

A PROJECT PAYMENT SCHEDULING PROBLEM WITH DISCOUNTED

CASH FLOWS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

ALİCAN CÖMERT

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

INDUSTRIAL ENGINEERING

JULY 2014

Approval of the thesis:

A PROJECT PAYMENT SCHEDULING PROBLEM WITH

DISCOUNTED CASH FLOWS

Submitted by ALİCAN CÖMERT in partial fulfillment of the requirements for

the degree of Master of Science in Industrial Engineering Department,

Middle East Technical University by,

Prof.Dr. Canan Özgen

Dean of Graduate School of Natural and Applied Sciences

Prof. Dr. Murat Köksalan

Head of Department, Industrial Engineering

Prof. Dr. Meral Azizoğlu

Supervisor, Industrial Engineering Department, METU

Examining Committee Members:

Assoc. Prof. Dr. Canan Sepil

Industrial Engineering Department, METU

Prof. Dr. Meral Azizoğlu

Industrial Engineering Department, METU

Assist. Prof. Dr. Özgen Karaer

Industrial Engineering Department, METU

Assoc. Prof. Dr. Ferda Can Çetinkaya

Industrial Engineering Department, Çankaya Üniversitesi

Hasan Haluk Kobakçı, M.Sc.

Director, ASELSAN A.Ş.

Date: 08.07.2014sda

iv

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

 Name, Last Name : Alican CÖMERT

 Signature :

v

ABSTRACT

A PROJECT PAYMENT SCHEDULING PROBLEM WITH

DISCOUNTED CASH FLOWS

Cömert, Alican

M.Sc., Department of Industrial Engineering

Supervisor: Prof. Dr. Meral Azizoğlu

July 2014, 72 pages

In this study we consider a project payment model with discounted cash flows.

We assume that the client payment times are defined in the project contract. The

activities are characterized by their processing times and costs that are incurred at

their completions. Our problem is to find the client payment amounts and activity

completion times so as to minimize the net present value of the client payments

and activity costs. We show that the problem is strongly NP-hard.

We formulate the problem as a mixed integer nonlinear programming model and

solve small to moderate sized problem instances. For moderate to large sized

problem instances, we propose a branch and bound algorithm that employs

efficient lower and upper bounding mechanisms.

Keywords: project scheduling, discounted cash flows, branch and bound algoritm

vi

ÖZ

İSKONTOLANDIRILMIŞ NAKİT AKIŞLI PROJE ÖDEME

ÇİZELGELEMESİ PROBLEMİ

Cömert, Alican

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Meral Azizoğlu

Temmuz 2014, 72 sayfa

Bu çalışmada, nakit akışlarının iskontolandırıldığı bir proje çizelgeleme problemi

ele alınmıştır. Müşteri ödemelerinin tanımlı zamanlarda ve proje harcamalarının

ise aktivite bitiş noktalarında yapıldığı varsayılmıştır. Problemimiz, toplam

müşteri ödeme ve aktivite maliyetlerinin bugünkü değerini ençoklayan, müşteri

ödeme miktarlarını ve aktivite bitiş sürelerini belirlemektir. Problemimizin NP-

zor olduğunu gösterdik.

Problemimizi tam sayılı karmaşık doğrusal olmayan bir model marifetiyle

tanımaya çalıştık. Modelin küçük boyutlu problemler için optimal çözümü

bulduğunu gördük. Orta boyutlu problemleri çözebilmek için bir dal-sınır

algoritmasını geliştirdik. Algoritmanın performansı optimal çözümün

özelliklerini ve geliştirdiğimiz alt ve üst sınırlama mekanizmalarını kullanarak

iyileştirdik

.

Anahtar Kelimeler: proje çizelgelendirmesi, iskontolandırılmış nakit akışları,

dal-sınır algoritması

vii

To my family

viii

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisor Prof. Dr. Meral

Azizoğlu for her invaluable guidance, encouragements, advices and insight during

the entire study. Without her hard work, understanding and support, it would be

impossible to complete this thesis.

I would also like to thank the respected committee members, for accepting to

participate in committee and their valuable comments and suggestions.

I would like to give my appreciation to my company, ASELSAN A.Ş. and my

managers for supporting me and giving the permission to attend such a great MSc.

program.

Also, thanks to my friends Eyüp Ensar Altaş, Kerem Erkan, Şemsettin Balta, Onur

Ata, Uğur Koç and Umutcan Duman for their true friendship and sharing joyful

times with me throughout my thesis period.

Sincere thanks to my family, especially my mother Alise Cömert, my father İsmet

Cömert, and my sister Aylin Bekiroğlu for their love, support and patience to me.

I could not have finished this study without them by my side.

Finally, I must express my great love and appreciation to my dearest fiancée Naz

Güler, for her love, patience, support and being with me whenever I need.

ix

TABLE OF CONTENTS

ABSTRACT .. v

ÖZ ... vi

ACKNOWLEDGEMENTS ... viii

TABLE OF CONTENTS ... ix

LIST OF TABLES .. xi

LIST OF FIGURES ... xii

CHAPTERS

1 INTRODUCTION ... 1

2 PROBLEM DEFINITION .. 5

2.1 Problem Statement ... 5

2.2 Mathematical Model ... 7

2.3 Complexity of the Problem ... 11

2.4 A Feasible Solution and the Optimal Solution 11

3 LITERATURE SURVEY .. 19

3.1 Resource Constrained Problems ... 19

3.2 Unconstrained Problems ... 24

4 SOLUTION APPROACH .. 27

4.1 Properties of an Optimal Solution .. 27

4.2 Upper Bound .. 28

4.3 Lower Bound .. 34

x

4.4 Branching Scheme .. 35

5 COMPUTATIONAL EXPERIMENT ... 41

5.1 Data Generation ... 41

5.2 Preliminary Experiments ... 43

5.3 Main Experiments ... 52

6 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 63

REFERENCES .. 65

APPENDICES

 A. BRANCH AND BOUND CALCULATIONS .. 70

xi

LIST OF TABLES

TABLES

Table 1 - An Example Problem ... 12

Table 2 - Earliest and Latest Schedule of the Project ... 13

Table 3 - Early Start Schedule Objective Function ... 13

Table 4 - Latest Start Schedule Objective Function.. 14

Table 5 - Latest Start in Earliest Period Objective Function 15

Table 6 – The Optimal Solution .. 17

Table 7 - Calculation of Upper Bound .. 33

Table 8 – The Parameters of Nodes in the Branch and Bound Tree 39

Table 9 – The Effect of the Profit Margin .. 44

Table 10 – The Effect of the Discount Rate .. 45

Table 11 - The Effect of the Network Complexity ... 46

Table 12 – The Effect of the Cost Distribution ... 47

Table 13 - CPU Seconds and Nodes Analysis of Duration Distribution 49

Table 14 – The Upper and Lower Bound CPU Performances in a BAB 50

Table 15 – The Deviations of the Upper and Lower Bound 51

Table 16 – Parameters Used in the Main Experiment... 52

Table 17 – Lower Bound Performances.. 53

Table 18 – Upper Bound Performances .. 55

Table 19 – The Performances of the BAB and GAMS model, M=1 57

Table 20 - The Performances of the BAB and GAMS model, M=1.1 57

Table 21 - The Performances of the BAB and GAMS model, M=1.2 58

file:///I:/tez/yaz/recent/Hocalara%20gönderilen/revised/A%20Project%20Payment%20Scheduling%20Problem%20with%20Discounted%20Cash%20Flows%20-%20revision-%202107.docx%23_Toc393747117

xii

LIST OF FIGURES

FIGURES

Figure 1 – The Cash Flow Diagram .. 8

Figure 2 - An Example Network Diagram .. 12

Figure 3 - The Gant Chart of ESS and LSS in Earliest Period 16

Figure 4 - The Cash Flow Diagram of the Optimal Solution 18

Figure 5 - Branch and Bound Tree Structure .. 38

1

CHAPTER 1

INTRODUCTION

Project is a temporary group activity designed to produce a unique product,

service or result (Project Management Institute). Project management is the

application of knowledge skills and techniques to execute the project effectively

and efficiently. Financial planning plays a vital role in efficient and effective

project management by providing powerful means of using the cash flows, by

considering the time value of money.

The basic concern of the financial planning is to increase the profitability of the

projects via establishing payment schedules that are acceptable by the contractors

(producers) and the clients (customers). The payment schedules should consider

the timing and quantity of each receipt from the client and the timing and amount

of each expense by the contractor. The expenses made by the contractor usually

due to the activity realizations. The objective of the financial planners is usually to

maximize the net present worth of all cash flows. From the contractor side, the

negative cash flow is due to the activity expenses and the positive cash flow is the

amount received from the client to realize the project.

During the bid submission process, the contractor and client should negotiate over

the payment schedule proposals. The client would like to pay the money as late as

possible and the contractor would like to receive the money as early as possible. A

good payment schedule would consider the compromises between the client and

contractor, requirements.

2

In the literature, there are mainly four payment models that are lump-sum

payment, payments at event occurrences, equal time intervals and progress

payment. Lump sum payment model is rather easy to solve for the net present

value problems compared to other payment models, since the client pays the

whole amount to the contractor at the end of the project. Thus, the objective

function reduces to finishing the project as early as possible. In the payments at

event occurrences model, payments are made at predefined events where timing

and amount of payments are to be ascertained. For equal time intervals model,

payments are made in equal intervals whereas the last payment is done with the

completion of the project. Progress payment model is very similar to the equal

time intervals model with a significant difference that the payment times are not

equally spaced and number of payments that will be made during the project is

unknown.

In this study, we use progress payment scheduling model in which the timings of

the payments are already specified but their amounts are going to be determined.

We assume that the activity costs are incurred at activity completion times. In

practice, the majority of the activities are outsourced or subcontracting, hence the

cost is charged once the activity is received the complete form. Our objective is to

maximize the net present worth of all cash flows of the contractor. From the

contractor side, the negative cash flow is due to activity expenses and the positive

cash flow is the amount received from the client for the work completed after the

last payment.

Our model and solution approaches can be used by the client side, after some

modifications. We hope our study could help for the practitioners who want to

manage their cash flows, negotiating for the milestones and critical control points,

determining the amounts and timings of the progress payments.

3

In this study, we present a branch and bound algorithm that decides on the activity

completion times and the amount of progress payments. We assume in the

contract, the deadline of the project completion time is already negotiated. To the

best of our knowledge, our study is the first attempt to solve the problem to

optimality.

