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IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

JULY 2014





Approval of the thesis:

SYSTEM IDENTIFICATION AND MODELING OF GYRO-STABILIZED IR/EO
GIMBAL SYSTEM IN FREQUENCY DOMAIN
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ABSTRACT

SYSTEM IDENTIFICATION AND MODELING OF GYRO-STABILIZED IR/EO
GIMBAL SYSTEM IN FREQUENCY DOMAIN

Özdoğan, Gökhan

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Kemal Leblebicioğlu

July 2014, 115 pages

The field of system identification takes a fundamental place in control engineering. In

order to design an efficient robust controller, one requires an accurate mathematical

model with its uncertainty for the dynamical system of interest. It is crucial that

experiments are well designed so that parameters to be estimated through statistical

methods result in least possible bias and minimum variance.

In this study, four axis gyro stabilized Infrared Electro Optic gimbal system is modeled

in the frequency domain through experimental investigation. The input and output

signals are logged using xPC Target of MATLAB with a sampling frequency of 3kHz.

The communication with real system is realized with RS-422 protocol.

In system identification, the first step is experiment design. Various perturbation

signals are analyzed and compared. A cost function is offered to optimize power

spectrum for the input excitation signal while satisfying device specific constraints.

Second step is frequency response function measurement. By averaging techniques, it

is possible to reduce the variance of frequency response function measurement and
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decrease the error. Moreover, the averaging in the frequency domain provides the

nonparametric noise model of the system. Periodic excitation signals are used and an

integer number of signal periods have been measured. Before passing to the next step,

a robust method to detect and quantify nonlinear distortion on frequency response

functions measurements is studied. In the final step, real system is modeled by its

parametric transfer function with plenty of different estimation techniques and their

efficiencies, convergence properties, bias errors are compared and discussed.

Keywords: System identification, excitation signal design, frequency response function

measurement, nonparametric noise model, nonlinearity detection, gyro stabilized

gimbal
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ÖZ

CAYRO İLE KARARLILAŞTIRILMIŞ IR/EO GİMBAL SİSTEMİNİN FREKANS
BÖLGESİNDE MODELLENMESİ

Özdoğan, Gökhan

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Kemal Leblebicioğlu

Temmuz 2014 , 115 sayfa

Sistem tanılama, kontrol mühendisliğinde önemli bir yer tutar. Gürbüz bir kontrolcü ta-

sarlayabilmek için, dinamik sistemin hassas bir matematiksel modeline ve bu modelin

belirsizlik bilgisine ihtiyaç duyulmaktadır. Frekans tepki fonksiyonu ölçüm düzeneği-

nin ve uyarı sinyalinin iyi tasarlanması, parametrik model kestirimindeki sistematik

hataların ve varyansın minimize edilebilmesi için çok önemlidir.

Bu çalışmada, cayro ile stabilize edilmiş dört eksen gimbal yapılı elektro optik sistem,

frekans bölgesinde deneysel yöntemlerle adım adım modellenmiş, çalışmanın sonuçları

sunulmuştur. Girdi ve çıktı sinyalleri, MATLAB’ın xPC Target araç seti kullanılarak,

3kHz örnekleme frekansında kaydedilmiştir. Gerçek sistem ile haberleşme, RS-422

protokolü ile gerçekleştirilmiştir.

Sistem tanılanması çalışmasında, ilk adım, deney düzeneğinin hazırlanmasıdır. Uyarı

sinyalleri çeşitlerinin analizi ve karşılaştırılması yapılmıştır. Uyarı sinyalinin güç spekt-

rumunu, cihaza özgü kıstasları ihlal etmeden, ilgilenilen frekans aralığında optimize
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etmek için bir maliyet fonksiyonu önerilmiştir. İkinci adım, frekans tepki fonksiyonu

ölçümüdür. Ortalama alma yöntemleri ile, frekans tepki fonksiyonu ölçümündeki

varyansı ve hatayı düşürmek mümkündür. Buna ek olarak, frekans bölgesinde gerçek-

leştirilen ortalama alma teknikleri, frekans tepki fonksiyonu ölçümündeki parametrik

olmayan gürültü modelinin elde edilmesini sağlar. Bu çalışmada periyodik uyarı

sinyalleri tercih edilmiş ve zaman bölgesinde periyodun tam sayı katı süre ölçüm

gerçekleştirilmiştir. Bir sonraki adıma geçmeden önce, frekans tepki fonksiyonu öl-

çümlerindeki doğrusal olmayan bozulmaları tespit eden gürbüz bir metod çalışılmıştır.

Son adımda, gerçek sistem, parametrik transfer fonksiyon ile birçok farklı kestirim

yöntemi ile modellenmiş, bu kestirim yöntemlerinin yakınsama özellikleri ve sabit

hataları karşılaştırılmış, tartışılmıştır.

Anahtar Kelimeler: Sistem tanılama, uyarı sinyali tasarımı, frekans tepki fonksiyonu

ölçümü, parametrik olmayan gürültü modeli, doğrusal olmayan bozulma tespiti, cayro

stabilize gimbal
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

This study considers the very practical problem of system identification of an unknown

dynamic system in the frequency domain. System identification is a common term in

engineering which refers to the building of mathematical models of dynamical systems

from measured noisy data by experiments. The field of system identification takes a

fundamental place in control engineering.

Gimbal systems have a wide application area concerning the angular stabilization

of camera, gun or telescope in an inertial coordinate system. For this study, the

dynamic system chosen is the four axis gyro stabilized Infrared (IR) Electro-Optic

gimbal system. Although all the experiments are realized using IR/EO gimbal system,

the measurement techniques explained and identification methods discussed in this

study are applicable to all SISO dynamic systems. This device under investigation

is generally used to inertially stabilize an IR camera on moving platforms such as

fighter aircrafts. Mechanical stabilization in inertial space is necessary to avoid blur

and jitter in a thermal video image. In order to avoid blur and jitter, a good robust

controller is required. In order to design an efficient robust controller, one requires

an accurate mathematical model (parametric model, see Definition 1.1.2) with its

uncertainty which best represents the dynamical system of interest. Mathematical

models for dynamic systems are useful for time domain simulation, frequency domain

analyses, controller design, stability analysis and prediction purposes. The necessity of

mathematical models for these aforementioned purposes is the motivation of this study.
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Mathematical models are obtained from measured noisy data by experiments describ-

ing the input-output relationship; strictly speaking, from nonparametric measurements

(see Definition 1.1.1). The success of parametric system model estimation heavily

depends on the quality of nonparametric measurements. Therefore, it is crucial that

experiments are well designed so that parameters to be estimated through statistical

methods result in least possible bias and minimum variance. All mechanical systems

are inherently nonlinear in nature. However, nonlinear model building is difficult to

accomplish and time consuming while the profits are usually small. For this reason,

it is appealing to select a linear mathematical model around operating points. On

the other hand, knowing the nonlinear distortion error contribution on the frequency

response function (FRF) measurements helps the robust controller designer to set the

uncertainty bounds on a linear model and improve the existing controller.

With the help of xPC Target, hardware-in-the-loop simulation is performed on the

device under investigation. xPC Target is a MATLAB product which enables you

to execute Simulink models on a target computer for hardware-in-the-loop (HIL)

simulations, and other real-time testing applications. In this study, the experiments are

realized and the input and output signals are logged in xPC Target environment. The

communication with system is realized with RS-422 protocol and 921600 baud rate.

Sampling time of the system is 3kHz.

Definition 1.1.1 (Nonparametric Model) In the nonparametric model representa-

tion, the system is characterized by measurements of the frequency response at numer-

ous frequencies. There is no relation between the measurements at various frequencies.

Definition 1.1.2 (Parametric Model) In a parametric model, the system is described

using a finite number of parameters. An example of a parametric model is the transfer

function of a filter described by its poles and zeros.

1.2 Objectives, Contributions and Outline of the Thesis

The main objective of this study will be to measure nonparametric FRF and its uncer-

tainty efficiently, quantify nonlinear distortions, apply various system identification
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techniques and accurately model the plant. The plant under investigation is the inner

azimuth gimbal of IR/EO four axis gyro stabilized gimbal system. The results of

this study allows the control engineer to realize time domain simulations, frequency

domain analyses, controller design, stability analysis and prediction.

There are several contributions of this study. First of all, the crest factors (see Defini-

tion 3.2 on page 17) and the FRF measurement qualities of several general purpose

periodic broadband excitation signals are compared. The theoretical knowledge and

practical experiences are shared in order to obtain best nonparametric measurements.

As a original contribution, a new cost function is suggested for the optimization of

excitation signal which best fits the specific application. Power spectrum of the ex-

citation signals can be optimized in an offline study to achieve better SNR in the

frequency band of interest while satisfying device specific constraints. Experimental

illustrations of nonlinear distortion quantification techniques are given, summarizing

their advantages and drawbacks. Several optimization techniques are implemented in

order to find a parametric plant model which best represents dynamic system. The

performances of the implemented identification techniques are compared in terms of

their efficiencies, convergence properties and bias errors. It turns out that “Maximum

Likelihood” estimator which weights the cost with respect to the nonparametric noise

model, provides statistically better results.

System identification is an iterative process. A flowchart of the iterative system

identification cycle is presented in Fig 1.1 (this flowchart is modified from reference

[1]).
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Figure 1.1: A schematic view of the system-identification cycle.
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The organization of chapters in this study mainly follows the flowchart in Fig 1.1.

• Chapter 1 covers the background of the problem, motivation, main goal of the

study and contributions.

• Chapter 2 introduces the device under investigation, explains the experimental

setup and describe the big picture before diving into FRF measurement ex-

periments and system identification algorithms. This chapter starts with the

description of IR/EO four axis gimbal system. The mechanical implementation

of excitation and measurement of output signal are explained. Device specific

restrictions are mentioned which are highly critical when designing excitation

signals in Chapter 3. Note that, although the device chosen here is a gimbal

system, the measurement techniques explained and identification methods dis-

cussed in this study are applicable to all SISO dynamic systems operating in

open loop.

• In Chapter 3, design of excitation signals are discussed. Crest factor property

is introduced which is used to measure the quality of the excitation signal in

terms of SNR. The broadband excitation signal and the stepped sine excitation

signal are compared in terms of FRF measurement time to reach a specified

accuracy. Three different broadband excitation signal categories are analyzed:

transient signals, non-transient aperiodic signals and periodic signals. It turns

out that the class of periodic excitation signals should be the first choice. Three

general purpose periodic broadband excitation signals are designed which will

be used in FRF measurement experiments in Chapter 4. Finally, an optimization

procedure is suggested to achieve better SNR in the frequency band of interest

while satisfying device specific constraints.

• In Chapter 4, nonparametric FRF measurements are studied. Averaging methods

both in the time domain and in the frequency domain are given. The estimation

of nonparametric noise spectrum is shown. Before realizing FRF measurements,

system behavior is observed under zero input. The FRF measurement experi-

ments designed in Chapter 3 are realized. Comparison of three experiments are

given and discussed in detail.
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• The aim of Chapter 5 is to detect and measure nonlinear distortions in FRF

measurements. First, detection techniques for nonlinear distortions are discussed.

Next, the class of perturbation signals used in this chapter are defined. Next, the

theory of linear representations of nonlinear systems are given for continuous

systems operating in open loop. A practical technique, called “Robust Method”

for measuring the best linear approximation (BLA), its noise variance, and the

level of nonlinear distortion is described. Finally, a robust method is applied on

the real system and the experimental results are analyzed.

• Chapter 6 explains the parametric plant model used in Chapter 7. The parametric

model discussed in this chapter is valid only for systems under periodic exci-

tations. The relationship between input and output spectra for periodic signals

is given. The parametric plant model definition with and without time delay,

parameter vector and related notations are given. Lastly, the nonparametric noise

model concept is discussed.

• Chapter 7 presents a case study of identification techniques in order to find a

parametric model from the nonparametric measurements of Chapter 4. Search

methods such as “Linear Least Squares”, “Iterative Weighted Linear Least

Squares” and “Genetic Algorithms” are implemented. After generating good

starting values with one of those minimizers, efficient local minimum algo-

rithms are studied to estimate better parametric plant models: “Nonlinear Least

Squares”, “Nonlinear Logarithmic Least Squares”, “Maximum Likelihood”. In

each identification method, the estimated plant model and the measured FRF are

compared by a visual inspection on a Bode plot and by residual analysis. The

performances of all the identification techniques are compared in detail. This

chapter ends with a discussion of model order selection and validation.

• Chapter 8 concludes the thesis with a brief summary, mentions the publications

from this study and discusses some possible future work.
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CHAPTER 2

DESCRIPTION OF THE DEVICE UNDER INVESTIGATION

2.1 Introduction

This chapter introduces the device under investigation, describes the experimental

setup and describe the big picture before diving into FRF measurement experiments

and system identification algorithms. Gimbal systems have a wide application area

concerning the angular stabilization of camera, gun or telescope in the inertial coordi-

nate system. For this study, the dynamic system chosen is a four axis gyro stabilized

Infrared (IR) Electro-Optic gimbal system. This device is used to inertially stabilize

the IR camera on the moving dynamic platforms such as fighter aircrafts. Inside the

inner-most two axes, an IR camera and an IMU are mounted. Outer axes accomplish

most of the angular positioning with their large rotational capacity, but possess low

controller bandwidth. On the other hand, inner axes have few degrees of freedom

but possess high controller bandwidth. Therefore, inner gimbals are used for fine

tuning and hence efficient for angular stabilization of the IR camera in the inertial

coordinate system. Stabilization of gimbal system removes the undesired rotational

vibrations and holds the line-of-sight (LOS) of the camera steady. Although all the

experiments are realized using IR/EO gimbal system, the measurement techniques

explained and identification methods discussed in this study are applicable to all SISO

dynamic systems operating in open loop.

This chapter starts with the description of experimental device in Section 2.2. The

purpose of the gimbal system is stated and four axis gimbal mechanism is explained

on a schematic figure. In this section, gimbal rotational mechanical limits are given.
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Next, in Section 2.3 measurement setup is described. The reason of choosing inner

azimuth gimbal as a case study is explained. The ideal transfer function and expected

frequency response of the plant (inner azimuth gimbal) is given. The mechanical

implementation of excitation signals, measurements of output signals, units of them

and data logging platform are explained in detail. Digital system sampling frequency,

the communication protocol and other used products such as xPC Target are mentioned.

The differences between process noise and measurement noise are pointed out. Device

specific restrictions are mentioned in Section 2.4 which are highly critical in the design

of excitation signals.

2.2 IR/EO Four-Axis Gimbal System

In this study, the device under investigation is a four axis gyro stabilized Infrared (IR)

Electro-Optic (EO) gimbal system. The purpose of this device is to perform inertial

stabilization of an IR camera on moving platforms such as fighter aircrafts. Mechanical

stabilization in inertial space is necessary to avoid blur and jitter in a thermal video

image. The four axis gimbal mechanism has four links joined by revolute joints. A

revolute joint provides one degree-of-freedom (single axis) rotation. Since gimbals are

arranged in succession, the motion of outer most gimbal affects the angular positions

of 2nd, 3rd and 4th axes. The angular motion of 2nd gimbal affects the 3rd and 4th

gimbals and so on. Gimbal order from outer to inner is given in (2.1) and four axis

gimbal schematic is sketched in Fig. 2.1.

x

y

z

IR Camera

IMU

Roll: ±∞◦

Pitch: +50◦, −135◦

Yaw: ±5◦

Pitch: ±5◦

Figure 2.1: Gimbal schematics - Up view, the four joints are marked
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Roll (φ) → OuterElevation(θo) → Inner Azimuth(ψi) → InnerElevation(θi)

(2.1)

Outer gimbals: Outer gimbals are roll gimbal and outer elevation gimbal. Roll

gimbal has no mechanical constraint and can rotate 360◦ continuously. However

outer elevation gimbal has mechanical limits between +50◦, −135◦. The angular

positioning is mostly accomplished with outer gimbals since they have large

rotational capacity. However, the controller bandwidth of outer gimbals are low

and hence they are not effective for angular stabilization in inertial coordinate

system.

Inner gimbals: Inner gimbals are inner azimuth gimbal and inner elevation gimbal.

Both inner gimbals have angular mechanical limitations, ±5◦. Due to this limited

orientation capacity, they are ineffective for angular positioning. However, the

controller bandwidth of inner gimbals are relatively much larger compared to

outer gimbals and hence they are very much capable of performing angular

stabilization inertially. There is an IMU next to IR camera which are located

in inner gimbals (see Fig. 2.1). The azimuth gyro of IMU senses the rotational

speed of the inner azimuth gimbal and the elevation gyro of IMU senses the

rotational speed of the inner elevation gimbal (more details in Section 2.3).

2.3 Measurement Setup and SISO Plant

Experiment setup for FRF measurement is given in Fig. 2.2. Description of system,

plant (inner azimuth gimbal) and related signals are given below.
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Designed
Input Signal

ug (t)
ng (t)

u1(t)

mu(t)

u(kTs)

FFT

U (k)

Plant

np(t)
y1(t)

my (t)

y(kTs)

FFT

Y (k)

Figure 2.2: Measurement setup and notations for periodic signals

• Plant: Device under investigation is a four axis gyro stabilized Infrared Electro

Optic gimbal system. In this study, inner azimuth gimbal of the system is

excited and frequency response function is measured. There are a few reasons

for choosing the inner azimuth gimbal as a case study. Inner gimbal rotational

speed sensors have more bandwidth than the outer gimbals. In addition, the

inner azimuth gimbal has more interesting frequency response than the inner

elevation gimbal frequency response (there is a mechanical resonance in the

inner azimuth gimbal which will be observed in Chapter 4). Therefore, inner

azimuth gimbal measurements are presented in this study since larger frequency

bandwidth can be measured and spectacular FRF measurements are obtained.

