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Date: 13.08.2014



I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: GÜNER ORHAN

Signature :

iv



ABSTRACT

BUILDING A WEB OF CONCEPTS ON A HUMANOID ROBOT

Orhan, Güner
M.S., Department of Computer Engineering

Supervisor : Assist. Prof. Dr. Sinan Kalkan

August 2014, 76 pages

In this thesis, an effective approach for predicting nouns, adjectives and verbs is in-
troduced for more effective communication between a humanoid robot and a human
actor. There are three important challenges addressed by our approach: The first one
is the accurate prediction of words in language. Most of the existing robotics studies
predict words in language using perceptual information only. However, due to noise
and ambiguity in low-level sensory information, prediction using perceptual infor-
mation is often incorrect. The second challenge is the meaning of the words. The
existing studies mostly use discriminative methods to predict words, yet the under-
lying semantics of what, e.g., a certain noun represents, is not adequately addressed
in the literature. The third challenge is representation of the relations between the
different words in language. It is known that humans activate in their brains not only
the meaning of the word when that word is uttered but also the related words and
their meaning. However, this challenge has not been addressed in the robotics liter-
ature. In this thesis, the words in language are first conceptualized and gradually, a
web of concepts is built from the interactions of the robot. The web is built using
the co-occurrence information of words, modeled as a Markov Random Field and
trained using Loopy Belief Propagation, a widely-used method for such tasks. The
thesis shows on iCub, a humanoid robot, that such a web of concepts addresses to
a certain extent all the challenges discussed above: the web improves prediction of
word categories; it represents the meaning of words in concepts, and it represents the
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relations between the words and their meaning. As such, this thesis makes a first im-
portant step towards grounded representation of a semantic network on a humanoid
robot, which can be used for several high-level cognitive tasks, such as contextual
reasoning, planning, language understanding, etc.

Keywords: Cognitive Robotics, Conceptualization, Symbol-Grounding, Web of Con-
cepts
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ÖZ

İNSANSI ROBOTTA KAVRAM AĞI OLUŞUMU

Orhan, Güner
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Sinan Kalkan

Ağustos 2014 , 76 sayfa

Bu tezde, insansı robot ve insan arasında daha etkili bir iletişim sağlamak için isim,
sıfat ve fiilleri tahmin etmede kullanılacak bir yaklaşım önerilmiştir. Yaklaşımımı-
zın hedef aldığı üç önemli nokta bulunmaktadır: Bunlardan ilki, dildeki kelimelerin
doğru tahmin edilmesidir. Robotik çalışmaların çoğu, sadece algısal bilgiyi kullana-
rak dildeki kelimeleri tahmin etmektedir, ancak algısal özellikler kullanılarak yapı-
lan tahminler, sensör bilgisindeki gürültü ve belirsizlikler nedeniyle doğru değildir.
İkinci nokta ise kelimelerin anlamlarıdır. Var olan çalışmalarda, çoğunlukla kelime-
leri tahmin etmek için ayrımsal yöntemler kullanılmıştır. Fakat, belli bir ismin neyi
ifade ettiğinden, literatürde yeteri kadar bahsedilmemiştir. Üçüncü nokta ise, dildeki
farklı kelimelerin arasındaki ilişkinin gösterilişidir. İnsan beyninde bir kelime söy-
lendiği zaman sadece o kelimenin anlamı değil, aynı zamanda alakalı kelimeler ve
anlamlarının da aktif olduğu bilinmektedir. Ancak, bu duruma robot literatüründe de-
ğinilmemiştir. Bu tezde, ilk olarak dildeki kelimeleri kavramsallaştırılıp, devamında
robotun hareketlerinden kavram ağı oluşturulmaktadır. Bu ağ, kelimelerin eş-oluş bil-
gilerinin, Raslantısal Markov Alanı (Markov Random Field) ile modellenmesi ve bu
tarzda çalışmalarda yaygın olarak kullanılan, Döngüsel Fikir Aktarımı (Loopy Be-
lief Propagation) kullanılarak öğretilmesi ile geliştirilmiştir. Bu tez, kavram ağının
yukarıda bahsedilen eksikliklerini belli bir ölçüde giderdiğini, iCub isimli insansı ro-
bot üzerinde göstermektedir: Ağ, kelime kategori tahminlerini geliştirmekte, kavram
kelimelerinin anlamlarını göstermekte ve kelimelerin anlamları arasındaki bağlantıyı
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ifade etmektedir. Tüm bunlar, içeriksel anlamlandırma, dili anlama gibi konuları içe-
ren yüksek seviyeli bilişsel konularda kullanılabilecek olan insansı robottaki anlamsal
ağın temellendirilmiş gösterimini sunan bu tezi önemli bir aşama yapmaktadır.

Anahtar Kelimeler: Bilişsel Robotik, Kavramsallaştırma, Sembol Temellendirme, Kav-
ram Ağı
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CHAPTER 1

INTRODUCTION

With advances in technology, robots will become an inevitable part of our daily lives.

They are already used in many areas such as medical, search and rescue operations,

industry, service sectors and even in our homes. Such challenging environments (will)

require the robots to be adaptive, self-extensive and able to communicate properly

with humans using daily spoken language. An important bottleneck for this goal is

the acquisition and representation of information coming from the environment as

well as the linking of such information to language.

There are many studies for teaching robots the words in language, e.g., nouns or

adjectives, from sensorimotor data acquired from the interactions of the robot (e.g.,

[8, 9, 10]). In these studies, word categories are mostly learned, represented and

predicted separately (Figure 1.1a). However, it is known that, in humans, when a

word is heard, not only the meaning of that word but also the meanings of the related

words are activated [11, 12]. For example, when you hear the word “apple”, the color

“red” (an adjective) and “eat” (a verb) are also activated in our brains. Based on these,

it has been suggested that the concepts corresponding to words in language are linked

to each other in our brains, and there is actually a web of concepts, where related

concepts activate and affect each other. A pioneering work is Mitchell et al.’s study

[13], which demonstrates that fMRI activations for complex concepts (i.e, celery) can

be predicted by accumulating known fMRI activations for related, simpler concepts

(i.e, eat, taste, fill). Interestingly, the target fMRI activation for the complex concept

is very close to a superposition of the simpler concept activations, weighted by their

co-occurences.
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Motivated by such findings in Neuroscience and Psychology, this thesis studied the

building, representation and use of a web of concepts on a humanoid robot. First, a

set of nouns, adjectives and verbs in language are conceptualized by the robot first

from the interactions with the objects in the environment. Then, the robot used the

co-occurrence information between word categories to link them, to build a web of

concepts that are linked to language, perceptual systems and the motor system of the

robot. The web is modeled as a Markov Random Field (MRF) due to MRF’s rep-

resentational power and ease of making inferences, and trained using Loopy Belief

Propagation. By propagating the beliefs about the concepts over the web, the activa-

tion of concepts in the web is achieved.

1.1 Contributions

The contributions of the thesis are summarized below:

A. The first contribution of the thesis was to use the co-occurrence information be-

tween adjectives and nouns in language to improve their prediction accuracies

(Figure 1.1b). It is known that predicting adjectives is harder than predicting

nouns, and a robot makes many mistakes in adjective prediction [9]. However,

the thesis shows that the co-occurrence information between nouns and adjec-

tives can be used to improve the prediction of nouns and especially adjectives.

B. The thesis extended the first contribution in Part A and modeled a web of concepts

for a set of nouns, adjectives and verbs (Figure 1.1c) as a second contribution.

The web was modeled using Markov Random Field and trained using Loopy

Belief Propagation. The thesis shows that such a web improves the prediction

of word categories in language, and with this web, the relevant concepts, words

and actions can be activated in a similar way as in humans.

The work explained in this thesis are disseminated in the following:

• Güner Orhan, Hande Çelikkanat, and Sinan Kalkan, A Probabilistic Web of

Concepts on a Humanoid Robot, IEEE Transactions on Autonomous Mental

Development (Submitted)
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Perception Space (𝒙)

Nouns (𝓝) Adjectives(𝓐)

𝑠𝑝𝑒𝑟𝑐
𝑎

𝑠𝑝𝑒𝑟𝑐
𝑛

(a) Existing work

Perception Space (𝒙)

Nouns (𝓝) Adjectives(𝓐)

𝑠𝑝𝑒𝑟𝑐
𝑎

𝑠𝑝𝑒𝑟𝑐
𝑛

Co-occurrence

(b) Contribution using co-occurrences

Perception

(c) Contribution using concept web

Figure 1.1: Existing approaches focus on learning methods for noun and adjective

categories. Initially, we have used co-occurrence information for only noun and ad-

jective categories. Finally, we have used the web of concepts structure in order to

activate the most probable concept in the web. Verb categories are shown as green

nodes in (c). [Best viewed in color]
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• Hande Çelikkanat, Güner Orhan, Nicolas Pugeault, Frank Guerin, Erol Şahin

and Sinan Kalkan, Learning and Using Context on a Humanoid Robot Using

Latent Dirichlet Allocation, IEEE Forth Joint International Conference on De-

velopment and Learning and on Epigenetic Robotics (ICDL - EpiRob), Genova,

Italy, 2014 (Accepted)

• Güner Orhan, Sertaç Olgunsoylu, Erol Şahin and Sinan Kalkan, Co-learning

Nouns and Adjectives, IEEE Third Joint International Conference on Devel-

opment and Learning and on Epigenetic Robotics (ICDL - EpiRob), Osaka,

Japan, 2013

1.2 Organization

In chapter 2, the background about the methods used throughout this thesis is pre-

sented, and we give the current studies related with our contributions.

In chapter 3, we describe the experimental setup consisting of iCub Humanoid Robot

platform and Kinect and give commonly used libraries to perform our experiments.

Furthermore, we give the detailed information about the processes, such as feature

extraction, conceptualization, and prediction of categories for a test object, in the

following chapters.

In chapter 4, we will give description about the co-occurrence-based learning of ad-

jective and nouns, and the results of this method will be demonstrated.

In chapter 5, we will mention about building a web of concepts using co-occurrence

information, and provide scenarios to emphasize on the contribution by showing the

results of them.

In chapter 6, the conclusion remarks will be given, and we will make some discussion

how to enhance the current study. Finally, our intentions to overcome the deficiencies

to make our system better.
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CHAPTER 2

BACKGROUND AND LITERATURE SURVEY

This chapter reviews the language studies in robots, and discusses the different views

of what concepts are. In addition, a discussion on the hierarchical and web-based

representation of concepts is provided.

2.1 Language Studies in Robots

Language in cognitive robotics is an important keystone, providing the communica-

tion between a robot and a human. In the world of a robot, the learned concepts are

nothing more than a set of representative information about categories. At this level, a

robot is unaware of their semantic meanings, in other words, the referents of symbols

(words) in human language.

In human development, infants start babbling at approximately six months old [14].

While growing up, they initially talk with pseudo-words, imitating the spoken words

[15]. The actual language learning is a supervised process evolving throughout the

entire life of a human. After learning how to speak and give symbols to the objects

in the world, they start to comprehend the concepts interacting with them. The use of

language shapes our knowledge of concepts and provides a better classification of ob-

jects. For example, Xu [16] made some experiments on 9-month infants, and showed

them objects by giving the spoken labels. This work shows that two distinct labels

for two distinct objects elicit the successful classification of objects. Furthermore,

if a single label is given for different concepts, then the infants lump them into one

category [17].
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Learning and understanding the language require linking words with sensorimotor

data. The most strongest support of this idea comes from the work of Harnad [18].

According to his theory, there is a gap between the words and their semantic mean-

ings, and this cannot be fixed in a hard-coded manner. It is like learning foreign

language from dictionary. Therefore, one should ground the symbols (words) to the

sensor and motor interactions of the agent. The widely-accepted answer to this prob-

lem is the embodiment of the agent.

Following the above idea, roboticists have focused on teaching language to robots.

For instance, Cangelosi [10] has made a study about grounding of language in cog-

nitive agent and developmental robotics, by applying three different models: (i) a

multi-agent modeling of language evolution, focusing on the interactions between

agents in the same environment to find the edible foods (mushrooms), (ii) the model

of transferring the symbol groundings between two robotics agents which are teacher

and learner in three steps, namely basic action learning, which direct imitation of

behavior with respect to a given object, entry-level naming, where the learner im-

itates action with respect to the linguistic, and higher-order learning, including the

acquisition of the complex actions without using teacher, (iii) the comprehension of

language using humanoid robot iCub, which is a process of relating the speech signals

with behaviors and noun categories using neural network. Moreover, Cangelosi and

Parisi [19] made an experiment in order to link nouns to vertical and horizontal bars,

and also verbs to pull and push behaviors. They also realized that nouns cause more

neural activity on hidden layer of feed-forward neural network, whereas verbs result

in an activation around the synapses. In the famous experiment of Steel et al. [20, 21]

named “Talking Heads”, the aim is to generate a shared lexicon and ground the words

into perceptually gathered concepts in an unsupervised manner. There are two types

of group which are “speakers” and “hearers”. Speakers firstly conceptualize the con-

text by using the properties which separate it from the surroundings. Secondly, they

have to say a word using their own lexicon of form-meaning (word-visual categories)

success tables. Hearers should predict the correct context using the associations be-

tween meanings and words.

The language can also be used for cross-situational labeling of the concepts [22, 23,

24]. Concepts that are learned from experiences has no label unless they are linked to
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words in language. This link provides an effective social interaction with surrounding

organisms for a robot. To make a real world example, some other information is

given to a robot to create reference of words with language using cross-situational

correlations. For instance, the experiment conducted by Smith and Yu [22, 23] shows

that the cross-situational learning approach for linking correlations between words

and the referents is useful for learning the meaning of words even if these words have

no meaning in human language and generated by a computer.

