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ABSTRACT

SALIENCY-BASED VISUAL TRACKING USING CORRELATION
FILTERS FOR SURVEILLANCE APPLICATIONS

TUNALI, Emre
M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. A. Aydın Alatan

August 2014, 119 pages

In recent years intelligent transportation systems (ITS) have been an active

research area in computer vision. One of the main goals of ITS is producing sys-

tems to guide surveillance operators and reduce human resources for observing

hundreds of cameras in urban traffic surveillance. Thus, this thesis is devoted to

realization of low level tasks, target detection and tracking, for an autonomous

video surveillance system. The initial step of the proposed system is moving

object detection which is utilized based on a recently proposed Self Adaptive

Gaussian Mixture Model technique. The resulting moving object mask is fur-

ther enhanced via post processing steps containing morphological operations and

shadow/highlight removal. Benefiting from this enhanced binary mask, track

initialization is achieved for each detected moving blob entering to the scene

and a track is intended to be maintained until the target leaves the scene. For

target tracking, multiple model visual tracking methodology is proposed based

on correlation filters. Moreover, in order to adjust tracking parameters online

and provide high level tasks with extra information together, a target bounding

v



box generation methodology which is capable of target silhouette extraction is

proposed based on temporal consistency of the saliency map of tracking window.

The proposed algorithm is tested on synthetic as well as real data and based

on these experimental results, it can be concluded that it yields competitive

tracking results in real life scenarios.

Keywords: Moving object detection, object tracking, correlation filters, saliency
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ÖZ

GÖZETLEME UYGULAMALARİ İÇİN BENZEŞİM FİLTRELERİ
KULLANARAK BELİRGİNLİK TABANLI GÖRSEL TAKİP

TUNALI, Emre
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. A. Aydın Alatan

Ağustos 2014 , 119 sayfa

Son yıllarda akıllı ulaşım sistemleri görüntü işleme alanında aktif bir araştırma

alanı olmuştur. Bu çalışmaların temel amaçlarından biri operatörleri yönlendire-

cek sistemler oluşturarak kent trafiğini gözetlemede kullanılan yüzlerce kamer-

anın incelenmesinde gereken insan iş gücünün azaltılmasıdır. Buradan hareketle,

bu tez otonom video gözetleme sistemi oluşturmak için gerekli bazal işlemler

olan hedef tespiti ve takibinin gerçekleştirilmesi amacını gütmektedir. Önerilen

sistemin ilk adımını yakın geçmişte ortaya atılan Özuyarlamalı Gauss Karışım

Modeli temel alınarak gerçeklenen hareketli objelerin tespiti oluşturmaktadır.

Elde edilen hareketli obje maskesi morfolojik işlemler ile gölge/yansıma arındırma

işlemlerini içeren ardişlemler uygulanarak daha kaliteli hale getirilmiştir. Bu

işlemler sonucu elde edilmiş olan ikili imgeden yararlanılarak görüntüde tespit

edilmiş her hareketli hedef için takip başlatılmakta ve hedef görüntüden çıkana

kadar takibin devamlılığı sağlanmaya çalışılmaktadır. Hedefin takibi için öner-

ilen metodoloji, benzeşim filtrelerinden temellendirilmiş çoklu görsel modelidir.
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Buna ek olarak takip parametrelerini işlem sırasında ayarlamak ve daha kar-

maşık işlemlerde ihtiyaç duyulan ekstra bilgileri sağlamak amacıyla; hedefin

siluetini belirginlik haritalarının zamansal tutarlılığının kontrolü ile çıkartan bir

hedef sınırlama kutusu üretim metodu da önerilmektedir. Önerilen sistem sen-

tetik ve gerçek data ile test edilerek gerçek hayat problemlerinin çözümündeki

başarısı da tez kapsamında gösterilmiştir.

Anahtar Kelimeler: Hareketli obje tespiti, hedef takibi, benzeşim filtreleri, belir-

ginlik
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CHAPTER 1

INTRODUCTION

"Science and technology multiply around us. To an increasing extent

they dictate the languages in which we speak and think. Either we

use those languages, or we remain mute."

-J. G. Ballard

1.1 Intelligent Video Analytics for Traffic Management

The significant increase in the number of vehicles in the traffic emerged the

necessity of detailed analysis on traffic flow to manage and improve the traffic

system. To estimate some critical traffic parameters, intelligent transportation

systems (ITS) have been designed and become a centralized approach in traffic

systems. In general, ITS cover any technology designed to provide innovative

services to transportation systems keeping the traffic flow in control in order to

make transport more sustainable, which means efficient, clean, safe; and acquire

relevant information for future planning. Moreover, these systems can also be

used for homeland security applications by observing every action of a suspicious

vehicle throughout the ITS network.

The older generations of ITS were using sensors that were expensive and re-

quiring destructive installation such as inductive loop detectors which needed to

be placed under the roadbeds to detect vehicles passing through. These detec-

tors can only identify the existence of vehicles with low speeds. Moreover, the
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information obtained was also limited to the number of vehicles in unit time,

weights and lengths of the vehicles. The developments in sensor technology en-

abled usage of vision based monitoring systems for traffic applications and they

become very popular in ITS applications. The main advantage can be listed

as: low setup costs, nondestructive installation, and rich information flow for

human understanding. However, until the last decade, the workload was mainly

weigh upon the human operators. The human operators had to observe hun-

dreds of cameras 7 days 24 hours to achieve traffic analysis which was extremely

burdensome. At this point, the increased computing power together with the

advancement of analytical techniques to process the video formed a basis and

many algorithms have been proposed in order to aid human operators. The

proposed automatic pre-processing techniques not only allow efficient guidance

for operators on selecting the relevant camera to observe but also enable them

to intervene the traffic flow more efficiently in real time.

Figure 1.1: ITS Operator should be Offload from Observing Hundreds of Cam-
eras Simultaneously

Traffic monitoring systems for urban areas have several tasks which can be solved

by computer vision techniques including congestion detection, vehicle count, lane

change detection, average traffic flow estimation, detection of traffic violations

such as illegal turn and parking to a non-parking zone, vehicle classification,
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accident or emergency detection. The information obtained from these kinds of

applications is not only used for simultaneous interventions on traffic flow but

also analyzed for planning new routes for transportation network and making

important decisions for planning of the urbanization in future. One should note

that all these important tasks require the same low-level tasks as a preliminary

which is automatic target detection and tracking. Therefore, in this thesis work,

a solution is proposed for the fulfillment of these low level tasks, which provides

higher level tasks with valuable information.

For the solution, the imaging system plays an important factor. Although us-

ages of different types of visual sensors are possible, i.e. CCTV, fish-eye, IR etc.,

nearly all of the ITS applications retrieves the scene from the cameras mounted

on poles or high grounds above the roads as illustrated in Fig. 1.2. Therefore,

in the proposed solution the cameras are assumed to be stationary (at the home

position) until the operator changes their position. Although the proposed so-

lution can respond to different image resolutions and object sizes effectively,

installation of the pole can still drastically change the performance; since the

location of the pole or its height may result in increased number of occlusions.

In this sense, pole implementation should be accomplished on a per case basis

to achieve better performance.

1.2 Scope of the Thesis

This thesis focuses on developing main building blocks of an automated ITS

system to address the main bottleneck of these systems which is the limited

number of operators. Although the ultimate goal is the tracking of the vehi-

cles passing by the scene, to achieve full autonomy target detection stage is

also a must and provided in the solution. By the nature of the problem, the

targets are considered as moving vehicles; hence the tracks are initialized from

the output mask of moving object detection mechanism. For moving object

detection various algorithms are utilized from the literature and their outputs

are enhanced with post-processing steps consisting of morphological operations

and shadow/highlight removal strategies proposed in the literature. All these
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Figure 1.2: An Exemplary Installation of Cameras for an ITS Application

moving object detection methods are compared both in theory and practice to

reveal the best possible option for the overall system.

Target tracking in urban scenes contains different challenges than highway mon-

itoring including various maneuvering angles for the vehicles moving in different

lanes and different sections of junction points, high probability of partial oc-

clusions and distractive patterns such as similar targets in close neighborhood,

random motion patterns due to frequent stop-and-go activities. In this manner,

the proposed tracker should be capable of tracking without any motion model

assumption, handle partial occlusions effectively and not be effected by similar

targets in the vicinity. Considering the attractive properties of the correlation

filters, which are explained in the background section; for target tracking, a

multiple model visual tracking methodology is proposed based on a recent ex-

ample of correlation filters [1]. Moreover, the proposed filter is also capable of

target size estimation by silhouette extraction of the target which compensates

a general weakness of the correlation filters and provides higher levels of the ITS

system with valuable information.
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The performance of the proposed system is also validated by the experiments

which are conducted both in subsystem and system level. To enhence our obser-

vations on the proposed solution experiments included usage of synthetic data

as well as real life data.

1.3 Outline of the Thesis

In Chapter 2, both moving object detection and object tracking taxonomies are

presented and explained in brief for each proposed system. Some methodologies

that are suitable for the usage in the proposed solution are specified and further

analyzed to determine their possible advantages and disadvantages with respect

to each other.

The Chapter 3 is dedicated for the detailed explanations of the proposed solution

both in subsystem level and including their collaborative working strategy.

After the explanation of the algorithm, the experiments are conducted to analyze

performance of the both subsystems and the integrated solution. The integrated

solution is executed on a real world problem and the results are presented in

Chapter 4.

Finally, the thesis is concluded in Chapter 5, by summarizing the work ac-

complished and presenting the obtained observations. Chapter 5 also contains

suggestions on some future extensions.
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CHAPTER 2

BACKGROUND REVIEW

2.1 Moving Object Detection

Moving object detection is defined as identifying pixels belonging to moving

objects in a frame and considered to be the first stage of many visual surveil-

lance systems; since detecting moving blobs provides focus of attention for high

level tasks such as tracking, recognition, classification and activity analysis in

which only "moving" pixels need to be considered. Although human being is

well adapted for moving object detection, it is still a challenging task as a com-

puter vision application. A robust moving object detection algorithm should

overcome the common problems that are encountered in the literature such as

gradual/sudden illumination changes (including automatic gain control of cam-

era), moving backgrounds (swaying trees), slow moving objects, clutter and

other types of noise.

In order to achieve this task, diverse set of algorithms exist in literature [2–4] can

be categorized into three groups as: temporal differencing [5–10]; background

subtraction [11–27]; and optical flow [28–30]. In this section, different solutions

from each category of the conventional moving object detection methodologies

are discussed. This discussion includes a rough comparison for the strengths,

weaknesses and computational complexities of the conventional methods. In the

light of this discussion, possible algorithms are selected by their suitability of

the overall system for further analysis. Their detailed comparison considering

to both their performance and execution time is achieved in Chapter 4.
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Figure 2.1: A Moving Object Detection Example with the Resultant Binary
Mask (Red)

2.1.1 Conventional Methods for Moving Object Detection

Examining the literature, it is seen that moving object detection can be mainly

divided to three subcategories as temporal differencing, background subtraction,

and optical flow. Each subcategory has its own weaknesses and strengths and

explained in the following section.

2.1.1.1 Temporal Differencing

Temporal differencing aims to detect moving objects by using pixel-wise differ-

ence of frames in video imagery. Although, temporal frame difference methods

can easily detect the motion, they generally show poor performance of localiz-

ing the objects. An exemplary situation is illustrated in Fig. 2.2. If object is

moving fast or temporal distance of two differencing frames is large, two objects

are detected; one where the object is and one where it used to be,Fig. 2.2a.

On the contrary, if object is moving slowly or the temporal distance between

frames is low, only a part of the object could be detected,Fig. 2.2b. Moreover,

when the moving object ceases moving, most of temporal differencing method

fails detection just in a few frames.
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Figure 2.2: (a) Double Detection due to Fast Motion or High Temporal Distance
(b) Incomplete Detection of Moving Object due to Slow Motion or Low Temporal
Distance

In this part, 4 different temporal differencing methodologies are explained which

try to overcome the problems mentioned above in addition to the naive temporal

differencing approach.

2.1.1.1.1 Naive Approach

The simplest and the fastest method of temporal differencing is the usage of only

two consecutive frames which simply means that background model is considered

to be the previous frame as presented in the work of Lipton et al. [5]. Eqn. 2.1

shows the formal definition of the naive approach, where It(x,y) corresponds to

intensity value of the current frame at position (x,y) and It-1(x,y) represents the

intensity value for the same pixel for the previous frame.

Maskt(x, y) =

1, if |It(x, y)− It-1(x, y)| > τ

0, else
(2.1)

Since this method generally produces incomplete information, many moving
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pixels can be missing; about the moving object; it should be supported with

other algorithms to achieve complete information.

2.1.1.1.2 Inter-frame Difference

If the slow moving objects are the interest, the naive approach may fail to detect

existence of moving object by comparing two consecutive frames. However, in

such scenarios it is still possible to detect moving object by using frames having

temporal distance more than one frame. Therefore, the simplest inter-frame

difference algorithm is nothing but the modified version of naive algorithm to

use frames with N frame distant to each other and given in the Eqn. 2.2

Maskt(x, y) =

1, if |It(x, y)− It-N(x, y)| > τ

0, else
(2.2)

The choice of temporal distance between frames should be selected according

to expected size and speed of the moving object. Since most of the time scene

includes objects with different speeds and sizes, this methodology is generally

used to detect motion not for locating the moving object which means it should

be supported with another algorithm for object localization as in [5].

2.1.1.1.3 Three Frame Difference

The importance of the three frame difference is the notion behind the algorithm.

This algorithm simply states that the moving object should preserve its motion

in consecutive frames. Therefore, three-frame differencing rule states that a

pixel is legitimately moving if a significant intensity change is observed not only

in this frame but also in the previous frame and formulated in [7] as in Eqn. 2.3:

Maskt(x, y) =

1, if |It(x, y)− It-1(x, y)| > τ AND |It-1(x, y)− It-2(x, y)| > τ

0, else
(2.3)
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Obviously, the frames that are used in three frame difference methodology can

be changed to be used as inter-frame difference. Since this algorithm contains

information from more than one frame, it shows better performance than the

naive approach as expected.

2.1.1.1.4 Motion History Images

Motion history images (MHI) also based on the same notion used in the three-

frame difference algorithm and uses the combinations of the object movements

from different frames and shows cumulative object motion [8–10]. MHI has two

main differences than three frame algorithm: First, it does not limit itself to

three frames from past but makes use of L frames from both future and past;

and the second while using more than one frames it gives less weight to the mo-

tion detected from frames with high temporal distance to the frame in process

by using a decay term. Although, usage of future frames introduces delay to

system, this algorithm shows the best object localization performance among all

mentioned temporal differencing methodologies. Considering the overall system,

better target localization is something more desirable than a system without any

delays. Although more computational load is required than previous method-

ologies in this category, its workload introduces still less computational burden

than methodologies from other two categories.

Since MHI is selected to be a possible option for the overall system, further

explanation is given below. The MHI proposed in [10] consists of 3 sub-steps

namely: preprocessing, MHI generation and object localization.

2.1.1.1.4.1 Preprocessing

This module is implemented to solve two important problems: image stabiliza-

tion, and rapid change in pixel intensities. Since the proposed system is designed

for stationary cameras, the stabilization part is not in the interest. However, the

solution of the second problem actually corresponds to making MHI robust to

abrupt changes which may occur due to sudden illumination changes, automatic
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Figure 2.3: Sample Outputs for Motion History

gain control of camera or noise. To achieve this goal, image normalization given

in Eqn. 2.4 is used where I(τ) is the mean value of the current image and std(.)

is the standard deviation.

I
′
(τ) =

I(τ)− I(τ)

std(I(τ))
(2.4)

2.1.1.1.4.2 MHI Generation

MHI shows how the motion evolves historically by incorporating a temporal

decay term. The forward and backward MHI, are denoted as HF (x, y, t) and

HB(x, y, t) respectively; and iteratively calculated starting from the furthest

frame to the current in which they are set to zero HF (x, y, t− (L− 1)) = 0 and

HB(x, y, t + (L − 1)) = 0. For both HF and HB, calculation is achieved in a

similar way, hence showing the calculation of HF , Eqn. 2.5,would be enough.

HF(x, y, τ) =

max(0, HF(x, y, τ − 1)− d), |D(x, y, τ)| < T

255, |D(x, y, τ)| ≥ T
(2.5)

where d = 255/L is the decay term, L is the buffer length and T is the distance

threshold. In [10], distance D is defined as the absolute difference between
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frames as in Eqn. 2.6, since [10] is designed for IR images that contains 1 channel

only. However, in this work 3-channel rgb images are also used. Therefore, the

distance measure is modified and Eqn. 2.7 is used for 3-channel images instead

of Eqn. 2.6.

D(τ) = |I(τ)− I(τ ±∆)| , (2.6)

D(τ) =
√

(Ir(τ)− Ir(τ ±∆))2 + (Ig(τ)− Ig(τ ±∆))2 + (Ib(τ)− Ib(τ ±∆))2

(2.7)

2.1.1.1.4.3 Object Localization

After calculation of HF and HB, this information is used for object localization.

First, these values are smoothed via median filter which results in elimination

of small components which are actually noise. Then, min(.) operator is used in

order to suppress the gradient trail behind the object in forward MHI and ahead

for the backward MHI.

Maskgray(t) = min(MedianFilter(HF (t)),MedianFilter(HB(t))) . (2.8)

Using Eqn. 2.8 yields strong response only for pixels within the current object

boundary. Then the obtained gray level image is threshold to obtain foreground

mask. Finally, the foreground mask is morphologically closed to get rid of holes

that may occur inside of the object and the moving object mask is extracted.

2.1.1.2 Background Subtraction

The main purpose of this type of algorithms is to generate a background model

which is to be compared with the current video frame. After the comparison,

pixels which are dissimilar from the background model are marked as pixel of

the moving object. The diversity of this type of algorithms comes from the

usage of different solutions for background model extraction and dissimilarity

measurement.
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2.1.1.2.1 Averaging

As the name refers, the averaging method takes the average of lately video frames

to construct background model. The averaging may have different weights be-

tween previously obtained background model and the new frame which is spec-

ified by learning rate. Although, these algorithms have low computational cost,

they tend to produce tails behind the moving object and ghosts after objects

that have wait long period of time. Both artifacts occur due to the condemna-

tion of the background model. In order to solve this problem [11, 12] suggest

not update the pixels of background model where in the current frame object

is detected. A similar approach with adaptive thresholding methodology is also

used in [7]. The background model update scheme is given in Eqn. 2.9 where α

is the learning rate Bt background model at frame t and It is the current frame.

