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ABSTRACT

IDENTIFICATION OF INTERACTION SITES OF G PROTEIN-COUPLED
RECEPTORS USING MACHINE LEARNING TECHNIQUES

Şahin, Mehmet Emre

Ph.D., Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. Tolga Can

August 2014, 84 pages

G protein-coupled receptors (GPCRs), which play a crucial role in a host of patho-
physiological pathways, form the largest and most divergent receptor family. Typi-
cally, they transmit outer signals to the inner cell by interacting with G-proteins. The
emerging concept of GPCR dimerization has unsettled the classical idea that GPCRs
function as monomeric units. Prediction of the interface residues of GPCR dimers is
a challenging topic. The method proposed in this thesis trains itself with known in-
terfaces from the literature and makes predictions using both the sequence and three-
dimensional structural information about GPCRs. The predictions are assessed by
comparison to known interfaces in the literature. Our results show that the predic-
tions are consistent with real interactions; however, further biological validation is
still needed. During the development of the method, a new database was published
for the use of the community: IntGPCR, the database of interacting GPCRs. IntGPCR
contains information about interacting GPCRs, where the contents are curated from
the literature. Up-to-dateness and the wealth of its contents, containing 309 interact-
ing GPCRs curated from 348 articles, make IntGPCR a valuable resource for GPCR
researchers. The other proposed method is about the classification of the GPCRs,
serving to the requirement of an efficient and rapid classification to group the recep-
tors according to their functions. GPCRsort, a new classification tool for GPCRs us-
ing the structural features derived from their primary sequences is proposed. Compar-
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ison experiments with the current known GPCR classification techniques show that
GPCRsort is able to rapidly (in the order of minutes) classify uncharacterized GPCRs
with 97.3% accuracy whereas the best available technique’s accuracy is 90.7%.

Keywords: GPCR dimerization, interface prediction, classification of GPCRs, database
of interacting GPCRs, 3D modelling of proteins
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ÖZ

MAKİNE ÖĞRENME TEKNİKLERİ KULLANILARAK G PROTEİN-KENETLİ
RESEPTÖRLERİN ETKİLEŞİM BÖLGELERİNİN TESPİT EDİLMESİ

Şahin, Mehmet Emre

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Tolga Can

Ağustos 2014 , 84 sayfa

Patofizyolojik yolaklarda önemli rol oynayan G protein-kenetli reseptörler (GPKR),
en büyük ve en çok çeşitli reseptör ailesini oluşturmaktadır. Tipik olarak, G-proteinler
ile etkileşerek hücre dışındaki sinyalleri hücre içerisine iletirler. Gelişmekte olan
GPKR dimerleşmesi görüşü, GPKR’lerin tek parçalı bireyler halinde görevlerini ye-
rine getirdiği klasik görüşünü geride bırakmıştır. GPKR dimerlerinin arayüzlerinin
tahmini ilgi çekici bir konudur. Burada sunulan yöntem, kendisini literatürde bulu-
nan bilinen arayüzler ile eğiterek, GPKRlerin hem sekans, hem de üç-boyutlu yapısal
bilgilerini kullanarak tahminlerini yapar. Her ne kadar sonuçların biyolojik olarak tas-
diklenmesi gerekiyorsa da, önerilen yöntemin bilinen arayüzler tabanlı değerlendirme
sonuçları iç açıcı ve gerçek veriyle uyumludur. Bu yöntemin geliştirilmesi esnasında,
araştırmacıların kullanması için IntGPCR adında yeni bir veritabanı yayınlanmıştır.
İçeriği literatürden derlenen IntGPCR, etkileşen GPKR’ler hakkında bilgiler içer-
mektedir. Güncelliği ve içeriğinin zenginliği, 348 makaleden çıkarılan 309 etkileşen
GPKR bilgisi, IntGPCR veritabanını benzerleri arasında ön plana çıkarır. Tez çalış-
maları kapsamında bir diğer geliştirilen metot da GPKR’lerin sınıflandırılması ile
ilgilidir. Bu metot, reseptörlerin fonksiyonlarına göre hızlı ve verimli bir şekilde sı-
nıflandırılması ihtiyacına yönelik geliştirilmiştir. GPCRsort, GPKR’lerin birincil se-
kanslarından elde edilen yapısal özellikleri kullanan yeni bir sınıflandırma aracıdır.
Güncel GPKR sınıflandırma teknikleri ile karşılaştırma deneyleri göstermektedir ki,
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en iyi kullanılabilir tekniğin %90.7 doğruluğa sahip olduğu yerde, GPCRsort %97.3
doğruluk oranı ile GPKR’leri sınıflandırabilmekte ve bunu hızlıca (dakikalar içeri-
sinde) gerçekleştirebilmektedir.

Anahtar Kelimeler: GPKR dimerleşmesi, arayüz tahmini, GPKR’lerin sınıflandırıl-
ması, etkileşen GPKR’ler veritabanı, proteinlerin üç boyutlu modellenmesi
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CHAPTER 1

INTRODUCTION

The G-protein-coupled receptors (GPCRs) form a superfamily of integral membrane

proteins and this superfamily is one of the largest, divergent and most studied families

of proteins [49, 18]. The structure of a GPCR (Figure 1.1) comprises seven highly

conserved α-helical transmembrane (TM) domains, three intracellular and three ex-

tracellular loops, an extracellular N-terminus and an intracellular C-terminus [27]. A

protein is classified as a GPCR if two main requirements are satisfied. The first one is

having seven sequence stretches, of about 25 to 35 residues, that are α-helices span-

ning the membrane. The second requirement is the ability to interact with a G-protein

[29].

The main function of GPCRs is to transduce extracellular signals into intracellular

reactions. They have a primary role in establishing the sensory and regulatory con-

nection of the cell with the outside world [12]. For outside ligands, they act as re-

ceptors and for internal processes, they are actuators. Most GPCRs generate signals

when they detect a ligand. This ligand can be from a diverse set including hormones,

ions, amines, peptides, lipids, nucleotides, odors, tastes, and photons of light [51].

When the ligand interacts with the GPCR, it initiates some conformational changes

and stabilizes the active configuration of the receptor that will activate a G-protein at

the cytosolic side. A complex system involving a variety of mechanisms is observed

by interaction of more than one type of GPCR with more than one type of G-protein.

Due to the stated functions above, GPCRs play critical roles in physiological pro-

cesses such as cellular metabolism, neurotransmission, secretion, and cellular differ-

entiation. Due to their significant role, GPCRs are involved in many major diseases
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Figure 1.1: The seven-transmembrane α-helical structure of a GPCR. Gray col-

ored region is the membrane. Differently colored numbered regions are transmem-

brane domains. (Figure is taken from [103])

including cancer, psychiatric, metabolic and infectious diseases [51]. This means that,

there is a large potential in developing therapeutic drugs that could act on GPCRs

[100]. For the pharmaceutical industry, GPCRs are a major target. It is estimated

that 60-70% of all medicines in development today target GPCRs [51, 66]. It is also

pointed out that drugs have still only been developed to affect a very small number of

GPCRs [29].

Today, a large number of protein sequences are identified as GPCRs; yet, their struc-

tures and functions are not fully characterized [95]. An organization of these GPCRs

into classes is necessary for efficient study and analysis of their functions. It is often

desirable to classify a novel protein sequence identified as a GPCR into one of the

known classes for inferring its function. There are many known GPCR sequences

whose ligands remain unidentified, i.e., orphan GPCRs [91]. Natural functions of

those GPCRs are in question. Classification of orphan receptors could decrease the

efforts on the initial studies with these types of GPCRs.

So far, GPCRs had been considered to function as monomeric units. This assumption

directed the studies of the model of ligand binding and signal transduction [51]. This

idea also delimited the efficient analysis of drugs’ effects and side effects. However,

over the past few years, this idea has been debated. Recent findings clearly show
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that many GPCRs form homodimers or heterodimers [49]. In studies it is stated

that, dimerization occurs early after biosynthesis. Also this is necessary for correct

transport of receptor to the membrane, putting forward the idea of primary role of

dimerization in the maturation of protein [93]. But the methods searching for GPCR-

ligand pairs cannot find the interactions between interacting GPCRs.

Dimerization of GPCRs can be studied with three-dimensional protein structures of

GPCRs. Unfortunately, tertiary structures of GPCRs are largely unavailable [66].

Experiments of detecting structures of proteins are costly and time-consuming. Com-

putational methods help here to predict the structures and characters of GPCRs. A

large number of GPCR primary sequences are known. Also there exists informa-

tion about known GPCR dimers. Developing a computational method for predicting

interacting GPCRs from known data is valuable.

In this study, the primary focus is the prediction of the interface residues in the GPCR

dimers. A novel methodology is proposed for the purpose of this prediction. This

proposed method uses both the sequence and structural data about GPCRs to make

its predictions. Known interface regions from the literature are used in the operation

of the method. For the structural data, created models of the GPCRs as well as the

available three-dimensional structures of receptors are used. The performance of the

method is evaluated with the analysis of the predictions on the interfaces that are

already proposed as known in the literature.

The necessity of a dataset consisting of the known interacting regions of GPCR

dimers directed the creation of a database within the studies. This database, the IntG-

PCR, is a database of GPCR dimers curated from the literature. The system provides

researchers a portal for easy access and analysis of GPCR dimers.

Within the studies, a new methodology is proposed for the classification of GPCRs,

named GPCRsort. GPCRsort is an effective method in accurately classifying GPCRs

into correct classes. Its performance is evaluated with the current available GPCR

classification methodologies. GPCRsort gives the highest accuracy, %97.3, among

these state of the art techniques. In addition to this great performance, the run-

ning time of GPCRsort is also faster than the compared methodology proposed by

Cobanoglu et al. [12].
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To summarize, the contributions of this study can be listed as follows:

• A new GPCR classification method is proposed, named GPCRsort. This pro-

posed method outperforms the state of the art classification techniques in the

accuracy and running time.

• The IntGPCR database is created and published for the use of the researchers

who studies about GPCR dimers. The IntGPCR, which contains GPCR dimer

data curated from the literature, provides browsing, searching and visualization

of the interacting GPCRs.

• A novel method is proposed for the prediction of interface residues of GPCR

dimers. The performance of the proposed method is evaluated according to the

available known interface data.

The organization of the rest of the dissertation is as follows. Chapter 2 explains the

studies about GPCRsort. IntGPCR creation and presentation are explained in Chap-

ter 3. The details of the proposed method for the interface prediction of GPCR dimers

are presented in Chapter 4. Each of these chapters is organized with the background,

related works and experiments about the related topic. The last chapter, Chapter 5,

concludes the dissertation with overall discussions and future directions.
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CHAPTER 2

GPCRSORT: A CLASSIFICATION METHOD FOR GPCRS

GPCRs require an efficient and rapid classification method to group the members ac-

cording to their functions. An emerging number of orphan GPCRs demand novel,

rapid and accurate classification of the receptors since the current classification tools

are inadequate and slow. This chapter presents the development of a new classifi-

cation tool for GPCRs using the structural features derived from their primary se-

quences: GPCRsort. Comparison experiments with the current known GPCR classi-

fication techniques show that GPCRsort is able to rapidly (in the order of minutes)

classify uncharacterized GPCRs with 97.3% accuracy whereas the best available tech-

nique’s accuracy is 90.7%.

2.1 Background

GPCRs could be classified according to their functions, ligand bindings or their struc-

tures. Currently there are several classification schemes. The most widely adopted

classification scheme has the following groups: rhodopsin, secretin, glutamate, adhe-

sion and frizzled/taste2 [83, 80]. This scheme is based upon the GPCR superfamily

classification system that was introduced by Kolakowski in [45]. This defunct sys-

tem divides GPCRs into seven families, specified A-F and O, using original standard

similarity searches [18]. Horn et al. developed this system in [36] for the G Protein-

Coupled Receptor Data Base (GPCRDB), which is one of the most popular databases

for GPCRs. GPCRDB is organized in a hierarchical structure. GPCRs are divided

into six families, stated as A-F, in the first versions of GPCRDB. Later, the database
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is reorganized and the latest version of the GPCRDB contains five classes at the top

level; that are, Class A Rhodopsin like, Class B Secretin like, Class C Metabotropic

glutamate/pheromone, Vomeronasal receptors (V1R and V3R), and Taste receptors

T2R [102]. Each class is further divided into subclasses except the last one, the

Taste receptors. Furthermore, in some families, division continues into further sub-

subclasses. Class A is the largest and most studied family [39] which includes more

than 80% of all human GPCRs [20]. Class B receptors bind to large peptides [8].

Metabotropic glutamate receptors in Class C bind to glutamate, which is an amino-

acid that functions as an excitatory neurotransmitter [18]. The group of receptors

named as fungal pheromone receptors include GPCRs that bind to pheromones which

are used by organisms for chemical communication [17]. Finally, vomeronasal and

taste receptors are putative receptors.

The 3D structure of a GPCR can be very valuable in inferring its function; however,

since GPCRs are very difficult to crystallize, techniques such as X-Ray crystallogra-

phy are not directly applicable. Currently, only 21 different types out of thousands of

GPCR structures have been experimentally solved [105]. This makes the sequence of

the protein as the primary source to work with.

2.2 Related Work

Several methodologies have been developed to classify GPCRs using their sequence

data. Some of these methodologies are motif-based classification techniques, ma-

chine learning methods such as Hidden Markov Models or Support Vector Machines

(SVM).