2.2 The Notion and Theories of Conceptualization

As a term, concept can be defined as the properties that represent a category. Another

definition of the concept is the thought or similarity that allows us to classify current

and previous situations [25]. They can be concrete like orange or abstract like beauty.

There are different views for how concepts are learned or represented. The main well-

accepted views are:

• The Rule-based view [26]: In this view, the categories are considered as a

collection of all possible members with strict boundaries, and each novel object

is a member of a category or not, meaning that there are strict boundaries to be

selected as a member of any category. If properties of an object overlap with

the common properties of a category, then we conclude that this object can be

classified as a member of that category. The same description can also been

found in the work of Medin et al. [27]. They emphasize that this view lacks the

judgment of category membership of a new object due to strict boundaries in

category properties. Therefore, for some cases, it is not possible to determine a

category of an object due to its unclear properties.

• The protoype-based view [28]: In this view, prototypes show the best repre-

sentative property of categories, and there are no strict rules to test whether an

object belongs to a category or not. The postulated natural prototypes, repre-

senting a category best, can be learned with less errors than prototypes which

are created using the outliers of any category. For the sake of clarification, the

natural prototypes can be thought as the main property for a specific category,
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and the features that constitute a concept are represented using the statistical

distribution of this feature over entire members.

• The Exemplar-based View [29]. In this view, a category is represented by its

examples not the properties. Novel objects can be added to the list of members

of a category if they are similar to one of the members of that category. For

instance, the members of a BALL concept might be:

BALL =

{
. . .

}

A new object is a BALL if it is similar to one of the BALL exemplars. However,

this view cannot determine which properties of a concept best describes it [27].

Although these views can be seen as the basis for the conceptualization theories,

There is another approach that treats a concept as a hybrid representation [30]. With

the guidance of these theories, conceptualization is still an active research area, that

must be carefully investigated [31] since we cannot perform any action without con-

cepts [32].

2.3 Hierarchy vs. Web of Concepts

Although concepts can be learned independently from each other, they are linked to

each other in our brains. Therefore, there is the issue of how links between concepts

can be represented.

2.3.1 Hierarchy of Concepts

As mentioned in the work of Gennari and his colleagues [1], human learning can be

thought as a process of concept formation. Humans learn new concepts by setting a

concept hierarchy while observing or experiencing new objects, behaviors or events.

The place of the concepts in hierarchy can be determined with respect to generality

of them. The more general concepts reside in the upper parts of the hierarchy, while

more specific concepts are located closer to the leaf nodes. The main aim in this
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concept formation process as a hierarchical taxonomy is to understand the world and

make predictions.

The classification in hierarchy commences at root node, and goes deeper to the branches,

which can be one or multiple selection of branches. Another important issue to be de-

termined is the creation of these branches. The number of branching can be specified

by a teacher (supervised learning) or the algorithm decides it with respect to different

criteria (unsupervised learning). Although the information of classes is given by an

actor, Quinlan’s decision tree approach [33] can be considered as unsupervised learn-

ing of branches, since, the system determines the sub-classes of any class in a tree.

Another important feature is the incremental Hill-climbing method [1]. Hill-climbing

is a well-known search method. After determining the current state of search, the al-

gorithm relates an instance with the sub-states (possible candidates for iteration) using

some evaluation function. The most correlated sub-state is determined, and the same

procedure is applied recursively for all sub-trees until there is no possible move.

After mentioning some properties of hierarchical concept formation, we would like

to present some well-known hierarchical concept formation studies in this area.

Figure 2.1: The exemplification of familiarization and discrimination operators in

EPAM while incrementally creating tree. (Figure from [1])

Elementary Perceiver And Memorizer (EPAM) [34, 35]: This method is almost

the oldest incremental concept formation method. Each node in the tree is a combi-
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nation of attribute-value pairs. The internal nodes include testing criteria, which must

be evaluated for an instance to go down in the hierarchy. There are two possible op-

erations namely familiarization and discrimination. The familiarization is a process

of adding an attribute-value pair to the node due to more specific properties of a new

instance, which is also common for the instances belonging to that node, while the

discrimination is a process of splitting the node and placing the instances with respect

to a newly defined test procedure or property value pair on the split node (Figure 2.1).

The selection of the attribute for testing is a random process. Although EPAM has

some powerful features such as the leading in incremental concept formation meth-

ods in machine learning, it has some drawbacks. The representative images of the

instances are only at terminal nodes constraining with concept hierarchy. Moreover,

concepts have strict boundaries but according to the view of prototype-based concepts

[28], there are main properties (prototypes) representing the concepts, and these do

not have strict boundaries.

UNIversal MEMory (UNIMEM) [36]: As was the case in the above method, each

node consists of attribute-value pairs. However, there are two more numeric values

for each pair. These are feature frequency and the confidence value for each feature.

The former one demonstrates the frequency of this feature in other generalizations,

indicating the relevance of the generalization for new instances, and the latter shows

the confidence of a feature for a generalization. Moreover, concepts can be placed

not only in terminal nodes but also in internal nodes. Although UNIMEM can be

utilized to simulate the human learning, it is basically developed for clustering the

large chunks of data in the memory and retrieve relevant information or data by user

queries. Unlike EPAM, it has, moreover, some basic operations such as concept value

update, deleting a feature from a node’s description, etc [1]. In addition, UNIMEM

transcends EPAM with the weight value of features, providing more realistic classifi-

cation and prediction for new instances. In EPAM, all or none approach is adopted as

mentioned earlier.

There are many other similar hierarchical concept learning methods, which are mostly

extensions of EPAM and UNIMEM. For the sake of space, a discussion of these

methods is provided in Appendix A.
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2.3.2 Web of Concepts

Although the concepts are connected to each other with is-a relations, as stated above,

numerous neuroimaging and modeling studies reveal that the concepts reside as a

highly-connected web in human brain. Nowadays, the widely-accepted belief is the

highly-connected functional webs in the brain, activated together to represent a con-

cept [15, 37, 38, 39, 40]. The first proposal of this belief owes its existence to Wer-

nicke and Meynert (see [41, 42] for discussion). According to their proposal, concepts

are modality-specific memory located in sensory or motor cortices. Due to its almost

fully-connected structure, any clue related with the concept results in the activation

of the whole web, and brings the correlated holistic knowledge into the mind.

Goldberg et al. [38] proposed that different information and knowledge activates

different places in human brain. For example, tactile information activates the so-

matosensory, motor, and premotor cortices, whereas taste-related knowledge activates

orbitofrontal region which is responsible for decision making and expecting rewards

or punishments. Moreover, visual and auditory information cause some reactions in

ventral temporal cortex, and superior temporal sulcus, respectively. Kellenbach et al.

[39] also justified the proposal with the findings of their experiments for color, size

and sound judgments. In his famous work, Pulvermuller [15, 37] stated that premotor

and motor actions that are heard during spoken language directly activates the corre-

sponding areas in the brain. For instance, the word “lick” activates the tongue-related

area, “pick” affects the finger-area, while “kick” activates the foot-area of the brain.

This easily demonstrates that the category-dependent motor actions result in a system-

atic activation of motor and premotor areas. Another study by Chao and Martin [43]

supports this belief. In a tool naming and viewing task, the grasping tool for using it

is an integral part of tool concept and activates the ventral premotor area (responsible

for hand actions), as well as left posterior parietal cortex (responsible for producing

planned movements), eliciting the spatial and motor areas are highly correlated with

its semantics. In the light of these studies, we can conclude that the conceptualization

process is highly distributed system in the brain as a web.

Although these studies reveal really important information, it is only the tip of the

iceberg [42, 44, 45, 46]. Their common focus is whether a connected web of pri-
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mary cortices is sufficient to explain the conceptualization or there is a dedicated area

that organize the low-level cortex activations to constitute the corresponding concept.

Damasio et al. [40, 47] mention about the existence of a high-level, amodal con-

vergence areas where the timelocked concept activations occur. Lambon Ralph and

Patterson and his colleagues [42, 44] have conducted an experiment on the Seman-

tic Dementia (SD) patients showing that, although they lack of semantic knowledge,

other cognitive abilities remain intact. For instance, the area representing the “Ze-

bra” category is damaged in the patients. They cannot recognize the given picture

of a zebra, but say that it is a “Horse”. Therefore, this damaged area results in the

loss of concept meaning but the gathered information is sufficient for the patients to

perceive the shown zebra as a horse, be the most similar concept to it in human per-

ception. There is also another type of dementia occurring in Anterior Temporal Lobe

(ATL). The patients of this disease can ask the referent of a herd of sheep, although

they are healthy for all kinds of cognitive facilities (see [48, 49, 50]). Another im-

portant issue with the help of this is whether ATL is a semantic hub, connecting the

widespread web of concepts into meaningful entities. They discuss that the features

that constitute of concepts combined together in nonlinear and complex manner. One

supporting example from the study by Ralph [46] is the comparison of single-layered

and multi-layered with hidden layer neural networks. The single-layered NNs can

classify linear features, which is impossible to classify certain functions. Even if

there is one more layer, these functions can be created.

Although the current studies enlightens our understanding of human brain, there are

lots of questions that remain unresolved due to complex structure of the brain. More-

over, we can easily say that the conceptualization is a core process of human percep-

tion.

2.4 Concept Studies in Robots

There are numerous studies about conceptualization and learning adjective and noun

concepts from sensorimotor data of robots [8, 9, 10]. Learning concepts is an in-

evitable part for human-robot interaction. Conceptualization is studied not only in

cognitive robotics but also other research areas. For instance, the learning ability of
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noun categories in humans is extensively studied in psychology [51]. However, there

is a big gap between the learning of concepts in humans and the learning of concepts

in robots.

One of these learning methods is grounding noun categories to the sensorimotor ex-

periences. Yu and Ballard [52] proposed a multi-modal learning system that grounds

symbols (words) in visual properties of objects. There are three possible states in

this work which are natural language processing, including the extraction of seman-

tic meaning from the signals of spoken words, visual processing, being the process

of getting picture frames from video and extracting visual features (color and shape

features) from them, and multi-modal integration, the part of integration of different

modalities. Sinapov et al. [8] also developed a multi-modal learning method for noun

categories using visual, auditory, and proprioceptive sensory modalities. They make

the experiments using 100 objects with 20 object categories. In addition, they also re-

duce the time for prediction of noun category by applying the behaviors with respect

to common and distinctive features of objects. The former increases the probability of

classification of a given object as a specific category, while the latter decreases. The

selection of the behavior is named as exploratory behavior [53]. Another important

study about exploratory behaviors comes from Chu et al. [54]. In their study, a PR2

robot is employed in order to learn the adjective concepts using the tactile sensors

that are implanted to the hand by applying different behaviors. They have attempted

to learn the adjective concepts using both static and dynamic learning methods. If the

number of objects that are classified as any adjective category is low, the exploratory

procedures (EPs) gain importance for correct prediction.

There are some approaches to learning adjectives using visual features. In the work

of Petrosino and Gold [55], they have conducted three tasks to learn the adjectives. In

the first task, they have generated a set of words to describe the objects with respect to

size, color, and distance, and tried to find the commonly used adjectives for different

objects. The second task is to create a ground truth data over objects. They have

grouped the adjectives with their antonyms except color adjectives (the color of a

served object is asked to a human participant, and one-to-one mapping between each

object and color is established), and the participants are asked to choose any one

of the adjectives that represents best the presented object and label that object with
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this adjective. If they cannot classify this object as any one of dichotomy, then this

object is left blank for these two adjective pairs. The final task is conducted to decide

whether contrasting objects in a single adjective category is easier than the objects in

different categories. According to the results, humans have a tendency to compare

the objects with respect to the adjectives in the same adjective category, rather than

inter-category adjectives. Another approach is to retrieve the basic form of language

by using the perceptual information in a humanoid robot [56]. The main aim in this

work is setting up a correlation between words and perceptually grounded meanings.

In the work of Chella et al. [57], they have developed a system to again associate the

words with the sensorimotor experiences.

As in the learning of adjectives, there are studies focusing on the learning of object

concepts differing from adjective learning with the requirement of multi-modal clas-

sification [58, 59, 60, 61]. Chauhan et al. [62] developed a method that is open-

ended, meaning incrementally forming new categories and their names, to create

one-to-one connections between object categories and spoken words to provide bet-

ter categorization using visual and auditory information. Griffith and his friends also

proposed a method to learn the object category with applying different behaviors to

them [63]. This method provides to learn the object categories, namely container and

non-container, performing behaviors to objects, and generalizing the knowledge to

find the category of novel objects. The category learning process basically depends

on two outcome features after behaviors. First one is the number of timestamps when

the object and the block move together, and the second one is the difference of object

and block movements, separately. Beyond the works about human psychology, the

object categorization and recognition are also studied in autonomous mobile robots.

For example, Gorbenko and Popov [64] have proposed a method to recognize the ob-

ject category while navigating the environment. According to their proposed method,

the recognition of objects can be achieved using autonomously generated neural net-

works and genetic algorithm. For example, they have two neural systems to detect

the red square and blue circles. With the help of this self-learning method, they can

produce a neural system to recognize the red circles.
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2.5 Probabilistic Graphical Models

In our study, we have concepts and co-occurrences of them, giving us a relation be-

tween any two concepts. The concepts that are not initially activated can be triggered

using this relation. To model this activation process as a web (graph), we used prob-

abilistic graphical models.