Bt+1(x, y) =

αBt(x, y) + (1− α)It(x, y), (x, y) not moving

Bt(x, y), (x, y) moving
(2.9)

Note that moving not moving classification is achieved simply differencing cor-

responding background and image pixels and comparing the difference with

threshold identifying dissimilarity. Different from [11, 12], [7] also includes a

simple adaptive threshold selection scheme that is specified in Eqn. 2.10:

T t+1(x, y) =

αT t(x, y) + (1− α)(c|It(x, y)−Bt(x, y)|), (x, y) not moving

T t(x, y), (x, y) moving
(2.10)

There exist other papers using averaging strategy due its low computational

complexity such as [13–15].

2.1.1.2.2 Single Gaussian

To achieve better performance, more detailed background model than simple

averaging is required. To answer this requirement a single Gaussian, N(µ,σ),

may be used for each pixel. The mean value of the Gaussian corresponds to

average of frames whereas the variance of pixels is new information that does

not exist in averaging methodologies. Therefore, dissimilarity is calculated by

using both as in Eqn. 2.11, which is actually nothing but a kind of dynamic
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thresholding. The Eqn. 2.12 and Eqn. 2.13 show the update procedure for the

Gaussian.

Maskt(x, y) =

1, |It(x,y)-µt(x,y)| > 2.5σt

0, else
(2.11)

µt(x, y) =

αIt(x, y) + (1− α)µt−1(x, y), Maskt(x,y)=1

µt−1(x, y), else
(2.12)

σ2
t (x, y) =

α(It(x, y)− µt(x, y)) + (1− α)σ2
t−1(x, y), Maskt(x,y)=1

σ2
t−1(x, y), else

(2.13)

where α is learning rate and It(x,y) is the intensity value. [16, 17] use a single

Gaussian background model.

2.1.1.2.3 Gaussian Mixture Models

After the usage of single Gaussian, it is seen that individual pixel values fre-

quently have more complex distributions so requirement of more elaborate mod-

els is emerged. Hence, the concept of Gaussian Mixture Model (GMM) is in-

troduced with [18] in which more than one Gaussians are used to model the

background. The main idea of GMM is to represent the background model of

each pixel as a weighted sum of Gaussians as shown in Eqn. 2.14 and then detect

pixels as foreground whenever they do not fit the model. The model construc-

tion is based on a reasonable assumption which states that the background is

visible more frequently than the foreground. This assumption inherently states

that the background model should be constituted by the repetitive pixel values.

Therefore, for background model generation, the first need is to acquire a train-

ing set, XT , which is updated over time. At each new sample together with the

training data, the density estimation is also updated as in Eqn. 2.14
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p̂(x(t)|XT , BG+ FG) =
K∑
m=1

wmη(x(t);µm,Σm) , (2.14)

where x(t) is pixel value at time t, m is the mode (component) number of Gaus-

sian, µm is the estimated mean value, Σm is the estimated covariance matrix,

and wm is non-negative mixing weight. Note that training samples include both

foreground and background pixels from which the density estimation is achieved.

However, one should remember the assumption which states that background

pixels are visible more frequently than the foreground pixels. Considering the

assumption, intruding foreground objects will be usually represented with small

weights wm. Therefore, the background model can be approximated as the first

B largest weights as in Eqn. 2.15

p̂(x(t)|XT , BG) ≈
B∑

m=1

wmη(
→
x; µ̂m, σ

2
mI) . (2.15)

Figure 2.4: Multiple Modes are Generated in GMM by Considering Various
Conditions to Represent Background Model Better

B is modes selected according to cf which measures the maximum portion of the

data that can belong to foreground objects without influencing the background

model.

B = arg min
b

b∑
m=1

ŵm > (1− cf ) . (2.16)

Although, most of the moving object detection algorithms based on GMM use

previously mentioned equations to estimate background model, they mainly dif-

fer in the parameter (µm, Σm, wm) update techniques. Since usage of Gaussian
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Mixture Model is another alternative for the overall system, update mechanism

of [18] is expanded on together with the update mechanisms of its variants, [23]

and [24].

2.1.1.2.3.1 Background Model Using GMM [18]

All GMM variants, updates their background model after obtaining every new

pixel value. For this procedure, the first step is to check new pixel value against

all existing Gaussian distributions to reveal whether the pixel value matches to

a mode. If the Euclidean Distance of the new pixel to the mean values of the

modes is smaller than 2.5σ, the pixel is stated to be matched. If the new pixel

value cannot be matched, the least probable distribution is replaced with a new

distribution whose mean is the new value. The variance of the new distribution

is selected to be high to give better chance for a match with the pixel value is to

come. Expectedly, the initial weight is given low since it is the first time for that

mode is observed. The update equations for Strauffer and Grimson’s GMM [18]

are given below:

w(t)
m = (1− α)w(t−1)

m + αo(t)
m , (2.17)

µ(t)
m = µ(t−1)

m + o(t)
m (ρδm) , (2.18)

σ2
m

(t)
= σ2

m
(t−1)

+ o(t)
m (δTmδm − σ2

m
(t−1)

) , (2.19)

where x(t) = [x1, x2, x3]
T , µ(t) = [µ1, µ2, µ3]

T , δm = x(t)−µm; and ρ = αη(x(t);µm, σm).

The symbol α in the update equations is the learning rate and o(t)
m takes the value

1 for the mode it is matched and 0 others. Examining the update equations it

is seen that when the new pixel is not matched, µ and σ is not altered but it

is weight is lowered. This actually means the observed background model is

not destroyed; however if the data of mode is not frequently seen its weight is

lowered and may be replaced with a new mode if data from that mode cease

its existence. On contrary, after a short period of time, if data from the same

mode is observe its weight is increased and mode preserves itself to be one of

the most probable K modes. This is actually a kind of low-pass filtering which
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enables algorithm to deal with repetitive motion as in the case of swaying tree

and suppress sudden illumination changes for a while. From now on then, these

update equations will be referred as standard update equations.

2.1.1.2.3.2 Background Model Using GMM [23]

The standard GMM update equations were extended to improve the speed and

adaptation rate of the model [19–22]. Although, these algorithms become suc-

cessful in coping with slow lightening changes, repetitive motions as tree leafs

and long-term scene changes; they the usage of fixed number of GMM modes is

found to be inadequate for more complex scenes. In the work of Zivkovic and

Heijden [23], the algorithm proposed in [18] is improved by using a recursive

computation to constantly update the parameters of a GMM, which adaptively

chose the appropriate number of Gaussian components to model each pixel on-

line, from a Bayesian perspective. Knowledge of the number of modes is impor-

tant, since too many components may lead over fitting to data whereas too few

may lead to under fitting. Moreover, update equations are modified in order to

accept presence of a mode when enough evidence from the data exists for this

mode.

w(t)
m = (1− α)w(t−1)

m + α(o(t)
m − cT ) , (2.20)

µ(t)
m = µ(t−1)

m + o(t)
m (α/wm)δm , (2.21)

σ2
m

(t)
= σ2

m
(t−1)

+ o(t)
m (α/wm)(δTmδm − σ2

m
(t−1)

) , (2.22)

where x(t) = [x1, x2, x3]
T , µ(t) = [µ1, µ2, µ3]

T , δm = x(t) − µm for a 3-channel

image. The symbol α in the update equations is the learning rate and o
(t)
m

takes the value 1 for the mode it is matched and 0 others. In this method

the important thing is that after calculation of the weights, w(t)
m , the irrelevant

components (w
(t)
m < 0) are discarded and the remaining mixture weights are

re-normalized. Steps for model update can be summarized as:

1. Obtain new data x(t)

2. Calculate ownership, o(t)
m
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3. Update mixture weights using Eqn. 2.20

4. Check irrelevant components w(t)
m < 0, discard these modes and re-normalize

remaining weights

5. Update µ(t)
m using Eqn. 2.21

6. Update (σ
(t)
m )

2
using Eqn. 2.22

2.1.1.2.3.3 Self-Adaptive GMM

Another important parameter of Gaussian Mixture Models is the learning rate

and should be adjusted properly. For a low learning rate, a very wide and

inaccurate model, resulting in low detection sensitivity, can be produced. On

the other hand, for a high learning rate, the model updates too quickly, and slow

moving objects will be absorbed into the background model, resulting in a high

false negative rate. Based on [23], the SAGMM, [24], is introduced as a solution

for the problem. SAGMM adjust the learning rate online by considering number

of data points which results in better adaptation to dynamic scenes. The update

equations of the Self-Adaptive GMM are given below:

w(t)
m = (1− α)w(t−1)

m + α(o(t)
m − cT ) , (2.23)

βm = α(1 + cm)/cm , (2.24)

µ(t)
m = µ(t−1)

m + o(t)
m (βm/wm)δm , (2.25)

σ2
m

(t)
= σ2

m
(t−1)

+ o(t)
m (βm/wm)(δTmδm − σ2

m
(t−1)

) , (2.26)

cm = cm + 1 , (2.27)

where x(t) = [x1, x2, x3]
T , µ(t) = [µ1, µ2, µ3]

T , δm = x(t) − µm for a 3-channel

image. Note that each mode has different learning rate,βm, and calculated

based on the basic learning rate α,which defines the limit of the influence of

the old data α = 1/T , and current accumulator counter cm. The counter is

increased at each time when a data is assigned to the mode and it is reset to 1

when a mode is perished. Assignment of a data to mode is referred as ownership

and o(t)
m is set to 1 if sample is close to that component and otherwise it is set

to 0. Closeness is measured with Mahalonobis distance and a sample is said to
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be close if its Mahalonobis distance is smaller than a certain threshold. The

squared distance from the mth component is calculated as:

D2
m(x(t)) = δTmΣ−1

m δm . (2.28)

If there are no close components, a new component is generated with w(t)
m+1 = α,

µ
(t)
m+1 = x(t), σ(t)

m+1 = σ0, cm+1 = 1. Lastly the cT is a negative bias component

which is used to suppress the components that are not supported by the data.

Although background subtraction provides the most complete feature data, it is

extremely sensitive to illumination changes which yield misdetection of all pixels

as foreground in the presence of sudden illumination change.

2.1.1.2.4 Eigenbackground Subtraction

Eigenbackground subtraction [25] proposes an eigenspace model for moving ob-

ject segmentation. In this method, dimensionality of the space constructed from

sample images is reduced by Principal Component Analysis (PCA). The main

idea is stated as the reduced space after PCA should represent only the static

parts of the scene, remaining moving objects, if an image is projected on this

space. The main steps of the algorithm can be summarized as follows [26]:

• A sample of N images of the scene is obtained; mean background image,

µ(b), is calculated and mean normalized images are arranged as the columns

of a matrix, A.

• The covariance matrix, C = AAT, is computed.

• Using the covariance matrix C, the diagonal matrix of its eigenvalues, L,

and the eigenvector matrix, Φ, is computed

• The M eigenvectors, having the largest eigenvalues (eigenbackgrounds), is

retained and these vectors form the background model for the scene.

• If a new frame, I, arrives it is first projected onto the space spanned by

M eigenvectors and the reconstructed frame I’ is obtained by using the

projection coefficients and the eigenvectors.
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• The difference I - I’ is computed. Since the subspace formed by the eigen-

vectors well represents only the static parts of the scene, outcome of the

difference will be the desired change mask including the moving objects.

Although this method has an elegant theory, it cannot model dynamic scenes as

expected. The reported achievements are generally restricted to some specific

environments. Moreover, its computational complexity is high comparing to

previously mentioned methodologies. All in all, eigenbackground subtraction is

not very suitable for outdoor surveillance tasks; hence not preferable for our

application.

2.1.1.3 Optical Flow Estimation

Optical flow methods make use of the flow vectors of moving objects over time

to detect moving regions. Optical flow is the estimation of pixel-level motion,

which is mainly based on the constancy assumption of brightness. If I(x, y, t) is

the image intensity at coordinate (x, y) at time t, then the optical flow constraint

equation is as given in Eqn. 2.29.

Ixu+ Iyv + It = 0 , (2.29)

where Ix=∂I/∂x, Iy=∂I/∂y, It=∂I/∂t are image gradients and u=dx/dt and

v=dy/dt are optical flow components. As it is seen, Eqn. 2.29 includes two

unknown (u,v) which means one more equation is required for solving for these

unknowns. This additional constraint is called as smoothness constraint and

generally assumes smoothness in motion field as in [31,32]. In this sense, optical

flow techniques can be viewed conceptually in terms of three stages of processing:

• Pre-filtering or smoothing with low-pass/ band-pass filters in order to ex-

tract signal structure of interest and to enhance the signal-to-noise ratio,

• Extraction of basic measurements, such as spatio-temporal derivatives (to

measure normal components of velocity) or local correlation surfaces, and

• Integration of these measurements to produce a 2-D flow field, which often

involves assumptions about the smoothness of the underlying flow field.
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Optical flow method can detect independent moving object without knowing any

prior information of scene which is suitable for dynamic background [28,33,34].

However, optical flow methods are computationally expensive due to iterative

scheme of flow vector calculation which leads them to be over complex and

inappropriate for our application.

2.1.2 Moving Shadow Detection

Considering overall system, detection of moving objects is important for track

initialization and determining track window size which specifies tracking pa-

rameters. However, for many moving object detection algorithms, shadows tend

to be classified as part of moving object since they share the same movement

pattern. Therefore, to achieve discrimination between target and its shadow,

various types of algorithms are proposed in the literature. One of the most

recent shadow detection review, [35], categorizes the literature in a different

manner, feature based, rather than done in previous survey [36] in which di-

vision is achieved in algorithm based. Based on [35], the methods published

during the last decade are divided into four feature based categories which is

illustrated in Fig. 2.5.

Moving Shadow Detection

Chromacity-based
Cucchiara et al. [37]
Salvador et al. [38]
Cavallaro et al. [39]
Chen et al. [40]
Sun&Lee [41]

Physical
Nadimi&Bhanu [42]

Porikli&Thornton [43]
Liu et al. [44]

Martel-Brisson&Zaccarin [45]
Martel-Brisson&Zaccarin [46]
Joshi&Papanikolopoulos [47]

Huang&Chen [48]

Geometry-based
Hsieh et al. [49]

Yoneyama et al. [50]
Nicolas&Pinel [51]
Fang et al. [52]

Chen&Aggarwal [53]

Texture-based
Javed&Shah [54]
Xu et al. [55]
Tian et al. [56]
Wang et al. [57]
Zhang et al. [58]

Leone&Distante [59]
Zhang et al. [60]
Nghiem et al. [61]
Shoaib et al. [62]
Pei&Wang [63]
Sanin et al. [64]

Nakagami&Nishitani [65]
Panicker&Wilscy [66]

Qin et al. [67]

Figure 2.5: Taxonomy of Shadow Detection Methods Published in Last Decade
(based on [68])
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2.1.2.1 Chromacity Based Shadow Detection

These algorithms are based on the assumption that in the presence of shadow,

shadowed pixels become darker but retain their chromacity. This color transition

model is referred as color constancy. Since the chromaticity is a measure of color

that is independent of intensity, the change in two metrics should be calculated

separately. Most commonly used metrics are introduced by [69], and referred as

brightness distortion (BD) and chromacity distortion (CD) and calculated using

Eqn. 2.30 and Eqn. 2.31:

BD(x, y) =

FR(x,y)µR(x,y)

σ2
R(x,y)

+ FG(x,y)µG(x,y)

σ2
G(x,y)

+ FB(x,y)µB(x,y)

σ2
B(x,y)

[µR(x,y)
σR(x,y)

]2 + [µG(x,y)
σG(x,y)

]2 + [µB(x,y)
σB(x,y)

]2
, (2.30)

CD(x, y) =

√√√√[FR(x, y)− BD · µR(x, y)

σR(x, y)

]2
+

[
FG(x, y)− BD · µG(x, y)

σG(x, y)

]2
+

[
FB(x, y)− BD · µB(x, y)

σB(x, y)

]2
, (2.31)

where F represents foreground pixels and µ stands for the pixel value of the

background model. By imposing thresholds over BD and CD, foreground pixels

are classified as shadow or highlight as in Eqn. 2.32:

highlight, CD < τCD and BD > τB1

shadow, CD < τCD and τBlow < BD < τB2

(2.32)

τCD is a threshold to distinguish between chromacity of the background model

and current pixel. The threshold τBlow is introduced to prevent pixels of having

low RGB values to be misclassified to shadow. Similarly, τB1 is applied to detect

highlights. To achieve better understanding Eqn. 2.32 is visualized in Fig. 2.6.

Most of the chromacity based methods are simple to implement and computa-

tionally inexpensive comparing to other methodologies. However, they are very

dependent of threshold selection and susceptible to noise. Moreover, they are

also sensitive to strong illumination changes and fail with strong shadows.
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Figure 2.6: Brightness and Chromacity Distortion Levels Proposed (Source [69])

2.1.2.2 Shadow Detection using Physical based Methods

The physics-based methods use the illumination models. According to these

models shadow is formed by change of illumination conditions. Hence shadow

detection becomes the problem of finding illumination invariant features. In

outdoor environments, two major illumination sources exist which are the sun

(white light) and the light reflected from the sky (blue light). However, lin-

ear attenuation models assume illumination source to produce only white light.

Hence, problem arises when the effect of the sun light decreases and the sky illu-

mination becomes more apparent. To handle this problem, dichromatic models

are proposed [42]. Apart from that, non-linear attenuation models are designed

to create more general models for various illumination conditions in both indoor

and outdoor scenarios [48]. Alternative approaches try to model or learn the

appearance of every pixel under shadow to address attenuation problem [44–48].

Usage of learning mechanism can improve performance; however physical based

methods are still limited to spectral properties which yields disadvantage in

dealing with objects having similar chromacity to that of the background.
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2.1.2.3 Shadow Detection using Geometry based Methods

For the cases in which the prior knowledge exists about illumination source,

object shape and ground plane; the orientation, size and even shape of the

shadows can be predicted. The main advantage of these methodologies is that

they do not require for background model; hence can be directly executed on

the input frame. Since the geometry based shadow detection is appropriate for

specific object types whose shadows have different orientation than the object

itself (pedestrians [49, 53]; vehicles [50, 52]), it seems to be appropriate for our

problem. However, the difficulties in modeling the scene and the objects (i.e.,

the size of the vehicles has a wide range as car to truck; and the position of

the illumination source (the sun) changes throughout the day) turns geometry

based approach inappropriate for our system. Moreover, current geometry based

moving shadow detection methods are not designed to deal with the shadows of

multiple objects united in one foreground blob. By the nature of our problem this

case frequently occurs, so overcoming this problem is our main expectation of

shadow detection phase. Therefore, this type of methods is not suited practically

for the problem we are dealing with.

