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ABSTRACT

A MARGINALIZED MULTILEVEL MODEL
FOR BIVARIATE LONGITUDINAL BINARY DATA

İnan, Gül
Ph.D., Department of Statistics

Supervisor : Assoc. Prof. Dr. Özlem İlk Dağ

August 2014, 122 pages

This thesis study considers analysis of bivariate longitudinal binary data. We pro-
pose a model based on marginalized multilevel model framework. The proposed
model consists of two levels such that the first level associates the marginal mean of
responses with covariates through a logistic regression model and the second level
includes subject/time specific random intercepts within a probit regression model.
The covariance matrix of multiple correlated time-specific random intercepts for each
subject is assumed to represent the within-subject association. The subject-specific
random effects covariance matrix is further decomposed into its dependence and vari-
ance components through modified Cholesky decomposition method to handle pos-
sible computational and statistical problems that may be associated with its high-
dimensionality. Then the unconstrained version of resulting parameters are modelled
in terms of covariates with low-dimensional regression parameters, which provides
better explanations related to dependence and variance parameters and a reduction in
the number of parameters to be estimated in random effects covariance matrix to avoid
possible identifiability problems. Marginal correlations between responses of sub-
jects and within the responses of a subject are derived through a Taylor series-based
approximation. Data cloning computational algorithm is used to compute the maxi-
mum likelihood estimates of the parameters in the proposed model and their standard
errors. The validity of the proposed model is assessed through a Monte Carlo simula-
tion study under different scenarios, and results are observed to be at acceptable level.
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Lastly, the proposed model is illustrated through Mother’s Stress and Children’s Mor-
bidity study data, where both population-averaged and subject-specific interpretations
are drawn through Emprical Bayes estimation of random effects.

Keywords: Bivariate binary responses, multilevel models, multiple correlated random
effects, covariance matrix decomposition, data cloning
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ÖZ

İKİ DEĞİŞKENLİ İKİ ELEMANLI UZANLAMASINA VERİ İÇİN
MARJİNALLEŞTİRİLMİŞ ÇOK SEVİYELİ BİR MODEL

İnan, Gül

Doktora, İstatistik Bölümü

Tez Yöneticisi : Doç. Dr. Özlem İlk Dağ

Ağustos 2014 , 122 sayfa

Bu tez çalışması iki elemanlı iki değişkenli uzunlamasına verinin analizini ele almak-
tadır. Marjinalleştirilmiş çok seviyeli model çerçevesinde, bir model önermekteyiz.
Önerilen model iki seviyeden oluşmaktadır; öyle ki, ilk seviye bir lojistik regres-
yon modeli aracılığıyla ortalama cevap değişkenlerini açıklayıcı değişkenlerle ilişki-
lendirmektedir; ikinci seviye bir probit regresyon modeli içerisine kişi/zamana bağlı
rassal kesişim terimleri dahil etmektedir. Her kişi için, birden çok korelasyonlu ve
zamana bağlı rassal kesişim terimlerinin kovaryans matrisinin, kişi içi ilişkiyi tem-
sil ettiği varsayılmıştır. Rassal etkiler kovaryans matrisinin yüksek boyutlu olması
ile ilişkili olabilecek hesapsal ve istatistiksel sorunlarla baş edebilmek için bu mat-
ris, değiştirilmiş Cholesky ayrıştırma yöntemi ile bağımlılık ve varyans parçalarına
ayrıştırılmıştır. Daha sonra, bağımlılık ve varyans parametrelerine dair daha iyi açık-
lamalar getirmesi ve olası tanınabilirlik sorunlarını önlemek için rassal etkiler kovar-
yans matrisinde hesaplanması gereken parametre sayısının azalmasını sağlamasından
dolayı, ortaya çıkan parametrelerin kısıtsız halleri düşük boyutta açıklayıcı değiş-
kenlerle modellenmiştir. Kişiler arası cevaplar ve kişinin kendi cevapları arasındaki
marjinal korelasyonlar, Taylor serisi tabanlı bir yaklaşımla elde edilmiştir. Önerilen
modeldeki parametrelerin, en çok olabilirlik yöntemi parametre ve standart hata tah-
min edicilerini hesaplamak için veri klonlaması hesapsal algoritması kullanılmıştır.
Önerilen modelin geçerliliği farklı senaryolar altında bir Monte Carlo benzetim çalış-
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ması aracılığıyla incelenmiştir, ve çıkan sonuçların kabul edilebilir seviyede olduğu
gözlenmiştir. Son olarak, önerilen model, Anne’nin Stresi ve Çoçukların Hastalığı ve-
risi ile örneklendirilmiştir; rassal etkilerin Ampirik Bayes yöntemi ile tahmin edilmesi
sayesinde, hem populasyon ortalaması hem de kişi bazlı yorumlar çıkarılmıştır.

Anahtar Kelimeler: İki elemanlı iki değişkenli cevaplar, çok seviyeli modeller, birden
çok korelasyonlu rassal etkiler, kovaryans matrisi ayrıştırması, veri klonlaması
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CHAPTER 1

INTRODUCTION

Longitudinal studies arise from repeated measurements on a given response for the

same subjects over time. Many longitudinal studies can be considered from different

fields such as clinical trials, epidemiology, behavioral sciences, econometrics and

so on. Multiple responses are sometimes collected repeatedly over time to better

understand the underlying phenomenon. As an example, one can consider Mother’s

Stress and Children’s Morbidity (MSCM) study (Diggle et al., 2002), where a total of

167 mothers and their preschool children were enrolled and mothers’ stress status (0 =

absence, 1 = presence) and their children’s illness status (0 = absence, 1 = presence)

were collected along with some demographic and domestic variables for 28 days.

MSCM study aimed to investigate whether mother’s stress status and child’s illness

status were jointly associated with the demographic and domestic variables such as

mother’s education level, employment and marriage status, child’s gender and race,

and the household size.

Building joint regression models for longitudinal data with multiple responses may

help answer multiple questions simultaneously (Gueorguieva, 2013) such as the effect

of mother’s employment status on mother’s stress status and child’s illness status, as in

the case of MSCM study, it may provide information on how the association between

multiple outcomes evolves over time, and it may estimate the parameters in the model

with an improved efficiency due to information exchange between responses.

Analysis of multivariate longitudinal data (e.g., longitudinal data with multiple re-

sponses) requires special attention since repeated measurements of a subject over

time for a given response are expected to be correlated and yield within-subject as-
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sociation, while multiple responses of a subject measured at a given time point are

also expected to be correlated and yield multivariate response association. As a con-

sequence, although the effects of covariates on longitudinal response means may be

of primary interest in multivariate longitudinal data, within-subject association and

multivariate response association should be taken into account at the model building

stage for accurate inferences (Asar, 2012).

Models developed for the analysis of longitudinal data can be categorized into 2

classes: single-level and multilevel models (Asar, 2012). While the single-level

models can be subcategorized as marginal and conditional models, models that have

marginalized mean structure fall into the latter category.

Marginal models directly specify a regression model to assess the effects of covariates

on the longitudinal mean response. The parameters related to longitudinal associa-

tion are treated as if they are nuisance parameters and are specified through a working

covariance matrix. The regression parameters in marginal models have population-

averaged interpretations like in a traditional general linear model (GLM). They are

consistent and asymptotically normally distributed, even if covariance structure for

longitudinal association is misspecified (Liang and Zeger, 1986). One considerable

drawback of marginal models is their lack of likelihood-based inferences since a

joint distribution for longitudinal responses cannot be specified (Griswold, 2005). In

the statistical literature of marginal models for multivariate longitudinal binary data,

Shelton et al. (2004) analysed multivariate longitudinal binary data through marginal

models for univariate longitudinal binary via SAS. Asar and Ilk (2014) implemented

their approach within R and proposed mmm library. While regression coefficients were

response-specific in this marginal model, another marginal model, which included re-

gression coefficients shared by responses, was also proposed by Asar and Ilk (2013a)

and was presented in mmm2 library in R. In these studies, while the regression param-

eters were estimated via generalized estimating equations (GEEs), the association

parameters were estimated via method of moments.

Conditional models generally model the longitudinal mean response conditioned on

either random effects or previous history of responses (Griswold, 2005). Random

effects or previous history of responses are included into the model to account for
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the dependence across the responses of a subject (Griswold, 2005). The regression

parameters in conditional models have interpretation conditional on either random

effects or past responses. For that reason, the estimates of the regression parame-

ters are sensitive to the longitudinal association specifications (Heagerty and Zeger,

2000), as can be seen in simulation study example of Lee et al. (2012). Beyond the

interpretation of random effect terms and previous history of responses in the model,

they also enable to construct a joint distribution for longitudinal binary responses and,

in turn, enable likelihood-based inference capabilities. While a joint distribution for

longitudinal binary responses can be constructed through conditioning on distribution

imposed on the random effect terms in random effects models (Zhang et al., 2011),

a joint distribution for those can be specified through conditioning on the past re-

sponses in the transition models. In the statistical literature of conditional models for

multivariate longitudinal binary data, Chan et al. (1997) introduced a bivariate autore-

gressive model with random effects and used maximum likelihood estimation (MLE)

method for inference. Zeng and Cook (2007) proposed a joint transitional model for

multivariate longitudinal binary data using GEE2 (Zhao and Prentice, 1990; Liang

et al., 1992).

Marginalized multilevel models (MMMs), introduced in the seminal papers of Hea-

gerty (1999), Heagerty and Zeger (2000), and Heagerty (2002) combine the strengths

of marginal and conditional models. In this sense, they build different regression

models for the marginal mean, i.e., marginal mean model, which formulates the asso-

ciation between the longitudinal responses and covariates, and for longitudinal asso-

ciation(s), i.e., conditional mean model, which restructures the mean of longitudinal

responses conditional on either random effects and/or a Markov structure. Hence,

while MMMs take the interpretation and robustness of marginal regression parame-

ters from marginal models, they take likelihood-based inference capabilities and flex-

ible longitudinal association specifications from conditional models (Griswold and

Zeger, 2004; Griswold, 2005). In the statistical literature of MMMs for multivari-

ate longitudinal binary data, Ilk and Daniels (2007) proposed marginalized transition

random effects models (MTREMs), which consisted of three different levels, where

each level was a different logistic regression model to specify marginal mean, within-

subject association, and multivariate response association, respectively. They used

3



Bayesian inference for the parameter estimation of their model. Lee et al. (2009)

proposed a two-level marginalized model, which was based on MLE for inference.

While the first level of their model defined the marginal mean, the last level of their

model represented within-subject and multivariate response associations by the co-

variance matrix of correlated subject/time/response specific random intercepts. Asar

(2012) extended the model of Ilk and Daniels (2007) by replacing the logit link func-

tions in their model with probit link functions and offered a MLE based inference.

This new model, which was named as probit normal marginalized transition random

effects models (PNMTREMs), was presented in an R package pnmtrem (Asar and

Ilk, 2013b). Iddi and Molenberghs (2012) developed a two-level marginalized model

by relaxing the assumption of common link function for all levels, which was based

on MLE for inference. In their model, while the first level defined the marginal mean

through a logistic regression model, the last level of their model represented asso-

ciation between the multiple outcomes through the covariance matrix of correlated

subject/response specific random effects within a probit regression model.

Finally, two comprehensive reviews on the analysis of multivariate longitudinal data

and one comprehensive review on the joint modelling of multiple responses were

given by Bandyopadhyay et al. (2011) and Verbeke et al. (2012), and Rizopoulos and

Lesaffre (2014), respectively.

Objective of This Thesis

In this thesis study, we propose a model, which is based on marginalized multilevel

model framework, to analyse bivariate longitudinal binary data. In the proposed

model, the first level associates marginal mean of responses with covariates through a

logistic regression model to keep odds-ratio interpretation of the marginal regression

parameters. The second level includes subject/time specific random intercepts, i.e.,

time-specific random intercepts for each subject, within a probit regression model to

take the random-variation within the responses of the same subject and as well as be-

tween the responses of different subjects into account. For each subject, time-specific

random intercepts are further assumed to be correlated, which results in a marginal-

ized multilevel model with multiple correlated random effects. Multivariate normal
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distribution is imposed on the vector of random intercepts for each subject, so that

the covariance matrix, which may be high-dimensional, is assumed to represent the

within-subject association.

To handle possible computational and statistical problems that may be associated

with high-dimensionality of the random effects covariance matrix, we further decom-

pose the random effects covariance matrix into its dependence and variance compo-

nents through modified Cholesky decomposition method. Then we model the uncon-

strained version of resulting parameters (e.g., natural logarithm of variance parame-

ters) in terms of covariates with low-dimensional regression parameters. Hence, we

mainly get better explanations related to the dependence and variance parameters and

a reduction in the number of parameters to be estimated in random effects covariance

matrix to avoid from possible identifiability problems. In this sense, to the best of

our knowledge, this is the first time the modified Cholesky decomposition method is

used within multivariate longitudinal binary data and as well as MMMs framework

to deal with computational and statistical problems associated with covariance matrix

of multiple random effects.

Like any random effects model for binary responses, the parameter estimation for the

proposed model is based on the numerical optimization of marginal likelihood with

respect to unknown parameters, which includes the computation of high-dimensional

covariance matrix inversion and differentiation, following the numerical evaluation

of integration of conditional distribution of responses over the distribution of high-

dimensional random effects.

In this thesis study, to avoid numerical evaluation of the high-dimensional integral,

computation of high-dimensional covariance matrix inversion and differentiation of

the covariance matrix with respect to unknown parameters, and numerical optimiza-

tion of the marginal likelihood, we use data cloning (DC) computational algorithm

(Lele et al., 2007; Lele, 2010) to compute the maximum likelihood estimates (MLEs)

of the parameters in the proposed model and their standard errors. In this sense, to

the best of our knowledge, this is the first time that DC computational algorithm is

used for multivariate longitudinal binary data as well as within MMMs framework

for parameter estimation.
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Upon building the structure of the model, we carry out a Monte Carlo (MC) sim-

ulation study under different scenarios to assess the performance of the model pa-

rameters through some performance measures such as average, bias, Monte Carlo

standard error (SE), average of the model based standard errors (ASE), mean squared

error (MSE), and coverage probability (CP).

We fit the proposed model on Mother’s Stress and Children’s Morbidity (MSCM)

study data to illustrate the idea. We draw population-averaged interpretations as well

as subject-specific interpretations through Emprical Bayes (EB) estimates of random

effects.

The subsequent chapters of this thesis study are organized as follows: Chapter 2

briefly reviews marginalized multilevel models (MMMs) for longitudinal binary data,

maximum likelihood estimation (MLE) method for MMMs with random effects and

as well as data cloning (DC) computational algorithm, and reparametrization of ran-

dom effects covariance matrix in longitudinal data analysis. Chapter 3 introduces

the proposed model, describes definitions, assumptions and required derivations re-

lated to the model, talks about the estimation of the model. Chapter 4 assesses the

validity of the proposed model under different simulation scenarios and then illus-

trates the proposed model through Mother’s Stress and Children’s Morbidity (MSCM)

study data. Chapter 5 summarizes the main findings explored during the thesis study,

presents some recommendations and guidance for models including random effects,

and give some extensions of the proposed model as future works.
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CHAPTER 2

HISTORICAL BACKGROUND

In this chapter, we briefly review marginalized multilevel models (MMMs) for longi-

tudinal binary data in Section 2.1, maximum likelihood estimation (MLE) method for

MMMs with random effects in Section 2.2, and reparametrization of random effects

covariance matrix in longitudinal data analysis in Section 2.3, respectively.

2.1 Marginalized Multilevel Models for Longitudinal Binary Data

Marginalized multilevel models for longitudinal binary data, introduced in the sem-

inal papers of Heagerty (1999), Heagerty and Zeger (2000), and Heagerty (2002)

build separate regression models for marginal and conditional means of the longitu-

dinal responses to combine the strengths of marginal and conditional models. Specif-

ically, the model for the marginal mean builds the relationship between the longi-

tudinal responses and covariates, and the model for conditional mean parametrizes

the longitudinal association(s) through either random effects (marginalized random

effects models (MREMs) (e.g., the model in Heagerty (1999)) and/or a Markov struc-

ture (marginalized transition models (MTMs)) (e.g., the model in Heagerty (2002)).

As a consequence of this model building structure, MMMs take the population-

averaged interpretation and robustness of regression parameters from marginal mod-

els, whereas they take likelihood-based inference capabilities and flexible association

specifications from conditional models (Griswold and Zeger, 2004; Griswold, 2005;

Griswold et al., 2013), which are also summarized in Table 2.1.

The formulation of MREMs, which is the scope of this thesis study, for univariate
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Table 2.1: Comparison of strengths and weakness of marginal, conditional and
marginalized multilevel models.

Marginal Conditional Marginalized
Models Models Multilevel

Models
Population-averaged interpretation

3 7 3
of regression parameters
Robustness of regression

3 7 3parameters to longitudinal
association specifications
Likelihood-based inference 7 3 3

Flexibility in specifications for
7 3 3

longitudinal association

longitudinal data, define a general linear model (GLM) for the marginal mean of

responses, a nonlinear mixed model (NLMM) for the conditional mean of responses,

and further specify a statistical distribution for the random effects, which is assumed

to be the source of within-subject association, as follows:

Marginal Mean Model: g(µMit ) = g(E(Yit|Xit)) = Xitβ
M

Conditional Mean Model: g(µCit) = g(E(Yit|Xit,bi)) = ∆it(Xit) + bit,
(2.1)

where Yit represents the measurement of ith subject at time t (i = 1, 2, . . . , N ,

t = 1, 2, . . . , ni), g(.) is a non-linear link function for both marginal and conditional

mean models, βM is a P × 1 vector of marginal regression parameters associated

with Xit, ∆it is a term that connects the conditional mean to the marginal mean of

the model as shown in equation 2.2, bi = (bi1, . . . , bit, . . . , bini
) is a ni × 1 vector of

subject-specific and time-varying intercepts and bi ∼ Fb(0,Σ), where Σ is a ni × ni
covariance matrix and may be a function of time. In practice, a normally distributed

time-invariant random intercept bi with mean 0 and variance σ2 is assumed. Given

bi, Yit’s are assumed to independently come from a distribution, which is a member

of exponential family with conditional mean µCit . This is known as conditional inde-

pendence assumption and it also allows to construct a joint marginal distribution for

Yit’s for ith subject (Zhang et al., 2011), which will be discussed in Section 2.2.

In probability theory, it is known that any conditional expectation can be written in
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terms of marginal expectation such thatEbit(µ
C
it) =Ebit(E(Yit|Xit, bit)) = E(Yit|Xit)

= µMit . This implies that the integration of conditional mean µCit over the distribution

of random effects results in marginal mean µMit given as follows:

µMit =

∫
µCitf(bit)dbit

⇒ E(Yit|Xit) =

∫
E(Yit|Xit, bit)f(bit)dbit

⇒ g−1(Xitβ
M) =

∫
g−1(∆it(Xit) + bit)f(bit)dbit,

(2.2)

where g−1(.) is the inverse of the non-linear link function, f(bit) is a univariate distri-

bution with 0 mean and variance V ar(bit). The name “Marginalized” naturally orig-

inates from equation 2.2 since the conditional mean is transformed into the marginal

mean. Furthermore, the convolution equation 2.2 links the second level to the first

level of the model and provides a solution for ∆it. Hence, it is obvious that ∆it in

equation 2.1 plays a bridge role between the two levels and is a non-linear function

of Xit, βM , and V ar(bit).

For the binary responses, equation 2.2 implies that the integration of conditional prob-

ability Pr(Yit = 1|Xit, bit) over the distribution of random effects results in marginal

probability Pr(Yit = 1|Xit) given as follows:

µMit =

∫
µCitf(bit)dbit

⇒ E(Yit|Xit) =

∫
E(Yit|Xit, bit)f(bit)dbit

⇒ Pr(Yit = 1|Xit) =

∫
Pr(Yit = 1|Xit, bit)f(bit)dbit.

(2.3)

The marginalized multilevel model in equation 2.1 can able to adapt different re-

sponse types with appropriate choices for the link function g(.) (e.g., logit or probit

link functions for binary responses, log link function for non-gaussian continuous or

count responses). Furthermore, different choices for µCit , bi, and Fb(.) in equation 2.1

result in different models even for the same response type.

Griswold and Zeger (2004), Griswold (2005), and Griswold et al. (2013) provided a
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variety of MMMs for univariate correlated data, where extension to longitudinal data

is straightforward. For binary responses, these are: a logistic-logistic-normal model,

a probit-probit-normal, a logistic-probit-normal model, and a logistic-logistic-bridge

model. The three words within the name of models refer to the link functions used

in the first and the second level of the models and the distribution assumed for the

random effects, respectively. The first two models are examples for the specification

of different g(.)’s for binary responses, where g(.) is a logit link function in the first

model and a probit link function in the second model. The third model relaxes the

assumption of common link function for marginal and conditional mean models and

offers different link functions for each level, namely, a logit link for the first level and

a probit link for the second level of the model. The latter model is a variation of the

first model, where a bridge distribution is assumed for Fb(.).

As summarized in Table 2.2, only the models with logit link function in the first level

provide an odds-ratio interpretation for marginal regression parameters. However, for

the probit-probit-normal model, an approximate relationship exists between logit and

probit regression parameter estimates such as βlogit = c ∗ βprobit, where c is called as

JKB constant (Griswold, 2005) and c = (15
16

) π√
3
. On the other hand, only the models,

whose link function in the second level is coherent with the distribution of the random

effects, provide a closed-form solution for ∆it. In this framework, while the logit link

gets on well with the bridge distribution, the probit link is a good collaborator with

normal distribution. For example, for the logistic-probit-normal model, equation 2.3

provides ∆it = Xitβ
M
√

(1 + V ar(bit), which is apparently a function of Xit, βM ,

and V ar(bit). Specifically, the probit link-normal distribution collaboration finds ap-

plication in many cases other than MMMs due to its computational easiness (Caffo

and Griswold, 2006). Examples include Kalaylioglu and Ozturk (2013) and Teixeira-

Pinto and Harezlak (2013). In other cases, where a closed-form solution does not

exist for ∆it, estimation of it is possible through a numerical optimization method

such as Newton-Raphson (N-R) along with a numerical integration method such as

Gaussian quadrature (GQ) (Heagerty, 1999), which adds extra computational burden

to the parameter estimation of the model. On the other hand, extension to multiple

correlated random effects is possible only with the models including normally dis-

tributed random effects. For example, although Wang and Louis (2004) extended
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the logistic-logistic-bridge model through using covariate-dependent random effects,

generalization of this model for multiple correlated random effects requires a differ-

ent task such as modelling through copulas like in Parzen et al. (2011), since there

may not be a multivariate bridge distribution. So far, all aforementioned models as-

sumed a time-invariant random intercept bi, but Caffo et al. (2007) assumed a vector

of time-varying random intercepts, where bi is a vector of ni × 1 and a mixture of

normal distributions for Fb(.). Swihart et al. (2013) extended these models to copulas

to create marginal joint distributions for clustered binary responses. Other extensions

of these models for the univariate longitudinal binary case can be found in Miglioretti

and Heagerty (2004) and Schildcrout and Heagerty (2007).