Probabilistic graphical models is the representation of probabilistic models using

nodes and edges. Each node in graph refers to the variables; and the link (edges)

between nodes depends on the applied problem. If the edges are directed, this graph

represents a Bayesian Network [65]. However, in our problem the edges cannot be di-

rected, because there is a correlation between nodes in both directions. In other words,

our web must represent p(xa|xb) as well as p(xb|xa); where xa and xb are conditional

variables representing the concepts in our experiments. This type of undirected graph

can be modeled as Markov Random Field [66] (MRF). Since there is no parent or

child relation as in the Bayesian Network graphs, all the functions are defined over

maximal cliques. A clique is a set of fully-connected nodes in a graph, and a maxi-

mal clique is the set of maximum possible nodes with fully-connected structure. See

Figure 2.2

𝒙𝟐𝒙𝟏 𝒙𝟑

𝛙(𝒙𝟏, 𝒙𝟐) 𝒙𝟏 = 𝟎 𝒙𝟏 = 𝟏

𝒙𝟐 = 𝟎

𝒙𝟐 = 𝟏

𝛙(𝒙𝟐, 𝒙𝟑) 𝒙𝟐 = 𝟎 𝒙𝟐 = 𝟏

𝒙𝟑 = 𝟎

𝒙𝟑 = 𝟏

Figure 2.2: Markov random field model with 2 maximal cliques and their potential

tables. ψ(.) refers to the clique potential. [Best viewed in color]

Grouping the nodes into maximal cliques enables us to factorize the joint probability

distribution over clique nodes. Each clique includes a table consisting of probabilities

which are non-negative for its own variables. This table is named as the potential

table, and can be seen in Figure 2.2.

The joint probability distribution p(X = x), where x is a specific configuration of
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variables X , is the normalized product of potentials of cliques (ψc(xc)) and can be

formulated as:

p(X = x) =
1

Z

∏
c∈C

ψc(xc). (2.1)

In addition, the joint probability distribution can be modeled in terms of energy func-

tion:

p(ω) =
1

Z
exp(−U(ω)), (2.2)

where ω is a possible configuration of concept web W , and U(ω) is the energy func-

tion of the MRF function with a configuration ω, and can be formulated as:

U(ω) = −
∑
c∈ω

Vc(c)−
∑
K∈K

VK(ω), (2.3)

where K is the set of all possible cliques, c is the set of all activated concepts in a

configuration ω, and Vc is the potential of each active concept c, and can be calculated

using the distance function (d(.)), defined in Equation 3.3:

Vc(c) = exp(−d(x, c)), (2.4)

with x is the feature vector, extracted on a test object, and c is the active concept.

Second term in the energy function is the potential of clique K and can be defined by:

VK(ω) = ψK(xK), (2.5)

where ψK(.) is the potential of a clique node of variables xK (the same term in Equa-

tion 2.1). Z is the partition function, in other words the normalizing factor, and can

be calculated as:

Z =
∑
ω∈Ω

exp

(∑
K∈K

VK(ω)

)
, (2.6)

where Ω is the set of possible configurations.

In our experiments, we have two types of nodes; the separator nodes which are the

variable nodes for concepts and represented by square nodes, and the clique nodes

created by changing the MRF graph to a maximal clique graph and symbolized with

circular nodes. Before explaining belief propagation for our model, we mention about

the terms required for understanding the theorem.
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𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔

Figure 2.3: Sample Markov Random Field chain consisting of six variables

• Probabilistic Inference is the process of finding the posterior distribution of

variables, i.e., p(x1 = v1, x2 = v2, . . . ). In our model, the inference is used to

find the active concepts in a concept web.

• Marginal Probability Distribution is the process of finding the posterior prob-

ability of a variable p(x = v), or variables for their values. These variables are

named as query nodes.

2.5.1 Elimination Algorithm and Belief Propagation

As a term, elimination of variables is an inference method for probabilistic graphical

models. For example, we want to find the marginal probability of a variable x3 in a

MRF chain (Figure 2.3). As previously mentioned, marginal probability is calculated

by summing all values of the state variables over joint probability distribution:

p(x3) =
1

Z

∑
x1,x2,x4,x5,x6

ψ(x1, x2)ψ(x2, x3)ψ(x3, x4)ψ(x4, x5)ψ(x5, x6). (2.7)

As you can see from Equation 2.7, there are unnecessary multiplications. These mul-

tiplications increase the computational complexity of the algorithm. For example, the

variable x6 is only on the potential ψ(x5, x6). Therefore, we can iterate this summa-

tion to the scope of that potential. For all other variables, we can do the same thing.

As a result, Equation 2.7 becomes:

p(x3) =
1

Z

∑
x2

ψ(x2, x3)
∑
x1

ψ(x1, x2)
∑
x4

ψ(x3, x4)
∑
x5

ψ(x4, x5)
∑
x6

ψ(x5, x6).

(2.8)

After applying the summation over variable x6, we obtain the following (see message

passing iterations in Figure 2.4):

p(x3) =
1

Z

∑
x2

ψ(x2, x3)
∑
x1

ψ(x1, x2)
∑
x4

ψ(x3, x4)
∑
x5

ψ(x4, x5)mx6→x5 , (2.9)
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𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔
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𝒙𝟑 𝒙𝟒

𝒙𝟑

𝑚𝑥1→𝑥2 𝑚𝑥6→𝑥5

𝑚𝑥5→𝑥4𝑚𝑥2→𝑥3

𝑚𝑥2→𝑥3 𝑚𝑥4→𝑥3

Figure 2.4: Schema for message passing to find the probability p(x3) for Figure 2.3.

(adapted from [2])

where m(x5) is the intermediate factor after elimination of variable x6 [2]. We can

do the same thing on variable x5 and Equation 2.9 becomes:

p(x3) =
1

Z

∑
x2

ψ(x2, x3)
∑
x1

ψ(x1, x2)
∑
x4

ψ(x3, x4)mx5→x4 . (2.10)

This procedure is applied until obtaining the Equation 2.11 with the elimination order

of x4 − x1 − x2

p(x3) =
1

Z
mx2→x3mx4→x3 , (2.11)

which gives us the marginal distribution over query node x3.

In parallel with the elimination algorithm, belief propagation is used to infer proba-

bilities on graphical models. It can be thought as passing messages from one node to

the other one. Therefore, it is named as message passing.

In Figure 2.3, the marginal probability distribution is calculated by multiplying the

potentials of maximal cliques and dividing by normalization factor as we have de-

scribed in Equation 2.8.

Instead of elimination, we try to group the variables as left and right hand sides of the

query node as in Equation 2.12:

p(x3) =
1

Z

[∑
x2,x1

2∏
i=1

ψ(xi, xi+1)

][ ∑
x4,x5,x6

5∏
i=3

ψ(xi, xi+1)

]
. (2.12)
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Figure 2.5: MRF graphs and its corresponding graph used in Loopy Belief Propaga-

tion. The circular nodes represents the maximal cliques while square nodes shows the

variable nodes in initial MRF graph.

The term after the normalization factor is the message passed through all variable

nodes which are connected to the query node from left, an the last term is the message

passed through right hand side nodes of the query node (Figure 2.4). In other words,

they are the message from node x2 and the message from x4, respectively. The final

equation becomes:

p(x3) =
1

Z
µα(x3)µβ(x3), (2.13)

where µα(x) is a message from a left node of a node x; µβ(x) is a message from a

right node of a node x.

2.5.2 Loopy Belief Propagation

Belief propagation algorithm can be applied to tree-structured graphs, such as factor

graphs, junction trees as clearly described in the dissertation of Gouws [2] and in Sec-

tion 2.5.1. These type of graphs are acyclic graphs. Therefore, the message passing

algorithm can be applied easily on these graphs. Nevertheless, it is inefficient when

compared with standard belief propagation methods.

Another important drawback of the LBP is the several times iteration of message

passing. Due to its cyclic structure, message passing algorithm is applied until all

values of the variables converge. However, it is possible that the values of variables

do not converge. In our case, the highly-connected structure of concepts, however,
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Figure 2.6: Separated cliques nodes with their separator nodes (sub-trees) of Figure

2.5

leads to the convergence of a graph with concepts whose activations are fully activated

(p(x) = 1.0) or not activated (p(x) = 0.0).

As a representation of concepts in a web, the circular nodes represents the maximal

cliques, and the square nodes are variables and named as separator nodes (Figure

2.5). In this method, each clique node and its separator nodes are tackled separately.

These separator nodes can be shared among different clique nodes. Therefore, they

must be updated twice or more according to its number of existence in clique nodes.

One message sent from clique node to the separator node, named backward pass, is

used in an another subtree as a forward pass of message. A backward message is

stored in a potential table of a separator node, and named as separator potential and

symbolized with φ(x). These separator and clique potentials must be updated in each

iteration of message passing.

Initially, we have to set each cell of the separator potential table to one. As in the

Figure 2.6, each subtree has one root node (clique) and the leaf nodes (concepts).

These leaf nodes send a message to the root node. The message results in an update

of clique potentials using Equation 2.14:

ψK
∗(xK) = ψK(xK)

∏
xm∈ne(xK)

φm(xm), (2.14)

where ψK
∗(xK) is the updated potential value of ψK(xK) over set of variables xK in

clique node K; xm is the connected separator node to the clique K.

After updating the potential table of the clique, the potentials of separator nodes con-

nected to a clique node must be updated with respect to updated potential table of a

20



clique. Therefore, a clique node sends forward pass messages to separator nodes:

µK∗→xm(xm) =
∑

xn∈xK\xm

ψK
∗(xn). (2.15)

As previously explained, the separator node potentials are the storage of messages

passing towards an another subtree. Therefore, we have to update the potential with

the message from updated clique node K∗. If there is an old message in potential

table, we have to divide the new message with the previous one, denoted by µK→xm

and multiply with the old separator potential as in Equation 2.16:

φm
∗(xm) = φm(xm)× µK∗→xm(xm)

µK→xm(xm)
. (2.16)

Otherwise, we directly update the potential of a variable by multiplying the previ-

ous potential value with the message from the clique node K to the separator node

(variable) xm:

φm
∗(xm) = φm(xm)× µK∗→xm(xm). (2.17)
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Figure 2.7: Sample initial four iteration for loopy belief propagation in Figure 2.5.

Double star means that the value of potential table is updated twice.
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For loopy belief propagation algorithm, we iterate Equations 2.14, 2.15, and 2.16

step-by-step for each clique node, in other words, each subtree until the potential

tables converges or some threshold iteration number is exceeded. Sample execution

of this algorithm for the factor graph depicted in Figure 2.5 can be seen in Figure 2.7.

Finally, we find the posterior probability p(xn) for any variable xn using any clique

containing xn by marginalizing the factor potentials over clique variables except xn

p(xn) =
∑

xl∈xK\xn

ψK(xl). (2.18)

2.6 Support Vector Machine (SVM)

The basic definition of SVM learning is clustering the multi-dimensional feature vec-

tors into any number of clusters by dividing the space with multi-dimensional hy-

perplane equation [67] (Figure 2.8). In the famous book of Vapnik [68], he used

Support Vector Machine for classification and regression analysis. It is commonly

used technique in concept learning. In our study, we have used libSVM [69] and

WEKA Open-Source Data Mining Software [70].

Figure 2.8: Schema for dividing multi-dimensional feature space into two clusters

with hyperplane using kernel functions of SVM. (Figure from [3])

22



CHAPTER 3

EXPERIMENTAL SETUP AND CONCEPTUALIZATION

In this chapter, we mention about the experimental setup and the methods that are

used for concept learning and prediction of categories.

3.1 Experimental Setup

In this section, the hardware and software components are described.

3.1.1 Hardware Components

3.1.1.1 iCub Humanoid Robot Platform

iCub [71] is an open-source robot platform that was developed within the EU project

RobotCub and currently being used in many research laboratories all around the

world. It is commonly being used in cognitive robotics. As a physical structure,

it seems like a 3.5 years old child. It has in total 53 joints; six joints for head, 16

joints for each arm, three joints for torso, and six joints for each leg. Moreover, it has

sensors to perceive the environment. Some of these sensors are microphone, cameras,

tactile sensors on each fingertip (Figure 3.1). We frequently use these tactile sensors

to arrange the grasping pressure of the robot hands on an underlying object. Beyond

these, it also provides information about the property of an object. We also use the

microphone to decide whether an object has an internal sound. Besides, iCub has

cameras inside the eyeball. We can gather depth information using these cameras.
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Due to calibration problems, we have decided to use the Kinect sensor.

Figure 3.1: iCub Humanoid Robot Platform with microphone and Kinect sensor (Fig-

ure taken from [4]).

  

zz

y

x

Figure 3.2: iCub Humanoid Robot Platform coordinate reference frame.

3.1.1.2 Kinect

Kinect (Figure 3.3) is manufactured by Microsoft to capture motions of players who

play Xbox Gaming console. It has tilting motor, microphone, and RGB camera and

IR emitter. In addition to RGB colored image, it also provides depth information of

the surroundings. It is comparably precise and cheaper than any other depth camera.

It takes 30 frames per second, each of which has 640x480 resolution. The range of

the depth is between 1 and 4 meters away from the focal point.
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Figure 3.3: The Kinect sensor

3.1.2 Software Components

3.1.2.1 iCub Modules

iCub modules provide a robust API to send commands to iCub joint encoders. Instead

of sending angle values to joints, we can also send 3-dimensional target position in

the reference frame of iCub (Figure 3.2) using inverse kinematic modules, which

converts the trajectory of motion from initial position to the target position into the

set of joint values to provide motion-safe behaviors.

3.1.2.2 Yet Another Robot Platform (YARP)

YARP [72] is an open-source library developed in order to operate the humanoid

robot platforms. It is basically used to provide communication framework for the

dependent or independent software modules using network protocols. Initially, it is

created for iCub and, later on, developed for all types of modules that require inter-

module communication.

3.1.2.3 Point Cloud Library (PCL)

PCL [73] is a robust and computationally powerful library for 3D point cloud data

and its geometrical calculations. With the help of this library, we can easily find the

geometric properties of a 3D surface. For example, normal vectors of each point in

cloud can be calculated easily using normal estimation module. Moreover, there are
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other libraries integrated in PCL to provide better thread operations, pointer types and

computation of matrix, vector operations, namely Boost and Eigen [74] libraries.