2.1.2.4 Shadow Detection using Texture based Methods

Texture correlation is powerful method for detecting shadows; as textures are

highly distinctive, do not depend on color, and robust to illumination changes.

On the other hand they require more computational power than other method-

ologies. The main idea behind the texture based methods is the fact that the

regions under the shadow retain most of their texture. In general, texture based

shadow detection consists of two steps: selection of candidate pixels and re-

gions, and classification of candidate pixels or regions as object or shadow.

Candidate generation is achieved by usage of simple shadow detectors. Then,

each shadow candidate is classified by correlating the texture in the frame and

in the background model. If candidate and background model are similar in

texture, candidate is classified as shadow or vice versa. To measure texture

similarity various methods are proposed in the literature including normalized
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cross-correlation [56], gradient or edge correlation [54, 55, 64], orthogonal trans-

forms [58], Markov or conditional random fields [57, 67], Gabor Filtering [59].

Texture based moving shadow detection methods can be divided into two differ-

ent approaches according to correlation levels as small region (or neighborhoods)

and large region. The problem of using small regions is that they are not guar-

anteed to contain significant textures [59]. However, in LR texture methods

as in [64]; large candidate regions of shadows are used (ideally whole shadow),

which would include enough texture to discriminate between object and shadow.

2.2 Object Tracking

Object tracking is an important task within the field of computer vision. In

its simplest form, tracking can be defined as the problem of estimating the

trajectory of an object in the image plane as it moves around the scene. In

other words, a tracker assigns consistent labels to the tracked objects in different

frames of a video. In a tracking scenario, an object can be defined as anything

that is of interest requiring further analysis, i.e. vehicles on a road, pedestrians

in the street, planes in the air etc. This is actually a challenging task due to loss

of information caused by projection of the 3D world on a 2D image, partial and

full objects occlusions, complex object shapes and motion, scene illumination

changes, imperfections and noise in imaging systems.

Since object tracking is a classical problem, there exist diverse set of algorithms

in the literature [70,71]. The proposed solutions are primarily differing from each

other based on how they model appearance, shape, and motion of the object.

In this sense, taxonomy of tracking methods are proposed in [70] as in Fig. 2.7

and will be discussed in the following sections.

2.2.1 Point Tracking

This approach starts with the detection of objects in the scene by an external

object detection mechanism in each frame. Then, tracking is achieved by re-

vealing correspondence of the points (i.e. centroids of the detected objects) in
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Figure 2.7: Taxonomy of Tracking Methods (Source [70])

consecutive frames. This correspondence problem is generally solved based on

object states which can include object properties such as position, motion, and

acceleration. The point correspondence can be accomplished by using deter-

ministic and probabilistic methods. The deterministic methods use qualitative

motion heuristics [72] whereas probabilistic methods explicitly take the object

measurement and also considers uncertainties to establish correspondence as in

Kalman Filter [73] , particle filter [74], and Joint Probability Data Association

Filter [75].

2.2.1.1 Deterministic Methods for Point Tracking

The purpose of the deterministic methods for point tracking is to find association

of each object in frame t−1 with a single object in frame t. As stated in [70], the

correspondence problem is usually solved by using qualitative motion heuristics.

Some exemplary heuristics are:

• Maximum Velocity: This constraint has the assumption that the target

cannot move more than certain amount of pixels within a single frame.

Hence, the possible match is searched in a limited circular neighborhood.

• Small Velocity Change (smooth motion): Based on the assump-

tion that direction and speed of the target does not change drastically in
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consecutive frames.

• Common Motion: The constraint is designed for representation of a sin-

gle target with multiple key points. It is stated that the velocity of the

key points is to be similar.

Figure 2.8: Motion Heuristics (a) Maximum Velocity, (b) Small Velocity Change,
(c) Common Motion of Key Points (Source [70])

The disadvantages of deterministic methods are that they can be easily mis-

guided when the measurements contain noise, and their performance decreases

drastically when target motion undergoes random perturbations, i.e. maneuver-

ing, dissatisfying the model assumed for target. Although deterministic point

tracking methods are based on motion heuristics, one should note that usage of

motion heuristics does not restricted to deterministic methods.

2.2.1.2 Statistical Methods for Point Tracking

The statistical methods are designed to solve the correspondence problem by

not only taking care of the measurement which can be misleading but also con-

sidering probabilistic models for target motion by benefiting from state space

approach for modeling the target properties such as position, velocity, and ac-

celeration. From the measurements, which are usually target positions in the

image, the state variables are estimated. In the literature these estimation tech-

niques are grouped into two classes in [70] namely: single object state estimation

and multiobject data association and state estimation.

The most well-known estimation techniques for single object state estimation

are Kalman and particle filters. The Kalman filter is used to estimate state of
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a linear system where state is assumed to be distributed normally and consists

of two steps. The first step is the prediction step and achieves the new state

of variables by using state model. The second step is known as correction step

in which prediction is corrected by using the current observation and the state

is updated with the correction. Although Kalman filter is widely used, the

Gaussian assumption for state variables is an important limitation which results

in poor estimations when assumption is not fulfilled. To deal with this problem,

particle filter is designed. In particle filtering, the conditional state density is

modeled by a set of samples with different weights. According to weight, all

samples have different importance and all samples are used for estimation new

value of state variables. Although, high number of particles would yield better

estimation, the computational complexity also increases with the number of

particles.

One should note that both kalman and particle filters are designed for estimating

state of a single object; hence to achieve multiple target tracking with kalman or

particle filter, the correspondence problem needs to be solved beforehand apply-

ing filter which is a kind of contradiction. However, our goal is multiple target

tracking, which actually requires joint solution of data association. The most

widely used two techniques for this problem are Joint Probability Density As-

sociation Filters (JPDAF) [75] and Multiple Hypothesis Tracking (MHT) [76].

The JPDAF is actually uses soft data assignment. To be more precise, JPDAF

consider the probability of one measurement to belong to more than one track

which results in a single hypothesis for summarizing all the past. The main

limitation of JPDAF is the assumption on number of targets which is assumed

to be fixed. Hence, it is not capable of handling new targets entering/leaving

the scene. In MHT, this problem is solved by integrated track initiation. As-

sociation algorithm of MHT is a hypothesis based brute force implementation

which aims to generate all possible hypotheses and requires high computational

load. Moreover, MHT also requires large memory; since the different hypothesis

from the past are kept in the memory.

In general, statistical based point tracking methods benefits from motion mod-

els of the targets and achieves a compromise between the model, i.e. constant
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velocity, constant acceleration etc., and the measurements. However, for our

application we cannot explicitly state any motion model. Moreover, point cor-

respondence becomes a complicated problem especially in the presence of occlu-

sions, misdetections, entries, and exits of objects; and can be misled by erroneous

measurements which occur due to fails in moving object detection phase. Since

mentioned conditions are highly probable in our problem, point tracking is not

preferred for our system.

2.2.2 Kernel Tracking

Kernel tracking is typically performed by computing the motion of the object,

which is represented by a primitive object region, from one frame to the next. In

this sense, kernel refers to the object shape and appearance. For example, the

kernel can be a rectangular template or an elliptical shape. These algorithms

differ mainly based on appearance representation used. Tracking using tem-

plates and density appearance models are commonly used due to their relative

simplicity which results in low computational cost. The most common approach

in this category is template matching based approaches which are to be ex-

plained in detail since descendent of template matching algorithms [1, 77–79]

introduces more robustness than point tracking approaches. Moreover, these

algorithms does not require prior knowledge of motion model and also some of

these algorithms introduce solutions for handling occlusions, which is frequently

encountered in exemplary scenes for our problem.

2.2.2.1 Template Matching in General

Template matching is a straightforward concept which is designed for finding

smaller parts of image which matches with the template. The matching process

relies on the similarity of template and image section which is measured mainly

by using a simple dot product. If the vector form of the template is defined as

h and the image section as f, similarity is calculated as in Eqn. 2.33.

S(f, h) = f · h =
∑
i

fihi , (2.33)
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where i is the pixel index in the templates. In theory, the result of dot product

should be high if the resemblance of the pixels is high or vice versa. Therefore,

the existence of the object can be verified by comparing the dot product result

with a certain threshold. One should note that, dot product can only reveal the

existence of the object for just one specific location which is the center coordinate

of image section. However, template matching cannot only look for a specific

location for tracking since the location of the target at the new frame is not

known. Therefore, the image should be searched over for each possible location

by calculation of dot products for each possible alignment. Actually, this is the

definition of the correlation which is taken between template and image. The

output of the correlation is a new image whose pixels are filled with the result

of dot product between translated versions of the template and the image as

illustrated in Fig. 2.9. The image coordinates where the local maxima occurs

in the output image, C, is referred as correlation peaks. If the global maximum

exceeds a certain threshold, this coordinate is indicated as the new location of

the template in the image. Despite of many known weaknesses, which are to be

explained; usage of correlation is very popular since it is fast, simple and easy

to implement. Formal definition of the correlation is given in Eqn. 2.34:

C = f(x, y)⊗ h(x, y) :=
M−1∑
m=0

N−1∑
n=0

f(m,n)h(x+m, y + n) . (2.34)

It should be noted that correlation methodology can produce clear peaks as long

Figure 2.9: Visualization of Correlation Result between the Image and Template

as the template (tracked object model) preserves its similarity with the target

in the input frame. Unfortunately, appearance of the target changes across im-
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ages, due to variations among target instances and changes in imaging condition

i.e. lighting, pose. In order to deal with the illumination change, normalized

cross correlation concept is introduced in which the image and templates are

normalized beforehand the correlation operation. The formal definition of NCC

is given in Eqn. 2.35:

NCC(f, h) :=

∑M−1
m=0

∑N−1
n=0 (f(m,n)− µf )(h(x+m, y + n)− µh)

σfσh
. (2.35)

Although, normalized cross correlation deals with illumination changes better,

it is not sufficient for adaptation to appearance changes. More clearly, usage of

the intensity values of the image and template may not be sufficient in complex

scenes. Moreover, usage of simple template matching techniques brings also the

disadvantage which is stated in [80]: while their response to a perfect example

of the template pattern will always be high, the relative strength of responses

to alternative patterns can be unpredictable. To overcome these problems, the

Correlation Filters (CF) are proposed. The basic idea behind this technique

is to learn filters that optimally map input images to their ideal output. The

ideal output is a peak (or a value of one) at position of the target and zeroes

for all other locations in the image (Dirac Delta Function). By training filters

in this way, they do not only produce high responses for targets but also learn

to suppress the response to common background distracters. To be clearer, cor-

relation filters are designed to identify patterns that are consistent through the

video sequence. Hence, they are more tolerant of common appearance changes

than simple template matching and produce more prominent peaks in the target

locations.

An exemplary illustration is given in Fig. 2.10. Fig. 2.10(a) shows the image,

template and their correlation result. When the target (car) is slightly rotated,

the correlation output of the perturbed image cannot produce as sharp peak

as it used to be. On the other hand, usage of a correlation filter extracts a

template shown in Fig. 2.10(c), different from the appearance of the targe,

which is capable of producing a sharp correlation output.
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Figure 2.10: Resultant Correlation Outputs of (a) Image is same with Template;
(b) Image is Slightly Rotated, (c) Template obtained via CF

2.2.2.2 Template Matching with Correlation Filters

Correlation filters have been investigated for three decades due to their attrac-

tive properties (shift invariance, robustness to graceful degradation, distortion

tolerance) and employed in many applications including face localization [80],

pedestrian localization [81], object localization and tracking [1], biometric recog-

nition [82–84], and vehicle recognition [85] in the literature.

In the correlation filter approach for tracking, a carefully designed template (re-

ferred as filter), h(x, y), and query image, f(x, y), is cross-correlated. The output

of the cross-correlation, g(x, y), is searched for the most prominent peak by using

a relevant metric, such as peak-to-sidelobe ratio (PSR) or peak-to-correlation

energy (PCE), which is designed to indicate probability of the presence of the

target. More prominent the peak, the value of the calculated metric is higher

which means that the probability of the existence of the target is higher at the

indicated location. On contrary, when target loses its visibility in the scene, no

significant peak appears in the correlation output which results in lower values

for the calculated track match quality metric. To be clearer, if the calculated

match quality is above a certain threshold, the location of the prominent peak

reveals the location of the target in the query image. If not, according to value

of the quality metric the target is stated to be occluded or lost. For both effi-

ciency and ease in calculation, the correlation operation is achieved in frequency
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domain as in Eqn. 2.36:

G(u, v) = F (u, v)H∗(u, v) , (2.36)

where * denotes the conjugate, and G(u, v), F (u, v) and H(u, v) are the 2-D

discrete Fourier transforms (FFTs) of the correlation output, query image, and

the filter, respectively. The flow chart of tracking with correlation filter is illus-

trated in Fig. 2.11 together with exemplary correlation outputs for match/no

match cases.

Figure 2.11: Flow Diagram of Simplest Template Matching with Correlation
Filters

2.2.2.3 Related Work on Correlation Filters

As it is mentioned before, correlation filters are primarily designed to produce

sharp peak at the target location while suppressing responses to zero for all other

locations in the image. This actually means a search for a complete control of the

shape of cross-correlation output. In order to achieve this goal, many correlation

filter designs [1, 80, 86] applies Mean Square Error (MSE) between desired and

calculated correlation outputs. In simplest form, cost function can be defined as

in Eqn. 2.37.

arg min
h
‖f ⊗ h− g‖22 . (2.37)

Actually Eqn. 2.37 is the definition of the simplest correlation filter which

is known as the Matched Filter. Although the matched filter is optimal for

detecting a known image in the presence of additive white Gaussian noise, its

detection performance decreases drastically even with small distortions in the

object appearance. Therefore, usage of match filter requires samples for every

34



possible distortion of the object would possibly encounter making their usage

impractical.

In 1980, Hester and Casasent introduced the design to take advantage of mul-

tiple training images called the Equal Correlation Peak Synthetic Discriminant

Function (ECPSDF) filter [87] which is also known as the conventional SDF. To

capture possible distortions the filters are designed to be weighted average of

training images where weights are selected in a manner to achieve peaks filter

response at match locations. Although, this filter is not used in practice due to

the produced side-lobs in the correlation output, it was an initiative for the new

strategies in correlation filters. The Minimum Variance Synthetic Discriminant

Function (MVSDF) filter [88] was introduced in 1986 which is designed to min-

imize the output noise variance in the correlation plane. In practice, this filter

is not used commonly due to same complication with ECPSDF.

The Minimum Average Correlation Energy (MACE) filter [89] was introduced

in 1987 and it was a great breakthrough since it is the first filter that is de-

signed to control not only the peak value of the correlation plane but the shape

of whole plane. To be more precise, this filter is designed to minimize the

average correlation energy (ACE) resulting in sharp peaks with minimum side-

lobes. Although this filter is very sensitive to additive high frequency noise, its

variations (e.g., Optimal Tradeoff Synthetic Discriminant Function (OTSDF)

filter [90], Gaussian MACE [91], Minimum Squared Error Synthetic Discrimi-

nant Function (MSESDF) [92], and the Minimum Noise and Correlation Energy

(MINACE) [93]) achieves better performance in presence of noise. The impor-

tance of MSESDF is its ability for allowing users to specify desired correlation

output.

All of the previously mentioned filters belong to a subset of correlation filters

called constraint correlation filters. The reason why they are named as constraint

is in addition to minimizing the MSE between desired and calculated correlation

outputs, they also constrain the correlation value at the target location. To be
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more formal constrained correlation filters can be expressed as:

arg min
h
‖f ⊗ h− g‖22;

s.t. hTf = u
(2.38)

where u denotes the value of constraint at target location. In latter works,

this kind of hard constraint has found to be unnecessary and sometimes even

deteriorating for generation of robust filters since it results in over-fitting to

data. Therefore, removing the correlation peak constraint was a great break-

through in correlation filters history. This new generation of filters is named as

unconstrained correlation filters. The first examples of these filters are the Max-

imum Average Correlation Height (MACH) filter [86], the Unconstrained MACE

(UMACE) filter [86], and the Unconstrained MSESDF (UMSESDF) filter [86].

More recent designs include the Average of Synthetic Exact Filter (ASEF) [80]

and the Minimum Output Sum of Squared Error (MOSSE) filter [1].

Non-linear types of correlation filters also exist in the literature. Typically they

exhibit superior performance than linear filters in exchange of high computa-

tional complexity. Some typical examples are the Polynomial Correlation Filters

(PCFs) [94] and the Quadratic Correlation Filter (QCF) [95].

Correlation Filters

Constrained
OTSDF [96]
MSESDF [92]
MINACE [93]
MACE [89]
MVSDF [88]
ECPSDF [87]
GMACE [91]

Over-constrained
MACE-MRH [97]

OTCHF [98]

Unconstrained
MOSSE [1]
ASEF [80]

UMACE [86]
MACH [86]

UMSESDF [86]
UOTSDF [99]

Nonlinear
PCF [94]
QCF [95]

Figure 2.12: A Mind Map Consisting Various Correlation Filters Proposed in
the Literature

The various types of correlation filters from the literature are gathered together

in the mind map and illustrated in Fig. 2.12. In the following section each class

of correlation filters is explained in brief. Since the unconstrained correlation
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filters are more commonly used for target localization due to their superior

performance, some recent examples of this class will be further analyzed.

2.2.2.3.1 Constrained Correlation Filters

In this class of filters, constraints on correlation output value is specified for

every training image. The constraint is defined on desired output of filter ui

such that for positive training samples ui=1 and for negative samples ui=0. For

a set of training image xi, and a filter h the corresponding constraint for a single

training image is given in Eqn. 2.39

ui = hTfi . (2.39)

Note that usage of N training images results in N constraints which are typically

much less than the dimensionality of the filter (number pixels in the filter).

Therefore, there exist multiple filters that can satisfy these constraints. To

produce single filter, different additional constraints are imposed by different

algorithms. The general form of a constrained linear filter h is given in Eqn.

2.40

h = T−1F (F TT−1T )
−1
u , (2.40)

where F is a matrix whose N columns contain frequency domain representations

of N training images in vectorized form; T is a diagonal preprocessor matrix;

and u is an Nx1 vector of the specified correlation output values for each training

image as explained previously.

