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ABSTRACT 

 

 

A PROJECT PAYMENT SCHEDULING PROBLEM WITH 

DISCOUNTED CASH FLOWS 

 

 

 

Cömert, Alican 

M.Sc., Department of Industrial Engineering 

Supervisor: Prof. Dr. Meral Azizoğlu 

 

July 2014, 72 pages 

 

In this study we consider a project payment model with discounted cash flows.  

We assume that the client payment times are defined in the project contract. The 

activities are characterized by their processing times and costs that are incurred at 

their completions.  Our problem is to find the client payment amounts and activity 

completion times so as to minimize the net present value of the client payments 

and activity costs.  We show that the problem is strongly NP-hard. 

We formulate the problem as a mixed integer nonlinear programming model and 

solve small to moderate sized problem instances.  For moderate to large sized 

problem instances, we propose a branch and bound algorithm that employs 

efficient lower and upper bounding mechanisms. 

 

Keywords: project scheduling, discounted cash flows, branch and bound algoritm 
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ÖZ 

 

 

İSKONTOLANDIRILMIŞ NAKİT AKIŞLI PROJE ÖDEME 

ÇİZELGELEMESİ PROBLEMİ 

 

 

 

Cömert, Alican 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Meral Azizoğlu 

 

Temmuz 2014, 72 sayfa 

 

Bu çalışmada, nakit akışlarının iskontolandırıldığı bir proje çizelgeleme problemi 

ele alınmıştır.  Müşteri ödemelerinin tanımlı zamanlarda ve proje harcamalarının 

ise aktivite bitiş noktalarında yapıldığı varsayılmıştır.  Problemimiz,  toplam 

müşteri ödeme ve aktivite maliyetlerinin bugünkü değerini ençoklayan, müşteri 

ödeme miktarlarını ve aktivite bitiş sürelerini belirlemektir. Problemimizin NP-

zor olduğunu gösterdik. 

Problemimizi tam sayılı karmaşık doğrusal olmayan bir model marifetiyle 

tanımaya çalıştık. Modelin küçük boyutlu problemler için optimal çözümü 

bulduğunu gördük.  Orta boyutlu problemleri çözebilmek için bir dal-sınır 

algoritmasını geliştirdik.  Algoritmanın performansı optimal çözümün 

özelliklerini ve geliştirdiğimiz alt ve üst sınırlama mekanizmalarını kullanarak 

iyileştirdik 

.   

Anahtar Kelimeler: proje çizelgelendirmesi, iskontolandırılmış nakit akışları, 

dal-sınır algoritması 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

Project is a temporary group activity designed to produce a unique product, 

service or result (Project Management Institute). Project management is the 

application of knowledge skills and techniques to execute the project effectively 

and efficiently. Financial planning plays a vital role in efficient and effective 

project management by providing powerful means of using the cash flows, by 

considering the time value of money. 

The basic concern of the financial planning is to increase the profitability of the 

projects via establishing payment schedules that are acceptable by the contractors 

(producers) and the clients (customers). The payment schedules should consider 

the timing and quantity of each receipt from the client and the timing and amount 

of each expense by the contractor. The expenses made by the contractor usually 

due to the activity realizations. The objective of the financial planners is usually to 

maximize the net present worth of all cash flows. From the contractor side, the 

negative cash flow is due to the activity expenses and the positive cash flow is the 

amount received from the client to realize the project. 

During the bid submission process, the contractor and client should negotiate over 

the payment schedule proposals. The client would like to pay the money as late as 

possible and the contractor would like to receive the money as early as possible. A 

good payment schedule would consider the compromises between the client and 

contractor, requirements. 
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In the literature, there are mainly four payment models that are lump-sum 

payment, payments at event occurrences, equal time intervals and progress 

payment. Lump sum payment model is rather easy to solve for the net present 

value problems compared to other payment models, since the client pays the 

whole amount to the contractor at the end of the project. Thus, the objective 

function reduces to finishing the project as early as possible. In the payments at 

event occurrences model, payments are made at predefined events where timing 

and amount of payments are to be ascertained. For equal time intervals model, 

payments are made in equal intervals whereas the last payment is done with the 

completion of the project. Progress payment model is very similar to the equal 

time intervals model with a significant difference that the payment times are not 

equally spaced and number of payments that will be made during the project is 

unknown. 

In this study, we use progress payment scheduling model in which the timings of 

the payments are already specified but their amounts are going to be determined. 

We assume that the activity costs are incurred at activity completion times. In 

practice, the majority of the activities are outsourced or subcontracting, hence the 

cost is charged once the activity is received the complete form. Our objective is to 

maximize the net present worth of all cash flows of the contractor. From the 

contractor side, the negative cash flow is due to activity expenses and the positive 

cash flow is the amount received from the client for the work completed after the 

last payment. 

Our model and solution approaches can be used by the client side, after some 

modifications. We hope our study could help for the practitioners who want to 

manage their cash flows, negotiating for the milestones and critical control points, 

determining the amounts and timings of the progress payments. 
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In this study, we present a branch and bound algorithm that decides on the activity 

completion times and the amount of progress payments. We assume in the 

contract, the deadline of the project completion time is already negotiated. To the 

best of our knowledge, our study is the first attempt to solve the problem to 

optimality. 

The rest of the thesis is organized as follows. Section 2 defines the problem and 

presents the mathematical model. The complexity of the problem is shown as NP-

hard in the strong sense. Some feasible solutions and an optimal solution of the 

model are also illustrated. Section 3 gives the survey of the related literature. In 

Section 4, we discuss our branch and bound algorithm together with the bounding 

mechanisms. The results of our extensive computational runs are reported in 

Section 5. Section 6 concludes the study by pointing out our main findings and 

suggestions for future research. 
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CHAPTER 2 

 

 

PROBLEM DEFINITION 

 

 

 

In this chapter, with its underlying assumptions together, a mixed integer non-

linear mathematical model is presented. Then, the complexity of the problem is 

settled. Finally, a feasible solution and an optimal solution of the model are 

discussed. 

 

2.1 Problem Statement 

 

The problem is analyzed from the contractor’s side. The objective of the problem 

is to maximize the net present value of all cash flows which consist of contractor’s 

cost of activities and client’s payments.  

We consider a progress payment model where the project payments occur at 

predefined dates. The amount of money to be paid is calculated according to the 

expenses of the completed activities in that period. Considering the time value of 

money, the client wishes to pay as late as possible, whereas the contractor wishes 

to receive payments as early as possible, in the meantime there are activity 

expenses of contractor and a project deadline which contractor need to finish all 

activities before that date. 

We assume the client and contractor has an agreed schedule for the payment 

dates. On the predefined dates, the client pays the activity costs that are finished 

between the last payment and payment date, with a predefined profit margin over 

the activity costs. The profit margin is bargained at the beginning of the project 
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and it might change from period to period. For example, if the client is willing to 

receive the project as soon as possible, the contractor may be awarded by setting 

higher profit margins to earlier periods. 

Contractor’s costs are assumed to be charged at the end of activity in a lump-sum. 

If an activity does not finish before a payment date, although it has started before 

the payment date, the contractor neither receives the payment of that activity nor 

pays its cost in that payment interval. 

Discount factor is the maximum rate which the contractor could invest their 

money with. This rate may be the market interest rate or external rate of return of 

the contractor. Discount factor may change from period to period. Therefore, 

interest rate forecasts during the project timeline could be reflected to project the 

costs.  

In the study, we assume that the interest rate and profit margin are static 

parameters. We further make the following assumptions: 

 Project activities, activity durations, activity costs and their precedence 

relationships are deterministic, i.e., known with certainty.  

 All predecessor relations have finish-to-start dependency which means an 

activity cannot start before its all preceding activities are not finished. 

 Once an activity starts, it must be completed without any interruption. 

 There is no resource constraint. 

 The discount rate is continuously compounded. 
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 Profit margin includes cost of activities, therefore, should be greater than 

1. 

 

2.2 Mathematical Model 

 

We assume that there are N activities and P payment periods and use the 

following notation. 

Parameters: 

i : Index for activities, i = 1,…,N 

p : Index for progress payments, p = 1,…,P 

Ap : Finishing time of period p 

αp : Discount factor for period p, we assume αp = α for   p 

D : Deadline of the project 

di : Duration of activity i 

 p :  Profit margin for period p, we assume  p =   for   p 

Ci : Cost of activity i (negative cash flow) 

IPi:  Immediate predecessor of activity i 

 

Decision variables: 

CFp : Amount of payment received at the end of period p, p = 1,…,P (positive 

cash flow) 

Ti : Completion time of activity i, i = 1,…,N 
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Xpi : {
                                    

           
 

Note that we assume the timing of the payments and amount of the activity costs 

are given, i.e., parameters. However, the timing of the activity completions and 

amount of progress payments are to be decided, i.e., decision variables. 

The cash flow diagram that explains our problem is given in Figure 1. 

 

Figure 1 - The Cash Flow Diagram 

Model: 

Max ∑    (     )     ∑          
   

 
         

subject to 

(1)          for   j   IPi,   i = 1,…,N 

(2)        

(3) T0 = 0 

(4) ∑    
 
      for   i, i = 1,…,N 

(5)    ∑       
 
     for   i, i = 1,…,N 

(6)    ∑           
 
     for   i, i = 1,…,N 
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(7) ∑         
 
         for   p, p = 1,…,P 

(8)     = 0 or 1 for   i, p 

The model above is a mixed integer non-linear problem. It is written from the 

point of view of the contractor. The objective function has two separate parts: The 

money that contractor receives from the client considering the time value of 

money and the expenses of activities of the contractor considering the time value 

of money. Note that the second part is a function of   s. 

We now explain our constraints. 

(1) Activity predecessor constraints guarantee that an activity cannot start 

before all its preceding activities are finished. 

(2) The project must be finished before the specified deadline.  