The rest of the thesis is organized as follows. Section 2 defines the problem and

presents the mathematical model. The complexity of the problem is shown as NP-

hard in the strong sense. Some feasible solutions and an optimal solution of the

model are also illustrated. Section 3 gives the survey of the related literature. In

Section 4, we discuss our branch and bound algorithm together with the bounding

mechanisms. The results of our extensive computational runs are reported in

Section 5. Section 6 concludes the study by pointing out our main findings and

suggestions for future research.

4

5

CHAPTER 2

PROBLEM DEFINITION

In this chapter, with its underlying assumptions together, a mixed integer non-

linear mathematical model is presented. Then, the complexity of the problem is

settled. Finally, a feasible solution and an optimal solution of the model are

discussed.

2.1 Problem Statement

The problem is analyzed from the contractor’s side. The objective of the problem

is to maximize the net present value of all cash flows which consist of contractor’s

cost of activities and client’s payments.

We consider a progress payment model where the project payments occur at

predefined dates. The amount of money to be paid is calculated according to the

expenses of the completed activities in that period. Considering the time value of

money, the client wishes to pay as late as possible, whereas the contractor wishes

to receive payments as early as possible, in the meantime there are activity

expenses of contractor and a project deadline which contractor need to finish all

activities before that date.

We assume the client and contractor has an agreed schedule for the payment

dates. On the predefined dates, the client pays the activity costs that are finished

between the last payment and payment date, with a predefined profit margin over

the activity costs. The profit margin is bargained at the beginning of the project

6

and it might change from period to period. For example, if the client is willing to

receive the project as soon as possible, the contractor may be awarded by setting

higher profit margins to earlier periods.

Contractor’s costs are assumed to be charged at the end of activity in a lump-sum.

If an activity does not finish before a payment date, although it has started before

the payment date, the contractor neither receives the payment of that activity nor

pays its cost in that payment interval.

Discount factor is the maximum rate which the contractor could invest their

money with. This rate may be the market interest rate or external rate of return of

the contractor. Discount factor may change from period to period. Therefore,

interest rate forecasts during the project timeline could be reflected to project the

costs.

In the study, we assume that the interest rate and profit margin are static

parameters. We further make the following assumptions:

 Project activities, activity durations, activity costs and their precedence

relationships are deterministic, i.e., known with certainty.

 All predecessor relations have finish-to-start dependency which means an

activity cannot start before its all preceding activities are not finished.

 Once an activity starts, it must be completed without any interruption.

 There is no resource constraint.

 The discount rate is continuously compounded.

7

 Profit margin includes cost of activities, therefore, should be greater than

1.

2.2 Mathematical Model

We assume that there are N activities and P payment periods and use the

following notation.

Parameters:

i : Index for activities, i = 1,…,N

p : Index for progress payments, p = 1,…,P

Ap : Finishing time of period p

αp : Discount factor for period p, we assume αp = α for p

D : Deadline of the project

di : Duration of activity i

 p : Profit margin for period p, we assume p = for p

Ci : Cost of activity i (negative cash flow)

IPi: Immediate predecessor of activity i

Decision variables:

CFp : Amount of payment received at the end of period p, p = 1,…,P (positive

cash flow)

Ti : Completion time of activity i, i = 1,…,N

8

Xpi : {

Note that we assume the timing of the payments and amount of the activity costs

are given, i.e., parameters. However, the timing of the activity completions and

amount of progress payments are to be decided, i.e., decision variables.

The cash flow diagram that explains our problem is given in Figure 1.

Figure 1 - The Cash Flow Diagram

Model:

Max ∑ () ∑

subject to

(1) for j IPi, i = 1,…,N

(2)

(3) T0 = 0

(4) ∑

 for i, i = 1,…,N

(5) ∑

 for i, i = 1,…,N

(6) ∑

 for i, i = 1,…,N

9

(7) ∑

 for p, p = 1,…,P

(8) = 0 or 1 for i, p

The model above is a mixed integer non-linear problem. It is written from the

point of view of the contractor. The objective function has two separate parts: The

money that contractor receives from the client considering the time value of

money and the expenses of activities of the contractor considering the time value

of money. Note that the second part is a function of s.

We now explain our constraints.

(1) Activity predecessor constraints guarantee that an activity cannot start

before all its preceding activities are finished.

(2) The project must be finished before the specified deadline.

(3) Activity 0 is the first activity that defines the start of the project.

(4) Each activity is assigned to exactly one period.

(5) and (6) together define the period in which an activity completes.

(7) The money that the client must pay at the end of each period is the sum of

expenses of activities that finish within that period multiplied by the profit

margin, .

(8) is a binary variable.

If there are no progress payments, i.e., =0, the contractor should minimize their

costs; therefore, the optimal solution would be to complete as late as possible, i.e.,

the late start schedule is optimal. If there are no activity expenses, i.e., = 0 for

all i, the optimal solution would be complete as early as possible, i.e., the early

start schedule is optimal. The late and early start schedules are found by the well-

known Critical Path Method. For the sake of completeness, we give the details of

this method.

10

The Critical Path Method (CPM)

In the late 1950s, Remington Rand Univac and DuPont Corporation introduced

CPM to schedule project activities based on a mathematical algorithm. By using

the duration and precedence relationship of activities, critical and non-critical

paths are determined. The method forms the early start schedule (ESS) in the

forward pass starting from the first activity in the project and the longest path

named as critical path gives the earliest completion time of the project.

Oppositely, starting from the deadline of the project, via using the backward pass

of the CPM late start schedule (LSS) of activities are determined. The recursive

equations to form these schedules are stated as follows:

There are N activities in the project.

ESi=Max(ESj+) for j IPi, and i

EFi=ESi+ for i

The forward pass of the CPM begins from the first activity and finishes when the

early start time of the last activity N is found.

Backward pass recursive equations are given below:

LFn=Deadline

ISi: set of immediate successors of activity i

LFi=Min(LFj-) for j ISi, and i

LSi=LFi-Durationi for all i

11

2.3 Complexity of the Problem

We show, through Theorem 1, that our problem that is modelled in Section 2.2, is

strongly NP-hard.

Theorem 1: Our problem is strongly NP-hard.

Proof: The objective of the problem is:

Max ∑ () ∑

where =∑

When =0, the objective function reduces to

Max ∑

 ≡ Min ∑

The problem using the above objective and ignoring the deadline constraint

(taking D very big value) is equivalent to minimizing total weighted completion

time problem on parallel identical machines and with precedence constraints, i.e.,

P │prec│∑

 is scheduling terminology.

De Reyck and Leus (2008) showed that 1 │prec│∑

 is strongly

NP-hard, so is its generalization P │prec│∑

 .

This follows, our problem residing arbitrary and D values over the P

│prec│∑

 problem is strongly NP-hard.

Theorem 1 states that there can exist neither polynomial, nor pseudo-polynomial

algorithm that solves our problem.

2.4 A Feasible Solution and the Optimal Solution

In this section, we present a feasible and an optimal solution of the model. The

optimal solution is found by GAMS BARON nonlinear programming solver. We

consider the following 8 activity precedence network shown in Figure 2.

12

Figure 2 - An Example Network Diagram

Table 1 gives the activity durations, costs and predecessor activities.

Table 1 - An Example Problem

ID
Duration

(months)

Cost

($)

Immediate

Predecessors

0 0 0 -

1 3 600 0

2 2 1800 0

3 5 700 0,1

4 6 1600 1,2

5 8 2000 2,3

6 4 1500 4,5

7 3 1900 3,5,6

8 4 600 5

9 0 0 6,7,8

13

Let the project deadline be 30 months, and the project has 3 payment times that

are on the 10
th

, 20
th

 and 30
th

 months. The discount rate (α) is assumed to be 0.10

per year and profit margin (β) is taken as 1.20.

Table 2 gives the earliest and latest completion time of activities, found by the

CPM.

Table 2 - Earliest and Latest Schedule of the Project

ID
Earliest

Start

Time

Earliest

Finish

Time

Earliest

Period

Latest

Start

Time

Latest

Finish

Time

Latest

Period

0 0 0 1 7 0 1

1 0 3 1 7 10 1

2 0 2 1 13 15 2

3 3 8 1 10 15 2

4 3 9 1 17 23 3

5 8 16 2 15 23 3

6 16 20 2 23 27 3

7 20 23 3 27 30 3

8 16 20 2 26 30 3

9 23 23 3 30 30 3

Note that both schedules are feasible for our problem. For the ESS schedule;

Table 3 summarizes the objective function value calculations.

Table 3 - Early Start Schedule Objective Function

ID Early

Finish
∑

 ()

 ∑

ESS Obj

Function

0 0 0.0 0.0 0.0

1 3 662.4 585.2 77.2

14

Table 3 – Early Start Schedule Objecive Function (Continued)

ID
Early

Finish
∑

 ()

 ∑

ESS Obj

Function

2 2 1987.3 1770.2 217.0

3 8 772.8 654.9 118.0

4 9 1766.5 1484.4 282.1

5 16 2031.6 1750.3 281.2

6 20 1523.7 1269.7 253.9

7 23 1775.7 1568.6 207.1

8 20 609.5 507.9 101.6

9 23 0.0 0.0 0.0

Total 11129.4 9591.2 1538.2

For the LSS schedule; Table 4 summarizes the objective function value

calculations.

Table 4 - Latest Start Schedule Objective Function

ID
Late

Finish
∑

 ()

∑
 ()

 ∑

LSS Obj

Function

0 0 0.0 0.0 0.0

1 10 662.4 552.0 110.4

2 15 1828.4 1588.5 239.9

3 15 711.0 617.7 93.3

4 23 1495.3 1320.9 174.4

5 23 1869.1 1651.2 218.0

6 27 1401.8 1197.8 204.1

7 30 1775.7 1479.7 295.9

15

Table 4 - Latest Start Schedule Objective Function (Continued)

ID
Late

Finish
∑

 ()

∑
 ()

 ∑

LSS Obj

Function

8 30 560.7 467.3 93.5

9 30 0.0 0.0 0.0

Total 10304.5 8875.1 1429.4

As it can be seen from Table 3, the objective function value is found as 1538.2

whereas it is 1429.4 for LSS, according to Table 4. It is seen that ESS performs

better than LSS for this problem instance.

Another reasonable feasible solution could be formed by using ESS to decide on

the intervals of each activity. Then, LSS can be used for the completion times

within each interval. Such a solution would use the advantage of ESS to receive

the payments earlier and LSS to pay the costs later.

According to the ESS, without changing the periods of the activities, the activities

are rescheduled as late as possible and the completion times are reported in Table

5.

