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ABSTRACT 
 

 

A BAYESIAN MODELING AND ESTIMATION FRAMEWORK 

FOR PHARMACOGENOMICS DRIVEN WARFARING DOSING 

 

Öztaner, Serdar Murat 

Supervisor: Assist.Prof. Dr. Tuğba Taşkaya Temizel 

Co-Supervisor: Prof. Dr. Remzi Erdem 

 

June 2014, 80 pages 

 

Recent studies have shown that the incorporation of genomics information into the 

drug dosing prediction formulations increases the accuracy of the drug dosing while 

decreasing the frequency of adverse drug effects. The current clinical approaches for 

drug dosing which are supported by the best pharmacogenomics algorithms explain 

only some percentage of the variance in dosing. The main objective of this study is to 

enhance the accuracy and efficacy of the warfarin dosing algorithms by using 

advanced methods of data mining and estimation. A novel framework based on 

Bayesian Structural Equation Modeling (SEM) is proposed for warfarin dosing. The 

proposed framework performs better than the state-of-the-art methods which make 

use of linear regression such Maximum Likelihood Estimation (MLE). The Bayesian 

SEM is a robust and effective approach for the estimation of warfarin dosing since it 

facilitates the exploration and identification of hidden relationships and provides the 

flexibility to utilize useful prior information for achieving better prediction results. 

Two independent data sets are used for comparison and validation purposes in this 

study: The combined multi-ethnic data set provided by the International Warfarin 

Pharmacogenetics Consortium (IWPC) and the Turkish data set. A series of data pre-

processing techniques (feature selection, data imputation) are applied on both of the 
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data sets which contain common set of non-genetic features and genetic features 

including CYP2C9 and VKORC1 as the main pharmacogenomics variables. The 

non-linear model has converged with coefficients having small Monte-Carlo error 

and absolute values consistent with prior domain knowledge. The obtained 

pharmacogenomics warfarin dosing algorithm based on the non-linear Bayesian 

Structural Equation model accounts for up to 56.7% of the variation in warfarin 

dosage while the referenced pharmacogenomics warfarin dosing algorithms based on 

the linear regression model explains up to 51.2% of the variance. The prediction 

performances are also improved for both the data sets (47.4% and 51.7% 

respectively) compared to MLE (45.1% and 49.3%). 

 

Key Words: Warfarin, Pharmacogenomics, Data Mining, Bayesian Structural 

Equation Modeling 
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ÖZ 
 

 

FARMAKOGENOMİK VERİLERİ KULLANAN BAYES TEMELLİ WARFARIN 

DOZAJ MODELLEME VE TAHMİN ALTYAPISI  

 

Öztaner, Serdar Murat 

Tez Yöneticisi: Assist.Prof. Dr. Tuğba Taşkaya Temizel 

Yardımcı Tez Yöneticisi: Prof. Dr. Remzi Erdem 

 

Haziran 2014, 80 sayfa 

 

Son zamanlarda yapılan çalışmalar, genomik bilgilerin ilaç doz tahmininde 

kullanılan formüllere dahil edilmesiyle bir yandan söz konusu ilaç dozlama 

formüllerinin başarı oranını artırdığını ve diğer yandan ilaç yan etkilerinin görülme 

sıklığını azaltığını göstermektedir. İlaç doz tahmininde kullanılan mevcut klinik 

yaklaşımlar en iyi farmakogenomik algoritmalarla desteklendiğinde bile ilaç doz 

varyasının ancak belirli bir yüzdesi açıklanabilmektedir. Bu çalışmanın ana amacı, 

gelişmiş veri madenciliği yöntemlerini ve tahmin algoritmalarını kullanarak warfarin 

dozlama algoritmalarının doğruluğunu ve etkinliğini arttırmaktır.  Bu amaçla, 

hiyerarşik doğrusal olmayan karışım modeli (doğrusal olmayan karma etkiler 

modeli), Yapısal Eşitlik Modeli (SEM) kullanılarak kurulmuştur. Yapısal Eşitlik 

Modeli öncel bilgiden yararlanmak üzere Bayes yaklaşımı ile desteklenerek başta 

farmakogenomik faktörler olmak üzere diğer faktörlerin warfarin dozuna etkisini 

incelemek ve açıklamak amacıyla önerilmektedir. Çalışma kapsamında, veri ön-

işleme teknikleri (özellik seçimi, eksik verinin tamamlanması vb.) Uluslararası 

Warfarin Farmakogenetik Konsorsiyumu (IWPC) tarafından sağlanan kombine veri 

seti üzerinde uygulanarak uygun bir veri kümesi sağlanmıştır. 5700 denekten elde 
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edilen veri kümesinde, aralarında ana farmakogenomik değişkenler olarak CYP2C9 

ve VKORC1 yer alan 68 özellik bulunmaktadır. Doğrusal olmayan model, veri 

kümesi işlendikten sonra yakınsamış ve küçük Monte-Carlo hatalarına sahip ve öncel 

alan bilgisiyle tutarlı katsayı değerleri elde edilmiştir. Referans alınan çalışmada 

doğrusal regresyon modeline göre elde edilen farmakogenomik warfarin doz 

algoritması varyansı yaklaşık %51,2 oranına  kadar açıklarken doğrusal olmayan 

Bayes Yapısal Eşitlik modeline göre elde edilen farmakogenomik warfarin doz 

algoritması varyanstaki değişkenliğine yaklaşık %56,7 oranında açıklama 

getirmektedir. Bayes tabanlı modellemenin kestirim başarısının da her iki veri 

kümesi için (%47,4 ve %51,7) Çoklu Doğrusal Kestirim yöntemine gore arttığı 

görülmüştür. 

 

Anahtar Kelimeler: Warfarin, Farmakogenomik, Veri Madenciliği, Bayezyen 

Yapısal Eşitlik Modellemesi 
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    CHAPTER 1 

1 INTRODUCTION 

 

 

 
An important research challenge for patient safety is to minimize Adverse Drug 

Reactions (ADRs) [1]. Drugs are never completely safe and in addition to their 

desired effect, they also cause side effects. ADRs are among the prominent causes of 

hospitalization and death [2]. Although drugs are developed and approved after a 

well-defined, complicated and firmly controlled process, pharmacovigilance (post-

marketing drug analysis) through SSSs (spontaneous surveillance systems) 

constitutes a very import role in detecting adverse drug effects once the drugs are 

marketed [3], [4], [5]. 

 

It is not a simple task to decide whether the response of patient to a drug will be good 

or bad –or even there is no response at all-, since drugs are produced and marketed 

according to a "one size fits all" system. Although the tendency to ADRs might 

emanate from both non-genetic and factors, it is argued that genetics has a substantial 

role in drug responses. Indeed, it has been indicated by various studies that variations 

in drug responses are associated with genetic markers as well as non-genetic factors 

such as age, gender, and ethnicity [6]. 

 

The emerging field of Pharmacogenomics (PGx), as a potential application of 

personalized medicine [7], is the study of how and why the personal genetic 

differences alter drug response [8], [9], [10]. PGx has been increasingly popular and 

important due to the advances in pharmacology and human genomics. Recent studies 

have shown that the incorporation of genomics information into the drug dosing 

prediction formulations increases the accuracy of the drug dosing while decreasing 

the frequency of adverse drug effects [6], [8], [11], [12], [13]. 

 

The main objective of this study is to enhance the accuracy and efficacy of the drug 

dosing algorithms by using advanced methods of data mining and estimation. 

Therefore, the primary motivation is to build a generic and robust drug warfarin 

dosing estimation model which is supported by pharmacogenomics data and based 

on Bayesian Structural Equation Modeling [14], [15]. This estimation of model is 

expected to provide a computational framework for the practitioners and 

pharmacology experts so as to assist them in their clinical and scientific studies. The 

current clinical approaches for drug dosing which are supported by the best 

pharmacogenomics algorithms explain only some percentage of the variance in 

dosing. 

 

Due to the non-linear relationships between dose and response, a non-linear model is 
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developed by using Structural Equation Modeling (SEM) [16], [17], [18], [19]. A 

Bayesian approach to SEM is proposed in order to study and explain the effects of 

pharmacogenomics factors on drug dosing along with the other factors (i.e. flexibility 

to incorporate the useful prior information into the model). Bayesian model fitting 

usually depends on Markov Chain Monte Carlo (MCMC), which involves simulating 

draws from the joint posterior distribution of the model unknowns through a 

computationally intensive procedure [14], [20]. 

 

Warfarin, a commonly used anti-coagulant drug, is chosen for the study as it has a 

“narrow therapeutic window”
1
. The under-dosing and over-dosing of warfarin can be 

disastrous due to the thrombotic or hemorrhagic adverse reactions respectively. Since 

the initiation of warfarin therapy based on clinical procedures is risky and 

problematic, various studies have suggested warfarin dosing algorithms [11], [12], 

[21], [22], [23], [24]. 

 

There is substantial individual variation in warfarin response and 17−25% of this 

variability can be accounted for the clinical factors alone [13], [22], [25], [26], [27]. 

It was stated that 52−54% [22], [23], [25], [27] or about 55% [11]  of the variability 

could be explained for some ethnic groups by including the polymorphisms of genes 

coding the enzymes CYP2C9 and VKORC1 and using various pharmacogenomics 

algorithms based on stepwise linear regression [11], [12], [22], [25]. Most of these 

pharmacogenomics algorithms made use of both non-genetic factors (BSA, age, race, 

target-INR (International Normalized Ratio), amiodarone in-take, smoking status, 

DVT (Deep Vein Thrombosis) or PE (Pulmonary Embolism)) [26] and well-known 

warfarin related Single Nucleotide Polymorphisms (SNPs) such as CYP2C9*2 

(rs1799853), CYP2C*3 (rs1057910), VKORC1:-1639G>A (rs9923231) and 

VKORC1: 1173C>T (rs9934438) [27] [28]. 

 

In addition to the polymorphisms of CYP2C9 and VKORC1, CYP4F2 is also related 

with the variations in warfarin dosing. Recent studies have reported that 

polymorphisms in CYP4F2 might also account for up-to 7% of the variation [31] 

[32]. Another study by Özer et al. [21] on a group of Turkish patients deduced a 

linear regression model including CYP2C9*2, CYP2C9*3, VKORC1 −1639, and 

CYP4F2 (rs2108622) variants, as well as age, which explained 39.3% of the overall 

inter-individual differences in the warfarin dose. 

 

This study aims to improve the accuracy and efficacy of the warfarin dosing by using 

advanced methods of data mining and data estimation. A novel framework based on 

Bayesian Structural Equation Modeling (SEM) is proposed for warfarin dosing. The 

proposed framework performs better than the state-of-the-art methods which make 

use of linear regression such as Maximum Likelihood Estimation (MLE). Additional 

genetic (VKORC1:1173C>T, CYP4F2) and non-genetic factors (concomitant 

medication, co-morbidities) are also incorporated into the proposed model to 

improve the accuracy of pharmacogenomics driven prediction. 

 

Two independent data sets are used in this study: 1) The combined multi-ethnic data 

                                                 

 
1
 Therapeutic window is an indicator for estimation of drug dosage which can cure disease effectively 

without going beyond the safety range. 
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set provided by the International Warfarin Pharmacogenetics Consortium (IWPC) 

[11], [29], [30], [31]; and 2) The Turkish data set [21]. The IWPC data set and the 

Turkish data set contain common non-genetic and genetic features. Thus, the model 

for communized features can be validated by applying on both of the data sets. A 

series of data pre-processing techniques (feature selection, data imputation) are 

applied on the data sets so as to achieve better results from the Bayesian estimation. 

 

Apart from the polymorphisms of the CYP2C9, VKORC1 and CYP4F2 genes [32], 

clinical factors have been accounted for the variability in  warfarin dose 

requirements, including age, race, weight, height, gender, race, smoking status and 

medications (Taking an Enzyme Inducer, Taking an Enzyme Inhibitor or Substrate) 

[23], [33], [34], [35], [36]. Dietary components such as vitamin K intake or 

consumption of tea and coffee (or alcohol) may also influence warfarin dose 

requirements [37], [38]. Thus, new factors are introduced to the model. For instance, 

Rifampin as an enzyme inducer and Fluconazole, Fluvastatin and Lovastatin (in 

addition to Amiodarone which is also used in the reference studies) as enzyme 

inhibitors are included in the model. Aspirin is also introduced as an intake similar to 

smoking. By this, the secondary motivation of the study which is introducing new 

factors into the model is achieved. There are some other medications such as 

Simvastatin, Atorvastatin, Carbamazepine and etc. which are indicated in the IWPC 

data set, but these medications are not shown to be accountable for the variability in 

warfarin dosing due to the lack of data. 

 

IBM® SPSS® AMOS™ (Analysis of Moment Structures) v21 software [39] was 

utilized for the application of Bayesian SEM analysis and inference based on 

MCMC. Informative (non-diffuse) priors were used for both of the IWPC and 

Turkish models so as to avoid negative variance estimates and other improper 

estimates since good prior information have been provided for some attributes by 

earlier studies. Based on the expert knowledge and the prior literature, several 

variants of models are suggested. Among these, the model having the best fit is 

selected based on the appropriate convergence diagnostics. The obtained 

pharmacogenomics warfarin dosing algorithm based on the non-linear Bayesian 

Structural Equation model explains up to 56.7% of the variance in warfarin dosage 

while the MLE explains up to 51.2% of the variance. 
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   CHAPTER 2 

2 LITERATURE REVIEW 
 

 

 

This chapter puts forth the previous work to establish the patient safety by 

minimizing the ADRs of drugs via pharmacovigiliance and pharmacogenomics 

studies [9]. Section 2.1 introduces the concept of personalized medicine with regards 

to ADRs. Section 2.2 explains the Pharmacovigilance (PV) which is concerned with 

defining the outcomes of medical products that human life and with mitigating the 

associated risks of these outcomes. Section 2.3, on the other hand, expresses the 

emerging field of Pharmacogenomics (PGx) which analyses how genes can affect a 

person's response to drugs. Section 2.4 describes the factors that are accountable for 

the variations in warfarin dose and Section 2.5 mentions the previous studies that 

have been carried out to predict warfarin dose by utilizing these factors. Sections 2.6 

and 2.7 express the statistical techniques that are made use of during the course of 

this study. 

 

2.1 Personalized Medicine 

Any health care service is a set of complex processes directly affecting human beings 

and has a level of innate unsafety at every point of each process. Adverse reactions 

may arise from problems in practice, procedures or systems. Overarching system-

wide effort has to be exerted to minimize these adverse events and establish the 

maximum patient safety which is the main objective of health care. One of the 

research priorities for patient safety is to minimize adverse events caused by drugs 

[1]. Drugs are also never completely safe and in addition to their desired effect, they 

also cause side effects. For a drug to be, and remain, on the market its benefit must 

outweigh its perceived risk and it must be therapeutic in an acceptably high 

proportion of treated individuals. 

 

WHO
2
 defines ADR (Adverse Drug Reactions) as "A response to a drug which is 

noxious and unintended, and which occurs at doses normally used in man for the 

prophylaxis, diagnosis, or therapy of disease, or for the modification of physiological 

function" [2]. As reported in the widely known book “To Err Is Human” published 

by IOM
3
, preventable adverse reactions are placed in the top 10 foremost causes of 

death and give rise to health care costs of $3.6 billion per year in the United States as 

                                                 

 
2
 World Health Organization (http://www.who.int) 

3
 Institute of Medicine (http://www.iom.edu) 

http://www.who.org/
http://www.iom.edu/
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of 1997 [1]. Moreover, AMA
4
 states that just around 50% of patients react 

sufficiently to drugs, and in fact, many prevailing medications are correlated with a 

significant risk of treatment failure or drug toxicity [40] [41]. The results of the meta-

analysis of studies from 1966-1996 in the United States indicates that the total 

incidence of serious ADRs is 6.7%, of which 4.7% are accountable for admission 

and 2.1% occurs after admission, with an overall mortality rate of 0.32% [41]. A 

more recent study including 125 in-patients shows that 19% of the patients, who 

suffer from ADRs, spend 6.5 days longer in hospital than those without ADRs [40]. 

 

Drugs are extensively tested using animals and via clinical trials in humans, before 

they are marketed. These tests express much about the efficacy of drugs but delineate 

relatively little about the safety of  drugs due to the following limitations of most 

clinical trials [42] [43]: 

 

 Homogeneous populations: Most clinical trials exclude specific groups 

such as children, pregnant women, and people who are old or have 

chronic diseases by just covering comparably healthy people with only 

one disease. 

 Sample size: Small sample size (up to 1000 patients) decreases the 

likelihood of finding rare adverse effects. 

 Limited duration: Trials that last for a short period of time inhibit the long 

term consequences such as cancer. 

 Inability to predict the real world: Clinical trials are carried out for one 

drug while patients often use more than one drug concurrently in the real 

world. Therefore, the drug interactions which can be significant in the real 

world cannot be encountered during clinical trials.  

 

Since in the pre-marketing period, not all of the adverse reactions can be detected, 

the monitoring of drug effectiveness and safety must continue after marketing [44]. 

Ongoing post marketing surveillance is needed for all drugs on the market, not just 

new drugs, as evidence of increased risks (as well as decreased risks) continues to be 

found through the lifetime of drugs, as for the example of aspirin and increased risk 

of Reye syndrome. 

 

As drugs are produced according to the average patient, it is not easy to determine 

whether a person will respond well, badly, or not at all to a medication. Personalized 

medicine is a medical approach which addresses to this challenge by proposing 

medications being customized for the individual patient. In the context of the 

personalized medicine, the customization of healthcare does not only relate to the use 

of medications but also the medical decisions, practices, and applications. Note that, 

the use of genetic information plays a major role in certain forms of personalized 

medicine [45]. The emerging field of PGx as a potential application of personalized 

medicine studies how personal genetic discrepancies affect drug response [6], [8], 

[9]. 

