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ABSTRACT

THE FIREWALL PARADOX

Dündar, Furkan Semı̇h
M.S., Department of Physics

Supervisor : Prof. Dr. Bayram Tekin

August 2014, 96 pages

In this MSc. thesis, we have attempted to give an overview of the firewall paradox and
various approaches towards its resolution. After an introductory chapter on some ba-
sic concepts in quantum field theory in curved spacetimes such as Hawking radiation,
we introduce the paradox. It arises out of application of principles each of which
is thought or assumed to be correct: 1) unitary black hole evaporation, 2) validity
of quantum field theory in curved spacetime, 3) a measure of the number of black
hole quantum states, 4) Einstein’s equivalence principle. Then, we present various
approaches that exist in the literature towards the resolution of the paradox.

Keywords: Firewall paradox, AMPS, AMPSS, Quantum gravity, Black hole, Quan-
tum information
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ÖZ

ATEŞTEN SET PARADOKSU

Dündar, Furkan Semı̇h
Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi : Prof. Dr. Bayram Tekin

Ağustos 2014 , 96 sayfa

Bu yüksek lisans tezinde, ateşten set paradoksu ve onun çözümüne yönelik çeşitli
yaklaşımları anlatma çabası içinde bulunuldu. Eğri uzay-zamanlarda kuantum alan-
lar kuramındaki, Hawking ışınımı gibi, bazı temel kavramlar üzerine olan bir giriş
kısmından sonra ateşten set paradoksu anlatılıyor. Paradoks ayrı ayrı doğru olduğu
düşünülen ya da sanılan ilkelerin hep beraberce uygulanması sonucunda doğuyor: 1)
kara deliklerin kuantum mekaniği ile uyumlu biçimde buharlaşmaları, 2) eğri uzay-
zamanlarda kuantum alanlar teorisinin geçerliliği, 3) kara deliklerin kuantum hal-
lerini saymak için bir ölçü, 4) Einstein’ın eşdeğerlilik ilkesi. Sonrasında paradoksun
çözümüne yönelik literatürde yer alan çeşitli yaklaşımlara yer veriliyor.

Anahtar Kelimeler: Ateşten set paradoksu, AMPS, AMPSS, Kuantum kütleçekimi,
Kara delik, Kuantum bilgi
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to Fuzûlî, Nietzsche, Şule Gürbüz, Palahniuk, Hawking, and Lady Gaga for showing
different depths of the ocean called life. Or is it just a droplet?

vii



ACKNOWLEDGMENTS

I would like to thank my brother E. Burak Dündar for valuable discussions that led to
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CHAPTER 1

INTRODUCTION TO THE FIREWALL PARADOX

Science has various ways of improving itself. The urge or need to explain observa-

tions of new phenomena is the most direct example that comes to mind. However, in

the absence of access to regimes where new phenomena can be observed, paradoxes

found in gedanken experiments are quite valuable. They force scientists to re-consider

the basics on which they have depended so far. Upon this reconsideration, science can

become capable of yielding better explanations of nature.

The firewall paradox has been introduced in the article [2] by Ahmed Almheiri, Don-

ald Marolf, Joseph Polchinski and James Sully (AMPS) that appeared on the arXiv

on the 13th of July, 2012. This was the introduction of firewalls.

In the most basic terms, the firewall paradox is as follows. If black holes evaporate

unitarily as expected by quantum mechanics, they become almost maximally entan-

gled with the radiation they have emitted so far [47]. Hence, newly emitted Hawking

particles are almost maximally entangled with early radiation. However, these newly

emitted quanta cannot also be entangled with interior modes, which would otherwise

violate basic principles of quantum mechanics. Because of the lack of entanglement

in the latter case, quantum state around the horizon cannot be vacuum. On the other

hand, equivalence principle requires that the place of event horizon cannot be deter-

mined locally: the region of spacetime around the horizon that an infalling observer

passes through is not locally different from any other region of spacetime and is in

Minkowski vacuum state. Therefore, equivalence principle together with the accepted

wisdom1 about black hole evaporation are not consistent. Infalling observers detect

1 We mean black hole complementarity. We discuss this idea in Section 2.4.3.
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particles of high energy at the horizon [2], hence the name firewall.

In order to better understand the paradox in quantitative terms, we need some basic

results and ideas, such as Hawking radiation and black hole complementarity, from

quantum gravity. We deal with these concepts in Chapter 2. Having acquired the

basics, we focus our attention on the paradox in Chapter 3. Various proposals towards

the resolution of the firewall paradox are included in Chapter 4. We finalize the thesis

in Chapter 5 by giving a conclusion.
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CHAPTER 2

BASICS

Our aim in this chapter is to give a minimalistic account of various concepts we will

later refer to and use in the text.

2.1 General Relativity

The general theory of relativity is the standard theory of gravitation we use today. It

is the first of two pillars of modern physics, the second being the quantum theory.

Gravitation is an interesting phenomenon, and perhaps it would not be rather shallow

to claim, as it might have been expressed by others, that although it is the first force

discovered in nature it is the least understood.

In general relativity, gravitation is seen as a manifestation of curvature of the geom-

etry of spacetime. The geometry is encoded in the metric tensor (gµν). Also, there

is another tensor named Riemann tensor that carries all the information about curva-

ture and is a function of the metric tensor1. It is usually denoted as Rρ
µσν . We can

contract various indices and obtain two other tensors that are used frequently. They

are the Ricci tensor (Rµν) and the scalar curvature (R, sometimes referred to as the

Ricci scalar). The definitions are:

Rµν ≡ Rρ
µρν R ≡ Rµ

µ. (2.1)

1 This is not strictly true, since it is indeed a function of a connection which is usually denoted as Γρµν . In
the present case, we will use a connection called the Christoffel connection which is the unique metric compatible
connection in the case of zero torsion. It is symmetric under the exchange of µ↔ ν.

3



In terms of these, quantitatively, the Einstein equation reads:

Rµν −
1

2
gµνR = 8πTµν , (2.2)

where gµν is the metric tensor and Tµν is the energy-momentum tensor, which depends

only on the energy-matter content of the universe. The terms2 on the left hand side,

on the other hand, are of purely geometric origin. Hence this equation relates energy-

momentum to the geometry of the spacetime. Of course it can be read in reverse as

well, in the direction that what kind of an energy-momentum tensor would yield the

geometry at hand.

2.1.1 Black Holes

Black holes are a genuine prediction of general relativity. Classically, they are regions

of spacetime from whose inside there cannot be any causal effect on the rest of the

universe. However the idea of a “black hole” dates back to earlier times, and we

would like to touch upon the history of the concept in a few paragraphs.

John Michell (1783) and Pierre-Simon Laplace3 (1799) independently thought of the

idea of a dark star whose gravitational pull on light particles emitted from its surface

is so high that they never reach infinity, and hence are destined to turn back [40].

It seems that they both assume that light particles have some mass. The main idea

behind the concept of dark star is that there may exist some stars on whose surface

the escape velocity exceeds the speed of light.

As noted in [32] “the Newtonian dark body of Michell-Laplace is not a black hole!”

(emphasis in the original). This is mainly because they think of an escape velocity,

so when the body will be dark for observers at infinity, it will not be so for nearby

observers. It is not really quite important whether what they describe is not a true

black hole or not. What is important is that the concept of a dark star has become

imaginable.

2 The sum of these terms is called the Einstein tensor (Gµν ) which we mention just to note.
3 An English translation of the text can be found in the appendix A of [25].
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Karl Schwarzschild found [57] (please see [58] for an English translation) the first

black hole solution of general relativity in 1916. This solution, known as the Sch-

warzschild black hole, describes a black hole that does not rotate and has zero elec-

trical charge. In the coordinates that bears his name, it is described by the following

metric:

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2, (2.3)

where dΩ2 is the metric on unit 2-sphere. The singularity at r = 2M is fictitious

and can be resolved after a suitable change of coordinates. However, there is a true

singularity located at r = 0.

Kruskal coordinates on the other hand cover the entire manifold and is nonsingular

on the event horizon. The metric reads4:

ds2 =
32M3

r
e−r/2M(−dT 2 + dR2) + r2dΩ2, (2.4)

where T 2 − R2 = (1 − r/2M)er/2M . In the region covered by the Schwarzschild

coordinates T,R coordinates are defined as follow:

T =
( r

2M
− 1
)1/2

er/4M sinh

(
t

4M

)
, (2.5)

R =
( r

2M
− 1
)1/2

er/4M cosh

(
t

4M

)
. (2.6)

The event horizon lies at r = 2M and its location in T,R coordinates satisfy T 2 =

R2, or equivalently T = ± |R|. The singularity, on the other hand, is located at r = 0.

Its location is given by the relation T 2−R2 = 1, or in other words by T = ±
√

1 +R2.

These are two hyperbolae. Figure 2.1 includes representations of these features.

Another merit of this coordinate system, apart from covering the whole manifold, is

that radial light rays follow paths that are straight lines tilted ±45◦ from the T axis;

as in the Minkowski spacetime.
4 For more discussion one may see a standard book on the subject such as Sean Carroll’s [9].
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R

T

Figure 2.1: Description of the whole spacetime manifold in Kruskal coordinates. This

is known as the Kruskal diagram. Zigzag lines correspond to singularity, whereas

dashed lines indicate the event horizon. There are indeed two singularities and event

horizons. One of a white hole (at the bottom) and one of a black hole (at the top).

The region on the right side extending to higher R values is the spacetime outside the

event horizon: the exterior Schwarzschild region. Its symmetric partner on the left

side is the same but a causally disconnected region. They are connected through a

worm hole. The worm hole is present in constant T slices that does not intersect with

any singularity. It is, however, nontraversable: any observer who enters the worm

hole cannot exit through the other mouth of the hole.

6



I+

Singularity

I+

i0i0

i+i+

i−

I−

Singularityi−

I−

Figure 2.2: Penrose diagram for the extended Schwarzschild solution.

The fact that radial light rays follow straight lines in Kruskal coordinates is quite use-

ful in understanding the causal structure of the spacetime, i.e. understanding which

events can effect which other events. However, the representation of the manifold

such as the one in Figure 2.1 extends indefinitely. To remedy the problem, Penrose

diagrams are quite useful. By a conformal transformation, the whole spacetime man-

ifold is represented in a finite amount of paper space. In a conformal transformation,

the light cone structure –hence the causal structure of spacetime– is preserved. Pen-

rose diagram for the Schwarzschild spacetime is drawn in Figure 2.2.

There are three types of infinities seen in the figure: timelike, spacelike and lightlike.

It would be useful to list them in a table:

Table 2.1: Types of infinities present in a Penrose diagram.

i0 Spacelike infinity : where spacelike geodesics begin and end
i− Timelike past : where timelike geodesics begin
i+ Timelike future : where timelike geodesics end
I− Lightlike past : where lightlike geodesics begin
I+ Lightlike future : where lightlike geodesics end

The use of the word “geodesic” in Table 2.1 is important. For example, there are

timelike paths that are asymptotically null and do not end in i+. On the other hand,

there are spacelike paths that may not end or begin at i0. Figure 2.3 illustrates a few

examples.

The geometry of spacetime, hence its causal structure, is determined by general rel-

7



I+

Singularity

I+

i0i0

i+i+

i−

I−

Singularityi−

I−

Figure 2.3: The timelike path that begins at i−, however does not end at i+. It is

asymptotically null and reaches I+ instead. The spacelike path begins at I+ of one

side and ends at I+ of another region.

ativity, which we discussed so far. The geometric quantity Rµν − 1
2
Rgµν is on one

side of the Einstein equation. The other side consists of the energy momentum tensor.

Matter, on the other hand, is governed by quantum laws. In lack of a proper theory

of quantum gravity, one way to approximately reconcile the geometry of spacetime

with the quantum nature of matter is to generalize the quantum field theory to curved

spacetimes. This is our next subject.

2.2 Quantum Field Theory in Curved Spacetimes

In flat spacetime, predictions of quantum field theory (QFT) are in excellent agree-

ment with observations. Building on this experience, one may want to generalize

QFT to arbitrary, curved, spacetimes.

One way of achieving this goal, is to replace the flat metric (ηµν) with an appropriate

metric (gµν) and partial derivatives (∂µ) with covariant derivatives (∇µ).

For example, in Minkowski spacetime, the Lagrangian for a massive real scalar field

is as follows (in Cartesian coordinates):

L =
1

2

(
∂µφ∂µφ+m2φ2

)
. (2.7)

Please note that because we use the mostly positive metric signature, we have m2

8



instead of−m2 which is usually used in books on QFT because they adopt the mostly

negative metric signature convention.

In order to carry this Lagrangian into curved spacetimes, we map the metric and

derivative operations accordingly. Moreover we may add [51] a coupling with the

scalar curvature of the form ξRφ2:

L =
1

2

(
∇µφ∇µφ+m2φ2 + ξRφ2

)
. (2.8)

In n spacetime dimensions, ξ = 0 and ξ = (n− 2)/4(n− 1) correspond to minimal

and conformal couplings [51] respectively. The Euler-Lagrange equation for φ is easy

to derive, it reads:

(
∇2 −m2 − ξR

)
φ = 0. (2.9)

In this section, for the sake of simplicity, we will be interested in the minimally cou-

pled massless real scalar fields. Hence the Lagrangian and Euler-Lagrange equation

we are interested in are:

L =
1

2
∇µφ∇µφ, ∇2φ = 0. (2.10)

In Minkowski spacetime, one can define a QFT vacuum that all the inertial observers

agree upon. On the other hand, the covariant formalism of QFT in curved spacetimes

can be applied to Minkowski spacetime described by non-Cartesian coordinates. One

may use a set of coordinates that are appropriate to, for example, accelerated ob-

servers. It is then seen that the QFT vacuum that inertial observers agree upon is not

the appropriate vacuum state and accelerated observers detect particles. In the next

section we discuss quantitative basis of similar phenomena.

9



i+

I+

i0

I−

i−

Figure 2.4: Penrose diagram describing a gravitational collapse. Event horizon is

indicated with a dashed line, whereas the collapsing matter is found in the grey region.

2.2.1 Particle Creation

Let us begin with an example. For example, in the case of gravitational collapse

we may suppose that the initial matter density is so low that the spacetime is almost

flat. After the implosion, the spacetime is that of Schwarzschild. Both of these are

static spacetimes in themselves, whereas the whole process of gravitational collapse

does not describe a static solution. We consider the portion of spacetime before the

creation of a black hole as the “in-region” and the resulting portion of spacetime after

the presence of the black hole as the “out-region.”

Of course the reason behind these names is the same as in QFT: we think of an initial

stationary region and some interactions that occur afterwards. Later on, we obtain

a final stationary region of spacetime. Not all spacetimes are of this form, however

we will be interested in this type of spacetimes because of the presence of particle

interpretation of the theory in stationary regions. There will be one exception, when

discussing the Hawking radiation, the final region –the Cauchy surface– we choose

is the union of event horizon and lightlike future. There is a timelike Killing vector

in I+; however no such vector exists on the event horizon. Therefore the particle

interpretation is ambiguous on the event horizon. However this state of affairs will

not be an obstacle, because we are mainly interested in the radiation emitted by the
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black hole that will reach the lightlike future.

If ξ is a timelike Killing vector, meaning that ξ · ξ < 0 and ∇µξν +∇νξµ = 0 hold,

a solution of the field equation that satisfies Lξf = −iωf , where ω > 0 and Lξ
indicates the Lie derivative with respect to ξ, is called a mode of positive frequency.

If we use ξ as a timelike coordinate, then this condition is equivalent to ∂ξf = −iωf .

For more on the quality of being a positive frequency solution, readers are referred to

[13] and [77].

Suppose we have two sets of positive frequency solutions: {f out
k }k in the in-region

and {f in
k }k in the out-region5. Moreover we require these solutions to be normalized

according to the U(1)-inner product to be described shortly as follows: (fk, fl) =

δ(k− l), (fk, f
∗
l ) = 0. We deal with the case where k is a continuous variable. When

it takes discrete values, the situation is similar: Dirac delta distributions are mapped

to Kronecker delta symbols, integrals below are replaced with sums and so on.

We expand the field solution φ in each region, in and out, respectively.

φ =

∫
dk
(
f out
k aout

k + f out,∗
k aout,†

k

)
, (2.11)

=

∫
dk
(
f in
k a

in
k + f in,∗

k ain,†
k

)
. (2.12)

The recipe of second quantization is that the coefficients ain, aout of f in, f out are to be

regarded as operators.