GPCRpred [3] is a SVM-based method for predicting families and subfamilies of

GPCRs. Five SVMs are built to determine the top-level class of a GPCR and 14

SVMs are used to determine the subfamily of a GPCR if it belongs to the Class A

GPCRs. The reported results show that GPCRs can be classified into top classes with

97.5% accuracy [3]. However, the method is insufficient to predict the exact family

of the GPCR that is at the leaf of the whole GPCR class hierarchy.
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Davies et al. propose a strategy to classify GPCRs in [20]. Their method, named

GPCRTree, uses an alignment-independent classification system based on amino-

acids’ physical properties. It employs principal component analysis to select best

components for sequence representation. At each level of the GPCR class hierarchy,

10 different classification algorithms are tested and the best performed algorithm is

chosen at that level. The disadvantage of this method is its low accuracy for sub-

classes and the time consuming calculation at each level for the unused classifiers.

A recent technique, proposed by Cobanoglu et al. in [12], uses sequence-derived mo-

tifs to classify GPCRs. The motifs they produce characterize the subfamilies by dis-

covering receptor-ligand interaction sites. They propose Distinguishing Power Evalu-

ation technique to select the best motifs for a subfamily. In their reported results, it is

stated that their method outperformed the state-of-the-art techniques for GPCR Class

A subfamily prediction. The deficiency of this algorithm is; its prediction covers

only certain subfamilies of the Class A family. It cannot predict GPCRs from other

classes or cannot state the exact class of the GPCR like in the case of the GPCRpred

algorithm. Another point to be emphasized in this algorithm is its computational com-

plexity. Running time of the algorithm is too long to make a GPCR prediction. Since

GPCRBind is a rule extraction method, training takes time on the order of hours, i.e.

31 hours for 90.7% accuracy (Figure 8 in [12]).

Inoue et al. propose a method, named the Binary Topology Pattern (BTP) method, for

the classification of GPCRs [37]. Their classifier is similar to the proposed method

in this chapter, GPCRsort, as they also use the structural region lengths. Only loop

lengths are used in the BTP method. Inoue et al. report the accuracy of the BTP

method on training data only, which overestimate the actual accuracy of the method.

The BTP method also makes use of fixed thresholds in the classifier which may lead

to poor generalization performance. In the BTP method, the loop lengths are marked

as short or long loops and these binary values are used in the calculations. However,

binarization of loop lengths is not needed and region lengths are directly used in

GPCRsort, as described in the next section.
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2.3 Materials and Methods

Problem definition

Given a GPCR sequence, predict its class in a given classification scheme and a clas-

sification level.

2.3.1 GPCR representation

A GPCR representation can be seen in Equation (2.1).

GPCR = (FV,X) (2.1)

where, FV is the feature vector, X is the class id

The feature vector of a protein is constructed using the structure of a GPCR. Rep-

resentation of a GPCR can be seen in Figure 2.1. A feature vector is defined as a

15-dimensional vector as shown in Equation (2.2).

FV = [TM1, TM2, TM3, TM4, TM5, TM6, TM7, N, L1, L2, L3, L4, L5, L6, C]

(2.2)

where TM1−7 : TM region lengths

N : N-terminus length

L1−6 : Loop lengths

C : C-terminus length

The length of a region is described as the number of amino-acids that comprise the

respective region in Equation (2.2). The sum of entries in the feature vector gives the

length of the GPCR represented by that vector.

GPCRDB [102] has a hierarchy of classes and defines a class id for each family in

the hierarchy. As mentioned earlier, the class hierarchy starts with 5 top-most classes.
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Figure 2.1: Schematic diagram of a GPCR.

Families are further divided into subclasses and sub-subclasses. This division is done

based upon the function of the GPCR and the ligand that it binds. X , the class id

in the GPCR representation in Equation (2.1), denotes the class id of the lowermost

GPCRDB subfamily in which the protein is classified.

2.3.2 Dataset preparation

The protein sequences that comprise the datasets used in the methods are taken from

the GPCRDB [102]. GPCRDB is a molecular-class information system that contains

large amounts of heterogeneous data on GPCRs. The proteins in the GPCRDB are

collected by mining for GPCRs from NR database that is compiled by the NCBI

(National Center for Biotechnology Information). Hidden Markov Models are used

to classify the proteins in this database. It currently contains 38525 proteins that are

classified across 1272 families. The protein family members and class descriptions

are easily reachable through the web site in [31].

Transmembrane regions of GPCRs are predicted using TMHMM stand-alone soft-

ware package [47]. This program is for prediction of transmembrane helices in pro-

teins. It uses a hidden Markov model to predict these regions [87]. TMHMM is

selected because it has been rated best in an independent comparison of programs for

prediction of transmembrane helices [57].

Transmembrane regions of all GPCRDB proteins are predicted using the TMHMM

program. After the prediction process, the results showed that, 29038 proteins were
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labeled as having seven transmembrane regions. The feature vectors are constructed

for those 29038 GPCRs and their representations are used in the following experi-

ments. It can be seen that this number is much higher than the dataset sizes that are

used in the previous studies. For instance, the GPCRpred dataset, which is used in

studies GPCRpred [3] and GPCRBind [12], contains 1054 entries. As far as we know,

the biggest dataset used to train and test the method is the GDS dataset, proposed by

Davies et al. in [19], containing 8354 GPCRs. On the other hand, GPCRDB contains

38525 proteins. The dataset, used in this article, includes nearly 75% of the whole

GPCRDB proteins, which shows that an up-to-date dataset is used to train and test

the proposed classifier, GPCRsort. The remaining 25% of the GPCRDB proteins are

either fragments or proteins which do not contain seven transmembrane regions as

identified by TMHMM.

A non-redundant version of the dataset is also created. This version of the dataset is

used to investigate the level of accuracy bias over certain GPCR families. Sequence

redundancy is removed by intersecting the dataset with the UniRef90 database [89]

which is maintained at 90% non-redundancy level. This intersection comprises the

second dataset with 10216 entries. The size of this non-redundant set is still larger

than the dataset sizes used in the previous works.

2.3.3 Method

Let P be the GPCR whose class is unknown. The steps to predict the class of P by

the proposed method are as follows:

1. Let T be the training set consisting of GPCRs whose families (classes) are

known.

2. Predict transmembrane regions of all GPCRs in T using the TMHMM tool.

If a GPCR is marked as not having seven transmembrane regions by the tool,

remove it from T.
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3. Construct the feature vectors FV for each GPCR as mentioned in the Problem

Definition. So T’ will be:

T ′ = {G : G ∈ T, and G = (FV,X)} (2.3)

where, X is the class of G

4. Train the Random Forest [5] classifier using T’ and construct the classification

model M.

5. Predict TM regions of P using the TMHMM tool and construct its FVP .

6. Using the model M obtained in the 4th step, let Random Forests determine the

class of P using FVP .

Random Forest classifier is used as the classification method. It is a classifier that

consists of many decision trees and outputs the class that is the mode of the classes

output by individual trees. This method is the combination of the Breiman’s ’bagging’

idea [4] and the random selection of features [34]. By the power of this combination,

it constructs a collection of decision trees with controlled variation.

Random Forest is chosen because of its advantages over the other classification meth-

ods. Firstly, it is one of the most accurate learning algorithms available [9]. It has

methods for balancing error in class population unbalanced datasets [5]. This prop-

erty is important because, the GPCRs in the constructed dataset are assigned to the

classes in an unbalanced way. The method is also computationally efficient and runs

very fast.

2.3.4 Environment of experiments

The experiments were performed in a PC with Intel Core i5 3.33 GHz CPU, 3 GBs

of memory and 32-bit Windows 7 operating system. Weka 3 data mining software

[33] is used for the construction of the classification model and the prediction of the

classes using its built-in Random Forest algorithm.

Weka is a collection of machine learning algorithms for data mining tasks. It contains

tools for data pre-processing and classification. In the pre-processing step, it takes the
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training dataset and makes analysis on the dataset. In the classification step, it presents

many classifiers to choose from and constructs the classification model according

to the selected classifier using the dataset given in the pre-processing step. It also

presents test options for the verification of the constructed model. Random Forest

classifier, with default options, is selected for the results presented in this study.

2.3.5 Feature vector contents

The idea of using the lengths of each region in the feature vector is a simple yet

effective method. The structure of a GPCR contains the distinguishing properties of

itself. Having seven transmembrane regions and also loops that connect these regions,

brought the idea of taking benefit from this structure.

Each transmembrane region length is approximately the same, about 20-27 amino-

acids. Using only these lengths could not easily distinguish proteins because of the

shortness of the length of this region. On the other hand, loop and two termini lengths

vary from 3 to 500 amino-acids. These lengths serve as distinguishing features for

classification purposes. Besides the length, the locations of the loops, intracellular

and extracellular, also play a critical role in the function of GPCRs.

An experiment is done to determine the regions which will be used in the feature

vector. Seven different feature vectors are created for comparison, contents of which

are: only transmembrane regions, extracellular loops, intracellular loops, transmem-

brane regions and extracellular loops, transmembrane regions and intracellular loops,

all loops and two termini, all lengths. 10-fold cross validation experiments are per-

formed using the created dataset for each feature vector construction. All region

lengths are chosen to be in the content of a feature vector.

2.3.6 Cross validation experiments

The test dataset is constructed from the available dataset. Firstly, k-fold cross vali-

dation is applied. In this method, the whole dataset is partitioned into k equal size

subsets. From these k subsets, k-1 subsets are used as the training set and the re-
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maining one set is used as the validation set for testing. This process is repeated k

times, where each of the subsets is used once as validation data. The average of the k

experiments is reported as the result. In this experiment, k is chosen as 10. The same

experiment is repeated using the non-redundant version of the dataset.

2.3.7 Using an independent dataset as validation data

The performance of the method is measured using a different testing dataset as the

validation data. GPCRpred dataset [3] was chosen as the test dataset. GPCRpred

dataset contains subclasses of Class A GPCRs. There are total of 1054 proteins in

this dataset. After the TM prediction step for the GPCRs in the set, 885 proteins

are correctly classified as having a valid GPCR model by TMHMM. The proteins

that exist in GPCRpred are removed from the training dataset. After the removal of

GPCRpred proteins, training set contains 28204 proteins.

2.3.8 Comparison with the BTP method

To compare GPCRsort with the BTP method, the same training and testing datasets

have to be used in the experiments. The dataset used in the calculations described in

the BTP method article could not be obtained. Thus, the non-redundant dataset, with

some modifications, is used for the results reported in this section. The classes in

non-redundant dataset are reorganized according to the classes described in the BTP

method dataset. BTP method employs HMMTOP [98] to extract loop lengths from

GPCRs. To make the exact implementation of the method, same method, HMM-

TOP, is used to determine loop lengths of GPCRs in the non-redundant dataset. Total

dataset size decreased to 9315 after HMMTOP TM region predictions. The BTP

method is implemented exactly as described in the article.

2.3.9 Comparison with other methods

A new GPCR classification method is proposed in this chapter. There are existing

GPCR classification methods in the literature. GPCRsort’s classification performance
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should be compared with the ones in the literature. A perfect comparison could be

done using the same training and testing datasets for the compared methods.

Cobanoglu et al. proposes a method, named GPCRBind [12], for the GPCR classi-

fication problem and compares this method with state-of-the-art GPCR classification

methods reported by Davies et al. [19]. These methods use the GDS dataset [19] as

training and the GPCRpred dataset [3] as testing datasets. To make a perfect compar-

ison, exactly same datasets are obtained and used in the proposed method to compare

its performance to the other methods’ performances.

2.4 Results

Following sub-sections explain several performance scenarios of the method using

different training and testing datasets. Generally, previous studies measure their clas-

sification performance on the subfamilies of the top-most families. We adopt a similar

evaluation setting and report classification results for the second level of the GPCR

class hierarchy. There are totally 75 classes as the subfamilies.

2.4.1 Effect of feature vector contents

Accuracy results for the seven setups that are prepared for the experiment done for the

determination of feature vector contents are given in Table 2.1. About 47% of dataset

entries could be correctly predicted using only the transmembrane region lengths.

Loop lengths seem to be more effective than transmembrane region lengths. Addi-

tional region lengths integrated into the feature vector improve the performance of the

predictor. Best accuracy is achieved with the use of all 15 lengths. The accuracy when

using only the loop lengths is very close to the best accuracy. If the running time of

the algorithm was important, only these 8 lengths could be chosen, but this is not a

consideration for our algorithm. These results guide us to include all transmembrane,

loop, N-terminus and C-terminus lengths in the feature vector.
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Table 2.1: Results of using different feature vectors
Attribute type Correctly classified instances
All [15] (TM1−7 + L1−6 + N + C) 26290 (90.54%)
Loops [8] (L1−6 + N + C) 25911 (89.23%)
TM regions [7] (TM1−7) 13688 (47.14%)
Extracellular loops [4] (L2,4,6 + N) 22249 (76.62%)
Intracellular loops [4] (L1,3,5 + C) 22675 (78.09%)
TMs + Extra. loops [11] (TM1−7 + L2,4,6 + N) 24287 (83.64%)
TMs + Intra. loops [11] (TM1−7 + L1,3,5 + C) 24413 (84.07%)

2.4.2 Cross validation experiments

Tables 2.2, 2.3 and 2.4 contain performance measures. Before going into details of

the results of experiments, it would be better to define these measures. Recall (or sen-

sitivity, corresponding to true positive rate) is the measure of the ability of GPCRsort

to select instances of a certain class. Precision (or positive predictive value) is the

measure of the accuracy provided that a specific class has been predicted. Fall-out (or

false positive rate) value for a class is the real negatives that occur as predicted in that

class. F-measure is a derived effectiveness measurement and interpreted as a weighted

average of precision and recall. The area under the receiver operating characteristic

(ROC) curve represents the probability that GPCRsort ranks a randomly chosen pos-

itive instance higher than a randomly chosen negative one. Recall, precision, fall-out

and F-measures listed in tables are the weighted average of values for each class. The

focus in the evaluations is on how confident one can be in the classifier [72].