Table 5 - Latest Start in Earliest Period Objective Function

ID
Finishing

Time ∑
 ()

 ∑

Objective

Function

0 0 0 0.0 0.0

1 3 662.4 585.2 77.2

2 4 1987.3 1741.0 246.3

3 8 772.8 654.9 118.0

16

Table 5 - Latest Start in Earliest Period Objective Function (Continued)

ID
Finishing

Time ∑
 ()

 ∑

Objective

Function

4 10 1766.5 1472.1 294.4

5 16 2031.6 1750.3 281.2

6 20 1523.7 1269.7 253.9

7 30 1775.7 1479.7 295.9

8 20 609.5 507.9 101.6

9 30 0.0 0.0 0.0

Total 11129.4 9460.8 1668.6

If all activities are scheduled as in Table 5, objective function of the contractor is

1668.6. The Gantt Chart of ESS and latest start schedule in earliest periods are

illustrated in Figure 3.

Figure 3 - The Gant Chart of ESS and LSS in Earliest Period

17

From Figure 3, it is seen that only the activities 2, 4, 7 and 9 are shifted forward

until LSS in earliest period is obtained. Due to these shifts, the objective function

improves from 1538 to 1669.

Since it is a small-sized problem, GAMS BARON solver could find the optimal

solution and return the results reported in Table 6.

Table 6 – The Optimal Solution

ID
Optimal

Finishing

Time

Optimal

Period ∑
 ()

 ∑

Obj.

Func.

0 0 1 0.0 0.0 0.0

1 5 1 662.4 575.5 86.9

2 10 1 1987.3 1656.1 331.2

3 10 1 772.8 644.0 128.8

4 20 2 1625.2 1354.4 270.9

5 20 2 2031.6 1693.0 338.6

6 27 3 1401.8 1197.8 204.1

7 30 3 1775.7 1479.7 295.9

8 30 3 560.7 467.3 93.5

9 30 3 0.0 0.0 0.0

Total 10817.6 9067.7 1749.

9

The cash flow diagram of the optimal solution is given in Figure 4.

18

Figure 4 - The Cash Flow Diagram of the Optimal Solution

The objective function value of the optimal solution is 1749.9 whereas it was

1668.6 with latest start in earliest period schedule. When the optimal schedule is

compared with the latest start in earliest period schedule, it is seen that activities

4, 6 and 8 are scheduled in their later periods. Although activity 4 could also be

scheduled in period 3; in the optimal solution, it is scheduled on period 2.

19

CHAPTER 3

LITERATURE SURVEY

In this chapter, we review the literature on project payment scheduling problems

with discounted cash flows.

We classify the research as resource constrained and unconstrained problems. We

refer the reader to Herroelen et al. (1997) for different classification schemes.

3.1 Resource Constrained Problems

The studies by Smith Daniels et al. (1996), Icmeli and Erenguc (1996), De Reyck

and Herroelen (1997), Sepil and Ortac (1997), Najafi and Niaki (2005), Najafi and

Azimi (2009), Ritwick and Paul (2013) consider resource constrained problems

without mode decisions. The studies by Özdamar and Dündar (1996), Ulusoy and

Cebelli (2000), Mika et al. (2005), Seifi and Moghaddam (2008), Chen et al

(2010) include mode decisions to their resource constrained problem.

We summarize the studies in chronological order.

Smith Daniels et al. (1996) consider with capital constrained project scheduling

problem and offer three heuristic procedures for its solution. The objective

function of their problem maximizes the net present value of cash inflows,

outflows and capital costs whereas capital is counted as a renewable resource.

With an initial capital availability, cash inflows and outflows affect the capital

throughout the project. They test the performance of optimization guided

20

heuristics and conclude that two revised optimization guided heuristics performed

better than a randomly derived bound and cash flow weight heuristic procedure.

Özdamar and Dündar (1996) investigate probabilistic cash inflows for a multi-

mode capital constrained project scheduling problem. They consider the

construction as focusing on the case of selling the flats while the construction is

ongoing. Thus, they included activity modes, which include time and cost

tradeoffs. The capital constrained model of Herroelen et al (1995) is used

including both renewable and non-renewable resources are included in the

problem. Their objective function is to maximize the net present value of the

project which is reduced by penalty of tardiness and opportunity cost of initial

capital. An adaptive scheduling program is proposed to solve the problem and

they also emphasize the program as a useful simulation tool.

Icmeli and Erenguc (1996) propose a depth-first branch and bound algorithm for

the resource constrained project payment scheduling problem. They assume that

each activity has either positive or negative cash flow and aim to maximize net

present value of these cash flows. In their model, only non-renewable resources

are considered. Their branching is done according to the complete schedule that

ignores resource feasibility. They first search for a schedule feasible solution and

for the nodes that are resource infeasible but schedule feasible they further branch

until they reach resource feasibility. While maintaining schedule feasibility, a set

of solutions with a tolerance factor of at most 5% of the optimal solution is

represented for comparison.

De Reyck and Herroelen (1997) offer a dept-first Branch and Bound algorithm for

the resource constrained project scheduling problem with discounted cash flows

and generalized precedence relations. They include renewable resource in their

problem as constraints. They do not consider any payment model and assumes

negative or positive cash flow occur at activity completions. The concept of

21

minimal delaying modes are introduced to get away the resource conflicts. Their

computational study is presented up to 50 activities and important parameters are

selected to see their effects on the problem difficulty.

Sepil and Ortac (1997) investigate the performance of three heuristic procedures

for resource constrained projects with progress payments. They assumed that cash

inflows occur periodically and cash outflows occur at the activity completion

times. Performance of single net present value comparison rule, pairwise present

value comparison rule, and activity profit curve sloper rule are compared with

each other. Their results show that the three heuristics provide near-optimal

schedules with respect to net present value maximization without delaying the

deadline extensively.

Ulusoy and Cebelli (2000) use event completion payment model in their multi-

mode resource constrained project scheduling problem. They consider renewable

resources and time-resource trade-offs. In their problem, the amount and timing of

the payments are determined so as to minimize the absolute percent deviation of

the ideal net present values of the contractor and client. The proposed double loop

genetic algorithm performs in reasonable times with equitable solutions.

Ulusoy et al. (2001) employ a genetic algorithm for multi-mode resource

constrained project scheduling problem for four payment models. They consider

renewable and non-renewable resources. The objective is to maximize the net

present value of positive and negative cash flows. They consider time-cost and/or

time-resource tradeoffs. For different discount rates and profit margins, genetic

algorithm and local constraint based analysis are used to solve the problem and it

is found that genetic algorithm outperforms comparing the other methods. They

conclude that when profit margin increases, the progress payment model tends to

schedule activities that have relatively higher costs earlier. Furthermore, as

22

discount rate increases, the progress payment model starts to behave like lump

sum payment model as tending to decrease the project completion time.

Mika et al. (2005) consider four payment models for multi-mode resource

constrained project scheduling problem. They consider both renewable and

nonrenewable resources and make time and resource trade-off. Lump sum

payments, payments at activities’ completion times, equal time intervals and

progress payment methods are used in their study. They aim to maximize the net

present value of all cash flows. They present simulated annealing and tabu search

approaches and discuss the results on different payment models, different

frequency of payments and different discount rates. They find that for smaller

number of activities, the performance of tabu search algorithm performs better

while for large number of activities the performance of simulated annealing is

better.

Najafi and Niaki (2005) propose a heuristic method to solve resource investment

problems with discounted cash flows. They use the payment model of payments at

predefined event occurrences. Renewable resources are included in the problem in

constraints and objective function due to the nature of resource investment

problem. Their objective function maximizes the net present value of the cash

flows which include project costs including resource costs and payments made

during the project. Their heuristic procedure are compared with the best solutions

obtained from mathematical model and found that while solutions are very close,

CPU time for the heuristics is much less than CPU time of mathematical model.

Seifi and Moghaddam (2008) analyze four payment models for multi-mode

resource constrained project scheduling problem. In their study, time-resource and

cost tradeoffs are made and both renewable and nonrenewable resources are

considered. They present a bi-objective model which maximizes the net present

value and minimizes the holding cost of activities. A mathematical model is

23

verified by small sized problems whereas simulated annealing is used for various

sizes of problems with different payment models. Results on different payment

models with varying activity sizes, discount values, holding cost rate and number

of payment times are compared at the end of the paper. They present the results

that with the increase in discount rate and holding cost rate, the net present value

decreases and with the increase of period size, the objective function value

increases for progress payment model.

Najafi and Azimi (2009) study resource investment project scheduling problem

with discounted cash flows with the extension of tardiness penalties. They include

the delay penalty to the problem Najafi and Niaki (2005) study. A priority rule

based heuristic is used to solve the problem and comparison between

mathematical model and heuristic solutions are presented.

Chen et al (2010) study on an ant colony optimization approach for multimode

resource-constrained project scheduling problem with discounted cash flows.

Their model maximizes the net present value of all cash flows including

payments, expenses, and bonus-penalty. They include both renewable and

nonrenewable resources in their model. They assume that expenses of the

contractor are at event completions, payment are at event occurrences and the

number of payments are given. Activity on Arc network precedence is converted

into a construction graph (MoN graph) to make the data more compatible with the

solution approach. They compare their ant colony optimization approach with

genetic algorithm, simulated annealing and tabu search solutions, and find that

their ant colony optimization approach outperforms the other approaches.

Ritwick and Paul (2013) use the features of particle swarm optimization to solve

resource constrained project scheduling problem with discounted cash flows.

They assume that cash flows are deterministic but uniformly distributed between a

negative and positive value, thus their problem does not include a payment model.

24

They claim that although for networks more than 40 activities the algorithm does

not find an optimum solution in reasonable times, its near optimum solutions are

satisfying considering the running time.

3.2 Unconstrained Problems

The studies by Russell (1970), Grinold (1972), Erenguc et al. (1993), De Reyck

and Herrolen (1996), Kazaz and Sepil (1996), Dayanand and Padman (1997), He

and Xu (2006), Vanhoucke et al. (2003), He et al. (2009) consider project

scheduling problems without resource constraints.

We review the studies on unconstrained problems in chronological order.

Russell (1970) introduces the problem of maximizing the net present value of the

cash flows in a project. He uses an event based model that both considers positive

and negative cash flows during the project. He presents a mathematical model and

offers a modified Ford and Fulkerson (1961)’s out of kilter algorithm as finding

the costs of flows through the arcs for large size network problems.

Grinold (1972) transforms the nonlinear program of Russell into a linear program

and suggests an efficient procedure for its solution. He studies the fixed deadline

problem and the trade-off curve problem for the net present value and project

duration criteria.

