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ABSTRACT 

PARALLEL SPARSE AND BANDED MATRIX – MULTIPLE VECTOR S 
MULTIPLICATION 

 
 
 
 

Cincioğlu, Meftun 
M.S., Department of Computer Engineering 

Supervisor: Assoc. Prof. Dr. Murat Manguoğlu 
August 2014, 72 pages 

 
 
 

In this thesis, performance of two important primitives, namely sparse and banded 
matrix – multiple vectors multiplication are studied. 

Sparse matrix – multiple vectors multiplication (SpMM) is one of the basic and most 
time consuming operations in many problems in science and engineering. Hence, any 
improvement in the performance of SpMM operations has a great impact on the wide 
spectrum of problems. One of the objectives of this thesis is to improve the 
performance of parallel SpMM operation by reducing indirect memory access, 
improving communication pattern, and load balancing. For this purpose, partitioning 
tools and permutation algorithms are used.  

Banded matrix – multiple vectors multiplication is used as a primitive operation in 
iterative solution of banded linear systems or in other applications. An improved 
method is presented that has an advantage especially for banded matrices having small 
bandwidth and multiplied by large number of vectors. 

All these numerical experiments are performed in two different computing platforms. 

Keywords: Banded matrix, sparse matrix, multiple, vector, multiplication 
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ÖZ 

PARALEL SEYREK VE BANT MATR İS – ÇOKLU VEKTÖR ÇARPIMI 
 
 
 
 

Cincioğlu, Meftun 
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Murat Manguoğlu 
Ağustos 2014, 72 sayfa 

 
 
 

Bu tezde iki önemli işlemin, seyrek ve bant matris – çoklu vektör çarpımının, 
performansı incelenmiştir. 

Seyrek matris – çoklu vektör çarpımı (SpMM), bilimde ve mühendislikteki çoğu 
problem için temel ve çok zaman alan işlemlerden biridir. Dolayısıyla, SpMM 
işleminin performansını etkileyecek herhangi bir iyileştirme, çok çeşitli alanlardaki 
problemlerin çözümünde büyük etki yaratmaktadır. Bu tezin amaçlarından biri, dolaylı 
bellek erişimini azaltarak, iletişim örüntülerini geliştirerek ve yük dengeleyerek 
paralel SpMM işleminin performansını arttırmaktır. Bu yüzden bölümlendirme 
araçları ve yer değiştirme algoritmaları kullanılmıştır. 

Bant matris – çoklu vektör çarpımı, bantlı çizgisel sistemlerin dolaylı yöntemler ile 
çözümünde veya diğer uygulamalarda temel işlem olarak kullanılmaktadır. Özellikle 
bant genişliği düşük bant matrislerin, çok sayıda vektör ile çarpılmasında avantajları 
olan yeni bir yöntem sunulmuştur. 

Tüm bu sayısal deneyler, iki farklı bilgisayar ortamında gerçekleştirilmi ştir. 

Anahtar Kelimeler: Bant matris, seyrek matris, çoklu, vektör, çarpma 
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CHAPTER 1 

1 INTRODUCTION 

In iterative solution of banded linear systems, banded matrix – vector multiplication is 

a crucial primitive. In the first part of this thesis, an improved algorithm is presented 

that has advantage especially for banded matrices that are dense within the band with 

a small bandwidth and multiplied by large number of vectors. 

Sparse matrix – vector multiplication (SpMV) and sparse matrix – multiple vectors 

multiplication (SpMM) are another two important primitives, largely used in iterative 

linear system solvers and sparse eigenvalue solvers. Therefore, parallel scalabilities of 

SpMV and SpMM operations are crucial. 

SpMV operation is defined as y ← α A x + β y, where A is a sparse matrix, x and y are 

dense vectors. For simplicity α is assumed one and β is assumed zero. For each nonzero 

in matrix A, aij accessed only once, on the other hand, elements of x and y vectors are 

accessed multiple times. Thus, optimization of reusability of vector elements has a 

significant role in improving the cache utilization. 

In distributed memory environments, SpMV operation can be performed concurrently 

within processes by distributing rows or columns (or both) of a sparse matrix A, input 

vector x and output vector y to processes. Each process multiplies nonzeros in A with 

input vector x and partially obtains the result in y. In order to provide efficient 

parallelization and to reduce communication cost between processes, distribution of 

nonzero elements has a significant role. Another important objective is balancing the 

computation load. In the second part of the thesis, partitioning tools and permutation 

algorithms are compared within different computing platforms and the matrices from 

different application areas.  
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The remaining of this thesis is arranged as follows. In Chapter 2, background 

information is given and related work is reviewed. In Chapter 3, the methods used in 

banded matrix – multiple vectors multiplication and sparse matrix – multiple vectors 

multiplication are proposed and compared with highly optimized routines in existing 

libraries. In Chapter 4, computing platform and programming environment is given. 

Moreover, numerical experiments are presented. Conclusion and future work is stated 

in Chapter 5. The complete measurements of numerical experiments are presented in 

the Appendices. 
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CHAPTER 2 

2 BACKGROUND AND RELATED WORK 

2.1 Banded Matrix – Multiple Vectors Multiplication 

A banded matrix is a matrix in which the non-zero elements are located around the 

main diagonal, i.e., for all elements outside a banded area are zero. In a formal way, 

take an n × n matrix A, aij is the element of ith row and jth column; aij = 0 if i > j + ml 

or j > i + mu, where ml, mu ≥ 0. The lower and upper bandwidth are denoted by ml and 

mu, respectively. In Figure 2.1, a 9 × 9 square and banded matrix having the same 

lower and upper bandwidth (ml = mu = 2) is given. The bandwidth of the matrix is ml 

+ mu + 1; for the sample matrix below, it has a value of five. 

 

Figure 2.1 A 9 × 9 square and banded matrix 
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Banded matrix multiplication is needed in Invariant Subspace Decomposition 

Algorithm (ISDA) [1]. Even though, ISDA uses multiplication of banded matrices, it 

can be formed as banded matrix – multiple vectors multiplication. Banded matrix – 

vector multiplication is used as a primitive in solving banded linear systems and 

eigenvalue problems. These systems arise in the discretization of several partial and 

ordinary differential equations [2]–[4], computational fluid dynamics [5] and 

computational nano-electronics [6]. 

Tsao and Turnbull compared several methods for multiplying banded matrices. They 

stated that good results could be achieved for matrices having bandwidth smaller than 

the order of matrix [7]. Remon and Quintana-Orti stated that in existing Basic Linear 

Algebra Subprograms (BLAS) libraries, there is no BLAS Level 3 routines for banded 

matrices. In fact, BLAS Level 2 routines do not sufficiently optimize the operations 

on banded matrices [8]. There are two routines in Intel Math Kernel Library (MKL) 

[9] that can be used for banded matrix – multiple vectors multiplication. The first one 

is xCSRMM, a sparse BLAS Level 3 routine, suits for SpMM. The second one is 

xGBMV, a BLAS Level 2 routine, suits for banded matrix – vector multiplication. 

Using xGBMV multiple times for each vector appears to be more appropriate than 

using former since the matrix is banded and not sparse. Remon and Quintana-Orti also 

stated that the performance of the banded BLAS Level 2 routine is highly dependent 

on the bandwidth and matrix size [8]. 

Spike [10], a parallel environment for solving banded linear systems, has banded 

primitives. Polizzi splits banded matrix into square dense blocks and triangular 

matrices. The method used for banded matrix – matrix multiplication in Spike is 

DSBMM. In this thesis, an improved version of it, named DSBMM2 is developed. The 

algorithm and results are presented in Section 3.1. 

2.2 Sparse Matrix – Multiple Vectors Multiplication 

SpMV operation is defined as y ← α A x + β y, where A is an n × n sparse matrix, x 

and y are dense vectors of length n. For simplicity α is assumed one and β is assumed 

zero. For each nonzero in A, aij accessed only once, on the other hand, elements of x 
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and y are accessed multiple times. Moreover, elements of A and y are accessed 

contiguously but there is a random access to elements of vector x. Thus, reusability of 

vector elements should be optimized to increase utilization. This optimization has been 

well studied before, see [11]–[14] for example. 

Sparse matrix – multiple vectors multiplication (can also be defined as sparse matrix 

– general matrix multiplication) computes a set of dense output vectors Y as a product 

of a sparse matrix A and a set of dense input vectors X, can be shown as, 

 Y ← α A X + β Y ( 1 ) 

For simplicity, it is considered that α is one and β is zero. SpMM is used when solving 

a blocked linear system with multiple right-hand sides [15], and in blocked eigenvalue 

algorithms, such as block Lanczos and block Arnoldi methods [16]–[18]. 

If matrix A is multiplied with only one vector, elements of A are accessed only once. 

In this thesis, there are multiple vectors, eventually, reusability of matrix elements are 

needed to be well considered as well. Im, Yelick and Vuduck showed that in sparse 

matrix – multiple vectors multiplication, reuse of matrix elements in cache, which is 

not possible with a single vector, provides large opportunities for performance gains, 

such as storing ith row of all vectors contiguously [19]. This optimization proposed in 

[19] was implemented by looping across the fixed number of vectors as fully unrolled. 

In this thesis, it is implemented without unrolling and looping. The ith row of all vectors 

are multiplied with nonzeros in matrix as a block. Block size is equal to the number of 

vectors. 

Sparse algebra kernels have low processor utilization, typically in the range of 10 - 

20% of processor peak [20]. One of the reason for the low utilization is that the amount 

of computational power is increasing with a higher rate than the rate of increase of 

memory bandwidth [21]. This difference is stated as “a memory bandwidth starved 

multicore world” by Williams [22]. 

The low utilization could be improved by lowering indexing overheads of matrix A. In 

order to lower the overheads associated with storing and accessing elements of sparse 
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matrices, Kannan introduced a blocked sparse format, called mapped blocked row 

sparse format that can be used in sequential SpMV [21]. Pinar and Heath proposed 

packing all the nonzeros in contiguous locations into a block, named blocked 

compressed row storage format and compared with 1 × 2 blocks [14]. 

Another option to lowering indexing overhead is register blocking. Geus and Röllin 

used fixed size small dense blocks in sequential SpMV [12]. Toledo proposed handling 

the 1 × 2 blocks of a matrix separately [13]. Im, Yelick and Vuduck used rectangular 

register blocking in different platforms. They conclude that a small change in block 

size can make a large difference in performance. However the reason of it is not clear, 

they stated that compiler and memory structure are important factors [19]. Generally, 

in all previous studies about register blocking optimization, it is the common outcome 

that machine specific tuning is worthy. 

To balance the workload of parallel SpMM operation, matrix partitioning is used in 

general. It means that subset of matrix A and corresponding input vectors X are 

distributed according to partition vector. Hence, each process multiplies and obtains 

output vectors Y that it owns.  

There are two types of one-dimensional decomposition of sparse matrices, which are 

graph partitioning and hypergraph partitioning. Graph partitioning approximates the 

volume of nonzero elements in off-diagonal matrix blocks. But hypergraph 

partitioning reflects the actual communication volume by making nonzero elements in 

off-diagonal matrix blocks to be column aligned [23]. In this thesis, both a graph 

partitioning tool METIS [24] and a hypergraph partitioning tool PATOH [25] are used. 

Another option to increase low utilization is reducing irregular memory accesses. It 

can be done by reordering the matrix to access input vector elements contiguously and 

to have a high cache reuse. Pinar and Heath stated that noteworthy improvement in 

SpMV performance could be achieved by reordering the matrix, which they showed 

to be NP-Complete. They also stated that the cost of reordering is often amortized over 

repeated SpMV operations with the same matrix, which also means SpMM operation. 

They proposed traveling salesman problem ordering and compared with Reverse 



 

 

7 

 

Cuthill McKee (RCM) ordering [14]. Toledo explored Cuthill McKee ordering yields 

an excellent results on a variety of matrices [13]. In this thesis, RCM [26] and HSL 

MC73 [27] algorithms are investigated for improving the cache utilization in parallel 

sparse matrix – multiple vectors multiplication. 
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CHAPTER 3 

3 METHODS AND MOTIVATION 

3.1 Banded Matrix – Multiple Vectors Multiplication 

A banded matrix A with bandwidth ml, input vector x and output vector y are given. 

