
FORMATION OF AIR-ENTRAINING VORTICES AT HORIZONTAL 
WATER INTAKES 

 
 
 
 
 
 

A THESIS SUBMITTED TO 
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 
MIDDLE EAST TECHNICAL UNIVERSITY 

 
 
 
 
 
 

BY 
 
 
 
 
 
 

CİHAN ZALOĞLU 
 
 
 
 
 
 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS  
FOR 

THE DEGREE OF MASTER OF SCIENCE 
IN 

CIVIL ENGINEERING 
 
 
 
 
 
 

AUGUST 2014 
  



 

 



 

Approval of the thesis: 

FORMATION OF AIR-ENTRAINING VORTICES AT HORIZONTAL 

WATER INTAKES 

submitted by CİHAN ZALOĞLU  in partial fulfillment of the requirements 

for the degree of Master of Science in Civil Engineering Department, 

Middle East Technical University by, 

Prof. Dr. Canan Özgen      __________ 

Dean, Graduate School of Natural and Applied Sciences 

Prof. Dr. Ahmet Cevdet Yalçıner     __________ 

Head of Department, Civil Engineering 

Prof.Dr. Mustafa Göğüş      __________ 

Supervisor, Civil Engineering Dept., METU 

Examining Committee Members: 

Prof. Dr. Nevzat Yıldırım     ________________ 

Civil Engineering Dept.,  Gazi University 

Prof. Dr. Mustafa Göğüş     ________________ 

Civil Engineering Dept.,  METU 

Prof. Dr. Zafer Bozkuş     ________________ 

Civil Engineering Dept., METU 

Assoc. Prof. Dr. Mehmet Ali Kökpınar   ________________ 

TAKK Dept., State Hydraulic Works 

Assoc. Prof. Dr. Mete Köken     ________________ 

Civil Engineering Dept., METU 

        Date:  11.08.2014 

  



iv 

 

 

 

 

 

 

 

 

 

 

I hereby declare that all information in this document has been obtained 

and presented in accordance with academic rules and ethical conduct. I 

also declare that, as required by these rules and conduct, I have fully cited 

and referenced all material and results that are not original to this work. 

 

     Name, Last name: Cihan ZALOĞLU 

 

     Signature:  ________________ 

 

  



v 

ABSTRACT 

 

 

FORMATION OF AIR-ENTRAINING VORTICES AT HORIZONTAL 

WATER INTAKES 

 

 

 

ZALOĞLU, Cihan 

M.S., Department of Civil Engineering 

Supervisor: Prof. Dr. Mustafa GÖĞÜŞ 

August 2014, 86 pages 

The goal of this study is to estimate the critical submergence depths of 

horizontal water intakes that have symmetrical and asymmetrical approach 

flow conditions by using empirical equations. Therefore a series of 

experiments were performed in a reservoir-pipe system dominated by gravity 

and controlled by a valve. On account of adjustable lateral walls, symmetrical 

and asymmetrical flow conditions were created at various Froude numbers. For 

a wide range of discharges and for three different pipe diameters, the critical 

depths of air-entraining vortices were observed. These observations were 

evaluated by dimensional analysis and dimensionless parameters were 

suggested. Finaly empirical equations were derived and the results were 

compared with similar studies in the literature 

Keywords: Horizontal intakes, Air-entraining vortices, Critical submergence. 
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ÖZ 

 

 

YATAY SU ALMA YAPILARINDA HAVA SÜRÜKLEYİCİ 

VORTEKSLERİN OLUŞUMU 

 

 

 

ZALOĞLU, Cihan 

Yüksek Lisans,  İnşaat Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Mustafa GÖĞÜŞ 

Ağustos 2014, 86 sayfa 

Bu çalışmanın amacı simetrik ve asimetrik yaklaşım akışı koşullarındaki yatay 

su alma yapılarının kritik batıklık derinliklerinin ampirik denklemler 

kullanarak tahmin edilmesidir. Bunun için yerçekimiyle işletilen, vana ile 

kontrol edilen bir depo-boru sisteminde bir seri deney yapılmıştır. 

Ayarlanabilir yanal duvarlar sayesinde farklı Froude sayılarında simetrik ve 

asimetrik akım şartları yaratılmıştır. Geniş bir aralıktaki debi ve üç farklı boru 

çapı için hava sürükleyici vortekslerin kritik derinlikleri gözlemlenmiştir. Bu 

gözlemler boyut analiziyle değerlendirilmiş ve boyutsuz parametreler ortaya 

konmuştur. Son olarak ampirik denklemler türetilmiş ve sonuçlar literatürdeki 

benzer çalışmalarla karşılaştırılmıştır. 