During inner azimuth gimbal experiments, only the inner azimuth gimbal is

excited and other three gimbals (roll, outer elevation, inner elevation) are kept

under zero input. The coupling effects between inner azimuth gimbal and other

gimbals are assumed to be negligible. Therefore, although the complete system

is MIMO (four inputs and four outputs for each gimbal), the inner azimuth

gimbal is considered to be a SISO system thanks to the fact that coupling effects

are small.

The ideal transfer function of the plant (gimbal) is considered to be J
s (given

in Eqn. 2.2) by Newton’s law of motion. Here, J is the inertia of gimbal. The
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input signal is the acceleration caused by a motor torque and the output signal is

the rotational speed measured by gyro and hence, the frequency response of a

gimbal is expected to have a magnitude slope of -20dB/dec with 90◦ phase.

Gideal (s) =
J
s

(2.2)

• Measurement System: With the help of xPC Target, hardware-in-the-loop simu-

lation is performed on a real system. xPC Target is a MATLAB product which

enables you to execute Simulink models on a target computer for hardware-

in-the-loop (HIL) simulation, and other real-time testing applications. The

communication interface between xPC target computer and the device under

investigation is RS-422 protocol with 921600 baud rate. Digital system loop fre-

quency is 3kHz. Sampled time domain signals u(kTs) and y(kTs) are recorded

at system frequency at 3kHz without any missing data. Time domain input data

and gyro output data are logged in real-time with the xPC Target toolbox.

• Input Signal: The input signal, u1(t) = ug (t) + ng (t) (a ZOH-reconstructed

signal) is applied to the plant (inner azimuth gimbal system) using a motor driver

card in units of volt. The designed excitation signal in xPC Target computer

is sent to a motor driver card with RS-422 communication protocol in 3kHz

sampling time. The input signal has a range between ±179.0 numeric value

which is scaled to ±10.0 volts in the motor driver card. Motor driver card

controls the inner azimuth gimbal and generates a torque with respect to the

commanded input signal resulting in angular acceleration of the system.

• Output Signal: The output signal, y1(t) is the rotational speed of the inner

azimuth gimbal. This signal is sensed from azimuth gyro sensor in units of

degree/second. Azimuth gyro sensor is located in an inertial measurement unit

(IMU), namely LN-200. IMU is an electronic device which measures the three

axis accelerations and three axis rotational speeds. The sampling rate of LN-

200 is 400Hz. This means that the bandwidth of the azimuth gyro is 200Hz

which is the half of the sampling rate. Due to this limited bandwidth, the FRF

measurements realized in this study are intended to cover a bandwidth up to

250Hz. Actually, the results of this study will be used for controller design
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purposes. Considering the controller bandwidth of inner azimuth gimbal which

is usually less than 60Hz, the gyro sensor sampling rate is sufficiently high for

this application.

• Noise: mu(t), my (t) are measurement noises respectively on input and output

signals. In this study, input signal is exactly known: because, FRF measurements

are realized with the digital hardware and input signals are stored in computer

memory. Therefore, input measurement noise, mu(t) is set to zero (mu(t) = 0).

The output measurement noise, my (t) is related to the gyro sensor noise and it

is different from zero. Generator noise on input signal is illustrated with ng (t).

Generator noise in this study, is related to quantization noise. Input signal is

designed as a 32-bit floating number while applied input signal in units of volts is

represented with 12-bit number resulting in reduced sensitivity and quantization

error. The process noise, np(t), is related to the plant under investigation

subjected to undesired disturbances. These disturbances in measurement will

cause random angular speed deviations.

2.4 Inner Gimbal Constraints

Usually, in every application, there are various restrictions on the input signal. Most

common restrictions on the input signal are the maximal allowed amplitude and

maximum user specified derivative of the input signal. In this study, for the device

under investigation, there are two particular constraints:

(i). The first constraint is, “the input signal should not exceed ±179 volts command

in magnitude”.

(ii). The second constraint is, “the angular position of the gimbal should not change

more than ±2◦ degrees”. The inner azimuth gimbal has a range of ±5◦ degrees

from the outer gimbal. If the perturbation signal for the inner azimuth gimbal is

designed to cause movements more than ±2◦ degrees, there is a high possibility

of hitting edges of the mechanical system.
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The first constraint can be checked easily since user has full control over the applied

input signal. Examining the second constraint, however, is a bit more complicated. In

order to check the second constraint, parametric model of the system is required (see

Definition 1.1.2 on page 2). In Chapters 6 and 7, estimation of the parametric model

is explained in detail. Using the parametric model, it is possible to simulate the time

response of a continuous or discrete linear time invariant system to designed excitation

signals. The second constraint is checked by observing the integral of the gyro output

signal, obtained in the simulation. Integral of the gyro output signal represents the

angular position of the gimbal with some offset.
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CHAPTER 3

DESIGN OF EXCITATION SIGNALS

3.1 Introduction

Excitation signal design is a fundamental and very critical step in system identification.

The dynamic behavior of a mechanical system is obtained from input and output

signals, strictly speaking, nonparametric measurements (see Definition 1.1.1 on page 2).

Instead of exciting the system frequency by frequency and measuring system response

independently, a broadband excitation spectrum can be applied to system enabling

to gather all system frequency response in a single measurement (see Section 3.4).

In the literature, many types of broadband perturbation signals are proposed. These

perturbation signals can be categorized in three groups: transient signals; non-transient

aperiodic signals; periodic signals [2].

(i). Transient signals: Examples of transient signals are random burst signal and

impulse signal. A random burst signal is a noise sequence that is imposed on the

system during the first part of the measurement, and a zero input is applied for

the rest of the measurement period. In the second part of measurement where

zero input is applied, the system response is expected to be damped out so that

spectral leakage errors disappear in FRF analyses.

(ii). Non-transient aperiodic signals: Non-transient aperiodic signal example is

random noise signal.

(iii). Periodic signals: Examples of periodic signals are swept sine signal, Schroeder

multisine signal, random phase multisine signal and pseudorandom binary
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sequence signals. Periodic signal class is the main excitation signal group used

in this study.

It is important that no spectral leakage error appears during the analysis of the mea-

surements. Non-transient aperiodic signals cause spectral leakage in FRF analysis.

Therefore non-transient aperiodic signals are not favored (see Section 3.3). On the

other hand, the transient signals cause no spectral leakage, but controlling the power

spectrum is difficult. The frequencies outside the frequency band of interest are also

excited which is an undesirable property in most cases. As a result, transient signals

are not preferred either. Periodic signals as a choice, shaping the power spectrum is

usually easy and straightforward. Additionally, periodic signals introduce no spectral

leakage when an integer number of signal periods are measured (see Section 3.3) and

it is possible to efficiently reduce noise variance in FRF measurements with averaging

methods (see Section 4.3 on page 39). After all, periodic excitation signal becomes

the first choice considering many advantages.

For excitation signals, signal to noise ratio (SNR) is an extremely important property. In

all experiments, the desired signal to be measured is disturbed by undesired background

noise. In frequency response function measurements, the time it takes to reach a

specified accuracy is inversely proportional to the square of SNR [2,3]. In other words,

a decrease of 6 dB for SNR, increases the time of measurement to reach the same

accuracy by a factor of four. Even worse than that, in some cases, low SNR would

introduce bias errors in frequency response function measurements which can not be

compensated by increasing measurement time [4]. By averaging the measurements,

the random errors can be reduced, but systematic bias errors will remain. Therefore,

a good excitation signal should provide as high power spectrum as possible without

exceeding normal operation conditions. Crest factor property explained in Section 3.2

can be used to quantify the quality of excitation signal in that sense. The low crest

factor indicates that excitation signal can provide high SNR while satisfying normal

operation conditions.

In the experiments realized in this chapter, three general purpose periodic excitation

signals are constructed: swept sine, also called periodic chirp; Schroeder multisine

excitation; pseudo random binary sequences (see Sections 3.5, 3.6, 3.7). General pur-
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pose means that, no optimization is executed on excitation signal to deal with specific

restrictions. General purpose excitation signals are able to excite the system with an

almost flat power spectrum in a frequency range of interest. The main parameters to

be selected are the frequency bandwidth of interest, overall magnitude spectrum, and

the frequency resolution of the measurement. After designing the excitation signal,

simulations are performed to see whether aforementioned two restrictions are satisfied

(see Section 2.4 on page 12). If not satisfied, overall power spectrum is decreased

iteratively, sacrificing from SNR.

It is important to satisfy restrictions on excitation signal while providing high SNR.

General purpose signals are usually sufficient for this scope and can be applied directly.

However, if design time is not an issue, the excitation signal that best fit the application

can be searched. Power spectrum of the excitation signals can be optimized to achieve

better SNR in the frequency band of interest while satisfying device specific constraints

(see Section 2.4 on page 12). Optimization routine is performed in an offline study.

The optimization procedure applied in this study usually takes a few minutes to reach

a satisfactory local minimum solution on an average computer (Intel Core 2 Duo CPU,

@2.0GHz, 32 bit operating system). Since the computer power increases day by day

with technology, the efforts and time spent in optimization should be motivated. This

concept is explained in detail with an example in Section 3.8.

3.2 Crest Factor

Definition 3.2.1 (Crest Factor) The crest factor Cr (u), is a measure of an excitation

signal u(t), showing the ratio of peak amplitude upeak , to its rms value urmse in the

frequency band of interest.

Cr (u) =
upeak

urmse
=

max
t∈[0,T]

|u(t) |

urms
√

Pint/Ptot
with u2

rms =
1
T

∫ T

0
u2(t) dt (3.1)

with T the measurement time, urms the rms value of the signal, Ptot the total power of

the signal, and Pint the power in the frequency band of interest [3].

The crest factor is a dimensionless quantity, being a positive real number. The minimum

possible crest factor is 1. The crest factor of a pure sine wave is
√

2 = 1.41. Small
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crest factor is an indication of good quality for the excitation signal. It is crucial

for the excitation signal to provide high SNR without exceeding maximum specified

amplitude value. This limit value for the experiments in this study is ±179 volt

command (see Section 2.4 on page 12).

3.3 Minimizing Spectral Leakage Error by Measuring an Integer Number of

Signal Periods

Input signals are designed to excite a certain frequency band of interest while satisfying

some special restrictions (see Section 2.4 on page 12). Power spectrum is carefully

designed to perturb the frequency band with high SNR. However, if an unsuitable exci-

tation signal is applied to the system, the resulting power spectrum can be completely

different from what was intended at first. Misused excitation signals may result in poor

SNR during the measurement process.

One common example for wrong application is, applying non-integer number of signal

periods in a measurement. For instance, consider a periodic excitation signal with

period T0 = 2 seconds. Then, the total measurement time T , should be an integer

number of signal periods T = MT0, M ∈ N. Otherwise, fractional signal period will be

measured instead of full one. This situation causes spectral leakage error in frequency

response function measurement (FRF). From signal period, the frequency resolution

f0 can be derived as f0 = 1/T0 = 0.5 Hz. So, the measured (sampled) frequencies

in the discrete Fourier transform (DFT) should correspond to multiples of frequency

resolution, f = [0.5, 1, 1.5, . . . , r f0, . . . ] Hz, r ∈ N. Measuring an integer number

of signal periods ensures this correspondence.

The discrete Fourier transform (DFT) is explained in Definition 3.3.1.

Definition 3.3.1 (DFT) Consider a finite length sequence u(nTs) of length N samples

such that u(nTs) = 0 outside the range 0 ≤ n ≤ N − 1. The DFT relations between the
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frequency and time domain sequences are given in the following formulae (3.2) [3, 5].

Analysis equation: U (k) =

N−1∑
n=0

u(nTs)e− j2πkn/N

Synthesis equation: u(nTs) =
1
N

N−1∑
k=0

U (k)e j2πkn/N

(3.2)

To each finite-length sequence of length N , the finite sequence can always be associated

with a periodic sequence (see Eqn. 3.3) [5].

ũ(nTs) =

∞∑
r=−∞

u((n + r N )Ts) (3.3)

ũ(nTs) is a periodic sequence1 with period N , so that ũ(nTs) = u((n + r N )Ts) for any

integer value of n and r . Discrete Fourier transform assumes periodicity of the signal

in the time domain. In other words, the DFT assumes that the finite data set u(nTs) for

n = 0,1, . . . ,N − 1, is one period of a periodic signal ũ(nTs). So the two endpoints,

u(0) and u(NTs) are interpreted as though they were connected together. When this

assumption is violated, in FRF analysis, spectral leakage occurs (Example: Non-

transient aperiodic signals such as random noise excitation signal). In [6], windowing

techniques are analyzed to reduce leakage errors when random excitations are used,

but systematic errors will not completely disappear. Therefore, whenever possible, it

is advised to use periodic excitation signals and measure an integer number of signal

periods.

To illustrate spectral leakage example, a periodic signal with period T0 = 2 seconds, fre-

quency resolution f0 = 1/T0 = 0.5 Hz is designed. Designed excitation signal contains

sine waves with equal amplitudes from 2 Hz to 250 Hz ( f = [2, 2.5, 3, . . . 250]Hz).

Sampling frequency of the discrete system is f s = 3000 Hz, so no aliasing effect

occurs. In Fig. 3.1, the amplitude spectrum of two input measurements are displayed.

On the left, an integer number of signal period is measured T = 1 · T0 = 2 seconds, so

no leakage errors exist. On the right, non-integer number of signal period is measured

T = 1.2 · T0 = 2.4 seconds, resulting in spectral leakage in magnitude spectrum.

1 tilde (˜) emphasizes here that sequence is periodic
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Figure 3.1: Left Figure: An integer number of periods measured. No leakage error.
T = T0 = 2 seconds. Right Figure: The presence of spectral leakage due to non-integer
number of signal period measurement. T = 1.2 · T0 = 2.4 seconds.

3.4 The Comparison Between Stepped Sine and Broadband Excitation Signals

The purpose of experiments realized in this study is, measuring the frequency response

function in a fixed time while maximizing accuracy. In the meantime, the restrictions

mentioned in Section 2.4 on page 12 should be satisfied (maximal allowed amplitude

on input signal and maximal allowed angular position of gimbal). While designing an

excitation signal, two alternatives can be considered. The system can be excited with

either stepped sine signal or broadband signal:

(i). In the stepped sine excitation, the system is excited frequency by frequency. The

number of frequencies at which system response observed, equals to the number

of independent measurements, M . See Fig. 3.2 for an overview of stepped sine

excitation signal measurement setup. Between each measurement step, sufficient

time, Tw, is waited in order to reduce transient effects due to frequency shift.

In every measurement step, P signal periods are measured so that with enough

averages, the output noise can be decreased (see Section 4.3 on page 39 for

averaging method).
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Ĝ[1,1] Ĝ[1,2] Ĝ[1,P]Tw u(t) = |A1 | cos(2π f1t + A1)

u(t) = |A2 | cos(2π f2t + A2)

u(t) = |AM | cos(2π f M t + AM )

m = 1

m = 2

m = M

P periods

M realizations

Ĝ[2,1] Ĝ[2,2] Ĝ[2,P]Tw

Ĝ[M,1]Ĝ[M,2] Ĝ[M,P]Tw

p = 1 p = 2 p = P

Figure 3.2: Stepped Sine measurement overview: Realizing M different (independent)
single sine experiments in a consecutive manner and each time measuring P periods
after a waiting time Tw to reduce transient effects.

(ii). In broadband excitation, the system is excited with all frequency harmonics of

interest, simultaneously. It is possible to gather all system frequency response in

a single measurement. As discussed in Section 3.1, many types of broadband

perturbation signal are possible. In Fig. 3.3, an overview of measurement

setup with broadband multisine signal example is given. Before starting the

measurement, a suitable time, Tw, is waited for the output to reach steady state.

P signal periods are measured so that with enough averages, the output noise

can be decreased (see Section 4.3 on page 39 for averaging method).

u(t) =
∑F

k=1 |Ak | cos(2π f0kt + Ak )

P periods
M = 1
realization

Ĝ[1,1] Ĝ[1,2] Ĝ[1,P]Tw

p = 1 p = 2 p = P

Figure 3.3: Broadband measurement overview: Measuring P periods after a waiting
time Tw to reduce transient effects. One realization is adequate for measuring the
response of all excited frequency band.

For the stepped sine excitation signal, at each measurement step, all the power is

focused on a single frequency so that SNR is maximized without much effort. Max-
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imizing SNR means minimizing systematic bias errors which is very crucial. With

enough averages, the variance can be reduced as well and an excellent accuracy can

be obtained. However, due to frequency shifts at each step, a total of MTw seconds

should be waited. Especially for lightly damped mechanical systems, Tw needs to

be bigger due to long transients resulting in an excessive measurement time. On the

other hand, for broadband excitation signals, the time Tw is waited only once, at the

start of measurements. The critical issue about broadband excitation signals is that,

maximizing SNR is not as straightforward as for the stepped sine. In this chapter,

general purpose excitation signals are shown which usually provide sufficient SNR. It

is also demonstrated how to further optimize broadband signals and reach high SNR

in the frequency band of interest.

In [7], the conditions under which broadband measurements are faster than stepped

sine measurements are analyzed deeply. From this analysis, it is stated that, for a

measurement with high SNR (Example: SNR > 40dB), a well designed broadband

excitation signal requires significantly less time to reach a specified accuracy compared

to a stepped sine. For a measurement with low SNR (Example: SNR<20dB), the

required time to reach a specified accuracy is approximately the same for both, but

broadband excitation signals are still slightly better.