Banded matrix – vector multiplication is defined as y ← α A x + β y. For simplicity, it 

is considered that α is one and β is zero. In Figure 2.1, a 9 × 9 square and banded matrix 

having the same lower and upper bandwidth with value of two is given. 

In this chapter, serial implementation of banded matrix – multiple vectors 

multiplication primitives DGBMV and DSBMM are studied. Moreover, an improved 

variation of DSBMM, which is called DSBMM2, is proposed and implemented. 

3.1.1 DGBMV 

In Intel MKL library or in any other BLAS implementations, there is no BLAS Level 

3 routine for banded matrix – multiple vectors multiplication. Instead, there is a BLAS 

Level 2 routine called DGBMV, double-precision type of GBMV. In this thesis, it is 

used for multiple vectors multiplication by calling it k times, where k is the number of 

vectors. 

DGBMV implementation is used as a reference in banded matrix – multiple vectors 

multiplication as it is the only banded matrix – vector multiplication routine in existing 

optimized BLAS libraries. 
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3.1.2 DSBMM 

DSBMM [28] is a method in Spike library [10], which multiplies banded matrices with 

multiple vectors. The method accepts only structurally symmetric matrices.  

DSBMM divides matrix into square blocks of sizes ml and triangular blocks. Square 

blocks are multiplied with the block of vectors using DGEMM, a BLAS Level 3 

routine used for general matrix – matrix multiplication. Triangular blocks are 

multiplied using DTRMM, another BLAS Level 3 routine used for triangular matrix – 

matrix multiplication. In Figure 3.1, square blocks are marked with gray background; 

triangular blocks are marked with polka dot background. 

 

Figure 3.1 A 9 × 9 square and banded matrix divided into blocks using DSBMM 

While FORTRAN programming language uses column-major order for array storage, 

C programming language uses row-major order. As DSBMM is implemented in 

FORTRAN, diagonals are given in columns so that the matrix elements are contiguous. 

The pseudo-code of DSBMM for the given n × n matrix A, input vectors X, output 

vectors Y, number of rows of matrix and vectors n, number of vectors k and 

lower/upper bandwidth ml, is given in Algorithm 1. 
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Algorithm 1  Pseudo-code of DSBMM (A, X, Y, n, k, ml) 

1: bl ← n / ml ► Number of square blocks 

2: for  each square block with size ml  

3:  call DGEMM (Apartial, Xpartial, Ypartial, k, ml) 

4: end for 

5: last_bl ← n – (bl * ml) ► Size of last square block 

6: if last_bl > 0 then 

7:  call DGEMM (Apartial, Xpartial, Ypartial, k, last_bl) 

8: end if 

9: for each lower sub-diagonal (triangular) block do 

10:  Z (ml, k) ← Xpartial ► Z is a temporary matrix 

11:  call DTRMM (Apartial, Xpartial, Ypartial, k, ml, UPPER) 

12:  Add Z to Ypartial 

13: end for 

14: if  last_bl > 0 then 

15:  Z (last_bl, k) ← Xpartial 

16:  call DTRMM (Apartial, Xpartial, Ypartial, k, last_bl, UPPER) 

17:  Add Z to Ypartial 

18:  /* Rectangular part of the last lower sub-diagonal block */ 

19:  call DGEMM (Apartial, Xpartial, Ypartial, k, ml – last_bl) 

20: end if 

21: for each upper sub-diagonal (triangular) block do 

22:  Z (ml, k) ← Xpartial 

23:  call DTRMM (Apartial, Xpartial, Ypartial, k, ml, LOWER) 

24:  Add Z to Ypartial 

25: end for 

26: if  last_bl > 0 then 
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Algorithm 1  Pseudo-code of DSBMM (A, X, Y, n, k, ml) (continued) 

27:  Z (last_bl, k) ← Xpartial 

28:  call DTRMM (Apartial, Xpartial, Ypartial, k, last_bl, LOWER) 

29:  Add Z to Ypartial 

30:  /* Rectangular part of the last upper sub-diagonal block */ 

31:  call DGEMM (Apartial, Xpartial, Ypartial, k, ml – last_bl) 

32: end if 

3.1.3 DSBMM2 

In this thesis, an improved variation of DSBMM, which is called DSBMM2, is 

proposed and implemented. DSBMM2 has slightly larger square blocks with the size 

(ml + 1). Eventually the number of triangular blocks become fewer, because dense 

square blocks are larger. Hence, a better utilization of the cache is obtained. An 

example partitioning using DSBMM2 for the same matrix in Figure 3.1 is given in 

Figure 3.2.  

 

Figure 3.2 A 9 × 9 square and banded matrix divided into blocks using DSBMM2 
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DSBMM2 is implemented in C programming language, so diagonals are given in rows. 

The pseudo-code of DSBMM2 for the given n × n matrix A, input vectors X, output 

vectors Y, number of rows of matrix and vectors n, number of vectors k and 

lower/upper bandwidth ml, is given in Algorithm 2. 

Algorithm 2  Pseudo-code of DSBMM2 (A, X, Y, n, k, ml) 

1: bl ← n / (ml + 1) ► Number of square blocks 

2: for  each square block with size ml  

3:  call DGEMM (Apartial, Xpartial, Ypartial, k, ml + 1) 

4: end for 

5: last_bl ← n – (bl * (ml + 1)) ► Size of last square block 

6: if last_bl > 0 then 

7:  call DGEMM (Apartial, Xpartial, Ypartial, k, last_bl) 

8: end if 

9: for each lower sub-diagonal (triangular) block do 

10:  Z (ml, k) ← Xpartial ► Z is a temporary matrix 

11:  call DTRMM (Apartial, Xpartial, Ypartial, k, ml, UPPER) 

12:  Add Z to Ypartial 

13: end for 

14: if  last_bl > 0 then 

15:  Z (last_bl, k) ← Xpartial 

16:  call DTRMM (Apartial, Xpartial, Ypartial, k, last_bl, UPPER) 

17:  Add Z to Ypartial 

18:  /* Rectangular part of the last lower sub-diagonal block */ 

19:  call DGEMM (Apartial, Xpartial, Ypartial, k, ml – last_bl) 

20: end if 

21: for each upper sub-diagonal (triangular) block do 

22:  Z (ml, k) ← Xpartial 
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Algorithm 2  Pseudo-code of DSBMM2 (A, X, Y, n, k, ml) (continued) 

23:  call DTRMM (Apartial, Xpartial, Ypartial, k, ml, LOWER) 

24:  Add Z to Ypartial 

25: end for 

26: if  last_bl > 0 then 

27:  Z (last_bl, k) ← Xpartial 

28:  call DTRMM (Apartial, Xpartial, Ypartial, k, last_bl, LOWER) 

29:  Add Z to Ypartial 

30:  /* Rectangular part of the last upper sub-diagonal block */ 

31:  call DGEMM (Apartial, Xpartial, Ypartial, k, ml – last_bl) 

32: end if 

 

In both DSBMM and DSBMM2, matrix is multiplied with input vectors not one by 

one but in blocks. Hence, they have better utilization than DGBMV for multiple 

vectors. 

3.2 Sparse Matrix – Multiple Vectors Multiplication 

In this chapter, the following techniques are used while performing sparse matrix – 

multiple vectors multiplication. 

• Partitioning the matrix to move most nonzeros in the diagonal block. 

• Permuting the matrix to move most nonzeros contiguously. 

• Storing vectors to be able to do multiplication as a block operation. 

Spy plots of a sample sparse matrix – multiple vectors multiplication have been given 

in each subsection of this section. As an example, “webbase-1M” matrix has been 

partitioned using METIS and has been multiplied with multiple vectors within four 

processes. 
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3.2.1 Reading Matrix 

The matrices used in this section (given in Section 4.3.2.1) are all in Matrix Market 

format [29]. In Matrix Market format, general information (e.g. name, title, ID, kind, 

author, etc.) and structure summary (e.g. sparse or dense, real or pattern, symmetric or 

general) are given on the header of the file. MMIO library [30] is used when reading 

the header to check whether the matrix is suitable for the operations used in this thesis. 

Following the header lines, there are triplets (i, j, aij) for each nonzero, representing 

row index, column index and matrix value respectively.  

The matrices used in this section are all sparse and square; entries of them are double-

precision numbers. The matrices are read by master MPI process (process having rank 

of zero). Other processes get nonzeros via MPI communication routines. In Figure 3.3, 

there is a spy plot showing a sample matrix, webbase-1M, after reading it from file. 

 

Figure 3.3 Sparsity structure of webbase-1M 
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3.2.2 Partitioning 

One dimensional block distribution is distributing rows or columns of a matrix to 

different processes. In this thesis, row-wise distribution is used. Hence, for an n × n 

matrix and number of parts k, n / k rows are assigned to each process. 

When multiplying sparse matrix with vector(s), the nonzeros in the diagonal blocks do 

not need to access vector elements on other processes. Partitioning tools are used to 

move most nonzeros of the matrix to the diagonal blocks. 

Partitioning tools, such as METIS and PATOH, generate a permutation vector (which 

gives the permutation matrix P) to partition the matrix.  

 A0 ← P A PT ( 2 ) 

Rows and columns of the matrix are permuted with permutation vector and transpose 

of permutation vector respectively. After the symmetric permutation is applied, a 

permuted matrix A0 is obtained. Equation of this operation is given above. Input and 

output vectors are permuted with the same permutation vector as well.  

In this thesis, row-wise partitioning is used, so row i of the matrix, input and output 

vectors are all assigned to the same process. Calling partitioning method, getting the 

partitioning vector and permuting the matrix according to partition vector are all done 

by master MPI process. Number of partitions is equal to the number of running MPI 

processes. Hence, each process gets a part of matrix and vectors. 

3.2.2.1 METIS 

METIS is a sequential tool for partitioning graphs, partitioning finite element meshes 

and computing fill-reducing orderings of sparse matrices [24]. In addition, there is 

another tool called ParMETIS [31]. ParMETIS is an MPI-based parallel version of 

METIS. 

There are two possible algorithms while partitioning graphs using METIS. They are 

multilevel recursive bisection and multilevel k-way partitioning.  
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In this thesis, k-way partitioning is used with the “minimizing total communication 

volume” parameter is set. The other parameter for objective type is edge-cut 

minimization, which is proven that it does not model the actual communication volume 

by Catalyurek and Aykanat [32], [33].  

METIS requests input matrix to be symmetric, so for non-symmetric matrices, |A| + 

|A|T is given as the input. For the sample matrix in Figure 3.3, it is permuted with 

partition vector generated using METIS. The resulting reordered matrix using four 

partitions is given in Figure 3.4. 

 

Figure 3.4 Matrix webbase-1M is permuted with partition vector generated using METIS 

3.2.2.2 PATOH 

PATOH is a sequential multi-level and multi-constraint hypergraph partitioning tool. 

It divides a hypergraph into two or more roughly equal sized parts such that a cost 

function on the hyperedges connecting vertices in different parts is minimized [25], 

[32]. 
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Before calling partitioning method of PATOH, parameters are initialized to their 

default values and memory allocation is done. Afterwards, partitioning method is 

called with set as to use recursive multilevel hypergraph bisection algorithm. For the 

sample matrix in Figure 3.3, it is permuted with partition vector generated using 

PATOH. The resulting reordered matrix using four partitions is given in Figure 3.5. 

 

Figure 3.5 Matrix webbase-1M is permuted with partition vector generated using PATOH 

Devine et al. stated that hypergraphs can model communication volume more precisely 

and can represent non-symmetric problems better [34]. In this thesis, both a graph 

partitioner, METIS and a hypergraph partitioner, PATOH are used. The results are 

given in Section 4.3.2.3.1. 

Once the permutation of matrix and input vectors are finished, it is time to send them 

other MPI processes to do multiplication. Matrix elements of master process after it is 

partitioned using METIS, are given in Figure 3.6. 
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Figure 3.6 Matrix elements of master process after partitioning 

After each MPI process obtains its block matrix, it is further partitioned into diagonal 

and off-diagonal blocks, shown in Figure 3.7 and Figure 3.8 respectively. This 

operation can be shown as; 

 D + R ← A ( 3 ) 

 

Figure 3.7 Diagonal block of matrix of master process 

 

Figure 3.8 Off-diagonal block of matrix of master process 

There is no need to communicate with other processes when multiplying nonzeros of 

D (diagonal block). On the contrary, communication is required when multiplying 

nonzeros of R (off-diagonal block). Because some elements of input vectors of other 

processes are required to do multiplication. 
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3.2.3 Diagonal Block 

Diagonal block, D has much more nonzeros than off-diagonal block owing to 

partitioning tools. To illustrate, empty off-diagonal part in Figure 3.7 is removed and 

it becomes as in Figure 3.9. 

