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ABSTRACT

FACTOR GRAPH BASED LINEAR MINIMUM MEAN SQUARE ERROR
EQUALIZATION FOR WIRELESS COMMUNICATIONS

Pınar Şen,

M.S., Department of Electrical and Electronics Eng.

Supervisor : Assoc. Prof. Dr. Ali Özgür Yılmaz

July 2014, 76 pages

In this work, we have studied on a reduced complexity factor graph based linear

minimum mean square error (LMMSE) filter as an equalizer for different wireless

communication problems. First, we introduce an efficient way of computing extrinsic

bit log-likelihood ratio (LLR) values for the LMMSE estimation through the previ-

ously presented graph structure in the literature compatible with higher order alpha-

bets. In addition, we propose to adapt this graph structure so that it has the ability

of including the non-white statistics of a random process. Our new structure, which

corresponds to block LMMSE filtering under a Gaussian autoregressive (AR) pro-

cess, has the advantage of complexity linearly increasing with the block length and

the ease of incorporating the a priori information of the input signals whenever possi-

ble. Extensive simulations and comparisons to the theoretical calculations show that

our method performs identical with the optimal block LMMSE filtering for Gaussian

input signals.

Moreover, the proposed method can be used for any random process with a known
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(or estimated) autocorrelation function by use of an approximation to an AR process

as detailed in this study. To support this idea, we present an application for which

the proposed graph structure can be used as an equalizer through the mentioned ap-

proximation. Both the intersymbol interference (ISI) and the effect of non-white

noise inherent in Faster-than-Nyquist (FTN) signaling are shown to be handled by our

method. In order to incorporate the statistics of noise signal into the factor graph over

which the LMMSE algorithm is implemented, we suggest using a known method in

the literature for modelling the noise signal as an autoregressive (AR) process. Based

on these improvements, we show that the proposed low complexity receiver structure

performs close to the optimal decoder operating in ISI-free ideal scenario without

FTN signaling through simulations.

In the last part of our work, we propose to enlarge the state space model of the previ-

ous graph structure in order to remove inter-symbol and inter-stream interference in

multiple input multiple output (MIMO) communication. The resultant representation

inflicted on the graph provides a time domain equalizer having computational com-

plexity linearly increasing with block length. Also, owing to the Gaussian assumption

used in the presented cycle free factor graph, the complexity of the suggested method

is not affected by the size of the signalling space. The extrinsic bit LLR transition al-

gorithm that we introduce can be applied for this scenario straightforwardly. Overall,

we provide an efficient receiver structure reaching high data rates in frequency selec-

tive MIMO systems whose performance is shown to be very close to a genie-aided

matched filter bound through extensive simulations.

Keywords: linear LMMSE equalization, factor graph, Gaussian assumption, Gaus-

sian message passing, turbo decoding, extrinsic LLR computation, colored noise,

AR-process modelling, FTN-signaling, MIMO ISI channel.

vi



ÖZ

KABLOSUZ İLETİŞİM İÇİN ÇARPAN ÇİZGE TEMELLİ DOĞRUSAL
ENKÜÇÜK ORTALAMA KARESEL HATA DENKLEŞTİRİCİLER

Pınar Şen,

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Ali Özgür Yılmaz

Temmuz 2014, 76 sayfa

Bu çalışmada, kablosuz iletişimdeki problemler için bir denkleştirici yapısı olarak

kullanılabilecek düşük karmaşıklığa sahip, çarpan çizge temelli doğrusal enküçük or-

talama karesel hata (LMMSE) filtresi üzerine çalıştık. Öncelikle, literatürde önceden

önerilmiş olan çizge temelli LMMSE kestirimi için, daha yüksek dereceli kipleme

alfabeleri ile uyumlu ve verimli bir dışsal ikil (bit) log-olabilirlik oranı (LLR) hesap-

lama yöntemi geliştirdik. Ayrıca, bu çizge yapısını, bir rastsal sürecin beyaz olmayan

istatistiklerini de bünyesine dahil edebilecek şekilde uyarladık. Gauss özbağlanımlı

(AR) bir süreç için blok LMMSE filtrelemeye karşılık gelen yeni yapımız, blok uzun-

luğu ile doğrusal olarak artan karmaşıklığa ve girdi sinyalleri hakkında bilinen önsel

(a priori) bilgiyi dahil etme kolaylığına sahiptir. Kapsamlı benzetim sonuçları ve te-

orik değerler ile yapılan kıyaslamalar, metodumuzun Gauss girdiler için eniyi blok

LMMSE filtre ile birebir aynı çalıştığını göstermektedir.

Ayrıca, önerilen yöntem bilinen (ya da kestirilen) bir özilinti fonksiyonu olan her-

hangi bir rastsal süreç için, detayları bu çalışmada anlatıldığı gibi bir AR sürece yak-
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laştırım yardımı ile kullanılabilir. Bu fikri desteklemek için, önerilen çizge yapısının

bahsedilen yaklaştırım üzerinden bir denkleştirici olarak kullanıldığı bir uygulama

sunulmaktadır. Nyquist’ten daha hızlı (FTN) sinyalizasyonun doğasında varolan hem

semboller arası girişim (ISI), hem de beyaz olmayan gürültü etkilerinin yöntemimiz

tarafından ele alındığı gösterilmektedir. Gürültü sinyalinin istatistiklerini, LMMSE

algoritmasının üzerinde gerçekleştirildiği çarpan çizgeye dahil etmek amacıyla, gü-

rültü sinyalini AR süreç ile modellemek için literatürde bilinen bir yöntemi kullan-

mayı öneriyoruz. Bu iyileştirmelere dayanarak, önerdiğimiz düşük karmaşıklıktaki

alıcı yapısının FTN sinyalizasyonun yapılmadığı ISI’sız senaryodaki eniyi kodçözü-

cüye yakın çalıştığı benzetimler üzerinden gösterilmektedir.

Çalışmamızın son kısmında, çoklu girdi çoklu çıktı (MIMO) haberleşmesinde sem-

boller arası ve sinyal akışları arası girişimi kaldırmak amacıyla, eski çizge yapısının

durum uzay modelini genişletmeyi öneriyoruz. Sonuçta çizgeye yansıtılan gösterim,

zamanda blok uzunluğu ile doğrusal artan karmaşıklıkta bir denkleştirici sağlamakta-

dır. Ayrıca, sunulan döngüsüz çarpan çizgede kullanılan Gauss varsayımı sayesinde,

önerilen yöntemin karmaşıklığı sinyal uzayının boyutundan etkilenmez. Geliştirdiği-

miz dışsal bit LLR hesaplama yöntemi bu senaryoya doğrudan uygulanabilir. Bütün-

cül olarak, frekans seçiciliğine sahip MIMO sistemlerde yüksek bilgi hızlarına ulaşan

ve başarımının cin destekli uyumlu süzgeç sınırına çok yakın çalıştığı benzetimlerce

gösterilen verimli bir alıcı yapısı öneriyoruz.

Anahtar Kelimeler: Doğrusal LMMSE denkleştiricisi, çarpan çizge, Gauss varsayımı,

Gauss mesaj iletimi, turbo çözümleme, dışsal LLR hesaplaması, renkli gürültü, AR

süreç modellemesi, FTN-sinyalleme, MIMO ISI kanal.
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CHAPTER 1

INTRODUCTION

Together with the development of factor graphs and Gaussian message passing (GMP)

rules on linear state space models, filtering operations have lately been implemented

with limited computational complexity and memory requirements [27, 28]. One ex-

ample is LMMSE filtering, which is in fact equivalent to performing two-way Kalman

filtering operations through a factor graph under a Gaussian assumption [27]. A re-

cently studied version of LMMSE filtering was implemented on a factor graph under

additive white Gaussian noise in [17, 29], which has a complexity linearly increasing

with block length of the input signal; whereas the computational complexity of the

conventional block LMMSE filtering is increasing approximately with the cube of

the block length [41]. Another advantage comes along from the Gaussian assump-

tion. Since the LMMSE filter operates on the input signal with the assumption that

it is coming from a Gaussian alphabet [29], its complexity is independent from the

discrete alphabet size utilized in communication applications.

We base our study on the state space graph structure presented in [17, 29] and im-

prove it for some communication problems. One important contribution of our study

is the proposed LLR exhange algorithm for M-QAM signaling. LMMSE equaliz-

ers involved in turbo decoders need a method for transition to binary domain, i.e.,

to bit LLR domain. In the literature, there were effective approaches to obtain bit

LLRs from the LMMSE equalizer outputs, such as the Wang-Poor approach [40, 42]

and the Joint Gaussian (JG) approach [25]. However, applying the Wang-Poor or

JG approaches directly is computationally intensive for factor graphs. Although a

simplified expression for extrinsic LLR computation was obtained in [17] for BPSK
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signaling, there is no such work for higher order constellations in the literature within

our knowledge. To fill up this gap, we derive a transformation from the graph out-

puts to the bit LLRs by using the Wang-Poor approach for higher order modulation

alphabets. Owing to this key connection, extrinsic bit LLR values can be obtained in

accordance with the graph solution without any major complexity increase.

Among the communication problems, we focused on implementing LMMSE filtering

with reduced complexity under non-white noise processes. The factor graph approach

to LMMSE filtering under white Gaussian noise in [17] provides a practical receiver

structure particularly for ISI channel, which is frequently encountered in wireless

communications. However, there are other problems in the literature in which the

statistics of non-white noise processes are needed to be taken into consideration. For

example, in Faster-than-Nyquist (FTN) signaling method [32] and channel shortening

for long, sparse ISI channels [34], the inherent non-white noise processes are handled

by various solutions including whitening filters. In addition, colored noise processes

also appear in radar [5] and speech enhancement problems [15].

Although forward Kalman filtering matrix operations are adapted for Gaussian AR

noise processes in [15], there is no reduced complexity work on factor graphs which

includes the effect of the colored noise in the literature to the best of our knowledge.

Hence, what we propose is a factor graph based LMMSE filtering approach which

implements two-way Kalman filtering operations with the ability of including the

statistics of the non-white Gaussian noise. We basically extend the state variables on

the factor graph of [17] by joining them with the variables of the noise process as

introduced in [15]. The proposed method, which can be generalized to other noise

statistics through an approximation is first studied under the Gaussian AR process

framework. Through extensive simulations, it is shown that the proposed technique,

which has the advantage of reduced computational complexity and less requirement

of memory, performs identical with the optimal block LMMSE filtering solution for

Gaussian input signals. Theoretical derivations also confirmed our simulation results.

Another benefit of the proposed method comes from its factor graph based structure

in which the existing a priori information of the input signals can be effortlessly in-

corporated as needed in many iterative communication receivers. Hence, it can be

a practical way of block LMMSE filtering for the mentioned problems with non-

2



white noise processes. On the other hand, we compare its performance results to the

LMMSE equalizer operating under white process assumption and look for the asymp-

totic behaviour of those two LMMSE filters. Although for high noise correlation there

is a remarkable performance gain that our method provides, asymptotically (for high

signal to noise ratio (SNR) values) they exhibit very similar results. In addition, the

performance gain of our method also reduces as the correlation of the noise process

decreases. Hence, it depends on the specific characteristics of the problem at hand.

As an example, we have studied on a communication application, FTN signalling, in

which we handle the inherent ISI effect and the colored noise by our proposed graph

based LMMSE filtering method. FTN signaling is one of the proposed techniques to

increase the spectral efficiency in the literature. The first studies on FTN signaling

concept date back to 1970s [30]. But it has received much more attraction recently

as a means of providing higher transmission rate beyond the Nyquist criterion in

the same spectral shape consuming the same energy per bit [1]. By contrast to the

classical scenario using T -orthogonal pulse shape, the pulses in FTN signaling can

be packed by violating the Nyquist rate without decreasing the minimum Euclidean

distance (d2min) in the signaling space [37]. (The minimum symbol time for which

d2min is not below the value of the case with orthogonal pulse shape is called the

Mazo limit [36]).

Since FTN signaling has more symbols to be packed in the time interval T than the

conventional orthogonal signaling, there exists intentional ISI which causes an in-

crease in the receiver complexity. However, thanks to the recent studies on practical

receivers, it is still possible to achieve the same error rate performance as the con-

ventional way. Among the latest ones, a reduced trellis based algorithm (M-BCJR)

having a linearly increasing complexity with block length is proposed in [32]. But

its complexity increases exponentially with constellation size and the number of ISI

taps due to the necessity of highM value. Moreover,M-BCJR needs an optimized

whitening filter for each channel realization at the receiver side so as to enjoy a good

performance as mentioned in [32], which makes this method hard to implement in real

time for fading environments. In another work [39], frequency domain equalization

with an additional complexity of fast Fourier transform (FFT) and inverse-FFT oper-

ations is analysed for uncoded FTN schemes. It brings a performance loss because of
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the lack of coding and turbo operation and also a decrease in efficiency due to use of

cyclic prefix. On the other hand, we propose to use a low complexity (linearly increas-

ing with block length) and practical reduced LMMSE equalization method to remedy

the ISI effect due to FTN signaling. Furthermore, our receiver structure is perfectly

suited for high constellation sizes, since the number of the elements in the alphabet

is irrelevant to our equalization process. In a more detailed way, we develop a fac-

tor graph-based LMMSE algorithm in which the non-white noise inherent in FTN is

taken into consideration. Although the receiver structure that we propose is shown to

perform very close to the optimal decoder operating under non-ISI, i.e., additive white

Gaussian noise (AWGN) channel through extensive simulations for lower packing ra-

tio, we have observed that equalization performance of LMMSE filtering gets worse

while increasing transmission rate due to sub-optimality caused by the Gaussian as-

sumption. We have also compared our results with the performance of [17] under

white noise assumption and observed that there is a trade off with whether the non-

white statistics of noise process should be taken into consideration or not depending

on the correlation characteristics.