Table 2.2: Comparison of marginalized multilevel models for longitudinal binary
data.

Logistic- Probit- Logistic- Logistic-
Logistic- Probit- Probit- Logistic-
Normal- Normal- Normal- Bridge-
Model- Model- Model- Model-

Odds-ratio interpretation
3 7 3 3of regression

parameters
A closed-form solution

7 3 3 3
for ∆it

Extension to multiple
3 3 3 7

correlated random effects

The marginalized multilevel models for multivariate longitudinal data consist of dif-

ferent extensions of equation 2.1 to jointly modelling of multiple responses Yitj’s,

where Yitj now represents tth measurement of ith subject for jth dimension, (t =

1, 2, . . . , ni, i = 1, 2, . . . , N , j = 1, 2, . . . , J). In this sense, within the framework

of multivariate longitudinal binary data, Ilk and Daniels (2007) combined MTMs and

MREMs and proposed marginalized transition random effects models (MTREMs),

which consisted of three different logistic regression models. In this model, the first

level introduced a logistic regression model for marginal mean with regression co-

efficients shared by the responses, the second level built up a transition model for

serial dependence between responses of a subject at different time points, and the
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third level included normally distributed uncorrelated subject/time specific random

intercepts for the dependence between the multiple responses of a subject for a given

time point, which were further scaled by a response-specific coefficient. Hence, while

serial dependence between the responses was directly modelled in the second level,

multivariate response dependence at a given time point was represented by random

effects. In this sense, Ilk and Daniels (2007) showed that multivariate dependence

between the responses at a given time point existed through a Taylor series-based

approximation to the function, which measured marginal correlation between the re-

sponses. ∆itj’s in the second and third levels of the model were estimated through

N-R, while a 20-points GQ was used to evaluate the one-dimensional integral in the

convolution equation of ∆itj in the third level. The parameter estimation for MTREM

was based on Bayesian inference through Fortran. An application of MTREM to fi-

nancial statements of Turkey can be found in Akinc (2008) and a simulation study

on the robustness of mean response model of MTREM to longitudinal association

models can be seen in Yalcinoz (2008).

Asar (2012) extended MTREM and proposed probit normal marginalized transition

random effects models (PNMTREMs), which consisted of three different probit re-

gression models. Since Asar (2012) used the probit link function in the first level,

he used the JKB constant to get odds-ratio interpretation of the regression parame-

ters in the first level. As a novel approach, Asar (2012) estimated ∆itj in the second

level of this 3-level model by an iterative version of implicit function theorem (IFT)

(Krantz and Parks, 2003; Stewart, 2008), whereas ∆itj in the third level of the model

had a closed-form solution due to the computational advantage of probit link-normal

distribution collaboration. Details regarding to when and how to use iterative version

of IFT were given in Asar (2012, pg 90-92). The parameter estimation of PNMTREM

was based on MLE method including the numerical optimization Fisher-Scoring (F-

S) algorithm as well as a numerical integration with a 20-points GQ. Furthermore,

this new model was implemented in pnmtrem package in R (Asar and Ilk, 2013b).

Lee et al. (2009) proposed a MREM, which consisted of two different logistic regres-

sion models. They defined serial dependence and multivariate response dependence

by introducing normally distributed and correlated subject/time/response specific ran-

dom intercepts, where the covariance matrix of random effects was constructed by the
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help of Kronecker product. Unlike Ilk and Daniels (2007) and Asar (2012), the re-

gression coefficients in the first level of the model were response-specific and the

covariance matrix of random effects in Lee et al. (2009) represented the source of

two longitudinal associations: within-subject association and multivariate response

association. The parameter estimation in the model of Lee et al. (2009) was based

on MLE with F-S algorithm as well as a 1000-points Quasi-Monte Carlo (QMC)

integration for high-dimensional integration, which also included a N-R step with

one-dimensional integration with 20-points GQ for the estimation of ∆itj in the sec-

ond level. The implementation of the model was done through R along with Fortran

due to the high-dimensional integration.

Lastly, Iddi and Molenberghs (2012) proposed a logistic-probit-normal model for bi-

variate longitudinal binary data, which consisted of a logistic regression model in

the first level with response-specific regression coefficients and a probit regression

model with subject/response specific random effects (random intercept as well as

random slopes) in the second level, where the covariance structure of random effects

was similar to Gueorguieva (2001). The model of Iddi and Molenberghs (2012) did

not take within-subject association into account through neither random effects, nor

other terms. ∆itj in the second level had a closed-form solution due to the probit

link-normal distribution collaboration. They implemented their model with built-

in numerical optimizers (e.g., N-R algorithm through 10-points GQ) within Proc

NLMIXED in SAS.

Although the first level of the model of Lee et al. (2009) and that of Iddi and Molen-

berghs (2012) were the same, the difference between two models lied in the spec-

ification for the second level of their models. While Lee et al. (2009) used a logit

link and included correlated subject/time/response specific random intercepts, which

take serial dependence and multivariate response dependence into account, Iddi and

Molenberghs (2012) used a probit link and included correlated subject/response spe-

cific random effects, which took only multivariate response dependence into account.

Naturally, the dimension of covariance matrix of random effects in the model of Lee

et al. (2009) was larger compared to that in the model of Iddi and Molenberghs (2012).

However, Lee et al. (2009) kept the number of parameters to be estimated related to

the covariance matrix at minimum by assuming a restrictive structure to avoid high-
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dimensional covariance matrix estimation and possible identifiability problems. At

this point, it is worthy to say that in aforementioned models, only the model of Ilk and

Daniels (2007) and, naturally, that of Asar (2012) used the observed information in

the data to estimate within-subject association parameters. The multivariate response

dependence parameters in both models and all dependence parameters in Lee et al.

(2009) and Iddi and Molenberghs (2012) originated from the random effects, which

were unobserved. Finally, Table 2.3 summarizes features of the aforementioned four

models for multivariate longitudinal binary data.

Based on the literature review, in this thesis study, in Chapter 3, we propose a new

logistic-probit-normal marginalized multilevel model with multiple correlated ran-

dom effects since logistic-probit-normal marginalized multilevel models (e.g., the

models with logit link in the first level and probit link in the second level) provide

odds-ratio interpretation for the marginal mean parameters through logit link and

computational advantages due to the probit link-normal distribution collaboration.

The covariance matrix of multiple correlated random effects is further decomposed

through modified Cholesky decomposition method to avoid potential statistical and

computational problems that may be associated with its high-dimensionality and to

provide better explanations related to the elements of it. The estimation of unknown

parameters in the proposed model is based on a frequentist approach. For that reason,

Section 2.2 continues with the principle idea behind MLE for random effects models

for longitudinal binary data.
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Table 2.3: Characteristics of marginalized multilevel models for multivariate longitudinal binary data.

Ilk and Lee et al. Asar (2012) Iddi and
Daniels (2007) (2009) PNMTREM Molenberghs

(2012b)
Type of Shared by Response Shared by Response
regression response specific response specific
parameters
Odds-ratio

3 3 7 3interpretation of
regression parameters
A closed-form solution

7 7 3 3
for ∆itj

Type of random Uncorrelated Correlated Uncorrelated Correlated
effects subject/time subject/time subject/time subject/response

specific response/specific specific specific
random intercepts random intercepts random intercepts random slopes

Dimension of One- High- One- High-
random effects dimensional dimensional dimensional dimensional
Source of within- Through history of Through Through history of

7
subject association responses random effects responses
Source of multivariate- Through Through Through Through
response association random effects random effects random effects random effects
Estimation method Bayesian Inference MLE MLE MLE
Implementation Fortran R with Fortran R package pnmtrem Sas Proc NLMIXED
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2.2 Maximum Likelihood Estimation for Random Effects Models for Longitu-

dinal Binary Data

In this thesis study, upon building a logistic-probit-normal marginalized multilevel

model with multiple correlated random effects, we estimate unknown parameters in

the proposed model, which includes marginal regression parameters and random ef-

fects covariance matrix parameters, through maximum likelihood estimation (MLE)

method. It is well-known that parameter estimation relies on defining marginal like-

lihood of data, which requires a formulation for joint marginal distribution of longi-

tudinal responses. In a general framework of joint modelling in longitudinal studies,

the construction of a joint marginal distribution for multiple responses can be possi-

ble through i) assuming a multivariate distribution, ii) including past responses into

the model and then factorizing the joint distribution of responses conditional on the

distribution of past responses in time order, or iii) including random effects into the

model, factorizing the joint distribution of responses and random effects as condi-

tional distribution of responses given the random effects and marginal distribution of

random effects and then integrating out the distribution of random effects (Rizopou-

los and Lesaffre, 2014). While longitudinal associations are imposed on the marginal

covariance matrix of multiple responses in i), those are represented through the past

responses in ii), and random effects in iii), respectively. Specifically, for ii) and iii),

while the past responses/random effects account for the dependence between the re-

sponses of a subject in univariate longitudinal binary data, they are further responsible

for the dependence between different responses of a subject in multivariate longitudi-

nal data.

Within the marginalized multilevel models (MMMs) for clustered/longitudinal binary

data, Swihart et al. (2013) provided a novel example for i). Since constructing a mul-

tivariate distribution for correlated binary responses is not available in the literature,

they used copulas to construct a joint marginal distribution for correlated binary re-

sponses. While Heagerty (2002) is the first example for ii), Ilk and Daniels (2007) and

Asar (2012) proposed a model, which is a combination of ii) and iii). The remaining

models, which are given in Section 2.1, are examples for iii).

As mentioned in Section 2.1, MMMs with random effects, which is the focus of this
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thesis study, take the likelihood-based inference capabilities from generalized linear

mixed models (GLMMs). For that reason, they inherit the same characteristics, which

GLMMs experience during the parameter estimation.

Like any GLMMs, in MMMs for multivariate longitudinal binary data with random

effects, the marginal likelihood of data L(θ|y) involves the integration of conditional

probabilities of responses over the distribution of random effects, as follows:

L(θ|y) =
N∏
i=1

∫ ni∏
t=1

J∏
j=1

f(yitj|bi)f(bi)dbi, (2.4)

where yitj represents the measurement of ith subject at time t for jth response type,

(i = 1, 2, . . . , N , t = 1, 2, . . . , ni, and j = 1, 2, . . . , J), bi is a ni×1 vector of random

effects, which comes from a multivariate normal distribution with 0 mean and Σ co-

variance matrix, f(yitj|bi) is the conditional distribution of yitj , which is the last level

of the marginalized multilevel model. The dimension of the integral in equation 2.4

is equal to the dimension of bi (Karl et al., 2014), and θ includes all the unknown pa-

rameters (e.g., marginal regression parameters and random effects covariance matrix

parameters) in the model. The underlying assumption in equation 2.4 is that given bi,

yitj is assumed to be independent of yit′j′ , ∀ t 6= t′ and j 6= j′, which is well-known

as conditional independence assumption.

Note that under the conditional independence assumption in random effects models,

it is straightforward to handle different type of responses (Rizopoulos and Lesaffre,

2014). Recent statistical literature has provided examples for joint modelling of longi-

tudinal continuous and binary outcomes (Iddi and Molenberghs, 2012), that of longi-

tudinal time-to-event data (Efendi et al., 2013), that of any type longitudinal response

(e.g., continuous, binary or poisson) with time-to-event data (Njagi et al., 2013), that

of longitudinal continuous, ordinal outcomes, and time-to-event data (Baghfalaki et

al., 2014), that of non-Gaussian bounded covariates with a primary outcome (Din

et al., 2014), that of censored longitudinal covariates with a time-to-event endpoint

(Pike and Weissfel, 2014), and that of non-ignorable missing longitudinal covariates

with a cross-sectional binary outcome (Zhang et al., 2014).
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There are two mathematical problems associated with equation 2.4. First of all, in

case of the non-conjugacy of f(bi) with f(yitj|bi), the integral in equation 2.4 is not

tractable and, in turn, it does not provide a closed-form solution for L(θ|y). For that

reason, the integral in equation 2.4 should be either evaluated numerically or approx-

imated. There exist several numerical evaluation methods for integration in random

effects models for binary data such as Gaussian quadrature (GQ), adaptive Gaussian

quadrature (AGQ), Monte Carlo (MC) or Quasi-Monte Carlo (QMC), which all have

different i) degree of accuracy, ii) complexity in implementation, and iii) computa-

tional time (Capanu et al., 2013). Within MMMs for multivariate longitudinal binary

data, when f(bi) is a univariate normal distribution, the one-dimensional integral in

equation 2.4 can be evaluated numerically through GQ or AGQ, like Asar (2012) and

Iddi and Molenberghs (2012). However, when f(bi) is a multivariate normal distri-

bution, the high-dimensional integral in equation 2.4 can be evaluated numerically

through MC or QMC integration, like Lee et al. (2009). In this sense, it is worthy to

say that in case of high-dimensional bi, the numerical evaluation of the integral may

be further complicated. Note also that one can increase the accuracy of estimates by

increasing the number of points to evaluate the integral. However, whichever method

s/he uses, one should keep in mind that the increase in the number of points may result

in a computational time problem. This computational problem dramatically increases

in models with high-dimensional bi (Pan and Thompson, 2007). For that reason, one

should be careful when making a choice between accuracy and computational time.

A comparative analysis between several numerical integration methods for random

effects models for univariate clustered/longitudinal binary data can be done by criti-

cally analysing the studies of and Zhang et al. (2011), Capanu et al. (2013), Dey and

Lim (2013), and Kim et al. (2013). However, among these studies only Kim et al.

(2013) focused on random effects models with multiple correlated random effects.

The second problem associated with equation 2.4 is that due to the non-linear link

function (e.g., logit or probit) used in f(yitj|bi) to associate conditional probabili-

ties of yitj’s with covariates on the continuous scale, the optimization of the marginal

likelihood L(θ|y) (or, naturally, the optimization of logL(θ|y)) does not provide a

closed-form solution for θ̂, which is MLE of θ, even L(θ|y) is approximated or

numerically evaluated. For that reason, logL(θ|y) should be either approximated
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or optimized numerically through iterative algorithms such as Newton-Raphson (N-

R) or Fisher-Scoring (F-S), in which the former method requires the computation

of second-order derivatives of logL(θ|y) with respect to θ, i.e., Hessian matrix for

logL(θ|y), the latter method does not. Similarly, in case of high-dimensional bi,

the computation of second-order partial derivatives of logL(θ|y) for N-R algorithm

becomes cumbersome, since the optimization of logL(θ|y) includes taking high-

dimensional covariance matrix inversion and high-dimensional covariance matrix dif-

ferentiation with respect to θ, which may also result in a computational burden.

Within MMMs for multivariate longitudinal binary data, while Iddi and Molenberghs

(2012) used N-R for parameter estimation, Lee et al. (2009) and Asar (2012) preferred

F-S, where the iterative algorithm is illustrated below:

θ(s+1) = θ(s) + I(θ(s))−1∂logL(θ(s)|yi)
∂θ(s)

, (2.5)

where s is iteration number,

∂logL(θ|y)

∂θ
=

N∑
i=1

∂logL(θ|yi)
∂θ

=
N∑
i=1

L(θ|yi)−1

∫
∂L(θ|yi,bi)

∂θ
f(bi)dbi

(2.6)

with

L(θ|yi) =

∫ ni∏
t=1

J∏
j=1

f(yitj|bi)f(bi)dbi and

L(θ|yi,bi) =

ni∏
t=1

J∏
j=1

f(yitj|bi)f(bi)dbi,

(2.7)

and information matrix is

I(θ) =
N∑
i=1

(
∂logL(θ|yi)

∂θ

)(
∂logL(θ|yi)

∂θ

)>
. (2.8)
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For example, equation 2.7 for the model of Asar (2012) required an integration over

the distribution of the one-dimensional subject/time specific random effect bit, which

was numerically evaluated as follows:

L(θ|yi) =

∫ ni∏
t=1

J∏
j=1

f(yitj|bit)f(bit)dbit

≈
20∑
q=1

ni∏
t=1

J∏
j=1

wqf(yitj|
√

2zq),

(2.9)

where zq and wq (q = 1, 2,. . . , 20) are GQ points and corresponding weights, respec-

tively, and are available in fastGHQuad package in R (Blocker, 2011). The integral

in equation 2.6 can be evaluated in a similar way.

On the other hand, equation 2.7 for the model of Lee et al. (2009) required the in-

tegration over the distribution of the high-dimensional subject/time specific random

effects bi = (bi1, . . . , bit, . . . , bini
), which was numerically evaluated as follows:

L(θ|yi) =

∫ ni∏
t=1

J∏
j=1

f(yitj|bi)f(bi)bi

≈
∑1000

m=1

∏ni

t=1

∏J
j=1 f(yitj|b(m)

itj )

M
,

(2.10)

where b(m)
itj is mth value of QMC point. QMC points for standard normal distribu-

tion are available in rnorm.sobol function in fOptions library in R (Wuertz,

2013). For non-standard normal distributions, QMC points can be obtained through

Cholesky transformations of QMC points in rnorm.sobol function. The integral

in equation 2.6 can be evaluated in a similar fashion.

To avoid estimation problems for the parameters, which have restriction in parameter

space such as variance components of random effects, while Lee et al. (2009) used

the Cholesky root elements of the random effects covariance matrix Σ, Asar (2012)

used the logarithm of the variance of bit.

It is also worthy to say that for models with high-dimensional bi, since the dimension

of Σ also increases, this will result in an inflation in the number of parameters to be
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estimated in Σ, which may also cause discrepancy in parameter estimates (Kim et al.,

2013) and even identifiability problems in the data.

Although the estimation of the model parameters θ in MMMs have a major priority,

MMMs with random effects include two additional estimation problems. These are

i) the estimation of ∆itj terms, which connect the levels to each other, along with the

estimation algorithm for θ and ii) estimation of bi, which is unobservable, based on

the estimated value of θ.

As mentioned in Section 2.1, unless the link function in the level including ∆itj is

coherent with the distribution of the random effects, a closed-form expression cannot

be provided for ∆itj . In this sense, as summarized in Table 2.3, ∆itj’s in the models

of Ilk and Daniels (2007) and Lee et al. (2009) did not have closed-form solutions

and they used N-R algorithm along with 20-points GQ to estimate ∆itj’s. For illus-

tration, ∆itj’s in the model of Lee et al. (2009) can be obtained by the following N-R

algorithm:

∆l+1
itj = ∆l

itj −

(
∂h(∆l

itj)

∂∆l
itj

)−1

h(∆l
itj), (2.11)

where l is iteration number and

h(∆itj) =

∫
Pr(Yit = 1|Xit, bit)f(bit)dbit − Pr(Yit = 1|Xit). (2.12)

The integral in equation 2.12 can be evaluated by GQ. Upon convergence of the N-

R algorithm in equation 2.11, an estimate for ∆itj can be obtained. It is obvious

that equation 2.11 adds extra computational burden to equation 2.5. In fact, Lee

et al. (2009) used Fortran 77 subroutines (.dll files) to cope with this computational

problem.

Asar (2012) further estimated Empirical Bayes (EB) estimates of the random effects

to compute individual conditional probabilities. Following Heagerty (1999), Asar

(2012) firstly derived the posterior distribution of random effects and then solved pos-

terior score equations with respect to random effects through N-R algorithm, which is
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known as finding the mode of the posterior distribution. Detailed information related

to EB estimates of random effects is also available in Hedeker and Gibbons (2006)

and Paule et al. (2011).

The implementation of the models with only one random effect (e.g., a random inter-

cept term), which includes only one variance component to be estimated, is possible

through either author-written codes within a well-known statistical software, like Ilk

and Daniels (2007) and Asar (2012) or built-in functions such as PROC NLMIXED

in SAS, like Iddi and Molenberghs (2012). The main advantage of built-in functions

over author-written codes is that the model developers do not need to have a good

knowledge of numerical analysis (e.g., numerical evaluation of integrals or optimiza-

tion of the marginal likelihood). They do not even need to supply initial values for

the parameters of the random effects covariance matrix to start the estimation algo-

rithm, which are very hard to guess. However, for the implementation of the models

with multiple correlated random effects, the built-in functions may not be sufficient to

implement the model due to the computational burden (e.g., numerical evaluation of

the high-dimensional integral, taking the inverse of high-dimensional random effects

covariance matrix) (Iddi and Molenberghs, 2012). This may lead model developers

to write their own functions to implement their model with multiple correlated ran-

dom effects within a standard statistical software such as Lee et al. (2009). Lastly,

Table 2.4 summarizes features related to the maximum likelihood estimation of the

aforementioned models for multivariate longitudinal binary data.

At this point, it is worthy to say that due to the computational problems (e.g., high-

dimensional matrix inversion and differentiation) in random effects models men-

tioned above, only a random intercept term was assumed in most of the models in the

literature like Gueorguieva (2001) and Iddi and Molenberghs (2012). On the other

hand, in the models with multiple correlated random effects, which is very few in

number, either a very simple covariance structure was assumed like Lee et al. (2009)

or matrix decomposition methods such as modified Cholesky decomposition was used

for Σ like Lee et al. (2012) to deal with high-dimensional random effects covariance

matrix.

So far, the reason for unable to add as many random effects as possible to the model
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has been shown to be due to computational complexity. However, in multiple corre-

lated random effects models, inflation in the number of parameters to be estimated

in Σ may result in identifiability problems for some of the parameters. In this sense,

little attention is devoted in the literature to the evaluation and comparison of the

model complexity with the information stored in the data. In this context, we use data

cloning (DC) computational algorithm (Lele et al., 2007; Lele et al., 2010) to com-

pute MLEs of the parameters and their standard errors for the proposed marginalized

multilevel model with multiple random effects in Chapter 3.

Table 2.4: Features related to the maximum likelihood estimation of marginalized
multilevel models for multivariate longitudinal binary data.

Lee et al.
Asar (2012)

Iddi and
(2009) Molenberghs

(2012b)
Estimation method MLE MLE MLE

Implementation
R R package Sas Proc

with Fortran pnmtrem NLMIXED
Dimension of High- One- One-
random effects dimensional dimensional dimensional

Numerical evaluation type
QMC with GQ with GQ with
1000 points 20 points 10 points

Numerical optimization algorithm
N-R F-S F-S

for marginal likelihood
Emprical Bayes estimation

7 3 7
of random effects

Data Cloning Approach for Parameter Estimation

Data cloning (DC), which was proposed by Lele et al. (2007) and Lele et al. (2010),

is a computational algorithm to compute the maximum likelihood estimates (MLEs)

of the parameters and their standard errors for complex models and to check the iden-

tifiability of these parameters for the given data. To compute MLEs, as the name

suggests, DC algorithm clones the data multiple times and then uses the Bayesian

formulation to obtain posterior distribution of the parameters through Markov Chain

Monte Carlo (MCMC) computational algorithm (Lele et al., 2007; Lele et al., 2010).
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Like Bayesian inference, DC avoids the evaluation of the high-dimensional integra-

tion and the numerical optimization of the likelihood function, and hence avoids the

computational burden in models with high-dimensional random effects. However,

unlike the Bayesian methodology, the choice of prior distribution has no effect on the

MLEs of the parameters.

