AT
o X +XAo − (XBou +Wxu)W

−
u 1(BT

ouX +W T
xu) +Wx (2.29)

is solved. Here,X ∈ R
9×9 is the solution of the Riccati equation. Then, the controller

gain is calculated with the relation

K = W−
u 1(BT

ouX +NT ). (2.30)

So, the design is concluded.

The closed-loop equation for the MFC is found by replacing the commanded control

input with (2.28) as

ẋs(t) = Aoxs(t) +Bou (−Kxs(t)) +Borr(t)

= (Ao − BouK) xs(t) +Borr(t)

= Aclxs(t) +Bclr(t).

(2.31)
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The closed-loop system matrix isAcl ∈ R
9×9, and the closed-loop input matrix is

Bcl ∈ R
9×1.

The block diagram of the MFC is shown in the Figure 2.3. As it can be seen from

the figure, the reference model is directly driven by the reference command, and the

combined state vector is multiplied with the controller gain K in order to calculate

the commanded control inputuc.
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Figure 2.3: MFC block diagram.

For the given desired reference model criteria, the weight matrixQz is selected as

Qz =



























0.1 0 0 0 0 0

0 100 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1000 0

0 0 0 0 0 1



























. (2.32)

The selection of theQz is done by searching the weights while examining the time do-

main response and robustness properties of the designed controller. These properties

will be discussed in the following sections.

The resulting controller gainK is

K =
[

20.9 37.7 5.6 1 −20.9 −37.7 −5.6 −1 −31.6
]

. (2.33)

The design of the MFC for the sample system is concluded with the calculation of the

controller gainK.
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2.3 Robustness Analysis

Robustness analysis of the MFC method is composed of two analyses. The first one is

the disturbance rejection analysis, where the effect of thedisturbances on the system

are examined in the frequency domain. And the second one is the noise filtering anal-

ysis. In this analysis, the noise rejection performance of the controller is examined.

2.3.1 Disturbance Rejection

The disturbance acting on the system model is defined in (2.3)asδ (x(t), t). In order

to examine the effect of the disturbance on the system, otherinputs such as refer-

ence command and noise are equaled to zero. Since the only input on the system is

the disturbance, transfer function from the disturbance tothe roll angle can be calcu-

lated. This transfer function gives the opportunity to examine the frequency domain

characteristic of disturbance rejection of the MFC.

The states of the reference model are kept zero under zero reference command and

zero initial conditions. Therefore, for the disturbance rejection analysis, the reference

model is ineffective. But the optimal controller design is done using the dynamics of

the reference model, so, the reference model is still affecting the disturbance rejection

performance via the controller gains.

The block diagram of the MFC with disturbanceδ (x(t), t) acting on the system is

shown in the Figure 2.4.
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Figure 2.4: MFC disturbance rejection block diagram.

In order to examine the disturbance rejection performance of the MFC, the transfer

function from the disturbanceδ to the roll anglex2 is evaluated. The combined system
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equation given in (2.8) can be written in transfer function form withxr = 04×1 as

sxp = Apxp − BpK









xp

04×1

1
s
(−Cx2

xp)









+Bdδ. (2.34)

whereCx2
=
[

0 1 01×2

]

. The selection matrixCx2
is used to select the roll angle

from the plant statesxp. The terms containing the state vector of the plantxp can be

grouped together as








sI4×4 −Ap +BpK









I4×4

04×4

1
s
(−Cx2

I4×4)

















xp = Bdδ. (2.35)

The plant state vectorxp can be left alone by taking the inverse of the terms in the big

parenthesis which isAps =









sI4×4 − Ap +BpK









I4×4

04×4

1
s
(−Cx2

I4×4)

















. With this

replacement, (2.35) can be rewritten as

xp = A−1
ps Bdδ. (2.36)

The roll angle can be selected from the plant state vector with the relation shown as

x2 = Cx2
xp. (2.37)

So, the transfer function from the disturbanceδ to the roll anglex2 is calculated as

x2

δ
(s) = Cx2

A−1
ps Bd. (2.38)

The numerical disturbance rejection transfer function forthe designed MFC is

x2

δ
(s) =

s3 + 2507s2 + 1.66 104s

s5 + 2507s4 + 1.66 104s3 + 5.22 104s2 + 9.42 104s+ 7.91 104
. (2.39)

The magnitude plot of the disturbance rejection transfer function of MFC is shown in

the Figure 2.5.

The magnitude change shown in the Figure 2.5 displays the disturbance rejection per-

formance of the MFC design. This magnitude plot gives proportional information
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Figure 2.5: Magnitude plot of disturbance rejection transfer function.

about how a disturbance acting on the system could be suppressed by the controller.

For a selected frequency in the Figure 2.5, the corresponding magnitude shows the

ratio of the size of the disturbance to its effect on the roll angle. The peak response of

the diagram appears at2.1rad/s. At this frequency, the controller conducts the distur-

bance most with a multiplier of−9.7dB. This is equivalent to a ratio of 0.33 between

the magnitude of the disturbance and the effect on the roll angle. This frequency is

the peak frequency of the magnitude plot of disturbance rejection transfer function.

Therefore, for the designed controller, the most effectivedisturbance can occur at

2.1 rad/s. The disturbance rejection magnitude plot has a slope of−20 dB/decade

below the peak frequency and has a slope of−40 dB/decade above the peak fre-

quency. So, the robustness to disturbance increases for disturbances with lower and

higher frequencies then the peak frequency.

The robustness to disturbance is one of the criteria that is used in the selection of the

weighting matrix for the performance vector (2.32). In addition to this criterion, there

are more robustness and performance based criteria for the design.

The robustness of the MFC method is shown to be better than some classical and

optimal controllers widely used in the literature [18].
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2.3.2 Noise Filtering

Measurement devices are used to measure certain information regarding the states

of the system. For example, a gyroscope measures the turn rate of the system. The

output of the measurement device includes both the turn rateinformation and some

meaningless oscillations. These meaningless oscillations are called the noise on the

measurement. These noisy measurements are used as feedbackto the controller. By

this way, the noise acts on the system.

In order to control the system properly and calculate smoothcontrol commands, a

controller needs the noise on the feedback to be filtered. Thenoise filtering robust-

ness character plays its role in this stage. A good noise filtering character results a

smoother control command. The noise filtering character of acontroller is examined

by the transfer function between the noise input to the roll angle output of the system.

For the MFC all of the physical states of the sample system model shown in (2.7)

are assumed to be available. The synthetic states added to the system by the refer-

ence model and the integrator shown in the combined system equation (2.18) are also

available for feedback since they are calculated inside thecontroller.

For the physical system states, the first state corresponds to the roll ratex1(t). The

roll rate is measured by the gyroscope and noise due to this measurement is added

to the system by the measurement device. The second state is the roll anglex2(t).

The roll angle is calculated by integrating the roll rate, sothis state does not introduce

any additional noise into the system. The other two states are the control actuator

states (u(t), u̇(t)). The controller angle is measured by the encoder. The encoder

measurement device is an absolute device so the noise it introduces in the system

feedback is neglected in this study. Similarly, the noise introduced on the system

due to derivation of the encoder output is also neglected. Therefore, for the physical

states of the sample system, noise is only introduced on the roll rate measurement.

This noise is called as the noise on the first state of the system nx1
(t), and it is a

random oscillation with time.

For the synthetic states calculated in the controller, the possible noise occurring due

to computation is also neglected. Therefore, the only noiseon the system isnx1
(t).
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The block diagram with the noise input to the system is shown in the Figure 2.6.
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Figure 2.6: MFC noise filtering block diagram.

The open-loop system equation shown in (2.19) is

ẋs = Aoxs +Bouuc(t) +Borr(t). (2.40)

The control deflection command calculation equation (2.28)is updated with the noise

input to the system as

uc(t) = −K














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

























x1(t) + nx1
(t)

x2(t) +
∫

(nx1
(t)dt)

u(t)

u̇(t)

xr1(t)

xr2(t)

xr3(t)
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
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























. (2.41)

The reference commandr(t) and the disturbance on the systemδ (x(t), t) shown in

the Figure 2.4 are assumed to be zero. This assumption is donein order to satisfy the

single input single output form of the plant. The only input to the system is the roll

rate measurement noisenx1
(t), and the output is taken as the roll anglex2(t).
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The system equation with the above assumptions is

ẋs = Aoxs − BouK


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. (2.42)

Equation (2.42) can be rewritten in transfer function form by using the relations;̇()

is s, and
∫

()dt is 1
s
. The system states and the noise input can be separated and the

equation can be rewritten as

sxs = Aoxs −BouKxs − BouK









1

1
s

07×1









nx1
. (2.43)

Collecting the inputnx1
and the statesxs in separate parts gives

(sI9×9 − Ao +BouK)xs = −BouK









1

1
s

07×1









nx1
. (2.44)

The roll anglex2 can be selected from the system states with the following relation

x2 = Cxs2
xs. (2.45)

Thex2 selection matrix isCxs2
=
[

0 1 01×7

]

. By using the relations shown in

(2.44) and (2.45), the noise filtering transfer function from noisenx1
to roll anglex2

is found as

x2

nx1

(s) = −Cxs2
(sI9×9 − Ao +BouK)−1BouK









1

1
s

07×1









. (2.46)
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The numerical transfer function calculated for the designed controller is

x2

nx1

(s) =
−5.22 104s− 9.42 104

s5 + 2507s4 + 1.66 104s3 + 5.22 104s2 + 9.42 104s+ 7.91 104
. (2.47)

The noise filtering character of the MFC is examined by using the noise filtering

transfer function. The magnitude plot of the noise filteringtransfer function (2.47) is

shown in the Figure 2.7.

10
−2

10
−1

10
0

10
1

10
2

−100

−80

−60

−40

−20

0

20

Frequency (rad/s)

M
ag

ni
tu

de
 (

dB
)

Magnitude Plot of Noise Filtering Transfer Function

Figure 2.7: Magnitude plot of noise filtering transfer function.

