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ABSTRACT 
 
 

NONLINEAR VIBRATIONS OF CURVED SINGLE AND DOUBLEWALLED 
CARBON NANOTUBES 

 
 
 

Samandari, Hamed 
Ph.D., Department of Mechanical Engineering 
Supervisor: Assoc. Prof. Dr. Ender Cigeroglu 

 
July 2014, 191 pages 

 

In this thesis, effects of Geometric, initial curvature, and van der Waals (vdW) interlayer force 

nonlinearities on the variation of nonlinear natural frequency of Carbon Nanotubes (CNTs) 

are investigated in detail throughout several case studies. Galerkin method with a single trial 

function, which is the eigenfunction of the linear system, is widely used in literature in 

studying nonlinear vibrations of CNTs. However, eigenfunctions of the nonlinear systems 

can be significantly different than the eigenfunctions of the linear system. Therefore, 

depending on the nonlinearity, it may not be possible to capture the nonlinear characteristics 

by using a single trial function. Consequently, for the first time in this thesis, multiple trial 

functions are used to investigate the nonlinear free vibrations of CNTs. Moreover, a new 

solution approach– describing function method– is proposed which has the advantage of 

expressing the nonlinear force as a nonlinear complex stiffness matrix multiplied by 

displacement vector, where the off-diagonal terms of the nonlinear stiffness matrix can 

provide a comprehensive knowledge about the coupling between the trial functions. 

Depending on the boundary conditions considered, it is hard to find suitable trial functions 

that satisfies all the boundary conditions; hence, in order to overcome this difficulty, iterative 

path following method (IPFM)  based on differential quadrature method (DQM) is developed   

which does not require trial functions. It is concluded that DQM based nonlinear solution 

method is very promising in solving nonlinear continuous systems, since it requires less 

number of gird points which results in less number of nonlinear equations compared to finite 

element methods.  

Keywords: Nonlinear vibration, Curved carbon nanotubes, Nano resonators, Geometric 

nonlinearity, Van der Waals force nonlinearity 
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ÖZ 
 
 

TEK VE ÇİFT DUVARLI KAVİSLİ KARBON NANOTÜPLERİN DOĞRUSAL 
OLMAYAN TİTREŞİMLERİ 

 
 
 

Samandari, Hamed 
Doktora, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Assoc. Prof. Dr. Ender Ciğeroğlu 
 

Temmuz 2014, 191 sayfa 
 

Bu tezde, geometrik, başlangıç kavisi ve van der Waals kuvvetleri  kaynaklı doğrusal olmayan 

etkilerin (doğrusalsızlıkların) karbon nanotüplerin (KNT’lerin) doğrusal olmayan doğal 

frekans değişimi üzerindeki etkisi çeşitli vaka analizleri ile detaylı olarak incelenmiştir. 

Sınama (deneme) fonksiyonu doğrusal sistemin özfonksitonu olan tek sınama fonksiyonu 

kullanan Galerkin metodu literatürde karbon nanotüplerin doğrusal olmayan titreşimleri için 

sıklıkla kullanılmaktadır. Ancak, doğrusal olmayan sistemler için elde edilen doğrusal 

olmayan sistemlerin özfonksiyonları doğrusal sistemlerin özfonksiyonlarından önemli ölçüde 

farklı olabilmektedir. Dolayısıyla, doğrusalsızlığa bağlı olarak tek sınama fonksiyonu 

kullanarak doğrusal olmayan karakteristiklerin yakalanması mümkün olmayabilmektedir. Bu 

sebeple, ilk kez bu tez çalışmasında KNT’lerin doğrusal olmayan titreşimlerini incelemek 

için çoklu sınama fonksiyonu kullanılmıştır. Buna ek olarak, doğrusal olmayan kuvvetlerin 

doğrusal olmayan karmaşık direngenlik matrisi ve yer değiştirme vektörünün çarpımı olarak 

yazılabildiği yeni bir çözüm metodu – tanımlama fonksiyonu metodu – önerilmiştir. Bu 

doğrusal olmayan karmaşık direngenlik matrisinin köşegen dışı elemanları sınama 

fonksiyonları arasındaki bağlantı hakkında çok önemli bilgiler sağlamaktadır. Ele alınan sınır 

koşularına bağlı olarak bütün sınır koşullarını sağlayan uygun sınama fonksiyonları bulmak 

