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ABSTRACT 

 

ANOMALY DETECTION USING SPARSE FEATURES AND SPATIO-

TEMPORAL HIDDEN MARKOV MODEL FOR PEDESTRIAN ZONE VIDEO 

SURVEILLANCE 

 

GÜNDÜZ, Ayşe Elvan 

M.S., Department of Information Systems 

Supervisor: Assist. Prof. Dr. Tuğba Taşkaya Temizel 

Co-Supervisor: Assoc. Prof. Dr. Alptekin Temizel 

 

August 2014, 45 Pages 

 

Automated analysis of crowd behavior for anomaly detection has become an important 

issue to ensure the safety and security of the public spaces. Public spaces have varying 

people density and as such, algorithms are required to work robustly in low to high 

density crowds. Mainly, there are two different approaches for analyzing the crowd 

behavior: methods based on object tracking where individuals in a crowd are tracked and 

holistic methods where the crowd is analyzed as a whole. In this work, the aim is to 

detect anomalies in pedestrian zone videos using a holistic approach. The pedestrian 

zone videos are automatically grouped according to crowd density. The pedestrian 

motion is modeled as a whole without detecting and tracking the individuals using the 

features obtained Oriented Fast and Rotated Brief (ORB) feature detector and thus the 

model is privacy preserving. These features are then represented using Binary Robust 

Independent Elementary Features (BRIEF) descriptor and a spatiotemporal Hidden 

Markov Model is used for anomaly detection.  

Keywords: Computer Vision, Video Surveillance, Pedestrian Zone Analysis, Anomaly 

Detection. 
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ÖZ 

 

SEYREK ÖZNİTELİKLER VE UZAY-ZAMANSAL GİZLİ MARKOV 

MODELLERİ KULLANILARAK YAYA BÖLGELERİNDE VIDEO 

GÖZETLEME İÇİN AYKIRILIK TESPİTİ 

 

 

GÜNDÜZ, Ayşe Elvan 

Yüksek Lisans, Bilişim Sistemleri Bölümü 

Tez Yöneticisi: Yrd. Doç. Dr. Tuğba Taşkaya Temizel 

Eş Tez Yöneticisi: Doç. Dr. Alptekin Temizel 

 

Ağustos 2014, 45 sayfa 

 

Halka açık alanların güvenliği için gözetim araçlarının kullanımıyla kalabalık 

davranışının otomatik analizi önem kazanmıştır. Halka açık alanlarda insan yoğunluğu 

değişiklik göstermektedir. Bu yüzden ilgili algoritmaların hem düşük hem de yüksek 

yoğunluklu kalabalıklarda birden düzgün çalışması gerekmektedir. Temelde, kalabalık 

davranışını inceleyen iki metot mevcuttur: Objelerin takibini temel alan ve kalabalıktaki 

bireyleri tek tek takip eden yöntemler ve kalabalığı bir bütün olarak analiz eden tümcül 

yöntemler. Bu çalışmada amaç yaya bölgelerine ait videolardaki aykırılıkların tümcül bir 

yaklaşım kullanılarak tespitidir. Yaya bölgelerine ait videolar, insan yoğunluğuna göre 

otomatik olarak gruplanarak analiz edilir. Yaya hareketi bireylerin tespit ve takibi 

yapılmaksızın, “Oriented Fast and Rotated Brief (ORB)” öznitelik tespit edicisi 

kullanılarak bulunmuş özniteliklerle modellenmiştir ve bu sayede gizlilik koruyucu 

özelliğe sahiptir. Bu öznitelikler, daha sonra “Binary Robust Independent Elementary 

Features (BRIEF)” öznitelik tanımlayıcısı kullanılarak temsil edilmiş ve aykırılık tespiti 

için uzay-zamansal Gizli Markov Modeli kullanılmıştır. 

Anahtar Kelimeler: Bilgisayarlı görü, video gözetleme, yaya alanı analizi, aykırılık 

tespiti. 
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CHAPTER 1 

 

INTRODUCTION 

 

Computer vision assisted surveillance systems are gaining importance for security 

reasons. Security is a big concern especially where there are large groups of people. In 

2010, during a Love Parade in Duisburg, a disaster occurred due to overcrowding in 

which 20 people died and more than 500 people were injured. In 1989, during a 

Liverpool football game in Hillsborough Stadium, there was a stampede, also due to 

overcrowding, which resulted in 96 deaths and numerous injuries. In both of these 

events, if the crowd was monitored using computer vision systems, the disasters could 

have been prevented [1] [2].  

When crowded areas are monitored by human observers, there is always a possibility of 

missing an important event due to exhaustion or lack of focus. The goal of the computer 

vision surveillance systems is to minimize the risk of missing important alarms while 

also minimizing the false alarm rates. 

Correctly analyzing the crowded scenes requires having contextual information 

regarding that scene. An event that is anomalous in one context can be considered 

normal in another. For instance, in an area where there is a bike lane, presence of a bike 

is considered normal while in an area which is strictly pedestrian, the existence of a bike 

is considered an anomaly. 

Also, to be able to make a correct analysis, the correct tools which are appropriate for 

the task should be selected. There are many computer vision techniques that are used in 

crowd analysis. Most of these, such as optical flow based people tracking or flow 

analysis techniques are computationally expensive and thus they are generally not 

suitable for real-time applications. Also, as previously pointed out by Mehran et al. [3], 

optical flow can result in noisy data. Other methods employ feature based analysis 

technique using methods such as SIFT [4] or SURF [5]. The detailed literature review of 

crowd anomaly detection methods using these techniques are given in Section 2. 

Nevertheless, crowd anomaly detection is a challenging task. The aim of this work is to 

perform anomaly detection in pedestrian zones. In this work, the aim is to detect velocity 

based anomalies such as bikes or skaters occupying the scene. The anomalous entities 

are assumed to be banned vehicles in a strictly pedestrian zones. These entities usually 

have a higher velocity than the pedestrians so the purpose of this thesis is to detect 

velocity based anomalies which are on the higher end of the velocity spectrum. 

For this purpose, a pixel based approach is adopted. Firstly, the video is partitioned into 

spatial regions to alleviate problems that might arise due to the perspective. Then, ORB 
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[6] features are obtained and by calculating the matching features in consecutive frames, 

velocities of the detected features are calculated. Using these velocities, representative 

statistics are obtained. The probabilistic graphs are constructed using these statistics and 

appropriate graph is selected using the density switch functionality. Finally, the anomaly 

detection is performed.  

Pedestrian zone anomaly is defined as a behavior that is not expected to occur in the 

strictly pedestrian scene. In Figure 1.1, a sample of normal and abnormal scenes are 

provided. In the abnormal frame there is a bike, which is not allowed in the strictly 

pedestrian area. 

  

Figure 1.1 Normal frame (left) and abnormal frame (right) 

As can be seen from Figure 1.1, there is a bike entity in the frame on the right. Bikes, 

carts, skateboards etc. are banned in pedestrian zones. This is why these are considered 

as anomalies. 

The contributions of this work is as follows: 

 Real-time detection of anomalies. 

 Density switch method that allows accurate model selection. Since the 

characteristics of pedestrian motion change based on density (for example, when 

the crowd is dense, the pace of people is slower) it is important to select an 

appropriate model that represents this information. This idea is explained in 

Section 4 in detail. 

 Usage of ORB instead of more computationally complex methods such as SIFT 

or SURF. In the literature, SIFT is the de facto pixel based method in crowd 

analysis systems. However ORB has a comparable performance and it has much 

less computational complexity.  

 A simple model using frame statistics instead of raw velocity values. This work 

shows that statistics derived from scene can represent the frame accurately 

instead of using the raw velocity data. 

 The training requires only normal frames (i.e., videos having usual behavior). 

This alleviates the need for acquisition of scenes having abnormal events -which 

are more difficult to obtain than normal scenes-. 

 The users do not need to define any anomalies and the method does not need a 

threshold to detect anomalies.  
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The rest of the thesis is structured as follows. In Chapter 2, a literature review of crowd 

analysis techniques is provided. This chapter is divided into two. Since this thesis 

includes both crowd density information and crowd anomaly detection, literature review 

for both of these techniques are done separately. In Chapter 3, the proposed anomaly 

detection method is explained in detail. After giving a general overview of the proposed 

method, each component of the method is explained. First, the partitioning methodology 

and feature extraction are explained. Later the details of HMM modelling are provided. 