Anahtar Kelimeler: Yatay su alma yapıları, Hava sürükleyici girdaplar, Kritik 

batıklık. 
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CHAPTER 1 

 

 

1. PREAMBLE 

 

 

 

1.1. IMPORTANCE OF ESTIMATING THE FORMATION OF 

VORTICES AT INTAKE STRUCTURES 

In near future, according to many political experts potable water is expected to 

be held responsible for many clashes between neighbouring countries around 

the world. That would occur because this valuable resource is getting 

contaminated or harder to be accessed. In this era, nobody wants to waste 

neither one drop of water potantial nor excess one cent to utilize it. Since water 

supply was one of the main reasons of civil engineering to be born, many 

design criteria have been constituted up to the present. One of the major criteria 

is about optimization between the cost and depth of horizontal intakes that take 

water to conveyence channel or tunnel etc. As per the negative effects of 

vortices like loss of discharge capacity, hydromechanical equipment damage 

due to cavitation, these intakes are wanted to be arranged so that there would 

be enough water height above the intake to avoid air-entraining vortices. On 

the other hand any attempt to increase the depth of the intake would mean an 

increase in the cost of retaining or storage structures. Therefore estimating the 

water depths at which vortices will form is important in order to optimize the 

cost and the effectiveness and safety of these hydraulic structures.  
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1.4. HARMS OF VORTICES 

According to Knauss (1987) there are two main drawbacks of presence of 

vortices at intake structures from hydraulics point of view; vibration on 

hydromechanical equipments and harms of cavitation on pressured conveyance 

structures. The breakdown of the main difficulties arised from vortices are 

given below; 

 Increased head loss rise, 

 Losing intake discharge, 

 Losing efficiency of hydromechanical equipment due to low discharge, 

 Some troubles at hydromechanical equipment due to disturbed flow 

pattern, 

 Rigour of vibration and cavitation on hydromechanical equipment due 

to air-ingestion. 

1.5. CLASSIFICATION OF INTAKES 

As air-entraining vortices begin to occur at the free surface and reach out the 

intake, the type of the intake plays a great role at the classification of them. 

Intakes may be named regarding their reception direction and structure that 

hosts the intake. Figure 1.2 shows this classification. The critical submergence 

for horizontal intakes is generally denoted as Sc. 

 



Figuree 1.2 Classiffication of i
4 

intake structtures (Knauuss, 1987) 
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2. Relatively fast turning swirlings grow to a dimple. 

3. In type 3 vortex, vortex tail could only be seen by introducing dye 

to the vortex core. 

4. Before entraining air inside, vortices can suck in free floating trash 

to the intake. 

5. As the vortices gain strength, after the trash pulling stage, they 

capture air in bubles and carry to the intake. 

6. A full air-cored vortex forms a funnel at the free water surface and 

extents continously its tail to the intake. 
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entraining or full air core (Type 6) vortices, a hydraulic model was prepared. 

This model was able to simulate symmetrical and asymmetrical flow 

geometries by adjustable lateral walls and giving chance to imitate different 

flow conditions for calculating dimensionless parameters, like Froude number, 

by controllable discharge and 3 different horizontal intake pipe diameters. This 

study started with a literature review which is presented in Chapter 2. It is the 

Chapter 3 that includes the dimensional analysis for the model was performed 

to determine the influential dimensionless parameters on the air-entraining 

vortices for horizontal pipe intakes. The experimental setup and how the 

experiments were performed are described at Chapter 4. After this part, the 

experimental results are processed to graphs and empirical formulas for the 

critical submergence of horizontal pipe intakes and compared to previous 

studies in Chapter 5. At the end a final discussion and conclusion is given in 

Chapter 6.  
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CHAPTER 2 

 

 

2. LITERATURE SURVEY 

 

 

 

Estimating the behaviour of vortex formation has been a great source of 

attention among hydraulic society and many studies have been done via 

analytical and numerical methods. These analytical approaches include 

different intake geometries, boundaries and approach conditions creating 

different parameters. As these parameters are discussed, some of them can be 

said to have minimum or no effect on vortex formation. Customization of these 

analytical models are very difficult as per the unique conditions of the real 

cases. Theoretically vortex formation is a complex phenomena to be dealt with 

yet can be simplified by some assumptions allowing mismatching of model and 

real cases. For the sake of reliability of real cases, physical models are widely 

recommended. 

Anwar (1965, 1967 and 1968) had studies on steady vortices occuring at the 

entrance of an outlet pipe. Experiments were run inside a cylindrical tank 

having a vertical intake pipe. Consequent of these experiments revealed that if 

the radial Reynolds number ReR = Qi/νH, where Qi is the volumetric flow rate, 

H is the vertical intake submergence and ν is the kinematic viscosity of water, 

is greater than 103, effect of viscosity can be omitted. 

Gordon (1970) studied 29 running hydroelectric intakes to build a design 

criteria to avoid air entraining vortices on low head intakes. The main 

parameters were assumed as geometry of the approach flow, velocity at the 

intake, the size of the intake and the submergence. Since intake geomety differs 

from case to case, to concentrate on other parameters rather than intake 

LITERATURE SURVEY
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geometry was decided. The following formulas were derived to show the 

relation between the critical submergence and Froude number; 

ୗౙ
ୈ౟
ൌ 1.70Fr         2.1 

for symmetrical approach flow conditions and, 

ୗౙ
ୈ౟
ൌ 2.27Fr         2.2 

for asymmetrical approach flow conditions, where Sc is the critical 

submergence depth which is measured from the summit point of the intake and 

Fr is the intake Froude number ( Fr ൌ ௜ܸ ඥgDi⁄  ) 

Reddy and Pickford (1972) introduced a design criteria to prevent vortices in 

pump sumps and at horizontal intakes. They defined the critical submergence 

as a function of Froude number, Reynolds number and a wave parameter. Since 

vortex formation was a free water surface event, wave length and Reynolds 

number were neglected leaving Froude number to be the main parameter. They 

suggested a sufficient submergence having no vortex can be calculated by 

below formulation; 

Sc/Di=1+Fr         2.3 

for both hydroelectric practice and pump sumps. 