çok zor olmaktadır. Bu sebeple, bu zorluğu aşmak için, sınama fonksiyonu gerektirmeyen 

diferansiyel tümlev metodu (DTM) üzerine kurulu yinelemeli yol takibi metodu (YYTM) 

geliştirilmiştir . Sonlu elemanlar metoduna göre daha az sayıda nokta kullandığı için daha az 

sayıda doğrusal olmayan denklem elde edilmesini sağlayan DTM’in DTM tabanlı doğrusal 

olmayan çözüm metodunun  sürekli sistemlerin çözümü için gelecek vadeden bir yöntem 

olduğuna kanaat getirilmiştir. 

Anahtar Kelimeler: Doğrusal olmayan titreşim, Kavisli karbon nanotüpler, Nano rezonatör, 
Geometrik doğrusalsızlık, Van der Waals kuvvet doğrusalsızlığı   
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CHAPTER 1 
 
 

1.  INTRODUCTION 
 
 
 

This chapter aims at presenting a general overview of carbon nanotubes and their 

application areas as well the need for understanding the dynamic characteristics of 

carbon nanotubes. 

 

1.1. General Introduction and Applications 

In recent years, the subject area of nanotechnology has become the focus of attention 

of industries, scientists and researchers. Among the nano-materials, carbon nanotubes 

(CNTs) have received the highest amount of attentions owing to their novel 

mechanical, chemical, thermal, and electrical properties [1-3]. 

Carbon nanotubes are named based on their unique sizes. A CNT has a diameter of 

few nanometers while its length can be up to several millimeters. In an article in “nano 

letter”, Wang et al [4] show that a single walled carbon nanotube can have a length to 

diameter ratio up to 132,000,000 :1. A CNT can be constructed by folding a sheet of 

graphene into a cylinder. Graphene, Figure 1-1, is a flat, two dimensional, layer of 

carbon atoms packed tightly in the shape of a hexagonal lattice (honeycomb lattice). 

A graphene sheet can be wrapped into the fullerene or nanotube, or it can be stacked 

into the graphite (Figure 1-2). 
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Figure 1-1 Schematic of a graphene sheet [5] 

 
Figure 1-2 Graphene can be rolled up into a carbon nanotube, 

wrapped into a fullerene, and stacked into graphite [6]. 

In 1991, Iijima discovered carbon nanotubes while working with NEC Corporation1 

[7]. Using a high resolution Electron micrographs, he captured pictures of nanotubes 

for the first time (Figure 1-3). Later, studies show that CNTs can be grouped in three 

basic groups of zigzag, armchair, and chiral. These groups are categorized based on 

the ways in which a graphene sheet can be rolled into a tube. Wrapping a graphene 

sheet can be presented by a pair of indices  ,m n . The integers show the number of 

unit vector along the two directions in the graphene. As shown in Figure 1-4, if 0m  

nanotube is called zigzag, if m n  nanotube is called armchair, and if 0m n   

nanotube is called chiral. CNTs as well can be grouped according to the number of 

their walls (layers) as single walled, double walled, and multiple walled tubes. 

                                                 

1 NEC Corporation is a Japanese multinational provider of information technology (IT) services and 
products, with its headquarters in Minato, Tokyo, Japan. 
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Figure 1-3 Electro micrographs of nanotubes where it consists of  

a) five tubes b) two tubes c) seven tubes [7] 

 
Figure 1-4 Naming schemes for the nanotubes 

Studies show that, to this date, CNTs are the strongest discovered material owing to 

the strong “sp2 bonds”2 formed between the individual carbon atoms. For example a 

multiple walled carbon nanotube (MWCNT) can have a tensile strength around 100  

GPa. It is worth noting that this strength is equal the ability to endure a weight 

equivalent to 10,190  kg on a cable with cross section of one millimeter. In addition 

to high strength, carbon nanotubes have a low density for a solid, around 1.3 g/cm3. 