Special cases of preprocessor T lead to different filter designs. For example,

in MVSDF design suppression of noise frequencies is achieved by defining T=C

where C is a diagonal matrix such that each element of the diagonal corresponds

to the power spectrum of the noise. A special case of MVSDF is ECPSDF in

which noise spectrum is assumed to be white noise; hence C is assigned to

be identity matrix. Another filter type MACE is designed to produce sharp

detectable (prominent) peaks by minimizing the average correlation plane en-

ergy for the training set. Hence MACE takes preprocessor matrix T=D where

D is a diagonal matrix containing average power spectrum of training images

(D= 1
N

∑N
i=1Di). The OTSDF includes a trade-off parameter α that allows user
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to emphasize low output noise variance (ONV) or low average correlation en-

ergy (ACE). Setting α=1 the OTSDF converges to MVSDF whereas setting

α=0 converges to MACE filter. The MINACE filter achieves an alternative

trade of between these two extremes. The summary of the different cases for T

is summarized in Table 2.1

Table2.1: Designed Filter and the Corresponding Value of Preprocessor T

Designed Filter Value of Processor T
ECPSDF [99] I
MVSDF [88] C
MACE [89] D
OTSDF [96] αC+(1- α2)0.5D
MINACE [93] max(αC,(1- α2)0.5D1,...,(1- α2)0.5DN)

The most important drawback of the constrained correlation filters is that they

can over fit the data due to limitations introduced by constraints. Hence their

responses for test data may be different than the training data due to lack of

generalization. For this reason, other type of linear correlation filters (over-

constrained and unconstrained) are introduced which are more appropriate for

target tracking purposes. Hence, this class of filter is not considered as an option

for our system.

2.2.2.3.2 Over-constrained Correlation Filters

As the name implies, this type of filters have fewer degrees of freedom param-

eters (i.e., the number of pixels in the filter) than the number of constraints

(i.e., the number of input images) as opposed to constrained correlation filters.

Introducing that many constraints results in filters to lie in a smaller subspace

than spanned by training images. Although restricting filters in a smaller sub-

space seems unreasonable, [100,101] proved that this approach would yield better

generalization than the constrained filters.

The generalization of the filters yields better performance in the cases of certain

type of distortions including in-plane rotation and scale changes. These types

of distortions can be represented by some harmonic functions, i.e. for in-plane

rotation: circular harmonic functions (CHF [102]) and for scale changes: Mellin

radial harmonic functions (MRHF [103]). These harmonic functions are used
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for filter design; and the optimal trade-off circular harmonic function (OTCHF

[98]) filters, and minimum average- correlation-energy Mellin radial harmonic

(MACE-MRH [97]) are introduced.

The OTCHF is introduced to design in-plane rotation invariant filters, giving

a constant output for rotated versions of the filters. To achieve this goal, a

response function within the interval [0, 2π] in which each value in the range

corresponds to the desired correlation peak on the training image at that angle

needs to be designed by the user. A typical response function is equal to one

over some angular interval and zero everywhere else, which results in a rotation-

tolerant filter with respect to the corresponding interval. The OTCHF filter

design approximates this response function while minimizing the ACE criterion.

The methodology of the MACH-MRH filter design is similar to that of the

OTCHF design, except that scale is considered rather than rotation. More

detailed explanation about MACH-MRH can be found in [97].

In [104], the computational complexity of this class of filters are stated to be

significantly more than unconstrained correlations filters which makes uncon-

strained filters more preferable for our application.

2.2.2.3.3 Unconstrained Correlation Filters

By relaxing or removing the hard constraints of constraint correlation filters

more generalized filters, namely unconstrained correlation filters, are proposed.

The MACH filter [86] is the first unconstrained correlation filter which achieves

distortion tolerance by maximizing the similarity of the shapes of true class

correlation outputs over training image. This maximization problem is solved by

minimizing a dissimilarity measure known as average similarity measure (ASM).

While maximizing similarity, the filter also minimizes the ACE of false class

images and maximizes the average correlation peak height for true class images.

For formal definition of MACH filter ,let fi i=1,...,Nx denote the vectorized

frequency-domain true-class training images; Dx and Dy denote diagonal ma-

trices containing the average power spectra of the true and false classes; and m
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is average training image. Then, formal definition of MACH filter becomes:

h =
[
αDy + (1− α2)

0.5
Sx

]−1

m , (2.41)

Sx =
1

Nx

Nx∑
i=1

[Fi −M ] [Fi −M ]∗ , (2.42)

where Fi and M are diagonal matrices containing the vectors fi and m, respec-

tively, along their diagonals.

Another filter example of this class is UMACE filter. UMACE only requires a

high average response to the training examples which is defined as:

h = D
′−1m , (2.43)

D
′
= (Dα + C

√
(1− α2))

−1
. (2.44)

Here the filter for α = 0 becomes the average training images and for α = 1 has

similarities to MACE in that it produces sharp correlation peaks. An illustration

for UMACE filter training is given. First the provided training samples are

averaged (avoids over fitting to data) and then the frequencies are reweighted

in order to produce sharp peaks.

Figure 2.13: UMACE Filter Training (retrieved from [105])

The more recent examples of unconstraint correlation filters are introduced in [1,

80]. These filters are referred as optimized correlation output filters. Since their
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successes are also reported in target tracking, further explanations on optimized

correlation output filters will be given in the following section.

Optimized Correlation Output Filters: The optimized correlation

output filters follows a different pattern in training phase of the filter. Unlike

prior training methods that recombine templates, OCOFs consider image to im-

age mapping that is performed during correlation with synthetic outputs and

inverts this mapping to produce ideal filters. In this section three recent exam-

ples of OCOF (exact filters, ASEF, MOSSE) and their update mechanisms will

be explained.

1. Exact Filters: The main goal of the exact filter is to obtain the filter

that can map the input image to the ideal (desired) output by using only one

input image. To fulfill this requirement, a training phase is required. Filters

are trained from synthetically generated desired output for mapping training

samples to the desired output where desired output actually represents the like-

lihood of the existence of the target. For this purpose, the desired output gi is

assumed to be sum of Gaussians which are centered at target positions as seen

in Eqn. 2.45:

gi =
∑

j=each target location

exp

(
(x− xj)2 + (y − yj)2

σ2

)
, (2.45)

where (xj, yj) is the target location and σ specifies the radius of the peak. One

should note that in the former versions of correlation filters as [88,89,96], delta

Dirac function, zero/one (target/non-target) is used. However, in latter works

[86] it is found restrictive yielding less susceptibility to noise. To achieve trade-off

between robustness to noise and spatial resolution the variance of the Gaussian

can be adjusted.

The required exact filter is achieved by solving Eqn. 2.46 where the subscript

i stands for to indicate association of particular desired output (gi), exact filter

(hi) and training image (fi). Note that the ∗ symbol represents convolution

operation.

gi = hi ∗ fi . (2.46)

Solving Eqn. 2.46 in spatial domain requires lots of calculation. However, in

Fourier domain correlation is nothing but an element-wise multiplication, Eqn.
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2.47, which means solution for H requires only element-wise division, which is

stated as in [106], as in Eqn. 2.48

Gi = H∗i � Fi , (2.47)

H∗i =
Gi

Fi
. (2.48)

H∗i is called as exact filter since, it achieves exact transformation from fi to gi.

To avoided the complex division, the Eqn. 2.48 is reinterpreted as Eqn. 2.49

where ε is a small constant to prevent zero division.

H∗i =
Gi � F ∗i

Fi � F ∗i + ε
. (2.49)

In Eqn. 2.49, not only denominator is turned to be a real valued function but

also both denominator and nominator becomes functions having physical mean-

ings. To be clearer, the nominator becomes correlation of desired output with

image, and denominator becomes the energy spectrum of the image.

2. Average of Synthetic Exact Filters (ASEF): Although the idea behind

the exact filter is well-reasoned and achieve better performance than typical fil-

ters that are created by cropping templates out of input images, the reports

indicates their susceptibility to noise [88, 96]. This is mainly because they ap-

ply exact transformation which results in over fitting to the data. To avoid

this complication the idea of averaging the multiple exact filters is provided in

ASEF. The averaging results in emphasizing of the consistent features across the

image sequence and wipes out the inconsistent features. This idea is actually

barrowed from the aggregation theory [107] which suggests that performance

can be greatly improved by averaging the outputs of weak classifiers. However;

instead of averaging the correlation outputs [80] averaged the filters themselves

since filtering is a linear operation. The averaging is achieved in Fourier domain

as shown in Eqn. 2.50

H∗ =
1

N

N∑
i=1

Gi � F ∗i
Fi � F ∗i + ε

. (2.50)

The training procedure of the ASEF is illustrated in Fig. 2.14 which is taken

from [80]. In this example the filter is trained to detect left eye in the image

which can be seen by looking at the synthetic output generated which produces
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peak for left eyes. After averaging of 7500 exact filter, the resultant ASEF filter

is obtained. Actually the disadvantage of the ASEF filter also lies in the Fig.

2.14. ASEF requires many training samples to converge which. Hence, its low

convergence rate would bring the disadvantage of not responding appearance

changes quickly.

Figure 2.14: ASEF Training procedure and Obtained Filter by Usage of 7500
Exact Filters (retrieved from [80])

3. Minimizing the Output of Sum of Squared Error (MOSSE): The

notion behind the MOSSE is similar to ASEF, however it requires a small number

of training images to converge which makes MOSSE [1] an outstanding option

for our application. In MOSSE, the filter is calculated by minimizing the output

sum of squared error between calculated and desired outputs as in Eqn. 2.51

H∗ = min
H∗

∑
i

|Fi �H∗ −Gi|2 . (2.51)

Minimization of H in Eqn. 2.51 can be considered as minimization of its each

element independently, hence Eqn. 2.51 can be written as in Eqn. 2.52 where

w and v are index frequencies.

Hwv = min
Hwv

∑
i

|FiwvH∗wv −Giwv|2 . (2.52)
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Solving minimization problem actually means achieving the optimum point by

taking derivative of the Eqn. 2.52 and setting it to zero and solving for variable

of interest. However, this function is a real valued function of a complex variable

and should be solved carefully. According to [108], first the Eqn. 2.52 should

be rewritten in terms of both Hwv
* and Hwv and then the partial derivative w.r.t

Hwv
* should be set to equal zero while treating both Hwv

* and Hwv independently.

0 =
∂

∂H∗wv

∑
i

(H∗wvFiwv −Giwv)(H
∗
wvFiwv −Giwv)

∗ , (2.53)

0 =
∂

∂H∗
wv

∑
i

FiwvF
∗
iwvHwvH

∗
wv − FiwvG

∗
iwvH

∗
wv − F ∗

iwvGiwvHwv +GiwvG
∗
iwv , (2.54)

0 =
∑
i

[FiwvF
∗
iwvHwv − FiwvG∗iwv] , (2.55)

Hwv =

∑
i FiwvG

∗
iwv∑

i FiwvF
∗
iwv

, (2.56)

Finally, solution of the optimization problem, leads to the Eqn. 2.57

H∗ =

∑
iG
∗
i � Fi∑

i Fi � F ∗i + ε
, (2.57)

where ε is a small constant to prevent zero division. By looking at the Eqn.

2.57, it is seen that MOSSE is the generalized version of UMACE. Remember

that UMACE is defined as h= D’-1m where m is a vector containing FFT of

the average of the centered and cropped training images and D’ is a diagonal

matrix whose inverse is nothing but element wise division. Hence UMACE can

be written as:

H∗ =

∑
i F
∗
i∑

i Fi � F ∗i + ε
. (2.58)

In other words, Eqn. 2.58 is nothing but a specific version of Eqn. 2.57 in which

gi is defined as delta dirac function centered at image center. Hence, it can be

simply stated that power of MOSSE comes from its ability to train on images

with multiple uncentered images in which a certain uncertainty introduced by

usage of Gaussian instead of deterministic delta dirac function. The summary

of filter equations is given in Table 2.2.
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Table2.2: Designed Filter and their mathematical representations

Designed Filter Mathematical Representation

UMACE [86] H*=
∑
i F
∗
i∑

i Fi�F ∗i +ε

Exact Filter [80] Hi
*= Gi�F ∗i

Fi�F ∗i +ε

ASEF [80] H*= 1
N

∑N
i=1

Gi�F ∗i
Fi�F ∗i +ε

MOSSE [1] H*=
∑
iGi�F ∗i∑
i Fi�F ∗i +ε

2.2.2.3.4 Nonlinear Correlation Filters

Another type of CFs is non-linear CFs. Typically they exhibit superior perfor-

mance but require much more computational power. The first type of this class

of filter, quadratic correlation filters (QCFs), is characterized by solving for a

quadratic discriminant function in d-dimensional space, where d is the number

of pixels in the image. The second type, polynomial correlation filters (PCFs),

are sets of linear filters applied to multichannel input images, whose outputs are

subsequently summed to form a single output. Both the QCF and PCF designs

solve for the set of linear filters jointly in order to optimize performance criteria.

Due their high computational complexity [109] the nonlinear correlation filters

are not our interest.

2.2.2.4 Correlation Similarity Metrics

As mentioned before, the output of the cross-correlation result of filter and test

image implies the existence of target. Actually, this metric represents the quality

of the match and used for deciding between target states as tracked or lost. The

aim is to identify prominent peaks which is not only the signature of a good

match but also reveals the location of the target. More prominent the peak, the

value of the correlation similarity metric should be higher. Hence, match/no

match decision is made by comparing the peak sharpness (calculated metric)

with a certain threshold (τtrack).

This section is devoted to explanation of two correlation similarity metrics form
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the literature namely peak to correlation energy (PCE) and peak to sidelobe

ratio (PSR).

2.2.2.4.1 Peak to Correlation Energy (PCE)

The PCE is introduced in [110] and designed to detect correlation peak and

computed as in the Eqn. 2.59

PCE =
gmax√∑

m,n |g(m,n)|2 − |gmax|2
, (2.59)

where gmax is the maximum value of the correlation plane. PCE is a good

metric to use when there is one valid target in the image; however, when there is

more than one target or significant illumination variation PSR becomes a better

option.

2.2.2.4.2 Peak to Sidelobe Ratio (PSR)

The PSR [83] is the most commonly used correlation similarity metric and de-

fined as:

PSR =
peak − µ

σ
, (2.60)

where µ and σ represents mean and standard deviation values of a small window

centered at the correlation peak. Usually, a small subwindow is excluded from

this calculation to measure sharpness of peak with respect to its surrounding.

2.2.3 Silhouette Tracking

Objects may have complex shapes, i.e., hands, head etc., that cannot be well

described by simple geometric shapes. For this kind of objects, silhouette based

methods provide an accurate shape description. The goal of a silhouette-based

object tracker is to find the object region in each frame by means of an object

model generated using the previous frames. Given the object models, silhouettes

are tracked by either shape matching [111,112] or contour evolution [113]. Both

of these methods can essentially be considered as object segmentation applied

in the temporal domain using the priors generated from the previous frames.
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Silhouette and contour representations are suitable for tracking complex non-

rigid shapes; hence it is over complex and does not appropriate for our goals.

2.3 Visual Saliency

For human vision system identifying important regions/events s and focusing

attention on important part is a routine task which is accomplished rapidly

and accurately. It is widely accepted that this unconscious human visual at-

tention is guided by the saliency concept. According to researches conducted

by multiple disciplines including psychology, neurobiology, and computer vision;

saliency originates from visual uniqueness, unpredictability, rarity or surprise.

More formally definition of saliency is made by L. Itti as the distinct subjective

perceptual quality which makes some items in the world stand out from their

neighbors and immediately grab our attention. In this manner, Fig. 2.15 stands

as a proof that visual attention is directly attracted to distinctive subjects.

Figure 2.15: Uniqueness in Color or Direction can Effortlessly and Immediately
Attracts the Attention of Human Visual System

Although humans can effortlessly detect visual distinctiveness by judging the

previously mentioned attributes, computationally detection of such attributes

remains a challenging goal. The desired properties of the saliency detectors in

computer vision are listed in [114] as in below:

• Emphasize salient objects of all sizes

• Uniformly highlight whole salient regions
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• Establish well-defined boundaries of salient objects

• Disregard high frequencies arising from texture, noise, and blocking arti-

facts, if any

• Compute saliency efficiently

• Output full resolution saliency maps

• Use minimal or no free parameters

To achieve these tasks, early works of Treisman and Glade [115]; Koch and Ull-

man [116]; and subsequent attention theories proposed by Itti, Wolfe and others

proposed two different approaches namely, top-down and bottom-up saliency.

While top-down [117] signals are derived from tasks demands (e.g., searching

a toy bin for a red dragon); bottom-up signals are the core of visual saliency

and they are stimulus driven. Actually, the bottom-up saliency is nothing but

the declaration of distinctiveness of an image location from its neighbor. We

focus on bottom-up approaches in the scope of this thesis; since saliency is used

parallel with tracking and tracking does not reveal any contextual information.

Since saliency is defined according to its neighboring, and due to absence of

high level knowledge on the neighboring; all bottom-up saliency methods rely

on assumption on either objects or the neighboring (background). In this man-

ner, the most common assumption is the contrast assumption stating that the

salient object should have high contrast within a certain context. This very

intuitive assumption is used nearly all saliency detection methods with dif-

ferent context definitions. According to context definition where the contrast

is calculated these methods can be categorized as local methods [118–122] or

global methods [117, 123–126]. Local methods uses pixel/patch in the local

neighborhood and uses contrast measures including edge contrast [120], center-

surround discriminative power [121], center-surround differences [118, 120, 127],

curvature [122] and self-information [119]. The algorithm proposed by Itti [118]

is also one of the fundamental frameworks in which multiple features are com-

bined to obtain the saliency map. The general flow of the algorithm is explained

in the Figure 16.
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Figure 2.16: General overview of the method [118] (Source [118])

Rather than using local patches, global methods use the entire image and com-

pare each pixel/patch with all others in the image and calculate the average dis-

similarity [125, 126]. Based on contrast difference assumption; [125] uses graph

representation while [126] uses the histogram of the image to reveal dissimi-

larity. Although contrast assumption, which is used in previously mentioned

methodologies, is a strong assumption; it still has limitations especially in high-

lighting the interior parts of salient object. Therefore, other strategies also

include usage of different domains as frequency domain for dissimilarity detec-

tion [123, 124]. In frequency-tuned saliency detection [124], salient objects are

considered to have very low frequencies in the original image. However, to have

well defined boundaries, some high frequencies are also desired to be included in

the salient object. Hence, band pass filters are designed with cut-off frequencies

excluding the noise and texture frequencies but including the object boundaries.