(3) Activity 0 is the first activity that defines the start of the project. 

(4) Each activity is assigned to exactly one period. 

(5) and (6) together define the period in which an activity completes. 

(7) The money that the client must pay at the end of each period is the sum of 

expenses of activities that finish within that period multiplied by the profit 

margin,  . 

(8)     is a binary variable.  

If there are no progress payments, i.e.,  =0, the contractor should minimize their 

costs; therefore, the optimal solution would be to complete as late as possible, i.e., 

the late start schedule is optimal. If there are no activity expenses, i.e.,   = 0 for 

all i, the optimal solution would be complete as early as possible, i.e., the early 

start schedule is optimal. The late and early start schedules are found by the well-

known Critical Path Method. For the sake of completeness, we give the details of 

this method.  



 

 

10 

 

The Critical Path Method (CPM) 

In the late 1950s, Remington Rand Univac and DuPont Corporation introduced 

CPM to schedule project activities based on a mathematical algorithm. By using 

the duration and precedence relationship of activities, critical and non-critical 

paths are determined. The method forms the early start schedule (ESS) in the 

forward pass starting from the first activity in the project and the longest path 

named as critical path gives the earliest completion time of the project. 

Oppositely, starting from the deadline of the project, via using the backward pass 

of the CPM late start schedule (LSS) of activities are determined. The recursive 

equations to form these schedules are stated as follows: 

There are N activities in the project. 

ESi=Max(ESj+  ) for   j   IPi, and   i 

EFi=ESi+   for   i 

The forward pass of the CPM begins from the first activity and finishes when the 

early start time of the last activity N is found. 

Backward pass recursive equations are given below: 

LFn=Deadline 

ISi: set of immediate successors of activity i 

LFi=Min(LFj-  ) for   j   ISi, and   i 

LSi=LFi-Durationi for all i 
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2.3 Complexity of the Problem 

We show, through Theorem 1, that our problem that is modelled in Section 2.2, is 

strongly NP-hard. 

Theorem 1: Our problem is strongly NP-hard. 

Proof: The objective of the problem is: 

Max ∑    (     )     ∑          
   

 
         

where    =∑         

When  =0, the objective function reduces to  

Max  ∑              
 
     ≡ Min ∑              

 
    

The problem using the above objective and ignoring the deadline constraint 

(taking D very big value) is equivalent to minimizing total weighted completion 

time problem on parallel identical machines and with precedence constraints, i.e., 

P │prec│∑              
 
    is scheduling terminology. 

De Reyck and Leus (2008) showed that 1 │prec│∑              
 
    is strongly 

NP-hard, so is its generalization P │prec│∑              
 
   . 

This follows, our problem residing arbitrary   and D values over the P 

│prec│∑              
 
    problem is strongly NP-hard.   

Theorem 1 states that there can exist neither polynomial, nor pseudo-polynomial 

algorithm that solves our problem. 

 

2.4  A Feasible Solution and the Optimal Solution 

 

In this section, we present a feasible and an optimal solution of the model. The 

optimal solution is found by GAMS BARON nonlinear programming solver. We 

consider the following 8 activity precedence network shown in Figure 2.  
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Figure 2 - An Example Network Diagram 

 

Table 1 gives the activity durations, costs and predecessor activities. 

 

Table 1 - An Example Problem 

ID 
Duration 

(months) 

Cost 

($) 

Immediate 

Predecessors 

0 0 0 -  

1 3 600 0 

2 2 1800 0 

3 5 700 0,1 

4 6 1600 1,2 

5 8 2000 2,3 

6 4 1500 4,5 

7 3 1900 3,5,6 

8 4 600 5 

9 0 0 6,7,8 
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Let the project deadline be 30 months, and the project has 3 payment times that 

are on the 10
th

, 20
th

 and 30
th

 months. The discount rate (α) is assumed to be 0.10 

per year and profit margin (β) is taken as 1.20.  

Table 2 gives the earliest and latest completion time of activities, found by the 

CPM. 

Table 2 - Earliest and Latest Schedule of the Project 

ID 
Earliest 

Start 

Time 

Earliest 

Finish 

Time 

Earliest 

Period 

Latest 

Start 

Time 

Latest 

Finish 

Time 

Latest 

Period 

0 0 0 1 7 0 1 

1 0 3 1 7 10 1 

2 0 2 1 13 15 2 

3 3 8 1 10 15 2 

4 3 9 1 17 23 3 

5 8 16 2 15 23 3 

6 16 20 2 23 27 3 

7 20 23 3 27 30 3 

8 16 20 2 26 30 3 

9 23 23 3 30 30 3 

 

Note that both schedules are feasible for our problem. For the ESS schedule; 

Table 3 summarizes the objective function value calculations. 

Table 3 - Early Start Schedule Objective Function 

ID Early 

Finish 
∑

   (     )

    

 

   

 ∑
   

          

 

   

 

ESS Obj 

Function 

0 0 0.0 0.0 0.0 

1 3 662.4 585.2 77.2 
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Table 3 – Early Start Schedule Objecive Function (Continued) 

ID 
Early 

Finish 
∑

   (     )

    

 

   

 ∑
   

          

 

   

 

ESS Obj 

Function 

2 2 1987.3 1770.2 217.0 

3 8 772.8 654.9 118.0 

4 9 1766.5 1484.4 282.1 

5 16 2031.6 1750.3 281.2 

6 20 1523.7 1269.7 253.9 

7 23 1775.7 1568.6 207.1 

8 20 609.5 507.9 101.6 

9 23 0.0 0.0 0.0 

Total  11129.4 9591.2 1538.2 

 

For the LSS schedule; Table 4 summarizes the objective function value 

calculations. 

Table 4 - Latest Start Schedule Objective Function 

ID 
Late 

Finish 
∑

   (     )

    

 

   

∑
   (     )

    

 

   

 ∑
   

          

 

   

 

LSS Obj 

Function 

0 0 0.0 0.0 0.0 

1 10 662.4 552.0 110.4 

2 15 1828.4 1588.5 239.9 

3 15 711.0 617.7 93.3 

4 23 1495.3 1320.9 174.4 

5 23 1869.1 1651.2 218.0 

6 27 1401.8 1197.8 204.1 

7 30 1775.7 1479.7 295.9 
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Table 4 - Latest Start Schedule Objective Function (Continued) 

ID 
Late 

Finish 
∑

   (     )

    

 

   

∑
   (     )

    

 

   

 ∑
   

          

 

   

 

LSS Obj 

Function 

8 30 560.7 467.3 93.5 

9 30 0.0 0.0 0.0 

Total  10304.5 8875.1 1429.4 

 

As it can be seen from Table 3, the objective function value is found as 1538.2 

whereas it is 1429.4 for LSS, according to Table 4. It is seen that ESS performs 

better than LSS for this problem instance.  

Another reasonable feasible solution could be formed by using ESS to decide on 

the intervals of each activity. Then, LSS can be used for the completion times 

within each interval. Such a solution would use the advantage of ESS to receive 

the payments earlier and LSS to pay the costs later. 

According to the ESS, without changing the periods of the activities, the activities 

are rescheduled as late as possible and the completion times are reported in Table 

5. 

Table 5 - Latest Start in Earliest Period Objective Function 

ID 
Finishing 

Time ∑
   (     )

    

 

   

 ∑
   

          

 

   

 

Objective 

Function 

0 0 0 0.0 0.0 

1 3 662.4 585.2 77.2 

2 4 1987.3 1741.0 246.3 

3 8 772.8 654.9 118.0 
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Table 5 - Latest Start in Earliest Period Objective Function (Continued) 

ID 
Finishing 

Time ∑
   (     )

    

 

   

 ∑
   

          

 

   

 

Objective 

Function 

4 10 1766.5 1472.1 294.4 

5 16 2031.6 1750.3 281.2 

6 20 1523.7 1269.7 253.9 

7 30 1775.7 1479.7 295.9 

8 20 609.5 507.9 101.6 

9 30 0.0 0.0 0.0 

Total  11129.4 9460.8 1668.6 

 

If all activities are scheduled as in Table 5, objective function of the contractor is 

1668.6. The Gantt Chart of ESS and latest start schedule in earliest periods are 

illustrated in Figure 3. 

 

Figure 3 - The Gant Chart of ESS and LSS in Earliest Period 
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From Figure 3, it is seen that only the activities 2, 4, 7 and 9 are shifted forward 

until LSS in earliest period is obtained. Due to these shifts, the objective function 

improves from 1538 to 1669. 

Since it is a small-sized problem, GAMS BARON solver could find the optimal 

solution and return the results reported in Table 6. 

Table 6 – The Optimal Solution 

ID 
Optimal 

Finishing 

Time 

Optimal 

Period ∑
   (     )

    

 

   

 ∑
   

          

 

   

 

Obj. 

Func. 

0 0 1 0.0 0.0 0.0 

1 5 1 662.4 575.5 86.9 

2 10 1 1987.3 1656.1 331.2 

3 10 1 772.8 644.0 128.8 

4 20 2 1625.2 1354.4 270.9 

5 20 2 2031.6 1693.0 338.6 

6 27 3 1401.8 1197.8 204.1 

7 30 3 1775.7 1479.7 295.9 

8 30 3 560.7 467.3 93.5 

9 30 3 0.0 0.0 0.0 

Total   10817.6 9067.7 1749.

9  

The cash flow diagram of the optimal solution is given in Figure 4. 
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Figure 4 - The Cash Flow Diagram of the Optimal Solution 

The objective function value of the optimal solution is 1749.9 whereas it was 

1668.6 with latest start in earliest period schedule. When the optimal schedule is 

compared with the latest start in earliest period schedule, it is seen that activities 

4, 6 and 8 are scheduled in their later periods. Although activity 4 could also be 

scheduled in period 3; in the optimal solution, it is scheduled on period 2. 
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CHAPTER 3 

 

 

LITERATURE SURVEY 

 

 

 

In this chapter, we review the literature on project payment scheduling problems 

with discounted cash flows.  