3.1.2.4 Ubigraph

Ubigraph [5] is an open-source library to visualize the dynamic graphs. It provides

really efficient and fast creation of concept nodes in our experiments. We use this

library to show the activated concepts in the concept web.

3.2 Perception

Perception of the environment and objects is really important for our experiments. We

perceive the world with three devices, namely Kinect, microphone and tactile sensors.

3.2.1 Features

One of the most important milestones before starting experiments is to decide which

features are relevant for our work. The quality of our experiments is directly affected

by the quality of features. If we add too many irrelevant features in addition to rele-

vant ones, the results can be deteriorated. On the other hand, if we select less features

than necessary, the features may include insufficient information for learning. The to-

tal set of the features can be seen in Table 3.1. We have different number of features

for each modality. For this thesis, we have visual, audio, proprioceptive and haptic

modalities.

Visual features are extracted using PCL modules [73]. They are really important to

identify the corresponding noun and adjective categories of an object. Therefore, the

orientation of an object is adjusted with respect to its characteristic properties. For

instance, in order to discriminate a cup from a cylinder, it has to be placed on the

table with an appropriate orientation such that the handle of a cup can be clearly

discerned. The first six visual features are used to get the position of an object and

dimension information. The successor feature, namely object presence, is set to one
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Table 3.1: Features extracted from the interactions with the environment. Parenthe-
sized numbers indicate the index of features in the feature vector.

Feature Type Feature Position
position:(x, y, z) 1-3
object dimensions:(width, height, depth) 4-6

Visual object presence:(1,−1) 7
normal zenith histogram bins 8-27
normal azimuth histogram bins 28-47
shape index histogram bins 48-67

Audio 13 bins of MFCC result (max - min) 68-80
Change for index finger 81
Min values for index finger 82

Haptic Max values for index finger 83
Mean for index finger 84
Variance for index finger 85
Standard deviation for index finger 86
Change for index finger 87
Min values for index finger 88

Proprioceptive Max values for index finger 89
Mean for index finger 90
Variance for index finger 91
Standard deviation for index finger 92

if an object is on the table. The normal vectors are calculated using normal estimation

module in PCL. This module calculates the normal vectors for each point in the cloud

by specifying the radius of neighborhood. After finding the normal vectors, we find

zenith and azimuth values of each normal vector and put each zenith and azimuth

normal vectors into histogram bins, separately. Each histogram consists of 20 bins.

The remaining visual features comes from the principal curvatures. The maximum

and minimum principal curvatures are calculated by using PCL principal curvature

estimation module. After finding the maximum and minimum principal curvatures

for each point in a cloud, we find the shape index values for these points by using the

work studied by Koenderink and Von Doorn [75].

Another important feature group is used to determine whether an object is noisy or

silent. For audio features, we use a 13-bin histogram created by Mel-Frequency Cep-

stral Coefficients (MFCC [76]). Although MFCC is widely applied for speech recog-

nition [77], we manipulated the use of MFCC according for our needs. For each

behavior, we collect audio data starting from the beginning up to the completion. By
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Figure 3.4: Content of effect and entity features

using the collected audio data, we employ the MFCC algorithm to obtain a set of

13-bin features. The number of features in a set changes with respect to the duration

of a behavior. After finding a set of MFCC results, we find the maximum and mini-

mum values for each MFCC column (bin) in a set, and subtract them from each other.

Therefore, we obtain 13 features for a specific audio file.

Haptic features are directly related with the grasp behavior. While grasping an object,

the haptic values for index finger are stored in order to determine the hardness of an

object with using proprioceptive features, cooperatively. iCub has 12 pressure sensors

for the index finger. For calculating the haptic features, we get a maximum valued

sensor reading. After getting a number of haptic values, we apply some statistical

operations to them, such as mean, variance, standard deviation, as well as, change of

maximum and minimum haptic values.

Proprioceptive features are computed like haptic features. We only get encoder values

for the index finger during a behavior, and apply the same set of operations described

in haptic features.
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For different conceptualization processes, we need different set of features. There-

fore, we have used to two sets of features in the experiments. These sets are named as

entity and effect feature sets. The former is directly related with the internal proper-

ties of an object, such as hardness, thickness, etc, whereas, the latter gives information

about the applied behavior to an object.

Entity features consist of visual, audio, proprioceptive and tactile information and are

obtained from an Grasp-Shake behavior. The reason of this is that the complete set

of features including different modalities can be obtained in one behavior (Grasp-

Shake).

On the other hand, the effect features are necessary for detecting the behavior and

the effect outcome on an object. Therefore, they must include the information about

the behavior. We get the visual features before and after applying a behavior to an

object, and subtract them. As a result, we obtain the change of the visual properties

of an object for an applied behavior. For instance, if we apply push-left behavior, all

of visual features become zero except the feature related with y-position. You can see

the contents of effect and entity features in Figure 3.4.

(a) Boxes (b) Balls (c) Cups

(d) Cylinders (e) Plates (f) Tools

Figure 3.5: All objects which are separated according to their noun categories. [Best

viewed in color]
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Table 3.2: The possible effect outcomes of behaviors on different noun categories.
Empty cells imply that these behaviors are not applied to the objects in the category.
(arg: Left, Right, Forward, Backward)

grasp drop throw knock down push arg grasp & move arg

box
grasped moved left moved forward knocked down moved arg moved arg

disappeared disappeared moved right
disappeared

ball
grasped moved left moved forward knocked down moved arg moved arg

disappeared disappeared moved right disappeared
disappeared

cup
grasped - - - moved arg moved arg

cylinder
grasped moved left moved forward knocked down moved arg moved arg

disappeared disappeared moved right disappeared
disappeared

plate
grasped - - - moved arg moved arg

tool
grasped moved left moved forward knocked down moved arg moved arg

moved right

3.3 Data Collection

We used as many objects as possible. The number of objects used in experiments

is 60 (Figure 3.5). Moreover, we divided this set as a training and testing set arbi-

trarily with cardinalities 45, and 15, respectively. We labeled these objects with re-

spect to noun and adjective categories. We have in total six noun categories N =

{box, ball, cup, cylinder, plate, tool}, and 10 adjective categories A = {hard −
soft, noisy − silent, tall − short, thin− thick, round− edgy}.

The adjective set in fact includes the combination of adjective pairs unlike the noun

set. These adjective pairs consist of an adjective and its antonym. This dichotomy

provides convenience to predict the adjective category of an object, which will be

explained in the following sections.

The repertoire for behaviors is kept wide. We have in total 13 behaviors, namely

grasp, drop, throw, knock down, grasp & shake, push left, push right, push forward,

pull backward, grasp & move left, grasp & move right, grasp & move forward, grasp

& move backward. iCub does not apply these behaviors to each object. The appli-
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cability of these behaviors changes with respect to the noun category of an object,

which will be explained in Chapter 5.

After applying possible behaviors to each object, we label the operations with success

or failure. Failure means that the applied behavior either cannot affect an object or

does not end up with the predicted outcome for this behavior. If you command the

robot to grasp an object that the robot cannot do, then it will eventually fail and the

final visual features will remain almost the same as in the initially gathered features.

This exemplifies the first condition. The second condition occurs if we apply knock

down behavior to an object such as a ball whose height is small. The effect of the

behavior on a ball-like object may be the same as the effect of applying push right

behavior to it. Therefore, the resultant effect for both push right and knock down may

be moved right. The effects of a behavior on different objects changes with respect to

the noun categories of them. In our experiments, the possible effect outcomes of the

behaviors on different noun categories can be seen in Table 3.2.
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Figure 3.6: Entity features extraction applying grasp & shake behavior in order of

data collection procedure
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3.4 Feature Extraction

As we have previously mentioned, we have two types of sets for features. Entity

features gives clues about an object properties, while effect features are used to predict

the behavior applied to an object. Entity features are obtained by applying grasp-

shake behavior since some features can only be extracted by grasping (haptic and

proprioceptive features) and shaking (auditory features) an object. You can see feature

extraction in order of occurrence in Figure 3.6. The grasping behavior directly affects

the borders of hard and soft categories. Therefore, we have developed a very effective

grasp algorithm in order to get the best results even if tactile value or orientation of

the object during behavior changes. We only get necessary tactile information using

the index finger. The other fingers are used to grasp an object correctly and provide

better sensor reading.

Algorithm 1: Derivation of Prototypes. Algorithm from [7]
for all l in the set of categories C do

- Compute the mean iµl for each feature i:

iµl =
1

N

∑
e∈l

ie, (3.1)

where N is the cardinality of the set {e|e ∈ l}; and ie is the ith value of vector e.

- Compute the variance iσl of each feature dimension i:

iσl =
1

N

∑
e∈l

(ie−i µl)
2. (3.2)

end for

- Apply Robust Neural Growing Gas (RGNG) algorithm [76] in the space of µ× σ.

if Effect prototypes are being extracted then

- Manually assign the labels ‘+’, ‘-’, ‘*’, and ‘0’ to four clusters that emerge in the previous step.

else

- Manually assign the labels ‘+’, ‘-’, and ‘*’ to three clusters that emerge in the previous step.

end if

3.5 Conceptualization of the Categories

We adopt the prototype-based conceptualization method for noun, adjective, and be-

havior categories [78]. Prototype-based conceptualization provides us representative

32



features for any category, so that only relevant features are used to determine the cat-

egory of a concept, precisely. There are four signs for features. They have different

meanings. The feature labeled as ‘+’ is important or relevant for a category, meaning

that the values of this feature reside in small interval and relatively larger when com-

pared with other categories. On the other hand, ‘-’ labeled features are also relevant

and representative for a category. However, these features have a small variance and

mean. If any feature in a category fluctuates largely, then this feature cannot show the

general characteristic of a category, and so, is considered inconsistent. These features

are labeled as ‘*’. These signs are used in all noun, adjective, and behavior cate-

gories. However, the last sign is used only in behavior and effect prototypes. ‘0’ sign

means that there is no noticeable change before and after behavior for that feature.

The reason why we use this sign only in behavior prototypes is that it can only show

the change for a feature.

Robust Growing Neural Gas (RGNG) method is used to find the clusters of these

signs. The robustness comes from unsupervised nature in separating the clusters. The

application of this method for our purposes can be seen in Algorithm 1.

3.6 Category prediction

After extracting the prototypes for each category, now, we can predict the adjective

and noun categories of testing objects. To find the categories of a testing object,

we have to decide which categories conform with the object, in other words, which

prototypes of the categories best describe the features of a testing object. Therefore,

we have to find the closeness of an object to a category. We find the distance between

an object and the categories using Euclidean distance formula:

d(x, c) =

√ ∑
i∈R(C)\R∗(C)

(ix− iµc)2, (3.3)

where x is the feature vector of an instance; C is the prototype of category c; R(C) \
R∗(C) is the set of relevant dimensions in C; iv is the ith value of a vector v; and µc is

the mean values of the features of all instances classified as category c.
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3.6.1 Prediction of Noun Categories

Euclidean distance gives us the distance between category and testing object features.

However, we want to find the most suitable category for a testing object with proba-

bility values. Therefore, we developed a moment-like method in physics to find the

probabilities. The smaller the distance between features of an object and a noun cat-

egory, the more portion this distance takes from the total probability (1.0). This can

be formulated as follows:

snperc(x, np) =

∏
n1∈N\np

d(x, n1)∑
n1∈N (

∏
n2∈N\n1

d(x, n2))
, (3.4)

where np is the predicted noun category.

3.6.2 Prediction of Adjective Categories

The prediction of adjective categories can be thought as selecting the most suitable

adjective category from adjective pairs. In noun category prediction, we have four

noun categories, and the algorithm must select any one of them. For this time, we

have only two adjectives, one of which must be determined. Therefore, the classifi-

cation of a test object as hard or soft directly depends on the distances between entity

features of an object and mean features of all instances in these categories separately.

Although the characteristic property of Equation 3.4 remains the same, it is simplified

to choose the best representative adjective category for a given testing object:

saperc(x, ap) =
d(x, ap)

d(x, ap) + d(x, ap)
. (3.5)

where a is the antonym of adjective a.

3.6.3 Prediction of Verb Categories

Verb categories are predicted using effect features collected after the application of

behaviors. The effect feature sets, as well as the verb prototypes, are comprised of

only visual features, as mentioned before. As in the prediction of noun categories, we

have more than two category options to predict. Therefore, we apply almost the same
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formulation described in Section 3.6.1:

svperc(xvis, vp) =

∏
v1∈V\v d(xvis, vp)∑

v1∈V(
∏

v2∈V\v1 d(xvis, vp))
, (3.6)

where xvis is the only visual features of an object; vp is the verb category.

3.6.4 Prediction of Effects Using SVM

Additionally, the system is expected to be able to guess the effect label of a behavior

on any given object. We have trained separate SVMs for each behavior using the

given entity feature vectors from the training set, and their corresponding effects. The

effects on the training set objects are labeled by hand 1 (The expected effects for each

noun category is shown in Table 3.2). At the end of training, given the entity features

of an unknown object, the system is able to predict the effects for each behavior on

this object. A similar scheme for making sense of behaviors has been utilized in [7].

Eventually we obtain confidence values of effects for testing objects using the trained

SVMs.

1 This can be considered as an implementation of the influence of language on concept formation. See Section
5.1.1 for a short discussion on this influence
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CHAPTER 4

EFFECT OF CO-OCCURRENCE ON CATEGORY

PREDICTION

In this chapter, the effect of co-occurrence on category prediction is analyzed.

4.1 Contribution of co-occurrence information

The adjective and noun concepts are leaned separately using perceptual similarity.