Daggett and Keulegan (1974) investigated effects of surface tension and 

viscosity on vortices and explained similarity conditions between hydraulic 

structures and their models on critical submergence, vortex shape, size and 

efficiency of the outlet structure. Two different scaled cylindrical tanks with 

various diameters of vertical outlet pipes, liquids and vane angles were used.It 

was concluded that after a certain value of Re, influence of viscosity dropped 

and the only important parameter grew as the circulation number. 
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Zeigler (1976) made a hydraulic model of Grand Coulee Third Powerplant to 

investigate vortex safety of penstock. It came out that increasing the amount of 

operating units in small discharges causes increase in vortex strength. 

Anwar et al. (1978)  studied on air-entraining vortices at horizontal 

intakes.Experimental results revealed that effect of viscous forces and surface 

tension can be ignored throughout the formulation when radial Reynolds 

number and Weber number are greater than a certain value. So, other 

parameters such as circulation number and Froude number remain in control of 

the formulation. 

Gulliver and Rindels (1983) gathered up-to-date data on intakes having vortex 

problems and presented in Figure 2.1. It can be interpreted that neither 

Gordon’s (1970) criteria nor Reddy and Pickford (1972) design criteria is quite 

successful to represent the critical case. 
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ୗౙ
ୟ
ൌ 3.17Fr െ 0.001        2.5 

for non-symmetrical approach flow where a stands for intake gate height. 

Equation 2.3 was compared with Gordons’ formula and it was seen that 

Gordon formula gives lower submergences than the required submergence. 

That’s why, Gordons’ formula was suggested to be multiplied with a larger 

coefficient or a model study of large projects should be conducted. 

Yıldırım et al. (2000) studied how the flow boundary effects the critical 

submergence. They carried out experiments using a horizontal intake pipe 

connected to a rectangular flume having a dead-end wall. They found out that 

the clearance between the intake pipe and dead-end wall plays a key role in 

vortex formation and continuity.  

Ahmad et al (2008) were interested in determining critical submergence for 90° 

horizontal intake in an open channel flow. By using critical spherical sink 

surface theories and potential flow, an analytical equation was derived. This 

equation was compared to model experiment results but failed to comply. This 

non-compliance was discussed over large boundary effect and ignorance of 

viscosity, surface tension and circulation effects from the analytical equation. 

Gürbüzdal (2009) carried out a series of experiments over four different 

diameters of horizontal intake pipes for possible scale effects on vortex 

formation. Froude number, Reynolds number and side wall clearance were 

chosen as the important dimensionless parameters and an empirical formula, 

Equation 2.6, was derived from the experimental results. 

ୗౙ
ୈ౟
ൌ Fr଴.଼଺ହ ቀ ୠ

ୈ౟
ቁ
ି଴.ହ଺ହ

Re଴.଴ସଶସ      2.6 

Where b is the side wall clearance measured from the centre of the intake. 

Equation 2.6 is valid for 0.51≤Fr≤4.03, 1.597≤b/Di≤5.147 and 
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2.96x104≤Re≤2.89x105 ( Re = ௜ܸܦ௜ߩ ⁄ߤ  ). It was observed that Sc/Di becomes 

independent of b/Di for b/Di≥ 6 

Yıldırım et al (2009) concentrated on how the positions of two vertical intakes 

effect the critical submergence of the system. The experiments showed the 

critical submergence of the dual intakes is greater than a single intake pipe 

because, with dual intakes, there is more disturbance which triggers vortices. 

Taştan and Yıldırım (2010) focused on the effects of dimensionless parameters 

and, boundary friction on air-entraining vortices and the critical submergence 

of a vertically directed intake for the cases of no-circulation imposed cross-

flow and still water. They found that for cross-flow, there are certain limiting 

values of Fr, Re, and We ( We = ߩ ௜ܸ
ଶܦ௜ ⁄ߪ  ) and beyond these values Sc is 

independent of them. 

Baykara (2013) studied on air-entraining vortices for what hydraulic conditions 

cause them and what are the precautions to prevent or mitigate the effects by 

testing anti-vortex devices. Some different horizontal intake pipe diameters and 

symmetric side wall clearences were tested to gather dimensionless flow 

parameters like Fr, Re and We into an equation for critical submergence. 

Moreover, anti-vortex plates were tested for some discharge values to show the 

relation of plate dimensions and vortex occurance. If the experiments are 

reviewed in detail, it could be seen that six different intake pipes having 

diameters 30, 25, 19.4, 14.4, 10, 5 cm were used. The setup had six different 

symmetrical side wall clearances 2b= 40, 60, 80, 100, 120 and 140cm. These 

pipes yield 2b/Di values varying from 1.33 to 16.00. The data set was divided 

into three groups as maximum, minimum and intermediate values of Sc/Di. 