We classify the research as resource constrained and unconstrained problems. We 

refer the reader to Herroelen et al. (1997) for different classification schemes. 

3.1 Resource Constrained Problems 

The studies by Smith Daniels et al. (1996), Icmeli and Erenguc (1996), De Reyck 

and Herroelen (1997), Sepil and Ortac (1997), Najafi and Niaki (2005), Najafi and 

Azimi (2009), Ritwick and Paul (2013) consider resource constrained problems 

without mode decisions. The studies by Özdamar and Dündar (1996), Ulusoy and 

Cebelli (2000), Mika et al. (2005), Seifi and Moghaddam (2008), Chen et al 

(2010) include mode decisions to their resource constrained problem.  

We summarize the studies in chronological order. 

Smith Daniels et al. (1996) consider with capital constrained project scheduling 

problem and offer three heuristic procedures for its solution. The objective 

function of their problem maximizes the net present value of cash inflows, 

outflows and capital costs whereas capital is counted as a renewable resource. 

With an initial capital availability, cash inflows and outflows affect the capital 

throughout the project. They test the performance of optimization guided 
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heuristics and conclude that two revised optimization guided heuristics performed 

better than a randomly derived bound and cash flow weight heuristic procedure. 

Özdamar and Dündar (1996) investigate probabilistic cash inflows for a multi-

mode capital constrained project scheduling problem. They consider the 

construction as focusing on the case of selling the flats while the construction is 

ongoing. Thus, they included activity modes, which include time and cost 

tradeoffs. The capital constrained model of Herroelen et al (1995) is used 

including both renewable and non-renewable resources are included in the 

problem. Their objective function is to maximize the net present value of the 

project which is reduced by penalty of tardiness and opportunity cost of initial 

capital. An adaptive scheduling program is proposed to solve the problem and 

they also emphasize the program as a useful simulation tool. 

Icmeli and Erenguc (1996) propose a depth-first branch and bound algorithm for 

the resource constrained project payment scheduling problem. They assume that 

each activity has either positive or negative cash flow and aim to maximize net 

present value of these cash flows. In their model, only non-renewable resources 

are considered. Their branching is done according to the complete schedule that 

ignores resource feasibility. They first search for a schedule feasible solution and 

for the nodes that are resource infeasible but schedule feasible they further branch 

until they reach resource feasibility. While maintaining schedule feasibility, a set 

of solutions with a tolerance factor of at most 5% of the optimal solution is 

represented for comparison. 

De Reyck and Herroelen (1997) offer a dept-first Branch and Bound algorithm for 

the resource constrained project scheduling problem with discounted cash flows 

and generalized precedence relations. They include renewable resource in their 

problem as constraints. They do not consider any payment model and assumes 

negative or positive cash flow occur at activity completions. The concept of 
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minimal delaying modes are introduced to get away the resource conflicts. Their 

computational study is presented up to 50 activities and important parameters are 

selected to see their effects on the problem difficulty. 

Sepil and Ortac (1997) investigate the performance of three heuristic procedures 

for resource constrained projects with progress payments. They assumed that cash 

inflows occur periodically and cash outflows occur at the activity completion 

times. Performance of single net present value comparison rule, pairwise present 

value comparison rule, and activity profit curve sloper rule are compared with 

each other. Their results show that the three heuristics provide near-optimal 

schedules with respect to net present value maximization without delaying the 

deadline extensively. 

Ulusoy and Cebelli (2000) use event completion payment model in their multi-

mode resource constrained project scheduling problem. They consider renewable 

resources and time-resource trade-offs. In their problem, the amount and timing of 

the payments are determined so as to minimize the absolute percent deviation of 

the ideal net present values of the contractor and client. The proposed double loop 

genetic algorithm performs in reasonable times with equitable solutions. 

Ulusoy et al. (2001) employ a genetic algorithm for multi-mode resource 

constrained project scheduling problem for four payment models. They consider 

renewable and non-renewable resources. The objective is to maximize the net 

present value of positive and negative cash flows. They consider time-cost and/or 

time-resource tradeoffs. For different discount rates and profit margins, genetic 

algorithm and local constraint based analysis are used to solve the problem and it 

is found that genetic algorithm outperforms comparing the other methods. They 

conclude that when profit margin increases, the progress payment model tends to 

schedule activities that have relatively higher costs earlier. Furthermore, as 
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discount rate increases, the progress payment model starts to behave like lump 

sum payment model as tending to decrease the project completion time.  

Mika et al. (2005) consider four payment models for multi-mode resource 

constrained project scheduling problem. They consider both renewable and 

nonrenewable resources and make time and resource trade-off. Lump sum 

payments, payments at activities’ completion times, equal time intervals and 

progress payment methods are used in their study. They aim to maximize the net 

present value of all cash flows. They present simulated annealing and tabu search 

approaches and discuss the results on different payment models, different 

frequency of payments and different discount rates. They find that for smaller 

number of activities, the performance of tabu search algorithm performs better 

while for large number of activities the performance of simulated annealing is 

better.  

Najafi and Niaki (2005) propose a heuristic method to solve resource investment 

problems with discounted cash flows. They use the payment model of payments at 

predefined event occurrences. Renewable resources are included in the problem in 

constraints and objective function due to the nature of resource investment 

problem. Their objective function maximizes the net present value of the cash 

flows which include project costs including resource costs and payments made 

during the project. Their heuristic procedure are compared with the best solutions 

obtained from mathematical model and found that while solutions are very close, 

CPU time for the heuristics is much less than CPU time of mathematical model. 

Seifi and Moghaddam (2008) analyze four payment models for multi-mode 

resource constrained project scheduling problem. In their study, time-resource and 

cost tradeoffs are made and both renewable and nonrenewable resources are 

considered. They present a bi-objective model which maximizes the net present 

value and minimizes the holding cost of activities. A mathematical model is 
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verified by small sized problems whereas simulated annealing is used for various 

sizes of problems with different payment models. Results on different payment 

models with varying activity sizes, discount values, holding cost rate and number 

of payment times are compared at the end of the paper. They present the results 

that with the increase in discount rate and holding cost rate, the net present value 

decreases and with the increase of period size, the objective function value 

increases for progress payment model.  

Najafi and Azimi (2009) study resource investment project scheduling problem 

with discounted cash flows with the extension of tardiness penalties. They include 

the delay penalty to the problem Najafi and Niaki (2005) study. A priority rule 

based heuristic is used to solve the problem and comparison between 

mathematical model and heuristic solutions are presented. 

Chen et al (2010) study on an ant colony optimization approach for multimode 

resource-constrained project scheduling problem with discounted cash flows. 

Their model maximizes the net present value of all cash flows including 

payments, expenses, and bonus-penalty. They include both renewable and 

nonrenewable resources in their model. They assume that expenses of the 

contractor are at event completions, payment are at event occurrences and the 

number of payments are given. Activity on Arc network precedence is converted 

into a construction graph (MoN graph) to make the data more compatible with the 

solution approach. They compare their ant colony optimization approach with 

genetic algorithm, simulated annealing and tabu search solutions, and find that 

their ant colony optimization approach outperforms the other approaches.  

Ritwick and Paul (2013) use the features of particle swarm optimization to solve 

resource constrained project scheduling problem with discounted cash flows. 

They assume that cash flows are deterministic but uniformly distributed between a 

negative and positive value, thus their problem does not include a payment model. 
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They claim that although for networks more than 40 activities the algorithm does 

not find an optimum solution in reasonable times, its near optimum solutions are 

satisfying considering the running time. 

3.2 Unconstrained Problems 

The studies by Russell (1970), Grinold (1972), Erenguc et al. (1993), De Reyck 

and Herrolen (1996), Kazaz and Sepil (1996), Dayanand and Padman (1997), He 

and Xu (2006), Vanhoucke et al. (2003), He et al. (2009) consider project 

scheduling problems without resource constraints.  

We review the studies on unconstrained problems in chronological order. 

Russell (1970) introduces the problem of maximizing the net present value of the 

cash flows in a project. He uses an event based model that both considers positive 

and negative cash flows during the project. He presents a mathematical model and 

offers a modified Ford and Fulkerson (1961)’s out of kilter algorithm as finding 

the costs of flows through the arcs for large size network problems. 

Grinold (1972) transforms the nonlinear program of Russell into a linear program 

and suggests an efficient procedure for its solution. He studies the fixed deadline 

problem and the trade-off curve problem for the net present value and project 

duration criteria. 

Erenguc et al. (1993) consider the project scheduling problem with time/cost 

trade-offs. They assume that the payments are received at the completions of the 

defined events.  They decide on the activity modes and the project schedule so as 

to maximize positive and negative cash flows. Their algorithm uses the 

generalized Benders decomposition idea and their computational results reveal 

that the instances with up to 64 activities can be solved. 
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De Reyck and Herrolen (1996) consider the unconstrained maximum net present 

value project scheduling problem and propose a Branch and Bound algorithm that 

uses arbitrary minimal and maximal time lags between the start and completion of 

the activities. They do not consider any payment model and assume that cash flow 

of activities are either positive or negative. Their solution procedure solves the 

problems up to 100 activities in reasonable times and they offer the procedure for 

the calculation of upper bounds for the resource constrained npv problem, which 

they will actually use it in another paper. 

Kazaz and Sepil (1996) and Vanhoucke et al. (2003) consider a project scheduling 

problem with discounted cash flows and progress payments. Their objective is to 

maximize the net present value of the cash flows. They assume the receipts are 

made at the end of the specified time periods to cover the expenses made during 

the period. The expenses are assumed to be proportional with the amount of work 

performed. Kazaz and Sepil (1996) give a mixed integer linear programming 

formulation of the problem and report favorable results on its solution times.  