At first step in the 10-fold cross validation studies, whole dataset is used to construct

training and testing datasets. The results are presented in Table 2.2. Results show that

Table 2.2: Evaluation results of 10-fold cross validation
Measurements Values
Correctly classified instances 90.54%
Recall* 0.905
Precision* 0.904
FP rate* 0.014
F-Measure* 0.903
ROC Area 0.983

* Weighted average of values for each class
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Table 2.3: Evaluation results of 10-fold cross validation using non-redundant
dataset

Measurements Values
Correctly classified instances 80.43%
Recall* 0.804
Precision* 0.798
FP rate* 0.034
F-Measure* 0.796
ROC Area 0.953

* Weighted average of values for each class

the accuracy is very high as 90.54%. High true positive rate and low false positive

rate can be easily seen in this table. In the second step of cross validation studies,

the non-redundant version of the dataset is used to construct training and testing sets.

Table 2.3 lists the results of this second step. High accuracy value in this table, which

is 80.43%, shows that the accuracy is only affected by 10% compared to the value in

the first step that uses the whole dataset. In a similar way, recall, precision and fall-out

values are affected slightly. These results remove the question about biasing of the

results to certain families because of the sequence redundancy in the first dataset.

2.4.3 Using an independent dataset as validation data

In the second experiment, the testing dataset is an independent dataset. The results

of the classification done by GPCRsort are listed in Tables 2.4 and 2.5. The confu-

sion matrix of the method using GPCRpred dataset as the testing data can be seen

Table 2.4: Evaluation results of using a separate testing data
Measurements Values
Correctly classified instances 94.92%
Recall* 0.949
Precision* 0.95
FP rate* 0.013
F-Measure* 0.946
ROC Area 0.982

* Weighted average of values for each class
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Table 2.5: Classification performance of the method using GPCRpred dataset as
the validation data

Subfamily Total Predicted
Amine (AMN) 208 204 (98.1%)
Peptide (PEP) 305 301 (98.7%)
Cannabinoid (CAN) 11 11 (100%)
Gonadotrophin-releasing hormone (GRH) 9 9 (100%)
Hormone protein (HMP) 24 24 (100%)
Nucleotide-like (NUC) 30 29 (96.7%)
Lysosphingolipid and LPA (LYS) 8 8 (100%)
Melatonin (MEL) 13 11 (84.6%)
Olfactory (OLF) 69 68 (98.6%)
Platelet activating factor (PAF) 4 1 (25%)
Prostanoid (PRS) 8 6 (75%)
Rhodopsin (RHD) 174 163 (93.7%)
Thyrotropin-releasing hormone (TRH) 7 0 (0%)
Viral (VIR) 12 2 (16.7%)
Leukotriene B4 receptor (LEU) 3 3 (100%)
Total 885 840 (94.9%)

in Table 2.6. Table 2.4 shows that the performance of the method is very high, as

the total accuracy is 94.9%. When the confusion matrix is analyzed, the problems

with the prediction of Thyrotropin-releasing hormone, Platelet activating factor and

Viral families stand out. The reason of the inefficient classification of these classes

is the small number of those class entries in the training dataset. Another reason can

be remarked as the creation time of the GPCRpred dataset. Classes in GPCRDB are

reorganized several times up to date. Most of the other families are predicted with or

near to 100% accuracies.

2.4.4 Comparison with the BTP method

The performance of GPCRsort with several datasets is analyzed in the first two ex-

periments. The next experiments aim the comparison of GPCRsort with the existing

GPCR classification methods. First comparison is with a similar method to GPCR-

sort: BTP method. Table 2.7 contains the results of this experiment. This table

clearly shows that GPCRsort outperforms the BTP method. In total, GPCRsort pre-

dicts 85.2% of instances correctly, whereas BTP method predicts only 47.6%. Fur-
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Table 2.7: Classification performance of GPCRsort and BTP method
Subfamily Total GPCRsort BTP
A1 1197 972 (81.2%) 246 (20.6%)
IL-8R 20 10 (50%) 0 (0%)
Chemokine/Chemokine-like 255 185 (72.5%) 168 (65.9%)
A2 2772 2447 (88.3%) 1160 (41.8%)
Hormone 385 337 (87.5%) 98 (25.5%)
Olfactory 2510 2470 (98.4%) 2172 (86.5%)
Nucleotide-like 360 170 (47.2%) 38 (10.6%)
PAF 24 7 (29.2%) 0 (0%)
GRH 115 77 (67%) 0 (0%)
LLPA 100 67 (67%) 63 (63%)
Class A unclassified 636 405 (63.7%) 318 (50%)
B1 141 114 (80.9%) 57 (40.4%)
B2 23 15 (65.2%) 11 (47.8%)
Metabotropic glutamate 61 34 (55.7%) 45 (73.8%)
Ext. calcium-sensing 9 5 (55.6%) 0 (0%)
GABA-B 46 39 (84.8%) 0 (0%)
Class A unclassified 280 255 (91.1%) 56 (20%)
Frizzled/Smoothened 381 330 (86.6%) 0 (0%)
Total 9315 7939 (85.2%) 4432 (47.6%)

Class definitions are taken from [37]

thermore, the BTP method cannot predict even a single member correctly in some

families, i.e. GRH or GABA-B. One reason for the bad performance of the BTP

method is its overfitting of the training dataset and its poor generalization perfor-

mance.

2.4.5 Comparison with other methods

We compare GPCRsort with a state of the art classifier, GPCRBind, which has been

shown to outperform several other classifiers [12]. The accuracy results of this com-

parison are listed in Table 2.8. GPCRsort gives the highest accuracy among these

classifiers. 97.3% accuracy shows how GPCRsort improves the classification perfor-

mance on GPCRs. It would be also good to see the accuracy results of these classifiers

with the created dataset here. However, the oldness, limited access and low flexibility

of the other classifiers prevent us to create a comparison environment like that.
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Table 2.8: Classification performance of GPCRsort compared with the current
known methods

Classifier Accuracy
GPCRsort 97.3%
GPCRBind 90.7%
GPCRTree 76.2%
PRED-GPCR 73.8%
GPCRpred 67.1%

2.4.6 Running Time Analysis

Running time of the method is the sum of running times of the steps of the method.

TMHMM runs in seconds to find the transmembrane regions. In the experiments,

classifier model construction took only a few seconds. Determination of the class of

an unknown GPCR takes milliseconds. The whole method does not take more than

a minute. This makes the method a practical method. Another important property

of the method is; it can be run on any PC, not requiring a server to run. Compared

to GPCRBind, this is a significant improvement in running time, since GPCRBind

needs hours to construct the sequence motifs for GPCR class prediction [12]. Fig-

ure 2.2 shows the comparison of running times of GPCRBind and GPCRsort on the

calculations of the experiment described in the ‘Comparison with other methods’ sec-

tion.

Figure 2.2: Comparison of running times of methods. GPCRBind running time is

taken from [12].
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2.5 Discussion

A new GPCR classification method is proposed, GPCRsort, which is simple but effec-

tive in accurately classifying GPCRs into correct GPCRDB classes. In fact, GPCRDB

itself contains predictions: GPCR sequences in GPCRDB are selected by classifying

them against a database of HMMs. These HMMs are created from the previous re-

lease of GPCRDB [102]. This observation raises an issue here that a predictor is

tested against another predictor. However, GPCRDB is used as gold standard in most

of the classification methods in the literature. The work done in this study is to com-

pare GPCRsort with the other methods. This is the reason for using GPCRDB as the

benchmark in this chapter.

GPCRsort can be used to classify uncharacterized GPCRs and direct further biolog-

ical studies accordingly. Using the structural lengths of the GPCR substructures is a

very simple idea. Similar proteins preserve the lengths of the same structural regions

because of the evolutionary development of the genes [69]. Receptors that make con-

tact with similar ligands are evolved from the same common ancestors. Therefore,

the substructure region lengths remained similar. It is possible to find out how close

these receptors to each other just looking at these lengths. Our experiments show

that, despite its simplicity, the lengths of a GPCR’s substructures is very powerful as

a discriminator of GPCR classes and a Random Forest classifier based on this feature

is able to significantly outperform more elaborate sequence pattern based approaches.

With GPCRsort, it is possible to characterize orphan GPCRs and conduct directed

biological experiments to validate the ligands of these novel GPCRs; hence, reducing

the time for related drug studies significantly. The accuracy of GPCRsort is very close

to perfect except for the viral, thyrotropin-releasing hormone, and platelet activating

factor receptors. The small number of those class entries in the training sample is the

basic reason for their incorrect classification. Challenges related to the classification

of these classes of GPCRs can be investigated as future work and the overall accuracy

can be further improved.

GPCRsort shines among other approaches in the comparison experiments. GPCRsort

outperforms the BTP method, predicting 85.2% of instances correctly, where only
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47.6% of instances could be predicted correctly by BTP method. Having 97.3% ac-

curacy shows the power of this method when compared to other methods under the

same conditions. In addition to this power, being able to classify each single class

demonstrates the generality of this classifier. Moreover, rapid running time of the

method makes it easily testable when a GPCR classification is necessary.
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CHAPTER 3

INTGPCR: DATABASE OF GPCR-GPCR INTERACTIONS

The increase in the number of studies on the GPCR dimerization brings a necessity

of a collective database to be in the service for the researchers. The purpose of the

creation of the IntGPCR is to fill that necessity for the community. IntGPCR is a

database of interacting GPCRs. The contents of this database are curated from the

literature. The biological and computational studies on dimerization of GPCRs are

collected and carefully analyzed for any dimerization data. Giving particular impor-

tance to the up-to-dateness of the database, every valuable information, to the smallest

one, from the articles are gathered. This chapter presents the steps of creation and the

presentation of the IntGPCR.

3.1 Background

Chemistry defines an oligomer as a molecular complex that consists of a few monomer

units. In biology, a protein oligomer is a macromolecular complex that consists of a

number of protein monomers. Dimers are oligomers composed of two monomers.

The two proteins are joined by either strong or weak bonds. When the two proteins

are identical, the complex is named as homodimer. Heterodimers are the protein com-

plexes in which the two proteins are not identical. Protein dimerization is the process

of conversion of two proteins to a dimer formation [38].

Throughout the 1970s and 1980s, there are studies that propose G protein-coupled

receptors (GPCRs) could exist as dimers or higher order oligomers [81]. However,

until the end of 1990s, GPCRs are thought to be monomeric units whose main func-
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tions are interacting with G-proteins after ligand activation [1]. The number of studies

about oligomerization, especially dimerization, of GPCRs is increased after this pe-

riod. Now, it is accepted that GPCRs could exist as monomeric, dimeric or oligomeric

complexes in the cell.

The question of why GPCRs dimerize is the subject of several studies. Researchers

define the role of this dimerization in different ways. One reason for the dimerization

is: trafficking of the receptor from endoplasmic reticulum to the cell surface. For

instance, GABAB1 receptor constructs a heterodimer with GABAB2 receptor for the

targeting to the cell membrane [65]. Another example for the trafficking is the ho-

modimerization of β2 adrenergic receptor [82]. Receptor activation is another role

of the dimerization [14]. Again GABAB1 and GABAB2 receptors can be shown as

example. GABAB1 unit is responsible for ligand activation, where GABAB2 activates

G-proteins [43, 22].

The mechanism of the GPCR dimerization is also in interests of the researchers.

There are several experimental studies in the literature for the determination of the

mechanism of the dimers. These experiments use generally biological methods. In

addition to biological experiments, there exist computational studies too. The de-

tails of these studies are mentioned in the next chapter. This chapter contains the

information of how those studies are analyzed and how the data is obtained from the

literature.

3.2 Related Work

The need for a database of interacting GPCRs attracted attention of some researchers.

There exist three published databases that contains data about GPCR oligomerization.

These are gpDB [96], GRIPDB [62] and GPCR-OKB [44].

GpDB is a database of GPCRs, G-proteins, effectors and their interactions [96].

The system contains data about coupling specificity of GPCRs to their respective

G-proteins and also dimerization information of GPCRs. GpDB was last updated on

March 2008. The database is primarily focused on information about interactions be-

tween GPCRs and their partner G-proteins. GPCR dimerization data remains in the
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background in gpDB. This data is not easily accessible by the users, because the data

is listed only on the corresponding GPCR family member entries [97]. Any search

cannot be made to list the interacting GPCRs. Also the database does not contain

any interface details on the interacting GPCRs. Another deficiency of the database

about GPCR dimers is that the specific interacting GPCR cannot be reached from the

dimerization data. Only the type of the interacting GPCR is listed. After a difficult

analysis of the database, navigating entry by entry, the interacting GPCRs’ data statis-

tics is obtained. GpDB contains 82 interacting GPCR entries that are gathered from

68 published articles from the literature.