 

Figure 3.9 Diagonal block of matrix of master process (empty off-diagonal part is removed) 

While multiplying sparse matrix with multiple vectors, DCSRMM, a sparse BLAS 

Level 3 routine is used. In order to improve cache-hit ratio, ith rows of all vectors are 

stored contiguously. Hence, it provides usability of BLAS Level 3 routines rather than 

calling BLAS Level 2 routines many times for each vector. 

3.2.3.1 Permutation 

The objective of using permutation is to improve the speedup of sparse matrix – 

multiple vectors multiplication by moving most nonzeros contiguously as much as 

possible. To achieve that matrices are permuted with two different algorithms. After 

the permutation is done, the matrix is multiplied with multiple vectors using 

DCSRMM routine. Results of the experiments are given in Section 4.3.2.2. 
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Both permutation algorithms, HSL MC73 and RCM request input matrix to be 

symmetric, so for non-symmetric matrices, |A| + |A|T is given as the input matrix. 

3.2.3.1.1 HSL MC73 

HSL MC73 is a library that computes Fiedler vector of Laplacian matrix and computes 

a symmetric permutation that aims to reduce the profile and wavefront [35]. In this 

thesis, MC73 is used to move most nonzeros of matrix near the main diagonal. 

Three different algorithms can be used while computing a symmetric permutation. 

They are multilevel Sloan, multilevel spectral ordering and hybrid ordering 

algorithms. In this thesis, multilevel spectral ordering algorithm is used. This 

algorithm computes the approximate Fiedler vector of the Laplacian of each 

component and then sorts the entries of this vector in non-decreasing order [27]. 

MC73 tries to move most all nonzeros near the main diagonal as it can be seen in figure 

below. For the sample diagonal block in Figure 3.9, it is permuted with the permutation 

vector generated using MC73. The resulting diagonal block is given in Figure 3.10. 

 

Figure 3.10 Diagonal block permuted with permutation vector generated using MC73 
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3.2.3.1.2 RCM 

Reverse Cuthill McKee (RCM) algorithm [26] computes a symmetric permutation that 

reduces the bandwidth of sparse symmetric matrices. Algorithm of RCM for the given 

graph G (n) is given below [36]. 

Algorithm 3  Algorithm of RCM 

1: Q ← { } ► Initialize an empty queue, Q 

2: R ← { } ► Initialize an empty result array, R 

3: if there are unexplored nodes then  

4:  P ← The node with the lowest degree in G (n) 

5:  Add P in the first free position of R 

6: 
 

 Q ← Q + { All the nodes adjacent with P in the increasing order of 
their degree } 

7:  C ← The first node from the queue 

8:  Q ← Q – { C } 

9:  while Q ≠ { } do 

10:   if  C has not previously been inserted in R then 

11:    Add C in the first free position of R 

12: 
 

   Q ← Q + { All the neighbors of C that are not in R in 
the increasing order of their degree } 

13:   end if 

14:  end while 

15: end if 

16: Swap R [i] with R [n + 1 - i] ► Reverse the order of elements in R 

 

The vector elements accessed while multiplying ith row of the sparse matrix are 

accessed again in the following row, owing to reduced bandwidth that RCM algorithm 

provides. In this thesis, RCM is used and advantage of reduced bandwidth is observed. 

Results of the experiments are given in Section 4.3.2.2.  
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For the sample diagonal block in Figure 3.9, it is permuted with the permutation vector 

generated using RCM. The resulting diagonal block is given in Figure 3.11. 

 

Figure 3.11 Diagonal block permuted with permutation vector generated using RCM 

3.2.4 Off-Diagonal Blocks 

Off-diagonal blocks, R, have much smaller number of nonzeros than the diagonal 

blocks. While multiplying nonzeros in R with input vectors, communication is 

required. Because vector elements that is going to be multiplied with nonzeros in off-

diagonal block, are all owned by other processes. While sending these vector elements, 

non-blocking MPI send routines are used to have the possibility to continue 

computation. Upon vector elements are received, they are multiplied with the nonzeros 

in R. 

Im, Yelick and Vuduck stated that for computations involving multiple vectors, 

reorganizing them to perform the entire set of multiplications as a single operation 

provides significant performance improvement [19]. In this thesis, ith row of all vectors 

are stored contiguously. Hence, reuse of nonzeros in matrix R has been provided when 

multiplying. 
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Output vectors Y is formed after multiplying all nonzeros in D and R. If the matrix A 

is permuted with HSL MC73 or RCM, inverse permutation should be done to achieve 

final output vectors.  
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CHAPTER 4 

4 NUMERICAL EXPERIMENTS 

In the previous chapter, the methods used in implementation and the algorithm that is 

developed are described. In this chapter, the computing and programming environment 

are given and performance results are presented. 

4.1 Computing Platform 

The numerical computations reported in this thesis are performed using two different 

computing platforms. NAR is a cluster at Department of Computer Engineering, 

Middle East Technical University [37]. MERCAN is the other cluster at TUBITAK 

ULAKBIM, High Performance and Grid Computing Center (TRUBA Resources) [38]. 

Specifications of two platforms are given below. Entire node is allocated while 

operating. 

Table 4.1 Platform specifications 

Specification NAR MERCAN 

Architecture Intel Xeon E5430 AMD Opteron 6176 

CPU Frequency 2.66 GHz 2.3 GHz 

Number of CPUs 
Number of Cores 

2 CPU x 4 core 2 CPU x 12 core 

L1 Cache 
2 x 4 x 32 KB instruction 

2 x 4 x 32 KB write-back data 

2 x 12 x 64 KB instruction 

2 x 12 x 64 KB data 

L2 Cache 2 x 2 x 6 MB 2 x 12 x 512 KB 

L3 Cache N / A 2 x 2 x 6 MB 
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Table 4.1 Platform specifications (continued) 

RAM 8 x 2 GB 667 MHz (total 16 GB) 128 GB 1600 MHz 

Network 20 Gbps Infiniband 40 Gbps QDR Infiniband 

 

4.2 Programming Environment 

Specifications of programming environment are stated in Table 4.2, followed by 

versions of other used libraries. 

Table 4.2 Programming environment specifications 

Specification NAR MERCAN 

Operating System Scientific Linux 5.2 64-bit Scientific Linux 6.2 64-bit 

Linux Kernel 2.6.18-92.1.17.el5 x86_64 2.6.32-220.23.1.el6 x86_64 

MPI MVAPICH2 v1.2p1 OpenMPI v1.4.3 

MKL Intel MKL v10.1 Intel MKL v11.1.073 

Fortran Compiler ifort v11.0 ifort v12.1.3 

C Compiler mpicc (icc v11) mpicc (icc v12.1.3) 

 

METIS version 5.1.0, a fill-reducing matrix reordering and a sequential graph 

partitioning algorithm; PATOH version 3.2, a multilevel hypergraph partitioning 

algorithm; HSL MC73 [35] version 1.2, a fast multilevel fiedler and profile reduction 

algorithm; RCM [39], an algorithm that reorders a sparse matrix into a band matrix 

with a small bandwidth; Sparsekit [40], a basic toolkit for sparse matrix operations; 

MMIO library [30], a library for files in Matrix Market format; CSPY, a MATLAB 

function in CSparse library [41] for spy plotting matrices, are used in the 

implementation of this thesis. 
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4.3 Experiments and Results 

4.3.1 Banded Matrix – Multiple Vectors Multiplication 

In this section, only square, banded and structurally symmetric (means having the same 

upper and lower bandwidths) matrices are used. Matrix entries are double-precision 

numbers and they are created randomly. 

The results are evaluated in terms of speedup varying the number of rows, number of 

vectors, bandwidth, implementation type and computing platform. Multiplication time 

using DGBMV (in seconds) and speedup values using DSBMM and DSBMM2 are 

given in Table 4.3 and Table 4.4 for NAR and MERCAN platforms respectively. No 

threads are used in the implementation of this section and the implementation runs 

sequentially. 

Table 4.3 Sequential multiplication time using DGBMV and speedup of banded matrix – 

multiple vectors multiplication using DSBMM and DSBMM2 on NAR 

Number 
of Rows 

Lower 
Band-
width 

Implementation 
Type 

  Number of Vectors  

1 10 100 

DGBMV 
Mult. 

Time(sec) 
Speedup 

DGBMV 
Mult. 

Time(sec) 
Speedup 

DGBMV 
Mult. 

Time(sec) 
Speedup 

100,000 10 DSBMM 
0.01 

0.25 
0.07 

0.91 
0.71 

1.55 

100,000 10 DSBMM2 0.24 1.14 2.42 

100,000 50 DSBMM 
0.03 

0.52 
0.27 

2.69 
2.71 

5.25 

100,000 50 DSBMM2 0.34 2.10 5.52 

100,000 200 DSBMM 
0.09 

0.70 
0.92 

3.89 
9.23 

8.18 

100,000 200 DSBMM2 0.49 2.63 7.86 

1,500,000 10 DSBMM 
0.11 

0.25 
1.08 

0.91 
10.77 

1.52 

1,500,000 10 DSBMM2 0.24 1.15 2.44 

1,500,000 50 DSBMM 
0.41 

0.52 
4.07 

2.70 
40.71 

5.26 

1,500,000 50 DSBMM2 0.33 2.11 5.53 

1,500,000 200 DSBMM 
1.39 

0.70 
13.86 

3.88 
138.59 

8.18 

1,500,000 200 DSBMM2 0.49 2.62 7.86 
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The matrices used in test case have 100,000, 400,000, 1,500,000 and 3,000,000 rows. 

Only matrices having 100,000 and 1,500,000 rows are shown in this section. 

Remaining results are given in the Appendix A. 

Eighteen vertical bars are shown in-group of six for varying number of vectors in each 

of Figure 4.1, Figure 4.2, Figure 4.3 and Figure 4.4. Each group represents speedup 

values of DSBMM and DSBMM2 relative to DGBMV for each bandwidth.  

Chosen values for number of vectors are 1, 10 and 100; for lower bandwidth are 10, 

50, and 200. Detailed test results can be found in Appendix A. 

 

Figure 4.1 Speedup chart of banded matrix – multiple vectors multiplication for matrix having 

100,000 rows on NAR 
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Figure 4.2 Speedup chart of banded matrix – multiple vectors multiplication for matrix having 

1,500,000 rows on NAR 

Figure 4.1 and Figure 4.2 show that DSBMM and DSBMM2 have a better speedup 

while number of vectors increases. The reason for this behavior is that when the 

number of vectors increases, more consecutive vector entries stay loaded in the cache 

and reusability of the values in cache is much higher than DGBMV. DSBMM2 is 

roughly 1.6 times faster than DSBMM if the bandwidth is 10 and the number of vectors 

is 100. For large number of vectors and bandwidth, however, DSBMM is slightly 

better.  
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Table 4.4 Sequential multiplication time using DGBMV and speedup of banded matrix – 

multiple vectors multiplication using DSBMM and DSBMM2 on MERCAN 

Number of 
Rows 

Lower 
Band-
width 

Implementation 
Type 

  Number of Vectors  

1 10 100 

DGBMV 
Mult. 

Time(sec) 
Speedup 

DGBMV 
Mult. 

Time(sec) 
Speedup 

DGBMV 
Mult. 