Vanhoucke et al. (2003) transform the problem into a weighted earliness–

tardiness project scheduling problem and propose a branch-and-bound algorithm 

for its optimal solution.  Their computational results reveal that the branch-and-

bound algorithm is capable of solving problems with upto 50 activities. 

 

Dayanand and Padman (1997) examine several project payment scheduling 

models.  The models find the amount and time of the progress payment and they 

are basically of two types: event based or activity based. All models aim to 

maximize net present worth of all cash flows and they differ by their problem 

representations and assumptions. They mention the models are mixed integer 

linear or nonlinear programs and hence they are intractable for large projects. 

They demonstrate the solutions of the models on an example problem instance. 



 

 

26 

 

Multimode project payment scheduling problem with bonus-penalty structure is 

studied by He and Xu (2006). In their problem, timing of the events and 

payments, amount of the payments and activity modes are decision variables 

whereas the number of payments are predefined. The contractor optimization 

model and the client optimization models are presented. Two modules simulated 

annealing is used to solve the problems and effects of the bonus-penalty structures 

on the flexibility of the project payment schedules are discussed.  

He et al. (2009) consider multimode project scheduling problem for a fixed 

number of payments subject to a specific deadline. The problem is to select the 

activity modes and schedule the activities so as to maximize the net present value 

of the contractor. They consider the four payment model which are defined as 

lump-sum, payments at event occurrences, equal time intervals and progress 

payments. Simulated annealing, tabu search, multi-start iterative improvement and 

random sampling solution methods are compared with each other for different 

values of number of payments, interest rate and profit margin of the contractor. 

Simulated annealing is found to be the best especially for large sized problem 

instances. 

The most closely studies to ours are due to Kazaz and Sepil (1996) and 

Vanhoucke et al. (2003). Both studies assume that the activity costs are incurred 

at the end of the payment periods up to the progress of the activity. We assume all 

cost incurred by the activity is charged when the activity is complete.  
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CHAPTER 4 

 

 

SOLUTION APPROACH 

 

 

 

Recall that our problem is strongly NP-hard. To find exact solutions, once could 

use the mixed integer non-linear problem introduced in Chapter 2. However, 

attributing the complexity of the problem, our model is likely to full into 

computation troubles. An alternative to the model is to use an implicit 

enumeration technique like a branch and bound algorithm. In this study, we 

present a branch and bound algorithm with the hope of solving the problem in 

reasonable times. In the following section, properties of an optimal solution that 

forms our branching scheme, the method of finding the upper and lower bounds 

and branching scheme are discussed in detail. 

4.1 Properties of an Optimal Solution 

From the contractor view point, if the activities that will be finished in a period 

are definite, then it is more profitable for contractor to finish the activities as late 

as possible in the defined period. Since the contractor receives the payment at the 

end of period, and expenses incur whenever an activity finishes, the contractor 

will reduce the net present value of the expenses by scheduling the activities as 

late as possible. 

Theorem 2 states this result formally. To state Theorem 2, following notation is 

needed: 

Ap=end of period p 
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Ap-Ap-1=length of period p 

Sp = set of activities that complete in period p 

Theorem 2: In an optimal solution, the tasks in Sp are sequenced by late start 

schedule with deadline value of Ap. 

Proof: Recall that the first part of the objective function is: 

∑    (     )    
 
    ∑ ∑         (      )    

 
                       (4.1) 

(4.1) Is irrelevant of optimization given set Sps. 

The second part of the objective function is  

∑           
                                            

(4.2) is minimized when Tis are maximized and Tis are maximized when LSS is 

used. 

As (4.1) is irrelevant of optimization and (4.2) is minimized by LSS, the overall 

objective ((4.1)-(4.2)) is maximized by LSS.   

We define our branching scheme by using the result of Theorem 1. 

4.2 Upper Bound 

In this section, we present two upper bounding procedures, which are proposed to 

enhance the efficiency of our branch and bound algorithm. 

We use the following notation to state our upper bounds:  
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= Period finishing time for activity i if ESS is used 

  
 
= Period finishing time for activity i for the optimal solution 

    
= Completion time of activity i such that 

 If     
<    

 then     
=     

 

 If     
     

 then activity i definitely finishes within period    , and 

    
 is the latest finishing time between the activities those also definitely finish 

within period    . 

    
= Completion time of activity i when LSS is used 

  
 = Completion time of activity i for the optimal solution 

UB1 = ∑         (       
)  ∑          

         
  

    

UB2     = ∑         (       
)  ∑           

         
  

    

  = optimal objective function value 

   = ∑               
   ∑          

       
   

    

Theorem 3 and Theorem 4 state the validity of the upper bounds.  

Theorem 3: UB1 is a valid upper bound on   . 

Proof: As     
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∑         (       
)  ∑               

   
   

 
        

 (4.3) 

 ∑       (       
) 

      ∑             
   

      

 (4.4) 

As     
    

Add (4.3) and (4.4) and get (4.5). 

UB1 = ∑         (       
)  ∑           

         
  

       

 ∑               
   ∑           

       
    

        (4.5) 

Theorem 4: UB2 is a valid upper bound on   . 

Proof: Let, 

xi =     
     

 

yi =   
     

  

There are two possibilities for     
 and   

 
:   

1)     
=   

 
 then     

   
  (by the definition of     

); therefore,  

xi=     
     

   
     

 = yi 

2)     
    

 
 then     

     
 (by the definition of     

); therefore,  

xi=    
     

=0     
     

  = yi 

Thus, xi   yi 

Letting     
=     

  xi, UB2 can be rewritten as  

UB2= ∑         (       
)  ∑           

          
      

 
    



 

 

31 

 

= ∑         (       
)  ∑                

             
 
   

 
    

= ∑                      (       
) 

                (4.6) 

Letting   
 =  

 
- yi,    can be rewritten as  

  =∑               
   ∑           

        
       

 
    

   = ∑               
   ∑           

       
            

 
    

   =∑           
       

                             

(4.7) 

xi ≤ yi follows 

exp( . xi) ≤  exp( . yi)  ( - exp( . xi))   ( - exp( . yi))        (4.8) 

(4.8) follows 

∑         (       
)  ∑           

         
   

     

   ∑               
   ∑          

       
   

          (4.9) 

As     
    

 
     (       

)            
    

From (4.6), (4.7), and (4.9), one can write  

UB2     

Theorem 5 states UB2 is more powerful than UB1, i.e., UB1≥UB2. 

Theorem 5: UB2 dominates UB1. 
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Proof:  ∑       (       
) 

     ∑           
         

             

 (4.10) 

As     
     

 

Add ∑         (       
) 

    to both sides of (4.10) and get (4.11). 

    ∑    (     (       
)     (       

))   
        

        ∑         (       
)  ∑           

         
     

 
     

 (4.11) 

(4.11) is equivalent to 

UB1≥UB2   

We illustrate the UB1 and UB2 computations in Table 7 via the following example 

problem. 
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Recall that the effort spent to find UB2 is similar to that of UB1. Theorem 5 states 

that UB2 has higher quality. Hence, we use UB2 in our branch and bound 

algorithm. We hereafter refer to UB2 simply as UB. 

 

4.3 Lower Bound 

 

We use the following procedure to find an initial feasible solution to our branch 

and bound algorithm. The procedure considers two phases.  

Phase 1. Construction 

Find the period in which activity i could complete earliest, i.e., 

           
     

 

Sp = set of activities that complete in period p, i.e. (         

Starting from period P, schedule the jobs in Sp, according to the late start 

schedule. We call the schedule as Latest Start in Earliest Period (LS-EP) schedule. 

Phase 2. Improvement 

The schedule obtained from Construction phase is fed to the improvement phase. 

We start from period P-1 and look for the chance of moving activities which are 

initially scheduled to the current period to the next period. We stop when the first 

period is reached. 

A move is defined as shifting task from period r to period r+1. Best move is the 

one that improves the objective function value by the maximum amount. The 

resulting solution is worse when the maximum amount is negative. 
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We employ following two strategies to improve the schedule found in the 

construction phase: 

Strategy 1. 

Perform two iterations for each period. In each iteration, select the best move. The 

best move in an iteration may worsen the objective function value but in later 

iterations the move may create some space to improve the objective function 

value. 

Strategy 2. 

Perform the moves for each period till the objective function value worsens as a 

second time.  

We apply both strategies to our initial solution and select the strategy that leads 

largest objective function value. We let the resulting solution be LBH of the 

problem. 

4.4 Branching Scheme 

 

We start scheduling from the last period and stop when the first period is reached. 

At level 0, we define on the last period’s schedule. At the beginning of each 

period, we first fix a set of activities whose earliest completion times are in the 

current period p, i.e.     
   (        . After fixing those activities, we open two 

types of nodes. 

Type 1 nodes 

Close period P and proceed to period P-1 

 

Type 2 nodes 

Add an eligible activity to period P 
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We say an activity is eligible for assignment if all of its successors are already 

scheduled.  

We index the activities such that i<j implies that activity i is not successor of 

activity j. To avoid the duplication of the solutions, while adding an activity to the 

current period, we only consider the activities having lower indices. In other 

words, if a tree has two nodes that has activity indices of j and j-1 which are 

branched from the same node, the node that has activity j-1 implies activity j is 

going to be scheduled in an earlier period.  

At level r, we consider period P-r+1 and fix the activities whose earliest 

completion times are in (        . Note that eligible activities are scheduled to 

the periods larger than P-r with the preceding nodes. After fixing for each 

remaining activity, for the node that considers the addition of activity i to partial 

schedule S, we calculate an upper bound by extending UB to the partial schedule 

as follows. 

Let, 

S′=S   {i} 

Z(S′) = Net Present Worth of activities in S′ 

NS: set of unscheduled activities 

UB(S′   NS) = Z(S′) + UB(NS) 

Earliest periods of activities do not change; however, their latest completion times 

may change as some activities in S might have been scheduled to earlier periods 

that have not been reached yet. 