In the final part of our study, we consider frequency selective MIMO systems. MIMO

systems have attracted much attention in recent years since they potentially provide

high spectral efficiency in wireless communication applications. Yet, they require

complicated receiver structures so as to handle the distortion caused by the wireless

channel characteristics such as ISI resulting from the frequency selectivity of the

channel between each transmit and receive antenna pair.

In recent studies, low complexity methods are proposed to mitigate those distorting

effects in MIMO ISI channels. Orthogonal frequency division multiplexing (OFDM)

based methods hold an important place in the literature, but OFDM is confirmed

to have some serious drawbacks including peak to average power ratio problem,

high sensitivity to carrier frequency offset and diversity loss without channel cod-

ing [18, 31], which calls for another popular technique, single carrier frequency do-

main equalization (SC-FDE). SC-FDE has been a highly attractive approach over

the last years since it does not include the disadvantages in multi carrier modulation

and still enjoys low complexity, which is mainly due to the use of FFT and inverse

FFT [13,18,31,43]. However, FDE is a method which is devised under the assumption
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of quasi static Rayleigh fading, i.e., the channel does not change during the transmis-

sion of one block and changes independently from one block to another. Although

this is a valid assumption for slowly varying channels, the performance of classical

FDE is degraded under fast fading with large Doppler spread since the channel ma-

trix in frequency domain is no longer diagonal. Dividing the transmission block into

smaller sub-blocks where the channel taps remain constant will not be an effective

solution either since efficiency would drop due to a larger percentage of the cyclic

prefix.

As an alternative, low complexity time domain approaches have drawn interest once

more for frequency selective MIMO systems in fading environments from the per-

spective of the lately studied factor graph theory [11, 24, 26–29]. Belief propagation

and sum product algorithms on factor graphs were proposed for both single input

single output (SISO) and MIMO systems [10, 23], but they have O(M P̃ ) complex-

ity per symbol where M is the constellation size and P̃ is the total number of non-

zero interferers. Hence, the Gaussian assumption which provides constant complexity

with increasing alphabet size has become popular. As an example, Kalman filtering

was proposed for coded frequency selective MIMO systems in [35]. However, it has

O(P 3) complexity per symbol where P is the number of interferers, and more impor-

tantly lacks the improvement that backward recursion provides. On the other hand,

the GMP rules including Kalman filtering (forward recursion) and Kalman smoothing

(backward recursion) operations are derived [24, 29] and used in the implementation

of LMMSE equalization on factor graphs. As we mention, this approach has the ad-

vantage of low complexity linearly increasing with block length N as compared to

conventional block LMMSE filter’s O(N3) complexity [41]. Although factor graph

structures with cycles using the GMP rules were proposed for SISO and MIMO ISI

channels respectively in [9, 19], our main focus is the cycle free ones due to exact

equivalence to LMMSE filtering avoiding any iterations. There are two different cy-

cle free factor graph structures presented in the literature for SISO systems [11, 17].

The generalization of [11] to MIMO ISI channels was proposed in [12], which still has

O(P 3) complexity per symbol. In addition, the mentioned studies including the GMP

rules do not have any performance results for modulation types other than BPSK sig-
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naling due to the lack of LLR exchange algorithm.

In our study, however, we reduce the complexity to O(P 2) per symbol with the help

of a factor graph structure which takes its roots from [17]. In our extension for MIMO

ISI systems, there are two main mechanisms which provide the decrease in complex-

ity:

• Using Matrix inversion lemma while computing the GMP rules,

• The block-wise shifting structure of the proposed graph that allows computa-

tionally intensive steps to be conducted sporadically.

Moreover, using Gaussian approximation of GMP rules keeps the complexity of the

graph algorithm constant with the increasing constellation size. In addition, the pre-

sented approach here brings the ease of involving existing a priori information of the

transmitted symbols, hence perfectly matched with the turbo concept for coded sys-

tems. It is also well suited to fast fading environments since the channel taps (possibly

time-varying) are directly included in the graph. Therefore, the proposed structure is a

very advantageous way of implementing LMMSE filtering for equalization of MIMO

ISI channels. Consequently, we present a state space graph for time domain LMMSE

equalization of MIMO ISI channels with a reduced complexity as compared to the

techniques in the literature. Overall, the performance of the proposed structure is

shown to be very close to a hypothetical genie-aided matched filter bound [4] through

extensive simulations, which makes it an efficient receiver that can reach high data

rates in frequency selective MIMO systems.

In summary, we deal with the graph based LMMSE equalization for various problems

in communication systems. In Chapter 2, we give the principles of the previously pro-

posed graph structure in [17] for LMMSE equalization of SISO ISI channels under

white Gaussian noise processes for BPSK signalling and we present a method for us-

ing LMMSE equalization with higher order constellations. In Chapter 3, we improve

the graph structure mentioned in Chapter 2 so that it has the ability to include the

non-white statistics of a Gaussian AR process. In addition, an approximation tech-
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nique for any stationary random process to Gaussian AR process in the literature is

described. Chapter 4 demonstrates an application, in which the inherently involved

colored process and ISI effect are handled by the proposed graph structure in Chap-

ter 3, through the mentioned approximation. The generalization of the graph structure

and the algorithm explained in Chapter 2 to frequency selective MIMO systems are

detailed in Chapter 5. Over the whole study, we present the performance results of

our proposed methods through extensive simulations as compared to other alterna-

tives and we discuss the advantage and disadvantages. Finally, Chapter 6 concludes

our work.

The notations used are organized as follows. Lower case letters (e.g., x) denote

scalars, lower case bold letters (e.g., x) denote vectors, upper case bold letters (e.g.,

X) denote matrices. For a given random variable x; mx, vx, wx and wxmx denote its

mean, variance, weight and weighted mean values respectively where wx , v−1
x . For

a given vector random variable x; Rx,mx,Vx,Wx and Wxmx denote its autocor-

relation matrix, mean vector, covariance matrix, weight matrix and weighted mean

vector respectively where Wx , Vx
−1. The indicators ()∗, ()H , and E{} denote

conjugate, Hermitian transpose and expectation operations respectively and I denotes

the identity matrix of proper size. The operation diag{A} is defined as the diagonal

elements of a matrix A.
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CHAPTER 2

FACTOR GRAPH BASED LMMSE FILTERING FOR SISO ISI

CHANNELS UNDER WHITE GAUSSIAN NOISE

In this chapter, we present a state space based reduced complexity factor graph used

for LMMSE filtering of SISO systems suffering from multipath effects of wireless

channels under additive white Gaussian noise. After describing the system model, we

present the details of the graph structure and message passing rules under a Gaussian

approximation. To make a transition between the LMMSE estimator operating in the

Gaussian domain and the LLR estimator operating in binary domain for coded sys-

tems, we provide an extrinsic LLR exchange algorithm in a generalized form that is

applicable to higher order modulation alphabets. Finally, we present the performance

results of the LMMSE equalizer with the proposed LLR exchange algorithm through

simulations.

2.1 System Model

We consider a baseband single carrier SISO communication system using complex

valued constellations M-PSK or M-QAM in our setting. Fig. 2.1 presents the whole

block diagram of the transmitter and the receiver structures. At the transmitter side,

after the coded information bits are interleaved and modulated, the resultant symbols

are sent over the ISI channel. At the receiver side, an iterative receiver structure

including the factor graph based LMMSE equalizer and an a posteriori probability

(APP) decoder is operated. After a predetermined number of iterations, bit decisions

are obtained.
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Figure 2.1: Sytem model for SISO ISI systems

We can model the discrete-time received signal at time k as

yk =

L−1
∑

i=0

hixk−i + nk ; k = 1, 2, . . . , N + L− 1, (2.1)

where L is the number of channel taps; N is the transmission block length; hi is

the channel coefficient at time i; xk and yk are the transmitted symbol and received

observation at time k respectively; and nk represents additive white zero mean circu-

larly symmetric complex Gaussian (ZMCSCG) noise with variance N0 at time k, i.e.,

nk ∼ CN(0, N0). The average symbol energy Es is defined as E{|xk|
2} , Es and

channel memory J is defined as J , L− 1.

2.2 LMMSE Filtering Based on Reduced Complexity Factor Graph

Conventional block LMMSE filtering has a complexity increasing with the cube of

the transmission block length N , i.e., O(N3) [41]. However, in [17], it is shown

that LMMSE filtering can be implemented on a factor graph which has a complexity

increasing linearly with N . In the following subsections, we will give the details

of the proposed graph in [17, 27] on which we base our study. In addition, we will

provide a generalized LLR exchange algorithm which is compatible with the higher

order modulation alphabets.
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2.2.1 State Space Representation

For the system described in Fig. 2.1, the observation vector at time k given in (2.1)

can be rewritten as

yk = h xk + nk ; k = 1, 2, . . . , N + J (2.2)

where h denotes the channel coefficient vector of length L and xk denotes the state

variable vector at time k which is composed of the input variables between time k −

L+ 1 and k as given by

h = [hJ hJ−1 . . . h0], and (2.3)

xk = [xk−J xk−J+1 . . . xk]
T
L×1. (2.4)

(2.2)-(2.4) are used to construct the state space graph representation of the SISO ISI

channels [17, 27]. As shown in Fig. 2.2, (2.2)-(2.4) are used to reach the observation

at time k in the kth building block. Since the overall graph structure is composed of

consecutive building blocks, state variable vector xk needs to be shifted as going to

the next time instant. For advancing to the next time instant, k+1, transition matrices

are defined as

G =





0J IJ

0 0T
J





L×L

, f =





0J

1





L×1

, (2.5)

where 0J denotes the all zero vector of length J , and IJ denotes the identity matrix of

size J × J . It can be seen that the state variable vector xk+1 at time k + 1 is reached

through the use of G and f as follows

xk+1 = f xk+1 + zk+1, where (2.6)

zk+1 = G xk (2.7)

=

























xk−J+1

xk−J+2

...

xk

0

























.
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The factor graph representation corresponding to (2.2)-(2.7) can be inspected in Fig. 2.2.

LMMSE equalization is performed on this cycle free graph with the help of the Gaus-

sian Message Passing (GMP) rules which is detailed in the next subsection.

...

=

+

+

+

building block

+ =

...

h

x′′
k+1

yk+1

h

yk

nk

f

x′
k+1

f

xkzk
G

kth

zk+1x′′
k xk+1 zk+2

G

x′
k

xk

nk+1

xk+1

Figure 2.2: Factor Graph Structure of LMMSE Filtering for SISO ISI systems

2.2.2 Gaussian Message Passing (GMP) Rules

In the graph structure given in Fig. 2.2, each scalar state variable or state vector is

assumed to have a Gaussian distribution. This assumption provides ease of computa-

tion for message passing. In other words, scalar variables such as xk are represented

by mean mxk
and variance vxk

while state vectors such as xk are represented by mean

vector mxk
and covariance matrix Vxk

on the graph. The main purpose is to obtain

the a posteriori mean (mpost
xk

) and covariance (Vpost
xk

) of the state variables which

are calculated through the GMP rules applied in forward and backward recursions.

The GMP rules, which are indeed equivalent to Kalman filtering (through forward

recursion) and Kalman smoothing (through backward recursion) operations corre-

sponding to each block on the graph, are performed by using the mean and variance

of the state variables [17, 24, 29]. The existing a priori information coming from

the APP decoder is also incorporated into the graph under the Gaussian assumption

by (m↓
xk

,v↓xk
). The transition between LLR domain and Gaussian domain will be

explained in Section 2.2.3.
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In Table 2.1, some of the GMP rules for basic blocks [17, 29] are provided, where

the weight matrix W , V−1, and arrows indicate the message directions. The main

idea behind the GMP rules corresponding to each basic building block comes from

the Gaussian assumption which states that all the variables in the input and output

branches connected to the basic building block have Gaussian distribution. Short ex-

planations related to each basic building block is given with a simple example below.

Table2.1: GMP Rules for Basic Building Blocks [17, 29]

Blocks GMP Rules

x z

y

−→
Wz =

−→
Wx +W↑

y
(2.8)

−→
Wz

−→mz =
−→
Wx

−→mx +W↑
y
m↑

y
(2.9)

x z

y

−→
Vz =

−→
Vx +V↑

y
(2.10)

←−
Vx =

←−
Vz +V↑

y
(2.11)

−→mz = −→mx +m↑
y

(2.12)
←−mx =←−mz −m↑

y
(2.13)

A
x y

−→
Vy = A

−→
Vx A

H (2.14)
−→my = A−→mx (2.15)

A
x y

←−
Wx = AH

←−
Wy A (2.16)

←−
Wx

←−mx = AH
←−
Wy

←−my (2.17)

Equality Block: When the state variable vectors x and y enter the equality block

given in Fig. 2.3, their probability density functions (pdf) are multiplied to reach the

scaled pdf of the output state variable vector z [27]. Since x, y and z are all assumed

to be Gaussian random variables here, it is easy to write the relation in terms of weight

and weighted mean values of the state variables given in (2.8)-(2.9).

x z

y

Figure 2.3: Basic Building Blocks-Equality
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Example 1: Let x and y are input state vectors of length-3 with characteristics

−→mx =













1.3

−0.9

1.1













,
−→
Vx =













0.3 −0.01 0.02

−0.01 0.25 0.05

0.02 0.05 0.35













;

−→my =













0.8

−0.3

0.9













,
−→
Vy =













0.27 0.07 −0.03

0.07 0.4 0.06

−0.03 0.06 0.22













.