Time(sec) 
Speedup 

100,000 10 DSBMM 
0.01 

0.20 
0.06 

0.72 
0.66 

1.12 

100,000 10 DSBMM2 0.13 0.86 2.04 

100,000 50 DSBMM 
0.02 

0.43 
0.18 

1.81 
1.78 

2.90 

100,000 50 DSBMM2 0.19 1.51 2.80 

100,000 200 DSBMM 
0.06 

0.70 
0.61 

2.64 
6.07 

4.08 

100,000 200 DSBMM2 0.28 2.33 4.08 

1,500,000 10 DSBMM 
0.10 

0.20 
0.97 

0.70 
9.76 

0.91 

1,500,000 10 DSBMM2 0.13 0.85 2.01 

1,500,000 50 DSBMM 
0.26 

0.43 
2.62 

1.78 
26.22 

2.74 

1,500,000 50 DSBMM2 0.19 1.49 2.75 

1,500,000 200 DSBMM 
0.91 

0.70 
9.09 

2.62 
90.90 

4.05 

1,500,000 200 DSBMM2 0.28 2.31 4.05 
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Figure 4.3 Speedup chart of banded matrix – multiple vectors multiplication for matrix having 

100,000 rows on MERCAN 

 

Figure 4.4 Speedup chart of banded matrix – multiple vectors multiplication for matrix having 

1,500,000 rows on MERCAN 
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The four figures above indicate that DGBMV is better than DSBMM and DSBMM2 

if banded matrix is multiplied with a single vector. Nevertheless, DSBMM and 

DSBMM2 provide a better speedup as the bandwidth and/or number of vectors 

increase in both platforms. DSBMM2 is roughly 1.8 times faster than DSBMM if the 

bandwidth is 10 and the number of vectors is 100 because of using square dense blocks 

more effectively and lowering the number of triangular blocks, seen in Figure 3.2. 

As the bandwidth increases, DSBMM is faster for smaller number of vectors but they 

have almost equal performance if the number of vectors is 100. A possible reason for 

this behavior is that DSBMM is implemented in FORTRAN language whether 

DSBMM2 is implemented in C language.  

The maximum speedup observed for DSBMM and DSBMM2 are 8.18 and 7.86 

respectively. It is observed when the number of vectors is 100 and lower bandwidth is 

200 on NAR platform. The results show that performance of the implementation grows 

linearly with the increasing number of processes, which means that they are suitable 

for multiprocessors. 

Overall, considering either DSBMM or DSBMM2, it is observed that NAR has better 

speedup than MERCAN. Most probably, the reason for this behavior is that NAR has 

Intel processors and MERCAN has AMD processors. Intel MKL library is optimized 

for Intel platforms. 

Matrices having 100,000 and 1,500,000 rows follow the same speedup trend. Other 

matrices having different number of rows follow the same trend as well.  

4.3.2 Sparse Matrix – Multiple Vectors Multiplication 

Three different set of experiments for sparse matrix – multiple vectors multiplication 

are performed. The first one is comparing matrix in its original form with matrix 

permuted using MC73 and RCM algorithms. After finding the best one, it will be used 

on the following set of experiments. The second one is comparing METIS and PATOH 
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partitioning tools. The best one will be used on the following experiment. The last one 

is comparing the parallel scalability. 

No threads are used in the implementations of this section and all tests are done in two 

different computing platforms. 

4.3.2.1 Matrix Collection 

The matrices used in experiments in this section are all sparse and square; matrix 

entries are double precision numbers. They all are obtained from the University of 

Florida Sparse Matrix Collection [42]. Their basis properties are given in Table 4.5. 

All matrices are treated as general even if they are symmetric. 

Table 4.5 Matrices used for performance testing 

Matrix Name Spy Plot Application 
Sym-
metric 

Number of 
Rows and 
Columns 

Number of 
Nonzeros 

(NNZ) 

NNZ / 
Row 

af_shell10 

 

structural 
problem 

Yes 1,508,065 52,259,885 34.65 

atmosmodd 

 

computational 
fluid dynamics 

No 1,270,432 8,814,880 6.94 

atmosmodl 

 

computational 
fluid dynamics 

No 1,489,752 10,319,760 6.93 

cage14 

 

directed weighted 
graph 

No 1,505,785 27,130,349 18.02 
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Table 4.5 Matrices used for performance testing (continued) 

dielFilterV3real 

 

electromagnetic Yes 1,102,824 89,306,020 80.98 

G3_circuit 

 

circuit simulation  Yes 1,585,478 7,660,826 4.83 

Geo_1438 

 

structural 
problem 

Yes 1,437,960 60,236,322 41.89 

Hamrle3 

 

circuit simulation No 1,447,360 5,514,242 3.81 

Hook_1498 

 

structural 
problem 

Yes 1,498,023 59,374,451 39.64 

kkt_power 

 

circuit 
optimization 

Yes 2,063,494 12,771,361 6.19 

memchip 

 

circuit simulation No 2,707,524 13,343,948 4.93 

nlpkkt80 

 

optimization Yes 1,062,400 28,192,672 26.54 
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Table 4.5 Matrices used for performance testing (continued) 

Serena 

 

structural 
problem 

Yes 1,391,349 64,131,971 46.09 

StocF-1465 

 

computational 
fluid dynamics 

Yes 1,465,137 21,005,389 14.34 

thermal2 

 

thermal problem Yes 1,228,045 8,580,313 6.99 

webbase-1M 

 

weighted directed 
graph 

No 1,000,005 3,105,536 3.11 

4.3.2.2 Effect of Permutation on Sequential Sparse Matrix – Multiple Vectors 
Multiplication 

In this section, three different forms of matrix are compared. They are, 

• Matrix in its original form 

• Matrix permuted with permutation vector generated using MC73 

• Matrix permuted with permutation vector generated using RCM 

The matrix in all forms is multiplied with 100 vectors using DCSRMM, a sparse BLAS 

Level 3 routine. The multiplication time of matrix in the first form is used as a 

reference in this section. These operations are carried out sequentially, i.e., using a 

single core of a processor. The results are evaluated in terms of speedup varying 

matrix, reordering technique (stated above) and computing platform. Multiplication 

time of the original matrix, times for obtaining the permutation using MC73 and RCM 

for both platforms are given in Table 4.6. Values in the table are given in second. 
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Table 4.6 Sequential multiplication time of matrix in its original form and the times for 

obtaining the permutation using MC73 and RCM 

Matrix 

NAR MERCAN 

Orig. Form 
Mult. Time 

(sec) 

MC73 Time 
(sec) 

RCM Time 
(sec) 

Orig. Form 
Mult. Time 

(sec) 

MC73 Time 
(sec) 

RCM Time 
(sec) 

af_shell10 10.87 5.33 0.69 30.16 6.69 0.81 

atmosmodd 2.60 2.51 0.45 15.65 2.80 0.47 

atmosmodl 3.05 3.05 0.51 19.41 3.35 0.55 

cage14 7.89 8.73 1.48 36.36 9.75 1.42 

dielFilterV3real 19.26 11.02 1.27 54.83 13.08 1.63 

G3_circuit 2.44 3.29 0.35 16.78 3.66 0.50 

Geo_1438 13.64 7.82 0.78 39.62 9.42 0.94 

Hamrle3 2.29 22.14 1.03 13.47 27.08 0.88 

Hook_1498 12.74 7.97 0.80 39.07 9.55 0.96 

kkt_power 5.82 31.73 3.41 31.80 32.73 2.62 

memchip 5.58 9.36 1.30 29.65 10.34 1.35 

nlpkkt80 5.54 6.90 0.62 22.50 8.51 0.73 

Serena 13.48 8.18 0.76 40.42 9.76 0.93 

StocF-1465 5.32 5.53 0.93 26.09 6.35 1.02 

thermal2 2.93 3.78 0.55 15.45 4.16 0.58 

webbase-1M 1.43 35.72 0.28 8.52 38.47 0.29 

 

RCM requires at least one-sixth of MC73. Even though times to obtain the 

permutations on both platforms are nearly same, multiplication times are quite 

different. The reason for this difference is that NAR has Intel processors and 

MERCAN has AMD processors. Intel MKL library is optimized for Intel platforms. 

Sequential performance comparison of sparse matrix – multiple vectors multiplication 

with matrix in its original form, matrix permuted using MC73 and RCM on NAR 

platform is given in Figure 4.5 and Figure 4.6. Figure 4.7 and Figure 4.8 gives the 

same comparison on MERCAN platform. 
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Figure 4.5 Sequential performance comparison chart of SpMM with matrix in its original form, 

matrix permuted using MC73 and RCM on NAR (part 1 of 2) 

 

Figure 4.6 Sequential performance comparison chart of SpMM with matrix in its original form, 

matrix permuted using MC73 and RCM on NAR (part 2 of 2) 
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Figure 4.7 Sequential performance comparison chart of SpMM with matrix in its original form, 

matrix permuted using MC73 and RCM on MERCAN (part 1 of 2) 

 

Figure 4.8 Sequential performance comparison chart of SpMM with matrix in its original form, 

matrix permuted using MC73 and RCM on MERCAN (part 2 of 2) 
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In both platforms, matrix permuted using MC73 shows no speedup except kkt_power, 

memchip and thermal2 matrices, which arise in circuit and thermal application areas. 

The reason is that MC73 dissolves any existing dense block substructure, particularly 

on cage14, Geo_1438, nlpkkt80 and Serena matrices, most of them represent a 

structural problem. MC73 shows a better speedup than RCM only on memchip matrix, 

which represents a circuit simulation problem. 

In general, matrices permuted using RCM show a better speedup than the matrices 

permuted using MC73 and in its original form. Particularly on atmosmodl, 

dielFilterV3real, kkt_power and thermal2 matrices, RCM yields a good speedup. 

These matrices arise in computational fluid dynamics, electromagnetic, circuit 

optimization and thermal application areas respectively. It is roughly 1.16 times faster 

than reference multiplication for these matrices. 

4.3.2.3 Parallel Scalability 

In the previous section, the forms of matrix are studied and the matrix permuted using 

RCM shows a better speedup. Hence, in this section all operations are done with 

matrices permuted using RCM.  

4.3.2.3.1 METIS vs. PATOH 

In this section, a graph partitioning tool METIS and a hypergraph partitioning tool 

PATOH are compared. All the operations in this section are operated within 16 

processes. Thus, matrix is partitioned into 16 parts by the partitioning tool. Then each 

process multiplies the permuted matrix with 100 vectors using DCSRMM, a sparse 

BLAS Level 3 routine.  

The sequential multiplication time of matrix, permuted using RCM is used as a 

reference in this section. The results are evaluated in terms of speedup varying matrix, 

partitioning tool and computing platform. Sequential multiplication time, partitioning 

time of METIS and PATOH for both platforms are given in Table 4.7. Values in the 

table are given in second. 
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Table 4.7 Sequential multiplication time and partitioning time of METIS and PATOH 

Matrix 

NAR MERCAN 

Seq. Mult. 
Time (RCM) 

(sec) 

METIS 
Partitioning 
Time (sec) 

PATOH 
Partitioning 
Time (sec) 

Seq. Mult. 
Time (RCM) 

(sec) 

METIS 
Partitioning 
Time (sec) 

PATOH 
Partitioning 
Time (sec) 

af_shell10 10.85 4.23 90.80 30.19 2.59 65.83 

atmosmodd 2.53 4.44 35.24 14.39 2.28 20.55 

atmosmodl 2.96 4.03 43.10 16.88 2.36 24.64 

cage14 7.39 51.06 236.83 36.91 24.09 127.80 

dielFilterV3real 16.85 10.20 400.92 43.63 5.88 279.45 

G3_circuit 2.70 2.85 24.99 16.29 1.68 14.23 

Geo_1438 13.04 7.41 156.51 39.54 4.55 109.10 

Hamrle3 2.65 132.74 18.70 16.22 63.08 10.90 

Hook_1498 12.74 7.19 155.44 40.13 4.34 108.40 

kkt_power 4.92 10.00 98.20 26.56 5.37 54.00 

memchip 5.47 8.67 39.81 31.31 3.99 20.35 

nlpkkt80 5.58 8.00 93.87 26.57 4.42 60.96 

Serena 13.47 8.74 168.40 41.64 5.15 117.16 

StocF-1465 5.29 5.83 73.01 25.83 3.35 43.89 

thermal2 2.46 2.62 26.03 15.25 1.48 14.54 

webbase-1M 1.38 3.70 18.45 8.20 2.33 12.23 

 

Partitioning time of METIS is approximately one-seventh of PATOH partitioning 

time. Partitioning time of both tools on MERCAN is approximately two times better 

than on NAR due to higher memory capacity and computational power on MERCAN. 

On the contrary, sequential multiplication time of matrix on NAR is approximately 

one-fourth of multiplication time on MERCAN. The reason for this difference is that 

NAR has Intel processors and MERCAN has AMD processors. Intel MKL library is 

optimized for Intel platforms. 