G protein coupled Receptor Interaction Partners DataBase (GRIPDB) provides infor-

mation about GPCR oligomerization [62]. The system is hosted from Japan. The

system contains experimentally identified GPCR oligomers data from the literature.

In addition to this data, the database also contains suggested interfaces of oligomer-

ization based on the GRIP server [61] predictions. GRIP server predicts interfaces

for oligomerization sites based on sequence alignment of the query GPCR and its

homologs and a template structure [61]. This template structure is either rhodopsin

or β2 adrenergic receptor. The GRIPDB system is not easy to navigate and list the

interacting GPCRs [60]. The system is last updated on January 2011. Besides that,

containing some wrong information about interacting GPCRs makes this system not

reliable. For instance, the system lists the homodimer of µ-opioid receptors from

a study of George et al. [30]. However, this study only shows the oligomerization

of µ-opioid and δ-opioid receptors. There are some other examples of errors in this

database. After a long difficult period for the analysis of the system, the data statis-

tics are: 112 interacting GPCRs that are curated from 107 published articles. Among

these dimer data, there exist 17 interface details.

The third database is the G Protein Coupled Receptor Oligomer Knowledge Base

(GPCR-OKB) [44]. This system contains GPCR oligomerization data derived from

the literature. GPCR-OKB was last updated on November 2012. This system is

the best between the three databases mentioned here, based on usability and content.

However, this system also contains erroneous entries about interacting GPCRs. An

example is: the entry of the heterodimer formation of human α-1b adrenergic and α-

2a adrenergic receptors that are curated from the article of Xu et al. [104]. However,
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this article mentions heterodimerization of α-2a adrenergic and β-1 adrenergic recep-

tors. Like this entry, there exist several erroneous entries. The system contains 192

interacting GPCRs information curated from 220 articles from the literature. Among

these interacting GPCRs, there exist 35 interface details.

General analysis of these three systems shows that the biggest deficiency of these

systems is their up-to-dateness. In addition to that, the erroneous data make the sys-

tem unreliable. Besides these, a system with easy navigation and useful visualization

of interacting GPCRs is needed. Also it is thought that there exist more articles in

the literature that contain interacting GPCRs and their interfaces. These ideas lead to

the development of IntGPCR, the Database of Interacting GPCRs. IntGPCR contains

309 interacting GPCRs, where 138 of them contain interface details, curated from

348 articles from the literature, and continuing its development to be up-to-date. The

following sections describe the development of this system.

3.3 Materials and Methods

3.3.1 Preparation of the Article List

First and the very important step in the development of IntGPCR is the collection of

sources that contain data about GPCR interaction. These sources are the published ar-

ticles from the literature. Because the analysis of articles is a time-consuming study,

the articles must be chosen carefully so that each of them should contain valuable

information about GPCR dimerization. Valuable information can be anything about

dimerization of GPCRs, including the GPCRs that take part in the dimerization, inter-

face data that is a region or specific residues from GPCRs or any text stating a positive

or negative information about the dimerization.

The work is started with a small list of articles, specifically 20 articles, which are

known to include dimerization data. This list is used to obtain specific keywords to

be used in the search parameters for getting the related article list from the literature.

A simple text mining process, generating the word frequency table, is employed here

to get the keywords. Abstract and introduction parts of these 20 articles are collected
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to be input. RapidMiner Studio program [35] is used for its text mining capabilities.

RapidMiner Studio is a program useful for machine learning, data mining, text mining

and predictive analytics topics [75]. The steps of the construction of word frequency

table is listed below:

• Words from the ’Abstract’ and ’Introduction’ sections from each article are

collected and uppercase letters are converted to the lowercase.

• English stop words (is, are, and, we, etc.) are removed from the word list.

• n-Grams are determined. n is set as maximum 4. In this way, it is pos-

sible to determine phrases that are constructed from up to four words (like

g_protein_coupled_receptor).

• Words are grouped according to their stems.

• As the last step, frequencies of words of at least two in length are calculated.

The word frequency table suggested some useful words that can be used as charac-

teristic keywords for the search parameters in the literature to get the articles which

contain GPCR dimerization data. The constructed search string is shown in 3.1.

Seach string used in Pubmed
′(gpcr AND (oligomer OR dimer OR heterodimer OR homodimer))′ (3.1)

The search string in 3.1 is used in Pubmed [58] to list the articles that suit those

keywords. Pubmed comprises a lot of citations for biomedical literature from life

science journals, and online books. PubMed is a free resource that is developed and

maintained by the National Center for Biotechnology Information (NCBI), at the U.S.

National Library of Medicine (NLM), located at the National Institutes of Health

(NIH). Most of the citations include links to full-text contents. Full texts of all articles

found in the search results were downloaded if available. Finally there were 157 full-

text articles waiting to be analyzed for the GPCR dimerization data.
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3.3.2 Analysis of Articles

The aim of the analysis of the gathered articles is to extract information about GPCR

dimerization if exists. The first thing that comes to mind is to automatize this pro-

cess with some text mining methods for easy analysis. However, the structures of the

dimerization data in the articles are not standardized. The data could be anything like

interacting amino acids, or transmembrane or loop regions that make contact, or only

a dimer proof between different GPCRs or same GPCRs. It is too difficult to distin-

guish these type of data in an unstructured full-text article with text mining methods.

Because the aim of this study is to correctly get the interaction data, the article anal-

ysis is done manually. All downloaded articles are studied and the corresponding

GPCR interaction data is obtained if available.

After the analysis, among the 157 articles mentioned in the previous section, 117

articles contain dimerization data. Furthermore, each article contains important ref-

erences to other literature studies which contain GPCR dimerization information.

Those references are also marked and downloaded if they are available. With those

references, the total count of the studied articles became 541. Because of the time-

consuming process of the analysis of these articles, no further references are followed.

Among these 541 articles, 348 of them contain GPCR interaction information.

Each article is carefully studied to extract the correct data. The articles contain ex-

periment results from biological studies as well as computational studies. Articles

generally state the existence of a dimer and the GPCRs that are involved. Minority of

the articles give specific interface information between the interacting GPCRs. The

interface data are generally some transmembrane or loop regions that are involved

in the interactions. The number of articles that contain information about specific

residues that take part in the interaction is only 47.

3.3.3 Development of the Web Interface

To present the dimerization dataset created from the literature to the researchers in an

informative and easy to use way, it was decided that a web interface would be the best

option. For the development of the web interface, PHP [94] and MySQL [64] tools
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are employed. PHP is a popular general-purpose scripting language that is especially

suited to web development. It is fast, flexible and practical. MySQL is a widely used

[86] open-source relational database management system. It is a popular choice of

database for use in web applications.

The organization of the data in the database management system is shown in Fig-

ure 3.1. Easy management and fast usage are considered when the structure of the

database is designed. Each row in the ’interactions’ table contains an interaction’s

details. This interaction can be a homodimer or a heterodimer or an oligomer con-

sisting of more than two monomers. If the interaction contains interface details, there

are links to the ’interface’ table for the interface details. An interface entry can be

any type according to the information it holds. This information could be any one of;

region data, residue data or text describing the interface, or a combination of these

listed data. Each interaction is the result of a biological or a computational experi-

ment. The experiment details are linked to the ’experiment’ table. Each interaction is

curated from an article from Pubmed [58]. The Pubmed Id and the publication year of

the article is held in the ’pubmed_articles’ table. Some interactions can be visualized

from the web interface, described in the next sections. The model file paths are held

in the interactions row.

GPCRs are listed in the ’gpcr’ table. Minimum information about a GPCR are held in

the table, the other details can be taken from the linked databases, which are GPCRDB

[31] and Uniprot [95]. ’gpcrdb_id’ is the GPCRDB entry id and ’acc_code’ is the

Uniprot entry id for these links in a ’gpcr’ entry. There is a ’family_id’ link from

’gpcr’ table to ’family’ table, connecting each GPCR to its belonging family. Again,

there is minimum data about a GPCR family. The other data can be reached from the

supplied link to the GPCRDB that is constructed from the ’family_id’ column of the

’family’ table. The species of a GPCR is kept in the ’species’ table. The names of a

GPCR and species are kept in the ’short_name’ columns of the corresponding tables.

3.3.4 Modelling of GPCRs

GPCR modelling is an interesting topic in this study. As stated previously, it is not

easy to determine three-dimensional structure of GPCRs in living cells with biologi-
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Figure 3.1: Schema of the IntGPCR database system. Picture is generated using

SchemaSpy [16].
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cal experimental methods like X-ray crystallography, NMR Spectroscopy or electron

microscopy. Up to now, only 21 different types out of thousands of GPCR structures

have been experimentally solved [105]. Here, computational methods help to predict

the structures of GPCRs. GPCRs are modelled with the method described in the next

section to be used in the IntGPCR and also interface prediction studies described in

Chapter 4.

Homology modelling is employed for the prediction of the structure of GPCRs. Ho-

mology modelling is the process of construction of the atomic-resolution model of a

protein from its amino acid sequence and an experimentally known three-dimensional

structure of a related template homologous protein [46]. Here, the effect of the tem-

plate protein on the reliability of the resulting model is important. It has been shown

that protein structures are more conserved than protein sequences amongst homo-

logues [11]. So if the template protein is a homologue of the unknown structured

protein, than the resulting model can be accepted as reliable.

The proteins whose three-dimensional structures are determined experimentally are

listed in Table A.1 in Appendix A. The table contains the PDB [76] ids of these

proteins and also the families that they belong to. These proteins are used as template

proteins in the homology modelling studies.

Two tools are used in the modelling process. First one is the MAFFT tool [42] which

is a multiple sequence alignment program for protein sequences. The second one

is the MODELLER [23] which is used for homology modelling of protein three-

dimensional structures. Both tools run on unix-like operating systems. Because the

process is very time-consuming, a workstation computer is chosen for the tools to run

on. The experiments are performed on a workstation with Intel Xeon Processor E5,

64 GBs of memory and 64-bit Ubuntu Linux operating system.

3.3.4.1 Modelling Method

Let P be a GPCR whose structure is unknown. Proposed method for the modelling

of P is comprised of the following steps:
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1. Let A be the set of GPCRs whose three-dimensional structures are experimen-

tally determined. The entries in this set are listed in Table A.1.

2. Determine the appropriate entries from set A to be used as template models in

the process of homology modelling of P . This determination is based on the

families of the GPCRs. So A′ will be:

A′ = {S : S ∈ A, and S is a template for P} (3.2)

3. Mark transmembrane regions of P and the elements of A′: Change all residues

of transmembrane regions; domain 1 to ’1’, domain 2 to ’2’, and so on.

4. Use MAFFT tool [42] to multiply align P and the GPCRs in A′ using the

marked sequences resulted from the previous step.

5. Change the residues in the transmembrane regions in the multiple alignment

results to the corresponding original residues and prepare input file for MOD-

ELLER tool [23] from these aligned results.

6. Run MODELLER to predict the atomic-resolution model of P .

Determination of the template models in step 2 is based on the families of the proteins.

Because of the increase of accuracy in homology modelling when using homologues

template proteins, evolutionary analogous proteins are tried to be selected. The pro-

teins are grouped according to their top-most families in Table A.1. For instance, 8

of the known structured GPCRs belongs to Class A \ Amine family. These 8 GPCRs

are selected as template for the prediction of proteins that belong to Class A \ Amine

family. For a GPCR from a Class A family, but not in any sub-family of Class A fam-

ilies listed in the table, all 23 known Class A family proteins are used as template. For

example, to predict the model of a GPCR from Class A \ Melatonin family, all those

23 Class A proteins will be used as template. In Class B and Class C families, there

exist only one known structured GPCR to be used as template. For the other GPCRs,

all the proteins in the table are used. An analysis experiment is done for comparison

of the use of specific proteins as describe here, and the use of all proteins as template.

The details of the experiment is described in the following sections.
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In steps 3 and 4, the multiple sequence alignment is done using a special alignment

method: transmembrane alignment. This alignment is a specialized global sequence

alignment, where the transmembrane regions are aligned in the same positions in

the aligned sequences. The purpose of the alignment is to increase the reliability of

the predicted models. GPCRs are special proteins whose properties are described

in Chapter 1. Each GPCR contains similar seven transmembrane domains, where

the terminals and loops that connect these transmembrane regions differs in length.

The transmembrane domains take part inside the membrane. It can be seen that this

specialty is reflected to the three-dimensional structure of the GPCRs. So here, trans-

membrane alignment is better than a global sequence alignment. There exist a com-

parison experiment about alignments in the next section.

In this method, the start and the end points of transmembrane regions and the families

of GPCRs are taken from GPCRDB [31]. The models for all GPCRDB entries whose

three-dimensional structures are unknown are predicted by this method. As a result,

the models for 36390 GPCRs are created.

3.3.4.2 Alignment Method Decision

First experiment about the proposed homology modelling method is the determination

of the alignment method in the multiple sequence alignment step. As stated in the

previous section, proposed transmembrane alignment is employed in the method. To

remove the questions about if using the global sequence alignment could give better

results than using the transmembrane alignment, an experiment is designed for the

comparison.