 

                                                 

 
4
 American Medical Association (http://www.ama-assn.org/) 

http://www.ama-assn.org/
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2.2 Pharmacovigilance 

Pharmacovigilance (PV) which is also referred to as “the post-marketing drug safety” 

is the pharmacological science related to the detection, assessment, understanding 

and prevention of adverse effects [44], [46]. Since substantial amount of ADRs are 

observed in post-marketing period, efforts have been made to enhance the 

recognition of ADRs by mining the large databases generated by spontaneous 

surveillance systems (SSSs). SSSs which are also called as spontaneous reporting 

systems (SRSs) rely on the principle that when there are great numbers of reports, 

matching the proportion of reports of an adverse reaction with similar drugs may 

signal the rare and hidden patterns. There are various SSSs: 

 The Adverse Event Reporting System (AERS) of FDA: AERS
5
 receive 

the event reports directly or in batches periodically. AERS contains over 

four million reports of adverse events from 1969 to the present. Curated 

data is provided publicly on quarterly basis. 

 The Canadian Adverse Drug Reaction Information System (CADRIS) of 

Health Canada: CADRIS
6
 includes over 160,000 suspected AR reports 

that have been prepared in Canada since 1965. 

 EudraVigilance
7
 (European Union Drug Regulating Authorities 

Pharmacovigilance) is the European data processing network and 

management system for reporting and evaluating the suspected adverse 

reactions during the development of new drugs. It also follows the 

marketing authorization of medical products in the European Economic 

Area (EEA). 

 The VigiBase
8
 is the most comprehensive and largest data resource in the 

world, and is built and maintained by the Uppsala Monitoring Centre (the 

UMC) on behalf of the World Health Organization. VigiBase™ contains 

more than 3.8 million case reports from 82 nations. Around 50,000 new 

reports are added to it on quarterly basis. All of these cases can be 

accessed to by health professionals. 

 

These surveillance systems are responsible for the early detection of serious ADRs 

and the majority of drug withdrawals from the market such as the withdrawal of 

Vioxx (rofecoxib) [47]. To extract knowledge from the pharmacovigilance databases 

generated by SSSs, statistical data mining methods (“association finding”, 

“disproportionality analysis”) are utilized within the domain of Knowledge 

Discovery in Databases (KDD).  

 

As stated in [48], “Knowledge Discovery is defined as the nontrivial extraction of 

hidden, previously unrecognized, and likely useful information from data. KDD is 

frequently utilized in a wide range of pattern finding practices and profiling, such as 

surveillance, fraud detection, marketing and scientific discovery; moreover, it 

constitutes the core of pharmacovigilance applications [49] [50]. KDD is an overall 

                                                 

 
5
AERS:http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/Adverse

DrugEffects/default.htm 
6
 CADRIS: http://www.hc-sc.gc.ca/dhp-mps/pubs/medeff/_fs-if/2005-cadris-2/index-eng.php 

7
 EUDRAVIGILANCE:http://eudravigilance.emea.europa.eu 

8
 VIGIBASE: http://www.umc-products.com/DynPage.aspx?id=4910&mn=1107 

http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/default.htm
http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/default.htm
http://www.hc-sc.gc.ca/dhp-mps/pubs/medeff/_fs-if/2005-cadris-2/index-eng.php
http://eudravigilance.emea.europa.eu/
http://www.umc-products.com/DynPage.aspx?id=4910&mn=1107
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process which incorporates several steps to derive knowledge from data. These steps 

are data preparation, data selection, data cleaning, incorporation of appropriate prior 

information, and proper interpretation of mining results. Figure 1 illustrates a more 

detailed approach for the KDD Process. Note that, the data mining is actually a step 

in the KDD process that comprises the application of data analysis and discovery 

algorithms over the data to generate a particular list of patterns [48]. The data-mining 

relies massively on known techniques from machine learning, pattern recognition, 

and statistics to extract patterns from data. 

 

Figure 1: Steps of the KDD Process [48] 

Although the reasoning and the methodology of the various quantitative data mining 

approaches differ, they all try to set forth to which extent the number of observed 

cases deviates from the number of expected cases. The MGPS (the Multi-item 

Gamma Poisson Shrinker) algorithm of FDA explores the ratio of an observed ADR 

to the total number of ADRs in order to detect a signal using Bayesian statistical 

analysis [51]. WHO UMC has also developed a system called as “Bayesian 

Confidence Propagation Neural Network” (BCPNN), which uses a feed-forward 

propagation neural network for searching drug-effect and drug-drug interactions by 

applying Bayesian statistics and Information Theory to quantify the unexpected 

signals. BCPNN can handle large amount of data containing incomplete data and be 

used with complex variables [52]. Figure 2 illustrates the overall surveillance of KD 

process in the drug safety databases. 
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Figure 2: Knowledge Discovery in Drug Safety Databases 

 

Although the knowledge discovery efforts have been successful in identifying new 

drug-ADR interactions, owing to the KDD approaches, there are problems due to the 

limitations of SSSs: 

1. The reports have been collected primarily on a voluntary basis. Therefore, the 

surveillance is passive and there are often missing and incomplete data in 

reports. 

2. There are many factors that affect the number of reports received such as 

under and duplicated reporting of adverse reactions within both voluntary and 

mandatory spontaneous surveillance systems. 

3. Reporting may be subjective because ADR reports are issued by the opinion 

or observation of the individual reporter based on suspicious associations. 

4. There may be FP (false positive) cases often revealed by the inclusion of a 

particular reaction which are not actually caused by the suspected drug.  

5. Drug-drug interactions often make the reporting complex. It may not be 

always possible to determine which of the drugs are responsible from the 

reaction [52], [53]. 

 

There have been studies to improve the surveillance reporting mechanisms by 

establishing active surveillance via standardized and collaborative systems, and also 

to enhance the data mining techniques used [1]. A retrospective evaluation of the 

WHO BCPNN demonstrates that BCPNN provides a good overall sensitivity rate 

along with a rather lower specificity rate [54]. The performance of the method is also 

limited by the fact that it does not consider the semantic information to encode the 

adverse events in case reports [55]. Thus, efforts continuously have been being 



 

9 

 

exerted to improve the performance of BCPNN method in the new versions of 

Vigibase system. 

 

2.3 Pharmacogenomics 

Although the ADRs may be induced by both non-genetic and genetic factors, it is 

argued that genetics has an important role in drug responses. Various studies indicate 

that the variations in drug responses can be correlated with genetic markers as well 

as non-genetic factors such as age, gender, and ethnicity [6], [9], [56]. 

 

For instance, there is an increased risk of severe ADRs in children due to the 

following reasons [57]: 

● 75% of approved drugs used in children are untested in pediatric 

populations 

● Young children cannot evaluate or express their own response to 

medications 

● Pediatric dosage forms not available 

● Children metabolize drugs differently than adults. 

 

Therefore, it is vital to develop genotype-based dosing guidelines to ensure the drug 

safety and avoid severe ADRs [26], [58]. PGx is the branch of pharmacology, which 

studies the effects of genetic variations on drug response by correlating gene 

expression or SNP with efficacy or toxicity of a drug. PGx focuses on 

pharmacogenes, where a pharmacogene is any gene involved in the response to a 

drug. As of 21 May 2014 (NCBI dbSNP
9
 Build 141), there are almost 44 million 

validated SNPs for human beings. The number of SNPs that have been submitted to 

dbSNP is actually over 260 million and the number is growing on day to day basis. 

When the HapMap
10

 (haplotype mapping of the human genome) Project is 

completed, there will be enormous amount of genomics data to be utilized for 

analysis and identification of the risk haplotypes for specific drugs or drug 

categories. These data and information supported by PGx studies have been 

accumulated in various data repositories and knowledge bases. These publicly data 

repositories and knowledge bases are used in the study of serious ADRs in the 

context of PV and PGx. Figure 3 depicts an example of how these repositories are 

linked based on a widely-known pharmacogene, thiopurine methyltransferase 

(TPMT) [59]. 

 

                                                 

 
9
 http://www.ncbi.nlm.nih.gov/SNP/index.html 

10
 http://www.hapmap.org/ 
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Figure 3: Integrating Life Sciences Databases for better pharmacovigilance [59] 

 

TPMT exists in several publicly accessible information sources. The 

Pharmacogenomics Knowledge Base (PharmGKB), the Kyoto Encyclopedia of 

Genes and Genomes (KEGG), and the DrugBank contain knowledge on TPMT, 

while databases such as clinical electronic health records, MedWatch, and GEO 

provide  observed measurements or characteristics for TPMT.  

 

PGx can be used to improve the effectiveness and efficiency of health care safety by 

maximizing the probability of desired outcomes and minimizing the risk of ADRs 

making use of a person’s genetic features. PGx can also be used to reduce the 

number of post-approval drug withdrawals [45]. Moreover, PGx may improve the 

quality of health care for chronic diseases. The current treatment approach for these 

diseases is to slow down their progression and lessen their symptoms. PGx may 

support the therapeutic approaches to clinical diseases by more effectively abolishing 

the symptoms, reducing the health care costs, and avoiding ADRs at the same time 

[45], [60]. 

 

The advances in the fields of pharmacology, genetics, and human genomics have 

caused PGx to emerge as a new promising field of study. However, the report 

“Realizing the Potential of Pharmacogenomics: Opportunities and Challenges” by 

the Department of Health and Human Services of USA indicates that the benefits of 

PGx on a large scale will be realized in the long-term [60]. There are few practical 

applications of PGx because the current health insurance policies discard the 

recompense, of most screening test, restrain PGx innovation by discouraging the 
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usage of PGx tests and therapies by health care providers.  

 

Additionally, the infrastructure of current health information technology cannot meet 

the needs for researching PGx technologies and supporting PGx applications. In 

conclusion, PGx has the potential to provide better targeted and more effective 

treatments for patients while reducing the adverse effects due to the advances in 

pharmacology, pharmacogenomics and information technologies but there are 

several practical and clinical obstacles to be avoided. 

 

2.4 Factors of Warfarin dosing 

There are several reasons to test the hypothesis that pharmacogenomics can help to 

reduce drug toxicity by using warfarin:  

 It is commonly used 

 It has a narrow therapeutic/toxic ratio 

 The under-dosing and over-dosing of warfarin can be disastrous 

 It is influenced by widely-known genetic polymorphisms 

 There is a substantial personal variation in warfarin response 

 

Incidents associated with warfarin have placed it in the “top 10 drugs” for ADR 

related hospitalizations in the US [61], [62]. Between 2007 and 2009 warfarin 

accounted for 33% of drug-related hospitalizations for adverse events in the US [62]. 

Therefore, it is crucial to achieve a safe and effective level of anticoagulation for 

patients starting warfarin.  

 

As stated by [13], [22], [23], [25], [26], [27], 17−25% of the variability in the 

therapeutic warfarin dose can be associated with the clinical factors alone. Figure 2 

roughly depicts the variability in warfarin dose based on the major factors. It is also 

shown that 52−54% [22], [23], [25], [27] or about 55% [11], [63] of the variability in 

dosing can be explained for some ethnic groups by including the polymorphisms of 

genes coding the enzymes CYP2C9 and VKORC1 and using various 

pharmacogenomics algorithms based on stepwise linear regression. Most of these 

pharmacogenomics algorithms made use of both non-genetic factors (BSA, age, race, 

target-INR (International Normalized Ratio), Amiodarone in-take, smoking status, 

DVT (Deep Vein Thrombosis) or PE (Pulmonary Embolism)) [26], [31], [33], [34] 

and well-known warfarin related SNPs such as CYP2C9*2 (rs1799853), CYP2C*3 

(rs1057910),  VKORC1:-1639G>A (rs9923231) and VKORC1: 1173C>T 

(rs9934438) [26], [28], [35], [64], [65], [66]. 
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Figure 3: Major Factors of Warfarin Dosing 

 

The SNPs of CYP2C9 and VKORC1 account for ≈ 40% (≈ 15% and 25% 

respectively) of the variation in warfarin dose [67], [68]. CYP2C9 is a member of the 

family called as Cytochromes P450 (CYPs) which belongs to the superfamily of 

proteins functioning in enzymatic reactions. The drug interaction table for P450 [64] 

shows all the pharmacogenetic influences and the corresponding drugs in terms of 

substrates, inhibitors and inducers. The most effective variants of CYP2C9 are the *2 

(rs1799853) and *3 (rs1057910) polymorphisms which are associated with lower 

dose of warfarin [26], [35], [36], [69], [70]. The daily maintenance dose has to be 

decreased 15-20% for the patients who carry the mutations of CYP2C9*2. Similarly, 

the patients who carry the mutations of CYP2C9*3 require 30-40% lower daily 

maintenance dose. This fact also indicates that CYP2C9*3 plays a more significant 

role compared to CYP2C9*2 in explaining variations of warfarin dose [31], [36] . 

 

CYP2C9*2 are more commonly observed in the Caucasian population (≈8-19%), but 

much less frequently in African-American and African populations (≈ 2-4%). It is 

not seen in Asian populations (0-0.1%) [69], [66], [65]. CYP2C9*3 has a similar 

frequency distribution in Caucasian (≈3-16%), African-American/African (≈0-2.5%) 

and Asian (≈1.1-3.6%) populations [10], [31], [66]. 

 

VKORC1 (vitamin K epoxide reductase subunit 1) converts vitamin K epoxide to 

vitamin K which is needed by certain proteins as a cofactor for coagulation. Warfarin 

inhibits VKORC1 which reduces the amount of vitamin K. For that reason, 

variations of VKORC1 are very effective for warfarin dosing. Several studies have 

shown that SNPs of VKORC1:-1639G>A and VKORC1: 1173C>T or C6484T 

(rs9934438) are accounted for significantly lower warfarin doses [26], [28], [31], 
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[35], [67], [68], [71], [72]. Since VKORC1: 1173C>T is indicated to be in “near 

perfect linkage disequilibrium” with VKORC1:-1639G>A, these two variants are 

almost equally predictive for warfarin dosing [67]. 

 

Individuals who carry the A allele in VKORC1:-1639G>A haplotypes require a 

lower initial dose of warfarin than those who carry the G allele. This is increased per 

A allele. That is, heterozygous carriers of the A allele respond to an intermediate 

warfarin dose, whereas homozygous carriers of the A allele respond to the lowest 

dose of warfarin. Homozygous carriers have the highest risk for warfarin-related 

adverse reactions. Almost 28% decrease in the therapeutic warfarin dose per A allele 

is required, and this SNP is the one of the most important predictors for the initiation 

dose for warfarin, [67], [68], [71], [73], [74]. 

 

The frequency of VKORC1:-1639G>A varies according to ethnic groups. It is 

actually the majority allele (around 90%) in Asian populations, and is also quite 

common in Caucasians having an allele frequency around 40% [31] [12] [74]. 

 

It has been indicated that the variant of CYP4F2 (rs2108622) accounts for warfarin 

related enzyme activity (4-12% increase in warfarin dose per T allele) [32], [72], [75] 

[76]. A recent study on Turkish population also demonstrates that CYP4F2 is 

associated with 2.8% increase in warfarin dose per T allele [21]. There is also 

another variant namely VKORC1: 3730G>A or G9041A (rs7294) which might be 

accounted for a higher warfarin dose but this varıant is not included in this study 

[31], [67]. 

 

The results of the pharmacogenomics studies have stimulated the U.S. Food and 

Drug Administration (FDA) to update the warfarin drug label to include information 

about genetic polymorphisms affecting dosing in August 2007 [13]. The widely 

annotated genetic variations are tabulated in Table 1. 

 

Table 1: Widely known SNPs of CYP2C9 and VKORC1 

Variant Name: CYP2C9*2 

Disposition: rs1799853 at chr10:96692037 in CYP2C9  

This SNP has been indicated to affect the clearance of various other drugs 

(fluvastatin, glipizide, phenytoin, tolbutamide) as well as warfarin. 

CYP2C9*3 

rs1057910 at chr10:96731043 in CYP2C9 

This SNP has been indicated to affect significantly the clearance of various other 

drugs (fluvastatin, glipizide, phenytoin, tolbutamide) as well as warfarin. 

VKORC1:G9041A; VKORC1:3730G>A 

rs7294 at chr16:31009822 in VKORC1  



 

14 

 

This SNP might be linked with a higher warfarin dose.   

 

Variant Name: VKORC1:G3673A; VKORC1:-1639G>A 

Disposition: rs9923231 at chr16:31015190 in VKORC1  

This SNP is significantly associated with a lower warfarin dose based on both in 

vivo and in vitro evidence. 

VKORC1:C6484T; VKORC1:1173C>T 

rs9934438 at chr16:31012379 in VKORC1   

This SNP is also significantly associated with a lower warfarin dose and is said to be 

in near perfect linkage disequilibrium with VKORC1:-1639G>A. 

 

 

Apart from the SNPs of CYP2C9 and VKORC1, several other polymorphisms (such 

as rs2108622 at chr19:15851431 in CYP24F,  rs2292566 at chr1:224086276 in 

EPHX1, rs339097 at chr7:128186460 in CALU), genetic, and clinical factors have 

been accounted for the variability in maintenance warfarin dose, including age, race, 

weight, height, gender, race, smoking status and medications (Taking Enzyme 

Inducer, Taking Amiodarone) [26], [77], [56], [78]. 

 

Dietary factors such as vitamin K intake, food supplements, and alcohol consumption 

may influence warfarin dose requirements. Warfarin works by inhibiting the 

recycling of fat-soluble vitamin K, thus higher consumption of fat-soluble vitamin K 

(found in green vegetables) can theoretically reduce the action of warfarin. In 

addition, low or inconsistent vitamin K intake might contribute to variations in 

anticoagulation control [26], [63]. 

 

Numerous medications can affect warfarin dose. Patients using amiodarone were 

estimated to require 29% lower doses in a study of 369 adults on stable warfarin 

therapy [34], [37], [63]. 

 

Dose requirements decrease with age because of increased responsiveness and/or 

decreased clearance. A study conducted on 297 patients on stable warfarin doses for 

the ages between 20 to 90 years demonstrated that the mean of daily dose 

requirements for warfarin decreased by 0.5 to 0.7 mg per decade [27], [33], [79]. 

 

Various illnesses can affect warfarin dose requirements. Patients with liver disease, 

malnutrition, de-compensated heart failure, hypermetabolic states (e.g. febrile 

illnesses, hyperthyroidism), hypertension, renal insufficiency, malignancy and 

different therapeutic indications for warfarin (e.g. prosthetic heart valve, current 

venous thromboembolism) have been indicated to alter dose requirements [23], [33]. 
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2.5 Reference Studies 

The previous studies which proposed pharmacogenomics driven formulations for the 

prediction of warfarin dosage used a model based on linear regression [11], [12], 

[21], [22], [23], [24]. Roper et al. [25] carried out a comparative study to validate 

three published warfarin dosing algorithms by Sconce et al. [12], Anderson et al. 