The magnitude plot of the noise filtering transfer function shows the effect of noise on

the roll angle. For different frequencies, the augmented system with controller passes

the noise in different levels. By examining the Figure 2.7 itcan easily be seen that

noise filtering performance of the controller increases as the frequency of the noise

increases. Since random noises oscillation occur on high frequencies, this character

is a good noise filtering character. The peak of the noise passoccurs at1.6 rad/s fre-

quency. The magnitude of the multiplier at the peak point is2.8 dB. For the frequen-

cies below of the peak frequency, the noise pass has an almostconstant magnitude.

The magnitude value for the low frequencies is around1.5 dB. This value wanted

to be lower for better noise filtering, but for the low frequency regime this value is

acceptable since most of the noise occurs on high frequencies. For the frequencies

higher than the peak frequency, the magnitude plot has a slope of−60 dB/decade.
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This means for every tenth power of frequency the noise is suppressed60 dB more.

Therefore, as the frequency of the noise increases, the noise filtering effect on the

measurement gets stronger.

2.4 Simulation Examples

The performance and the robustness of the designed controller is examined by simu-

lations. The plant model for the slender delta wing combinedwith the control actuator

model and disturbance input is given in (2.7). The disturbance acting on the system

is composed of two parts as mentioned in 2.1. The first part of the disturbance is the

wing rock dynamics. The wing rock dynamics introduce external moment on the sys-

tem for roll angle and roll rates of the delta wing. The mathematical relation between

states of the system and the wing disturbanceδwr (x(t)) is given in (2.4) and can be

repeated as

δwr(x(t)) = α1x2 + α2x1 + α3|x2|x1 + α4|x1|x1 + α5x
3
1. (2.48)

The second part of the disturbance acting on the system is therandom external dis-

turbance. The random external disturbanceδex (t) acting on the system is neglected

in this section and is going to be taken into account in the following section 2.5. So

the numerical details are also going to be mentioned in the following section.

The noise acting on the measurement of the system roll ratenx1
(t) is assumed as a

Gaussian distributed random signal with zero mean and1 10−4 rad/s variance.

The measurement device dynamics are neglected since the system’s bandwidth is

relatively lower than most of the gyroscope devices used formeasuring the roll rate.

Therefore, the roll rate information is assumed to be measured without lag. However,

the noise introducing effect of the device is kept in the simulations.

The block diagram of the system with the wing rock dynamics, external disturbance

and measurement noise inputs is shown in the Figure 2.8.

Two different reference command set is applied for the performance inspection of the

MFC controller. The first one is a step sequence and the secondone is a sine wave.

The results of the simulations are shown in 2.4.1 and 2.4.2.
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Figure 2.8: MFC block diagram for simulation.

2.4.1 Step Command

The reference input to the system controlled with MFC is selected as a step sequence.

The magnitudes of the steps are±5 deg with a period of50 secs. The plot of the step

command is shown in the Figure 2.9.
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Figure 2.9: Step command input.

In order to examine the performance of the controller, threedifferent simulations are

done for the given step command. First, the both the disturbances and noise input is

closed. The block diagram of the system for the first simulation of the step command

is shown in the Figure 2.10.
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Figure 2.10: MFC block diagram with no disturbance and noise.

The step stair command, the response of the reference model,and the response of the

controller are shown in the Figure 2.11.
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Figure 2.11: MFC response with no disturbance and noise.

In the figure, the black line corresponds to the stair step command input to the sys-

tem. The blue line, which can not be seen, since it is hided under the green line; is

corresponds to the roll angle of the reference model. The green line is the roll angle

of the slender delta wing, which is obtained by using the MFC.

As it can be seen from the Figure 2.11, the controller can follow the reference model

perfectly where there are no disturbance and noise introduced to the system. This

result is an expected result and shows that the controller design is done accurately.
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In the next simulation with step command, the disturbance due to the wing rock dy-

namicsδwr (x(t)) is introduced. This dynamics is defined in (2.48) and are nonlinear

dynamics. The block diagram used for the second simulation is shown in the Fig-

ure 2.12
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Figure 2.12: MFC block diagram with wing rock dynamics.

The response of the controller for the step command, while the wing rock dynamics

are acting to the system, is shown in the Figure 2.13.
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Figure 2.13: MFC response to step command under the effect ofwing rock dynamics.

The MFC is designed for being robust to the disturbances. This character of the

controller is examined in the section 2.3. The magnitude plot of the disturbance

rejection transfer function, which can be examined in the Figure 2.5, shows how

effectively the MFC can suppress disturbances acting on thesystem. This character
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of the controller also can be seen from the Figure 2.13. In this figure, the response of

the system, which is shown by the green line, has a really close tracking performance

of the reference roll angle, which is shown by the blue line. For the defined wing

rock dynamics, which is taken from [53, 66], the MFC is shown to have satisfactory

disturbance rejection performance while following a stairstep command.

Since the optimal model following controller is shown to have a fulfilling disturbance

rejection performance, the effect of the noise on the systemis examined. In order

to do that, the noise input to the system is opened. Therefore, the third simulation

with the step command is done by introducing both the wing rock dynamics and the

noise to the system. The block diagram referring to the final simulation of the step

command is shown in the Figure 2.14
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Figure 2.14: MFC block diagram with wing rock dynamics and noise.

The response of the MFC to the step command defined in the Figure 2.9 under the ef-

fect of the wing rock dynamics and the random measurement noise with the properties

given in 2.4 is shown in the Figure 2.15.

The Figure 2.15 shows the disturbance rejection and noise filtering performance of

the MFC at the same time. The controller performs in satisfactory levels for both

objectives. The response of the MFC, shown in figure with the green line, follows the

reference model roll angle response closely.

The three simulations done for the step command show that theMFC can control the

system under the effect of wing rock dynamics and random measurement noise on the

roll rate. For an other command set, the MFC is examined in thefollowing subsection

2.4.2.
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Figure 2.15: MFC response to step command under the effect ofwing rock dynamics

and noise.

2.4.2 Sinusoidal Command

The reference input to the system controlled with MFC is selected as a sine wave for

this subsection. The controller is shown to be robust for thewing rock dynamics and

measurement noise while following step command in the previous subsection.

The sine wave command used in the simulation is selected to have a5 degrees ampli-

tude and1
50

Hz frequency. The sine wave command is shown in the Figure 2.16.

The comparison for the responses of the MFC under no disturbance and no noise,

under only wing rock disturbance, and under both wing rock disturbance and noise is

done in the previous subsection. The result of the comparison is that, the controller

can deal with both the wing rock disturbance and noise for step command. Therefore,

for the sine wave command, only one simulation is done. In this simulation, both the

wing rock disturbance and the noise are acting on the system.The block diagram for

the simulation is shown in the Figure 2.14.

The response of the MFC for the given sine wave command for theroll angle of the

slender delta wing is shown in the Figure 2.17.
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Figure 2.16: Sine wave command input.
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Figure 2.17: MFC response to sine command under the effect ofwing rock dynamics

and noise.

In the Figure 2.17, the sine wave command is shown with the black line. The refer-

ence roll angle calculated by the reference model for he given sine wave command

is shown by the blue line, and the roll angle response of the MFC is shown with the

green line.

By examining the figure, it can be said that the system controlled with MFC is robust

to the defined wing rock dynamics and roll rate measurement noise. This argument

states that the design done by using the linear design tools resulted in a satisfactory

performance and robustness level. The linear design tools that are used for the design

are the optimal gain calculation with the linear quadratic regulation and the frequency
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domain analysis tools. These tools are not available for nonlinear controllers, but can

be used to state performance of the base controllers such as MFC.

2.5 Challenging Disturbance Case

The robustness and performance of the designed MFC is satisfactory for the given

command following needs and disturbances and noise acting on the system. In order

to examine controller’s robustness to the external disturbances, the difficulty of the

acting disturbance is increased.

In addition to the wing rock dynamicsδwr (x(t)), the external disturbanceδex(t)

which is only a function of time is defined. This disturbance is a random distur-

bance, and it is only a function of time. This external disturbance is introduced to

the system in order to represent the effects due to wind and gust on the system. The

random gust can occur for the slender delta wing, and can result to rolling moments

on the system. The disturbance input is taken as an equivalent input with the aileron

deflection angle, therefore, its dimension is in degrees.

The block diagram representing the system controlled by MFCwith disturbance and

noise inputs is shown in the Figure 2.8.

For the challenging disturbance case, the selected external disturbanceδex(t) is shown

in the Figure 2.18.

The random external disturbance shown in the Figure 2.18 hasa important property

in terms of its frequency content. This external disturbance is created by filtering out

high frequency content and the peak frequencies of the data shown in random exter-

nal disturbance is around1 rad/s. This frequency is where the disturbance rejection

magnitude plot of the MFC design makes a peak. Disturbing thedesigned controller

at the frequency around its disturbance rejection transferfunction makes a peak re-

sults in a challenging disturbances case. This is the main difference of the selected

random external disturbance than the acting wing rock dynamics on the system.

The possible gust effects that is possible to occur on the delta wing is simulated

with this external disturbance input. The external disturbance has peaks around+10
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Figure 2.18: Random external disturbance.

degrees and−15 degrees. This numbers mean that, for that amount of gust, the

equivalent control input amount is that much degrees. So thecontroller needs to

apply the exact opposite of the external disturbance in order to cancel out the effect

of it on the system.

The system controlled with MFC is examined for the wing rock dynamics disturbance

and roll rate measurement noise in the previous section 2.4.There are two different

command set are used to inspect the robustness and performance of the controller.

These command sets are the step command which is formed by repeating step com-

mands in different directions, and sinusoidal command withcertain magnitude and

frequency. Now, MFC is examined with the same command sets but the external

disturbance is included to the system.

The plot of the step command is shown in the Figure 2.9. A simulation is done in

order to obtain the the response of the system controlled with MFC under the effect

of both the wing rock dynamicsδwr (x(t)) and the external disturbanceδex(t), and the

roll rate measurement noisenx1
(t). The results for the roll angle tracking is shown in

the Figure 2.19.
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Figure 2.19: MFC response to step command under the effect ofwing rock dynamics,

external disturbance and noise.

The step command in the Figure 2.19 is shown with the black line. The reference

model roll angle response to the applied step command is shown with the blue line.