The speedup is measured using RCM and 16 processes compared to the sequential 

running time. Speedup plots using METIS and PATOH with RCM reordering for the 

diagonal block on NAR platform are given in Figure 4.9 and Figure 4.10. Figure 4.11 

and Figure 4.12 gives the same comparison on MERCAN platform.  
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Figure 4.9 Speedup comparison chart of partitioning tools on NAR (part 1 of 2) 

 

Figure 4.10 Speedup comparison chart of partitioning tools on NAR (part 2 of 2) 
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Figure 4.11 Speedup comparison chart of partitioning tools on MERCAN (part 1 of 2) 

 

Figure 4.12 Speedup comparison chart of partitioning tools on MERCAN (part 2 of 2) 
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On both platforms, matrices partitioned using METIS and PATOH show nearly the 

same speedup. The only exception is Hamrle3 matrix, which is one of the most sparse 

matrix in the collection with 3.81 nonzeros per row. On NAR platform, due to smaller 

cache size, Hamrle3 matrix does not show speedup in both partitioning methods. On 

the contrary, the largest speedup difference between partitioning tools is observed with 

the same matrix on MERCAN platform. 

As a result, PATOH shows slightly a better speedup. The reason is that hypergraph 

based partitioning methods (e.g. PATOH) defines the communication problem better 

than graph based ones (e.g. METIS).  

4.3.2.3.2 Parallel Scalability 

In the last two sections, partitioning tools and permutation of matrix are studied. The 

matrix partitioned using PATOH and permuted using RCM shows a better speedup. 

Hence, in this section all operations are done with matrices partitioned using PATOH 

and then the diagonal blocks are permuted using RCM. The matrix is multiplied with 

a block of 100 vectors using DCSRMM, a sparse BLAS Level 3 routine. 

In this section, parallel scalability for each matrix is given. The results are evaluated 

in terms of speedup varying matrix, number of processes and computing platform. The 

number of processes used for each test starts from one (also called sequentially) and 

continues with the power of two up to 16. 

The sequential multiplication time of the matrix, permuted using RCM is used as a 

reference in this section. Sequential multiplication time is given in Table 4.7 above. 

Values in the table are given in second. 
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Figure 4.13 Speedup comparison chart of matrices on NAR (part 1 of 2) 

 

Figure 4.14 Speedup comparison chart of matrices on NAR (part 2 of 2) 
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Figure 4.15 Speedup comparison chart of matrices on MERCAN (part 1 of 2) 

 

Figure 4.16 Speedup comparison chart of matrices on MERCAN (part 2 of 2) 
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On NAR platform, speedup continues to increase up to eight processes, and then there 

is a drop. The reason for the drop is that a node on NAR has eight cores and each 

process is mapped onto a single core. If the number of processes exceeds eight, more 

than one node are used and communication between nodes is required. Even it has an 

Infiniband switch between nodes, it is slower than on-chip communication. 

Unlike NAR, speedup continues to increase on MERCAN, which has 24 cores in each 

node. Moreover, MERCAN shows approximately two times better speedup than NAR. 

The reason for this dissimilarity is that MERCAN has higher cache capacity. Namely, 

more vector entries can remain in the cache, reducing misses when the algorithm tries 

to access them again. 

On MERCAN platform, Geo_1438, Hamrle3, nlpkkt80, StocF-1465 matrices, show a 

better speedup acceleration according to increasing number of processes. These 

matrices arise in structural problem, circuit simulation, optimization and 

computational fluid dynamics application areas respectively. 

To provide an effective load balancing and a good parallel scalability, partitioning 

tools and permutation algorithms are used. The results show that performance of the 

implementation grows linearly with the increasing number of processes, which means 

that they are suitable for multiprocessors. 
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CHAPTER 5 

5 CONCLUSION AND FUTURE WORK 

This thesis presented and compared different techniques for improving multiplication 

of sparse and banded matrices with multiple vectors. For banded matrices, an improved 

method called DSBMM2 was presented that has advantage especially for banded 

matrices having small bandwidth and multiplied with large number of vectors. 

DSBMM2 is roughly 1.8 times faster than DSBMM if the bandwidth is 10 and the 

number of vectors is 100 on both platforms. 

Whether DSBMM or DSBMM2 are used, machine specific tuning is worthy as the 

ideal size of square and triangular blocks, namely bandwidth, is dependent on cache 

size of platform. 

For sparse matrices, it was shown that partitioning tools provide an effective load 

balancing and a good parallel scalability. To improve memory efficiency, each row of 

vectors were stored contiguously. Hence, reduced number of cache misses were 

observed while multiplying with multiple vectors, particularly on MERCAN platform, 

which has larger cache and memory size. Permuting the matrix with RCM was 

recommended rather than with MC73 in order to group nonzeros contiguously. 

Numerical experiments showed that matrices permuted using RCM yield 

approximately 10% speedup. 

With the increasing multi-core environments, parallel scalability of primitive 

operations (such as SpMV, SpMM banded matrix – vector multiplication and banded 

matrix – multiple vectors multiplication) are becoming more important. For future 

work, block storage formats could be used to improve cache-hit ratio, platform 

dependent tuning (such as various block size, prefetching matrix and vector elements, 
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etc.) could be done to achieve better speedup. TRACEMIN-Fiedler method [43] could 

also be compared with RCM and MC73. 
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APPENDIX A 

A RESULTS OF BANDED MATRIX – MULTIPLE VECTORS 
MULTIPLICATION 

Banded matrix – multiple vectors multiplication operations are done varying; 

• Number of rows of the matrix 

o 100,000 

o 400,000 

o 1,500,000 

o 3,000,000 

• Multiplication method 

o DGBMV 

o DSBMM 

o DSBMM2 

• Lower/upper bandwidth size 

o 5 

o 10 

o 20 

o 50 

o 100 

o 200 

• Number of vectors 

o 1 

o 10 

o 100 

• Computing platform 

o NAR 
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o MERCAN 

For NAR platform, the times are given in Table A.1 and Table A.2. For MERCAN 

platform, they are given in Table A.3 and Table A.4. Values in the tables are given in 

second.
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Table A.1 Multiplication time of banded matrices, having 5, 10 and 20 lower bandwidth, with multiple vectors on NAR 

Number of 
Rows 

Implementation 
Type 

ml = 5 ml = 10 ml = 20 

1 Vector 
(sec) 

10 Vectors 
(sec) 

100 Vectors 
(sec) 

1 Vector 
(sec) 

10 Vectors 
(sec) 

100 Vectors 
(sec) 

1 Vector 
(sec) 

10 Vectors 
(sec) 

100 Vectors 
(sec) 

100,000 DGBMV 0.00 0.03 0.34 0.01 0.07 0.71 0.01 0.12 1.18 

100,000 DSBMM 0.03 0.09 0.54 0.03 0.08 0.46 0.03 0.06 0.34 

100,000 DSBMM2 0.02 0.04 0.24 0.03 0.06 0.29 0.04 0.08 0.35 

400,000 DGBMV 0.01 0.14 1.44 0.03 0.29 2.86 0.05 0.47 4.74 

400,000 DSBMM 0.12 0.36 2.43 0.11 0.31 1.98 0.13 0.25 1.44 

400,000 DSBMM2 0.07 0.18 0.96 0.12 0.25 1.18 0.17 0.31 1.39 

1,500,000 DGBMV 0.05 0.54 5.44 0.11 1.08 10.77 0.18 1.78 17.78 

1,500,000 DSBMM 0.47 1.42 8.34 0.43 1.19 7.08 0.49 0.95 5.20 

1,500,000 DSBMM2 0.27 0.67 3.61 0.45 0.94 4.41 0.63 1.18 5.21 

3,000,000 DGBMV 0.11 1.09 10.88 0.22 2.15 21.53 0.35 3.56 35.55 

3,000,000 DSBMM 0.94 2.81 16.47 0.86 2.36 14.15 0.98 1.90 10.46 

3,000,000 DSBMM2 0.55 1.33 7.21 0.89 1.87 8.82 1.26 2.35 10.41 
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Table A.2 Multiplication time of banded matrices, having 50, 100 and 200 lower bandwidth, with multiple vectors on NAR 

Number of 
Rows 

Implementation 
Type 

ml = 50 ml = 100 ml = 200 

1 Vector 
(sec) 

10 Vectors 
(sec) 

100 Vectors 
(sec) 

1 Vector 
(sec) 

10 Vectors 
(sec) 

100 Vectors 
(sec) 

1 Vector 
(sec) 

10 Vectors 
(sec) 

100 Vectors 
(sec) 

100,000 DGBMV 0.03 0.27 2.71 0.05 0.54 5.42 0.09 0.92 9.23 

100,000 DSBMM 0.05 0.10 0.52 0.08 0.14 0.69 0.13 0.24 1.13 

100,000 DSBMM2 0.08 0.13 0.49 0.13 0.20 0.72 0.19 0.35 1.18 

400,000 DGBMV 0.11 1.09 10.85 0.22 2.17 21.67 0.37 3.69 36.95 

400,000 DSBMM 0.21 0.40 2.08 0.33 0.58 2.77 0.53 0.95 4.52 

400,000 DSBMM2 0.33 0.51 1.96 0.52 0.82 2.90 0.76 1.41 4.70 

1,500,000 DGBMV 0.41 4.07 40.71 0.81 8.13 81.27 1.39 13.86 138.59 

1,500,000 DSBMM 0.79 1.51 7.74 1.22 2.17 10.38 1.99 3.57 16.95 

1,500,000 DSBMM2 1.22 1.93 7.36 1.94 3.07 10.86 2.84 5.28 17.64 

3,000,000 DGBMV 0.81 8.14 81.44 1.62 16.25 162.57 2.77 27.70 277.02 

3,000,000 DSBMM 1.57 3.02 15.50 2.44 4.34 20.77 3.98 7.14 33.92 

3,000,000 DSBMM2 2.45 3.86 14.72 3.89 6.14 21.73 5.67 10.56 35.29 
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Table A.3 Multiplication time of banded matrices, having 5, 10 and 20 lower bandwidth, with multiple vectors on MERCAN 

Number of 
Rows 

Implementation 
Type 

ml = 5 ml = 10 ml = 20 

1 Vector 
(sec) 

10 Vectors 
(sec) 

100 Vectors 
(sec) 

1 Vector 
(sec) 

10 Vectors 
(sec) 

100 Vectors 
(sec) 

1 Vector 
(sec) 

10 Vectors 
(sec) 

100 Vectors 
(sec) 

100,000 DGBMV 0.00 0.03 0.35 0.01 0.06 0.66 0.01 0.09 0.94 

100,000 DSBMM 0.04 0.12 0.78 0.03 0.09 0.59 0.03 0.07 0.48 

100,000 DSBMM2 0.04 0.07 0.26 0.05 0.07 0.32 0.06 0.08 0.41 

400,000 DGBMV 0.01 0.14 1.40 0.03 0.26 2.61 0.04 0.37 3.75 

400,000 DSBMM 0.17 0.50 3.95 0.13 0.38 3.01 0.11 0.29 2.23 

400,000 DSBMM2 0.17 0.28 1.04 0.20 0.30 1.29 0.25 0.33 1.65 

1,500,000 DGBMV 0.05 0.52 5.18 0.10 0.97 9.76 0.14 1.40 14.03 

1,500,000 DSBMM 0.64 1.81 14.03 0.47 1.40 10.67 0.41 1.07 8.13 

1,500,000 DSBMM2 0.65 1.03 3.88 0.77 1.15 4.85 0.92 1.26 6.16 

3,000,000 DGBMV 0.10 1.04 10.37 0.19 1.95 19.49 0.28 2.80 28.00 

3,000,000 DSBMM 1.27 3.62 27.77 0.94 2.80 21.49 0.81 2.14 16.14 

3,000,000 DSBMM2 1.31 2.07 7.79 1.53 2.29 9.68 1.84 2.53 12.38 
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Table A.4 Multiplication time of banded matrices, having 50, 100 and 200 lower bandwidth, with multiple vectors on MERCAN 