To sum up, the most important deciding factor is the available SNR in the frequency

band of interest. Whenever a broadband signal which provides as high SNR as stepped

sine provides, can be designed, broadband excitation signal should be preferred.

Because for the same SNR, broadband is always superior to stepped sine in terms of

measurement time to reach a specified accuracy. However, it is not always possible

to design a sufficiently high SNR with a broadband excitation signal. For instance,

for the device under investigation in this study (inner azimuth gimbal of electro optic

system), for the low frequency band of [0.5, 4]Hz, the broadband signal could not

provide enough SNR resulting in systematic bias errors (more details are in Chapters 4

and 5). The reason broadband signals fail in this low frequency band is the restriction

specific to device under investigation: “The maximal allowed angular position is ±2◦

degrees”. On the other hand, for the high frequency band of [4.5, 500]Hz, broadband

signals could provide pretty high SNR resulting in an excellent accuracy in a pretty

small time compared to stepped sine signals. As a result, concerning the device under
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investigation, stepped sine excitation signal is optimal for the low frequency band

[0.5, 4]Hz and broadband excitation signal is optimal for the high frequency band

[4.5, 500]Hz. As a suggestion, frequency response functions (FRFs) of the low and

high frequency bands can be measured independently and the two results can be

combined later.

3.5 Schroeder Multisine

Definition 3.5.1 (Schroeder Multisine) A Schroeder multisine is a sum of harmoni-

cally related sine waves

u(t) =

F∑
k=1

A cos(2π f kt + φk ) (3.4)

with Schroeder phases φk = −k (k − 1)π/F and f k = lk f0 with lk ∈ N [3].

For the device under investigation, a Schroeder multisine excitation signal is designed

such that the two constraints aforementioned in Section 2.4 on page 12 are satisfied.

This signal will be used later in multisine experiment in Subsection 4.4.2 on page 45.

Designed perturbation signal has following properties.

• Signal period is T0 = 2 seconds. Frequency resolution f0 is 0.5 Hz from

f0 = 1/T0.

• Sampling frequency of the system, f s is 3 kHz and sampling period is 1/3000

seconds from Ts = 1/ f s.

• Number of waves is F = 500. Discrete grid is lk = 1 : F = [1,2,3 . . . 500]

Therefore, from f k = lk f0 excited frequency band is between 0.5Hz and 250Hz.

• Magnitude of the signal, A is chosen to be A = 1500/F = 3 volt command. A is

tuned in order to keep line of sight angular position of the system between ±2◦

degrees which is the nominal operating condition.

• Offset phase φk is 0.2793 rad. This phase is tuned in order to keep the line of

sight angle of system around zero position.

• The crest factor for the frequency band of interest [0.5, 250]Hz, is calculated to

be Cr (u) = 1.73 (see Section 3.2).
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The designed multisine excitation signal power spectrum can be examined from Fig.

3.4 and in the time domain from Fig. 3.5. For the designed multisine signal in this

section, the ratio of the power in the frequency range of interest to the total power is
Pint

Ptot
= 1. This feature shows the superiority of the multisine signal. In general, for

multisine signals, shaping the magnitude spectrum of excitation signal is very easy

since for each frequency component, the amplitude depends on an individual sine wave.

On the other hand, choosing the phases of each sine wave is not trivial. Note that, a

multisine signal with Schroeder phases provide low crest factor (≈ 1.7) only when

flat amplitude spectrum excitation is desired. However, when magnitude spectrum is

not constant over the excited frequency bandwidth, Schroeder phases result in poor

excitation signal with high crest factor. In that case, an optimum phase spectrum can

be searched as explained in Section 3.8.
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Figure 3.4: Schroeder Multisine experiment signal spectrum
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Figure 3.5: Schroeder Multisine experiment signal in the time domain

3.6 Pseudorandom Binary Sequence

Definition 3.6.1 (Pseudorandom Binary Sequence) A pseudorandom binary sequence

(PRBS) is a deterministic, periodic sequence of length N that switches between one

level (e.g., +A) and another level (e.g., -A). The switches can occur only on a discrete-

time grid at multiples of the clock period Tc (klTc, kl ∈ N) [3].

For the device under investigation, a PRBS excitation signal is generated such that the

two constraints aforementioned in Section 2.4 on page 12 are satisfied. This signal

will be used later in pseudo random binary sequence experiment in Subsection 4.4.3

on page 48. Designed perturbation signal has following properties.

• Sampling frequency of the system, f s is 3 kHz and sampling period is 1/3000

seconds from Ts = 1/ f s.

• Most of the power is below 0.4 fc = 0.4/Tc (see Fig. 3.7) [3]. Therefore optimal

choice of the clock frequency fc = 2.5 fmax with fmax the maximum frequency

of interest. In the experiment, maximum frequency of interest is selected as

fmax = 300 Hz. Therefore clock frequency is fc = 750 Hz and Tc � 0.0013

seconds.
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• Binary magnitude of the signal, A is chosen to be 45 volt command. A is tuned

in order to keep line of sight angle of the system between ±2◦ degrees which is

the nominal operating condition.

• In the generation of PRBS signal, a pseudo code suggested in [3] is used. This

method generates a PRBS with length N = 4k-1 where N is selected as a prime

number (e.g., N = 3, 7, 11, 19, 23, 31, . . . ). In this PSRB signal, N is chosen to

be 1553. For the signal generation setup, see Fig. 3.6. The code is generated by

the following MATLAB code:

x = -ones(N,1) * A; x(mod([1 : N].ˆ2, N) + 1) = A; x(1) = A;

Clock

x(6) x(5) x(4) x(3) x(2) x(1) Output

Shift Register

Figure 3.6: Generation of a PRBS signal with a shift register

• Signal period is 2.07 seconds from T0 = NTc. Frequency resolution f0 is 0.48

Hz from f0 = 1/T0.

• The crest factor for the frequency band of interest [0.48, 300]Hz, is calculated

to be Cr (u) = 1.21 (see Section 3.2).

The designed PRBS excitation signal power spectrum can be examined from Fig. 3.7

and in the time domain from Fig. 3.8. For the designed PRBS signal in this section,

the ratio of the power in the frequency range of interest to the total power is found

to be
Pint

Ptot
= 0.68 which is remarkably smaller than 1. Although a considerable part

of the total energy lies outside the frequency band of interest, the crest factor is still

pretty small. That is because, PRBS excitation signal can inject a lot of power with

minimum peak to peak. This feature shows the excellence of the PRBS signal. The

disadvantage of this signal would be, designing an arbitrary magnitude spectrum other

than a flat magnitude spectrum (constant in a frequency band of interest) is challenging.
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In other words, shaping the magnitude spectrum of excitation signal is difficult. Also,

the derivative of this PRBS excitation signal is infinity which may cause unexpected

troubles in some systems.
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Figure 3.7: PRBS experiment signal spectrum
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Figure 3.8: PRBS experiment signal in the time domain
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3.7 Swept Sine

Definition 3.7.1 (Swept Sine) A swept sine (also called periodic chirp) is a sine

sweep test, where the frequency is swept up or down in one measurement period,

and this is repeated in such a way that a periodic signal is created [3]. Swept sine

excitation signal is given in Eqn. (3.5).

u(t) = A sin(2π fi (t)t + φ), 0 ≤ t ≤ T0 (3.5)

T0 is signal period. φ is initial phase. Frequency can be swept linearly or logarithmi-

cally with respect to time. For linear chirp, fi (t) is given in equation (3.6).

fi (t) = f start + βt, β = ( fend − f start )/T0 (3.6)

For logarithmic chirp, fi (t) is given in Eqn. (3.7).

fi (t) = f start β
t , β = ( fend/ f start )1/T0 (3.7)

f start and fend are lowest and highest frequencies of interest respectively.

For the device under investigation, a logarithmic swept sine excitation signal is gen-

erated such that the two constraints aforementioned in Section 2.4 on page 12 are

satisfied. This signal will be used later in swept sine experiment in Subsection 4.4.4

on page 52. Designed perturbation signal has following properties.

• Sampling frequency of the system, f s is 3 kHz and sampling period is 1/3000

seconds from Ts = 1/ f s.

• Chirp method is logarithmic.

• Signal period T0 is 2 seconds. Frequency resolution f0 is 0.5 Hz from f0 = 1/T0.

• Magnitude of the signal, A is chosen to be 16 volt command. A is tuned in

order to keep line of sight angle of the system between ±2◦ degrees which is the

nominal operating condition.

• Initial phase is φ = 45 degrees.

• Instantaneous frequency at time 0 is f start = 0.5 Hz and instantaneous frequency

at time T0 is fend = 250 Hz.
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• The crest factor for the frequency band of interest [0.5, 250]Hz, is calculated to

be Cr (u) = 1.51 (see Section 3.2).

The designed swept sine excitation signal power spectrum can be examined from Fig.

3.9 and in the time domain from Fig. 3.10. For the designed swept sine signal in this

section, the ratio of the power in the frequency range of interest to the total power

is found to be
Pint

Ptot
= 0.99 which is a favored result. Usually, it is desired to inject

more power in frequencies where noise is high so that roughly constant SNR in the

frequency band of interest is obtained [4]. However, for the swept sine excitation

signal, shaping the magnitude spectrum arbitrarily is not as straightforward as for the

multisine excitation signal. The awkwardness in designing the magnitude spectrum

can be considired as a drawback of the swept sine excitation signal.
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Figure 3.9: Swept Sine experiment signal spectrum
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Figure 3.10: Swept Sine experiment signal in the time domain

3.8 Optimized Multisine Design

3.8.1 Discussion

General purpose signals are usually sufficient for the experiments in this study and can

be applied directly. Still, when design time is not limited, an excitation signal that best

fits the application can be searched. In order to design an optimization algorithm, it is

obligatory to specify the final aim. A good excitation signal should provide high SNR

while satisfying some constraints. Power spectrum of the excitation signals can be

optimized in an offline study to achieve better SNR in the frequency band of interest

while satisfying necessary constraints. The requirements imposed on excitation signals

vary from system to system.

In literature, some techniques are proposed for excitation signal optimization. These

techniques attempt to maximize SNR while limiting the maximum value of excitation

signal in the time domain. In reference [8], an efficient method for peak factor

minimization using a time-frequency domain swapping algorithm is presented. In

reference [9], a method for crest factor minimization using nonlinear Chebyshev

approximation is given. It is also shown in [9] that, peak value of an excitation signal

can be further reduced by allowing some extra energy at additional frequencies in

which designer is not interested. According to [10], the algorithm presented in [9] is
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more successful but slower method than the algorithm presented in [8]. The specific

restriction imposed on these two algorithms is the maximal allowed amplitude for

the input signal in order to maintain plant friendly signals. For the device under

investigation in this study, similar restriction exists: “The input signal should not

exceed ±179 volt command in magnitude”. However, there exists an additional

restriction: “The angular position of the gimbal should not change more than ±2◦

degrees” (see Section 2.4 on page 12 for the reason of extra restriction). Therefore, a

different cost function is required for applications in this study.

3.8.2 Problem Formulation

Problem: Consider the multisine excitation signal given in (3.8):

u(t) =

F∑
k=1

|Ak | · cos(2π f0kt + Ak ) (3.8)

Here, f0 =
1
T0

is the frequency resolution with T0 being the signal period. There are

F frequency components in u(t) and no DC component. |Ak | defines the magnitude

spectrum of excitation signal and it is fixed in pre-design in such a way that sufficiently

high SNR for the experiment is satisfied (see Fig. 3.11). The magnitude spectrum of

the excitation signal, |Ak | will not change during the optimization process.
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Figure 3.11: Fixed magnitude spectrum of multisine excitation signal
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Phases φk = Ak are free design variables and define the phase spectrum of excitation

signals. During the optimization process, multisine phases are optimized.

Minimize: There exist two cost values to be minimized, f1(φk ) and f2(φk ):

f (φk ) =



f1(φk )

f2(φk )


(3.9)

The nonlinear least squares algorithm is appropriate for this optimization problem:

min
φk
‖ f (φk )‖22 = min

φk
( f1(φk )2 + f2(φk )2) (3.10)

Here, φk is a Fx1 sized vector and f (φk ) is a function that returns a 2x1 sized vector

value.

In order to handle the first restriction (see Section 2.4 on page 12), the first cost

function is chosen as f1(φk ) = τ1 · Cr (u). Here, Cr (u) represents the crest factor (see

Section 3.2) and τ1 is a tuning parameter to weight the cost with respect to f2(φk ).

In order to handle second the constraint (see Section 2.4 on page 12), the parametric

model of the system is required (see Definition 1.1.2 on page 2). In Chapters 6 and

7, estimation of the parametric model is explained in detail. Using the parametric

model, it is possible to simulate the time response of continuous or discrete, linear,

time invariant system to designed excitation signals. The second constraint is checked

by observing the integral of the gyro output signal, obtained in the simulation. Integral

of the gyro output signal represents the angular position of the gimbal with some offset.

Therefore, the second cost function is chosen as f2(φk ) = τ2 · (Θpeak2peak/2). Here,

Θpeak2peak is maximum to minimum difference of expected angular gimbal position

during simulations. τ2 is a tuning parameter to weight the cost with respect to f1(φk ).

Simulation setup is given in Fig. 3.12.

Figure 3.12: Simulation setup: Excitation signal and parametric plant model response
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Such that: Optionally, but not necessarily, phases can be restricted to stay in [0, 2π)

for faster convergence: 0 ≤ φk < 2π, for k = 0,1, . . . ,F.

Starting point: The optimization starts at the point φ0 (Fx1 sized phase vector) and

finds a minimum of the sum of squares of the functions described in f (φk ). In this

study, starting point is chosen as φ0 = A0 independent, uniformly distributed random

phases on [0, 2π).

3.8.3 Results

The iterative method presented here is based on the cost function (3.10). It is observed

that for each random starting point, optimization converges a different local minimum.

This indicates that “Nonlinear Least Squares” estimator suffers from the problem

of having multiple solutions and local minimums. This is mainly due to the very

complex phase dependency of the cost function resulting in many local minimums.

Global optimization algorithms can be used to overcome the problem of multiple local

minimums. However, these algorithms are usually very time-consuming.

In Fig. 3.13, the evolution of cost function versus iterations is presented. The amount

of time necessary to reach a satisfactory local minimum solution depends strongly

on the number of excited frequency lines, F. The lower the number of phases to be

optimized, the faster the solution converges. For the optimization procedure applied in

this study, there are F = 500 frequency lines and it takes a few minutes to converge to

a local minimum on an average computer (Intel Core 2 Duo CPU, @2.0GHz, 32 bit

operating system). Since the computer power increases day by day with technology,

time spent in optimization should not be regarded as a drawback.
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Figure 3.13: The evolution of cost function versus iterations

The initial point in optimization is chosen as a random phase multisine signal (see

Subsection 3.8.2). After the optimization procedure, the crest factor is reduced from

Cr (u) = 4.19 to Cr (u) = 2.68 and the peak value of the input signal is reduced from

109.1 to 69.9 (see Fig. 3.14). Meanwhile, in the simulation, the expected peak value

of the angular position of the gimbal is reduced from ±1.94◦ to ±1.40◦ degrees which

is well below the ±2.0◦ degrees constraint (see Fig. 3.15).
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Figure 3.14: Left Figure: Initial random phase multisine signal in the time domain.
Right Figure: Optimized phase multisine signal in the time domain.
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Figure 3.15: Left Figure: The expected angular position response to initial random
phase multisine signal. Right Figure: The expected angular position response to
optimized phase multisine signal.

35



36



CHAPTER 4

FREQUENCY RESPONSE FUNCTION MEASUREMENT

4.1 Introduction

Frequency response function (FRF) measurement is a fundamental step in process

control applications. In order to design a controller and analyze the stability of the

system, FRF measurement is the very first data an engineer requires. The explanation

of FRF is given in Definition 4.1.1.

Definition 4.1.1 (Frequency Response Function) Frequency response is a quantita-

tive measure of magnitude and phase of the output spectrum of a system in response

to an input signal. Frequency response is a function of frequency and is used to

characterize the dynamics of the system.

The procedure of FRF measurement for a physical system involves exciting the

system with an input signal and recording the both input and output signals in the

time domain. Then, the data in the time domain can be converted to frequency

domain with fast Fourier transform (FFT) and this allows the frequency response

function to be estimated with several methods. The excitation signal design topic

is discussed in Chapter 3. The constructed input signal mostly excites a specific

frequency band of interest. Therefore, in FRF measurement, the frequencies in

which input magnitude spectrum is below a predetermined threshold level should be

automatically rejected. This rejection procedure ensures the adequate signal to noise

ratio (SNR) in the measured frequency band. In [11], calculation of uncertainty bounds

on FRF measurements for input SNR is shown.
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All measurements are subject to varying degrees of measurement error and mea-

surement uncertainty. Estimation of measurement uncertainty is a priceless tool for

robustness analyses. This chapter not only explains FRF measurements but also

demonstrates the estimation of nonparametric variance (noise) spectrum.

In this chapter, the device under investigation is a four axis gyro stabilized Infrared

(IR) Electro-Optic gimbal system. This device is used to inertially stabilize the IR

camera on moving dynamic platforms such as fighter aircrafts. The FRF measurements

are realized on the inner azimuth gimbal of the system using the periodic excitation

signals designed in Chapter 3.

This chapter starts with the theory of FRF estimation in Section 4.2. It is possible to

improve FRF measurements with well designed averaging techniques when periodic

excitation signals are used. Averaging methods both in time domain and frequency

domain are given in Section 4.3. The averaging method in the frequency domain

produces additional information about the system: the nonparametric noise model.