The reference model response is exactly the same with the previous reference model

responses, since the reference model is the same. The response of the MFC is shown

in the Figure 2.19 with green line. As it can be seen from the figure the response

of the controller is degraded when compared with the response shown before. This

degradation is occurred due to the introduced external disturbance on the system. This

disturbance result in a challenging case. Although the MFC is designed by regarding

the disturbance rejection robustness character of the controller to be high enough to

eliminate acting disturbances, the response of the controller under given command

set and disturbance input seem to have been spoiled. The robustness of the controller

is also effecting the response, since the roll angle is succeed to follow the reference

roll angle. However, the following performance is not satisfactory.

The wing rock dynamics are nonlinear in terms of the states ofthe system. In addition,

the introduced external disturbance is random in time so theeffect of it may change

according to the states of the system. Therefore, the command set is changed similar
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to the previous section.

The plot of the sine wave command is shown in the Figure 2.16. The simulation is

repeated with the exact same external disturbanceδex(t) input to the system. The

wing rock dynamics and measurement noise are also introduced in this simulations.

Only the step command for the roll angle is changed to sine wave command. The

result of the simulation is shown in the Figure 2.20.
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Figure 2.20: MFC response to sine command under the effect ofwing rock dynamics,

external disturbance and noise.

The commanded sine wave input for the roll angle is shown withthe black line in

the Figure 2.20. The reference model roll angle response forthe commanded sine

wave is shown with the blue line. The lag between the commanded sine wave and

the reference roll angle is introduced due to the filtering effect of the reference model

used. This lag is a result of the designed controller. The response of the system

controlled with the MFC is shown with the green line. The rollangle response of

the system is again diminished under the effect of the applied external disturbance

when compared to the previous simulation done with the sinusoidal command. The

effect of the external disturbance on the roll angle response can followed from the

Figure 2.20.
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First of all, both of the figures Figure 2.19 and Figure 2.20 show that the system con-

trolled with MFC keeps its stability under the given wing rock dynamics, external

disturbance input and roll rate measurement noise input. Keeping system stable is not

enough in most cases of controllers, so the problem leads to the performance degrada-

tion due to the disturbance acting on the system. Next conclusion for the simulation

results can be taken as the controller succeed to follow the reference model but with

unwanted disruptions in the response. These unwanted disruptions are occurred due

to the external disturbance acting on the system.

The simulations with challenging disturbance case lead thedesigner to a search of

finding better controllers for this problem. The possible solution for the problem is

searched in the adaptive control methods in the following chapters.
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CHAPTER 3

MODEL REFERENCE ADAPTIVE CONTROL

Model reference adaptive control (MRAC) method is one of themost widely used

adaptive control method in the literature. Various examples of the MRAC method

can be found in [60, 43, 5, 7, 44, 22, 37, 46, 39, 40] and many others.

Similar to the model following control (MFC), the MRAC method uses a reference

model to represent the desired system response. An adaptiveelement is used to ad-

just the controller input to the system for adapting the changes in the system and

unexpected disturbances.

For the basic MRAC, the uncertainty parametrization is doneby using known func-

tions of system variables. Using known functions of system variables is equal to

knowing the structure of disturbance, but trying to adapt the weightings for the struc-

ture. Example studies where the uncertainty parametrization is done by using known

functions of system variables can be found in [9, 10, 31, 39, 40, 64, 61, 46, 65].

This chapter is formed by two sections. In the first section, the basic MRAC is repre-

sented. In the second section, the simulation is done for thechallenging case defined

in 2.5 by using the MRAC method. The performance of the controller is discussed.

3.1 Representation of MRAC

The mathematical model representing the MRAC is given on a general system model.

Consider a general system model similar to the one given in 2.1 as

ẋ(t) = Ax(t) + B [u(t) + ∆(t)] . (3.1)
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The state vector is defined byx(t) ∈ R
n and the control input is defined byu(t) ∈ R.

For the proceeding argument the general system is assumed tohave single input so

the control input isu(t) ∈ R. The disturbance on the system is∆(t) ∈ R. The

disturbance is assumed to have the form

∆(t) = Wβ (x(t)) . (3.2)

In (3.2) β (x(t)) represents the uncertainty parametrization for the disturbance esti-

mation. This parametrization is done as functions of the states of the system. The con-

stant ideal weightsW is representing the weightings of the corresponding parametriza-

tion.

The control inputu(t) to the system is calculated by using both the nominal controller

and the adaptive controller as

u(t) = un(t)− uad(t) (3.3)

with dimensionsun(t) ∈ R for nominal control input anduad(t) ∈ R for adaptive

control input.

The nominal inputun(t) is calculated by a full-state feedback. This full-state feed-

back controller is

un(t) = −Krx(t) +KrHr(t). (3.4)

Here the controller gain isKr ∈ R
1×n. The reference input to the system is assumed

to have dimension ofr(t) ∈ R. The matrix for the reference input isH ∈ R
n×1.

The control gainKr is calculated in such a way that the closed loop system equation

for the system controlled with the nominal controller results in the reference model.

This means the closed-loop response of the system controlled with the nominal con-

troller with out any disturbance on the system is equal to thedesired response.

Hence, the reference model used for the MRAC has the system equation as

ẋr(t) = (A− BKr)xr(t) +BKrHr(t)

ẋr(t) = Arxr(t) +Brr(t).
(3.5)

The reference model state has the same dimension with the system state asxr(t) ∈
R

n×1. The reference model matrices as can be seen from the reference model equation

42



areAr = A − BKr ∈ R
n×n as reference model system matrix andBr = BKrH ∈

R
n×1 as reference model input matrix.

The aim of the adaptive input is to cancel out the disturbanceon the system. There-

fore, the adaptive controller input has the same form of the uncertainty parametriza-

tion done for the disturbance. The uncertainty parametrization is formed by two mul-

tipliers where one of the is a vector formed by the known functions of the system

states and the other is weightings regarding each componentof the parametrization

vector. It is assumed that there are ideal weights for the uncertainty but they are not

known by the controller so estimates of these weights are used in the adaptive control

input. The adaptive control input is calculated as

uad(t) = Ŵ (t)β (x(t)) (3.6)

The estimated weightŝW (t) have the same dimension with the ideal weights and they

are updated in every time step by the adaptive controller.

The weight update law for the MRAC is

˙̂
W (t) = Γβ(t)e(t)TPB. (3.7)

In (3.7), the learning rate of the weight update is represented withΓ. The learning rate

is a design selection. As the value of the learning rate is increased, the weight is sen-

sitivity of the weight update law to the error between the system states and reference

model states increases. Therefore, the adaptation mechanism tries to update weight

with high derivatives. This results a faster response on estimating the disturbance on

the system. Estimating the disturbance by updating the weighting faster results in a

higher learning rate. So, the design selection multiplierΓ of the weight update law is

called as the learning rate of the adaptation.

The error shown in (3.7) is equal to the error between the system states and the refer-

ence model states. The equation for calculation of the erroris

e(t) = x(t)− xr(t) (3.8)

wheree(t) ∈ R
n×1. This element in the update law is used to drive the adaptation

mechanism. In case the error between the system states and reference model reaches
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to zero, the weightings corresponding the uncertainty parametrization are succeed to

be equal to the ideal weights. Therefore, adaptation stops for zero error case. On the

other hand, as the error increases, the effect of it on the weight update law increases.

This results a higher derivative for weight update. The error drives the adaptation

mechanism this way.

The constant matrixP is calculated from the Lyapunov equation which is

AT
r P + PAr +R = 0. (3.9)

The reference model system matrixAr is used in the Lyapunov equation shown in

(3.9). The matrixR is a positive definite design selection matrix. The designercan

select any matrix which is positive definite to manipulate the adaptation mechanism

of the MRAC.

The Lyapunov stability analysis is omitted in this discussion. The details of the stabil-

ity proof of the basic MRAC with uncertainty parametrization using known functions

of the system states can be found in many numbers of references. A simple explana-

tion for the proof can be found in [62].

The block diagram representing the MRAC is shown in the Figure 3.1

Reference Model

������ = ������� + 
����� 

Weight Updater

��� ��� = Γ�������������
 

Adaptive Controller

��� ��� = ��������� 

Nominal Controller

����� = −������ + ������� 
Plant

����� = ����� + 
���� 

Disturbance
Δ������ = �������� 

����

�����

����

���� 

Δ���

���� �����

��� ���

���� 

�� ��� 

���� 

Figure 3.1: MRAC block diagram.

As it can be seen from the figure the weight update law is drivenby the error be-

tween the system states and the reference model states. The adaptive control input is

calculated by the updated weight and subtracted from the nominal controller gain in

order to cancel out the uncertainty effect introduced by thedisturbance. The uncer-

tainty parametrizationβ (x(t)) is assumed to be known and is formed by functions of

the system states. Therefore, both the weight update law andadaptive controller use
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system states as feedback.

The general overview of the model reference adaptive control method is given in

this section. The performance of it for the defined problem will be examined in the

following section 3.2

3.2 Simulation for the Challenging Case with MRAC

In this section, the performance of the MRAC method under thechallenging case de-

fined previously is inspected. The roll angle control of the slender delta wing system

is done by using the MRAC method. The challenging control problem includes the

wing rock dynamics given in (2.48). The wing rock disturbance δwr(t) is calculated

by multiplying the function of system states with ideal weights. This disturbance on

the system is ideal for using the MRAC method. This is becauseof the fact that the

MRAC method also uses parametrization of the disturbance byusing known functions

of the system states.

The wing rock dynamics defined for the delta wing can be rewritten as

δwr(t) = Wβ (x(t))

= α1x2 + α2x1 + α3|x2|x1 + α4|x1|x1 + α5x
3
1.