Then, the information related to output state variable vector z is reached by using

(2.8)-(2.9) as

−→
Wz =













0.3 −0.01 0.02

−0.01 0.25 0.05

0.02 0.05 0.35













−1

+













0.27 0.07 −0.03

0.07 0.4 0.06

−0.03 0.06 0.22













−1

=













7.3541 −0.6377 0.5508

−0.6377 6.8998 −1.4671

0.5508 −1.4671 7.8419













,

−→
Wz

−→mz =













0.3 −0.01 0.02

−0.01 0.25 0.05

0.02 0.05 0.35













−1 











1.3

−0.9

1.1













+













0.27 0.07 −0.03

0.07 0.4 0.06

−0.03 0.06 0.22













−1 











0.8

−0.3

0.9













=













8.0973

−6.4079

8.7809













.

Summation Block: The summation of 2 Gaussian random variables is also another

Gaussian random variable with summed mean and variance values of input random

variables. The GMP rules in (2.10)-(2.13) which correspond to the summation block

given in Fig. 2.4 uses this principle. The direction of the message passing is important

since the summation operation has also its own direction, i.e. z = x + y. Hence, the

GMP rules through forward direction (following the same direction as the arrows

from left to right) are given in (2.10) and (2.12) whereas the GMP rules through

backward direction (following the opposite direction of the arrows from right to left)

are given in (2.11)-(2.13).
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x z

y

Figure 2.4: Basic Building Blocks-Summation

Example 2: Assume that the information related to state vectors x and y are given by

the same values as in Example 1 and we need to reach output information related to

z, i.e. we go through forward direction. Using (2.10) and (2.12), we can obtain

−→
Vz =













0.3 −0.01 0.02

−0.01 0.25 0.05

0.02 0.05 0.35













+













0.27 0.07 −0.03

0.07 0.4 0.06

−0.03 0.06 0.22













=













0.57 0.06 −0.01

0.06 0.65 0.11

−0.01 0.11 0.57













,

−→mz =













1.3

−0.9

1.1













+













0.8

−0.3

0.9













=













2.1

−1.2

2













.

Scaling Block: The scaling of a Gaussian random variable is also another Gaus-

sian random variable with scaled mean and variance values of the input random vari-

able. The GMP rules in (2.14)-(2.17) which correspond to the scaling block given in

Fig. 2.5 uses this principle. The direction of the message passing is important since

the scaling operation has also its own direction, i.e. y = Ax. Hence, the GMP rules

through forward direction (following the same direction as the arrows from left to

right) are given in (2.14) and (2.15) whereas the GMP rules through backward direc-

tion (following the opposite direction of the arrows from right to left) are given in

(2.16)-(2.17).

Example 3: Assume that the information related to state vector x is given by the same
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A
x y

Figure 2.5: Basic Building Blocks-Scaling

values as in Example 1, A is given by

A =













0 1 0

0 0 1

0 0 0













and we need to reach output information related to y, i.e. we go through forward

direction. Using (2.14) and (2.15), we can obtain

−→my =













0 1 0

0 0 1

0 0 0

























1.3

−0.9

1.1













=













−0.9

1.1

0













,

−→
Vy =













0 1 0

0 0 1

0 0 0

























0.3 −0.01 0.02

−0.01 0.25 0.05

0.02 0.05 0.35

























0 1 0

0 0 1

0 0 0













H

=













0.25 0.05 0

0.05 0.35 0

0 0 0













.

Those rules corresponding to basic building blocks given in Table 2.1 could be di-

rectly applied to the graph in Fig. 2.2. However, the direct application results in quite

a few L-size matrix inversions each of which costs O(L3) because of the necessary

transitions between variance and weight matrices. Hence, we also present the GMP

rules for composite blocks with reduced computational complexity by use of matrix

inversion lemma [21] in Table 2.2.

Using the given GMP rules in Table 2.1-2.2, forward and backward recursion algo-

rithms can be performed through either mean and variance values or weighted mean
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Table2.2: GMP Rules for Composite Blocks with Reduced Computation

Blocks GMP Rules

x z

y

A

−→
Vz =

−→
Vx −

−→
VxA

H
BA
−→
Vx (2.18)

−→
mz = −→mx +

−→
VxA

H
B(m↑

y −A
−→
mx) (2.19)

where

B = (V↑
y +A

−→
VxA

H)−1 (2.20)

A

y

x z

←−
Wx =

←−
Wz −

←−
WzACA

H←−
Wz (2.21)

←−
Wx

←−
mx = (I−

←−
WzACA

H)∗

(
←−
Wz

←−
mz −

←−
WzAm

↓
y) (2.22)

where

C = (W↓
y +A

H←−
WzA)−1 (2.23)

and weight values of the state variables. Therefore, it is possible to choose one among

different configuration pairs. A brief description of the forward and backward recur-

sion algorithms which we use through our study is provided below for the kth building

block. The arrows are used so as to show the direction of the messages in a similar

notation to [17, 27–29].

• Forward Recursion: We aim to reach the information related to the state xk+1

by use of the known values of the state xk obtained by the previous building

block and the operations given below. Following the direction from left to right

on the kth building block of the graph in Fig. 2.2, we compute−→m
x
′′

k
and
−→
V

x
′′

k
by

using −→mxk
,
−→
Vxk

coming from the previous building block and the observation

yk through (2.18)-(2.19). As the next step for the calculation of −→mzk+1
and

−→
Vzk+1

, we use (2.14)-(2.15). With the obtained −→mzk+1
,
−→
Vzk+1

values and the a

priori information provided by the APP decoder (m↓
xk+1

, V↓
xk+1

), the mean and

variance values of the state vector xk+1 are computed by (2.10),(2.12),(2.14),

(2.15) and used in the next building block as input. By repeating this process

for all the building blocks in a serial order, forward recursion is completed.

• Backward Recursion: In each building block, the purpose is to obtain the

weight matrix
←−
Wxk

and the weighted mean vector
←−
Wxk

←−mxk
of the state xk

17



from the known information related to state xk+1 provided by the previous

building block. Following the direction from right to left on the kth build-

ing block, first we compute
←−
Wzk+1

,
←−
Wzk+1

←−
mzk+1

through (2.21)-(2.22) with

the help of the a priori information coming from the APP decoder (m↓
xk+1

,

V↓
xk+1

) and the obtained information of the state xk+1 (
←−
Wxk+1

,
←−
Wxk+1

←−mxk+1
)

by the previous building block. Then, after
←−
W

x
′′

k
and
←−
W

x
′′

k

←−m
x
′′

k
are computed

by (2.16)-(2.17), they are utilized in (2.10)-(2.12), (2.16)-(2.17) together with

the observation yk so as to reach
←−
Wxk+1

,
←−
Wxk+1

←−
mxk+1

. These operations are

applied to each building block serially in a way similar to forward recursion.

When forward and backward recursions are complete, a posteriori mean vector and

covariance matrix of each state vector xk are calculated with the help of the obtained

(
−→
Vxk

,−→mxk
) and (

←−
Wxk

,
←−
Wxk

←−mxk
) as in [26], [17]:

V
post
xk

=(
−→
V−1

xk
+
←−
Wxk

)−1 (2.24)

m
post
xk

=V
post
xk

(
−→
V−1

xk

−→
mxk

+
←−
Wxk

←−
mxk

)−1. (2.25)

The elements of m
post
xk

determine the a posteriori mean values of the transmitted

symbols while the diagonal elements of Vpost
xk

provide the a posteriori variance values

of the transmitted symbols between the time instants k − J and k as given by

m
post
xk

=



















mpost
xk−J

mpost
xk−J+1

...

mpost
xk



















, V
post
xk

=



















vpostxk−J
. . . . . .

. . . vpostxk−J+1
. . .

. . .
. . . . . .

. . . . . . vpostxk



















. (2.26)

Since the elements of the state vector xk are shifted by 1 symbol through the way to

xk+1, this shift is also seen at the output mean vectors and variance matrices as

m
post
xk+1

=



















mpost
xk−J+1

mpost
xk−J+2

...

mpost
xk+1



















, V
post
xk+1

=



















vpostxk−J+1
. . . . . .

. . . vpostxk−J+2
. . .

. . .
. . . . . .

. . . . . . vpostxk+1



















. (2.27)
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The major contribution to the complexity of the presented algorithm on the graph

structure is caused by the matrix inversions in (2.24)-(2.25). However, matrix inver-

sions need to be applied only once for every L building blocks with a complexity

of O(L3) owing to the shifting property of the state vectors as explained in (2.27).

Hence, complexity reduces to O(L2) for each building block, i.e., each time instant,

while there are N building blocks in our system. Therefore, the overall complex-

ity is approximately O(NL2). As a result of this discussion, the overall complexity

per symbol per transmit antenna is about O(L2) which is reasonably lower than both

the block LMMSE filtering operation and the other time domain equalizer structures

mentioned in Chapter 1.

An algorithm is needed for transition between the Gaussian and binary bit LLR do-

mains which is given in the next section.

2.2.3 LLR Exchange Algorithm

Using the LMMSE equalizer, which accepts inputs and generates outputs in the form

of mean and variance values in an iterative receiver, requires transition between Gaus-

sian and binary domains. For transition from the LLR domain at the output of the APP

decoder to the Gaussian domain of the LMMSE equalizer, a priori mean and variance

of each transmitted symbol is obtained by [17]

m↓
xk

=
∑

si∈S

siP (xk = si), (2.28)

v↓xk
=
∑

si∈S

|si −m↓
xk
|2P (xk = si), (2.29)

where S denotes the modulation alphabet and P (xk = si)’s represent the a priori

probabilities to the LMMSE equalizer related to the kth transmitted symbol obtained

by LLRs at the output of the APP decoder.

However, the transition from LMMSE equalizer to APP decoder is not so standard.

There are proposed mathematical models for the extrinsic bit LLR computation of

the LMMSE equalizer in the literature such as the Wang-Poor [40, 42] and the Joint

Gaussian (JG) approaches [25], which are not suitable for the graph based LMMSE

equalization due to their high computational complexity of O(N3) caused by ma-
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trix inversions. In [17], considering the graph outputs, the mathematical expression

of the extrinsic bit LLRs with respect to the JG approach was simplified for BPSK

signaling. Also, the authors of [17] show the equivalence between the JG and Wang-

Poor approaches for BPSK signaling. However, there is no mathematically justified

reduced complexity LLR exchange algorithm for higher constellation sizes in the lit-

erature to the best of our knowledge. Although [16] proposes an intuitive method for

M-QAM signaling without any simulation results, we have observed that the equa-

tion (8) in [16] causes both diversity and SNR losses as to be shown in Section 2.3.

Moreover, we have also proposed a heuristic algorithm in which both the intrinsic and

the a priori LLRs are computed under the Gaussian assumption in [38]. Although it

has much better performance than the one in [16] for M-QAM signaling, there ex-

ists no scientifically proved basis for the idea behind our heuristic method. Hence,

we provide the simplified mathematical relation between the graph based LMMSE

equalizer outputs (a posteriori mean and variance values) and the bit LLRs for higher

order modulation alphabets with respect to the widely known Wang Poor approach,

which is observed to have the best performance among the mentioned approaches.

Owing to this key connection, extrinsic bit LLR values from the LMMSE estimation

can be obtained easily in accordance with the graph solution without any major com-

plexity increase. In the following sections, this extrinsic LLR computation method

with respect to the Wang Poor approach will be used due to its better performance.

According to the Wang-Poor approach, Gaussian approximation is held after the

LMMSE equalization process [40, 42]. In other words, the residual interference plus

noise term at the output of the LMMSE equalizer can be well approximated by Gaus-

sian distribution. Hence, the filtered observation at time k (x̂k) given an input symbol

is assumed to have Gaussian distribution, i.e., the probability density function (pdf) of

p(x̂k|xk = s) ∼ N(µks, σk) with s ∈ S. An equivalent model for this approximation

can be written similarly to [42] as

x̂k = µk xk + ηk, (2.30)

where ηk ∼ N(0, σk). To reach the extrinsic information, [40] rearranges the expres-

sion of the filtered observation at time k by setting mprio
xk

= 0 and vprioxk
= 1 so that it
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does not depend on the current a priori information (mprio
xk

, vprioxk
), which gives

x̂k = wH
k (y −Hmprio

x
+mprio

xk
hk) (2.31)

where hk is the kth column of the channel convolution matrix H with size (N+J)×N ,

and wk is the LMMSE filter coefficient vector with length N +J for the kth input

symbol as expressed by

wk = (N0IN+J +
N
∑

i=1
i 6=k

vprioxi
hih

H
i + hkh

H
k )

−1hk (2.32)

and, µk and σk are obtained in [40] as

µk =wH
k hk (2.33)

σ2
k =wH

k hk(1− hH
k wk) (2.34)

=µk(1− µH
k ). (2.35)

If the kth transmitted symbol is represented by b bits of [ck,1 ck,2 . . . ck,b], then the

extrinsic LLR value of the qth bit of the kth symbol could be expressed by

LE(ck,q) = ln

(
∑

s∈Sq,0
p(xk = s|x̂k)

∑

s∈Sq,1
p(xk = s|x̂k)

)

− ln

(
∑

s∈Sq,0
p(xk = s)

∑

s∈Sq,1
p(xk = s)

)

q = 1, 2, . . . , b (2.36)

where Sq,0 (Sq,1) denotes the subset of the modulation alphabet S with symbols

whose qth bit is 0 (1) and p(xk = s)’s are the a priori symbol probabilities. Using

Bayes Rule [6], (2.36) can be rewritten by considering the Gaussian assumption in

(2.30) as

LE(ck,q) = ln

(∑

s∈Sq,0
p(x̂k|xk = s)p(xk = s)

∑

s∈Sq,1
p(x̂k|xk = s)p(xk = s)

)

− ln

(∑

s∈Sq,0
p(xk = s)

∑

s∈Sq,1
p(xk = s)

)

q = 1, 2, . . . , b (2.37)

where

p(x̂k|xk = s) ∝ exp(−|x̂k − µks|
2/σ2

k). (2.38)

We also use the following approximated version of (2.37) in our simulations to further

reduce its complexity.