Because the sets {f out
k }k∪{f

out,∗
k }k and {f in

k }k∪{f
in,∗
k }k are complete we can express

an element of each set in terms a superposition of functions in the other set. The

completeness property allows one to express aout in terms of ain and ain,†, similarly ain

in terms of aout and aout,†.

The definition of the U(1)-inner product is quite important in this regard. It is an

inner product between two field solutions and is defined as follows6:

5 We find the notation adopted in [13] convenient.
6 For a detailed derivation, the reader may consult to Appendix B.
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(φ, ψ) = i

∫
Σ

dnx |g|1/2 nµ(ψ∇µφ∗ − φ∗∇µψ). (2.13)

For example, by looking at the expansion of the field φ in terms of out-modes (2.11)

we see that aout
k = (f out

k , φ) is satisfied. However, we can also use the in-mode expan-

sion (2.12) of the field. This will yield:

aout
k =

∫
dl
[
(f out
k , f in

l )ain
l + (f out

k , f in,∗
l )ain,†

l

]
. (2.14)

If we know the results of inner products between in and out mode functions, we would

know the expression of aout in terms of ain and ain,†. This information would give us,

for example, the number of particles seen by an out-observer that the in-vacuum had.

The results of the following inner products are called Bogoliubov coefficients, αkl and

βkl defined as follows:

αkl = (f in
l , f

out
k ), βkl = −(f in,∗

l , f out
k ). (2.15)

For instance, we would like to expand f out interms of f in and f in,∗. This is linear

algebra. The result would be:

f out
k =

∫
dl
[
(f in
l , f

out
k )f in

l − (f in,∗
l , f out

k )f in,∗
l

]
, (2.16)

=

∫
dl(αklf

in
l + βklf

in,∗
l ). (2.17)

By taking the inner product of both sides with f in
l′ or f in,∗

l′ one may verify the expan-

sion. By expressing the inner products (f out
k , f out

l ) = δ(k − l) and (f out
k , f out,∗

l ) = 0 in

the in-basis, one may obtain the following identities:

∫
dq(α∗kqαlq − β∗kqβlq) = δ(k − l), (2.18)∫
dq(αkqβlq − βkqαlq) = 0. (2.19)
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Let us return to our aim of expressing aout in terms of in-operators. Using the above-

defined Bogoliubov coefficients, we can rewrite (2.14) in a more concise notation:

aout
k =

∫
dl(α∗kla

in
l − β∗kla

in,†
l ). (2.20)

On the other hand, with two sets of annihilation/creation operators, we define two

vacua, in-vacuum and out-vacuum as follows:

∀k, ain
k | in 〉 = 0; ∀k, aout

k | out 〉 = 0. (2.21)

We are now in a position to ask how many particles there are in any given out-mode in

the in-vacuum. The answer depends on the Bogoliubov coefficient βkl. Expectation

value of an out-mode number operator in the in-vacuum needs to be calculated. By

using expression (2.20) for aout
k , one gets aout

k | in 〉 = −
∫
dl β∗kla

in,†
l | in 〉. Hence one

finds:

〈 in | aout,†
k aout

k | in 〉 =

∫
dl |βkl|2 , (2.22)

where the commutation relation [ain
k , a

in,†
l ] = δ(k− l) has been used. If ∀k, l; βkl = 0,

by (2.18), we see that αkl is a unitary transformation: positive frequency solutions

{f out
k }k and {f in

k }k are related by a unitary transformation. On the contrary, if this is

the case, naturally ∀k, l; βkl = 0.

We shall give two examples where particle creation occurs. The first one is called the

Unruh radiation [71]. It concerns uniformly accelerated observers on flat background

geometry. The second example is the celebrated Hawking radiation [24]. It is about

the radiation emitted by a black hole.

2.2.2 Unruh Radiation

Here we suppose the spacetime is 1+1 dimensional, because it makes the illustration

of the concept much more convenient. The field equation in the massless case is
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∇2φ = 0. If we write this explicitly we obtain gµν∂µ∂νφ−gµνΓλµν∂λφ = 0 where Γλµν

is the Christoffel symbol. We solve the field equation first in Cartesian coordinates

and then solve it in, what is called, the Rindler coordinates.

In Cartesian coordinate system, all the Christoffel symbols Γλµν vanish. Moreover

since the metric tensor is gµν = diag(−1,+1), the inverse metric turns out to be

numerically equal to the metric: gµν = diag(−1,+1). All in all, the field equation is

found as follows:

(−∂2
t + ∂2

x)φ = 0. (2.23)

Positive frequency solutions are exp(−iωt + ikx) where ω = |k| and k ∈ R∗. We

regard these solutions as f in
k , after normalizing them. Normalized f in

k solutions are as

follows:

f in
k = (4πω)−1/2e−iωt+ikx. (2.24)

The portion of spacetime covered by the Rindler coordinates lies in the whole Minkowski

spacetime that is covered by the usual Cartesian coordinates, therefore the use of in-

/out terminology is not as it is in the sense of describing two different regions of

spacetime that are stationary. It is, however, in terms of a re-interpretation of the

quantum field at hand by different observers.

Rindler coordinates7 are defined as follows:

t =
1

a
eaξ sinh(aη), x =

1

a
eaξ cosh(aη), (2.25)

where both η and ξ range from −∞ to ∞ and a is a positive parameter. These co-

ordinates, however, only cover a quadrant of the Minkowski spacetime. We could

equally write the above definition with t, x replaced by −t,−x. This would corre-

spond to another quadrant of the spacetime. If we denote the former coordinates as
7 The coordinates for which we use the name Rindler, η, ξ, are related to the original coordinates introduced

[56] by Wolfgang Rindler, T,X through T = aη and X = exp(aξ)/a.
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x

t

Figure 2.5: An illustration of Rindler wedges. Constant η surfaces are straight lines

passing through the origin, whereas constant ξ surfaces are hyperbolae that corre-

spond to worldlines that describe uniformly accelerated motion.

tR, xR and the latter ones as tL, xL, the proper definition that handles both cases will

be as follows:

tL = −1

a
eaξ sinh(aη) xL = −1

a
eaξ cosh(aη), (2.26)

tR =
1

a
eaξ sinh(aη) xR =

1

a
eaξ cosh(aη). (2.27)

Curves that are parameterized by η, on which ξ is constant, correspond to worldlines,

which are hyperbolae, that describe uniformly accelerated motion: aµaµ is constant

on each of these worldlines where aµ is the acceleration four-vector. Requiring the

magnitude of acceleration vector to be constant is the correct restriction to describe

uniform acceleration, it reproduces the correct trajectory in the Newtonian limit.

On the other hand, constant η surfaces on which ξ varies, are lines that are described

by t/x = tanh(aη). Figure 2.5 illustrates constant η or ξ surfaces.

In Rindler coordinates, the metric is found to be:
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ds2 = e2aξ(−dη2 + dξ2). (2.28)

The non-vanishing Christoffel symbols are given as:

Γξξξ = Γξηη = Γηηξ = a. (2.29)

These are needed in the expansion of the field equation:

∇2φ = gµν∂µ∂νφ− gµνΓλµν∂λφ = 0. (2.30)

In this case the part that contains the Christoffel symbol vanishes. The equation be-

comes e−2aξ(−∂2
η +∂2

ξ )φ = 0. Because the exponential factor in front never vanishes,

we get:

(−∂2
η + ∂2

ξ )φ = 0. (2.31)

The positive frequency solutions are easy to find. However, there is a subtlety. In

Minkowski spacetime the timelike Killing vector we choose to define positive fre-

quency is ∂t. In the right Rindler wedge, ∂η points in the same direction. So, solutions

e−iωη+ikξ are positive frequency in this wedge. However, in the left Rindler wedge,

∂t and ∂η points in opposite directions. Therefore, we choose −∂η as timelike Killing

vector in the left Rindler wedge. For that reason, positive frequency solutions in this

wedge are eiωη+ikξ.

The U(1)-inner product in left or right Rindler wedges are given as follows:

(φ, ψ)R,L = ∓i
∫

const. η
dξ(ψ∂ηφ

∗ − φ∗∂ηψ), (2.32)

where ‘−’ sign is for the right Rindler wedge, whereas the ‘+’ is for the left Rindler

wedge. When normalized, positive frequency solutions in left or right Rindler wedges

are found to be:
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fLk = (4πω)−1/2eiωη+ikξ, (2.33)

fRk = (4πω)−1/2e−iωη+ikξ. (2.34)

Our aim is to calculate the number of particles in each mode that an accelerated

observer will see in the Minkowski vacuum. We could directly start calculating the

Bogoliubov coefficients, however there is a more elegant way due to William Unruh

[71]. The approach is to construct solutions out of solutions in each Rindler wedge,

that is analytic in the Minkowski spacetime. Reference [4] gives the following two

positive frequency solutions, which we normalize and define as f (1)
k , f

(2)
k :

f
(1)
k =

eπω/2afRk + e−πω/2afL,∗−k
[2 sinh(πω/a)]1/2

, f
(2)
k =

e−πω/2afR,∗−k + eπω/2afLk
[2 sinh(πω/a)]1/2

. (2.35)

We can expand the field in these modes as follows:

φ =

∫
dk (f

(1)
k a

(1)
k + f

(1),∗
k a

(1),†
k + f

(2)
k a

(2)
k + f

(2),∗
k a

(2),†
k ), (2.36)

and operators a(1)
k , a

(2)
k annihilate Minkowski vacuum state, |M 〉.

On the other hand, the field can be expanded in mode functions in left and right

Rindler wedges:

φ =

∫
dk (fLk a

L
k + fL,∗k aL,†k + fRk a

R
k + fR,∗k aR,†k ). (2.37)

The merit and elegance of this approach is that, by expanding and reordering the

terms in the integrand appearing in (2.36), one can easily find expression for aLk , a
R
k

in terms of a(1)
k , a

(2)
k , a

(1),†
k , a

(2),†
k . After all, this is what we are after.

Using the definitions (2.35) in (2.36) and comparing the result with equation (2.37)

we find:
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aLk =
e−πω/2aa

(1),†
−k + eπω/2aa

(2)
k

[2 sinh(πω/a)]1/2
, aRk =

eπω/2aa
(1)
k + e−πω/2aa

(2),†
−k

[2 sinh(πω/a)]1/2
. (2.38)

In order to determine the average occupation number of the mode fLk that an accel-

erated observer sees in the Minkowski vacuum, we need to calculate the expectation

value of the corresponding number operator: 〈M | aL,†k aLk |M 〉. Using (2.38) we

find aLk |M 〉 = e−πω/2aa
(1),†
−k |M 〉 /[2 sinh(πω/a)]1/2. Hence the expectation value

of number operator becomes:

〈M | aL,†k aLk |M 〉 =
δ(0)

e2πω/a − 1
. (2.39)

The result of 〈M | aR,†k aRk |M 〉 is the same. The appearance of the delta function

follows from the continuum normalization of mode functions. If we constructed wave

packets out of fLk , f
R
k , we would have obtained δ−k,−k, instead of δ(k − k), which

equals one. This is in the end a Planckian distribution with temperature8 T = a/2π.

It is called the Unruh temperature. We have seen that Minkowski vacuum is a thermal

state, and is not empty.

Although we will allocate more space to the construction of wave packets in the next

section while discussing the Hawking radiation, let us briefly mention the method and

see that we will get a nondivergent expectation value for the number operator.

We already know the relation between fL, fR and f (1), f (2). This information will be

quite useful. By superposing modes of similar wave vector, we create wave packets

as follows9:

gL,Rjn ≡ ε−1/2

∫ (j+1)ε

jε

dk e−i2πnk/εfL,Rk ; j, n ∈ Z, (2.40)

for some ε > 0. Let us call the associated annihilation operators with these wave

packets as bL,Rjn . We can expand the field as follows:

8 Note that if we used units for which ~, G and c are not unity, we would get T = ~a/2πc.
9 As Hawking did in [24].
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φ =
∑
jn

(
gLjnb

L
jn + gRjnb

R
jn + gL,∗jn b

L,†
jn + gR,∗jn b

R,†
jn

)
. (2.41)

On the other hand, these wave packets satisfy the discrete versions of normalization

conditions, i.e. (gL,Rjn , gL,Rj′n′ ) = δjj′δnn′ and (gL,Rjn , gL,R;∗
j′n′ ) = 0 with any inner product

between right and left modes vanishing. This property allows us to write:

bL,Rjn = (gL,Rjn , φ). (2.42)

Expressing the field as an integral as in (2.36) allows us to calculate the expectation

value of the number operator bL,R;†
jn bL,Rjn in the in-vaccum easily. We provide the final

result:

〈 in | bL,R;†
jn bL,Rjn | in 〉 = ε−1

∫ (j+1)ε

jε

dk
1

e2πω/a − 1
. (2.43)

We could take the integral exactly, but we are interested in the regime when ε � 1

is satisfied. In any case, this integral equals ε times the integrand evaluated at some

point in the interval (jε, jε + ε). Because ε � 1 is satisfied, in the zeroth order we

can choose this point as jε and hence associate a frequency ω to the wave packet as

ω = jε. Hence we find, in the limit ε→ 0+:

〈 in | bL,R;†
jn bL,Rjn | in 〉 =

1

e2πω/a − 1
. (2.44)

Here we have a result that is finite and has no delta function singularity.

2.2.3 Hawking Radiation

The discussion of Hawking radiation in the book by Alessandro Fabbri and José

Navarro-Salas [13] is quite good and lucid, we will mainly follow it in regard to

its approach and notation.

We begin by considering the spacetime described by the Vaidya metric:
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I+

i0

I−

i−

Figure 2.6: Penrose diagram that describes the collapse of a null shell. The event

horizon is shown as a dashed line.

ds2 = −
(

1− 2M(v)

r

)
dv2 + 2dvdr + r2dΩ2. (2.45)

When M(v) is constant we see that this is the Schwarzschild metric in Eddington-

Finkelstein coordinates. Consequently then, if M = 0 is satisfied we recover the

Minkowski metric when we make a change of coordinate from v to t through v =

t+ r.

We consider the implosion of a spherically symmetric null shell as described in Fig-

ure 2.6. The points in spacetime in whose future the implosion event lies constitute

the flat portion of the whole spacetime, whereas the ones that are in the future of the

implosion consitute the curved (Schwazrschild) portion.

Both in flat and curved portions of the spacetime we use spherical coordinates. In

each region the metric reads:

ds2 =

−dt
2 + dr2 + r2dΩ2, (flat)

−(1− 2M
r

)dt2 + (1− 2M
r

)−1dr2 + r2dΩ2. (curved)
(2.46)

Because of the spherical symmetry present in each region, we can decompose the

field solutions into spherical harmonics:
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hl(t, r)

r
Yl,m(θ, φ). (2.47)

This combination satisfies the field equation ∇2φ = 0. In the in-region, we name

hl’s as hin
l and in the out-region as hout

l . These two functions satisfy respectively the

following equations:

[
−∂2

t + ∂2
r −

l(l + 1)

r2

]
hin
l = 0, (2.48)[

−∂2
t + ∂2

r∗ − Vl(r)
]
hout
l = 0, (2.49)

where r∗ is known as the tortoise coordinate that is defined through r∗ ≡ r +

2M ln(r/2M − 1) and the potential term is:

Vl(r) =

(
1− 2M

r

)[
l(l + 1)

r2
+

2M

r3

]
. (2.50)

Using the two given metrics, it is an easy though somewhat lengthy process to derive

these.

Since I− is the lightlike past, there can only be incoming waves present in this region.

Similarly, there can only be outgoing wave solutions that reach I+. Because these

regions are approached as r → ∞, we can easily solve the equations asymptotically

and obtain positive frequency solutions in I− and I+. As done in [13], we will first

neglect the centrifugal and potential terms in the equations above. The importance of

these terms is to yield the graybody factors. After all, there is only one spacetime and

one field equation on it. When we trace back the evolution of a positive frequency

outgoing mode in I+ backwards, the solution will be effected by the presence of

these terms and as it reaches I− it will be a superposition of negative and positive

frequency incoming modes. In the end, these terms determine the graybody factors

by determining which modes at I− are present in which amount. We will handle the

graybody factors later on.