UB(NS) = ∑         (       
)     ∑       (       

)    
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We terminate further branching from the node when  

UB(S′   NS) < LBBEST 

where LBBEST is the current best known feasible solution. We continue branching 

with the highest UB of the nodes when all possible activities are branched by the 

ancestor node. 

We use depth first strategy, i.e., always go to the depth of the tree and backtrack 

only when there is no feasible or promising node to explore further. We select this 

strategy due to its relatively low memory requirements.  

We stop when we backtrack to level 0. We start with LBBEST= LBH and update 

LBBEST whenever a complete solution with a better objective function value is 

found. 

We illustrate our branching scheme in Figure 5 whose network is depicted in 

Figure 2.  
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Figure 5 - Branch and Bound Tree Structure 
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The information conveyed on each node is reported in Table 8.  

Table 8 – The Parameters of Nodes in the Branch and Bound Tree 

Node 

ID 

Node Information Scheduling 

Period 

UB Branching 

0 Act. 8,10 are definitely in period 

3 LBH=1669 

3 1855 Branched 

1 Act. 8,9,10 are in period 3 3 1847 
Branched as 

UB1>UB2 

UB1>UB3 

2 Act. 7,8,10 are in period 3, 9 is 

not in period 3 

3 1676  

3 Only act. 8,10 are in period 3 3 1726  

4 Act. 7,8,9,10 are in period 3 3 1797 Branched as 

UB4>UB5 

5 Only act. 8,9,10 are in period 3 3 1718  

6 Act. 6,7,8,9,10 are in period 3 3 1676  

7 Act. 5,7,8,9,10 are in period 3, 6 

is not in period 3 

3 1663 Fathomed as 

UB7>LBH 

8 Only act.  7,8,9,10 are in period 3 3 1783 
Branched as 

UB8>UB6 

UB8>UB7 

UB4>UB5 

9 Act. 7,8,9,10 are in period 3, 6 is 

definitely in period 2 

2 1783 Branched as 

single node 

 
10 

Act. 7,8,9,10 are in period 3, 5,6 

are in period 2 
2 1759 

Branched as 

UB10>UB11 

UB10>UB12 

11 Act. 7,8,9,10 are in period 3, 4,6 

are in period 2, 5 is not in period 

2 

2 1633  
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Table 8 – The Parameters of Nodes in the Branch and Bound Tree (Continued) 

Node 

ID 

Node Information Scheduling 

Period 

UB Branching 

12 Act. 7,8,9,10 are in period 3, 

only 6 is in period 2 

2 1684  

13 Act. 7,8,9,10 are in period 3, 

4,5,6 are in period 2 

2 1708  

14 Act. 7,8,9,10 are in period 3, 

3,5,6 are in period 2, 4 is not in 

period 2 

2 1618  

15 
Act. 7,8,9,10 are in period 3, 

only 5,6 are in period 2 
2 1750 

Branched as 

UB15>UB13 

UB15>UB14 

UB15>UB13 

16 
Act. 7,8,9,10 are in period 3, 5,6 

are in period 2, 1,2,3,4 are in 

period 1, LB is updated as 1750 

1 1750 Terminal node 

 

As it can be seen from Figure 5, node 8 and node 15 are Type 1 nodes whereas 

other nodes are Type 2.  

After the tree has a complete schedule at node 16, lower bound is updated as 

1749.9. The nodes are eliminated in order nodes 13,14,..,0 as all associated upper 

bounds are no more than the best lower bound value. As node 0 is also fathomed, 

the lower bound schedule found at node 16 is optimal. 

Detailed calculation of ESS and LSS of the selected nodes 0, 8 and 16 are given in 

Appendix A. 
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CHAPTER 5 

 

 

COMPUTATIONAL EXPERIMENT 

 

 

 

In this chapter, we first discuss the data generation scheme. Next, we give the 

results of our preliminary experiment. Finally, we discuss the results of our main 

experiment. 

5.1 Data Generation 

 

This part explains how the problems are generated, which parameters and 

distributions are used and in which configurations of the problems are solved. The 

following parameters are to be generated for each instance: network complexity, 

duration of activities, cost of activities, discount rate, profit margin, deadline 

multiplier factor and number of periods. 

To generate networks and activity durations, we use the generator called ProGen  

developed by Kolisch et al. (1992) via ignoring its resource and mode options. 

Each network has a super-source and a super-sink node that has zero duration and 

cost. Super-source node does not have a predecessor and it builds the network by 

its successors. Oppositely, super-sink node does not have a successor and one can 

reach all activities by going back from sink node. Excluding super-source and 

super-sink node from network, the networks with 35, 40, 45, 50 and 55 activities 

are created. For 30 activities of network, PSPLIB – A project Scheduling Problem 

Library by Kolisch and Sprecher (1996) is used. We create 10 instances of each 

network. 
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Kolisch et al. (1992) define the network complexity used in ProGen as the average 

number of non-redundant arcs per node including the super-source and super-sink 

node. For the network complexity 1.5 for a 35 activities has 56 successors 

likewise for a 50 activities network has 78 successors. In our problems, we use the 

network complexity as 1.5 and 2. 

Using PROGEN, we generate the durations of the activities from discrete uniform 

distribution in [1, 10] and [1, 20]. We use two sets of cost generation methods. In 

the first set, the activity times and costs are proportional. The cost of an activity is 

set as 100 times its duration. The second set, the costs are taken from a discrete 

uniform distribution in [1, 20] multiplying it with 100. 

The discount rate is set to 5% and 10% as yearly compatible to today’s real-world 

settings. Since discount rate is on yearly basis, the duration is assumed as monthly 

basis. In other words, for unit of time, discount rate 10% is assumed to be 0.10/12 

that is 0.0833, per unit time. 

Profit margin is set to 1.2 and 1.3, i.e., at the end of a period, for the profit margin 

1.2 the cost of all activities that have finished within the period will be received 

with a 20% profit without taking the time value of money into account. 

We set the deadline value to M*minimum project completion time. In our 

experiments, we try M=1, 1.1, and 1.2, for tight, medium and loose deadline 

environments, respectively. 

We use 5,6,7 intervals from 30 instances to 55 instances. We assume the interval 

lengths are equally-sized. 
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5.2 Preliminary Experiments 

The aim of our preliminary experiment is to define the discount rate, profit margin 

and network complexity to be used in our main experiment. Furthermore, we test 

the effects of duration and cost distributions. To see the effects of our bounds, the 

branch and bound algorithm is run without UB and without LB and the respective 

results are also discussed.  

In the following analysis of profit margin, discount rate, network complexity, cost 

and duration, tables report the average and maximum CPU seconds and total 

nodes of branch and bound algorithm opened for each problem combination. In 

the following tables, M shows the deadline multiplier. For each problem 

combination, 10 problems are solved. 

Unless it is stated differently, the problems use discount rate as 0.10 per year, 

profit margin rate as 1.2, network complexity as 1.5. The duration of the activities 

are generated as discrete uniform distribution in [1, 10] and cost of the activities 

are set as 100 times of the duration of activities. 

Profit Margin 

To see the effect of profit margin, we try two values: 1.2 and 1.3. 80 problems are 

solved in different configurations and their results are presented in Table 9. 

Table 9 – The Effect of the Profit Margin 

    

Profit Margin 

    

1.2 1.3 

N P M   CPU Nodes CPU Nodes 

30 5 1.1 
Average 0.04 4953 0.03 3097 

Max 0.11 13855 0.09 9106 
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Table 9 – The Effect of the Profit Margin (Continued) 

    

Profit Margin 

    

1.2 1.3 

N P M   CPU Nodes CPU Nodes 

30 5 1.2 
Average 0.46 37582 0.29 23745 

Max 1.66 138031 0.97 81874 

30 6 1.2 
Average 0.39 52674 0.17 23214 

Max 1.03 138933 0.47 61205 

35 6 1.1 
Average 0.62 59041 0.52 51232 

Max 2.11 180622 2.26 204097 

35 6 1.2 
Average 24.38 1876164 11.17 1011075 

Max 157.89 12082629 79.51 7607042 

40 5 1.1 
Average 7.61 654733 2.95 270934 

Max 45.65 3933912 11.59 1094943 

40 6 1.1 
Average 9.28 697400 4.07 357762 

Max 32.20 2660936 11.29 1212896 

40 5 1.2 
Average 55.28 3580440 17.61 1344469 

Max 267.06 16256733 79.64 6860284 

 

As can be observed from Table 9, the profit margin factor has a significant effect 

on the problem difficulty. The complexity of the solutions increases with the 

decrease in the profit margin values. This is due to the fact that as profit margin 

decreases, the payments decrease and approach to the cost of activities which 

makes the objective function value less sensitive to the scheduling times. This 

results into trying many schedules to find the optimal solution and makes the 

problem hard to solve. Note from the table that when profit margin is 1.2, for 

N=40, P=5 and M=1.2 the average and maximum CPU times are 55.28 and 

267.06 seconds respectively, whereas they are 17.61 and 79.64 seconds when the 

profit margin is 1.3. The average and maximum number of nodes for profit 

margin 1.2 are 3580440 and 16256733 respectively while they are 1344469 and 

6860284 for profit margin 1.3. In our main experiments, we select the harder 

instances, i.e., use the profit margin of 1.2. 
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Discount rate 

To see the effect of the discount rates, two values of α: 0.05 and 0.10 yearly are 

selected. 80 problems are solved and the results are presented in the table below.  