The DC approach can be illustrated through the following imaginary scenario: con-

sider a statistical experiment, which is simultaneously and independently repeated by

K times, and all K experiments yield the same result by happenstance. Then cloned

data and likelihood for cloned data, which is based on K independent experiments,

can be represented by Y(K) = y(K) = (y, . . . , y) and L(θ|y(K)) = L(θ)(K), respec-

tively. Hence, the posterior distribution of θ given y(K) can be given as follows:

∏(
θ|y(K)

)
=

1

C(y(K))
L(θ)(K)

∏
(θ)

∝ L(θ)(K)
∏

(θ) ,

(2.13)

where
∏(

θ|y(K)
)

is the posterior distribution for θ,
∏

(θ) is the prior distribution for

θ, and C(y(K)) =
∫
L(θ)(K)

∏
(θ) dθ is the normalizing constant. The maximum of

the cloned likelihood L(θ)(K) is exactly the maximum of L(θ|y) and naturally it is

θ̂, the MLE for θ, based on the equation 2.4. Furthermore, Fisher information matrix

based on the cloned likelihood I(θ̂)
(K)

isK times of that based on original likelihood

I(θ̂) since the cloned data contains K times more information than the original data

(Torabi, 2012). Furthermore, Lele et al. (2007) and Lele et al. (2010) showed that,

for sufficiently large K,
∏(

θ|y(K)
)

converges to a multivariate Gaussian distribution

with mean θ̂ and covariance matrix I(θ̂)−1

K
. Hence, θ̂ is the mean of samples drawn

from the posterior distribution in equation 2.13 and the asymptotic covariance matrix

for θ̂ is K times the sample covariance matrix of samples drawn from the posterior

distribution in equation 2.13.

Determining the number of clones, namely, K is possible through plotting the stan-

dardized largest eigenvalue of the posterior covariance matrix versus K and compar-

ing it with K−1. If the standardized largest eigenvalue and K−1 converge to zero

at the same rate, that K can be considered as the optimum value for K. The same
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plot can be used to check identifiability of the parameters in the model as well. Al-

ternatively, the plot of posterior variance of each parameter against K also shows

the identifiability of that parameter. In fact, a plot does not converging to zero as K

increases implies an identifiability problem for that parameter. In this sense, DC al-

lows statistical model developers to study the identifiability of the parameters in their

complex models through diagnostic measures as well as diagnostic plots, which is

an advantage over other estimation or computational algorithms. Hence, DC enables

model developers to build reasonable complex models since it alerts when the com-

plexity of the model exceeds information stored in the data (Lele et al., 2010). This

issue is also important in the case of models with high-dimensional random effects

since apart from adding extra computational complexity, unconsciously adding too

many random effects to the model may result in unidentifiable parameters and the

developer may not be aware of it. In short, DC algorithm helps the model developer

to balance the model complexity with information available in the data.

Although DC is a good alternative computational algorithm to draw statistical infer-

ence for models including random effects, it has some limitations. First of all, as Pon-

ciano et al. (2009) and Baghishani and Mohammadzadeh (2011) stated, DC provides

only Wald-type confidence intervals, which yield inaccurate results in small samples

and are generally less than nominal coverage rate. In this sense, Ponciano et al. (2009)

suggested using profile likelihood based confidence intervals, which are more likely

to be at nominal coverage rate, and improving statistical accuracy of estimators in

small sized samples via bootstrap methods, which requires further attention. The sec-

ond limitation associated with DC is that it cannot provide maximized value of the

marginal likelihood, which is required to construct likelihood ratio tests (LRTs) and,

in turn, to do model selection. Although Ponciano et al. (2009) proposed a DC based

computational algorithm to calculate the ratio of likelihoods for each pair of models,

this algorithm did not provide any specific Akaike information criterion (AIC) value

for each model separately. Overcoming this limitation of DC still needs further re-

search. Third, although the selection of K is not associated with sample size N , K

should be large enough in small N to obtain reliable estimates for standard errors.

However, increase in K results in computational burden, which may lose the appeal

of the method.
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Data cloning computational algorithm is available in dclone package in R (Só-

lymos, 2010). Any model developer can implement his/her model through either

jags.fit or dc.fit functions and can check identifiability of parameters in the

model through other functions available. Since drawing samples from the posterior

distribution through MCMC is based on JAGS software (Plummer, 2003) for both

jags.fit and dc.fit functions, model statement part requires knowledge of a

syntax, which is very similar to WinBUGS. For more computationally time consum-

ing models, DC through parallel computing is also available via jags.parfit

or dc.parfit functions within the same R package. Furthermore, to the best

of our knowledge, a stan.parfit function is an on-going work by Dr. Peter

Sólymos from University of Alberta to implement DC through Stan (Stan Devel-

opment Team, 2014). Please visit http://dcr.r-forge.r-project.org/

extras/stan.fit.R. On the other hand, Baghishani et al. (2012) utilized DC

with an integrated nested Laplace approximation (INLA) as a hybrid version of DC.

Further information on DC algorithm can be found in Lele et al. (2010), Sólymos

(2010), Torabi (2012), Torabi (2013), and Withanage (2013).

The literature review revealed that DC computational algorithm has not been either

adressed in multivariate longitudinal binary data or used to estimate the parameters

of a marginalized multilevel model. In this sense, to the best of our knowledge, this

is the first time that DC computational algorithm is used for multivariate longitudinal

binary data as well as within MMMs framework for parameter estimation.

2.3 Reparametrization of Random Effects Covariance Matrix

Section 2.2 revealed that including normally distributed random effects into a model

plays an important role in constructing a joint marginal distribution for longitudinal

binary responses as well as capturing the longitudinal association within measure-

ments of a subject for a given response and between the measurements of different

responses of a subject. Depending on the model specification, random effects may be

subject/time specific (Ilk and Daniels, 2007; Asar, 2012), subject/response specific

(Iddi and Molenberghs, 2012) or subject/time/response specific (Lee et al., 2009),

which may be further assumed to be correlated or not.
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Inclusion of multiple correlated random effects into a model requires defining a struc-

ture for covariance matrix for random effects, which characterizes the normal distri-

bution, and results in a certain number of parameters to be estimated related to this

covariance matrix. However, the positive definiteness constraint imposed on the co-

variance matrix and high-dimensionality problem of the covariance matrix are two

major problems encountered while imposing a structure for the covariance matrix and

estimating the parameters in the covariance matrix (Pourahmadi, 1999). For example,

although Lee et al. (2009) assumed a 2n× 2n (ni = n,∀i) random effects covariance

matrix Σ for correlated subject/time/response specific random effects, where the di-

mension of the matrix increased as the number of time points in the longitudinal data

increased, to avoid inflation in the number of parameters in high-dimensional covari-

ance matrix Σ, they wrote Σ as a Kronecker product of Σ1, which is a n× n within-

subject association matrix, and Σ2, which is a 2 × 2 multivariate association matrix.

They further assumed Σ1 and Σ2 had a structure of an AR(1) and unstructured (UN),

respectively. Hence, they decreased the number of parameters in Σ from (2n×(2n+1))
2

to 4, which is free from n. On the other hand, in the models, which assumes cor-

related subject/response specific random effects following Gueorguieva (2001), the

dimension of Σ depends on the number of responses × the number of random inter-

cepts and slopes. However, to reduce the number of covariance matrix components,

a general strategy is to assume only response-specific random intercepts (ignoring

random slopes) in the model. In this sense, Iddi and Molenberghs (2012) analysed

bivariate longitudinal binary data with both assuming response-specific random inter-

cepts and a random intercept shared by the responses, where the former case included

2 additional parameters compared to the later case. Similarly, Rodrigues-Motta et al.

(2013) analysed multivariate correlated count data with six responses by assuming

response-specific random intercepts. But, they decreased the number of components

to be estimated in 6 × 6 random effects covariance matrix Σ from 21 to 4 through

assuming a common correlation parameter across the responses and three different

variance terms for six responses.

In longitudinal data analysis, a more common approach to manage with the positive

definiteness constraint assumption of the covariance matrix and its high-dimensionality

problem is to decompose the covariance matrix into its variance and the dependence
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components through decomposition methods and then to model unconstrained ver-

sions of the resulting parameters in terms of covariates with low-dimensional regres-

sion parameters. This approach allows i) flexibility for the structure of the covariance

matrix, ii) better explanations related to the elements of covariance matrix, iii) the co-

variance matrix to differ by subjects, and iv) a reduction in the number of parameters

to be estimated, which is an advantage for the models that cannot be implemented or

are hardly implemented due to the high-dimensionality of the covariance matrix. As

Section 2.2 also revealed, modelling covariance matrix of random effects parsimo-

niously is important in terms of both estimation and as well as balancing the model

complexity to avoid parameter identifiability problems.

There are two well-known covariance matrix decomposition methods in longitudinal

data, which are variance-correlation and modified Cholesky decomposition methods

(Pourahmadi, 2011). The former method decomposes covariance matrix as Σ =

DRD, where D is a diagonal matrix with standard deviations on the diagonals and R

is the positive-definite correlation matrix with 1’s on the diagonals and correlations

on the off-diagonals. While natural logarithm of diagonal elements of D are uncon-

strained, the constraint on the off-diagonal elements of R, which is lying within the

interval [-1,1], can be removed by using Fisher’s Z-transformation. Then the uncon-

strained parameters in D and R can be modelled through some measured covariates.

As an example within marginalized multilevel models framework, Lee et al. (2013)

proposed a marginalized random effects model (MREM) for bivariate longitudinal

ordinal data and assumed that the covariance matrix of random effects can be written

as a Kronecker product of the correlation matrix of responses of a subject over time

and the covariance matrix of different responses of a subject at a given time, as in Lee

et al. (2009). Following Daniels and Pourahmadi (2009), they further reparametrized

the correlation matrix in terms of lag-1 correlations and partial autocorrelations and

then they modelled Fisher’s Z-transformation of these parameters in terms of covari-

ates. On the other hand, this statistically motivated decomposition method is also

attractive for Bayesian estimation of covariance matrix when Wishart distribution is

not an adequate prior distribution for covariance matrix (Barnard et al., 2000).

The modified Cholesky decomposition method decomposes covariance matrix Σ =

T−1D(T>)−1, where T is a unit-lower triangular matrix with 1’s on the diagonals
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and serial dependence parameters on the off-diagonals and D is a diagonal matrix

with variances on the diagonals. The serial dependence parameters in T and the nat-

ural logarithm of variances in D are unconstrained, have statistical interpretations,

and can be modelled in terms of covariates. In the statistical literature for longi-

tudinal data, first of all, Pourahmadi (1999) and Pourahmadi (2000) used modified

Cholesky decomposition to model marginal covariance matrix of univariate longitu-

dinal continuous responses, then estimated resulting parameters through maximum

likelihood estimation (MLE) method. They showed that 11 × 11 marginal covari-

ance matrix Σ can be modelled with 8 parameters, instead of 66 parameters. Since

then, there have been existed numerous examples using modified Cholesky decom-

position within marginal models for continuous responses such as Pan et al. (2013),

but among them, Kim and Zimmerman (2012) were the first, who extended the same

approach to multivariate longitudinal data with continuous responses by proposing

modified Cholesky Block decomposition method. Daniels and Pourahmadi (2002)

and Pourahmadi and Daniels (2002) extended modified Cholesky decomposition to

dynamic conditionally linear mixed models (LMMs) within a Bayesian context. They

modelled the parameters of the decomposed marginal covariance matrix in terms of

baseline covariates and assumed a constant structure for the random effects covari-

ance matrix. On the other hand, Pan and Mackenzie (2007) and Li and Pourahmadi

(2013) issued the sample problem to decompose the conditional covariance matrix of

LMMs.

The first work on modelling the random effects covariance matrix within LMMs was

proposed by Daniels and Zhao (2003). Daniels and Zhao (2003) assumed a vector

of random effects for each subject i in the study, namely, bi = (bi1, . . . , bik, . . . , biq),

where bi1 was random intercept for ith subject and the remaining ones were random

slopes, which were associated with the covariates related to time variable in the de-

sign matrix and bi ∼ N(0,Σi), where Σi was a q × q subject-specific covariance

matrix of random effects. Then Σi was decomposed into a unique unit-lower triangu-

lar matrix Ti and a unique diagonal matrix Di by modified Cholesky decomposition.

The resulting parameters were modelled parsimoniously through some covariates.

While the parameter estimation for the model was based on Bayesian inference, natu-

rally, the selection of models with different random effects covariance structures was
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achieved through the deviance information criterion (DIC). On the other hand, Das

et al. (2013) and Das and Daniels (2014) extended this approach to analyse bivari-

ate longitudinal continuous response data, which were measured at irregularly time

points, through a novel random effects model, where Bayesian inference was used for

parameter estimation.

Lee et al. (2012) were the first, who extended the idea of associating the elements

of random effects covariance matrix with covariates within generalized linear mixed

models (GLMMs) for univariate longitudinal binary responses. Following Heagerty

(1999), in the linear predictor of the GLMM, Lee et al. (2012) assumed a vector

of time-varying and correlated intercepts for each subject i in the study, namely,

bi = (bi1, . . . , bit, . . . , bini
), where bit was the random intercept at time t for ith sub-

ject and bi ∼ N(0,Σi), where Σi was a ni × ni subject-specific covariance matrix

of random effects. Then Σi was decomposed into a unique unit-lower triangular ma-

trix Ti and a unique diagonal matrix Di by modified Cholesky decomposition. The

resulting parameters were modelled parsimoniously through some covariates. While

the parameter estimation for the model was based on MLE, naturally, the selection

of models with different random effects covariance structures was achieved through

the Akaike information criterion (AIC). Lee (2013) further illustrated the same idea

within a Bayesian framework.

The literature review revealed that the literature on modified Cholesky decomposition

in longitudinal data mostly relies on univariate longitudinal continuous data with two

exceptions for multivariate continuous data and one exception for binary data and has

not been addressed either for multivariate longitudinal binary data or within marginal-

ized multilevel models (MMMs) framework so far. Following the idea of Lee et al.

(2012), we adapt this approach to model the elements of the covariance matrix of ran-

dom effects in the proposed marginalized multilevel model with multiple correlated

random effects in Chapter 3. Since we focus on the study of Lee et al. (2012), it

would be useful to briefly review the modified Cholesky decomposition.

The Modified Cholesky Decomposition Theorem: If Σ is a n× n symmetric posi-

tive definite matrix, then a unique unit-lower triangular matrix T with unconstrained

elements and a unique diagonal matrix D exist with positive diagonal elements such
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that

TΣT> = D. (2.14)

Corollary 1: The unit-lower triangular matrix T in modified Cholesky decomposition

theorem is non-singular and its inverse is also unit-lower triangular.

Based on this theorem, Lee et al. (2012) considered GLMMs, where g(µit) = Xitβ+

bit and bi ∼ N(0,Σi). When Σi is decomposed into Ti and Di, the lower diagonal

entries of Ti represent the negative coefficients when bit is regressed on its predeces-

sors, bi1, . . . , bit−1 such as bi1 = ei1 and bit =
∑t−1

l=1 φi,tlbil + eit for t = 2, . . . , ni

and 1 ≤ l ≤ t− 1. The diagonal entries of Di = (σ2
i1, . . . , σ

2
it, . . . , σ

2
ini

) are the error

variances such that ei ∼ N(0,Di).

This expression can be written in terms of matrix as follows:

Tibi = ei, (2.15)

where Ti is a unit-lower triangular matrix with −φi,tl at its (t, l)th position for 1 ≤
l < t ≤ ni. Specifically, Ti is given as:

Ti =



1 0 0 · · · 0

−φi,21 1 0 · · · 0

−φi,31 −φi,32 1 · · · 0
...

...
... . . . 0

−φi,ni1 −φi,ni2 · · · −φi,nini−1 1


Then Cov(Ti, bi) = TiΣiT>i = Cov(ei) = Di, which is given below, completes the

modified Cholesky decomposition theorem.

Di =



σ2
i1 0 0 · · · 0

0 σ2
i2 0 · · · 0

0 0 σ2
i3 · · · 0

...
...

... . . . 0

0 0 · · · · · · σ2
ini
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The parameters in Ti and Di measure dependence and variance, respectively. The

positive definiteness constraint on σ2
it’s can be removed by using a natural logarithm

transformation, namely, log(σ2
it)’s. The modified Cholesky decomposition ensures

that an unstructured covariance matrix Σi with (ni×(ni+1))
2

parameters turns into a

covariance matrix Σi with the same number of unconstrained parameters φi,tl’s and

log(σ2
it)’s (Daniels and Pourahmadi, 2009). Following this, the number of parameters

to be estimated in Σi can be reduced by modelling φi,tl’s and log(σ2
it)’s by using co-

variates with low-dimensional regression parameters, which are assumed to be shared

by all Σi’s (Pourahmadi et al., 2007), such that

φi,tl = wi,tlγ and

log(σ2
it) = hi,tlλ,

(2.16)

where wi,tl and hi,tl are 1× q and 1× r vectors of covariates, respectively. wi,tl and

hi,tl are assumed to be a subset of Xit. γ and λ are the corresponding q× 1 and r× 1

vectors of regression parameters, respectively.
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CHAPTER 3

PROPOSED MODEL

We organize this chapter into four sections. In Section 3.1, we introduce our model

and give definitions, assumptions related to the proposed model in detail. We give

derivations related to the connection between the levels of the proposed model and to

the marginal correlation of responses in Sections 3.2 and 3.3, respectively. We present

maximum likelihood estimation (MLE) of the parameters and Empirical Bayes (EB)

estimation of random effects in the proposed model in Sections 3.4 and 3.5, respec-

tively.

3.1 Model Definition and Assumptions

In this thesis study, we propose a model based on marginalized multilevel model

framework for bivariate longitudinal binary data, which consists of two different lev-

els, where each level is a different regression model. In the proposed model, the first

level associates marginal mean of responses with covariates through a logistic regres-

sion model and the second level restructures the mean of responses conditional on

subject/time specific random intercepts through a probit regression model to repre-

sent the longitudinal association(s).

The proposed logistic-probit-normal marginalized multilevel model for bivariate lon-

gitudinal binary data is given as follows:

Pr(Yitj = 1|Xit) =
exp(Xitβj)

1 + exp(Xitβj)
,
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Pr(Yitj = 1|Xit, bit) = Φ(∆itj(Xit) + bit), and

bi ∼ N(0,Σi),
(3.1)

where Yitj denotes the response of ith subject (i = 1,2,. . . ,N) at time t (t = 1,2,. . . ,ni)

for jth dimension (j = 1,2), Xit is a 1 × P vector of covariates, which may be time-

variant (e.g., the subject’s weight) and/or time-invariant (e.g., the subject’s gender)

and is assumed to be common for each response type. βj is the corresponding P × 1

vector of response-specific marginal regression parameter, which estimates the asso-

ciation between the mean of longitudinal responses and covariates through odds-ratio

formula due to the logit link function (note that the first level of the model in equa-

tion 3.1 can also be written as logit(Pr(Yitj = 1|Xit)) = Xitβj). Furthermore, βj’s

have population-averaged interpretations and are robust to model specification for the

second level of the model since the marginal mean model is specified separately from

the conditional mean model, as a general feature of MMMs (see Table 2.1). ∆itj

is subject/time/response specific term, which connects the second level to the first

level of the model, as will be shown in equation 3.6. bit is subject-specific and time-

varying intercept, which is shared by different binary response types and represents

the random-variation within the measurements of ith subject as well as between the

measurements of different subjects. Given bit, Yitj is assumed to be independent of

all Yit′j for t = 1, . . . , ni & t′ 6= t, which is known as conditional independence as-

sumption and, in turn, enables to construct a marginal joint distribution for longitudi-

nal binary responses (e.g., f(Yi11, Yi21, . . . , Yini1, Yi12, Yi22, . . . , Yini2)). Furthermore,

bi = (bi1, . . . , bit, . . . , bini
) is a ni × 1 vector of random intercepts for ith subject.

bi ∼ N(0,Σi), where 0 is a ni × 1 vector of zeros and Σi is a ni × ni covariance

matrix, which is assumed to represent the dependence between the successive mea-

surements of ith subject over time for a given response type. Since the dimension

of Σi depends on total number of time points ni, not on the number of response

types, extension of the proposed model to multivariate case with more than bivariate

responses is straightforward.

Inflation in the number of parameters to be estimated in Σi may result in identifia-

bility problems and high-dimensional matrix inversion and differentiation of Σi may

result in computational burden during the parameter estimation. To avoid the positive
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definiteness constraint on Σi and potential statistical and computational problems

that may be associated with its high-dimensionality, Σi is further decomposed into

its dependence and variance components through modified Cholesky decomposition

method. Then unconstrained parameters of the resulting dependence and variance

matrices are modelled in terms of covariates with low-dimensional regression param-

eters as follows:

Σi = T−1
i Di(T>i )−1, (3.2)

where Ti is a ni×ni unique unit-lower triangular matrix with 1’s on the main diagonal

and unconstrained elements φi,tl’s at its (l, t)th position for l < t such that

Ti =



1 0 0 · · · 0

−φi,21 1 0 · · · 0

−φi,31 −φi,32 1 · · · 0
...

...
... . . . 0

−φi,ni1 −φi,ni2 · · · −φi,nini−1 1


and

Di is a ni×ni unique-diagonal matrix with positive diagonal elements σ2
it’s such that

Di =



σ2
i1 0 0 · · · 0

0 σ2
i2 0 · · · 0

0 0 σ2
i3 · · · 0

...
...

... . . . 0

0 0 · · · · · · σ2
ini


.

φi,tl’s and σ2
it’s are named as the generalized autoregressive parameters (GARPs) and

the innovation variances (IVs), respectively and they have sensible statistical interpre-

tations such as while φi,tl measures serial dependence between two random effects bit

and bil, where l < t, σ2
it is prediction variance for the random effect bit.

Since φi,tl’s and log(σ2
it)’s are unconstrained in parameter space, it is possible to as-

sociate these parameters with covariates through low-dimensional regression param-

eters, as follows:
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φi,tl = wi,tlγ and

log(σ2
it) = hi,tlλ,

(3.3)

where wi,tl and hi,tl are 1× q and 1× r vectors of covariates, respectively. wi,tl and

hi,tl are assumed to be a subset of Xit. γ and λ are corresponding q × 1 and r × 1

vectors of regression parameters. Consequently, as summarized in Section 2.3, this

approach allows i) flexibility for the structure of Σi, ii) better explanations related to

the elements of Σi, and iii) a reduction in the number of parameters to be estimated

in Σi (e.g., a reduction from (ni(ni+1))
2

number of parameters to q + r number of

parameters), which is an advantage for the models that cannot be implemented or are

hardly implemented due to the high-dimensionality of the covariance matrix and may

avoid possible identifiability problems.