(3.10)

The system state function vectorβ (x(t)) in (3.10) is

β (x(t)) =





















x2

x1

|x2|x1

|x1|x1

x3
1





















. (3.11)

The ideal weight vector whose elements correspond the elements in the system state

function vector is

W =
[

α1 α2 α3 α4 α5

]

. (3.12)

The numerical value of the ideal weights as mentioned in 2 which is taken from [66]
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is
W =

[

α1 α2 α3 α4 α5

]

=
[

0.1414 0.5504 −0.0624 0.0095 0.0215
] (3.13)

The system equation can be rewritten with the new expressionfor the wing rock

dynamics as

ẋ(t) = Ax(t) +B (u(t) +Wβ (x(t)) + δex(t)) . (3.14)

The system matrixA and the input matrixB representing the rolling dynamics of a

slender delta wing are

A =





0 0

1 0



 B =





1

0



 . (3.15)

The reference model representing the desired response is calculated by using the pole

placement method as mentioned in 2. The desired natural frequency and damping

ratio for the reference model are selected asωn = 0.4 rad/s andζn = 0.707. The

reference model and the nominal controller gainsKr are calculated by using the Ack-

ermann’s formula. The Ackermann’s formula is shown in (2.12). The calculated

controller gains are

Kr =
[

0.57 0.16
]

(3.16)

The reference model state space equation is

ẋr(t) =









0 0

1 0



−





1

0





[

0.57 0.16
]



 xr(t) +





1

0





[

0.57 0.16
]





0

1



 r(t)

ẋr(t) =





−0.57 −0.16

1 0



 xr(t) +





0.16

0



 r(t)

. (3.17)

So the reference model in compact form is

ẋr(t) = Arxr(t) +Brr(t). (3.18)

The nominal controller used in the MRAC is

un(t) = −Krx(t) +KrHr(t) (3.19)

where the selection matrix is

H =





0

1



 (3.20)
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The numerical representation of the nominal controller is

un(t) = −
[

0.57 0.16
]

+ 0.26 r(t). (3.21)

The adaptive part of the MRAC is calculated with

uad(t) = Ŵ (t)β (x(t)) . (3.22)

The parametrization vectorβ (x(t)) is assumed to be known. The dimension of the

vector isβ (x(t)) ∈ R
5×1. The dimension of the weightings of the parametrization

vector isW ∈ R
1×5. The estimated weights need to be calculated by the weight

update law. The weight update law is

˙̂
W (t) = Γβ(t)e(t)TPB. (3.23)

The learning rateΓ in the weight update law has the dimensionΓ ∈ R
5×5 and is

selected as a design selection. For the MRAC design in this study, the learning rate is

selected as

Γ =





















10 0 0 0 0

0 10 0 0 0

0 0 10 0 0

0 0 0 10 0

0 0 0 0 10





















(3.24)

This selection is done by trial and errors. The trade off between increasing and de-

creasing the learning rate is lying between the instabilityand insensitively. Increasing

the learning rate more than the selected value, the robustness of the system decreases.

For further increase in the learning rate results in unstable system under defined dis-

turbances. Lowering the learning rate results slower response from the adaptive ele-

ment so the adaptation becomes insensitive to the disturbances. As a trade off study,

the learning rate shown in (3.24) is selected.

The matrixP in (3.23) is calculated by the Lyapunov equation shown in (3.9). TheR

matrix used in the Lyapunov equation is also an other design selection. This matrix

is selected as

R =





1000 0

0 0.01



 . (3.25)
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The selection of theR matrix effects the sensitivity of the adaptation on the error.

Each diagonal element in theR matrix corresponds to the elements in the error vec-

tor. The error vector is defined as the difference between thesystem states and the

reference model states. In the example of the slender delta wing, system states are

the roll rate and the roll angle. Therefore, by changing the diagonal elements of the

R matrix, the sensitivity of the adaptive law to the each of thesystem states can be

manipulated. By trying several values for theR matrix and examining the simulations

the values shown in (3.25) are selected.

For examining the challenging case, two sets of inputs used.These inputs are the

stair step command shown in the Figure 2.9 and the sine wave command shown in the

Figure 2.16.

The simulations are done including wing rock dynamicsδwr (x(t)) defined in (3.10),

external random disturbanceδex(t) shown in the Figure 2.18, and the roll rate mea-

surement noise defined in 2.4.

The block diagram of the system controlled by using the MRAC is shown in the

Figure 3.1. The control actuator system is not shown in this figure. It is also not

included to the design of the controller. However, the control actuator system, with

the properties defined in 2.1, is used in the simulations.

The measurement of the states is assumed to be fast enough to neglect, and the mea-

surement dynamics are neglected.

The response of the MRAC under the given disturbances and noise for the step com-

mand is shown in the Figure 3.2

As can be seen from the Figure 3.2, the model reference adaptive control can not give

a satisfactory command following performance under defineddisturbances. This is

a result of the fact that the controller assumes a wrong structure for the uncertainty.

This can be shown simply by removing the external disturbance and repeating the

same simulation with only wing rock dynamics acting. By making this change in the

simulations is giving the MRAC full control of the disturbance on the system.

Knowing the structure disturbance on the system is not a widecovering case for many
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Figure 3.2: MRAC response to step command under the effect ofwing rock dynamics,

external disturbance and noise.

of the applications especially those occurring on open air.The delta wing isopen to the

any kind of possible disturbances. For now on, just to see if the designed controller

is capable of eliminating the wing rock dynamics by estimating the weightings of

the nonlinear functions of system states, a simulation withonly wing rock dynamics

and measurement noise acting on the system is done. The command is kept as step

command. The response of the system to the step command is shown in the Figure 3.3

As can be seen from the Figure 3.3, the command tracking performance of the MRAC

increases fairly compared to the case where the external disturbance is acting.

The simulations with step command shows that, the MRAC method can not cancel

out the unwanted effect of the external disturbance acting on the system. The con-

troller has nonlinear component such as weight update law and adaptive control input

calculation. Due to this non-linearity, an other simulation with a different command

set is done. The next command set is the sine wave command.

The sine wave command is defined in 2.4.2, and plot of it is shown in the Figure 2.16.

The simulation of the system with wing rock dynamics, external disturbance and
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Figure 3.3: MRAC response to step command under the effect ofwing rock dynamics

and noise.

measurement noise is done. The response of the MRAC to the sine wave command

is shown in the Figure 3.4.

As it can be seen from the Figure 3.4, the controller designedusing the MRAC method

is failed to follow the given sine command. This is an expected result.

The MRAC is designed to overcome the uncertainties which have the predefined

structure. The external disturbances that are not includedinside the uncertainty parametriza-

tion of the MRAC are cause impairment on the system response to a given command.

This situation is occurring due to the selection of the uncertainty parametrization.

Assuming the disturbance acting on the system is a combined function of the system

states and in addition assuming this function is known can result a response shown in

Figure 3.4.

The design of the MRAC controller is tried to be done in such a way that it can endure

the given disturbances. However, limiting the structure ofthe disturbance may act on

the system is not an helping choice.
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Figure 3.4: MRAC response to sine command under the effect ofwing rock dynamics,

external disturbance and noise.

The robustness and performance of the MRAC can be improved byusing several

modification terms that are introduce in the literature. However, in the scope of this

study, simulations using these modifications are omitted.

In stead of applying modification terms on the MRAC, a new uncertainty parametriza-

tion method is proposed. This method is explained in detail in the following chapter

4

In the chapter 3, the representation of the well known MRAC with uncertainty parametriza-

tion using known functions of system states is done. Then, simulations for the chal-

lenging case raised in 2.5 is conducted. Finally, the non-satisfactory results of the

simulations for the MRAC are demonstrated.
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CHAPTER 4

FOURIER SERIES BASED MRAC

Any function that is periodic can be represented with a Fourier series. Representing a

function with a Fourier series means forming that function by using simple periodic

functions. These periodic functions are sine and cosine functions. Summation of

these simple sine and cosine functions with a certain weighting results in any periodic

function.

In this chapter, a novel method for uncertainty parametrization is proposed. This

approach depends the powerful representation competence of the Fourier series.

The disturbance acting on the system is assumed to have a periodic nature. Moreover,

an attempt to satisfy this assumption is done by manipulating the period of the peri-

odic function. The periodic disturbance is estimated usingthe powerful Fourier series.

This estimation mechanism is used as basis to the model reference adaptive control.

In other words, the uncertainty on the system is parametrized by using Fourier series.

The sine and cosine functions forming the Fourier series arekept as variable vector in

the adaptive element and the weightings are estimated to match the disturbance and

cancel its effect on the system.

In this chapter, first the stability proof of the proposed method is shown. After that,

performance of the novel method proposed is examined for thechallenging case by

using simulation. Next, the effect of unmodeled dynamics isinspected. Then, the

effect of the sampling time used to calculate the controllerinputs is examined. Then,

a mathematical comparison for disturbance rejection character of the controller is

done. Finally, the controller is examined with different and challenging random dis-
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turbances.

4.1 Stability Proof for Fourier Series Based MRAC

Considering the general nonlinear dynamical system given by

ẋ(t) = Ax(t) +B[u(t) + ∆(t)], x(0) = x0 t ∈ R̄+ (4.1)

wherex(t) ∈ R
n is the state vector,u(t) ∈ R

m is the control input vector,∆(t) ∈ R
m

is uncertainty,A ∈ R
n×n is a known system matrix, andB ∈ R

n×m is a known

control input matrix.

Assumption 4.1.1 The uncertainty∆(t) is periodic function with a period ofT , so it

can be represented by Fourier series.

A function f(t) is called periodic if it repeats itself in a period. The repetitive char-

acter of a functionf(t) can be shown by the equation given in (4.2).

f(t) = f(t+ T ) (4.2)

A known example of periodic function is shown in the Figure 4.1.

This assumption is not a restrictive assumption since any function with a finite op-

eration time can be taken as a periodic function. For example, take the function

f(t) = t which is clearly not a periodic function, and state that thisfunction has a

finite operation time so thatf(t) = t ∀t ∈ [0, tf ]. If so, the functionf(t) can be

perfectly represented with a Fourier series expansion given long enough period and

series length. The equation for the Fourier series expansion is shown in

f(t) ∼= F (t) = a0 +
N
∑

k=1

akcos

(

k
2π

T
t

)

+ bksin

(

k
2π

T
t

)

. (4.3)

The coefficientsa0, ak, andbk are called as Fourier series coefficients. The index

k shows the coefficient number, andN shows the series length. The Fourier series

coefficientsa0, ak, andbk can be calculated by the equations shown in (4.4), (4.5),
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Figure 4.1: Periodic function.

and (4.6), respectively.

a0 =
1

T

∫ T/2

−T/2

f(t)dt (4.4)

ak =
2

T

∫ T/2

−T/2

f(t)cos(k
2π

T
t)dt (4.5)

bk =
2

T

∫ T/2

−T/2

f(t)sin(k
2π

T
t)dt (4.6)

These coefficients are scalar constant for given functionf(t).