LE(ck,q) ∝ ln

(
∑

s∈Sq,0
p(x̂k|xk = s)

∑

s∈Sq,1
p(x̂k|xk = s)

)

q = 1, 2, . . . , b (2.39)

It should be noted that (2.39) is equal to (2.37) for BPSK signalling. For M-QAM

signalling, the comparative performance results of (2.37) and (2.39) will be presented

in the related sections of other chapters which include simulation results.
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As can be seen in (2.31)-(2.35), the complexity of finding x̂k, µk and σk values is

O(N3) and mainly determined by (2.32), which involves a matrix inversion of size

(N+J) × (N+J). Moreover, there is no mathematical simplification in the extrin-

sic bit LLR expression in (2.37) for M-QAM signalling due to the summation over

symbols unlike the BPSK signalling case discussed in [17]. Hence, this version of

Wang-Poor approach is not suitable for the graph based LMMSE equalization. The

propositions below provide the key connection between the graph outputs (a posteri-

ori mean and variance values) and the Wang-Poor parameters (x̂k, µk and σk) with no

major complexity increase.

• Proposition 1:

x̂k =

(

mpost
xk

vpostxk

−
mprio

xk

vprioxk

)

/

(

1 +
1

vpostxk

−
1

vprioxk

)

(2.40)

• Proposition 2:

µk

σ2
k

=

(

1 +
1

vpostxk

−
1

vprioxk

)

(2.41)

With the help of (2.35) and (2.40)-(2.41), the parameters of Wang-Poor ap-

proach, so the extrinsic bit LLRs, related to each transmitted symbol are easily

computed by applying simple operations to the graph outputs.

• Proof of Propositions 1-2: The LMMSE filter coefficient vector for the kth

transmitted symbol, wk, previously given in (2.32) can be rewritten as

wk =
(

Vξk + hkh
H
k

)−1
hk, where (2.42)

Vξk , N0IN+J +

N
∑

i=1
i 6=k

vprioxi
hih

H
i . (2.43)

By matrix inversion lemma [21], (2.42) is simplified to

wk =
V−1

ξk
hk

1 + hH
k V

−1
ξk
hk

. (2.44)

Inserting (2.44) into (2.31) gives

x̂k =
hH
k V

−1
ξk

1 + hH
k V

−1
ξk
hk

(

y −Hmprio
x

+ hkm
prio
xk

)

. (2.45)
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The outputs of the LMMSE equalizer, the a posteriori mean and variance val-

ues, are defined in [22] and used in [17] as

vpostxk
=

1

1/vprioxk + hH
k V

−1
ξk
hk

(2.46)

mpost
xk

=
mprio

xk
/vprioxk

+ hH
k V

−1
ξk

(

y −Hmprio
x

+ hkm
prio
xk

)

1/vprioxk
+ hH

k V
−1
ξk
hk

. (2.47)

Using (2.45)-(2.47) we obtain

(

mpost
xk

vpostxk

−
mprio

xk

vprioxk

)

=hH
k V

−1
ξk

(

y −Hmprio
x

+ hkm
prio
xk

)

=x̂k

(

1 + hH
k V

−1
ξk
hk

)

. (2.48)

Combining (2.46) and (2.48) provides the proposition for x̂k in (2.40) as seen

by

x̂k =

(

mpost
xk

vpostxk

−
mprio

xk

vprioxk

)

/
(

1 + hH
k V

−1
ξk
hk

)

(2.49)

=

(

mpost
xk

vpostxk

−
mprio

xk

vprioxk

)

/

(

1 +
1

vpostxk

−
1

vprioxk

)

.

In order to derive the proposition given in (2.41), we use (2.33) and (2.34) so

that the relation between σk and µk is obtained as

σ2
k

µk

= 1− hH
k wk. (2.50)

Inserting the expression for wk in (2.44) to (2.50) gives

µk

σ2
k

= 1 + hH
k V

−1
ξk
hk. (2.51)

Using (2.46) and (2.51), we get

1 + hH
k V

−1
ξk
hk = 1 +

1

vpostxk

−
1

vprioxk

. (2.52)

The derivations given above provide a mathematical transition between the LMMSE

equalizer outputs and the commonly used Wang-Poor approach for the extrinsic LLR

calculation, which is very useful particularly for the graph based LMMSE algorithms

for M-QAM modulation.
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2.3 Simulation Results

The performance comparison among the heuristic extrinsic LLR calculation method,

which we proposed in [38], the one proposed in [16] and the simplified forms of Wang

Poor approach by (2.37) and (2.39) explained in Section 2.2.3 is shown in Fig. 2.6.

For all methods, the LMMSE equalizer in [17] is implemented for a 6-tap static ISI

pattern of [0.408 0 0 0 0.816 0.408], which is taken from [10] under white Gaussian

noise with Gray encoded 64-QAM signaling. The data length is set to 1800 uncoded

bits. A convolutional code with code rate 1/2 and generator polynomial [133 171] is

used. The number of iterations is 5. It is observed by trial and error that multiplying

the LLR values exchanged between the decoder and the equalizer by scaling factors

(less than 1) improves the BER performance, since it prevents overconfidence in LLR

messages. Similar methods are also applied in [8, 9, 14, 19, 32] for turbo equalization

and decoding structures. Here, we multiply the extrinsic LLR values produced with

respect to [38] at the output of the LMMSE equalizer by the scaling factor of 0.5.

For the methods in [16] and the ones explained in Section 2.2.3, no enhancement is

observed in performance with the help of a scaling factor through simulations for the

presented scenario. Therefore, we do not perform any scaling operation for them.

We also provide the performance under a 1-tap AWGN channel with the same sim-

ulation details as the ISI channel scenario to put an upper bound. To obtain this

performance, the APP decoder is operated only once by using the bit LLR values

which are generated from the conditional probabilities given each of 64 points in the

constellation for each input symbol. This is a non-iterative receiver which we call as

"AWGN" in Fig. 2.6. The explicit computation of the LLR value of the qth bit of kth

symbol entered to the APP decoder LAWGN is

LAWGN(ck,q) = ln

(
∑

s∈Sq,0
p(yk|xk = s)

∑

s∈Sq,1
p(yk|xk = s)

)

q = 1, 2, . . . , b (2.53)

where

p(yk|xk = s) exp(−|yk − s|2/N0) (2.54)

and Sq,0 (Sq,1) denotes the subset of the modulation alphabet S with symbols whose

qth bit is 0 (1).
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It should be noted that we have observed non-ignorable performance gain (about 1 dB

as seen from Fig. 2.6) if the explained LMMSE receiver structure is used with 3 turbo

iterations for the mentioned 1-tap channel under 64-QAM signalling since its per-

formance improves through turbo iterations. The performance of the receiver called

AWGN corresponds to 1st iteration performance of LMMSE receiver. The reason for

the improving effect of turbo iterations is to use the bit interleaved coded modulation

even if there is no fading channel. Although this phenomenon is not observed with

smaller constellation sizes (there is no improvement resulted from turbo iterations

for 16-QAM and smaller constellation sizes), turbo decoding becomes important in

64-QAM where there are 6 bits in 1 symbol.

It is seen at 10−4 BER level that there is more than 4 dB and nearly 2 dB gain of

our method using (2.37) with respect to the ones in [16] and [38] respectively. The

approximated version of exact implementation of Wang Poor (WP) in (2.37) was

given in (2.39) which has a performance loss of 1 dB as compared to (2.37) and is

still better than other methods. Another important point to mention is that the method

in [16] leads to no improvement in performance as the number of turbo iterations

increases. Hence, the Wang Poor approach with the simplified version for the factor

graph structures is seen to be the best choice for M-QAM modulation among the

other proposed solutions. Therefore, we use this method for the LLR computation in

the rest of our study.
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Figure 2.6: Performance comparison of the extrinsic bit LLR calculation methods for LMMSE filter-
ing under 64-QAM signaling
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CHAPTER 3

FACTOR GRAPH BASED LMMSE FILTERING

GENERALIZED TO COLORED GAUSSIAN PROCESSES FOR

SISO ISI CHANNELS

In this section, we modify the factor graph structure presented in Chapter 2 under

white Gaussian noise for colored Gaussian processes so that the non-white statistics

of a random process are taken into account. The presented method here still preserves

the advantages of having a complexity linearly increasing with the block length and

the ease of incorporating the a priori information of the input signals whenever pos-

sible. First, we show that the proposed graph based algorithm under SISO ISI chan-

nels corresponds to conventional block LMMSE filtering for an AR Gaussian process

through extensive Monte Carlo simulations and the theoretical MSE values. Then,

we will present an approximation to an AR process so that it can be used with any

random process with a known (or estimated) autocorrelation function.

3.1 Factor Graph Based LMMSE Filtering for AR Gaussian Processes

We aim to obtain a reduced complexity graph based LMMSE filtering operation

which has the ability of including the statistics of the non-white Gaussian noise.

Hence, we start with the Gaussian domain where the optimal solution is the block

LMMSE filtering so as to provide comparative mean square error (MSE) perfor-

mances. First we present previously studied graph based LMMSE filter structure

which is applicable for any kind of stationary noise process resulting in a complexity

O(N3). Then we will introduce our proposed reduced complexity graph structure
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together with the comparative performance results.

3.2 System Model

We consider the system given in Fig. 3.1. The source sequence {x(k)} is generated

Estimator
(LMMSE Filtering)

Source
ISI Channel

n

r
x̂

x h

Figure 3.1: System Model in Gaussian Domain

according to a white ZMCSCG process with variance 1, i.e., x(k) ∼ CN(0, 1) and

the noise sequence {n(k)} is generated according to a pth order AR process as defined

in [7]

n(k) =

p
∑

j=1

a(j)n(k − j) + w(k), (3.1)

where w(k) is a white ZMCSCG process with variance σ2
w, i.e., w(k)∼CN(0, σ2

w),

and a(j)’s are known AR process parameters. The multipath channel effect which

is a commonly observed problem in wireless communications can be included in

the system model via an ISI channel gain vector of h with L taps. Then, the noisy

observation r(k) at time k is

r(k) =

L−1
∑

i=0

h(i)x(k − i) + n(k) k = 1, 2, . . . , N+L−1 (3.2)

where N is the length of the input sequence, Es is defined as the average received

signal energy, i.e. Es ,
∑L−1

i=0 E{|h(i)|2} and N0 is defined as the variance of the

zero-mean noise process, i.e., N0 , E{|n(k)|2}. Parameters N0, a(j)’s and σ2
w are

related by Yule-Walker equations [7] as

Rn(j) =











∑p
i=1 a(i)Rn(−i) + σ2

w for j = 0

∑p
i=1 a(i)Rn(j − i) for j > 0,

(3.3)
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where Rn(j) denotes the samples of the autocorrelation function of the AR noise

process n, i.e., Rn(j) , E{n(k)n(k+ j)∗} and N0 = Rn(0). Therefore, we keep N0

constant by adjusting a(j)’s and σ2
w accordingly.

The system described by (3.2) can also be written by matrix representation as follows

r =Hx+ n, (3.4)

H =







































h(0) 0 0 . . . 0

... h(0) 0 . . . 0

h(L−1) . . . h(0)
. . .

...

0
. . . . . . 0

...
. . . h(L−1) . . . h(0)

0 . . . 0
. . .

...

0 . . . 0 0 h(L−1)







































. (3.5)

where H is the convolution matrix of size (N + J) × N originating from the ISI

pattern of length L and J is defined as the channel memory, i.e. J , L− 1.

3.3 Graph Based LMMSE Filtering for Colored Processes

A graph based LMMSE filter for a system described via (3.4) was previously pro-

posed in [28]. The state space representation for the factor graph shown in Fig. 3.2

which is applicable for any kind of stationary noise process is

r =
N
∑

k=1

bk x(k) + n, (3.6)

where bk denotes the kth column vector of the channel convolution matrix H and

n denotes the noise vector both of which are length (N+J). Similar to the one in

Chapter 2, each branch on this graph corresponds to either a set of state variables in

vector form or a scalar state variable. For example, Sk represents the state variable

vector of (bkx(k)), i.e.,

Sk = [0 . . . 0 h(0)x(k) h(1)x(k) . . . h(J)x(k) 0 . . . 0]T , (3.7)
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which is non-zero between kth and (k + J)th entries, and n represents the noise state

variable vector of [n(1) n(2) . . . n(N+J)]T .