This noise model provides the robust controller designer a good insight about the

reliability of FRF measurements and set the uncertainty bounds on a linear model and

improves the existing controller. Before realizing FRF measurements, system behavior

is observed under zero input in Subsection 4.4.1. The rest of the chapter explains the

FRF measurement experiments and discusses the results. The FRF measurements

realized use the periodic excitation signals designed in Chapter 3. The comparison

and discussion of three experiments are given in Subsection 4.4.5.

4.2 FRF Estimation

The time domain signals are transformed to the frequency domain using the discrete

Fourier transform (DFT), implemented as an FFT (fast Fourier transform). In the

experiments presented in this chapter, an integer number of periods is measured so that

no spectral leakage errors appear (see Section 3.3 on page 18). The FRF measurement

at frequency f k is given by (4.1):

Ĝ( jωk ) = Y (k)/U (k) (4.1)
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Here, if L denotes the length of the measured record, then the measurement duration

is T = LTs (Ts being sampling period). Here, the frequency components are f k = k/T

for k = 1, 2, . . . , L. This process is disturbed at different points with noise as shown

in Fig. 2.2 on page 10. After the DFT we find, at frequency f k

U (k) = U0(k) + Nu(k) (4.2)

Y (k) = Y0(k) + Ny (k) (4.3)

where Nu(k) and Ny (k) are the contributions of the noise to the measured Fourier

coefficients. In this study, the input signal is exactly known, because it is stored in the

memory of a computer. Therefore we deal with exactly known inputs. So measurement

noise mu(t) is set to zero and Nu(k) = 0.

4.3 Averaging Methods for Periodic Excitations and Estimation of Nonpara-

metric Noise Model

When the excitation signal is periodic and the noise is random, it is possible to

enhance the SNR by averaging the periodic measurements. In general, averaging a

signal reduces the noise proportional to the square root of the number of averaged

samples. Averaging can be realized in either time domain or frequency domain.

Averaging method in the frequency domain provides extra information which is

extremely valuable. This additional benefit is the estimation of noise (co)variances, or

in other words, the nonparametric noise model of the measurement.

All FRF averaging techniques start from M input-output data blocks u[l](t), y[l](t), l =

1,2, . . . , M. The M input-output time domain data blocks can be collected in two

different ways. Data collection can be realized either from M independent experiments

which would take a long time (not feasible), or from a single experiment with M

consecutive periods under certain assumptions (more practical). Under Assumptions 1

and 2, it is possible to collect M successive periods (with length Np) and to average

the measurements in the time or frequency domain over these repeated periods [3].

Assumption 1 (Disturbing Noise) The disturbing noise Nu(k),Ny (k) is independent

of the true signals U0(k),Y0(k).
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Assumption 2 (Measurement Data Blocks) The correlation length of the noise should

be much smaller than the total measurement time.

Excitation signal is periodic with period T0, and u0(nTs) = u0((n + Np)Ts). This

assumption indicates that signal period is a multiple of the sampling period T0 = NpTs,

preventing undesired leakage errors. Well implemented averaging techniques reduce

the variance (and reduces the bias if input signal is noisy [3, 4]) of FRF measurements.

In practice, the number of averages, M is determined by the maximum measurement

time T and the minimum frequency resolution f0: M = T/T0 = T f0. For more smooth

and improved FRF measurements, averaging is strongly recommended. The more the

signal is averaged, the better the SNR becomes. The trade off is, averaging more also

requires longer measurement time for a fixed frequency resolution, T = M/ f0.

4.3.1 Averaging in the time domain

Consider M input-output data blocks u[l](t), y[l](t), l = 1,2, . . . , M . In practice, these

data blocks are gathered from a single experiment under periodic excitation with M

consecutive periods satisfying Assumptions 1 and 2. Input signal period length is Np,

signal period duration is T0 = NpTs. Then, the time domain average can be realized as

in (4.4), (4.5):

û(n) =
1
M

M−1∑
l=0

u(n + lNp) =
1
M

M∑
l=1

u[l](n) with u[l](n) = u(n + (l − 1)Np) (4.4)

ŷ(n) =
1
M

M−1∑
l=0

y(n + lNp) =
1
M

M∑
l=1

y[l](n) with y[l](n) = y(n + (l −1)Np) (4.5)

The DFT’s of ŷ(n) and û(n) are, respectively denoted by: Ŷ (k) = DFT ( ŷ(n)) and

Û (k) = DFT (û(n)). The FRF estimate is

ĜML ( jωk ) =
Ŷ (k)
Û (k)

(4.6)
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ĜML is the maximum likelihood solution for Gaussian disturbances if the repeated

measurements u[l], y[l] can be considered to be independent over l [3]. It is known

from the “Law of large numbers” and “Law of iterated logarithm” that, the noise is

reduced as 1/
√

M; and hence, asymptotically:

a.s. lim
M→∞

ĜML ( jωk ) =

a.s. lim
M→∞

Ŷ (k)

a.s. lim
M→∞

Û (k)
=

Y0(k)
U0(k)

= G0( jωk ) (4.7)

ĜML ( jωk ) = G0( jωk ) + Op(M−1/2) (4.8)

4.3.2 Averaging in the frequency domain and the estimation of noise (co)variance

Averaging in the frequency domain is computationally more costly; however, this cost

is insignificant with today’s PC technology. Furthermore, studying in the frequency

domain provides very valuable information about the system, the estimation of noise

(co)variances.

The DFTs of each subrecord is calculated seperately in (4.9):

U [l](k) = DFT (u[l](n)), Y [l](k) = DFT (y[l](n)) (4.9)

Then, calculation of the sample mean is given in (4.10):

Û (k) =
1
M

M∑
l=1

U [l](k), Ŷ (k) =
1
M

M∑
l=1

Y [l](k), with ĜML ( jωk ) =
Ŷ (k)
Û (k)

(4.10)

The calculations of the sample (co)variances are given in (4.11):
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σ̂2
U (k) =

1
M − 1

M∑
l=1

|U [l](k) − Û (k) |2

σ̂2
Y (k) =

1
M − 1

M∑
l=1

|Y [l](k) − Ŷ (k) |2

σ̂2
YU (k) =

1
M − 1

M∑
l=1

(Y [l](k) − Ŷ (k))(U [l](k) − Û (k))

(4.11)

Calculating the sample noise variance (in other words, uncertainty) of maximum

likelihood FRF estimate, ĜML ( jωk ) gives

σ̂2
G (k) =

1
M − 1

M∑
l=1

|G[l](k) − ĜML (k) |2 (4.12)

where ĜML (k) is given in (4.10) and G[l](k) = Y [l](k)/U [l](k).

4.4 Measurement Results

4.4.1 Zero input experiment, a simple noise analysis

Before realizing FRF measurements, it makes sense to observe system behavior under

zero input. When plant is not excited (zero input), the process noise, np(t) declines

almost to zero. The output signal, y(t) consists mostly of the sensor measurement

noise, my (t) (see Fig. 2.2 on page 10). This zero input case can not be considered as

normal operating conditions; therefore noise calculated here would be misleading. But

still, it gives a good insight about the output sensor noise, my (t).

In this experiment, zero input is applied to the system and the output signal is measured

in the time domain for 50 seconds. The input and output signals in units of “degree/sec”

are given in Fig. 4.1. The measurement system sampling frequency Ts = 3000 Hz

is higher than the gyro sensor update rate, 400 Hz. Therefore, Fig. 4.1 resembles a

zero-order hold (ZOH) graph. From this figure, it is observed that peak to peak of

output signal is approximately between ±0.050 degree/seconds.
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For a further examination, the DFT of output signal is calculated. Magnitude spectrum

of the output signal, y(t) in decibels, is given in Fig 4.2 with frequency resolution

f0 = 0.02 Hz. The variance of the output signal, σ̂2
Y (k), with number of averages

M = 25 and frequency resolution f0 = 0.5 Hz, is given in Fig. 4.3. It is observed

that, noise level is decreasing as frequency increases in the frequency band of interest.

At certain frequencies, small peaks are observed on the output magnitude spectrum.

After examining the measurement setup, it is concluded that the cooling fan at the

backward of the mechanical system, turning at around f = 30.9Hz is the reason of

peaks in magnitude spectrum.
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Figure 4.1: Output signal, y(t) in the time domain under zero input signal which gives
an idea about output noise peak to peaks
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4.4.2 Multisine experiment

In this experiment, the excitation signal setup explained in Section 3.5 on page 23 is

used. Under the perturbation signal, first, Tw = 15 seconds are waited, allowing the

transients of the plant and the measurement system to disappear. After the waiting

time, M = 75 signal periods are applied resulting in T = MT0 = 150 seconds

transient free measurement duration. Length of the transient free measured signal

is L = T/Ts = 450000. In Fig. 4.4, some part of the time domain input and output

signals are displayed. In Fig. 4.5, the integral of the gyro output signal is displayed

which shows the position of inner azimuth gimbal in degrees. The perturbation

signal used in this experiment excites a limited frequency bandwidth ([0.5, 250] Hz

in this experiment, see Section 3.5 on page 23); therefore the frequencies outside

the bandwidth are discarded. In Figures 4.6, 4.7, 4.8, 4.9 the noise variances are

displayed. Note that, since input is known exactly, σ2
U and σ2

YU are zero. After FFTs

and averaging, measured frequency response function can be seen in Fig. 4.10. The

comparison of this measurement with other nonparametric FRF measurements is given

in Fig. 4.25. The comparison of the estimated FRF variances is shown in Fig. 4.26.
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Figure 4.4: Multisine experiment time domain input and output signals
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Figure 4.6: Multisine experiment input noise variance
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Figure 4.7: Multisine experiment output noise variance
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Figure 4.8: Multisine experiment input-output noise covariance
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Figure 4.9: Multisine experiment input-output noise covariance
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Figure 4.10: Multisine experiment frequency response function measurement

4.4.3 Pseudo random binary sequence experiment

In this experiment, the excitation signal setup explained in Section 3.6 on page 25 is

used. Under the perturbation signal, first Tw = 15 seconds are waited allowing the
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transients of the plant and the measurement system to disappear. After the waiting

time, M = 75 signal periods are applied resulting in T = MT0 = 155.3 seconds

transient free measurement duration. Length of the transient free measured signal is

L = T/Ts = 465900. In Fig. 4.11, some part of the time domain input and output

signals are displayed. In Fig. 4.12, the integral of gyro output signal is displayed

which shows the position of inner azimuth gimbal in degrees. The perturbation signal

used in this experiment excites a limited frequency bandwidth ([0.48, 300] Hz in

this experiment, see Section 3.6 on page 25); therefore the frequencies outside the

bandwidth are discarded. In Figures 4.13, 4.14, 4.15, 4.16 the noise variances are

displayed. Note that, since input is known exactly, σ2
U and σ2

YU are zero. After FFTs

and averaging, measured frequency response function can be seen in Fig. 4.17. The

comparison of this measurement with other nonparametric FRF measurements is given

in Fig. 4.25. The comparison of the estimated FRF variances is shown in Fig. 4.26.
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Figure 4.11: PRBS experiment time domain input and output signals

49



60 62 64 66 68 70 72
−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

Time(seconds)

P
os

iti
on

  (
In

te
gr

al
 o

f g
yr

o)
 in

 D
eg

re
es

Measured Line of Sight Position

Figure 4.12: PRBS experiment integral of the gyro output which shows the position of
inner azimuth gimbal
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Figure 4.13: PRBS experiment input noise variance
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Figure 4.14: PRBS experiment output noise variance
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Figure 4.15: PRBS experiment input-output noise covariance
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Figure 4.16: PRBS experiment input-output noise covariance
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Figure 4.17: PRBS experiment frequency response function measurement

4.4.4 Swept sine experiment

In this experiment, the excitation signal setup explained in Section 3.7 on page 28 is

used. Under the perturbation signal, first Tw = 15 seconds are waited allowing the

transients of the plant and the measurement system to disappear. After the waiting
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time, M = 75 signal periods are applied resulting in T = MT0 = 150 seconds

transient free measurement duration. Length of the transient free measured signal is

L = T/Ts = 450000. In Fig. 4.18, some part of the time domain input and output

signals are displayed. In Fig. 4.19, the integral of gyro output signal is displayed

which shows the position of inner azimuth gimbal in degrees. The perturbation signal

used in this experiment excites a limited frequency bandwidth ([0.5, 250] Hz in

this experiment, see Section 3.7 on page 28); therefore the frequencies outside the

bandwidth are discarded. In Figures 4.20, 4.21, 4.22, 4.23 the noise variances are

displayed. Note that, since input is known exactly, σ2
U and σ2

YU are zero. After FFTs

and averaging, measured frequency response function can be seen in Fig. 4.24. The

comparison of this measurement with other nonparametric FRF measurements is given

in Fig. 4.25. The comparison of the estimated FRF variances is shown in Fig. 4.26.
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Figure 4.18: Swept Sine experiment time domain input and output signals
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Figure 4.19: Swept Sine experiment integral of the gyro output which shows the
position of inner azimuth gimbal
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Figure 4.20: Swept Sine experiment input noise variance
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Figure 4.21: Swept Sine experiment output noise variance
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Figure 4.22: Swept Sine experiment input-output noise covariance
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Figure 4.23: Swept Sine experiment input-output noise covariance
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Figure 4.24: Swept Sine experiment frequency response function measurement

4.4.5 Comparisons of measurements

In this section, Schroeder multisine, PRBS and swept sine experiments are compared.

The comparison of nonparametric FRF estimates, Ĝ( jωk ) is given in Fig. 4.25. From

the figure of magnitude spectrum, it is observed that amplitude decays with a slope of
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−20 dB/decade. At the frequency around 179 Hz, there exists a mechanical resonance

region in which the plant responds with a higher amplitude than it does at other

frequencies. In the phase spectrum, it should be noted that, the phase rapidly drops at

higher frequencies. This fast phase drop at higher frequencies indicates the existence

of a time delay in the system (this delay will be estimated later in Chapter 7). The

noise (variance) spectrum of FRF estimates can be examined in Fig. 4.26. In the

noise spectrum, notice that at frequency f = 30.9 Hz, a small peak is observed. After

examining the measurement setup, it is concluded that the cooling fan at the backward

of mechanical system, turning at around f = 30.9Hz is the reason of peaks in the noise

spectrum.

The three FRF measurement results overlap in most of the frequency band of interest

except at low frequencies ( f < 5 Hz). That is because, at low frequencies, process

noise due to undesired disturbances (such as friction) dominates and for the output sig-

nal, SNR becomes poor. Noise spectrum clearly shows the increased variance at lower

frequencies ( f < 5 Hz) in Fig. 4.26. In order to achieve better FRF measurements

(with minimum variance and bias), SNR should be kept high enough over all frequency

band of interest, while satisfying device specific constraints. The optimization of

excitation signal concept in terms of crest factor and other device specific criteria is

deeply analyzed in Section 3.8 on page 30.

Considering the noise spectra in Fig. 4.26, the success of each experiment can be

compared in terms of uncertainty of the FRF measurements. It is observed that at low

frequency interval f < 28 Hz, the swept sine FRF measurement uncertainty is smaller.

On the other hand, at higher frequencies f > 28 Hz, the Schroeder multisine and

PRBS FRF measurement uncertainties are lower. The reason of difference between

each noise estimate is mostly due to different levels of SNRs each designed excitation

signal provides (periodic signals are designed in Sections 3.5, 3.6 and 3.7). As a

summary, the three FRF measurement experiments give mostly similar results. For

this reason, experimenter can choose one of the general purpose periodic excitation

signal depending on his or her preference. The crucial point is, designed signal should

provide adequately high SNR without exceeding normal operating conditions. Another

critical point is, excitation signal should be periodic in order to minimize spectral

leakage errors (leakage error concept is discussed in Section 3.3 on page 18).
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CHAPTER 5

DETECTION AND QUANTIFICATION OF NONLINEAR

DISTORTIONS

5.1 Introduction

All mechanical systems are inherently nonlinear in nature. The aim of this chapter

is not to model nonlinear systems, but to detect and measure them. Nonlinear model

building is possible using describing functions or Volterra series [12], but difficult to

manage and time consuming while the profits are usually small. For this reason, it is

appealing to approximate the nonlinear system by linear equations around the operating

point of interest. Detecting and measuring the nonlinear distortions allow a better

understanding and gives an intuitive insight of the error sources on frequency response

function (FRF) measurements. Knowing the nonlinear distortion error contribution on

FRF measurement helps a robust controller designer to set the uncertainty bounds on a

linear model and improve the existing controller.

Note again that, this study does not deal with nonlinear model building, but it covers

the detection and quantification of nonlinear distortions on FRF measurements. The

sources of nonlinear distortions include the followings:

• The static and kinetic frictions in servomechanisms are usually a major concern

in FRF measurements. In Section 5.6, it is observed that, in low frequencies,

stochastic nonlinear distortions are the dominant error source which indicates

strong presence of friction.

• Unbalance of gimbal is another nonlinear distortion. It happens when the center
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of rotation does not coincide with the center of mass.

• Spring torques from cable wraps may behave as nonlinear distortion error

sources.

• Around mechanical resonance frequencies, nonlinear distortions are usually

huge.

• If the angular position of the inner azimuth gimbal exceeds ±5◦, gimbal will hit

the mechanical edge of the system and another nonlinear distortion will arise

(see Section 2.4 on page 12).