Table 10 – The Effect of the Discount Rate 

    

DISCOUNT RATE 

    

0.05 0.10 

N P M   CPU Nodes CPU Nodes 

30 5 1.1 
Average 0.03 3827 0.04 4953 

Max 0.08 10140 0.11 13855 

30 5 1.2 
Average 0.34 27032 0.46 37582 

Max 1.22 100643 1.66 138031 

30 6 1.2 
Average 0.30 39424 0.39 52674 

Max 0.86 108428 1.03 138933 

35 6 1.1 
Average 0.46 43723 0.62 59041 

Max 1.54 136467 2.11 180622 

35 6 1.2 
Average 12.91 1034866 24.38 1876164 

Max 81.96 6889839 157.89 12082629 

40 5 1.1 
Average 4.19 379398 7.61 654733 

Max 23.62 2192227 45.65 3933912 

40 6 1.1 
Average 5.02 453578 9.28 697400 

Max 18.81 1997853 32.20 2660936 

40 5 1.2 
Average 26.66 1821443 55.28 3580440 

Max 115.47 7629199 267.06 16256733 

 

Table 10 reports the average and maximum solution times of the branch and 

bound algorithm and the number of nodes for 10 problems. Note from the table 

that when discount factor is 0.05, N=40, P=5 and M=1.2, the average and 

maximum CPU times are 26.66 and 115.47 seconds respectively whereas they are 

55.28 and 267.06 seconds when the discount rate is 0.10. The average and 

maximum number of nodes for discount rate 0.05 are 1821443 and 7629199 

respectively, while they are 3580440 and 16256733 for discount rate 0.10. This is 
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due to the fact that as discount rate increases, time value of money increases 

which results into the increase in the variance of objective function value for 

different schedules and this makes harder to find a solution. Therefore, according 

to the Table 10, we can say that as the discount rate increases, the complexity of 

the problem increases with the CPU times and total node number. 

Network Complexity 

Network complexity is another important parameter for defining the network. We 

tested the network complexity 1.5 and 2 with activity sizes of 40, 45, and 50, 

period number of 5 and 6 and deadline multiplier factor of 1 and 1.1 for 70 

problem instances and report the results in the following table.  

Table 11 - The Effect of the Network Complexity 

    

Network Complexity 

    

1.5 2 

N P M   CPU Nodes CPU Nodes 

40 6 1 
Average 0.26 28495 0.05 4933 

Max 1.08 116463 0.11 9533 

40 5 1.1 
Average 7.61 654733 0.88 90095 

Max 45.65 3933912 1.87 186670 

40 6 1.1 
Average 9.28 697400 3.81 311761 

Max 32.20 2660936 9.95 848460 

45 6 1 
Average 0.80 66955 0.22 22166 

Max 3.29 303130 0.34 36426 

45 5 1.1 
Average 42.45 2633124 31.79 2276599 

Max 308.94 19393268 90.26 6585136 

45 6 1.1 
Average 119.11 7670742 95.27 5704567 

Max 323.39 21326518 219.73 13586028 

50 6 1 
Average 11.96 665025 8.47 722426 

Max 34.41 1998490 22.78 2080515 

 

As can be seen from Table 11, as network complexity increases the average and 

maximum CPU seconds and number of nodes decrease. As the network 

complexity increases the number of predecessors increase in the network which in 
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turn decrease the time buffer of activities as the activities can be scheduled in 

fewer periods. This results in less reduced choices, hence easier problems. In our 

experiments we select the harder combination, hence set the network complexity 

to 1.5. For instance, for network complexity 1.5 and n=45, P=5 and M=1.1 the 

average and maximum CPU times are 42.45 and 308.94 seconds and the average 

whereas they are 31.79 and 90.26 seconds when the network complexity is 2 for 

the same problem. The average and maximum number of nodes also decrease 

from 2633124 to 2276599 nodes and from 19393268 to 6585136 nodes, when the 

network complexity increase from 1.5 to 2.  

Cost 

We consider the following two cost distributions in our experiments.  

1. Discrete uniform distribution in [1,20] multiplying with 100.  

2. The cost of activities are proportional to the duration, thus, cost of 

activities are calculated with multiplying the duration of activity with 100.  

Note that the durations of the activities are generated with using the discrete 

uniform distribution in [1,10]. 80 problems are solved for each cost distribution 

and their results are presented in Table 12. 

Table 12 – The Effect of the Cost Distribution 

    

Cost Distribution 

    

Cost=DISC[1,20]*100 Cost = Duration *100 

N P M   CPU Nodes CPU Nodes 

35 6 1.1 Average 0.62 61739 0.62 59041 

      Max 1.26 151187 2.11 180622 

35 6 1.2 Average 9.04 722987 24.38 1876164 

      Max 32.00 2643025 157.89 12082629 

40 5 1.1 
Average 40.50 3192043 7.61 654733 

Max 381.20 30398869 45.65 3933912 

40 6 1.1 
Average 313.65 21466377 9.28 697400 

Max 2981.40 204847218 32.20 2660936 
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Table 12 – The Effec of the Cost Distribution (Continued) 

    

Cost Distribution 

    

Cost=DISC[1,20]*100 Cost = Duration *100 

N P M   CPU Nodes CPU Nodes 

40 5 1.2 
Average 199.64 13807362 55.28 3580440 

Max 1714.98 120770870 267.06 16256733 

45 5 1.1 
Average 12.97 1000845 42.45 2633124 

Max 41.22 3276697 308.94 19393268 

45 6 1.1 
Average 26.90 1841934 119.11 7670742 

Max 97.42 6331793 323.39 21326518 

45 6 1.2 
Average 377.83 20855695 836.01 50053690 

Max 1255.62 58696652 3600 (1) 188441428 

 

 

Table 12 reveals that for some combinations, the problems that have second type 

of costs more difficult, i.e. n=45, P=6, M=1.2; n=45, P=6, M=1.1 etc., and for 

some combinations the reverse holds. For example, when N=40, P=6, M=1.1, the 

maximum CPU seconds for the first and second types of cost distributions are 

2981.40 and 32.30 seconds, respectively. As we have not seen the relative 

difficulty of one distribution over the other, we arbitrarily select the cost of 

activities to the proportional to the duration. 

Duration 

We try the following two duration distributions.  

1. Discrete uniform distribution in [1, 10]  

2. Discrete uniform distribution in [1, 20].  

Table 13 reports CPU times and number of nodes statistics. 
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Table 13 - CPU Seconds and Nodes Analysis of Duration Distribution 

    

Duration 

    

Duration Between 

[1,10] Duration Between [1,20] 

N P M   CPU Nodes CPU Nodes 

35 6 1.1 
Average 0.62 59041 5.34 460695 

Max 2.11 180622 23.68 1995346 

35 6 1.2 
Average 24.38 1876164 83.67 6595846 

Max 157.89 12082629 477.05 39273815 

40 5 1.1 
Average 7.61 654733 39.29 3169539 

Max 45.65 3933912 252.38 21573405 

40 5 1.2 
Average 9.28 697400 335.16 19634059 

Max 32.20 2660936 1277.90 75794148 

40 6 1.1 
Average 55.28 3580440 368.76 32325100 

Max 267.06 16256733 3600.00 (1) 314877398 

45 5 1.1 
Average 42.45 2633124 86.83 5224351 

Max 308.94 19393268 263.74 15717657 

45 6 1.1 
Average 119.11 7670742 298.85 18563551 

Max 323.39 21326518 1851.89 118668197 

45 6 1.2 
Average 836.01 50053690 2026.45 106231744 

Max 3600 (1) 188441428 3600 (5) 232629973 

 

As can be seen from Table 13, when the durations of activities are generated from 

a larger interval, the variance of the problem complexity increases. Although for 

some of the instances with duration between [1, 20] the problem could not be 

solved in an hour, for some instances, the problem is solved very fast. For 

example, when n=40, P=6, M=1.1 the average of the 10 instances of problem is 

368.76 seconds and the maximum CPU is 3600 seconds. If we exclude a single 

instance which could not be finished in an hour, then we can see that the average 

CPU of 9 instances is 9.73 seconds with a maximum of 39.39 seconds. 

Bounding Mechanisms 

We look for the effects of the upper bound and initial lower bounds on the branch 

and bound performance. For four selected combinations of problems, we compare 

the performance of the branch and bound algorithm that uses both initial lower 
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and upper bounds with those that do not the respective bounds. When no initial 

lower bound is used then, there is no lower bound value until the branch and 

bound algorithm finds the first complete solution. When there is no upper bound 

in the branch and bound algorithm, it implies all nodes in the tree are evaluated by 

their objective function values. 

The lower and upper bound performances are assessed at the root node by their 

difference from the optimal solutions as a ratio of the optimal solution.  

Lower Bound Deviation % (LBD) =     
                                    

                
 

Upper Bound Deviation % (UBD) =     
                                    

                
 

In Table 14, the CPU seconds and number of nodes of branch and bound 

algorithm, without using lower bound and without using upper bound are shown. 

 

Table 14 – The Upper and Lower Bound CPU Performances in a BAB 

N P M   
BAB BAB without LB BAB without UB 

CPU Nodes CPU Nodes CPU Nodes 

30 5 1 
Average 0.02 844 0.01 974 268.17 28498128 

Max 0.06 2495 0.03 2495 925.20 97599505 

35 5 1 
Average 0.04 4121 0.06 4320 426.51 31522855 

Max 0.09 14879 0.19 14931 3194.53 248509551 

35 5 1.1 
Average 2.27 239415 3.46 293064 2267.76 195258186 

Max 18.36 1916052 22.81 1919082 3600(4) 319566329 

40 6 1.2 
Average 82.86 5774048 94.38 5815995 3600.00 304604987 

Max 411.97 30842679 456.12 30874349 3600(10) 351965461 
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Table 15 – The Deviations of the Upper and Lower Bound 

N P M 
UBD % LBD % 

Average Max Average Max 

30 5 1 2.0 3.9 0.3 0.9 

35 5 1 3.5 5.2 0.4 1.6 

35 5 1.1 8.4 13.7 0.7 1.6 

40 6 1.2 6.7 10.0 1.7 3.4 
 

Note from Table 14 that the effects of the upper bounds are more pronounced than 

the effect of the initial lower bound. The upper bounds are found so powerful, for 

instance, the third configuration of the problem could be solved in average 2.27 

seconds with using upper and lower bounds whereas it takes approximately 1000 

times longer when no upper bound is used. For the same problem combination, it 

takes approximately 1.5 times longer when no initial lower bound is used. 