++ ++

......
r

n

x(1) x(2)

b2

S2S1

b1

x(N)

r̃

bN

SN

x(k)

bk

Sk

(←−mxk
,←−v xk

)(−→mxk
,−→v xk

)

Figure 3.2: General Factor Graph of LMMSE Filtering Operation

The block LMMSE filtering operation is implemented with the help of this graph

by applying the GMP rules in [28] which operates on the mean and variance val-

ues of the state variables similar to Chapter 2. The main purpose is to calculate the

a posteriori mean and variance values of the input source sequence by use of the in-

coming (−→mxk
,−→v xk

) and outgoing messages (←−mxk
,←−v xk

) resulting from the forward

and backward recursions as [28, 29]

vpostxk
=(−→v −1

xk
+←−v −1

xk
)−1, (3.8)

mpost
xk

=vpostxk
(−→v −1

xk

−→mxk
+←−v −1

xk

←−mxk
). (3.9)

The incoming messages −→mxk
and −→v xk

are determined by the existing a priori infor-

mation of the input signal and are taken as 0 and 1 respectively in the setting studied

here since x(k)∼CN(0, 1); i.e., the source is assumed to generate a white complex

Gaussian signal sequence. The outgoing messages ←−mxk
and ←−v xk

are generated by

using the GMP rules in [28] with the help of the observation vector r, statistics of the

noise process and the incoming messages. First, the auxiliary quantity W̃x defined

in [28] for the specified vector x is written for scalar state variable xk as

w̃xk
, (←−v xk

+−→v xk
)
−1

. (3.10)
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Using (3.10) together with the GMP rules which are listed below produces [28]

←−v xk
=w̃−1

xk
−−→v xk

(3.11)

=
(

bH
k W̃Sk

bk

)−1

−−→v xk
and (3.12)

w̃xk

←−mxk
=bH

k W̃Sk

←−mSk
(3.13)

←−mxk
=
(

bH
k W̃Sk

bk

)−1

bH
k W̃Sk

←−mSk
(3.14)

where the information related to the state variable Sk is

←−mSk
=←−mr̃ −

N
∑

j=1

bj
−→mxj

+ bk
−→mxk

and (3.15)

W̃Sk
=W̃r̃, for k = 1, 2, . . . , N. (3.16)

Similar to (3.10), the auxiliary quantity for r̃ can be written as

W̃r̃ ,

(−→
V r̃ +

←−
V r̃

)−1

, (3.17)

where r̃ is the noise free observation vector and its covariance matrix in forward

direction
−→
V r̃ is calculated as [28]

−→
V r̃ =

N
∑

j=1

bj
−→v xj

bH
j . (3.18)

Since noise n(k) is a zero-mean process with the autocorrelation matrix Rn in our

case, mean and covariance of r̃ are set as←−mr̃ = r and
←−
V r̃ = Rn in (3.15) and (3.17)

respectively.

The computational complexity of this algorithm is mainly determined by the matrix

inversion in (3.17) and approximately O(N3) assuming J ≪ N since
−→
V r̃ in (3.17)

is an (N+J)×(N+J) matrix. We use the performance results of this algorithm as

a benchmark to those of our proposed reduced complexity graph detailed in the next

section.
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3.4 Reduced Complexity Graph Structure for LMMSE Filtering under AR

Noise Process

The O(N3) complexity of the algorithm given in Section 3.3 can be decreased to an

O(NL2) complexity under the white noise scenario by separating the observation and

noise vectors into scalar elements which is indeed the graph representation explained

in Chapter 2. However, this separation does not work under a non-white noise process

since the observations conditioned on the input sequence are no longer independent.

Hence, there is no work proposing a reduced complexity factor graph for colored

noise case to the best of our knowledge.

On the other hand, the authors of [15] discuss the forward Kalman filtering operations

under an order-p Gaussian AR noise process and propose to concatenate the set of

state variables including the input sequence and the set of noise variables of length

p. Hence, the main basis of our method is to apply this idea to the graph based

LMMSE filtering operation studied in [17] so as to implement the LMMSE approach

having a computational complexity linearly increasing with N under colored noise.

In other words, we extend the state variable vector in the graph in [17] which is

composed of only the input sequence by joining the noise variables and we make the

necessary adjustments to preserve the smooth transition between the building blocks

of the graph. This idea is also to be identified in Fig. 3.3 later.

In our graph representation the observation at time k is the same as in (3.2). Hence,

the kth element of the observation vector r in (3.2) can be rewritten as

r(k) = h xk, (3.19)

where

h =[h(J) . . . h(1) h(0) 0 . . . 0 1](1×L+p), and (3.20)

xk =[x(k− J) . . . x(k−1) x(k) n(k−p+1) . . . n(k)]T . (3.21)

We use (3.19)-(3.21) to construct the graph structure which is depicted in Fig. 3.3.

The joint state variables denoted by xk needs to be updated within each building
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block. For the transitions, we define

G =



















0J×1 IJ 0J×1 0J×(p−1)

0 01×J 0 01×(p−1)

0(p−1)×1 0(p−1)×J 0(p−1)×1 Ip−1

0 01×J [ ——— a ——— ]



















,

(3.22)

F =



















0J×1 0J×1

1 0

0(p−1)×1 0(p−1)×1

0 1



















(3.23)

where a is defined as the AR parameter vector, i.e., a = [a(p) a(p−1) . . . a(1)], Ij

denotes the identity matrix of size j × j, and 0 denotes the all zero vector or matrix

with the specified sizes. The state variables are updated through the use of F and G

as follows:

xk = F [x(k) w(k)]T + yk, where (3.24)

yk = G xk−1. (3.25)

The operations in (3.19)-(3.25) can be followed on the factor graph given in Fig. 3.3.
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The message passing algorithm performed on the presented graph is exactly the same

as the one mentioned in Chapter 2. The a posteriori mean and variance values of

the state variables (mpost
xk

,Vpost
xk

) are obtained by (2.24)-(2.25) using the results of the

GMP rules given in Table 2.1-2.2 through forward and backward recursions explained

in Chapter 2.

The source signal related part is indeed included in the first L rows of the joint state

variable vector xk. Hence, the a posteriori mean and variance values of interest are

extracted (noise part is stripped out) after performing the calculations given in (2.24)-

(2.25). It should be pointed out that the mean value of the state variable r(k) is equal

to the kth observation and its variance is equal to 0. This value of 0 causes matrix in-

version problems, hence sufficiently small but non-zero number for proper operation

should be used. (10−5 is chosen judiciously in Matlab simulations). Another impor-

tant note is that the a priori mean and variance values for the input signal at time k

(mprior

x(k) ,vprior
x(k) ) are involved in the graph in a way that they are concatenated with the

mean and variance values of the zero mean white Gaussian noise w(k) as in (3.24).

Since x(k) and w(k) are independent random variables, the total a priori information

given to the kth building block (mprior
k ,vprior

k ) can be written as

m
prior
k =





mprior

x(k)

0



 , (3.26)

v
prior
k =





vprior
x(k) 0

0 σ2
w



 . (3.27)

The source is assumed to generate a white complex Gaussian signal sequence as

x(k)∼CN(0, 1), so we can say that mprior

x(k) = 0 and vprior
x(k) = 1 in (3.26) and (3.27).

The complexity of this algorithm is also determined similarly to Chapter 2. Main

contribution is caused by the matrix inversions in (2.24)-(2.25) resulting in O((L+

p)3) where p is the number of AR parameters of the noise process. However, these

operations are to be performed once for every L building blocks owing to the shifting

structure of the joint state variable vector xk over building blocks. Since there are N

building blocks, the overall complexity is O(N(L+p)3/L) which is approximately

O(N(L+p)2) whereas the algorithm proposed for white noise [17] and explained

in Chapter 2 has O(NL2) complexity. We use the performance results of the factor
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graph in Chapter 2 which operates under the assumption that the noise is a white

random process so as to make a comparison with the presented graph here.

It should be noted that our method provides a computational complexity linearly in-

creasing with N for a non-white Gaussian AR noise process. Besides, it is still possi-

ble to use this approach for other non-white noise processes through an approximation

as detailed in Section 3.7.

3.5 Theoretical MSE Computation

For the system described in (3.2) and Fig. 3.1, theoretical MSE values are useful to

verify the Monte Carlo simulation results to be shown in the next section. Therefore,

we will compute the MSE values for both the conventional block LMMSE filter in

which the non white statistics of noise process are taken into consideration and the one

which operates under white Gaussian noise process assumption. It should be noted

that the MSE values obtained here are also corresponds to the MSE values calculated

at the first iteration in a coded communication system.

For the matrix representation given in (3.4), the estimated symbol vector after the

LMMSE filtering operation can be written as

x̂ = Wr. (3.28)

In (3.28), W represents the LMMSE coefficient matrix which is written in default of

a priori information as [22]

W = Cxr (Cr)
−1 , (3.29)

where the covariance matrix Cr of the observation vector r and the cross covariance

matrix Cxr of the input vector x and the observation vector are as follows in consid-

eration of the zero mean noise process and the input signal with Cx = IN×1

Cr =HHH +Rn, and (3.30)

Cxr =HH ; (3.31)

and Rn is given by (3.3) for the AR Gaussian noise process discussed here.
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MSE left as the residue from the LMMSE filter which uses the statistics of the colored

noise process (MSEc) will be [22]

MSEc =E{|Wr− x|2} (3.32)

=
(

I+HH R−1
n

H
)−1

.

On the other hand, LMMSE filter which assumes that the noise is a white Gaussian

random process takes the autocorrelation term Rn in (3.30) as identity matrix I, so

the LMMSE coefficient matric under this assumption, Wwa, will be

Wwa = HH
(

HHH + I
)−1

. (3.33)

Then, its MSE (MSEwa) can be written as

MSEwa = E{|Wwa r− x|2} (3.34)

=HH
(

I+HHH
)−1 (

Rn +HHH
) (

I+HHH
)−1

H

− 2HH
(

I+HHH
)−1

H+ I.

We use MSEc and MSEwa to confirm the simulation results of the factor graph

structures obtained by Monte Carlo method. Moreover, we will compare MSEc and

MSEwa asymptotically to investigate how the colored statistics of noise process af-

fect performance results.

3.6 Simulation Results

In this section, performance results of the proposed LMMSE filtering method de-

scribed in Section 3.4 for the system given in (3.2) with the input sequence length

of N = 1000 are presented in terms of MSE in Fig. 3.4. For comparison, the per-

formance results of the general graph based LMMSE filtering which corresponds to

block LMMSE filter (optimal solution for our case) as mentioned in Section 3.3 and

LMMSE filtering method [17] described in Chapter 2 under the assumption of a white

Gaussian noise process are also given for the same configuration. The simulations are

conducted for the noise processes of first order AR (p = 1) with parameters a(1)=0.9

and a(1)=0.98 respectively for a multi-path static channel of
√

Es/6 [1 2 0 0 0 1].
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Figure 3.4: Performance of the Proposed Factor Graph Based LMMSE Filter under AR Gaussian
Noise Process (Static Channel)

As verified from Fig. 3.4, our proposed method is equivalent to the block LMMSE

filter. In addition, it can be seen that the factor graph based LMMSE equalizer in [17]

under the white noise assumption performs worse than the methods in which the

non-white statistics of the noise process are taken into consideration as expected.

Moreover, we observe that the performance of the proposed method improves with

increasing a(1) parameter and the improvement compared to the one with white noise

assumption also increases because our method uses the correlation information of the

noise process which is higher for a(1)=0.98. Consequently, although the performance

loss of the white noise assumption may be ignored for the lower correlations of the

noise process, the proposed factor graph seems to be a good choice with its reduced

complexity and higher performance for applications involving high noise correlations

in some communication and signal processing problems.

Fig. 3.5 shows the performance results of the same structures under a time varying

setting. Simulations are performed for the same configurations as the ones in the

static channel scenario except the channel which has independent Rayleigh fading
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taps here. The MSE performances averaged over random channel realizations are

obtained through the Monte Carlo method. The power delay profile of the channel is

also the same as the one in the static channel scenario and the total power of channel

taps are normalized, i.e.,

E{|hj|
2} =



















Es/6, j = 1, 6

2Es/3, j = 2

0 otherwise

. (3.35)

As seen from Fig. 3.5, performance results of the proposed structure compared to

the ones with white noise assumption (for both a(1) = 0.98 and 0.9) are similar to

the results in the static channel scenario. Hence, using such a method in which the

statistics of non-white noise is taken into consideration will be advantageous in time

varying channels as well.
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Figure 3.5: Performance of the Proposed Factor Graph Based LMMSE Filter under AR Gaussian
Noise Process (Rayleigh Fading Channel)

Finally, we would like to compare those results obtained by the Monte Carlo method

in Fig. 3.4 with the theoretical MSE values computed for exactly the same scenario
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using (3.32), (3.34) in a wider SNR region to observe the asymptotic behavior of our

proposed factor graph and the one with white noise assumption. First of all, the re-

sults in Fig. 3.6 and 3.7 confirm our simulation results in Fig. 3.4. Moreover, there

are two important results which can be seen from Fig. 3.6 and 3.7. Firstly, LMMSE

solution under white noise assumption asymptotically converges to the LMMSE so-

lution which includes the non white statistics of noise process for both a(1) = 0.9

and a(1) = 0.98 scenarios. The second critical point is that as the noise correlation

decreases, the SNR loss which results from ignoring the non white statistics of noise

decreases. In other words, LMMSE solution under white noise assumption converges

faster for a(1) = 0.9 which has a lower correlation than a(1) = 0.98. Hence, neglect-

ing the colored characteristics of noise process may not cause degraded performance

results all the time. There is a tradeoff between the AR parameter number p which in-

creases the computational complexity and the performance gain it provides to include

those p parameters in the factor graph representation. Therefore, the advantages of

using the proposed algorithm depend on the application.
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Figure 3.6: Factor Graph Based LMMSE Filter Performances under AR Gaussian Noise Process with
a(1)=0.9 as Compared to Theoretical Curves
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3.7 Generalization to Other Processes

Although we propose a new graph based LMMSE filter for a specific type of non-

white noise process in Section 3.4, it is still possible to use this method for any kind

of stationary noise process by means of an approximation. In other words, any wide-

sense stationary noise process with known autocorrelation function can be approxi-

mated to an AR process by using the Yule-Walker equations [7] given in (3.3).