[24], IWPC and Klein et al. [11] and the WarfarinDosing website [80] based on the 

studies of Gage et al. [22], [23]. The predicted dose requirements were compared 

with the actual maintenance dose for each patient within the therapeutic INR of 2.0 

to 3.0 [11], [21], [22]. It was concluded that all linear regression based methods 

produced similar results explaining only %37.7 to %45.8 of the variance in warfarin 

dosage in the IWPC training data set as indicated in Table 2. Note that, all the 

algorithms tested in the scope of the study by Roper et al. [25], are mainly based on 

CYP2C9*2, CYP2C9*3, and VKORC1:-1639G>A as the pharmacogenomics 

features and only some of the non-genetic factors such as age, BSA (only height for 

some algorithms), and co-morbidities. 

 

 

Table 2: The Comparison of Model Predictions for IWPC Validation Cohort 

Model Mean±SD of 

Absolute Error 

Median R
2
 (Variance 

explained) 

Intercept Slope 

Sconce 9.50 ± 8.99 6.91 37.7 5.13 0.97 

Gage 8.37 ± 7.92 6.47 45.8 2.23 0.93 

IWPC 8.39 ± 8.13 6.41 44.5 1.66 0.98 

Anderson 8.81 ± 8.11 6.74 41.4 −1.72 1.05 

 

IWPC data set contains 5700 distinct subjects provided by 21 research groups from 9 

distinct countries [11], [29]. A study conducted in 2009 [11] on the IWPC data set of 

PharmGKB [28] states that a pharmacogenetic algorithm including age, race, weight, 

height, CYP2C9, VKORC1, enzyme inducer status and amiodarone more accurately 

identifies the patients who require higher doses of 49 mg/week or above and lower 

doses of 21 mg/week or below compared to a clinical algorithm (including age, race, 

weight, height, enzyme inducer status and amiodarone) [11].  

 

Gage et al. [22] conducted a study on a derivation cohort of 1015 patients, which 

proposed another pharmacogenetic model containing 10 significant variables 

explaining more than half of the variance in the therapeutic warfarin dose (R
2
 = 

53.1%). The same study also assessed the effect of incorporating genotype 

information on the prediction of warfarin dosing by excluding the genotype 

information from the stepwise regression. The dosing algorithm without genetic 

factors explained only less than half of the variance (R
2
=21.5%) [22]. It is worth 

noting that the accuracy of the model was apparently affected by race: R
2
 was 

calculated 31% in 153 African-American and 57% in 838 Caucasian patients 

respectively. The equation for warfarin dosing algorithm without genetic factors is as 

follows: 
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WarfarinDose = exp[0.613 + (0.425 ∗ 𝐵𝑆𝐴) − (0.0075 ∗ 𝐴𝑔𝑒) + (0.156

∗ 𝐴𝑓𝑟𝑖𝑐𝑎𝑛𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛𝑅𝑎𝑐𝑒) + (0.216 ∗ 𝑇𝑎𝑟𝑔𝑒𝑡𝐼𝑁𝑅) − (0.257

∗ 𝐴𝑚𝑖𝑜𝑑𝑎𝑟𝑜𝑛𝑒) + (0.108 ∗ 𝑆𝑚𝑜𝑘𝑒𝑠) + 0.0784 ∗ 𝐷𝑣𝑡𝑃𝑒] 

(Equation 1) [22] 

 

The non-profit website, http://www.WarfarinDosing.org [80], provides guidance to 

doctors and other practitioners who initiate warfarin therapy by estimating the 

therapeutic dose in patients new to warfarin. The web site makes use of the dosing 

algorithm developed based on the findings of Gage et al. [22]. 

 

The FDA altered the warfarin label in 2007 stating that age, BSA, indications for 

warfarin therapy, concomitant medication, CYP2C9 and VKORC1, were accounted 

for about 55% of the variance in therapeutic warfarin dose in Caucasian patients 

[13]. These results were also supported by the IWPC’s rather complicated equation 

which had been provided in the supplementary appendix of Klein et al. [11] . IWPC 

provides a dosing algorithm in excel format based on this equation [29].  

 

Özer et al. [21] also deduced a linear regression model including CYP2C9*2, 

CYP2C9*3, VKORC1 −1639, and CYP4F2 (rs2108622) variants, as well as age, 

which explained 39.3% of the personal differences in the warfarin dose (Table 3). 

 

Table 3: The Parameter Estimates of the Linear Regression Model [21] 

Variable Parameter Estimate Partial R
2 

p value 

 Intercept 8.308   <0.001 

 VKORC1 −1639A, per A allele −1.499 0.147 <0.001 

 CYP2C9 *2 or *3, per variant allele −1.33 0.19 <0.001 

 Age (per year) −0.028 0.028 0.013 

 CYP4F2, per T allele 0.505 0.028 0.017 

 

2.6 Structural Equation Modelling 

Structural equation modeling (SEM) is a statistical approach for estimating and 

testing causal relationships by using a combination of statistical data and qualitative 

causal beliefs [14], [15], [17], [19]. The standard SEM (in particular the LISREL 

model) is basically composed of two models:  

1) The measurement model where latent variables (LV) or hidden variables are 

estimated by using the manifest variables (MV) or observed variables. It 

shows the relations between latent variables and manifest variables.  

2) The structural model where the relations among the latent variables (LV) are 

assessed. It shows the potential causal dependencies between endogenous 

(dependent) and exogenous (independent) variables. 

http://www.warfarindosing.org/
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The LISREL notation for the full (measurement and structural model) structural 

equation model is depicted in Figure 4 [17]. As an analogy, confirmatory and 

exploratory factor analysis models contain only the measurement component, while 

path diagrams can be regarded as a SEM having only the structural component. SEM 

enables complex causal relationships to be expressed through linear, non-linear, 

recursive or non-recursive, hierarchical or non-hierarchical structural equations, to 

establish a more precise and complete picture of the entire model. There is a growing 

interest for SEM techniques and in particular they have gained importance in IS 

research [19]. SEM is used in various multidisciplinary areas which include research, 

political science, economics, management, marketing, psychology, sociology, and 

educational research; and the areas are not limited these. Recently, there have been 

several research papers in Medical domain using SEM techniques [81], [82], [83]. 

 

 

Figure 4: The definitions for LISREL notation [17] 

 

SEM is more advantageous to multiple regressions because of several reasons: 

a) SEM supports more flexible assumptions (particularly enabling assessment 

even in the presence of multicollinearity) to be made, SEM uses the 

confirmatory factor analysis to reduce measurement error by having multiple 

indicators per latent variable, 

b) SEM can handle difficult data (incomplete data, non-normal data, time series 

with auto-correlated error) 

c) SEM is capable of testing models overall rather than factors individually, 

d) SEM enable testing of factors across multiple groups, 

e) SEM has provision to test models with multiple dependents, 

f) SEM is able to model error terms, 

g) SEM is more general and more powerful meaning that a variable can act as 

both independent and dependent variable. 
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h) Furthermore, SEM is more robust especially in situations where regression is 

highly exposed to error of interpretation by model misspecification because 

of its policy of comparing alternative models to assess the relative model fit 

and selecting the best fitted model among the alternatives. 

 

SEM may be conducted following steps below [18], [84]: 

 

1) Model Specification: The model must be specified correctly based on the type of 

analysis that is tried to be confirmed. When the correct model is built (i.e. 

specified), two different types of variables, namely exogenous and endogenous 

variables are used. The dependence relationship constitutes the difference 

between these two types of variables. During model specification, a set of 

theoretically plausible models are suggested so as to assess whether the model 

proposed is the best among the possible models in the set. The model suggestion 

is not made only based on the theoretical reasons but the number of data points 

and the number of parameters must be taken into consideration so that the 

specified model can be identified. A model is said to be an “identified model” if 

there is one best value for each parameter that uniquely identifies the model. 

While specifying the model, two types of relationships can be postulated: 

a) The hypothesized causal relationships (i.e., relationships that do not relay on 

facts or previous studies) between variables are to be estimated. These 

relationships are let 'free' to vary. 

b) The known relationships between variables that have been already estimated 

usually based on previous studies. These are 'fixed' in the model. 

2) Estimation of Free Parameters: Parameters are estimated by comparing the actual 

covariance matrices to the estimated covariance matrices which represent the 

relationships between variables. This estimation is carried out by using the 

statistical techniques such as maximum likelihood estimation, weighted least 

squares or asymptotically distribution-free methods based on maximization of a 

fit criterion. 

3) Assessment of Model Fit: Once the free parameters are estimated, the model is 

interpreted. The model is rejected or accepted (often being preferred to a 

competing model) based on statistical tests or assessment of fit measures or 

indices such as the Root Mean Square Error of Approximation (RMSEA) and the 

Comparative Fit Index (CFI) [85], [86], [87], [88]. These fit measures are 

calculated by using the resultant matrices expressing the estimated relationships 

between variables in the model. They essentially evaluate how similar the 

estimated relationships are to the actual relationships. As there are different 

measures of fit indices assessing different elements of the fit of the model, a set 

of fit indices should be used. 

4) Model Modification: Although a model is accepted based on assessment of fit 

indices, it may need to be updated so as to enhance the model fit.  There are also 

modification indices which report the improvement in fit that results from the 

modification of the model (e.g., adding a new pathway to the model). It is vital 

that the model modifications are theoretically sensible with regards to the 

background information. 
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5) Comparison and Model Selection: The alternate models based on plausible 

theory are tested and compared to the proposed model and the most appropriate 

model is selected based on the fit indices such as Browne-Cudeck Criterion 

(BCC) and the Akaike Information Criterion (AIC) [86]. 

2.7 Bayesian SEM 

Standard practice in implementing SEMs relies on frequentist methods. SEMs are 

fitted using either generalized least squares procedures or maximum likelihood 

estimation [14], [18], [89], [90], [91]. To handle more general models and complex 

data structures, a new approach to factor analysis and structural equation modelling 

using Bayesian analysis is required [14], [91], [92], [93]. Bayesian approach can be 

applied to many SEM-type modelling frameworks which include various types of 

variables such as binary, ordered, categorical, count, and continuous variables 

expressing diversified interactions such as nonlinearity, multicollinearity among each 

other. Since the model that is set up for warfarin dosing is also a complex one which 

involves several types of covariates and missing data, Bayesian SEM is chosen as the 

most convenient approach for the problem [89], [94]. Other features of the Bayesian 

approach include linking structural equation concepts to multi-level hierarchical 

models and estimation of conventional unidentifiable models [93]. 

2.7.1 Pros and Cons of Bayesian SEM 

There are several substantial differences between frequentist and Bayesian 

approaches: 

1) The specification of prior or the model parameters are required by Bayesian 

SEM. The prior distributions for each of the model unknowns, including the factors 

from the measurement and structural models and the latent variables are set before 

the inference. The prior plays an important role on the Bayesian inference because 

the inference is based on the posterior distributions which rely on both on the 

likelihood and the prior distribution of the data. Previous studies or theoretical 

knowledge may provide valuable information about structural relationships and this 

information can be incorporated into the model through prior distributions. If there is 

no such information available, vague priors can be made use of. On the other hand, 

frequentist methods do not specify priors for mean or covariance. Note that, as the 

sample size increases, the posterior distribution will be influenced less by the prior, 

and frequentist and Bayesian inferences will become almost the same. 

2) The inference method of Bayesian SEM relies on MCMC (Markov Chain 

Monte Carlo), which draws the instances of the model unknowns (parameters and 

latent variables) from the corresponding joint posterior distribution by using a 

computationally exhaustive procedure. As the exact posterior distributions can be 

inferred for the model unknowns in MCMC, there is no need to rely on large sample 

assumptions (e.g., asymptotic normality). These exact posteriors can provide a more 

reasonable measure of model uncertainty in small and medium sized samples but it 

may last long (e.g., several hours) to obtain enough samples from the posterior. 
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2.7.2 Markov Chain Monte Carlo and Gibbs Sampling 

MCMC methods have been developed to overcome the limitations of Bayesian 

approaches. These limitations are the incorporation of high dimensional functions, 

which are used to obtain the posterior distribution, and the augmentation of the 

observed data with the latent variables or the unobservable data (missing data or the 

unobservable continuous measurements that actually represent the implicit binary or 

ordered categorical data). 

 

In MCMC methods, the previous sample values are used to produce the next sample 

values randomly, generating a Markov chain [14], [20]. The instances of the 

generated chains are then utilized as samples of the desired distribution after a large 

number of steps. The quality of the sample gets better as the number of steps 

increase. When the autocorrelation rate of the generated samples gets higher, MCMC 

starts to converge slowly. This condition is called slow (or poor) mixing of the 

MCMC algorithm and causes serious computational problems. Poor mixing can be 

avoided in certain extent by selecting parameters based on a centered approach. 

Adaptation of informative priors on the parameters of interest using means taken 

from an exploratory data analysis with strongly over-dispersed variances also 

improves convergence [14]. 

 

The Gibbs sampling, which is a special implementation of MCMC algorithm uses a 

slightly different approach and samples from the full conditional posterior 

distributions. The number of runs (steps) required to reach a stationary chain is a 

very important factor for the success of MCMC algorithm. Note that, the first 1000 

to 5000 samples are discarded (the length of the burn-in period), and then the 

designated convergence test is utilized to assess whether a stationary chain has been 

obtained [14], [15]. 

 

2.7.3 Software for Bayesian SEM 

There are several software applications for the implementation of Bayesian SEM. In 

this study, two of these applications have been made use of: 1) WinBUGS, and 2) 

IBM® SPSS® Amos [39]. In the first phase of this thesis, the studies for the proof of 

concept have been conducted by the freely available WinBUGS software. Since 

WinBUGS is not fully supported and lacks some graphical and modeling features, 

the Bayesian modelling and estimation was conducted using AMOS in the second 

phase.  

2.7.3.1 WinBUGS 

The WinBUGS
11

 is a freely available statistical software package for Bayesian 

analysis using Markov chain Monte Carlo (MCMC) methods [95]. It succeeded the 

BUGS (Bayesian inference Using Gibbs Sampling) program which had been 

launched as a project at the MRC Biostatistical Unit in Cambridge in 1989. The 

                                                 

 
11

http://www.mrc-bsu.cam.ac.uk/bugs/ 

http://www.mrc-bsu.cam.ac.uk/bugs/
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WinBUGS is actually a graphical user interface based on Microsoft Windows version 

of BUGS program which was jointly developed by a team of UK researchers at the 

MRC Biostatistics Unit in Cambridge, and the Imperial College School of Medicine 

at St Mary’s of London for Bayesian analysis of complex statistical models using 

MCMC techniques. The WinBUGS can fit fixed-effect and multilevel models using 

the Bayesian approach and can handle missing data. Deviance Information Criterion 

(DIC) can be used for model comparison or goodness-of-fit assessment of the 

hypothesized model except for the mixture models [96], [97]. Bayesian analysis 

using the WinBUGS typically involves the following components: 

1. Specifying a model that describes the relation between the unknown 

parameters and the observed data. 

2. Specifying prior distributions for the unknown parameters. 

3. Obtaining the posterior distributions. 

4. Making inference using the posterior distributions. 

 

In the WinBUGS, the model is specified by defining distributions for the data and 

associated variables. The model specification just involves the calling of the most 

frequently-used closed-form distributions such as normal, multivariate normal, 

Bernoulli, binomial, categorical, Poisson etc. which are provided by the WinBUGS. 

The relationships among variables can be defined by using the <- operator. Prior 

distributions on the model parameters are also provided in the model specification 

file, using the ~ operator. 

 

The WinBUGS manual provides more detailed descriptions of the language along 

with lists of the available logical functions and distributions [96]. The manual also 

describes how to specify code and run the model and how to evaluate the results. 

Besides various hypothetical and real life examples which are specified in different 

type of models (normal hierarchical, multivariate hierarchical, logistic, nonlinear 

etc.) are provided in volume I and II of WinBUGS examples [98]. 

 

The last version of WinBUGS is 1.4.3 which was released in August 2007. The last 

version is still available but less frequently used. There is an open source successor 

which is called as OpenBUGS, It essentially contains the core BUGS code with a 

variety of interfaces and runs under Windows with a very similar graphical user 

interface to WinBUGS. It can be utilized externally by calling the corresponding 

programming interface from R language. 

 

2.7.3.2 AMOS 

IBM® SPSS® AMOS (Analysis of Moment Structures) is an easy-to-use and 

powerful software that implements SEM [39], [99], [100]. It provides a graphical 

interface and visual tools to specify models via path diagrams. Models can be 

specified, estimated, assessed, and presented in an intuitive diagram based on 

previous studies and background information. On the other hand, a non-graphical, 

programmatic method can also be used to specify models. AMOS can also be used to 

impute missing values and latent scores and utilized for longitudinal studies, 

multiple-group and reliability analysis. The features of AMOS and how these 

features have been used will be explained in the upcoming chapters.  
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   CHAPTER 3 

3 DATA AND METHODOLOGY 
 

 

 

This chapter introduces the data sets and describes the features of data sets that are 

used in this study. It also explains the methodology used to achieve the goals of the 

study. 

 

3.1 Data 

Two independent data sets were used for this study: 1) The combined multi-ethnic 

IWPC data set, and 2) The Turkish data set. The Warfarin Consortium Combined 

Data Set which consists of 5700 subjects and 68 features are provided by the IWPC 

were used [11], [29]. The IWPC data set is available at the web site of the 

Pharmacogenomics Knowledge Base (PharmGKB) [29]. The Turkish data set, on the 

other hand, contains 107 Turkish patients who were enrolled at the department of 

Cardiology and Cardiovascular Surgery of Kartal Koşuyolu Education and Research 

Hospital between April 2009 and January 2010. 

3.1.1 IWPC Data 

The Warfarin Consortium Combined Data Set (NEJM 2009) which is provided by 

the International Warfarin Pharmacogenetics Consortium (IWPC) is used [11], [29]. 