3.2 Connection between the Levels of the Proposed Model and Calculation of

∆itj

As mentioned in Section 2.1, the fact that any conditional expectation can be written

in terms of marginal expectation implies that integration of conditional probability

Pr(Yitj = 1|Xit, bit) over the distribution of random effects results in marginal prob-

ability Pr(Yitj = 1|Xit) in random effects models for longitudinal binary data. That

is,

E(Yitj|Xit) =

∫
E(Yitj|Xit, bit)f(bit)dbit

⇒ Pr(Yitj = 1|Xit) =

∫
Pr(Yit = 1|Xit, bit)f(bit)dbit,

(3.4)

where f(bit) is a univariate normal distribution with mean 0 and variance var(bit).

Then substituting marginal and conditional probabilities in equation 3.1, which are

the first and second levels of the proposed model, respectively, into equation 3.4 gives

the following expression:
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exp(Xitβj)

1 + exp(Xitβj)
=

∫ +∞

−∞
Φ(∆itj(Xit) + bit)f(bit)dbit. (3.5)

Following Griswold (2005), due to good collaboration of probit link function used in

the second level of the model and normal distribution assumption for random effects,

it is shown that a closed-form solution for ∆itj exists such that

∆itj = Φ−1

(
exp(Xitβj)

1 + exp(Xitβj)

)√
1 + V ar(bit). (3.6)

Details of this derivation are presented in Appendix A. It is obvious that ∆itj in equa-

tion 3.1 is an explicit function of Xit, the marginal regression parameters, and vari-

ance of random effects and plays a bridge role between the first and the second levels

of the model.

3.3 Marginal Correlation of Yitj’s

The random effects covariance matrix Σi of the proposed model in equation 3.1 rep-

resents the association within the repeated measurements of ith subject over time for

a given response. To illustrate, Corr (Yitj, Yit′j) is represented by Corr (bit, bit′) and

it is estimated through using the relevant covariance and variance components in Σi.

On the other hand, the association between measurements of two different responses

of ith subject for a given time point is not represented by Σi in the proposed model.

At this point, Das et al. (2013) pointed out that repeated measurements of a subject

might be internally correlated and it is not necessary to represent them through ran-

dom effects. In this sense, following Goldstein and Rasbash (1996), Vangeneugden

et al. (2010), and Vangeneugden et al. (2011), it is shown that marginal correlation

Corr (Yitj, Yitj′) still exists in the model through a Taylor series-based approximation

as follows:
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Corr (Yitj, Yitj′) '
φ(∆itj(Xit))V ar (bit)φ(∆itj′(Xit))√

vitj + (φ(∆itj(Xit)))2V ar(bit))
√
vitj′ + (φ(∆itj′(Xit)))2V ar(bit))

, (3.7)

where vitj = Φ(∆itj(Xit))(1−Φ(∆itj(Xit))), vitj′ = Φ(∆itj′(Xit))(1−Φ(∆itj′(Xit)))

and details are presented in Appendix B. Note that reason for failing to derive an ex-

act expression for marginal correlations is due to the non-linear probit link function

in the second level of the proposed model.

3.4 Marginal Likelihood Definition of the Proposed Model

Like any generalized linear mixed models (GLMMs), in MMMs for multivariate lon-

gitudinal binary data with random effects, the marginal likelihood of data L(θ|y) in-

volves integration of conditional probabilities over the distribution of random effects,

as follows:

L(θ|y) =
N∏
i=1

∫ ni∏
t=1

J∏
j=1

f(yitj|bi)f(bi)dbi, (3.8)

where θ = (β,γ,λ) is the vector of unknown parameters in the model (see equa-

tions 3.1 and 3.3), yitj represents the measurement of ith subject at time t for jth

response type (i = 1, 2, . . . , N , t = 1, 2, . . . , ni, and j = 1, 2, . . . , J), f(yitj|bi)
is the conditional distribution of yitj , which is the second level of the model given in

equation 3.1. In other words, f(yitj|bi) = Pr(Yitj = 1|Xit, bit) = Φ(∆itj(Xit)+bit),

where ∆itj = Φ−1
(

exp(Xitβj)

1+exp(Xitβj)

)√
1 + V ar(bit) is given in equation 3.6. The bi =

(bi1, . . . , bit, . . . , bini
) is a ni × 1 vector of random effects, which comes from a mul-

tivariate normal distribution f(bi) with 0 mean and Σi covariance matrix, where

Σi = T−1
i Di(T>i )−1 is given in equation 3.2. The underlying assumption in equa-

tion 3.8 is that given bi, yitj is assumed to be independent of yit′j′ , ∀ t 6= t′ and

j 6= j′, which is well-known as conditional independence assumption.
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For the proposed model in equation 3.1, the likelihood function in equation 3.8 in-

volves multiple correlated random effects bi and due to the non-conjugacy of f(bi)

with f(yitj|bi), the integral in equation 3.8 is not tractable and, in turn, it does not

provide a closed-form solution for L(θ|y). Furthermore, since the dimension of the

integral in equation 3.8 is equal to the dimension of bi (Karl et al., 2014) (e.g., ni for

each i), increase in the dimension of the integral further complicates the numerical

evaluation of the integral. For that reason, the integral in the equation 3.8 needs to

be evaluated through numerical methods for high-dimensional integration. At this

point, it is worthy to say that due to the aforementioned reasons, most of the models

in the literature are restricted to only a random-intercept model and multiple corre-

lated random effects are usually avoided (Kim et al., 2013), where several examples

are available in Section 2.2. On the other hand, even L(θ|y) is numerically eval-

uated, due to the probit link function, a non-linear link function, used in f(yitj|bi)
to associate conditional probabilities of yitj’s with covariates on a continuous scale,

the optimization of the marginal likelihood L(θ|y) (or, naturally, the optimization of

logL(θ|y)) does not provide a closed-form solution for θ̂, which is the maximum

likelihood estimate (MLE) of θ. For that reason, logL(θ|y) should be either approxi-

mated or evaluated numerically through iterative algorithms such as Newton-Raphson

(N-R) or Fisher-Scoring (F-S), which requires the computation of second-order and

first order derivatives of logL(θ|y) with respect to θ, respectively. However, due to

high-dimensional bi, the optimization of logL(θ|y) includes taking the inverse of

high-dimensional covariance matrices and the differentiation of these matrices with

respect to θ, which may also result in a computational burden.

To avoid numerical evaluation of high-dimensional integral, the computation of high-

dimensional matrix inversion and differentiation, and numerical optimization of the

marginal likelihood, in this thesis study, we use data cloning (DC) computational

algorithm (Lele et al., 2007; Lele, 2010) to compute the MLEs of the parameters in

the proposed model in equation 3.1 and their standard errors. The details related to

DC computational algorithm is available in Section 2.2.
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3.5 Empirical Bayes Estimation of Random Effects

Both population-averaged and subject-specific interpretations are possible through

MMMs, since they combine the strengths of marginal and conditional models. While

the first level of MMMs enables to do population-averaged interpretations based on

the MLEs for β, the second level of the MMMs allows to do subject-specific infer-

ences through the MLEs of β, γ, λ, and the prediction of random effects. Based on

the MLEs for θ = (β,γ,λ), the prediction of vector of random effects for ith subject

conditional on the observed data is possible through the following posterior density

via MCMC sampling:

∏
(bi|yi) =

f(yi|bi, θ̂)f(bi|γ̂, λ̂)

C(yi)
, (3.9)

where f(yi|bi, θ̂) =
∏ni

t=1

∏J
j=1 f(yitj|bi) is joint distribution of responses for ith

subject evaluated at θ̂, f(bi|γ̂, λ̂) is the prior distribution of random effect vector for

ith subject evaluated at γ̂ and λ̂, and C(yi) is the normalizing constant.
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CHAPTER 4

APPLICATION

In this chapter, we firstly assess the validity of the proposed model under different

simulation scenarios through some statistical performance criteria such as average,

bias, Monte Carlo standard error (SE), average of the model based standard errors

(ASE), mean squared error (MSE), and coverage probability (CP) and then discuss

the results of the simulation scenarios in Section 4.1. Then, we illustrate the pro-

posed model through Mother’s Stress and Children’s Morbidity (MSCM) study data

in Section 4.2.

4.1 Numerical Assessment of the Proposed Model

A simulation study is conducted to justify the validity of the proposed model in equa-

tion 3.1 under different scenarios through some performance measures. Data are gen-

erated in R and the model is fitted using jags.fit function under dclone package

in R (Sólymos, 2010).

4.1.1 Simulation Design

Simulation Scenario 1: Equally spaced & equal number of time points

Under Scenario 1, the number of time points is assumed to be the same for all subjects

and it is ni = n = 4. The spacing between two consecutive time points is also

assumed to be the same (e.g., the measurements are taken each week within a month).
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Then, the bivariate longitudinal binary data is simulated based on the proposed model

in equation 3.1 with two different total number of subjects (N = 150, 300) and two

different number of covariates (P = 2, 4), which results in 22 = 4 different sub-

scenarios.

In case of P = 2, the marginal probabilities are specified as follows:

Pr(Yit1 = 1|xit) =
exp(β10 + β11xit1 + β12xit2)

1 + exp(β10 + β11xit1 + β12xit2)

Pr(Yit2 = 1|xit) =
exp(β20 + β21xit1 + β22xit2)

1 + exp(β20 + β21xit1 + β22xit2)
,

(4.1)

where i = 1, 2, . . . , 150 or i = 1, 2, . . . , 300, t = 1, 2, 3, 4, xit1 is the centered time

at tth measurement, xit2 = xi2 is the centered time-invariant binary covariate gen-

erated from Bernoulli distribution with equal probability, β1 = (β10, β11, β12) =

(0.9, 0.6,−0.6), and β2 = (β20, β21, β22) = (1.1, 0.7,−0.9). The true value for each

β is chosen such that exponential of the true value, which is odds-ratio, is far from 1

(e.g., exp(β11) = 1.82).

The conditional probabilities are specified as follows:

Pr(Yit1 = 1|xit, bit) = Φ(∆it1(Xit) + bit)

Pr(Yit2 = 1|xit, bit) = Φ(∆it2(Xit) + bit),
(4.2)

where ∆itj (j = 1, 2) is given such that:

∆it1 = Φ−1

(
exp(β10 + β11xit1 + β12xit2)

1 + exp(β10 + β11xit1 + β12xit2)

)√
1 + V ar(bit)

∆it2 = Φ−1

(
exp(β20 + β21xit1 + β22xit2)

1 + exp(β20 + β21xit1 + β22xit2)

)√
1 + V ar(bit),

(4.3)

bit is tth element of bi = (bi1, bi2, bi3, bi4) and bi ∼ N(0,Σi) with Σi = T−1
i Di(T>i )−1

(see equation 3.2 for the general formulation). V ar(bit) is tth diagonal component of

Σi. Furthermore, only lag-1 serial dependencies (dependence between two consecu-

tive time points, e.g., t = 2 & l = 1; t = 3 & l = 2; and t = 4 & l = 3) are assumed
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to be significant and other lags are equated to zero for simplicity. Hence, Ti and Di

can be represented as follows:

Ti =


1 0 0 0

−φi,21 1 0 0

0 −φi,32 1 0

0 0 −φi,43 1

 and Di =


σ2
i1 0 0 0

0 σ2
i2 0 0

0 0 σ2
i3 0

0 0 0 σ2
i4

 .

Then the parameters in Ti and Di are associated with xit2 as follows:

φi,tl = γ0I(|t−l|=1) + γ1xit2I(|t−l|=1) and

log(σ2
it) = λ0 + λ1xit2,

(4.4)

where I(|t−l|=1) denotes that only lag-1 serial dependencies are significant, γ = (γ0, γ1)

= (−0.3,−1.3), and λ = (λ0, λ1) = (0.5, 1.5). Note that increasing number of sig-

nificant lags, which are different from zero, do not inflate the number of parameters

to be estimated in Σi since γ and λ are free from t and l ( 1 ≤ l < t ≤ ni). On the

other hand, only one covariate is associated with the random effects parameters not

to increase the model complexity.

Under this sub-scenario, the association between two longitudinal binary responses

for each time point (e.g., t = 1, 2, 3, 4) is also investigated through odds-ratio formula

(Chen et al., 2012), given as follows:

ORt =
Pr(Yt1 = 0, Yt2 = 0)Pr(Yt1 = 1, Yt2 = 1)

Pr(Yt1 = 1, Yt2 = 0)Pr(Yt1 = 0, Yt2 = 1)
, (4.5)

where Pr(Yt1, Yt2) denotes joint probability of bivariate binary responses at time t

(t = 1, 2, 3, 4). For a couple of simulated data sets, ÔRt for t = 1, 2, 3, 4 is estimated

around 7, 13, 17 and 28, respectively, which indicates that association between two

responses is high and increases as time increases.

In case of P = 4, the marginal probabilities are specified as follows:
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Pr(Yit1 = 1|xit) =
exp(β10 + β11xit1 + β12xit2 + β13xit3 + β14xit4)

1 + exp(β10 + β11xit1 + β12xit2 + +β13xit3 + β14xit4)

Pr(Yit2 = 1|xit) =
exp(β20 + β21xit1 + β22xit2 + β23xit3 + β24xit4)

1 + exp(β20 + β21xit1 + β22xit2 + β23xit3 + β24xit4)
,

(4.6)

where i = 1, 2, . . . , 150 or i = 1, 2, . . . , 300, t = 1, 2, 3, 4, xit1 is the centered time at

tth measurement, xit2 = xi2 is the centered time-invariant binary covariate generated

from Bernoulli distribution with equal probability, xit3 = xi3 is the centered time-

invariant continuous covariate generated from Uniform distribution within (−1, 1),

xit4 is the centered time-varying binary covariate generated from Bernoulli distribu-

tion with equal probability, β1 = (β10, β11, β12, β13, β14) = (0.9, 0.6,−0.6, 0.5,−0.3),

and β2 = (β20, β21, β22, β23, β24) = (1.1, 0.7,−0.9, 0.4,−0.4).

The conditional probabilities are specified as follows:

Pr(Yit1 = 1|xit, bit) = Φ(∆it1(Xit) + bit)

Pr(Yit2 = 1|xit, bit) = Φ(∆it2(Xit) + bit),
(4.7)

where ∆itj (j = 1, 2) is given such that:

∆it1 = Φ−1

(
exp(β10 + β11xit1 + β12xit2 + β13xit3 + β14xit4)

1 + exp(β10 + β11xit1 + β12xit2 + β13xit3 + β14xit4)

)√
1 + V ar(bit)

∆it2 = Φ−1

(
exp(β20 + β21xit1 + β22xit2 + β23xit3 + β24xit4)

1 + exp(β20 + β21xit1 + β22xit2 + +β23xit3 + β24xit4)

)√
1 + V ar(bit),

(4.8)

bit is tth element of bi = (bi1, bi2, bi3, bi4) and bi ∼ N(0,Σi) with Σi = T−1
i Di(T>i )−1

(see equation 3.2 for the general formulation). V ar(bit) is tth diagonal component of

Σi. Furthermore, the same setting in equation 4.4 is assumed for Σi.

Simulation Scenario 2: Unequally spaced & equal number of time points

Under Scenario 2, similar to Scenario 1, the number of time points is assumed to be

the same for all subjects and it is ni = n = 4. However, the spacing between two

consecutive time points is assumed to be unequal (e.g., while one measurement is
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taken at the first week, the other one is taken at the second week, but the next one is

taken at a longer time point than one-week). Then, the bivariate longitudinal binary

data is simulated based on the proposed model in equation 3.1 with a total number of

subjects N = 150 and number of covariates P = 2.

The marginal probabilities are specified as follows:

Pr(Yit1 = 1|xit) =
exp(β10 + β11xit1 + β12xit2)

1 + exp(β10 + β11xit1 + β12xit2)

Pr(Yit2 = 1|xit) =
exp(β20 + β21xit1 + β22xit2)

1 + exp(β20 + β21xit1 + β22xit2)
,

(4.9)

where i = 1, 2, . . . , 150, t = 1, 2, 4, 7, xit1 is the centered time at tth measurement,

xit2 = xi2 is the centered time-invariant binary covariate generated from Bernoulli

distribution with equal probability, β1 = (β10, β11, β12) = (0.9, 0.6,−0.6), and

β2 = (β20, β21, β22) = (1.1, 0.7,−0.9). The conditional probabilities are specified

as in equations 4.2-4.4. I(|t−l|=1) in equation 4.4 still denotes the consecutive serial

dependencies (i.e., dependence between two consecutive time points, e.g., t = 2 &

l = 1; t = 4 & l = 2; and t = 7 & l = 4) are significant, and other lags are equated

to zero for simplicity.

Simulation Scenario 3: Equally spaced & unequal number of time points

Under Scenario 3, three different number of time points is assumed across the subjects

(e.g., ni = 3, 4, or 5), whereas the spacing between two consecutive time points is

assumed to be equal. Then, the bivariate longitudinal binary data is simulated based

on the proposed model in equation 3.1 with a total number of subjects N = 150 and

number of covariates P = 2.

The marginal probabilities are specified as follows:

Pr(Yit1 = 1|xit) =
exp(β10 + β11xit1 + β12xit2)

1 + exp(β10 + β11xit1 + β12xit2)

Pr(Yit2 = 1|xit) =
exp(β20 + β21xit1 + β22xit2)

1 + exp(β20 + β21xit1 + β22xit2)
,

(4.10)
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where t = 1, 2, 3 for i = 1, 2, . . . , 50; t = 1, 2, 3, 4 for i = 51, 52, . . . , 100; and

t = 1, 2, 3, 4, 5 for i = 101, 102, . . . , 150, xit1 is the centered time at tth mea-

surement, xit2 = xi2 is the centered time-invariant binary covariate generated from

Bernoulli distribution with equal probability, β1 = (β10, β11, β12) = (0.9, 0.6,−0.6),

and β2 = (β20, β21, β22) = (1.1, 0.7,−0.9). The conditional probabilities are spec-

ified as in equations 4.2-4.4. The expression for Ti and Di when ni = 3, 4, or 5 is

given respectively, as follows:

Ti =


1 0 0

−φi,21 1 0

0 −φi,32 1

 and Di =


σ2
i1 0 0

0 σ2
i2 0

0 0 σ2
i3

 ,

Ti =


1 0 0 0

−φi,21 1 0 0

0 −φi,32 1 0

0 0 −φi,43 1

 and Di =


σ2
i1 0 0 0

0 σ2
i2 0 0

0 0 σ2
i3 0

0 0 0 σ2
i4

 ,

Ti =



1 0 0 0 0

−φi,21 1 0 0 0

0 −φi,32 1 0 0

0 0 −φi,43 1 0

0 0 0 −φi,54 1


and Di =



σ2
i1 0 0 0 0

0 σ2
i2 0 0 0

0 0 σ2
i3 0 0

0 0 0 σ2
i4 0

0 0 0 0 σ2
i5


.

Simulation Scenario 4: Misspecification of Time Lag Order in Random Effects

Covariance Matrix

Under Scenario 4, like Scenario 1, while the number of time points is ni = n = 4 and

the spacing between two consecutive time points is assumed to be the same, the total

number of subjects is N = 150 and number of covariates is P = 2.

The marginal probabilities are specified as follows:
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Pr(Yit1 = 1|xit) =
exp(β10 + β11xit1 + β12xit2)

1 + exp(β10 + β11xit1 + β12xit2)

Pr(Yit2 = 1|xit) =
exp(β20 + β21xit1 + β22xit2)

1 + exp(β20 + β21xit1 + β22xit2)
,

(4.11)

where i = 1, 2, . . . , 150, t = 1, 2, 3, 4, xit1 is the centered time at tth measurement,

xit2 = xi2 is the centered time-invariant binary covariate generated from Bernoulli

distribution with equal probability, β1 = (β10, β11, β12) = (0.9, 0.6,−0.6), and β2 =

(β20, β21, β22) = (1.1, 0.7,−0.9).

The conditional probabilities are specified as in equations 4.2 and 4.3. bi ∼ N(0,Σi)

with Σi = T−1
i Di(T>i )−1. Furthermore, all lags, i.e., up to 3rd order, are assumed to

be significant. Hence, Ti and Di can be represented as follows:

Ti =


1 0 0 0

−φi,21 1 0 0

−φi,31 −φi,32 1 0

−φi,41 −φi,42 −φi,43 1

 and Di =


σ2
i1 0 0 0

0 σ2
i2 0 0

0 0 σ2
i3 0

0 0 0 σ2
i4

 .

Then the parameters in Ti and Di are associated with xit2 as follows:

φi,tl = γ0I(|t−l|≤3) + γ1xit2I(|t−l|≤3) and

log(σ2
it) = λ0 + λ1xit2,

(4.12)

where I(|t−l|≤3) denotes that lags up to 3rd order are significant, γ = (γ0, γ1) =

(−0.3,−1.3), and λ = (λ0, λ1) = (0.5, 1.5). However, during the model fitting, the

conditional model is assumed to be specified through equation 4.4:

φi,tl = γ0I(|t−l|=1) + γ1xit2I(|t−l|=1) and

log(σ2
it) = λ0 + λ1xit2,

where I(|t−l|=1) denotes that lags up to 1st order are significant. By this scenario, we

aim to study the sensitivity of model parameters to the misspecification of significant

lags in random effects covariance matrix.
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Simulation Scenario 5: Misspecification of Simple Regression Structure in Ran-

dom Effects Covariance Matrix

Under Scenario 5, like Scenario 4, while the number of time points is ni = n = 4 and

the spacing between two consecutive time points is assumed to be the same, the total

number of subjects is N = 150 and number of covariates is P = 2.

The marginal probabilities are specified through the equation 4.11 and the conditional

probabilities are specified as in equations 4.2 and 4.3. bi ∼ N(0,Σi) with Σi =

T−1
i Di(T>i )−1. The parameters in Ti and Di are assumed to have a simple structure

as follows:

φi,tl = γ0I(|t−l|=1) and

log(σ2
it) = λ0,

(4.13)

where I(|t−l|=1) denotes that lags up to 1st order are significant, γ = (γ0, γ1) =

(−0.3, 0), and λ = (λ0, λ1) = (0.5, 0). However, during the model fitting, the condi-

tional model is assumed to be specified through equation 4.4:

φi,tl = γ0I(|t−l|=1) + γ1xit2I(|t−l|=1) and

log(σ2
it) = λ0 + λ1xit2.

where I(|t−l|=1) denotes that lags up to 1st order are significant.

Simulation Scenario 6: Misspecification of Complex Regression Structure in

Random Effects Covariance Matrix

Under Scenario 6, like Scenarios 4 and 5, while the number of time points is ni =

n = 4 and the spacing between two consecutive time points is assumed to be the

same, the total number of subjects is N = 150 and number of covariates is P = 2.

The marginal probabilities are specified through the equation 4.11 and the conditional

probabilities are specified as in equations 4.2 and 4.3. bi ∼ N(0,Σi) with Σi =
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T−1
i Di(T>i )−1. The parameters in Ti and Di are assumed to have a simple structure

as follows:

φi,tl = γ0I(|t−l|=1) + γ1xit2I(|t−l|=1) and

log(σ2
it) = λ0 + λ1xit2,

(4.14)

where I(|t−l|=1) denotes that lags up to 1st order are significant, γ = (γ0, γ1) =

(−0.3,−1.3), and λ = (λ0, λ1) = (0.5, 1.5). However, during the model fitting, the

conditional model is assumed to be specified through equation as follows:

φi,tl = γ0I(|t−l|=1) and

log(σ2
it) = λ0.