Only the proteins whose three-dimensional structures are known are used in this ex-

periment. There are 25 known GPCRs that are listed in Table A.1. 22 of them, who

have at least one template structure, are used in this experiment. One GPCR across the

known ones is accepted as unknown structured GPCR, and the method is applied on

that protein to predict its structure. Two predictions are made for this protein, where

in one of them global sequence alignment is used, and in the other transmembrane

alignment is used. At the end, there are two predicted structures and one structure

that is determined experimentally. Those structures are compared to known struc-
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ture and the closest to the real structure wins the comparison. The measurement in

the comparison is the root-mean-square deviation, RMSD. RMSD is the measure of

the average distance between the atoms of superimposed proteins [15]. Chimera tool

[68], which has ability to easily calculate RMSD of the models, is used to calcu-

late RMSD scores. This experiment is repeated for all 22 GPCRs and the alignment

method is determined according to the results. The results of this experiment are

listed in Table 3.1.

Table 3.1: Comparison of using different alignment methods
Global Alignment TM Alignment

cutoff: 2 Å cutoff: 5 Å cutoff: 2 Å cutoff: 5 Å
3uon 0.995 (157) 1.416 (187) 0.724 (122) 1.147 (132)
4daj 0.745 (168) 1.364 (191) 0.912 (134) 1.792 (177)
4amj 0.996 (141) 1.700 (180) 0.856 (159) 1.471 (193)
2rh1 0.908 (124) 2.442 (211) 0.833 (146) 1.510 (178)
3pbl 1.083 (78) 2.432 (131) 0.982 (78) 2.697 (171)
3rze 1.123 (75) 2.380 (132) 0.944 (109) 2.314 (157)
4iar 0.936 (148) 1.913 (198) 1.119 (101) 2.177 (140)
4ib4 1.126 (100) 2.001 (150) 0.827 (31) 2.422 (70)
2lnl 1.348 (28) 3.401 (108) 1.403 (17) 3.565 (83)
4mbs 1.192 (24) 3.955 (74) 1.240 (15) 3.329 (66)
3odu 1.097 (178) 1.783 (233) 0.933 (113) 1.928 (168)
4grv 1.118 (78) 2.834 (194) 1.194 (70) 2.459 (117)
4ej4 0.902 (209) 1.381 (237) 0.703 (244) 1.037 (265)
4n6h 1.272 (52) 2.924 (139) 0.865 (181) 1.684 (227)
4djh 1.271 (30) 2.980 (70) 0.875 (169) 1.730 (210)
4dkl 1.123 (33) 2.514 (62) 0.834 (180) 1.637 (230)
4ea3 1.339 (18) 3.105 (53) 0.850 (175) 1.517 (212)
3vw7 1.290 (25) 3.044 (92) 1.047 (57) 2.503 (115)
1u19 1.310 (182) 1.814 (239) 1.212 (73) 2.663 (171)
3ayn 1.227 (199) 1.691 (245) 1.464 (128) 2.303 (197)
4eiy 1.019 (48) 2.341 (71) 1.305 (6) 2.348 (20)
4ntj 0.797 (45) 2.371 (65) 1.199 (15) 1.625 (19)

Before the analysis of the values in Table 3.1, this table needs a description. The

results of the predictions that global sequence alignment is used are listed in the 2nd

and 3rd columns. 4th and 5th columns contain the results in which transmembrane

alignments are used. The RMSD calculations are made by the MatchMaker tool in the

Chimera [68]. That tool has an option about whether to iteratively remove far-apart
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residue pairs from the ’match list’ used to superimpose the structures. It iterates by

pruning long atom pairs until no atom pair exceeds x angstroms. The x is a parameter

that can be given as input to the tool. In this experiment, two options are tried as the

x value: 2 Å and 5 Å. 2nd and 4th columns list the RMSD values for the 2 Å case for

each type of alignments and 3rd and 5th columns list the 5 Å case. Rows in the table

contain the RMSD results for each GPCR that is taken for the prediction. RMSD

values present in the cells are in the measurement of angstroms. There exist a value

in parenthesis next to each RMSD value. That value denotes the number of atom pairs

that exist in the ’match list’. Higher the number of atom pairs and lower the RMSD

value denote a good matching for the proteins that are in consideration. For each row,

the winner alignment type is colored as gray. The table shows that transmembrane

alignment could give better results.

3.3.4.3 Selection of Template Proteins

The next experiment about the proposed homology modelling method is the deter-

mination of the template proteins which will be used in the multiple alignment and

modelling processes with the unknown GPCR. In the method, a nearest family based

approach is employed. The results of using different selection of template proteins

should be analyzed. For this purpose, an experiment environment is designed as in

the same case described in the previous section.

Again the used proteins in this experiment are the proteins whose three-dimensional

structures are known. One of them is taken as unknown protein and the modelling

method is applied on that protein. In this case, three predictions are made with chang-

ing the selection method of the template proteins in each case. In the first one, the

template proteins are selected as told in the method; the nearest subfamily members

of the top-most family are selected. In the second case, the nearest top-most family

members are selected. In the third one, all the available proteins are selected. For

instance, for the human muscarinic acetylcholine receptor (pdb Id: 3uon), selected

template proteins are as follows: For type I case: members from the Class A \ Amine

family, for type II case: members of the Class A family and for type III case: all

the known proteins. There are three predicted models for this experiment. As in the
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previous section, these predicted models are compared with the known structure of

the protein and RMSD values are calculated. The results are shown in Table 3.2.

Table 3.2: Comparison of using different template known models
Type I Type II Type III

cutoff: 2 Å cutoff: 5 Å cutoff: 5 Å cutoff: 2 Å cutoff: 5 Å
3uon 0.724 (122) 1.147 (132) 3.318 (68) 1.074 (54) 2.260 (90)
4daj 0.912 (134) 1.792 (177) 3.401 (63) 1.192 (36) 2.859 (85)
4amj 0.856 (159) 1.471 (193) 3.072 (64) 1.414 (15) 3.541 (59)
2rh1 0.833 (146) 1.510 (178) 2.849 (105) 1.049 (102) 2.113 (152)
3pbl 0.982 (78) 2.697 (171) 3.192 (70) 1.160 (46) 2.381 (78)
3rze 0.944 (109) 2.314 (157) 3.186 (72) 1.556 (19) 3.165 (67)
4iar 1.119 (101) 2.177 (140) 2.686 (76) 1.349 (39) 2.963 (115)
4ib4 0.827 (31) 2.422 (70) 3.461 (29) 1.399 (11) 3.620 (41)
2lnl 1.403 (17) 3.565 (83) 3.123 (57) 1.423 (13) 3.299 (42)
4mbs 1.240 (15) 3.329 (66) 3.025 (93) 1.210 (6) 3.286 (38)
3odu 0.933 (113) 1.928 (168) 2.934 (94) 1.279 (36) 3.002 (112)
4grv 1.194 (70) 2.459 (117) 3.388 (85) 1.212 (18) 3.088 (68)
4ej4 0.703 (244) 1.037 (265) 2.948 (171) 0.719 (242) 1.137 (263)
4n6h 0.865 (181) 1.684 (227) 2.670 (113) 1.001 (176) 1.745 (225)
4djh 0.875 (169) 1.730 (210) 3.472 (57) 0.953 (169) 1.733 (209)
4dkl 0.834 (180) 1.637 (230) 3.119 (64) 0.847 (212) 1.405 (242)
4ea3 0.850 (175) 1.517 (212) 3.440 (51) 0.985 (155) 1.773 (203)
3vw7 1.047 (57) 2.503 (115) 3.554 (64) 1.195 (25) 2.974 (61)
1u19 1.212 (73) 2.663 (171) 3.333 (41) 1.489 (13) 3.533 (51)
3ayn 1.464 (128) 2.303 (197) 3.305 (58) 1.159 (42) 2.596 (87)
4eiy 1.305 (6) 2.348 (20) 3.235 (63) 1.677 (7) 3.404 (19)
4ntj 1.199 (15) 1.625 (19) 3.081 (23) 1.400 (8) 3.471 (31)

The structure of the Table 3.2 is same as the Table 3.1 that is described in the previous

section. For the location requirements, cutoff: 2 Å column for the Type II experiment

is removed. For each protein, best predicted case is colored as gray. In most cases, the

results of the experiment Type I give better results than the other cases. In Type I case,

the template proteins are selected as the nearest subfamily members of the top-most

classes. These results direct the use of Type I type selection of template GPCRs.
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3.3.5 Visualization of Dimer Formations

A specific property of the IntGPCR database is its ability of visualization of the in-

teracting GPCRs. This is achieved with the help of the three-dimensional structures

of the GPCRs that are involved in the interactions as well as the interface information

between them. The environment of the IntGPCR is suitable for this visualization. All

three-dimensional structures are in-hand from the modelling process and the crystal-

lized proteins. Furthermore, the existence interface information in the literature is

included in the database. There remains one more step to visualize them in the user

interface.

For the demonstration of the interacting GPCRs, a docking program is employed.

Protein-protein docking is the computational modelling of the quaternary structure

of protein complexes formed by two or more interacting proteins. In the scope of

IntGPCR, these complexes are GPCR homodimers or heterodimers. The aim is the

prediction of the three-dimensional structure of the dimer as it will occur in a living

organism. There are several methods for protein-protein docking published in the

literature, Monte Carlo simulations, reciprocal space methods, etc. There are also

tools and servers for the docking procedure. ClusPro 2.0 [13] server is one of these

programs. It is a protein-protein docking tool in which two models are given as input

and the program outputs the predicted three-dimensional structures of the resulting

dimer. The program also take attraction and repulsion residues to direct the resulting

model. This server is used for creation of the models of dimer formations. The

interface information in the database is used as input in the attraction residues field of

the server.

The resulting atomic-resolution models from ClusPro server should be presented to

the users. This will help the researchers who look for the details of an interaction

for an initial opinion. JSmol [40] is used for this purpose. JSmol is an open-source

Java viewer for chemical structures in 3D. It is used as an applet in the web interface

for each interaction that the model is available. It is adjusted to initially show the

’Ribbons’ style of structures for the presented model, in which two models are col-

ored differently for easy analysis. There are more options in the applet menu for the

analysis of the models. The best created model from the ClusPro server is shown in
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the web applet. The other created models for the dimers can be downloaded by the

researchers via the web interface for locally analysis.

3.4 Presentation of the IntGPCR

IntGPCR is presented in the web page (http://bioserver.ceng.metu.edu.tr/IntGPCR).

IntGPCR system provides browsing, searching and visualizing the dimer formations.

The entrance page welcomes the users and gives a brief information about the system.

The menu on the left of each page provides easy navigation through pages. Help,

About and Contact pages contain related information about IntGPCR usage, the team

members’ list and contact information respectively.

The database of interacting GPCRs can be accessed by browsing the whole list or by

searching for specific GPCRS using the two links in the navigation menu: Browse

and Search. Browse page provides a list of the interactions. A sample browse page

is provided in Figure 3.2. The list consists of entries that contain a brief information

about the interactions. The column definitions are listed below:

• Type: Type of the interaction. Can be either Homodimer or Heterodimer.

Clicking on this field opens the Interaction Details page of that specific in-

teraction.

• Interacting GPCRs: The GPCR short names that are involved in the interac-

tion. If the interaction type is Homodimer, this field contains only one GPCR

name since there is only one type of GPCR in the interaction. If the interac-

tion type is Heterodimer, this field contains two or more GPCR names. The

GPCR names are clickable and provide a link for the GPCR Details page for

that specific GPCR.

• Species: Name of the species that the interacting GPCRs belong to.

• Interface: If the interaction contains any interface information, this field is

written as ’Details’ and can be clicked to list the interaction details as in the

first column ’Type’. If this field is empty, that means the interaction do not

contain interface information.
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• Experiment: The type of the experiment studied for this interaction. In can be

’Biological’, ’Computational’ or both. The experiment details are listed in the

Interaction Details page.

• Pubmed ID: The related Pubmed Id of the published article that provides the

interaction. Clicking on this field will direct to related article in Pubmed.

• Year: Publication year of the article.

Figure 3.2: A sample Browse page from the IntGPCR database system.

Interaction Details and GPCR Details pages are the other informative pages that can

be reachable using the links in the listed table. A sample Interaction Details page of

turkey β-1 adrenergic receptor homodimer is shown in Figure 3.3. Interaction Details

page lists the following extra information in addition to the listed above information

about the clicked interactions:

• Interface: The interface details are listed in this field if they are included in the

article. The interface can be interacting regions (Transmembrane, loops or C/N

terminals) or specific interacting residues.

• Interaction model: The dimer model in the JSmol [40] window. The methods

for creation of this model is described in the previous sections in this chapter.
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• Downloadable models: The other interaction models created by the ClusPro

2.0 server [88]. These models are easily downloadable in .zip archive format

file for further analysis.

Figure 3.3: A sample Interaction Details page from the IntGPCR database sys-

tem.

Figure 3.4 shows a sample page of details page of the human metabotropic glutamate

2 receptor. GPCR Details page lists the following information about the GPCR of

interest:

• ID: GPCRDB [31] database ID of the GPCR. There is a link on this field to

access the GPCRDB page.

• Name: Short name of the GPCR.

• Species: The species that this GPCR belongs to.

• Access code: Uniprot [95] access code of the GPCR. There is a link on this

field to access the Uniprot page.
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• Family: Family hierarchy of the GPCR. Every ancestor family member has a

link to easily access to their GPCRDB page.

• Involved interactions: The table at the bottom of the page lists the interactions

that this GPCR is involved in. The format of this table is the same as the table

in the Browse page.

Figure 3.4: A sample GPCR Details page from the IntGPCR database system.

Search page is used to search the IntGPCR database for specific data. Results of the

search are listed in the Browse page. The search can be performed by specifying the

following parameters:

• Interaction type: Specifies which type of interactions can be listed. The op-

tions are: All, Homodimers or Heterodimers.