The selection of the period of the Fourier series expansion is critical since it affects

the representation of the functionf(t) with the expansion equation (4.3). The period

T should be at least 3 times longer than the operation time. This relation can be seen

in the Figure 4.2.

As seen in the Figure 4.2, selecting the period of the Fourierseries expansion 3 times

longer than the operation time gives satisfactory representation.
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Figure 4.2: Fourier series representation off(t).

The length of the Fourier series is also an effective component of the expansion. The

effect of the series length is shown in the Figure 4.3.
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Figure 4.3: The effect of the series length for Fourier series representation off(t).

The error of the Fourier series expansion is

ε(t) = f(t)− F (t). (4.7)

The errorε(t) decreases as the series lengthN increases as can be seen in the Fig-

ure 4.3. On the other hand, as the series length increases, amount of the coefficients

used for the expansion inevitably increases.

The uncertainty∆(t) shown in general nonlinear dynamical system given in (4.1) can

be represented with Assumption 4.1.1 as follows;

∆(t) =
[

a0 +

N
∑

k=1

akcos(k
2π

T
t) + bksin(k

2π

T
t)
]

+ ε(t) (4.8)
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The error made by the Fourier series expansion has the same dimensions with the

uncertainty, which isε ∈ R
m, and the Fourier series coefficients have the following

dimensions;a0 ∈ R
m×1, ak ∈ R

m×1, bk ∈ R
m×1 for k ∈ [1, N ]. The summation

operation used in (4.8) can be replaced with vector multiplication. The Fourier series

coefficients form the first vector of constants and the harmonic functions of times

form the second variable vector. This representation of theuncertainty is shown in

(4.9).

∆(t) =
[

a0 a1 a2 ... aN b1 b2 ... bN

]
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+ ε(t) (4.9)

Equation (4.9) can be represented in compact form by

∆(t) = W Tβ(t) + ε(t) (4.10)

whereW ∈ R
m×p is the Fourier series weights of the uncertainty, andβ(t) ∈ R

p×1 is

the cosine and sine functions vector with increasing frequencies. The dimensionp is

related with the series lengthN asp = 2N + 1.

The desired response of the system is represented with the following reference model,

ẋm(t) = Amxm(t) +Bmr(t), xm(0) = x(0) = x0 t ∈ R̄+ (4.11)

wherexm(t) ∈ R
n×1 is the reference model state vector,r(t) ∈ R

r×1 is the reference

input to the system,Am ∈ R
n×n is the reference system matrix, andBm ∈ R

n×n is

the reference input matrix. The reference system matrixAm is Hurwitz.
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Reference model matrices are obtained from system model matrices with the linear

relation shown in (4.12).

Am = A−BK1 Bm = BK2 (4.12)

The gainK1 ∈ R
m×n is the state feedback gain of the nominal controller and the gain

K2 ∈ R
m×r is the reference input gain. The gainK1 is selected in such a way that it

guaranties that the reference system model matrixAm is Hurwitz.

The augmenting control law for the adaptive controller is shown in (4.13).

u(t) = un(t)− uad(t) (4.13)

The control inputun ∈ R
m×1 stands for the nominal anduad ∈ R

m×1 stands for the

adaptive controller inputs.

Nominal controller inputun uses both the feedback gainK1 and reference input gain

K2. The equation of the nominal feedback control law is shown in(4.14).

un(t) = −K1x(t) +K2r(t) (4.14)

The adaptive controller input has the same form with the uncertainty ∆(t) on the

system. The equation foruad(t) is;

uad(t) = Ŵ (t)Tβ(t). (4.15)

The estimated weightŝW (t) ∈ R
m×p used in the adaptive controller input are the

estimations of the adaptation for the Fourier series coefficients.

The error between the system states and the reference model states is defined as the

error of the system with

e(t) = x(t)− xm(t). (4.16)

wheree(t) ∈ R
n×1 is the error state vector.

The dynamics of the error statee(t) is examined by subtracting the dynamic equation

of the reference model (4.11) from the system dynamics (4.1). The error dynamics is

ė(t) = ẋ(t)−ẋm(t) = Ax(t)+B[un(t)−uad(t)+∆(t)]−Amxm(t)−Bmr(t). (4.17)

The uncertainty∆(t) is replaced by (4.10) and the result is

ė(t) = Ax(t) +B[un(t)− uad(t) +W Tβ(t) + ε(t)]−Amxm(t)− Bmr(t). (4.18)
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The equation (4.18) can be reorganized as follows

ė(t) = Ax(t)− BK1x(t) +BK2r(t)−Buad(t) +BW Tβ(t) +Bε(t)

− Amxm(t)− Bmr(t),
(4.19)

and by replacing corresponding terms in (4.19) by the reference system and input

matrix according to the relation shown in (4.12), the error dynamic equation takes the

following form

ė(t) = Amx(t) +Bmr(t)− BŴ (t)Tβ(t) +BW Tβ(t) +Bε(t)

− Amxm(t)−Bmr(t).
(4.20)

From the definition of the error state the equation can be rewritten as

ė(t) = Ame(t)−B(Ŵ (t)−W )Tβ(t) +Bε(t). (4.21)

The error of the weight is defined by the difference between the Fourier series coef-

ficients representing the uncertainty and the estimated weights. The equation for the

weight error isW̃ (t) = Ŵ (t)−W . Putting the weight error̃W (t) in to (4.21) gives

ė(t) = Ame(t)− BW̃ (t)Tβ(t) +Bε(t). (4.22)

Assumption 4.1.2 Here it is assumed that for the time being, the Fourier seriesex-

pansion can represent the uncertainty perfectly and makes no error

ε(t) = 0. (4.23)

This assumption is relaxed below discussions.

4.1.1 Parameric Uncertainty

The stability of the proposed controller is inspected underthe parametric uncertainty

assumption.

Theorem 4.1.1 For the Lyapunov function candidate

V(e(t), W̃ (t)) =
1

2
e(t)TPe(t) +

1

2
tr(W̃ (t)TΓ−1W̃ (t)), (4.24)
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and for the weight update law

˙̂
W (t) = Γβ(t)e(t)TPB (4.25)

with the Lyapunov function properties

V(e(t),W (t)) ≥ 0 and V̇(e(t),W (t)) ≤ 0 (4.26)

the controller

u = un − uad = −K1x(t) +K2r(t)− Ŵ Tβ(t) (4.27)

is stable under the Assumption 4.1.2(ε = 0).

The proof of this theorem is discussed in several studies anda detailed version of it

can be found at Appendix A.

4.1.2 Non-parametric Uncertainty

Assuming the Fourier series expansion to be perfectly representing the uncertainty on

the system is a restrictive assumption and needed to be relaxed. Therefore, Assump-

tion 4.1.2 is removed and becomes

ε 6= 0, (4.28)

and the weight update law is modified with the following equation

˙̂
W (t) = Γ

(

β(t)e(t)TPB − σŴ (t)
)

. (4.29)

Theorem 4.1.2 For the Lyapunov function candidate

V(e(t), W̃ (t)) =
1

2
e(t)TPe(t) +

1

2
tr(W̃ (t)TΓ−1W̃ (t)), (4.30)

and the weight update law

˙̂
W (t) = Γ

(

β(t)e(t)TPB − σŴ (t)
)

. (4.31)

if for any value ofe(t) one of the bound conditions

‖e(t)‖2 ≥

√

√

√

√

√

(

ε∗‖PB‖F
λmin(R)

)2

+

(

σ‖W‖F
2
√
σ

)2

1
2
λmin(R)

+
ε∗‖PB‖F
λmin(R)

(4.32)
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or

‖W̃ (t)‖F ≥

√

√

√

√

√

(

ε∗‖PB‖F
2
√

1

2
λmin(R)

)2

σ
+

(‖W‖F
2

)2

+
‖W‖F

2
(4.33)

holds the controller

u = un − uad = −K1x(t) +K2r(t)− Ŵ Tβ(t) (4.34)

is stable.

The proof of this theorem is discussed in several studies anda detailed version of it

can be found at Appendix B.

4.2 Simulation for the Challenging Case with Fourier SeriesBased MRAC

In this section, first the design of the Fourier series based MRAC is discussed. Next,

the simulation results compared with the controllers mentioned in the previous chap-

ters are shown.

4.2.1 Fourier Series Based MRAC Design for Sample System

The Fourier series based MRAC design is done for the slender delta wing system

model represented in 2.1. The system model equation is

ẋ(t) =





0 0

1 0



 x(t) +





1

0



 (u(t) + δwr (x(t)) + δex(t)) . (4.35)

For the reference model design, the same desired character is selected. The desired

natural frequency and damping ratio for the reference modelare selected asωn =

0.4 rad/s andζn = 0.707.

The reference model has the same form shown in (3.5).

The nominal part of the controller is the same with the selected reference model. The

gains for the nominal controller is calculated by using the Ackermann’s formula. The

calculated gains for the system to have the desired characteristics in the closed loop
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response are

Kr =
[

0.57 0.16
]

. (4.36)

The nominal controller is in the form

un(t) = −Krx(t) +KrHr(t) (4.37)

whereH =





0

1



 .

The adaptive control element is formed with the Fourier series. The Fourier series

based basis function is collection of the sine and cosine terms with different frequen-

cies. The basis function vector for a series length ofN is

β(t) =
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. (4.38)

The basis function has the dimension of2N +1. This dimension is found asN terms

for cosine functions,N terms for sine functions and1 term for bias.

For the design of the controller for delta wing system, the series length of the Fourier

series is selected asN = 10. Therefore, the basis function has the dimension of21.

Next thing to be selected for the design of the Fourier seriesbased MRAC is the

longest period of the periodic functions in the basis function vector. This period

selection should be done by taking the operating time of the system into account. The

simulations for the roll control of slender delta wing is done for 50 seconds. As it is

shown in the Figure 4.2, the period of the Fourier series should be selected at least
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3 times longer than the operation time. In order to have guarantied performance, the

periodT of the Fourier series is selected asT = 200sec.

The Fourier series is formed by selecting both the series lengthN and the periodT .

Now, the adaptive controller parameters selected.