In Chapter 4, the density switch methodology, which is a major part in this work, is 

explained. Chapter 5 provides the details of another approach that was developed during 

the studies for this thesis. Chapter 6 provides the experimental results of the method and 

comparisons with existing methods are provided. Finally, the thesis is finished with the 

conclusion and directions for future work. 
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CHAPTER 2 

 

AN OVERVIEW OF RELATED WORKS 

 

2.1. Overview 
While there are numerous studies regarding the pedestrian behavior in crowded 

environments, most of these focus on two major topics; namely, crowd density 

estimation and crowd anomaly detection. Crowd density estimation is essential for 

making emergency evacuation plans. It is also important as a preliminary information 

source in anomaly detection tasks. Crowd density estimation methods are typically 

presented along with crowd counting problems. Crowd anomaly detection is an equally 

important, albeit a challenging task. Detection of anomalies allow taking timely 

precautions to prevent potential incidents. The anomaly detection problem in crowd 

videos cover a wide range of anomalies such as anomalies in outdoor pedestrian 

movement, indoor pedestrian movement and even traffic flow. 

In this chapter, existing approaches to crowd density estimation and crowd anomaly 

detection are explained and discussed.  

2.2. Crowd Density Estimation 
Crowd density estimation is an important factor in anomaly detection since it is related 

to the context where the anomaly is present. As mentioned in Section 1, the motion 

context changes with the increase or decrease of the crowd density. In dense crowds, 

pedestrians are restricted by the motion of the crowd. However in sparse crowds, they 

have more space to move. In this case, pedestrians may choose to move more freely (i.e. 

they can speed up or slow down or change directions.). In [7], the authors used 

Minkowski Fractal Dimensions [8], Fourier Spectrum [9] and Gray Level Dependency 

Matrix [10] as inputs to three different classifiers to classify the crowd density as very 

low (VL), low (L), medium(M), high (H) or very high (VH). The classifiers they used 

are a Bayesian classifier, a self-organizing map (SOM) [11] and a fitting function. The 

best performing model was reported to be the Bayesian classifier with GLDM as the 

input with 85% correct classification rate. This method is very simple and it uses 

supervised learning for density estimation purposes. While it works well in terms of 

classification rate, it cannot distinguish between high and very high crowd densities [7]. 

Also it is not tested in outdoor environments. This method is tested on images captured 

in Liverpool Street Railway Station, London, UK. 

Another technique that uses both GLDM and SOM are presented in [12], however in this 

paper two SOMs are used. First, the initial SOM classifies the textural features (GLDM) 

according to their finery. Later, histograms of textural features are calculated. Finally, 

using these histograms the crowd density classification is performed with another SOM. 

The authors provided a confusion percentage matrix instead of correct classification rate. 
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The average of the correctly classified percentages is 77.4%. This method is also tested 

on images captured in Liverpool Street Railway Station, London, UK. 

In [13], the authors use GLDM and MDT. They also propose a new method called 

Invariant Orthonormal Chebychev Moments (IOCM) where the centroid location is 

subtracted from all orthonormal Chebychev moments [14] to achieve position 

independence. After obtaining GLDM, MDT and IOCM features, the authors perform 

classification using SOM. The authors use an outdoor dataset where images are captured 

in the morning and afternoon. The combined dataset contains images from both scenes. 

For the morning scenes, they obtained 65%, 48% and 70% correct classification rate for 

GLDM, MDT and IOCM respectively. In the afternoon scene, they achieved 70%, 60% 

and 95% correct classification rate for GLDM, MDT and IOCM respectively. In the 

combined data, they achieved 80%, 35% and 85% correct classification rate for GLDM, 

MDT and IOCM respectively.  

GLDM is quite sensitive to any outlier objects in terms of color. For example, when a 

white object enters into a scene which is otherwise in various shades of gray, the 

features obtained by GLDM vary significantly. So either image needs to be smoothed 

beforehand or the GLDM needs to be smoothed. In either case, there is a good chance 

the real outliers or information will be smoothed along with any problems data might 

have. GLDM is a very simple approach that is not very robust to noise. In real-life 

scenarios, there is no guarantee that the texture only will give information about the 

actual crowd density because the texture only represents the textural properties of the 

scene and not the number of people in the crowd.  

Along with texture based methods, other techniques have also been proposed which aim 

to count pedestrians by first detecting them in the scene. This type of methods have 

privacy issues since they require pedestrians to be detected before counting. In [15], the 

authors propose a head detection algorithm to find heads in a scene and then count them. 

They make use of gradients in a ROI where they assume the heads would normally be 

(i.e. in the upper section of the image). First they detect the gradient-orientation based 

interest points in a scene and then they apply background subtraction. They select LUV 

channels, gradient intensity channels and six oriented gradient channels as initial 

features. They generate final features using these initial features. They also generate a 

large set of random features and use AdaBoost [16] algorithm to select and train the 

features. It is stated in the paper that the method requires a large number of positive and 

negative samples to train. This results in a large proportion of testing data to be used as 

negative samples in the training test. When using so much data for training, there is 

always a possibility to overfit to the data. Also, there may not always be abnormal 

frames in the training data which makes it difficult for the model to be trained. 

In [17], the authors utilize a Reversible Jump Markov-Chain Monte-Carlo (RJMCMC) 

[18] algorithm to explore configurations of different numbers of people in crowd. 

RJMCMC algorithm is an extension of Markov-Chain Monte-Carlo (MCMC) algorithm 

which was originally developed to generate samples from complex distributions. 

RJMCMC algorithm extends it by exploring dimensionalities that are different than the 

initial configuration. The authors of this paper try to generate samples which have 
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different numbers of people and try to find the sample that best explains the image. The 

problem with MCMC based methods relies in the selection of appropriate distribution to 

sample from. The distribution needs to represent the underlying data while remaining 

simple. This is easy when the data amount is small, however in video processing, the 

amount of data is expected to be very large and MCMC algorithms may not scale very 

well, certainly not in terms of speed. 

In [19], a different approach is used. The authors propose a pixel counting method for 

density estimation. First the authors perform a foreground detection using either 

determining a region of interest (ROI) manually or detecting the foreground using Eq. 

2.1. In this equation Imask represents the binary mask to be applied to the scene. IFG 

represents the binary foreground pixels (i.e. either foreground pixel or not). And t is the 

threshold value which is the median of all foreground pixels. Initially, all of the pixels 

are deemed as foreground. The median of the pixels is calculated and the pixels with 

lower values than the median are eliminated. The binary mask consists of the remaining 

pixels. 

       ∑               ∑     
(2.1) 

After obtaining the foreground pixels, a geometric correction is applied to them. They 

learn a “usual crowdedness” model and detect unusual crowdedness based on this 

model. The issue with this approach is that the threshold is very crude. Some foreground 

pixels may be eliminated due to the crude and static threshold while some background 

pixels are retained. This results in a noisy data. 

In our earlier work [20], we proposed a feature point count based crowd density 

classification algorithm. In this paper, the feature counts are obtained from the training 

videos and a kNN algorithm is trained using the feature counts and the density class of 

the training videos. Later, the frame densities are classified based on this model. It is a 

supervised approach and requires labelling of the training frames according to the crowd 

density.  

The aim of this thesis is to detect pedestrian anomalies in the scene. To select the 

appropriate model for a specific crowd density, the proposed method uses the calculated 

density information as a model selection tool. Our method is different to the 

aforementioned methods in the sense that it takes velocity information and characteristic 

motion behavior of the crowd. This is explained in detail in Chapter 4. 

 

2.3 Crowd Anomaly Detection 
Crowd anomaly is defined as any unusual event occurring in a crowd (i.e., deviation 

from the common behavior observed in the particular scene). There are several studies 

related to crowd anomaly detection.  