Also a region of data that shows no dependency of Sc/Di on 2b/Di was 

described. The empirical equations presented in that study are as follows; 

For maximum values of Sc/Di, 1.33≤2b/Di≤4.00,  
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ୗౙ
ୈ౟
ൌ Frହ.଻ଽଶReଷ.ଶସ଺Weିସ.ଷଷଷ ቀ2b

Di
ቁ
ିଷ.ସ଼ଽ

     2.7 

For minimum values of Sc/Di, 2.00≤2b/Di≤8.00, 

ୗౙ
ୈ౟
ൌ Fr଴.଴ଷଽReି଴.ଷହ଻Weି଴.ସଶହ ቀ2b

Di
ቁ
ି଴.଺଴ଶ

     2.8 

For intermediate values of Sc/Di, 3.33≤2b/Di≤12.00, 

ୗౙ
ୈ౟
ൌ Fr଴.ଷଷ଺Reି଴.ଶଶଽWe଴.ସ଴ଵ ቀ2b

Di
ቁ
ି଴.ଶ଺ଵ

     2.9 

After removing the parameters of Re, We, 2b/Di Equation 2.9 is given as 

below, 

ୗౙ
ୈ౟
ൌ Fr଴.଺ଷଽ         2.10 

In the zone of the data where Sc/Di is independent of 2b/Di, the general form of 

Sc/Di is expressed as below, 

ୗౙ
ୈ౟
ൌ Fr଴.ଷଶସReି଴.ଵ଻଺We଴.ଶ଼ଶ       2.11 

After ignoring the terms of Re and We, Equation 2.11 is reduced to the form 

given in Equation 2.12. 

ୗౙ
ୈ౟
ൌ 1.278	Fr଴.ହହ଼        2.12 
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CHAPTER 3 

 

 

3. MODELLING OF AIR-ENTRAINING VORTICES 

 

 

 

3.1. INTRODUCTION 

Air-entraining vortices are results of some complex interaction among intake 

zone geometry, flow velocity and liquid properties. As a result of complex and 

hard to solve flow conditions of intake region, the critical submergence of 

intake structures are generally determined either by past experience or model 

studies.  

3.2. DIMENSIONLESS PARAMETERS 

In order to acquire the dimensionless parameters which dominate the 

phenomenon, dimensional analysis is applied. The variables involved into the 

phenomenon can be grouped as below: 

Fluid Properties: Density of the fluid (ρ), dynamic viscosity of the fluid (μ), 

and surface tension of the fluid (σ). 

Flow Properties: Average velocity of the flow at the intake pipe (Vi), average 

circulation imposed to flow (Γ), and gravitational acceleration (g). 

Geometric Properties of the Intake Zone: Diameter of the intake pipe (Di), the 

distance between the lowest point of the intake and the reservoir bottom (c), 

left-side (with respect to flow direction)-wall distance of the reservoir to the 

intake center line (b1) and right-side-wall distance of the reservoir to the intake 

center line (b2). 

MODELLING OF AIR-ENTRAINING VORTICES 
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Fr = Intake Froude number =
Vi

ඥgDi

	

We = Intake Weber number =
ρVi

2Di

σ
	

Ko = Intake Kolf number =
Γ

ViDi
	

Since the experimental setup does not have bottom clearance, i.e. c=0, the 

dimensionless term containing c can be ignored. The terms containing b1 and 

b2 are preferred to be combined as (b1+b2)/Di and |(b1-b2)|/Di for symmetrical 

and asymmetrical approach flow conditions, respectively. After these changes, 

the Equation 3.2 can be re-aranged as below;  

Sc

Di
 = f2 ቀ

ሺ௕భା௕మሻ

Di
	or	 |ሺ௕భି௕మሻ|

Di
, Re, Fr, We, Koቁ    3.3 

For complete similarity, the dimensionless parameters related to the geometric 

properties would be the same for both the model and the prototype. On the 

contrary, the expecting equality of Sc/Di for both the model and the prototype 

would be wrong, because all of the related dimensionless parameters Fr, Re, 

We, and Ko would not be equal at the same time for these two cases. 

Therefore, the following evaluation is made to present the importance of these 

parameters and give a chance to the designer to decide upon the suitable 

modelling criteria for his study. 

3.2.1. Ignoring Kolf Number 

The amount of discharge, intake type and approach geometry have effect on 

circulation. The dimensionless parameter Kolf number which represents the 

effects of circulation in Equation 3.1 can be omitted because all geometric and 

flow parameters are already considered in the same equation and there is no 

interference in the system to change the circulation. After the omission of Ko, 

the Equation 3.3 becomes; 
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Sc

Di
 = f2 ቀ

ሺ௕భା௕మሻ

Di
, Re, Fr, Weቁ       3.4 

for symmetrical approach flow conditions and, 

Sc

Di
 = f2 ቀ

|ሺ௕భି௕మሻ|

Di
, Re, Fr, Weቁ      3.5 

for asymmetrical approach flow conditions. 

3.2.2. Dominance of Weber Number  

According to the past studies, vortices composed of weak dimples are 

connected to the Weber number. For instance, Anwar et al. (1978) preferred 

not to consider surface tension effect as it loses its dominance with respect to 

We number when We number exceeds a certain value. In this study, We 

number is seen effective over air-entraining vortices therefore it is included in 

the analyses. 