Simulation Scenario 7: Revisit of equally spaced & equal number of time points

with n=8

The first sub-scenario in Scenario 1 is revisited under Scenario 7 such that while the

number of time points is ni = n = 8 and the spacing between two consecutive time

points is assumed to be the same, the total number of subjects isN = 150 and number

of covariates is P = 2.

The marginal probabilities are specified as follows:

Pr(Yit1 = 1|xit) =
exp(β10 + β11xit1 + β12xit2)

1 + exp(β10 + β11xit1 + β12xit2)

Pr(Yit2 = 1|xit) =
exp(β20 + β21xit1 + β22xit2)

1 + exp(β20 + β21xit1 + β22xit2)
,

(4.15)

where i = 1, 2, . . . , 150, t = 1, 2, . . . , 8, xit1 is the centered time at tth measurement,

xit2 = xi2 is the centered time-invariant binary covariate generated from Bernoulli

distribution with equal probability, β1 = (β10, β11, β12) = (0.9, 0.6,−0.6), and β2 =

(β20, β21, β22) = (1.1, 0.7,−0.9). The conditional probabilities are specified as in

equations 4.2-4.4.

49



4.1.2 Simulation Settings

The initial values for β are drawn from treating the bivariate longitudinal binary data

as if it consisted of two different univariate longitudinal binary data, and then each

univariate longitudinal binary data is fitted through gee package in R (Carey, 2012).

The initial values for γ and λ are drawn randomly from Uniform distribution within

a narrow interval. The convergence of the code is also tested through using different

initial values. The prior distributions for each β, γ, and λ are chosen as normal

distribution with 0 mean and variance 1, 000 (Daniels and Zhao, 2003; Congdon,

2010; Lee, 2013). Based on several simulated data sets, the standardized largest

eigenvalue of posterior covariance matrix λK is plotted against K−1. The result for

one simulated data is given in Figure 4.1 and the number of clonesK is determined as

10. The number of iterations for convergence is fixed at 30, 000. After convergence,

5, 000 iterations are drawn from 2 different chains with a thinning value of 25. The

simulation study is repeated M = 100 times. For illustration, the R code for model

fitting and the prediction of random effects for Scenario 1 is given in Appendix C.

4.1.3 Performance Measures

Under Scenarios 1− 3 and 7, for each parameter in θ = (β,γ,λ), measures such as

average, bias, Monte Carlo standard error (SE), average of the model based standard

errors (ASE), mean squared error (MSE), and coverage probability (CP) are com-

puted based on the formulas given in Burton et al. (2006) and Crespi et al. (2009). On

the other hand, since asymptotic covariance matrix of parameters is affected by mis-

specification, it does not provide good variance estimators for parameter estimators.

For that reason, under Scenarios 4−6, for each parameter in θ = (β,γ,λ), measures

such as average, bias, SE, and MSE are computed, but ASE and CP are avoided.

The average and bias of the parameter estimates are given by,

Average =
¯̂
θv =

M∑
m=1

θ̂m,v
M

and

Bias =
¯̂
θv − θv,

(4.16)
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Figure 4.1: Determination of number of clones.

where θ̂m,v is the estimate of vth parameter in θ at the mth simulation replication

(m = 1, 2, . . . ,M ).

Moreover, SE, ASE, and MSE of the parameter estimates are defined as follows:

SE =

√√√√ M∑
m=1

(θ̂m,v − ¯̂
θv)2

M − 1
,

ASE =
M∑
m=1

s.e.(θ̂m,v)

M
, and

MSE = (
¯̂
θv − θv)2 +

∑M
m=1

(θ̂m,v− ¯̂
θv)2

M−1
, (4.17)

where ¯̂
θv is the average in equation 4.16, s.e.(θ̂m,v) is the model based standard er-

ror of θ̂v at the mth simulation replication (m = 1, 2, . . . ,M ) based on K times the
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sample covariance matrix of samples drawn from the posterior distribution in equa-

tion 2.13 in Section 2.2 on page 24.

At each m, a 95% confidence interval (CI) is computed as follows:

θ̂m,v ± 1.96× s.e.(θ̂m,v), (4.18)

where s.e.(θ̂m,v) is the standard error of θ̂v at the mth simulation replication (m =

1, 2, . . . ,M ) based on the Fisher information matrix and 1.96 is critical value corre-

sponding to the (1− 0.05/2)th quantile of standard normal distribution. Then a 95%

coverage probability (CP) for θv is computed as the number of replications in which

CI in equation 4.18 contains θv divided by M as given:

CP =
#((θ̂m,v − 1.96× s.e.(θ̂m,v)) ≤ θv ≤ (θ̂m,v + 1.96× s.e.(θ̂m,v)))

M
. (4.19)

4.1.4 Simulation Results

Simulation results for Scenarios 1-7 are presented in Tables 4.1-4.10, respectively.

Simulation results for the proposed model in equation 3.1 across the scenarios are

promising.

Under Scenario 1, the estimates of β, γ, and λ have generally quite small biases and

moderate SEs, ASEs, and MSEs. For example, for the sub-scenario N = 150, n = 4,

and P = 2, results in Table 4.1 are at an acceptable level for bias, SE, ASE, and MSE

values. The bias values for β̂ are very low (e.g., ranging from 0.01 to 0.03). On the

other hand, although the bias in γ̂ and λ̂ are slightly larger than those in β̂, the bias

values for γ̂ and λ̂ are still low (e.g., ranging from −0.04 to −0.01). For the same

setting, increasing N from 150 to 300 generally decreases the amount of bias in β̂

(except β̂22), γ̂, and λ̂, (except γ̂1) as can be seen in Table 4.2.

When N = 150, n = 4, and P = 2, the SEs and ASEs are also at an acceptable level

for β̂ (e.g., SE and ASE are both ranging from 0.08 to 0.19). The SEs and ASEs for γ̂

and λ̂ are larger compared to those for β̂, however, they are still at an acceptable level
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(e.g., SE and ASE are both ranging from 0.11 to 0.56). For all parameters, ASE values

are very close to SE values, as ASE/SE ratio’s are around 1. The SE and ASE values

for all parameters decrease as N increases from 150 to 300. For example, while SE

and ASE values for β̂12 are 0.19 and 0.18, respectively, for N = 150, those values are

0.13 and 0.13, respectively, for N = 300. On the other hand, ASE values of γ̂ and

λ̂ tend to slightly underestimate SE values of those, as N increases. This situation

reflects into the CP’s, which are less than 95% nominal level. According to Tang

et al. (2005), a CP falling within approximately two SEs of the nominal coverage

probability(p) SE(p) =
√

(p(1−p))
M

is considered as acceptable. In this sense, for a

95% confidence interval, which is based on M = 100 simulations, a CP lying within

0.91 and 0.99 is considered as acceptable. On the other hand, the decrease in MSEs

for all parameters can also be seen. For instance, while MSE value for β̂12 is 0.007

forN = 150, it is 0.004 forN = 300. Further comparison is available through Tables

4.1 and 4.2.

Increasing the number of covariates P from 2 to 4 does not cause any considerable

change in the results. The estimates of β, γ, and λ have still quite small biases and

moderate SEs, ASEs, and MSEs as given in Table 4.3 for the sub-scenario N = 150,

n = 4, and P = 4 and in Table 4.4 for the sub-scenario N = 300, n = 4, and P = 4.

In fact, the results of the sub-scenarios N = 150, n = 4, and P = 4 and N = 300,

n = 4, and P = 4 are very similar with those of the sub-scenarios N = 150, n = 4,

and P = 2 and N = 300, n = 4, and P = 2 for the common parameters, (i.e.,

β10, β11, β12, β20, β21, β22, λ0, λ1,, γ0, and γ1), respectively. The only eye-catching

point is that small differences in SEs result in noticeable differences in MSEs since

MSEs are dominated by SEs due to small biases. To illustrate, while in sub-scenario

N = 150, n = 4, and P = 2, γ̂1 is estimated as −1.31 with a downward bias of

−0.01, a standard error of 0.20, and a MSE of 0.040, in sub-scenario N = 150,

n = 4, and P = 4, it is estimated as −1.32 with a bias of −0.02, a standard error of

0.23, and a MSE of 0.053. Another example is that while in sub-scenario N = 300,

n = 4, and P = 2, β̂22 is estimated as −0.93 with a downward bias of −0.03, a

standard error of 0.15, and a MSE of 0.023, in sub-scenario N = 300, n = 4, and

P = 4, it is estimated as −0.90 with zero bias, a standard error of 0.13, and a MSE

of 0.017.
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Our simulation results are also consistent with Pan and Mackenzie (2007) and Li and

Pourahmadi (2013), who used the modified Cholesky decomposition method within

univariate longitudinal continuous data. The γ, which are the regression coefficients

corresponding to the dependence term φi,tl are estimated with small MSEs compared

to λ, which are the regression coefficients corresponding to the variance term log(σ2
it).

For instance, for sub-scenario N = 150, n = 4, and P = 2 under Scenario 1 (Ta-

ble 4.1), MSE values of γ̂ range from 0.014 to 0.04, whereas those values for λ̂ range

from 0.079 to 0.314. This may be resulted from the restriction in the parameter space

of variance terms compared to that of covariance parameters.

In the proposed model (equation 3.1), the number of measurements per bit is 2 since

information for bit comes from two different responses Yit1 and Yit2. In our opinion,

the performance of the parameter estimates of λ and γ can also be improved through

increasing the number of measurements per bit, which is possible through extending

the proposed model to trivariate or higher order longitudinal data. This argument may

also be justified from a different point of view. For example, the model of Iddi and

Molenberghs (2012) included a time-invariant random intercept bi and the number

of measurements per bi was naturally 2 × n, since information for bi came from 2

different responses, where each response was measured at n different time points.

As the number of time points increased, which means the number of measurements

per bi increased, the biases and relative precision estimates related to the variance

of bi decreased, which can be seen in the simulation results. Similar phenomenon,

which had parallel results to Iddi and Molenberghs (2012), can also be seen in their

simulation results of Austin (2010) and Capanu et al. (2013).

Under Scenario 2, a similar case of sub-scenario under Scenario 1 is discussed. Sce-

nario 2 also assumes N = 150, n = 4, and P = 2, but it further assumes that spacing

between two consecutive time points are unequal. The estimates of β, γ, and λ have

generally quite small biases and moderate SEs, ASEs, and MSEs as presented in Ta-

ble 4.5. The bias values for β̂, γ̂, and λ̂ range from−0.03 to 0.03,−0.03 to 0.03, and

−0.05 to −0.02, respectively. The SEs, ASEs, and MSEs are also at an acceptable

level for β̂, γ̂, and λ̂ (except λ̂1). On the other hand, since the time variable enters

into the model as covariate xit2, the results of Scenario 2 and those of sub-scenario

under Scenario 1 cannot be comparable. Nonetheless, the results are in accordance
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with each other.

Under Scenario 3, N is 150, but it assumes that there are three different number of

time points across the subjects, which are ni = 3 for 50 subjects, ni = 4 for other 50

subjects, and ni = 5 for remaining 50 subjects. The number of covariates P is 2 and

spacing between two consecutive time points are equal. The estimates of β, γ, and λ

have generally quite small biases and moderate SEs, ASEs, and MSEs as presented

in Table 4.6. The bias values for β̂, γ̂, and λ̂ range from 0.00 to 0.01, −0.03 to 0.00,

and 0.00 to 0.05, respectively. The SEs, ASEs, and MSEs are also at an acceptable

level for β̂, γ̂, and λ̂ (except λ̂1). Note that assuming unequal number of time points

in the data (e.g., an unbalanced longitudinal data) does not increase the number of

parameters to be estimated in the random effects covariance matrix since γ and λ pa-

rameters are not indexed by ni. Accommodation of the proposed model with unequal

number of time points can be considered as an advantage over marginal models since

marginal models cannot adapt an unstructured type for covariance matrix in case of

unbalanced longitudinal data, where the number of parameters to be estimated in the

covariance matrix changes with ni (Hardin and Hilbe, 2003).

Scenario 4 is very similar to Scenario 1 in terms of settings. Unlike Scenario 1, under

Scenario 4, data generated is based on a random effects covariance matrix, where lags

up to 3rd order are assumed to be significant. However, during the model fitting, it is

assumed that lags up to 1st order are significant. The estimates of β have generally

quite small biases, moderate SEs, and MSEs as presented in Table 4.7, which indi-

cates that they are robust to the misspecification of time lag order in random effects

covariance matrix. On the other hand, the estimates of γ and λ have considerable

biases, SEs, and MSEs as presented in Table 4.7.

Scenario 5 is also very similar to Scenario 1 in terms of settings. Unlike Scenario 1,

under Scenario 5, data generated is based on a simple regression structure for random

effects covariance matrix. However, during the model fitting, it is assumed that ran-

dom effects covariance matrix has a complex regression structure. The estimates of β

have generally quite small biases, moderate SEs, and MSEs as presented in Table 4.8,

which implies that that they are robust to misspecification of simple regression struc-

ture in random effects covariance matrix. On the other hand, the estimates of γ and
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λ have small biases, and moderate SEs and MSEs as presented in Table 4.8. Specif-

ically, γ1 and λ1 are estimated with values, which are close to 0 (e.g., γ̂1 = 0.01 and

λ̂1 = 0.02).

Scenario 6 is the opposite of Scenario 5 such that under Scenario 6, data generated is

based on a complex regression structure for random effects covariance matrix. How-

ever, during the model fitting, it is assumed that random effects covariance matrix has

a simple regression structure. The estimates of β have generally quite small biases,

moderate SEs, and MSEs as presented in Table 4.9, except β̂12 and β̂22. Although

β̂12 and β̂22 are estimated with a bias of 0.16 and 0.20, respectively, their SEs are

very close to the ones in other scenarios. For that reason, their MSEs are still at an

acceptable level, which are 0.051 and 0.080, for β̂12 and β̂22, respectively. Note that

the biases are observed in the regression coefficients of the covariate, which is asso-

ciated with random effects covariance matrix, but is ignored in the model fitting. On

the other hand, the estimates of γ0 and λ0 have considerable biases. In fact, bias in

γ0 and λ0 are −0.20 and 0.21, respectively. Note that, while γ0 and λ0 are estimated

with considerable biases, they are estimated with moderate SEs, which are 0.12 and

0.23, respectively. This results in moderate MSE values for γ0 and λ0. Scenario 6

also indicates that if one of the covariates is associated with the elements of random

effects covariance matrix, omitting it from regression models for the parameters of

random effects covariance matrix will result in considerable biases in the regression

coefficient of that covariate in the model for mean response.

Under Scenario 7, the performance of the proposed model is assessed with N = 150,

n = 8, and N = 300. However, in this scenario, convergence problems are experi-

enced related to γ and λ in more than 50% of M = 100 simulation runs, while β’s

converge in all M = 100 simulated data. Since the variation between the measure-

ments of a subject depends on the time through bit, increase in the number of time

points per subject results in a considerable heterogeneity between the measurements

of the subject, and in turn, this might cause poor estimation problems related to γ

and λ. Since the first level of the model is marginalized from the second level, the

convergence of β is not affected from the non-convergence of γ and λ. In this sense,

the simulation is repeated until 100 converged data set is obtained, where the results

are presented in Table 4.10. The results of Scenario 7 are parallel to sub-scenario of
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Scenario 1, whereN = 300, n = 4, and P = 2, except λ̂1. Specifically, λ1 is esti-

mated with a slightly larger SE (naturally MSE) and ASE under Scenario 7 than the

sub-scenario of Scenario 1, whereN = 300, n = 4, and P = 2.

In our opinion, the convergence problem for the case of n = 8 can be avoided with

assuming a simple structure for 4.4 such that

φi,tl = γ0

log(σ2
it) = λ0,

(4.20)

which estimates two parameters γ0 and λ0 in Σi, instead of (8×9)
2

= 36 number

of parameters. Hence, it is obvious that the modified Cholesky decomposition still

provides an advantage in the number of parameters to be estimated related to Σi with

a loss in interpretation. On the other hand, the simulation results of other marginalized

multilevel models with time-varying random intercepts are also investigated. Within

univariate longitudinal data concept, where only one observation was assumed per

bit, during the simulations, Lee and Daniels (2008) assumed N = 300 and n = 6

with three parameters in Σi, Lee et al. (2011b) assumed N = 200, 300 and n = 8

with four parameters in Σi, and Lee et al. (2011a) assumed N = 400 and n = 6

with three parameters in Σi. Within multivariate longitudinal data concept, where

only one observation was assumed per bitj , during the simulations, Lee et al. (2009)

and Lee et al. (2013) assumed N = 300 and n = 6 with four and five parameters

in Σi, respectively. However, this review reveals that they did not investigate the

effect of different N and as well as different n values during the simulation studies.

Overall simulation results (except the ones in Lee et al. (2011a)) demonstrate that

large biases can occur in the marginal mean parameters when the covariance matrix

structure for random effects is misspecified in the presence of missing at random

(MAR) missingness. However, they did not report any performance measure results

such as bias, MSE, and CP related to the covariance matrix parameters, which leads

us to be in gray zone.
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Table 4.1: Simulation result for Scenario 1 when N=150, n=4, and P=2.

Parameters True value Average Bias SE* ASE** ASE/SE MSE CP
β10 0.90 0.91 0.01 0.10 0.09 0.90 0.010 0.90
β11 0.60 0.61 0.01 0.08 0.08 1.00 0.007 0.95
β12 -0.60 -0.57 0.03 0.19 0.18 0.95 0.037 0.91
β20 1.10 1.11 0.01 0.10 0.10 1.00 0.010 0.95
β21 0.70 0.71 0.01 0.08 0.09 1.12 0.007 0.97
β22 -0.90 -0.89 0.01 0.17 0.19 1.12 0.029 0.95
γ0 -0.30 -0.34 -0.04 0.11 0.11 1.00 0.014 0.93
γ1 -1.30 -1.31 -0.01 0.20 0.23 1.15 0.040 0.97
λ0 0.50 0.47 -0.03 0.28 0.27 0.96 0.079 0.95
λ1 1.50 1.48 -0.02 0.56 0.56 1.00 0.314 0.95

* Monte Carlo standard error, ** Average of the model based standard errors
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Table 4.2: Simulation result for Scenario 1 when N=300, n=4, and P=2.

Parameters True value Average Bias SE* ASE** ASE/SE MSE CP
β10 0.90 0.90 0.00 0.06 0.07 1.17 0.004 0.97
β11 0.60 0.59 -0.01 0.06 0.06 1.00 0.004 0.91
β12 -0.60 -0.61 -0.01 0.13 0.13 1.00 0.017 0.96
β20 1.10 1.11 0.01 0.07 0.07 1.00 0.005 0.94
β21 0.70 0.70 0.00 0.06 0.06 1.00 0.004 0.95
β22 -0.90 -0.93 -0.03 0.15 0.13 0.87 0.023 0.91
γ0 -0.30 -0.31 -0.01 0.09 0.08 0.89 0.008 0.94
γ1 -1.30 -1.33 -0.03 0.17 0.16 0.94 0.030 0.94
λ0 0.50 0.47 -0.03 0.22 0.19 0.86 0.049 0.93
λ1 1.50 1.48 -0.02 0.46 0.38 0.83 0.212 0.89

* Monte Carlo standard error, ** Average of the model based standard errors
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Table 4.3: Simulation result for Scenario 1 when N=150, n=4, and P=4.

Parameters True value Average Bias SE* ASE** ASE/SE MSE CP
β10 0.90 0.90 0.00 0.10 0.09 0.90 0.010 0.97
β11 0.60 0.62 0.02 0.08 0.08 1.00 0.007 0.96
β12 -0.60 -0.61 -0.01 0.16 0.18 1.12 0.026 1.00
β13 0.50 0.49 -0.01 0.16 0.15 0.94 0.026 0.95
β14 -0.30 -0.29 0.01 0.16 0.17 1.06 0.026 0.95
β20 1.10 1.12 0.02 0.10 0.10 1.00 0.010 0.96
β21 0.70 0.71 0.01 0.08 0.09 1.12 0.007 0.97
β22 -0.90 -0.90 0.00 0.17 0.19 1.12 0.029 0.98
β23 0.40 0.40 0.00 0.13 0.15 1.15 0.017 0.95
β24 -0.40 -0.39 0.01 0.19 0.18 0.95 0.036 0.93
γ0 -0.30 -0.30 0.00 0.11 0.11 1.00 0.012 0.97
γ1 -1.30 -1.32 -0.02 0.23 0.23 1.00 0.053 0.95
λ0 0.50 0.48 -0.02 0.31 0.28 0.90 0.096 0.92
λ1 1.50 1.47 -0.03 0.56 0.57 1.02 0.315 0.93

* Monte Carlo standard error, ** Average of the model based standard errors
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Table 4.4: Simulation result for Scenario 1 when N=300, n=4, and P=4.

Parameters True value Average Bias SE* ASE** ASE/SE MSE CP
β10 0.90 0.91 0.01 0.08 0.07 0.88 0.007 0.92
β11 0.60 0.61 0.01 0.06 0.06 1.00 0.004 0.93
β12 -0.60 -0.61 -0.01 0.14 0.13 0.93 0.020 0.93
β13 0.50 0.52 0.02 0.11 0.10 0.91 0.012 0.93
β14 -0.30 -0.31 -0.01 0.13 0.12 0.92 0.017 0.92
β20 1.10 1.11 0.01 0.07 0.07 1.00 0.005 0.94
β21 0.70 0.70 0.00 0.05 0.06 1.20 0.003 0.96
β22 -0.90 -0.90 0.00 0.13 0.14 1.08 0.017 0.96
β23 0.40 0.40 0.00 0.11 0.11 1.00 0.012 0.97
β24 -0.40 -0.43 -0.03 0.12 0.12 1.00 0.015 0.93
γ0 -0.30 -0.30 0.00 0.09 0.08 0.89 0.008 0.93
γ1 -1.30 -1.30 0.00 0.17 0.16 0.94 0.029 0.94
λ0 0.50 0.51 0.01 0.20 0.20 1.00 0.040 0.93
λ1 1.50 1.51 0.01 0.44 0.40 0.91 0.194 0.92

* Monte Carlo standard error, ** Average of the model based standard errors
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Table 4.5: Simulation result for Scenario 2.