Erenguc et al. (1993) consider the project scheduling problem with time/cost

trade-offs. They assume that the payments are received at the completions of the

defined events. They decide on the activity modes and the project schedule so as

to maximize positive and negative cash flows. Their algorithm uses the

generalized Benders decomposition idea and their computational results reveal

that the instances with up to 64 activities can be solved.

25

De Reyck and Herrolen (1996) consider the unconstrained maximum net present

value project scheduling problem and propose a Branch and Bound algorithm that

uses arbitrary minimal and maximal time lags between the start and completion of

the activities. They do not consider any payment model and assume that cash flow

of activities are either positive or negative. Their solution procedure solves the

problems up to 100 activities in reasonable times and they offer the procedure for

the calculation of upper bounds for the resource constrained npv problem, which

they will actually use it in another paper.

Kazaz and Sepil (1996) and Vanhoucke et al. (2003) consider a project scheduling

problem with discounted cash flows and progress payments. Their objective is to

maximize the net present value of the cash flows. They assume the receipts are

made at the end of the specified time periods to cover the expenses made during

the period. The expenses are assumed to be proportional with the amount of work

performed. Kazaz and Sepil (1996) give a mixed integer linear programming

formulation of the problem and report favorable results on its solution times.

Vanhoucke et al. (2003) transform the problem into a weighted earliness–

tardiness project scheduling problem and propose a branch-and-bound algorithm

for its optimal solution. Their computational results reveal that the branch-and-

bound algorithm is capable of solving problems with upto 50 activities.

Dayanand and Padman (1997) examine several project payment scheduling

models. The models find the amount and time of the progress payment and they

are basically of two types: event based or activity based. All models aim to

maximize net present worth of all cash flows and they differ by their problem

representations and assumptions. They mention the models are mixed integer

linear or nonlinear programs and hence they are intractable for large projects.

They demonstrate the solutions of the models on an example problem instance.

26

Multimode project payment scheduling problem with bonus-penalty structure is

studied by He and Xu (2006). In their problem, timing of the events and

payments, amount of the payments and activity modes are decision variables

whereas the number of payments are predefined. The contractor optimization

model and the client optimization models are presented. Two modules simulated

annealing is used to solve the problems and effects of the bonus-penalty structures

on the flexibility of the project payment schedules are discussed.

He et al. (2009) consider multimode project scheduling problem for a fixed

number of payments subject to a specific deadline. The problem is to select the

activity modes and schedule the activities so as to maximize the net present value

of the contractor. They consider the four payment model which are defined as

lump-sum, payments at event occurrences, equal time intervals and progress

payments. Simulated annealing, tabu search, multi-start iterative improvement and

random sampling solution methods are compared with each other for different

values of number of payments, interest rate and profit margin of the contractor.

Simulated annealing is found to be the best especially for large sized problem

instances.

The most closely studies to ours are due to Kazaz and Sepil (1996) and

Vanhoucke et al. (2003). Both studies assume that the activity costs are incurred

at the end of the payment periods up to the progress of the activity. We assume all

cost incurred by the activity is charged when the activity is complete.

27

CHAPTER 4

SOLUTION APPROACH

Recall that our problem is strongly NP-hard. To find exact solutions, once could

use the mixed integer non-linear problem introduced in Chapter 2. However,

attributing the complexity of the problem, our model is likely to full into

computation troubles. An alternative to the model is to use an implicit

enumeration technique like a branch and bound algorithm. In this study, we

present a branch and bound algorithm with the hope of solving the problem in

reasonable times. In the following section, properties of an optimal solution that

forms our branching scheme, the method of finding the upper and lower bounds

and branching scheme are discussed in detail.

4.1 Properties of an Optimal Solution

From the contractor view point, if the activities that will be finished in a period

are definite, then it is more profitable for contractor to finish the activities as late

as possible in the defined period. Since the contractor receives the payment at the

end of period, and expenses incur whenever an activity finishes, the contractor

will reduce the net present value of the expenses by scheduling the activities as

late as possible.

Theorem 2 states this result formally. To state Theorem 2, following notation is

needed:

Ap=end of period p

28

Ap-Ap-1=length of period p

Sp = set of activities that complete in period p

Theorem 2: In an optimal solution, the tasks in Sp are sequenced by late start

schedule with deadline value of Ap.

Proof: Recall that the first part of the objective function is:

∑ ()

 ∑ ∑ ()

 (4.1)

(4.1) Is irrelevant of optimization given set Sps.

The second part of the objective function is

∑

(4.2) is minimized when Tis are maximized and Tis are maximized when LSS is

used.

As (4.1) is irrelevant of optimization and (4.2) is minimized by LSS, the overall

objective ((4.1)-(4.2)) is maximized by LSS.

We define our branching scheme by using the result of Theorem 1.

4.2 Upper Bound

In this section, we present two upper bounding procedures, which are proposed to

enhance the efficiency of our branch and bound algorithm.

We use the following notation to state our upper bounds:

29

= Period finishing time for activity i if ESS is used

= Period finishing time for activity i for the optimal solution

= Completion time of activity i such that

 If
<

 then
=

 If

 then activity i definitely finishes within period , and

 is the latest finishing time between the activities those also definitely finish

within period .

= Completion time of activity i when LSS is used

 = Completion time of activity i for the optimal solution

UB1 = ∑ (
) ∑

UB2 = ∑ (
) ∑

 = optimal objective function value

 = ∑
 ∑

Theorem 3 and Theorem 4 state the validity of the upper bounds.

Theorem 3: UB1 is a valid upper bound on .

Proof: As

30

∑ (
) ∑

 (4.3)

 ∑ (
)

 ∑

 (4.4)

As

Add (4.3) and (4.4) and get (4.5).

UB1 = ∑ (
) ∑

 ∑
 ∑

 (4.5)

Theorem 4: UB2 is a valid upper bound on .

Proof: Let,

xi =

yi =

There are two possibilities for
 and

:

1)
=

 then

 (by the definition of

); therefore,

xi=

 = yi

2)

 then

 (by the definition of

); therefore,

xi=

=0

 = yi

Thus, xi yi

Letting
=

 xi, UB2 can be rewritten as

UB2= ∑ (
) ∑

31

= ∑ (
) ∑

= ∑ (
)

 (4.6)

Letting
 =

- yi, can be rewritten as

 =∑
 ∑

 = ∑
 ∑

 =∑

(4.7)

xi ≤ yi follows

exp(. xi) ≤ exp(. yi) (- exp(. xi)) (- exp(. yi)) (4.8)

(4.8) follows

∑ (
) ∑

 ∑
 ∑

 (4.9)

As

 (

)

From (4.6), (4.7), and (4.9), one can write

UB2

Theorem 5 states UB2 is more powerful than UB1, i.e., UB1≥UB2.

Theorem 5: UB2 dominates UB1.

32

Proof: ∑ (
)

 ∑

 (4.10)

As

Add ∑ (
)

 to both sides of (4.10) and get (4.11).

 ∑ ((
) (

))

 ∑ (
) ∑

 (4.11)

(4.11) is equivalent to

UB1≥UB2

We illustrate the UB1 and UB2 computations in Table 7 via the following example

problem.

33

T
ab

le
 7

 -
 C

al
cu

la
ti

o
n
 o

f
U

p
p
er

 B
o
u
n
d

34

Recall that the effort spent to find UB2 is similar to that of UB1. Theorem 5 states

that UB2 has higher quality. Hence, we use UB2 in our branch and bound

algorithm. We hereafter refer to UB2 simply as UB.

4.3 Lower Bound

We use the following procedure to find an initial feasible solution to our branch

and bound algorithm. The procedure considers two phases.

Phase 1. Construction

Find the period in which activity i could complete earliest, i.e.,

Sp = set of activities that complete in period p, i.e. (

Starting from period P, schedule the jobs in Sp, according to the late start

schedule. We call the schedule as Latest Start in Earliest Period (LS-EP) schedule.

Phase 2. Improvement

The schedule obtained from Construction phase is fed to the improvement phase.

We start from period P-1 and look for the chance of moving activities which are

initially scheduled to the current period to the next period. We stop when the first

period is reached.

A move is defined as shifting task from period r to period r+1. Best move is the

one that improves the objective function value by the maximum amount. The

resulting solution is worse when the maximum amount is negative.

35

We employ following two strategies to improve the schedule found in the

construction phase:

Strategy 1.

Perform two iterations for each period. In each iteration, select the best move. The

best move in an iteration may worsen the objective function value but in later

iterations the move may create some space to improve the objective function

value.

Strategy 2.

Perform the moves for each period till the objective function value worsens as a

second time.

We apply both strategies to our initial solution and select the strategy that leads

largest objective function value. We let the resulting solution be LBH of the

problem.

4.4 Branching Scheme

We start scheduling from the last period and stop when the first period is reached.

At level 0, we define on the last period’s schedule. At the beginning of each

period, we first fix a set of activities whose earliest completion times are in the

current period p, i.e.
 (. After fixing those activities, we open two

types of nodes.

Type 1 nodes

Close period P and proceed to period P-1

Type 2 nodes

Add an eligible activity to period P

36

We say an activity is eligible for assignment if all of its successors are already

scheduled.

We index the activities such that i<j implies that activity i is not successor of

activity j. To avoid the duplication of the solutions, while adding an activity to the

current period, we only consider the activities having lower indices. In other

words, if a tree has two nodes that has activity indices of j and j-1 which are

branched from the same node, the node that has activity j-1 implies activity j is

going to be scheduled in an earlier period.

At level r, we consider period P-r+1 and fix the activities whose earliest

completion times are in (. Note that eligible activities are scheduled to

the periods larger than P-r with the preceding nodes. After fixing for each

remaining activity, for the node that considers the addition of activity i to partial

schedule S, we calculate an upper bound by extending UB to the partial schedule

as follows.

Let,

S′=S {i}

Z(S′) = Net Present Worth of activities in S′

NS: set of unscheduled activities

UB(S′ NS) = Z(S′) + UB(NS)

Earliest periods of activities do not change; however, their latest completion times

may change as some activities in S might have been scheduled to earlier periods

that have not been reached yet.

UB(NS) = ∑ (
) ∑ (

)

37

We terminate further branching from the node when

UB(S′ NS) < LBBEST

where LBBEST is the current best known feasible solution. We continue branching

with the highest UB of the nodes when all possible activities are branched by the

ancestor node.