3.2.3. Relation of Reynolds Number 

Some researchers like Daggett and Keulegan (1974) and Anwar et al. (1978), 

tried to propose limit values for Re number that makes the relationship between 

Re number and vortex formation meaningful. This study also aims to show this 

relation so Re number term stays in the equation.  

3.2.4. Influence of Froude Number 

Up to the present, the Froude number is held the most responsible for 

influencing the vortex formation among the other dimensionless parameters. 

Since vortex is formed on free water surface and dominated by gravity, the 

Froude number should be the main influential dimensionless parameter. 

Consequently, any model study to be performed, should be constructed on 

Froude similitude. Therefore, the approach of this study followed this base and 

the model study was performed on Froude similitude. 
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CHAPTER 4 

 

 

4. EXPERIMENTAL SETUP AND PROCEDURE 

 

 

 

4.1. EXPERIMENTAL SETUP 

Since this study considers horizontal intake conditions, a reservoir should be 

constructed. For this reason, a rectangular concrete reservoir which can be seen 

between Figure 4.1 and Figure 4.3, having the length, width and depth of 

3.10m x 3.10m x 2.20m, respectively, was constructed. This reservoir has a 

dead volume, to reduce the turbulance of the incoming water. A screen made of 

bricks was installed at the rear side of the active volume from which water is 

directed towards the intake structure so as to maintain uniform flow through 

the water way. The plexiglass plate that had the interference with intake pipe 

was extended out from the reservoir by 0.30m to get good visual observations 

of the vortices. In order to imitate different intake geometries, portable 

plexiglass side walls were deployed inside the active volume. Plexiglass intake 

pipes having the diameters of 25.0cm, 19.4cm, 14.4cm were installed to the 

setup. While installing these pipes, a great dilligence was shown to get zero 

bottom clearence and the same centerline for each pipe to be tested. 

As the experiment was dominated by gravity, to control the discharge of the 

flow, a valve was connected at the end of the intake pipe. After the valve, a 

steel pipe allows the water to flow into an open channel which ends with a 

rectangular sharp-crested weir. Discharge measurement was done by a needle 

gauge used for recording the flow depth before the weir and calibrated by an 

acoustic flowmeter installed on the intake pipe. The required constant water 

head was supplied from a large elevated tank. Additionally, a small diameter 

EXPERIMENTAL SETUP AND PROCEDURE 
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4.2. METHODOLOGY 

The experimental precedure was very like the one in Baykara (2013) except the 

trials of asymmetrical lateral wall distances. Here again the intake pipes having 

diameters 25cm, 19.4cm and 14.4 cm were installed. For every diameter, 3 

symmetrical and 3 asymmetrical lateral wall clearences were tested. Moreover, 

at least 5 to 10 different discharge values per every clearence were generated to 

see the critical submergence of that parameter combination. Since the water 

level had a limit (height of the reservoir) and the valve allowed a specific flow 

rate for a specific water level in the reservoir, the set of the experiments were 

limited between 5 to 10 (with 2 to 4 lt/s increments) discharge values. The 

main objective for these test runs was to obtain the certain depths when air-

entraining vortices were being formed. In Appendix results of the experiments 

and the correlated dimensionless parameters are presented. 

After getting the constant head from the elevated reservoir, every test run 

begun with filling the dead volume of the model reservoir. As soon as the 

water level filled up the active volume and reached a certain level, by opening 

the main valve and fine tuning from the drainage valve, the water level is 

allowed to drop with a constant speed. The water that left the pipe poured out 

to the pool and carried to the open channel where the discharge values were 

read. In order to maintain a constant flow rate, by monitoring via an acoustic 

flowmeter, the main valve was opened step by step while the water level was 

decreasing.  

During the water level dropping, any symptom of vortex like swirls, surface 

disturbance, dimples and eventually vortices were observed. In case of any 

symptoms, the water level was fixed or rate of fall was slowed down to observe 

the air-entraining vortex at least two times at the same depth. Sometimes air-

entraining vortices formed without these symptoms. In those cases the water 

level again was fixed to the exact point and water surface was observed under 

steady flow conditions for a considerable time, 5-10 minutes with caution. 
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Soon after detecting an air-entraining vortex two times at the same depth, again 

over a considerable period, this critical depth and the discharge calculated from 

the water height at the rectangular sharp crested weir, were noted down and 

passed to the next discharge. This single routine was performed for every 

intake pipe diameter, for every lateral distance combination and for every flow 

rate that the system allowed. 

4.3. OBSERVATIONS 

The critical submergence values were recorded for only the –full air core- air-

entraining vortices. As a result of this every vortex symptoms classified by 

ARL was observed. These symptoms occurred in this order; surface 

disturbance, surface swirl, surface dimple, swirl throughout water column, 

vortex pulling trash, vortex pulling air bubbles and finally full air core vortex. 

Not all of the vortices were noticeable for long time. However, after passing 

the critical depth, all of the vortices gained strength and occurance duration. 