Outgoing positive frequency solution near I+ is e−iωuoutYl,m(θ, φ)/r, and the incom-

ing one near I− is e−iωvinYl,m(θ, φ)/r. For notational consistency we defined uout =
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t−r∗, vout = t+r∗ and uin = t−r, vin = t+r. The coordinates t, r in each case refer

to the ones in the corresponding metric: there is no reason that they are the same, but

we will match the two metrics along the null infalling shell. This last step is required

in determining the form of f out around I−.

The above mentioned solutions are unnormalized. In order to normalize them, we use

the U(1)-inner product which are as follows for each region:

(φ, ψ)I+ = −i
∫
dΩdu r2(ψ∂uφ

∗ − φ∗∂uψ), (2.51)

(φ, ψ)I− = −i
∫
dΩdv r2(ψ∂vφ

∗ − φ∗∂vψ). (2.52)

The integrand in the first equation also involves a factor of
(
1− 2M

r

)−1 when it is

derived for constant vout hypersurfaces, however because I+ is reached as v → ∞,

this factor approaches 1. We also divided each inner product by two, because it is

unnecessary to take into account these constant factors.

Using these inner products, one can see that the normalized positive frequency solu-

tions are:

f in
ω = (4πω)−1/2 e

−iωvin

r
Ylm(θ, ϕ), f out

ω = (4πω)−1/2 e
−iωuout

r
Ylm(θ, ϕ). (2.53)

Because whether the wave is ingoing or outgoing is already determined by the use of

vin or uout, we have chosen ω as a subscript instead of the usual k.

In the end our aim is to calculate the Bogoliubov coefficients, which includes eval-

uation of inner products. We choose the hypersurface to evaluate these quantities

as lightlike past I−. However, we know the form of f out
k only near I+; we need to

be able to evolve it backward in time to know its form near I−. This process, on

the other hand, requires passing from out-region to in-region. For that purpose, we

should match the two metrics along the imploding null shell.

We basically require r coordinate to be the same on v = v0, that is rin(v0, uin) =

rout(v0, uout). Please see Figure 2.7. In the in-region we have rin = (vin − uin)/2 and
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Figure 2.7: Gravitational collapse scenario via radially imploding null shell.

in the out-region r∗ = rout + 2M ln(rout/2M − 1) = (vout − uout)/2. Evaluating the

last equality at v = v0 and using rin(v0, uin) in place of rout(v0, uout) we obtain the

following relation:

uout = uin − 4M ln

(
v0 − uin

4M
− 1

)
. (2.54)

We would like to evolve an outgoing mode near I+ backward in time. It is e−iωuout/r

to begin with10. When crossing v = v0 we should use (2.54) in order to find the value

of uin that matches to the given uout. Now the wave has the form exp(−iωuout(uin))/r.

We can trace this mode back to r = 0 where it turns into an ingoing mode coming

from I−. Because uin = t+r and vin = t−r, at the origin these two coordinates have

equal values. We should interchange uin in uout(uin) with v that has the same value as

uin. Now near I−, we have the solution exp(−iωuout(v))/r. There is one subtlety to

consider. For v > vH , as can be seen from Figure 2.7, incoming modes do not reach

I+ but instead are trapped behind the horizon where in the end they hit the singu-

larity. For that purpose we need to multiply what we have found by an appropriate

Heaviside step function in order to indicate that the support of these modes at I− is

v ∈ (−∞, vH). Because there should be no confusion, we use the letter ‘θ’ to denote

this function. The factor we need to multiply the solution with is θ(vH − v). Finally,

10 We suppress the spherical harmonic part and the normalization constant.
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we see that when traced backwards, an outgoing mode exp(−iωuout)/r happens to be

exp(−iωuout(v))θ(vH − v)/r.

There is another subtlety, on the other hand, and is not vitally important to find the

form of the mode near I−. It is about the relative phase between the incoming and

the resulting outgoing mode that occurs after the wave hits r = 0 in the flat region.

We trace back the evolution of the following outgoing mode:

f out
ω = (4πω)−1/2 e

−iωuout

r
Ylm. (2.55)

When passing the imploding null shell, we expect the wave to be continuous, for that

purpose the matching wave in the in-region is:

(4πω)−1/2 e
−iωuout(uin)

r
Ylm. (2.56)

We know on the other hand, when traced back to I−, what is obtained should be

proportional to the following:

(4πω)−1/2 e
−iωuout(v)

r
Ylm. (2.57)

In the end the whole solution in the in-region should be what is in (2.56) plus a

constant times (2.57). Because there is no source at the origin, this constant should

be one and we obtain the whole solution in the in-region as follows:

(4πω)−1/2

(
e−iωuout(uin)

r
− e−iωuout(v)

r
θ(vH − v)

)
Ylm. (2.58)

Therefore, we conclude that when traced backwards the outgoing mode f out
ω is found

to be the following near I−:

− (4πω)−1/2 e
−iωuout(v)

r
θ(vH − v)Ylm. (2.59)

After this point, we need to calculate the Bogoliubov coefficients between the in-

modes and the out-modes. Since the angular integration of the inner product (2.52) is
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over S2 with no weight and the field modes are proportional to spherical harmonics

which are orthonormal, we suppress angular indices such as l,m in Bogoliubov coef-

ficients and simply write αωω′ , βωω′ . Because nonvanishing Bogoliubov coefficients

must have the same angular indices on both sides. For a derivation of the coefficients,

the reader is referred to Appendix C. The result is:

αωω′ = −iσ
(
ω′M

π

)1/2
eσ2πωM

sinh1/2(4πωM)

ei(ω
′−ω)vH

(4M)i4ωM |ω′ − ω|1+i4ωM
, (2.60)

βωω′ = i

(
ω′M

π

)1/2
e−2πωM

sinh1/2(4πωM)

e−i(ω
′+ω)vH

(4M)i4ωM(ω′ + ω)1+i4ωM
, (2.61)

where σ = sgn(ω′ − ω). If we used these Bogoliubov coefficients, the number of

particles emitted from the black hole an observer would detect near I+ would diverge.

For this reason, similar to what Hawking did in his seminal article [24] we shall

construct wave packets out of out-modes. We define a wave packet gjn, not to be

confused with the metric, as follows:

gjn ≡ ε−1/2

∫ (j+1)ε

jε

dω e−i2πnω/εf out
ω ; j ∈ Z≥0, n ∈ Z. (2.62)

It is an easy exercise to show that (gjn, gj′n′) = δjj′δnn′ and (gjn, g
∗
j′n′) = 0. We

can expand gjn in terms of in-modes and read out the new semi-discrete Bogoliubov

coefficients:

gjn =

∫
dω (αjnωf

in
ω + βjnωf

in,∗
ω ). (2.63)

Similar to what we did before, we can express the annihilation operator bjn related to

these wave packets in terms of ain
ω and ain,†

ω :

bjn =

∫
dω (α∗jnωa

in
ω − β∗jnωain,†

ω ). (2.64)

It then follows that the expectation value of the number operator b†jnbjn in the in-

vacuum is:
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〈 in | b†jnbjn | in 〉 =

∫
dω′ |βjnω′|2 . (2.65)

Because jε ∼ ω when ε� 1, we have chosen the integration variable as ω′.

Expressing the result of the inner-product between these wave packets, one can obtain

relations between these coefficients. For example, the analog of (2.18) reads as:

∫
dω′ (α∗jnω′αj′n′ω′ − β∗jnω′βj′n′ω′) = δjj′δnn′ . (2.66)

For j = j′, n = n′ we obtain:

∫
dω′ (|αjnω′ |2 − |βjnω′|2) = 1. (2.67)

Finding a relation between |αjnω′| and |βjnω′ | we can use (2.67) to calculate (2.65).

Rest of the Appendix C focuses on semi-discrete Bogoliubov coefficients.

These are found to be as follows:

αjnω′ = −iσh(ω′; ε)

∫ (j+1)ε

jε

dω
eσ2πωM

sinh1/2(4πωM)

e−i(vH+2πn/ε)ω

(4M)i4ωM |ω′ − ω|1+i4ωM
, (2.68)

βjnω′ = ih∗(ω′; ε)

∫ (j+1)ε

jε

dω
e−2πωM

sinh1/2(4πωM)

e−i(vH+2πn/ε)ω

(4M)i4ωM(ω′ + ω)1+i4ωM
, (2.69)

where h(ω′; ε) = eiω
′vH (ω′M/πε)1/2.

Now, we shall suppose ε � 1 and Mε � 1 to hold at the same time. This is

reasonable. After all we are interested in masses M that is well over the Planck mass

(mPlanck = (~c/G)1/2 = 2.18 × 10−8 kg) where classical spacetime picture, general

relativity, holds. For example, solar mass equals 1.99× 1030 kg [78]. In Planck units,

it equals 9.14 × 1037. So one has pretty much freedom in satisfying ε � 1 and

Mε� 1 at the same time.

Notice that the integration over f out
ω to construct wave packets gjn is taken from ω =

jε to ω = jε + ε. Since ε� 1, we can say that the frequency, ω, of the wave packet
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gjn is about jε: so ω ≈ jε.

We focus on the Hawking radiation observed at late times. Since an outgoing mode

at late times when traced back over time is highly blue shifted (see equation (2.57))

we expect that almost all of the contribution to the integral
∫
dω′ |βjnω′ |2 comes from

the region where ω′ � ω.

Now, if Mε � 1, the exponentials of real-valued arguments appearing in (2.68) and

(2.69) are the dominant terms that determine the result of the integral. On the other

hand for ω′ � ω, one has ω′ − ω ≈ ω′ + ω. Therefore, in this regime, one can

conclude that |αjnω′/βjnω′| = exp(4πωM), where we wrote ω in place of jε. Also

remember that σ = 1.

On the contrary, if ω′ � ω, one may say that |αjnω′/βjnω′| = 1. Let us separate the

integral (2.67) in three parts:

(∫ �ω
0

+

∫
∼ω

+

∫ ∞
�ω

)
dω′ (|αjnω′|2 − |βjnω′|2) = 1. (2.70)

Because |αjnω′/βjnω′ | = 1 in the first part, there is no contribution coming from

this part of the integral. We neglect the middle part where ω′ ∼ ω because at late

times we expect backtraced waves to be high frequency and the resulting Bogoliubov

coefficients between high and low frequency modes to be negligible. It is this part we

neglect when considering the late time radiation.

In the last part, because |αjnω′/βjnω′ | = exp(4πωM) holds we can write:

∫ ∞
�ω

dω′ (e8πωM − 1) |βjnω′ |2 = 1 (at late times). (2.71)

Finally, we obtain the desired result for the celebrated Hawking radiation:

〈 in | b†jnbjn | in 〉 =
1

e8πωM − 1
. (2.72)

When we compare this equation with the Planckian distribution 1/(e~ω/kT − 1) (in

the text we set ~ = k = 1) we see that Hawking radiation is at a temperature of
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T = 1/8πM , which is known as the Hawking temperature of a black hole.

Finally, we would like to comment on the graybody factors. In order to fully account

for the Hawking radiation, we should not have omitted the centrifugal and potential

terms in equations (2.48) and (2.49). This would in turn reduce the amplitude of

the wave that reaches as Hawking radiation to I+. This is a scattering problem:

some portion of the wave returns to event horizon whereas the remaining portion is

observed as black hole vapor. For that purpose, we should map the outgoing wave

packets gjn to g′jn = (phase)× Γ
1/2
jn gjn for some Γjn > 0. The coefficient Γjn should

not depend on any other parameter, apart from angular l,m that we have suppressed

so far, as Bogoliubov coefficients do. Because this is a scattering problem and in

providing the indices ‘j, n’ we give all the information about the wave. Therefore,

while the backtraced mode near I− will be normalized, the modes that reach I+ will

give the following inner product (g′jn, g
′
j′n′) = Γjnδjj′δnn′ . Therefore the relation

(2.67) would be modified as:

∫
dω′ (

∣∣α′jnω′∣∣2 − ∣∣β′jnω′∣∣2) = Γjn, (2.73)

where α′jnω′ = (f in
ω′ , g

′
jn) and βjnω′ = −(f in,∗

ω′ , g
′
jn) are the new Bogoliubov coeffi-

cients. Because the change with respective to earlier Bogoliubov coefficients is only

in magnitude, the ratio between them will remain intact. Hence the spectrum we

would obtain for particles that reach I+ is:

〈 in | b†jnlmbjnlm | in 〉 =
Γjnlm

e8πωM − 1
, (2.74)

where we have written angular dependency explicitly.

Because the expansion of the field is the same as before, therefore is the relation of

bjn to ain
ω′ and ain,†

ω′ .

For more discussion on quantum field theory in curved spacetimes, readers may like

to consult [41], [51] and [4].
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2.3 Quantum Entanglement

Our main guide in this section will be the lecture notes of John Preskill [54]. There-

fore we do not refer to this source everytime we use it. When other sources are used,

we shall make explicit references.

Entanglement is a phenomenon that is not found in classical physics and is uniquely

of quantum nature. When the Hilbert space (H) describing the quantum system of

interest is bipartite, i.e. H = HA ⊗ HB for some HA,HB, entangled states are

present inH. An entangled state is one that cannot be written as a product state11.

As it is the case with almost any concept, there are degrees of entanglement. For that

purpose, we turn to Schmidt decomposition of quantum states.

We consider a bipartite Hilbert space: H = HA ⊗HB and a state | ψ 〉 in it. Because

it is inH, we can express it as follows:

| ψ 〉 =
∑
ij

aij | i 〉 ⊗ | j ) , (2.75)

where {| i 〉}i, {| j )}j are two orthonormal bases inHA,HB. Let us define new vec-

tors in HB as | i′ ) ≡
∑

j aij | j ), where some | i′ ) vectors may be zero depending

on aij . We write | ψ 〉 as:

| ψ 〉 =
∑
i

| i 〉 ⊗ | i′ ) . (2.76)

On the other hand, the system as a whole has the density matrix ρ = | ψ 〉 〈 ψ |. By

performing a partial trace on part B, one can obtain a reduced density matrix12 ρA

that can be used to calculate the expectation values of experiments performed only on

part A, disregarding the existence of part B. Because density matrices are Hermitian,

they can be diagonalized and ρA is no exception. We now choose {| i 〉}i as the basis

in which ρA is diagonal, that is:
11 A product state | ψ 〉 ∈ H is a state that can be written as | ψ 〉 = | a 〉 ⊗ | b 〉 for some | a 〉 ∈ HA, | b 〉 ∈
HB .

12 Explicitly, ρA = trB ρ =
∑
i ( i | ρ | i ). Notice that whereas ρ acts on the states in the whole Hilbert space,

ρA acts only on the ones that are in HA. This is easy to see. One can expand ρ as ρ =
∑
ijkl ρijkl | i 〉 〈 j | ⊗

| k ) ( l | and once the trace over the part B is performed, what is obtained is again a density matrix but this time
the one that acts only onHA.
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ρA =
∑
i

pi | i 〉 〈 i | . (2.77)

What we are going to do is to calculate ρA by performing the partial trace of ρ over

part B explicitly.

ρA = trB ρ, (2.78)

=
∑
i

( i | ρ | i ) , (2.79)

=
∑
i

(i|ψ〉 〈ψ|i) , (2.80)

Using | ψ 〉 =
∑

j | j 〉 ⊗ | j′ ), we continue

=
∑
ijk

(i|k′) | k 〉 〈 j | (j′|i) , (2.81)

=
∑
jk

(j′|k′) | k 〉 〈 j | . (2.82)

However we know that ρA is diagonal in the basis we have chosen for HA. There-

fore (j′|k′) must be proportional to Kronecker delta and moreover it must yield the

correct eigenvalue of ρA. In other words, (j′|k′) = δjkpj must be satisfied where the

summation convention is not used.

We see that the vectors | i′ ) turn out to be orthogonal after all, albeit not necessarily

orthonormal13. We would like to rewrite these vectors as its norm times a unit vector.

For that purpose we are in need of notation for these new vectors. It would be nice

to use | i′ 〉 to denote these new vectors in HB. First it is a clean notation, second

it somehow hints at the dependence of | i′ 〉 on the particular basis, that diagonalizes

ρA, chosen inHA.