In [123] (spectral residual approach) salient objects are detected by searching

for discrepancies in the frequency spectrums. To detect the discrepancies in the

spectrum, log spectrum curves are used and residual between log spectrum and

averaged log spectrum is obtained. Then, the residual frequencies are marked as

salient regions. Another solution for coping with the inadequacy of the contrast

assumption is to support the algorithms with other assumptions. In [128], the

problem is tackled from different perspective and two other assumptions are pro-
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Figure 2.17: Spectral Residuals are used in [123] for Salient Region Detection
(Source [123])

posed for the background rather than the salient object. The first assumption

comes from the fundamental principle of the photography which is the important

object is not generally cropped along the view frame. The second prior comes

from the general appearance characteristics of the backgrounds in images, that

is, background regions are usually large and homogeneous.

According to reported results in [128], these two additive assumptions on back-

ground significantly increase the performance as illustrated in Fig. 2.18. More-

over, the report also states that proves the effective calculation of these addi-

tional assumptions. Actually, according to reported results in [128], GS_GD

[128] achieves the superior performance than many algorithms including Itti’s

method (IT) [118]; frequency based approaches frequency-tuned approach (FT)

[124] and spectral residual approach (SR) [123]; graph based visual saliency

(GB) [125]; histogram based contrast (HC) and region based contrast (RC) [126];

and context aware saliency (CA) [117]. The time performances of these algo-

rithms are given in Table 2.3 which is retrieved from [128].

For our application all three assumptions are easy to fulfill; since we know that

the salient object exist in the track window and we also have a rough estimate

on background pixels from the moving object detector output. Therefore, in

the proposed system geodesic saliency is preferred to be used to achieve target
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Figure 2.18: Usage of Background Priors Improved the Performance (Retrieved
from [128])

silhouette which is actually the salient object in the track window.

Table2.3: Time Performances (in milliseconds) of Different Saliency Detection
Algorithms (Retrieved from [128])

GS_GD IT [118] SR [123] GB [125] FT [124] CA [117] HC [126] RC [126]
2.0 483 34 1557 8.5 59327 10.1 134.5
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CHAPTER 3

PROPOSED SOLUTION

This chapter is devoted to the presentation of the proposed work which is

designed to handle low level tasks (target detection and tracking) for an au-

tonomous video surveillance system. It is better to emphasize that the scope of

this work is limited to low level tasks and the usage of the extracted informa-

tion in higher level tasks such as activity recognition, object identification is not

included in this work. Since full autonomy is desired, the targets of interests

should be detected by the system without any user interaction. For surveillance

applications with stationary cameras, all moving objects are considered as tar-

gets of interest. Therefore, the first step of such a system should be moving

object detection. The moving object detector produces a mask indicating lo-

cations of all the moving pixels which is benefited for the track initialization.

Thus, the main objective of the moving object detection system is to ensure

track initialization for each object.

Once the track is initiated, the goal becomes maintaining the track until the

target leaves the scene. To accomplish this goal, literature [70,71] offers 3 differ-

ent classes of solutions, namely: point tracking, kernel tracking and silhouette

tracking. In point tracking methods, tracking is achieved by revealing corre-

spondence of the measurement points in consecutive frames. The measurements

are generally obtained from an external object detection mechanism as moving

object detector. It should be noted that the point correspondence problem be-

comes very complicated in the presence of occlusions, entries and exits of objects

which results in varying number of data points. Moreover, this type of methods
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also benefit from assumptions on target motion model and their performance

decreases drastically when target motion undergoes random perturbations, i.e.

maneuvering, dissatisfying the model assumed for target. Since occurrence of

the mentioned conditions is highly probable for our problem, point tracking is

not preferred. Another group of methodology is the silhouette tracking which is

designed for tracking of non-rigid shapes; hence they are over complex and not

appropriate for our goals. The last remaining category is kernel tracking which

is divided into two classes as multi-view based and template based. Multi-

view methods require offline training of target appearance which limits targets

into specific object types and requires a lot of effort on training. Therefore,

we preferred template based kernel tracking methods. Tracking using template

matching is very commonly used in the literature due to their relative simplicity

which results in low computational cost. However, simple template matching is

susceptible of appearance variations due to pose changes or alteration in light-

ening conditions of the scene. Moreover, it does not provide full control of the

correlation plane. More clearly, while their response to a perfect example of

the template pattern will always be high, the relative strength of responses to

alternative patterns can be unpredictable. To overcome all these problems, the

Correlation Filters (CF) are proposed which do not count on the similarity of

template images but instead learn patterns in the pixels produced by targets that

are consistent even under varying imaging conditions. Moreover, they are also

capable of maintaining tracking in the presence of similar objects by suppress-

ing responses to distractive patterns. Benefiting from these two properties, they

are more tolerant of common appearance changes than conventional template

matching and produce more prominent peaks in the target locations.

Due to attractive properties of correlation filters most recent examples are inves-

tigated and the proposed solution is based on one of the most recent examples of

correlation filters, MOSSE. Although MOSSE inherently has the ability of up-

dating filter, it is not capable of responding to both abrupt and gradual changes

of the target appearance. To overcome this problem, a multiple model visual

target tracking methodology is proposed. Moreover, a possible remedy for a

general disadvantage of correlation filters is also suggested. In general, correla-
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tion filter uses static target widow sizes to utilize FFT and cross-correlation in

successive frames. This actually results in tracking without indicating the ac-

tual sizes of the target, minimum sized bounding box encapsulating the target,

which is valuable information for higher level tasks in surveillance applications.

Moreover, not knowing the sizes can also decrease the tracker performance in

the presence of scale changes; since some of the track parameters of the pro-

posed tracker depend on the size estimation of the target. To fulfill this goal, a

mechanism is proposed for target silhouette extraction which is based on learn-

ing of the geodesic saliency map of the track window throughout the tracking

with an adaptive learning rate. Although target silhouette is only used for min-

imum sized target bounding box generation, this significant information can be

used for higher level tasks as classification. The details of the procedure will be

explained in target bounding box generation Section 3.2.2.

Considering all these, a framework is proposed as a solution whose overview is

illustrated in Fig. 3.1. The remaining of the chapter is organized as follows.

Figure 3.1: System Overview

The moving object detection is introduced in Section 3.1 together with track

initialization. Section 3.2 covers the proposed tracking algorithm and the target

model extraction.
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3.1 Moving Object Detection

Identifying moving objects is an important task for monitoring systems; since the

possible targets of interests are disclosed. In the proposed solution, generated

moving object mask is used for two purposes: track initialization and target

bounding box generation. For track initialization, each connected component

in the moving object mask is tried to be identified whether it is being tracked

or not. This goal is simply achieved by checking each track center for being

within the borders of any connected component of the moving object mask. If

a connected component does not possess a track window, track initialization is

achieved by considering its size information. It should be noted that an exact

boundary match for moving objects is not required by the track initialization

system; since track window size is selected from possible discrete size levels as

16, 32, 64, 128, etc. Since this size estimation is not very precise and may

misguide the selection of track parameters, they are tuned during the tracking

with the collaborative work of moving object detector and target bounding box

generation procedure. The target bounding box generation step is cued by

the moving object detector to obtain background priors required by [128] and

produces feedback information about target shape.

To sum up, what is expected from moving object detector is rough approximation

of target size and location for every possible target of interest. To achieve the

goal, SAGMM introduced in [24] is utilized due to three significant advantages:

1. If object is allowed to be a part of background, it does not destroy the

existing background model. The original background values remain in the

GMM if the object remains static for long enough, and its weight becomes

larger than cf . If the object then moves, the distribution describing the

previous background still exists with the same estimated mean and vari-

ance.

2. Since each mode has its own learning rate the model can quickly achieve

good estimation of mean and variance. To be more precise if background

changes quickly newly introduced modes with smaller cm will increase
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learning rate βm. Otherwise, if the background is stable, as more data

samples are included in its parameter estimation resulting in high cm,

which leads βm to converge the basic learning rate α.

3. Global illumination compensation makes the algorithm more robust to

sudden illumination changes.

Figure 3.2: Flowchart of the Utilized Moving Object Detection

3.1.1 Foreground Extraction Module

Although SAGMM has significant advantages, it also shares the common draw-

back of statistical background subtraction methods, which is susceptibility to

sudden illumination changes. To minimize the effect of illumination changes,

the background model generation steps begin with global illumination factor

(g) calculation. To achieve the goal, the Median of Quotient (MofQ) method

is utilized. Actually, this procedure is intertwined with SAGMM background

model learning since MofQ requires not only the usage of current (ic) and but

the reference image (ir) pixels from the background model. The global illumina-

tion factor is calculated as in Eqn. 3.1 where S is the predefined sample pixels

set.

g = medians∈S

(
ic,s
ir,s

)
. (3.1)

Then, the foreground extraction continues with the core element, SAGMM back-

ground model learning. The calculated global illumination factor is used for
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image normalization and integrated in the the SAGMM while calculating the

difference as indicated below:

δm = g · x(t) − µm , (3.2)

where x(t) = [x1,x2,x3]T, µ(t) = [µ1,µ2,µ3]T for a 3-channel image.

After the learning of the background model each pixel is classified as foreground

or background with a simple rule: if the weight of the Gaussian is greater than

(1- cf ) and the distance is smaller than Tb∗σ2 (Tb is a scalar), pixel is considered

to be background.

3.1.2 Post-Processing

Since most of moving object detection algorithms produce foreground masks

contaminated with some scattered foreground pixels, general tendency is to ben-

efit from some post-processing techniques. In this work, to achieve unstained

foreground mask and complete the missing parts of the objects median filtering

operation is followed by morphological closing and filling operations for the holes

of the object mask.

Although binary operations are important, the post-processing part is domi-

nated by shadow /highlight detection; since for many moving object detection

algorithms, shadows tend to be classified as part of moving object. Due to cast

shadows, several targets may be merged together which yields track initializa-

tion failure. Moreover, since estimation of the target size is used to determine

track window size, processing time is also affected. Therefore, shadow removal

is an important post processing step for moving object detectors.

Removing shadow pixels should be achieved carefully since misdetection of shadow

pixels can cause a single target blob to be split up into multiple blobs which

results in multiple track initializations for a single target. Based on the com-

parison results reported in shadow detection survey [35], large region texture

based shadow detection algorithm [64] is preferred to eliminate shadows and

highlights. The first step of this algorithm is shadow/highlight candidate gener-

ation which is answered by the corporation of the SAGMM, global illumination
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factor calculation and Horprasert’s algorithm, [69]. Horprasert’s algorithm, [69],

benefits from the assumption that in the presence of shadow, the intensities of

the shadowed pixels decreases by retaining their chromacity. This assumption

is referred as color consistency and measured with brightness distortion (BD)

and chromacity distortion (CD) metrics. The formal definition of the utilized

shadow/highlight candidate generation is given below:

BD(x, y) =
gI(x, y)E(x, y)

E2(x, y)
, (3.3)

CD(x, y) =

√
gI(x, y)−BD(x, y)E(x, y)

σ2(x, y)
, (3.4)

where I(x, y) = [IR, IG, IB] represents the foreground pixels from current frame

and E(x, y) = [µR, µG, µB] stands for the pixel value of the background model.

By imposing thresholds over BD and CD, foreground pixels are classified as

shadow or highlight as in Eqn. 3.5:highlight, CD < τCD and BD > τB1

shadow, CD < τCD and τBl < BD < 1
(3.5)

Following steps of the large region texture based shadow detection algorithm [64]

is explained in detail in the next section.

Large Region (LR) Texture Based Shadow/Highlight Detection

As is mentioned previously, the first step of LR texture based method is to

achieve shadow/ highlight candidates. The candidate pixels are generated by

using the previously mentioned method. This method is used for only candidate

generation (not for shadow detection); since the performance is highly depends

on selection of proper thresholds which can be tricky. If the thresholds are

selected too restrictive (high), it may fail to mark some shadow or highlight pix-

els. However, if these thresholds are kept low, object pixels are also marked as

shadow/highlight. In candidate detection, misclassification does not constitute a

problem since pixels belonging to foreground is expected to be eliminated when

texture features are considered. However, if algorithm fails to detect shadow
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candidates, these pixels are not processed further and will be classified as ob-

ject which is not desired. Therefore, nonrestrictive (low) thresholds are used to

prevent negative imposes on the upper bound of the detection accuracy. After

generation of candidate mask, connected components are extracted. This la-

beling is actually important since it has the advantage of not breaking textures

which results in better discrimination. Then for each connected component,

gradient magnitude and gradient directions are calculated at each pixel by using

Eqn.3.6 and Eqn.3.7:

|∇p| =
√
∇2
x +∇2

y , (3.6)

θp = arctan2

(
∇x

∇y

)
, (3.7)

where the ∇y and ∇x are the vertical and horizontal gradients; and arctan2(.)

returns angle in radian between [−π, π] which allows gradient to be treated as

circular variable. The gradient magnitude is calculated to avoid effects of noise

and give weight to pixels near edges that have more robust information about

the textures. Then for each pixel which is above gradient magnitude threshold,

the angular difference between in gradient direction of background model and

the candidate is calculated as in the Eqn. 3.8:

∆θp = arccos

[
∇F
x∇B

x +∇F
y∇B

y(
∇F
x

2 +∇F
y

2) (∇B
x

2 +∇B
y

2)
]
. (3.8)

Gradient direction correlation is calculated based on angular gradient difference

as in the Eqn. 3.9 and Eqn. 3.10:

c =

∑n
p=1H(τa −∆θp)

n
, (3.9)

H(x) =

1, |x| ≤ τa

0, otherwise
(3.10)

where n is the number of the pixels selected in candidate shadow region. The

correlation value c gives the ratio of the pixels having similar texture in the cur-

rent frame and background model. Hence, high correlation value than a certain

threshold (τc) for a region implies the high texture resemblance; the pixel group

is classified as non-object (either shadow or highlight) region and it is removed

from the moving object mask. The consecutive steps of the shadow/highlight

removal method are summarized below:
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1. Candidate generation of shadow/highlight pixels based on chromacity in-

variance,

2. Grouping of candidate pixels into candidate regions,

3. Selection of pixels with significant gradient magnitude for each region,

4. Calculation of gradient direction distance between the selected pixels from

current frame and the pixels corresponding in background model,

5. Calculation of correlation score

6. Classification of pixels as object or non-object via comparison of correla-

tion score with threshold τc

3.2 Multiple Model Visual Target Tracking with Target Size Feed-

back

As well as many computer vision problems, visual target tracking has also trade-

offs between computational complexity and robustness to various conditions

including pose and illumination changes, occlusion, noise etc. To achieve target

tracking with less computational burden, usage of trackers based on correlation

filters is an outstanding option. In this manner, a recent example [1] reveals

an efficient method for visual tracking based on correlation filters. Since the

proposed methodology in this work is based on [1], a brief explanation will be

given.

The method in [1] starts with a pre-processing step which is designed to satisfy

three goals: deal with artifacts produced by torus topological structure of FFT,

put emphasis of pixels near target center for background suppression, and im-

prove robustness for low contrast lightening situations. To achieve these goals,

first the pixels of the template are transformed by using log function and then

they are normalized to have zero mean and unit norm. Finally, the template is

multiplied with a windowing function which gradually reduces pixel values as

drifted from center resulting in emphasis of target pixels.
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After achieving preprocessed input image patch, the patch and filter are cross

correlated. Using the produced correlation output peak to side lobe ratio (PSR),

which indicates quality of the match, is calculated. PSR is computed as in Eqn.

3.11:

PSR =
CorrelationPeak − µ

σ
, (3.11)

where µ and σ represents mean and standard deviation values of a small window

centered at the correlation peak. If PSR is above a certain threshold, target is

stated to be matched and the location of target is indicated with the location of

the peak in the correlation output. If PSR is not high enough, the target is said

to be occluded. If the occlusion case is repeated more than a certain number

of consecutive frames, the target is stated to be lost. The filter update is also

achieved according to PSR and updated if and only if PSR is high enough for

indicating target match.

Actually, the key point of [1] is filter update mechanism which is based on

MOSSE correlation filter and calculated as below:

H∗ =
A

B
, (3.12)

A =
∑
i

Gi � F ∗i , (3.13)

B =
∑
i

Fi � F ∗i + ε , (3.14)

where Fi is the ith,template which is preprocessed and then transformed to the

frequency domain; and the Gi is the frequency domain representation of desired

output which is generated synthetically. An exemplary illustration of Gi is given

in Fig. 3.3 where its distribution, representing target likelihood, and is selected

to be Gaussian. On the left of Fig. 3.3, the visualization of the desired output

can be seen which is generated for a stationary target; whereas on the right, the

desired output is generated for a target which moved to 5 pixels to the west and

south in one frame.

Since the target can undergo appearance changes; such as rotation, scale, pose

and lightening variations; filters should adapt to these changes quickly to main-

tain tracking. Therefore, the filter update starts from filter initialization and
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Figure 3.3: 63x63 Desired Outputs Having Same Size with Target Template for
Stationary Target (Left); a Moving Target whose Displacement is (-5,-5)

achieved in each frame in which PSR is above a certain threshold. The filter

update is achieved by calculating Ai and Bi as in Eqn. 3.15 and Eqn. 3.16

where the symbol η represents the learning rate.

Ai = η(Gi � F ∗i ) + (1− η)Ai−1 , (3.15)

Bi = η(Fi � F ∗i ) + (1− η)Bi−1 . (3.16)

According to update equations, recent frames have more weight while the past

frames are also still in consideration with an exponential decay. Since the filter is

constantly updated, gradual changes of the target appearance is captured which

allows accurate target tracking through long video sequences. The overview of

the tracking system is given in Fig. 3.4.

Obviously, the learning rate is an important parameter. Slower learning rates

decrease probability of tracker to drift from the target and adapt to non-target

objects; however it also limits tracker to respond quick appearance changes or

vice versa. Therefore, single learning rate approach have limits on adaptation

to changes in the scene; hence the performance of the algorithm is confined in

a limited range especially for the cases where changing rate of appearances for

different targets show wide variety.

Another disadvantage of the method suggested in [1] is the fixed object size

assumption, which is shared by all correlation filters by their nature. This as-

sumption actually yields constant track window size which is determined in track

initialization and throughout the track this size is preserved to achieve FFTs and

correlation matches. This would result in tracking the without knowing actual
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Figure 3.4: Overview of the Tracker Algorithm with MOSSE Correlation Filter
(retrieved from [105])

size of the target which is a valuable information for higher level tasks. More-

over, scale change can also degrade track performance since suppression window

size and PSR subwindow size is determined with respect to initial size of the

target.