In [21], the authors apply a spatiotemporal grid to the video frame and obtain optical 

flow values in each grid. Using these values, atomic motion patterns are learnt using 

Mixtures of Probabilistic Principal Component Analysis [22]. Later, these patterns are 
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modeled using Markov Random Field (MRF) using online learning technique (i.e. 

parameters are updated with each new observation). Optical flow is a computationally 

complex algorithm unless it is accelerated by an accelerator such as GPU or a sparse 

optical flow is used. Also, optical flow results in very noisy features in some cases [3].  

In [3], the authors compute trajectories with particle advection. They compute the social 

force [23] between the particles and use Latent Dirichlet Allocation (LDA) [24] to detect 

anomalies. Particle advection builds on optical flow which has high computational cost. 

Social force is also a computationally expensive process and combining these steps 

results in a slow algorithm as demonstrated in Chapter 5. 

In [25], the authors propose to learn a normal behavior model using low level features of 

the scene and then compute the likelihood of a new observation. If the likelihood is 

below a predetermined threshold, then the new observation is signaled as an anomaly. 

This method is very simple. However, crowd behavior may not always be represented by 

simple low level features. While the simplicity of the algorithm has computational 

benefits, it may not always be adequate in explaining some events in the scene. 

In [26], the authors compute GLDM data in 2D spatial dimensions and in time 

dimension, resulting in a 3D GLDM output. They also compute the optical flow in the 

scene. They adopt a mixture model approach to train the obtained data and statistical 

outliers are labeled as anomalies. Problems with GLDM are explained in Section 2.2. 

Also, as mentioned previously, optical flow is a computationally expensive method. 

In [27], the authors propose a method based on social force model [23]. At each 

iteration, particles are initialized at random locations and social forces are obtained. 

Then, a minimization procedure is applied to the data which eventually results in 

optimal particle initialization which allows to calculate optimal flows. After calculating 

optimal flows, the authors perform anomaly detection using Random Sample Consensus 

(RANSAC) [28] algorithm.  

In [29], the authors adopt a method that uses both textural data and the motion based 

data to model the scene. They extract spatiotemporal cuboids from the data and estimate 

both appearance and the motion of the scene. With each new frame, the authors perform 

a state search in the training data using a predetermined radius, and if the search turns 

empty, the new frame is classified as anomaly. The weakness of the approach is that 

there is no generally accepted way of determining the radius. 

A method that makes use of SIFT feature detection and tracking is presented in [30]. 

However, in case of large number of interest points, SIFT can also be slow. There are 

faster algorithms which can compete with SIFT in terms of accuracy. In our earlier work 

we have shown that ORB works significantly faster while producing satisfactory results 

in crowded scenes compared to the other feature description methods and a feasible 

alternative in crowd behavior analysis applications [31].  

2.4 Feature Detection, Description and Matching 
In this work, a feature detection based method is utilized. Feature detection, in the 

broadest of terms, performs interest point detection or corner detection. The most widely 
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used feature detection and description method is SIFT [4].  While computing SIFT 

interest points, first the image is described by a scale and location invariant feature 

vector using Difference of Gaussians (DOG) [32] in several octaves of image pyramids. 

Later, these DOG values are compared for each pyramid and neighbor pixels. If pixel p 

is either maximum or a minimum in this comparison, it is a potential interest point. To 

filter the results, a threshold is used. Pixels with intensity lower than the threshold t are 

discarded. In the paper, this threshold is given as 0.03. SIFT is also a feature descriptor. 

It describes the features using the histograms of the pre-computed DOG values. 

ORB [6] Feature detector uses a modified features from Accelerated Segment Test 

(FAST) feature detector [33] to perform orientation independent feature detection. To 

determine if a pixel px is an interest point or not, FAST selects that pixel as the center of 

a circle with the radius of 3. This circle’s border passes through 16 pixels. In order to 

determine if the pixel px is an interest point, 12 of the 16 border pixels need to have an 

intensity above or below a threshold T determined by the user. The authors used a step-

wise approach to speed up the algorithm. First, they check if 3 of the pixels with 

numbers 1, 5, 9, 13 (which are at angles 90
o
, 0

o
, 270

o
 and 180

o
 in the circle) are above or 

below T. If not, pixel px is not an interest point. If 3 of those 4 pixels are either above or 

below the threshold, then the algorithm checks if 12 of 16 pixels of the circle are either 

above or below the threshold. If this criterion holds, then px is classified as an interest 

point. However this approach is not orientation independent. ORB feature detector 

improves FAST by modifying it to be so. ORB uses an approach called intensity 

centroid, initially proposed by Rosin [34]. Intensity centroid assumes, the intensity of a 

pixel offsets from its center and this vector can be used to impute the orientation of the 

pixel. Moment of the patch (the circular area of FAST) is calculated as in Eq. 2.2 and 

denoted as mpq. 

     ∑          

   

 
(2.2) 

 

Where i and j are the coordinates of pixel pix, p and q are degrees of moment. And the 

I(i,j) denotes the intensity of pix. Using this moment, the intensity centroid (denoted as 

C) can be calculated as in Eq. 2.3. 

   
   

   
 
   

   
  

(2.3) 

Finally, the orientation θ of the patch is calculated as in Eq. 2.4. 

                 (2.4) 

 

The feature descriptors generate a representation to describe the detected feature points 

by using different approaches. For instance, Scale Invariant Feature Transform (SIFT) 

[4] describes the feature point with histograms of image gradients. BRIEF [35] on the 

other hand, uses a binary description approach. It describes the patch (p) of size SxS with 
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an n-dimensional (nd) bit string using the function given in Eq. 3.5 with the help of test 

(τ) function described in Eq. 2.5. 

         {
              
                    

 
(2.5) 

Where p(x) is the smoothed pixel intensity at         . 

   
     ∑               

      

 
(2.6) 

Where τ is the test, p is the patch, xi and yi are randomly selected location pairs in the 

patch. The dimension nd can take values of 128, 256, or 512. 

For the purpose of this work, the detected and described features need to be matched. 

There are two different matching algorithms. FLANN Based Matcher [36] and Brute 

Force Matcher [37]. FLANN Based Matcher is used for matching 32-bit features while 

Brute Force Matcher is used to match binary features. 

FLANN based matcher makes a nearest neighbor search amongst all described features. 

It uses two different algorithms to perform nearest neighbor search:  Randomized KD-

Tree algorithm [38] and Hierarchical K-means algorithm. The matching algorithm 

automatically switches between these two algorithms using a cost function as shown in 

Eq. 2.7. 

      
      

           
     

(2.7) 

In this cost function, s represents the search time for the number of vectors in the sample 

dataset, b represents the tree build time, wb represents the weight for tree build time, wm 

represents the memory weight and m = mt/md represents the ratio of memory used for 

tree to the memory used to store data. 

Binary descriptors are matched using the Brute Force Matcher. For binary descriptors, 

Hamming distance is used while calculating the similarities between two features. 

Hamming distance calculates the percentage of bits that differ in binary vectors. To find 

the match for the feature point fp, Brute Force Matcher [37] calculates the Hamming 

distance between fp and all possible feature points. 

For instance, let’s say there are N number of feature points detected in frame t and M 

feature points detected in frame t+1. To match the feature points between two 

consecutive frames, Brute Force Matcher calculates NxM Hamming distance values and 

selects the most similar feature point in the frame t+1 for each feature in frame t. 
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CHAPTER 3 

 

HMM BASED PEDESTRIAN MOTION MODEL 

 

Modelling the pedestrian motion in the pathways is a challenging task. Because 

pedestrian pathways do not have strict rules regarding the behavior of their occupants, 

there are many actions that a pedestrian can take while walking such as changing 

direction, slowing down, pacing up, taking sharp turns and stopping instantly. Those 

actions can occur at any arbitrary order making it not feasible to model the pedestrian 

motion with deterministic models. To overcome this issue, a probabilistic framework, 

namely a Hidden Markov Model (HMM), is proposed to be used in this thesis.  