However, we want to see whether co-occurrence information between adjectives and

nouns enhances the predictions. Therefore, we developed a method to predict the

categories of an object. While predicting the adjective categories, the co-occurrence

information between noun category of an object and adjectives are used and vice

versa. Although co-occurrence is used in many applications such as cross-situational

learning of words and objects by Yu and Smith [79], it is not efficiently used in con-

cept learning except [80].

Predicting a noun category using co-occurrence information is a two-level process;

the first phase is the prediction of a noun category using perceptual similarity, and the

second one is addition of co-occurrence information between an adjective and a noun

category, which is calculated with the following formula:

cn(np, Âx) =
∑
a∈Âx

c(n, a)

|Âx|
, (4.1)

where Âx is the set of predicted adjectives using perceptual similarity; |S| is the

cardinality of set S; c(n, a) is the co-occurrence value of noun n with adjective a

considering only relevant (non-‘*’ entries of Table 4.1).
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Table 4.1: Prototypes of noun and adjective co-occurrences. ‘*’, ‘+’ and ‘-’ respec-
tively represent inconsistent co-occurrence, consistent co-occurrence and consistent
non-co-occurrences.

Noun Hard Soft Noisy Silent Tall Short Thin Thick Round Edgy

Box + - * * - + - + - +
Cylinder + - * * * * * * + -
Cup + - + - - + - + + -
Ball * * - + - + - + + -

For combining these two prediction methods namely, perceptual similarity and co-

occurrence, we developed a method where the contributions of each can be weighted

using weighting constant (see Equation 4.2).

sncomb(x, np) = (1− ωan)× snperc(x, np) + ωan × cn(np, Âx), (4.2)

where ωan ∈ [0, 1] is the weight which controls the contribution of the prediction

from adjectives.

Almost the same procedure is applied to predict the adjective categories:

sacomb(x, ap) = (1− ωna)× saperc(x, ap) + ωna × c(nx, a), (4.3)

where ωna ∈ [0, 1] is the weight controlling the contribution of prediction from the

nouns; nx ∈ N is the predicted noun category from features.

4.2 Cross-Situational Labeling of Categories

Labeling concepts with appropriate English words is an inevitable part of concept

learning in humanoid robots, since the robot must learn the corresponding words of

concepts in order to perform a reliable Human-Robot Interaction.

Firstly, we label adjective concepts with adjective concept names, such as a1, a2, ...,

and noun concepts with noun concept names n1, n2, n3, .... We have in total 10 adjec-

tives and four noun categories so we have totally 14 concept names. In our training

dataset, and we have a row of object name, noun category and a random number of

adjective labels:
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obj1,box,noisy,tall,edgy

obj2,cup,short,round

obj2,cup,noisy,short,round,thick,hard

...

objn,ball,round

All of these rows are created with respect to random selection of the combinations

of the supervised adjective labels. In other words, there can be more than one row

showing the same object and its properties, and the properties can be a whole set

of possible adjectives; noun category of an object or a subset of them. For exam-

ple, if we choose 60%, this means that we only use the 40% of the all possible row

combinations.

After creating the dataset, we apply two different algorithms in order to label the

concepts, namely cross-situational labeling and its modified version (Appendix B).

To show the enhancements, we compared the modified and default version of cross-

situational labeling process.

4.3 Results

We have 20 objects for each training and testing. Moreover, we have used only four

noun categories Ncooc = N \ {plate, tool} in this experiment (See Figure 3.5 for all

noun categories) while the set of adjective categories remains the sameA = {hard−
soft, noisy − silent, tall − short, thin − thick, round − edgy}. Our comparison

criteria is mainly to show the enhanced prediction accuracies using co-occurrence

information. After showing the experimental results, we demonstrate a game-like

application, namely “What object is it?”, to predict the most probable noun categories

of a given set of adjectives. After that we will show the accuracy for concept labeling

using modified cross-situational labeling method (Algorithm 2).
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4.3.1 Noun and Adjective Prediction using SVM

As we have previously mentioned in Chapter 2, SVM is a widely-used machine learn-

ing method for separating dataset into a number of cluster. We have trained SVM to

learn noun concepts (x→ Ncooc), and adjective concepts for each adjective dichotomy

(∀Ax∈Apair
x→ Ax). For each training, we have used 5-fold cross-validation.

As you can see from Table 4.2, training accuracies for both noun and adjective cate-

gories using only perceptual similarity (sperc) is better than using SVM. Another im-

portant outcome is that noun categories are learned better than adjective categories,

which justifies the study of Gasser and Smith [81].

Table 4.2: Average noun and adjective prediction accuracy results on the training set.

Perceptual Similarity (sperc) SVM

Nouns 100% 90%
Adjectives 94% 88%

4.3.2 Co-occurrence Effect on Prediction

It has been previously shown that learning adjectives are more difficult than nouns 1.

Due to this property of adjectives, there may be more wrong predictions in adjective

categories than noun categories. However, we postulate that co-occurrence informa-

tion between adjectives and nouns can correct the wrong predictions for both noun

and adjective categories. To show the effect of co-occurrence, we have increased

the co-occurrence weight ωna (Equation 4.3). As it can be seen in Figure 4.1, the

accuracy for correct prediction accrues as the weight constant increases.

In our case, using only perceptual information is sufficient to predict the noun cate-

gories of the testing objects. The possible reason of this is the hypothesis of claiming

that nouns are learned easier than adjectives. To show the effect of co-occurrence in-

formation, we have added 40% noise to the noun prediction. Hence, the percentage of

correctly predicted noun categories for testing objects initially starts with 65% . As in
1 According to this hypothesis described in Psychology [82] and Linguistic [83]; the adjective categories

depend on less features when compared with noun categories. Therefore, it is difficult to discover the relevant
dimensions in multi-dimensional feature space for adjectives. We have also justified this hypothesis in our exper-
iment [80].
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Figure 4.1: Adjective prediction accuracy for the testing set with respect to weighted

contribution of co-occurrence

the previous case, we increase the co-occurrence weight for noun ωan (Equation 4.2).

Although the percentage decreases after 0.4, it reaches to a peak value for ωan = 1.0

in Figure 4.2.
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Figure 4.2: Noun prediction accuracy for the testing set with respect to weighted

contribution of co-occurrence

After giving the prediction accuracies of noun and adjective categories for test objects,

we want to give object specific results in order to show the corrected prediction over
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adjective and noun categories.

Table 4.3: Predicted adjectives for some objects from the test set (bold denotes cor-
rect classification). The co-occurrence weight wna is taken as 0.2 where prediction
performance is maximized.

Adjectives
Objects Perceptual Perc. Similarity and SVM

Similarity (sa
perc) Co-occurrence sa

comb

O1

hard (61%) hard (65%) hard (95%)
noisy (67%) noisy (70%) noisy (93%)

tall (54%) short (51%) short (92%)
thick (55%) thick (60%) thick (74%)
round (54%) round (59%) round (76%)

O2

hard (55%) hard (59%) hard (75%)
silent (67%) silent (66%) silent (89%)
tall (64%) tall (57%) short (69%)
thin (54%) thick (51%) thin (54%)

edgy (55%) edgy (60%) round (59%)

O3

hard (54%) hard (59%) hard (82%)
silent (61%) silent (60%) silent (89%)
short (56%) short (60%) short (92%)
thick (53%) thick (58%) thick (96%)
edgy (57%) edgy (61%) edgy (89%)

O4

soft (60%) soft (59%) soft (99%)
silent (58%) silent (63%) silent (93%)
short (52%) short (57%) short (88%)
thick (53%) thick (57%) thick (54%)
round (54%) round (59%) round (98%)

O5

hard (56%) hard (61%) hard (73%)
silent (73%) silent (70%) silent (83%)
short (53%) short (53%) short (78%)
thin (51%) thin (51%) thick (62%)

round (52%) round (56%) round (75%)

In Table 4.3, each bold adjectives shows the correctly predicted category. The first

column includes the images of the testing objects, the second and third columns show

the accuracies with and without co-occurrence information, relatively, and the last

column is the testing accuracy for trained SVM data. For object O2, SVM and only

perceptual similarity classify this object as thin, but co-occurrence corrects the wrong

prediction. We can also conclude that our method has better prediction accuracy than

SVM if we look at the objects O2 and O5.

42



In Table 4.4, the predicted noun categories using co-occurrence for each object con-

forms to the result of perception-only predicted nouns, and the predictions using

with/out co-occurrence are more accurate than using SVM. More specifically, the

noun category of the object O2 is wrongly predicted by SVM, whereas it is correctly

predicted from perceptual features.

Table 4.4: Predicted nouns for some objects from the test set (bold denotes correct
classification). The co-occurrence weight wan is taken as 0.2.

Nouns
Objects Perceptual Perc. Similarity and SVM

Similarity (sn
perc) Co-occurrence sn

comb

O1

Box (22%) Box (23%) Box (25%)
Cylinder (24%) Cylinder (24%) Cylinder (23%)

Cup (37%) Cup (35%) Cup (45%)
Ball (17%) Ball (18%) Ball (7%)

O2

Box (32%) Box (36%) Box (38%)
Cylinder (30%) Cylinder (34%) Cylinder (44%)

Cup (19%) Cup (15%) Cup (3%)
Ball (19%) Ball (15%) Ball (15%)

O3

Box (34%) Box (32%) Box (67%)
Cylinder (25%) Cylinder (25%) Cylinder (16%)

Cup (21%) Cup (22%) Cup (4%)
Ball (20%) Ball (21%) Ball (13%)

O4

Box (22%) Box (22%) Box (3%)
Cylinder (23%) Cylinder (23%) Cylinder (3%)

Cup (20%) Cup (22%) Cup (1%)
Ball (35%) Ball (33%) Ball (93%)

O5

Box (24%) Box (24%) Box (34%)
Cylinder (47%) Cylinder (43%) Cylinder (44%)

Cup (16%) Cup (18%) Cup (6%)
Ball (13%) Ball (15%) Ball (16%)

It can be easily inferred that the co-occurrence information improves the prediction

accuracies, given in Tables 4.3, 4.4, and Figures 4.1, 4.2. Although the perceptual

similarity confidences are accurate enough for noun category prediction for our test

objects, it is not possible to get reliable predictions for all kind of objects. At this

point, we postulate that we can enhance the accuracies using co-occurrence infor-
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mation between noun and adjective categories by indicating that this approach is not

only the solution to this problem, but one of the possible way of suppressing wrong

predictions.

Table 4.5: “What object is it?” game: Determine noun based on given adjectives.

Given Adjectives
Predicted Nouns

a1 a2 a3 a4

hard short thick edgy Box (73%)
Cup (53%)

hard round - - Cup (72%)
Cylinder (70%)

silent short thick round Ball (70%)
Cup (52%)

short thick - - Cup (69%)
Ball (69%)

round thin soft tall Ball (18%)
Cylinder (17%)

soft silent thick - Ball (45%)
Cup (23%)

hard noisy round - Cup (73%)
Cylinder (46%)

short thick round - Ball (70%)
Cup (69%)

edgy - - - Box (100%)
Others (0%)

4.3.3 The “What object is it?” Game

This game is devised to find the possible noun categories from a given set of adjectives

either manually, or perceptually. The aim of this game is to demonstrate the impact

of the interaction between noun and adjective concepts.

Table 4.5 shows the noun category with confidences of given sample sets of adjec-

tives. Some noun category has characteristic adjectives per se. For instance, cups and

cylinders are always round and hard, and boxes are inherently edgy. If any adjective

set conforms to this property, then the resultant noun category is strongly predicted

with high confidence value. Otherwise, the confidence values will remain at low lev-

els.
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4.3.4 Concept Labeling Accuracy

We have used cross-situational labeling previously mentioned in Section 4.2. In our

experiment, we have only one noun category for each training object and there is

exactly one noun label for each row (object) in training label set. For noun concept

labeling, we get 100% accuracy. All the diagonal cells are filled up with values of

this table. For adjective concept labeling process, the accuracy results show that our

modified version of labeling method suits more in our dataset in Figure 4.3. There

is one-to-one correspondence between concept names and the adjective names. Al-

though there can be more than one label for an adjective concept, we can correctly

select the corresponding label for adjective concepts.
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Figure 4.3: Accuracy result for concept labeling. The horizontal axis shows the per-

centage of included subsets of adjectives, while the vertical axis is the accuracy for

correct labeling of concepts
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CHAPTER 5

A WEB OF CONCEPTS

In this chapter, we present how we can build and model a web of concepts, and

demonstrate its use over different test scenarios.

5.1 Building a Web of Concepts

Although co-occurrence provides us better prediction of adjective and noun cate-

gories, we want to add to the system contextual information and also (e.g., web con-

cepts) defined by human actor. This system uses the co-occurrence information be-

tween noun, adjective, and verb categories, the context and words that are spoken by

a human. This enhancement provides the system a wider knowledge of the environ-

ment, and so, better prediction of concepts. Moreover, the concept web provides the

activation of concepts with respect to the connection strength between other activated

concepts. The robot connects what it sees, being the entities, properties, and applied

behaviors, to the previously known concepts using the prototype approach developed

in previous work [7, 80]. A concept (c) can be a noun (c ∈ N ), adjective (c ∈ A),

or verb (c ∈ V), with C = N ∪ A ∪ V . The activated concepts can also activate

the other related concepts, where relatedness is extracted from co-occurrences in the

interactions of the robot.

We model the web as a Markov Random Field (MRF) since it naturally fits as one,

being composed of “nodes” that are connected to each other and that activate each

other. Activation of concepts in concept web is usually performed using the message

passing or belief propagation algorithms described by Koller [84] and Gouws [2].

47



However, our concept web, consisting of maximal cliques of concepts, is a cyclic

graph, so we used another algorithm, named Loopy Belief Propagation, explained in

Section 2.5.2.

5.1.1 Integrating LBP into Web of Concepts

The methods explained in Chapter 2 as background are all used in acyclic graphs.