In this work, a solution is proposed to overcome these problems. First, a mul-

tiple model learning methodology is presented to improve adaptation limits of

the system. Second, a method is introduced for generation of minimum sized

bounding box for the target, Fig. 3.6 red rectangle, and to adjust tracker pa-

rameters according to target size to improve robustness for scale changes. To

achieve target bounding box, the silhouette of the target is extracted via learn-

ing saliency maps in consecutive frames which is illustrated at the bottom right

of the Fig. 3.6. The general overview of the proposed tracking system is given

in Fig. 3.5.

3.2.1 Multiple Model Visual Tracking

Although the main flow of the algorithm in [1] is followed in this thesis, a different

update mechanism is required to respond successfully to both abrupt and gradual

changes of the target appearance. To accomplish the goal, two filter groups are
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Figure 3.5: Flowchart of the Proposed Tracking System

constructed which are capable of interacting with each other as illustrated at

the bottom row of Fig. 3.6 (2nd and 3rd sub-windows). The motivation behind

this methodology is that, the filter group which is designed for adapting to

gradual changes has the priority to be used as the actual response. When the

rapid changes start to occur, the filter group designed to adapt to fast changes

becomes active if the filter group for gradual changes cannot satisfy PSR quality

requirements. In order to maintain the sustainability of the two filter groups, the

filter group for gradual changes starts to be updated with the update parameters

of the filter group for fast changes. Hence, interaction between the multiple filter

groups is used to tolerate the errors of each other in different conditions by using

their corresponding learning rates when one of the filter groups starts to give

low quality tracking results. More formal definition of filter update scheme using

two filters is given below:

F1(t+ 1) = η1F1(t) + (1− η1)Fcurrent , (3.17)

F1(t+ 1) = η2F1(t) + (1− η2)Fcurrent , (3.18)

F2(t+ 1) = η2F2(t) + (1− η2)Fcurrent , (3.19)

where the F1 represents the first filter group responsible for gradual changes and

F2 stands for the second filter group designed for abrupt appearance changes.

The indexes, t and t+1 denote previous and the next filters, respectively. Fcurrent
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represents the currently calculated value of the filter using the current frame.

The symbols η1 and η2 stands for learning rates for gradual and abrupt changes.

Figure 3.6: Elements of the Multiple Model Target Tracking with Target Size
Feedback. Top: Track Window and Target Bounding Box; Bottom: Image
patch, Filter 1, Filter 2, Correlation Output, Target Silhouette

The first filter group takes the preprocessed image as input and used for corre-

lation matching in first row since it has the priority. By using the correlation

output obtained, PSR is calculated. If the calculated PSR is higher than a

predefined threshold, the target location is updated according to the first filter

group and the first filter group is updated with low learning rate whereas the

second filter group is updated with high learning rate as in Eqn. 3.17 and Eqn.

3.19. However, if PSR of the first filter is less than the predefined threshold, the

second filter group generates the target location output by correlation matching

with the second filter group. If the quality of the response of the second filter

group in the current frame is higher than a predefined threshold, the target lo-

cation is updated with respect to the second filter group and both of the filter

groups are updated with the learning rate of a high learning rate as in Eqn. 3.18

and Eqn. 3.19. If PSR of the second filter response is not high enough com-

pared to the predefined threshold, the system detects occlusion. This procedure

is illustrated in Fig. 3.7.

66



Figure 3.7: Flowchart of Multiple Model Visual Tracking Algorithm

3.2.2 Target Bounding Box Generation

Target bounding box generation actually means target size estimation and pro-

vides the ability of detecting and adapting the scale changes more appropriately.

Target of interest is known be in the track window during tracking; since track

window is selected to be larger than the calculated target size in the target ini-

tialization step. In other words, the target of interest is the salient object in

the track window. Therefore, the proposed methodology for target size estima-

tion is based on saliency detection and its temporal consistency. The proposed

method is divided into three substages: saliency map generation, learning rate

calculation and temporal refinement of the saliency map, and target selection.
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3.2.2.1 Saliency Map Generation

Despite existence of various saliency detection algorithms [117,118,123–126], the

work of [128] is selected in which the saliency problem is tackled from different

perspective by focusing on background more than the object. The reason of its

selection is its capability of extracting a saliency map within few milliseconds.

However, it has two basic assumptions for the input image that should be guaran-

teed, namely boundary and connectivity. The boundary assumption is reflection

of a basic tendency that photographer/cameraman do not crop salient objects

among the frames. Therefore, the image boundary is usually background. The

connectivity assumption comes from the fact that background regions are gen-

erally tend to be large and homogenous, i.e. sky, grass. In other words, most

image patches can be easily connected to each other piecewisely. In our case,

these two assumptions are fulfilled by simply selecting initial target window in-

cluding target, roughly centralized, and keeping the target roughly centralized

in the track window throughout the tracking. Moreover, the assumption of non-

target pixels as the boundary pixels is relaxed by determining non-target pixels

from the output of the moving detection mask for the target window.

Satisfying these two conditions, the salient regions are assumed to be the patches,

which are extracted by downscaling or by any super pixel extraction algorithm,

with high geodesic distance from the boundaries of the image which are assumed

to correspond to piecewise-connected background regions. The geodesic saliency

of a patch p is the accumulated edge weights along the shortest path from p to

virtual background node b in an undirected weighted graph p ∈ {v, ξ},

Saliency(p) = arg min
p1=p,p2,...,pn=B

n−1∑
i=1

weight(pi, pi+1);

s.t.(pi, pi+1) ∈ ξ

(3.20)

In order to calculate the shortest distance to the background nodes from each
patch, the shortest path algorithm [68] is exploited. For shortest path calcula-

tion, the original gray-level image G(x) is used and the distance map F(x) is

obtained. In [68] two round iteration is executed. In the first iteration direct

video order is used (from top to bottom, and left to right) and F ∗e is calculated
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Figure 3.8: Shortest Paths for some Foreground (green) and Background (ma-
genta) Image Patches (retrieved from [128])

according to Eqn. 3.21 and Eqn. 3.22 where * stands for already calculated

points. Moreover, the pixel mapping used in Eqn. Eqn. 3.22 and Eqn. Eqn.

3.24 is illustrated in Fig. 3.9.

Figure 3.9: Pixel Mapping used for Shortest Path Calculation

F ∗
e = min [Fe,min (1 + da+ F ∗

a , 1 + db+ F ∗
b , 1 + dc+ F ∗

c , 1 + dd+ F ∗
d )] , (3.21)

da = α |G(e)−G(a)| ; db = α |G(e)−G(b)| ; dc = α |G(e)−G(c)| ; dd = α |G(e)−G(d)| .

(3.22)

Also the second iteration process is similar to the first one but in inverse video

order (from bottom to up, and from right to left) and the new point F ∗e is

calculated according to Eqn. 3.23 and Eqn. 3.24

F ∗
e = min

[
Fe,min

(
1 + df + F ∗

f , 1 + dg + F ∗
g , 1 + dh+ F ∗

h , 1 + dk + F ∗
k

)]
, (3.23)

df = α |G(e)−G(f)| ; dg = α |G(e)−G(g)| ; dh = α |G(e)−G(h)| ; dk = α |G(e)−G(k)| .

(3.24)

For solving the Eqn. 3.20 using [68], it is enough to assign weights of background

nodes to zero. After two round iterations proceed, shortest path for each patch

to background node is calculated which means that saliency map is obtained.
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The patches with higher distance measure indicate more salient patches. In

this manner it should be noted that, since patches close to the center of the

image requires a longer path in order to reach the background, accumulation of

weights tend to be larger in the center patches meaning that this method also

favors the center image regions as more salient which is very reasonable since

salient regions tend to occur near the center of the image.

As it may be noticed, the method of [128] is proposed for one channel images;

however our data type also includes 3 channel RGB images. Therefore, this

method is adjusted for 3 channel input simply by selecting the maximum distance

from each channel as in Eqn. 3.25:

F ∗3−channel = max
[
F ∗red, F

∗
green, F

∗
blue

]
. (3.25)

3.2.2.2 Learning Rate Calculation and Temporal Refinement of the

Saliency Map

Since target tracking is a continual process, it can provide temporal information

which can be used for target size estimation. For this purpose, saliency maps of

the track windows are calculated at each frame, and referred as current saliency

map. Since size estimation based on a single frame could be erroneous; using

weighted average of current and previously calculated saliency maps, another

saliency map is learnt which is referred as updated saliency map. The important

thing is each saliency map may not represent the target with the same quality.

Therefore, samples of higher quality should be weighted more in the updated

saliency map to better estimate the target size and adapt changes in target

appearance. Calculation of the weight for the current saliency map is referred

as adaptive learning rate calculation in this context and has two significant

benefits: First, due to noise or any imperfection of the sensor data saliency

map may deviate from frame to frame. However, learning updated saliency

map from deviated versions will extract the common structure of the target

silhouette; which means tolerance to the noise. Second, when the target is fully

or partially occluded, the abrupt change in the saliency map would be known

and learning rate is adjusted in a way to prevent target model that exists before
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occlusion.

For learning rate calculation, two parameters namely saliency ratio and corre-

lation score are used which are calculated by using both updated and current

saliency maps. Firstly, current saliency map is calculated and binarized for each

image. Then the first parameter for learning rate, saliency ratio (rs(t)), is cal-

culated as in Eqn. 3.26 for current saliency map, where dominant components

represents the saliency values greater than binarization threshold and Scurrent(x)

is the current saliency map.

rs(t) =

∑
x∈DominantComponents Scurrent(x)∑

x∈SaliencyMap Scurrent(x)
. (3.26)

To be clearer, this metric is designed to measure distinctiveness of the target

within the track window. In the cases where only the target has high saliency

values, the saliency ratio will be 1 which means the target in scene is very

distinctive. Hence, for extraction of target model this frame is very reliable and

should be learnt with high learning rate.

The second metric is correlation score, DNCC(t), which is a very strong cue for

detection of abrupt changes in the updated target model. To achieve this goal,

normalized cross correlation between the target models, selected from updated

saliency map using the target selection procedure that will be discussed, and

current saliency map is taken as in Eqn.3.27.

DNCC(t) = max {NCC (Scurrent, TargetModel)} . (3.27)

Using the saliency ratio and the correlation score, the learning rate is calculated

at each frame as in the Eqn. 3.28 and represented with symbol λ(t) at time

t. Note that ranges of both metrics extends from 0 to 1 and if both are 1 the

current target is overwritten to the updated target which is not desired since it

clears out all temporal information. In order to prevent this, maximum learning

rate is restricted to α. Moreover, in order to prevent mislearning of target, a

penalization constant, β, is used whenever target model and the best possible

match has resemblance below the feedback threshold, FBthreshold, which simply

means system updates target model whenever the measurement is considered to
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be secure.

λ(t) =

α · rs(t) ·DNCC(t), DNCC(t) > FBthreshold

β · α · rs(t) ·DNCC(t), DNCC(t) ≤ FBthreshold

(3.28)

After calculation of learning rate, the saliency map is updated, Supdated(t), ac-

cording to the calculated learning rate at each frame as in the Eqn. 3.29. The

natural response of such a learning framework is to learn more if the current

salient component is worth considering. Moreover, the components which are

consistent with the learnt saliency map are also considered to be learnt more.

Supdated(t) = λ(t) · Scurrent + (1− λ(t)) · Supdated(t− 1) . (3.29)

Since correlation metric shows resemblance between target and current saliency

map, it is also used to answer to the question when the feedback should be given

to the visual tracking system. The feedback is used for adjusting size dependent

parameters of the tracker that are suppression window size and PSR subwindow

size. The formulation in Eqn. 3.30 is used for querying tracking feedback.

isFeedBack = (DNCC(t) > FBthreshold) . (3.30)

In Eqn. 3.30, the IsFeedBack variable is a binary variable controlling the deci-

sion of giving feedback or not (Give Feedback if 1 else 0). If the correlation score

is high enough, then the current saliency map is consistent with the previous

behavior of the region of interest. This results in giving feedback to the visual

tracking system since it is the signature of a secure measurement.

3.2.2.3 Target Selection

After saliency map update, the target in the saliency map should be extracted.

To achieve this goal, target selection procedure is utilized in two steps: bina-

rization and maximization of the regularization energy. The binarization step

is intended to obtain the pixels having significant contrast difference with the

background in the track window. It should be noted that all of the obtained pix-

els do not necessarily belong to target since the track window may also contain

other moving objects or parts of moving objects that are close to main target.
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This is the reason why the second stage is required. In the second stage, the

target of interest in each track window is selected by maximizing regularization

energy. Then, the target bounding box is outputted as the bounding box of the

selected connected component.

Although minimum computational cost is desired in each step, using static

threshold or suboptimal methods for binarization may be problematic. Thus,

Otsu’s method [129] is used with slight refinement. The method of Otsu can be

either defined as an exhaustive search for the threshold that either minimizes the

within-class variance or maximizes between-class variance. The between-class

variance is often calculated as given in Eqn. 3.31:

σ2
B = wbwf (µb − µf )2 , (3.31)

where wb, wf is referred as class probabilities and µb, µf are class means. After

some manipulations Eqn. 3.31 can be written as in Eqn. 3.32.

σ2
B = wbµ

2
b + wfµ

2
f − µ2 , (3.32)

where µ is the mean value of the histogram. Since the purpose is to calculate

the optimal threshold value T that maximizes , the problem can be solved by

either inserting Eqn. 3.31 or Eqn. 3.32 into the Eqn. 3.33.

T̂ = argmax
{
σ2
B

}
, (3.33)

Note that using Eqn. 3.31 and Eqn. 3.32 directly results in Eqn. 3.34 and Eqn.

3.35 respectively;

T̂ = argmax


(

T∑
i=1

fi

)(
L∑

i=T+1

fi

)(∑T
i=1 ifi∑T
i=1 fi

−
∑L

i=T+1 ifi∑L
i=T+1 fi

)2
 (3.34)

T̂ = argmax


(∑T

i=1 ifi

)2

∑T
i=1 fi

+

(∑T
i=1 ifi

)2

∑T
i=1 fi

 (3.35)

where the number of pixels with gray level i(1 ≤ i ≤ L) is given with fi As

it can be seen using Eqn. 3.35 becomes slightly advantageous since constant µ

term is dropped out. This slight modification results in one less multiplication

in Eqn. 3.35 than Eqn. 3.34 which results in L less multiplication in exhaustive

search used in Otsu’s methodology.
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After thresholding the saliency map, the connected component maximizing the

regularization energy given by Eqn. 3.36, i.e. the most salient region with

minimum distance to the center, is selected as the target.

argmaxCi
CiS√

(xi − xc)2 + (yi − yc)2
, (3.36)

where Ci is the vectorized form obtained by raster scanning the 2D label matrix

with values 1 and 0 as foreground and background respectively, S is the saliency

map vectorized similarly and (xi, yi), (xc, yc) are the centers of each connected

component and the initial window respectively.

3.2.2.4 Case Study

A possible scenario for target silhouette extraction and bounding box generation

is visualized with the aid of Fig. 3.10, Fig. 3.11 and Fig. 3.12. In these figures,

the top-left window is dedicated for the original image in which track bound-

ing box, larger rectangle determining region of interest, is visualized together

with target bounding box, small rectangle revealing target location and size.

The top-middle figure shows the updated saliency map and the top-right figure

illustrates the binarization result of the updated saliency map. The bottom-

middle figure shows the current saliency map and the bottom-right figure shows

the binarization of the current saliency map. The bottom-left figure shows the

normalized cross correlation result of the updated and current saliency maps.

The scenario starts with manual target initialization for the pedestrian in the

IR image. Using 68 frames the updated saliency map, Fig. 3.10 (top-middle),

is learnt from the current saliency maps, bottom-middle. When the target is

partly or fully occluded as in the case shown in Fig. 3.11, the updated and

current saliency maps would be dissimilar. This is the case, when the temporal

consistency is spoilt. The dissimilarity would yield low cross correlation between

target model and current saliency map which prevents giving the location feed-

back. Moreover, the learning rate is decreased with the penalty term β as in

Eqn. 3.28 to prevent target model. After 510 frames (Fig. 3.12), the occlusions

coming from the trees and the moving person disappear and the system firstly
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starts to increase the learning rate due to effect of the saliency ratio metric.

Then, this yields increase in correlation score and when the upper condition is

satisfied in Eqn. 3.28 system both omits the penalization term in Eqn. 3.28,

β, and starts to feedback to the tracker. By this way, the algorithm presented

here prevents itself from adverse effects of occlusion and clutter. Fig. 3.12 is

also a good example for explanation of target selection mechanism. After, bi-

narization of current saliency map, there exist pixels which do not belong the

target of interest but other pedestrian. If the other pedestrian passing by would

stay in the scene for longer, his silhouette would be seen in also the updated

saliency window. If we assume the current saliency map of the Fig. 3.12 as

updated saliency map, the target whose center is near the window center would

be selected, since sum of their saliency values are comparable.

Figure 3.10: Updated and Current Saliency Maps with their Binarized Images
at the Beginning of the Track

One should note that all these saliency calculations are utilized in the track

window which is the output of the visual tracking algorithm and illustrated as

outer bounding box in Fig. 3.13. After applying the presented target bounding

box generation method, the inner bounding box is obtained.

The whole summary of target bounding box generation and feedback decision

steps are illustrated in in Fig. 3.14.
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Figure 3.11: Updated and Current Saliency Maps with their Binarized Images
after 380 Frames

Figure 3.12: Updated and Current Saliency Maps with their Binarized Images
after 510 Frames

Figure 3.13: Target Bounding Box (inner) together with Track Window (outer)
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Figure 3.14: Target Bounding Box Generation and Feedback Decision Steps
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CHAPTER 4

EXPERIMENTS

The proposed system consists of collaborative operations of two subsystems;

moving object detection and object tracking. Therefore, to achieve detailed

analysis on system dynamics and evaluate the overall performance, subsystem

level tests are as important as integrated system tests. In this manner, the

experimental procedure is divided into three stages covering two subsystem and

a system test stages.

At the first stage, the performance of the utilized moving object detection sub-

system is evaluated quantitatively and compared with other possible options

from the literature to reveal strengths and drawbacks of each possible method-

ology in a detailed fashion. Since time efficiency is an important criteria, the

detailed analysis for the time requirements of each possible algorithm is also

provided for CPU implementations. Furthermore, the GPU implementation of

the winner algorithm is achieved in order to emphasize its extreme suitability

for the parallel coding (up to 10x speed ups achieved for SAGMM) which allows

winner algorithm to be used in more complex real-time applications.