Parameters True value Average Bias SE* ASE** ASE/SE MSE CP
β10 0.90 0.92 0.02 0.09 0.11 1.22 0.008 0.95
β11 0.60 0.61 0.01 0.06 0.06 1.00 0.004 0.96
β12 -0.60 -0.62 -0.02 0.20 0.18 0.90 0.040 0.93
β20 1.10 1.13 0.03 0.10 0.12 1.20 0.011 0.99
β21 0.70 0.70 0.00 0.07 0.06 0.86 0.005 0.94
β22 -0.90 -0.93 -0.03 0.23 0.19 0.83 0.054 0.91
γ0 -0.30 -0.33 -0.03 0.09 0.12 1.33 0.009 1.00
γ1 -1.30 -1.27 0.03 0.22 0.25 1.14 0.049 0.94
λ0 0.50 0.45 -0.05 0.25 0.28 1.12 0.065 0.99
λ1 1.50 1.48 -0.02 0.66 0.57 0.86 0.436 0.88

* Monte Carlo standard error, ** Average of the model based standard errors
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Table 4.6: Simulation result for Scenario 3.

Parameters True value Average Bias SE* ASE** ASE/SE MSE CP
β10 0.90 0.91 0.01 0.10 0.09 0.90 0.010 0.94
β11 0.60 0.60 0.00 0.07 0.08 1.14 0.005 0.95
β12 -0.60 -0.60 0.00 0.19 0.18 0.95 0.036 0.94
β20 1.10 1.11 0.01 0.11 0.10 0.91 0.012 0.93
β21 0.70 0.71 0.01 0.09 0.08 0.89 0.008 0.94
β22 -0.90 -0.89 0.01 0.17 0.19 1.12 0.029 0.98
γ0 -0.30 -0.30 0.00 0.10 0.11 1.10 0.010 0.98
γ1 -1.30 -1.33 -0.03 0.24 0.23 0.96 0.058 0.93
λ0 0.50 0.50 0.00 0.30 0.28 0.93 0.090 0.95
λ1 1.50 1.55 0.05 0.56 0.55 0.98 0.316 0.96

* Monte Carlo standard error, ** Average of the model based standard errors
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Table 4.7: Simulation result for Scenario 4.

Parameters True value Average Bias SE* MSE
β10 0.90 0.91 0.01 0.11 0.012
β11 0.60 0.60 -0.00 0.08 0.006
β12 -0.60 -0.63 -0.03 0.17 0.030
β20 1.10 1.09 -0.01 0.08 0.007
β21 0.70 0.71 0.01 0.07 0.005
β22 -0.90 -0.91 -0.01 0.20 0.040
γ0 -0.30 0.03 0.33 0.16 0.134
γ1 -1.30 -1.07 0.23 0.34 0.169
λ0 0.50 0.63 0.13 0.35 0.139
λ1 1.50 1.97 0.47 0.70 0.711

* Monte Carlo standard error
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Table 4.8: Simulation result for Scenario 5.

Parameters True value Average Bias SE* MSE
β10 0.90 0.92 0.02 0.09 0.008
β11 0.60 0.60 0.00 0.10 0.010
β12 -0.60 -0.63 -0.03 0.16 0.027
β20 1.10 1.12 0.02 0.09 0.008
β21 0.70 0.71 0.01 0.09 0.008
β22 -0.90 -0.91 -0.01 0.19 0.036
γ0 -0.30 -0.31 -0.01 0.09 0.008
γ1 0.00 0.01 0.01 0.21 0.044
λ0 0.50 0.52 0.02 0.22 0.049
λ1 0.00 0.02 0.02 0.50 0.250

* Monte Carlo standard error
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Table 4.9: Simulation result for Scenario 6.

Parameters True value Average Bias SE* MSE
β10 0.90 0.88 -0.02 0.09 0.008
β11 0.60 0.61 0.01 0.08 0.007
β12 -0.60 -0.44 0.16 0.16 0.051
β20 1.10 1.07 -0.03 0.09 0.009
β21 0.70 0.72 0.02 0.10 0.010
β22 -0.90 -0.70 0.20 0.20 0.080
γ0 -0.30 -0.50 -0.20 0.12 0.054
λ0 0.50 0.71 0.21 0.23 0.097

* Monte Carlo standard error
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Table 4.10: Simulation result for Scenario 7.

Parameters True value Average Bias SE* ASE** ASE/SE MSE CP
β10 0.90 0.90 0.00 0.07 0.08 1.14 0.005 0.97
β11 0.60 0.60 0.00 0.04 0.04 1.00 0.002 0.93
β12 -0.60 -0.60 0.00 0.14 0.14 1.00 0.020 0.96
β20 1.10 1.10 0.00 0.08 0.08 1.00 0.006 0.96
β21 0.70 0.70 0.00 0.04 0.04 1.00 0.002 0.97
β22 -0.90 -0.89 0.01 0.16 0.15 0.94 0.026 0.93
γ0 -0.30 -0.29 0.01 0.08 0.06 0.75 0.007 0.91
γ1 -1.30 -1.31 -0.01 0.14 0.13 0.93 0.020 0.94
λ0 0.50 0.54 0.04 0.23 0.21 0.91 0.054 0.90
λ1 1.50 1.50 0.00 0.53 0.40 0.75 0.281 0.82

* Monte Carlo standard error, ** Average of the model based standard errors

67



4.2 Mother’s Stress and Children’s Morbidity (MSCM) Study Data

In Mother’s Stress and Children’s Morbidity (MSCM) study, Alexander and Markowitz

(1986) investigated the relationship between maternal employment and paediatric

health care utilization due to considerable changes in social and demographic char-

acteristics in the US since 1950. Increasing number of working mothers leaded to

mainly examine whether mother’s employment status had any influence on the child’s

cognitive and social development. A total of 167 mothers and their preschool chil-

dren (ages of between 18 months and 5 years) were enrolled in the MSCM study. At

the beginning of the study, mothers were asked to provide demographic and domes-

tic information about them such as education level, employment and marriage sta-

tus, children’s gender and race, maternal and child’s health status at baseline and the

household size, which are all categorical and time-invariant variables. Afterwards, the

mothers were asked to record their maternal stress and child’s illness status, whether

present or not, in a health diary over a 28-day follow-up period. Information on these

variables along with two binary responses, namely, mother’s stress status and child’s

illness status, are listed in Table 4.11.

Table 4.11: Variable information list for MSCM study.

Variable Explanation
Stress mother’s stress status at day t: 0=absence, 1=presence
Illness child’s illness status at day t: 0=absence, 1=presence

Chlth child’s health status at baseline: 0=very poor/poor, 1=fair,
2=good, 3=very good

Csex child’s gender: 0=male, 1=female
Education mother’s education level: 0=high school or less, 1=high

school graduate
Employed mother’s employment status: 0=unemployed, 1=employed
Housize size of the household: 0=2-3 people, 1=more than 3 people
Married marriage status of the mother: 0=other,1=married
Mhlth mother’s health status at baseline: 0=very poor/poor, 1=fair,

2=good, 3=very good
Race child’s race: 0=white, 1=non-white
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4.2.1 Exploratory Analysis of MSCM Study Data

Previous analysis of MSCM study data shows that two longitudinal binary responses,

namely, mother’s stress status and child’s illness status exhibit weak serial dependen-

cies for the first 16 days (Asar, 2012). For that reason a portion of MSCM study data

for the days from 17 to 28 is presented in mmm package in R (Asar and Ilk, 2014).

For MSCM study data, first of all, the prevalence of maternal stress and that of child

illness are computed based on the days from 17 to 28, which are displayed in Figure

4.2. It is observed that the prevalence of maternal stress at the 17th day is 14%, but

then it gradually declines to 8% at the 28th day. Similarly, the prevalence of child

illness is 11% at the 17th day, after an up-down pattern, it has declined to 8% and 7%

in the last two days. On the other hand, it is seen that 55% of the mothers have higher

education, 33% of the mothers are employed, and 48% of the mothers are married.

Furthermore, at the beginning of the study, 34% and 37% of the mothers reported their

health status as fair and good, respectively. 43% of the children are female and 55%

of the children are non-white. Similarly, at the beginning of the study, the percentage

of the children, who report their health status as good and very good, are 49% and

32%, respectively. 66% of the families live in a house consists of more than 3 people.

These summary statistics are given in Table 4.12.

The association between two longitudinal binary responses, namely, mother’s stress

status and child’s illness status at days from 17 to 28 are further investigated through

odds-ratio formula (Chen et al., 2012), given as follows:

ORt =
Pr(Yt1 = 0, Yt2 = 0)Pr(Yt1 = 1, Yt2 = 1)

Pr(Yt1 = 1, Yt2 = 0)Pr(Yt1 = 0, Yt2 = 1)
, (4.21)

where Pr(Yt1, Yt2) denotes joint probability of mother’s stress and child’s illness out-

come at time t (t = 17, 18, . . . , 28). Furthermore, (1 − 0.05/(2 × 12))% Bonferroni

confidence intervals are constructed for the natural logarithm of odds-ratio at each

time t (t = 17, 18, . . . , 28) and results are then back transformed and estimated odds-

ratios with lower and upper confidence intervals are presented in Table 4.13. It is

observed that only odds-ratios at days 17, 18, and 23 are insignificant, which implies
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Table 4.12: Characteristics of some MSCM study covariates.

Variable %

Chlth
0 = very poor/poor 5
1 = fair 13
2 = good 49
3 = very good 32

Csex
0 = male 57
1 = female 43

Education
0 = high school or less 45
1 = high school graduate 55

Employed
0 = unemployed 77
1 = employed 33

Housize
0 = 2-3 people 44
1 = more than 3 people 66

Married
0 = no 52
1 = yes 48

Mhlth
0 = very poor/poor 14
1 = fair 34
2 = good 37
3 = very good 15

Race
0 = white 45
1 = non-white 55
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Figure 4.2: The prevalence of maternal stress and child illness in the MSCM study

during the days of 17-28.

that the mother’s maternal stress status is highly associated with the child’s illness

status from 17th day to 28th day. Hence, the MSCM study data can be considered as

bivariate data and joint analysis of mother’s stress status and child’s illness status may

help answer multiple questions simultaneously such as the effect of mother’s educa-

tion status or mother’s employment status on both mother’s stress status and child’s

illness status. It may also estimate the parameters with an improved efficiency due to

the information exchange between responses.

Prior to analysing the MSCM study data with the proposed model in equation 3.1,

marginal models are fitted to the data to investigate the relationship of mother’s mater-

nal status and child’s illness status with the aforementioned covariates in Table 4.11.

However, as both Figure 4.2 and Table 4.13 reveal, the prevalences of both responses

are between 7% and 17%, which implies that MSCM study is a sparse data. For that

reason, the data analysis is focused on the days 17, 20, 23, and 26.
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Table 4.13: The association between mother’s stress status and child’s illness status from days 17 to 28.

Day 17 Day 18 Day 19 Day 20 Day 21 Day 22
Stress Stress Stress Stress Stress Stress

0 1 0 1 0 1 0 1 0 1 0 1

Illness
0 128 21 128 17 135 16 125 19 135 18 136 12
1 16 2 19 3 11 5 14 9 10 4 14 5

ÔR 0.76 (0.50, 1.15) 1.19 (0.84, 1.69) 3.84 (2.80, 5.26) 4.23 (3.27, 5.48) 3.00 (2.14, 4.20) 4.05 (2.95, 5.55)
Day 23 Day 24 Day 25 Day 26 Day 27 Day 28
Stress Stress Stress Stress Stress Stress

0 1 0 1 0 1 0 1 0 1 0 1

Illness
0 136 14 133 12 133 12 139 12 143 10 143 12
1 15 2 14 8 17 5 12 4 12 2 10 2

ÔR 1.30 (0.85, 1.97) 6.33 (4.78, 8.39) 3.26 (2.39, 4.44) 3.86 (2.74, 5.43) 2.38 (1.54, 3.68 ) 2.38 (1.54, 3.68)
ÔR: Estimated odds-ratio. Numbers within brackets denote the values of lower and upper confidence intervals
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4.2.2 Data Analysis through Simpler Models

As mentioned in Chapter 1, marginal models directly specify a regression model for

the mean response to assess the effects of covariates and treat longitudinal association

parameters, which are specified through a working covariance matrix, as if they were

nuisance parameters. In this sense, first of all, MSCM study data is treated as if

it consisted of two different univariate longitudinal binary data and then univariate

marginal models (UMMs) are fitted to each longitudinal binary data, as follows:

logit(Pr(Yit = 1|Xit)) = β0 + β1chlthi + · · ·+ β8racei, (4.22)

where Yit is either stress status of mother or illness status of child for ith family

(i = 1, 2, . . . , 167) at time t (t = 17, 20, 23, 26), βp’s (p = 0, . . . , 8) are correspond-

ing regression coefficients of the covariates, and logit is the logarithm of odds. In

UMMs, βp’s are estimated through generalized estimating equations (GEEs) (Liang

and Zeger, 1986; Zeger and Liang, 1986). The association parameters related to

the association between the repeated measurements of a response are generally esti-

mated through the method of moments using Pearson residuals. The implementation

of UMMs is possible through gee library in R (Carey, 2012) with a large menu for

within-dependence structure such as AR(1), exchangeable, and unstructured and so

on.

The extension of UMMs to jointly modelling of multivariate responses with response-

specific coefficients is called as multivariate marginal models (MMMs) (Asar, 2012).

The MMM, which is fitted to the bivariate longitudinal binary data, is given as fol-

lows:

logit(Pr(Yitj = 1|Xit)) = β0 + βj1chlthi + · · ·+ βj8racei, (4.23)

where Yitj is jth response (j = 1, if response type = stress status of mother, and

j = 2, if response type = illness status of child) of ith family (i = 1, 2, . . . , 167 )

at time t (t = 17, 20, 23, 26), βjp’s ( p = 0, . . . , 8) are the corresponding response-
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specific regression coefficients of the covariates, and logit is the logarithm of odds.

In MMMs, βjp’s are also estimated through GEEs and the working correlation matrix

take all of the within, between and cross response dependencies into account. The

implementation of MMMs is possible through mmm library in R (Asar and Ilk, 2014)

with a large menu for covariance structure from independent to unstructured.

The results related to model fitting of UMMs and MMM with an exchangeable cor-

relation structure to the MSCM study data are displayed in Table 4.14. The results

of MMMs are consistent with those of UMMs in terms of the magnitude, direction,

and standard error of the estimate. Both univariate and multivariate modelling re-

sults indicate that at 95% confidence level, mother’s stress status is highly associ-

ated with child’s health status at baseline (Z value = −2.82 and −2.78, respectively)

and mother’s employment status (Z value = −2.25 and −2.22, respectively) and that

child’s illness status is highly associated with child’s health status at baseline (Z value

= −2.85 and −2.83, respectively), size of the house (Z value = −2.87 and −2.84, re-

spectively) and mother’s marriage status (Z value = 2.55 and 2.57, respectively).

The results related to multivariate modelling show that although there is not enough

evidence to say that educated or non-educated mothers are more likely to be stressed

(Z value = 1.86) at 95% confidence level, being employed make mothers less stressful

(Z value =−2.22), which may be related to the economic freedom in relation with the

improved quality of life. Interestingly, being married increases both the probability

of mother’s being stressful and child’s being ill (β̂17 = 0.08 and β̂27 = 0.81, respec-

tively) and children, who live in a house with more than 3 people, are less likely to be

ill (β̂26 = −0.87).

Lastly, although not presented in Table 4.14, the longitudinal association parameter

related to the exchangeable correlation structure ρ is estimated as 0.14 and 0.03 in

UMM, in which response is the mother’s stress status and child’s illness status, re-

spectively. It is estimated as 0.05 in MMM, which is apparently between two UMM

estimates and may be due to the information exchange between the responses.
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Table 4.14: Results of univariate and multivariate marginal model analysis for MSCM
study data.

Univariate Marginal Multivariate Marginal
Model Results Model Results

Response=Stress Estimate SE Z Estimate SE Z
Intercept -0.82 0.43 -1.92 -0.83 0.42 -1.94
chlth -0.45 0.16 -2.82 -0.45 0.16 -2.78
csex 0.12 0.28 0.42 0.10 0.28 0.36
education 0.54 0.28 1.91 0.52 0.28 1.86
employed -0.77 0.34 -2.25 -0.76 0.34 -2.22
housize -0.40 0.30 -1.34 -0.41 0.30 -1.36
married 0.08 0.29 0.28 0.08 0.29 0.29
mhlth -0.23 0.15 -1.57 -0.22 0.15 -1.51
race 0.29 0.28 1.05 0.29 0.28 1.05

Response=Ilness
Intercept -1.27 0.40 -3.17 -1.27 0.40 -3.17
chlth -0.44 0.16 -2.85 -0.44 0.16 -2.83
csex -0.01 0.28 -0.05 -0.01 0.28 -0.04
education 0.11 0.31 0.37 0.11 0.31 0.36
employed -0.31 0.34 -0.92 -0.31 0.34 -0.94
housize -0.87 0.30 -2.87 -0.86 0.30 -2.84
married 0.80 0.32 2.55 0.81 0.32 2.57
mhlth -0.07 0.18 -0.39 -0.07 0.18 -0.40
race 0.49 0.31 1.60 0.48 0.31 1.57

4.2.3 Data Analysis through the Proposed Model

Preliminary analysis reveals that while mother’s stress status is highly associated with

child’s health status at baseline and mother’s employment status, child’s illness status

is highly associated with child’s health status at baseline, mother’s marriage status,

and size of the house. Although preliminary analysis does not reveal any statisti-

cally significant effect of mother’s education status on both responses, this covariate

is also included into the model for the sake of curiosity. Hence, six different models,

whose first level includes all these five covariates (e.g., child’s health status at base-

line, mother’s education level, mother’s employment status, house size and mother’s

marriage status) as given in equation 4.24, but whose second level is differed by

modelling the elements of covariance matrix of random effects through one of these

75



covariates as given in equation 4.25, are fitted to the data.

For each model, the marginal probabilities are specified as follows:

Pr(Yit1 = 1|Xit) =
exp(Xitβ1)

1 + exp(Xitβ1)

Pr(Yit2 = 1|Xit) =
exp(Xitβ2)

1 + exp(Xitβ2)
,

(4.24)

where Yit1 is stress status of ith mother (i = 1, 2, 3, ..., 167) at day t (t = 17, 20, 23, 26

or renumbered as t = 1, 2, 3, 4), Yit2 is illness status of ith child (i = 1, 2, 3, ..., 167) at

day t (t = 17, 20, 23, 26 or renumbered as t = 1, 2, 3, 4), Xit = (1, chlthi, educationi,

employedi, housesizei,marriedi), β1 = (β10, β11, β12, β13, β14, β15), and β2 = (β20,

β21, β22, β23, β24, β25).

For each model, the conditional probabilities are specified as follows:

Pr(Yit1 = 1|Xit, bit) = Φ(∆it1(Xit) + bit)

Pr(Yit2 = 1|Xit, bit)) = Φ(∆it2(Xit) + bit),
(4.25)

where

∆it1 = Φ−1

(
exp(Xitβ1)

1 + exp(Xitβ1)

)√
1 + V ar(bit)

∆it2 = Φ−1

(
exp(Xitβ2)

1 + exp(Xitβ2)

)√
1 + V ar(bit),

(4.26)

and bit is tth element of bi = (bi1, bi2, bi3, bi4) and bi ∼ N(0,Σi), where 0 is a 4× 1

vector of zeros and Σi is a 4× 4 covariance matrix such that

Σi = T−1
i Di(T>i )−1, (4.27)

where V ar(bit) is the tth diagonal element of Σi. At this point, φi,tl elements in Ti

and σ2
it elements in Di are modelled differently for each model as given in Table 4.15.
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To illustrate, Model 1 does not allow the elements of random effects covariance ma-

trix to differ by covariates, whereas Models 2, 3, 4, 5, and 6 allow the elements of

random effects covariance matrix with first-order structure to differ by child’s health

status at baseline, education status of the mother, employment status of the mother,

house size, and marriage status of the mother, respectively.

Table 4.15: Models for the elements of random effects covariance matrix.

Model 1 φi,tl = γ0 log(σ2
it) = λ0

Model 2 φi,tl = γ0 + γ1I(|t−l|=1)chlthi log(σ2
it) = λ0 + λ1chlthi

Model 3 φi,tl = γ0 + γ1I(|t−l|=1)educationi log(σ2
it) = λ0 + λ1educationi

Model 4 φi,tl = γ0 + γ1I(|t−l|=1)employedi log(σ2
it) = λ0 + λ1employedi

Model 5 φi,tl = γ0 + γ1I(|t−l|=1)housesizei log(σ2
it) = λ0 + λ1housesizei

Model 6 φi,tl = γ0 + γ1I(|t−l|=1)marriedi log(σ2
it) = λ0 + λ1marriedi

Data cloning (DC) algorithm, which is discussed in detail in Section 2.2, is used

for parameter estimation. Six models are fitted by using jags.fit function under

dclone package in R (Sólymos, 2010). The prior distributions for each β, γ, and λ

are chosen as normal distribution with 0 mean and variance 1, 000 (Daniels and Zhao,

2003; Congdon, 2010; Lee, 2013). The number of clones used is K = 10 and the

average number of iterations for convergence is 30, 000. After convergence, 5, 000

iterations are drawn from 2 chains with a thinning value of 25. Results are presented

in Table 4.16.

In Table 4.16, the first eye-catching point is that the results related to the marginal part

of six models are the same in terms of both estimates and their standard errors. This

is expected since it is well-known that parameter estimates and their standard errors

in the marginal part of the marginalized multilevel models (MMMs) are robust to the

specification for the covariance matrix of random effects as mentioned in Section 2.1.