• GPCR: The names of the GPCRs are listed. A specific GPCR can be searched

in the interacting GPCRs.

• Species: The species of the GPCRs are listed.

• Pubmed ID: A Pubmed ID can be entered in the specified textbox. If the

related article is in the database, the interaction data contained in that article

will be listed.
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• Experiment type: The type of the experiment can be specified as All, Biolog-

ical or Computational.

• Interface: The interface search parameter states if the interactions have inter-

face data or not.

3.5 Discussion

In this chapter, the creation of a new database for the use of researchers is described.

IntGPCR is very useful for the biological and computational studies about GPCRs.

It provides researchers a portal for professional analysis of dimerizations of specific

GPCRs. The interface is designed for easy access and the system is open to develop-

ment further, meaning that updating the database can be accomplished easily.

The IntGPCR system differs from the other similar databases in different aspects.

First and important of all is the reliability of the database. As stated earlier, erro-

neous entries make existing databases unreliable. The creation of the IntGPCR from

the literature articles is processed meticulously. It was not easy to analyze those bi-

ological articles at first, because of the distance between the two disciplines, biology

and computer science. However after getting familiarized about the topics, it became

easy. This resulted in careful analysis of the articles.

Up-to-dateness of IntGPCR is another advantage when compared with the other data-

bases. The first version of the IntGPCR database has been available in April 2014

and the database is continuously updated. However, the last update time of the other

databases is in November 2012.

IntGPCR shines through the other databases according to the data size it contains. Int-

GPCR contains 309 interaction data curated from 348 PubMed articles. The biggest

database between the others, GPCR-OKB, contains 192 interactions curated from

220 articles. Except the two interactions, all interactions in the other databases are

contained in IntGPCR, whereas IntGPCR provides 119 more interaction data, which

increases the value of IntGPCR.
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Three-dimensional visualization of the dimers is a new concept proposed in IntG-

PCR. This eases the studies of researchers very much. One can easily visualize the

formation of a dimer interactively. Interactive here is a key word, providing the users

to see the big picture of their studies in different ways.

In the scope of studies about IntGPCR, the three dimensional structures of 36390

GPCRs are modelled. In view of the difficulty of crystallization of GPCRs, this num-

ber is very big in size. Although the models are predictions, for the initial studies of

GPCRs, biologically and also computationally, these models are thought to be very

helpful. These models and the interaction data from IntGPCR are used in the next

study described in Chapter 4, Interaction Site Prediction of GPCR dimers.
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CHAPTER 4

INTERACTION SITE PREDICTION OF GPCR DIMERS

This chapter includes the details of the proposed method for the prediction of in-

terface residues in GPCR dimers and the evaluation of the performance of this pro-

posed method operating on two different experimental environments. Known inter-

face information from the literature and the three-dimensional structures are used for

the prediction. The method employs searching of the interacting residues on three-

dimensional contact interface after sequence alignment of regions where the training

is done using a published known interface. The prediction results for several GPCRs

are discussed and the performance of the method is analyzed. The results show that

the proposed method performs its job well. The exact evaluation could be done after

the biological verification of the results.

4.1 Background

There exist several mechanisms for the formation of GPCR dimers: coiled coil do-

mains’ interactions within the C-terminal tails of two receptors, intramolecular disul-

phide bonds between the cysteine residues in the long N-terminal regions, or interac-

tion between the transmembrane regions of the proteins [55]. ‘Domain swapping’ and

‘lateral packing’ models are two types proposed for the transmembrane region inter-

actions of the receptors [90]. In domain swapping, two independent regions separate

from the receptor and recombine between the two receptors of the dimer [32]. The

integrity of the interacting proteins are maintained in lateral packing model, where

GPCRs contact each other via interaction sites on the transmembrane domains. Some
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studies suggest domain swapping in GPCR dimerization [2] while in some studies

no evidence found about domain swapping despite dimerization takes place [48, 84].

Vast majority of studies approve lateral packing model, which is contact dimerization,

for the formation of the GPCR dimers.

For the identification of the GPCR dimers various biological methods are applied.

Those can be categorized as pharmacological, biochemical, biophysical and struc-

tural methods [78, 90]. The first indirect evidences for the existence of GPCR dimers

are provided by pharmacological methods in 1980s. Type of these early studies are

complex radioligand-binding experiments. Biochemical methods are employed gen-

erally in 1990s to observe the dimerization between GPCRs. Co-immunoprecipitation

is the most used biochemical method to detect GPCR dimerization [90], where co-

expression of differentially epitope-tagged receptors are in study. Several drawbacks

of co-immunoprecipitation methods directed researchers to use additional methods to

verify the detected interaction. Resonance energy transfer methods, which are able

to detect protein-protein interactions in living cells, are applied for the demonstration

of GPCR dimers. These type of experiments are biophysical methods, which are bio-

luminescence (BRET) and fluorescence (FRET) resonance energy transfer methods.

Homo- or hetero-dimerization of a great number of GPCRs have been reported using

these biophysical techniques [70]. Cell imaging and photo-bleaching protocols are

combined with FRET to examine the cellular location of the interactions [56]. There

are also alternative approaches, like bimolecular fluorescence complementation, to

detect GPCR dimers in living cells. A combination of these techniques are employed

most commonly to determine GPCR dimers because of the existence strengths and

limitations of each technique. Besides that, the most acceptable GPCR dimerization

evidences came from the result of structural studies such as atomic force microscopy

and their crystal structures [50].

Bioinformatics techniques have been applied to predict likely interfaces of GPCR

dimers. These studies begin with multiple sequence alignments and assume that

the evolutionary related proteins display common structural and functional features

[77]. Generally there exist two categories for the computational methods that pre-

dict oligomerization interfaces [28]. Docking methods are used if three-dimensional

structural information is available. If this information is not available, bioinformat-
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ics methods based on sequence and genomic information are employed. Both of

these categories have limitations and accuracy considerations specific to each other

reviewed in [99, 21].

Receptor sequences are studied in the computational methods to predict dimerization

of GPCRs. Correlated mutation analysis, subtractive correlated mutation, entropy,

variants of the evolutionary trace method and hidden-site class model of evolution

are sequence based methods used for predictions [85, 27, 101]. It was thought that

the increase in the number of GPCR sequences will bring a significant increase in

the power of these sequence based methods [28]. However in this area, there has

been a comparatively little additional sequence-based study because of the limitations

of these studies [85]. Docking, molecular dynamics simulations and coarse-grained

simulations are other types of computational methods studied for the determination

of GPCR dimerization interfaces. These methods, especially docking, are still in

development. The results of these types of approaches need experimental validation

[85]. Besides that, these methods have an important role in the determination of the

interfaces.

4.2 Related Work

Computational methods are employed by some researchers for the prediction of the

interaction site regions of GPCR dimers. The available information about GPCRs

directed the studies in this field. Three-dimensional structure of GPCRs are mostly

used in the computational prediction studies. Especially, recent increase of the num-

ber of experimentally determined three-dimensional structures showed their effects

on the studies.

Generally, molecular dynamics simulations and rigid-body docking simulations are

used in the literature. The first thing that is performed in these type of approaches is

the homology modelling of the GPCR that is studied on using other available crys-

tal structures of GPCRs. Rhodopsin crystal structure is widely used as template in

the modelling of GPCRs like human muscarinic acetylcholine M1 [52], human neu-

rotensin 1 [10], human lutropin [24] and human dopamine D2 and adenosine A2A
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[7] receptors. Some examples of other studies that used homology modelling are;

Johnston et al. builds the models of human β1-adrenergic and β2-adrenergic recep-

tors using the crystal structures of turkey β1-adrenergic and β2-adrenergic receptors

[41], mouse δ-opioid receptor models are generated using the human β2-adrenergic

receptor x-ray crystal structure as template in [74]. In some experiments, modelling

is used to model the missing regions of the known structures as in the case of human

CXCR4 receptor [79].

Molecular dynamics simulations are performed in most of the studies. Most of the

studies that use molecular dynamics, focus on dimeric interfaces that have received

experimental validation according to publications. For instance, transmembrane (TM)

domain 4 and TM domain 1 of β1-adrenergic and β2-adrenergic homodimers in [41],

symmetrical TM1/helix 8 interface of rhodopsin homodimer in [67] and TM4 of the

mouse δ-opioid receptor homodimers [74] are the focused regions on the prediction of

the interfaces taking into account the previous experimental studies. Coarse-grained

molecular dynamics are also applied in some predictions [67, 74]. The tools that are

used for the molecular dynamics methodologies also differ. Groningen Machine for

Chemical Simulations (GROMACS) [73] or Chemistry at Harvard Macromolecular

Mechanics (CHARMM) [6] packages are used for the simulations whereas MARTINI

force field [53] is seen to be used in coarse-grained versions.

In some studies, a computational approach based on rigid-body docking, ad hoc fil-

tering and cluster analysis has been combined a protocol for dimerization free energy

estimations to predict the likely interfaces in the dimers [10, 24]. Docking simula-

tions are also widely used as in the case of molecular dynamics in the predictions.

Docking is carried out on two identical copies of the monomers, i.e., one monomer

is used as a fixed protein, which is target, and the other as a mobile protein, which is

probe [26, 25, 24]. However, other versions of docking can also be seen in some stud-

ies. Data driven docking of a ligand on two muscarinic acetylcholine M1 receptors is

performed in [52], where a dimeric interface is presented between the two receptors

as a result. In another study, Canals et al. applies the rigid-body docking in [7] as

this; one dopamine D2 is subjected to docking simulations with 11 different arrange-

ments of adenosine A2A receptor. ZDOCK software [71] is generally employed in

the studies for the rigid-body docking experiments.
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Some researchers apply biological experiments in addition to their computational

methods to validate the prediction results. Fanelli et al. employ an integrated ap-

proach of in silico and in vitro experiments [26]. In vitro experiments, which are

site-directed mutagenesis, FRET and ligand binding studies, are employed to vali-

date the predictions of their computational experiments. The same case is seen in

the study of Canals et al. [7], that FRET and BRET techniques are used to demon-

strate the adenosine A2A and dopamine D2 heterodimers in living cells in addition to

rigid-body docking simulations.

The studies about the prediction of dimerization interfaces using computational exper-

iments are generally seen to be focused on specific GPCRs on each study. Namely, the

researchers make their experiments to resolve the interface of a specific homodimer or

heterodimer. The examples are as follows: human β1-adrenergic and β2-adrenergic

homodimers [41], human CXCR4 homodimer [79], human adenosine A2A homod-

imer [25], mouse δ-opioid homodimer [74], human dopamine D2 and adenosine A2A

heterodimer [7] etc.

Studies that propose a methodology for the prediction of the interfaces for all GPCRs

are not many. The studies of Taylor et al. [92] and Nemoto and Toh [63] are examples

of this type of studies. Taylor et al. propose a novel method for de novo protein design

in [92]. The method involves two main stages. In the first stage, a rank-ordered list

of amino acid sequences is selected with flexible templates. These sequences are the

inputs to the second stage. In this second stage, sequences are selected from a list

of sequence positions as predicted to be in the interface region. The dimer of the

glycophorin A is used as a model system to test the efficacy of this method and the

model’s results are found to be consistent with the experimental findings. A flexible

template is developed for the rhodopsin homodimer and used to predict sets of three

and five mutations. Their results are found to be consisted across the case studies.

Nemoto and Toh develops a new method to predict the interface for the GPCR oligomers

[63]. Their method combines the information about the residue conservation with the

structure data. Because of the lack of structural coordinate data at the time of their

study, only the coordinate data from the bovine rhodopsin crystal structure is used

in their proposed method. The accuracy of the method is checked with the available
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interface information from some Class A GPCRs that are experimentally suggested.

In their method, there exist two assumptions; if a residue is involved in the oligomer-

ization, the residue is expected to be conserved within the same subtype and also that

conserved residues are more abundant at the interface region that at the non-interface

surface. There exist two parts in their prediction procedure. In the first part, the se-

quence and structure data are preprocessed. The three-dimensional coordinates are

reduced to two-dimensional plane. The information obtained from the first part is

integrated in the second part where the prediction is carried out. The benefits and the

pitfalls of the method for predicted interfaces in each subfamily are analyzed. Again

the poorness of the dimer information at the time of the study limits the accuracy of

the proposed method.

A novel method is proposed in this chapter for the prediction of interfaces of GPCR

dimers. The proposed method combines the structure data with the sequence align-

ment data. The available interface information from the literature are used to evaluate

the proposed method. The following sections contain the details of the proposed

methodology and the evaluation of these results.

4.3 Materials and Methods

4.3.1 Dataset

The interface details of interacting GPCRs are taken from IntGPCR, which is de-

scribed in detail in Chapter 3. The residues that are proposed to be in the dimer

interface are important for the studies of this chapter.

The coordinates of the residues are taken from the PDB [76] file that contains three-

dimensional structure of the known structured GPCRs, which are listed in Appendix A.

The construction of models of the GPCRs, whose three-dimensional structures are un-

known, is described in Modelling of GPCRs section in Chapter 3. Those models are

used for the coordinates of the residues from the unknown GPCR structures.
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4.3.2 Method

The steps of the proposed method for the prediction of the interaction sites of GPCR

dimers are as follows:

1. Select the residues from a known interface:
T : Selected GPCR

IR1, IR2, ..., IRn: Interface regions that contains the residues

(For instance TM1, TM2 ...)