At the second stage, a very similar procedure is followed for the proposed track-

ing system. Firstly, the performance of the proposed methodology is compared

with other trackers based on correlation filters. The results revealed the success

of the proposed methodology in challenging scenarios. Moreover, the required

processing times are also given to discuss about their suitability for real-time

applications.
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Finally, the winner algorithms from previous stages are integrated to achieve

vehicle detection and tracking in the urban traffic scenes. To measure overall

performance, a real life scenario is practiced which aims to count number of

vehicles for each branch road entering and leaving the crossroad separately.

4.1 Results for Moving Object Detection

The moving object detector is designed to fulfill two primary objectives: to ob-

tain approximate size and location of the target for automatic track initializa-

tion; and to inform the tracking algorithm with background pixels for satisfying

background prior for calculation of the geodesic saliency map which is used for

target silhouette extraction. Note that, both of these goals do not necessar-

ily require very precise target boundaries. Thus, all we need is to achieve well

separation between targets and enough number of background pixels to use as

background prior.

Considering our goals, the preliminary assessment revealed the possible algo-

rithms for our purposes. In this manner, three different algorithms from two

different moving object detection categories (frame differencing and background

subtraction) are selected for performance comparison. Although frame differenc-

ing methods can achieve successful moving object detection for only objects hav-

ing motion in a predefined speed limits (double/no detection for fast/slow mov-

ing objects), first possible option is selected to be a frame differencing method,

MHI, due to its simplicity resulting in fast detection. The MHI methodology

benefits from the combinations of the object movements from different frames to

achieve better target localization than many frame differencing methods. Actu-

ally, this algorithm performs sufficient in the scenes without shadow; and with

the moving objects having comparable speeds, since the motion history length,

L, is selected in accordance with object speed and size. Moreover, due to lack of

internal mechanism for background model generation in MHI, post-processing

for shadow/highlight detection can only be achieved with more simplistic meth-

ods that can decrease the performance.
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Two other possible options are selected from statistical background subtraction

techniques are ZHGMM [23] and SAGMM [24]. Although both of these algo-

rithms are based on [18], it is not selected for comparison; since superiority

of [23] is reported more than once [23, 27]. ZHGMM is one of the most popu-

lar background subtraction algorithms and its success is reported many times.

Since SAGMM includes additional extensions to ZHGMM which can result in

better performance, it is also selected for performance comparison. Both of these

methods also share the advantage of background model generation which is the

requirement of many high performance shadow/highlight detection algorithms.

Due to high computational cost and absence of background model generation,

no algorithm from optical flow category is selected for comparison.

4.1.1 Evaluation Data Set

For performance evaluation of moving object detector, 4 different test scenarios

from [130] are used. The sequences of the data set were rendered by Mental Ray,

a ray tracer provided by Autodesk Maya, while the GT data was generated by

Maya Vector. Each sequences is designed to mimics the imagery captured from

a stationary camera having resolution of 800x600. To obtain realistic footage,

sensor noise is simulated by adding Gaussian distributed (µ = 0, σ = 0.0001)

noise to each frame.

In all sequences, there exists a swaying tree as an uninteresting moving object

(background) which is desired to be suppressed. Moreover, the moving shadows

of the moving objects also stand as a challenge for each sequence. The selected

four test scenarios differ from each other with other additional challenges and

named according to their dominant challenges.

Basic: This sequence was generated for achieving general performance overview.

Bootstrap: This scenario is designed for measuring performance of moving ob-

ject detection without any training frames for learning background. Since we do

not use any training frames in any scenario, this sequence is similar for “Basic”

scenario for our evaluation.

Camouflage: In the test scenes some objects are poorly differ from the appear-
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ance of the background, which makes correct detection difficult. To generate a

similar situation car colors and the clothing of the pedestrians are selected to

be gray which is similar to road.

No Camouflage: As opposed to camouflage case, more distinctive objects were

used.

4.1.2 Performance Measure

In the literature, performance of moving detection algorithms is generally evalu-

ated in pixel level, since the process is considered to be pixel level classification.

Thus, we followed the general tendency and expressed the performance of the

algorithms by means of true positive (TPR) rate, false positive rate (FPR),

precision, and F-Measure.

TPR(recall) =
# of correctly classified foreground pixels

# of foreground pixels inGT
, (4.1)

FPR = 1− # of correctly classified background pixels

# of background pixels inGT
, (4.2)

Precision =
# of correctly classified foreground pixels

# of pixels classified as foreground
, (4.3)

F −Measure = 2
Recall · Precision
Recall + Precision

. (4.4)

4.1.3 Post-Processing

In all moving object detection algorithms the produced foreground masks can

be contaminated with some scattered foreground pixels which are generally gen-

erated due to noise. Therefore, to achieve unstained results some simple post

processing methods are applied after achieving the moving object mask. The

procedure followed in this work is summarized in Fig. 4.1. The first row of Fig.

4.1 illustrates the input frame and the stained moving object mask with noise.

In order to get rid of salt & paper like noise median filtering is used and followed
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by closing operation to achieve close contours for filling the holes inside of the

object in the next step. Usage of median filtering and morphological closing

operations result in the image at the bottom left of Fig. 4.1. The morphological

enhancement step is finalized with filling the holes in the mask. The final output

is illustrated at the bottom right of the Fig. 4.1.

Figure 4.1: First Row: Input Image and the SAGMM Output; Second Row:
Output of Median Filtering + Morphological Closing, and Output of Filling
Process

As mentioned previously, existence of shadow/highlight pixels can degrade the

performance of the moving object detector system. Therefore, another impor-

tant issue is shadow/highlight removal from the moving object mask. After

obtaining the cleaned out moving object mask, a shadow detection algorithm

is utilized. Some exemplary outputs for shadow detection can be seen in Fig.

4.2. As it can be seen, shadow detection helps to unmerge targets which mean

successful track initialization for both of the targets.

For selection of shadow detection algorithm, we benefit from [35] in which not

only the shadow detection taxonomy is introduced, but also five algorithms
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Figure 4.2: Input Image, together with Moving Object Detection Mask and
Detection Mask after the Shadow Removal Algorithm Utilized

from different classes (two from texture-based and one from each remaining

categories) are compared. In comparison, texture based algorithms are divided

into two categories as: small region (SR) and large region (LR) texture based

method. The comparison is executed with 7 different data sets with various

types of moving cast shadows in size, strength and direction. The quantitative

results are obtained by using two different metrics, namely shadow detection

rate (η) and shadow discrimination rate (ξ), proposed in [36].

η =
TPS

TPS + FNS

, (4.5)

ξ =
TPF

TPF + FNF

, (4.6)

where TP and FN stand for true positive and false negative pixels with respect

to either shadows(S) or foreground objects(F). The shadow detection rate is

concerned with labeling the maximum number of cast shadow pixels as shad-

ows. The shadow discrimination rate is concerned with maintaining the pixels

that belong to the moving object as foreground. Considering our overall system,

misclassifying foreground pixels as shadow may result in splitting the moving

object as two which is not desired. Hence, discrimination metric becomes more

important for our application. According to the reported results, in [35] large

region (LR) texture based method outperforms others in all sequences by ob-

taining high values of both detection and discrimination rates. The evaluation

result of [35] is illustrated in Fig. 4.3. It should be noted that for LR texture

based method the discrimination rate is always over 90% which makes this al-

gorithm suitable for our application. Moreover, by nature of the algorithm the

LR texture method is not sensitive to pixel level noise which can be encountered

in many scenes.
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In [35], comparison of the time performances for 7 different scenarios is also

provided which is shown in Table 4.1. Considering both processing time and

performance, [64] is selected for post processing step in the proposed system.

Figure 4.3: Comparison of Shadow Detection Results in Different Scenarios
(retrieved from [35])

Table4.1: Average Frame Processing Time (in milliseconds), Reported in [35] for
each Sequence

Geometry [131] Chromacity [37] Physical [48] SR Texture [59] LR Texture [64]
Campus (352x288) 9.44 8.72 10.00 156.46 20.76
Hallway (320x240) 8.91 11.28 12.81 223.64 21.59
Highway1(320x240) 24.75 10.73 16.93 341.32 34.71
Highway3(320x240) 6.49 6.82 7.15 120.36 11.75

Lab(320x240) 17.68 8.95 15.34 253.82 22.73
Room(320x240) 8.41 7.14 8.51 144.87 16.25

CAVIAR(384x288) 13.94 10.82 14.08 243.07 24.70
Average 12.80 9.21 12.12 211.93 21.78

4.1.4 Performance Evaluation

For the comparison of three algorithms, the final moving object detection masks

which are obtained after post-processing with [64]. However, MHI cannot pro-

duce background model which is required by [64]. Hence, for shadow detection

algorithm [37] is used instead.

In experiments, the parameters of MHI that are MHI length (L) and distance

threshold(T used in the Eqn. 2.5) are selected to be 7, 15 respectively. For

evaluation of background subtraction based methodologies, the parameters of

ZHGMM and SAGMM are selected to be exactly same for fair comparison. In
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both implementations, maximum number of modes is set to 4. The cf parameter,

which measures the maximum portion of the data that can belong to foreground

objects without influencing the background model (used in Eqn. 2.16), is set to

0.1 and the complexity reduction prior constant (cT ) is set to 0.05. The distance

threshold for ownership is selected to be 9 and the initial variance of the each

new mode is given as 11. Finally, the basic learning rate is set to 0.005 for both

ZHGMM and SAGMM; however SAGMM automatically alters this parameter

during the process. All the defined parameters are adjusted experimentally.

The evaluation results for each scenario are given in the Table 4.2.

Table4.2: Performance Comparison of Algorithms in Different Scenarios

Basic Bootstrap Camouflage No Camouflage
TPR 0.9182 0.8388 0.8609 0.8919
FPR 0.0070 0.0044 0.0104 0.0052
Prec. 0.7367 0.8641 0.6647 0.8756SAGMM

F-Meas. 0.8175 0.8513 0.7502 0.8837
TPR 0.8734 0.8118 0.8386 0.8815
FPR 0.0075 0.0054 0.0119 0.0060
Prec. 0.7231 0.8363 0.6465 0.8602ZHGMM

F-Meas. 0.7912 0.8239 0.7301 0.8707
TPR 0.7306 0.8294 0.8225 0.8592
FPR 0.0239 0.0074 0.0206 0.0078
Prec. 0.5495 0.6923 0.5949 0.8199MHI

F-Meas. 0.6272 0.7547 0.6904 0.8391

According to experimental results SAGMM is achieves the best performance.

Considering both experiments and the philosophy of the SAGMM algorithm,

two significant advantages are observed to be the key point in the successes.

Firstly, if object is allowed to be a part of background, it does not destroy the

existing background model. The original background values remain in the GMM

if the object remains static for long enough, and its weight becomes larger than

cf . If the object then moves, the distribution describing the previous background

still exists with the same estimated mean and variance. Therefore, the objects

that are stopped and moved are redetected quickly. Secondly, since each mode

has its own adaptive learning rate the model can quickly achieve good estimation

of mean and variance. To be more precise if background changes quickly newly

introduced modes with smaller cm will increase learning rate βm. Otherwise, if

the background is stable, as more data samples are included in its parameter
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estimation resulting in high cm, which leads βm to converge the basic learning

rate α. The benefit of using adaptive learning rate is illustrated in Fig. 4.4 and

Fig. 4.5. In these figures, the top row is dedicate to visualization of input image

and the ground truth while the second row includes the moving object detection

masks of SAGMM, ZHGMM and MHI respectively. In Fig. 4.4, while the

SAGMM achieves suppression for the swaying tree, ZHGMM cannot accomplish

the task at the same number of the frames. However, after 65 frames, Fig. 4.5,

it is seen that ZHGMM also achieves the same performance for suppressing tree

which emphasizes the ability of SAGMM for faster adaptation. One should also

note that neither in Fig. 4.4 nor in Fig. 4.5, MHI cannot successfully suppress

the swaying tree due to the erratic motion of the leaves.

Table4.3: Time Measurements for Algorithms and Post-Processing in millisec-
onds

Basic Bootstrap Camouflage No Camouflage
Algorithm 39.314 38.851 38.754 40.015SAGMM Post-Proc. 131.420 129.741 132.125 138.428
Algorithm 36.981 37.521 37.125 36.512ZHGMM Post-Proc. 128.932 132.411 131.045 130.134
Algorithm 11.215 12.047 11.515 11.110MHI Post-Proc. 51.413 49.126 47.113 49.278

Another important factor which deserves to be examined is processing time. Al-

though processing time of the SAGMM is proportional to the number of pixels

in the frame (video resolution), the shadow/highlight detection algorithm de-

pends on the number of candidate shadow pixels and their connectivity. Thus,

the processing time of the shadow detection algorithm can vary from scenario to

scenario. However, since the tested data set includes same shadow pattern for

each scenario, post processing times are roughly equal for each scenario. The

Table 4.3 illustrates time comparison of each algorithm and utilized post pro-

cessing step. All measurements are obtained with an Intel i7-2670QM CPU @

2.20 GHz processor.

The timing results indicated in Table 4.3 is high enough to restrain the overall

system from real- time execution. To achieve more efficient implementation, we

benefitted from the nature of moving object detection algorithms. In all these

algorithms, each pixel is processed independently which makes them extremely

appropriate for parallel implementations. To both improve time efficiency and
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Figure 4.4: Visualization of Input Image, Ground Truth Masks and Algorithm
Results for 235th frame of Basic Scenario (Bottom Row: SAGMM, ZHGMM,
MHI detection masks respectively)

Figure 4.5: Visualization of Input Image, Ground Truth Masks and Algorithm
Results for 301th frame of Basic Scenario (Bottom Row: SAGMM, ZHGMM,
MHI detection masks respectively)

show the capability of this algorithm in real-time applications, we have imple-

mented SAGMM in an efficient manner by using CUDA. The achieved speeds up

for GPU implementation on different image resolutions are illustrated in Table

4.4. The measurements are obtained with NVidia GeForce 660 GTX.

According to results, the GPU implementation achieved up to 10x speed up,

which enables usage of SAGMM in real-time applications. The performance

comparison of CPU and GPU is also illustrated in Fig. 4.6 to emphasize the
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Table4.4: Achieved Time Performances for Different Image Resolution with GPU
Implementation of SAGMM

Image Size Platform Time(ms) Mpixels/s FPS Speedup
CPU 7.102 13.750 140.803320x320 GPU 1.049 93.037 952.698 6.766

CPU 29.811 13.103 33.544640x640 GPU 3.714 105.189 269.284 8.028

CPU 63.626 13.813 15.717960x960 GPU 7.240 121.392 138.117 8.788

CPU 130.171 12.003 7.6821280x1280 GPU 12.062 124.541 82.906 10.786

CPU 260.499 13.495 3.8391920x1920 GPU 25.402 138.396 39.366 10.255

improvement in time performance.

Figure 4.6: Comparison of Time Performances of CPU and CPU Implementa-
tions of SAGMM

4.2 Results for Target Tracking

The literature review for object tracking revealed the attractive properties of

correlation filters such as shift invariance, robustness to graceful degradation,

distortion tolerance, rejection of distractive patterns in complex scenes and low

computational complexity. Therefore, the optimized correlation filters are de-

cided to be utilized in the tracking system.

This part is intended to compare the performance of the proposed tracking
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algorithm with the 3 most recent correlation filters namely UMACE, ASEF,

MOSSE in addition to naïve methodology (match filter).

4.2.1 Evaluation Data Set

For subsystem level test, tracking evaluation datasets are preferred rather than

traffic scenes; since tracking datasets are constituted from relatively longer

footages. These footages generally includes various challenges for the targets

throughout the scene which are designed to disclose strengths and drawbacks

of the tracker. Hence, both to achieve better observations on alterations of the

correlation filters and not to break the linkage with the intended tracking prob-

lem, the VIVID dataset [132] is preferred. The selected dataset includes footages

of moving vehicles which frequently experiences similar challenges to those in

traffic applications as out of plane rotation, pose variation, occlusions, existence

of similar targets in the vicinity. Brief explanations about the main challenges

of the test scenarios used from VIVID dataset are given below:

EgTest01: All the vehicles make a U turn which result in rapid appearance

changes at the beginning of the scene. Then, one vehicle speeds up and passes

nearby others with similar appearance.

EgTest02: Scene include scale change, rotation, a 90 degree sharp turn and

very similar vehicles to passing by each other.

EgTest03: This scenario includes low contrast images, and different sized tar-

gets which are occluded by very similar vehicles.

EgTest04: Main challenges in this scenario are defocusing of the camera and

multiple occlusions by the trees.

pkTest01: The track is interrupted with frequent occlusion by trees, and similar

vehicles come close the tracked target at the end of the occlusions.

pkTest02: Vehicles pause at the cross-road and then continue to move with 90

degree sharp turn. Camera gain adjustment also stands as a challenge together

with some occlusions by trees.
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4.2.2 Performance Measure

Despite existence of multiple possible target vehicles in each scenario in the

VIVID dataset [132], the ground truth is only provided for the primary target in

each scenario. To increase the number of scenarios that are tested and achieve

better evaluation other existing targets in the scenes are also included in the

tests. Due to lack of ground truth data for secondary targets, we followed the

same procedure used in [1] for performance evaluation. In [1], tracking quality is

evaluated by manually labeling the results as good tracking; tracking had drifted

off center, or a lost track. The track is described as good track when the track

center is within the object; the frame is labeled as drifted track when the track

center is located at outside of the object boundary; and the track is stated to

be lost whenever track quality (PSR) decreases below the predefined threshold

(PSR < 7.0). One exemplary illustration is given in Fig. 4.7 for each situation

(good track, drifted track, and lost respectively).

Figure 4.7: Illustrative Examples for Good Track (Left), Drifted Track (Middle),
and Track Lost (Right)

4.2.3 Performance Evaluation

In this section, performance of the tracking subsystem is evaluated by comparing

its performance with the most recent examples of correlation filters MOSSE,

ASEF, UMACE. Moreover, all these algorithms are compared with the match

filter in order to observe the robustness introduced by correlation filters.