Although not presented here, the results (both estimates and their standard errors) in

the marginal part of Models 1−6 are also consistent with the result of the multivariate

marginal model fitted through mmm package in R (Asar and Ilk, 2014).
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Table 4.16: Maximum likelihood estimates of parameters (their standard errors) for Models 1− 6.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Regression parameters: β

Response=Stress

Intercept -0.69 (0.40) -0.70 (0.37) -0.68 (0.38) -0.67 (0.39) -0.70 (0.41) -0.67 (0.38)

chlth −0.57(0.16)† −0.56(0.15)† −0.57(0.15)† −0.57(0.16)† −0.56(0.16)† −0.57(0.15)†
education 0.45 (0.28) 0.47 (0.30) 0.43 (0.30) 0.44 (0.31) 0.45 (0.30) 0.44 (0.28)

employed −0.81(0.33)† −0.78(0.33)† −0.82(0.34)† −0.81(0.33)† −0.80(0.32)† −0.82(0.35)†
housesize -0.40 (0.30) -0.40 (0.27) -0.38 (0.29) -0.39 (0.28) -0.40 (0.28) -0.39 (0.29)

married 0.16 (0.29) 0.15 (0.27) 0.15 (0.28) 0.15 (0.28) 0.16 (0.29) 0.14 (0.28)

Response=Illness

Intercept −0.96(0.42)† −0.99(0.36)† −0.96(0.42)† −0.97(0.40)† −0.96(0.42)† −0.95(0.39)†
chlth −0.49(0.17)† −0.47(0.15)† −0.48(0.17)† −0.48(0.16)† −0.48(0.17)† −0.49(0.16)†
education 0.01 (0.30) -0.00 (0.31) -0.03 (0.30) -0.01 (0.31) -0.01 (0.33) -0.01 (0.29)

employed -0.37 (0.32) -0.39 (0.33) -0.38 (0.34) -0.38 (0.34) -0.36 (0.34) -0.39 (0.32)

housesize −0.83(0.30)† −0.82(0.28)† −0.83(0.30)† −0.82(0.31)† −0.83(0.30)† −0.83(0.29)†
married 0.89(0.30)† 0.89(0.32)† 0.88(0.29)† 0.87(0.30)† 0.88(0.31)† 0.88(0.31)†

Continued on next page
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Table 4.16 – Continued from previous page

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Generalized autoregressive parameters: γ

Intercept 1.00(0.20)† 0.21(0.37) 1.22(0.32)† 1.10(0.33)† 1.05(0.34)† 1.30(0.32)†
chlth 0.51(0.16)†
education −0.52(0.48)

employed −0.33(0.37)

housesize −0.18(0.45)

married −0.54(0.54)

Innovation parameters: λ

Intercept −2.08(0.43)† −0.26(0.76) −2.58(0.65)† −2.41(0.71)† −2.26(0.76)† −2.96(0.66)†
chlth −1.15(0.43)†
education 1.11(0.91)

employed 1.12(0.85)

housesize 0.55(0.92)

married 1.60(1.30)

† Indicates that statistically significant at 95% confidence level
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On the other hand, in Table 4.16, the results related to the elements of covariance

matrix of random effects reveal that the covariates in the single covariate models,

Models 3 − 6 are not statistically significantly associated with either dependence or

variance parameters at 95% confidence level, which all reduce to the only-intercept

model, Model 1. To illustrate, the slope parameters γ1 corresponding to single covari-

ate for dependence parameter in Models 3−6 are estimated (with a standard error) as

−0.52(0.48),−0.33(0.37),−0.18(0.45) and−0.54(0.54), respectively, which all pro-

vide Z values less than 1.96 in absolute value. Similarly, the slope parameters λ1 cor-

responding to the single covariate for variance parameter in Models 3−6 are estimated

(with a standard) error as 1.11(0.91), 1.12(0.85), 0.55(0.92) and 1.60(1.30), respec-

tively, which all provide Z values less than 1.96 in absolute value. Furthermore, the in-

tercept parameters γ0 corresponding to model for dependence parameter (and its stan-

dard error) are estimated as 1.22(0.32), 1.10(0.33), 1.05(0.34), 1.30(0.32) in Models

3 − 6, respectively, which all provide Z values greater than 1.96 in absolute value.

Similarly, the intercept parameters λ0 corresponding to model for dependence param-

eter (and its standard error) are estimated as−2.58(0.65),−2.41(0.71),−2.26(0.76),

− 2.96(0.66) in Models 3 − 6, respectively, which all provide Z values greater than

1.96 in absolute value. These results imply that Models 3 − 6 reduce to Model 1.

At this point, another eye-catching point is that the estimates of γ0 and λ0 in Model

1 are very similar to the ones in Models 3 − 6 (e.g., while γ̂0 in Model 1 is 1.00,

they are 1.22, 1.10, 1.05, 1.30 in Models 3− 6, respectively), except with a slight in-

crease in standard errors (e.g., while standard error of γ̂0 in Model 1 is 0.20, they are

0.32, 0.33, 0.34, 0.32 in Models 3 − 6, respectively). This may imply that including

additional parameters related to the covariance matrix of random effects may result

in increase in standard errors due to the limited information in the data.

On the other side, Model 2 reveals that child’s health status at baseline is significantly

associated with dependence and variance parameters (γ̂1 = 0.51, se(γ̂1) = 0.16, and

Z value =3.19; λ̂1 = −1.15, se(λ̂1) = 0.43, and Z value =−2.67). It is also worthy to

say that γ0 and λ0 are estimated as 0.21 and −0.26, respectively, which are different

than the ones in Model 1 and Models 3 − 6. This difference may be a result of rich

information exchange between the responses, since the child’s health status is the

only covariate, which is highly associated with both responses (see Table 4.16).
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As mentioned in Section 2.2, one of the limitations of DC algorithm is that it does

not provide a maximized value of the marginal likelihood in equation 3.8, which de-

prives us of performing likelihood ratio (LR) tests and doing selection between mod-

els through some information criteria such as Akaike information criteria (AIC). In

this sense, overall prediction accuracy of Models 1 − 6 are computed by pooling the

bivariate and longitudinal data together through area under the ROC curve (AUROC)

via auc package in R (Ballings and Poel, 2013). Table 4.17 presents overall AUROC

values for Models 1−6, which are based on estimated marginal and conditional prob-

abilities. Specifically, marginal probabilities for Models 1− 6 are computed through

substituting the relevant parameter estimates for that model in Table 4.16 into the

equation 4.24. On the other hand, random effects for Models 1 − 6 are predicted

by substituting the relevant parameter estimates for that model in Table 4.16 into the

equation 3.9. Afterwards, conditional probabilities for Models 1 − 6 are computed

through substituting the relevant parameter estimates for that model in Table 4.16 and

predicted random effects into the equation 4.25.

Table 4.17: Overall AUROC values for Models 1− 6.

Model
AUROC value AUROC value

based on based on
marginal probabilities conditional probabilities

Model 1 0.666 0.875
Model 2 0.666 0.949
Model 3 0.667 0.888
Model 4 0.667 0.881
Model 5 0.668 0.887
Model 6 0.666 0.879

In Table 4.17, AUROC values for Models 1 − 6 based on marginal probabilities are

naturally the same (e.g., 0.666) since the estimates of regression parameters in the

marginal part of six models are nearly the same (see Table 4.16). On the other hand,

AUROC values for Models 1− 6 based on conditional probabilities are considerably

larger than those based on marginal probabilities. For example, while AUROC value

for Model 1 based on marginal probabilities is estimated as 0.666, that based on

conditional probabilities is estimated as 0.875. In this sense, a general conclusion

is that the conditional models have much better prediction accuracies to represent
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MSCM data compared to the marginal models. Furthermore, AUROC value of Model

2 based on conditional probabilities has the largest value, which is 0.949, among six

models.

In addition to AUROC values, ratio of true prediction results, namely, ratio of total

number of true positives (TPs) and true negatives (TNs) to total number of obser-

vations is computed for Models 1 − 6 based on conditional probabilities. This is

also named as percentage of correct classification (PCC) rate, which is formulated as

follows:

PCC =
TP + TN

N
× 100, (4.28)

where TP is the total number of mothers and children, who are actually stressed and

ill, respectively, and are also predicted as stressed and ill by the model, respectively.

TN is the total number of mothers and children, who are actually not stressed and

not ill, respectively and are also predicted as not stressed and not ill by the model,

respectively. In equation 4.28, N = 167 × 4 × 2 = 1336 since the data is pooled

as mentioned above. Results in Table 4.18 also indicate that Model 2 has the largest

PCC rate, which is 80.2%.

Table 4.18: Overall percentage of correct classification (PCC) rate values for Models
1− 6 based on conditional probabilities

Model PCC Rate %

Model 1 73.5
Model 2 80.2
Model 3 73.8
Model 4 73.0
Model 5 73.7
Model 6 73.8

Table 4.19: AUROC values of Model 2 based on the conditional probabilities for each
response across different days.

Response Day=17 Day=20 Day=23 Day=26
Stress 0.957 0.961 0.945 0.975
Illness 0.901 0.928 0.959 0.961
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In this sense, based on the results in Tables 4.17 and 4.18, the prediction accuracy

of Model 2 based on conditional probabilities is further investigated through for each

response across the days. Results, which are presented in Table 4.19, are also promis-

ing that Model 2 is successful at predicting the binary responses for both response

types across the days. Specifically, AUROC values range from 0.901 to 0.975.

Based on the Wald-tests, it has been already mentioned that Models 3 − 6 reduce to

Model 1. Between Model 1 and Model 2, attention for further analysis is focused

on Model 2, since it provides higher prediction accuracies and it also provides ex-

planations related to the parameters of random effects covariance matrix with two

additional parameters compared to Model 1 (Model 1 is a nested model of Model 2).

Within the column named Model 2 in Table 4.16, the first two upper rows give the

regression parameter estimates and their standard errors for the first level of Model 2

for each response, i.e., mother’s stress status and child’s illness status, respectively.

The estimated first level of Model 2 in terms of logit scale is given for mother’s stress

status and child’s illness status, as follows:

logit(Pr(Yit1 = 1)) = −0.70− 0.56chlthi + 0.47educationi − 0.78employedi

− 0.40housesizei + 0.15marriedi

logit(Pr(Yit2 = 1)) = −0.99− 0.47chlthi − 0.39employedi − 0.82housesizei

+ 0.89marriedi.

(4.29)

Population-averaged results based on the first level of Model 2 for mother’s stress sta-

tus reveal that mother’s stress status is highly associated with child’s health status at

baseline (β̂11 = −0.56, se(β̂11) = 0.15, and Z value =−3.73) and mother’s employ-

ment status (β̂14 = −0.78, se(β̂14) = 0.33, and Z value =−2.36) at 95% confidence

level. Results indicate that the probability of mother’s being stressed decreases as

child’s health status at baseline moves from poor to very good and that the odds of

being stressed is exp(0.78) = 2.18 times higher for unemployed mothers than em-

ployed mothers.

Population-averaged results based on the first level of Model 2 for child’s illness status
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also reveal that child’s illness status is highly associated with child’s health status at

baseline (β̂21 = −0.47, se(β̂21) = 0.15, and Z value =−3.13), size of the house

(β̂24 = −0.82, se(β̂24) = 0.28, and Z value =−2.93), and mother’s marriage status

(β̂25 = 0.89, se(β̂25) = 0.32, and Z value=2.78) at 95% confidence level. Results

indicate that the probability of child’s being ill decreases as child’s health status at

baseline moves from poor to very good, that the odds of child’s being ill is higher for

house with size of 2− 3 people than house with size of more than 3 people, and that

the odds of child’s being ill is exp(0.89) = 2.44 times higher for married mothers

than unmarried mothers.

The third and last set of rows within the column named Model 2 in Table 4.16 give

the estimates of the regression parameters and their standard errors for the serial de-

pendence and variance parameters in the second level of Model 2, respectively. The

estimated serial dependence and variance parameters in the second level of Model 2

are given as follows:

φ̂i,tl = 0.21I(|t−l|=1) + 0.51chlthiI(|t−l|=1)

log(σ̂2
it) = −0.26− 1.15chlthi.

(4.30)

The estimate of slope regression coefficients related to the dependence and variance

parameters are statistically significant at 95% confidence level (γ̂1 = 0.51, se(γ̂1) =

0.16, and Z value=3.19; λ̂1 = −1.15, se(λ̂1) = 0.43, and Z value=−2.67). This

implies that the serial dependence between two consecutive random effect is positive

and degree of dependence increases as child’s health status at baseline moves from

poor to very good (φ̂tl = (0.21 + (0.51 × 0)) = 0.21 for poor status, φ̂tl = (0.21 +

(0.51 × 1)) = 0.72 for fair status, φ̂tl = (0.21 + (0.51× 2)) = 1.23 for good status,

and φ̂tl = (0.21 + (0.51 × 3)) = 1.74 for very good status, respectively, for |t-l|=1

and see Table 4.11 for more information on child’s health status at baseline variable,

e.g., it is an ordinal variable). A positively estimated γ1 also indicates that if the

child’s health status at baseline is poor or fair, the mothers are less likely to report

similar answers to their stress status across days. However, when the child’s health

status at baseline is good or very good, the mothers are more likely to report similar

answers to their stress status across days. This also have a parallel interpretation in

84



the predicting the child’s illness status. If the child’s health status at baseline is poor

or fair, the children are more likely to report dissimilar answers to their illness status

across days. However, if the child’s health status at baseline is good or very good,

then they report similar answers to their illness status across days. On the other hand,

the variance decreases as the health status of a child moves from poor to very good

σ̂2
it = exp(−0.26−(1.15×0)) = 0.77 for poor status, σ̂2

it = exp(−0.26−(1.15×1)) =

0.25 for fair status, σ̂2
it = exp(−0.26 − (1.15 × 2)) = 0.08 for good status, and

σ̂2
it = exp(−0.26− (1.15× 3)) = 0.02 for very good status). A negatively estimated

λ1 also indicates that heterogeneity among the mothers, whose child’s health status at

baseline is good or less than good is high, whereas the heterogeneity is less among the

mothers, whose child’s health status at baseline is very good. An overall result is that

the heterogeneity within the responses of a subject and the heterogeneity between the

responses of subjects are ruled by the child’s health status at baseline.

These arguments can be justified through plotting the marginal and conditional proba-

bilities of interesting families. In this sense, among the families, whose child’s health

status at baseline is "poor", 2 families are selected based on the criteria that other

covariates are also the same. As a consequence of this selection criteria, families with

ID=142 and ID=150 are drawn. In these families, child’s health status at baseline is

poor, mothers are educated, employed, not married, and the size of the house is less

than or equal to 3 people (see Table 4.11 for variable coding, e.g, child’s poor health

status at baseline=0, educated mother=1, employed mother=1, unmarried mother=0,

small house size=0). On the other hand, among the families, whose child’s health sta-

tus at baseline is "very good", 2 families are selected based on the criteria that other

covariates are also the same. As a consequence of this selection criteria, families

with ID=7 and ID=14 are drawn. In these families, child’s health status at baseline

is very good, mothers are educated, employed, not married, and the size of the house

is greater than 3 people (see Table 4.11 for variable coding, e.g, child’s good health

status at baseline=3, educated mother=1, employed mother=1, unmarried mother=0,

large house size=1). Then, for these four families, marginal probabilities based on the

first level of Model 2 and conditional probabilities based on the second level of Model

2 after predicting the random effects (equation 3.9) are computed for each response

across days 17, 20, 23, and 26. The marginal and conditional probabilities for families
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with ID=142 and ID=150 are given in Figure 4.3, while those for families with ID=7

and ID=14 are presented in 4.4. To illustrate, marginal probability for each response

(e.g., mother’s stress status and child’s illness status) for families with ID=142 and

ID=150 (e.g., i = 142 and i = 150, respectively) based on the first level of Model 2

is computed as follows:

P̂ r(Yit1 = 1) =
exp(−0.70− (0.56× 0) + (0.47× 1)− (0.78× 1)− (0.40× 0) + (0.15× 0))

1 + exp(−0.70− (0.56× 0) + (0.47× 1)− (0.78× 1)− (0.40× 0) + (0.15× 0))

= 0.27

P̂ r(Yit2 = 1) =
exp(−0.99− (0.47× 0)− (0.00× 1)− (0.39× 1)− (0.82× 0) + (0.89× 0))

1 + exp(−0.99− (0.47× 0)− (0.00× 1)− (0.39× 1)− (0.82× 1) + (0.89× 0))

= 0.20

(4.31)

In Figures 4.3 and 4.4, the responses of mothers and children at days 17, 20, 23,

and 26 are marked with 0 if the response is the absence of stress for the mother and

the absence of illness for the child, and those are marked with 1 if the response is

the presence of stress for the mother and the presence of illness for the child. From

these figures, it is clear that conditional probabilities are much more successful in

capturing the variation between and within the responses of the subjects. Moreover,

these figures illustrate the larger variability among families with "poor" child health

status at baseline (Figure 4.3) compared to families with "very good" child health

status (Figure 4.4). Similarly, the variability increases across time within each family

is higher for the families with "poor" child health status at baseline (Figure 4.3).
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Figure 4.3: Plot of marginal and conditional probabilities of mother’s being stressed and child’s being ill for families with ID=142 and

ID=150 at days 17, 20, 23, and 26.
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Figure 4.4: Plot of marginal and conditional probabilities of mother’s being stressed and child’s being ill for families with ID=7 and ID=14

at days 17, 20, 23, and 26.
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CHAPTER 5

CONCLUSION AND FUTURE STUDIES

In a regression model developed to analyse multivariate longitudinal data, there exist

three phenomenons to be embedded in the model structure. These building blocks are

i) Marginal mean: the association between the mean of longitudinal responses and

covariates, ii) Within-subject association: the association within the repeated mea-

surements of a subject over time for a given response, and iii) Multivariate response

association: the association between the multiple responses of a subject at a given

time point. Drawing accurate inferences from the analysis of multivariate longitu-

dinal data is possible when the model developed takes within-subject association as

well as multivariate response association into account.

Within the regression model classes developed for the analysis of multivariate lon-

gitudinal data, marginalized multilevel models (MMMs) deserve attention since they

build separate regression models for marginal mean of the longitudinal responses

and for longitudinal associations to combine the strengths of marginal and condi-

tional models, which are other two well-known regression model classes in the liter-

ature. Specifically, in MMMs, the model for the marginal mean, i.e., marginal mean

model, builds the relationship between the longitudinal responses and covariates, and

the model for longitudinal association(s), i.e., conditional mean model, restructures

the mean of longitudinal responses conditional on either random effects and/or a

Markov structure. As a consequence of this model building structure, MMMs take the

population-averaged interpretation and robustness of marginal regression parameters

from marginal models, while they take likelihood-based inference capabilities and

flexible specifications for longitudinal associations from conditional models. Since
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the link function assumed for each level of MMM and the distributional assumption

imposed on the random effects provide a rich class for MMMs, there exist a vari-

ety of MMMs for analysis of multivariate longitudinal binary data in the literature.

In this sense, Ilk and Daniels (2007), Lee et al. (2009), Asar (2012), and Iddi and

Molenberghs (2012) proposed different MMMs for multivariate longitudinal binary

data, where each model had different model building structure (e.g., two-level or

three-level, and logit or probit link function was used for all levels or different link

functions were used for each level), represented longitudinal associations in a differ-

ent point of view (e.g., either random effects or history of responses were included),

used different parameter estimation algorithms (e.g., maximum likelihood estima-

tion (MLE) or Bayesian inference was used) and implemented their models through

different software (e.g., R, Fortran, or SAS). Further comparisons are available in

Section 2.1.

In this thesis study, we propose a new marginalized multilevel model (MMM) for

bivariate longitudinal binary data, which consists of two different levels, where each

level is a different regression model. In the proposed model, the first level associates

the marginal mean of responses with covariates through a logistic regression model

to keep odds-ratio interpretation of the marginal regression parameters. The second

level restructures the mean of responses conditional on subject/time specific random

intercepts through a probit regression. For each subject, time-specific random inter-

cepts, i.e., subject/time specific random intercepts, are included into the model to take

into account the random-variation within the responses of the same subject as well as

between the responses of different subjects. For each subject, time-specific random

intercepts are assumed to be correlated, which results in multiple correlated random

effects. Then multivariate normal distribution is imposed on each vector of random

intercepts, i.e., multiple correlated random effects for each subject, so that the covari-

ance matrix of vector of random effects are assumed to represent the within-subject

association.

The reason for restructuring the conditional mean through probit link function is

to utilize the good collaboration of probit link with normal distribution. This ap-

proach provides a closed-form solution for subject/time/response specific intercept

terms, which connects the second level to the first level of the model. Hence, estima-
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tion of subject/time/response specific intercept term through numerical methods are

avoided, which is a considerable gain in terms of computational burden. From this

point of view, the proposed model can be also considered as a logistic-probit-normal

marginalized multilevel model, where logistic and probit refer to the link functions

used in the first and second levels of the model, respectively, and normal refers to the

normal distribution assumed for random effects.

The literature review reveals that only a subject-specific random intercept is included

into most of the models and multiple correlated random effects are usually avoided

since multiple correlated random effects are accompanied by a high-dimensional ran-

dom effects covariance matrix. MMMs with multiple correlated random effects,

which take the likelihood based inference capabilities from generalized linear mixed

models (GLMMs), may experience computational problems (e.g., numerical evalua-

tion of high-dimensional integrals, numerical optimization of the marginal likelihood,

which may include high-dimensional matrix inversion and differentiation computa-

tions) and statistical problems (e.g., inflation in the number of parameters to be es-

timated due to high-dimensionality of random effects covariance matrix increases

complexity of the model, which may result in identifiability problems).

In this thesis study, to handle possible computational and statistical problems asso-

ciated with high-dimensionality of the random effects covariance matrix, it is fur-

thered decomposed into its dependence and variance components through modified

Cholesky decomposition method. Then unconstrained version of resulting parameters

(e.g., natural logarithm of variance parameters) are modelled in terms of covariates

with low-dimensional regression parameters. Consequently, this approach allows i)

flexibility for the structure of random effects covariance matrix (e.g., structure is not

restricted to AR(1), exchangeable, etc.), ii) better explanations related to the elements

of random effects covariance matrix, and iii) a reduction in the number of parameters

to be estimated in random effects covariance matrix. The latter statement provides a

considerable advantage for the implementation of the proposed model since there is a

reduction in the number of parameters, which need to be jointly optimized. Further-

more, it avoids the proposed model from possible identifiability problems since the

reduction in the number of parameters to be estimated are the parameters of random

effects covariance matrix so that the complexity of the model does not exceed the in-

91



formation stored in the data. In this sense, to the best of our knowledge, this is the first

time that the modified Cholesky decomposition method has been used within multi-

variate longitudinal binary data as well as MMMs framework to deal with computa-

tional and statistical problems associated with covariance matrix of multiple random

effects.

In the proposed model, the multivariate response association are not represented

through random effects. In fact, it is also shown that it internally exists in the model

through a Taylor series-based approximation to the marginal correlation.

Like any GLMMs, in MMMs for multivariate longitudinal binary data with random

effects, parameter estimation is based on the marginal likelihood of data, which in-

volves the integration of conditional distribution of responses over the distribution of

random effects. However, due to the non-conjugacy of conditional probability func-

tion (e.g., a probability density function for binary response) with the distribution of

random effects (e.g., a multivariate normal distribution for continuous random vari-

ables), the integral is not tractable and, in turn, it does not provide a closed-form

solution for the marginal likelihood. The dimension of integral, which is high, further

complicates the computations. For that reason, there is a need for an approximation

method or for a numerical method for high-dimensional integration. On the other

hand, even if the marginal likelihood function is numerically evaluated, due to the

probit link function used in conditional distribution of responses, the optimization of

the marginal likelihood does not provide a closed-form solution for the parameters.

For that reason, there is also a need for numerical optimization of the marginal like-

lihood, where the algorithm may involve computations such as taking the inverse of

high-dimensional covariance matrix and differentiation of the covariance matrix with

respect to unknown parameters.

In this thesis study, to avoid numerical evaluation of the high-dimensional integral,

computation of high-dimensional covariance matrix inversion and differentiation of

the covariance matrix with respect to unknown parameters, and numerical optimiza-

tion of the marginal likelihood, we use data cloning (DC) computational algorithm

(Lele et al., 2007; Lele, 2010) to compute the maximum likelihood estimates (MLEs)

of the parameters in the proposed model and their standard errors. In this sense, to the
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best of our knowledge, this is the first time that DC computational algorithm has been

used for multivariate longitudinal binary data as well as within MMMs framework

for parameter estimation.

It is also shown that both population-averaged and subject-specific interpretations

through estimating the random effects via Emprical Bayes (EB) estimation are pos-

sible within MMMs, which is an advantage over marginal models (e.g., provide

only population-averaged interpretations) and conditional models (e.g., provide only

subject-specific interpretations).