Nevertheless, our web of concepts includes a large number of nodes, including per-

ceptual, language, verb, and effect concepts. Perceptual concepts directly come from

the adjective (A) and noun (N ) concepts. Superordinate concepts are created by a hu-

man actor, and properties that cannot be sensed directly. Some examples are covered,

metal, toy, etc. This information is regarded as ground truth and transferred directly

into the system. Such nodes are initialized with an activation of 100%. Verb concepts

are the concepts created by the repertoire of our behaviors. These behaviors can be

learned from effect features as previously mentioned. Finally, the effect concepts are

the concepts that demonstrate an outcome of a behavior over an object. A label of an

effect concept over an object is predicted using Support Vector Machine (SVM).

Due to this complex structure of our graph (Figure 5.1), we cannot employ standard

message passing algorithms. Therefore, the LBP perfectly suits our system since it

can tackle such complexities.

As explained in Chapter 2, there are two types of nodes and their potential tables. The

separator nodes are the nodes that represents all type of concepts. We represent the

dichotomy of our adjective concept pairs as one separator node since their potential

table is one dimensional. For example, Hard and Soft concepts are placed into the

same node, and their probabilities are respectively p(Hard) and p(¬Hard).

Another important question is how to create clique nodes and connect them to sep-

arator ones. Initially, for each training and test object, we have a set of predefined

adjective, noun and superordinate categories. These categories are determined by a

human. We also have a fixed set of behaviors. However, not all behaviors can be

applied to each object. In Table 5.1, Drop, Shake, Knock Down, and Throw behaviors

cannot be applicable to fragile objects, namely Cup and Plate since these objects can
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Figure 5.1: MRF representation of our web of concepts (only perceptual and language

concepts included) using Ubigraph Library [5]. For the sake of comprehensibility, the

labels of the background concepts are not written explicitly.

be easily broken. Thus, the applicable behaviors for each object are fed to the system.

We also guarantee that there is no one-hop connection between behavior concepts,

but they can be connected to each other through other noun or adjective concepts.

The connections between other concepts are created in a similar manner. Finally, the

connections between superordinate concepts are created with the supervision of a hu-

man actor. One important issue is that a concept which has a dichotomy with another

concept is placed in the same separator node as previously mentioned. After creating

the MRF graph, we find maximal cliques to convert it into a factor graph, since the

LBP algorithm works on factor graphs.

After creating the nodes and connections, the potential tables of clique nodes are

filled with co-occurrence information as in Chapter 4. They are multi-dimensional

matrices, whose dimension size is the number of concepts placed into that clique

node. Initially, the potential tables of separator nodes are filled with perceptual pre-

diction confidences, formulated in Equations 3.4, and 3.5. The belief propagation

process will then commence with the message from separator node to the clique node
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Table 5.1: Possible applicable set of behaviors with respect to object categories. (arg:
Left, Right, Forward, Backward; A:Applicable; NA: Not-Applicable)

Push(arg) Move(arg) Drop Grasp Shake Knock Down Throw
Box A A A A A A A
Ball A A A A A A A

Cylinder A A A A A A A
Cup A A NA A NA NA NA
Tool A A A A A A A
Plate A A NA A NA NA NA

spreading the initial confidences around the web. As a special case, the potential

tables of the effect nodes are filled using the Gibson’s notion of affordances [85].

For each testing object and behavior, we get the confidence values from SVM effect

prediction and insert them as a potential value of an effect concept in a web. For ex-

ample, we predict the effect confidence value of a ball after applying grasp behavior

(eball, bgrasp, fpredicted). In other words, the effect nodes are not physically connected

to other nodes. Their prediction results are obtained directly from SVM.

5.2 Results

In this section, we give two possible scenarios to demonstrate the contributions of

having a web of concepts.

5.2.1 Scenario 1: “Perception-Driven Activation of Concepts in the Web”

In the first scenario, iCub encounters an unknown object, and tries to guess the noun

and the adjectives of this object. In addition, it tries to foresee what kind of actions

are possibly applicable on this object, together with their possible effect outcomes.

Initially, we place the object on a table in front of iCub. iCub examines the object

visually, as well as grasping and shaking it to check its haptic, auditory and propri-

oceptive properties (Section 3.3). The entity feature vector is extracted out of these

sensory data (Section 3.4). After that, using the extracted features, and comparing

them to the previously obtained prototypes, it predicts the probable adjective and

noun categories for the object (Section 3.6). Additionally, the human trainer has the
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Figure 5.2: Schematized representation of Scenario 1. The Cup is given to the system

and all related concepts are activated. The action space and and verb concepts are

contoured with green, whereas blue and orange colors represent the noun and adjec-

tive categories for the object, respectively. The gray and smaller fonts show inactive

concepts in the web, while bigger fonts and colored nodes represent activated con-

cepts. There are other concepts that are not shown for clarity. (ML: Move Left, MR:

Move Right, MF: Move Forward, MB: Move Backward, PL: Push Left, PR: Push

Right, PF: Push Forward, PB: Push Backward)

option of specifying extra knowledge about the object, such as its material (wooden,

plastic, metal, etc.) or function (utencil, workshop, toy), that iCub cannot detect itself

with its limited sensory data. We postulate that, if available, these new concepts will

also enhance our prediction accuracies.

When all the information that can be collected is gathered, this information is fed into

the concept web, whose connections has been previously determined using the statis-

tical properties of the training data (Section 5.1.1). The concepts that are predicted

by iCub and the knowledge nodes provided by the human are initially activated. All

other unknown nodes are initialized with a probability of 0.5. Then the concept web is

allowed to propagate activation until convergence. When convergence is established,

three things have happened: (1) iCub has refined its a priori guesses about the noun

and adjective categories of the object, possibly correcting some wrong guesses. (2)

iCub has predicted which behaviors are applicable to this object, purely due to the
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connectivity properties of the concept web. (3) iCub furthermore predicts the possi-

ble effects of these behaviors on the object, using the trained SVMs with the extracted

feature vector of the object (Section 3.6.4).

An example scenario is shown in Figure 5.2. In this case, a cup is presented to iCub,

and it is expected to predict as much as it can about this object. As can be seen in

the figure, iCub correctly determines that the given object is a cup, and it is also hard,

round, thick, short, and silent. Furthermore, it decides that the object can be grasped

(after which the object will be lifted), moved and pushed (after which the object will

be moved).

Another example might be the presentation of a ball. This time all the behaviors are

applicable to this object, therefore all verb concepts (V) are activated. In addition, the

related noun and adjective concepts are activated which are Ball, Round, Soft, Short,

Silent, Thick.

We propose that this behavior of the system is similar to the characteristics of canon-

ical neurons [86, 87, 88]. The canonical neurons are visuomotor neurons: They re-

spond selectively to certain behaviors, however they also respond when the subject

sees an object on which this specific behavior can be applied. For instance grasping

canonical neurons fire (1) when grasping, (2) when a graspable object is seen. The

output of our system is also similar, i.e, verb concepts activate to objects affording

the corresponding behaviors.

We now apply this scenario to predict the categories of an object. We present 6 sample

objects to iCub, each one selected from a different noun category. Then we make

him predict the adjective and noun categories of objects, as well as the applicable

behaviors and their effects for each object. To show the effectiveness of this approach,

the predicted categories using only perceptual similarities, explained in Section 3.6

are compared to using the web of concept.

The results are depicted in Table 5.2. The first column shows the RGB-colored depth

images of the instance for each noun category, that are taken from Kinect sensor using

PCL modules. The second and third columns show the perception-only predictions

for noun and adjective categories, respectively. The fourth and fifth columns show
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Table 5.2: The prediction accuracies of noun and adjective categories using the con-
cept web, with respect to the perception-only guesses. 6 objects, one of each noun
category, are used for demonstration. Images depict RGB-colored depth images (col-
lected via PCL library from the Kinect sensor). The second and third columns depict
the perception-only results, while the fourth and fifth columns show the concept web
predictions. Prediction confidences are indicated in paratheses. The use of bold text
indicates correct decisions. Striked-out text indicates wrong decisions. [Best viewed
in color]

Object
Predicted Nouns Predicted Adjectives Predicted Nouns Predicted Adjectives
(Perception only) (Perception only) (Concept web) (Concept web)
(% confidence) (% confidence) (% confidence) (% confidence)

ball (8%) edgy (34%) round (66%) ball (0%) edgy (0%) round (100%)
box (13%) hard (71%) soft (29%) box (0%) hard (100%) soft (0%)
cup (43%) noisy (42%) silent(58%) cup (100%) noisy (0%) silent(100%)

cylinder (20%) short (54%) tall (46%) cylinder (0%) short (100%) tall (0%)
plate (9%) thick (47%) thin (53 %) plate (0%) thick (100%) thin (0 %)
tool (7%) tool (0%)

ball (33%) edgy (42%) round (58%) ball (100%) edgy (0%) round (100%)
box (16%) hard (39%) soft (61%) box (0%) hard (0%) soft (100%)
cup (13%) noisy (62%) silent(38%) cup (0%) noisy (100%) silent(0%)

cylinder (13%) short (61%) tall (39%) cylinder (0%) short (100%) tall (0%)
plate (14%) thick (56%) thin (44 %) plate (0%) thick (100%) thin (0 %)
tool (11%) tool (0%)
ball (11%) edgy (40%) round (60%) ball (0%) edgy (0%) round (100%)
box (14%) hard (64%) soft (36%) box (0%) hard (100%) soft (0%)
cup (17%) noisy (63%) silent(37%) cup (0%) noisy (100%) silent(0%)

cylinder (31%) short (44%) tall (56%) cylinder (100%) short (0%) tall (100%)
plate (10%) thick (40%) thin (60 %) plate (0%) thick (100%) thin (0 %)
tool (17%) tool (0%)
ball (14%) edgy (64%) round (36%) ball (0%) edgy (100%) round (0%)
box (42%) hard (34%) soft (66%) box (100%) hard (0%) soft (100%)
cup (11%) noisy (30%) silent(70%) cup (0%) noisy (0%) silent(100%)

cylinder (12%) short (59%) tall (41%) cylinder (0%) short (100%) tall (0%)
plate (10%) thick (63%) thin (37 %) plate (0%) thick (100%) thin (0 %)
tool (8%) tool (0%)
ball (11%) edgy (48%) round (52%) ball (0%) edgy (0%) round (100%)
box (13%) hard (55%) soft (45%) box (0%) hard (100%) soft (0%)
cup (15%) noisy (61%) silent(39%) cup (0%) noisy (100%) silent(0%)

cylinder (18%) short (39%) tall (61%) cylinder (0%) short (0%) tall (100%)
plate (11%) thick (57%) thin (43 %) plate (0%) thick (100%) thin (0 %)
tool (32%) tool (100%)
ball (15%) edgy (44%) round (56%) ball (0%) edgy (0%) round (100%)
box (18%) hard (51%) soft (49%) box (0%) hard (100%) soft (0%)
cup (16%) noisy (44%) silent(56%) cup (0%) noisy (0%) silent(100%)

cylinder (17%) short (52%) tall (47%) cylinder (0%) short (0%) tall (100%)
plate (21%) thick (53%) thin (47%) plate (100%) thick (100%) thin (0 %)
tool (13%) tool (0%)

the prediction results obtained using concept-web counterparts.

There are two crucial contributions that the web of concepts provide to our predic-

tions: (i) The difference between correct and wrong predictions for noun and adjective

categories become more straightforward when compared perception-only results, and

(ii) the wrongly predicted adjective categories that are struck out for 1st, 3st, and 6th
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objects are corrected.

Table 5.3: The predictions of applicable behaviors and their likely effects via the
concept web. NA stands for Not-Applicable. The confidence values of the predictions
are unanimously (100%), so are intentionally not shown for clarity. Images depict
RGB-colored depth images (collected via PCL library from the Kinect sensor). [Best
viewed in color]

Object Predicted Behaviors Predicted Effects Object Predicted Behaviors Predicted Effects
grasp lifted grasp lifted
push moved push moved
move moved move moved
throw NA throw moved
drop NA drop moved

knock down NA knock down moved
shake NA shake moved

grasp lifted grasp lifted
push disappeared push moved
move moved move moved
throw disappeared throw moved
drop disappeared drop moved

knock down moved knock down knocked
shake disappeared shake moved

grasp lifted grasp lifted
push moved push moved
move moved move moved
throw moved throw NA
drop moved drop NA

knock down knocked knock down NA
shake moved shake NA

Table 5.5 depicts the predictions of applicable behaviors and their likely effects on

the same objects. The predicted results are all correct, with cup and plate objects

detected as being unable to be thrown, dropped, shaken, and knocked down, and ball

objects rolling down the table when pushed. The prediction accuracies are 100% in

each trial, and therefore has not been stated individually for clarity.

5.2.2 Scenario 2: “Interaction-Driven Activation of Concepts in the Web”

In the second scenario (Figure 5.3), human actor gives an unknown object to iCub,

and commands it to apply a specific behavior on this object. The activation in this

case progresses from two different channels. In this first pathway, iCub looks at the

object and determines its visual properties. It uses these visual properties to extract

a partial feature vector (excluding haptic, proprioceptive and auditory features). In

the second path, a human trainer commands iCub to apply a behavior to the object.

This specified behavior directly activates the related verb concept in the web. As
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Tall

Noisy

“Push”

Hard

“Drop”
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“Grasp”

“Knock”
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Figure 5.3: Schematized representation of Scenario 2. The Ball is given to the system

and Push behavior is commanded to iCub. All related concepts are activated (only

visually perceivable concepts). The action space and and verb concepts are contoured

with green, whereas blue and orange colors represent the noun and adjective cate-

gories for the object, respectively. The gray and smaller fonts show inactive concepts

in the web, while bigger fonts and colored nodes represent activated concepts. There

are other concepts that are not shown for clarity. (PL: Push Left, PR: Push Right, PF:

Push Forward, PB: Push Backward)

in Scenario 1, all of the clique potentials are filled using co-occurrence information

(Section 5.1.1). The confidence values of the visually found concepts of the given

object are also placed into the corresponding separator nodes. All of the probabilities

for other concepts are left balanced (0.5).