3.1. Overview 
In this thesis, the main task is to infer if the pedestrian motion is normal or abnormal, 

given the velocity observations. To perform this task, an HMM based approach is 

proposed. First, partitioning is carried out if necessary. After partitioning, ORB [6] 

features are extracted and described using BRIEF [35]. Feature matching is performed 

using Brute Force Matcher and raw velocities are obtained. Using these raw velocities, 

representative statistics are computed. To learn the normal state, the representative 

statistics of the training set are used. Since the training set has no abnormal frames, noise 

injection is performed to artificially create anomalous data. Using both the normal 

representative statistics and noisy representative statistics, HMM is trained. For test data, 

model selection with density switch is performed and anomaly detection is carried out 

using the selected model. This process is explained in Figure 3.1 and it is detailed further 

in the following paragraphs of this section. 
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Figure 3.1 Process flow of the proposed system 
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In certain cases, depending on the camera position, perspective might be a problem 

while computing the representative velocity statistics. Because the further away the 

pedestrian is, the lower the computed pixel-wise velocity will be. To overcome this 

issue, the scene is partitioned into smaller overlapping spatial zones in which the 

calculated velocities for similar real world velocities are expected to be similar. This 

partitioning is done manually. 

After the partitioning, feature detection and matching between consecutive frames is 

done for each separate segment. Feature detection and partitioning are explained in 

Section 3.1.2  

Having obtained the matched features, pixel-wise Euclidean distances are calculated 

between these points. These velocity values are stored in velocity vectors based on their 

directions. In this work, the velocities are separated into eight different directions based 

on their motion angles. These angles are named as follows:  {[0º-45º):D1, [45º -90º):D2, 

[90º-135º):D3, [135º-180º):D4, [180º-225º):D5, [225º-270º):D6, [275º-315º):D7, [315º-

360º):D8}. This stage is applied to each area resulting in M x (N-1) x 8 velocity vectors 

for each video where M is the number of areas and N is the total number of frames. As 

the velocity calculation is based on feature matching between two consecutive frames, 

there is no data for the last frame hence there exist data for N-1 frames.  Each vector has 

a size equivalent to the number of matched features. 

Then, to reduce the dimensionality of the dataset, representative statistics are calculated 

for each of the velocity vectors obtained in the previous step. Those statistics are mean 

of the velocity vector, standard deviation of the velocity vector, feature count in the 

velocity vector, skewness of the velocity vector. These statistics are stored in a statistics 

vector. For each direction in each frame and segment, four representative statistics are 

calculated. This results in M x (N-1) x 8 x 4 scalar values for each video instead of M x 

(N-1) x 8 vectors of size S, which is the number of matched features. 

The feature count statistic is only used for density switch for model selection before the 

testing phase. This switching step is explained in Chapter 4 in detail. Other 3 statistics 

are used in constructing the HMMs using the training data. The HMMs are trained for 

each video in the training set.  

In some datasets, the training set only consists of normal frames. This data is sufficient 

for learning the normal state of the pedestrian behavior. In principle, it is possible to 

learn the normal behavior only and classify frames as normal and abnormal based on the 

deviations of the new data from the model. However, this technique requires a 

thresholding approach. Thresholds are manually determined by domain knowledge and 

susceptible to biased selection. Instead of thresholding, artificial noise is injected to the 

normal data to reflect the anomalies that might occur and an abnormal state is learned 

from this artificially generated noisy data. 

Assume there are Vtr number of training videos in the training set, this means that Vtr x 

M x 2 number of HMMs are learned from the data for each video and each partition and 

for each pedestrian state.  
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Finally, having obtained the training videos and HMM parameters, density switch is 

performed and anomaly detection is carried out using the selected model. Model 

selection based on density switch is explained in detail in Chapter 4.  

 

3.1.1. Scene Partitioning and Feature Matching 
Depending on the camera view, there might be a perspective problem that results in 

inconsistency in calculated pedestrian velocities. Velocities of the pedestrians that are 

further away from the camera may be calculated slower due to the distance between 

them and the observation point. To overcome this issue, spatially overlapping binary 

perspective masks are applied to the scene and every mask is analyzed as a separate 

image. The masks are determined manually according to the size of the scene or the 

severity of the perspective problem. A sample image that has a perspective problem is 

given in Figure 3.2 and sample image of five masked areas is given in Figure 3.3. 

This partitioning is done manually. It is done only once based on the positioning of the 

camera. After fixing the camera position, the binary masks are created and the binary 

masks are applied to each new frame in real-time. 

 

Figure 3.2 Sample image that shows the perspective problem 

As apparent in Figure 3.2, the pedestrians further from the camera seem smaller. This 

results in relatively smaller velocities compared to those near the camera. 
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Figure 3.3 Sample masked image 

After scene partitioning, feature detection and matching is performed ORB Feature 

Detector [6], BRIEF Feature Descriptor [35] and Brute Force Matcher algorithms in the 

OpenCV [37] computer vision library. A sample image for feature matching in 

partitioned areas is given in Figure 3.4. 

 

 

Figure 3.4 Sample image of feature matching 

 

3.1.2. Noise Injection 
To model the abnormal data, artificial noise is injected to the normal values obtained 

from the normal frames. The pedestrian motion consists of relatively low velocity values 

compared to other means of transport. Stopping and turning are considered as normal 

behavior on pedestrian pathways. However, high speed actions such as running are 

considered abnormal because usually, pedestrians are not expected to run unless there is 

a compelling reason to do so. Likewise, using bikes or other means of transport in 

pedestrian pathways are also considered as anomalies because in most cases, use of 

these types of transportation is not allowed in areas restricted for pedestrian use. 

However it is not easy to detect all types of anomalies by rule based methods or 

thresholding. In some cases, the velocities of the other means of transport may be very 

close to pedestrian velocities. Also, normally behaving pedestrians usually outnumber 

the entities with anomalous behavior. This results in a bias towards the normal velocity 

values in the calculation with some high valued entries. In other cases, due to noise in 

the captured frame, erroneous velocity values might be calculated in the matching phase. 

When this occurs, there is also a bias towards normal velocity values however in this 
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case, the high velocity values do not represent an anomaly. With rule based systems or 

simple thresholding methods, there is no way to separate erroneous noise from actual 

anomalies. Because of all these difficulties, a random noise generation method is 

adopted in this work to represent the effects of anomalous behavior in the statistics. 

As mentioned above, the normally behaving pedestrians usually outnumber any other 

entity in the scene. The velocities of those pedestrians are low and thus they lower the 

average velocity in the scene. In case of high velocity anomalous entries, the average of 

the velocities in the scene might slightly increase depending on the number of entities 

present in the scene and the velocity of the anomalous entity. This is also the case with 

the noise that acts as a false anomaly. However, there are other statistics that can help 

distinguish the difference between noise and anomalies. 

Usually, there are several feature points detected on any entity in the scene. The velocity 

values of the feature points detected on a single entity are similar to one another but they 

might be different from other entities. In case of an anomalous entity, the difference in 

the velocities will increase the standard deviation of the scene. The increase in standard 

deviation might also appear when there is noise in the data. However, unlike anomalous 

entities, noise usually does not have a coherent behavior. This means that noisy data in 

itself is expected to have a larger amount of deviation than an anomalous entity. In case 

of enough amount of noisy feature points in the scene, the standard deviation of noisy 

data is expected to be higher compared to the standard deviation of an actual anomalous 

entity. 

Since the pedestrian velocities are relatively low and there is to be some amount of high 

velocity noise in the data, the data is expected to accumulate at the lower values. In case 

of anomalous entities, there will be a higher number of feature points with high velocity 

values. In this case, normal scene is expected to have a higher skewness value than the 

anomalous scene. 

Another thing to consider while performing noise injection is that the motion of 

individuals is restricted by the motion of the crowd. Usually, pedestrian walkways have 

some directions that have more people than other directions. The anomalies in less used 

directions are easier to detect since it is less likely that there would be other pedestrians 

in those directions to outnumber the anomalous entity. This means that if noise injection 

is performed in those directions, it will not represent the general behavior of the 

direction and will result in a wrong model. This is why the noise injection should only 

be performed in major directions. Major directions are said to be the directions in which 

the majority of the motion occur.  