Some of the pictures taken during experiments are shown between Figure 4.5 

and Figure 4.9. 
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CHAPTER 5 

 

 

5. ARGUMENTS ON THE EXPERIMENTAL RESULTS 

 

 

 

5.1. PREAMBLE 

As Equations 3.4 and Equation 3.5 are recalled; Sc/Di was said to be related to 

the dimensionless parameters of (b1+b2)/Di or |(b1-b2)|/Di, Re, Fr, and We. 

During the experiments, the necessary data like side wall clearances, pipe 

diameter, critical submergence, discharge and flow velocity were recorded in 

order to calculate the aforementioned dimensionless parameters for every set. 

After that, the graphs are preferred to be presented in two separate sub-groups 

as symmetrical and asymmetrical lateral wall clerances. 

In addition, the empirical equations were obtained by regression analysis 

applied to these two separate sub-groups and followed by comparison to 

related previous studies. Summary of the symmetrical and asymmetrical 

experimental data is presented in Table 5.1 and Table 5.2, respectively. 

Addition to this, the details are given in Appendix  

  

ARGUMENTS ON THE EXPERIMENTAL RESULTS 



30 

Table 5.1 Hydraulic and geometric parameters tested on symmetrical flow 

conditions 

Di  
(cm) 

 Range  of  # 
of 

Obs.  
Qi 

(lt/s) 
Sc/Di Fr Re We 

|(b1-b2)| 
/Di 

(b1+b2) 
/Di 

25.0 
49.11 

 ~  
19.02 

1.040 
~ 

0.132 

0.639  
~  

0.248 

249140  
~  

96471 

3432  
~ 

515 
0 

3.200 
~  

1.600 
22 

19.4 
49.99 

~  
15.56 

2.933 
~ 

0.232 

1.226 
 ~  

0.382 

326782  
~  

101745 

7608 
~ 

738 
0 

4.124  
~  

2.062 
30 

14.4 
27.33 

 ~  
9.39 

1.528 
~ 

0.452 

1.412 
 ~ 

 0.485 

240712 
 ~  

82667 

5561  
~  

656 
0 

5.556 
~  

2.778 
20 

 

Table 5.2 Hydraulic and geometric parameters tested on asymmetrical flow 

conditions 

Di  
(cm) 

 Range  of  # 
of 

Obs.  
Qi 

(lt/s) 
Sc/Di Fr Re We 

|(b1-b2)| 
/Di 

(b1+b2) 
/Di 

25.0 
48.25 

 ~  
18.43 

0.652 
~ 

0.188 

0.628  
~  

0.240 

244732  
~  

93466 

3311  
~ 

483 

0.800 
~  

0.400 

2.800 
~  

2.000 
21 

19.4 
42.66 

~  
13.93 

1.557 
~ 

0.263 
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1. Sc/Di values show increasing trend with increasing values of Fr, Re and 

We for a given intake diameter. 

2. As the pipe diameter increases; at Di=19.4cm and 25.0cm, the rate of 

change of Sc/Di for the narrowest wall clearance; (b1+b2)=40cm, with 

the related parameters; Fr, Re, and We, increases with increasing Fr, 

Re, and We. 

3. The curve families of (b1+b2)/Di generally coincide with each other at 

intermediate values of Fr, Re, and We tested, giving no clear relation. 

5.2.2. Comparison of the Experimental Results with those of Baykara 

(2013) 

Baykara (2013) investigated the formation of vortices on a similar model 

having more number of pipe diameters and side wall clearances. The outcomes 

of those experiments and the present ones are plotted and compared in between 

Figure 5.10 and Figure 5.18. In these figures units of b1 and b2 are in cm. 

In the model used by Baykara (2013), there was a pump in the experimental 

setup by which the flows of high Froude numbers were achieved. In the present 

model there is no pump in the system and therefore, the flows of lower Froude 

numbers are provided. Since in practice mostly the flows of low Froude 

numbers are used in intake structures, the aim of this analysis is to provide 

more Sc/Di data at mainly low Froude numbers and to see the general trends of 

the data of Sc/Di obtained from the present and Baykara’s (2013) study as a 

function of Fr, Re and We. 
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number of about 0.63. In this case there is not a zone of Fr where there are 

different values of Sc/Di for a given Fr. From all these assesments it can be 

stated that only at the narrowest wall clearance; b1+b2=40cm, at low Froude 

numbers up to a certain value as a function of intake diameter the variation of 

Sc/Di with Fr, Re and We follow a similar trend as the other wall clearances 

tested. At much larger Froude numbers, Sc/Di values attain very large values 

which are not suggested in practical applications. For other wall clearances 

tested the data of the present study and those of Baykara (2013) are compatible. 

One can also state that as Fr, Re and We approach to their largest values tested, 

the rate of change of Sc/Di with these parameters decreases.  