A number of pharmacogenomics research centers have contributed to this data set 

relating warfarin dosing to a variety of clinical and genetic parameters including 

genotypes of CYP2C9 and VKORC1. This combined data set consists of 5700 

subjects and 68 features. These features are described in detail within the metadata 

provided in Appendix A. The feature set is preprocessed, reduced and organized as 

26 features based on the suggestions of domain experts and the prior knowledge 

extracted from the literature. Some features are not used in the model. Some new 

features are derived from original features of the data set. For instance, the 

comorbidities feature of the original data set is converted into a new feature set of 

diseases co-occurring in a patient. Some of the features related with medications, and 

herbal and nutritional intakes are not used at this stage of the study. Medications 

provided in the original data set, minerals and food supplements, vitamin K will be 

studied as a future work. The selected features are represented as of 4 data types: 

continuous, ordinal, categorical and binary.  These features are briefly summarized in 

Table 4. The detailed descriptive statistics (including Mean, Std. Error of Mean, 

Median, Std. Deviation, Variance, Skewness, Std. Error of Skewness, Kurtosis, Std. 

Error of Kurtosis) for the selected features are provided in Appendix B. 



 

23 

 

Table 4: The Selected Features of the IWPC Data Set 

No Feature Name  Label Description Type 
Missing 

Rows 

1 Age X1 

Represented in bins 

(starting from 1 corresponding to a 

decade) 

Ordinal 42 

2 BSA X2 
The Body Surface Area   

SQRT(Height*Weight/3600) 
Continuous 130 

3 Pulmonary Embolism X4 0 for Absence, 1 for Existence Binary 0 

4 Stroke X5 0 for Absence, 1 for Existence Binary 0 

5 
Deep Venous 

Thrombosis 
X7 0 for Absence, 1 for Existence Binary 0 

6 Cancer X12 0 for Absence, 1 for Existence Binary 0 

7 Cardiac Failure X13 0 for Absence, 1 for Existence Binary 0 

8 Hepatic Insufficiency X16 0 for Absence, 1 for Existence Binary 0 

9 Renal Insufficiency X17 0 for Absence, 1 for Existence Binary 0 

10 Hypoproteinemia X18 0 for Absence, 1 for Existence Binary 0 

11 Race X23 

1: White+Caucasian+Hispanic  

2: Black or African American  

3: Asian (Japanese, Han Chinese, 

Chinese, Korean, Malay, Indian)  

4: Others (Other Mixed 

Race+Intermediate) 

Categorical 0 

12 Rifampin X24 0 for Absence, 1 for Existence Binary 0 

13 Amiodarone X26 0 for Absence, 1 for Existence Binary 0 
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14 Fluconazole X27 0 for Absence, 1 for Existence Binary 0 

15 Fluvastatin X29 0 for Absence, 1 for Existence Binary 0 

16 Lovastatin X32 0 for Absence, 1 for Existence Binary 0 

17 Aspirin X41 0 for Absence, 1 for Existence Binary 0 

18 Smoking X42 0 for Absence, 1 for Existence Binary 0 

19 CYP2C9 X46 0 for Absence, 1 for Existence Binary 145 

20 VKORC1:-1639G>A X48 0 for Absence, 1 for Existence Binary 1499 

21 VKORC1:1173C>T X49 0 for Absence, 1 for Existence Binary 2109 

22 
Therapeutic Dose of 

Warfarin 
Y1 

Mean: 30,04 mg/week 

Sd: 17,37 mg/week 
Continuous 172 

23 
The INR on 

Therapeutic Dose 
Y2 

Mean: 2,06 mg/week 

Sd: 0,9 mg/week 
Continuous 732 

 

3.1.2 Turkish Data Set 

The data set contains 107 Turkish patients who were enrolled at the department of 

Cardiology and Cardiovascular Surgery of Kartal Koşuyolu Education and Research 

Hospital between April 2009 and January 2010 [21]. The patients were selected 

among 263 individuals who had been using warfarin for at least 4 months and their 

last three INR measurements were within the therapeutic range (2 to 3) for the stable 

daily dose. The mean daily warfarin dose was reported as 5.16 ± 1.95 mg (range 

1.43–10.00 mg). 

 

22 data features (only relevant anonymous features are considered) which include 

age, height, weight, gender, smoking, alcohol usage, grapefruit consumption, tea and 

coffee intake, indication for warfarin, weekly prescribed warfarin dose, 

hemorrhage/embolisms, other co-morbidities, concomitant medications and 

pharmacogenomics information were selected. Turkish data set also contains the 

polymorphisms of CYP4F2 and EPHX1 in addition to CYP2C9*2, CYP2C9*3, 

VKORC1 -1639G>A and VKORC1 1173C>T that exist in the IWPC data set.  
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On the other hand, patients who had co-morbidities such as hepatic dysfunction, 

cancer, advanced heart failure, liver disease and diseases with bleeding tendency or 

patients who were taking medications that interact with warfarin had been excluded 

from the original clinical study. Table 5 shows the descriptive statistics for the 

communized features taken from Turkish data set with respect to the IWPC data set. 

 

Table 5: The Descriptive Statistics for the Communized Features 

Continuous 

Features 

Data Set 

IWPC Turkish 

Body Surface 

Area (BSA) 

m
2 

N (Valid) 4523 N (Valid) 107 

N (Missing) 1177 N (Missing) 0 

Mean 1.8985 Mean 1.8653 

Std. Deviation 0.29896 Std. Deviation 0.17225 

Target 

(International 

Normalized 

Ratio) INR 

N (Valid) 4870 

N/A 
N (Missing) 830 

Mean 2.5392 

Std. Deviation 0.16877 

Therapeutic 

Dose of 

Warfarin 

milligrams/week 

N (Valid) 4837 N (Valid) 107 

N (Missing) 863 N (Missing) 0 

Mean 31.4621 Mean 36.1332 

Std. Deviation 16.82898 Std. Deviation 13.66407 

Categorical 

Features 

Data Set 

IWPC Turkish 

Age
 

Values Frequency Percent Values Frequency Percent 

10-19 (1) 14 0.2% 10-19 (1) 0 0% 

20-29 (2) 130 2.3% 20-29 (2) 5 4.7% 

30-39 (3) 230 4.0% 30-39 (3) 14 13.1% 

40-49 (4) 540 9.5% 40-49 (4) 19 17.8% 

50-59 (5) 1085 19.0% 50-59 (5) 31 29.0% 

60-69 (6) 1384 24.3% 60-69 (6) 23 21.5% 

70-79 (7) 1570 27.5% 70-79 (7) 15 14.0% 

80-89 (8) 670 11.8% 80-89 (8) 0 0% 

90+ (9) 85 0.6% 90+ (9) 0 0% 

Missing 

(99) 

42 0.7% 
Missing (99) 

0 0% 

Race 

Values Frequency Percent 

N/A 

White (1) 3239 56.8% 

African (2) 504 8.8% 

Asian (3) 1634 28.7% 

Other (4) 93 1.6% 

Missing 

(99) 

230 4.0% 

CYP2C9*2 

Values Frequency Percent Values Frequency Percent 

*1/*1 (1) 4684 82.2% *1/*1 (1) 86 80.4% 

*1/*2 (2) 737 12.9% *1/*2 (2) 18 16.8% 

*2/*2 or 

*2/*3 (3) 

125 2.2% *2/*2 or 

*2/*3 (3) 

3 2.8% 

Missing 

(99) 

150 2.6% 
Missing (99) 

0 0% 

CYP2C9*3 
Values Frequency Percent Values Frequency Percent 

*1/*1 (1) 4957 87.0% *1/*1 (1) 87 81.3% 
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*1/*3 (2) 498 8.7% *1/*2 (2) 18 16.8% 

*3/*3 or 

*2/*3 (3) 

91 1.6% *2/*2 or 

*2/*3 (3) 

2 1.9% 

Missing 

(99) 

150 2.6% 
Missing (99) 

0 0% 

VKORC1 -

1639G>A 

Values Frequency Percent Values Frequency Percent 

A/A (1) 1485 26.1% A/A (1) 28 26.2% 

A/G (2) 1470 25.8% A/G (2) 54 50.5% 

G/G (3) 1246 21.9% G/G (3) 25 23.4% 

Missing 

(99) 

1499 26.3% 
Missing (99) 

0 0% 

VKORC1 

1173C>T 

Values Frequency Percent Values Frequency Percent 

T/T (1) 1535 26.1% T/T (1) 27 25.2% 

C/T (2) 1070 18.8% C/T (2) 55 51.4% 

C/C (3) 986 17.3% C/C (3) 25 23.4% 

Missing 

(99) 

2109 37.0% 
Missing (99) 

0 0% 

CYP4F2 N/A 

Values Frequency Percent 

C/C (1) 40 37.4% 

C/T (2) 49 45.8% 

T/T (3) 18 16.8% 

Missing (99) 0 0% 

Binary 

Features 

Data Set 

IWPC Turkish 

Pulmonary 

Embolism 

Values Frequency Percent Values Frequency Percent 

No PE (0) 5229 91.7% No PE (0) 101 94.4% 

PE (1) 471 8.3% PE (1) 6 5.6% 

Missing 

(99) 

0 
0% Missing (99) 0 0% 

Stroke 

Values Frequency Percent 

N/A 

No Stroke 

(0) 

5481 
96.2% 

Stroke (1) 219 3.8% 

Missing 

(99) 

0 
0% 

Cardiac 

Indications 

Values Frequency Percent 

N/A 

No CI (0) 3360 58.9% 

CI (1) 2340 41.1% 

Missing 

(99) 

0 
0% 

Deep Vein 

Thrombosis 

Values Frequency Percent Values Frequency Percent 

No DVT (0) 5168 90.7% No DVT (0) 98 91.6% 

DVT (1) 532 9.3% DVT (1) 9 8.4% 

Missing 

(99) 

0 
0% Missing (99) 

0 
0% 

Interventions 

and Surgery 

Values Frequency Percent 

N/A 

No Surgery 

(0) 

4481 
78.6% 

Surgery (1) 1219 21.4% 

Missing 

(99) 

0 
0% 

Cancer Values Frequency Percent N/A 
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No Cancer 

(0) 

50 
0.9% 

Cancer (1) 228 4.0% 

Missing 

(99) 
5422 95.1% 

Cardiac Failures 

Values Frequency Percent 

N/A 

No CF (0) 3553 62.3% 

CF (1) 879 15.4% 

Missing 

(99) 
1268 77.8% 

Valve 

Replacement 

Values Frequency Percent 

N/A 

No VR (0) 3223 56.5% 

VR (1) 1016 17.8% 

Missing 

(99) 
1461 74.4% 

Rifampin 

Values Frequency Percent 

N/A 

No 

Rifampin 

(0) 

2419 

42.4% 

Rifampin 

(1) 

4 
0.1% 

Missing 

(99) 
3277 57.5% 

Amiodarone 

Values Frequency Percent Values Frequency Percent 

No 

Amiodarone 

(0) 

3905 

68.5% 

No 

Amiodarone 

(0) 

106 99.1% 

Amiodarone 

(1) 

277 
4.9% 

Amiodarone 

(1) 
1 0.9% 

Missing 

(99) 
1518 26.6% Missing (99) 0 0% 

Fluconazole 

Values Frequency Percent 

N/A 

No 

Fluconazo. 

(0) 

2409 42.3% 

Fluconazole 

(1) 
17 0.3% 

Missing 

(99) 
3274 57.4% 

Fluvastatin 

Values Frequency Percent 

N/A 

No 

Fluvastatin 

(0) 

2411 42.3% 

Fluvastatin 

(1) 
12 0.2% 

Missing 

(99) 
3277 57.5% 

Lovastatin 

Values Frequency Percent 

N/A 

No 

Lovastatin 

(0) 

2398 42.1% 

Lovastatin 

(1) 
33 0.6% 
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Missing 

(99) 
3269 57.3% 

Aspirin 

Values Frequency Percent 

N/A 

No Aspirin 

(0) 
2924 51.3% 

Aspirin (1) 916 16.1% 

Missing 

(99) 
1860 32.6% 

Smoking 

Values Frequency Percent Values Frequency Percent 

No 

Smoking 

(0) 

2771 48.6% 
No Smoking 

(0) 
98 91.6% 

Smoking 

(1) 
449 7.9% Smoking (1) 9 8.4% 

Missing 

(99) 
2480 43.5% Missing (99) 0 0% 

 

3.2 Methodology 

The proposed framework uses a non-linear approach based on Bayesian Structural 

Equation Modelling to improve the accuracy and efficacy of warfarin dosing while 

using the proper subset of genetic and non-genetic features provided in IWPC and 

Turkish data sets  [15], [18], [29]. An iterative method is applied until the best fitted 

model is obtained which involved several steps of data pre-processing, data analysis, 

model construction, Bayesian inference, testing and validation (Figure 5).  

 

 

Figure 5: Steps followed to establish the modelling and estimation framework for 

warfarin dosing 

Initial steps include some extensive data processing and analysis tasks such as 

feature selection, missing value analysis and data imputation. Both the IWPC and 

Turkish data sets were obtained in excel format. Therefore, Excel and IBM SPSS 

Statistics 21 [101], [102] were used extensively for the initial data processing steps 

such as data inspection and data re-coding. The preliminary results indicate that some 

of the attributes seem to have less impact (such as X6: cardiac indications).  
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Therefore, it is better to select the more relevant attributes in the first place and then 

apply the Bayesian SEM on a reduced number of attributes [14], [100], [101]. The 

less relevant attributes could then be incorporated into the model in later steps. This 

approach was suggested to improve the efficacy and decrease the complexity. 

 

Once the data set is ready for modelling and inference, Bayesian SEM is applied. In 

this chapter, the features of the data sets used are expressed and the data pre-

processing methods are elaborated in the first place. In the second place, the actions 

taken for conducting Bayesian SEM and estimation are explained. 
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   CHAPTER 4 

4 PROPOSED FRAMEWORK FOR WARFARIN DOSING 
 

 

 

This chapter elaborates the steps taken to establish the proposed Bayesian modeling 

and estimation framework for pharmacogenomics driven warfarin dosing based on 

the on the methodology provided in the previous chapter. The major steps are as 

follows: 

 

a) Data Inspection and data pre-processing,  

b) Missing value analysis and data imputation,  

c) Feature selection,  

d) Bayesian modelling and estimation using AMOS, 

e) Assessing the performance of the model. 

 

4.1 Data Inspection and Data Pre-processing 

The first step was to inspect the data set and analyze its features. Several descriptive 

statistics were obtained to assess the nature of the features. There were basically 3 

types of features: continuous, binary and categorical. Apart from continuous binary 

and categorical features, there were also text based features for concomitant diseases 

that had been typed in free format giving a list of diseases co-occurring in a patient 

separated by commas. These features were processed by some scripts and converted 

into a set of binary features such as cancer, diabetes, cardiac failure, hepatic failure, 

renal insufficiency, and hypo-proteinemia based on the suggestions of the domain 

experts and frequency. Similar processing was performed for the features related 

with indications. The features related with medications, herbal and nutritional intakes 

were also processed in a similar way, but these features could not be made much use 

of due to the lack of data. 

 

Consequently, an initial set of 68 features were obtained for IWPC data set and all 

features were inspected using the descriptive statistics according to the type of the 

feature [101]. Continuous features were assessed with mean, standard deviation, 

skewness and kurtosis to understand the characteristics of the distribution. 

Categorical and binary features were analyzed based on the frequencies. Categorical 

features having n possible values were recoded to m binary features where only one 

of them was active for the corresponding data row. For this reason, the categorical 

features such as Age and Race were initially assessed with histogram plots. For 
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instance, the histogram of the features Age is provided in Figure 6. 

 

 

Figure 6: The Histogram Plot for Age 

On the other hand, the continuous features were assessed against the target variable 

(Therapeutic Dose of Warfarin) to reveal their distribution characteristics. Such a 

plot is provided for the variable INR on Therapeutic Dose against the target variable 

Therapeutic Dose of Warfarin. The plot (Figure 7) exhibited a non-linear relationship 

which roughly indicated that INR on Therapeutic Dose could be accounted for the 

variation in warfarin dose. Note that, the continuous features were normalized to 

eliminate kurtosis using natural logarithm. For instance, the therapeutic dose of 

warfarin (Y1) was also normalized using the log function. 
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Figure 7: INR on Therapeutic Dose vs Therapeutic Dose of Warfarin 

Although IWPC data set originally contains 5700 subjects, the subjects who were 

marked as patients that reached a stable dose of warfarin (provided as a feature in the 

data set) and had an INR of 2 to 3 are selected (4523 rows) at the very first step of 

data processing within the scope of this study. Some genetic and non-genetic features 

such as VKORC1 1542, VKORC1 4451, and taking azoles were not utilized in the 

model because of the high percentage of missing rows. Some new features were 

derived from original features of the data set. For instance, the co-morbidities feature 

of the original data set which had been expressed as a list of diseases, were converted 

into a set of new binary features that correspond to co-occurring diseases (cancer, 

diabetes, cardiac failures, valve replacement). Similar processing was performed for 

the features related with indications. Some of the features related with medications, 

and herbal and nutritional intakes were left for future studies.  

 

Since the non-synonymous SNPs in CYP2C9 (*2 and *3) are both aligned with 

reduced enzyme activity, they were treated as separate categorical factors. The 

genotypes of CYP2C9*2 (*1/*1, *1/*2, *2/*2) were coded as a categorical factor 

having values 1 (wild), 2 (heterozygote) and 3 (mutant) respectively.  Similarly, the 

genotypes of CYP2C9*3 (*1/*1, *1/*3, *3/*3) were coded as 1 (wild), 2 

(heterozygote) and 3 (mutant). The individuals having both of the CYP2C9*2 and 

CYP2C9*3 mutations (*2/*3) were accepted as mutant.  

 

The genotypes of VKORC1 -1639G>A (A/A, A/G, G/G) were coded as a categorical 

factor having values 1 (mutant), 2 (heterozygote) and 3 (wild). Similarly, VKORC1 

1173C>T (T/T, T/C, C/C) were coded as a categorical factor having values 1 

(mutant), 2 (heterozygote) and 3 (wild). 