The learning rate for the weight update law is selected as

Γ = 2 10−1I21×21. (4.39)

The matrixI21×21 is the identity matrix of dimension21× 21.

The design selection matrixR of the Lyapunov equation is selected as

R =





1000 0

0 0.01



 . (4.40)

The selection of theR matrix is exactly the same with the selection of theR matrix

used in the MRAC design done in the previous chapter 3. The adaptive control input

is calculated as

uad(t) = Ŵ (t)β(t). (4.41)

The weighting vector̂W (t) is the estimation of the ideal weights of the ideal Fourier

series. This vector can be shown as

Ŵ (t) =
[

â0 â1 â2 ... â10 b̂1 b̂2 ... b̂10

]

. (4.42)

The weight update law is

˙̂
W (t) = Γ

(

β(t)e(t)TPB − σŴ (t)
)

. (4.43)

where the damping modification term is selected asσ = 100. The block diagram of

the Fourier series based MRAC for the system defined is shown in the Figure 4.4

The robustness and performance of the designed controller are discussed in the fol-

lowing section.

4.2.2 Simulation Results for the Challenging Case

The performance and disturbance rejection character of thedesigned Fourier series

based MRAC is examined using simulations. Similar to the simulations in the pre-

vious chapters, the simulation for the system controlled with Fourier series based
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Figure 4.4: Fourier series based MRAC block diagram.

MRAC includes the wing rock dynamics, the external disturbance and the roll rate

measurement noise.

The control command is applied to the control actuator system and the control deflec-

tion is calculated after passing control actuator system dynamics.

The wing rock dynamics are the same dynamics defined in (2.4).These dynamics are

δwr (x(t)) =
[

0.1414 0.5504 −0.0624 0.0095 0.0215
]
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. (4.44)

The external random disturbance that is modeled for the gusteffect may occur on the

flight is also included into the system. The plot of the modeled random disturbance is

shown in the Figure 2.18. The effect of this disturbance is applied at the control input

location of the system and controller is expected to get rid of the unwanted effects

introduced by the external disturbance.

The measurement noise acting on the system is the same noise used for the previous

simulations. The character of the roll rate measurement noise is given in section 2.4.

Two different sets of commands are applied in the simulations. One is the step com-

mand that is shown in the Figure 2.9. The other one is the sine wave command shown

in the Figure 2.16.
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The command tracking performance of the Fourier series based MRAC under the

challenging case disturbance and noise for the step commandis shown in the Fig-

ure 4.5.
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Figure 4.5: Response of the Fourier series based MRAC to stepcommand under the

effect of wing rock dynamics, external disturbance and noise.

The command following performance of the Fourier series based MRAC design is

much better than the other controllers shown before. The effect of the disturbance

acting on the system is almost totally removed from the system.

The comparison of the controllers is done. The MFC, the MRAC and the Fourier

series based MRAC controllers’ responses to step command under the wing rock

dynamics, external disturbance and measurement noise are shown in the Figure 4.6.

As it can be seen from the Figure 4.6, the Fourier series basedMRAC follows the

reference model roll angle really closely. The other adaptive controller is failed to

follow the command satisfactorily. This failure is due to the selection of the un-

certainty parametrization. The linear controller augmented with a reference model

succeeds to follow the reference model roll angle. However,the effect of the distur-

bance on the system can be seen from the response of the MFC. Although, the MFC

accomplished to follow the reference model, the disturbance rejection performance is
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Figure 4.6: Comparison of the controllers’ responses to step command.

not satisfactory.

On the other hand, the response of the Fourier series based MRAC is on the refer-

ence model roll angle. This response means that the controller acts in the desired

performance level.

For the step command, the Fourier series based MRAC design isshown to be robust to

the challenging disturbance case. This case is also examined using an other command

set. This command set is the sine wave command as mentioned before.

The response of the Fourier series based MRAC to the sine waveroll angle command

is shown in the Figure 4.7

The Figure 4.7 shows that the Fourier series based MRAC design follows the refer-

ence model roll angle. All of the effects introduced by wing rock dynamics, external

disturbance and measurement noise are rejected from the response of the system. The

response is clear and following the reference model.

This result shows that the proposed controller is well capable of dismissing introduced

disturbances on the system.

66



0 10 20 30 40 50
−5

−4

−3

−2

−1

0

1

2

3

4

5

Time (sec)

R
ol

l A
ng

le
 (

de
g)

Response of the FSE based MRAC to sine wave command under
wing rock dynamics, external disturbance and noise

 

 
Command
Reference Model
FSE based MRAC

Figure 4.7: Response of the Fourier series based MRAC to sinecommand under the

effect of wing rock dynamics, external disturbance and noise.

The simulation results for sine wave command of the MFC, the MRAC and the

Fourier series based MRAC designs are compared. The comparison is shown in the

Figure 4.8

In the Figure 4.8, the sine wave command is shown with the black line. The reference

model roll angle is shown with the blue line. The difference between the command

and reference model occurs due to the bandwidth of the reference model. The desired

performance defined for the system is represented by the reference model.

The roll angle response of the MFC is shown with the green line. This response fol-

lows the reference model response with some fluctuations. These fluctuations occurs

due to the effective external disturbance on the system.

The red line in the Figure 4.8 shows the response of the basic MRAC. This controllers

is designed only regarding the wing rock dynamics. The MRAC design can not adapt

the control input to the introduced external disturbance. Therefore, the response of it

fails to follow the reference model roll angle response.

The response of the Fourier series based MRAC is shown with brown line in the
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Figure 4.8: Comparison of the controllers’ responses to sine command.

figure. As it can be seen from the figure, the response of the Fourier series based

MRAC design follows the reference model response closely. The error done with the

proposed controller is much less than the error done with theother two controllers.

4.3 Effects of Unmodeled Dynamics

In the design phase of the Fourier series based MRAC, the control actuator system

dynamics are not taken into account. These dynamics are neglected. However, in ap-

plications, the dynamics regarding the control actuator system are present. Therefore,

control actuation mechanism used for the controller is act as an unmodeled dynamic

for the design.

The effects of the unmodeled dynamics, which is the control actuator dynamics in

the present case, is examined by adding different transfer functions in the loop. The

control actuator system is located between the control command and the actuated

controller input.

For examination of the effect of the unmodeled dynamics on the system, four different

natural frequency for the control actuator system is selected. The transfer function
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regarding the control actuator system is

u

uc
(s) =

ω2
c

s2 + 2ζcωcs+ ω2
c

. (4.45)

The damping ratio for the control actuator systems is kept constant. The value for the

damping ratio is

ζc = 0.7. (4.46)

The dynamics of the control actuator system is altered by changing the natural fre-

quency. Using higher natural frequencies result in very fast actuation so as the natural

frequency increased the effect of the unmodeled dynamics isdiminished. Therefore,

the natural frequency selection for the unmodeled dynamicsis done with in the low

range of frequencies. Selected natural frequencies are

ωc = 8 Hz ωc = 10 Hz ωc = 15 Hz ωc = 20 Hz. (4.47)

The Fourier series based MRAC is examined with the control actuator systems having

the selected natural frequencies. Simulations are done in order to compare the results

of the each case. The response of the controller to the step command for different

control actuator system natural frequencies is shown in theFigure 4.9.
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Figure 4.9: Different actuator natural frequencies.
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In the Figure 4.9, the black line shows the commanded roll angle. The blue line

shows response of the reference model to the commanded roll angle. The lines with

the colors green, red, magenta and cyan show the response of the Fourier series based

MRAC with 8 Hz, 10 Hz, 15 Hz, 20 Hz actuator system natural frequencies, respec-

tively. The response of the controllers with different actuator natural frequencies are

really close to each other.

In the figure, big scale shows the response of the controllersbetween 0-50 seconds

of time and -6 degrees to 6 degrees roll angles. In the big scale, it is not possible

to see the difference occurs due to unmodeled dynamics. In order to see the small

difference between the responses, the small scale is inspected. This scale shows the

time between 15 to 25 seconds and the roll angle variation between 4.98 degrees

to 5.02 degrees. As can be seen from the Figure 4.9, even in thesmall scale, the

difference between the responses of the controller for different unmodeled dynamics

is really small. This plot shows that the controller is robust to unmodeled actuator

dynamics.

For the actuator dynamics with higher natural frequencies,the response is almost

exactly same with the responses shown in the Figure 4.9. However, for the frequencies

lower than8Hz, the response of the controller starts to vary. After some point, the

stability of the controller is lost. Therefore, this figure also shows the robustness limit

of the controller for unmodeled dynamics.

4.4 Effects of Sampling Time for Fourier Series Based MRAC

The sampling time refers to the time step that the controllercommand is calculated

as time passes. For every time step the command is calculatedand actuated in order

to controller the system. As the sampling time decreases, the resolution in time scale

increases. Decreasing the sampling time 100 times means that the control command

should be calculated 100 times more in a certain time.

The effect of the sampling time used for a controller plays animportant role for

real time applications. In real time applications, the processor used in the control

computer need to compute all of the necessary computations for calculation of the
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control command. And, all of these computations must be donein one sampling time.

In case the computations can not fit in one sampling time, the control computer can

not calculate the next control command and a delay due to the computation occurs.

This delay is totally unwanted, therefore, proper controllers or processors for correct

sampling times are selected for applications.

Controllers which can run with lower sampling times withoutperformance or robust-

ness loss, are stronger for real time applications. The processors that computes more

operations in certain time span are more expensive. In orderto have a practical con-

troller, lower sampling times are desired.
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Figure 4.10: Responses with different sampling times.

The effect of the sampling time for the Fourier series based MRAC is inspected in

this section. The simulation with challenging disturbancecase is repeated with 3

different sampling times. These sampling times are0.0001, 0.001 and0.01 seconds.

The response of the controller to step command is shown in theFigure 4.10.

In the Figure 4.10, the black line shows the commanded step input for the roll angle.

The blue line shows the reference model response to the command. The green line

shows the controller response with highest sampling time. The sampling time for

this simulation is0.1 milliseconds. The red line shows the simulation results with 1
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millisecond sampling time. The magenta line has the lowest sampling time in between

three simulations. The sampling time for that line is10 milliseconds.