5.2.3. Empirical Equations 

5.2.3.1. Application of Regression Analysis to the Present Data 

Refering to Equation 3.4 one can write the following equation for the 

dimensionless critical submergence: 

ୗౙ
ୈ౟
ൌ FrୡଵReୡଶWeୡଷ ቀሺ௕భା௕మሻ

Di
ቁ
ୡସ

      5.1 

The gathered symmetrical data from the experiments were used in a multiple 

variable regression analysis performed by the computer program named 

DataFit (Oakdale 2012). Consequently, the constants were found as follows. 

c1= 0.960 

c2= -0.173 

c3= 0.271 

c4= 0.029 

with a correlation coefficient of R2=0.809 
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As these coefficients are implemented in Equation 5.1, it takes the following 

form; 

ୗౙ
ୈ౟
ൌ Fr଴.ଽ଺଴Reି଴.ଵ଻ଷWe଴.ଶ଻ଵ ቀሺ௕భା௕మሻ

Di
ቁ
଴.଴ଶଽ

     5.2 

(valid for the values of Fr, Re, We and (b1+b2) /Di which are within the ranges 

mentioned in Table 5.1) 

In order to demonstrate the correlation of the function given above, the plot of 

the measured and calculated Sc/Di values with respect to each other has been 

shown in Figure 5.19. From this figure and the one which shows the variation 

of “number of data” with the corresponding “upper limit values of error 

percentage”, Figure 5.20, it can be stated that except for a few data, the 

calculated values of the related dimensionless parameter stay between ± 35 % 

error lines. In these figures units of Di, b1 and b2 are in cm. 
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ୗౙ
ୈ౟
ൌ Fr଴.ଽଽଷReି଴.ଵହଷWe଴.ଶସ଻       5.3 

with R2 = 0.809 

(valid for the values of Fr, Re and We which are within the ranges mentioned 

in Table 5.1) 

ୗౙ
ୈ౟
ൌ Frଵ.ଶଷ଻Re଴.଴ଵଷ        5.4 

with R2 = 0.805 and 

(valid for the values of Fr and Re which are within the ranges mentioned in 

Table 5.1) 

ୗౙ
ୈ౟
ൌ Frଵ.଴ହ଻         5.5 

with R2 = 0.767. 

(valid for the values of Fr between 0.25 to 1.41) 

Figure 5.21 to Figure 5.26 show the plot of measured Sc/Di values with those 

calculated from the above equations and the variation of “number of data” with 

the corresponding “upper limit values of error percentages”. These figures 

prevail that as the number of parameters presented in Equation 5.2 is omitted, 

the error percentages of the related equations slightly changes. In these figures 

units of Di, b1 and b2 are in cm. 
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ୗౙ
ୈ౟
ൌ FrୡଵReୡଶWeୡଷ ቀ|ሺ௕భି௕మ|ሻ

Di
ቁ
ୡସ

      5.6 

The data of Sc/Di and related dimensionless parameters obtained from the 

experiments conducted with asymmetrical side walls were used in a multiple 

variable regression analysis performed by the computer program named 

DataFit (Oakdale 2012). Consequently, the constants given in Equation 5.6 

were found as follows. 

c1= 1.162 

c2= 0.069 

c3= -0.103 

c4= -0.210 

with a correlation coefficient of R2 = 0.914 

As these coefficients are substituted in Equation 5.6, it takes the following 

form; 

ୗౙ
ୈ౟
ൌ Frଵ.ଵ଺ଶRe଴.଴଺ଽWeି଴.ଵ଴ଷ ቀ|ሺ௕భି௕మሻ|

Di
ቁ
ି଴.ଶଵ଴

    5.7 

(valid for the values of Fr, Re, We and |(b1-b2)|/Di which are within the ranges 

mentioned in Table 5.2) 

In order to demonstrate the correlation of the function, the plot of the measured 

and calculated Sc/Di values with respect to each other has been shown in Figure 

5.36. From this figure and the one which shows the variation of “number of 

data” with the corresponding “upper limit values of error percentages”, Figure 

5.37, it can be concluded that except just a few data, the calculated Sc/Di values 

stay between  ± 25 % error lines. In these figures units of Di, b1 and b2 are in 

cm. 
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ୗౙ
ୈ౟
ൌ Fr଴.଼ଷହReି଴.ଵ଴ସWe଴.ଵ଺ଶ       5.8 

with R2 = 0.892 for the case. 

(valid for the values of Fr, Re and We which are within the ranges mentioned 

in Table 5.2) 

ୗౙ
ୈ౟
ൌ Fr଴.ଽଽଽRe଴.଴଴ହ        5.9 

with R2 = 0.889 for the case. 

(valid for the values of Fr and Re which are within the ranges mentioned in 

Table 5.2) 

ୗౙ
ୈ౟
ൌ Fr଴.ଽଷଷ         5.10 

with R2 = 0.880 for the case. 

(valid for the values of Fr between 0.24 to 1.34) 

Figure 5.38 to Figure 5.43 show the plot of measured Sc/Di values with those 

calculated from above equations and the variation of “number of data” with the 

coresponding “upper limit of error percentages”. These figures prevail that as 

the number of the parameters to be omitted from Equation 5.7 is increased, the 

error percentages of the related equations do not change. In these figures units 

of Di, b1 and b2 are in cm. 
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5.4. COMPARISON OF THE PRESENT EMPIRICAL EQUATIONS 

WITH THOSE SIMILAR ONES IN LITERATURE 

5.4.1. Equation 5.2 versus Gürbüzdal’s (2009) Relation  

Gürbüzdal (2009) investigated the formation of air-entraining vortices in a 

horizontal intake model under symmetrical approach flow conditions with four 

pipes of different diameters. He presented an empirical equation (Equation 2.6) 

for Sc/Di as a function of Fr, b/Di and Re. In Equation 2.6, b denotes the side 

wall clearance measured from centerline of the intake pipe to one of the side 

walls in symmetrical approach flow conditions, and equivalent to (b1+b2)/2Di 

in this study. 