As the values are very close to the optimal objective function values, they are 

powerful estimators that give a conscious walk towards the optimal solution. 

We are employing powerful upper bounds in a depth first strategy. This follows, 

the early complete solutions reached are close to the optimal solutions. Early 

powerful complete solutions lead to updating initial lower bound, hence reduces 

the need for a powerful initial lower bound. Note from our tables that, the initial 

lower bounds are not as effective as upper bounds. Table 15 shows that the initial 

lower bound is 0.7% close to the optimal solution for the third problem 

combination, however, the upper bound is 8.4% close to the optimal solution. 

We can conclude that the effort spent to compute the bounds is justified by the 

reductions in the solution space. Hence, based on the observations of the upper 

bound and lower bound effects, we perform our main experiments using the 

bounds. 
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For our main experiment, we continue our runs with the most difficult problem 

combinations for profit margin, discount factor, and network complexity. Recall 

that the profit margin 0.20, discount factor 0.10 and network complexity 1.5, the 

problem complexity increases compared to profit margin 1.30, discount factor 

0.05 and network complexity 2, respectively.  

Based on the results of our preliminary experiments, we select the duration of 

activities from the discrete uniform distribution in [1, 10] and cost of activities as 

proportional to the duration of activities. 

5.3 Main Experiments 

 

We perform the main experiments according to the parameters given in Table 16, 

below. For each of combination, 10 problem instances are solved. We present the 

results by the deadline multiplier factors.  

Table 16 – Parameters Used in the Main Experiment 

Parameter Value 

Network size 30, 35, 40, 45, 50, 55 

Number of periods 5, 6, 7 

Duration Discrete uniform distribution in [1, 10] 

Cost Duration * 100 

Network Complexity 1.5 

Discount Rate 10% yearly 

Profit Margin 1.2 

Deadline multiplier factor 1, 1.1, 1.2 

 

In our runs, we used a computer that has 8 GB RAM and Intel Core 3.4 GHz i7 

processor. Branch and bound algorithm is written in C++ language using 
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Microsoft Visual Studio 2012. The nonlinear mathematical model is solved in 

GAMS with BARON solver. 

We put a CPU time limit of 1 hour to both branch and bound algorithm and 

mathematical model. For any problem combination, if there are more than 2 out of 

10 problem instances exceed the time limit, we do not try to run the models for 

larger networks and larger periods. Number of problem instances that exceeds the 

time limit is given in parenthesis for the branch and bound algorithm in the BAB 

CPU seconds and for the mathematical model in the GAMS CPU seconds 

column. 

In one hour, we could solve 450 problems by BAB and 370 problems by GAMS 

for our main experiment. 

We first report on the lower and upper bound performances. 

Table 17 – Lower Bound Performances 

N P 

M=1 M=1.1 M=1.2 

LBD % LBD % LBD % 

Average Max Average Max Average Max 

30 

5 0.3 (4)* 0.9 0.4 (1) 0.8 1.4 4.2 

6 0.5 (1) 1.3 0.6 (1) 0.9 0.8 1.4 

7 0.8 1.6 0.8 1.8 1.0 (1) 3.1 

35 

5 0.4 (4) 1.6 0.7 1.6 0.8 2.3 

6 0.7 (1) 2.6 1.3 2.4 1.9 4.3 

7 0.6 (1) 1.4 1.2 2.4 1.9 4.5 

40 

5 0.7 2.6 0.8 2.2 0.8 2.2 

6 0.6 1 1.8 3.5 1.7 3.4 

7 0.5 1.1 1.2 4.1 1.7 5.5 

45 

5 0.6 1.6 1.2 3.2 0.9 3.1 

6 0.5 1.1 1.1 2.8 1.3 3 

7 0.7 1.9 0.9 2.8 1.6 2.8 
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Table 17 - Lower Bound Performances (Continued) 

N P 

M=1 M=1.1 M=1.2 

LBD % LBD % LBD % 

Average Max Average Max Average Max 

50 

5 0.6 1.7 1.3 3.2 2.1 4.2 

6 0.7 1.7 1 2.9 - - 

7 0.7 1.7 0.8 2 - - 

55 
5 0.8 1.8 - - - - 

6 1 2.5 - - - - 
 

* The number in the parenthesis gives the number of times the bound gives the 

optimal solution. 

We observe from Table 17 that, the lower bounds work consistently well over all 

problem set. The average deviations are all below 1% for M=1 and 1.5 and 2% for 

M=1.1 and 1.2 with single exceptions of 1.8 and 2.1% respectively. We also 

observe the maximum deviations are below 2.6%, 4.1% and 5.5% for M=1, 1.1 

and 1.2, respectively. The slightly better performances of the lower bound for 

lower M is that the slack values are smaller for small M, thereby there are less 

chances of playing with a given solution. Once you have more chances, the 

possibility of producing a good solution is lower. When M=1, our lower bounding 

procedure returns the optimal solution for 11 out of 170 solved instances. When 

M=1.1, two optimal solutions could be obtained, and M=1.2 only for a single 

instance, the optimal solution is reached.  As the number of activity sizes 

increases the lower bound deviation slightly increases. This is due to the fact that 

increase in the combination which results in the increase in the problem 

complexity. 
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Table 18 – Upper Bound Performances 

N P 

M=1 M=1.1 M=1.2 

UBD % UBD % UBD % 

Average Max Average Max Average Max 

30 

5 2.00 3.90 3.60 5.60 5.30 7.50 

6 1.80 2.50 3.00 5.10 3.60 4.50 

7 1.30 1.90 3.00 3.90 3.30 4.20 

35 

5 3.50 5.20 8.40 13.70 11.20 15.20 

6 2.10 3.60 6.20 9.10 8.20 12.30 

7 1.60 2.50 4.90 7.80 5.60 7.40 

40 

5 2.80 4.60 7.10 11.00 8.80 14.50 

6 2.10 3.00 5.10 7.90 6.70 10.00 

7 1.50 2.80 4.00 5.80 4.50 6.90 

45 

5 3.60 6.10 8.50 11.40 11.10 14.20 

6 2.80 5.10 6.60 9.30 8.30 11.50 

7 2.20 2.90 5.10 7.30 6.60 8.60 

50 

5 3.90 4.60 9.30 13.90 12.70 17.00 

6 3.10 4.90 8.00 11.00 - - 

7 2.00 2.90 6.20 12.20 - - 

55 
5 5.60 7.20 - - - - 

6 4.30 6.70 - - - - 
 

From Table 18, we observe that the performances of the upper bounds are very 

satisfactory. The average deviations evaluated at the root node are almost below 

5%, 10% and 15% for M=1, 1.1 and 1.2, respectively. One should expect much 

better performances from the upper bounding procedures that would be used to 

evaluate the nodes that have partial information. As can be observed from Table 

18, the performance of the upper bounds deteriorates as N increases and M 

increases. However, these increases are not in exponential rate. For example, 

when for M=1 and P=6, N increases from 30 to 55, the deviations increases from 
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1.8% to 4.3%. So, one may observe linear increases in problem size parameters 

for our exponentially natured problem. 

As in lower bounds, the effect of the deadline values on the upper bound 

performances is significant. As the deadline values are higher, the slack times of 

the activities are higher. Higher slack times give more flexible assignments, and 

more choices decreases the possibility of finding a solution that is close to 

optimal. When N=50 and P=5, 6, and 7, the respective average deviations are 3.9, 

3.1 and 2.1% for M=1, 9.3, 8 and 6.2% for M=1.1, 12.7, 9.5 and 7.5%. Note from 

those figures that as the number of periods increases the performance of upper 

bound improves. Higher P value means more chances for payments, hence the 

earliest periods of the activities are earlier. This reduces the difference between 

activity completion time and payment periods, thereby improving the performance 

of our upper bounds that use those ideas. 

Note from all tables that lower and upper bounds work consistently well over all 

problem set. The maximum values are very close to the average values, that 

shows consistent behaviour of bounds over all problem instances. 

We now report on the performance of our branch and bound algorithm. We 

evaluate the performance by the solution times expressed in Central Processing 

Unit (CPU) seconds and the number of partial solutions, i.e., nodes. We also give 

the average and maximum solution times of our GAMS model. Tables 19, 20, and 

21 report on the average and maximum CPU times and the number of nodes for 

M=1, 1.1, and 1.2, respectively. 
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Table 19 – The Performances of the BAB and GAMS model, M=1 

N P 
BAB CPU seconds GAMS CPU seconds Nodes 

Average Max Average Max Average Max 

30 

5 0.02 0.06 2.03 7.26 844 2495 

6 0.03 0.07 4.21 18.8 3066 10107 

7 0.02 0.06 4.23 11.91 1702 5049 

35 

5 0.04 0.09 2.24 5.29 4121 14879 

6 0.03 0.13 2.1 5.25 3370 18067 

7 0.17 1.39 3.54 17.41 18760 165085 

40 

5 0.24 1.44 11.39 38.78 24141 154159 

6 0.26 1.08 5.88 13.34 28495 116463 

7 0.22 1.19 11.2 44.51 21869 108400 

45 

5 2.69 25.1 37.38 241.21 208874 1965421 

6 0.8 3.29 234.92 1667.84 66955 303130 

7 0.92 5.43 100.84 585.59 75416 473736 

50 

5 3.18 11.72 287.02 1584.23 194543 832767 

6 11.96 34.41 628.52 3600 (1) 665025 1998490 

7 11.28 47.03 722.76 3600 (1) 520479 2388009 

55 
5 258.61 1416.44 1489.91 3600 (3) 12931617 82941760 

6 1293.75 3600(3) - - 63119309 179327664 

 