In the end, we have shown that we can write any vector | ψ 〉 in a bipartite Hilbert

space in the following form known as the Schmidt form:

13 If they are orthonormal, that means some pi′ is equal to one. However, the condition that the eigenvalues
(which are nonnegative) of any density matrix sum up to one requires all other eigenvalues to be vanishing in this
case. Hence there happens to be only one nonzero | i′ ) vector.
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| ψ 〉 =
∑
i

p
1/2
i | i 〉 ⊗ | i′ 〉 . (2.83)

The number of nonzero eigenvalues of ρA, i.e. nonzero pi values, is called the Schmidt

number of | ψ 〉. A product state has the Schmidt number one, of course. Therefore,

another way of saying whether the state is entangled or not is to look if its Schmidt

number is greater than one. If it is, the state is entangled.

We have classified some states in a bipartite Hilbert state as entangled and mentioned

that there are degrees of entanglement. Here we shall mention a particular type of

entanglement: maximal entanglement. We quote [65] as regards its meaning:

The meaning of maximal entanglement is that for every observable in A,
one can predict the result of measuring it by measuring the corresponding
observable in B.

A state is called maximally entangled if and only if the reduced density matrix ρA is

proportional to identity operator in HA [65]. We provide a mathematically precise

interpretation of the quote above, in the following theorem.

Theorem 1. A bipartite Hilbert space H = HA ⊗ HB is considered where N ≡
dimHA = dimHB. Then, a state | ψ 〉 ∈ H is maximally entangled if and only

if it can be written as | ψ 〉 =
∑

i αi | ai 〉 ⊗ | Ai 〉 for some αi ∈ C where | ai 〉’s
are orthonormal eigenvectors of any chosen Hermitian operator O and | Ai 〉’s are

eigenvectors of U †O′U which is similar to O and U is a unitary matrix.

Proof. (⇒). First, we suppose that | ψ 〉 is maximally entangled. In the Schmidt

decomposition, we used a basis for HA that diagonalizes the reduced density ma-

trix ρA. Because ρA is proportional to identity, every orthonormal basis satisfies this

condition. For any Hermitian operator O, as an orthonormal basis, we can choose

its eigenvectors | ai 〉. If there are repeated eigenvalues, it should be understood that

eigenvectors of the same eigenvalue are made orthonormal to each other through the

Gram-Schmidt process. After the Schmidt decomposition, we can write | ψ 〉 as fol-

lows:
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| ψ 〉 = N−1/2
∑
i

| ai 〉 ⊗ | Ai 〉 . (2.84)

The point is that | Ai 〉’s are orthonormal as well. Because of this fact, there exists a

unitary operator, which is of course invertible, U such that | ai 〉 = U | Ai 〉. It then

follows that if | ai 〉 is an eigenvector ofO with eigenvalue λi, | Ai 〉 is an eigenvector

of O′ = U †OU with the same eigenvalue. First part of the proof is complete.

(⇐). Second, we suppose that for every Hermitian operator O we can write | ψ 〉 in

the following form:

| ψ 〉 =
∑
i

αi | ai 〉 ⊗ | Ai 〉 , (2.85)

where | ai 〉’s are orthonormal eigenvectors of O and | Ai 〉’s are those of a similar

operator O′. We would like to show that ∀i, αi 6= 0.

Suppose ∃i, αi = 0, and renumerate the indices such that α1 = 0, α2 6= 0. Instead of

O, consider the following operator:

T =
λ

2
(| a1 〉+ | a2 〉)(〈 a1 |+ 〈 a2 |) +

3λ

2
(| a1 〉 − | a2 〉)(〈 a1 | − 〈 a2 |)

+
N∑
i=3

λi | ai 〉 〈 ai | , (2.86)

where λi is the eigenvalue of O with eigenvector | ai 〉 and λ is some nonzero real

number. In the expansion (2.85) of | ψ 〉, α1 is already zero, it does not matter if

| a1 〉 is not an eigenvector of T . However, even though all | ai 〉 for i > 2 are eigen-

vectors of T ; | a2 〉 is not one of its eigenvectors. We have obtained a contradiction.

Therefore, ∀i, αi 6= 0 must be true.

When we show all of αi’s have equal magnitude, the proof will have been completed.

Our approach will be similar. We consider an operatorO and expand | ψ 〉 in the same

way:
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| ψ 〉 =
∑
i

αi | ai 〉 ⊗ | Ai 〉 , (2.87)

however this time we know that ∀i, αi 6= 0. Let us choose O that has distinct eigen-

values. We have already required | ai 〉’s to constitute an orthonormal set, however

because O has distinct eigenvalues, O′ that is similar to it does have distinct eigen-

values as well. Eigenvalues are independent of the basis chosen. We conclude that

| Ai 〉’s are orthonormal to each other.

We suppose there are two αi values whose moduli are not equal to each other. After

renumerating the indices in the expansion of | ψ 〉, we say these are α1 and α2.

Instead of the operator O, we could have chosen Õ that has eigenvectors | + 〉, | − 〉,
| a3 〉 , . . . . First of these two are given by the following definitions:

| + 〉 =
| a1 〉+ | a2 〉√

2
| − 〉 =

| a1 〉 − | a2 〉√
2

. (2.88)

Because | a1 〉 and | a2 〉 are unitarily related to | + 〉 and | − 〉, the operator Õ is

similar to O. When expanded in the eigenvectors of Õ and some similar operator

which we call Õ′, the state | ψ 〉 can be written as follows:

| ψ 〉 = β1 | + 〉 ⊗ V | A1 〉+ β2 | − 〉 ⊗ | A2 〉+
N∑
i=3

βi | ai 〉 ⊗ V | Ai 〉 , (2.89)

where V is a some unitary operator that relates {| Ai 〉}i to eigenvectors of Õ′. The

two expansions, (2.87) and (2.89), must be equal to each other. It is easily seen that V

should leave | Ai 〉 for i > 2 intact. When we write | a1 〉 and | a2 〉 in terms of | + 〉
and | − 〉 in equation (2.87), we obtain the following:

β1 | + 〉 ⊗ V | A1 〉 =

(
|α1|2 + |α2|2

2

)1/2

| + 〉 ⊗ α1 | A1 〉+ α2 | A2 〉
(|α1|2 + |α2|2)1/2

, (2.90)

β2 | − 〉 ⊗ V | A2 〉 =

(
|α1|2 + |α2|2

2

)1/2

| + 〉 ⊗ α1 | A1 〉 − α2 | A2 〉
(|α1|2 + |α2|2)1/2

. (2.91)
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We define | P 〉 , |M 〉 through | P 〉 = V | A1 〉 , |M 〉 = V | A2 〉. The above equa-

tions give us | P 〉 , |M 〉 in terms of | A1 〉 , | A2 〉:

| P 〉 =
α1 | A1 〉+ α2 | A2 〉

(|α1|2 + |α2|2)1/2
, |M 〉 =

α1 | A1 〉 − α2 | A2 〉
(|α1|2 + |α2|2)1/2

. (2.92)

The operator V can be expressed in Dirac notation as: V = | P 〉 〈 A1 |+|M 〉 〈 A2 |+∑N
i=3 | Ai 〉 〈 Ai |. Since V is unitary, V †V = 1 must hold. Working in the {| Ai 〉}i

basis, unitarity of V is seen to imply |α1|2 − |α2|2 = 0. We obtain a contradiction,

because we assumed α1 and α2 to be of different magnitudes. Therefore, ∀i, j; |αi| =
|αj|. So | ψ 〉 is a maximally entangled state. This completes the proof.

In order to get acquainted with the concept let us look at a simple example concern-

ing two qubits. We remind the reader that a qubit is a two level system. It can be

considered as the spin degrees of freedom of a spin-1/2 particle, but not necessarily

so.

The quantum state defined as | ψ 〉 = 2−1/2(| + 〉⊗| + 〉+ | − 〉⊗| − 〉) is maximally

entangled. We perform a spin-z measurement. Then, if we observe the second particle

in ±z spin state, the first one will be in this state as well. On the other hand, suppose

we changed our mind and wanted to make a spin-x measurement instead. We can

rewrite the same quantum state in the x-basis:

| ψ 〉 =
| x+ 〉 ⊗ | x+ 〉+ | x− 〉 ⊗ | x− 〉√

2
. (2.93)

Here we find the same ++,−− correlation between the spin-x measurements of the

particles. However, the state | ψ 〉 we used is somehow special. If we chose | ψ 〉 ∝
| n+ 〉 ⊗ | + 〉 + | n− 〉 ⊗ | − 〉, we would know that the result of the first particle’s

spin measurement would yield, however it would not necessarily point in the same

direction as the second particle’s spin.

If the quantum state chosen is not maximally entangled, then we lose our ability to

predict what result would be obtained for a similar experiment on the first particle.

For example, consider the following state:
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| φ 〉 =
| + 〉 ⊗ | + 〉+ | x+ 〉 ⊗ | − 〉√

2
. (2.94)

This is not a maximally entangled state. The reduced density matrix ρA in the z-basis

equals:

ρA =
1

4

3 1

1 1

 . (2.95)

By performing a spin-z measurement on the second particle, one may infer what state

the first particle will have been in. However the possibilities will not be eigenstates

of an operator that is similar to Sz. For this reason, we cannot be sure what we would

obtain for a similar measurement done on the first particle. This is all because the

state is not maximally entangled: 〈+ | x+〉 6= 0.

2.4 Complementarity

The concept of complementarity has been introduced by Niels Bohr in 1927 [53]. It

would be useful to understand this idea through his response [5] to Albert Einstein,

Boris Podolsky and Nathan Rosen’s (EPR) paper [12] that put forward the EPR para-

dox.

We first discuss EPR’s article [12] to highlight the main points, and then return to

Bohr’s reply in order to understand the idea of complementarity.

2.4.1 EPR Paradox

In the paper [12] a particular two-particle state is considered, which we write in ket

notation (apart from a constant factor) as follows:

| Ψ 〉 =

∫ ∞
−∞

dp eipx0 | −p 〉 ⊗ | p 〉 , (2.96)
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which can be written as

| Ψ 〉 =

∫ ∞
−∞

dx | x+ x0 〉 ⊗ | x 〉 , (2.97)

where x0 is some free parameter. It is thought that there is no interaction between

the two particles after some time. If one makes a position/momentum measurement

on the second particle and finds the states | x 〉 / | p 〉, then the state of the first parti-

cle must be | x+ x0 〉 /eipx0 | −p 〉. Of course, because position and momentum are

noncommuting observables in quantum theory, one cannot specify their values with

absolute precision at some instant of time.

The authors postulated the following criterion of reality [12]:

If, without in any way disturbing a system, we can predict with certainty
(i.e., with probability equal to unity) the value of a physical quantity, then
there exists an element of physical reality corresponding to this physical
quantity.

In the measurements that are done only on the second particle, the first one is never

disturbed even though the state in which it is in can be known with certainty. It is

thought that if wave functions give a complete description of reality, then since one

does not disturb the first particle while doing experiments on the second one, its po-

sition and momentum can be known simultaneously, hence they “have simultaneous

reality.” [12] (See below).

The main proposition the article depends on is “either (1) the description of reality

given by the wave function in quantum mechanics is not complete or (2) these two

quantities [corresponding to noncommuting observables] cannot have simultaneous

reality.” [12].

In logical terms: (1) or (2) is true. However just in the previous paragraph, it has been

shown that if (1) is false, then (2) is false as well. Hence, the proposition that (1) or

(2) is true turns out false. It is then concluded that (1) must be true: “the quantum-

mechanical description of physical reality given by wave functions is not complete.”

[12].

36



2.4.2 Use of Complementarity by Bohr

The title of the paper [12] that put forward the EPR paradox was “Can Quantum-

Mechanical Description of Physical Reality Be Considered Complete?” and Bohr

wrote an article [5] with the same title a few months later, in response. Of course,

this was clearly a challenge. The essence of Bohr’s argument is that the criterion of

reality used by EPR is ambiguous and quantum mechanics describes what is there to

be explained physically [5].

Bohr considers a single slit experiment, which may be a part of a bigger experimen-

tal setup, to begin with. Because the slit can be thought of as performing a position

measurement on the particle, even though the particle had some definite momen-

tum before the interaction, its momentum would become uncertain according to the

Heisenberg’s uncertainty principle14:

∆x∆p ≥ ~
2
. (2.98)

Because “the uncertainty ∆p is inseparably connected with the possibility of an ex-

change of momentum between the particle and the diaphragm” he then asks the ques-

tion of “to what extent the momentum thus exchanged can be taken into account in

the description of the phenomenon to be studied by the experimental arrangement

concerned, of which the passing of the particle through the slit may be considered as

the initial stage.” [5]. Afterwards, he notes that since the diaphragm is held fixed in

space, the ability to take into account the exchanged momentum is lost.

In order to take into account the momentum exchange, Bohr conceives a similar but

distinct experimental setup. In this case the diaphragm is free to move in direction

perpendicular to slit, i.e. sideways. However, the diaphragm itself becomes an object

of experimentation like the electron [5].

All in all, what Bohr says is that experimental setups that are suited for measurement

of position or momentum variables are in essence different. As one learns more

14 A proposed analogue experiment for understanding this relation that is remote from daily experience is
included in Appendix A.
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about one of these conjugate variables, one’s knowledge of the other becomes more

uncertain. It is in this way that there is a complementarity: one cannot reach complete

information about both of the conjugate variables.

Lastly, we would like to comment on where in the EPR’s criterion of reality that the

claimed “essential ambiguity” [5] lies, according to Bohr. It is the part “without in

any way disturbing a system” [5]. In essence, EPR thinks that because one in prin-

ciple can “predict either one or the other of the two conjugate measurable quantities

. . . quantum objects independently possess both of these quantities, even though we

can never predict both of them simultaneously” [53] (emphasis in the original). As

Bohr has illustrated, one cannot use the same apparatus to measure any one of conju-

gate variables, that is, the cases when the diaphragm is fixed or not are different. The

very choice of the instrument as regards which one of the conjugate variables are mea-

sured is a disturbance to the system, which consists of both the quantum object and

the measurement instrument. Then according to Bohr, the argumentation of EPR in

the direction that quantum mechanics is incomplete is invalidated because in quantum

mechanics one has to consider the measurement apparatus as well. EPR’s criterion is

ambiguous because it does not take into account the measurement apparatus.

Readers who look for a more careful analysis of the EPR paradox might find reference

[53] quite useful.

2.4.3 Complementarity in Black Hole Physics

General relativity, as its name alludes to, is relativistic. It puts emphasis on the ob-

server. This fact might sometimes be overlooked because relativistic or quantum

phenomena are quite far from the realm of conditions under which human intuition

has evolved.

Let us imagine a stone that is thrown into a black hole. It will certainly fall and in

the end hit the singularity, in its own perspective. An observer that falls down with

the stone will confirm this series of events, however the confirmation will never reach

any observer that remains outside the black hole anyway.

On the other hand, for example, an observer that is far away from the black hole will
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see that the stone will get closer and closer to the horizon however will never cross it.

This is relativity after all.

There are a few ways to see that the stone never crosses the event horizon according to

the distant observer. For concreteness we shall think of a Schwarzshild black hole and

a radially infalling stone. First is to solve the geodesic equation for the stone using

asymptotic time (t) to parametrize the path. As t → ∞ one sees that the position

of the stone approaches r = 2M+. The second is to use the spacelike slices (Σt) on

which asymptotic time is constant. The point where the stone lies in time t, is found

by taking the intersection of Σt with the stone’s trajectory in spacetime. We would

like to show this last observation in more pictorial terms.

For that purpose, we use the Kruskal coordinates for the Schwarzschild black hole.

The reader may want to check out section 2.1.1 on black holes. In these coordinates, a

constant t hypersurface is described by the following relation: T/R = tanh(t/4M).

Since t ∈ R, the result of tanh(t/4M) takes all values in the interval (−1, 1). So

constant t hypersurfaces are represented as straight lines passing through the origin of

the coordinate system that has slope ranging between −1 and 1. The slope increases

with t. We draw the Kruskal diagram with some sample constant t hypersurfaces on

top, in Figure 2.8.

As is clear from Figure 2.8, as t approaches∞ the intersection point of stone’s tra-

jectory and Σt approaches the event horizon. In the limit t→∞, the stone is seen as

a point on the event horizon.

We have touched upon the general relativity side. We would now like to mention a

result in quantum mechanics known as the no-cloning theorem. It simply means that

quantum mechanics does not allow arbitrary states to be copied. The word arbitrary

is important here. Otherwise there are processes that may copy some particular states.