We use depth first strategy, i.e., always go to the depth of the tree and backtrack

only when there is no feasible or promising node to explore further. We select this

strategy due to its relatively low memory requirements.

We stop when we backtrack to level 0. We start with LBBEST= LBH and update

LBBEST whenever a complete solution with a better objective function value is

found.

We illustrate our branching scheme in Figure 5 whose network is depicted in

Figure 2.

38

Figure 5 - Branch and Bound Tree Structure

39

The information conveyed on each node is reported in Table 8.

Table 8 – The Parameters of Nodes in the Branch and Bound Tree

Node

ID

Node Information Scheduling

Period

UB Branching

0 Act. 8,10 are definitely in period

3 LBH=1669

3 1855 Branched

1 Act. 8,9,10 are in period 3 3 1847
Branched as

UB1>UB2

UB1>UB3

2 Act. 7,8,10 are in period 3, 9 is

not in period 3

3 1676

3 Only act. 8,10 are in period 3 3 1726

4 Act. 7,8,9,10 are in period 3 3 1797 Branched as

UB4>UB5

5 Only act. 8,9,10 are in period 3 3 1718

6 Act. 6,7,8,9,10 are in period 3 3 1676

7 Act. 5,7,8,9,10 are in period 3, 6

is not in period 3

3 1663 Fathomed as

UB7>LBH

8 Only act. 7,8,9,10 are in period 3 3 1783
Branched as

UB8>UB6

UB8>UB7

UB4>UB5

9 Act. 7,8,9,10 are in period 3, 6 is

definitely in period 2

2 1783 Branched as

single node

10

Act. 7,8,9,10 are in period 3, 5,6

are in period 2
2 1759

Branched as

UB10>UB11

UB10>UB12

11 Act. 7,8,9,10 are in period 3, 4,6

are in period 2, 5 is not in period

2

2 1633

40

Table 8 – The Parameters of Nodes in the Branch and Bound Tree (Continued)

Node

ID

Node Information Scheduling

Period

UB Branching

12 Act. 7,8,9,10 are in period 3,

only 6 is in period 2

2 1684

13 Act. 7,8,9,10 are in period 3,

4,5,6 are in period 2

2 1708

14 Act. 7,8,9,10 are in period 3,

3,5,6 are in period 2, 4 is not in

period 2

2 1618

15
Act. 7,8,9,10 are in period 3,

only 5,6 are in period 2
2 1750

Branched as

UB15>UB13

UB15>UB14

UB15>UB13

16
Act. 7,8,9,10 are in period 3, 5,6

are in period 2, 1,2,3,4 are in

period 1, LB is updated as 1750

1 1750 Terminal node

As it can be seen from Figure 5, node 8 and node 15 are Type 1 nodes whereas

other nodes are Type 2.

After the tree has a complete schedule at node 16, lower bound is updated as

1749.9. The nodes are eliminated in order nodes 13,14,..,0 as all associated upper

bounds are no more than the best lower bound value. As node 0 is also fathomed,

the lower bound schedule found at node 16 is optimal.

Detailed calculation of ESS and LSS of the selected nodes 0, 8 and 16 are given in

Appendix A.

41

CHAPTER 5

COMPUTATIONAL EXPERIMENT

In this chapter, we first discuss the data generation scheme. Next, we give the

results of our preliminary experiment. Finally, we discuss the results of our main

experiment.

5.1 Data Generation

This part explains how the problems are generated, which parameters and

distributions are used and in which configurations of the problems are solved. The

following parameters are to be generated for each instance: network complexity,

duration of activities, cost of activities, discount rate, profit margin, deadline

multiplier factor and number of periods.

To generate networks and activity durations, we use the generator called ProGen

developed by Kolisch et al. (1992) via ignoring its resource and mode options.

Each network has a super-source and a super-sink node that has zero duration and

cost. Super-source node does not have a predecessor and it builds the network by

its successors. Oppositely, super-sink node does not have a successor and one can

reach all activities by going back from sink node. Excluding super-source and

super-sink node from network, the networks with 35, 40, 45, 50 and 55 activities

are created. For 30 activities of network, PSPLIB – A project Scheduling Problem

Library by Kolisch and Sprecher (1996) is used. We create 10 instances of each

network.

42

Kolisch et al. (1992) define the network complexity used in ProGen as the average

number of non-redundant arcs per node including the super-source and super-sink

node. For the network complexity 1.5 for a 35 activities has 56 successors

likewise for a 50 activities network has 78 successors. In our problems, we use the

network complexity as 1.5 and 2.

Using PROGEN, we generate the durations of the activities from discrete uniform

distribution in [1, 10] and [1, 20]. We use two sets of cost generation methods. In

the first set, the activity times and costs are proportional. The cost of an activity is

set as 100 times its duration. The second set, the costs are taken from a discrete

uniform distribution in [1, 20] multiplying it with 100.

The discount rate is set to 5% and 10% as yearly compatible to today’s real-world

settings. Since discount rate is on yearly basis, the duration is assumed as monthly

basis. In other words, for unit of time, discount rate 10% is assumed to be 0.10/12

that is 0.0833, per unit time.

Profit margin is set to 1.2 and 1.3, i.e., at the end of a period, for the profit margin

1.2 the cost of all activities that have finished within the period will be received

with a 20% profit without taking the time value of money into account.

We set the deadline value to M*minimum project completion time. In our

experiments, we try M=1, 1.1, and 1.2, for tight, medium and loose deadline

environments, respectively.

We use 5,6,7 intervals from 30 instances to 55 instances. We assume the interval

lengths are equally-sized.

43

5.2 Preliminary Experiments

The aim of our preliminary experiment is to define the discount rate, profit margin

and network complexity to be used in our main experiment. Furthermore, we test

the effects of duration and cost distributions. To see the effects of our bounds, the

branch and bound algorithm is run without UB and without LB and the respective

results are also discussed.

In the following analysis of profit margin, discount rate, network complexity, cost

and duration, tables report the average and maximum CPU seconds and total

nodes of branch and bound algorithm opened for each problem combination. In

the following tables, M shows the deadline multiplier. For each problem

combination, 10 problems are solved.

Unless it is stated differently, the problems use discount rate as 0.10 per year,

profit margin rate as 1.2, network complexity as 1.5. The duration of the activities

are generated as discrete uniform distribution in [1, 10] and cost of the activities

are set as 100 times of the duration of activities.

Profit Margin

To see the effect of profit margin, we try two values: 1.2 and 1.3. 80 problems are

solved in different configurations and their results are presented in Table 9.

Table 9 – The Effect of the Profit Margin

Profit Margin

1.2 1.3

N P M CPU Nodes CPU Nodes

30 5 1.1
Average 0.04 4953 0.03 3097

Max 0.11 13855 0.09 9106

44

Table 9 – The Effect of the Profit Margin (Continued)

Profit Margin

1.2 1.3

N P M CPU Nodes CPU Nodes

30 5 1.2
Average 0.46 37582 0.29 23745

Max 1.66 138031 0.97 81874

30 6 1.2
Average 0.39 52674 0.17 23214

Max 1.03 138933 0.47 61205

35 6 1.1
Average 0.62 59041 0.52 51232

Max 2.11 180622 2.26 204097

35 6 1.2
Average 24.38 1876164 11.17 1011075

Max 157.89 12082629 79.51 7607042

40 5 1.1
Average 7.61 654733 2.95 270934

Max 45.65 3933912 11.59 1094943

40 6 1.1
Average 9.28 697400 4.07 357762

Max 32.20 2660936 11.29 1212896

40 5 1.2
Average 55.28 3580440 17.61 1344469

Max 267.06 16256733 79.64 6860284

As can be observed from Table 9, the profit margin factor has a significant effect

on the problem difficulty. The complexity of the solutions increases with the

decrease in the profit margin values. This is due to the fact that as profit margin

decreases, the payments decrease and approach to the cost of activities which

makes the objective function value less sensitive to the scheduling times. This

results into trying many schedules to find the optimal solution and makes the

problem hard to solve. Note from the table that when profit margin is 1.2, for

N=40, P=5 and M=1.2 the average and maximum CPU times are 55.28 and

267.06 seconds respectively, whereas they are 17.61 and 79.64 seconds when the

profit margin is 1.3. The average and maximum number of nodes for profit

margin 1.2 are 3580440 and 16256733 respectively while they are 1344469 and

6860284 for profit margin 1.3. In our main experiments, we select the harder

instances, i.e., use the profit margin of 1.2.

45

Discount rate

To see the effect of the discount rates, two values of α: 0.05 and 0.10 yearly are

selected. 80 problems are solved and the results are presented in the table below.

Table 10 – The Effect of the Discount Rate

DISCOUNT RATE

0.05 0.10

N P M CPU Nodes CPU Nodes

30 5 1.1
Average 0.03 3827 0.04 4953

Max 0.08 10140 0.11 13855

30 5 1.2
Average 0.34 27032 0.46 37582

Max 1.22 100643 1.66 138031

30 6 1.2
Average 0.30 39424 0.39 52674

Max 0.86 108428 1.03 138933

35 6 1.1
Average 0.46 43723 0.62 59041

Max 1.54 136467 2.11 180622

35 6 1.2
Average 12.91 1034866 24.38 1876164

Max 81.96 6889839 157.89 12082629

40 5 1.1
Average 4.19 379398 7.61 654733

Max 23.62 2192227 45.65 3933912

40 6 1.1
Average 5.02 453578 9.28 697400

Max 18.81 1997853 32.20 2660936

40 5 1.2
Average 26.66 1821443 55.28 3580440

Max 115.47 7629199 267.06 16256733

Table 10 reports the average and maximum solution times of the branch and

bound algorithm and the number of nodes for 10 problems. Note from the table

that when discount factor is 0.05, N=40, P=5 and M=1.2, the average and

maximum CPU times are 26.66 and 115.47 seconds respectively whereas they are

55.28 and 267.06 seconds when the discount rate is 0.10. The average and

maximum number of nodes for discount rate 0.05 are 1821443 and 7629199

respectively, while they are 3580440 and 16256733 for discount rate 0.10. This is

46

due to the fact that as discount rate increases, time value of money increases

which results into the increase in the variance of objective function value for

different schedules and this makes harder to find a solution. Therefore, according

to the Table 10, we can say that as the discount rate increases, the complexity of

the problem increases with the CPU times and total node number.

Network Complexity

Network complexity is another important parameter for defining the network. We

tested the network complexity 1.5 and 2 with activity sizes of 40, 45, and 50,

period number of 5 and 6 and deadline multiplier factor of 1 and 1.1 for 70

problem instances and report the results in the following table.