For the experimental setup, for each filter PSR occlusion threshold is selected to

be 7.0, desired output variance is set to 0.2 and the Cosine window is preferred
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as windowing function. Moreover, learning rates are selected to be 0.06 for all

filters. This learning rate is used as fundamental learning rate (filter group 1)

of the proposed tracker and the high learning rate (filter group 2) is selected to

be 0.08. In target bounding box generation procedure, the feedback threshold

is set to 0.85; the maximum learning rate (α) and the penalization constant (β)

is set to 0.1 and 0.3 respectively.

Although we wish to explain the detailed comparison results to disclose strengths

and weaknesses of each filter, starting with a general overview would be ben-

eficial for discussing further details. In order to expose the big picture, the

overall results are given in the Table 4.5 where the naive filter is obtained by

the averaging preprocessed tracking windows with the same online update rate

of other filters. All the tests are achieved with fixed sized manual track window

initializations.

Table4.5: General Overview of Track Performances of Different Filters

Methodology Total Frames Good Track Drifted Track Track Loss Coverage
Naive 19543 8140 2841 8562 0.5619

UMACE [86] 19543 9340 5150 5053 0.7414
ASEF [80] 19543 11642 3094 4807 0.7540
MOSSE [1] 19543 12785 2825 3933 0.7988
Proposed 19543 16057 1147 2339 0.8803

As expected, usage of naïve filter yields the worst performance; since the usage

of only image intensity values for correlation can achieve clear correlation peaks

as long as the target preserves same structural pattern. Therefore, naïve filter

can be easily misguided in the presence of external disturbances which are en-

countered in the test datasets frequently. Although UMACE and ASEF filter

introduces significant increase in track performance and achieves comparable

successes, each filter suffers from different issues. UMACE mainly differs from

ASEF and MOSSE with the type of desired synthetic output used in the train-

ing (filter learning). Thus, the major drawback of UMACE filter comes from

the selection of desired output as Kronecker delta which results in learning the

target without introducing any perturbations which results in better generaliza-

tion. On the other hand, MOSSE and ASEF filters select the desired output as

a Gaussian to achieve better generalization and focus on more general features.

Therefore, UMACE cannot response the relatively fast appearance changes with
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the same effectiveness. Although ASEF learns more general features, it also suf-

fers from responding fast appearance changes such as steep turns. However, the

reason is quite different. This ill-posed nature of the ASEF is also stressed by the

inventor of the MOSSE algorithm in [80]. The convergence of the ASEF filter

requires relatively long number of frames than other filters, since it uses aver-

ages of the exact filters. Therefore, MOSSE filter achieves better performance

by responding changes in a better fashion than ASEF and UMACE by achieving

more general features and converging faster. However, its adaptation rate may

not be sufficient to capture the relatively fast changes in the scene. To overcome

this problem, the adaptation rate may be increased; however this would result

in drifting problems since the uncorrelated data can be learnt quickly. In the

Fig. 4.8, 4.9, 4.10, 4.11, this situation is illustrated by visualizing the track

window and the corresponding filters. The information row at the bottom of

Fig. 4.8, 4.9, 4.10 visualizes the image patch in the track window, the filter

and the resulting correlation output respectively. As it can be observed from

these figures, UMACE, ASEF and MOSSE cannot adapt the changing target

appearance during the sharp turn which results in tracking with drifted center.

Figure 4.8: Effect of Fast Appearance Change (Sharp Turn) on UMACE filter
Update and Corresponding Tracking Result

To overcome this problem, the proposed tracker benefits from two filters with

different adaptation rates as illustrated in Fig. 4.11. Since the information

row also contains both of the filters (2nd and 3rd image patches) in Fig. 4.11,

the benefit of usage of two filters becomes more apparent. The information
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Figure 4.9: Effect of Fast Appearance Change (Sharp Turn) on ASEF filter
Update and Corresponding Tracking Result

Figure 4.10: Effect of Fast Appearance Change (Sharp Turn) on MOSSE filter
Update and Corresponding Tracking Result

row of Fig. 4.11, also illustrates another advantage of the proposed tracker by

visualizing the updated saliency map (5th image patch) which is used for target

bounding box generation (red rectangle). The target bounding box does not

only provide extra information for the overall system, but also helps to improve

the tracking performance by adjusting tracking parameters according to size

estimation.

To achieve more detailed performance comparison, the tracking results for each

target in each scenario are illustrated in Fig. 4.13. In this figure all frames are

manually labeled as good track (green), drifted track (yellow), and track lost
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Figure 4.11: Proposed Tracker can Adapt Fast Appearance Change Better by
Using Two Filters with Different Learning Rates

(red). The scenario name and target number can be found at the title of each

sub graph. Examination of the Fig. 4.13 reveals an important fact. The major

difference of the proposed methodology and others is its redetection performance.

This situation becomes apparent in the scenarios egTest04-02, pktest02-01, and

pktest02-02. This achievement is based on usage of multiple filters with different

learning rate which prevents drifting while learning most recent examples of the

target appearance. Hence, in the presence of occlusion, more recent examples

are searched for which improves the redetection chance of the target.

Another observation from Fig. 4.13 is the unexpected failure of the proposed

methodology in scenario egTest03-01. In this scenario, a small sized target

(motorcycle) is tried to be tracked. Due to fixed window sized track initialization

a much larger track window is used for tracking, Fig. 4.12, which can cause

perturbations of the track center by the nature of the algorithm. When this

oscillation is combined with the feedback from the size estimator, which limits

the suppression window according to size, the filter starts to learn from image

patches in which whole target may not exists. This yields mislearning of the

target appearance resulting in premature track losses. Therefore, track should

be initialized with a window proportional target size. To overcome this problem,

general system benefits from the output mask of the moving object detector to

achieve track initialization with proportional window sizes.
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Figure 4.12: Target and Initial Track Sizes should not be Disproportional

Figure 4.13: Tracking Performances of each Filter Type for each Scenario. Each
frame is labeled as good track (green), drifted track (yellow), and lost (red).

Since the processing time is considered as an important factor the corresponding

timing results are measured from the C++ implementations of the algorithms.

All measurements are obtained from the single core of an Intel i7-2670QM CPU

@ 2.20 GHz processor and assembled in Table 4.6.

Examining Table 4.6 reveals the fact that increasing the track window size re-
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sults in logarithmic increase for the filter training where as target bounding box

generation follows a linear path. According to timing results, the tracker allows

up to 15 targets when the 64x64 track windows are employed. Although the

tracker is not as highly parallelable as the moving object detector case, multiple

cores of processors can be used to increase number of tracks.

4.3 Performance Evaluation of Integrated System

After investigating two core elements of the system separately, this section is

dedicated to performance analysis of the integrated system. In the light of

previous analysis, the integrated system is constituted from the collaborative

work of the moving object detector based on SAGMM and the proposed multiple

model visual tracker.

In order to measure the performance of the integrated system, a real life scenario

is practiced. In this scenario, footages taken from crossroads are automatically

analyzed by the proposed system to reveal statistical information about the

traffic density of different branch roads entering and leaving a junction. To be

more precise, the aim is to detect all vehicles entering the junction and maintain

tracking until their exit. When the vehicle is decided to be exiting, its route is

revealed, i.e. from branch 1 to branch 3; and vehicle is counted to disclose the

information which direction is employed by how many vehicles within a specific

time period.

Table4.6: Processing Time (ms) and Number of Possible Tracks for Real-time
Performance in 10 fps Video Streams

Track Window
Size

Filter Training
MOSSE, ASEF, UMACE

Dual Filter
Training

Target BB
Generation

# of Multiple
Tracks for 10 fps

32x32 1.112 1.428 1.368 40.3
64x64 1.902 2.372 4.671 15.2
128x128 3.983 4.523 17.688 4.6
256x256 8.669 11.609 75.144 1.2
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4.3.1 Evaluation Data Set

For performance evaluation of the system, datasets form two different sources are

used. The first dataset [133] was prepared by Institute for Algorithm and Cog-

nitive Systems department of Karlsruhe Institute for Technology and released

as publicly available. The selected part of the dataset includes 6401 frames of

real data taken with standard PTZ camera containing both grayscale and color

images with two similar resolutions that are 768x576, 740x560. The footages are

taken in various weather conditions including fog, heavy snow fall and winter

time when the surrounding is covered with snow. Moreover, [133] also contains

challenges as partial or full occlusions by trees, static objects or other vehicles.

Figure 4.14: Image Sequences Used for Performance Evaluation [133]

The second test image sequence contains 30 minutes of continuing stream of a

cross-road that is taken with a fisheye camera. One sample frame with resolution

1920x1920 is illustrated in Fig. 4.15. Although moving object detector does

not affected by this type of data, performance of the tracker would be decreased
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with the instant appearance changes caused by the fisheye distortion. Therefore,

before execution of the data, the fisheye distortion is corrected with the usage

of a transform function which is not our interest.

4.3.2 Performance Evaluation

Since the test scenario is defined as counting number of vehicles that are following

each possible route, the ultimate success is defined as counting all of the vehicles

without producing any false alarm. Therefore, false alarm rate, recall, and

precision metrics are selected to be used for the interpretation of the success

and calculated in same manner to Eqn. 4.1, 4.2, 4.3.

In order to make this analysis more comprehensible, all the resultant frames

are enhanced with symbology. As illustrated in Fig. 4.15, each junction node

is marked with an ID starting from 1. The IDs that are illustrated with red

represent the entrance nodes (where the vehicle comes from) whereas the blue

IDs interpret the exit nodes (where the vehicle heads to). The symbology also

contains red and blue loops which are the visualization of the only input required

by the user. These loops remark the entrance (red) and exists (blue) of the

cross-roads. In this manner, the track initialization is achieved at the entrance

node and terminated by counting and revealing the route of the vehicle at the

exit node. The number of counted vehicles is shown with a chart (see Fig.

4.15) whose rows and columns represent the IDs of the entrance and exit nodes

respectively.

Since the result of the analysis is recorded at the chart, it is used for evaluation

as is expected. For evaluation, ground truth charts are obtained for each image

sequences. Then, comparing the resultant charts with the ground truth, perfor-

mance of the system is analyzed. The resulting evaluation scores are visualized

in Table 4.7.

Further analysis of the results revealed strengths and weaknesses of the proposed

system. The main advantages and disadvantages can be summarized as follows.
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Figure 4.15: An Exemplary Frame from Fisheye Camera Enhanced with Sym-
bology

The first virtue of the system is achieved by the usage of multiple target models.

Since the multiple models can respond to appearance changes in different rates,

robust tracking is successfully maintained with the targets having different rate

of appearance changes as in the case of turning vehicles with different angles as

in Fig. 4.16.

The second advantage can be stated as the insuseptibility of the tracker against

Table4.7: Performance Evaluation of each Scenario in Separate and the Overall
Result

Scenario Vehicles
in Total Detected Correctly

Counted
Mis-

detected FAR Recall Prec.

dtPassat 30 23 23 0 0 0.7667 1.0000
dtPassat03 18 14 14 0 0 0.7778 1.0000
dtneu Nebel 6 5 5 0 0 0.8333 1.0000
dtneu Schnee 9 8 8 0 0 0.8889 1.0000
dtneu Winter 8 8 8 0 0 1.0000 1.0000

kwbB 23 18 16 2 0.0870 0.7826 0.8889
Stau02 23 23 19 4 0.1739 1.0000 0.8261
Fisheye 616 506 464 20 0.0325 0.8214 0.9167

Overall Results 733 605 557 26 0.0355 0.8254 0.9207
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Figure 4.16: Multiple Model Target Tracking can Successfully Respond to Ap-
pearance Changes in Different Rates

low contrast which is achieved by the courtesy of preprocessing step introduced in

[1]. Hence, the system can successfully deal with targets that are colored similar

to surrounding or maintain tracking through the foggy scenes (see Fig. 4.17).

Another important topic is occlusion tolerance. Although partial occlusion is

observed to be dealt with, the full occlusion cases usually resulted in track losses.

The main reason is the winding nature of the branch roads in the junctions.

Therefore, the target undergoes appearance change while it is not being tracked

resulting in failure of redetection. Some exemplar cases are illustrated in Fig.

4.18.

The experimental results exposed low false alarm rate of the system. However, in

severe weather conditions the system could achieve multiple track initializations

for single target as in Fig. 4.19. The main reason is the inefficient response of

moving object detector on suppression of erratically moving snowflakes which

allows them to be piled into an object. Another failure of target initialization

manifests itself in crowded scenes in which vehicle to vehicle occlusion occurs.
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Figure 4.17: Tracking can be Maintained throughout the Scenes Having Low
Contrast

Figure 4.18: Although Partial Occlusion can be Handled (1st row), Full Occlu-
sion Results in Track Failures (2nd row)

Since the target initialization is cued from moving object detection, failure in

separation of two close targets would result in single target initialization as

shown in Fig. 4.20.
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Figure 4.19: Severe Weather Conditions may Result in Multiple Track Initial-
izations for Single Target

Figure 4.20: Single Track is Initialized for Multiple Targets due to Occlusion
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The optimal solution of this problem should be usage of an efficient segmentation

technique. However, instead of segmentation our system seeks for a single frame

in which two targets are instantly separated. This solution generally works since

the targets enter the junction in an order fashion. After track initialization,

tracking could be maintained since our tracker is not effected from the presence

similar objects in the vicinity. This case is illustrated in Fig. 4.21. However,

efficient segmentation of the occluded targets remains as a necessity and noted

as a future work.

Figure 4.21: Ordered Entrance of the Cross Road Helps Successful Initialization
(left); Tracking is not Effected with by Similar targets in the vicinity (Right)
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CHAPTER 5

CONCLUSIONS

5.1 Summary

There is an increasing demand for automated intelligent transportation systems

in order to manage and improve the traffic flow; since the number of vehicles

in the traffic continue to increase. To satisfy the needs, this study presents a

solution for main building blocks of automated ITS systems which are moving

vehicle detection and tracking. Although the proposed system is tested on the

crossroads in urban traffic scenes, no experimental findings exists for restricting

its usage to urban scenes.

As expectedly, the presented algorithm consists of two subsystems as moving

object detector and target tracker that are working collaboratively. For moving

object detection, the Self-Adaptive GMM is employed which is capable of not

only selecting the number of modes but also the learning rate of the each mode

online. Thus, the highly adaptive nature of the SAGMM resulted in efficiently

dealing with illumination changes and repetitive clutter. However, like the out-

put of all moving object detectors the output of the SAGMM is also stained by

the noise. Hence, to minimize the effect of noise median filtering is followed by

the morphological closing and filling.

Another post processing requirement for shadow/highlight detection also arises;

since the shadow/highlight pixels are also classified as moving objects. To fulfill

the goal, large region texture based moving shadow/highlight detection is uti-

lized which benefits the fact that shadows do not change the texture. The main
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reason of the utilization of this methodology is its capability of shadow/highlight

removal in region based which prevents separation of single vehicle into multiple

segments resulting in multiple track initializations for a single vehicle.

After post processing, obtained moving object detection mask is used for track

initialization. The track is initialized for each vehicle entering the scene and in-

tended to be maintained until exiting the scene. For target tracking, a multiple

model visual target tracking algorithm is proposed based on the correlation fil-

ters. Since some of the track parameters depend on the target size in correlation

filters, the tracker is also feedback with the target bounding box information

which is extracted based on the consistency of the visual saliency of the track

window. Throughout the tracking, saliency maps of the track window at each

frame are learned with an adaptive learning rate which yields the target silhou-

ette; since the target is generally the salient object in the track window. This

extra information is very valuable and can also be used in higher level activities

such as classification.

5.2 Discussions

The proposed algorithm is tested in 3 stages including separate subsystem level

tests for moving object detector and tracker; and test for integrated system.

Based on these experiments many observations are obtained.

The first subsystem level test is conducted for moving object detection and

results revealed that methods based on statistical background subtraction tech-

niques achieves better performance than the frame differencing techniques for

our problem due to their capability of adapting the scene better and exclud-

ing repetitive motions. Moreover, based on the experiments SAGMM proved

to be more successful than the ZHGMM for adapting scene changes which is

illustrated in Section 4.1.4; since SAGMM is capable of adjusting its adaptation

rate. Another important fact obtained at the first stage of the experiments is

about shadow/highlight detection techniques. Since chromacity based methods

achieves classification in pixel level, they can result in splitting the targets re-
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sulting in multiple track initialization. However, the LR Texture based method

can preserve targets as one blob since the shadow/highlight decisions are made

for connected components of shadow candidates. Hence, this approach makes

usage of LR Texture based shadow detection to be safer. Another important

result is the fact that SAGMM can be speed up to the 10 times when they are

implemented on GPU. This speedup enables their usage in real-time applications

either with higher resolutions or together with more complex algorithms.

At the second stage, the proposed target tracking algorithm is tested on over

challenging sequences containing 19500 frames and compared with the naïve

and three most recent examples of correlation filters UMACE, ASEF, MOSSE.

According to results the naive filters showed the worst performance since it

cannot produce clear correlation peaks with the perturbed templates. More-

over, incapability of controlling the whole correlation plane also makes the naive

method vulnerable to distructive patterns in the scene. Based on experimental

results it is proved that selection of the correlation filter type effects the track-

ing performance significantly. In this manner, usage of UMACE cannot respond

to relatively fast appearance changes efficiently due to selection of the desired

output as Kronecker delta function which limits the generalization. The other

filter type ASEF also shares the same disadvantage with UMACE and cannot

respond the appearance changes as well as MOSSE due to its convergence issue.

The experimental results also showed that adaptation success of the MOSSE is

improved with the proposed algorithm and the proposed algorithm is achieved

responding appearance changes in different rates as illustrated in Section 4.3.2.

Although the experiments cannot fully prove, our findings also give the insights

of the improved redetection performance.

At the final stage of the experiments, the integrated system is experienced on a

real life scenario which aims to count number of vehicles for each branch road

entering and leaving a crossroad separately. The tests are conducted on chal-

lenging scenarios including severe weather conditions. The experiments disclosed

some advantages including responding different rates of appearance changes, in-

susceptibility of the low contrast and ability of handling partial occlusions.
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All in all, the proposed system successfully achieves the low level tasks of auto-

matic moving object detection and tracking starting from the entrance nodes of

the scene until the exit nodes. The only user input required by the system is the

definition of the entrance and exit nodes. The proposed solution is applicable

to different tasks such as vehicle counting, congestion detection, average traffic

flow speed estimation.

5.3 Future Work

As some future work, shadow/highlight removal process can be achieved in a

faster way since the timing results showed that it is the bottleneck of the process.

More importantly, the detection performance is degraded significantly due to

occlusion which results in one track initialization for multiple targets. To cope

with this issue an efficient segmentation methodology should be integrated to

the system.
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