This chapter is structured as follows. First, the detection techniques for nonlinear

distortions are discussed. Next, the class of perturbation signals used in this chapter

is defined. The theory of linear representation of nonlinear systems is given for

continuous systems operating in open loop. A practical technique, called “Robust

Method” for measuring the best linear approximation (BLA), its noise variance, and

the level of nonlinear distortion is described. Finally, a robust method is applied on the

real system and the experimental results are analyzed.

5.2 Literature Review for Nonlinearity Detection Methods

A nonlinearity detection method answers the following questions: “Is the system under

investigation linear or nonlinear?” and “What is the level of the nonlinear distortions

present in this system?”. In [13, 14], many nonlinear system detection techniques

for single-input-single-output plants are described. Here, only a few of them will be

briefly discussed, summarizing their advantages and disadvantages.

The Superposition Principle: A simple method is to scale the input u(t) → λu(t)

and check whether the output also scales with λ. The superposition principle

states that, for all linear systems, the net response at a given time caused by two

or more inputs is the sum of the responses which would have been caused by

each input individually. The homogeneity and additivity properties together are
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called the superposition principle.

F (x1 + x2 + . . .) = F (x1) + F (x2) + . . . Additivity (5.1)

F (λx) = λF (x) Homogeneity (5.2)

A system behaves nonlinearly when this superposition principle is violated.

Drawbacks of this method are, it is time consuming since a lot of measurements

with different excitation levels are needed and it is extremely sensitive to all

possible measurement errors due to no noise identification process.

Stepped Sine Test: Stepped Sine test is a very simple method for detecting nonlinear

distortion where the plant is excited with a single sinusoidal signal with fre-

quency f . If the system under investigation is linear, in the output frequency

spectrum we should observe response only at the frequency f (besides noise

among other frequencies). The presence of higher harmonics (2 f , 3 f , . . . ) in

the output frequency response spectrum is an indicator of nonlinear behavior of

the system.

This method is tested on the inner azimuth gimbal of the real mechanical system.

System is perturbed with a single sinusoidal signal with frequency f = 1.5Hz.

Under perturbation signal, Tw = 6 seconds are waited allowing the transients

of the plant and the measurement system to disappear. After waiting for 6

seconds, system is measured for T = 80 seconds. Sampling frequency of the

system, f s is 3kHz and sampling period is 1/3000 seconds from Ts = 1/ f s.

Hence, the length of the transient free measured signal is L = T/Ts = 240000.

M = 4 averages is applied on the output spectrum to reduce the influence of

noise . Figure 5.1 shows the results of the experiment. At higher excitation

levels, the contribution of the 2nd and 3rd harmonic components (2 f = 3Hz and

3 f = 4.5Hz) in the output spectrum can be observed. For instance, 2nd harmonic

reveals that nonlinearity distortion at 3Hz is approximately 40dB higher than the

noise while 22dB less than the signal magnitude response at the fundamental

harmonic f = 1.5Hz.

61



10
0

10
1

−70

−60

−50

−40

−30

−20

−10

0

10

20

X: 1.5
Y: 16.26

Single−Sided Amplitude Spectrum of u(t), (dB)

Frequency (Hz)

|U
(f

)|

10
0

10
1

−80

−70

−60

−50

−40

−30

−20

−10

0

10

20

X: 1.5
Y: 17.84

Single−Sided Amplitude Spectrum of y(t), (dB)

Frequency (Hz)

|Y
(f

)|

X: 3
Y: −5.24 X: 4.5

Y: −9.173

X: 6
Y: −24.63

Figure 5.1: Left Figure: Input signal magnitude spectrum. Only 1.5Hz is excited.
Right Figure: The presence of higher-harmonics in the output spectrum points out the
nonlinearity distortion

The main drawback of this method is, it is very slow since it requires independent

measurements for each frequency component (see Section 3.4 on page 20).

The Coherence Function: The spectral coherence is a statistic that can be used to

examine the relation between two signals or data sets. It is commonly used to

estimate the power transfer between input and output of a linear system. The

coherence function measures how much of the output power is coherent (linearly

related) with the input power [3]. It is defined as:

γ2(ω) =
|Syu( jω) |2

Suu( jω)Syy ( jω)
, 0 ≤ γ2(ω) ≤ 1 (5.3)

where Suu( jω) and Syy ( jω) are auto-power spectrum of u(t) and y(t) respec-

tively. Syu( jω) is cross-power spectrum of u(t) and y(t). γ2(ω) is equal to unity

in the ideal case. If γ2(ω) is less than 1, it can be due to presence of following

four items [13]:

• Extraneous noise in the measurements,

• Spectral leakage errors of DFT (see Section 3.3 on page 18),

• A nonlinear distortion (only for random excitations),

• Other inputs besides u(t) contributing to the output.

Main disadvantage of this technique is, it is not applicable for periodic exci-

tations. When a periodic perturbation signal is used, in the absence of noise
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(σ2
U (k) = 0, σ2

Y (k) = 0 and σ2
YU (k) = 0) coherence is unity even if the system

under investigation is purely nonlinear [3]. Another drawback of this method is

that, it does not distinguish noise disturbances from nonlinearity distortions. To

overcome this, sufficient number of averages have to be evaluated in order to re-

duce the influence of extraneous noise in the measurements; so that nonlinearity

distortion becomes dominant.

NPR: Non-causal Power Ratio: The non-causal power ratio (NPR) method is a

causality method that detects and quantifies system nonlinearities in one single

number [13]. The method relies on the following decomposition

g(t) = DFT−1{G( jω)} = gn(t) + gc(t) (5.4)

where G( jω) is the FRF measurement of the system, gc(t) is the causal part

and gn(t) is the non-causal part defined by

gc(t) =




g(t), t ≥ 0

0, t < 0
gn(t) =




0, t ≥ 0

g(t), t < 0
(5.5)

The non-causal power ratio (NPR), is then defined as the ratio of non-causal

power Pn to the total FRF power P [14]. NPR is given by Eqn. (5.6):

N PR =
Pn

P
=

∫ 0
−∞
|gn(t) |2 dt∫ ∞

−∞
|g(t) |2 dt

0 ≤ N PR ≤ 1 (5.6)

NPR value grows with increasing nonlinearity, allowing the quantification of

the level of nonlinear distortion. The disadvantage of this technique is that, it

represents the level of nonlinear distortions in one single number. Therefore, this

method provides no information about the relationship between the nonlinearity

level and frequency.

In system identification, the prime interest of an engineer is measuring the FRF

of the system. Detecting and quantifying nonlinearity distortion is of secondary

interest for an engineer. For this reason, the optimal FRF-measurement method should

not sacrifice FRF measurement quality in order to detect nonlinearity distortions.

Therefore, most of the nonlinearity detection methods in the literature are not suitable

for our purpose, since they spend most of the time on detecting nonlinearity, not FRF

measurements. However, when random phase multisine excitations are applied, both
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FRF measurement and nonlinearity detection is realized in good quality [3]. In the

following sections, a nonlinearity test based on random phase multisine excitations

will be presented. This method does not suffer from the aforementioned problems.

5.3 Random Phase Multisine Excitation Signals

It is suggested to use random phase multisines as perturbation signals because they

provide a better SNR (less sensitive to disturbing noise and stochastic nonlinearities)

and the detection of nonlinearities is much easier [15, 16]. This section starts with the

definition of random phase multisine which is required in nonlinearity quantification

method presented in Section 5.5. Then, a random phase multisine excitation signal is

designed and it is applied on the real system.

Definition 5.3.1 (Random Phase Multisine) A signal u(t) is a normalized random

phase multisine if

u(t) = F−1/2
F∑

k=−F , k,0

Ak e j2π f0kt

= F−1/2
F∑

k=1

2|Ak | · cos(2π f0kt + Ak )

(5.7)

with Ak = Ā−k = |Ak |e jφk (x̄ denotes the complex conjugate of x). Phases φk = Ak

is the realization of an independent uniformly distributed random process on [0, 2π)

such that E{e jφk } = 0. f0 =
1
T0

is frequency resolution with T0 being signal period.

There exists F frequency components in u(t) and no DC component. In order to keep

excitations with finite power as F → ∞, the signals are scaled with F−1/2, [17].

For the experiment of interest, six “Random Phase Multisine” signals are generated,

two of them being given in this section. All six random phase multisine signals possess

the same magnitude spectrum but have different phase spectra. These signals have the

following properties.

• Signal period is T0 = 2 seconds. Frequency resolution f0 is 0.5 Hz from

f0 = 1/T0.
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• Sampling frequency of the system, f s is 3kHz and sampling period is 1/3000

seconds from Ts = 1/ f s.

• Number of waves is F − 2 = 498 (0.5Hz and 1Hz frequency components are

not excited). Discrete grid is lk = 1 : F = [3,4,5, . . . ,500] Therefore, from

f k = lk f0, excited frequency band is between 1.5Hz and 250Hz.

• At each random phase multisine signal generation, phase φk is independently

uniformly distributed on [0, 2π).

• The magnitude spectrum |Ak | is designed such that signal to noise ratio (SNR)

is at an acceptable level (for instance, at least an SNR of 40 dB is aimed for the

experiment of interest).

• The crest factor for the “Random Phase Multisine” signal does not have a typical

value. For the six experiments, the crest factor vary between Cr (u) = 2.9 and

Cr (u) = 3.8 due to random behavior of phases in the signal (see Section 3.2 on

page 17).

Designer may prefer not to excite some frequencies in the frequency band of interest.

Non-excited frequency components are discarded in FRF measurements. In this

experiment, two of the successive frequencies, 0.5Hz and 1Hz, are not excited, |A1 | =

0, |A2 | = 0. The reason is, when 0.5Hz and 1Hz are excited, the peak to peak value of

line of sight angular position increases too much, exceeding ±2◦ degrees. The designer

can avoid this by decreasing the overall magnitude spectrum at the expense of signal to

noise ratio (SNR). However, sacrificing from SNR is not a desirable option. Therefore,

it is better not to decrease the overall magnitude spectrum but measure the low and

high frequency components independently. Ak is tuned in order to keep line of sight

angle of the system between ±2◦ degrees which is the nominal operating condition.

The magnitude spectrum for all of six random phase multisine signals are the same and

can be examined from Fig. 5.2. Note that Ak is designed such that the injected power

increases by 10dB/dec as frequency decreases (see magnitude spectrum in Fig. 5.2). It

is observed from Fig. 4.26 on page 58 that at low frequencies, uncertainty is high in

magnitude; hence it is reasonable to inject more power to low frequencies. The reason

for this is to satisfy roughly the same SNR among the excited frequency band [4].
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Figure 5.2: Random Phase Multisine signal magnitude spectrum (common for all six
experiments)

In practice, the nonlinear distortions are detected in the presence of noise. Therefore, a

number of consecutive periods of the steady state response is measured and the level of

the total distortion (nonlinearity plus output noise) is compared with the noise sample

standard deviation (see Section 5.5 for more details). Under the perturbation signal,

Tw = 6 seconds are waited allowing the transients of the plant and the measurement

system to disappear. After the waiting time, M = 40 signal periods are applied

resulting in T = MT0 = 80 seconds transient free measurement duration. Length

of the transient free measured signal is L = T/Ts = 240000. This experiment with

aforementioned settings is repeated 6 times using the random phase multisine signal,

each signal having a different phase spectrum but the same magnitude spectrum. In

Figures 5.3 and 5.5, certain portions of the time domain input and output signals are

displayed for two of the six experiments. In Figures 5.4 and 5.6, the integral of gyro

output signal is displayed which shows the position of the inner azimuth gimbal in

degrees for two of the six experiments. Notice that, although the magnitude spectra

are same, due to different phase spectra, excitation signals and system movement

responses differ in terms of peak to peak value. As a matter of fact, it is possible

to reduce the peak to peak value by optimizing phase spectrum without touching
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magnitude spectrum.
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Figure 5.3: Random Phase Multisine experiment, time domain input and output signals
for the test “1/6”
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Figure 5.4: Random Phase Multisine experiment, integral of the gyro output which
shows the position of inner azimuth gimbal for the test “1/6”
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Figure 5.5: Random Phase Multisine experiment, time domain input and output signals
for the test “2/6”
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Figure 5.6: Random Phase Multisine experiment, integral of the gyro output which
shows the position of inner azimuth gimbal for the test “2/6”
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5.4 Linear Representation of a Nonlinear System

In [3, 17], it is shown that the measured output y(t) of a nonlinear system consists of

the output of a linear yL (t) plus a nonlinear yN L (t) contribution (See Fig. 5.7). It is

assumed that the linear contribution dominates the nonlinear one for sufficiently small

inputs:

lim
urms→0

(yN L)rms

(yL)rms
= 0 (5.8)

u(t)
LS

yL (t)

NLS
yN L (t)

y(t)

Figure 5.7: Nonlinear system consists of the underlying linear system + the systematic
contributions of the nonlinear distortions

The goal of the measurements in this study is not to extract the underlying linear

system (LS) in the global system (LS + NLS). The underlying linear system is useful

for physical modeling. But our need is a model that describes the relation between the

input and output for controller design purposes. Therefore the goal of the measurement

is to find the best linear approximation (BLA) to the global system. BLA will be found

by linearizing the global system around the operating point.

In [3, 16, 17], it is shown that for random excitations, FRF of a wide class of nonlinear

systems can be represented as a sum of linear system + a nonlinear additive “noise

source”. This means that a nonlinear system given in Fig. 5.8 is equivalent to linear

system with a noise source given in Fig. 5.9.
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Random input
u0(t)
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Nonlinear System
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Figure 5.8: Nonlinear system measurement setup: u0(t) is true random input signal;
mu(t), my (t) are the input/output measurement errors.
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u0(t)
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Figure 5.9: Measurement of the best linear approximation GBL A(s) of a nonlinear de-
vice: u0(t) is true random input signal; mu(t), my (t) are the input/output measurement
errors; ys (t) is the zero mean stochastic nonlinear contribution.

The measured FRF, G( jωk ), consists of three parts [18, 19]:

G( jωk ) = GBL A( jωk ) + GS ( jωk ) + NG (k) (5.9)

(i). GBL A( jωk ): Best linear approximation of the nonlinear system. In [20], it is

stated that a linear representation of nonlinear system with GBL A( jωk ) plus a

nonlinear noise source Y (s), is robust for a wide class of excitation signals.

(ii). GS ( jωk ): Stochastic nonlinear contribution. Even in the absence of disturbing

noise, the FRF measurement is scattered around its expected value, and these

deviations do not converge to zero. GS ( jωk ) is called stochastic nonlinear

contribution because it behaves as uncorrelated noise. But, note that once the

excitation signal is fixed, it is not a random signal anymore (GS ( jωk ) depends
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on the random phases of the input). This means that GS ( jωk ) is uncorrelated

with - but not independent of - the input U (k). GS ( jωk ) is represented by the

nonlinear noise source, ys (t) in Fig. 5.9.

(iii). NG (k): Errors due to output noise source. The output measurement noise, my (t)

is given in Fig. 5.9. For simplicity, we assumed that input measurements are

noise free (output noise dominates).

The best linear approximation GBL A( jωk ) consists of two parts [18],

GBL A( jωk ) = G0( jωk ) + GB ( jωk ) (5.10)

(i). G0( jωk ): The transfer function of true underlying linear system.

(ii). GB ( jωk ): The bias or systematic, deterministic nonlinear contributions indepen-

dent of the phases of the input signal.

Remarks:

• The nonlinear distortion contributions to the FRF can be subdivided into two

parts. First one, GB ( jωk ), consists of contributions that do not depend on the

the random phases of the excitation. The second one, GS ( jωk ), contains the

contributions that depend on the random phases [3]. At the output level, (5.9)

and (5.10) becomes

Y (k) = GBL A( jωk ) ·U (k) + YS (k) + NY (k)

= (G0( jωk ) + GB ( jωk )) ·U (k) + YS (k) + NY (k)
(5.11)

In Eqn. (5.11), input-output DFT spectra is related to the best linear approxima-

tion (BLA) GBL A( jωk ).

• The stochastic behavior of GS ( jωk ) is very similar to those of noise NG (k).

Therefore it is difficult to distinguish between noise and nonlinear distortions.

• In a particular experiment using random phase multisine excitation signal with

signal period T0, the measurement time can be increased, T → ∞. This increase

in T allows the number of averages, M = T/T0 grow. But this growth in M
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does not help to the reduction of nonlinear distortions. Because GB ( jωk ) and

GS ( jωk ) are O(M0). This means that nonlinear contributions do not disappear

as number of averages increase M → ∞. On the other hand, output noise

source NG (k) is O(M−1/2) which means that the noise is reduced as 1/
√

M,

asymptotically with averages (see Eqn. 4.8 on page 41 ).

• GBL A( jωk ) does change when the amplitude spectrum of the input signal does

change [3, 16]. But GBL A( jωk ) does not change when the phase spectrum of

the input signal changes (as long as the power spectrum of the input signal is

same). This is because, systematic nonlinear contribution part of the best linear

approximation, GB ( jωk ), is independent of the phases of the input signal while

dependent of the amplitude spectrum of the input signal.

5.5 A Robust Method Using Random Phase Multisines

In [3, 21], it is shown that, a robust method which depends on random phase multisine

excitations can detect and quantify stochastic nonlinear distortions and disturbing

noise. This method relies on the assumption that nonlinear dynamic system operates

in open loop and the input signal is known exactly (mu(t) = 0 in Fig. 5.9). The

robust method starts with generating a random phase multisine excitation signal with

period T0 (see Eqn. 5.7). This signal is applied to the device under investigation

for Tw + P × T0 seconds. Tw is the waiting time so that system reaches steady state

response such that transients are below the disturbing noise level. P is the number of

consecutive periods of the steady state response measured. This experiment is repeated

for M times, each time generating a different random phase multisine signal U [m]
0 (k).