Table 11 - The Effect of the Network Complexity

Network Complexity

1.5 2

N P M CPU Nodes CPU Nodes

40 6 1
Average 0.26 28495 0.05 4933

Max 1.08 116463 0.11 9533

40 5 1.1
Average 7.61 654733 0.88 90095

Max 45.65 3933912 1.87 186670

40 6 1.1
Average 9.28 697400 3.81 311761

Max 32.20 2660936 9.95 848460

45 6 1
Average 0.80 66955 0.22 22166

Max 3.29 303130 0.34 36426

45 5 1.1
Average 42.45 2633124 31.79 2276599

Max 308.94 19393268 90.26 6585136

45 6 1.1
Average 119.11 7670742 95.27 5704567

Max 323.39 21326518 219.73 13586028

50 6 1
Average 11.96 665025 8.47 722426

Max 34.41 1998490 22.78 2080515

As can be seen from Table 11, as network complexity increases the average and

maximum CPU seconds and number of nodes decrease. As the network

complexity increases the number of predecessors increase in the network which in

47

turn decrease the time buffer of activities as the activities can be scheduled in

fewer periods. This results in less reduced choices, hence easier problems. In our

experiments we select the harder combination, hence set the network complexity

to 1.5. For instance, for network complexity 1.5 and n=45, P=5 and M=1.1 the

average and maximum CPU times are 42.45 and 308.94 seconds and the average

whereas they are 31.79 and 90.26 seconds when the network complexity is 2 for

the same problem. The average and maximum number of nodes also decrease

from 2633124 to 2276599 nodes and from 19393268 to 6585136 nodes, when the

network complexity increase from 1.5 to 2.

Cost

We consider the following two cost distributions in our experiments.

1. Discrete uniform distribution in [1,20] multiplying with 100.

2. The cost of activities are proportional to the duration, thus, cost of

activities are calculated with multiplying the duration of activity with 100.

Note that the durations of the activities are generated with using the discrete

uniform distribution in [1,10]. 80 problems are solved for each cost distribution

and their results are presented in Table 12.

Table 12 – The Effect of the Cost Distribution

Cost Distribution

Cost=DISC[1,20]*100 Cost = Duration *100

N P M CPU Nodes CPU Nodes

35 6 1.1 Average 0.62 61739 0.62 59041

 Max 1.26 151187 2.11 180622

35 6 1.2 Average 9.04 722987 24.38 1876164

 Max 32.00 2643025 157.89 12082629

40 5 1.1
Average 40.50 3192043 7.61 654733

Max 381.20 30398869 45.65 3933912

40 6 1.1
Average 313.65 21466377 9.28 697400

Max 2981.40 204847218 32.20 2660936

48

Table 12 – The Effec of the Cost Distribution (Continued)

Cost Distribution

Cost=DISC[1,20]*100 Cost = Duration *100

N P M CPU Nodes CPU Nodes

40 5 1.2
Average 199.64 13807362 55.28 3580440

Max 1714.98 120770870 267.06 16256733

45 5 1.1
Average 12.97 1000845 42.45 2633124

Max 41.22 3276697 308.94 19393268

45 6 1.1
Average 26.90 1841934 119.11 7670742

Max 97.42 6331793 323.39 21326518

45 6 1.2
Average 377.83 20855695 836.01 50053690

Max 1255.62 58696652 3600 (1) 188441428

Table 12 reveals that for some combinations, the problems that have second type

of costs more difficult, i.e. n=45, P=6, M=1.2; n=45, P=6, M=1.1 etc., and for

some combinations the reverse holds. For example, when N=40, P=6, M=1.1, the

maximum CPU seconds for the first and second types of cost distributions are

2981.40 and 32.30 seconds, respectively. As we have not seen the relative

difficulty of one distribution over the other, we arbitrarily select the cost of

activities to the proportional to the duration.

Duration

We try the following two duration distributions.

1. Discrete uniform distribution in [1, 10]

2. Discrete uniform distribution in [1, 20].

Table 13 reports CPU times and number of nodes statistics.

49

Table 13 - CPU Seconds and Nodes Analysis of Duration Distribution

Duration

Duration Between

[1,10] Duration Between [1,20]

N P M CPU Nodes CPU Nodes

35 6 1.1
Average 0.62 59041 5.34 460695

Max 2.11 180622 23.68 1995346

35 6 1.2
Average 24.38 1876164 83.67 6595846

Max 157.89 12082629 477.05 39273815

40 5 1.1
Average 7.61 654733 39.29 3169539

Max 45.65 3933912 252.38 21573405

40 5 1.2
Average 9.28 697400 335.16 19634059

Max 32.20 2660936 1277.90 75794148

40 6 1.1
Average 55.28 3580440 368.76 32325100

Max 267.06 16256733 3600.00 (1) 314877398

45 5 1.1
Average 42.45 2633124 86.83 5224351

Max 308.94 19393268 263.74 15717657

45 6 1.1
Average 119.11 7670742 298.85 18563551

Max 323.39 21326518 1851.89 118668197

45 6 1.2
Average 836.01 50053690 2026.45 106231744

Max 3600 (1) 188441428 3600 (5) 232629973

As can be seen from Table 13, when the durations of activities are generated from

a larger interval, the variance of the problem complexity increases. Although for

some of the instances with duration between [1, 20] the problem could not be

solved in an hour, for some instances, the problem is solved very fast. For

example, when n=40, P=6, M=1.1 the average of the 10 instances of problem is

368.76 seconds and the maximum CPU is 3600 seconds. If we exclude a single

instance which could not be finished in an hour, then we can see that the average

CPU of 9 instances is 9.73 seconds with a maximum of 39.39 seconds.

Bounding Mechanisms

We look for the effects of the upper bound and initial lower bounds on the branch

and bound performance. For four selected combinations of problems, we compare

the performance of the branch and bound algorithm that uses both initial lower

50

and upper bounds with those that do not the respective bounds. When no initial

lower bound is used then, there is no lower bound value until the branch and

bound algorithm finds the first complete solution. When there is no upper bound

in the branch and bound algorithm, it implies all nodes in the tree are evaluated by

their objective function values.

The lower and upper bound performances are assessed at the root node by their

difference from the optimal solutions as a ratio of the optimal solution.

Lower Bound Deviation % (LBD) =

Upper Bound Deviation % (UBD) =

In Table 14, the CPU seconds and number of nodes of branch and bound

algorithm, without using lower bound and without using upper bound are shown.

Table 14 – The Upper and Lower Bound CPU Performances in a BAB

N P M
BAB BAB without LB BAB without UB

CPU Nodes CPU Nodes CPU Nodes

30 5 1
Average 0.02 844 0.01 974 268.17 28498128

Max 0.06 2495 0.03 2495 925.20 97599505

35 5 1
Average 0.04 4121 0.06 4320 426.51 31522855

Max 0.09 14879 0.19 14931 3194.53 248509551

35 5 1.1
Average 2.27 239415 3.46 293064 2267.76 195258186

Max 18.36 1916052 22.81 1919082 3600(4) 319566329

40 6 1.2
Average 82.86 5774048 94.38 5815995 3600.00 304604987

Max 411.97 30842679 456.12 30874349 3600(10) 351965461

51

Table 15 – The Deviations of the Upper and Lower Bound

N P M
UBD % LBD %

Average Max Average Max

30 5 1 2.0 3.9 0.3 0.9

35 5 1 3.5 5.2 0.4 1.6

35 5 1.1 8.4 13.7 0.7 1.6

40 6 1.2 6.7 10.0 1.7 3.4

Note from Table 14 that the effects of the upper bounds are more pronounced than

the effect of the initial lower bound. The upper bounds are found so powerful, for

instance, the third configuration of the problem could be solved in average 2.27

seconds with using upper and lower bounds whereas it takes approximately 1000

times longer when no upper bound is used. For the same problem combination, it

takes approximately 1.5 times longer when no initial lower bound is used.

As the values are very close to the optimal objective function values, they are

powerful estimators that give a conscious walk towards the optimal solution.

We are employing powerful upper bounds in a depth first strategy. This follows,

the early complete solutions reached are close to the optimal solutions. Early

powerful complete solutions lead to updating initial lower bound, hence reduces

the need for a powerful initial lower bound. Note from our tables that, the initial

lower bounds are not as effective as upper bounds. Table 15 shows that the initial

lower bound is 0.7% close to the optimal solution for the third problem

combination, however, the upper bound is 8.4% close to the optimal solution.

We can conclude that the effort spent to compute the bounds is justified by the

reductions in the solution space. Hence, based on the observations of the upper

bound and lower bound effects, we perform our main experiments using the

bounds.

52

For our main experiment, we continue our runs with the most difficult problem

combinations for profit margin, discount factor, and network complexity. Recall

that the profit margin 0.20, discount factor 0.10 and network complexity 1.5, the

problem complexity increases compared to profit margin 1.30, discount factor

0.05 and network complexity 2, respectively.

Based on the results of our preliminary experiments, we select the duration of

activities from the discrete uniform distribution in [1, 10] and cost of activities as

proportional to the duration of activities.

5.3 Main Experiments

We perform the main experiments according to the parameters given in Table 16,

below. For each of combination, 10 problem instances are solved. We present the

results by the deadline multiplier factors.

Table 16 – Parameters Used in the Main Experiment

Parameter Value

Network size 30, 35, 40, 45, 50, 55

Number of periods 5, 6, 7

Duration Discrete uniform distribution in [1, 10]

Cost Duration * 100

Network Complexity 1.5

Discount Rate 10% yearly

Profit Margin 1.2

Deadline multiplier factor 1, 1.1, 1.2

In our runs, we used a computer that has 8 GB RAM and Intel Core 3.4 GHz i7

processor. Branch and bound algorithm is written in C++ language using

53

Microsoft Visual Studio 2012. The nonlinear mathematical model is solved in

GAMS with BARON solver.

We put a CPU time limit of 1 hour to both branch and bound algorithm and

mathematical model. For any problem combination, if there are more than 2 out of

10 problem instances exceed the time limit, we do not try to run the models for

larger networks and larger periods. Number of problem instances that exceeds the

time limit is given in parenthesis for the branch and bound algorithm in the BAB

CPU seconds and for the mathematical model in the GAMS CPU seconds

column.

In one hour, we could solve 450 problems by BAB and 370 problems by GAMS

for our main experiment.

We first report on the lower and upper bound performances.