In this scenario shown in Figure 5.3, a ball is put on the table, and “push” behavior is

requested. Although they are not predicted perceptually (due to the initially missing

haptic, proprioceptive and auditory features), the Soft and Silent concepts are cor-

rectly found. Moreover, after the activation of verb concept push with the command

of a human, all the related actions, namely Push-Left, Push-Right, Push-Forward, and

Push-Backward, are activated. Finally, the most probable effect outcome is estimated

using the associated SVM of the grasp behavior on the collected visual features. Since

the balls roll down from the table and disappear when pushed, the predicted effect is

“Disappeared”.
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In another example, Cylinder object is served to iCub, and we want to perform

“grasp” behavior on the object. Initially, all visually perceivable concepts which are

Tall, Thin, Round, Cylinder are activated with Grasp verb concept. Grasp concept

also activates Top-Grasp and Side-Grasp concepts in action space. After convergence,

other related concepts (Noisy, Hard) also become activated.

The aim of this scenario is to show that it is possible to find all concepts of the pre-

served object using only restricted set of features (in this case, visual features) even

if any behavior is not performed on this object. Also it shows how an issued action

command activation spreads in parallel through the web.

Table 5.4: The prediction accuracies of noun and adjective categories on the novel
objects using the concept web. Initially, only visually activated concepts are per-
ceptually predicted, and the activations are spread to predict all related concepts. 4
novel objects, are used for demonstration. The second and third columns depict the
perception-only results, while the fourth and fifth columns show the concept web
predictions. Prediction confidences are indicated in paratheses. The use of bold text
indicates correct decisions. Striked-out text indicates wrong decisions. [Best viewed
in color]

Objects
Predicted Nouns Predicted Adjectives Predicted Nouns Predicted Adjectives

(Perception Only) (Perception Only) (Concept Web) (Concept Web)
(% confidence) (% confidence) (% confidence) (% confidence)

ball (11%) edgy (40%) round (60%) ball (0%) edgy (0%) round (100%)
box (16%) short (36%) tall (64%) box (0%) hard (100%) soft (0%)
cup (14%) thick (45%) thin (55%) cup (0%) noisy (0%) silent (100%)

cylinder (38%) cylinder (100%) short (0%) tall (100%)
plate (12%) plate (0%) thick (0%) thin (100%)
tool (9%) tool (0%)
ball (11%) edgy (37%) round (63%) ball (0%) edgy (0%) round (100%)
box (12%) short (23%) tall (77%) box (0%) hard (100%) soft (0%)
cup (13%) thick (49%) thin (51%) cup (0%) noisy (0%) silent (100%)

cylinder (26%) cylinder (0%) short (0%) tall (100%)
plate (11%) plate (100%) thick (100%) thin (0%)
tool (27%) tool (0%)
ball (16%) edgy (43%) round (57%) ball (0%) edgy (0%) round (100%)
box (23%) short (59%) tall (41%) box (0%) hard (100%) soft (0%)
cup (18%) thick (56%) thin (44%) cup (0%) noisy (0%) silent (100%)

cylinder (17%) cylinder (0%) short (0%) tall (100%)
plate (14%) plate (100%) thick (100%) thin (0%)
tool (12%) tool (0%)
ball (16%) edgy (51%) round (49%) ball (100%) edgy (0%) round (100%)
box (15%) short (52%) tall (48%) box (0%) hard (0%) soft (100%)
cup (16%) thick (54%) thin (46%) cup (0%) noisy (100%) silent (0%)

cylinder (20%) cylinder (0%) short (100%) tall (0%)
plate (14%) plate (0%) thick (100%) thin (0%)
tool (19%) tool (0%)

Although the concept web works well on the testing set for this scenario, we have

also used novel objects which are really different when compared with test objects.

56



In Table 5.4, we have four novel objects. For the second and the third objects, we

have wrongly predicted the noun categories and some of the adjective categories,

whereas the noun category of the last object is correctly predicted. As a result of the

activation of concepts, noun categories of the whole objects are wrongly predicted.

The reason of this wrong noun category prediction arises from the wrongly activated

adjective concepts. For the second and third objects, the activated adjective concepts

are “round”, “hard”, “silent”, “tall” and “thick”, directly causing the wrong activation

of “plate” concept, which is completely natural since activated concepts include the

dominant adjectives of the objects which are classified as “plate” in the training set.

Perception

Short

Thick

Soft

Grasp

Noisy

Round

Move

Drop

Knock

Throw

Push

ShakeCylinder

Cup

Tool

Plate

Edgy

Thick

Drop

Tall

Silent

“Drop”

Hard

“Knock”

“Move”

“Grasp”

“Push”

“Shake”

Ball

Figure 5.4: Schematized representation of Scenario 3. The sample Ball, Cup, and

Plate objects are given to the system and Drop behavior is commanded to iCub. iCub

selects any one of these objects if the commanded behavior is applicable. In this

scenario, the Ball object is selected and its activated concepts are shown. The action

space and and verb concepts are contoured with green, whereas blue and orange col-

ors represent the noun and adjective categories for the object, respectively. The gray

and smaller fonts show inactive concepts in the web, while bigger fonts and colored

nodes represent activated concepts. There are other concepts that are not shown for

clarity.
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5.2.3 Scenario 3: “Command-Driven Activation of Concepts in the Web”

In this final scenario, we show how iCub responds when commanded to perform a

certain action in an environment populated with multiple objects (Figure 5.4). The

command does not specify on which object to apply the behavior, therefore iCub must

choose an appropriate object. Remember that some behaviors cannot be applied to

certain types of objects. Therefore, we expect that activation will not spread from

these verb concepts to inappropriate noun types. Properly activated nouns will be

options for iCub to apply the behavior. If there are more than one appropriate objects,

iCub makes a random decision. (Probability of being chosen for a certain noun type

will be proportional to its frequency in the training set.)

In the sample scenario, iCub is presented with a cup, a plate, and a ball, and is com-

manded to apply “Drop” behavior. Due to the missing connections between Drop

verb, and Cup and Plate nouns, activation cannot spread to Cup and Plate. On the

other hand, Drop and Ball are connected, through which Ball noun is activated. As a

result, iCub decides to apply this action to the ball object.

Table 5.5: The selection of objects on which sample commands are applicable be-
haviors. The confidence values of the predictions are unanimously (100%), so are
intentionally not shown for clarity. Images depict RGB-colored depth images (col-
lected via PCL library from the Kinect sensor). [Best viewed in color]

Command Viewed Scene Selected Objects

throw box

push

box
green cup
white cup

yellow plate
red plate

ball

The aim of this scenario is to show that behaviors can activate related noun concepts,

while avoiding activation in the unrelated ones. This kind of “reverse” activation

spreading can guide the robot’s actions in the world.
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CHAPTER 6

DISCUSSION AND CONCLUSION

In this thesis, we have addressed the issue of finding a shared representation of con-

cepts between a human actor and a humanoid robot. As we have discussed in Chapter

1 and 2, this is crucial for seamless communication with a robot since the words used

by the human and the robot should activate the same meaning in their “brains”. More

specifically, we have tackled the problem of learning and representing nouns, adjec-

tives, verbs in a single model, unlike the existing studies that study these categories

separately.

We first showed that, as a proof of concept, co-occurrence between nouns and adjec-

tives can be used to better predict them. This allowed us to predict, e.g., the noun of

an object from its adjectives vice versa. This was crucial since existing studies have

learned nouns and adjectives separately. However, from studies in Neuroscience, we

know that humans represent and activate concepts not only based on their perceptual

or sensorimotor information but also by using the other concepts in our brain.

We then tackled the more general problem of modeling a web of concepts in a robot

that include not only nouns and adjectives but also verbs, effects, language, higher-

level noun and adjective categories, and of course the links between them. This is an

important attempt in the literature for modeling a web of concepts that gets activated

in a fashion similar to humans. We modeled the web as a Markov Random Field and

made inferences using Loopy Belief Propagation as they proved to be very suitable

for such complex graphs. We showed that this web allowed the robot to activate the

relevant concepts of an object by just looking at the object. With this activation, for

example, the robot knows the noun, the adjectives, the words that can be used for the
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object as well as the applicable behaviors.

6.1 Limitations and Future Work

We have a limited set of objects for our experiments. Increasing the number of ob-

jects in the object set affects our system with respect to reliability. As the number of

objects increases, the prototypes might capture more detailed representation of con-

cepts. Moreover, the co-occurrence values are enhanced, since the ambiguity due

to the limited object set can be corrected with increasing number of exemplars of

a category. For example, one contradicting example in a category with five objects

deteriorates more than in a category with 10 objects. Therefore, the more exemplars

there are in our training set, the more reliable our system is. On the other hand, in-

creasing the number of objects does not affect the computational complexity if the

cardinality of the adjective and noun categories remains the same. The computational

complexity directly depends on the number of concepts and their connections.

The concepts in the web have an ontological structure. There are other studies using

ontological structure to represent the concepts [89, 90, 91]. For this kind of systems,

there is a relation between concepts, and the relation is expressed using probabilities.

Integration of an ontological system into our system can easily be done by arranging

the relation criteria and adding non-existing connections and concepts into the web.

Our model lacks on-line formation of concept web. In this thesis, the nodes and

connections are directly created over the entire set of training objects. We have not

developed any incremental web formation method. For newly added objects, we

reconstruct the web, which is not a realistic for human learning since the concept

learning is an incremental process that going on throughout entire human life. This

can be done by adding object categories to the existing web by testing whether it is

newly introduced or not, and updating all co-occurrence information of the resultant

web.

Another important improvement can be the modeling of long and short-term memory,

as depicted in Figure 6.1. The long-term memory can be thought as a combination

of “situated concepts” that are associated with the contextual information, gathered
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from previously experiences, while the short-term memory is the representation of the

current scene. There can be connections between long- and short-term memories to

check whether a desired concept is any one of them or not. The concepts in short-term

memory is instantaneous while the latter one holds general information.

Figure 6.1: Representation of Long and Short Term Memories consisting of “situ-

ated” concepts and instantaneous concepts related with behavior and object, respec-

tively.

Finally, the set of concepts can be enriched by adding more concepts to the system.

This can be done by adding a completely new concept that are obtained from different

modalities or an intermediate concept for existing concepts. For instance, “medium-

length” concept can be added between “tall”, and “short” adjective concepts.
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Şahin, and Sinan Kalkan. Development of adjective and noun concepts from af-
fordances on the icub humanoid robot. 12th International Conference on Adap-
tive Behaviour (SAB), 2012.

[10] Angelo Cangelosi. Grounding language in action and perception: From cogni-
tive agents to humanoid robots. Physics of Life Reviews, 7(2):139 – 151, 2010.

[11] Terrence Deacon. The symbolic species: the co-evolution of language and the
human brain, 1997.

63



[12] Joanna J. Bryson. Embodiment versus memetics. Mind & Society, 7(1):77–94,
2008.

[13] Tom M. Mitchell, Svetlana V. Shinkareva, Andrew Carlson, Kai-Min Chang,
Vicente L. Malave, Robert A. Mason, and Marcel Adam Just. Predicting human
brain activity associated with the meanings of nouns. Science, 320(5880):1191–
1195, 2008.

[14] John L. Locke. Babbling and early speech: Continuity and individual differ-
ences. First Language, 9(6):191–205, 1989.

[15] Friedemann Pulvermüller. The neuroscience of language: on brain circuits of
words and serial order. Cambridge University Press, 2002.

[16] Fei Xu. The role of language in acquiring object kind concepts in infancy.
Cognition, 85(3):223 – 250, 2002.

[17] Kim Plunkett, Jon-Fan Hu, and Leslie B. Cohen. Labels can override perceptual
categories in early infancy. Cognition, 106(2):665 – 681, 2008.

[18] Stevan Harnad. The symbol grounding problem. Physica, D, 42:335–346,
1990.

[19] Angelo Cangelosi and Domenico Parisi. The processing of verbs and nouns in
neural networks: Insights from synthetic brain imaging. Brain and Language,
89(2):401 – 408, 2004. Language and MotorIntegration.

[20] Luc Steels, Frederique Kaplan, Angus McIntyre, and Joris Van Looveren. Cru-
cial factors in the origins of word-meaning. The transition to language, 12:252–
271, 2002.

[21] Luc Steels. Evolving grounded communication for robots. Trends in Cognitive
Sciences, 7(7):308 – 312, 2003.

[22] Linda Smith and Chen Yu. Infants rapidly learn word-referent mappings via
cross-situational statistics. Cognition, 106(3):1558 – 1568, 2008.

[23] Chen Yu and Linda B. Smith. Rapid word learning under uncertainty via cross-
situational statistics. Psychological Science, 18(5):414–420, 2007.

[24] Anthony F. Morse, Paul Baxter, Tony Belpaeme, Linda B. Smith, and Angelo
Cangelosi. The power of words. In Joint IEEE International Conference on
Development and Learning and on Epigenetic Robotics, 2011.

[25] Liane Gabora, Eleanor Rosch, and Diederik Aerts. Toward an ecological theory
of concepts. Ecological Psychology, 20(1):84–116, 2008.

[26] Jerome Seymour Bruner and George Allen Austin. A study of thinking. Trans-
action Publishers, 1986.

64



[27] Douglas L. Medin and Edward E. Smith. Concepts and concept formation.
Annual Review of Psychology, 35(1):113–138, 1984.