In this work, the major directions are determined by calculating the total number of 

features that move in each direction. The major directions are determined by examining 

the feature counts manually. An example of average features that move in each direction 

is illustrated in Figure 3.5. The reason for using only the major directions is that the 

higher the data dimensions, higher the computational cost. This study aims for real-time 

performance. In order to achieve that, only necessary features need to be used. Since 

there is very little movement in minor directions, those are deemed unnecessary. 
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Figure 3.5 Feature counts per frame 

 

Based on these assumptions, a new data set is generated to represent the anomalies that 

might be present in the scene. The data set is generated by random sampling using the 

statistics calculated from the training set. For each training video statistics matrix, a 

corresponding artificial anomalous data is generated. Let μm be the average of the mean 

velocity values in the statistics matrix and Sm be the standard deviation of the mean 

velocity values in the statistics matrix, to generate the average velocity values of the 

artificial mean data (denoted as MA) in major directions (MD), Eq. 3.1 is used. 

MADi ~ N(c* μmDi , SmDi) i in MD (3.1) 

Let μstd be the average of the standard deviation of normal velocities and Sstd be the 

standard deviation of the same values, then the artificial standard deviation is calculated 

using Eq. 3.2 and denoted as StdA. 

StdADi ~ N(c* μstdDi , SstdDi) i in MD (3.2) 

Let μs be the average of the skewness of normal velocities and Ss be the standard 

deviation of the same values, then the artificial skewness is calculated using Eq. 3.3 and 

denoted as SA. 

SADi ~ N((1/c)* μsDi , SsDi) i in MD (3.3) 

The multiplier c is determined by the user. The choice for c is based on the anomaly that 

user wants to detect. If the user is looking for very subtle high velocity anomalies, then c 

needs to be slightly higher than 1 while if the user is looking for subtle low velocity 

anomalies, then c needs to be slightly lower than 1. More apparent anomalies can also be 
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detected by amplifying the magnitude of c. The effect of noise injection coefficient is 

given in Section 6.4. 

Noise injection is done for each video. Assume we have V number of videos of N 

number of frames. The artificial noisy dataset consists of V number of artificial data 

matrices of N number of frames and each matrix corresponds to one video in the normal 

training set. 

3.2. Hidden Markov Model 
HMM is a probabilistic approach to model time-dependent and stochastic data. They are 

named after the hidden (latent) variables they have and the Markov assumption they 

employ. Markov assumption states that the state of a variable at time t, is only dependent 

on the state of that variable at time t-1. The latent variables of HMM are represented 

using the Markov assumption. 

HMMs are mainly divided into two groups: Discrete HMMs and Continuous HMMs. 

Hidden variables of discrete HMMs are discrete valued while the hidden variables of 

continuous HMMs are continuous valued. In this work, a discrete HMM is adopted 

because the focus of this thesis is to detect if an anomaly is present or not. In other 

words, if the state of hidden variable is anomalous or not.  

The observations for this problem are velocity statistics and thus are continuous valued. 

The hidden variables represent the state of the frame at time t, so have discrete values (1 

for anomalous frame and 0 for normal). Because of this discrete nature of the state, 

Discrete HMM with Continuous Observations is adopted in this work. The HMM that is 

used is represented in Figure 3.6. In this figure, rectangular nodes represent the discrete 

hidden variables while the circular nodes represent the continuous observations. 

... ..... 

Figure 3.6 Representation of used model 

This figure explains the general idea behind HMM. The time flows from left to right as 

denoted by the pointed arrows. The hidden nodes (the actual values) affect each other 

through time intervals. The idea behind is that an effect that is present on a hidden node 

at time t, is likely to prevail at time t+1. This is represented by a transition matrix of size 

SxS that contains probabilities of switching states or remaining in a state.  

The arrows pointed towards the observation nodes represent the effect of hidden nodes 

on the observation nodes. Since the observed data is normally the readings obtained 

from a state, they are directly affected by the state of the hidden node. In our case, the 

observations are the representative statistics obtained from the scene. It is expected that 
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those statistics directly represent the underlying state of the scene. The main task in such 

a model is to infer the state of the hidden nodes given the observations. 

 

3.2.1. Learning the HMM 

The model that is used in this work is a Hidden Markov Model with Mixture of 

Gaussians outputs. The state parameter s represents the number of hidden states and the 

mixture parameter m represents the number of Gaussians. In this work, it is assumed that 

the HMM has 3 different states (s=3) and the number of Gaussians in the mixture is 3 

(m=3). The reasoning for that selection is based on crowd density assumptions and the 

major direction assumptions. The crowd is assumed to have three different density 

levels, namely: low, medium and high. The crowd motion is initially assumed to be 

bidirectional which is usually the case unless the scene is of a crossroads. In this 

bidirectional movement, the crowd is assumed to have three possible motion behaviors. 

The first one is where majority of the movement is in direction d. The second one is 

where the majority of the movement is in direction –d. Finally, there is no major 

direction, meaning both of the directions have equal number of pedestrians walking in 

them.  

The training is done using the Expectation Maximization algorithm. Expectation 

maximization algorithm estimates the parameters θ´ which maximize the log probability 

logP(x|θ´) of model explaining the training data. In this log probability representation, x 

represents the training data and θ´ represents the parameters. This formula reads as “Log 

probability of observing the data x, given the parameters are θ´. So by maximizing this 

probability, the EM algorithm automatically finds the parameter set θ´ that best explains 

the observed data. In case of complete observed data, expectation maximization 

algorithm reaches a global optimum. However, in partially observed data, EM algorithm 

may converge to a local optima. To avoid this, it is recommended to do multiple 

initializations. 

EM algorithm first separates the optimization problem into smaller sub problems which 

have a unique global optima. Optimization of these sub problems result in a local optima 

for the whole problem. 

EM algorithm consists of two steps called E-step and M-step. In E-step, the algorithm 

finds a function that lower bounds the probability to be maximized everywhere. That 

function is represented in Eq. 3.4: 

G(θ´
(t)

) = log(P(x|θ´
(t)

) (3.4) 

During the M-step, the algorithm estimates a new parameter set θ´
(t+1)

 that increases the 

log likelihood. 

Because of the real time concern in this study, the HMM is trained with the data in the 

major directions instead of all of the directions.  

The training is done with two different datasets for each video. One dataset is the dataset 

with original values and the second dataset is the dataset with the artificial values. The 



20 
 

first HMM represents the normal motion of pedestrians and the second HMM represents 

the abnormal motion of pedestrians. The classification in testing phase is done via 

calculating the log likelihood of each model for the new data. This step is explained in 

detail in Chapter 5. 
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CHAPTER 4 

 

DENSITY SWITCH FOR MODEL SELECTION 

 

 

In the pedestrian pathways, usually the crowd density is not consistent throughout the 

time intervals. This results in different behavior characteristics in crowds with different 

levels of densities such as pedestrians slowing down in a denser crowd while they move 

faster when they have more space to move in crowds with lower density. In the former 

case, pedestrians are usually restricted by the general behavior of the crowd. However, 

in the latter pedestrians are not restricted so they can change their movements in more 

drastic ways such as taking sharp turns or stopping instantly. Due to this different 

behavior patterns in different crowd densities, we claim that the crowd density is an 

important factor in analyzing the pedestrian behavior. 

To the best of our knowledge, there are no studies in the literature that include the effect 

of changes in crowd density while trying to detect anomalies. In this chapter, a simple 

yet effective method for selecting the appropriate model based on the density of the 

scene is proposed. This method is applied to each test video frame individually. 

4.1. Overview 

Using the representative statistics (feature count moving in each direction, mean 

velocity, skewness of the velocity values and variance of the velocity values) which are 

computed as explained in Section 3.1, density switching is performed and appropriate 

model is selected.  

 

 

4.1.1. Density Switch Function 
In order to perform an appropriate model selection, a penalty function is developed. 

Using this penalty function, the models which have high degree of noise or unwanted 

deviations are eliminated while retaining the characteristics of pedestrian motion. 

As described in Chapter 3, pedestrian motion has certain characteristics. Based on these 

characteristics, model selection is performed.  

With each new frame input, the characteristics of the new frame and all training sets are 

compared. The training dataset and the test frame are expected to have some degree of 

similarity as the test frame and training dataset are expected to have a similar density. 

The difference between the feature counts of the training set and the test frame should be 

low. Let FCTRid denote the feature counts of training video i in direction d and FCTEjdf 



22 
 

denote the feature count in frame f of test video j in direction d, then the feature count 

similarity of train video i (denoted as FCDi)  is calculated as in Eq. 4.1. 