 

The CYP2C9 (X46) stands for the categories of variants of CYP2C9. Recall that, the 

variants of CYP2C9 have been shown to influence warfarin dose as well as affecting 

the clearance of several other drugs [22], [33], [70]. Combined QC CYP2C9 attribute 
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from the original data set which contained the combined separate genotypes for *2 

and *3 is used. CYP2C9*1 metabolizes warfarin normally, CYP2C9*2 causes a 

reduction in warfarin metabolism by 30%, while CYP2C9*3 causes a reduction in 

warfarin metabolism by 90%. Because warfarin given to patients with *2 or *3 

variants will be metabolized less efficiently, the drug will remain in the circulation 

longer, so lower warfarin doses will be needed to achieve anticoagulation. The 

prevalence of each variant varies by race; 10% and 6% of Caucasians carry the *2 

and *3 variants, respectively, but both variants are rare (< 2%) in those of African or 

Asian descent. These separate genotypes were initially represented as single 

CYP2C9 diplotypes with possible values *1/*1 (1), *1/*2 (2), *1/*3 (3), *2/*2 (4), 

*2/*3 (5), *3/*3 (6). Therefore, there were 6 categories having frequencies 4164, 

737, 498, 56, 69 and 22 out of 5700 respectively. The category (1) represented the 

situation without polymorphism and had the highest frequency as expected. Note 

that, diplotype information was not reported for 145 subjects.  

 

The VKORC1:-1639G>A (X48) represents one of the most well-known SNPs of 

VKORC1 [26], [67]. It is a polymorphism in the promoter region of VKORC1 that is 

believed to be the causative SNP for the low dose phenotype. This polymorphism 

alters the VKORC1 transcription factor binding site and the activity of the G allele is 

increased by 44% over the activity of the A allele [67]. The changes in gene 

expression presumably lead to fewer functional copies of the mature VKORC1 

protein, which is the rate limiting enzyme in the vitamin K cycle. This polymorphism 

has pronounced differences in its frequency by ethnic group as it is actually the 

majority allele (around 90%) in Asian populations and appears to explain the lower 

warfarin dose requirement for individuals of Asian descent. This variant is also quite 

common in Caucasians, with an allele frequency typically around 40%.  

 

The attribute can take the values A/A (1), A/G (2), G/G (3) where G/G (3) actually 

represents the condition without polymorphism.  

The categorical frequencies for X48 are 1485, 1470, and 1246 respectively. For 1489 

subjects, a category is not stated. 

 

The VKORC1:1173C>T [13] (X49) is the attribute that represents the SNP in the 

first intron of VKORC1, and is in near perfect linkage disequilibrium with 

VKORC1:-1639G>A (X48). This SNP is highly observed in Asian populations 

(Japanese, Han Chinese) can take the values T/T (1), C/T (2), C/C (3) where T/T (1) 

actually represents the condition without polymorphism. In the original data set, the 

frequencies of X49 with respect to the corresponding categories are calculated as 

1535, 1070, and 936 respectively. There are 2109 unreported values for this attribute. 

 

Therapeutic Dose of Warfarin (Y1) is the target manifest variable. It is a continuous 

variable with a mean of 30.0652 and standard deviation of 17.34. There are 172 

missing values. 

 

The International Normalized Ration (INR) on Therapeutic Dose (Y2) is the second 

target manifest variable. It is also a continuous variable with a mean of 2.1213 and 

standard deviation of 0.96. Note that, the whole data set is not suitable for the 

implementation of Bayesian SEM. Therefore, a series of data pre-processing and data 
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imputation techniques are applied. Consequently, an imputed data of 4523 rows and 

24 columns are obtained. 

 

One third of the imputed data is put aside for testing purposes using cross validation. 

The remaining two thirds are used for Bayesian estimation. 

 

4.2 Missing Value Analysis and Data Imputation 

Proper handling of missing values is critical for the soundness of any analyses [103], 

[104], [105], [106], [107]. Missing data reduce the representativeness of the sample 

and can therefore distort inferences about the population. Various techniques can be 

used to handle missing data. One trivial way to deal with the missing values is to 

simply remove the rows having missing values from the working data set (listwise or 

pairwise deletion). If this approach were applied for IWPC dataset, the number of 

rows would be reduced to 108 from 5700.  

 

Other technique which is mainly used is imputation (filling in or rectangularization). 

Imputation is the substitution of a value for a missing data point or a missing 

component of a data point. Once all missing values have been imputed, the dataset 

can then be analyzed using standard techniques for complete data. However, it is not 

trivial to impute missing data, if there are more than one missing covariates for a 

sample. Many features of IWPC data set contained missing values. For instance, the 

features X1:Age and X2:BSA had relatively small number of missing values which 

were 42 and 130 respectively but the features for indications, co-morbidities and -

medications contained significantly large number of missing values. The summary of 

missing value analyses and corresponding frequencies (Table 6) demonstrated that 

the percent missing ranges from 0.4% to 94% with respect to the factor.  

 

Different approaches were followed according to the percent of data missing [103], 

[104]. Therefore, 17 rows of race and 33 rows of age were listwise deleted and 

eventually 4473 rows are left for further data analyses and modeling. For factors 

having more than 5% and less than 50% missing, multiple imputation was used 

accordingly. Factors (cancer 94,0%, fluvastatin 53,1%, rifampin 53,1%, fluconazole 

53,0%, lovastatin 52,9%) having more than 50% missing values were totally 

excluded from the study since multiple imputation performs poorly in these cases.  
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Table 6: Statistics for Missing Values 

  

Missing 

Valid N Mean 

Std. 

Deviation N Percent 

CANCER 4251 94.0% 272     

FLUVASTATIN 2400 53.1% 2123     

RIFAMPIN 2400 53.1% 2123     

FLUCONAZOLE 2397 53.0% 2126     

LOVASTATIN 2392 52.9% 2131     

VKORC1  1173C>T 1917 42.4% 2606     

SMOKING 1686 37.3% 2837     

TDoW-wrt-INRonTD 1375 30.4% 3148 1.4786 .21149 

DIABET 1375 30.4% 3148     

AMIODARONE 1111 24.6% 3412     

ASPIRIN 1048 23.2% 3475     

VKORC1 -1639G>A 824 18.2% 3699     

VALVE REPLACEMENT 804 17.8% 3719     

TARGET_INR 754 16.7% 3769 2.5525 .18264 

CARDIAC FAILURES 590 13.0% 3933     

AGE 33 .7% 4490     

RACE 17 .4% 4506     

CYP2C9*3 0 0.0% 4523     

CYP2C9*2 0 0.0% 4523     

INTERVENTIONS AND 

SURGERY 
0 0.0% 4523     

DVT 0 0.0% 4523     

CARDIAC INDICATIONS 0 0.0% 4523     

STROKE 0 0.0% 4523     

PE 0 0.0% 4523     

BSA 0 0.0% 4523 1.8985 .29896 

 

In the first stage of the study, the multiple imputation was implemented using Amelia 

toolbox [104]. Amelia II’s Expectation Maximization Bootstrap (EMB) algorithm 

allows users to impute incomplete data sets. Thus, the analyses which require 

complete observations can appropriately use all the information present in a dataset 

with missingness, and avoid the biases, inefficiencies, and incorrect uncertainty 

estimates that can result from dropping all partially observed observations from the 

analysis. 

 

The result of imputation was validated by comparing the distribution density of the 

original data set against the imputed data set. The suggestions of the domain experts 

and the prior knowledge gathered from the literature were also used to validate the 

imputed values. Based on the prior knowledge that the polymorphism 

VKORC1:1173C>T is highly observed in Asian population, the imputed values that 



 

36 

 

correspond to Asian individuals were checked whether they were polymorphic [35]. 

The rows that contain over-imputed values are treated as outliers and deleted from 

the imputed data set. An imputed data of 4523 rows and 24 columns are obtained 

consequently. 

 

In the second stage of the study, the multiple imputation techniques of SPSS 

Statistics were utilized. SPSS Statistics makes use of a Fully Conditional 

Specification (FCS) method based on MCMC algorithm for multiple imputation 

[101], [103]. The missing patterns of the data set are analyzed. The features such as 

cancer having a high percentage of missing values were excluded from the study. For 

the rest of the independent features which were binary variables essentially, multiple 

imputation was performed using logistic regression on the recoded data set. The 

number of imputations was set to 5. The number of between-imputation iterations 

was assigned to 200 (a data set was saved every 200
th

 iteration). In order to assess the 

accuracy of the imputations, some of the original data are randomly deleted, multiple 

imputation was carried out and the imputed values were compared to the actual 

values. The comparison was made for randomly selected 100 cases and the 

proportion of the imputed categories that matched the true categories was calculated. 

The comparison results indicated that the imputations were ≈96% accurate. 

 

4.3 Feature Selection 

 

Factors were excluded from the analysis for several reasons other than being missing. 

For instance, race was discarded due to two main reasons: a) Multicollinearity: Race 

was shown to be strongly correlated with the genetic factors in IWPC data set. b) 

Communization: Race was obviously not a factor in Turkish data set and two data 

sets were needed to be communized for comparison purposes. Note that, 

multicollinearity does not reduce the reliability of the model or the overall predictive 

power but can affect the results of the individual predictors. VKORC 1173C>T was 

also extracted from the model because of multicollinearity. The result of the linear 

co-variance analysis between VKORC1: -1639G>A and VKORC1: -1639C>T where 

the therapeutic dose of warfarin (Y) was the dependent variable indicated that two 

genetic factors were highly correlated which is also consistent with the fact that two 

mutations are in near perfect linkage disequilibrium with each other (Table 7).  
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Table 7: Linkage Disequilibrium for VKORC1 SNPs 

Source 

Type III 

Sum of 

Squares 

df 
Mean 

Square 
F Sig. 

Corrected Model 23.538
a
 6 3.923 109.953 .000 

Intercept 84.505 1 84.505 2368.485 .000 

x48 .219 2 .110 3.071 .047 

x49 .719 2 .359 10.072 .000 

x48 * x49 .222 2 .111 3.115 .045 

Error 49.701 1393 .036     

Total 3067.226 1400       

Corrected Total 73.239 1399       

a. R Squared = .321 (Adjusted R Squared = .318) 

 

In data mining, pattern recognition, machine learning and statistics, feature selection, 

also known as variable selection, feature reduction, attribute selection or variable 

subset selection, is the technique of selecting a subset of relevant features for 

building robust learning models. The removal of the most irrelevant and redundant 

features from the data set helps to improve the performance of learning models. The 

features can be selected to be mutually far away from each other (minimum 

redundancy), while they still have "high" correlation to the classification variable 

(maximum relevance). One of the algorithms in this category is so-called minimum-

redundancy-maximum-relevance selection (mRMR) [108], [109] .  

 

In this study, mRMR based on Mutual Information Difference (MID) criterion is 

used to obtain the most relevant feature set with minimum classification error. For 

mutual information based feature selection methods, the algorithm is asserted as it 

leads to better results with categorical data compared to the continuous data. Our 

data set contains mostly categorical or binary data. A binning algorithm is utilized 

before the application of mRMR for the features such as X1: BSA, X10: Target INR 

etc.  

 

Note that, the feature selection algorithm has been run separately for the two target 

variables Y1: Therapeutic Dose of Warfarin and Y2: INR on Therapeutic Dose. The 

feature selection algorithm is applied heuristically in groups against Y1 and Y2. For 

instance, the medications and intakes data (x24-x45) are processed separately in 

conjunction with Y1 and Y2. The results are provided below in order:  

 

1. The selected features related with Medications and Intakes are listed 

in descending order according to their importance as  follows: 

 

 X42-Smoking 

 X41-Aspirin 

 X24-Rifampin 

 X26-Amiodarone 
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 X27-Fluconazole 

 X29-Fluvastatin 

 X32-Lovastatin 

 

2. The selected features related with physical features, co-morbidities 

and indications are listed in descending order according to their importance as  

follows: 

 

 X2-BSA 

 X1-AGE 

 X23-RACE 

 X14-CARDIAC FAILURE 

 X10-TARGET-INR 

 X7-DVT 

 X4-PE 

 X5-STROKE 

 X12-CANCER 

 X16-HEPATIC FAILURE 

 X17-RENAL INSUFFICIENCY 

 X18-HYPOPROTEINEMIA 

 

3. The pharmacogenetic features are listed in descending order as  

follows: 

 

 X46-CYP2C9 

 X48-VKORC1 -1639 

 X49-VKORC1 1173 

 

68 attributes were reduced to 24 attributes (including the target variables Y1 and Y2) 

as a result of the feature selection algorithm. 

 

The feature selection was also applied by using SPSS Statistics on the processed and 

imputed IWPC data set and the similar set of features was obtained (Table 8): Age, 

BSA, PE/DVT, Amiodarone, Smoking, CYP2C9*2, CYP2C9*3, VKORC1 -

1639G>A, Target-INR and Warfarin Dose. The data used in modelling consisted of 

4473 rows and 10 features. 1491 subjects were randomly selected to form the 

validation cohort. The remaining 2982 rows were used as the training cohort for the 

IWPC data set.  
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Table 8: The Results of Principal Component Analyses by using SPSS Statistics 

 Component 

 1 2 3 4 5 6 7 8 9 

AGE -.519 -.066 .435 -.236 .213 -.134 .165 .196 .231 

BSA .128 -.166 -.414 .248 -.272 .207 .568 -.023 -.014 

RACE .692 -.075 .123 .113 -.157 -.158 -.150 -.307 .090 

AMIODARONE -.450 -.095 -.399 .216 .169 .084 -.317 .367 -.035 

CYP2C9*2 -.231 .380 .177 -.394 .285 .227 .205 -.154 -.032 

CYP2C9*3 -.188 -.026 .037 -.440 -.091 .528 .109 -.096 -.020 

VKORC1 -1639G>A .752 .121 .227 .108 .468 .166 -.159 .141 .040 

VKORC1  1173C>T .754 .113 .213 .128 .459 .168 -.153 .154 .049 

Therapeutic Dose of Warfarin .606 -.030 -.285 .196 .119 .135 .419 .090 .002 

INR or Therapeutic Dose .021 .255 .015 .016 -.043 -.466 .234 .601 -.248 

INTERVENTIONS AND 

SURGERY 

-.127 .892 -.055 .127 -.155 .011 -.097 -.125 .126 

CARDIAC INDICATIONS -.660 -.181 -.052 .074 .469 -.094 .104 -.001 .165 

CARDIAC FAILURES -.364 -.015 -.523 .380 .226 .021 -.222 -.149 -.021 

VALVE REPLACEMENT -.108 .901 .015 .100 -.107 .032 -.018 -.071 .107 

STROKE -.022 -.168 .447 .544 -.250 .192 .005 -.002 -.368 

DVT .436 -.095 -.269 -.462 -.249 .137 .094 .311 .286 

PE .396 -.001 -.200 -.412 .050 -.375 -.164 -.036 -.201 

TARGET INR -.016 .627 .013 .026 -.066 -.022 .180 .130 -.314 

ASPIRIN -.225 -.110 .442 .205 -.170 .380 -.016 .315 .071 

SMOKING .099 .227 -.209 .220 -.100 .136 -.111 .219 .540 

LOVASTATIN -.037 -.134 .201 -.031 -.569 -.175 -.317 .102 .215 

DIABETES .028 -.058 .271 .322 .093 -.417 .438 -.189 .394 

 

Note that, Turkish data set has no missing values for the features that are included in 

this study and the similar features used for IWPC are also utilized for the Turkish 

data set: Age, BSA, Indications, CYP2C9*2, CYP2C9*3, CYP4F2, VKORC1 -

1639G>A, VKORC1 1173C>T, Warfarin Dose. The Turkish data set is randomly 

split up into two cohorts as well: Training cohort (72 patients) and validation cohort 

(35 patients). 

 

4.4 Bayesian Modelling and Estimation with AMOS 

Structural equation modeling (SEM) was used as the modelling and estimation 

framework since it covers a broad range of approaches from linear regression to 

Bayesian inference including the confirmatory factor analysis [14], [20]. Bayesian 

approach which allows nonlinearity, missing data, various types of observed 

variables (mixed categorical, binary, and continuous) was preferred to other 

approaches due to its flexibility and strength in estimation and analysis for SEM 

frameworks. Bayesian SEM, therefore, was considered to be the most convenient 

approach for the complex warfarin dosing problem containing several types of 

covariates and missing data. 

 

The initial hypothetical structural equation model for warfarin dosing initially 

consisted of 24 observed variables –two of them are dependent observed variables 

Y1 and Y2- was expressed in LISREL (LInear Structural RELations) notation 

(Figure 8). Note that, the model was constructed intuitively based on the previous 
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studies and suggestions of the domain experts. In LISREL notation, the observed 

(manifest) variables are shown in rectangles whereas the latent variables are shown 

in ellipses or circles [19], [20]. Remember that a latent variable is a variable that 

cannot be observed directly and must be inferred from measured variables. The 

measurement model defines the constructs (latent variables) that the model will use, 

and assigns observed variables to each latent variable. The arrows between the latent 

variables indicate these structural connections. Latent variables are also implied by 

the covariance values among two or more measured variables; and called as factors 

(i.e., factor analysis), constructs or unobserved variables. Therefore, the latent 

variables are important for the factor analysis. Error terms (“disturbances” for latent 

variables) are also included in the SEM diagram, represented by “e”.  