To show the correlation between Sc/Di values to be obtained from Equation 2.6 

and Equation 5.2, using the Fr, Re, We, and b/Di values of the experimental 

data provided from this study, the corresponding Sc/Di values were determined 

and plotted with respect to each other in Figure 5.44. The predicted Sc/Di 

values lie between ± 30 %  error lines. These two equations can be considered 

compatible with each other. In this figure all units are in cm. 
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the above mentioned investigators and those given in Equation 5.5 and 5.10 in 

this study were shown. 

Gordon’s (1970) equations: 

ୗౙ
ୈ౟
ൌ 1.70Fr          5.11 

for symmetrical approach flow conditions (Equation 2.1), 

ୗౙ
ୈ౟
ൌ 2.27Fr          5.12 

for asymmetrical approach flow conditions (Equation 2.2) 

Reddy and Pickford’s (1972) equation (Equation 2.3): 

ୗౙ
ୈ౟
ൌ 1 ൅ Fr          5.13 

Baykara’s (2013) equations: 

ୗౙ
ୈ౟
ൌ Fr଴.଺ଷଽ         5.14 

for symmetrical approach flow conditions (Equation 2.10), 

ୗౙ
ୈ౟
ൌ 1.278	Fr଴.ହହ଼        5.15 

which is valid for wide side wall clearances (Equation 2.12) under symmetrical 

approach flow conditions. 

The Present Study: 

ୗౙ
ୈ౟
ൌ Frଵ.଴ହ଻         5.16 

for symmetrical approach flow conditions (Equation 5.5) and 
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ୗౙ
ୈ౟
ൌ Fr଴.ଽଷଷ         5.17 

for asymmetrical approach flow conditions (Equation 5.10) 

Since most of the data used in plotting the curves given in Figure 5.46 based on 

the prototype and large scale model studies, except Baykara’s (2013) data, one 

should not expect good correlations among all those curves given in the figure. 

The curves of the asymmetrical flows of the present study lies just above the 

one of the symmetrical flows as expected. The relations of the present data and 

Baykara’s (2013) equation (Equation 5.14) underestimate Sc/Di values 

compared to the other ones. The reason of this is neglecting the other 

dimensionless parameters; Re, We and (b1+b2)/Di from the original equations 

of Sc/Di and having the data of small scale models. Whereas, Baykara’s (2013) 

second equation, Equation 5.15, shows a good correlation with Gordon’s 

relation for Froude numbers upto about 0.50~0.60. Because, Equation 5.15 was 

derived by using the data of the experiments in which the side wall clearances 

were large. Due to the strong scale effect, as stated by Baykara (2013), the 

Sc/Di values obtained from the model studies must be multiplied by correction 

coefficients as a function of the model length scale. To provide the requested 

correction coefficients for known model length scales, more experiments 

should be conducted in models of large length scales. In this figure all units are 

in cm. 



Figure 5.46 Plot of Fr versus 

73

Sc/Di for di

3 

fferent emppirical equattions in liter

 

 

rature 



74 

 

   



75 

CHAPTER 6 

 

 

6. CONCLUSIONS AND RECOMMENDATIONS 

 

 

 

Within the scope of this study the formation of air-entraining vortices in 

horizontal intakes were experimentally investigated for both symmetrical and 

asymmetrical approach flow conditions. Three pipes of different diameters 

were tested and empircal equations for the dimensionless critical submergence 

depth, Sc/Di, were derived as a function of the related dimensionless 

parameters. From this study the following conclusions can be drawn: 

1. For the intake pipes of known diameters, Sc/Di values show an 

increasing trend with increasing values of Fr, Re and We for both 

symmetrical and asymmetrical approach flow conditions. 

2. Empirical equations for Sc/Di were derived as a function of Fr, Re, We, 

(b1+b2)/Di (for smmetrical approach flow conditions) and |(b1-b2)|/Di 

(for asymmetrical approach flow conditions) with high correlation 

coefficients. 

3. Assymetrical approach flow conditions result in slightly larger 

dimensionless critical submergence depths for the ranges of parameters 

tested in this study. 

4. The removal of some of the dimensionless terms; such as Re, We, 

(b1+b2)/Di or |(b1-b2)|/Di from the original equations of Sc/Di does not 

affect the values of Sc/Di significantly. 

CONCLUSIONS AND RECOMMENDATIONS 
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5. The relations drived for Sc/Di from this study cannot be directly used to 

determine the corresponding prototype values of Sc/Di for a given 

model length scale. 

The following recommendations can be made for future studies: 

1. Using more number of pipes at various diameters, the similar 

experiments should be repeated to get more generalized relations for 

Sc/Di 

2. Large scale model studies of prototype intakes should be made to 

determine the scale effect correction coefficients of Sc/Di values. After 

that, one can easily convert the Sc/Di values to be obtained from model 

studies to prototype values. 
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