                                                            (4.1) 

This function calculates the absolute difference between the feature count of the test 

frame and the feature count of the training set values and normalizes the obtained 

distance vector. 

Furthermore, even though test frame might be anomalous, we expect it to have entities 

with normal behavior too. This is why we also expect the mean velocities to be similar 

to each other. Let MDi be the mean velocity distance between the test frame and the 

training video i, MTRid denote the mean velocities of train video i in direction d and MTEjdf 

denote the mean velocity in frame f of test video j in direction d, then MDid is calculated 

as in Eq. 4.2. 

                                                        (4.2) 

This function calculates the absolute difference between the mean velocity of the test 

frame and the mean velocity of the training set values and normalizes the obtained 

distance vector. 

Also, with the assumption that pedestrian velocities are generally low, the training 

videos with high mean velocity values are also penalized as they might have some noise 

in the data. Let MVi denote the penalty for high mean values of the training data i, then 

MVid is calculated as in Eq. 4.3. 

                                (4.3) 

As mentioned before, deviation in training sets are undesirable. The training videos with 

high standard deviations are also penalized. Let SVid denote the penalty for high standard 

deviation of the training data i in direction d, and STRid denote the standard deviations of 

video i in direction d, then SVid is calculated as in Eq. 4.4. 

                               (4.4) 

Finally, the skewness difference between the training video i and test video frame are 

also taken into account. Let SKi be the skewness of the distance values computed 

between the test frame and the training video i, SKTRid denote the skewness values of 

train video i in direction d and SKTEjdf denote the skewness in frame f of test video j in 

direction d, then SKi is calculated as in Eq. 4.5. 

                             (4.5) 

After calculating the penalty components depending on the directionality, all of those 

components are normalized with their vector norms using Eq. 4.6.  

                            (4.6) 

Where Norm is computed as in Eq. 4.7 and shown as ||A|| where A is a vector or a 

matrix and A
H
 is the conjugate transpose of A. 
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|   |  √                      (4.7) 

After normalization as above, single values for each of the components are obtained as 

follows: FCD denotes the feature count distance penalty component, MD denotes the 

mean distance penalty component, MV denotes the mean value penalty component, SV 

denotes the standard deviation penalty component and finally SK denotes the skewness 

penalty component. Given all these values the penalty function P for training video i is 

defined as in Eq. 4.8. 

                           
 (4.8) 

Please note that unlike other distance components, the skewness distance is not 

calculated using the absolute distance and the training skewness values are subtracted 

from the test frame skewness value. This is because unlike other distance values, it is 

desired for the skewness of the training video to be higher than the testing frame. 

Based on the obtained penalty values, the model is selected as in Eq. 4.9. 

                   (4.9) 

The effect of density switch methodology on classification results is analyzed in Section 

2.2. 
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CHAPTER 5 

 

CHMM BASED PEDESTRIAN MOTION MODEL 

 

During the development of this thesis, several approaches were tested. The most 

successful of these was a CHMM approach using the mean velocities of the data.  

In this study, the scene is partitioned into smaller overlapping spatial zones as described 

in Section 3.1.1. Using these smaller zones, feature detection and matching are 

performed. With the extracted features, velocities are calculated in eight directions. 

Under the assumption that the anomalies would be on the higher end of the velocity 

spectrum, a quartile analysis is performed. Four quartiles are calculated and only the 

data points in the fourth quartile are used for mean velocity calculation. The number of 

features in the final quartile CDi for each direction Di are calculated using Eq. 5.1. μFC(i) 

is the average feature count moving in direction i. 

    
       

 
 

 

(5.1) 

After obtaining feature counts in the final quartile, the average velocity μV(f,m,i) in final 

quartile for each frame f, mask m and direction i are calculated using Eq. 5.2 where 

Vj(f,m,i) denotes the velocities in frame f, mask m, direction I and quartile j. 

           
∑              

   
 (5.2) 

Finally, to smooth out the noise present in the dataset, velocity average of all videos is 

taken using Eq. 5.3 obtaining single training data matrix. 

     
∑             

 
 

 

(5.3) 
After obtaining this matrix, noise injection is performed to represent the abnormal 

activity in the scene using Eq. 5.4. 

              (5.4) 

Where μtr is the average velocity of TrD and Z is random noise with parameters N(0,1). 

The coefficient α is defined as in Eq. 5.5. 

  
            

   
 (5.5) 

Where σtr is the standard deviation of TrD and s is the shifting parameters. Under the 

Gaussian distribution assumption, anomalies normally would be present after the Mean 

+ 3* Std threshold which is why s is selected as 3. 

Using the normal training matrix and artificial noise, two coupled HMMs are trained. 

The adjacent nodes of the CHMMs represent the spatial zones and the slices represent 
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the time points. Later a classification is performed based on the likelihood of the model. 

The results of this work are given in Section 6.3. 
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CHAPTER 6 

 

EXPERIMENTAL RESULTS AND COMPARISONS 

 

In this chapter, the evaluation of the proposed method is provided. First, the dataset that 

is used to evaluate the method is explained in detail. Later, the results on the dataset and 

comparison with the existing literature are presented. Finally, strengths and weaknesses 

of the proposed method are discussed.  

6.1. Dataset 
To evaluate the robustness and performance of the proposed anomaly detection method 

(presented in Section 3), UCSD Peds dataset has been used. This dataset contains videos 

from two different camera angles. There are only naturally occurring anomalies present 

in this dataset (i.e. the anomalies are not staged). The anomalies include carts, bikes, 

motorbikes and skaters. The authors of this dataset also classified wheelchairs and baby 

carts as anomalies. Although those entities cannot be considered anomalies in pedestrian 

walkway context, they are taken as anomalies in this work for accurate comparison to 

the methods in the literature. 

6.1.1. Peds1 Dataset 
Peds1 Dataset contains 34 training videos which consist only of normal frames and 36 

test videos which consist of both normal and abnormal frames. Each video contains 200 

frames of size 238 x 158. This dataset has a perspective problem due to camera angle 

and to overcome this, a partitioning approach is used as mentioned in Section 3.1.2. A 

sample frame from this dataset is given in Figure 6.1. The test dataset of Peds1 is 

explained in Table 6.1. This table explains which anomalies are present in videos and 

what characteristics they have.  

 

Figure 6.1 Sample frame of Peds1 dataset 
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Table 6.1 Details of Peds1 test dataset 

Video 
No. of 

Frames 
Anomalous Frames Anomaly Description 

1 200 From 60 to 152 A fast paced motorbike 

2 200 From 50 to 175 A Fast Paced Bike and A Fast 

Paced Skater 

3 200 From 91 to 200 A normal pedestrian paced bike 

4 200 From 31 to 168 A normal pedestrian paced skater 

5 200 From 5 to 90  

From 140 to 200 

2 fast paced bikes and 1 normal 

pedestrian paced bike 

6 200 From 1 to 100 

From 110 to 200 

2 fast paced bikes, 2 fast paced 

skaters and 1 normal pedestrian 

paced bike 

7 200 From 1 to 175 2 moderately fast paced bike and 1 

moderately fast paced skater 

8 200 From 1 to 94 A fast paced skater 

9 200 From 1 to 48 Pedestrian walking on grass 

10 200 From 1 to 140 A normal pedestrian paced skater 

11 200 From 70 to 176 A pedestrian walking in the wrong 

direction 

12 200 From 130 to 200 A fast paced skater 

13 200 From 1 to 156 A baby cart 

14 200 From 1 to 200 2 fast paced bikes and 1 

moderately fast paced cart 

15 200 From 138 to 200 A fast paced bike 

16 200 From 123 to 200 A fast paced bike 

17 200 From 1 to 47 A fast paced bike 

18 200 From 54 to 120 A fast paced skater 

19 200 From 64 to 138 A fast paced cart 

20 200 From 45 to 175 A fast paced cart 

21 200 From 31 to 200 A wheelchair 

22 200 From 16 to 107 A fast paced skater 

23 200 From 8 to 165 A moderately fast paced 

wheelchair 

24 200 From 50 to 171 A fast paced cart and a moderately 

fast paced skater 

25 200 From 40 to 135 A fast paced skater 

26 200 From 77 to 144 A fast paced bike and a normal 

pedestrian paced bike 

27 200 From 10 to 122 A fast paced cart 

28 200 From 105 to 200 A fast paced bike 

29 200 From 1 to 15 

From 45 to 113 

2 fast paced bikes 
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30 200 From 175 to 200 A moderately fast paced bike 

31 200 From 1 to 180 2 fast paced bikes 

32 200 From 1 to 52 

From 65 to 115 

2 fast paced bikes 

33 200 From 5 to 165 3 fast paced bikes 

34 200 From 1 to 121 A fast paced skater 

35 200 From 86 to 200 A fast paced skater 

36 200 From 15 to 200 A fast paced cart and a normal 

pedestrian paced bike 
 

 

6.1.2. Peds2 Dataset 
Peds2 dataset contains 16 training videos which consist of normal frames and 12 test 

videos which consist of both normal and abnormal frames. Each video contains varying 

number of frames and the frame size is 360 x 240. This dataset does not contain a 

perspective problem, therefore no partitioning is used in this one. A sample image of this 

dataset is provided in Figure 6.2. The test dataset of Peds2 is explained in Table 6.2. 