Number of 
Rows 

Implementation 
Type 

ml = 50 ml = 100 ml = 200 

1 Vector 
(sec) 

10 Vectors 
(sec) 

100 Vectors 
(sec) 

1 Vector 
(sec) 

10 Vectors 
(sec) 

100 Vectors 
(sec) 

1 Vector 
(sec) 

10 Vectors 
(sec) 

100 Vectors 
(sec) 

100,000 DGBMV 0.02 0.18 1.78 0.03 0.32 3.19 0.06 0.61 6.07 

100,000 DSBMM 0.04 0.10 0.61 0.06 0.14 0.95 0.09 0.23 1.49 

100,000 DSBMM2 0.09 0.12 0.64 0.14 0.16 0.93 0.22 0.26 1.49 

400,000 DGBMV 0.07 0.70 6.99 0.13 1.27 12.71 0.24 2.43 24.26 

400,000 DSBMM 0.16 0.38 2.52 0.22 0.55 3.84 0.35 0.93 5.98 

400,000 DSBMM2 0.36 0.46 2.55 0.55 0.65 3.72 0.87 1.05 5.96 

1,500,000 DGBMV 0.26 2.62 26.22 0.48 4.77 47.56 0.91 9.09 90.90 

1,500,000 DSBMM 0.60 1.48 9.56 0.83 2.09 14.49 1.31 3.48 22.44 

1,500,000 DSBMM2 1.35 1.77 9.54 2.05 2.49 13.96 3.28 3.94 22.35 

3,000,000 DGBMV 0.51 5.23 52.33 0.95 9.52 95.63 N/A N/A N/A 

3,000,000 DSBMM 1.19 2.93 19.00 1.65 4.17 29.03 N/A N/A N/A 

3,000,000 DSBMM2 2.71 3.53 19.26 4.11 4.99 27.92 N/A N/A N/A 

On MERCAN, the tests with matrix having 3,000,000 rows and 200 lower bandwidth, give memory error. (N/A means not available)
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APPENDIX B 

B RESULTS OF SPARSE MATRIX – MULTIPLE VECTORS 
MULTIPLICATION 

Sparse matrix – multiple vectors multiplication operations are done varying;  

• Form of the matrix 

o Matrix in its original form 

o Matrix permuted with permutation vector generated using MC73 

o Matrix permuted with permutation vector generated using RCM 

• Partitioning tool 

o METIS 

o PATOH 

• Number of processes 

o 1 (Sequential) 

o 2 

o 4 

o 8 

o 16 

• Computing platform 

o NAR 

o MERCAN 

The results of SpMM with matrix in its original form are given in Table B.1, Table 

B.2, Table B.3 and Table B.4. 

The results of SpMM with matrix permuted with permutation vector generated using 

MC73 are given in Table B.5, Table B.6, Table B.7 and Table B.8. 
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The results of SpMM with matrix permuted with permutation vector generated using 

RCM are given in Table B.9, Table B.10, Table B.11 and Table B.12. 

Sequential permutation and multiplication time of each form of the matrix are given 

in the first appearance of combination of matrix form and platform in the following 

tables. They are given in Table B.1 and Table B.3 for original form; Table B.5 and 

Table B.7 for MC73; Table B.9 and Table B.11 for RCM. 

Matrix reading time for each platform are given only in tables having the results of 

matrix in its original form. They are given in Table B.1 and Table B.3 for NAR and 

MERCAN platforms, respectively. 

Values in the tables are given in second.
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Table B.1 Matrix reading time; Sequential multiplication time; Partitioning and parallel multiplication time of matrix partitioned using METIS on NAR  

Matrix Name 
Reading 

Matrix (sec) 

1 Process 2 Processes 4 Processes 8 Processes 16 Processes 

Multiplica-
tion (sec) 

Partitioning 
(sec) 

Multiplica-
tion (sec) 

Partitioning 
(sec) 

Multiplica-
tion (sec) 

Partitioning 
(sec) 

Multiplica-
tion (sec) 

Partitioning 
(sec) 

Multiplica-
tion (sec) 

af_shell10 26.87 10.87 2.08 5.50 2.04 2.75 2.09 1.69 4.23 1.82 

atmosmodd 7.77 2.60 1.66 1.38 1.73 0.97 1.98 1.02 4.64 1.31 

atmosmodl 6.46 3.05 1.98 1.62 2.05 1.13 2.30 1.17 4.13 1.40 

cage14 22.04 7.89 7.99 4.97 12.92 3.39 18.44 2.97 50.54 3.92 

dielFilterV3real 66.02 19.26 3.41 9.85 3.47 5.23 3.95 3.18 9.99 3.38 

G3_circuit 3.79 2.44 1.55 1.31 1.59 0.94 1.60 0.95 2.76 1.20 

Geo_1438 31.71 13.64 3.06 6.79 3.14 3.57 3.35 2.18 7.39 2.42 

Hamrle3 4.39 2.29 14.08 1.75 24.05 1.63 40.58 1.89 132.52 3.50 

Hook_1498 32.77 12.74 3.06 6.46 3.19 3.46 3.37 2.10 7.09 2.32 

kkt_power 8.36 5.82 3.71 2.70 4.16 1.69 4.51 1.56 10.00 1.90 

memchip 13.95 5.58 4.18 2.86 4.23 2.04 4.27 1.98 8.08 2.16 

nlpkkt80 12.40 5.54 2.58 2.87 2.90 1.68 3.32 1.33 8.01 1.63 

Serena 31.65 13.48 3.19 6.93 3.36 3.69 3.59 2.22 8.64 2.49 

StocF-1465 11.74 5.32 2.11 2.78 2.21 1.60 2.55 1.26 5.83 1.48 

thermal2 4.97 2.93 1.36 1.50 1.39 0.95 1.41 0.94 2.52 1.01 

webbase-1M 2.13 1.43 1.77 0.78 1.85 0.58 1.99 0.57 3.62 0.63 
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Table B.2 Partitioning and parallel multiplication time of matrix partitioned using PATOH on NAR 

Matrix Name 

2 Processes 4 Processes 8 Processes 16 Processes 

Partitioning 
(sec) 

Multiplica-
tion (sec) 

Partitioning 
(sec) 

Multiplica-
tion (sec) 

Partitioning 
(sec) 

Multiplica-
tion (sec) 

Partitioning 
(sec) 

Multiplica-
tion (sec) 

af_shell10 12.13 5.19 23.65 2.75 34.73 1.69 91.00 1.80 

atmosmodd 6.31 1.39 10.50 0.98 14.45 1.03 35.41 1.20 

atmosmodl 7.68 1.62 13.09 1.13 17.67 1.17 43.07 1.42 

cage14 38.97 4.84 70.98 3.28 96.95 3.09 237.04 4.40 

dielFilterV3real 53.30 9.87 104.66 5.23 154.10 3.15 401.59 3.31 

G3_circuit 3.98 1.31 7.30 0.94 10.21 0.95 25.07 1.12 

Geo_1438 23.17 6.73 42.18 3.56 60.97 2.16 157.35 2.50 

Hamrle3 3.14 2.11 5.60 2.02 7.79 2.20 18.86 3.65 

Hook_1498 21.90 6.53 41.50 3.48 60.03 2.08 155.57 2.37 

kkt_power 18.01 2.77 32.56 1.75 41.91 1.56 98.20 1.73 

memchip 6.14 2.87 11.35 2.04 16.11 1.97 39.85 2.11 

nlpkkt80 14.44 2.82 26.17 1.59 37.28 1.28 94.20 2.09 

Serena 24.05 6.85 45.23 3.69 65.26 2.22 169.02 2.54 

StocF-1465 11.01 2.71 20.26 1.59 28.69 1.25 72.99 1.50 

thermal2 4.01 1.48 7.39 0.95 10.40 0.95 25.77 1.03 

webbase-1M 2.73 0.81 5.09 0.61 7.24 0.60 19.19 0.75 
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Table B.3 Matrix reading time; Sequential multiplication time; Partitioning and parallel multiplication time of matrix partitioned using METIS on 

MERCAN 

Matrix Name 
Reading 

Matrix (sec) 

1 Process 2 Processes 4 Processes 8 Processes 16 Processes 

Multiplica-
tion (sec) 

Partitioning 
(sec) 

Multiplica-
tion (sec) 

Partitioning 
(sec) 

Multiplica-
tion (sec) 

Partitioning 
(sec) 

Multiplica-
tion (sec) 

Partitioning 
(sec) 

Multiplica-
tion (sec) 

af_shell10 23.97 30.16 2.59 15.13 2.50 7.81 2.55 4.50 2.59 2.69 

atmosmodd 6.97 15.65 1.67 7.55 1.73 4.02 1.99 2.24 2.24 1.28 

atmosmodl 5.91 19.41 1.97 9.54 2.04 5.03 2.25 2.73 2.34 1.62 

cage14 20.77 36.36 8.47 19.50 12.54 10.37 17.45 5.67 23.90 3.50 

dielFilterV3real 58.17 54.83 4.33 26.99 4.41 14.43 4.91 7.64 5.84 4.58 

G3_circuit 3.58 16.78 1.58 8.45 1.60 4.69 1.64 2.77 1.67 1.50 

Geo_1438 28.71 39.62 3.84 19.60 3.90 10.42 4.14 5.62 4.56 3.33 

Hamrle3 3.88 13.47 13.51 7.38 22.11 4.01 37.79 2.39 62.52 1.45 

Hook_1498 29.34 39.07 3.75 19.36 3.90 10.66 4.11 5.78 4.34 3.38 

kkt_power 7.69 31.80 3.93 14.97 4.47 7.23 4.81 4.62 5.38 2.48 

memchip 12.16 29.65 3.81 14.97 3.86 8.61 3.94 4.78 4.01 2.93 

nlpkkt80 11.69 22.50 3.08 11.03 3.36 6.18 3.69 3.16 4.39 1.87 

Serena 28.72 40.42 4.00 20.02 4.21 11.12 4.45 6.02 5.06 3.51 

StocF-1465 10.66 26.09 2.48 12.69 2.61 6.84 2.97 3.71 3.33 2.23 

thermal2 4.73 15.45 1.42 7.90 1.43 4.18 1.48 2.35 1.49 1.28 

webbase-1M 1.98 8.52 1.80 4.44 1.92 2.31 2.04 1.39 2.32 0.81 
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Table B.4 Partitioning and parallel multiplication time of matrix partitioned using PATOH on MERCAN 

Matrix Name 

2 Processes 4 Processes 8 Processes 16 Processes 

Partitioning 
(sec) 

Multiplica-
tion (sec) 

Partitioning 
(sec) 

Multiplica-
tion (sec) 

Partitioning 
(sec) 

Multiplica-
tion (sec) 

Partitioning 
(sec) 

Multiplica-
tion (sec) 

af_shell10 17.20 15.07 33.71 8.23 49.87 4.41 65.74 2.66 

atmosmodd 6.28 7.56 11.38 4.05 16.09 2.24 20.57 1.28 

atmosmodl 7.69 9.62 13.76 5.20 19.21 2.50 24.51 1.55 

cage14 39.37 19.88 72.13 10.14 101.09 5.55 128.47 3.35 

dielFilterV3real 72.52 26.18 142.89 12.91 212.64 7.80 279.57 4.50 

G3_circuit 4.03 8.49 7.64 4.68 11.14 2.55 14.34 1.40 

Geo_1438 30.67 19.41 56.96 10.41 83.15 5.70 109.34 3.32 

Hamrle3 3.21 5.71 5.85 2.73 8.44 1.60 10.75 0.98 

Hook_1498 29.46 19.30 56.39 10.78 82.74 5.32 108.47 3.32 

kkt_power 16.95 15.15 31.11 7.93 42.34 4.17 53.58 2.44 

memchip 5.63 15.20 10.87 8.40 15.82 4.81 20.43 2.98 

nlpkkt80 17.40 10.27 32.46 5.75 47.00 3.39 60.78 1.79 

Serena 32.29 19.87 61.17 11.15 89.75 5.51 117.50 3.24 

StocF-1465 12.12 12.59 23.18 6.56 33.98 3.63 44.11 2.05 

thermal2 4.17 7.87 7.81 4.36 11.34 2.31 14.57 1.35 

webbase-1M 3.28 4.44 6.27 2.30 9.11 1.36 12.21 0.79 
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Table B.5 Sequential permutation and multiplication time; Partitioning, parallel permutation and multiplication time of matrix partitioned using METIS 

and then permuted using MC73 on NAR 

Matrix Name 

1 Process 2 Processes 4 Processes 8 Processes 16 Processes 

Permu-
tation 
(sec) 