As it can be seen from the figure, the designed controller can perform almost exactly

same with higher and lower sampling times. The response of the controller for0.1

milliseconds sampling time and10 milliseconds sampling time are almost on each

other that it can not be selected by inspecting the Figure 4.10.

This property of the Fourier series based MRAC is very important and powerful prop-

erty, since, this enables usage for practical problems. Andgives possibility to use

cheaper processors in applications.

4.5 Disturbance Rejection Character of Fourier Series Based MRAC

The disturbance rejection character of the model followingcontroller is inspected in

2.3 by using analytical methods. The transfer function fromdisturbance input to the

roll angle is calculated, and the magnitude plot of this transfer function is plotted.

This magnitude plot shows how the controller acts for a certain disturbance in certain

frequency. The amount of magnitude in the plot for that frequency corresponds the

ratio how the controller suppress the disturbance.

This method for disturbance rejection character analysis can not be applied for the

Fourier series based MRAC. The reason for that is the proposed controller contains

nonlinear elements. The transfer function approach is a linear control design tool.

However, a similar approach can be used to examine the disturbance rejection char-

acter of the designed controller.

The idea of inspecting the disturbance rejection characterof the controller is to under-

stand the amount of suppression done by the controller for a disturbance with certain

frequency. In order to do that, periodic disturbances with different frequencies can be

applied to the controller and the ratio with the output can beinspected.

There are few points need to be mentioned for this procedure.The first one is that,

the controller should have no other input than the disturbance input. Therefore, com-

manded input, noise input or any other kind of disturbance inputs are canceled out
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from the simulations. By this way, the only input into the system is set as the sinu-

soidal disturbance input. The next point is the amplitude ofthe sinusoidal disturbance

on the system. In the linear controller case, the search is done only changing the fre-

quency of the periodic disturbance. However, for the designed controller, this may

result in misleading conclusions. This is because of the fact that the design Fourier

series based MRAC is a nonlinear controller. In linear controller case such as MFC,

the amplitude of the disturbance is not important since the response will grove lin-

early as the amplitude of the disturbance increases, so transfer function method can

be safely used. In nonlinear controller case, the response may or may not change

depending on the amplitude of the disturbance input. Therefore, the amplitude of the

disturbance should also be taken into consideration.

The disturbance rejection character of the Fourier series based MRAC is inspected by

using sinusoidal disturbance inputs in 20 different frequencies and 3 different ampli-

tudes. The disturbance rejection character of the designedcontroller compared with

the one of MFC is shown in the Figure 4.11.
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Figure 4.11: Magnitude plot of disturbance rejection character.

In the Figure 4.11, the black line shows the magnitude plot ofthe disturbance rejection

transfer function of the controller designed using MFC method. This plot is also
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shown in the Figure 2.5. The frequency range between10−2 rad/s to102 rad/s is

separated into 20 equally logarithmic spaced pieces. At start point of each piece the

disturbance input roll angle output magnitude ratio test isapplied. The results are

shown with the red points for different frequency and magnitudes. The red x points

shows the disturbance rejection ratio of the Fourier seriesbased MRAC for sinusoidal

input with amplitude of100 radians for every selected frequency. The red * points

represents the sinusoidal disturbance input with amplitude of 1 radians. The red o

points represents the sinusoidal disturbance input with amplitude of0.01 radians.

One result from the Figure 4.11 can be taken as the disturbance rejection character

of the designed controller is linear with amplitude and frequency of the sinusoidal

disturbance input within the selected range. The ratio magnitude points are turned

out to be on each other for different amplitudes. This results shows the linear nature

of the controller.

The other result from the magnitude plot of the disturbance rejection character of

the Fourier series based MRAC is that it has a better disturbance rejection than the

MFC designed for some part of the inspected frequency range.The most possible

disturbance occurs in this range so it can be said that the Fourier series based MRAC

is more robust to disturbances than MFC.

Before, with the simulations under challenging disturbance case, the Fourier series

based MRAC is shown to be more robust to unmodeled disturbances. With the present

analysis, it is also shown mathematically.

4.6 Simulations with Different Random Disturbances

The Fourier series based MRAC design is simulated under challenging disturbance

case. This case includes the wing rock dynamics, the selected external disturbance

and measurement noise. The performance of the controller for step command and

challenging disturbance case is shown in the Figure 4.5.

The external disturbance used in challenging disturbance case is a random distur-

bance and shown in the Figure 2.18. The performance of the designed controllers
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MFC, MRAC and Fourier series based MRAC is compared under step command and

challenging disturbance case and responses are shown in theFigure 4.6.

In order to push the limits of the designed Fourier series based MRAC, the external

disturbanceδex is made more challenging. Two new random disturbance are defined.

These external disturbance cases are shown in the Figure 4.12.
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Figure 4.12: Random external disturbances.

The black line in the Figure 4.12 shows the external disturbance used in the chal-

lenging case. This disturbance is a good selection for comparison with the MFC and

MRAC controllers since neither one of them becomes unstableunder this disturbance.

However, for the disturbance cases shown by blue and green lines in the Figure 4.12,

the controller designed by using MFC and MRAC becomes unstable. As it can be

seen from the Figure 4.12, the frequency content of the new defined disturbancesδex2

andδex3 contains higher components.

The response of the Fourier series based MRAC under the wing rock dynamics, mea-

surement noise and the shown external disturbances is inspected. The command to the

controller is selected as the step command. The results are shown in the Figure 4.13.

In the Figure 4.13, the black line shows the commanded input,the blue line shows
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Figure 4.13: Responses under different random disturbances.

the reference model response. The green, red and magenta lines show the responses

of the Fourier series MRAC underδex1, δex2 andδex3, respectively.

As it can be seen from the Figure 4.13, the design controller can diminish the effect

of the challenging external disturbances and wing rock dynamics smoothly.
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CHAPTER 5

CONCLUSION

In this thesis, a novel approach for adaptive control; the Fourier series based model

reference adaptive control method is represented. In addition to the new approach,

two controllers are designed. One of the controllers is designed using model fol-

lowing control, and the other one is designed using basic model reference adaptive

control.

The model following controller is a method that stands in themodern control the-

ory. A reference model is defined for the controller and states of the system are

augmented with the reference model system. Finally, a full-state feedback control

system is obtained. The model following controller gives ability to use well known

frequency domain design tools, since itis a linear controller. These tools are Bode

diagrams and magnitude plots. By using these diagrams, the bandwidth of the con-

troller, disturbance rejection character and noise filtering property is inspected. The

model following controller is designed to follow the given reference model closely in

addition with having good disturbance rejection character. This controllers is used as

a baseline controller for the basic model reference adaptive control and more impor-

tantly Fourier series based model reference adaptive control.

The model following controllers performance and robustness to disturbances is also

examined by using simulations. For a certain case, the controller has problems with

the introduced disturbance. This challenging case leads the design to adaptive control

field. This case is taken as a baseline case for using to compare the other adaptive

controllers.
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As an adaptive controller first, the basic MRAC method is tried. The designed MRAC

gives satisfactory results under certain disturbances. However, for the challenging

case, the robustness of the MRAC is shown to be not fulfilling.It is inferred from the

results of the challenging case simulations that the MRAC method can not deal with

disturbances that are not defined in the parametrization. Therefore, an alternative for

the uncertainty parametrization is needed.

The novel method of uncertainty parametrization is proposed with Fourier series

based MRAC. In this method, the uncertainty parametrization is done using simple

sine and cosine functions. These functions are used as universal approximators. This

form of approximator is called the Fourier series expansion.

The Fourier series based MRAC is designed for the given sample system. The per-

formance and robustness properties of the controller is examined using simulations.

The challenging disturbance case which gives difficulties to the MFC and MRAC

methods is tried for Fourier series based MRAC. This case is used as baseline, since

the linear MFC could not succeed to overcome the introduced disturbance where the

disturbance rejection character of the MFC is evaluated analytically.

The Fourier series based MRAC gives satisfactory results for the challenging case.

The comparison with the MFC and the MRAC shows that the Fourier series based

MRAC has better disturbance rejection character. Having better disturbance rejection

character for proposed controller is a result of using Fourier series as a universal

approximator for uncertainty parametrization.

Finally, it is concluded that the proposed method has promising properties for con-

troller designs on uncertain system that are open for external disturbances.

Future studies for the proposed controller can cover sensornoise sensitivity analy-

sis of the controller, analysis of the Fourier series parameters such as series length

and period on the performance and robustness of the controller. Moreover, improve-

ments for the controller as applying onto output feedback problems and unmatched

disturbance cases are also will take place in the future works.
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APPENDIX A

PROOF OF LYAPUNOV STABILITY OF THE WEIGHT

UPDATE LAW FOR PARAMETRIC UNCERTAINTY

The Lyapunov function candidate for searching the stability bounds of the proposed

controller is shown in (A.1).

V(e(t), W̃ (t)) =
1

2
e(t)TPe(t) +

1

2
tr(W̃ (t)TΓ−1W̃ (t)) (A.1)

The Lyapunov functionV(e(t), W̃ (t)) is selected in quadratic form of its variables

e(t) andW̃ (t)). The matrixP ∈ R
n×n shown in (A.1) is the solution of the Lyapunov

equation shown in (A.2). The matrixΓ−1 ∈ R
m×m is the learning rate and design

selection which is always positive definite.

AT
mP + PAm +R = 0 (A.2)

The matrixR ∈ R
n×n is a positive definite design selection which drives the Lya-

punov equation.

The derivative of the Lyapunov function candidate is as follows;

V̇(e(t), W̃ (t)) =
1

2
ė(t)TPe(t) +

1

2
e(t)TP ė(t) +

1

2
tr( ˙̃W (t)TΓ−1W̃ (t))

+
1

2
tr(W̃ (t)TΓ−1 ˙̃W (t)).

(A.3)
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The first two terms in (A.3) can be combined by maintaining therelation below

[

ė(n×1)

]T
P(n×n)e(n×1) =

[

ė(n×1)
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




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






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(1×n)

ė(n×1) =
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e(n×1)

]T
P T
(n×n)ė(n×1).