By choosing a proper value of p and utilizing the first p+1 samples of the original

autocorrelation function Rn(j) through (3.3), approximate AR process parameters,

a(1), a(2), . . . , a(p), and the variance of the additive white Gaussian noise term in

(3.1), σ2
w, can be obtained as follows. The matrix representation of (3.3) can be

written similar to [2] as

v =Rnnã where (3.36)

v = [Rn(1) Rn(2) . . . Rn(p)]
T , (3.37)

ã = [a(1) a(2) . . . a(p)]T and (3.38)
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Rnn =



















Rn(0) Rn(−1) . . . Rn(−p+ 1)

Rn(1) Rn(0) . . . Rn(−p+ 2)

...
...

. . .
...

Rn(p− 1) Rn(p− 2) . . . Rn(0)



















. (3.39)

The AR parameters can be found by using (3.36) as

ã = R−1
nnv. (3.40)

With the help of the resultant AR parameters ã from (3.40) and the samples of the

original autocorrelation function, σ2
w can be computed by

σ2
w = Rn(0)−

p
∑

i=1

a(i)Rn(−i). (3.41)

However, the matrix inversion in (3.40) may cause inaccurate results due to ill condi-

tioning of autocorrelation matrix Rnn when the parameter number p is great [2, 20].

This can be seen by the determinant of Rnn which given in [2, 20] as follows

|Rnn| =

p−1
∏

m=0

σ2
m, (3.42)

where σ2
m corresponds to the driving variance of the innovation term when m-order

AR process model is used. Hence, the determinant value |Rnn| is getting closer to

0 if the values of σ2
m are very small with larger p due to product operation. In other

words, Rnn is about to be singular in such a case which may results in unavoidable

errors in the matrix inversion in (3.40). To prevent this phenomena, it was proposed

to add a small ǫ value to the diagonal entries of Rnn, i.e. to Rn(0) [2, 20] so that

the ill conditioning of Rnn is tried to be fixed by increasing the ratio of its smallest

eigenvalue to the greatest one. The value of ǫ is stated to be chosen judiciously. The

presented method here is also used in the example application to be given in the next

chapter.
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CHAPTER 4

FASTER THAN NYQUIST SIGNALING: AN APPLICATION

FOR EQUALIZATION UNDER COLORED NOISE PROCESS

In this section, we present an example application using the proposed method in

Chapter 3, FTN signalling, which inherently involves a noise process with non-white

statistics. First, we describe the system model for FTN signalling and present the ef-

fects of ISI and colored noise on the equivalent model. Then, we show how to adjust

our proposed factor graph based LMMSE equalizer depicted in Chapter 3 to cope

with both the ISI effect and the non-white statistics of the noise process induced by

FTN signaling.

4.1 System Model

FTN signalling is a technique which provides to increase the spectral efficiency by

higher transmission rate beyond the Nyquist criterion in the same spectral shape con-

suming the same energy per bit [1]. In the classical scenario, T -orthogonal pulse

shape which prevents ISI after matched filtering operation is used. On the other hand,

in FTN signaling, the pulses can be packed by violating the Nyquist rate without

decreasing the minimum Euclidean distance (d2min) in the signaling space [37]. How-

ever, there is a limit on the minimum symbol time until which d2min is not below the

value of the case with orthogonal pulse shape. It is called the Mazo limit [36].

Since FTN signaling has more symbols to be packed in the time interval T than the

conventional orthogonal signaling, there exists intentional ISI which causes an in-

crease in the receiver complexity. In addition, the sampling rate beyond the Nyquist
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criterion at the receiver side brings on colored noise process. To observe those effects

mathematically, we present the system model including the whole block diagram of

the transmitter and the receiver structures for FTN signaling under AWGN channel

in Fig. 4.1. We consider a baseband communication system using complex valued

Bits
Info

Interleaver

Equalizer Deinterleaver

APP
Decoder

Interleaver

Modulate

Turbo Iterations

to rRC

Bit
Decisions

Data rate
rRC filter

cut off

Matched filter

Modulate

Demodulate

Conv. Code
y

w

kτT

= 1
τT

x = 1+α
2T

Figure 4.1: System Model

constellations M-QAM from an alphabet S. As given in Fig. 4.1, at the transmitter

side, an information symbol xm which is modulated from b coded information bits

is passed through a T -orthogonal root-raised-cosine (rRC) pulse shaping filter p(t),

where m is the symbol index. The average symbol energy is Es, i.e., Es = E{|xm|
2}.

The signaling rate is 1/τT ; in other words, each symbol is transmitted in a time du-

ration of τT . Here, τ is the packing ratio of symbols which ranges between 0 and 1.

If τ = 1, system does not suffer from ISI since the pulse is T-orthogonal. ISI pat-

tern arising from FTN signaling occurs when τ < 1 and as τ decreases, transmission

rate increases. The excess bandwidth of rRC filter is denoted by α and we assume

p(t) is of unit energy. The received signal under the AWGN channel is written as

follows [37]:

y(t) =

∞
∑

m=−∞

xmp(t−mτT ) + w(t), τ < 1 (4.1)

where w(t) represents aditive white zero mean circularly symmetric complex Gaus-

sian noise with average power N0, i.e., w(t) ∼ CN(0, N0). The signal at the kth

discrete time instant at the output of the matched filter after sampling with period of
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τT will become

rk =

∫ ∞

−∞

y(t)p∗(t− kτT )dt. (4.2)

Inserting the expression for y(t) in (4.1) gives

rk =

∞
∑

m=−∞

xmh̃[m− k] + ñk, (4.3)

where

h̃[m− k] =

∫ ∞

−∞

p(t−mτT )p∗(t− kτT )dt (4.4)

and

ñk =

∫ ∞

−∞

w(t)p∗(t− kτT )dt. (4.5)

The autocorrelation of the noise sequence ñ is then

E {ñ[m]ñ∗[k]} = N0h̃[m− k]. (4.6)

As mentioned above, FTN results in unavoidable ISI and non-white noise samples

which in turn worsen the error performance and increase the receiver complexity.

What we propose to overcome these issues is a factor graph based LMMSE equaliza-

tion method in which the non-white noise is taken into consideration while obtaining

higher transmission rate with enhanced performance. We use the equalizer structure

explained in Chapter 3 through an approximation to AR noise process as given in Sec-

tion 3.7. Our proposed equalizer can be easily used in an iterative receiver including

an APP decoder as given in Fig. 4.1.

4.2 State Space Representation of the Proposed Factor Graph for FTN Sig-

nalling

FTN signalling inherently involves both precursor and postcursor ISI as one can

deduct from (4.4). We make use of the factor graph structure shown in Fig. 3.3 and

explained in Section 3.4. However, we need to modify the joint state variable vec-

tor xk in Section 3.4 so that the postcursor ISI is also included. In the factor graph

representation for FTN signalling, it is assumed that the discrete time system model
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described by (4.3) can be approximated with 2L + 1 channel taps, i.e., the approxi-

mated channel coefficient vector h is denoted by

h = [hL hL−1 . . . h0 . . . h−L], (4.7)

and the noise process ñ is approximated to a Gaussian AR process n with p parame-

ters as in (3.1), i.e.,

nk =

p
∑

i=1

aink−i + γk (4.8)

where ai’s are AR parameters and γk is a white ZMCSCG process with variance σ2
γ .

The approximation to a p-order AR process n is performed by Yule Walker equations

with the diagonal loading operation as detailed in Section 3.7.

Consequently, the kth element of the observation vector r can be approximated by

rk =h [xk−L xk−L+1 . . . xk . . . xk+L]
T + nk, (4.9)

=h xT
k + γk, where (4.10)

h =[h 0 . . . 0 1](2L+p+1)x1, (4.11)

xk =[xk−L . . . xk . . . xk+L nk−p+1 . . . nk]
T . (4.12)

Although the extension of the transition matrices F and G to this scenario is straight-

forward, we present these matrices for completeness as below

G =



















02L×1 I2L 02L×1 02L×(p−1)

0 01×2L 0 01×(p−1)

0(p−1)×1 0(p−1)×2L 0(p−1)×1 Ip−1

0 01×2L [ ———- a ———- ]



















, (4.13)

F =



















02L×1 02L×1

1 0

0(p−1)×1 0(p−1)×1

0 1



















(4.14)

where a is defined as the AR parameter vector, i.e., a = [a(p) a(p−1) . . . a(1)], Ij

denotes the identity matrix of size j × j, 0 denotes the all zero vector or matrix with
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the specified sizes. The update of the state variables occurs through the use of F and

G as follows:

xk =F [xk+L γk]
T + yk, where (4.15)

yk =G xk−1. (4.16)

Overall, we construct the graph based equalizer structure for FTN signaling on the ba-

sis of the idea presented in Chapter 3 by using the state space representation described

in (4.9)-(4.16). Since the graph structure and the GMP algorithms to be applied on

this graph are provided in Chapter 3, we do not repeat these details here. The only

difference here is in the state variable vector xk and consequently in the state space

model which are reorganized in (4.9)-(4.16) in a way to include the postcursor ISI.

For the transitions between our graph based equalizer (Gaussian domain) and the

APP decoder (binary, i.e., bit LLR domain), we use the LLR exchange algorithms

explained in Section 2.2.3.

In FTN signalling, we utilize two approximations so that our proposed graph based

solution is not equivalent to LMMSE filtering:

• Assumption of a finite length ISI channel and

• Approximation to Gaussian AR noise process.

However, the presented approach still provides good performance results and is an at-

tractive alternative particularly for higher order modulation alphabets owing to its

reduced complexity. On the other hand, it should be noted that the graph based

LMMSE [17] described in Chapter 2 under white noise assumption may perform

very close to the proposed approach in this section when the correlation of the noise

process is very low. Depending on the noise correlation and the number of the AR pa-

rameters used for the approximation on the graph in Fig. 3.3, it should be determined

whether it is advantageous or not to take the noise statistics into account.
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4.3 Complexity Comparison to Other Studies in the Literature

In FTN signaling, trellis based algorithms such as the Viterbi algorithm [33] and

BCJR [3] are frequently used in the literature due to the existence of ISI. However,

the trellis becomes extremely large when there is a large channel delay spread caused

by small τ in equivalent model and/or whenever a high-order constellation is utilized.

There are recently proposed reduced complexity algorithms in [39] and [32]. In [32],

M-BCJR algorithm based on searching only a subset of the whole trellis is analyzed.

Its approximate complexity is O(MN) with the additional complexity due to the

use of a whitening filter, where M is the number of trellis states visited for each

symbol. The required M value for a sensible BER performance usually increases

exponentially with constellation size M and number of ISI taps. Moreover, there

needs to be an optimization of the whitening filter for the M-BCJR algorithm as

mentioned in [32] which may lead to a problem for time selective fading environments

with this challenging optimization requirement. In [39], a frequency domain MMSE

equalization method with a complexity of O (N log(N)) is proposed for uncoded

FTN systems without any adaptation to coding schemes. Because of the absence of

a coding scheme and a turbo iterative structure using soft information of bits, it is

observed that there is 3-5 dB performance loss in BER performance even above the

Mazo limit (higher τ than τ ∗). In addition, frequency domain MMSE equalization

causes a decrease in efficiency due to the cyclic prefix. Furthermore, one should

remember that the previously studied graph given in Section 3.3 may not be the first

choice either due to its complexity of O(N3). However, it can still serve as a means to

put a lower bound on our proposed reduced complexity graph approach since it uses

the noise statistics directly without any approximations.

On the other hand, the complexity of the presented graph approach in Section 4.2 is

O(NL2) where L is the sum of the number of ISI taps and the parameter number (p)

used in the approximation of the noise process to an AR process, i.e., L = 2L+ p+1

using the result of Section 3.4. It should be noted that L does not change with the

constellation size and scales up only linearly with the ISI length. Moreover, this

graph approach can easily be adapted to the time selective fading environments by

modifying the channel taps in the building blocks.
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4.4 Simulation Results

In this section, we present our performance results of FTN signaling in terms of bit

error rate (BER) for different scenarios. In all schemes, a convolutional code with

code rate 1/2 and generator polynomial (7, 5) is used and we assume that a rRC filter

with α = 0.3 and time delay of 8T is implemented. To make a comparison, we also

provide the performance results of the same convolutionally coded system using the

conventional orthogonal transmission over the AWGN channel for which the receiver

explained in Section 2.3 by (2.53)-(2.54) is operated. It is called as "AWGN" in

Fig. 4.2-4.7.