Multipli-
cation 
(sec) 

Parti-
tioning 
(sec) 

Permu-
tation 
(sec) 

Multipli-
cation 
(sec) 

Parti-
tioning 
(sec) 

Permu-
tation 
(sec) 

Multipli-
cation 
(sec) 

Parti-
tioning 
(sec) 

Permu-
tation 
(sec) 

Multipli-
cation 
(sec) 

Parti-
tioning 
(sec) 

Permu-
tation 
(sec) 

Multipli-
cation 
(sec) 

af_shell10 5.33 11.25 2.08 2.71 5.49 2.04 1.59 2.92 2.09 1.37 1.87 4.23 0.48 1.87 

atmosmodd 2.51 3.10 1.66 1.40 1.65 1.73 0.72 1.03 1.98 0.50 1.23 3.96 0.15 1.24 

atmosmodl 3.05 3.50 1.98 1.68 1.83 2.05 0.87 1.30 2.30 0.69 1.18 4.82 0.18 1.54 

cage14 8.73 12.15 7.98 4.94 7.88 12.90 3.98 5.44 18.42 1.42 4.00 50.53 0.41 4.77 

dielFilterV3real 11.02 20.63 3.36 5.63 10.82 3.46 3.22 5.51 3.94 3.10 3.39 10.01 2.05 3.27 

G3_circuit 3.29 2.61 1.55 1.80 1.38 1.59 0.87 0.88 1.60 0.65 0.85 3.25 0.16 1.04 

Geo_1438 7.82 18.17 3.06 3.85 8.55 3.14 2.16 4.32 3.36 1.71 3.18 7.40 0.76 2.84 

Hamrle3 22.14 2.94 14.15 11.52 2.17 24.14 2.66 1.96 40.52 1.40 2.25 132.66 0.47 3.08 

Hook_1498 7.97 15.49 3.06 3.91 7.73 3.20 2.18 4.11 3.39 1.70 2.85 7.20 0.83 2.93 

kkt_power 31.73 5.22 3.73 20.10 2.77 4.17 6.23 1.69 4.51 3.70 1.68 10.00 1.33 1.84 

memchip 9.36 4.78 4.18 4.04 2.52 4.23 2.26 1.62 4.27 1.69 1.44 8.08 0.38 1.45 

nlpkkt80 6.90 10.87 2.58 3.59 6.27 2.91 1.69 3.34 3.33 1.10 2.71 8.01 0.45 2.58 

Serena 8.18 19.81 3.20 4.12 9.26 3.37 2.30 4.91 3.60 1.82 3.11 8.79 1.07 3.02 

StocF-1465 5.53 6.58 2.12 2.95 3.52 2.21 1.33 2.43 2.55 0.89 2.20 5.83 0.35 2.04 

thermal2 3.78 2.50 1.36 1.68 1.31 1.39 1.07 0.80 1.41 0.61 0.66 2.47 0.18 1.04 

webbase-1M 35.72 1.46 1.77 17.63 0.80 1.85 7.80 0.58 1.98 3.81 0.54 3.62 1.83 0.64 
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Table B.6 Partitioning, parallel permutation and multiplication time of matrix partitioned using PATOH and then permuted using MC73 on NAR 

Matrix Name 

2 Processes 4 Processes 8 Processes 16 Processes 

Parti-
tioning 
(sec) 

Permu-
tation 
(sec) 

Multipli-
cation 
(sec) 

Parti-
tioning 
(sec) 

Permu-
tation 
(sec) 

Multipli-
cation 
(sec) 

Parti-
tioning 
(sec) 

Permu-
tation 
(sec) 

Multipli-
cation 
(sec) 

Parti-
tioning 
(sec) 

Permu-
tation 
(sec) 

Multipli-
cation 
(sec) 

af_shell10 12.09 2.73 5.49 23.59 1.59 2.89 34.63 1.31 1.84 90.77 0.48 1.89 

atmosmodd 6.10 1.36 1.59 10.50 0.73 1.03 14.52 0.56 1.08 35.17 0.18 1.05 

atmosmodl 7.55 1.60 1.79 13.03 0.86 1.16 17.64 0.66 1.26 43.09 0.19 1.24 

cage14 38.98 3.59 7.38 69.62 1.85 4.92 96.84 0.93 4.07 237.37 0.43 4.86 

dielFilterV3real 53.37 5.59 10.79 104.48 3.23 5.48 154.15 2.43 3.29 401.26 0.81 3.02 

G3_circuit 4.00 1.73 1.39 7.35 0.93 0.87 10.25 0.61 0.85 25.25 0.14 1.12 

Geo_1438 23.17 3.79 8.44 42.45 2.13 4.29 61.12 1.70 2.92 157.01 0.84 2.82 

Hamrle3 3.13 4.97 2.38 5.59 1.56 2.06 7.77 0.19 2.33 18.73 0.02 3.17 

Hook_1498 21.93 3.87 7.69 41.30 2.14 4.10 59.98 1.74 2.70 155.21 0.96 2.74 

kkt_power 18.34 9.30 2.72 31.17 4.08 1.66 41.02 1.87 1.59 99.04 0.75 1.69 

memchip 6.16 3.49 2.51 11.37 1.99 1.59 16.13 1.57 1.43 39.81 0.39 1.54 

nlpkkt80 14.14 3.10 5.66 26.24 1.67 2.89 37.04 1.09 2.79 94.22 0.43 2.18 

Serena 24.00 3.84 9.27 45.13 2.09 4.71 65.25 1.71 3.06 168.79 0.92 2.93 

StocF-1465 10.92 2.86 3.30 20.19 1.34 2.21 28.86 1.05 2.21 73.00 0.36 1.87 

thermal2 4.02 1.65 1.32 7.39 1.00 0.80 10.42 0.48 0.65 26.06 0.17 0.81 

webbase-1M 2.73 8.73 0.83 5.08 5.51 0.56 7.28 0.86 0.55 18.36 0.74 0.60 
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Table B.7 Sequential permutation and multiplication time; Partitioning, parallel permutation and multiplication time of matrix partitioned using METIS 

and then permuted using MC73 on MERCAN 

Matrix Name 

1 Process 2 Processes 4 Processes 8 Processes 16 Processes 

Permu-
tation 
(sec) 

Multipli-
cation 
(sec) 

Parti-
tioning 
(sec) 

Permu-
tation 
(sec) 

Multipli-
cation 
(sec) 

Parti-
tioning 
(sec) 

Permu-
tation 
(sec) 

Multipli-
cation 
(sec) 

Parti-
tioning 
(sec) 

Permu-
tation 
(sec) 

Multipli-
cation 
(sec) 

Parti-
tioning 
(sec) 

Permu-
tation 
(sec) 

Multipli-
cation 
(sec) 

af_shell10 6.69 34.28 2.60 3.36 16.53 2.51 1.64 8.57 2.58 0.81 4.80 2.61 0.44 2.52 

atmosmodd 2.80 16.31 1.68 1.55 8.16 1.75 0.73 4.32 2.00 0.35 2.44 2.24 0.19 1.35 

atmosmodl 3.35 19.08 1.99 1.82 9.68 2.02 0.89 5.19 2.26 0.46 2.82 2.38 0.23 1.63 

cage14 9.75 47.99 8.50 5.62 25.75 12.55 4.29 13.23 17.51 0.95 6.92 24.00 0.48 3.54 

dielFilterV3real 13.08 60.40 4.30 6.46 29.66 4.42 3.18 15.44 4.95 1.83 7.79 5.89 1.01 4.27 

G3_circuit 3.66 17.27 1.58 1.97 8.67 1.64 0.87 4.84 1.62 0.43 2.53 1.65 0.22 1.59 

Geo_1438 9.42 55.41 3.88 4.67 26.69 3.94 2.25 12.47 4.18 1.11 6.38 4.56 0.59 3.80 

Hamrle3 27.08 16.76 13.53 12.48 8.84 22.15 2.90 4.76 38.06 1.21 2.76 61.99 0.56 1.49 

Hook_1498 9.55 50.26 3.77 4.73 24.63 3.94 2.32 12.64 4.12 1.13 6.60 4.37 0.62 3.37 

kkt_power 32.73 28.24 3.93 20.64 13.87 4.49 7.39 7.47 4.82 3.36 4.12 5.32 1.14 2.42 

memchip 10.34 30.33 3.86 4.21 15.40 3.87 2.00 8.43 3.90 0.96 4.89 4.03 0.48 2.50 

nlpkkt80 8.51 34.42 3.08 4.29 17.05 3.38 2.02 8.33 3.74 0.85 4.35 4.41 0.52 2.18 

Serena 9.76 61.59 4.03 4.89 27.74 4.21 2.39 13.43 4.46 1.18 7.03 5.14 0.60 3.65 

StocF-1465 6.35 30.12 2.50 3.34 14.53 2.62 1.45 8.25 2.99 0.75 4.08 3.35 0.37 2.14 

thermal2 4.16 15.79 1.42 1.86 7.93 1.44 1.19 4.34 1.47 0.51 2.45 1.50 0.25 1.30 

webbase-1M 38.47 8.42 1.82 19.23 4.78 1.91 9.47 3.12 2.06 4.39 1.45 2.33 2.00 0.88 
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Table B.8 Partitioning, parallel permutation and multiplication time of matrix partitioned using PATOH and then permuted using MC73 on MERCAN 

Matrix Name 

2 Processes 4 Processes 8 Processes 16 Processes 

Parti-
tioning 
(sec) 

Permu-
tation 
(sec) 

Multipli-
cation 
(sec) 

Parti-
tioning 
(sec) 

Permu-
tation 
(sec) 

Multipli-
cation 
(sec) 

Parti-
tioning 
(sec) 

Permu-
tation 
(sec) 

Multipli-
cation 
(sec) 

Parti-
tioning 
(sec) 

Permu-
tation 
(sec) 

Multipli-
cation 
(sec) 

af_shell10 17.21 3.37 16.10 33.62 1.66 8.86 49.82 0.81 5.19 65.73 0.43 3.04 

atmosmodd 6.32 1.46 8.11 11.38 0.71 4.49 16.20 0.38 2.35 20.63 0.20 1.37 

atmosmodl 7.66 1.68 9.54 13.74 0.85 5.20 19.25 0.48 3.04 24.68 0.22 1.59 

cage14 40.09 3.98 25.88 72.52 1.74 13.35 102.07 0.76 6.90 128.33 0.42 3.66 

dielFilterV3real 72.53 6.39 29.75 143.22 3.16 14.54 213.00 1.67 7.52 280.02 0.88 4.10 

G3_circuit 4.08 1.92 8.80 7.68 0.89 4.75 11.13 0.41 2.72 14.40 0.22 1.49 

Geo_1438 30.64 4.60 25.02 57.11 2.22 12.67 83.48 1.13 7.02 109.33 0.60 3.48 

Hamrle3 3.23 6.31 7.00 5.95 1.60 3.11 8.45 0.23 1.69 10.89 0.04 0.94 

Hook_1498 29.55 4.67 24.80 56.24 2.28 12.53 82.76 1.13 6.87 108.27 0.61 3.54 

kkt_power 16.74 10.76 14.11 30.54 4.82 7.34 42.95 2.09 4.01 54.03 0.95 2.33 

memchip 5.59 3.72 15.75 10.86 1.79 8.96 15.79 0.86 5.00 20.43 0.47 2.67 

nlpkkt80 17.47 3.95 16.82 32.47 1.77 8.35 46.83 1.01 4.26 60.95 0.43 2.14 

Serena 32.58 4.65 27.09 61.51 2.17 13.82 90.17 1.11 6.54 117.20 0.55 3.66 

StocF-1465 12.18 3.26 14.30 23.02 1.48 7.33 33.71 0.80 4.06 44.26 0.37 2.18 

thermal2 4.14 1.83 7.90 7.81 0.92 4.26 11.38 0.45 2.29 14.79 0.23 1.31 

webbase-1M 3.30 9.37 4.49 6.27 5.15 2.40 9.17 0.87 1.32 12.24 0.66 0.82 
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Table B.9 Sequential permutation and multiplication time; Partitioning, parallel permutation and multiplication time of matrix partitioned using METIS 

and then permuted using RCM on NAR 

Matrix Name 

1 Process 2 Processes 4 Processes 8 Processes 16 Processes 

Permu-
tation 
(sec) 