This table explains which anomalies are present in videos and what characteristics do 

they have. 

 

Figure 6.2 Sample frame of Peds2 dataset 

 

Table 6.2 Details of Peds2 test dataset 

Video No. of 

Frames 

Anomalous Frames Anomaly Description 

1 180 From 55 to 180 A moderately fast paced bike 

2 180 From 90 to 180 A fast paced bike 

3 150 From 1 to 146 2 moderately fast paced bike 

4 180 From 27 to 180 A moderately fast paced cart and a 
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moderately fast paced bike 

5 150 From 1 to 130 A bike with normal pedestrian 

pace 

6 180 From 1 to 160 Two fast paced bikes 

7 180 From 1 to 160 One moderately fast paced bike, 

one bike with normal pedestrian 

pace and a fast skater 

8 180 From 1 to 180 One fast paced bike and one fast 

paced skater 

9 120 From 1 to 120 One fast paced bike and one fast 

paced skater 

10 150 From 1 to 150 A moderately fast paced bike 

11 180 From 1 to 180 A moderately fast paced bike 

12 180 From 84 to 180 A skater with normal pedestrian 

pace 

 

6.2. Results and Comparison 
To evaluate the performance of the proposed system, a comparison with the techniques 

in the literature has been performed. The AUC values, ROC curves and computation 

times are reported and compared to the existing methods. 

Also, to illustrate the performance of the density switch method, a sample of matched 

frames is provided. 

6.2.1. Density Switch Results 
In this section, the results for the proposed density switch method are illustrated with 

sample frames from the testing and training videos. The selected training video for the 

given test frame is also provided to further explain the result of the density switch 

methodology in Figure 6.3. 

The frames on the left are taken from the test videos. The first frame on the left does not 

have any anomalies while the other frames have a biked entity. The frames on the right 

are all from the matched video for the frame on the left using the density switch 

methodology. As can be seen from the frames, the pedestrian density and the motion 

directionality are also very similar. 
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Figure 6.3 Matched training frames (right) for the given test frames (left) by density switch 

As can be seen from the figure, the densities of the frames are quite close to each other. 

However they are not exactly the same. The reason for that is, the method proposed in 

this thesis also considers other aspects of the scene than the feature count as explained in 

Section 2.2. 
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The feature count difference has a mean of -88.7256 and a standard deviation of 

198.1397. There are two reasons why the mean is different than zero. The first one is 

that this approach also considers other statistics while selecting a model. The second one 

is that, both training and testing videos have frames where there is very little activity 

while the other one has some activity. This increases the difference between feature 

counts. The plot for difference in feature counts is given in Figure 6.4. This figure is 

generated with 100 randomly selected frames from the dataset. 

 
Figure 6.4 Feature Count Difference Between Training and Test Frames 

 

6.2.2. Anomaly Detection Results 
In this chapter, results for the anomaly detection task are provided. The section is 

divided into two subsections for each separate dataset. Although the data that we used is 

all grouped in “Peds” dataset, the sub-datasets in this large dataset employ different 

characteristics. To avoid any confusion, the results on those datasets are given in 

separate sections. The proposed method is referred to as “HMM” in all of the graphics 

provided. 

6.2.2.1. Peds1 Dataset 
This section explains the results obtained using the Peds1 dataset. This dataset is 

challenging due to the perspective problem it has.  

0 10 20 30 40 50 60 70 80 90 100
-600

-500

-400

-300

-200

-100

0

100

200

Frames

F
e
a
tu

re
 C

o
u
n
t 

D
if

fe
re

n
c
e



33 
 

The ROC curve for the anomaly detection is provided in Figure 6.5. In this ROC curve, 

a comparison between the state of the art techniques and the proposed system is 

provided. Also, in order to understand the impact of density switch methodology, the 

algorithm is run without the density switch methodology. Instead the trained model is 

selected randomly from the pool of training videos. This process is repeated 5 times and 

the average EER and AUC values of the proposed method without density switch are 

provided in Table 6.3. The standard deviations of the values are given in parentheses in 

the table.  

 

Figure 6.5. ROC curve comparison for Peds1 dataset 

 

The AUC values and EER values are provided in Table 6.3. 

Table 6.3 AUC and EER comparison of Peds1 

 Peds1 

System EER AUC 

Proposed Sys. 0.33 0.74 

Proposed Sys. Without Density Switch 0.367 

(Std=0.016)  

0.68 

(Std=0.014) 

Ryan et Al. [26] 0.23 0.838 

MDT [39] 0.25 - 



34 
 

Adam et Al. [25] 0.38 - 

MPPCA [22] 0.40 - 

Seidnari et Al. [29] 0.39 - 

 

The proposed algorithm has an EER value of 0.33 and an AUC value of 0.74 which are 

better than the competing methods except MDT and Ryan et al [26].  The methods 

which did not report the AUC values are represented in the table with a dash. EER value 

is the intersection between a 135
o
 line and the ROC curve. Therefore the higher EER 

generally indicates a lower AUC. 

6.2.2.2. Peds2 Dataset 
This section explains the results obtained using the Peds2 dataset which is explained in 

Section 6.2.2. 

The ROC curve for the anomaly detection is provided in Figure 6.6. In this ROC curve, 

a comparison between the state of the art techniques and the proposed system is 

provided. Also, in order to understand the impact of density switch methodology, the 

algorithm is run without the density switch methodology. Instead the model is selected 

randomly. 

 

Figure 6.6 ROC curve comparison for Peds2 dataset 
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Table 6.4 EER and AUC comparison of Peds2 dataset 

 Peds2 

System EER AUC 

Proposed Sys. 0.13 0.945 

Proposed Sys. Without Density Switch 0.21 0.77 

Ryan et Al. [26] 0.13 0.934 

MDT [39] 0.25 - 

Adam et Al. [25] 0.42 - 

SF-MPPCA [39] 0.36 - 

MPPCA [22] 0.30 - 

SF [3] 0.42 - 

 

The proposed system has an EER of 0.13 and an AUC of 0.945. These are the best 

results in the literature. When there is no perspective problem, the proposed method 

outperforms other methods in the literature. The method which is closest to our method 

in terms of accuracy is Ryan et al. [26].  

In both cases, the density switch methodology improves the results. However, it 

improves the results obtained in Peds2 data set more than Peds1. The reason for that is 

the underperformance of the solution to the perspective problem. 

6.2.3.  The Performance of the Algorithm 
The speed of the algorithm depends on the size of the training set. Because, during 

density switch, each new testing frame is compared to each training frame for similarity. 

Since this is the case, the larger the training set to perform density switch with the longer 

the algorithm takes. A comparison between these values and the existing literature is 

provided in Table 5.5. 