Various proofs of the no-cloning theorem are presented in Appendix E.

On the other hand, if the black hole evaporation conserves information it seems that

the no-cloning theorem can be violated, leaving us with a paradox15. One assumes

that a qubit is thrown into a black hole, and because the information that is carried

15 Readers may like to see, for example, reference [66] for discussions related to the no-cloning paradox.
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Figure 2.8: Kruskal diagram representing some sample constant t slices. Lines of

higher slope correspond to higher t values. The distant observer has access to only

half of the slices, i.e. the parts that are found in the right hand side.

by the qubit will be present in the black hole vapor, cloning of arbitrary states can

be realized hence in violation of the no-cloning theorem. All that is to be done is to

consider a spacelike slice that contains both the infalling qubit and the part of vapor

that carries its information. Figure 2.9 illustrates such a spacelike hypersurface in the

gravitational collapse scenario.

Violation of the no-cloning theorem is resolved by black hole complementarity [7].

The idea is simple. The outside observer has access to the qubit in the black hole

vapor. The worst case scenario is that after he obtains the qubit in vapor he may decide

to jump into the black hole in order to compare what is at hand with the infalling qubit.

If this scenario can never be realized [67], then no violation of the no-cloning theorem

is observed.

According to black hole complementarity, information about the infalling qubit is

either inside or outside of the black hole: it depends on the observer [67].

The stretched horizon is a timelike surface just above the event horizon that contains
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Figure 2.9: A spacelike slice Σ that contains both the infalling qubit and its informa-

tion present in some part of the black hole vapor.
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all the degrees of freedom that can be associated with a black hole [68]. It is a phe-

nomenological construct. According to the distant observer, infalling objects do not

fall behind the event horizon, rather approach it asymptotically. Hence they fall onto

the stretched horizon. From the perspective of a distant observer, stretched horizon

encodes all the necessary information that describes the black hole. Therefore from

the outside observer’s perspective, one need not talk about the black hole’s interior.

Stretched horizon has various properties [68]:

If provided with an electrical multimeter, our observer will discover that
the membrane has a surface resistivity of 377 ohms. If disturbed, the
stretched horizon will respond like a viscous fluid, albeit with negative
bulk viscosity.

Finally, these are the three postulates of black hole complementarity [68]:

P1 The process of formation and evaporation of a black hole, as viewed by a distant

observer, can be described entirely within the context of standard quantum the-

ory. In particular, there exists a unitary S-matrix which describes the evolution

from infalling matter to outgoing Hawking-like radiation.

P2 Outside the stretched horizon of a massive black hole, physics can be described

to good approximation by a set of semiclassical field equations.

P3 To a distant observer, a black hole appears to be a quantum system with discrete

energy levels. The dimension of the subspace of states describing a black hole

of mass M is the exponential of the Bekenstein entropy S(M).

The firewall paradox claims that P1, P2 and the equivalence principle are inconsistent

with each other. This is the subject of the next chapter.
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CHAPTER 3

THE FIREWALL PARADOX

The epic of Leyla ile Mecnun describes an idea of love. However, one can find neither

a Leyla nor a Mecnun in this world. There are approximate personalities, but never

true characters. Perhaps the idea of black hole complementarity was a good dream

but is untrue nonetheless: AMPS’ paper claims that it is inconsistent in itself. Only

the efforts of intellectuals and time will tell the answer.

We have already cited three postulates that are explicitly present in [68]. AMPS

[2] adds Einstein’s equivalence principle, which is implicitly assumed in [68] as a

certainty, as the fourth postulate of black hole complementarity:

P4 A freely falling observer experiences nothing out of the ordinary when crossing

the horizon.

The main argument of the AMPS’ article is that P1, P2, P3 and P4 are inconsistent.

It would be beneficial to summarize their basic argument in one paragraph.

The postulate P1 implies that a sufficiently old black hole is almost maximally entan-

gled with the Hawking radiation it has radiated so far (early radiation). P4 requires

that the infalling observer sees a quantum vacuum at the event horizon. However the

vacuum state that an infalling observer encounters consists of entangled field modes

from either side of the horizon: inside and outside the black hole. Because any Hawk-

ing quantum that will be radiated by an old black hole will be entangled with the early

radiation, it cannot be entangled with the modes behind the horizon in order to result

in a vacuum state. This is contrary to the subaddivity property of entropy. Then by
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using P2, the Hawking quantum radiated by the old black hole is evolved backwards

in time, through which it is blue shifted by huge amounts. Infalling observer encoun-

ters this high energy particle at the horizon: Horizon is a special place, equivalence

principle is broken. Mode by mode, it is seen that there is a firewall located at the

horizon.

Now, we shall go over the article.

A black hole that has formed through collapse of a pure state is considered [2]. Be-

cause of P1, the evaporation process is unitary: the black hole vapor (the one that

would be produced after complete evaporation) is in the following pure state [2]:

| Ψ 〉 =
∑
i

| ψi 〉E ⊗ | i 〉L . (3.1)

Here the subindices E and L are used to denote the states that are in early or late

part of the radiation. The distinction between what constitutes early or late is based

on the Page time: the time that that black hole will have lost half of its entropy [2].

Accordingly, when a black hole’s age exceeds the Page time, it is called old; otherwise

young [2].

In equation (3.1) {| i 〉L} is some orthonormal basis for the late part of the radia-

tion. The kets | ψi 〉E have no special property apart from being almost orthonormal

(or almost orthogonal with almost equal norms) because | Ψ 〉 is almost maximally

entangled.

In (3.1) it is implicit that | Ψ 〉 is a state that contains entanglement between early and

late parts of the radiation, otherwise it would not be a sum. The entangled nature of

the quantum state is expected by virtue of Don Page’s calculation [47] that indicates

late time radiation is almost maximally entangled with the early radiation. Although

he is very well aware that the amount of information to be found in black hole vapor

may not be stated without a full theory of quantum gravity, he claims that this amount

should be close to the amount found on average [47]. Lowe and Thorlacius comments

on the applicability of Page’s result [33]:

If we assume the Hawking radiation and black hole are in a random pure
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state, as should be true if interactions effectively thermalize the black hole
degrees of freedom, then we may apply the results of Page . . . to compute
the typical amount of information contained in the Hawking radiation.

Sabine Hossenfelder [26] raises the question that this may not be so, but agrees that

it is a natural assumption:

It basically says that all the partners of the early Hawking particles, those
that would normally fall into the singularity and get lost, should come
out as late as possible because that is when new quantum gravitational
effects most plausibly occur.

Because the energy carried away by the Hawking radiation is finite, authors use

this observation to assert that the Hilbert space that describes the Hawking radia-

tion should be finite dimensional. This assertion in the end allows the use of before

mentioned calculation of Page.

So far, we have given reasons why an old black hole is almost maximally entan-

gled with the early Hawking radiation. Next, we consider an infalling observer who

“knows the initial state of the black hole and also the black hole S-matrix” [2]. As

he crosses the horizon, by equivalence principle, he sees a vacuum state. Please see

Figure 3.1. This point will be important in the following discussion.

On the other hand, a Hawking mode of width of order rs, where rs is the Schwarz-

schild radius of the black hole, is considered. This is essentially a wave packet; one

should think of choosing an out-basis constructed out of such wave packets1. It has

an associated annihilation operator, named b by AMPS [2]. Far from the black hole,

it is a well defined particle.

Since the early and late radiations are almost maximally entangled, by measuring

suitable observables in early radiation one can infer results of corresponding measure-

ments that would have been done on the late radiation2. If there was exact maximal

entanglement, the correspondance would be perfect. However when there is almost

maximal entanglement, the relative error is quite low for black holes that are well

above the Planck mass. AMPS calculate the average relative error as ε̄ = L/E where
1 They are localized only in the radial direction: they have definite angular momentum.
2 Please see introductory chapter on quantum entanglement.
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event horizon

observer

Figure 3.1: Trajectory of the infalling observer. He must observe quantum vacuum

state whilst passing through the event horizon by virtue of Einstein’s equivalence

principle.

L,E are degrees of freedom present in late and early radiation [2]. This number is

approximately equal to exp(−2πM2) which is extremely close to zero, where M is

the initial mass of the black hole. For a solar mass black hole, we calculated before

that M = 9.14 × 1037 in Planck units. This should give an idea of how vanishingly

small this error is for a solar mass black hole.

Then the expectation value of the number operator, b†b, for the before mentioned

mode can be found by making measurements in the early radiation. “In other words,

an observer making measurements on the early radiation can know the number of

photons that will be present in a given mode of the late radiation” [2]. This infor-

mation allows us to infer that such a Hawking quantum will have been emitted after

some time.

Because the mode b will have been emitted when the black hole is old, it must be

almost maximally entangled with the early radiation. Therefore, when it is traced

back towards the horizon it will not be in an entangled state with an interior mode

to yield the vacuum state3 that an infalling observer is expected to see. Formation of

3 Appendix D illustrates why and how the vacuum is entangled.
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this entanglement is disallowed by the “monogamy of entanglement”. Equivalence

principle is violated where it is least expected.

We will make clear what is meant by the monogamy of entanglement through strong

subadditivity of entropy when we discuss high angular momentum modes. More

mathematically, the discussion of low angular momentum modes is as follows.

Since the black hole vapor is dominated by low angular momentum modes [46],

AMPS use simplified gray body factors where they are equal to unity for low angular

momentum states and are equal to zero for the rest. This makes it easy to directly

express b in terms of operators that an infalling observer would use near the horizon.

In their own notation [2]:

b =

∫ ∞
0

dω (B(ω)aω + C(ω)a†ω), (3.2)

here {aω}ω are the operators that an infalling observer would use. Of course C(ω)

does not vanish, because a-vacuum and b-vacuum differ, which is in the end related

to the difference of the time coordinate appropriate for stationary and infalling ob-

servers. Although an infalling observer may detect particles, their occurrence is sup-

pressed exponentially in the energy of particles [4].

If the gray body factors were not chosen in this simplified form, AMPS would need to

take into account the angular momentum barrier which would introduce more compli-

cation since there would be scattering as the mode is evolved backwards in time. As

we will mention in the discussion of black hole mining experiments, their argument

is fully general: for all angular modes, low and high.

All in all, the vacuum around the horizon that an infalling observer would see is not

the vacuum that b annihilates: bmode will be detected by the infalling observer. When

they are detected, they will have been highly blue shifted. Suppose it has energy E

around I+. Its 4-momentum is [9]:

kµ =

(
E

(
1− 2M

r

)−1

,

[
E2 − L

r2

(
1− 2M

r

)]1/2

,±L
r2
, 0

)
. (3.3)
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We orient the coordinate system such that dθ/dλ = 0 where λ is an affine parameter.

On the other hand, the 4-velocity of a radially ingoing timelike geodesic that has zero

speed near i− is given by uµ = ((1 − 2M/r)−1,−(2M/r)1/2, 0, 0) [22]. Therefore,

energy of the photon detected in the rest frame of the infalling observer, for r ≈ 2M ,

is found to be:

− u · k ≈ 2E

(
1− 2M

r

)−1

. (3.4)

The stretched horizon for a Schwarzschild black hole has area that is one Planck unit

larger than the area of the event horizon [67]. Therefore r = 2M + 1 (remember we

use Planck units) is rather outside the stretched horizon, however it will suffice4 to

show high energy of detected photons. The factor (1 − 2M/r)−1 to a good approxi-

mation is 2M . Therefore the energy of the photon is blue shifted by order 4M which

for a solar mass is about 4× 1038. If the outgoing photon has a typical energy, i.e. of

the order of Hawking temperature T = 1/8πM , then observed energy of photon is

1/2π, in Planck units. An infalling observer encounters Planckian radiation near the

horizon.

The discussion up to this point concerns only the low angular momentum modes.

Modes of higher angular momentum are mostly reflected back towards the black hole

because of the centrifugal potential that increases as ∼ l2 as it is present in (2.48) and

(2.49). However it is well known [72] [73] [74] that these modes can be detected by

lowering a particle detector behind the centrifugal barrier.

If one solves the geodesic equation for null rays in Schwarzschild geometry, for de-

tails one may refer to a classical textbook such as Carroll’s [9], one sees that the

maximum of the centrifugal barrier lies at r = 3M although its height is propor-

tional to l2. So there is no barrier for an l = 0 mode. On the other hand, here

we are concerned with light waves, not light rays. In equation (2.49) the maximum

4 If one calculates r for which the difference between the areas of stretched horizon and event horizon is 1,
it turns to be about r = 2M + 1/16πM . Then the blue shift factor in (3.4) will be proportional to M2 and blue
shifted Hawking particle would have energy of the order M . Because this is well above the Planck energy, one
may argue that one may evolve photons backwards in time until Planckian energies are obtained. However the
energy observed by a stationary observer located at fixed r is E(1− 2M/2)−1/2. For r = 2M + 1/16πM and
E = 1/8πM this is approximately (2π)−1/2. Therefore, photons can be evolved backwards in time until they
reach the stretched horizon.
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of potential function may be calculated however one should consider that l is now

quantized: l ∈ N. For l = 0 it is at r = 8M/3 whereas for l > 0 it resides at

r = [(9l4 +18l3 +23l2 +14l+9)1/2−3]M/2l(l+1)+3M/2 which is always greater

than 17M/6 and asymptotically approaches r = 3M . It increases monotonically.

Our main point in this paragraph has been to show the place where a lowered particle

detector must pass in order to detect high angular momentum modes efficiently. As a

side note, this region where high angular momentum modes are abundant, a shell of

proper length of the order rs from the horizon, is sometimes [20] called black hole’s

“atmosphere”5 and sometimes [7] as “the zone.”

As for modes of high angular momentum, AMPS argue that the situtation is the same.

When a particle is sensed by a lowered particle detector, this particle should have

been entangled with the early radiation before it was detected [2]. Entanglement of

these modes with the early radiation arises “since they can be mined and thus form a

subsystem of the late radiation” [7]. Hence the earlier argument fully applies. AMPS

then conclude that “the infalling observer encounters a Planck density of Planck scale

radiation and burns up” [2].

A way of expressing the paradox in direct mathematical terms is to show that it causes

a violation of the strong subadditivity property of entropy. A three-partite Hilbert

space is considered: H = HA ⊗ HB ⊗ HC and a density matrix defined on H.

As usual, reduced density matrices in various subspaces of H are obtained through

taking partial traces. We shall denote by, for example, SAB the entropy associated

with a reduced density matrix on HA ⊗ HB. The strong subadditivity of entropy

states that following holds [31]:

SAB + SBC ≥ SB + SABC . (3.5)

Back to the Hawking radiation, AMPS’ argument concerning the violation of strong

subadditivty is as follows. One observes three Hilbert spaces, in their notation: A)

early Hawking radiation, B) a Hawking particle emitted when the black hole is old,

C) its interior partner.
5 Calling this region as the atmosphere of a black hole seems quite apt. It is argued [7] that “the minable

modes in the zone . . . must be considered as a subsystem of the black hole.” (emphasis in the original). Hence a
black hole’s atmosphere, like that of any other stellar object, is a part of it.
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B and C must be in a pure entangled state in order to give rise to vacuum observed

by an infalling observer: SBC = 0. Therefore SABC = SA. When these results are

applied to (3.5), we obtain SAB ≥ SA + SB. On the other hand, an old black hole is

the one that begins purifying early radiation6, which means that the entropy of A and

B is less than the entropy of A: SAB < SA. As a result one obtains the following:

0 > SB (contradiction) (3.6)

Remember that, in the beginning of this section we menioned the idea of construct-

ing observables acting on the early radiation that will give results of corresponding

observations that will have been done on the late radiation. For that purpose, AMPS

used the randomness of the Hawking radiation to calculate an average relative error,

ε̄ ≈ exp(−2πM2), which is extremely close to zero for semiclassical black holes.

Here, as regards the violation of strong subadditivity, AMPS observes [2] that:

[the randomness of the Hawking radiation] is not needed; it is sufficient
that the entropy of the black hole be decreasing. From another point of
view, one need not be able to predict the state with perfect fidelity: rather,
any information about the state of the b mode precludes the state being
annihilated by a.