In the end, a total of M × P FRF measurements Ĝ[m,p]( jωk ) are calculated for each

frequency k = 1,2, . . . ,F, for each consecutive period p = 1,2, . . . ,P, and for each

experiment m = 1,2, . . . ,M (see Fig. 5.10).
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Figure 5.10: Robust method measurement overview: Realizing M different (indepen-
dent) random phase multisine experiments and each time measuring P periods after a
waiting time Tw to reduce transient effects.

In each experiment, by averaging the FRFs over the consecutive periods, one can obtain

the output noise level (the stochastic nonlinear distortions have the same periodicity

as the multisine excitations, so they do not influence the variance over consecutive

periods). Averaging of these FRF means over the multiple experiments quantifies the

sum of the output noise level and the level of the stochastic nonlinear distortions which

depends on the random phases of the multisine excitations. Finally, the difference

between the total distortion level (averaging over the experiments) and the noise level

(averaging over the consecutive periods) gives the stochastic nonlinear distortions [3].

From Eqn. (5.9), the content of FRF for each period can be illustrated by Eqn. (5.12).

Ĝ[m,p]( jωk ) =
Y [m,p](k)

U [m]
0 (k)

= GBL A( jωk ) +
Y [m]

S ( jωk )

U [m]
0 (k)

+
N [m,p]

Y (k)

U [m]
0 (k)

= GBL A( jωk ) + G[m]
S ( jωk ) + N [m,p]

G (k)

(5.12)

Here, please pay attention that, G[m]
S ( jωk ) does not depend on the period index p.

For each independent experiment, the sample mean and sample variance over P
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consecutive periods are given in (5.13):

Ĝ[m]( jωk ) =
1
P

P∑
p=1

Ĝ[m,p]( jωk )

σ̂2[m]
n (k) =

1
P(P − 1)

P∑
p=1

|Ĝ[m,p]( jωk ) − Ĝ[m]( jωk ) |2
(5.13)

Here σ̂2[m]
n (k), is the sample noise variance of the sample mean Ĝ[m]( jωk ), which

explains the extra factor P. Calculating the mean and variance over M experiments

gives the following:

ĜBL A( jωk ) =
1
M

M∑
m=1

Ĝ[m]( jωk )

σ̂2
BL A(k) =

1
M (M − 1)

M∑
m=1

|Ĝ[m]( jωk ) − ĜBL A( jωk ) |2

σ̂2
BL A,n(k) =

1
M2

M∑
m=1

σ̂2[m]
n (k)

(5.14)

Here, σ̂2
BL A(k) represents the total variance and σ̂2

BL A,n(k) represents the output noise

variance of ĜBL A( jωk ) estimate which explains the extra factor M. If the noise

variance of each signal period is represented by σ2
n = var (N [m,p]

G ) and the nonlinear

distortion due to random phases of excitation signal of one experiment is represented

by σ2
S = var (G[m]

S ), the following equation appears:

E{σ̂2
BL A(k)} =

σ2
n

MP
+
σ2

S

M

E{σ̂2
BL A,n(k)} =

σ2
n

MP

(5.15)

Equation (5.15) gives a great insight about determining the optimal number of con-

secutive periods P and number of experiments M according to the experimenter’s

needs. For a given amount of time T = M × P × T0, if the objective is to minimize the

total variance of the best linear approximation ĜBL A( jωk ), while keeping the ability

to distinguish noise from the nonlinear distortions, then one can choose P = 2 and

M = T/(P × T0). If the aim is to maximize nonlinearity detection ability, then output

noise should be reduced as much as possible by choosing M = 2 and P = T/(M × T0).

In the experiments realized in this study (see Sections 5.3 and 5.6 for more details),

M = 6, P = 40, Tw = 6 and T0 = 2 seconds are chosen.
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Finally, the variance of stochastic nonlinear distortions G[m]
S (k) of one multisine

experiment σ2
S can be derived as follows:

σ2
S =




M (σ̂2
BL A(k) − σ̂2

BL A,n(k)) σ̂2
BL A(k) > σ̂2

BL A,n(k)

0 σ̂2
BL A(k) ≤ σ̂2

BL A,n(k)
(5.16)

5.6 Experimental Illustration of the Robust Method

For the experiment of interest, six “Random Phase Multisine” signals are generated.

All six random phase multisine signals possess the same magnitude spectrum but with

different phase spectra. In Section 5.3, signal properties and experimental settings

are explained in detail and two of the six time domain measurements are given. The

Robust Method explained in Section 5.5 is applied and the stochastic nonlinearity

distortion is quantified as well as the noise level and the best linear approximation

of nonlinear system. In Fig. 5.11 the results are given. Figure 5.11 provides a lot of

qualitative knowledge about the complexity of the problem, as well as quantitative

information about the plant and the measurement quality.

In Fig. 5.11, the blue line corresponds to best linear approximation (BLA) magnitude

|ĜBL A( jωk ) |. The red line gives the output noise level σ̂2
BL A,n(k) while the green line

shows the total variance (noise + stochastic nonlinear distortion) σ̂2
BL A(k). The differ-

ence between the green line and the red line gives the magnitude of stochastic nonlinear

distortions GS ( jωk ) of the best linear approximation measurement ĜBL A( jωk ). It is

observed that in low frequencies stochastic nonlinear distortions are the dominant error

source. As frequency increases, stochastic nonlinear distortions decrease very rapidly.

This indicates the strong presence of friction; since friction is expected to be more

effective in low frequencies. After 200Hz, stochastic nonlinear distortion drops below

the level of the output noise. This means that above 200Hz, dominant error source

in ĜBL A( jωk ) measurement is the output noise. It is noted from the blue line that

there exists a mechanical resonance at around 179 Hz in which the system responds

at greater amplitude than it does at other frequencies. At this mechanical resonance

frequency 179Hz, it is also observed that stochastic nonlinear distortions create a peak

(see the green line). Another interesting point obtained from the experiment is that, at

30Hz, the output noise causes a small peak (see the red line). This is because of the
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fact that there is a small cooling fan at the backward of mechanical system, turning at

around 30Hz, disturbing the measurements.
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Figure 5.11: Nonlinearity quantification with “Robust Method”. Blue line: Best linear
approximation (BLA) magnitude |ĜBL A( jωk ) |. Red line: Noise level σ̂2

BL A,n(k).
Green line: Total variance (noise + stochastic nonlinear distortion) σ̂2

BL A(k).

In Fig. 5.11, there is a contradictory situation between the frequencies 217Hz and

236Hz. The output noise (the red line) σ2
n is slightly bigger than the total noise (green

line) σ2
n + σ2

S and hence, the contradictory outcome occurs, σ2
S < 0 (as if stochastic

nonlinear distortions are negative). In paper [21], this contradictory situation of

σ2
S < 0 is explained. It is claimed that this phenomenon occurs due to the presence of

nonstationary distortions σ2
t which are not modeled in Section 5.4.
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CHAPTER 6

LINEAR TIME-INVARIANT PLANT MODELS

6.1 Introduction

In this study, the primary aim is to obtain a parametric plant model, G(Ω, θ) from the

noisy nonparametric FRF measurements. The estimation of nonparametric frequency

response function is shown in Chapter 4 and the estimation of parametric plant model

is shown in Chapter 7. Nonparametric FRF measurements store a vector of frequency

points with the corresponding complex frequency responses. The nonparametric

model is sufficient for most of the frequency domain analyses and controller designs.

However it is not possible to perform time domain simulations with them. On the

other hand, parametric LTI plant models are more convenient for frequency domain

analyses, controller design and it is possible to perform time domain simulations.

Parametric LTI plant model is a basic representation of a system using a finite number

of parameters, θ = [θ1, θ2, . . . θnθ , ]T . There are several types of numeric LTI models

such as transfer function model and state space model. In this study, the transfer

function type of parametric models is preferred.

This chapter explains the parametric plant model used in this study. The parametric

model discussed in this chapter is valid only for the systems under periodic excitations.

Relation of input and output spectra for periodic signals is given in Section 6.2. The

parametric plant model definition with and without time delay, parameter vector and

related notations are given in Section 6.3. Lastly, the nonparametric noise model

concept is discussed in Section 6.4. The reason of preferring the nonparametric noise

model over the parametric noise model is stated.
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6.2 Relation of Input and Output Spectra for Periodic Signals

In order to prevent spectral leakage errors, periodic signals are preferred to excite

the system and measure input-output pairs are measured at an integer number of

signal periods (see Section 3.3 on page 18). As an illustration, assume that a periodic

excitation signal u(t) with a signal period T0 = 1/ f0 is given. Signal period is an

integer number of the sampling time of the system T0 = N · Ts, N ∈ N. Let the

total measurement time be Ttotal = T + Tw where T is the transient free measurement

duration and Tw is the waiting time to reach steady state. Transient free measurement

duration is an integer number of signal periods T = M · T0 where M ∈ N is also

the number of averages (see Section 4.3 on page 39). Independent of whether the

excitation is continuous or discrete, the ratio of the output to the input DFT spectra at

the excited frequency lines k = h f0, h ∈ N gives the true transfer function:

Y (k) = G(Ωk , θ)U (k) (6.1)

In (6.1), θ is the parameter vector and the transform variable Ω = s for lumped

continuous-time systems, Ω = z−1 for discrete time systems.

Note that, FRF measurements are realized in steady-state (Tw seconds are waited

allowing the transient effects to die). Therefore, there is no need to consider the

initializations of data record (i.e., the transient effects) in the transfer function model.

6.3 Parametric Plant Model

In this study, the preferred parametric model that is valid for periodic excitations in

steady state, is a rational form of a transfer function as given in (6.2):

G(Ω, θ) =
B(Ω, θ)
A(Ω, θ)

=

∑nb
r=0 brΩ

r∑na
r=0 arΩ

r
(6.2)

Here, transform variable is Ω = s for lumped continuous-time systems and Ω = z−1

for discrete time systems. θ ∈ Rnθ the vector of the plant model parameters with the
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size of nθ .

θ = [a0, a1, . . . , ana , b0, b1, . . . , bnb ]T (6.3)

In every real life application, there exists a time delay (negligible or not). Therefore, it

makes sense to add a time delay parameter to the transfer function model (6.2). For

continuous-time models (Ω = s), (6.2) becomes

G(s, θ) = e−τs B(s, θ)
A(s, θ)

= e−τs

∑nb
r=0 br sr∑na
r=0 ar sr

(6.4)

For discrete-time models, (6.2) becomes

G(z−1, θ) = z−τ/Ts
B(z−1, θ)
A(z−1, θ)

= z−τ/Ts

∑nb
r=0 br z−r∑na
r=0 ar z−r

(6.5)

Time delay, τ ∈ R is an arbitrary, nonnegative number. Time delay does not have

to be an integer multiple of the sampling period Ts. Then, the vector of the model

parameters θ also contains the delay parameter τ.

θ = [a0, a1, . . . , ana , b0, b1, . . . , bnb , τ]T (6.6)

6.4 Nonparametric Noise Model

In (6.7), true (unknown) DFT spectra U0(k) and Y0(k), the noise components NU (k)

and NY (k), and the measured input-output DFT spectra U (k) and Y (k) relations

are given. NU (k) = DFT (nu(t)) and NY (k) = DFT (ny (t)) are functions of the

measurement noise, the process noise, and in some cases, the generator noise.

Y (k) = Y0(k) + NY (k)

U (k) = U0(k) + NU (k)
(6.7)
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In control applications, input noise is usually zero, since input signal can be stored in

the digital memory of a computer (there is no input measurement error). In Fig. 6.1,

the DFT relations for the exactly known input case, NU (k) = 0, is displayed in block

diagram.

Designed
Input Signal

U (k) = U0(k) Plant Model
GBL A(Ω, θ)

Y0(k)

NY (k)

Y (k)

Figure 6.1: DFT relation between input and output spectra with NU (k) = 0

In this study, the aim is to find a parametric plant model using the nonparametric

noisy FRF measurements. Estimation of parametric plant model is deeply analyzed

in Chapter 7. The noise model provides a good insight about the reliability of FRF

measurements and set the uncertainty bounds on a linear model. In addition (possibly

more important), in Section 7.9 on page 98, it turns out that the noise model is a

highly beneficial item when used as a weighting coefficient in the cost function of the

parametric plant model estimation. Using the noise model, an estimator will know

how much to trust each FRF measurement at each frequency. Therefore, outcome will

be less affected by noisier (large σi) measurements.

Disturbing errors NU (k) and NY (k) can be modeled as either nonparametric or para-

metric noise models. Estimation method of nonparametric noise model is given in

Subsection 4.3.2 on page 41. Nonparametric noise model is a vector of uncertainty of

the FRF measurements at numerous frequency points (See Eqn. 6.8). As an example

for nonparametric noise model, Fig. 4.26 on page 58 can be examined.

σ2
U (k) = var (NU (k)), σ2

Y (k) = var (NY (k)), σ2
YU (k) = covar (NY (k),NU (k))

(6.8)

The choice between nonparametric and parametric noise models becomes an important

decision for the estimation of parametric plant model. Parametric noise models are

usually combined with one of the model structures such as ARX, ARMAX, ARMA,
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OE (Output error), BJ (Box-Jenkins). However, according to [22], parametric noise

model has some certain drawbacks. It requires a second model selection for parametric

noise model and additional noise model parameters increases the complexity of the

problem. [22] states that in practice, parametric noise models are more suitable for time

domain identification while nonparametric noise models are preferable for weighting

the cost function in the frequency domain identification. In conclusion, [22] strongly

advises the nonparametric noise model since it simplifies the estimation of parametric

plant models and the quality of the noise model is independent of the parametric plant

model. Furthermore, nonparametric noise models are easily obtained in the earlier

process of FRF measurements (see Subsection 4.3.2 on page 41). Therefore, this study

completely deals with nonparametric noise models.
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CHAPTER 7

A CASE STUDY: APPLICATION OF IDENTIFICATION

TECHNIQUES

7.1 Introduction

In Chapter 4, the nonparametric FRF measurement and the nonparametric noise model

of the system at numerous frequency points are measured and preprocessed. Next,

the frequency domain identification problem of finding a parametric model which

best represents a dynamic system will be studied. Parametric models are useful for

time domain simulation, controller design, stability analysis and prediction purposes.

The parametric model and the model parameter vector which will be used in this

study are explained in Chapter 6. The parameters of the transfer function (parametric

model) can be searched with various estimation techniques. However, before that, the

order of transfer function should be decided. In the first trial, the order of transfer

function can be chosen small. After an optimization procedure, the estimated plant

model and the measured FRF are compared by a visual inspection on a Bode plot or

by residual analysis. This comparison step is called “Validation”. If the estimated

transfer function satisfactorily describes the dynamic system, identification problem

is solved. Otherwise, the order of the transfer function (parametric plant model) is

gradually increased until a satisfactory parametric model is obtained. Therefore, the

system identification can be portrayed as an iterative process. Eventually, an engineer

looks for a parametric plant model which best describes the system with minimum

complexity (minimum order). In [23], a two-step order selection method is proposed

for the numerator and denominator of SISO LTI parametric plant models.
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In this system identification problem, the aim is, minimizing a cost function which

best fits the parametric model into a nonparametric FRF measurement. Cost function

varies from estimator to estimator. However, all cost functions uses a common error

function. This error function is explained in Section 7.2. Minimization of the cost

function requires a numerical search procedure. The parametric plant model (6.4) on

page 79 is highly nonlinear in the parameters θ as it appears both in the numerator and

the denominator. This causes lots of undesirable local minimum solutions. Arbitrarily

choosing the initial point in the optimization procedure causes the problem of obtaining

local minimums. In order to avoid local minimums, sufficiently good starting values of

model parameter vector, θ is needed. For the initial system delay estimate, a method

is offered in Section 7.3. For the initial model parameters, there is a requirement

for self-starting algorithms that generate the starting values from the measured data

without user interaction. Global optimization algorithms which do not require starting

value can be used for this purpose. The algorithms explained in Sections 7.4 “Linear

Least Squares”, 7.5 “Iterative Weighted Linear Least Squares” are implemented to

calculate the global minimum directly and the algorithm explained in Section 7.6

“Genetic Algorithm” is implemented to find the global minimum stochastically. After

generating good starting values with one of the global minimizers, one of the efficient

local minimum algorithms explained in Sections 7.7 “Nonlinear Least Squares”, 7.8

“Nonlinear Logarithmic Least Squares”, 7.9 “Maximum Likelihood” can be used

to estimate better parametric plant models. All the identification techniques are

implemented for the FRF measurements obtained from the inner azimuth gimbal of an

Electro-Optic system. In each identification method, the estimated plant model and

the measured FRF are compared by a visual inspection on a Bode plot and by residual

analysis. In the end, the performances of all the identification techniques are compared

in detail in Section 7.10. It turns out that Maximum Likelihood estimator which uses

the additional information, the nonparametric noise model, provides statistically better

results. This chapter ends with an explanation of model order selection and validation

in Section 7.11.
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7.2 Building an Error Function for the System Identification Problem

In this study, the frequency domain identification of the inner azimuth plant model

of IR/EO gimbal system with known nonparametric noise model is handled. The

identification starts from measured input-output DFT spectra U (k) and Y (k).

U (k) = U0(k) + NU (k)

Y (k) = Y0(k) + NY (k)
(7.1)

In (7.1), U0(k), Y0(k) are true unknown values. Alternatively, the identification can

start from a measured frequency response function G(Ωk ).