In this thesis study, simulation studies, which are carried out to assess the validity

of the proposed model under different scenarios, show that the model performs well

in longitudinal data with medium length series. The marginal regression parameters

are estimated with ignorable bias and small mean squared errors (MSEs). The pa-

rameters related to the covariance matrix of random effects are estimated with larger

biases and MSEs compared to the marginal regression parameters, but they are still

at acceptable level. It is also seen that the regression parameters corresponding to

the variance terms are estimated with larger MSEs compared to those corresponding

to the dependence terms, which may be resulted from the restriction in the parameter

space of variance terms compared to that of covariance parameters. Simulation results

on misspecification of random effects covariance matrix show that while marginal re-

gression are not generally affected by misspecification, the parameters related to the

covariance matrix of random effects are estimated with considerable bias and moder-

ate to considerable MSEs.

The extension of our proposed model to trivariate or higher order longitudinal data

is very straightforward since the dimension of random effects covariance matrix de-

pends only on the number of repeated measurements, not on the number of multiple

responses. In fact, in our opinion, the performance of the parameter estimates related

to the random effects covariance matrix would also be improved since information

for random effects would increase as the number of responses increases.

In this thesis study, while modelling the dependence and variance parameters through

covariates, we suggest parsimony in regression structures (e.g., using only one co-

variate). Otherwise, there would be identifiability and convergence problems, which
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can be identified through diagnostic measures in dclone package in R.

In case of convergence problems in longitudinal data with long length series, using

a simple structure is suggested to model dependence and variance parameters, which

still provides an advantage in the number of parameters to be estimated related to

random effects covariance matrix with a loss in interpretation. At this point, we feel

responsible to say that in most of studies, which have proposed new MMMs with sub-

ject/time or subject/time/response specific random intercepts, although performance

measure results such as bias and MSE related to the marginal regression parameters

have been presented in the simulation studies, any result related to the random effects

covariance matrix parameters has not been presented, which lead us to be in gray

zone.

In simulation studies, we also consider the scenarios with unequally spaced & equal

number of time points, and equally spaced & unequal number of time points. How-

ever, we have not designed a simulation scenario, which included longitudinal data

with unequally spaced & unequal number of time points. Assessing the performance

of the proposed model under this scenario would be a good extension since the lit-

erature have not paid enough attention to this case. However, it requires substantial

amount of change in the code, and hence it is left as a future work.

In simulation studies, the estimated odds-ratio between bivariate binary responses is

high and the value of odds-ratio increases as time increases. Assessing the perfor-

mance of the model when the odds-ratio between bivariate binary responses is 1 or

around 1 would be a good future research study. Under this condition, it is expected

that the estimates of marginal regression parameters would not be affected by week

association of bivariate binary responses, whereas the estimates of the parameters re-

lated to the dependence terms in random effects covariance matrix would turn into

insignificant, which leads estimates close to 0 in the off-diagonal entries of random

effects covariance matrix.

To the best of our knowledge, the literature on reparametrization of covariance matrix

and modelling the resulting variance and dependence parameters in terms of low-

dimensional parameters are restricted to the covariates, which are a subset of the

covariates that are associated with response means. However, this assumption can be
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relaxed when the data motivates that there may exist covariates, which are associated

with variance and dependence parameters of the covariance matrix, but not associated

with response means. Such a work would be a novel example for the literature on

covariance matrix modelling.

In this thesis study, the proposed model is illustrated through Mother’s Stress and

Children’s Morbidity (MSCM) Study data, which also provides interesting results.

The data analysis shows that the estimates of marginal regression parameters are ro-

bust to the model specification for the second level, which is an advantage over con-

ditional models. It also shows that a 4 × 4 random effects covariance matrix, which

includes 4×(4+1)
2

= 10 parameters, can also be modelled parsimoniously with 2 de-

pendence and 2 covariance parameters. This provides better explanations related to

the parameters of random effects covariance matrix (e.g., source of heterogeneity is

explained in terms of child’s health status at baseline) and avoided possible identifi-

ability problems (e.g., it is highly possible that a model with 10 parameters related

to the random effects covariance matrix would experience identifiability problems

since the complexity of the model may exceed the information in the data). Along

with population-based interpretations, subject-specific interpretations enable to iden-

tify behaviour characteristics of families. Since one of the main limitations of DC

computational algorithm is that it does not provide a maximized value of the marginal

likelihood, it deprives us of doing model selection through Akaike information crite-

ria (AIC) and leads us to use accuracy measures such as area under the ROC curve

(AUROC). We leave adapting an AIC type of criteria through DC computational al-

gorithm as a future work since developing such an information criteria is an on-going

work for several authors.

We hope this thesis study would be beneficial for statisticians, who work on the topics

such as model developing for correlated binary data, random effects models, multiple

correlated random effects, and covariance matrix decomposition. We also hope this

thesis study would be beneficial for scientists in other fields such as medical doctors

and sociologists, who collect longitudinal data and wish to do both population-based

and subject-specific interpretations.

In the name of future studies, it is worthy to say that recent literature focuses on
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joint modelling of longitudinal data either with uniform responses (e.g., responses

of the same type) or mixed responses through random effects, where several exam-

ples are given in Section 2.2. Within the marginalized multilevel models framework,

Lee et al. (2013) proposed a marginalized multilevel model for bivariate longitudinal

ordinal data with two levels with logit link. Subject/time/response specific random

intercepts were included into the last level of the model to accommodate the serial

correlation within responses of a subject over time and the correlation between dif-

ferent responses of a subject at a given time. They further reparametrized the cor-

relation matrix in terms of lag-1 correlations and partial autocorrelations, and then

they modelled Fisher’s Z-transformation of these parameters in terms of covariates.

Their model can be modified by assuming subject/time specific random intercepts

with a probit link in the second level of their model to obtain a closed-form solution

for ∆itj’s and then the covariance matrix of the random effects can be further de-

composed by modified Cholesky decomposition for a flexible correlation structure.

Similarly, Efendi et al. (2013) proposed a marginalized multilevel model for bivariate

longitudinal time-to-event data, where subject/response specific random intercepts

were included into the model to induce the joint modelling of bivariate responses.

During the implementation, however, they assumed only a subject-specific random

intercept, which was shared by time and response. Their model also can be extended

by assuming subject/time specific random intercepts, where the covariance matrix

of the random effects is decomposed by modified Cholesky decomposition. On the

other hand, Iddi and Molenberghs (2012) proposed a marginalized multilevel model

for joint modelling of longitudinal continuous and binary outcomes, where subjec-

t/response specific random intercepts were included into the model to induce the joint

modelling of responses. Following Iddi and Molenberghs (2012), Njagi et al. (2013)

proposed a class of marginalized multilevel models for joint modelling of longitu-

dinal time-to-event response with different type of longitudinal responses such as

continuous, binary, and count responses. The mixed models in Iddi and Molenberghs

(2012) and Njagi et al. (2013) can also be extended by assuming subject/time spe-

cific random intercepts, which may be scaled by a response-specific parameter as in

Ilk and Daniels (2007) and Asar (2012), and the covariance matrix of the random ef-

fects can be decomposed by modified Cholesky decomposition. Recently, Lee et al.

(2014) is the first work who has issued the non-ignorable missing longitudinal re-
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sponses within the marginalized multilevel models for univariate longitudinal binary

data through random effects. Hence, a natural extension of the proposed model in

equation 3.1 and aforementioned models can be the adaptation of them to the missing

responses and/or covariates.
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APPENDIX A

DETAILED CALCULATIONS OF ∆itj

In probability theory, it is known that any conditional expectation can be written

in terms of marginal expectation. This implies that the integration of conditional

probability Pr(Yitj = 1|Xit, bit) over the distribution of random effects results in

marginal probability Pr(Yitj = 1|Xit) for random effects models for longitudinal

binary data as given follows:

E(Yitj|Xit) =

∫
E(Yitj|Xit, bit)f(bit)dbit

⇒ Pr(Yitj = 1|Xit) =

∫
Pr(Yit = 1|Xit, bit)f(bit)dbit,

(A.1)

where f(bit) is a univariate normal distribution with mean 0 and variance var(bit).

Substituting marginal and conditional probabilities in equation 3.1, which are the first

and second levels of the proposed model, respectively, into equation A.1 gives the

following expression:

exp(Xitβj)

1 + exp(Xitβj)
=

∫ +∞

−∞
Φ(∆itj(Xit) + bit)f(bit)dbit. (A.2)

Since bit ∼ N(0, V ar(bit)), it is possible to write bit =
√
V ar(bit)zi, where zi ∼

N(0, 1). Following Griswold (2005), define a Wi ∼ N(0, 1), which is Wi ⊥ zi,

where the symbol ⊥ denotes independence. Then it is easy to show that

Wi√
V ar(bit)

)− zi ∼ N(0, 1 + V ar(bit)
−1). (A.3)
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The right-hand side of equation A.2 can be rewritten as follows:

∫ +∞

−∞
Φ (∆itj(Xit) + bit) f(bit)dbit =

∫ +∞

−∞
Φ
(

∆itj(Xit) +
√
V ar(bit)zi

)
φ(zi)dzi

=

∫ +∞

−∞
Pr
(
Wi ≤ ∆itj(Xit) +

√
V ar(bit)zi

)
φ(zi)dzi

=

∫ +∞

−∞
Pr

 Wi√
V ar(bit)

− zi√
1 + V ar(bit)−1

≤

∆itj(Xit)√
V ar(bit)√

1 + V ar(bit)−1

φ(zi)dzi

=

∫ +∞

−∞
Φ

(
∆itj(Xit)√
1 + V ar(bit)

)
φ(zi)dzi

= Φ

(
∆itj(Xit)√
1 + V ar(bit)

)
.

Then equation A.2 can be rewritten as follows:

exp(Xitβj)

1 + exp(Xitβj)
= Φ

(
∆itj(Xit)√
1 + V ar(bit)

)
. (A.4)

Solving equation A.4 for ∆itj provides a closed-form solution for it such that

∆itj = Φ−1

(
exp(Xitβj)

1 + exp(Xitβj)
)

)√
1 + V ar(bit), (A.5)

where ∆itj is an explicit function of both marginal regression parameters and variance

of random effects.
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APPENDIX B

TAYLOR SERIES-BASED DERIVATION OF MARGINAL

CORRELATION FUNCTION

The formula for the correlation between Yitj and Yit′j′ , Corr (Yitj, Yit′j′) is given as

follows:

Corr (Yitj, Yit′j′) =
Cov (Yitj, Yit′j′)√

V ar(Yitj)
√
V ar(Yit′j′)

∀i, t and j, (B.1)

where Cov (Yitj, Yit′j′) is covariance between Yitj and Yit′j′ and V ar(Yitj) is variance

of Yitj .

For any model including random effects, the formulation for Corr (Yitj, Yit′j′) in

equation B.1 relies on conditional expectation, variance, and covariance formulas.

The marginal covariance Cov (Yitj, Yit′j′) can be formulated in terms of conditional

expectation and covariance as follows (Rudary, 2009):

Cov (Yitj , Yit′j′) = E (Cov (Yitj , Yit′j′ |bit, bit′)) + Cov (E (Yitj |bit) , E (Yit′j′ |bit′)) , (B.2)

where E (Cov (Yitj, Yit′j′ |bit, bit′)) = E (E[(Yitj − µitj)× (Yit′j′ − µit′j′)]|bit, bit′) =

E (E (Yitj − µitj)× E (Yit′j′ − µit′j′)) = 0 since Yitj|bit and Yit′j′ |bit′ are indepen-

dent of each other, which is also known as the conditional independence assumption,

and Cov (E (Yitj|bit) , E (Yit′j′|bit′)) = Cov (µitj, µit′j′). Then Cov (Yitj, Yit′j′) in

equation B.2 can be rewritten as follows:
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Cov (Yitj, Yit′j′) = Cov (µitj, µit′j′) . (B.3)

The marginal variance V ar(Yitj) can be formulated in terms of conditional expecta-

tion and variance as follows:

V ar(Yitj) = E (V ar (Yitj|bit)) + V ar (E (Yitj|bit)) , (B.4)

where E (V ar (Yitj|bit)) = E (µitj(1− µitj)) and V ar (E (Yitj|bit)) = V ar (µitj).

Then V ar(Yitj) in equation B.4 can be rewritten as follows:

V ar(Yitj) = E (µitj(1− µitj)) + V ar (µitj) , (B.5)

Then Corr (Yitj, Yit′j′) in equation B.1 can be rewritten based on equations B.3 and

B.5 as follows:

Corr (Yitj, Yit′j′) =

Cov (µitj, µit′j′)√
E (µitj(1− µitj)) + V ar (µitj)

√
E (µit′j′(1− µit′j′)) + V ar (µit′j′)

.

Taylor Series-Based Approximations for E(µitj(1− µitj)), V ar(µitj) and

Cov(µitj, µit′j′)

The equation B.6 requires a closed-form solution for E(µitj(1 − µitj)), V ar(µitj)

and Cov(µitj, µit′j′). However, unless the link function in µitj is an identity function,

a closed-form solution for these expressions cannot be obtained (e.g., for binary re-

sponses). In this sense, following Goldstein and Rasbash (1996), Vangeneugden et al.

(2010), and Vangeneugden et al. (2011), these expressions can be approximated by a

first-order Taylor series expansion around bit = 0.
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First-order Taylor series expansions ofE(µitj(1−µitj)) and V ar(µitj) around bit = 0

give the following approximations, respectively:

E(µitj(1− µitj)) ' (µitj(1− µitj)|bit=0) and (B.6)

V ar(µitj) '
(
∂µitj
∂bit
|bit=0

)2

V ar(bit). (B.7)

In a similar fashion, a first-order Taylor series expansion for Cov(µitj, µit′j′) around

bit = 0 and bit′ = 0 gives the following approximation:

Cov (Yitj, Yit′j′) '
(
∂µitj
∂bit
|bit=0

)
Cov (bit, bit′)

(
∂µit′j′

∂bit′
|bit′=0

)
. (B.8)

For the proposed model in equation 3.1, µitj = Pr(Yitj = 1|Xit, bit) = Φ(∆itj(Xit)+

bit). Then equations B.6, B.7 and B.8 can be rearranged, respectively, as follows:

E(µitj(1− µitj)) ' (µitj(1− µitj)|bit=0)

= Φ(∆itj(Xit))(1− Φ(∆itj(Xit))),
(B.9)

V ar(µitj) '
(
∂µitj
∂bit
|bit=0

)2

= (φ(∆itj(Xit)))
2V ar(bit), and

(B.10)

Cov (Yitj, Yit′j′) '
(
∂µitj
∂bit
|bit=0

)
Cov (bit, bit′)

(
∂µit′j′

∂bit′
|bit′=0

)
= φ(∆itj(Xit))Cov (bit, bit′)φ(∆it′j′(Xit)).

(B.11)

where φ(∆itj(Xit)) =
∂µitj
∂bit
|bit=0, φ(∆it′j′(Xit)) =

∂µit′j′

∂bit′
|bit′=0, and V ar(bit) and

Cov(bit, bit′) are the corresponding variance and covariance components in Σi.
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For the proposed model in equation 3.1, Corr(Yitj, Yit′j′) can be expressed through

equations B.9-B.11 as follows:

Corr (Yitj, Yit′j′) '
φ(∆itj(Xit))Cov (bit, bit′)φ(∆it′j′(Xit))√

vitj + (φ(∆itj(Xit)))2V ar(bit))
√
vit′j′ + (φ(∆it′j′(Xit)))2V ar(bit′))

, (B.12)

∀ i, t and j, where vitj = Φ(∆itj(Xit))(1−Φ(∆itj(Xit))) and vit′j′ = Φ(∆it′j′(Xit))

(1− Φ(∆it′j′(Xit))).
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APPENDIX C

R CODE FOR DATA CLONING

The R code for model fitting and prediction of random effects under Scenario 1 is as

follows:

#############Model Fitting with Data Cloning####################

#Define the Data

#n=number of total subjects

#nt=number of total time points

#nr=number of responses

#np=number of regression parameters for each response

#(including intercept)

#resmat=a n*nt*nr by 1 response vector.

#covmat=a n*nt*nr by np covariate matrix to associate

#with responses

#Xg=a n*nt*nr by 2 covariate matrix to associate with

#dependence parameters

#Xl=a n*nt*nr by 2 covariate matrix to associate with

#variance parameters

#beta1int=a np by 1 vector of initial values for

#regression parameters

#of first response obtained from gee analysis

#beta2int=a np by 1 vector of initial values for

#regression parameters

#of second response obtained from gee analysis

data<-list("respmat"=resmat,"covariatemat"=covmat,

"Xgamma"=Xg, "Xlamda"=Xl,"betait1"=beta1int,

"betait2"=beta2int)
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#Prepare the data for data cloning

#id=rep(rep(seq(1:n),each=nt),nr) #index for subject

#time=rep(seq(1:nt),n*nr) #index for time

#rind=rep(1:nr,each=n*nt) #index for response type

mydata<-list(Y=dcdim(as.matrix(data[[1]])),X=data[[2]],

Xg=data[[3]],Xl=data[[4]],nt=length(unique(time)),nr=2,

n=length(unique(id)),np=dim(data[[2]])[2],

ntot=dim(data[[2]])[1],id=id,time=time,rind=rind,K=1)

#Clone the data

clmydata<-dclone(mydata, n.clones=10, multiply="K",

unchanged=c("nt","nr","n","np","ntot","id","time","rind") )

#Prepare the initials for parameters

inits<-function() {list(beta=cbind(mvrnorm(1,as.matrix(data[[5]],

np,1),diag(np)),mvrnorm(1,as.matrix(data[[6]],np,1),diag(np))),

gamma=c(runif(1,0,0.5),runif(1,0,1.5)),lambda=c(runif(1,0,0.5),

runif(1,0,1.5)))}

#Define the Model

mymodel<-function(){

#define the marginal part

for (k in 1:K) {

for (j in 1:ntot) {

Y[j,k] ~ dbern(cp[j,k])

cp[j,k]<-min(max(cp1[j,k],0.0000001),0.9999999)

cp1[j,k]<- phi(delta[j,k]+ b[id[j],time[j],k])

delta[j,k]<-

qnorm(mp[j,k],0,1)*sqrt(1+bigE[id[j],time[j],time[j]])

logit(mp[j,k])<-inprod(X[j,],beta[,rind[j]])

} # j

} # k

116



#define random effects

for (k in 1:K) {

for (i in 1:n) {

b[i,1:nt,k]~dmnorm(mu[1:nt], InvbigE[i,1:nt,1:nt])

}#i

}#k

#define the mean vector for random effects

for ( t in 1:nt) {

mu[t]<-0

}#t

#define the inverse of the subject-specific

#random effects covariance matrix

for (i in 1:n) {

InvbigE[i,1:nt,1:nt]<-

t(bigT[i,1:nt,1:nt])%*%invbigD[i,1:nt,1:nt]%*%bigT[i,1:nt,1:nt]

bigE[i,1:nt,1:nt]<-inverse(InvbigE[i,1:nt,1:nt])

}#i

#define an identity matrix

for ( t in 1:nt) {

for ( tt in 1:nt) {

Imat[t,tt]<-equals(t,tt)

}#tt

}#t

#define unit-lower-triangular matrix T

#define inverse of the diagonal matrix D

for ( i in 1:n) {

for ( t in 1:nt) {

for ( tt in 1:nt) {

abigT[i,t,tt]<-

equals(t, tt+1)*inprod(-Xg[t+(nt*(i-1)),],gamma[])

invbigD[i,t,tt]<-

equals(t,tt)*(1/exp(inprod(Xl[t+(nt*(i-1)),],lambda[])))
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} # tt

} # t

bigT[i,1:nt,1:nt]<-abigT[i,1:nt,1:nt]+Imat[1:nt,1:nt]

} # i

#define priors for beta

for ( j in 1:nr) {

for ( p in 1:np) {

beta[p,j]~dnorm(0,0.001)

}#j

}#p

#define priors for gamma and lambda

for ( ii in 1:2) {

gamma[ii]~ dnorm(0,0.001)

lambda[ii]~dnorm(0,0.001)

}#ii

}#mymodel

##jags.fit##

myfit<-jags.fit(clmydata,c("beta","gamma","lambda"),

mymodel,inits,n.chains=2,n.update=30000,n.iter=5000,thin=25)

#Prediction of random effects

pmydata<-list(Y=as.vector(data[[1]]),X=data[[2]],Xg=data[[3]],

Xl=data[[4]],nt=length(unique(time)),nr=2,n=length(unique(id)),

np=dim(data[[2]])[2],ntot=dim(data[[2]])[1],id=id,time=time,

rind=rind,param=as.vector(coef(myfit)))

#Define the Model

mymodelpred<-function(){
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#define the marginal part

for (j in 1:ntot) {

Y[j] ~ dbern(cp[j])

cp[j]<-min(max(cp1[j],0.0000001),0.9999999)

cp1[j]<- phi(delta[j]+ b[id[j],time[j]])

delta[j]<-

qnorm(mp[j],0,1)*sqrt(1 + bigE[id[j],time[j],time[j]])

logit(mp[j])<-inprod(X[j,],beta[,rind[j]])

} # j

#define random effects

for (i in 1:n) {

b[i,1:nt]~dmnorm(mu[1:nt], InvbigE[i,1:nt,1:nt])

}#i

#define the mean vector for random effects

for ( t in 1:nt) {

mu[t]<-0

}#t

#define the inverse of the subject-specific

#random effects covariance matrix

for (i in 1:n) {

InvbigE[i,1:nt,1:nt]<-

t(bigT[i,1:nt,1:nt])%*%invbigD[i,1:nt,1:nt]%*%bigT[i,1:nt,1:nt]

bigE[i,1:nt,1:nt]<-inverse(InvbigE[i,1:nt,1:nt])

}#i

#define an identity matrix

for ( t in 1:nt) {

for ( tt in 1:nt) {

Imat[t,tt]<-equals(t,tt)

}#tt

}#t

#define unit-lower-triangular matrix T

#define inverse of the diagonal matrix D
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for ( i in 1:n) {

for ( t in 1:nt) {

for ( tt in 1:nt) {

abigT[i,t,tt]<-

equals(t, tt+1)*inprod(-Xg[t+(nt*(i-1))],gamma)

invbigD[i,t,tt]<-

equals(t,tt)*(1/exp(inprod(Xl[t+(nt*(i-1))],lambda)))

} # tt

} # t

bigT[i,1:nt,1:nt]<-abigT[i,1:nt,1:nt]+Imat[1:nt,1:nt]

} # i

for ( j in 1:nr) {

for ( p in 1:np) {

beta[p,j]<-param[p+np*(j-1)]

}#j

}#p

gamma[1:2]<-param[((nr*np)+1):((nr*np)+2)]

lambda[1:2]<-param[((nr*np)+3):((nr*np)+4)]

}#mymodel

##fit##

myfit.p<-jags.fit(pmydata,c("b"),mymodelpred,

n.chains=2,n.update=30000,n.iter=5000,thin=25)

#get the random effects

summary(myfit)
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