First we start with BPSK signalling. The Mazo limit under the described scenario for

BPSK signalling is 1/3 [36] where the simulation results for τ = 0.5 are presented

in Fig. 4.2-4.3. This means two times higher spectral efficiency as compared to no

FTN signalling case, i.e., τ = 1. In the simulation settings, uncoded 1000 bits are

transmitted over AWGN channel. With the given α and the time delay values, τ = 0.5

results in 65 inherent ISI taps which is truncated to 15 taps in the the approximated

system model given in (4.7), i.e., L = 7 for the reduced graph based LMMSE equal-

izer described in Section 4.2. The approximation of the noise to an AR process is

performed according to (4.6) with 5 parameters, i.e., p = 5. For the diagonal load-

ing mentioned in Section 3.7, ǫ = 10−2 value is chosen judiciously. The number

of turbo iterations is 5 and the scaling factors δ, ρ which are multiplied by the LLR

values at the equalizer and decoder output respectively are chosen by trial and error

and specified in Fig. 4.2-4.3. Similar scaling operations are also encountered in many

iterative receiver structures in the literature which prevents overconfident messages

and improves the performance of the receiver [9,14,19,32]. The performance results

of this proposed structure with respect to iterations is shown in Fig. 4.2. As verified

from Fig. 4.2, 4 or 5 iterations are enough to obtain a performance close to the no

FTN signalling case which is referred to AWGN.

Fig. 4.3 shows the comparative results of alternative equalizer structures for the same

τ value. The general graph based LMMSE equalizer described in Section 3.3 is pre-

sented as a lower bound to our method since it does not truncate the ISI channel vector

and uses the statistics of noise process directly without any approximation. It is op-
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erated by sending 750 uncoded bits due to its high complexity. In addition, we also

present the performance results of the graph detailed in Chapter 2 under white noise

assumption which is also operated with the truncated 15-tap channel. For these two

LMMSE equalizer structures, the number of turbo iterations is also 5 and the chosen

scaling factors δ, ρ are also specified in Fig. 4.3.

In addition, the performance of theM-BCJR algorithm in [32] for the same scenario

under BPSK signaling forM = 4 andM = 10 is presented except thatM-BCJR

in [32] is operated under 6000 uncoded bits and 20 iterations. It is seen from Fig. 4.3

that both the M-BCJR with M = 10 and the proposed graph based equalizer in

which the noise statistics are taken into consideration performs very close to no ISI

case below BER value of 10−3. On the other hand, the graph detailed in Chapter 2

under white noise assumption has close performance to others such that 0.5 dB SNR

loss disappears below the BER value of 10−4 since the noise correlation for τ = 0.5

is small.

To promote the proposed method, we present a scenario which includes higher noise

correlation in order to see the difference between the performance of our proposed

graph and the one operated under a white noise assumption. Fig. 4.4 shows the re-

sults for τ = 0.4 which results in 81 ISI taps that are truncated to 19 taps in graph

implementation. 3000 uncoded bits are transmitted and 9 iterations are performed

for both equalizers. For the proposed method, AR noise approximation method is

run with p = 5 and ǫ = 10−2 values. As seen from Fig. 4.4, our method has 1 dB

SNR gain compared to the graph with white noise assumption at BER value of 10−4.

It is expected to see an increase in the difference between those two as the τ value

decreases due to higher noise correlation. However, the performance of the LMMSE

equalizer is observed to deteriorate for smaller τ values since it is a sub-optimal re-

ceiver which degrades under severe ISI channels as mentioned in [17]. This can also

be realized from the convergence rates of the proposed method to AWGN curve for

τ = 0.5 and 0.4 in Fig.s 4.3-4.4. As the ISI severity increases, it approaches to

AWGN performance later.

To observe the effect of the number of parameters used in the AR process approxima-

tion explained in Section 3.7, we compare the performance results of our proposed
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graph structure under the same scenario as the one in Fig. 4.4 except AR parameter

number p which is used in the modelling of the noise process and involved in our state

space model as given in (4.12). As shown in Fig. 4.5, increasing the number of AR

parameters improves BER performance since it provides better approximation to the

original autocorrelation function. However, there is no significant benefit to choose

greater number for p after some point. For example, p = 5 performs almost the same

as p = 9 in terms of BER. On the other hand, greater p value costs higher computa-

tional complexity as detailed in Section 4.3. Hence, p should be chosen small enough

to provide the desired performance. Through simulations, we have chosen p = 5 by

trial and error because we have observed that it resulted in better BER performance

than p < 5 values. On the other hand, scenarios for p > 5 do not provide any critical

advantage since the samples of the autocorrelation function corresponding to larger p

values are getting smaller.

Finally, we would like to consider higher constellation sizes for which LMMSE equal-

ization has complexity advantage over trellis based methods such as M-BCJR. It

should be noted that there is no performance characterization of the proposed meth-

ods in the literature for FTN Signaling under high order constellations within the

knowledge of the authors. One reason may be the exponentially increasing compu-

tational complexity of those methods with the constellation size. For M-QAM sig-

nalling simulations here, we use both of our proposed Wang Poor based extrinsic LLR

computation methods (exact and approximated versions) explained in Section 2.2.3.

The simulations are conducted for Gray encoded 16-QAM signaling under τ = 0.67

which results in a 61-tap ISI channel. The Mazo limit for this case is an open research

problem to the best of our knowledge. Our proposed graph structure uses the trun-

cated channel coefficient vector including 11 taps and AR process approximation is

made with p = 5 and ǫ = 0.05 values. Uncoded 4000 bits are transmitted.

For this setting, Fig. 4.6 shows the comparative performance results of our LMMSE

equalizer and the one operated under white noise assumption which both use the exact

Wang Poor based LLR exchange algorithm given by (2.37) using 5 turbo iteration. It

should be noted that there is no need to use scaling factors to improve the performance

when the exact Wang Poor algorithm given in (2.37) is implemented. As seen from

Fig. 4.7, the BER performance of the proposed structure is getting closer to no ISI
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case particularly below BER of 10−3 and has 0.5 dB SNR gain compared to the graph

operated under white noise assumption upto BER value of 10−4. This is not a great

SNR gain since the noise correlation here is small due to the use of large τ value. It

is also interesting to observe that the 16-QAM FTN signaling case with these settings

has the same PSD shape and transmission rate as (7, 5) coded ordinary 64-QAM

modulation with the same pulse shape filter. However, the performance of the FTN

signaling with the proposed graph based LMMSE method has 4 dB SNR advantage

with respect to the (7, 5) coded 64-QAM modulation with no FTN below BER of

10−3.
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Signaling with τ = 0.67 - 16-QAM Signalling (Exact WP Based LLR Computation). Note: Spectral
efficiencies are the same.

For the same setting, Fig. 4.7 presents the results for the approximated version of the

Wang Poor based LLR exchange algorithm given by (2.39) using 7 turbo iterations.

We have observed that similar performances as in Fig. 4.6 can be obtained by applying

scaling operations to the LLR output values which improves the BER performance.
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This approximated version provides a small decrease in computational complexity

per turbo iteration. However, it will be more practical to use the exact one since

it eliminates the necessity of finding the best scaling factors by trial and error for

each different configuration and the approximated version needs a few more turbo

iterations to reach the same performance for this scenario.
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Figure 4.7: Comparative Performance Results of Reduced Graph Based LMMSE Equalizers for FTN
Signaling with τ = 0.67 - 16-QAM Signalling (Approximated WP Based LLR Computation). Note:
Spectral efficiencies are the same.

4.5 Discussion

In this section, we present an example application including non-white noise process

for which we propose the reduced complexity factor graph based LMMSE equalizer.

One important point is that any colored random process should be approximated to

an AR process with p parameters to be appropriate for the state space representation

of the graph as explained in Chapter 3. As explained in Section 4.4, increasing p pro-

vides better performance results upto a point. It is observed that there is no significant
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benefit to use much more parameters in approximation. Besides, adding more AR pa-

rameters to the joint state variable vector in the state space representation causes an

increase in complexity.

Therefore, the proposed method here will be attractive for applications which require

less parameters for approximation to AR process and involve higher correlation. In

such cases, greater SNR gains as compared to the LMMSE equalizer performed under

white noise assumption could be obtained by a small increase in complexity. On the

other hand, in reverse situations, performing under white process assumption may be

reasonable. Hence, it should be determined depending on the application whether the

noise statistics are taken into consideration or not.

Regarding FTN Signalling, it may be a beneficial alternative to increase spectral effi-

ciency for some communication systems where high data rates are required. However,

it is mentioned in the studies in the literature and also observed through our study that

reaching high rates even near the Mazo limit results in severe ISI which costs more

complex receiver structures.
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CHAPTER 5

FACTOR GRAPH BASED LMMSE EQUALIZER FOR MIMO

ISI CHANNELS

In this chapter, we modify the factor graph based equalizer for SISO ISI channels

mentioned in Chapter 2 to MIMO ISI systems under white Gaussian noise so as to

provide a reduced complexity time domain equalizer alternative to be run in fast fad-

ing channels. After defining the system model for MIMO ISI channel scenario, we

present the state space structure of the enhanced factor graph together with its com-

plexity analysis. Finally, performance results of the proposed algorithm will be pro-

vided as compared to a genie-aided matched filter bound.

5.1 System Model

We consider a MIMO single-carrier communication system which suffers from the

ISI effect due to the wireless nature of the channel. The block diagram of the dis-

cussed transmitter and receiver structures are given in Fig. 5.1. At the transmitter

side, after the coded information bits are interleaved and modulated according to an

M-QAM alphabet S, modulated symbols are split to Nt transmit antennas and sent

over the ISI channel which occurs between each transmit and receive antenna. At the

receiver side, a turbo structure including the proposed graph based LMMSE equal-

izer and APP decoder is operated by use of observations coming from Nr receive

antennas.
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Figure 5.1: System Model

We can model the given discrete-time system at time k as

yk =
L−1
∑

i=0

Hixk−i + nk ; k = 1, 2, . . . , N + L− 1, (5.1)

Hi =



















h11(i) h12(i) . . . h1Nt
(i)

h21(i) h22(i) . . . h2Nt
(i)

...
...

...
...

hNr1(i) hNr2(i) . . . hNrNt
(i)



















Nr×Nt

; (5.2)

where L is the number of channel taps; N is the transmission block length; Hi is the

Nr × Nt channel matrix at time i; xk is the transmitted symbol vector of size Nt at

time k; yk is the observation vector of size Nr at time k and nk represents additive

white circularly symmetric complex Gaussian noise vector with zero mean and co-

variance N0INr
at time k, i.e., nk ∼ CN(0, N0INr

). The input symbol sequence is

assumed to include independent, identically distributed (i.i.d.) random variables and

the transmitted symbol vector xk at time k is

xk = [xk,1 xk,2 . . . xk,Nt
]T k = 1, 2, . . .N (5.3)

where xk,l is the symbol transmitted at the lth transmit antenna at time k and its

average energy is defined as Es, i.e., E{|xk,l|
2} , Es. For notational convenience,

we define J,L − 1 which denotes the memory of the channel.
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The matrix representation of (5.1) could be written as below by combining all obser-

vations

y =Hx+ n, where (5.4)

y =












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






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Nr(N+J)×1

, n =
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, (5.5)
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
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NtN×1

. (5.6)

For the described system model, the details of the proposed equalizer structure are

presented in the subsequent section.

5.2 LMMSE Filtering Based on Reduced Complexity Factor Graph Enhanced

for MIMO ISI Systems

For the system described in Fig. 5.1, the observation vector at time k given in (5.1)

can be rewritten as

yk = H xk + nk ; k = 1, 2, . . . , N + J (5.7)

where

H = [HJ HJ−1 . . . H0], and (5.8)

59



xk =




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
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NtL×1

. (5.9)

We use (5.7)-(5.9) to construct the state space graph representation of the MIMO ISI

channels similar to the SISO ISI channel [17] which is detailed in Chapter 2. For

transition to the next time instant, k + 1, we define

G =





0NtJ×Nt
INtJ

0Nt×Nt
0Nt×NtJ





NtL×NtL

, (5.10)

F =





0NtJ×Nt

INt





NtL×Nt

(5.11)

where 0 denotes the all zero matrix of the specified size and Ij denotes the identity

matrix of size j. It can be seen that

xk+1 = F xk+1 + zk+1, where (5.12)

zk+1 = G xk (5.13)

=

























xk−J+1

xk−J+2

...

xk

0Nt×1

























.

The factor graph representation corresponding to (5.7)-(5.13) can be seen in Fig. 5.2.

The message passing algorithm performed on the presented graph is exactly the same

as the one mentioned in Chapter 2. Hence, we just refer to the equations and tables

instead of repeating them. The a posteriori mean and variance values of the state

variables (mpost
xk

,Vpost
xk

) are obtained by (2.24)-(2.25) using the results of the GMP

rules given in Table 2.1-2.2 through forward and backward recursions explained in

Chapter 2.
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Figure 5.2: Factor Graph of MIMO ISI Channel

The diagonal elements of Vpost
xk

indicate the a posteriori variance values of the sym-

bols sent from all transmit antennas between the time instants k − J and k as given

by

V
post
xk

=



















Vpost
xk−J

. . . . . .

. . . Vpost
xk−J+1

. . .

. . .
. . . . . .