(A.4)

The relation shown in (A.4) states that ifP = P T thenė(t)TPe(t) = e(t)P ė(t). The

matrix P is symmetrical since it is the solution of the Lyapunov equation shown in

(A.2). The trace operator has the following property

tr(M) = tr(MT ) (A.5)

So the third and fourth terms of the derivative of the Lyapunov function candidate

(A.3) can be combined with the selection of the learning ratewith the property;Γ−1 =

Γ−T . Hence, the derivative of the Lyapunov function candidate takes the following

form;

V̇(e(t), W̃ (t)) = e(t)TP ė(t) + tr
(

W̃ (t)TΓ−1 ˙̃W (t)
)

(A.6)

The error dynamicṡe(t) can be replaced with the equation shown in (4.22) imple-

menting Assumption 4.1.2

V̇(e(t), W̃ (t)) = e(t)TP
(

Ame(t)− BW̃ (t)Tβ(t)
)

+ tr
(

W̃ (t)TΓ−1 ˙̃W (t)
)

= e(t)TPAme(t)− e(t)TPBW̃ (t)Tβ(t) + tr
(

W̃ (t)TΓ−1 ˙̃W (t)
)

.
(A.7)

The first term can be expanded with the Lyapunov equation shown in (A.2) as follows;

V̇(e(t), W̃ (t)) = 1
2
e(t)T (AT

mP + PAm)e(t)− e(t)TPBW̃ (t)Tβ(t) + tr
(

W̃ (t)TΓ−1 ˙̃W (t)
)

.

(A.8)

And the expression(AT
mP + PAm) can be replaced by−R which gives;

V̇(e(t), W̃ (t)) = −1
2
e(t)TRe(t)− e(t)TPBW̃ (t)Tβ(t) + tr

(

W̃ (t)TΓ−1 ˙̃W (t)
)

.

(A.9)
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The matrixR is a design selection and it is always positive definite; so, the negative

of it is always negative definite. The first term of (A.9) is quadratic of e(t) and

it is always less than zero fore(t) 6= 0 and zero fore(t) = 0. The derivative of

the Lyapunov function candidate needs to be less than zero for everyt to guarantee

asymptotical stability. This condition dictates the remaining summation of two terms

of (A.9) to be equal to zero. This relation is shown in

e(t)TPBW̃ (t)Tβ(t) = tr
(

W̃ (t)TΓ−1 ˙̃W (t)
)

. (A.10)

The left side of the above equation can be transformed into the following form using

the trace operator as follows

tr
(

W̃ (t)Tβ(t)e(t)TPB
)

= tr
(

W̃ (t)TΓ−1 ˙̃W (t)
)

. (A.11)

The same relation holds for the inner matrices of the trace operators at both sides, so

W̃ (t)Tβ(t)e(t)TPB = W̃ (t)TΓ−1 ˙̃W (t). (A.12)

Simplifying W̃ (t) terms from both sides and keeping̃̇W (t) in one side gives the

following equation
˙̃W (t) = Γβ(t)e(t)TPB. (A.13)

The weight error isW̃ (t) = Ŵ − W , and the ideal weightsW are constant. The

derivative of the ideal weight iṡW = 0, thus

(

˙̂
W (t)− Ẇ (t)

)

=
˙̂
W (t) = ˙̃W (t) = Γβ(t)e(t)TPB. (A.14)

From the above equation, the final form of the weight update law is

˙̂
W (t) = Γβ(t)e(t)TPB (A.15)

with the Lyapunov function properties

V(e(t),W (t)) ≥ 0 and V̇(e(t),W (t)) ≤ 0. (A.16)

So the controller

u = un − uad = −K1x(t) +K2r(t)− Ŵ Tβ(t) (A.17)

is stable with the weight update law shown in (A.15) and underthe Assumption 4.1.2

(ε = 0).
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APPENDIX B

PROOF OF LYAPUNOV STABILITY OF THE WEIGHT

UPDATE LAW FOR NON-PARAMETRIC UNCERTAINTY

For stability proof, the same Lyapunov function candidate shown in (A.1) is used.

The derivative of the Lyapunov function candidate is the same with (A.6). Placing

the error dynamics shown in (4.22), and the weigth update lawshown in (4.29) into

(A.6) gives the following equation

V̇(e(t), W̃ (t)) = e(t)TP
(

Ame(t)− BW̃ (t)Tβ(t) +Bε(t)
)

+ tr
(

W̃ (t)TΓ−1Γ
(

β(t)e(t)TPB − σŴ (t)
))

.
(B.1)

This equation simplifies to

V̇(e(t), W̃ (t)) =
(

e(t)TPAme(t)− e(t)TPBW̃ (t)Tβ(t) + e(t)TPBε(t)
)

+ tr
(

W̃ (t)Tβ(t)e(t)TPB − W̃ (t)TσŴ (t)
)

.
(B.2)

The terme(t)TPBW̃ (t)Tβ(t) is equal to the termtr
(

W̃ (t)Tβ(t)e(t)TPB
)

so the

equation is

V̇(e(t), W̃ (t)) = e(t)TPAme(t) + e(t)TPBε(t)− tr
(

W̃ (t)TσŴ (t)
)

. (B.3)

By using the Lyapunov equation shown in (A.2),the terme(t)TPAme(t) can be re-

placed with−1
2
e(t)TRe(t) and the equation takes the form

V̇(e(t), W̃ (t)) = −1

2
e(t)TRe(t) + e(t)TPBε(t)− σtr

(

W̃ (t)T Ŵ (t)
)

. (B.4)

The estimated weight̂W (t) in (B.4) can be replaced with the summation of weight

error and perfect weight̃W (t) +W .

V̇(e(t), W̃ (t)) = −1

2
e(t)TRe(t)+e(t)TPBε(t)−σtr

(

W̃ (t)T (W̃ (t) +W )
)

. (B.5)
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The above equation can be reorganized as follows

V̇(e(t), W̃ (t)) = −1
2
e(t)TRe(t)− σtr

(

W̃ (t)T W̃ (t)
)

+ e(t)TPBε(t) + tr
(

W̃ (t)TW
)

. (B.6)

In order to prove the stability of the proposed modification,the bounds for deriva-

tive of the Lyapunov function candidate is less than zero should be found. For this

purpose, each term of (B.6) is examined. The first term in (B.6) has the following

relation

− 1

2
e(t)TRe(t) ≤ −1

2
λmin(R)e(t)T e(t) = −1

2
λmin(R)‖e(t)‖22. (B.7)

where‖.‖2 stands for the Euclidian norm of a vector, andλmin is the minimum eigen-

value of the matrixR. The Frobenius norm‖.‖F of a matrix is equal to the square root

of the trace of the multiplication of its transpose and itself. So by using the definition

of the Frobenius norm the second term in (B.6) can be rewritten as

− σtr
(

W̃ (t)T W̃ (t)
)

= −σ‖W̃ (t)‖2F . (B.8)

By assigning an upper boundε∗ for error of the representation of the uncertainty by

the Fourier series expansion, and using the Euclidian and Frobenius norms the third

term in (B.6) can be bounded with the following inequality

e(t)TPBε(t) ≤ ε∗‖PB‖F‖e(t)‖2. (B.9)

Finally, the fourth term in (B.6) has the following relation

σtr
(

W̃ (t)TW
)

≤ σ‖W‖F‖W̃ (t)‖F (B.10)

Combining the relations (B.7), (B.8), (B.9) and (B.10) gives

V̇(e(t), W̃ (t)) ≤− 1

2
λmin(R)‖e(t)‖22 − σ‖W̃ (t)‖2F + ε∗‖PB‖F‖e(t)‖2

+ σ‖W‖F‖W̃ (t)‖F .
(B.11)

The right side of the inequality contains two second order polynomials of the vari-

ables‖e(t)‖2 and ‖W̃ (t)‖F . These polynomials can be transformed to square of

differences.

V̇(e(t), W̃ (t)) ≤−





(

√

1

2
λmin(R)‖e(t)‖2

)2

− ε∗‖PB‖F‖e(t)‖2 +





ε∗‖PB‖F
2
√

1
2
λmin(R)





2



−
(

(√
σ‖W̃ (t)‖F

)2

− σ‖W‖F‖W̃ (t)‖F +

(

σ‖W‖F
2
√
σ

)2
)

+





ε∗‖PB‖F
2
√

1
2
λmin(R)





2

+

(

σ‖W‖F
2
√
σ

)2

(B.12)

90



So that is

V̇(e(t), W̃ (t)) ≤−





√

1

2
λmin(R)‖e(t)‖2 −

ε∗‖PB‖F
2
√

1
2
λmin(R)





2

−
(√

σ‖W̃ (t)‖F − σ‖W‖F
2
√
σ

)2

+





ε∗‖PB‖F
2
√

1
2
λmin(R)





2

+

(

σ‖W‖F
2
√
σ

)2

(B.13)

The terms−
(

√

1
2
λmin(R)‖e(t)‖2 − ε∗‖PB‖F

2
√

1

2
λmin(R)

)2

and−
(√

σ‖W̃ (t)‖F − σ‖W‖F
2
√
σ

)2

are always negative or zero so this relation gives two bounds. One bound is for the

value of the variablee(t) and the other bound is for̃W (t). Fore(t) if

‖e(t)‖2 ≥

√

√

√

√

√

(

ε∗‖PB‖F
λmin(R)

)2

+

(

σ‖W‖F
2
√
σ

)2

1
2
λmin(R)

+
ε∗‖PB‖F
λmin(R)

(B.14)

then for any value of‖W̃ (t)‖F the derivative of the Lyapunov function candidate has

the relationV̇(e(t), W̃ (t)) ≤ 0. Similarly for W̃ (t) if

‖W̃ (t)‖F ≥

√

√

√

√

√

(

ε∗‖PB‖F
2
√

1

2
λmin(R)

)2

σ
+

(‖W‖F
2

)2

+
‖W‖F

2
(B.15)

then for any value ofe(t) the derivative of the Lyapunov function candidate has the

relationV̇(e(t), W̃ (t)) ≤ 0. So if the relations (B.14) or (B.15) hold then then the

Lyapunov function candidate with the modified weight updatelaw satisfies the nec-

essary relations for bounded stability which are

V(e(t),W (t)) ≥ 0 and V̇(e(t),W (t)) ≤ 0. (B.16)

The statement in (B.16) concludes the stability proof of theFourier series expansion

based model reference adaptive control method.
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