Before the AMPS’ article [2] it was supposed that an infalling observer would see a

vacuum while passing through the event horizon and the Hawking radiation would

be pure as required by black hole complementarity. What AMPS did, is to put em-

phasis on the consequences of unitary black hole evaporation from the perspective

of infalling observers. They used the almost maximal entanglement of small subsys-

tems with the rest of the system [44] [47] quite elegantly and have presented a neat

paradox.

This is the firewall paradox.

6 Sometimes, the time when the entropy of the so far emitted Hawking radiation begins to decrease is defined
to be the Page time.
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CHAPTER 4

MULTITUDE OF APPROACHES

In this chapter, we include various approaches that attempt to resolve the firewall

paradox.

4.1 Harlow-Hayden conjecture

This conjecture is about the non-observance of contradiction between the postulates

of black hole complementarity from an operational point of view. It is an attempt to

save the original complementarity.

Daniel Harlow and Patrick Hayden wrote an article [21] from the perspective of quan-

tum computation conjecturing that “the decoding time for Hawking radiation will in

general be exponential in the entropy of the remaining black hole” [21]. This has

become to known as the Harlow-Hayden conjecture.

The idea is to show the impossibility of a distant observer doing measurements to ver-

ify early-radiation/late-Hawking-quantum entanglement and jumping into the black

hole to test the interior-mode/late-Hawking-quantum entanglement. If this is opera-

tionally untestable, then there is no paradox from the perspective of complementarity.

The importance of distillating early radiation comes into picture because the hypo-

thetical observer (who aims to show that complementarity is inconsistent) should first

verify the entanglement between late and early radiation. For that purpose, it is im-

portant that the part of early radiation that is entangled with a late Hawking quantum

must be distilled into an easily accessible qubit. Otherwise, there is a gigantic cloud
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of radiation and the chances to test the entanglement are bleak without further quan-

tum computing on the early radiation. According to the Harlow-Hayden conjecture,

quantum computation that is necessary to perform this job requires a time of the order

of eM2 where M is the black hole mass [21].

On the other hand the black hole would already have evaporated after t ∼ M3, how-

ever, it takes t ∼ eM
2 amount of time to isolate the entangled subsystem in the black

hole vapor [21]. Therefore, when the hypothetical observer confirms the entangle-

ment with the black hole vapor, the black hole would have already evaporated. Hence

it is impossible to jump into the black hole and test the entanglement between the two

sides of the horizon.

Evidence for the correctness of this conjecture seems strong [18] and hence if no sin-

gle observer can see a violation of black hole complementarity: the firewall paradox

is resolved.

4.2 Strong Complementarity Principle

This approach is a stronger version of complementarity, in essence expressing that

every observer has his own description of nature which must be in agreement with

those of others when the results of observations can be communicated [7]. It would

be beneficial to remember that a strong condition is more restrictive than a weak

condition. It is in this sense that this approach is called strong complementarity prin-

ciple. The names strong complementarity and causal patch complementarity are used

interchangeably.

The Harlow-Hayden conjecture is sometimes [1] cited among strong complementar-

ity approaches, however it should better be viewed as an idea to save the original

complementarity. Because the idea there is that no observer can see a violation of

complementarity, hence there appears no problem in supposing that an infalling ob-

server finds quantum vacuum while passing through the event horizon. In particular,

even though Harlow and Hayden discuss strong complementarity at some point in

their paper [21], the conjecture itself is independent of this discussion.
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An interesting work [29] in this approach is that of İrfan Ilgın and I-Sheng Yang.

They focus their attention on the causal patch of an infalling observer and find that

there is no spacelike hypersurface on which both the interior mode and early Hawk-

ing radiation are both low energy. In the paper, the firewall paradox is postponed to

Planck scale physics and possible modifications of low energy physics are found un-

necessary. In particular “through unknown UV physics” [29] at the boundary of the

infalling causal patch, need for firewalls is eliminated. On the other hand Ilgın and

Yang remark that although distillation of early radiation by an infalling observer may

have its own problems, if it is possible then there really is a firewall paradox [29].

4.3 ER = EPR

The abbreviations ‘ER’ and ‘EPR’ stand for Einstein-Rosen bridges (worm holes) and

Einstein-Podolsky-Rosen pairs (entangled quantum states) respectively. Juan Malda-

cena and Leonard Susskind “take the radical position that in a theory of quantum

gravity they are inseparably linked, even for systems consisting of no more than a

pair of entangled particles” [35].

In order to give a justification to their conjecture, they mention similarities between

ER and EPR [35]: 1) One cannot use one of these to make superluminal communi-

cation, 2) Entanglement between two systems cannot be created by LOCC1, it should

be done either causing the systems to interact or merging them with parts of already

entangled pairs. In case of separate black holes that are not connected through an

EPR bridge, one may only create such bridges by merging the black holes with ones

that have already a worm hole between them.

Maldacena and Susskind consider an eternal AdS black hole which is described by

the following quantum state:

| Ψ 〉 =
∑
n

e−βEn/2 | n 〉 ⊗ | n 〉 , (4.1)

where | n 〉 is the microstate of each black hole with energy En [35]. Here are two
1 LOCC: Local Operations and Classical Communication.
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black holes that are connected through an Einstein-Rosen bridge. Black holes are

causally disconnected.

Their ingenious idea is to interpret the second black hole as the early radiation in the

AMPS argument. The black hole is entangled with a second system, and the horizon

is smooth: there is no firewall. This is one of their arguments against firewalls. How-

ever, as the careful reader has already noticed, the reduced density matrix obtained

from the state | Ψ 〉 in (4.1), ρ =
∑

n e
−βEn | n 〉 〈 n |, is not maximally entangled.

They emphasise this point en passe in a footnote [35].

In the case of eternal Schwarzschild solution, their reasoning is similar. However this

time, they put the two casually disconnected black holes in casual contact, as two one

sided Schwarzschild black holes that are very far away from each other. Of course

this solution is only approximate. However since the black holes are assumed to be

very far away from each other, this is not a crude approximation. Black holes should

be in a specific entangled state for an Einstein-Rosen bridge between them to exist,

and this is “a third interpretation of the eternal Schwarzschild black hole” [35].

On the contrary, whether firewalls exist or not depends on what is done with the

radiation [35]. If the black hole vapor is collected and then condensed into another

black hole, by a quantum computer that is acting on the new black hole the system

can be arranged such that there is a smooth ER bridge between the black holes [35].

However, by an appropriate quantum computation action on the second black hole a

firewall can be created behind the event horizon of the first horizon [35].

When nothing is done on the radiation, first guess would be that each one of Hawking

quanta is connected to the black hole through ER bridges of quantum nature [35].

These bridges better be of unknown quantum nature, because they are expected to

connect particles to black hole and the concept of particle in QFT in curved space-

times is ambiguous, in general.

The question of the smoothness of black hole horizons is related to the connection

structure of these quantum ER bridges to the black hole and apart from equivalence

principle –which is already challenged by the firewall paradox– there is currently no

independent argument for its smoothness [35].
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As far as the AMPS argument is concerned “[Maldacena and Susskind] have given

enough reasons for not believing the AMPS argument that there had to be firewalls”

[35] (emphasis in the original).

For ideas about the relation between entanglement and geometry, one may see Brian

Swingle’s article [69] and Mark van Raamsdonk’s essay [75].

As for further progress on this approach, readers may like to note [64], [62], [63]

(together with its addendum [61]), [30] and [59].

4.4 Fuzzball Complementarity

Under certain assumptions, conditions for unitary black hole evaporation are found

[37]: one of the following items must be true:

• Physics needs to be modified to yield unitary evaporation, e.g. inclusion of

nonlocal interactions.

• Black holes have hair, i.e. degrees of freedom located around the horizon.

• Assumptions used to reach these options are wrong or insufficient.

Otherwise, information in the universe would not be preserved and black hole evap-

oration would not be unitary as expected through quantum mechanics. On the other

hand, it would be useful to remember as noted by [37] that unitarity does not imply

information preservation.

A fuzzball is a string theoretic quantum state of black hole that exhibits structure

almost at the event horizon and has no interior geometry [37]. It is the second view

mentioned above towards the resolution of the information paradox. In Mathur and

Turton’s words [38]: “Hawking radiation arises from the surface of the fuzzball just

like radiation from a piece of coal. This resolves the information paradox.”

Introducing fuzzballs, we would like to mention the idea of fuzzball complementarity.

Its explicit postulates can be found in reference [36] which we summarize as below:
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F1 Black hole microstates have no interior. They end compactly before the hori-

zon is reached. An actual state of a black hole is a superposition of these mi-

crostates.

F2 The fields around the horizon are not in vacuum state.

F3 Processes involving infalling quanta of energy E � T can be described to

a good accuracy by general relativistic black hole solutions that have interior

geometry.

When a particle of energy that is well higher than the temperature (E � T ) hits a

fuzzball, it excites modes on the fuzzball surface and most of these modes are not

entangled with the early radiation as a black hole older than the Page time would

have been [38]. Moreover the dynamics of these excitations have a complementary

description from the perspective of an infalling observer falling in a smooth geometry

[38]. Therefore the firewall paradox is resolved in the fuzzball picture.

As a disclaimer it would be appropriate to point out that fuzzball complementarity,

however, does not claim that there is a complementary description for quanta that

have energy of the order of black hole temperature [38].

On the other hand, one already observes that fuzzballs are quite different from the

physics we are used to. For example, there is no black hole interior and the spacetime

region around the horizon is not in vacuum [38]. Black hole complementarity we

presented in Chapter 2 is called “traditional complementarity” [38] in presence of

fuzzball complementarity. With this distinction in mind, it is expressed in [36] that

the firewall paradox is put forward to “exclude traditional complementarity.”

4.5 Holographic Principle and Black Hole Interior

The holographic principle states that the number of degrees of freedom in a region of

spacetime scales with the area of its boundary [6], [70]. There is strong support for

the holographic principle, however it is still a conjecture [6]. Reader may like to see

[6] for a review on holographic principle.
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On the other hand, AdS/CFT correspondence conjectures that what happens in the

anti-de Sitter spacetime is related to what happens in conformal field theory in its

boundary. It is seen as a specific realization of the holographic principle. For an in-

troduction to AdS/CFT correspondence references [55], [42], [52] may be of interest.

In joint works of Kyriakos Papadodimas and Suvrat Raju [48], [49], [50] it is argued

that the interior of a black hole in AdS can be described by CFT in the spacetime

boundary.

Their construction of the black hole interior depends on the state of CFT at the bound-

ary, and this state dependence is what allows black holes to evaporate unitarily while

maintaining smooth horizons [49]. They especially dismiss the fuzzball conjecture,

and the way they evade the conclusions of [37] is via the claim that the modes in the

black hole interior are not independent from those in early Hawking radiation [49].

For more on this proposal, readers may like to see Daniel Harlow’s paper [19].

4.6 Extreme Cosmic Censorship Conjecture

This viewpoint is put forward by Don Page [45]. He cites two reasons that cause the

firewall paradox. The first one is the assumption of validity of semiclassical approx-

imation: “Effective field theory is local, whereas the constraint equations of gravity

are nonlocal, so the assumption of effective field theory is almost certainly incorrect”

[45]. The second one is claimed to be the overcounting of black hole microstates [45].

Page expresses that in arguments behind the firewall proposal, it is implicitly assumed

that one counts states that will exhibit singular structure when they are evolved back-

wards in time [45]. In order to exclude these states, he proposes the extreme cosmic

censorship conjecture [45]:

The universe is entirely nonsingular (except for singularities deep inside
black holes and/or white holes which do not persist to the infinite future
or past, with these singularities coming near the surface only when the
holes have masses near the Planck mass that normally happens only close
to the ends and/or beginnings of their lifetimes).

Page considers the following categories of quantum states [45]:
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• Unconstrained kinematic states: These are most general states one considers

in a theory. They do not have to obey conditions such as gauge conditions.

They do not have to be realized.

• Constrained physical states: These are most general states that satisfy various

constraint equations in the theory.

• Nonsingular realistic states: These are constrained physical states that obey

the extreme cosmic censorship criterion.

• The actual state: This is the realized state of the universe.

According to Page, the actual state of the universe is a nonsingular realistic state.

So extreme cosmic censorship is valid. Nonsingular realistic states do not have any

singular structure, such as a firewall, at the event horizon. This is true by defini-

tion. Therefore in all such states, an infalling observer sees a quantum vacuum at the

horizon: the degrees of freedom inside and outside the black hole are entangled.

Page’s important observation is that this entanglement is illusory: the main reason is

that, according to the extreme cosmic censorship, only realizable states of the uni-

verse are nonsingular realistic, all of which contain entanglement between inside and

outside of the black hole in a form that would result in vacuum state for an infalling

observer.

Of course, if the semiclassical theory outside the stretched horizon is valid, then an

outgoing mode must be entangled with early radiation if black hole evaporation is

a unitary process. Page is well aware of this fact, and he proposes that effective

field theory should be abandoned [45]. In order to evade the firewall paradox, in

this respect, it is thought that there must be a process that will transfer the entangle-

ment between late Hawking quanta with interior modes to entanglement between late

Hawking quanta with early radiation [45]. However the existence of such a mecha-

nism is not shown yet.
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CHAPTER 5

CONCLUSION

We have discussed a few introductory concepts in quantum gravity such as Hawking

radiation and black hole complementarity in order to gather the necessary tools to

understand the firewall paradox. Then, we introduced the paradox. It states that black

hole complementarity (the most popular solution to the information paradox) is in

contradiction with Einstein’s equivalence principle (the building principle behind the

general theory of relativity). The creators of the paradox suggested [2], so as to save

black hole complementarity, the existence of a highly excited region around the black

hole’s event horizon in violation of Einstein’s equivalence principle. Hence the name

firewall.

We could only cover some part of research on this subject, however the approaches

we included towards the resolution are good to exemplify the multitude of approaches

that exist in the literature.

In another article named “An apologia for firewalls” [1], with the addition of Douglas

Stanford as the fifth author, the AMPSS defended the existence of firewalls against

the critics. As Sean Carroll mentioned in his blog-post [10] the word apologia “means

“defense,” not “apology.” ”

Finally, AMPSS express [1] what their criticisms to various resolution attempts share

is “the inconsistency of proposals allowing the release of energy by the black hole to

be physically separated from the escape of information.” Readers may be interested

in [28] that puts emphasis on the physical nature of quantum information.

There is a dislike of firewall among some physicists. This is not a secret. One of
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the reasons for this attitude is that if one holds onto the black hole complementarity,

then the equivalence principle can break down at arbitrarily low curvature regions.

This is really tragic. One is reminded of the following passage from Nietzsche [43]

(emphasis in the original):

The laws of numbers were invented on the basis of the initially prevailing
error that there are various identical things (but actually there is nothing
identical) or at least there are things (but there is no “thing”). The as-
sumption of multiplicity always presumes that there is something, which
occurs repeatedly. But this is just where error rules; even here, we invent
entities, unities, that do not exist.

Our feelings of space and time are false, for if they are tested rigorously,
they lead to logical contradictions. Whenever we establish something
scientifically, we are inevitably always reckoning with some incorrect
quantities; but because these quantities are at least constant (as is, for
example, our feeling of time and space), the results of science do acquire
a perfect strictness and certainty in their relationship to each other. One
can continue to build upon them–up to that final analysis, where the mis-
taken basic assumptions, those constant errors, come into contradiction
with the results, for example, in atomic theory.

Tragedy is an essential constituent of a meaningful life. If one wants to climb the

mount Everest, then one must accept the possibility of falling down off a cliff. What

happened in quantum gravity is that we are about to fall off a cliff, though not yet, if

we cannot hold onto a principle. Almost everybody thinks about which principle of

nature to give up: 1) unitary black hole evaporation, 2) semiclassical approximation

outside stretched horizon, 3) the number of black hole quantum states is given by

exp(A/4), 4) equivalence principle, 5) proximity postulate. The proximity postulate

is the idea that “the interior of a black hole must be constructed from degrees of

freedom that are physically near the black hole” [60].