G(Ωk ) = G0(Ωk ) + NG (k) (7.2)

In (7.2), G0(Ωk ) is the true unknown FRF. Note that (7.2) is a special case of (7.1)

with Y (k) = G(Ωk ) and U (k) = 1. The noise on input and output measurements (See

Fig. 7.1) are estimated from the nonparametric noise model using (4.11) on page 42.

U0(k)
Ng (k)

MU (k)

U (k)

Plant

Np(k)

MY (k)

Y (k)

Figure 7.1: Frequency domain experiment measurement process. Ng (k) is generator
noise, MU (k) and MY (k) are the input and output measurement errors and Np(k) is
the process noise

In the frequency domain estimation, it is not feasible to use all frequency measurement

band, because there may be too much noise at high frequencies and disturbance in low

frequencies. In addition to minimizing noise, it is usually better to focus on specific

frequency band of interest. For this experiment, plant is supposed to be modeled for

controller design applications. In order to enhance frequencies around the desired

closed-loop bandwidth, the plant model measurement in Subsection 4.4.2 on page 45
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is band-pass filtered between 1 Hz and 120 Hz. In other words, the 1-120 Hz frequency

band is taken into account in the optimization problem.

Next, the measurement is approximated by one of the parametric models G(Ωk , θ)

given in equations (6.2), (6.4), (6.5) on page 78. The parameter vector θ contains

the free parameters of numerator and denominator coefficients of the rational form

G(Ωk , θ) =
B(Ωk , θ)
A(Ωk , θ)

, except a0 = 1 consraint.

In estimation algorithms for periodic signals (Ω = z−1, s), output error eoutput (Ωk , θ, Z (k))

can be used, which is the difference between the observed output Y (k) and the modeled

output Y (Ωk , θ), [3].

Y (Ωk , θ) = G(Ωk , θ)U (k) (7.3)

eoutput (Ωk , θ, Z (k)) = Y (Ωk , θ) − Y (k) (7.4)

In estimation algorithms for periodic signals (Ω = z−1, s), another term that can be

used is the equation error e(Ωk , θ, Z (k)) which is the difference between the left and

right hand sides of the transfer function model (6.1) on page 78, after multiplication by

A(Ωk , θ). Z contains the measured input-output (DFT) spectra where k = 1,2, . . . ,F.

Z (k) =

[
Y (k) U (k)

]
(7.5)

Data vector, Z is related to the true values by Z = Z0 + NZ , where the disturbing noise

NZ has zero mean and is independent of Z0, [3].

e(Ωk , θ, Z (k)) = A(Ωk , θ)Y (k) − B(Ωk , θ)U (k) (7.6)

The quality of the match between measurements and the model is measured by the cost

function. There is no unique choice for the cost function. Most algorithms implemented

in this experiment, minimize (in each step) a “quadratic-like” cost function V (θ, Z ).

V (θ, Z ) = εH (θ, Z )ε (θ, Z ) =

F∑
k=1

|ε (Ωk , θ, Z (k)) |2 (7.7)

ε (θ, Z ) ∈ CF is some kind of measure of the difference between the measurements
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and the model. The residual ε (θ, Z ) is either linear or nonlinear vector function of the

model parameters θ and the measurements Z .

7.3 Initial Time Delay Estimate

The delay in measurement setup apart from the system being identified should be

treated with care, or, at least, to be corrected later. In every real life application, there

exist an unknown time delay negligible or not. When it is necessary to deal with un-

known delays, delay parameter can be added to parametric plant model (see equations

6.4, 6.5 on page 79). However, this can be very risky since optimization problem

becomes very sensitive to delay parameter. Nonlinear Least Squares, Nonlinear Loga-

rithmic Least Squares, Maximum Likelihood cost functions are not global optimization

algorithms, therefore a good starting value of the time delay is mandatory in order

to avoid converging to a local minimum. In [3], a time delay estimation method as a

starting value is suggested (see (7.8)). This method estimates time delay via the mean

slope of the unwrapped phase of the measured frequency response function where

[wk1 ,wk2] defines the passband of the system.

τ̂ = −
1

k2 − k1

k2−1∑
k=k1

G(Ωk+1) − G(Ωk )
wk+1 − wk

(7.8)

7.4 Linear Least Squares

“Linear Least Squares” estimator suggested in [3, 24], does not require prior noise

knowledge and performs a global minimum procedure. Linear least squares algorithm

does not need a priori starting parameter set; it directly calculates the global minimum.

The linear least squares (LS) cost function is given below:

VLS (θ, Z ) =

F∑
k=1

|e(Ωk , θ, Z (k)) |2 (7.9)

e(Ωk , θ, Z (k)) stands for the “equation error” given in (7.6). The linear least squares

(LS) estimate θ̂LS (Z ) is found by minimizing (7.9) w.r.t. θ using the constraint ana = 1.
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The measured FRF G(Ωk ) of the system transfer function at a set of well-chosen

frequencies from the multisine experiment in Subsection 4.4.2 on page 45 is used. The

continuous time plant model with time delay given in (6.4) on page 79, is identified

starting from transfer function measurements (Eqn. 7.9 with equation error (7.6),

Ω = s, Y (k) = G(sk ), U (k) = 1). The parametric model that is used in the cost

function is a rational transfer function with delay. Increasing the complexity of the

model may result in closely following noise and unnecessarily complicated transfer

function. Lowering the complexity of the model on the other hand may result in poor

fit and big errors. For the experiment of interest, the number of poles chosen as na = 3

and number of zeros chosen as nb = 2.The initial system delay estimate is calculated

from mean slope of unwrapped phase in passband from (7.8) to be τ̂ = 0.0064 seconds.

The quadratic cost function in the measurements is given below:

VLS (θ, Z ) = εH (θ, Z )ε (θ, Z ) =

F∑
k=1

|ε (Ωk , θ, Z (k)) |2 =

F∑
k=1

|e(Ωk , θ, Z (k)) |2 (7.10)

where ε (θ, Z ) ∈ CF is a kind of measure of the difference between the measurements

and the model. The cost function VLS (θ, Z ) is quadratic-in-the-measurements Z . The

residual ε (θ, Z ) is linear in Z (the measurements). Equation (7.10) is rewritten as

VLS (θ, Z ) = εH
re(θ, Z )εre(θ, Z ) where ()re stacks the real and imaginary parts on top

of each other.

εre(θ, Z ) =



Re(εre(θ, Z ))

Im(εre(θ, Z ))


(7.11)

“Quadratic programming” setup has been designed for the problem of finding a vector

θ (parameter set given in Eqn. 6.3 on page 79) that minimizes a quadratic function

VLS (θ, Z ),

VLS (θ, Z ) = εH
re(θ, Z )εre(θ, Z ) =

1
2
θT · H · θ (7.12)

subject to linear constraint Aeq · θ = beq. The number of variables in the parameter set

θ is size(θ) = 7 with θ(4) = ana = a3 = 1 constraint for the experiment of interest.

The 7x7 sized H matrix has been found for the experiment of interest analytically

using the symbolic math toolbox of MATLAB. Since H is a positive definite matrix,

this problem is convex; so every local minimum is a global minimum. It is checked
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whether H is positive definite by noting all its eigenvalues are positive.

The linear least squares estimate for the experiment of interest results in the following

transfer function:

Ĝ(sk , θ) = e−0.00641s 5.719s2 − 3326s + 1.43e06
s3 + 486.3s2 + 1.898e05s + 8.547e05

(7.13)

The Bode plot of measured transfer function and estimated transfer function is given

in Fig. 7.2
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Figure 7.2: Comparison of Linear Least Squares estimation and the measurement

The magnitude of complex residual analysis |Y (k)/U (k) − G(Ωk , θ̂LS) | for the mea-

sured transfer function and the estimated transfer function is given in Fig. 7.3
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Linear Least Squares Estimation

The linear least squares approach has considerable weakness when identifying continu-

ous time models (Ω = s): the overemphasizing of high-frequency errors in (7.9), [24].

Equation error, e(Ωk , θ, Z (k)) is a polynomial inΩk and, hence, the contribution of the

disturbing noise at a frequency Ωk to the cost function increases with |Ωk |
2max(na ,nb ).

This drawback of linear least squares estimation causes poor low frequency fits (see

Fig. 7.2).

7.5 Iterative Weighted Linear Least Squares

“Iterative Weighted Linear Least Squares” estimator suggested in [3, 24], does not

require prior noise knowledge and performs a global minimum procedure. The “Lin-

ear Least Squares” approach explained in Section 7.4, lacks the sensitivity to low-

frequency errors. To overcome this drawback, the equation error e(Ωk , θ, Z (k)) in (7.9)

is divided by an initial guess of the denominator polynomial A(Ωk , θ
(0)). The obtained

weighted linear least squares estimate θ (1) is used to calculate a better estimate of the

denominator polynomial A(Ωk , θ
(1)), resulting in a better estimate θ (2), and so on . . . .

The ith step of the iterative procedure consists of minimizing
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V (i)
IW LS (θ (i), Z ) =

F∑
k=1

|e(Ωk , θ
(i), Z (k)) |2

|A(Ωk , θ (i−1)) |2
(7.14)

with e(Ωk , θ, Z (k)) stands for the equation error given in (7.6), w.r.t. θ (i) using the

constraint ana = 1. To get a starting value, “Linear Least Squares” estimate in

Section 7.4 is used θ (0) = θ̂LS (Z ). When iterations converge (θ (i) � θ (i−1) for i

sufficiently large), iterative weighted linear least squares (IWLS) estimate is found,

θ̂IW LS (Z ) = θ (∞).

More general form of “Iterative Weighted Linear Least Squares” cost function (7.14)

can be written as:

V (i)
IW LS (θ (i), Z ) =

F∑
k=1

W 2(Ωk , θ
(i−1)) |e(Ωk , θ

(i), Z (k)) |2 (7.15)

where W (Ωk , θ
(i−1)) is a well-chosen real weighting function. One particular weighting

is:

W (Ωk , θ
(i−1)) =

1
|A(Ωk , θ (i−1)) |r

with r ∈ [0,∞) (7.16)

Two special cases of (7.16) are the “linear least squares” method for r = 0 and the

“iterative weighted linear least squares” method (7.14) for r = 1. Powers of r different

from one, may result in smaller output errors Y (k) − Y (k, θ) (7.4). If the iterative

scheme (7.14) does not converge, then relaxation (r < 1) is helpful, [3].

The measured FRF G(Ωk ) of the system transfer function at a set of well-chosen

frequencies from the multisine experiment in Subsection 4.4.2 on page 45 is used.

The continuous time plant model with the time delay given in (6.4) on page 79, is

identified starting from transfer function measurements (Eqn. 7.14 with equation error

(7.6), Ω = s, Y (k) = G(sk ), U (k) = 1). The parametric model that is used in the cost

function is a rational transfer function with delay. Increasing the complexity of the

model may result in closely following noise and an unnecessarily complicated transfer

function. Lowering the complexity of the model on the other hand may result in poor

fit and big errors. For the experiment of interest, the number of poles chosen as na = 3

91



and number of zeros chosen as nb = 2. The initial system delay estimate is calculated

from mean slope of unwrapped phase in passband from (7.8) to be τ̂ = 0.0064 seconds.

For the experiment of interest, The “Iterative Weighted Linear Least Squares” estimate

found with 8 iterations, results in the following transfer function:

Ĝ(sk , θ) = e−0.00641s −0.47s2 + 886.3s + 1685
s3 + 95.46s2 + 919.7s + 7326

(7.17)

The Bode plot of measured transfer function and estimated transfer function is given

in Fig. 7.4
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Figure 7.4: Comparison of Iterative Weighted Linear Least Squares estimation and the
measurement

The magnitude of complex residual analysis |Y (k)/U (k) − G(Ωk , θ̂IW LS) | for the

measured transfer function and estimated transfer function is given in Fig. 7.5
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Figure 7.5: The magnitude of complex residual |Y (k)/U (k) − G(Ωk , θ̂IW LS) | analysis
of Iterative Weighted Linear Least Squares estimation

7.6 Genetic Algorithm

“Genetic algorithm” estimator implemented in this study, does not require prior noise

knowledge and performs a global minimum procedure. In reference [25], genetic

algorithm optimization technique is thoroughly explained. Genetic algorithm is an

optimization method which mimics the process of natural evolution. The cost function

used in the genetic algorithm is given in (7.18).

VGA(θ, Z ) =

F∑
k=1

|Y (k)/U (k) − G(Ωk , θ) |2 (7.18)

The measured FRF G(Ωk ) of the system transfer function at a set of well-chosen

frequencies from the multisine experiment in Subsection 4.4.2 on page 45 is used. The

continuous time plant model with the time delay given in (6.4) on page 79 is identified

starting from transfer function measurements (Eqn. 7.18 with Ω = s, Y (k) = G(sk ),

U (k) = 1). The parametric model that is used in cost function is a rational transfer

function with delay. Increasing the complexity of the model may result in closely

following noise and an unnecessarily complicated transfer function. Lowering the

complexity of the model on the other hand may result in poor fit and big errors. For

the experiment of interest, the number of poles chosen as na = 3 and number of zeros
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chosen as nb = 2. The initial system delay estimate is calculated from mean slope of

unwrapped phase in passband from (7.8) to be τ̂ = 0.0064 seconds.

The genetic algorithm settings in this experiment are designed as follows. In order

to converge a unique solution, the constraint ana = a3 = 1 is selected. The size of

the parameter vector (the number of variables) is then nθ = na + nb + 1 = 6. The

evolution starts with a population size of 80. Each individual parameter vector, θ, is

randomly generated. In each generation (iteration), the fitness of every individual in the

population is evaluated according to (7.18) and constraints. The more fit individuals

are stochastically chosen from the current population, and each individual’s genome is

recombined and randomly mutated to form a new generation. The “Genetic Algorithm”

estimate found with 100 generations, results in the following transfer function:

Ĝ(sk , θ) = e−0.00641s 7.526s2 − 11.87s + 6.735
s3 + 4.929s2 + 20.84s − 5.463

(7.19)

The Bode plot of measured transfer function and estimated transfer function is given

in Fig. 7.6
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Figure 7.6: Comparison of Genetic Algorithm estimation and the measurement
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The magnitude of complex residual analysis |Y (k)/U (k) − G(Ωk , θ̂GA) | for the mea-

sured transfer function and estimated transfer function is given in Fig. 7.7
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Figure 7.7: The magnitude of complex residual |Y (k)/U (k) − G(Ωk , θ̂GA) | analysis
of Genetic Algorithm estimation

7.7 Nonlinear Least Squares

“Nonlinear Least Squares” estimator suggested in [3, 24], does not require prior noise

knowledge and performs a local minimum procedure. “Nonlinear Least Squares”

(NLS) estimator θ̂N LS (Z ) solves the problem of finding a vector θ (one of the parameter

sets given in equations 6.3, 6.6 on page 79 ) that is a local minimizer to a function that

is a sum of squares, subject to some constraints.

When “Nonlinear Least Squares” estimator minimizes the sum of the squared residuals

between the measured output Y (k) and the modeled output Y (k, θ) given in “output

error” equation (7.4) where G(Ωk , θ) is one of the parametric plant models given in

(6.2), (6.4), (6.5), the cost function would be:

VN LS (θ, Z ) =

F∑
k=1

|Y (k) − Y (k, θ) |2 (7.20)

When “Nonlinear Least Squares” estimator minimizes the sum of the squared residuals

between the measured transfer function given in (7.2) calculated as G(k) = Y (k)/U (k)

and the parametric plant model G(Ωk , θ) that is one of the parametric plant models
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given in (6.2), (6.4), (6.5), the cost function would be:

VN LS (θ, Z ) =

F∑
k=1

|Y (k)/U (k) − G(Ωk , θ) |2 (7.21)

The “Nonlinear Least Squares” method with the cost functions (7.20), (7.21) may

converge to local minimum. Therefore, it is critical to have starting parameter sets

of “sufficiently high” quality. “Iterative Weighted Linear Least Squares” solution

explained in Section 7.5 is a good choice for this purpose.

The measured FRF G(Ωk ) of the system transfer function at a set of well-chosen

frequencies from the multisine experiment in Subsection 4.4.2 on page 45 is used.

The continuous time plant model with the time delay given in (6.4) on page 79, is

identified starting from transfer function measurements (The cost function (7.21),

Ω = s, Y (k) = G(sk ), U (k) = 1). The parametric model that is used in cost function

is a rational transfer function with delay. Increasing the complexity of the model may

result in closely following noise and an unnecessarily complicated transfer function.

Lowering the complexity of the model on the other hand may result in poor fit and

big errors. For the experiment of interest, the number of poles chosen as na = 3 and

number of zeros chosen as nb = 2. The initial system delay estimate is calculated from

mean slope of unwrapped phase in passband from (7.8) to be τ̂ = 0.0064 seconds.

The initial parameter set is obtained from “Iterative Weighted Linear Least Squares”

solution in Section 7.5

For the experiment of interest, The “Nonlinear Least Squares” estimate results in the

following transfer function:

Ĝ(sk , θ) = e−0.00624s 7.358s2 + 186.2s + 9.218
s3 + 22.43s2 + 244s + 956.1

(7.22)

The Bode plot of measured transfer function and estimated transfer function is given

in Fig. 7.8
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Figure 7.8: Comparison of Nonlinear Least Squares estimation and the measurement

The magnitude of complex residual analysis |Y (k)/U (k) − G(Ωk , θ̂N LS) | for the mea-

sured transfer function and estimated transfer function is given in Fig. 7.9
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Figure 7.9: The magnitude of complex residual |Y (k)/U (k) − G(Ωk , θ̂N LS) | analysis
of Nonlinear Least Squares estimation
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7.8 Nonlinear Logarithmic Least Squares

“Nonlinear Logarithmic Least Squares” estimator suggested in [3, 24, 26], does not

require prior noise knowledge and performs a local minimum procedure. “Nonlinear

Logarithmic Least Squares” (LOG) estimator θ̂LOG (Z ) solves the problem of finding

a parameter set θ that is a local minimizer to a logarithmic function that is a sum of

squares, subject to some constraints.