[28] Eleanor H. Rosch. Natural categories. Cognitive Psychology, 4(3):328 – 350,
1973.

[29] Robert M. Nosofsky, John K. Kruschke, and Stephen C. Mckinley. Combining
exemplar-based category representations and connectionist learning rules. Jour-
nal of Experimental Psychology: Learning, Memory, and Cognition, 18:211–
233, 1992.

[30] Yves Rosseel. Mixture models of categorization. Journal of Mathematical Psy-
chology, 46(2):178 – 210, 2002.

[31] Peter Gärdenfors. Conceptual spaces: The geometry of thought. MIT press,
2004.

[32] George Lakoff. Women, fire, and dangerous things: What categories reveal
about the mind. Cambridge Univ Press, 1990.

[33] John R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106,
1986.

[34] Edward A. Feigenbaum. The simulation of verbal learning behavior. In Pa-
pers Presented at the May 9-11, 1961, Western Joint IRE-AIEE-ACM Computer
Conference, IRE-AIEE-ACM ’61 (Western), pages 121–132. ACM, 1961.

[35] Edward A. Feigenbaum and Herbert A. Simon. Epam-like models of recogni-
tion and learning*. Cognitive Science, 8(4):305–336, 1984.

[36] Michael Lebowitz. Experiments with incremental concept formation: Unimem.
Machine Learning, 2(2):103–138, 1987.

[37] Friedemann Pulvermüller. Brain mechanisms linking language and action. Na-
ture Reviews Neuroscience, 6(7):576–582, 2005.

[38] Robert F. Goldberg, Charles A. Perfetti, and Walter Schneider. Perceptual
knowledge retrieval activates sensory brain regions. The Journal of Neuro-
science, 26(18):4917–4921, 2006.

[39] Marion L. Kellenbach, Matthew Brett, and Karalyn Patterson. Large, color-
ful, or noisy? attribute-and modality-specific activations during retrieval of per-
ceptual attribute knowledge. Cognitive, Affective, & Behavioral Neuroscience,
1(3):207–221, 2001.

[40] Antonio R. Damasio. Time-locked multiregional retroactivation: A systems-
level proposal for the neural substrates of recall and recognition. Cognition,
33(1):25–62, 1989.

65



[41] Gertrude H. Eggert. Wernicke’s works on aphasia: A sourcebook and review,
volume 1. Mouton The Hague, 1977.

[42] Matthew A. Lambon Ralph. Neurocognitive insights on conceptual knowledge
and its breakdown. Philosophical Transactions of the Royal Society B: Biologi-
cal Sciences, 369(1634):20120392, 2014.

[43] Linda L. Chao and Alex Martin. Representation of manipulable man-made ob-
jects in the dorsal stream. Neuroimage, 12(4):478–484, 2000.

[44] Karalyn Patterson, Peter J Nestor, and Timothy T Rogers. Where do you know
what you know? the representation of semantic knowledge in the human brain.
Nature Reviews Neuroscience, 8(12):976–987, 2007.

[45] Alex Martin. The representation of object concepts in the brain. Annu. Rev.
Psychol., 58:25–45, 2007.

[46] Matthew A. Lambon Ralph, Karen Sage, Roy W. Jones, and Emily J. Mayberry.
Coherent concepts are computed in the anterior temporal lobes. Proceedings of
the National Academy of Sciences, 107(6):2717–2722, 2010.

[47] Hanna Damasio, Daniel Tranel, Thomas Grabowski, Ralph Adolphs, and An-
tonio Damasio. Neural systems behind word and concept retrieval. Cognition,
92(1):179–229, 2004.

[48] Catherine J. Mummery, Karalyn Patterson, CJ Price, J. Ashburner, RSJ Frack-
owiak, John R. Hodges, et al. A voxel-based morphometry study of semantic
dementia: relationship between temporal lobe atrophy and semantic memory.
Annals of neurology, 47(1):36–45, 2000.

[49] Holly Robson, Roland Zahn, James L. Keidel, Richard J. Binney, Karen Sage,
and Matthew A. Lambon Ralph. The anterior temporal lobes support residual
comprehension in wernicke’s aphasia. Brain, 137(3):931–943, 2014.

[50] W. Simmons and Alex Martin. The anterior temporal lobes and the functional
architecture of semantic memory. Journal of the International Neuropsycholog-
ical Society, 15(05):645–649, 2009.

[51] F. Gregory Ashby and W. Todd Maddox. Human category learning. Annual
Review of Psychology, 56(1):149–178, 2005. PMID: 15709932.

[52] Chen Yu and Dana H. Ballard. On the integration of grounding language and
learning objects. In AAAI, volume 4, pages 488–493, 2004.

[53] Eleanor J. Gibson. Exploratory behavior in the development of perceiving, act-
ing, and the acquiring of knowledge. Annual review of psychology, 39(1):1–42,
1988.

66



[54] V. Chu, I. McMahon, L. Riano, C.G. McDonald, Qin He, J. Martinez Perez-
Tejada, M. Arrigo, N. Fitter, J.C. Nappo, T. Darrell, and K.J. Kuchenbecker.
Using robotic exploratory procedures to learn the meaning of haptic adjectives.
In Robotics and Automation (ICRA), 2013 IEEE International Conference on,
pages 3048–3055, May 2013.

[55] Allison Petrosino and Kevin Gold. Toward fast mapping for robot adjective
learning. 2010.

[56] H. Dindo and D. Zambuto. A probabilistic approach to learning a visu-
ally grounded language model through human-robot interaction. In Intelligent
Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pages
790–796, 2010.

[57] Antonio Chella, Haris Dindo, and Daniele Zambuto. Grounded human-robot
interaction. In AAAI Fall Symposium: Biologically Inspired Cognitive Architec-
tures, 2009.

[58] Arthur M. Glenberg and Vittorio Gallese. Action-based language: A theory of
language acquisition, comprehension, and production. Cortex, 48(7):905 – 922,
2012.

[59] Kevin Gold, Marek Doniec, Christopher Crick, and Brian Scassellati. Robotic
vocabulary building using extension inference and implicit contrast. Artificial
Intelligence, 173(1):145 – 166, 2009.

[60] Pascal Haazebroek, Saskia van Dantzig, and Bernhard Hommel. A computa-
tional model of perception and action for cognitive robotics. Cognitive Process-
ing, 12(4):355–365, 2011.

[61] Sugita Yuuya, Jun Tani, and Butz Martin V. Simultaneously emerging braiten-
berg codes and compositionality. Adaptive Behavior, 19(5):295–316, 2011.

[62] Aneesh Chauhan and Luís Seabra Lopes. Using spoken words to guide open-
ended category formation. Cognitive Processing, 12(4):341–354, 2011.

[63] Shane Griffith, Jivko Sinapov, M. Miller, and Alex Stoytchev. Toward interac-
tive learning of object categories by a robot: A case study with container and
non-container objects. In Development and Learning, 2009. ICDL 2009. IEEE
8th International Conference on, pages 1–6, June 2009.

[64] Anna Gorbenko and Vladimir Popov. Self-learning algorithm for visual recog-
nition and object categorization for autonomous mobile robots. In Xingui He,
Ertian Hua, Yun Lin, and Xiaozhu Liu, editors, Computer, Informatics, Cyber-
netics and Applications, volume 107 of Lecture Notes in Electrical Engineering,
pages 1289–1295. Springer Netherlands, 2012.

67



[65] Christopher M. Bishop. Pattern Recognition and Machine Learning, volume 1.
Springer New York, 2006.

[66] Ross Kindermann, James Laurie Snell, et al. Markov random fields and their
applications, volume 1. American Mathematical Society Providence, RI, 1980.

[67] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine
Learning, 20(3):273–297, 1995.

[68] Vladimir Naumovich Vapnik and Vlamimir Vapnik. Statistical learning theory,
volume 2. Wiley New York, 1998.

[69] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector
machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1–
27:27, 2011.

[70] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-
mann, and Ian H. Witten. The weka data mining software: An update. SIGKDD
Explor. Newsl., 11(1):10–18, 2009.

[71] Giorgio Metta, Giulio Sandini, David Vernon, Lorenzo Natale, and Francesco
Nori. The icub humanoid robot: an open platform for research in embodied
cognition. In Proceedings of the 8th workshop on performance metrics for in-
telligent systems, pages 50–56. ACM, 2008.

[72] Paul Fitzpatrick, Giorgio Metta, and Lorenzo Natale. Towards long-lived robot
genes. Robotics and Autonomous systems, 56(1):29–45, 2008.

[73] Radu B. Rusu and S. Cousins. 3d is here: Point cloud library (pcl). In Robotics
and Automation (ICRA), 2011 IEEE International Conference on, pages 1–4,
May 2011.

[74] Gaël Guennebaud, Benoît Jacob, et al. Eigen v3. http://eigen.tuxfamily.org,
2010. Last visited date: July 24, 2014.

[75] Jan J. Koenderink and Andrea J. van Doorn. Surface shape and curvature scales.
Image and Vision Computing, 10(8):557 – 564, 1992.

[76] A.K. Qin and P.N. Suganthan. Robust growing neural gas algorithm with appli-
cation in cluster analysis. Neural Networks, 17(8-9):1135 – 1148, 2004.

[77] Tin Lay Nwe, Say Wei Foo, and Liyanage C. De Silva. Speech emotion recog-
nition using hidden markov models. Speech Communication, 41(4):603 – 623,
2003.

[78] Eleanor Rosch. Reclaiming concepts. Journal of Consciousness Studies, 6(11-
12):61–77.

68



[79] Chen Yu and Linda B. Smith. Rapid word learning under uncertainty via cross-
situational statistics. Psychological Science, 18(5):414–420, 2007.

[80] Güner Orhan, Sertaç Olgunsoylu, Erol Şahin, and Sinan Kalkan. Co-learning
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APPENDIX A

HIERARCHICAL CONCEPT FORMATION METHODS

Figure A.1: COBWEB structure of each concept node. Each node is created in order

of creation. Figure is taken from [1]

COBWEB [6]: The predecessors and the main inspiration sources of COBWEB are

the UNIMEM and CYRUS [92]. COBWEB can be examined in four stages, which

are category utility, representation of concepts, operators, and control strategy [6].

The category utility is the value of the relevance of an instance in a class and the

dissimilarity of this instance to other instances in another class. In other words, it is

an evaluation function that increases the intra-category similarity and inter-category

dissimilarity. The representation of nodes in hierarchy is almost the same with EPAM.
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It includes an attribute-value pair. As in UNIMEM, it also includes a weight for each

attribute. The difference is that each node also includes a probability of occurrence

of instances [1] (Figure A.1).

COBWEB has two operators to balance the concept clustering. These are merge and

split. Merge operator, as it can be understood from meaning, combines two concepts

by creating a parent concept of them (Figure A.2a). After placing the new instance

in any concept. Split operator basically disintegrates the concept node, and adds its

children nodes to the predecessor node of it (Figure A.2b). Any one of these operators

is selected for each new instance by attempting them separately and testing which

operator gives the best result with respect to an evaluation function.

(a) Merge operator (b) Split operator

Figure A.2: The operators application procedures in COBWEB. Figure is taken from

[6]

Control strategy or evaluation stage is used to determine which operator is applied

with respect to category utility. It is basically determines the best representation of

concept hierarchy according to instances. We can think that COBWEB is a really

well-defined way of concept formation, but it has some limitations. For instance,

unlike UNIMEM, it has only nominal values in nodes. As in EPAM, instances are

placed into the terminal nodes.

CLASSIT [1]: This method is mostly inspired by COBWEB by keeping some neces-

sary parts while changing the representation of concepts and instances, and evaluation

function. One of the most important change is that each feature in node includes the

real values, namely mean and standard deviation of the feature values. As in the pre-

viously mentioned methods, this method also keeps the more general concepts at the

upper part of the tree, while more specific ones are stored in lower parts. The op-
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erator selection for new instance is determined by comparing the mean and standard

deviation values of a concept and a new instance. The common feature among these

mentioned methods is the search methods, namely incremental hill-climbing search.
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APPENDIX B

MODIFIED CROSS-SITUATIONAL LABELING

B.1 Background

In this thesis, the cross-situational labeling is used to link the concepts with our lan-

guage for the sake of human-robot interaction.

Table B.1: Initial tables for adjective and noun concepts labeling

Hard Soft Noisy . . .
a1 0 0 0 . . .
a2 0 0 0 . . .
...

...
...

... . . .
ak 0 0 0 . . .

Box Cylinder Cup Ball
n1 0 0 0 0
n2 0 0 0 0
n3 0 0 0 0
n4 0 0 0 0

Tadj Tnoun

As in the cross-situational labeling algorithm, we get the highest valued label (col-

umn) of any one of the concepts (rows). After that, we also compare it with the

highest valued concept (row) of obtained label (column). The implementation details

of the modified version of the cross-situational labeling can be seen in Algorithm 2.
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B.2 Algorithm

Algorithm 2: Modified Cross-Situational Based Labeling
- Create two tables for adjectives and noun concepts Tadj, Tnoun (Table B.1])

- Read one row R from the dataset. (Ri is the ith element of R)

nl ← R2 Al ← R3,4,...

- Predict adjectives and noun concepts: Ac, nc
for each adjective concept ac in Ac and each adjective label al in Al do

T
(ac,al)
adj ← T

(ac,al)
adj + 1

end for

T
(nc,nl)
noun ← T

(nc,nl)
noun + 1

for each adjective concept ac in A do

Lexc ← ∅
while True do

pl ← arg max
w/∈Lexc

T
(ac,w)
adj

Lexc ← Lexc ∪ pl
if ac = arg maxw T

(w,pl)
adj then

LABELS(ac)← pl and break

end if

end while

end for

for each n in N do

LABELS(n)← arg max
w

T
(n,w)
noun

end for

return LABELS
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