Multipli-
cation 
(sec) 

Parti-
tioning 
(sec) 

Permu-
tation 
(sec) 

Multipli-
cation 
(sec) 

Parti-
tioning 
(sec) 

Permu-
tation 
(sec) 

Multipli-
cation 
(sec) 

Parti-
tioning 
(sec) 

Permu-
tation 
(sec) 

Multipli-
cation 
(sec) 

Parti-
tioning 
(sec) 

Permu-
tation 
(sec) 

Multipli-
cation 
(sec) 

af_shell10 0.69 10.85 2.08 0.35 5.42 2.04 0.19 2.78 2.09 0.14 1.78 4.23 0.04 1.79 

atmosmodd 0.45 2.53 1.67 0.16 1.35 1.73 0.10 0.90 1.98 0.05 0.97 4.44 0.02 1.05 

atmosmodl 0.51 2.96 1.98 0.20 1.58 2.04 0.14 1.05 2.30 0.07 1.13 4.03 0.01 1.24 

cage14 1.48 7.39 7.95 0.68 4.79 12.82 0.38 3.42 18.31 0.26 2.81 51.06 0.03 3.77 

dielFilterV3real 1.27 16.85 3.36 0.53 8.50 3.47 0.36 4.40 3.93 0.21 2.54 10.20 0.07 3.01 

G3_circuit 0.35 2.70 1.55 0.20 1.48 1.59 0.08 1.02 1.60 0.05 1.10 2.85 0.02 1.21 

Geo_1438 0.78 13.04 3.07 0.56 6.61 3.15 0.24 3.54 3.36 0.16 2.29 7.41 0.05 2.43 

Hamrle3 1.03 2.65 14.01 0.42 1.93 23.90 0.19 1.77 40.33 0.11 2.04 132.74 0.02 3.03 

Hook_1498 0.80 12.74 3.06 0.38 6.54 3.20 0.23 3.53 3.38 0.21 2.31 7.19 0.06 2.57 

kkt_power 3.41 4.92 3.71 1.23 2.63 4.15 0.47 1.78 4.49 0.46 1.62 10.00 0.03 1.76 

memchip 1.30 5.47 4.18 0.45 2.97 4.23 0.20 2.01 4.27 0.14 1.83 8.67 0.04 1.99 

nlpkkt80 0.62 5.58 2.57 0.28 2.84 2.89 0.13 1.73 3.32 0.09 1.41 8.00 0.02 1.67 

Serena 0.76 13.47 3.20 0.65 6.96 3.38 0.24 3.77 3.59 0.26 2.31 8.74 0.08 2.52 

StocF-1465 0.93 5.29 2.12 0.34 2.77 2.21 0.16 1.57 2.56 0.12 1.25 5.83 0.03 1.73 

thermal2 0.55 2.46 1.36 0.21 1.29 1.39 0.11 0.78 1.42 0.06 0.66 2.62 0.02 0.86 

webbase-1M 0.28 1.38 1.77 0.12 0.77 1.85 0.05 0.59 1.98 0.03 0.57 3.70 0.01 0.64 
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Table B.10 Partitioning, parallel permutation and multiplication time of matrix partitioned using PATOH and then permuted using RCM on NAR 

Matrix Name 

2 Processes 4 Processes 8 Processes 16 Processes 

Parti-
tioning 
(sec) 

Permu-
tation 
(sec) 

Multipli-
cation 
(sec) 

Parti-
tioning 
(sec) 

Permu-
tation 
(sec) 

Multipli-
cation 
(sec) 

Parti-
tioning 
(sec) 

Permu-
tation 
(sec) 

Multipli-
cation 
(sec) 

Parti-
tioning 
(sec) 

Permu-
tation 
(sec) 

Multipli-
cation 
(sec) 

af_shell10 12.09 0.27 5.43 23.60 0.17 2.80 34.67 0.10 1.73 90.80 0.04 1.68 

atmosmodd 6.05 0.16 1.36 10.44 0.07 0.90 14.40 0.05 0.93 35.24 0.01 1.03 

atmosmodl 7.71 0.19 1.59 12.96 0.10 1.04 17.68 0.07 1.12 43.10 0.01 1.16 

cage14 39.10 0.67 4.52 70.88 0.34 3.11 96.88 0.22 2.82 236.83 0.03 3.86 

dielFilterV3real 53.34 0.52 8.49 104.63 0.33 4.42 154.08 0.27 2.43 400.92 0.14 2.74 

G3_circuit 3.99 0.17 1.46 7.31 0.08 1.04 10.25 0.05 1.06 24.99 0.01 1.07 

Geo_1438 23.08 0.36 6.68 42.46 0.21 3.52 61.03 0.16 2.26 156.51 0.04 2.44 

Hamrle3 3.13 2.04 2.14 5.59 0.04 2.05 7.79 0.02 2.24 18.70 0.01 3.22 

Hook_1498 21.95 0.37 6.42 41.52 0.21 3.47 59.97 0.15 2.18 155.44 0.05 2.40 

kkt_power 18.08 1.00 2.68 31.45 0.56 1.75 41.67 0.49 1.61 98.20 0.03 1.77 

memchip 6.13 0.45 2.97 11.37 0.20 1.99 16.11 0.13 1.91 39.81 0.03 1.99 

nlpkkt80 14.50 0.19 2.84 26.30 0.12 1.58 37.19 0.09 1.33 93.87 0.02 1.58 

Serena 24.14 0.38 6.86 45.14 0.23 3.72 65.16 0.15 2.26 168.40 0.07 2.57 

StocF-1465 10.96 0.25 2.72 20.25 0.14 1.58 28.86 0.09 1.25 73.01 0.03 1.59 

thermal2 4.01 0.21 1.29 7.37 0.10 0.79 10.39 0.06 0.63 26.03 0.02 0.88 

webbase-1M 2.73 0.12 0.82 5.07 0.03 0.58 7.36 0.02 0.55 18.45 0.00 0.63 
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Table B.11 Sequential permutation and multiplication time; Partitioning, parallel permutation and multiplication time of matrix partitioned using METIS 

and then permuted using RCM on MERCAN 

Matrix Name 

1 Process 2 Processes 4 Processes 8 Processes 16 Processes 

Permu-
tation 
(sec) 

Multipli-
cation 
(sec) 

Parti-
tioning 
(sec) 

Permu-
tation 
(sec) 

Multipli-
cation 
(sec) 

Parti-
tioning 
(sec) 

Permu-
tation 
(sec) 

Multipli-
cation 
(sec) 

Parti-
tioning 
(sec) 

Permu-
tation 
(sec) 

Multipli-
cation 
(sec) 

Parti-
tioning 
(sec) 

Permu-
tation 
(sec) 

Multipli-
cation 
(sec) 

af_shell10 0.81 30.19 2.58 0.43 14.79 2.50 0.20 8.00 2.57 0.11 4.41 2.59 0.05 2.42 

atmosmodd 0.47 14.39 1.70 0.23 7.20 1.77 0.12 3.89 2.03 0.05 2.27 2.28 0.02 1.32 

atmosmodl 0.55 16.88 2.00 0.27 8.45 2.05 0.15 4.64 2.29 0.05 2.48 2.36 0.02 1.47 

cage14 1.42 36.91 8.51 0.75 19.70 12.58 0.37 10.67 17.58 0.12 5.72 24.09 0.07 3.28 

dielFilterV3real 1.63 43.63 4.34 0.64 21.41 4.47 0.36 10.76 4.99 0.18 6.29 5.88 0.09 3.60 

G3_circuit 0.50 16.29 1.60 0.23 8.28 1.62 0.09 4.67 1.63 0.04 2.72 1.68 0.02 1.47 

Geo_1438 0.94 39.54 3.86 0.62 18.97 3.91 0.23 10.47 4.14 0.11 6.16 4.55 0.06 3.37 

Hamrle3 0.88 16.22 13.57 0.39 8.39 22.35 0.20 5.00 38.40 0.07 2.92 63.08 0.03 1.61 

Hook_1498 0.96 40.13 3.73 0.45 19.56 3.89 0.22 10.54 4.09 0.14 5.88 4.34 0.08 3.32 

kkt_power 2.62 26.56 3.91 0.99 13.32 4.51 0.42 8.37 4.87 0.16 4.01 5.37 0.09 2.46 

memchip 1.35 31.31 3.77 0.51 15.98 3.86 0.24 8.55 3.93 0.12 5.01 3.99 0.06 2.82 

nlpkkt80 0.73 26.57 3.06 0.36 11.99 3.37 0.15 5.98 3.73 0.07 3.23 4.42 0.04 1.68 

Serena 0.93 41.64 4.03 0.75 20.50 4.21 0.24 11.21 4.44 0.17 5.58 5.15 0.08 3.57 

StocF-1465 1.02 25.83 2.50 0.44 12.13 2.60 0.21 5.70 2.97 0.13 3.44 3.35 0.06 1.90 

thermal2 0.58 15.25 1.40 0.24 7.68 1.43 0.11 4.13 1.46 0.05 2.32 1.48 0.02 1.27 

webbase-1M 0.29 8.20 1.82 0.14 5.31 1.91 0.08 2.75 2.04 0.03 1.39 2.33 0.01 0.88 
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Table B.12 Partitioning, parallel permutation and multiplication time of matrix partitioned using PATOH and then permuted using RCM on MERCAN 

Matrix Name 

2 Processes 4 Processes 8 Processes 16 Processes 

Parti-
tioning 
(sec) 

Permu-
tation 
(sec) 

Multipli-
cation 
(sec) 

Parti-
tioning 
(sec) 

Permu-
tation 
(sec) 

Multipli-
cation 
(sec) 

Parti-
tioning 
(sec) 

Permu-
tation 
(sec) 

Multipli-
cation 
(sec) 

Parti-
tioning 
(sec) 

Permu-
tation 
(sec) 

Multipli-
cation 
(sec) 

af_shell10 17.25 0.39 14.88 33.81 0.19 8.84 49.89 0.09 4.40 65.83 0.05 2.61 

atmosmodd 6.43 0.23 7.09 11.26 0.10 3.96 16.15 0.04 2.13 20.55 0.02 1.28 

atmosmodl 7.57 0.26 8.43 13.68 0.12 4.65 19.04 0.05 2.56 24.64 0.03 1.52 

cage14 38.83 0.65 18.96 72.72 0.28 10.42 100.20 0.11 5.88 127.80 0.05 3.12 

dielFilterV3real 72.33 0.64 21.51 142.71 0.32 11.80 212.66 0.18 6.95 279.45 0.09 3.96 

G3_circuit 4.03 0.19 8.36 7.69 0.09 4.54 11.02 0.04 2.47 14.23 0.02 1.51 

Geo_1438 30.48 0.44 18.82 57.11 0.22 9.57 83.21 0.12 5.59 109.10 0.06 3.01 

Hamrle3 3.24 0.28 6.66 5.91 0.06 3.23 8.50 0.02 1.56 10.90 0.01 1.02 

Hook_1498 29.55 0.46 19.79 56.31 0.23 10.64 82.54 0.12 5.73 108.40 0.06 3.40 

kkt_power 16.57 0.88 13.05 30.47 0.44 7.56 42.60 0.16 4.20 54.00 0.08 2.47 

memchip 5.63 0.51 16.31 10.79 0.23 8.52 15.83 0.12 4.60 20.35 0.05 2.77 

nlpkkt80 17.26 0.29 11.19 32.55 0.15 5.77 47.12 0.07 3.34 60.96 0.03 1.87 

Serena 32.47 0.46 20.17 61.38 0.22 12.11 89.90 0.11 6.09 117.16 0.06 3.53 

StocF-1465 12.22 0.34 11.67 23.11 0.18 6.29 33.55 0.07 3.48 43.89 0.04 1.82 

thermal2 4.18 0.23 7.60 7.89 0.11 4.15 11.27 0.05 2.27 14.54 0.02 1.30 

webbase-1M 3.28 0.08 4.26 6.27 0.03 2.35 9.10 0.02 1.38 12.23 0.01 0.81 

 