“Nonlinear Logarithmic Least Squares” estimator is helpful when frequency response

function has a large dynamic range, transfer function parameterized in powers of Ωk

(see Eqn. 6.2 on page 78) may become ill conditioned. Estimator limits the dynamic

range of the frequency response function by taking the natural logarithm of the model

equation ln(Y (k)/U (k)) = ln(G(Ωk , θ)). That way, θ̂LOG (Z ) improves the numerical

stability and estimator is robust with respect to outliers in the measurement.

“Nonlinear Logarithmic Least Squares” estimator minimizes:

VLOG (θ, Z ) =

F∑
k=1

| ln(Y (k)/U (k)) − ln(G(Ωk , θ)) |2 (7.23)

The “Nonlinear Logarithmic Least Squares” estimator with the cost function (7.23)

may converge to a local minimum. Therefore, it is critical to have starting parameter

sets of “sufficiently high” quality. “Iterative Weighted Linear Least Squares” solution

explained in Section 7.5 is a good choice for this purpose.

Parametric plant model estimation using “Nonlinear Logarithmic Least Squares”

method did not produce successful results in this study.

7.9 Maximum Likelihood

“Maximum Likelihood” estimator suggested in [3, 24], requires prior noise knowledge

and performs a local minimum procedure. Prior noise knowledge is a probability

density function (pdf) of the frequency domain errors NZ (k) = [NY (k) NU (k)]T ,

k = 1,2, . . . ,F. The maximum likelihood estimator weights the cost function at each

frequency Ωk with its measurement uncertainty, so that high-quality FRF measure-
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ments (small σ2
G (k)) contribute more to the ML cost than poor-quality FRF measure-

ments (large σ2
G (k)). Hence, the ML estimator trusts more to accurate measurements

while it rejects noisy measurements [3].

The maximum likelihood (ML) cost function is

VML (θ, Z ) =

F∑
k=1

|e(Ωk , θ, Z (k)) |2

σ2
e (Ωk , θ)

(7.24)

In (7.24), e(Ωk , θ, Z (k)) stands for the “equation error” given in (7.6) and σ2
e (Ωk , θ)

is the variance of equation error

σ2
e (Ωk , θ) = σ2

Y (k) |A(Ωk , θ) |2 +σ2
U (k) |B(Ωk , θ) |2 − 2Re(σ2

YU (k)A(Ωk , θ)B̄(Ωk , θ))

(7.25)

Dividing the numerator and denominator of each term in the sum (7.24) by |A(Ωk , θ) |2

gives another representation of maximum likelihood cost function:

VML (θ, Z ) =

F∑
k=1

|Y (k) − Y (k, θ) |2

σ2
Y (Ωk , θ)

(7.26)

Here, Y (k) −Y (k, θ) is the output error given in (7.4) and σ2
Y (Ωk , θ) is the variance of

output error:

σ2
Y (Ωk , θ) = σ2

Y (k) + σ2
U (k) |G(Ωk , θ) |2 − 2Re(σ2

YU (k)Ḡ(Ωk , θ)) (7.27)

Transfer function representation of maximum likelihood cost function (ML) is given

by

VML (θ, Z ) =

F∑
k=1

|Y (k)/U (k) − G(Ωk , θ) |2

σ2
G (k)

(7.28)

The weighted least squares distance between the measurement and the model is

minimized. σ2
G (k) is the variance (or uncertainty) of transfer function measurement:
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σ2
G (k) = |G0(Ωk ) |2[σ2

Y (k)/|Y0(k) |2+σ2
U (k)/|U0(k) |2−2Re(σ2

YU (k)/(Y0(k)Ū0(k)))]

(7.29)

The “Maximum Likelihood” method with the cost functions (7.24), (7.26), (7.28) may

converge to local minimum. Therefore, it is critical to have starting parameter sets

of “sufficiently high” quality. “Iterative Weighted Linear Least Squares” estimator

explained in Section 7.5 is a good candidate for this purpose.

The measured FRF G(Ωk ) of the system transfer function, input signal frequency

spectrum U (k) and nonparametric noise model σ2
Y (k) = var (NY (k)) at a set of well-

chosen frequencies from the multisine experiment in Subsection 4.4.2 on page 45 is

used. The continuous time plant model with the time delay given in (6.4) on page 79 is

identified starting from transfer function measurements. The cost function is given in

(7.28). System is identified in continuous domain Ω = s. Since the input signal U0(k)

is known exactly, σ2
U (k) = 0, σ2

YU (k) = 0, as can be verified from Figures 4.6 and 4.8

on page 47. Therefore Eqn. (7.29) simplifies to σ2
G (k) = σ2

Y (k)/|U0(k) |2 where

U0(k) = U (k). Output noise variance σ2
Y (k) for this experiment can be examined in

Fig. 4.7 on page 47. The parametric model that is used in cost function is a rational

transfer function with delay. Increasing the complexity of the model may result in

closely following noise and an unnecessarily complicated transfer function. Lowering

the complexity of the model on the other hand may result in poor fit and big errors. For

the experiment of interest, the number of poles chosen as na = 3 and number of zeros

chosen as nb = 2. The initial system delay estimate is calculated from mean slope of

unwrapped phase in passband from Eqn. (7.8) to be τ̂ = 0.0064 seconds. The initial

parameter set is obtained from “Iterative Weighted Linear Least Squares” solution in

Section 7.5

For the experiment of interest, The “Maximum Likelihood” estimate results in the

following transfer function:

Ĝ(sk , θ) = e−0.00543s −3.132e − 05s2 + 7617s + 8.768e04
s3 + 1027s2 + 1.153e04s + 1.735e05

(7.30)

The Bode plot of measured transfer function and estimated transfer function is given
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in Fig. 7.10
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Figure 7.10: Comparison of Maximum Likelihood estimation and the measurement

The magnitude of complex residual analysis |Y (k)/U (k) − G(Ωk , θ̂ML) | for the mea-

sured transfer function and estimated transfer function is given in Fig. 7.11
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Figure 7.11: The magnitude of complex residual |Y (k)/U (k) − G(Ωk , θ̂ML) | analysis
of Maximum Likelihood estimation
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7.10 Comparisons of Estimates

In system identification, a global minimization procedure is an advantageous property

since there might exist many local minimums. It is shown that “Linear Least Squares”

(LS), “Iterative Weighted Linear Least Squares” (IWLS) and “Genetic Algorithm”

(GA) estimators are self starting (do not necessitate good starting points) and sustain

global minimization property. Therefore, the solutions of these estimators can be used

as reliable starting values. “Nonlinear Least Squares” (NLS), “Nonlinear Logarithmic

Least Squares” (LOG) and “Maximum Likelihood” (ML) estimators are efficient local

minimum algorithms which require good initial estimates.

In Fig. 7.12, the frequency responses of measurement (dashed line) and LS, IWLS,

GA, NLS, ML parametric model estimates (solid lines) are compared on a Bode

plot. In Fig. 7.13, on top, the difference between the estimated parametric model

amplitude in dB and the measured amplitude in dB is given. A positive difference

of 6 dB in magnitude means that estimated parametric model magnitude is twice

the magnitude of measurement. In Fig. 7.13, on below, the difference between the

estimated parametric model phase and the measured phase in degree is given. In

Fig. 7.14 measured FRF amplitude (dashed line) and absolute value of the complex

error between the estimated parametric plant model and measured FRF are given.

For instance, a negative difference of -26dB between the dashed line and solid line

corresponds to 5% estimate error.

Figures 7.13 and 7.14 show that the LS estimator is poor in the low-frequency range

(this is discussed in Section 7.4). LS IWLS and GA have a big advantage as global

minimizers and as self starting algorithms, but their efficiency can be low and compu-

tationally slower. NLS and ML estimators use the IWLS solution as a starting point.

NLS estimator result is pretty successful and fits the FRF measurement very well.

On the other hand, ML estimator weights the residuals according to the nonparamet-

ric noise model. Therefore ML estimator has better statistical properties than NLS

estimate.
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Figure 7.12: Comparisons of the LS, IWLS, NLS, ML solutions and the measurement
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Figure 7.13: On top: difference between the estimated amplitude in dB and measured
amplitude in dB. Below: phase error in degrees.
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Figure 7.14: Measured plant model amplitude (dashed line) and magnitude of the
complex error between the estimated plant model and measured FRF.

7.11 Model Selection and Validation

The system identification can be described as an iterative process. Increasing the

complexity of the model may result in closely following noise and unnecessarily

complicated transfer function. On the other hand, lowering the complexity of the

model may result in poor fit and systematic errors. A control engineer searches for a

parametric plant model which best describes the system with minimum complexity

(minimum order). In the first trial, the order of transfer function can be chosen small.

After an optimization procedure, the estimated plant model and the measured FRF

are compared by a visual inspection on a Bode plot or by residual analysis. This

comparison step is called “Validation”. If the estimated transfer function satisfactorily

describe the dynamic system, identification problem is solved. Otherwise (abnor-

malities, large errors exist in some frequency bands), the order of transfer function

(parametric plant model) is gradually increased until a satisfactory parametric model
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is obtained. Model order is increased step-by-step until systematic errors are below

an acceptable level. The acceptance level can be determined according to intended

application requirements. In this study, the parametric model is intended to be used in

a controller design.

In this section, four parametric model estimation is realized. The first parametric

model possesses na = 1 number of poles and nb = 0 number of zeros. The second

parametric model has na = 3 and nb = 2. The third parametric model obtains na = 6

and nb = 5. The fourth parametric model contains na = 9 and nb = 8. The whole

measured frequency range, 1-250 Hz, is taken into account in the optimization problem.

ML estimator is used in the optimization algorithm with starting point coming from

IWLS. Note that, as the order of model or number of frequency lines increases, the

computational time of the optimization problem grows. The Bode plot of the measured

transfer function and the estimated transfer function is given in Fig. 7.10. In Fig.

7.16, it is shown how the systematic errors decrease as the parametric model order is

increased. In Fig. 7.16 measured FRF amplitude (dashed line) and absolute value of

the complex error between the estimated parametric plant model and measured FRF

are given. For instance, a negative difference of -26dB between the dashed line and

solid line corresponds to 5% estimate error.
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Figure 7.15: Comparison of high order (na = 9, nb = 8) parametric model estimation
and the measurement
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Figure 7.16: Measured plant model amplitude (dashed line) and magnitude of the
complex error between the estimated plant model and measured FRF.
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CHAPTER 8

DISCUSSION, CONCLUSION AND FUTURE WORK

8.1 Discussion and Conclusion

In this study, the inner azimuth gimbal of four axis gyro stabilized IR/EO gimbal system

is modeled step by step in the frequency domain through experimental investigation and

the results of this investigation are presented. Various excitation signals and algorithms

are studied in order to efficiently measure nonparametric FRF and its uncertainty. The

level of nonlinear distortions in the FRF measurement is quantified. A large number

of identification techniques are applied and parametric plant model is estimated. The

field of system identification takes a fundamental place in control engineering. The

estimated parametric plant model allows the control engineer to realize time domain

simulations, frequency domain analyses, controller design, stability analysis and

prediction.

System identification is an iterative process. When starting the identification, a priori

information about the plant is usually limited. At each iteration, the excitation signal is

redesigned using the simulations of new and better estimated parametric plant model.

For excitation signals, signal to noise ratio (SNR) is a very critical property. In all

experiments, the desired signal to be measured is disturbed by undesired background

noise. In frequency response function measurements, the time it takes to reach a

specified accuracy is inversely proportional to the square of SNR [2, 3]. Even worse

than that, in some cases, low SNR would introduce bias errors in frequency response

function measurements which can not be compensated by increasing measurement time.

By averaging the measurements, the random errors can be reduced, but systematic bias
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errors will remain. Therefore, a good excitation signal should provide as high power

spectrum as possible without exceeding normal operation conditions. It is desired to

inject more power to frequency bands where noise is dominant so that roughly constant

SNR in FRF measurement is obtained. General purpose excitation signals are able to

excite the system with an almost flat power spectrum in a frequency range of interest.

Therefore, general purpose excitation signals are good for a dynamic system with a

white noise behavior. At first data collection experiment where a priori information

about the plant is limited, one of the periodic general purpose excitation signal can

be used. After obtaining the nonparametric noise model of the system, excitation

signal can be improved by shaping the magnitude spectrum of multisine signal and

inject more power to the noisy frequency bands. Furthermore, it is advised to optimize

the phases of multisine excitation signal to achieve enhanced signals while satisfying

application specific restrictions (see Section 3.8).

It is crucial that experiments are well designed so that parameters to be estimated

through statistical methods result in least possible bias and minimum variance. In this

study, various perturbation signals are analyzed and compared. The knowledge and

practical experiences are shared about under what conditions broadband excitation

signal is superior to stepped sine excitation signal in terms of measurement time to

reach a specified accuracy. When input signal is periodic, by averaging techniques,

it is possible to reduce the variance of frequency response function measurement

and decrease the error. Moreover, the averaging in the frequency domain provides

the nonparametric noise model of the system which is not available with averaging

methods in the time domain. It is important that no spectral leakage occurs during the

analysis of the measurements; therefore periodic excitation signals should be preferred

and an integer number of signal periods should be measured.

All mechanical systems are inherently nonlinear in nature. However, nonlinear model

building is difficult to accomplish and time consuming while profits are usually small.

For this reason, it is appealing to select linear mathematical models around operating

points. On the other hand, knowing the nonlinear distortion error contribution on

the frequency response function measurement helps the robust controller designer to

set the uncertainty bounds on a linear model and improve the existing controller. In

this study, experimental illustrations of nonlinear distortion quantification techniques
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are given, summarizing their advantages and drawbacks. A robust method to detect

and quantify nonlinear distortion on frequency response functions measurements is

studied.

The main aim of this study is the estimation of parametric models from nonparametric

frequency response function measurements. Various optimization techniques are

implemented in order to find a parametric plant model which best represents the

dynamic system. The performances of the implemented identification techniques

are compared in terms of their efficiencies, convergence properties and bias errors.

The problem of parametric plant modeling is quite sensitive to local minimums since

parameter set appears both in numerator and denominator of the transfer function.

Initial time delay value is also critical in this sense. Therefore, self-starting global

optimization algorithms are necessary in order to avoid local minimums. It turns out

that “Iterative Weighted Linear Least Squares” (IWLS) estimator provides globally

good results without converging local minimums. IWLS estimator is a self-starting

algorithm which does not require a good initial point. The result of IWLS estimator

can be used as a starting point of other computationally more efficient estimators.

The nonparametric noise model obtained in previous steps is invaluable, because, this

information allows the estimator to weight the cost function and attain statistically

better results (see “Maximum Likelihood” estimator in Section 7.9). In validation step,

estimated plant model and nonparametric frequency response function measurement

are compared by a visual inspection on a Bode plot and by residual analysis. If any

abnormalities are detected, model order can be increased or previous steps can be

redesigned. Eventually, the engineer looks for a parametric plant model which best

describes the system with minimum complexity (minimum order).

8.2 Publications

The following paper is published and presented in SAVTEK 2014 Ankara.

Gökhan Özdoğan and Kemal Leblebicioğlu, “Cayro Stabilize Dört Ek-

sen Gimbal Yapılı Elektro Optik Sistemin Modellenmesi”, in 7. Savunma

Teknolojileri Kongresi, pp. 1061-1072, 2014.
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The following paper is accepted to be presented in TOK, in September 2014, Kocaeli.

Gökhan Özdoğan and Kemal Leblebicioğlu, “Gyro Stabilize Gim-

balin Frekans Bölgesinde Modellenmesi ve Analizi”, in Otomatik Kontrol

Ulusal Toplantısı, 2014.

8.3 Future Work

Although all the experiments are realized using gyro stabilized gimbal system, the

measurement techniques explained and identification methods discussed in this study

are applicable to all SISO dynamic systems operating in open loop. The algorithm

implementations built and programmed in this study will be organized and composed

in a single application with a graphical user interface. The author intends to release

this application later as a MATLAB toolbox.

As extensions of this study, the following future work will be researched.

• The algorithms studied in this work are applicable only to SISO systems. How-

ever, some complex dynamic systems should be modeled as MIMO due to

significant coupling effects. As a future study, MIMO system identification will

be studied.

• In this study, a dynamic system operating in open loop is handled (direct identi-

fication). However, some systems have to be run under linear feedback control.

The closed loop identification (indirect identification) can be required due to sev-

eral reasons. This may be due to safety reasons, an unstable plant that requires

control or the plant may contain inherent feedback mechanisms (biological

systems). For instance, when the plant is unstable, it is first required to be

stabilized with a closed loop controller. Then the FRF of closed loop system

can be measured. Since the implemented controller is known exactly, the FRF

of unstable plant can be derived from the closed loop FRF measurement. As a

future study, the system identification of closed loop systems will be studied.

• Estimating the best linear approximated parametric plant model of a highly

nonlinear system is difficult. In order to reduce the systematic errors, the order of
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parametric model is required to be very high. The concept of modeling a highly

nonlinear system with a combination of several linear low order parametric

models active in separate frequency bands will be researched. This is also called

piecewise linear modeling.
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