As a result, they have a specific strength around 48,000  kN·m·kg−1 which is much 

higher compared to high-carbon steel's 154  kN·m·kg−1. Table 1-1 represents a 

comparison between strength of different types of CNTs and Stainless steel. These 

                                                 

2 Refer to Orbital hybridization on Chemical books for information on sp2 bonds 
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approximate results are obtained based on theoretical predictions and some 

experiments and are given here just to provide an estimate about their properties.  

Table 1-1 A comparison between strength of different types of CNTs  
and stainless steel [8-11] 

Material 
Young's modulus

(TPa) 
Tensile strength

(GPa) 
SWNT around 1 13–53 
Zigzag SWNT 0.94 94.5 
Armchair SWNT 0.94 126.2 
Chiral SWNT 0.92 – 
MWNT 0.2–0.95 11–150 
Stainless steel 0.186–0.214 0.38–1.55 

In addition to unique mechanical characteristics, CNTs show an unrivaled electrical 

and thermal properties. For example, electrical and thermal conductivities of a 

SWCNT are 1000  and 20 times greater than a metal such as copper, respectively. 

All these unique properties give the CNTs the potential to reshape critical 

technologies. Nowadays, CNTs are being fabricated and used as parts in the new 

emerging nano-devices. CNTs have potential applications in devices such as nano-

actuators, nano-motors, nano-sensors, nano-turbines, and nano shaft and gear 

systems. In the following section, application areas of CNTs are explored focusing on 

their vibratory applications.  

 Applications areas of CNTs 

Carbon nano-structures have attracted many attentions in the past two decades owing 

to their exceptional properties and hence, new applications are introduced by 

researchers literally every day. CNTs play an important part in diverse fields of 

technology such as medical, sensor, computing, and etc., to make our lives more 

comfortable. Some of those applications are as follows: 

 Nano sensors: 

A nano-sensor obtains data from atomic scales and transfers them to the 

macroscopic world where they can be measured. The detection involves in 

identifying the mass by measuring the changes of vibration frequencies. The very 

small mass of CNTs gives them the capability to even identify atoms. Figure 1-5 
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shows a SWCNT mass fabricated by Philippe et al [12]. They show that first 

natural frequency of structure shifted from 3.29 MHz to 968  KHz due to attached 

mass. They estimate the mass of nano-particle to be equal to 30 femtogram (

1530 10 gr). 

 

 

Figure 1-5 A CNT mass sensor taken from [12] 

Recent studies show that the behavior of carbon nanotubes are nonlinear in nature 

and it is been reported that SWCNT based mass sensors can exhibit super-

harmonic and sub-harmonic responses with different level of mass [13, 14]. 

Hence, further development in this area needs a complete understanding of the 

nonlinear behavior of CNTs. Moreover, recently, it is been suggested that the 

higher harmonics can be used to develop a more sensitive sensor. 

 

 Tunable Oscillators (resonators): 

A resonator is a vibrating structure which is used in radio-frequency signal 

processing and transmitting [15, 16] and as a model system for exploring quantum 

phenomena in macroscopic systems [17, 18]. The sensitivity of these devices 

increases as their size and more importantly their mass decreases. Hence, CNTs 

can be the ultimate material for these applications. Furthermore, the high stiffness 

of CNTs gives them the ability to oscillate at gigahertz frequencies. In letter to 

nature, Sazonova et al [19], proposed an electrical tunable resonator. Figure 1-6 

shows the resonator where the nanotubes are suspended over a hole between two 

metal electrodes. The gate electrode underneath the tube is used to actuate and 

tune the nanotube. Several studies regarding oscillators can be found in literature 

[20-24]. Figure 1-7a shows a schematic view of an atomic force microscopy 
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(AFM) used in quantum researches. The cantilever-tip vibrates due to atomic 

forces and its vibration is measured using a laser and quad photodiode. The 

resolution, sensitivity, and probing depth of an AFM depend on the structure of 

the probe. Recent studies [25, 26] show that probing depth of AFM can be 

significantly increased by utilizing carbon nanotubes (Figure 1-7b) 