 

In the hypothetical model (Figure 8), Physical Features (ξ1), Indications (ξ2), Co-

Morbidities (ξ3), Inducers (ξ4), Inhibitors (ξ5), Other Intakes and Medications (ξ6), 

CYP2C9 (ξ7), VKORC1 (ξ8), Ethnicity (ξ9) are the latent exogenous variables and 

are represented in circles. Warfarin Dose (η1) is the latent endogenous variable and 

is also represented in circle. Exogenous observed variables are represented in 

rectangles and with the letter X. Age (X1) and BSA (X2) were assigned to the latent 

variable, Physical Features (ξ1). PE (X4), Stroke (X5), Cardiac Indications (X6), 

DVT (X7), and Interventions and Surgery (X8) were set to Indications (ξ2). Cancer 

(X12), Diabetes (X13), Cardiac Failures (X14), and Valve Replacement (X15) were 

represented as factors of Co-Morbidities (ξ3). Rifampin (X25) was linked to the 

latent variable, Inducers (ξ4). Amiodarone (X26), Fluconazole (X27), Fluvastatin 

(X29), and Lovastatin (X32) were assigned to Inhibitors (ξ5). Aspirin (X41) and 

Smoking (X42) were set to Other Intakes and Medications (ξ6). CYP2C9*2 and 

CYP2C9*3 were assigned to CYP2C9 (ξ7). VKORC1 -1639G>A (X48) and 

VKORC1 1173C>T (X49) were represented as the factors of VKORC1 (ξ8). Finally, 

Race (X23) was linked to Ethnicity (ξ9). Target-INR (X10) was directly linked to the 

latent endogenous variable, Warfarin Dose (η1). Observed variables were handled 

according to the type of the variable. Age (X1), for instance, is an ordered categorical 

variable, which was treated as observations that were coming from a hidden 

continuous normal distribution with a threshold specification. The covariance values 

between ξ1-ξ2, ξ2-ξ3, ξ4-ξ7, ξ5-ξ7, ξ7-ξ8, ξ8-ξ9 and ξ7-ξ9 are investigated. The 

covariance between two variables equals to the correlation times the product of the 

variables' standard deviations.  The covariance of a variable with itself is the 

variable's variance. By that, the hidden correlations between latent factors (ξ7: 

CYP2C9 and ξ8:VKORC1) were studied. 
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Figure 8: Hypothetical SEM for Warfarin Dosing 

However, in practice the models were constructed according to the factors existed in 

the corresponding data set in an incremental fashion. For instance, while the model 

for Turkish data set included CYP4F2, the model for IWPC data set did not take 

CYP4F2 into account. Therefore, the final (recognized as the best fitted model 

according to the goodness-of-fit tests for a set of factors) model was named after the 
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subset of factors incorporated from the corresponding IWPC or Turkish data sets 

(Table 9). Note that, this task was performed separately for each of the models. 

Model-1 could eventually be identified with 10 factors from IWPC data set. 

Similarly, Model-2 included 8 factors from Turkish data set. Model-3 and Model-4 

were established as the models that contain the same factors from the corresponding 

data sets. 

 

Table 9: Data Subsets and Corresponding Model Names wrt. the Factors Included 

Description Factors Included Name of the 

Bayesian 

Model based 

on the Subset 

10 factors from IWPC 

Data Set 

AGE, BSA, PE/DVT, AMIODARONE, 

TARGET-INR, SMOKING, CYP2C9*2, 

CYP2C9*3, VKORC1 -1639G>A, 

Warfarin Dose  

Model-1 

8 factors from 

Turkish Data Set 

AGE, BSA, Indications (DVT/PE/Cardiac 

Indications), CYP2C9*2, CYP2C9*3, 

VKORC1 -1639G>A, CYP4F2, Warfarin 

Dose 

Model-2 

5 communized factors 

from IWPC Data Set 

AGE, CYP2C9*2, CYP2C9*3, VKORC1 -

1639G>A, Warfarin Dose 
Model-3 

5 communized factors 

from Turkish Data Set 

AGE, CYP2C9*2, CYP2C9*3, VKORC1 -

1639G>A, Warfarin Dose  
Model-4 

 

Bayesian estimation and analysis was applied separately for each of the models 

utilizing the IBM® SPSS® AMOS™ (Analysis of Moment Structures) v21 software 

[39]. The graphical representation of the final model based on 10 communized 

factors (Model-1) that was identified and converged in AMOS is provided in Figure 

9. Bayesian SEM analysis and inference in AMOS which is based on MCMC 

involved the following several steps: 

 

a) Model specification and identification,  

b) Selecting prior distributions and the admissibility test,  

c) Defining analysis properties (burn-in, bootstrap),  

d) Estimating explicit means and intercepts,  

e) Testing for convergence, 

f) Model selection based on model fit. 
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Figure 9: AMOS Representation for Model-1 

 

4.4.1 Model Specification and Identification 

Once the data analysis and data processing steps were accomplished, Bayesian 

Modelling and Estimation step was carried out. AMOS provides utilities for reading 

the data from various resources. The data can easily be obtained from the excel file 

or SPSS Statistics data file (.sav) [39], [101]. In this study, the data files in Excel 

format were converted to SPSS data files to facilitate further data analysis by using 

statistical tools in SPSS.  

 

The hypothetical model was easily drawn using the graphical tools provided at 

Diagram menu. Observed and latent variables were sketched according to the 

corresponding figures (circle for latent, rectangle for observed) by just drag and drop 

movements. The objects drawn, then, were named according to the corresponding 

labels of the variables in the data set. The object properties were easily assigned by 

right-clicking the selected variable and setting the values in ‘Object Properties’ 

window opened from the pop-up menu. An ellipse was drawn to represent the error 

variable for each observed variable. Single-headed arrows that point from the 

exogenous, or predictor, variables to the endogenous, or response, variables were 

drawn to complete the model. Note that, endogenous variables should have at least 

one single-headed path pointing toward them. On the other hand, exogenous 

variables have only single-headed paths in outward direction but do not receive any 

arrows. 
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After the model was created and specified, the identification process took place. If 

any of the regression weights were impossible to be estimated, then the model would 

be un-identified. The identification problems were corrected by fixing either the 

regression weight applied to error variable or the variance of the error variable itself 

for the corresponding model variable, Regression weight was fixed at 1 for some of 

the variables which yielded to the same estimates as linear regression. 

 

4.4.2 Application of Standard SEM 

At the very initial phase of the study, the standard SEM was exercised to model the 

warfarin dosing algorithm. This exercise was carried out to gain a basic 

understanding of SEM and to assess the basic functionality and validity of SEM 

approach. It was also advised to perform a maximum likelihood analysis for 

comparison purposes before performing the Bayesian SEM [39]. The linear equation 

used to formulate the linear measurement model is given in Table 10. SEM package 

in R was utilized for the exercise. The coefficients obtained by 2SLS estimation were 

found to be consistent with the values given in the reference study since the standard 

SEM is basically an extension of the general linear model (GLM) and yielded to 

similar results with MLE as shown in Table 11. AMOS enables to perform MLE or 

GLM analysis by selecting the corresponding option in Analyses Properties window. 

 

Table 10: The Measurement Equation for the Standard SEM 

Y=α1X1+α2X2+α3X3+α4X4+α5X5+α6X6+α7X7+α8X8+α9X9+α10X10 

Y= Warfarin dose, 

X1=Age, X2=BSA (Body Surface Area), X3=Race ,X4=VKORC1 genotype, 

X5=CYP2C9 genotype, X6=Target INR, X7=Taking Enzyme Inducer, X8=Taking 

Amiadorone,  X9=Smoking, X10=DVT/PE 
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Table 11: The Results of Standard SEM for IWPC Data Set 

  

Uca SCb 

t Sig. 

95.0% 

Confidence 
Interval for B 

Correlations 

B Std. Error Beta 
Lower 

Bound 

Upper 

Bound 

Zero-

order 
Partial Part 

(Constant)c 1.519 .029   53.116 0.000 1.462 1.575       

VKORC1 -

1639G>A-

MUTANT 

-.237 .010 -.451 -23.997 .000 -.256 -.218 -.355 -,485 -,407 

AGE -.034 .002 -.264 -15.103 .000 -.039 -.030 -.281 -,330 -,256 

VKORC1 -

1639G>A-

HETERO 

-.113 .008 -.276 -14.972 .000 -.128 -.098 -.135 -,327 -,254 

BSA .154 .012 .222 12.778 .000 .130 .177 .315 ,283 ,217 

CYP2C93_3 -.240 .034 -.144 -6.975 .000 -.307 -.172 -.172 -,159 -,118 

CYP2C93_2 -.131 .012 -.188 -10.923 .000 -.155 -.108 -.189 -,245 -,185 

AMIODARONE -.104 .014 -.129 -7.581 .000 -.131 -.077 -.138 -,173 -,128 

CYP2C92_2 -.070 .009 -.132 -7.635 .000 -.089 -.052 -.075 -,174 -,129 

CYP2C92_3 
-.124 .027 -.096 -4.640 .000 -.176 -.071 -.159 -,107 -,079 

SMOKING .037 .010 .062 3.600 .000 .017 .057 .138 ,083 ,061 

DVT/PE .037 .010 .062 3.581 .000 .017 .058 .158 ,083 ,061 

Model Summary   

R 
R 

Square 
Adjusted 
R Square 

Std. Error of 
the Estimate 

Change Statistics 
  

R Square 

Change 

F 

Change 
df1 df2 

Sig. F 

Change   

.681 .463 .460 .14763 .004 12.824 1 1869 .000 

  The results of MLE applied on the curated IWPC data set for 10 factors (Subset-3). The dependent 

Variable Y is Warfarin Dose. X4-PE was excluded during stepwise regression. 

a.Unstandardized Coefficients 

b.Standardized Coefficients 

c.Intercept 

 

Similarly, the Standard SEM was also applied for the Turkish data set containing 5 

factors (Model-4) and consequently the consistent results with the referenced study 

[21] were obtained as tabulated in Table 12.  
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Table 12: The Results of Standard SEM for Turkish Data Set 

  

 UCa SCb 

T Sig. 

95.0% Confidence 
Interval for B 

Correlations 

B 
Std. 

Error 
Beta 

Lower 

Bound 

Upper 

Bound 
Zero-order Partial Part 

(Constant) 4.113 .131   31.419 .000 3.853 4.373       

VKORC1 -

1639G>A-

MUTANT 

-.676 .096 -.683 -7.043 .000 -.867 -.486 -.409 -.578 -.527 

CYP2C9*3_3 -1.001 .235 -.323 -4.252 .000 -1.468 -.534 -.246 -.393 -.318 

CYP2C9*2_3 -.603 .195 -.237 -3.095 .003 -.989 -.216 -.174 -.297 -.232 

CYP2C9*2_2 -.256 .089 -.229 -2.880 .005 -.433 -.080 -.070 -.278 -.216 

CYP2C9*3_2 -.264 .087 -.236 -3.042 .003 -.437 -.092 -.090 -.292 -.228 

VKORC1 -

1639G>A-

HETERO 

-.177 .078 -.211 -2.287 .024 -.331 -.023 .117 -.224 -.171 

X1(AGE) -.048 .023 -.157 -2.058 .042 -.094 -.002 -.207 -.203 -.154 

Model Summary  

R 
R 

Square 

Adjusted 

R 
Square 

Std. 
Error of 

the 

Estimate 

Change Statistics 

 

R 
Square 

Change 

F 

Change 
df1 df2 

Sig. F 

Change 

 .667 .445 .406 .32452 .024 4.236 1 99 .042 

 The results of MLE applied on the curated Turkish data set for 5 factors (Model-4). The dependent Variable Y is Warfarin 

Dose.  

a.Unstandardized Coefficients 

b.Standardized Coefficients 

c.Intercept 

 

4.4.3 Selecting Priors 

If there is reliable background information, it will be reasonable to center the prior 

distributions for the mean and standard deviation of the variables. By this way, each 

version of a model is not starting from scratch, based only on the present data, but 

the cumulative effects of all data related to the previous studies can be taken into 

account. In the absence of reliable background information, non-informative priors 

are used. A non-informative (vague) prior is a conjugate prior with a large scale 

parameter. However, non-informative priors can pose problems when the sample size 

is small. Therefore, Weakly Informative Prior (WIP) distributions are utilized which 

make use of prior information for regularization and stabilization, providing enough 

prior information to prevent results that contradict our knowledge or problems such 

as negative variance. Moreover, no prior distributions are ever completely non-

informative, not even a uniform distribution over the entire range of allowable 

values, and because it would cease to be uniform if the parameter were transformed. 

 

Categorical and binary variables do not conform to normality principle. This type of 

highly skewed discrete data is dealt with a threshold approach where the discrete data 
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is treated as manifestations of an underlying normal distribution. In AMOS, it is 

assumed that there is an underlying continuous numerical variable whose range of 

values (minus infinity to plus infinity) is divided up into non-overlapping intervals. 

Therefore, recoded binary and categorical variables are treated like continuous 

variables in-terms of assessing the prior distributions. 

 

In AMOS, one of the following families of prior distributions can be chosen for an 

individual model parameter:  

 

 Uniform: You can specify the lower and upper bounds. 

 Normal: You can specify the mean and standard deviation. 

 Custom: You can make a free-hand sketch of the distribution after specifying 

its lower and upper bounds 

 

In the initial phases of the study, the uninformative priors were used for all of the 

parameters of IWPC data set which was relatively a large sample size (after pre-

processing ≈2500 rows were used in the training cohort) judging that the influence of 

the prior distribution would diminish as the sample size increased. AMOS uses 

diffuse priors and applies a uniform distribution from -3.4 x 10
–38

 to 3.4 x 10
38

 to 

each parameter. Due to poor convergence, improper solutions (negative variance 

estimates were observed) and crashes experienced during estimation, weakly-

informative priors and informative priors were started to be used for the continuous 

observed variables based on the reference studies. Yet another reason for using 

informative priors was the use of Turkish data set. The sample size should be large 

enough to ensure the reliability of the parameter estimates. It was suggested that a 

SEM containing latent variables should have a minimum sample size of 200. The 

usage of priors was also indicated to overcome this shortcoming [110], [111]. 

 

Consequently, the constraints on Prior distributions were set for variables on a 

parameter-by-parameter basis by taking into account the academic literature and 

elicited information from the domain experts. Note also that, since a communized set 

of factors were used for both the IWPC and Turkish data set, the same type prior of 

distributions with similar settings were applied for the corresponding models. The 

prior distributions of the means of the coefficients of the exogenous observed 

(manifest) variables were set to a bounded uniform distribution indicating the 

influence of the factor on the warfarin dosing. For instance, Age is indicated to be a 

factor associated with a reduced dose of warfarin because the risk of warfarin 

triggered bleedings increases with advancing age [11], [24], [69]. Thus, the mean of 

the coefficient of Age was assigned to uniform distribution having a lower bound of -

1 and upper bound of 0. On the other hand, BSA is associated with a higher dose of 

warfarin and therefore the mean of corresponding coefficient of BSA variable in 

Model-1 and Model-3 was assigned to a uniform prior distribution having 0 as the 

lower bound and 1 as the upper bound. Genetic factors such as VKORC1 -1639G>A, 

CYP2C9*2 and CYP2C9*3 are associated with lower dose requirements and the 

prior distribution of their coefficient means were assigned to a uniform distribution 

having -1 as the lower bound and 0 as the upper bound [22], [24], [26], [33]. The 

SNPs of CYP4F2, which is included in the Turkish data set, is indicated with a 

higher dose requirement and thus the prior distribution of the corresponding 

coefficient mean was assigned to a uniform distribution having 0 as the lower bound 
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and 1 as the upper bound [21]. These bounded uniform distributions are regarded as 

proper Weakly Informative Priors (WIP) [14], [20], [110], [111].  

 

All of the prior distributions of the variances of the observed exogenous variable 

were assigned to WIPs with a uniform distribution having 0 as lower the bound and 

3.4 x 10
38

 (AMOS default) as upper bound. These improper priors were re-organized 

using the Admissibility test if needed to avoid improper posteriors. The priors of 

other variables were set to AMOS default as expressed above. 

 

The assessment of the influence imposed on the posterior estimates by prior 

distributions is also very crucial to ensure that a proper solution is obtained. The 

sensitivity of the prior assumptions was evaluated by repeating the analysis under 

different prior assumptions and comparing the posterior results for each unknown. 

As the size of a dataset grows, the evidence from the data eventually disregards the 

priori information, and the influence of the prior distribution decreases. To verify this 

assumption, Bayesian inference was re-performed after the prior distributions for the 

subjected parameter were reset to default (uniform distribution having a lower bound 

of -3.4 x 10
–38

 and an upper bound 3.4 x 10
38

). For instance, the priors of the 

coefficient of Age were set to default and almost the same Mean and Standard Error 

estimates (-0.026 and 0.002) were obtained indicating the sensitivity posteriors to 

priors is low for Model-3 of IWPC dataset. The same sensitivity check was also 

applied for the Turkish data set, and a small discrepancy was observed in the 

posterior Mean and Standard Error of Age (-0.024 and 0.013) meaning that priori 

information had relatively higher influence on the posterior estimate. This finding is 

consistent with the theoretical assertion which states that small data sets are more 

sensitive to the usage of informative priors and as the size of the sample increases the 

effect of the priors diminishes [20], [110]. 

 

4.4.4 Defining analysis properties 

In AMOS, MCMC properties are changed from the menu by choosing View – 

Options. Then, the MCMC tab is selected in the Options dialog box, A burn-in value 

of 1000 (default 500) and a refreshing interval (default 1000) of 2000 were selected. 

The number of MCMC iterations was set to 200,000.  

 

4.4.5 Testing for convergence 

The convergence can be checked by several diagnostics in AMOS. The built-in 

Gelman-Rubin diagnostic for convergence was used [39], [88], [110]. The specified 

models were by default accepted to have been converged when the diagnostic values 

were less than 1.002. Note that, considering that the MCMC chain has converged by 

this criterion does not mean that the summary table will stop changing. It is 

suggested that the summary table should be inspected as soon as the estimates 

continue to change and errors continue to decrease.  
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4.4.6 Goodness of Fit and Model selection 

In this study, the Root Mean Square Error of Approximation (RMSEA) and the 

Comparative Fit Index (CFI) were used to test for model fit of a single model. For 

instance, the RMSEA was calculated as 0.057 (values about 0.05 or less are accepted 

as good fit) and the CFI was reported as 0.92 (a value of CFI ≥ 0.95 is recognized as 

an indication of good fit) for the best fitted candidate model of the Model-3 [56].  

 

For comparing two non-nested models, the Browne-Cudeck Criterion (BCC) and the 

Akaike Information Criterion (AIC) value were utilized. Among the candidate fitted 

models for the Model-3, the model with the rescaled BCC value of 1.642 and the 

rescaled AIC value of 1.723 was selected [54].  
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   CHAPTER 5 

5 RESULTS AND DISCUSSION 
 

 

 

This chapter outlines the results of Bayesian based modelling and estimation for 

warfarin Dosing and also discusses these results with respect to the previous studies.  

 

Table 13: The Results of Bayesian Based Modelling and Estimation for Warfarin 

Dosing in IWPC and Turkish Data Sets (Model-1 and Model-2) 

Parameter Estimates 

 

Parameter Estimates 

(Bayesian Estimation for IWPC Data Set) 

 

(Bayesian Estimation for Turkish Data Set) 

Parameter Mean 

Std. 

Error 

95% Confidence 

Interval 

 

Parameter Mean 

Std. 