 

Table 20 - The Performances of the BAB and GAMS model, M=1.1 

N P 
BAB CPU seconds GAMS CPU seconds Nodes 

Average Max Average Max Average Max 

30 

5 0.04 0.11 11.9 60.03 4953 13855 

6 0.1 0.26 18.05 72.51 11464 33445 

7 0.33 1.61 14.15 54.62 42107 216955 
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Table 20 - The Performances of the BAB and GAMS model, M=1.1 (Continued) 

N P 
BAB CPU seconds GAMS CPU seconds Nodes 

Average Max Average Max Average Max 

35 

5 2.27 18.36 68.42 237.86 239415 1916052 

6 0.62 2.11 51.78 236.51 59041 180622 

7 9.09 48.51 128.79 543.28 915984 4878913 

40 

5 7.61 45.65 86.49 260.74 654733 3933912 

6 9.28 32.2 252.12 1321.71 697400 2660936 

7 11.26 75.05 229.81 809.19 912521 6348481 

45 

5 42.45 308.94 999.13 3600(2) 2633124 19393268 

6 119.11 323.39 - - 7670742 21326518 

7 36 151.42 - - 2277277 10110373 

50 

5 487.13 2496.95 - - 19454785 93547006 

6 819.99 3600(1) - - 39658950 174604990 

7 1001.02 3600(2) - - 46591672 163661586 

 

 

Table 21 - The Performances of the BAB and GAMS model, M=1.2 

N P 
BAB CPU seconds GAMS CPU seconds Nodes 

Average Max Average Max Average Max 

30 

5 0.46 1.66 10.9 25.91 37582 138031 

6 0.39 1.03 15.14 44.71 52674 138933 

7 0.66 2.37 11.48 21.99 69205 245846 

35 

5 9.64 40.6 279.67 843.18 708085 2965672 

6 24.38 157.89 562.51 3102.25 1876164 12082629 

7 11.27 47.67 171.59 794.33 662745 2892718 

40 

5 55.28 267.06 546.59 1866 3580440 16256733 

6 82.86 411.97 807.85 
3600.00 

(1) 
5774048 30842679 

7 122.79 788.1 566.35 2397.19 8331816 49267279 
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Table 21 - The Performances of the BAB and GAMS model, M=1.2 (Continued) 

N P 
BAB CPU seconds GAMS CPU seconds Nodes 

Average Max Average Max Average Max 

45 

5 189.11 1004.6 2797.36 3600(6) 11290379 62954089 

6 836.01 3600(1) - - 50053690 188441428 

7 1033.79 3600(1) - - 61144541 254838453 

50 5 1834.04 3600(4) - - 94182551 247572280 

 

From Tables 19, 20, and 21, we observe the significant effect of the number of 

activities on the complexity of the solutions. When deadline multiplier is 1, the 

BAB could solve the instances up to 55 activities, when deadline multiplier is 1.1 

and 1.2, the instances with up to 50 activities could be solved. The maximum 

number of periods that could be solved by deadline values of 1.1 for 50 is 7, 

whereas a maximum of 5 periods could be solved for a deadline multiplier value 

of 1.2. Those results altogether lead us to conclude that the number of activities, 

number of periods and deadline values are affecting the performance. The higher 

values of all parameters, the higher is the complexity of the solutions. 

We observe that among those three parameters N is the most significant one that 

affects the performance. The CPU times by BAB are below 1 second when N=30 

for all values P and M. For M=1, when N becomes 55 for P=5 and 6, the average 

CPU times are 258.61 and 1293.75 seconds, respectively.  3 out of 10 problem 

could not be solved when P=6. For M=1.1 and 1.2 we observe that, 55 activity 

problems, on the other hand, could be solved in 1834 seconds on average for P=5, 

leaving 4 unsolved problems in 1 hour. When P=6, no 50 activity instance could 

be solved. For M=1.1, the average CPU times are 487.13, 819.99 and 1001.02 

seconds, for P=5, 6 and 7, respectively. When P=6 and 7, 1 and 2 problems 

respectively, could not be solved in 1 hour.  
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Note that as N increases, the size of the problem, hence the size of the branch and 

bound tree increases exponentially. Our branch and bound algorithm has dispelled 

this exponential effect, at some extent, as it uses very powerful upper bounds. As 

our upper bounds are good estimators of the optimal objective function value, 

they lead to good choices between nodes, thereby decreasing the size of the tree. 

Recall that our lower and bound performances are not much sensitive to the 

increases in the parameter values. 

We also observe the significant effect of deadline multipliers on the BAB 

performance. As M increases, for each interval the number of choices increases 

and this increase the effort spent to make evaluations. For smaller M, many 

assignments lead to infeasible solutions, thereby the size of the search is smaller. 

Moreover, our upper bounds perform better for smaller M, hence their effects in a 

BAB would be higher. Note from Tables 19, 20, and 21 that we obtain smallest 

CPU times at the lowest M value. When N=45 and P=7, the average CPU times 

are 258.61 487.13 and 1834.04, for M=1, 1.1, 1.2, respectively. When N=50, P 

becomes 7, the average CPU times for M=1, and 1.1 are 11.28 and 1001.02 

respectively. No instance could be solved in 1 hour for M=1.2. 

P also affects the BAB performance, and the effect becomes more significant as 

the problem complexity due to N or M is high. As P increases, the number of 

times that BAB gives decisions increases the CPU times. Note that when N=55 

and M=1, the average CPU times increase from 258.61 to 1293.75 as P increases 

from 5 to 6. When N=50 and M=1.1, the average CPU times increase from 487.13 

to 1001.02 as P increases from 5 to 7. There are some exceptions, where an 

increase in P, reduces the CPU time. For example, according to Table 19, for 

N=45, and M=1, the average CPU time with 5 period is 2.69 and this is higher 

average CPU time with 6 periods (0.80 sec). 
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This unexpectedly big values for 5 periods, is due to a single dominating instances 

with CPU time of 25.1. Once we exclude this instance, the average over 9 

instances reduces 0.2. 
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CHAPTER 6 

 

 

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

 

 

 

In this study we consider a project payment model with discounted cash flows.  

We assume that the client payment times and project deadline are defined in the 

project contract. The activities are characterized by their processing times and 

costs that are incurred at their completions.  Our problem is to find the client 

payment amounts and activity completion times so as to maximize the net present 

value of the client payments and activity costs. We show that the problem is 

strongly NP-hard. 

We formulate the problem as a mixed integer nonlinear programming model and 

solve the instances up to 55 activities, 5 periods when deadline is tight.  For loose 

deadline case, the instances up to 45 activities, 5 periods could be solved by the 

model. 

For moderate to large sized problem instances, we propose a branch and bound 

algorithm that employs efficient lower and upper bounding mechanisms. We find 

that algorithm is able to solve the problems up to 55 activities, 6   periods when 

deadline is tight.  For loose deadline case, the instances up to 50 activities, 5   

periods could be solved by the algorithm. 

The results of our extensive computational experiments have revealed that the 

most significant parameter is the number of the activities.  As number of the 

activities increase the solution times increase considerably.  We also find that the 
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number of the periods and deadline are dominant parameters that affect the 

solution times.  The higher solution times are observed when the number of the 

periods is higher and the deadline is looser. 

To the best of our knowledge our study is the first attempt to solve the progress 

payment problem where the payment quantities are to be decided at defined time 

points. We hope the results of our study could help for the practitioners who want 

to manage their cash flows, negotiating for the milestones and critical control 

points, determining the amounts and timings of the progress payments. Our 

models and algorithms can be easily modified to handle the practical cases where 

the costs are charged once the activities start and/or progress payments are 

received at the beginning of the periods. 

This study has considered a project payment model from contractor’s view. 

Extending the results so as to emphasize the client’s view as well as joint views of 

contractor and client might be considered in future work. Our models can also be 

extended for bonus payment and penalty cost structures. 

In this study, we assume that the profit margin and the discount rate do not change 

as time progresses. The future research may relax those assumptions and extend 

our procedures to handle the dynamic values for the profit margin and discount 

rate.  

Future research may also consider the design of more powerful optimization 

algorithms that use Bender’s Decomposition ideas as suggested in Grinold (1972).  

Moreover heuristic approaches that provide high quality schedules, in reasonable 

times might be a designed.  Our lower bounding procedure can be used as a 

stepping-stone for developing powerful heuristic approaches. 
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APPENDIX A 

 

 

BRANCH AND BOUND CALCULATIONS 

 

 

 

Table A1 – ESS and LSS of Nodes 0, 8, 16 

Node Act ES EF LS LF PES PLS 

0 

1 0 0 0 0 1 1 

2 0 3 7 10 1 1 

3 0 2 13 15 1 2 

4 3 8 10 15 1 2 

5 3 9 17 23 1 3 

6 8 16 15 23 2 3 

7 16 20 23 27 2 3 

8 27 30 27 30 3 3 

9 16 20 26 30 2 3 

10 30 30 30 30 3 3 

8 

1 0 0 0 0 1 1 

2 0 3 4 7 1 1 

3 0 2 10 12 1 2 

4 3 8 7 12 1 2 

5 3 9 14 20 1 2 

6 8 16 12 20 2 2 

7 23 27 23 27 3 3 

8 27 30 27 30 3 3 

9 26 30 26 30 3 3 

10 30 30 30 30 3 3 
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Table A1 – ESS and LSS of Nodes 0, 8, 16 (Continued) 

Node Act ES EF LS LF PES PLS 

16 

1 0 0 0 0 1 1 

2 2 5 2 5 1 1 

3 8 10 8 10 1 1 

4 5 10 5 10 1 1 

5 14 20 14 20 2 2 

6 12 20 12 20 2 2 

7 23 27 23 27 3 3 

8 27 30 27 30 3 3 

9 26 30 26 30 3 3 

10 30 30 30 30 3 3 
 

 

 

 

 

 