R = {R1, R2, ..., Rm}: The set that contains the selected residues

2. Say P is the GPCR whose interacting sites are wanted to be learned. Get the

same regions of the interface regions (IRs) of T from P . Make global se-

quence alignments of the corresponding regions separately. Local version of

’EMBOSS Needle’ [54] that runs on PC is chosen to make the sequence align-

ments. At the end of this step, each region is aligned.

3. Create the matching residues sets R′T and R′P . For each Rx from R in aligned

IRT , get the corresponding residue from the aligned IRP . If it is in the same

group of amino acids as Rx, than put Rx to R′T and put the other residue to R′P .

So final sets will be:

R′T ⊆ R = {Matching Rs from T}

R′P = {Matching Rs from P}

4. Calculating the distances and angles step. Take each R′T and R′P residues’

coordinates from the pdb files (CA atoms’ coordinates). Begin with the first 3

residues in each set. Name these residues as:

First 3 from R′T : P11, P12, P13

First 3 from R′P : P21, P22, P23

These residues can be visualized as shown in the Figure 4.1a and 4.1b.
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Figure 4.1: Visualization of selected residues. a. The 3 residues are selected from

R′T . b. The 3 residues are selected from R′P .

Next step is the calculation of distances d11, d12, d21, d22 and angles α1 and α2

in Figure 4.1. Calculation of d11, d12 and α1 is defined in Equation Box 4.1,

calculation of the others is same.

Equation Box 4.1: Calculation of distances and angles

v11 = ~P12P11 = (P11.x− P12.x, P11.y − P12.y, P11.z − P12.z)

v12 = ~P12P13 = (P13.x− P12.x, P13.y − P12.y, P13.z − P12.z)

d11 =
√
v11.x2 + v11.y2 + v11.z2

d12 =
√
v12.x2 + v12.y2 + v12.z2

v11norm = (v11.x/d11, v11.y/d11, v11.z/d11)

v12norm = (v12.x/d12, v12.y/d12, v12.z/d12)

res = v11norm.x× v12norm.x+ v11norm.y × v12norm.y + v11norm.z × v12norm.z

α1 = arccos(res)

After the calculations of the distances and angles that are shown in Figure 4.1,

there will be 3 differences that will be used in the evaluations:

diff1 = |d11 − d21| (4.1)

diff2 = |d12 − d22| (4.2)

diff3 = |α1 − α2| (4.3)
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Differences calculated from the equations 4.1, 4.2 and 4.3 will determine the

interface residues. These values are compared with the thresholds defined be-

low:

distance_threshold1 = d11 × 0.15

distance_threshold2 = d12 × 0.15

angle_threshold = 10◦

The algorithm written in Algorithm 1 determines which residues are in the in-

terface. After the process of Algorithm 1, the set R′P contains the predicted

interface residues for P in a dimer.

In Step 2 of the proposed algorithm, sequence alignments are applied between the

determined regions of GPCRs. EMBOSS Needle tool [54] is employed to make these

sequence alignments. This tool uses Needleman-Wunsch alignment algorithm [59] to

find the optimum alignment of two sequences along their entire length. The regions

Algorithm 1 Interface residues prediction for GPCR dimers
while P13 != NULL do

if P11 is the first entry in R′T then

if diff1 ≤ distance_threshold1 && diff2 ≤ distance_threshold2 &&

diff3 ≤ angle_threshold then

P11 ← P12; P12 ← P13;

P13 ← next residue from R′T if exists, else NULL;

P21 ← P22; P22 ← P23;

P23 ← next residue from R′P if exists, else NULL;

else if diff1 ≤ distance_threshold1 && (diff2 > distance_threshold2

|| diff3 > angle_threshold) then

remove P13 from R′T

P13 ← next residue from R′T if exists, else NULL;

remove P23 from R′P

P23 ← next residue from R′P if exists, else NULL;
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Algorithm 1 Interface residues prediction for GPCR dimers (continued)
else if diff1 > distance_threshold1 then

d13 ← distance of vector ~P11P13

d23 ← distance of vector ~P21P23

diff4 ← |d13 − d23|
distance_threshold3 ← d13 × 0.15

if diff4 ≤ distance_threshold3 then

remove P12 from R′T ; P12 ← P13;

P13 ← next residue from R′T if exists, else NULL;

remove P22 from R′P ; P22 ← P23;

P23 ← next residue from R′P if exists, else NULL;

else

remove P11 from R′T ; P11 ← P12; P12 ← P13;

P13 ← next residue from R′T if exists, else NULL;

remove P21 from R′P ; P21 ← P22; P22 ← P23;

P23 ← next residue from R′P if exists, else NULL;

end if

end if

else

if diff2 ≤ distance_threshold2 && diff3 ≤ angle_threshold then

P11 ← P12; P12 ← P13;

P13 ← next residue from R′T if exists, else NULL;

P21 ← P22; P22 ← P23;

P23 ← next residue from R′P if exists, else NULL;

else

remove P13 from R′T

P13 ← next residue from R′T if exists, else NULL;

remove P23 from R′P

P23 ← next residue from R′P if exists, else NULL;

end if

end if

end while
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are aligned separately. Gaps may be included in the resulting alignment. The default

options of the tool are used in the operations.

There is a statement in the step 3 of the above algorithm mentioning about the amino

acid groupings. A scheme of amino acid groupings is used to match similar amino

acids in the matching phase of the algorithm. There are several properties of amino

acids which could help to group them in similar clusters. These can be hydropho-

bicity, charge, mass, volume, etc. The amino acid grouping scheme defined by

Cobanoglu et. al. [12] is used in the algorithm proposed here. This scheme groups

amino acids into 11 groups which are: IVLM, RKH, DE, QN, ST, A, G, W, C, YF,

and P.

4.3.3 Experimental Setup

Two experiments are studied. In each of them, a known interface is selected. Possible

interface residues are found according to the selected known interface with the help

of the proposed algorithm. The predicted interface residues are compared with the

known ones that are available in the IntGPCR. Selected known interfaces for the two

experiments are as follows:

• Exp. 1: GPCR: ADRB1_MELGA (P07700)

Interface: TM1, TM2, el1, H8

Residues: Q38, Q39, E41, A42, S45, L46, A49, L50, V52, L53, L54, P96, A99,

T100, V103, R104, T106, L108, W109, R350, K354, R355, L356

• Exp. 2: GPCR: ADRB1_MELGA (P07700)

Interface: il2, TM4, el2, TM5

Residues: Y140, L141, T144, S145, F147, R148, S151, L152, L171, W181,

R183, R205, A206, A210, I218, R229

4.4 Results

The Table 4.1 contains results of the predictions from the two experiments whose

setups are explained in the previous section.

55



Ta
bl

e
4.

1:
Pr

ed
ic

te
d

in
te

rf
ac

e
re

gi
on

so
fs

om
e

G
PC

R
sw

ho
se

in
te

rf
ac

es
ar

e
pr

op
os

ed
in

th
e

lit
er

at
ur

e

G
PC

R
E

xp
.

K
no

w
n

In
te

rf
ac

es
Pr

ed
ic

te
d

In
te

rf
ac

es
(E

xp
.1

)
Pr

ed
ic

te
d

In
te

rf
ac

es
(E

xp
.2

)

P0
84

83
1

IC
L

2,
H

8
T

M
3,

IC
L

2,
IC

L
3

1
IC

L
3

[K
25

9,
K

26
2,

E
26

3,
L

26
4,

A
26

5]

Y
16

6,
T

17
0,

R
25

2

1
C

14
0,

C
22

0

1
IC

L
3

P0
75

50
2

T
M

3,
T

M
4

T
M

1,
T

M
2,

H
8

T
M

3,
IC

L
2,

T
M

4,
E

C
L

2,
T

M
5

2
T

M
1,

H
8

I3
8,

L
42

,
V

44
,

L
45

,
P8

8,
A

91
,

L
95

,R
33

3,
L

33
9

Y
13

2,
T

13
6,

S1
37

,L
16

3,
W

17
3,

R
17

5,
A

19
8,

A
20

2,
V

21
0,

R
22

1

1
T

M
1,

H
8

1
T

M
1,

H
8

2
K

27
3,

G
28

0,
L

28
4,

L
28

7,
P2

88
,

Y
30

8

P0
85

88
2

T
M

3,
T

M
4

T
M

1,
T

M
2,

H
8

T
M

3,
IC

L
2

2
T

M
1,

H
8

Q
55

,
Q

56
,

A
59

,
L

63
,

A
66

,
L

67
,

V
69

,
L

70
,

L
71

,
P1

13
,

A
11

6,

T
11

7,
V

12
0,

R
38

4

Y
15

7,
L

15
8,

T
16

1,
S1

62

P0
81

00
2

T
M

1,
H

8
T

M
1

T
M

3,
T

M
5

56



Ta
bl

e
4.

1
–

co
nt

in
ue

d
fr

om
pr

ev
io

us
pa

ge

G
PC

R
E

xp
.

K
no

w
n

In
te

rf
ac

es
Pr

ed
ic

te
d

In
te

rf
ac

es
(E

xp
.1

)
Pr

ed
ic

te
d

In
te

rf
ac

es
(E

xp
.2

)

1
T

M
1,

H
8

[C
31

6]
S3

8,
M

39
,A

42
,L

46
,L

47
Y

13
6,

V
13

7,
I2

14

2
T

M
4,

T
M

5
[H

15
2,

F1
59

,
A

16
6,

S2
02

,Y
20

6]

2
T

M
4,

T
M

5

1
T

M
4,

T
M

5

1
W

17
5,

Y
20

6

Q
64

26
4

3
T

M
4,

el
2,

T
M

5
[W

17
5,

Y
19

8,

R
15

1,
R

15
2]

T
M

1,
T

M
2

S4
0,

L
41

,I
47

,P
91

,A
94

T
M

3,
T

M
4,

T
M

5

Y
13

5,
T

13
9,

L
16

6,
H

19
3,

I2
06

P6
10

73
2

T
M

5,
T

M
6

T
M

1,
T

M
2

T
M

3,
T

M
4,

T
M

5

1
T

M
3,

IC
L

2,
T

M
4

[Y
13

5,
L

13
6,

H
14

0,
P1

47
]

N
35

,I
47

,L
50

,P
92

,A
95

,V
99

Y
13

5,
L

13
6,

L
16

5,
L

21
0

1
T

M
5,

T
M

6
[L

19
4,

V
19

7,
V

19
8,

F2
01

,
M

20
5,

L
21

0,
W

19
5-

L
26

7,

N
19

2-
E

26
8,

L
26

6-
W

19
5]

P4
11

45
1

T
M

1,
T

M
2,

H
8

T
M

3,
T

M
5

Y
15

7,
I1

58
,I

23
7

P4
28

66
1

T
M

5,
T

M
6

T
M

1
T

M
3,

IC
L

2,
T

M
5

57



Ta
bl

e
4.

1
–

co
nt

in
ue

d
fr

om
pr

ev
io

us
pa

ge

G
PC

R
E

xp
.

K
no

w
n

In
te

rf
ac

es
Pr

ed
ic

te
d

In
te

rf
ac

es
(E

xp
.1

)
Pr

ed
ic

te
d

In
te

rf
ac

es
(E

xp
.2

)

1
T

M
1,

T
M

2,
H

8
M

65
,A

68
,I

69
,I

71
,M

72
Y

16
6,

I1
67

,K
17

4,
M

24
3

P3
35

35
3

T
M

4
T

M
1

M
65

,A
68

,I
69

,I
71

,M
72

T
M

3,
T

M
5

Y
16

6,
I1

67
,M

24
3

P1
12

29
2

T
M

6,
T

M
7

[I
38

3,
L

40
2,

W
40

5,

L
37

2,
I4

13
,C

41
7,

L
42

0]

T
M

1,
T

M
2

A
26

,I
30

,L
34

,L
37

,T
84

T
M

3,
IC

L
2,

T
M

5

Y
12

4,
T

12
8,

L
19

9,
R

21
0

P2
03

09
1

T
M

1,
T

M
2,

T
M

4,
IC

L
3,

T
M

5,

T
M

7

T
M

1,
T

M
2

T
M

3,
IC

L
2,

E
C

L
2,

T
M

5

2
F1

64
,

Y
16

7,
K

18
3,

R
18

4,
G

18
6,

V
18

7,
V

19
4,

F2
06

,W
20

7,
G

35
8,

R
36

2,
K

37
0,

L
37

1

I7
7,

L
80

,V
81

,I
13

0
Y

16
7,

T
17

1,
W

20
7,

R
25

3

P3
23

00
1

T
M

4,
T

M
5

[V
18

1,
T

21
3]

T
M

1,
T

M
2

T
M

3,
E

C
L

2

2
T

M
4

[P
16

2,
A

16
3,

K
16

6,
I1

70
,

W
17

3,
S1

77
,V

18
1,

V
18

5]

L
48

,A
51

,I
52

,L
55

,P
10

3
Y

14
7,

I1
48

,W
20

7

1
C

-t
er

m
in

us

O
95

66
5

1
T

M
2,

E
C

L
1,

T
M

3,
IC

L
2,

T
M

4
T

M
1

T
36

,A
40

,L
41

T
M

3,
IC

L
2,

T
M

4

L
13

5,
R

14
2,

L
16

4

58



Ta
bl

e
4.

1
–

co
nt

in
ue

d
fr

om
pr

ev
io

us
pa

ge

G
PC

R
E

xp
.