Error 

95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

 

Lower 

Bound 

Upper 

Bound 

b0 (intercept) .298 .022 .265 .324 
 

b0 (intercept) 3.823 .383 3.062 4.583 

Age -.034 .002 -.038 -.029 
 

Age -.054 .024 -.101 -.007 

CYP2C9*2_2 -.051 .019 -.082 -.025 
 

CYP2C9*2_2 -.270 .091 -.451 -.089 

CYP2C9*3_2 -.122 .013 -.136 -.109 
 

CYP2C9*2_3 -.594 .198 -.988 -.200 

VKORC1 -

1639G>A-
MUTANT 

 

-.277 .009 -.288 -.265 
 

CYP2C9*3_2 -.264 .087 -.437 -.091 

CYP2C9*2_3 -.102 .009 -.115 -.090 
 

CYP2C9*3_3 -.976 .235 -1.442 -.510 

CYP2C9*3_3 -.205 .028 -.245 -.167 
 

VKORC1 -
1639G>A-

HETERO 

-.189 .079 -.345 -.032 

VKORC1 -
1639G>A-

HETERO 

-.105 .015 -.121 -.090 
 

VKORC1 -
1639G>A-

MUTANT 

-.657 .098 -.851 -.463 

BSA .156 .012 .132 .180  
CYP4F2-
HETERO 

.091 .028 .054 .138 

Amiodarone -.103 .014 -.130 -.076  
CYP4F2-

MUTANT 
.210 .096 .020 .401 

DVT/PE .009 .002 .007 .011  BSA .130 .014 .088 .157 

Smoking .019 .005 .012 .026  Indications .028 .009 .011 .043 

Target-INR .095 .014 .078 .112       

 

The Model-1 and the Model-2 were provided for a complete eligible set of variables. 

The results of the corresponding stepwise regressions for the Model-1 and the 

Model-2 were consistent with the referenced linear dosing algorithms 

[2],[4],[55].The results of the Model-1 and the Model-2 established by Bayesian 

SEM are provided in Table 13. 
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On the other hand, the Model-3 and the Model-4 were established for comparison 

and validation purposes. Exactly the same set of features from entirely different data 

sets were modelled in a similar fashion and Bayesian inference was performed. 

 

MLE explained 38.1% to 46.3% of the variation (R
2
) in warfarin dose for IWPC data 

set using 5 factors (Model-3) and 10 factors (Model-1) respectively. On the other 

hand, MLE could explain 44.5% of the variation (R
2
) in warfarin dose for Turkish 

data set using 5 factors (Model-4). The performances of the linear regression 

algorithms were calculated as 45.1% and 49.3% for Model-3 and Model-4. For the 

same 5 factors, the proportion of variation explained (R
2
) by the corresponding linear 

model was higher for the small Turkish dataset than the large IWPC dataset. In 

addition to that, the linear model applied on Model-4 also performed better than 

Model-3 supposedly owing to the diverse ethnic population of the IWPC dataset and 

the data size. It was also assessed that the standard deviation of warfarin dose in 

Turkish data set was higher than the standard deviation of warfarin dose in IWPC 

data set which caused a higher percentage explained by Bayesian estimation for the 

Turkish data set. The Bayesian modelling and estimation was initially applied for 

both of the training cohorts utilizing the 5 common factors and the resultant estimates 

of the best-fitted models were recorded (Table 14). 

 

Table 14: The Results of Bayesian based Modelling and Estimation for Warfarin 

Dosing in IWPC and Turkish Data Sets (Model-3 and Model-4) 

Parameter Estimates 

 

Parameter Estimates 

(Bayesian Estimation for IWPC Data Set) 

 

(Bayesian Estimation for Turkish Data Set) 

Parameter Mean 

Std. 

Error 

95% Confidence 

Interval 

 

Parameter Mean 

Std. 

Error 

95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

 

Lower 

Bound 

Upper 

Bound 

b0 (intercept) .412 .019 .374 .450 

 

b0 (intercept) 1.152 .049 1.051 1.284 

Age -.025 .002 -.028 -.022 

 

Age -.020 .009 -.038 -.001 

CYP2C9*2_2 -.046 .021 -.087 -.006 

 

CYP2C9*2_2 -.098 .036 -.169 -.027 

CYP2C9*3_2 -.091 .005 -.101 -.081 

 

CYP2C9*2_3 -.256 .043 -.291 -.212 

VKORC1 -

1639G>A-MUTANT 
 

-.177 .007 -.192 -.163 

 

CYP2C9*3_2 

-.100 .035 -.170 -.030 

CYP2C9*2_3 -.088 .007 -.101 -.075 

 

CYP2C9*3_3 -.442 .032 -.404 -.479 

CYP2C9*3_3 

-.173 .028 -.229 -.118 

 

VKORC1 -

1639G>A-
HETERO 

-.063 .029 -.121 -.004 

VKORC1 -

1639G>A-HETERO -.077 .009 -.095 -.059 

 

VKORC1 -

1639G>A-
MUTANT 

-.267 .040 -.346 -.189 

The results of Bayesian Estimation applied for both IWPC (Model-3) and Turkish (Model-4) data sets for 5 common factors  

(CYP2C9*2, CYP2C9*3, and VKORC1 -1639G>A are recoded to binary variables beforehand). 

 

 

Based on the same genetic and non-genetic factors, Bayesian Estimation was 

indicated to explain the 44.6% (38.1% by MLE) and 51.2% (44.5% by MLE) of the 

variation (R
2
) in dosing for IWPC and Turkish data sets respectively. Note that 

although the Bayesian estimation improved the portion of the variance explained for 
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both data sets, it was more successful for the Turkish data set for 5 factors (Model-4). 

The prediction performances were also improved for both data sets (47.4% and 

51.7% respectively) compared to MLE (45.1% and 49.3%).  

 

Bayesian estimations were repeated for the randomly formed test cohorts of the two 

data sets as well. The results obtained for the best fitted models of each data set were 

compared to the results obtained from training cohorts. It was concluded that the 

results were statistically consistent in the 95% confidence interval (p = 0.0023). 

 

Keeping the 5 dominant factors in the model, new factors were separately introduced 

into Bayesian SEMs for each data set incrementally. For the model that includes the 

complete set of factors from Turkish data set (Model-2), VKORC1:-1639G>A was 

the most dominant genetic feature and explained 27.2% of the variance in warfarin 

dosing (Mutant: 19.8%, Hetero: 7.4%). The second significant gene was CYP2C9. 

CYP2C9*3 explained 13.2% of the variance in maintenance dose, while CYP2C9*2 

explained 10.4%. CYP4F2 was associated with 3.2% of the variance. None-genetic 

factors were also associated with warfarin dose. The factors age, BSA, and 

indications (PE/DVT, Cardiac Indications) were also accounted for warfarin dose 

(2.8%, 1.2%, 0.7%). Thus, model including 8 factors from the Turkish data set could 

explain 56.7% of the variance. 

 

As a second task the model for IWPC data set was also enriched with the new factors 

available. For IWPC data set, BSA, PE/DVT, amiodarone, target-INR and smoking 

were incorporated (Model-1). The total variance explained for IWPC data set using 

Bayesian Estimation was found to be 53.9%. We studied the case when the genetic 

varıables were treated as continuous variables on the IWPC data set. (For CYP2C9, 

wild, heterozygous, and mutant genotypes were accepted as 0, 1, and 2 respectively). 

The results have shown that the percentage of the variance explained dropped from 

53.9% to 50.6%. 

 

For several reasons, warfarin is an ideal drug to test the hypothesis that 

pharmacogenomics can reduce drug toxicity: it is commonly prescribed, has a 

narrow therapeutic/toxic ratio, and is affected by common genetic polymorphisms. 

The results of the pharmacogenomics studies caused the U.S. Food and Drug 

Administration (FDA) to update the warfarin drug label to include information about 

genetic polymorphisms affecting dosing in August 2007 [13]. The FDA modified the 

warfarin label, stating that VKORC1 and CYP2C9, age, BSA, interacting drugs, and 

indication for warfarin therapy explained about 55% of the variability in warfarin 

dose in Caucasian patients. These results were supported by the IWPC’s rather 

complicated equation which had been provided in the supplementary appendix of 

Klein et al. [11].  

 

The previous studies which proposed pharmacogenomics driven formulations for the 

prediction of warfarin dosage used a model based on linear regression [11], [12], [22] 

[24]. Roper et al. [25] conducted a comparative study to validate and compare the 

three published warfarin dosing algorithms by Sconce et al. [12], Anderson et al. 

[24], Klein et al. [11] and the WarfarinDosing website [80] based on the studies of 

Gage et al. [22], [23]. The predicted dose requirements were compared with the 

actual maintenance dose for each patient within the therapeutic INR of 2.0 to 3.0. It 
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was concluded that all linear regression based methods produced similar results 

explaining only 37.7% to 45.8% of the variance in warfarin dosage in the IWPC 

training data set as indicated in Table V. It was also shown that when comparing the 

percentage of patients whose predicted dosage were within 20% of actual, the IWPC 

algorithm performed the best (45.9%). 

 

The distribution of the Bayesian estimations obtained for target variables is 

compared to the distribution of the actual clinical values. In the 95% confidence 

interval, p is calculated as 0.0048 (p < 0.005) meaning that the Bayesian model gives 

the same results as of the clinical ones. A second test is performed to assess the 

influence of the pharmacogenomics variables. The distribution obtained from the 

Bayesian SEM including the pharmacogenomics variables is compared to the 

distribution obtained from the Bayesian SEM without the pharmacogenomics 

variables. In the 95% confidence interval, p is calculated as 0.0063 (p > 0.005) 

meaning that the pharmacogenomics variables are effective for explaining the 

variance in warfarin dosage.  

 

Bayesian SEM is also utilized without pharmacogenomics variables based on the 

IWPC data set. The model that included BSA, age, amiodarone, Target-INR, 

DVT/PE as the factors converged and explained the 21.7% of the variability in 

dosing. The results are consistent with the literature information indicating that 

17−25% of the variability in the therapeutic warfarin dose can be explained by using 

clinical factors alone [22]. Thus, Bayesian SEM can also be effectively used for 

clinical factors alone. 
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   CHAPTER 6 

6 CONCLUSIONS 
 

 

 

This chapter summarizes the study and its findings, describes the limitations and 

suggests possibilities for further research. 

 

6.1 Summary 

The incorporation of pharmacogenomics information into the drug dosing estimation 

formulations has been shown to increase the accuracy in drug dosing and decrease 

the frequency of adverse drug effects in many studies in the literature [6], [8], [9]. 

Extensive pharmacogenomics research efforts have identified several genetic factors 

that are strongly associated with drug dosing such as warfarin pharmacogenomics 

and the effect of CYP2D6 on tamoxifen efficacy. However, these findings are mainly 

expressed as associations rather than predictors as validated practical tools. Besides, 

these efforts are not consistent in determining the criteria for the accuracy of dosing 

algorithms [25]. Therefore a robust estimation framework is needed to assess these 

interactions thoroughly using a holistic approach while facilitating accurate dosing 

predictions. Such an estimation framework -regardless of the drug used- should 

address the following issues [36], [73]: 

 

a) Clinical validity: Is a pharmacogenomics factor associated with an adverse 

effect indicated to be a clinically useful predictor for that adverse effect? 

 

b) Clinical utility: Does the incorporation of the genetic factor predict the 

outcome more accurately than existing clinical models? 

 

c) Degree of clinical utility: Are the predictions for indicated to be sufficiently 

different to change treatment rulings? 

 

Warfarin is an excellent drug to investigate such an estimation framework for drug 

dosing. First of all, it is placed in the “top 10 drugs” for ADR related hospitalizations 

in the US [62]. Secondly, there is a considerable individual variation in warfarin 

response due to primarily genetic factors. Thirdly, it is a commonly used anti-

coagulant drug having a narrow therapeutic window (i.e., the under-dosing and over-

dosing of warfarin can be disastrous due to the thrombotic or hemorrhagic adverse 

reactions respectively). Lastly, the initiation of warfarin therapy based on clinical 

procedures is risky and problematic. Thus, various algorithms for the estimation of 
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warfarin dosing have been proposed (e.g., the warfarin dose calculator provided by 

IWPC - PharmGKB) [11], [22]. 

 

CYP2C9 and VKORC1 genotypes are clinically useful predictors of warfarin dose in 

clinical trials. As demonstrated by multiple studies, including the work of IWPC 

[11], dosing based on clinical/demographic factors alone improves prediction of 

stable therapeutic dose of warfarin (compared to the one-size-fits-all 5 mg/day dose). 

Moreover, the FDA modified the warfarin label, stating that VKORC1 and CYP2C9, 

age, BSA, interacting drugs, and indication for warfarin therapy explained about 

55% of the variability in warfarin dose. Besides, the incorporation of CYP2C9 and 

VKORC1 genotypes improves prediction of warfarin doses as confirmed by 

randomized clinical trials proving effective utilization of pharmacogenomics. 

 

This study which aims to establish a robust pharmacogenomics driven modelling and 

estimation framework for warfarin dosing, fits well with the main objective: To take 

a further step in the direction of personalized medicine. It has been shown that the 

Bayesian modelling and estimation framework for pharmacogenomics driven drug 

dosing better explains the variations in warfarin dosing and improves prediction of 

stable therapeutic dose of warfarin compared to the linear estimation algorithms. The 

main genetic (VKORC1 -1639G>A, CYP2C9*2, CYP2C9*3) and non-genetic 

factors (Age, BSA, Amiodarone, Target-INR) are found to be consistent with the 

previous studies and literature. 

 

In conclusion, the results indicate that the proposed framework based on Bayesian 

SEM better explains the variation in warfarin dosing and improves the prediction 

accuracy compared to the state-of-the-art methods. The proportion of variation 

explained (R
2
) was higher (44.6%-56.7%) depending on the data set and the features 

included in the model. The predicted dose is compared to the actual dose for each 

patient to assess the performance of the dosing algorithm. The proposed framework 

including 5 dominant factors also performs better than the IWPC algorithm (47.4% 

vs 45.1%) given that the predicted doses were within 20% of the actual. However, it 

is strongly suggested that the model should be extensively tested and validated in 

various clinical settings.  

 

It has been also indicated that Bayesian SEM is a robust and effective approach for 

the estimation of drug dosing since it facilitates the exploration and identification of 

hidden relationships and provides the flexibility to utilize useful prior information for 

achieving better prediction results [112]. However, the prior information and data 

should be dealt with carefully so as to achieve reliable unbiased predictions. Besides 

Bayesian sampling does not rely on asymptotic theory and thus give more reliable 

results for small data sets (e.g. Turkish data set). Therefore, Bayesian SEM may be 

very practical and effective for clinical studies where the data acquisition may be 

problematic and expensive. On the other hand, Bayesian estimation often gives 

results that are close to the results provided by frequentist methods when the sample 

size increases. 

 

Similar studies [82], [92], [113] in other subject areas of Medical Informatics also 

suggest that Bayesian modeling and estimation can be a further step in the direction 

of personalized medicine. Nevertheless, the future of personalized warfarin dosing 
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depends on the availability of easily applicable and in-expensive genotyping 

methods. 

 

6.2 Limitations 

The limitations to this study generally arise from the fact that Bayesian SEM is 

mainly a data driven method. The study is limited to data sets worked upon and the 

features that are being missing or a portion of the data inhibits or degrades the 

Bayesian estimation. Although Bayesian SEM has the capability to handle missing 

data to some extent, it is limited with the availability of data at the end of the day. 

For instance, some of the features related with warfarin dosing such as medications, 

and herbal and nutritional intakes (vitamin K) cannot be included into the model 

although they exist in the hypothetical model due to the lack of data. Similarly, some 

pharmacogenomics features that exist in one study and are not used in another study 

(e.g., CYP4F2, EPHX1) due to pricing introduced by genotypic methods. Such an 

inadequacy of genetic data can cause problems for testing the validation and 

accuracy of the models. 

 

Other limitations are related with the technical features of the Bayesian SEM. First, 

the prior distributions have to be selected carefully since the prediction accuracy of 

Bayesian SEM relies on the priors. If the priors are not set correctly, then misleading 

results will be generated. Besides, there is no exact method for choosing a prior. 

Therefore, Bayesian SEM requires skills and knowledge to convert prior beliefs into 

mathematically formulated priors. Second, Bayesian estimation often incurs a high 

computational cost, especially for models with a large number of parameters, which 

may be time-consuming and cumbersome. 

 

6.3 Future Work 

Although this study proposed a hypothetical framework involving all the related 

factors of warfarin dosing, several factors that are literally indicated to be accounted 

for variations in warfarin dosing could not be studied due to the lack of data. 

Especially the absence of pharmacogenomics data affects the performance of the 

Bayesian estimation. Therefore, as a major future work, a collaborative clinical study 

can be carried out by multiple medical centers so as to collect diversified but 

complete data  consisting of a set of pre-defined factors. Such an extensive 

collaborative study can cover the factors which have not been utilized in this study. 

For instance, intakes of K vitamin and other nutrients can be very effective on 

warfarin dose and can be incorporated in the model. Co-morbidities, other 

medications, tea/coffee consumption and other uncovered genetic factors which can 

theoretically explain the variation in dosing can also be investigated within the scope 

of this collaborative study. It is likely that the framework would explain a greater 

percentage of the variation in dosing if such complete data were provided. Turkish 

data set [21] contains such information so that it can be worked upon in more detail 

to investigate the effect of K vitamin on warfarin dosing as a future work. 
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Despite the approval of CYP2C9/VKORC1 genotyping platforms by the U.S. FDA, 

the clinical implementation of genotype-guided dosing has been delaying over the 

last decade. Although genotype-guided therapy improves dose prediction, there has 

been limited number of studies to assess the effects (the amount of reduced risk with 

respect to ADRs and saving for health-care costs) of such a genotype-guided dosing. 

As another future work, studies that assess the results and effects of genotype-guided 

therapy can be carried out. 

 

On the other hand, Bayesian SEM approach can also be applied for other drugs such 

as statins, selective serotonin reuptake inhibitors (SSRIs) and tamoxifen, which are 

affected by genetic and non-genetic factors. 