Table 17 – Lower Bound Performances

N P

M=1 M=1.1 M=1.2

LBD % LBD % LBD %

Average Max Average Max Average Max

30

5 0.3 (4)* 0.9 0.4 (1) 0.8 1.4 4.2

6 0.5 (1) 1.3 0.6 (1) 0.9 0.8 1.4

7 0.8 1.6 0.8 1.8 1.0 (1) 3.1

35

5 0.4 (4) 1.6 0.7 1.6 0.8 2.3

6 0.7 (1) 2.6 1.3 2.4 1.9 4.3

7 0.6 (1) 1.4 1.2 2.4 1.9 4.5

40

5 0.7 2.6 0.8 2.2 0.8 2.2

6 0.6 1 1.8 3.5 1.7 3.4

7 0.5 1.1 1.2 4.1 1.7 5.5

45

5 0.6 1.6 1.2 3.2 0.9 3.1

6 0.5 1.1 1.1 2.8 1.3 3

7 0.7 1.9 0.9 2.8 1.6 2.8

54

Table 17 - Lower Bound Performances (Continued)

N P

M=1 M=1.1 M=1.2

LBD % LBD % LBD %

Average Max Average Max Average Max

50

5 0.6 1.7 1.3 3.2 2.1 4.2

6 0.7 1.7 1 2.9 - -

7 0.7 1.7 0.8 2 - -

55
5 0.8 1.8 - - - -

6 1 2.5 - - - -

* The number in the parenthesis gives the number of times the bound gives the

optimal solution.

We observe from Table 17 that, the lower bounds work consistently well over all

problem set. The average deviations are all below 1% for M=1 and 1.5 and 2% for

M=1.1 and 1.2 with single exceptions of 1.8 and 2.1% respectively. We also

observe the maximum deviations are below 2.6%, 4.1% and 5.5% for M=1, 1.1

and 1.2, respectively. The slightly better performances of the lower bound for

lower M is that the slack values are smaller for small M, thereby there are less

chances of playing with a given solution. Once you have more chances, the

possibility of producing a good solution is lower. When M=1, our lower bounding

procedure returns the optimal solution for 11 out of 170 solved instances. When

M=1.1, two optimal solutions could be obtained, and M=1.2 only for a single

instance, the optimal solution is reached. As the number of activity sizes

increases the lower bound deviation slightly increases. This is due to the fact that

increase in the combination which results in the increase in the problem

complexity.

55

Table 18 – Upper Bound Performances

N P

M=1 M=1.1 M=1.2

UBD % UBD % UBD %

Average Max Average Max Average Max

30

5 2.00 3.90 3.60 5.60 5.30 7.50

6 1.80 2.50 3.00 5.10 3.60 4.50

7 1.30 1.90 3.00 3.90 3.30 4.20

35

5 3.50 5.20 8.40 13.70 11.20 15.20

6 2.10 3.60 6.20 9.10 8.20 12.30

7 1.60 2.50 4.90 7.80 5.60 7.40

40

5 2.80 4.60 7.10 11.00 8.80 14.50

6 2.10 3.00 5.10 7.90 6.70 10.00

7 1.50 2.80 4.00 5.80 4.50 6.90

45

5 3.60 6.10 8.50 11.40 11.10 14.20

6 2.80 5.10 6.60 9.30 8.30 11.50

7 2.20 2.90 5.10 7.30 6.60 8.60

50

5 3.90 4.60 9.30 13.90 12.70 17.00

6 3.10 4.90 8.00 11.00 - -

7 2.00 2.90 6.20 12.20 - -

55
5 5.60 7.20 - - - -

6 4.30 6.70 - - - -

From Table 18, we observe that the performances of the upper bounds are very

satisfactory. The average deviations evaluated at the root node are almost below

5%, 10% and 15% for M=1, 1.1 and 1.2, respectively. One should expect much

better performances from the upper bounding procedures that would be used to

evaluate the nodes that have partial information. As can be observed from Table

18, the performance of the upper bounds deteriorates as N increases and M

increases. However, these increases are not in exponential rate. For example,

when for M=1 and P=6, N increases from 30 to 55, the deviations increases from

56

1.8% to 4.3%. So, one may observe linear increases in problem size parameters

for our exponentially natured problem.

As in lower bounds, the effect of the deadline values on the upper bound

performances is significant. As the deadline values are higher, the slack times of

the activities are higher. Higher slack times give more flexible assignments, and

more choices decreases the possibility of finding a solution that is close to

optimal. When N=50 and P=5, 6, and 7, the respective average deviations are 3.9,

3.1 and 2.1% for M=1, 9.3, 8 and 6.2% for M=1.1, 12.7, 9.5 and 7.5%. Note from

those figures that as the number of periods increases the performance of upper

bound improves. Higher P value means more chances for payments, hence the

earliest periods of the activities are earlier. This reduces the difference between

activity completion time and payment periods, thereby improving the performance

of our upper bounds that use those ideas.

Note from all tables that lower and upper bounds work consistently well over all

problem set. The maximum values are very close to the average values, that

shows consistent behaviour of bounds over all problem instances.

We now report on the performance of our branch and bound algorithm. We

evaluate the performance by the solution times expressed in Central Processing

Unit (CPU) seconds and the number of partial solutions, i.e., nodes. We also give

the average and maximum solution times of our GAMS model. Tables 19, 20, and

21 report on the average and maximum CPU times and the number of nodes for

M=1, 1.1, and 1.2, respectively.

57

Table 19 – The Performances of the BAB and GAMS model, M=1

N P
BAB CPU seconds GAMS CPU seconds Nodes

Average Max Average Max Average Max

30

5 0.02 0.06 2.03 7.26 844 2495

6 0.03 0.07 4.21 18.8 3066 10107

7 0.02 0.06 4.23 11.91 1702 5049

35

5 0.04 0.09 2.24 5.29 4121 14879

6 0.03 0.13 2.1 5.25 3370 18067

7 0.17 1.39 3.54 17.41 18760 165085

40

5 0.24 1.44 11.39 38.78 24141 154159

6 0.26 1.08 5.88 13.34 28495 116463

7 0.22 1.19 11.2 44.51 21869 108400

45

5 2.69 25.1 37.38 241.21 208874 1965421

6 0.8 3.29 234.92 1667.84 66955 303130

7 0.92 5.43 100.84 585.59 75416 473736

50

5 3.18 11.72 287.02 1584.23 194543 832767

6 11.96 34.41 628.52 3600 (1) 665025 1998490

7 11.28 47.03 722.76 3600 (1) 520479 2388009

55
5 258.61 1416.44 1489.91 3600 (3) 12931617 82941760

6 1293.75 3600(3) - - 63119309 179327664

Table 20 - The Performances of the BAB and GAMS model, M=1.1

N P
BAB CPU seconds GAMS CPU seconds Nodes

Average Max Average Max Average Max

30

5 0.04 0.11 11.9 60.03 4953 13855

6 0.1 0.26 18.05 72.51 11464 33445

7 0.33 1.61 14.15 54.62 42107 216955

58

Table 20 - The Performances of the BAB and GAMS model, M=1.1 (Continued)

N P
BAB CPU seconds GAMS CPU seconds Nodes

Average Max Average Max Average Max

35

5 2.27 18.36 68.42 237.86 239415 1916052

6 0.62 2.11 51.78 236.51 59041 180622

7 9.09 48.51 128.79 543.28 915984 4878913

40

5 7.61 45.65 86.49 260.74 654733 3933912

6 9.28 32.2 252.12 1321.71 697400 2660936

7 11.26 75.05 229.81 809.19 912521 6348481

45

5 42.45 308.94 999.13 3600(2) 2633124 19393268

6 119.11 323.39 - - 7670742 21326518

7 36 151.42 - - 2277277 10110373

50

5 487.13 2496.95 - - 19454785 93547006

6 819.99 3600(1) - - 39658950 174604990

7 1001.02 3600(2) - - 46591672 163661586

Table 21 - The Performances of the BAB and GAMS model, M=1.2

N P
BAB CPU seconds GAMS CPU seconds Nodes

Average Max Average Max Average Max

30

5 0.46 1.66 10.9 25.91 37582 138031

6 0.39 1.03 15.14 44.71 52674 138933

7 0.66 2.37 11.48 21.99 69205 245846

35

5 9.64 40.6 279.67 843.18 708085 2965672

6 24.38 157.89 562.51 3102.25 1876164 12082629

7 11.27 47.67 171.59 794.33 662745 2892718

40

5 55.28 267.06 546.59 1866 3580440 16256733

6 82.86 411.97 807.85
3600.00

(1)
5774048 30842679

7 122.79 788.1 566.35 2397.19 8331816 49267279

59

Table 21 - The Performances of the BAB and GAMS model, M=1.2 (Continued)

N P
BAB CPU seconds GAMS CPU seconds Nodes

Average Max Average Max Average Max

45

5 189.11 1004.6 2797.36 3600(6) 11290379 62954089

6 836.01 3600(1) - - 50053690 188441428

7 1033.79 3600(1) - - 61144541 254838453

50 5 1834.04 3600(4) - - 94182551 247572280

From Tables 19, 20, and 21, we observe the significant effect of the number of

activities on the complexity of the solutions. When deadline multiplier is 1, the

BAB could solve the instances up to 55 activities, when deadline multiplier is 1.1

and 1.2, the instances with up to 50 activities could be solved. The maximum

number of periods that could be solved by deadline values of 1.1 for 50 is 7,

whereas a maximum of 5 periods could be solved for a deadline multiplier value

of 1.2. Those results altogether lead us to conclude that the number of activities,

number of periods and deadline values are affecting the performance. The higher

values of all parameters, the higher is the complexity of the solutions.

We observe that among those three parameters N is the most significant one that

affects the performance. The CPU times by BAB are below 1 second when N=30

for all values P and M. For M=1, when N becomes 55 for P=5 and 6, the average

CPU times are 258.61 and 1293.75 seconds, respectively. 3 out of 10 problem

could not be solved when P=6. For M=1.1 and 1.2 we observe that, 55 activity

problems, on the other hand, could be solved in 1834 seconds on average for P=5,

leaving 4 unsolved problems in 1 hour. When P=6, no 50 activity instance could

be solved. For M=1.1, the average CPU times are 487.13, 819.99 and 1001.02

seconds, for P=5, 6 and 7, respectively. When P=6 and 7, 1 and 2 problems

respectively, could not be solved in 1 hour.

60

Note that as N increases, the size of the problem, hence the size of the branch and

bound tree increases exponentially. Our branch and bound algorithm has dispelled

this exponential effect, at some extent, as it uses very powerful upper bounds. As

our upper bounds are good estimators of the optimal objective function value,

they lead to good choices between nodes, thereby decreasing the size of the tree.