Perhaps if classical theory of gravitation, which currently is general relativity, con-

jectured that event horizons were special places, firewalls would not be disliked as

much. There is, for example, a theory of gravitation that is known as shape dynamics

that is “a novel formulation of Einstein’s equations in which refoliation invariance is

replaced with local spatial conformal (Weyl) invariance” [17]. For more about shape

dynamics and its connection to general relativity one may find references [17] and

[16] useful.
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In their article [15] Henrique Gomes and Gabriel Herczeg noted that the event horizon

of shape dynamic black holes, which are indistinguishable from general relativistic

black holes for distant observers, can be detected by local measurements. In shape

dynamics, the equivalence principle is not a fundamental ingredient but rather an

emergent property which is not exhibited at the event horizon [15]. Shape dynamic

black holes should be further investigated as regards the experience of infalling ob-

servers. One immediate criticism would however be that because the interior of these

type of black holes are another mirror universe, they seem to violate postulate P3 of

black hole complementarity which states that the number of interior black hole states

is exp(A/4) where A is the area of the horizon.

Stephen Hawking published a note [23] which is related to his talk1 at Kavli Institute

for Theoretical Physics. He contemplates on the idea that only apparent horizon but

no event horizons form and mentions that this “is the only resolution of the paradox

compatible with CPT” invariance [23]. This idea, of course, requires a modification

of classical gravitation.

All in all, there are many ideas in the air. One gets the impression that any one of

them, in itself, is not sufficient to solve the paradox; however there may be little

pieces towards the resolution that are scattered across the multitude of ideas. On the

other hand, the ties between physics and philosophy has weakened considerably2. It

seems that this paradox will not be solved if philosophy is contuniously disregarded

by physicists. Occasionally, the current situation is likened to the one in the beginning

of the 20th century where major paradigm shifts occurred. However what we miss is

philosophy. The situations are not quite the same. For example, the fact that there

is an information paradox for black holes is because of the belief that one should be

able to reverse the evolution of a physical system. This belief is non-scientific, it is

philosophical. Perhaps, in the end, there are dry mathematical rules that govern the

cosmos; however one should be able to fall in love. Philosophy is a necessity.

1 Readers may find Hawking’s as well as other participants’ talks through the web address given in [8].
2 Readers may find Pablo Echenique-Robba’s work [11] useful as a counter-attack to the dogmatic “Would

you please be quiet and do your calculation?” approach.
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APPENDIX A

AN ANALOGUE OF HEISENBERG’S UNCERTAINTY

PRINCIPLE

Heisenberg’s uncertainty relation ∆x∆p ≥ ~/2 is a relation difficult to grasp for

humans because our intuition evolved in situations where nonrelativistic classical

physics is valid. However the following experiment might be an analogue way of

understanding it.

We consider a fan that is mounted on a wall, see Figure A.1. The fan has an opaque

lid that closes the propeller completely when it is closed. We suppose that the weather

outside is moderately windy. The idea is that, when the lid is opened there occurs a

current of air that makes the propeller rotate. Of course if the lid is closed, there can

occur no sensible amount of air current that is enough to move it, hence the propeller

stands still. The more one opens the lid, the more quickly the propeller rotates.

We interpret the situation as follows: the degree of visibility of the fan corresponds to

position measurements with increasing precision (decreasing ∆x), hence it begins to

rotate faster and faster as one uncovers more of it (increasing ∆p). On the contrary, if

one closes the lid more and more (increasing ∆x because one no longer sees it), the

fan begins to slow down (decreasing ∆p) because the air current no longer flows as

freely as it used to when the lid was open.
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Closed Half-open Open

Figure A.1: An analogue of uncertainty between position and momentum in quantum

mechanics using a fan placed on a wall. There is a lid that may close the fan. When

the lid is opened, there occurs a rather moderate amount of air current that flows

from outside to inside which in the end makes the propeller rotate. We represent lid-

opening in the figure by the opacity of the lid: the more translucent it is, the more

open it is and vice versa.
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APPENDIX B

DERIVATION OF THE U(1)-INNER PRODUCT

We shall derive the U(1)-charge and show that it is constant on spacelike hypersur-

faces. The conserved current (which is a functional of one field solution) that gives

rise to this charge will then be modified to define another conserved current (which is

a functional of two field solutions).

The full Lagrangian is present in equation (2.8) and we rewrite it here for conve-

nience:

Lr =
1

2

(
∇µφ∇µφ+m2φ2 + ξRφ2

)
, (B.1)

where we denote it as Lr (Subscript r is used because of φ’s being real valued).

The Euler-Lagrange equation obtained is (∇2 −m2 − ξR)φ = 0. However, there

is another Lagrangian that gives the same equation of motion at the expense of φ’s

being complex valued:

Lc = ∇µφ∗∇µφ+m2φ∗φ+ ξRφ∗φ. (B.2)

Variation with respect to φ∗ yields the Euler-Lagrange equation mentioned above that

is yielded by Lr.

As we shall see shortly, we can easily find a conserved charge for complex scalar

fields. However, since complex and real scalar fields satisfy the same equation of

motion, we will have obtained a conserved charge for real scalar fields. Because the

modes, or in other words basis vectors, upon which we will expand the real scalar
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C

Figure B.1: The elements of the group U(1) form a circle. One may see this fact

easily by considering where the elements eiθ lie for θ ∈ R.

field φ will be complex valued, we are going to keep the complex conjugation symbol

throughout.

There is an internal symmetry present in Lc. An internal symmetry concerns the

invariance of the action under the variations of fields only. For example Lorentz

invariance in usual, i.e. flat spacetime, QFT involves the transformation on spacetime

points, hence it is not an internal symmetry. However, the invariance of Lc under the

mapping φ 7→ eiθφ where θ ∈ R is an internal symmetry, which we will use to define

the U(1)-charge.

As a side note, the term “U(1)” is used to denote the charge because it is the name

of the group that corresponds to considered symmetry transformation of fields. It is

the group of 1× 1 dimensional unitary matrices. Its elements can be represented on a

circle. Please see Figure B.1.

There are two ways to derive the U(1)-charge. The first [39] is more direct, it involves

the variation of Lagrangian with respect to φ and its invariance under a particular1

type of variation described by the U(1) symmetry. The second involves the invariance

of the action, making the global U(1) symmetry local and proceeding afterwards.

Because the second method is more indirect and less obvious, we shall not show it.

Interested reader may find the details of this approach in [34], pages 46–49.

1 Of course δL cannot be equal to zero for all variations, this is the essence of the variational principle.
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B.1 Conserved Current

We consider the Lagrangian Lc. As the reader may have checked already, it is invari-

ant under the mapping φ 7→ eiθφ. We consider an infinitesimal transformation, θ ' 0,

which means δφ = eiθφ− φ ' iθφ ' 0.

We vary Lc with respect to φ, φ∗ and obtain:

δLc =
∂Lc
∂φ

δφ+
∂Lc
∂∇µφ

δ∇µφ+
∂Lc
∂φ∗

δφ∗ +
∂Lc
∂∇µφ∗

δ∇µφ
∗, (B.3)

Noting that δ and ∇µ commute, we write:

=
∂Lc
∂φ

δφ+
∂Lc
∂∇µφ

∇µδφ+
∂Lc
∂φ∗

δφ∗ +
∂Lc
∂∇µφ∗

∇µδφ
∗. (B.4)

We can write ∇µδφ(∂Lc/∂∇µφ) as ∇µ [δφ(∂Lc/∂∇µφ)]− δφ∇µ(∂Lc/∂∇µφ). It is

here we require φ to satisfy the Euler-Lagrange equation, in order to write the second

term as −δφ(∂Lc/∂φ). One should do similar calculations for the φ∗ part. After the

cancelations we obtain:

= ∇µ

[
δφ

∂Lc
∂∇µφ

]
+∇µ

[
δφ∗

∂Lc
∂∇µφ∗

]
, (B.5)

= ∇µ

[
δφ

∂Lc
∂∇µφ

+ δφ∗
∂Lc
∂∇µφ∗

]
, (B.6)

= 0. (B.7)

The last equality is because of invariance of the Lagrangian. In the line before that,

the term in square brackets represents a conserved current. Using δφ = iθφ upto first

order in θ one can calculate the current. It is found to be:

iθ(φ∇µφ∗ − φ∗∇µφ). (B.8)

Because a constant times a conserved current is still a conserved current, we neglect

the coefficient iθ in front and define jµ[φ] as:

jµ[φ] = φ∇µφ∗ − φ∗∇µφ. (B.9)
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It should be noticed that the conserved current does not depend on any addition to the

Lagrangian that is only a function of the fields, not of their derivatives. For example,

an addition of a function of φ∗φ to Lc gives no contribution to conserved current,

as can be seen via (B.6). Therefore, the conserved current found here can be useful

for various other similar Lagrangians. However, of course the parts added should be

invariant under the considered symmetry transformation.

Suppose φ and ψ are two field solutions. If we defined:

jµ[φ, ψ] = φ∇µψ∗ − ψ∗∇µφ, (B.10)

would this quantity describe a conserved current? The answer is positive, by virtue

of field equations. We only need to show that∇µj
µ[φ, ψ] = 0.

∇µj
µ[φ, ψ] = ∇µ(φ∇µψ∗ − ψ∗∇µφ), (B.11)

= ∇µφ∇µψ∗ + φ∇2ψ∗ −∇µψ
∗∇µφ− ψ∗∇2φ, (B.12)

= φ∇2ψ∗ − ψ∗∇2φ. (B.13)

By the field equations, we can write (m2 + ξR)φ in lieu of ∇2φ and do the same for

ψ∗. When this is done, two terms cancel each other.

Hence, jµ[φ, ψ] is a conserved current. From now on, we sometimes denote it just as

jµ.

B.2 Definition of the Inner Product

We consider a region of spacetime (M) that has the topology R × Σ, i.e. it can be

foliated by spacelike hypersurfaces. For an illustration please see Figure B.2.

Since jµ is a conserved current, its divergence vanishes. If it is integrated onM, the

result will be zero of course. However, if we can use the Stoke’s theorem, we can

express this integral on the boundary (∂M) ofM. Part of the boundary that will be

of importance to us is the union of two spacelike hypersurfaces, Σ0 and Σ1. We will
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Σ0

Σ1

M

Figure B.2: Σ0 and Σ1 are two spacelike hypersurfaces. We will see that the inner

product we will define is constant on any spacelike hypersurface under consideration.

This is the reason why it deserves the name “inner product.”

suppose that the integral of the flux of jµ on the rest of ∂M vanishes. For generality,

we assume the spacetime is (n+ 1)-dimensional.

0 =

∫
M
dn+1x |g|1/2∇µj

µ, (B.14)

We use the Stoke’s theorem.

0 =

∫
∂M

dnx |g|1/2 nµjµ. (B.15)

Here nµ is perpendicular to the boundary. We divide the boundary into three disjoint

parts2: Σ0, Σ1 and ∂M\ (Σ0 ∪ Σ1).

0 =

∫
Σ0

dnx |g|1/2 nµjµ+

∫
Σ1

dnx |g|1/2 nµjµ+

∫
∂M\(Σ0∪Σ1)

dnx |g|1/2 nµjµ. (B.16)

We suppose that the last integral vanishes and hence require fields to vanish on this

part of the boundary as a boundary condition. For example, usually field solutions on

spacelike infinity are assumed to vanish.

0 =

∫
Σ0

dnx |g|1/2 nµjµ +

∫
Σ1

dn |g|1/2 nµjµ. (B.17)

2 In the presence of a black hole, Σ0 will be the lightlike past. However, because we are foliating the spacetime
outside the event horizon, as t approaches∞ the spacelike hypersurface that is appropriate to a stationary distant
observer will asymptote to the event horizon and the lightlike future. Because massless particles do not reach the
timelike future, Σ1 is taken to consist of two pieces: the event horizon and the lightlike future.
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Here it should be noted that the vectors nµ in Σ0 and nµ in Σ1 point in opposite

directions. We can make both vectors point in the same direction, either forward or

backward in time, by multiplying one of them with negative one. In this case we

obtain:

∫
Σ0

dnx |g|1/2 nµjµ =

∫
Σ1

dn |g|1/2 nµjµ, (B.18)

where both nµ vectors point in the same direction. As a convention we choose nµ to

point in the future direction. We therefore see that the quantity
∫

Σ
dnx |g|1/2 nµjµ[φ, ψ]

has the same value in all spacelike hypersurfaces. We would like to define an inner

product (φ, ψ) proportional to this integral. However, we require (φ, ψ)∗ = (ψ, φ). In

case of the jµ given above, this is not satisfied: because of a factor of negative one. If

we define jµ = ijµ(old), we get a pretty good inner product. One more subtlety is that

we would like complex factors that multiply ψ to pass outside the inner product in the

same way, whereas the ones that multiply φ are to be complex conjugated. This point

is not quite important, however it carries on the custom of quantum mechanics where

φ is regarded as a bra and ψ as a ket. For that purpose we map jµ(old) 7→ j∗,µ(old) and use

jµ = −ij∗,µ(old) as the current that defines the charge. The U(1)-inner product obtained

is as follows:

(φ, ψ) = i

∫
Σ

dnx |g|1/2 nµ(ψ∇µφ∗ − φ∗∇µψ). (B.19)

Careful readers may have already noticed that we used complex conjugation in defin-

ing the inner product, even though we were interested in real scalar fields. The field φ

is indeed required to be real valued, however, we use the symbols above (i.e. φ and ψ

in (B.19)) simply to denote any solution of the field equation. Therefore, if the basis

we choose for this function space, that includes all the field solutions, includes some

complex valued functions, then the appearance of complex conjugation operation is

necessary.

We list basic properties of this inner product:

(i) (φ, ψ)∗ = (ψ, φ)
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(ii) (ψ∗, φ∗) = −(φ, ψ)

(iii) ∀a, b ∈ C, (aφ+ bθ, ψ) = a∗(φ, ψ) + b∗(θ, ψ)

(iv) ∀a, b ∈ C, (φ, aψ + bχ) = a(φ, ψ) + b(φ, χ)
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APPENDIX C

BOGOLIUBOV COEFFICIENTS FOR HAWKING RADIATION

C.1 Continuum Case

Bogoliubov coefficients, in general, appear in the following expansion:

f out
ω =

∫
dω′ (αωω′f

in
ω′ + βωω′f

in,∗
ω′ ). (C.1)

Let us remember that we have f in
ω = (4πω)−1/2e−iωv/r. As mentioned in the text, we

no longer write the angular dependency explicitly; otherwise f in
ω must be multiplied

by Ylm(θ, φ). If we multiply (C.1) by e±iΩv (where Ω > 0) and integrate1 over v, we

can isolate α for the plus sign and β for the minus sign. Rearranging the both sides of

the obtained relations and using the form of f out near I− as given in (2.57) we obtain:

αωω′ =
1

2π

(
ω′

ω

)1/2 ∫ vH

−∞
dv eiω

′ve−iωuout(v), (C.2)

βωω′ =
1

2π

(
ω′

ω

)1/2 ∫ vH

−∞
dv e−iω

′ve−iωuout(v). (C.3)

The incoming wave from I− for which v = vH holds, does not reach I+ but intersects

the event horizon. Therefore in the limit v → v−H , uout must approach to∞. Using v

in lieu of uin in equation (2.54) we see that vH = v0 − 4M should hold. If we use vH

instead of v0 we have the following:

1 Note that f out
ω has no support on I− for v > vH . We integrate over v ∈ R and use f out

ω = 0 for v > vH .
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α;σ = − α;σ = + β

Figure C.1: Contours on the complex plane to be considered for Wick rotating the

integrals present in expressions for Bogoliubov coefficients. Integrals on the quarter

circles vanish.

uout(v) = v − 4M ln

(
vH − v

4M

)
. (C.4)

Using this form for uout(v) and performing changes of variables in integrals, we ob-

tain:

αωω′ =
ei(ω

′−ω)vH

2π

(
ω′

ω

)1/2 ∫ ∞
0

dv e−iσ|ω
′−ω|v exp[i4ωM ln(v/4M)], (C.5)

βωω′ =
e−i(ω

′+ω)vH

2π

(
ω′

ω

)1/2 ∫ 0

−∞
dv e−i(ω

′+ω)v exp[i4ωM ln(−v/4M)], (C.6)

where we have written ω′ − ω as σ |ω′ − ω| for σ = sgn(ω′ − ω) because when

evaluating this integral after a Wick rotation, whether σ equals plus or minus one will

be important in choosing how to close the contour. Figure C.1 illustrates appropriate

choice of contour in each case.

Integrals on the quarter circles vanish, which allows us to Wick rotate the variable v.