 

The application of Bayesian approach to the Artificial Neural Networks (ANN) for 

the prediction drug dosing can be a promising future study. Bayesian network 

inference algorithms can capture linear, non-linear, combinatorial, stochastic and 

other types of relationships among variables.  
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APPENDICES 
 

 

APPENDIX A: METADATA OF THE IWPC DATA SET 
 

 

 

Table 15: Metadata of the IWPC Data Set 

Name Description 
Data 

Type 

Unit 

Of 

Meas

ure 

Unit Of 

Measure Type 

PharmGKB 

Subject ID 

Subject ID numbers in the PharmGKB.  A search can be 

performed to find genotype information on subjects using 

these ID numbers.  

CH12 
  

PharmGKB 

Sample ID 

Sample ID numbers in the PharmGKB.  A search can be 

performed to find genotype information on subjects using 

these ID numbers.  

CH 
  

Project Site Coded project site where data was collected.  CH 
  

Gender Male, Female or not known = -99 CH 
  

Race 

(Reported) 
Self-reported information. CH 

  

Race (OMB) 

Racial categories used are as defined by the Office of 

Management and Budget, which can be found at 

http://grants2.nih.gov/grants/guide/notice-files/NOT-OD-

01-053.html 

CH 
  

Ethnicity 

(Reported) 
Self-reported information CH 

  

Ethnicity 

(OMB) 

Ethnicity categories used are as defined by the Office of 

Management and Budget, which can be found at 

http://grants2.nih.gov/grants/guide/notice-files/NOT-OD-

01-053.html 

CH 
  

Age 
Binned age reported in years (0 - 9, 10 - 19, 20 - 29, 30 - 

39, 40 - 49, 50 - 59, 60 - 69, 70 - 79, 80 - 89, 90+) 
NR13 

  

Height (cm) Reported in centimeters NR cm Height 

Weight (kg) Reported in kilograms NR kg Mass 

Indication for 

Warfarin 

Treatment 

DVT = 1, PE = 2, Afib/flutter = 3, Heart Valve = 4, 

Cardiomyopathy/LV Dilation = 5, Stroke = 6, Post-

Orthopedic = 7, Other = 8 or NA; multiple indications are 

separated by semi-colons 

CH 
  

Comorbidities List of diseases co-occuring in the patient CH 
  

Diabetes yes = 1, not present = 0 or not known = NA CH 
  

Congestive 

Heart Failure 

and/or 

yes = 1, not present = 0 or not known = NA CH 
  

                                                 

 
12

 CH stands for Character 
13

 NR stands for NUMBER. 
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Cardiomyopat

hy 

Valve 

Replacement 
yes = 1, not present = 0 or not known = NA CH 

  

Medications List of medicines taken separated by semi-colons  CH 
  

Aspirin yes = 1, not present = 0 or not known = NA CH 
  

Acetaminophe

n or 

Paracetamol 

(Tylenol) 

yes = 1, not present = 0 or not known = NA CH 
  

Was Dose of 

Acetaminophe

n or 

Paracetamol 

(Tylenol) 

>1300mg/day 

yes = 1, no = 0  CH 
  

Simvastatin 

(Zocor) 
yes = 1, not present = 0 or not known = NA CH 

  

Atorvastatin 

(Lipitor) 
yes = 1, not present = 0 or not known = NA CH 

  

Fluvastatin 

(Lescol) 
yes = 1, not present = 0 or not known = NA CH 

  

Lovastatin 

(Mevacor) 
yes = 1, not present = 0 or not known = NA CH 

  

Pravastatin 

(Pravachol) 
yes = 1, not present = 0 or not known = NA CH 

  

Rosuvastatin 

(Crestor) 
yes = 1, not present = 0 or not known = NA CH 

  

Cerivastatin 

(Baycol) 
yes = 1, not present = 0 or not known = NA CH 

  

Amiodarone 

(Cordarone) 
yes = 1, not present = 0 or not known = NA CH 

  

Carbamazepin

e (Tegretol) 
yes = 1, not present = 0 or not known = NA CH 

  

Phenytoin 

(Dilantin) 
yes = 1, not present = 0 or not known = NA CH 

  

Rifampin or 

Rifampicin 
yes = 1, not present = 0 or not known = NA CH 

  

Sulfonamide 

Antibiotics 

Includes Septra, Bactrim, Cotrim and Sulfatrim; yes = 1, 

not present = 0 or not known = NA 
CH 

  

Macrolide 

Antibiotics 

Includes erythromycin, azithromycin, and clarithromycin; 

yes = 1, not present = 0 or not known = NA 
CH 

  

Anti-fungal 

Azoles 

Includes ketoconazole, fluconazole, itraconazole, 

metronidazole, etc. Please do not include other drugs that 

end in "azole" such as omeprazole or metronidazole; yes = 

1, not present = 0 or not known = NA 

CH 
  

Herbal 

Medications, 

Vitamins, 

Supplements 

Includes garlic, ginseng, danshen, donquai, vitamins, zinc, 

iron, magnesium, etc. yes = 1, not present = 0 or not 

known = NA 

CH 
  

Target INR Target International Normalized Ratio or NA CH 
mg/w

eek 

Mass per Unit 

Time 

Estimated 

Target INR 

Range Based 

If the target INR is not known, please give estimated 

target INR ranged based on Indication 
NR 
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on Indication 

Subject 

Reached Stable 

Dose of 

Warfarin 

yes = 1, no = 0 or not known = NA CH 
  

Therapeutic 

Dose of 

Warfarin 

Dose given in milligrams/week NR 
mg/w

eek 

Mass per Unit 

Time 

INR on 

Reported 

Therapeutic 

Dose of 

Warfarin 

International Normalized Ratio on the Therapeutic Dose 

of Warfarin Reported Above 
NR 

  

Current 

Smoker 
yes = 1, not present = 0 or not known = NA CH 

  

Cyp2C9 

genotypes 

*1, *2, *3, *4, *5, *6, *7, *8, *9, *10, *11, *12, or *13 

(see 

https://www.pharmgkb.org/do/serve?objId=PA126&objCl

s=Gene for specifics of named alleles) 

CH 
  

Genotyped QC 

Cyp2C9*2 

*1, *2, (see 

https://www.pharmgkb.org/do/serve?objId=PA126&objCl

s=Gene for specifics of named alleles) 

CH 
  

Genotyped QC 

Cyp2C9*3 

*1, *3 (see 

https://www.pharmgkb.org/do/serve?objId=PA126&objCl

s=Gene for specifics of named alleles) 

CH 
  

Combined QC 

CYP2C9 

Combined separate genotypes for *2 and *3 into single 

CYP2C9 diplotypes with possible values *1/*1, *1/*2, 

*1/*3, *2/*2, *2/*3, *3/*3 

CH 
  

VKORC1 

genotype: -

1639 G>A 

(3673); 

chr16:3101519

0; rs9923231; 

C/T 

A/A, A/G, G/G or NA CH 
  

VKORC1 QC 

genotype: -

1639 G>A 

(3673); 

chr16:3101519

0; rs9923231; 

C/T 

A/A, A/G, G/G or NA CH 
  

VKORC1 

genotype: 

497T>G 

(5808); 

chr16:3101305

5; rs2884737; 

A/C 

G/G, G/T, T/T or NA CH 
  

VKORC1 QC 

genotype: 

497T>G 

(5808); 

chr16:3101305

5; rs2884737; 

G/G, G/T, T/T or NA CH 
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A/C 

VKORC1 

genotype: 1173 

C>T(6484); 

chr16:3101237

9; rs9934438; 

A/G 

C/C, C/T, T/T or NA CH 
  

VKORC1 QC 

genotype: 1173 

C>T(6484); 

chr16:3101237

9; rs9934438; 

A/G 

C/C, C/T, T/T or NA CH 
  

VKORC1 

genotype: 

1542G>C 

(6853); 

chr16:3101201

0; rs8050894; 

C/G 

C/C, C/G, G/G or NA (Note: alleles for 1542 G/C defined 

on coding strand, while rs8050894 alleles defined on non-

coding strand) 

CH 
  

VKORC1 QC 

genotype: 

1542G>C 

(6853); 

chr16:3101201

0; rs8050894; 

C/G 

C/C, C/G, G/G or NA (Note: alleles for 1542 G/C defined 

on coding strand, while rs8050894 alleles defined on non-

coding strand) 

CH 
  

VKORC1 

genotype: 3730 

G>A (9041); 

chr16:3100982

2; rs7294;  A/G 

A/A, A/G, G/G or NA CH 
  

VKORC1 QC 

genotype: 3730 

G>A (9041); 

chr16:3100982

2; rs7294;  A/G 

A/A, A/G, G/G or NA CH 
  

VKORC1 

genotype: 

2255C>T 

(7566); 

chr16:3101129

7; rs2359612; 

A/G 

C/C, C/T, T/T or NA CH 
  

VKORC1 QC 

genotype: 

2255C>T 

(7566); 

chr16:3101129

7; rs2359612; 

A/G 

C/C, C/T, T/T or NA CH 
  

VKORC1 

genotype: -

4451 C>A 

(861); 

Chr16:3101800

A/A, A/C, C/C or NA CH 
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2; rs17880887; 

A/C 

VKORC1 QC 

genotype: -

4451 C>A 

(861); 

Chr16:3101800

2; rs17880887; 

A/C 

A/A, A/C, C/C or NA CH 
  

CYP2C9 

consensus 

Derived consensus between original and Combined QC 

genotypes as follows: 

If Original equals QC, use common value 

If Original equals NA, use QC 

If QC equals NA, use Original 

If Original is not equal to QC, set value to NA unless 

Original contains an allele not typed in QC, then use 

Original 

All subjects not included in QC genotyping retain Original 

value 

CH 
  

VKORC1 -

1639 consensus 

Derived consensus between original and QC genotypes as 

follows: 

If Originalequals QC, use common value 

If Original equals NA, use QC 

If QC equals NA, use Original 

If Original is not equal to QC, set value to NA 

All subjects not included in QC genotyping retain Original 

value 

CH 
  

VKORC1 497 

consensus 

Derived consensus between original and QC genotypes as 

follows: 

If Original equals QC, use common value 

If Original equals NA, use QC 

If QC equals NA, use Original 

If Original is not equal to QC, set value to NA 

All subjects not included in QC genotyping retain Original 

value 

CH 
  

VKORC1 1173 

consensus 

Derived consensus between original and QC genotypes as 

follows: 

If Original equals QC, use common value 

If Original equals NA, use QC 

If QC equals NA, use Original 

If Original is not equal to QC, set value to NA 

All subjects not included in QC genotyping retain Original 

value 

CH 
  

VKORC1 1542 

consensus 

Derived consensus between original and QC genotypes as 

follows: 

If Original equals QC, use common value 

If Original equals NA, use QC 

If QC equals NA, use Original 

If Original is not equal to QC, set value to NA 

All subjects not included in QC genotyping retain Original 

value 

CH 
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VKORC1 3730 

consensus 

Derived consensus between original and QC genotypes as 

follows: 

If Original equals QC, use common value 

If Original equals NA, use QC 

If QC equals NA, use Original 

If Original is not equal to QC, set value to NA 

All subjects not included in QC genotyping retain Original 

value 

CH 
  

VKORC1 2255 

consensus 

Derived consensus between original and QC genotypes as 

follows: 

If Original equals QC, use common value 

If Original equals NA, use QC 

If QC equals NA, use Original 

If Original is not equal to QC, set value to NA 

All subjects not included in QC genotyping retain Original 

value 

CH 
  

VKORC1 -

4451 consensus 

Derived consensus between original and QC genotypes as 

follows: 

If Original equals QC, use common value 

If Original equals NA, use QC 

If QC equals NA, use Original 

If Original is not equal to QC, set value to NA 

All subjects not included in QC genotyping retain Original 

value 

CH 
  

Comments 

regarding 

Project Site 

Dataset 

Any additional comments that the investigators felt should 

be included in the release of their data 
CH 
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APPENDIX B: DESCRIPTIVE STATISTICS FOR SELECTED 

FEATURES FROM IWPC DATA SET 
 

 

 

Table 16: Descriptive Statistics for Selected Features from IWPC Data Set 

 

N Minimum Maximum Mean 
Std. 

Deviation 
Skewness Kurtosis 

Statistic Statistic Statistic Statistic Statistic Statistic 
Std 

Err 
Statistic 

Std. 

Err 

AGE 5658 1 9 5.92 1.473 -.609 .033 .069 .065 

BSA 4523 1.12 3.38 1.8985 .29896 .567 .036 .655 .073 

PE 5700 0 1 .08 .275 3.033 .032 7.199 .065 

STROKE 5700 0 1 .04 .192 4.804 .032 21.087 .065 

CARDIAC 

INDICATIONS 
5700 0 1 .41 .492 .364 .032 -1.868 .065 

DVT 5700 0 1 .09 .291 2.797 .032 5.823 .065 

INTERVENTIONS 

AND SURGERY 
5700 0 1 .21 .410 1.396 .032 -.051 .065 

TARGET_INR 4871 1.30 99.00 2.5590 1.39237 68.262 .035 4728.866 .070 

CANCER 278 0 1 .82 .385 -1.676 .146 .815 .291 

DIABET 3572 0 1 .17 .380 1.712 .041 .930 .082 

CARDIAC 

FAILURES 
4432 0 1 .20 .399 1.514 .037 .291 .074 

VALVE 

REPLACEMENT 
4239 0 1 .24 .427 1.220 .038 -.512 .075 

RACE 5470 1 4 1.74 .944 .658 .033 -1.273 .066 

RIFAMPIN 2423 0 1 .00 .041 24.566 .050 601.996 .099 

AMIODARONE 4182 0 1 .07 .249 3.490 .038 10.182 .076 

FLUCONAZOLE 2426 0 1 .01 .083 11.827 .050 138.000 .099 

FLUVASTATIN 2423 0 1 .00 .070 14.113 .050 197.331 .099 

LOVASTATIN 2431 0 1 .01 .116 8.412 .050 68.824 .099 

ASPIRIN 3840 0 1 .24 .426 1.227 .040 -.494 .079 

SMOKING 3220 0 1 .14 .346 2.083 .043 2.339 .086 

VKORC1 -1639G>A 4201 1 3 1.94 .804 .103 .038 -1.447 .076 

VKORC1  1173C>T 3591 1 3 1.85 .824 .290 .041 -1.469 .082 

Therapeutic Dose of 

Warfarin 
4837 2.50 315.00 31.4621 16.82898 2.493 .035 23.067 .070 

INR on Therapeutic 

Dose 
4968 .80 6.10 2.3644 .46465 .000 .035 1.975 .069 

CYP2C9*3 5696 1 99 3.70 15.679 5.913 .032 32.990 .065 

CYP2C9*2 5699 1 99 3.75 15.667 5.912 .032 32.995 .065 

Valid N (listwise) 87 
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APPENDIX C: THE FEATURES OF THE TURKISH DATA SET 
 

 

 

Table 17: The Features of Turkish Data Set 

Feature Name Description Type Missing Used 

Age Derived From Year of Birth CAT14l None Yes 

BSA Derived From Weight and Height NUM15 None Yes 

Gender Male/Female BIN16 None No 

Indications Categorized into following: 

X4(PE) 

X5(STROKE) 

X6(CARDIAC FAILURES) 

X7(DVT) 

X8(INTERVENTIONS & SURGERY) 

BIN None Yes 

Medications Amiodarone and Aspirin are coded as different binary 

features 

- None Yes 

SMOKER - BIN None Yes 

CYP2C9*2  CAT None Yes 

CYP2C9*3  CAT None Yes 

VKORC1:-1639 G  CAT None Yes 

VKORC1:-1173 C  CAT None Yes 

CYP4F2  CAT None Yes 

EPHX1  CAT None No 

VITAMIN K 

INTAKE 

 CAT None No 

TEA  CAT None No 

COFFEEA  CAT None No 

GRAPEFRUIT  CAT None No 

ALCOHOL  CAT None No 

  

                                                 

 
14

 Stands for CATEGORICAL. 
15

 Stands for NUMBER. 
16

 Stands for BINARY. 
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APPENDIX D: LESSONS LEARNT FOR BAYESIAN 

ESTIMATION USING AMOS 
 

 

 

1. Data processing should be carried out with up-most care. At the end of the 

day Bayesian SEM is a data driven method. 

2. Inspection of the feature set is very crucial. Features can be eliminated by 

looking at the descriptive statistics and subjective evaluation based on the previous 

studies. 

3. The approach for Missing Value Processing should be determined and 

justified carefully.  

4. Multiple Imputation is a very useful technique. But, the results should be 

evaluated carefully. 

5. A further feature reduction technique can be applied before moving to the 

phase of Bayesian Inference. 

6. Dichotomous (binary) and categorical variables should be processed 

carefully. Categorical and binary variables do not generally conform to normality 

principle. Discrete data can be treated as manifestations of an underlying normal 

distribution. SPSS and AMOS provide a recoding method. 

7. Bayesian SEM works for small sample sizes but informative priors should be 

used and assessed carefully. Prior Sensitivity is higher in small samples. 

8. Various software packages are available. WinBUGS does not provide an 

enhanced user interface for developing the model graphically. It requires 

programming skills and the documentation is restricted. 

9. AMOS is easier to use, has a shorter learning curve and is integrated with 

SPSS. 

10. Dichotomous (binary) and categorical variables should be processed 

carefully. Categorical and binary variables do not generally conform to normality 

principle. Discrete data can be treated as manifestations of an underlying normal 

distribution. SPSS and AMOS provide a recoding facility. 

11. Modeling is a hard task. Advance incrementally starting with continuous 

variables. If all the variables are incorporated at once, the model has the risk of not 

being identified. 

12. Endogenous variables require error terms. These error terms have 

unstandardized regression weight of 1. Do not forget to assign the weights. 

13. Once the model is identified and Bayesian estimation is performed, assess for 

convergence and the results of standard errors, p values and t-tests etc. 

14. A composite structure is obtained by a latent variable with zero variance. For 
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these latent variables, the regression weight of one of the incoming paths should be 

assigned to 1 for model identification. 

15. Test of non-linearity is applied before the construction of the composite. 

16. Always beneficial to use the output «Notes for Model». 

17. Chi-square is the most commonly used measure for absolute fit. Always pay 

attention to it for model evaluation. RMSEA and BIC are other commonly used 

measures for model fit. 

18. For comparing two non-nested models, the BCC (Browne-Cudeck Criterion) 

can be used for model selection. 

19. Selecting Admissibility test sets the prior density to 0 for parameter values 

that result in a model where any covariance matrix fails to be positive definite. 
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