K
no

w
n

In
te

rf
ac

es
Pr

ed
ic

te
d

In
te

rf
ac

es
(E

xp
.1

)
Pr

ed
ic

te
d

In
te

rf
ac

es
(E

xp
.2

)

P1
44

16
2

K
14

9,
R

15
0,

R
15

1,
T

15
3,

V
15

4,

V
16

1,
F1

72
,G

17
3

1
IC

L
3

[R
21

7,
R

21
8,

R
21

9,
R

22
0,

K
22

1,
R

22
2]

2
T

M
5,

T
M

6,
N

-t
er

m
in

us

1
T

M
5,

IC
L

3,
T

M
6,

E
C

L
3

1
T

M
6,

T
M

7

Q
13

63
9

1
T

M
3,

T
M

4
[C

11
2,

C
14

5]
T

M
1,

T
M

2
T

M
3,

T
M

5

2
T

M
2,

T
M

4,
T

M
6

I3
0,

L
31

,M
32

,A
78

,V
82

Y
12

0,
K

19
0,

I2
03

,R
21

4

P2
50

25
1

E
C

L
1,

T
M

3,
IC

L
2

T
M

3,
IC

L
2,

T
M

4

Y
14

5,
L

14
6,

R
15

3,
L

17
5

Q
17

09
4

1
H

8
T

M
1,

H
8

I3
2,

A
35

,I
36

,I
39

,I
40

,R
31

6

P2
94

03
1

T
M

1,
H

8
T

M
1

S3
8,

A
42

,L
46

,L
47

T
M

3,
T

M
5

Y
13

6,
I1

37
,I

21
4,

R
22

5

59



Table 4.1 contains the interface regions of GPCRs that are curated from the literature.

The experiments which produce these interfaces can be biological, computational or

both. The table also contains this information in the Exp. column. The values in this

column can be either 1, 2 or 3 indicating biological, computational and both respec-

tively. There can be more than one proposed interface for a GPCR. These interfaces

are listed with their experiment types in several rows under the spanning GPCR row.

For instance, there exist four proposed interfaces for the first GPCR, P08483 that is rat

Muscarinic acetylcholine receptor M3, each are found by the biological experiments.

The Known Interfaces column contains those proposed interfaces. The information

on that column can be either only regions or amino acids with their corresponding

regions. The last two columns in the table show the prediction results of the proposed

method in this study operated on the two experiments, if they exist. The method

predicts the amino acid residues that are in the interface region. The corresponding

regions of those predicted residues are also included in those columns.

If Table 4.1 is analyzed carefully, it can be seen that the performance of the proposed

method is good. The method can find some exact amino acids that are also marked as

the known interface. For example, for the P61073 GPCR, three of the four predicted

residues are also found to be in the interface by two different biological experiments.

This situation can also be seen in the P20309 GPCR, but in that case, the detection

method of the known interface is a computational study. Besides these, the method

can predict the interface regions for most of the GPCRs, such as P08483, P07550,

O95665, etc.

The table also contains some interesting results. One of them is in the case of the

GPCRs P08483 and P25025. For these GPCRs, the method could not find any residue

in the interface in the first experiment. The method gives the prediction results for the

second experiment. The biological experiments approve this, saying that the only

interacting domains are those. On the other hand, for the P41145 GPCR, the method

cannot predict any residue from the proposed known interface, but gives some other

predictions from another regions. For some GPCRs, there exist only computational

predictions in the literature, like P08588. The proposed method in this study confirms

those computational predictions too as can be seen in the table. There exist different
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proposed known interface regions as in the case of P42866 GPCR. The method could

predict both those regions in the two experiments.

The method cannot predict any interface residue for GPCR P14416 in both of the

experiments. This is because of the difference of the actual interacting domains from

the domains that the predictions are based on. For this protein, ICL3, TM6 and ECL3

domains are proposed as the known interfaces by the biological experiments. These

are different regions from the used regions, which are explained in the previous sec-

tion, in both of the experiments. Indeed the proposed method supports the biological

experiments here, saying no other interface region exists for this GPCR.

Table 4.1 lists prediction results of the GPCRs whose interfaces are known from the

literature. The method proposed here can make its predictions on each type of GPCR.

The Table B.1 and B.2 in Appendix B, which list the prediction results of some se-

lected GPCRs from the experiment 1 and 2 respectively, could be helpful for the

researchers in their studies.

4.5 Discussion

A new interface prediction algorithm is proposed in this study. The proposed method

is able to predict interacting site residues in GPCR dimers using the known proposed

interface data from the literature. The method uses both the sequence and three-

dimensional structure information about the GPCRs. The structural data used in the

method can be either the known crystal structure of the receptor or the created model

of the receptor, where the details of the creation are explained in the previous chapter.

The proposed algorithm has some advantages as well as its disadvantages. The most

valuable part of the method is its ability of searching of the interface residues in

three-dimensions, which makes the results more realistic. Here comes the lack of

the three-dimensional structures problem, where only a small number of GPCRs are

crystallized. This problem is overcome with the use of the models for GPCRs. It is

obvious that the performance of the method will increase with the increasing number

of the crystallized GPCRs.
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The method uses the evolutionary data about the GPCRs with the alignment process

of the sequence of the receptors. Evolutionary development of the genes resulted with

the same structural regions between the similar receptors [69]. This also suggests

that the existence of similar interface residues in these GPCRs. In the light of this

information, the power of the method is increased with the use of sequence alignment

of regions.

The method cannot predict any interface regions for some GPCRs, which are known

to include interface data. This is because of the minority of the known interface

information that is curated from the literature. The method uses known interface data

for the training. The known interface is specific to some local regions, for instance in

one interface, the regions are TM1 and TM2, where in another interface the regions

are TM4 and TM5. The method predicts the interface residues from these regions, if

exists. If the known interacting region is different, no prediction can be made by the

method. This deficiency of the method will be resolved with more known interface

data from the literature.

The two experiments are applied for the evaluation of the proposed method in this

study. The biggest problem in the evaluation is the count of the known interfaces.

The low count of available known interfaces, especially biologically determined ones,

makes it difficult to evaluate the results. In general, predicted regions are matched

up with the corresponding known regions. The predictions should be validated by

biological techniques. According to the results of those biological evaluations, some

improvements could be applied to the proposed method to increase its performance.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

Three contributions, whose details are explained in this dissertation, are provided in

this study. First of them is the presentation of a new method, GPCRsort, for clas-

sification of G-protein couple receptor sequences into GPCRDB classes. GPCRsort

is solely based on the lengths of secondary structure elements of a GPCR sequence

as identified by a secondary structure prediction tool specialized for transmembrane

proteins. The lengths of the secondary structure elements of different GPCR classes

are used to train a Random Forest classifier. GPCRSort is evaluated on several ex-

perimental setups and outperforms many state-of-the-art GPCR classifiers in terms of

both prediction accuracy and running time performance. Specifically, GPCRSort is

able to attain 97.3% prediction accuracy on the average and is able to predict the class

of a novel GPCR sequence in seconds.

Second work published to the community is the IntGPCR, the database of interacting

GPCRs. The IntGPCR contains information about interacting GPCRs and their inter-

faces if exist. The data is curated from the literature search from the PubMed. The

published articles from the literature are analyzed carefully for each piece of infor-

mation about any GPCR dimer. The contents of the database are proposed interaction

data resulting from biological or computational experiments. The data is presented to

the use of researchers in a web site. The IntGPCR is an easily browsable and search-

able portal, in addition to be able to visualize the interacting GPCRs interactively.

The database differs from similar databases with its up-to-dateness and the wealth of

its contents. IntGPCR contains 309 interacting GPCRs curated from 348 articles. 138

of those interacting GPCRs contain interface information.
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The last contribution is the proposed novel method for the prediction of the interface

residues of GPCR dimers. This method uses the sequence and the three-dimensional

data of GPCRs to predict its interacting sites in a dimer. This approach is based on the

known interface information that is published in the literature. Searching the amino

acids in three-dimensional structures adds realistic prediction to the method. Because

of the nature of the interacting domains, coordinates in the three-dimensional space

are the best distinguishable properties of the residues. The predictions are made based

on the locations of the residues according to each other, using the distances and the

angles between them. The performance of the proposed method is evaluated with

designed experiments on the known interface data. The results are very promising

and consistent with the real data.

Besides these explained information about the proposed studies, there remains some

future works to improve the performance of these studies. For instance, the results of

the proposed method for the prediction of the interacting sites of GPCR dimers should

be approved with the biological experiments. This will show the perfect accuracy of

the method. Moreover, it will also direct the improvement studies on the proposed

method to make adjustments on it.

The increase on the number of the crystallized GPCRs will bring performance in-

crease on the proposed method also. Also, this will provide more realistic three-

dimensional models for GPCRs. Besides this, if the number of studies on published

known interface residues increases, the accuracy will be higher. This will also affect

the value of the IntGPCR in a positive manner.

IntGPCR portal is designed to be easily updatable. Every administrator could be able

to update the database through an interface. To actualize this, a new section should

be added to the portal for updating the IntGPCR. Users, who are not experienced in

technical details of the database, could easily add a new entry, edit or delete an entry

by this way. This will bring the continuous up-to-dateness to the IntGPCR.
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APPENDIX A

GPCR STRUCTURES
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APPENDIX B

INTERACTION SITE PREDICTION RESULTS

Table B.1: Prediction Results of Experiment 1

GPCR Family Predicted Interfaces

P08588 Beta Adrenoceptors

type 1

Q55, Q56, A59, L63, A66, L67, V69, L70,

L71, P113, A116, T117, V120, R384

A7BJV8 Beta Adrenoceptors

type 1

Q55, Q56, A59, A66, V69, L70, L71,

P113, A116, T117, V120, R375

B4PBQ3 Serotonin Insect A225, S228, V229, L233, I235, L236,

V237, A282, I286

D2HHT0 Histamine type 2 S22, V23, V27, I29, L30, I31, P73, A76,

L80

Q8HZF6 Beta Adrenoceptors

type 3

A10, A18, L19, V21, L22, P65, A68, T69,

L72

Q9CRR2 Beta Adrenoceptors

type 1

L2, A5, L6, V8, L9, L10, A55, T56, V59

Q6GN84 Angiotensin type 2 Q27, E29, I37, P82, A85, T86, R310,

R314, H315

Q8SPN2 Prokineticin recep-

tors

A61, I65, A68, L69, M73, P117, V124,

K355

C3Z7B5 Serotonin type 1a L8, L12, I14, L15, V16, A61, T62, L65

Q8JG07 Alpha Adrenocep-

tors type 2d

A25, T28, I35, L36, I37, P79, L86, K378

D8PJS9 Kiss receptor

(GPR54)

L37, L41, M43, L44, V45, P87, R320,

K325
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Table B.1 – continued from previous page

GPCR Family Predicted Interfaces

A9JRC2 Free fatty acid recep-

tor 3

E8, A9, T12, I13, L19, I20, P62, K305

Q9TST5 Beta Adrenoceptors

type 2

I38, L42, V44, L45, P88, A91, S92, L95

Q2QKU5 Tachykinin like 2 L46, L53, P96, R323, R327, R328, L329

A4GZ86 Melanin-

concentrating

hormone recep-

tors

A28, V32, I36, L40, P84, K306, R311

Q8MJV3 Somatostatin type 5 V45, A48, V49, V53, R318, R322, L324

Q9BMA9 Octopamine type 6 E51, A52, L61, I63, I64, P107, I114

A3QNZ9 Taste 2 T566, I567, A570, L571, L575, P619

Table B.2: Prediction Results of Experiment 2

GPCR Family Predicted Interfaces

Q9TST6 Beta Adrenoceptors

type 1

Y157, L158, T161, S162, F164, R165,

S168, L169, L188, W198, R200, R222,

A223, A227, V235, R246

P47899 Beta Adrenoceptors

type 1

Y157, L158, T161, S162, F164, R165,

L169, L188, W198, R200, R222, A223,

A227, V235, R246

Q8HZG1 Beta Adrenoceptors

type 2

Y121, T125, S126, F128, K129, L133,

L152, W162, R164, A187, A191, V199,

R210

B8YLW8 Dopamine Vertebrate

type 1

Y121, S125, S126, F128, R129, L152,

W162, K164, R191, I204, R215

Q60483 Beta Adrenoceptors

type 3

Y133, L134, T137, R141, V145, W174,

R176, L212, R223

Q4S3N2 Histamine type 2 Y99, L100, T103, R107, L111, R165,

I178, R189
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Table B.2 – continued from previous page

GPCR Family Predicted Interfaces

P30989 Neurotensin type 1 Y167, L168, F174, K175, T178, L179,

L198

C3YRD2 Serotonin type 7 Y98, L99, S102, L129, K155, I168, R179

B4HFU8 PRXamide-like Y162, I163, F169, R170, T173, M174,

H222

Q8VGU2 Olfactory 85 Y121, V122, S125, S126, V133, L152

D2HL27 Trace amine type 17 Y131, M132, T135, T142, I208, K219

Q9GL18 Alpha Adrenocep-

tors type 2b

Y98, S102, S109, V129, A162, R181

C3YFQ1 Histamine type 3 Y106, T110, K114, L137, W146, K192

A7SQR4 GPR74 like F93, M94, R101, L123, A151, L163

Q28BQ5 Proteinase-activated

type 2

Y196, V197, F203, L208, L226
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