Recall that our lower and bound performances are not much sensitive to the

increases in the parameter values.

We also observe the significant effect of deadline multipliers on the BAB

performance. As M increases, for each interval the number of choices increases

and this increase the effort spent to make evaluations. For smaller M, many

assignments lead to infeasible solutions, thereby the size of the search is smaller.

Moreover, our upper bounds perform better for smaller M, hence their effects in a

BAB would be higher. Note from Tables 19, 20, and 21 that we obtain smallest

CPU times at the lowest M value. When N=45 and P=7, the average CPU times

are 258.61 487.13 and 1834.04, for M=1, 1.1, 1.2, respectively. When N=50, P

becomes 7, the average CPU times for M=1, and 1.1 are 11.28 and 1001.02

respectively. No instance could be solved in 1 hour for M=1.2.

P also affects the BAB performance, and the effect becomes more significant as

the problem complexity due to N or M is high. As P increases, the number of

times that BAB gives decisions increases the CPU times. Note that when N=55

and M=1, the average CPU times increase from 258.61 to 1293.75 as P increases

from 5 to 6. When N=50 and M=1.1, the average CPU times increase from 487.13

to 1001.02 as P increases from 5 to 7. There are some exceptions, where an

increase in P, reduces the CPU time. For example, according to Table 19, for

N=45, and M=1, the average CPU time with 5 period is 2.69 and this is higher

average CPU time with 6 periods (0.80 sec).

61

This unexpectedly big values for 5 periods, is due to a single dominating instances

with CPU time of 25.1. Once we exclude this instance, the average over 9

instances reduces 0.2.

62

63

CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

In this study we consider a project payment model with discounted cash flows.

We assume that the client payment times and project deadline are defined in the

project contract. The activities are characterized by their processing times and

costs that are incurred at their completions. Our problem is to find the client

payment amounts and activity completion times so as to maximize the net present

value of the client payments and activity costs. We show that the problem is

strongly NP-hard.

We formulate the problem as a mixed integer nonlinear programming model and

solve the instances up to 55 activities, 5 periods when deadline is tight. For loose

deadline case, the instances up to 45 activities, 5 periods could be solved by the

model.

For moderate to large sized problem instances, we propose a branch and bound

algorithm that employs efficient lower and upper bounding mechanisms. We find

that algorithm is able to solve the problems up to 55 activities, 6 periods when

deadline is tight. For loose deadline case, the instances up to 50 activities, 5

periods could be solved by the algorithm.

The results of our extensive computational experiments have revealed that the

most significant parameter is the number of the activities. As number of the

activities increase the solution times increase considerably. We also find that the

64

number of the periods and deadline are dominant parameters that affect the

solution times. The higher solution times are observed when the number of the

periods is higher and the deadline is looser.

To the best of our knowledge our study is the first attempt to solve the progress

payment problem where the payment quantities are to be decided at defined time

points. We hope the results of our study could help for the practitioners who want

to manage their cash flows, negotiating for the milestones and critical control

points, determining the amounts and timings of the progress payments. Our

models and algorithms can be easily modified to handle the practical cases where

the costs are charged once the activities start and/or progress payments are

received at the beginning of the periods.

This study has considered a project payment model from contractor’s view.

Extending the results so as to emphasize the client’s view as well as joint views of

contractor and client might be considered in future work. Our models can also be

extended for bonus payment and penalty cost structures.

In this study, we assume that the profit margin and the discount rate do not change

as time progresses. The future research may relax those assumptions and extend

our procedures to handle the dynamic values for the profit margin and discount

rate.

Future research may also consider the design of more powerful optimization

algorithms that use Bender’s Decomposition ideas as suggested in Grinold (1972).

Moreover heuristic approaches that provide high quality schedules, in reasonable

times might be a designed. Our lower bounding procedure can be used as a

stepping-stone for developing powerful heuristic approaches.

65

REFERENCES

Chen, W. N., Zhang, J., Chung, H. S. H., Huang, R. Z., and Liu O. (2010),

“Optimizing Discounted Cash Flows in Project Scheduling – An Ant Colony

Optimization Approach”, IEEE Transactions on Systems, Man, and Cybernetics –

Part C. Applications and Reviews, 40, 64-77.

Dayanand, N., and Padman, R. (1997), “On Modelling Payments in Projects”,

The Journal of the Operational Research Society, 48, 906-918.

De Reyck, B., and Herroelen, W. (1996), “An Optimal Procedure for the

Unconstrained Max-npv Project Scheduling Problem with Generalized

Precedence Relations”, Department of Applied Economics, Katholieke

Universiteit Leuven, Research Report, 9642.

De Reyck, B., and Herroelen, W. (1998), “An Optimal Procedure for the

Resource-Constrained Project Scheduling Problem with Discounted Cash Flows

and Generalized Precedence Relations”, Computers and Operations Research, 25,

1-17.

De Reyck, B., and Leus, R. (2008), “R&D Project Scheduling when Activities may

Fail”, IIE Transactions, 40, 367-384

66

Erenguc, S. S., Tufekci, S., and Zappe, C. J., (1993), “Solving Time/Cost Trade-

off Problems with Discounted Cash Flows Using Generalized Benders

Decomposition”, Naval Research Logistics, 40, 25-50.

Grinold, R. G., (1972), “The Payment Scheduling Problem”, Naval Research

Logistics Quarterly, 19, 123-136.

He, Z., and Xu, Y. (2008), “Multi-Mode Project Payment Scheduling Problems

with Bonus-Penalty Structure”, European Journal of Operational Research, 189,

1191-1207.

He, Z., Wang, N., Jia, T., and Xu, Y. (2009), “Simulated Annealing and Tabu

Search for Multi-Mode Project Payment Scheduling”, European Journal of

Operational Research, 198, 688-696.

Herroelen, W. S., Van Dommelen, P., and Demeulemeester E. L. (1997), “Project

Network Models with Discounted Cash Flows a Guided Tour through Recent

Developments”, European Journal of Operational Research, 100, 97-121.

Icmeli, O., and Erenguc, S.S. (1996), “A Branch and Bound Procedure for the

Resource Constrained Project Scheduling Problem with Discounted Cash

Flows”, Management Science, 42, 1395-1408.

67

Kazaz, B., and Sepil, C. (1996), “Project Scheduling with Discounted Cash Flows

and Progress Payments”, The Journal of the Operational Research Society, 47,

1262-1272.

Kolisch, R., and Sprecher, A. (1996), “PSPLIB – A Project Scheduling Problem

Library”, European Journal of Operational Research, 96, 205-216.

Mika, M., Waligora, G., and Weglarz, J. (2005), “Simulated Annealing and Tabu

Search for Multi-Mode Resource-Constrained Project Scheduling with Positive

Discounted Cash Flows and Different Payment Models”, European Journal of

Operational Research, 164, 639-668.

Najafi, A. A., and Niaki, S. T. A. (2005), “Resource Investment Problem with

Discounted Cash Flows”, International Journal of Engineering, 18, 100-101.

Najafi, A. A., and Azimi, F. (2009), “A Priority Rule-Based Heuristic for

Resource Investment Project Scheduling Problem with Discounted Cash Flows

and Tardiness Penalties”, Hindawi Publishing Corporation, Mathematical

Problems in Engineering, 2009, ID 106425.

Özdamar, L., and Dündar, H. (1997), “A Flexible Heuristic For a Multi-Mode

Capital Constrained Project Scheduling Problem with Probabilistic Cash

Inflows”, Computers and Operational Research, 24, 1187-1200.

68

Ritwik, A., and Paul, G. (2013), “A Heuristic Algorithm for Resource Constrained

Project Scheduling Problem with Discounted Cash Flows”, International Journal

of Innovative Technology and Exploring Engineering, 3, 99-102.

Russell, A. H. (1970), “Cash Flows in Networks”, Management Science, 16, 357-

373.

Seifi, M., and Tavakkoli-Moghaddam, R. (2008), “A New Bi-Objective Model for

a Multi-Mode Resource-Constrained Project Scheduling Problem with

Discounted Cash Flows and Four Payment Models”, IJE Transactions A: Basics,

21, 347-360.

Sepil, C., and Ortaç, N. (1997), “Performance of the Heuristic Procedures for

Constrained Projects with Progress Payments”, Operational Research Society,

48, 1123-1130.

Smith-Daniels, D.E., Padman, R., and Smith-Daniels, V.L. (1996), “Heuristic

Scheduling of Capital Constrained Project”, Journal of Operations Management,

14, 241-254.

Ulusoy, G., and Cebelli, S. (2000), “An Equitable Approach to the Payment

Scheduling Problem in Project Management”, European Journal of Operational

Research, 127, 262-278.

69

Ulusoy, G., Sivrikaya-Şerifoğlu, and F., Şahin, Ş. (2001), “Four Payment Models

for the Multi-Mode Resource Constrained Project Scheduling Problem with

Discounted Cash Flows”, The Annals of Operations Research, 102, 237-261.

Vanhoucke, M., Demeulemeester, E., Herroelen, W. (2003), “Progress Payments

in Project Scheduling Problems”, European Journal of Operational Research, 148,

604-620.

70

71

APPENDIX A

BRANCH AND BOUND CALCULATIONS

Table A1 – ESS and LSS of Nodes 0, 8, 16

Node Act ES EF LS LF PES PLS

0

1 0 0 0 0 1 1

2 0 3 7 10 1 1

3 0 2 13 15 1 2

4 3 8 10 15 1 2

5 3 9 17 23 1 3

6 8 16 15 23 2 3

7 16 20 23 27 2 3

8 27 30 27 30 3 3

9 16 20 26 30 2 3

10 30 30 30 30 3 3

8

1 0 0 0 0 1 1

2 0 3 4 7 1 1

3 0 2 10 12 1 2

4 3 8 7 12 1 2

5 3 9 14 20 1 2

6 8 16 12 20 2 2

7 23 27 23 27 3 3

8 27 30 27 30 3 3

9 26 30 26 30 3 3

10 30 30 30 30 3 3

72

Table A1 – ESS and LSS of Nodes 0, 8, 16 (Continued)

Node Act ES EF LS LF PES PLS

16

1 0 0 0 0 1 1

2 2 5 2 5 1 1

3 8 10 8 10 1 1

4 5 10 5 10 1 1

5 14 20 14 20 2 2

6 12 20 12 20 2 2

7 23 27 23 27 3 3

8 27 30 27 30 3 3

9 26 30 26 30 3 3

10 30 30 30 30 3 3