Table 6.5 Speed Comparison for Peds dataset of HMM Approach  

Method Peds1 FPS Peds2 FPS 

Proposed Method 6.4 94.34 

Ryan et al. [26] 9.4 9.4 

MDT [39] 0.04 0.04 

 

The comparison with other methods is not given in this table because the authors did not 

provide the runtime measurements. In this table, it is visible that when the training set is 

not large the proposed method works very fast, in fact faster than other existing 

methods. When training set gets larger, the density switch needs to analyze more frames 

in order to compute similarity between the testing frame and the training frame. When 

training set is large, the speed difference between proposed method and existing faster 

methods is not very large. 
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The computational complexity of the algorithm is O(N*M) where N is the number of 

frames and M is the number of overlapping spatial masks. The number of masks 

increases the passes over the training data. Assume there are M number of masks, in this 

case, M number of passes are done over the entire training data, resulting in the O(N*M) 

complexity. 

As mentioned in Section 6.3.2.1, MDT outperforms our method in terms of accuracy, 

however due to its high computational complexity; this method is not suitable for real-

time applications.  

The experiments in this thesis are conducted using a personal computer that has 

Windows 7 OS, Intel i7-3630QM 2.4 GHz CPU and 8 GB RAM. The feature detection 

and matching phase are carried out using OpenCV [37] in Visual Studio 2010 with C++ 

language. The model construction, density switch and anomaly detection are done using 

MATLAB. The model construction phase is carried out via Bayes Net Toolbox [40]. 

The setup of Ryan et al. [26] is not provided in the paper. The setup for MDT [39] is a 

Pentium machine with 3GHz CPU and 2GB RAM. 

The limitations of this algorithm are based on the fact that this algorithm makes a 

velocity based anomaly detection. The biggest limitation is not being able to detect 

textural anomalies along with velocity based anomalies. Also, in case of an anomalous 

entity with velocity that is consistent with the normal behavior, the false negatives occur. 

The solution to that problem might be utilizing a feature count based anomaly detection 

or textural anomaly detection. 

6.2.4 Effect of Noise Coefficient 
The effect of noise coefficient is provided in Figure 6.7. This figure depicts the effect of 

noise coefficient on accuracy and AUC.  
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Figure 6.7. Effect of Coefficients on Accuracy and AUC 

Initially, the coefficients start with 1.01. When the noise is generated with that 

coefficient, a lot of the normal values which are slightly higher than the general speed of 

the pedestrians are detected as anomalies, which is why both accuracy and AUC are low 

for this coefficient. The same idea applies to coefficient 1.02 which is the second 

coefficient in this plot however, we can see some improvement in both accuracy and 

AUC. Later, the coefficient is increased to 1.05 and with that increase the performance 

improves. The AUC is around 0.82 and accuracy is around 0.77. The coefficient is 

increased further to 1.1, and the plot shows that this is where the method performs best. 

If the coefficient is increased further than 1.1, the performance drops significantly. This 

is due to the fact that the method is no longer able to detect subtle anomalies. “Subtle 

anomalies” defines the anomalies which have velocities slightly higher than the 

pedestrian velocities. 

As can be seen from the plot, there is some variability in the results represented using 

“error bars”. This is due to the fact that the noise generation is done completely 

randomly. However, even if this is the case, the performance pattern based on the 

coefficients is visible in the plot. 
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6.3. CHMM Based Pedestrian Motion Model Results 
The results of the CHMM Based Pedestrian Motion Model study mentioned in Section 

2.5 are given in this section. The results and the comparison with the methods existing in 

the literature when the study was conducted are given in Figure 6.8. Figure 6.8 depicts 

the ROC Curves obtained. 

 

Figure 6.8. ROC curve comparison for CHMM Method on Peds1 dataset 

In comparison with the method proposed in this thesis based on the ROC curves, there is 

an improvement from the CHMM method. The accuracy of the CHMM algorithm is 

given in Table 6.6 and performance of the CHMM algorithm is given in Table 6.7. 

Table 6.6 AUC and EER comparison of Peds1 (CHMM included) 

 Peds1 

System EER AUC 

Proposed Sys. 0.33 0.74 

Proposed Sys. Without Density Switch 0.367 

(Std=0.016)  

0.68 

(Std=0.014) 

CHMM Approach 0.39 0.67 

Ryan et Al. [26] 0.23 0.838 

MDT [39] 0.25 - 

Adam et Al. [25] 0.38 - 
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MPPCA [22] 0.40 - 

Seidnari et Al. [29] 0.39 - 

 

Table 6.7 Speed Comparison for Peds1 dataset of CHMM Approach 

Method Peds1 FPS 

Proposed Method (HMM) 6.4 

CHMM 34 

Ryan et al. [26] 9.4 

MDT [39] 0.04 

 

As can be seen from the table CHMM clearly outperforms all the methods (including the 

proposed method) in terms of runtime performance. However, its accuracy is also lower 

than the proposed method. CHMM method was not tested on Peds2 Dataset. 
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CHAPTER 7 

 

CONCLUSION AND FUTURE WORK 

 

In this work, a pedestrian zone anomaly detection method that can compete with the 

existing methods is presented. An important contribution of this work is considering the 

underlying crowd density and velocity behavior information in the density switch stage. 

The contributions of this work can be summarized as follows: 

 Two different methods have been proposed for anomaly detection, namely 

CHMM and HMM approach. HMM approach has higher accuracy while CHMM 

approach is faster. 

 A framework that takes the crowd density and velocity behavior information into 

account while performing anomaly detection. 

 Representing the pedestrian behavior with statistics obtained from the raw 

velocity data that is obtained by feature matching and velocity calculation for 

each detected feature point. 

 Real-time application for HMM approach in cases where the training data set 

size is not very large and near real-time application in large datasets. Real-time 

application for CHMM approach without any constraints. 

 Mimicking the anomalous behavior using the noise injection. This enables the 

user to use only normal data for training both the normal and abnormal cases. If 

the scene has different characteristics, injected noise can be adapted to this 

abnormal case. 

 The method uses an artificial noise injection to learn the anomalous events which 

allows the users to remove any threshold for anomaly detection. It also enables 

users to mimic other anomalies they may want to detect. 

 The proposed framework mostly works without any user defined parameters. The 

only parameter that needs to be manually selected is the noise injection 

parameter. 

 Using the domain knowledge regarding the pedestrian motion such as the 

skewness and standard deviation of the data. This shows how having domain 

knowledge affects the modelling simplicity. Unlike other methods in the 

literature, we used the domain knowledge to extract statistics from the pedestrian 

velocity calculations and this resulted in a very simple model that is able to work 

well with only representative statistics of the raw data. This improves the runtime 

performance as well as the accuracy of the system. According to the results 

provided above, it can be said that the proposed algorithm can compete with the 
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existing algorithms in the literature in terms of both accuracy and speed. 

However, the performance of the proposed method degrades when there is a 

perspective problem. Also, as the training set gets larger, the algorithm works 

slower. 

In Peds2 dataset, none of these problems is present. Even though the proposed method is 

able to overcome those issues to some extent, it still performs the best where the 

aforementioned problems do not exist. The algorithm is able to work in real-time when 

the training set is not very large or number of spatial masks are small. 

In Peds1 dataset, due to perspective problem some anomalies cannot be detected. For 

instance when the anomaly is further from the camera, the false negative rate increases. 

Also for both of the datasets, if the anomaly has the same velocity with the pedestrians it 

cannot be detected. 

In terms of accuracy, there are some missed alerts where the velocity of the anomalous 

entity is not different from the pedestrian velocities. However the work proposed is able 

to distinguish between pedestrians and anomalous entities even the difference is very 

small. The number of missed alerts can be reduced by including a textural anomaly 

detection system.  

Generally, both of the proposed approaches work at least as well as the existing methods 

in the literature while outperforming them in some cases. HMM method outperforms 

CHMM method in terms of accuracy however CHMM method is faster than HMM. This 

is due to the fact that CHMM does not utilize a switching mechanism that searches the 

entire training data space for an appropriate training set. However, using the average 

mean velocity vector as the training resulted in lower accuracy.  

It is shown in the work that density switch improves the anomaly detection results. This 

is also a major contribution of this work. 

For future work, the possible improvements could be summarized as follows: 

 Texture information for detecting the abnormal entities with normal velocity. 

 The major direction selection could be automatized. Currently, it depends on the 

manual analysis of the training set. 

 The scene partitioning could be automatized or perspective normalization could 

be adopted. Or, instead of partitioning, scene normalization can be used. 

Currently, the proposed method works best when there is no perspective 

problem.  
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