The resulting integrals can be evaluated easily in terms of Γ functions. The results are

found as follows:
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αωω′ =
−iσ
2π

(
ω′

ω

)1/2

e2πσωM ei(ω
′−ω)vHΓ(1 + i4ωM)

(4M)i4ωM |ω′ − ω|1+i4ωM
, (C.7)

βωω′ =
i

2π

(
ω′

ω

)1/2

e−2πωM e−i(ω
′+ω)vHΓ(1 + i4ωM)

(4M)i4ωM(ω′ + ω)1+i4ωM
. (C.8)

We can further simplify these by noting Γ(1 + ix) = [πx/ sinh(πx)]1/2:

αωω′ = −iσ
(
ω′M

π

)1/2
eσ2πωM

sinh1/2(4πωM)

ei(ω
′−ω)vH

(4M)i4ωM |ω′ − ω|1+i4ωM
, (C.9)

βωω′ = i

(
ω′M

π

)1/2
e−2πωM

sinh1/2(4πωM)

e−i(ω
′+ω)vH

(4M)i4ωM(ω′ + ω)1+i4ωM
. (C.10)

C.2 Semi-discrete Case

We defined wave packets gjn in the text as follows:

gjn ≡ ε−1/2

∫ (j+1)ε

jε

dω e−i2πnω/εf out
ω , j ∈ Z≥0, n ∈ Z, (C.11)

and expanded these in terms of in-modes:

gjn =

∫
dω (αjnωf

in
ω + βjnωf

in,∗
ω ). (C.12)

Of course, we determine semi-discrete Bogoliubov coefficients using the U(1)-inner

product:

αjnω′ = (f in
ω′ , gjn), βjnω′ = −(f in,∗

ω′ , gjn). (C.13)

By using the explicit form of gjn, one can relate these semi-discrete coefficients to

the old ones:
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γjnω′ = ε−1/2

∫ (j+1)ε

jε

dω e−i2πnω/εγωω′ , (C.14)

where γ stands for α or β. Explicitly:

αjnω′ = −iσh(ω′; ε)

∫ (j+1)ε

jε

dω
eσ2πωM

sinh1/2(4πωM)

e−i(vH+2πn/ε)ω

(4M)i4ωM |ω′ − ω|1+i4ωM
, (C.15)

βjnω′ = ih∗(ω′; ε)

∫ (j+1)ε

jε

dω
e−2πωM

sinh1/2(4πωM)

e−i(vH+2πn/ε)ω

(4M)i4ωM(ω′ + ω)1+i4ωM
, (C.16)

where h(ω′; ε) = eiω
′vH (ω′M/πε)1/2.
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APPENDIX D

THE ENTANGLED NATURE OF VACUUM

In section 2.2.3 about the Hawking radiation, even though we calculated the spectrum

of radiation we never attempted to expand the field in the out-modes. In order to fully

expand the field, we need outgoing modes that reach I+ as well as the modes that

fall through the horizon. Because event horizon together with the lightlike future is a

Cauchy surface, we should be able to express any in-state in the Fock space of horizon

modes and modes that reach I+.

The in-vacuum when expressed in late times, corresponds to an entangled state. Hori-

zon degrees of freedom are entangled with outgoing Hawking radiation. We will not

derive this well known result from scratch. Readers may like to see [13], [27], [14].

We, however, give a sketch of an idea of how it can be done. In order to express the

in-vacuum in late times one acts on it with the identity operator: | in 〉 = 1 | in 〉 =∑
ψ | ψ 〉 〈ψ | in〉 where the sum is over the Fock basis in late times. The state | ψ 〉

is proportional to a†k1a
†
k2
· · · a†kn | out 〉 for some k1, k2, . . . , kn where a†k is a creation

operator in late times. For now, we do not distinguish horizon modes from Hawking

modes: a†k may be related to any one or both of them. By using Bogoliubov coeffi-

cients we can write: ain
k =

∫
dl (αklal+βkla

†
l ). Applying both sides to | in 〉we obtain:∫

dl αklal | in 〉 = −
∫
dl βkla

†
l | in 〉. Multiplying both sides by1 α−1

k′k, integrating

over k and renaming variables we obtain: ak | in 〉 = −
∫
dk′dl α−1

kk′βk′la
†
l | in 〉. If we

define Vkl ≡ −
∫
dk′ α−1

kk′βk′l, we can rewrite the previous expression as:

ak | in 〉 =

∫
dl Vkla

†
l | in 〉 . (D.1)

1 For the existence of α−1
k′k readers may see a footnote in [13] on page 79 which refers to Wald’s [76].
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Hence the product 〈ψ | in〉 is proportional to
∫
dl Vknl 〈 out | ak1ak2 · · · a

†
l | in 〉. The

product of operators inside can be replaced by the commutator [ak1ak2 · · · , a
†
l ] be-

cause a†l annihilates 〈 out |. This commutator can be calculated2 and can be expressed

as a sum of n− 1 terms each containing an expectation value of n− 2 operators. Re-

cursively one will in the end reach a summation of integrals of various products of Vkl,

where the total expression will be multiplied by 〈out | in〉. By the way, this argument

explains why an in-vacuum contains particles in pairs. If we began with an odd num-

ber of operators, in the end only one operator would be left in between 〈 out | · | in 〉
and it would vanish. Hence, the innerproduct between states in late times that contain

odd number of particles and in-vacuum is zero: there is no transition to these states.

Afterwards a nice expression of | in 〉 in late Fock basis can be obtained:

| in 〉 = 〈out | in〉 exp

(
1

2

∫
dkdl Vkla

†
ka
†
l

)
| out 〉 . (D.2)

Reference [13] may be seen for more discussion. Fabbri and Navarro-Salas [13]

use out-modes that are the same with ours apart from a factor of (4π)1/2 and define

infalling horizon modes using the form of f out
ω near I−: infalling horizon modes and

outgoing Hawking modes are separate from each other and do not mix. We quote their

result, while making clear that their summation is integration and explicitly writing

angular dependencies, which is [13]:

| in 〉 = 〈out | in〉 exp

(∑
lm

∫ ∞
0

dω e−4πMωaint,†
ωlma

out,†
ωlm

)
| out 〉 , (D.3)

where a superscript ‘int’ is used to denote horizon modes, the indices l and m denote

angular properties, aout
k is the same as before and | out 〉 is now the vacuum that is

annihilated by both aint
k and aout

k .

For a stationary observer3 located at fixed Schwarzschild r coordinate, the appropriate

vacuum state is | out 〉. This is because his proper time is proportional to Schwarz-

schild time that is used to define positive frequency modes that is appropriate for dis-

tant observers. The only difference is that the detected Hawking quanta will be blue
2 Readers may find the worm rule of commutators presented in Appendix F useful.
3 I would like to thank Sabine Hossenfelder who turned my attention to this point and made myself aware that

Hawking radiation and Unruh radiation has the same entanglement structure.
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Figure D.1: Illustration of the locally flat spacetime region that is seen by an infalling

observer. Here τ and ρ are the locally flat temporal and radial coordinates, respec-

tively. The straight line describes the worldline of the infalling observer, whereas the

hyperbola does that of the stationary observer. Event horizon is juxtaposed on one of

Rindler horizons.

shifted by an amount (1 − 2M/r)−1/2. Stationary observers will observe increased

temperatures as the stretched horizon is approached.

On the other hand, a freely falling observer will rather see a local vacuum while

passing through the event horizon. Let p be the event that the infalling geodesic

intersects with the horizon. Expressing the local spacetime around p in Riemann

normal coordinates one can see that it is locally flat, which is required by the manifold

structure of spacetime. In this local region, the worldline of the observer is almost a

straight line. Please see Figure D.1.

We described the motion of infalling observers, let us now turn our atention to sta-

tionary observers. A stationary observer who is located at r ≈ 2M does not follow

a geodesic: his motion is accelerated. What is more, his worldline will turn out to

match that of a Rindler observer.

We begin with the Schwarzschild metric:
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ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2. (D.4)

We are interested in regions close to event horizon, for that purpose, we let r =

2M(1 + x) where x� 1. In this approximation, (D.4) becomes:

ds2 ≈ −xdt2 +
1

x
dr2 + r2dΩ2. (D.5)

Defining x = ξ2/16M2, and η = t/4M we obtain:

ds2 ≈ −ξ2dη2 + dξ2 + r2dΩ2. (D.6)

The first two terms constitute the Rindler metric. Reference [3] exhibits similar cal-

culations. In order to obtain the form we used in section 2.2.2 one may let ξ = eaξ
′
/ξ′,

however this is not necessary. What we observe is that constant r worldlines corre-

sponds to constant ξ worldlines. These are the worldlines of Rindler observers.

The Hawking radiation detected by the stationary observer is indeed4 the radiation

seen by a Rindler observer: Unruh radiation.

Here is the crux of the entanglement conflict. According to semiclassical calculation,

the state of the black hole vapor is expressed by (D.3):

| in 〉 = 〈out | in〉 exp

(∑
lm

∫ ∞
0

dω e−4πMωaint,†
ωlma

out,†
ωlm

)
| out 〉 . (D.3)

However if the evaporation is unitary, black vapor must begin being purified after the

Page time [47]: it cannot be in the above state. If it is not in the above state at least for

the modes that are emitted when the black hole is old as argued by AMPS [2] and they

are almost maximally entangled with early radiation, then they cannot be entangled

with interior modes to yield the Minkowski vacuum when traced backwards in time to

the near horizon region: because these modes are Rindler modes around the horizon.

4 The question of why a distant observer encounters Hawking radiation, when he is not accelerated at all,
arises. The answer is the existence of event horizon.
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APPENDIX E

TWO PROOFS OF THE NO-CLONING THEOREM

Here we provide two proofs of the no-cloning theorem. First one shows that cloning

of arbitrary states violate the linearity of quantum mechanics, whereas the second

one obtains a contradiction using a more general approach known as the generalized

measurement formalism.

E.1 Linearity of Quantum Mechanics

Here we provide a proof that reach its conclusion by showing that an operation that

clones arbitrary quantum states is non-linear. Because operators in quantum mechan-

ics are linear, it is concluded that cloning is not allowed in QM.

The cloning operation on states is of the following form:

| ψ 〉 ⊗ | φ 〉 7→ | ψ 〉 ⊗ | ψ 〉 , (E.1)

where | ψ 〉 is the state to be copied and | φ 〉 is some standard state, for example the

state in which the storage unit is. Because quantum mechanics is linear, there must be

a linear operator L that performs the transformation of | ψ 〉 ⊗ | φ 〉 into | ψ 〉 ⊗ | ψ 〉:

L | ψ 〉 ⊗ | φ 〉 = | ψ 〉 ⊗ | ψ 〉 . (E.2)

Because superposed states must be cloned by this operation as well, a contradiction

can be obtained as in reference [66] whose argument is as follows. First of all, a
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cloning operation must perform the following:

| + 〉 ⊗ | φ 〉 → | + 〉 ⊗ | + 〉 , (E.3)

| − 〉 ⊗ | φ 〉 → | − 〉 ⊗ | − 〉 , (E.4)

where we use ± notation instead of ↑↓ notation for spins. On the other hand, the

following two expressions must be true as well, because L is a linear operator:

1√
2

(| + 〉+ | − 〉)⊗ | φ 〉 → 1√
2

(| + 〉 ⊗ | + 〉+ | − 〉 ⊗ | − 〉). (E.5)

1√
2

(| + 〉+ | − 〉)⊗ | φ 〉 → 1√
2

(| + 〉+ | − 〉)⊗ 1√
2

(| + 〉+ | − 〉), (E.6)

=
1

4
| + 〉 ⊗ | + 〉+

1

4
| + 〉 ⊗ | − 〉 , (E.7)

+
1

4
| − 〉 ⊗ | + 〉+

1

4
| − 〉 ⊗ | − 〉 . (E.8)

Because the states | + 〉 and | − 〉 are linearly independent, the contradiction follows.

E.2 Generalized Measurement Approach

The proof by generalized measurement approach is done in one of Sadi Turgut’s lec-

tures on quantum information1.

We suppose there exist generalized measurement operators {Mi}i such that:

∑
i

M †
iMi = 1. (E.9)

We would like these operators to clone some given state | ψ 〉:

Mi | ψ 〉 ⊗ | 0 〉 = ci | ψ 〉 ⊗ | ψ 〉 , (E.10)
1 I would like to thank Ümit Alkuş for sharing his lecture notes about the proof of the theorem. What follows

below is based on these notes.
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where ci’s depend on | ψ 〉. On the other hand, (E.9) causes ci’s to satisfy:

∑
i

|ci|2 = 1. (E.11)

If this operation is able to copy the state | ψ 〉, it should also do the same for another

state | ψ′ 〉:

Mi | ψ′ 〉 ⊗ | 0 〉 = c′i | ψ′ 〉 ⊗ | ψ′ 〉 . (E.12)

Because c’s depend on the state to be cloned, c′i may differ from ci: they are not

necessarily the same. We apply †-operation to (E.10) and apply it to (E.12). Then, we

sum over i:

∑
i

〈 ψ | ⊗ 〈 0 |M †
iMi | ψ′ 〉 ⊗ | 0 〉 =

∑
i

c∗i c
′
i 〈 ψ | ⊗ 〈 ψ | · | ψ′ 〉 ⊗ | ψ′ 〉 , (E.13)

We simplify the left hand side by using (E.9) and evaluate the inner-products:

〈ψ|ψ′〉 =
∑
i

c∗i c
′
i 〈ψ|ψ′〉

2
, (E.14)

Let us assume that | ψ′ 〉 and | ψ 〉 are non-orthogonal: 〈ψ|ψ′〉 6= 0:

〈ψ|ψ′〉−1
=
∑
i

c∗i c
′
i. (E.15)

By the Cauchy-Schwarz inequality, the following holds:

∣∣∣∣∣∑
i

c∗i c
′
i

∣∣∣∣∣ ≤∑
i

|ci|2 ·
∑
i

|c′i|
2
. (E.16)

Because
∑

i |ci|
2 =

∑
i |c′i|

2 = 1, we have:

∣∣∣∣∣∑
i

c∗i c
′
i

∣∣∣∣∣ ≤ 1. (E.17)
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Using this inequality in (E.15), we obtain:

|〈ψ|ψ′〉| ≥ 1. (E.18)

Because we have chosen | ψ′ 〉 different from | ψ 〉, we obtain |〈ψ|ψ′〉| > 1: This is a

contradiction. Therefore, cloning is not allowed in quantum mechanics.
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APPENDIX F

THE WORM RULE OF COMMUTATORS

Figure F.1: A simplistic illustration of how an earthworm moves.

This is a very nice property of operations [·, ·] that satisfy [a, bc] = [a, b]c + b[a, c].

Commutators in quantum mechanics and Poisson brackets of classical mechanics are

two examples. We express this as a theorem:

Theorem 2. Let [·, ·] be an operation such that for all a, b, c the equality [a, bc] =

[a, b]c+ b[a, c] holds. Then the following is true:

[a, bcde . . .] = [a, b]cde . . .+ b[a, c]de . . .+ bc[a, d]e . . .+ bcd[a, e] . . .+ · · · (F.1)

The niceness of the pattern is that the order of the sequence bcde . . . remains the same

while [a, ·] is applied to each term. Since the sequence of terms that are summed

in (F.1) resembles how an earthworm moves, we call this relation the worm rule

of commutators. This property is not very hard to notice, therefore it might have

appeared elsewhere; however we would like to call it that way.

If, as it is for a quantum mechanical commutator, [a, b] = −[b, a], then the reverse

relation ([bcd, a] = [b, a]cd + b[c, a]d + bc[d, a]) can be shown to hold as well, which

we will not do it explicitly.

Proof. Proof is by recursion. Let n denote the number of terms on the right argument

of the commutator. Theorem holds for n = 2 by definition. Now suppose n ≥ 2. We
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have an expression of the form [a, b1 . . . bnbn+1]. We consider b1 . . . bn as one term

and use the theorem:

[a, b1 . . . bnbn+1] = [a, b1 . . . bn]bn+1 + b1 . . . bn[a, bn+1] (F.2)

The first term can be expanded to give a sum of n terms where [a, ·] is applied from

b1 to bn. On the other hand the second term in the equation is the term that would

appear when [a, ·] is applied to bn+1. In total, in each one of n + 1 terms the order of

b1 . . . bnbn+1 is preserved and [a, ·] is applied to each one of them. This completes the

proof.
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