. . . . . . Vpost
xk



















, where (5.14)

diag{Vpost
xk
} = [diag{Vpost

xk−J
} diag{Vpost

xk−J+1
} . . . diag{Vpost

xk
}], (5.15)

diag{Vpost
xk
} = [vpostxk,1

vpostxk,2
. . . vpostxk,Nt

]. (5.16)

In a similar way, the elements of mpost
xk

includes the a posteriori mean values of the

state vector xk as

m
post
xk

=































mpost
xk−J

mpost
xk−J+1

...

mpost
xk































, where mpost
xk

=































mpost
xk,1

mpost
xk,2

...

mpost
xk,Nt































. (5.17)
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Since the elements of the state vector xk is shifted by Nt symbols through the way to

xk+1, this shift is also seen at the output mean vectors and variance matrices as

V
post
xk+1

=



















Vpost
xk−J+1

. . . . . .

. . . Vpost
xk−J+2

. . .

. . .
. . . . . .

. . . . . . Vpost
xk+1



















, mpost
xk+1

=



















mpost
xk−J+1

mpost
xk−J+2

...

mpost
xk+1



















. (5.18)

It should be noted that the symbols sent from different transmit antennas are assumed

to be independent. So, the a priori information related to xk is involved in the factor

graph as

m↓
xk

, mprio
xk

=
[

mprio
xk,1

mprio
xk,2

. . . mprio
xk,Nt

]T

, (5.19)

V↓
xk

, Vprio
xk

=



















vprioxk,1
0 . . . 0

0 vprioxk,2

. . .
...

...
. . . . . . 0

0 . . . 0 vprioxk,Nt



















, (5.20)

where mprio
xk,l

and vprioxk,l
are the a priori mean and variance values of the symbol trans-

mitted at the kth time instant from the lth transmit antenna. The transitions between

the Gaussian and binary bit LLR domains are provided through a straightforward

extension of the algorithms detailed in Section 2.2.3 to MIMO systems.

For the complexity analysis, we need to refer to the GMP rules explained in Chapter 2

once more since they are used in exactly the same way on the enlarged graph structure

for the equalization of MIMO ISI channels. The major contribution to the complex-

ity of the proposed equalizer structure is due to the matrix inversions in (2.24-2.25),

(2.20) and (2.23). In each building block, (2.20) and (2.23) need to be calculated

in a complexity of O(N3
r ) since they involve matrix inversions of size Nr thanks to

the applied matrix inversion lemma. On the other hand, (2.24) and (2.25) are ap-

plied only once for every L building blocks with a complexity of O(N3
t L

3) owing

to the shifting property of the state vectors as explained in (5.18). Hence, it corre-

sponds to O(N3
t L

2) for each building block, i.e., each time instant, while there are
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N building blocks in our system. Therefore, the overall complexity is approximately

O(N · max{N3
r , N

3
t L

2}) which is equal to O(N · N3
t L

2) in most of the cases. As

a result of this discussion, the overall complexity per symbol per transmit antenna

is about O(N2
t L

2) which is reasonably lower than both the block LMMSE filtering

operation with a complexity O(N2N2
t ) and the other time domain equalizer struc-

tures among which the least complex one has O(N2
t L

3) complexity as mentioned in

Section 1.

5.3 Simulation Results

We conduct our simulations under a quasi-static Rayleigh fading channel scenario

with independent ISI taps, i.e., each tap is constant over one block and change in-

dependently from block to block. This model is also referred to as the block fading

model. The ISI channel between each transmit-receive antenna pair has identical,

equal power delay profile, i.e., all L taps have equal energy as given by

E{|hij(k)|
2} = 1/L (5.21)

where hij(k) is the kth channel tap between the jth transmit antenna and ith receive

antenna. The simulations are based on the system model in Fig. 5.1 with a random

interleaver and a rate 1/2 convolution code whose generator matrix is (7, 5)8 under the

modulation types of BPSK, 4-PSK and 16-QAM. In all simulations, there are a total

of 4096 data bits which are coded, interleaved and then modulated. The modulated

symbols are distributed to the transmit antennas in a sequential order as given in

Fig. 5.1.

For the LLR exchange between the LMMSE equalizer and the APP decoder, we

use the Wang-Poor approach through a straightforward extension of Section 2.2.3 to

MIMO systems. In addition, we apply some scaling operations to the extrinsic LLR

values at the output of the LMMSE equalizer and the APP decoder so as to prevent

overconfident messages. Once more, we use a scaling factor ρ which divides the LLR

values at the output of the APP decoder and we operate the proposed factor graph

based LMMSE equalizer under the assumption that the noise variables have variance

values γN0 larger than the actual value (γ > 1). The judiciously determined values of
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ρ and γ are indicated below the related figure. By this way, we decrease the extrinsic

LLR values, or the confidence of messages, at the output of both our equalizer and

the APP decoder at each turbo iteration. In addition, we did not try to optimize the

scaling factors for each SNR value due to our practicality concerns contrary to [19].

For all the configurations below, we also provide the matched filter bound (MFB)

performances as a benchmark to make a comparison. The MFB performances are

obtained under the assumption that the symbols which cause interference to the in-

terested symbol due to multi-path and multi-antenna effects are perfectly known by

the receiver for each interested symbol [4]. Hence, it is practically impossible to

reach MFB performance for any receiver structure. We take MFB performance as a

genie-aided lower bound for the proposed scheme.
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Figure 5.3: BER Performance of the Factor Graph Based LMMSE Equalizer (2 × 2 MIMO with
L = 5 for BPSK Signaling, ρ = 1.5, γ = 2)

The BER performance of the proposed factor graph based LMMSE equalizer is given

in Fig. 5.3 for BPSK signalling with Nt = Nr = 2 under a 5-tap channel. This

is the same configuration as the one in [12] except the interleaver type which is S-
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random in [12]. The proposed method has nearly identical performance with the one

in [12] for low SNR values as expected since both algorithms implement time domain

LMMSE filtering operation. Moreover, the error floor observed in high SNR regions

in [12] which may be caused by its extrinsic LLR exchange algorithm does not occur

here. Also, the performance of the proposed method is very close to the MFB below

the BER value of 10−3 without any diversity loss or error floor. In addition, it can be

seen that there is no significant improvement after three turbo iterations which means

only three iterations are sufficient for this configuration.

The simulation scheme in [43] which presented the performance results of both time

and frequency domain LMMSE equalization for Gray encoded QPSK signaling is ad-

ditionally compared with our method. We observe the performance of the proposed

LMMSE equalizer for both of the extrinsic LLR computation methods which are ex-

plained as the exact Wang Poor (WP) based algorithm in (2.37) and the approximated

version in (2.39). As seen from Fig. 5.4, for which the exact WP based algorithm

is operated, the performance of the proposed LMMSE equalizer is very close to the

MFB performance so that the difference between them is less than 0.5 dB below BER

value of 10−3 in only 4 turbo iterations. Moreover, it is observed that there is no ne-

cessity of any scaling operation for LLR values. This makes the proposed structure

more practical for real time applications. In addition, the performance result of our

proposed algorithm and the curves presented in [43] for time domain LMMSE equal-

ization performance are identical as expected. Frequency domain LMMSE equaliza-

tion in [43] has a small SNR loss as compared to the time domain versions due to

overhead caused by the addition of a cyclic prefix.

In Fig. 5.5, the same setting as in the Fig. 5.4 is used with the approximated version

of the WP based LLR computation algorithm in (2.39) under 5 turbo iterations. The

judiciously chosen scaling factors, which are indicated in Fig. 5.5, are observed to

improve the performance. As shown by Fig. 5.4-5.5, performance results are close to

each other. However, exact WP based algorithm provides slightly better convergence

to MFB than approximated version using one less turbo iterations.

Also, we present here the performance of a more challenging scenario with higher

order constellations which was not presented in the studies including Gaussian ap-
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Figure 5.5: BER Performance of the Factor Graph Based LMMSE Equalizer with Approximated WP
Based LLR Computation (2× 2 MIMO with L = 4 for QPSK Signaling, ρ = 1.25, γ = 3)
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proximation over a factor graph in the literature so far. For Gray encoded 16-QAM

signaling, we observe the performance of the proposed LMMSE equalizer for both

of the extrinsic LLR computation methods which are explained as the exact Wang

Poor (WP) based algorithm in (2.37) and the approximated version in (2.39). Here, a

4-tap Rayleigh ISI channel is used with Nt = Nr = 2. Fig. 5.6 depicts simulation re-

sults of the LMMSE equalizer with the exact WP based LLR computation algorithm.

It can be seen from Fig. 5.6 that the proposed method has a performance which is

less than 1 dB away from the MFB performance below the BER value of 10−4 for

7 turbo iterations. Moreover, it is observed that there is no necessity of any scaling

operation for LLR values. The increased constellation size leads to a higher number

of turbo iterations for good performance, but turbo iteration number is not a direct

multiplier of computational complexity since all packets do not require 7 iterations.

Moreover, the constellation size does not affect the modulation complexity per turbo

iteration. Hence, our method is a practical choice as a receiver structure with its solid

performance so as to achieve higher data rates.
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Figure 5.6: BER Performance of the Factor Graph Based LMMSE Equalizer with Exact WP Based
LLR Computation(2× 2 MIMO with L = 4 for 16-QAM Signaling, ρ = 1, γ = 1)
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In Fig. 5.7, the same setting as in the Fig. 5.6 is used with the approximated version

of the WP based LLR computation algorithm in (2.39) under 10 turbo iterations. The

judiciously chosen scaling factors, which are indicated in Fig. 5.7, are observed to

improve the performance. As shown by Fig. 5.6-5.7, performance results are close to

each other. However, exact WP based algorithm provides slightly better convergence

to MFB than approximated version using less turbo iterations.
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Figure 5.7: BER Performance of the Factor Graph Based LMMSE Equalizer with Approximated WP
Based LLR Computation (2× 2 MIMO with L = 4 for 16-QAM Signaling, ρ = 1, γ = 2)
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CHAPTER 6

CONCLUSION

In this study, we have focused on a reduced complexity graph based LMMSE filter-

ing technique which can be used as a practical equalizer to remove the ISI effect in

wireless channels. Based on a previously proposed graph structure in the literature,

we make some improvements for wireless communication problems. First, we de-

velop an efficient way of computing extrinsic LLR values after LMMSE equalization

for M-QAM constellations. We have shown the mathematical relation between the

output of the LMMSE equalizer and the popular Wang-Poor method’s parameters in a

suitable fashion for factor graphs. It provides easy implementation of LMMSE filter-

ing that can be used with high order modulation alphabets on which LMMSE filtering

is more advantageous owing to the Gaussian assumption.

In addition, we propose a reduced complexity factor graph-based LMMSE filtering

method for non-white noise processes which are encountered in some communica-

tion and signal processing problems such as FTN signaling, clutter suppression in

radar systems and speech enhancement. Our method in which the statistics of the col-

ored noise are taken into account seems to be an attractive solution to implement the

LMMSE filtering operation owing to its computational complexity linearly increasing

with block length of the input signal. The equivalence to LMMSE filtering is shown

through extensive simulations for Gaussian AR noise processes. Moreover, the gen-

eralization to other stationary processes with known (or estimated) autocorrelation

function through an approximation to a proper order AR process is also considered in

our work.

To provide an application for the mentioned approximation method, we analyze FTN
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signaling as a recently popular subject, which inherently involves the effects of both

ISI and the non-white noise. We propose to use our reduced complexity graph-based

LMMSE equalizer, which incorporates the statistics of the noise signal into the fac-

tor graph by modelling it as an AR process. For configurations with different noise

statistics, we show that the proposed low complexity receiver structure performs close

to the optimal decoder operating in ISI-free ideal scenario without FTN signaling

through simulations. However, we have also observed that there is a tradeoff between

the performance gain and computational complexity caused by the increasing approx-

imation order used in the AR process approximation. Therefore, our method comes

forefront particularly for applications involving high noise correlations in which tak-

ing the noise statistics into consideration even with small approximation order values

provides significant performance gain.

In the last part, we enlarge the factor graph structure for the LMMSE equalization

to frequency selective MIMO channels. The proposed graph has the advantage of

low complexity as compared to the conventional block LMMSE filtering operation

and the other graph based LMMSE filtering approaches in the literature. In addi-

tion, the straightforward generalization of our proposed extrinsic bit LLR computa-

tion method for LLMSE equalizer to the MIMO ISI scenario is used. To sum up,

we proposed a low complexity, practical LMMSE equalizer for iterative decoding of

MIMO ISI channels with a good performance as confirmed by our simulation results.

Our method here is attractive for higher constellation sizes since its computational

complexity is not affected by the dimension of the signalling space owing to the

Gaussian assumption used in the factor graph.

For future work, it will be interesting to observe or analyse the limits of the LMMSE

equalizer in FTN signalling since we cannot reach very high data rates due to degra-

dation in BER performance of LMMSE equalizer. In addition, the performance of

the proposed LMMSE equalizer here, which incorporates the non-white statistics of

noise process, can be investigated in other high noise correlation applications such as

channel shortening or multi-user communication as compared to the other techniques

in the literature. In order to reduce the computational complexity for MIMO systems,

the proposed graph structure can be modified in a loopy manner, i.e., it is not cycle

free any more. Moreover, if the graph structure for MIMO systems can be adapted
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for colored noise processes in a similar way to SISO systems explained here, FTN

will also be implemented in MIMO systems using the LMMSE equalizer through

this newly modified graph structure.
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