 

Figure 1-6 A schematic of CNT resonator, taken from [19] 

 
Figure 1-7 Atomic Force Microscopy a) a schematic view b) a Silicon tip with CNT Probe 

[26] 

 Nano switches: 

Recent studies show that CNTs can be used as a switch for applications such as 

logic devices, memory elements, pulse generators, and current or voltage 

amplifiers [27, 28]. Moreover, high natural frequencies of CNTs (gigahertz 

regions) give them the ability to respond very fast. Figure 1-8 shows a CNT based 

switch where the on and off statues are shown. The researches in this area are still 

under development. 
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Figure 1-8 A CNT based switch: (a) turn-on and (b) turn-off states, taken form [29] 

 Nano gears and nano actuators: 

The rotating nano-structures are expected to receive an extensive attention in the 

near future since they will be the building block of power transmission system of 

any nano machines. In the past few years, the feasibility of these machines have 

been studied by several researcher [30, 31]. For example, in letter to nature, 

Fennimore et al. [32] reported on the construction and successful operation of a 

nanoscale electromechanical actuator incorporating a rotatable metal plate. 

Figure 1-9 shows the schematic and electron microscope image of nano-actuator. 

In the presented study, a multiple walled CNT is acted as shaft. Figure 1-10 shows 

a typical carbon nanotube gear reported by Srivastava [31]. A laser electric field 

is used to power the driven gear. 

 

Figure 1-9 a) conceptual drawing of nano-actuator b) Scanning electron 
 microscope image of nano-actuator [32] 
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Figure 1-10 Diagrams of two carbon nanotube gears [31] 

Reviewing literature, it can be concluded that CNTs will find applications in several 

areas. Even though, some of them are still in the prototype stages, they will be a part 

of our daily life in the near future. Moreover, the growth of CNTs in the past few 

years suggests that these application areas will not be limited to the ones mentioned 

here. 

 Brief literature review and motivations 

In order to design a new efficient vibrating nano-scale device, researchers need 

detailed information about dynamic properties of the device. In contrast to macro 

scale structures, atomic forces play an important role in defining the mechanical 

characteristics of nano-structures. Hence, a clear understanding of atomic interactions 

are required. Furthermore, producing prototypes without having clear image of the 

structural properties can be very time consuming, misleading and sometimes 

impossible. Therefore, having a good insight of the dynamic behavior is important for 

the practical development of the nanomachines. 

Experiments can be used to analyze the behavior of nanostructures. However doing 

experiment at nanoscale is a difficult task and even for some cases it is almost 

impossible with current technologies. Moreover, an efficient design requires several 

experiments in order to identify and optimize the system parameters. Therefore, 

molecular dynamic (MD) simulation methods have been developed. MD is a 

computer based simulation of physical movement of each atom and molecule in the 

context of a body. In this method, each atom is considered as a particle which interacts 
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with other particles (atoms). The forces between the particles and potential energies 

are defined by molecular mechanics force fields. Since a molecular system consists 

of a vast number of particles, it is impossible to find the solution analytically. Hence, 

the trajectory of particles are commonly obtained numerically by solving the 

Newton’s equation of motion. It should be noted that the size of such atomic systems 

are limited due to highly time consuming computational requirements. In the past 

decades, MD method is used by several researches to study the dynamics of 

nanostructure. However, employing the molecular dynamic (MD) simulations for 

each case requires a huge amount of time and computational resources. 

In recent years, elastic beam models [33-37] and elastic shell models [38-40] have 

been effectively used to predict resonant frequencies of CNTs. Using simple 

equations of motions offered by the continuum models, key parameters that affect the 

free vibration of CNTs can be easily studied. These studies [33-39] show that, 

compared to MD simulations, continuum modeling is more practical and useful in the 

analysis of CNTs in terms of computational efforts.  

Even though classic continuum models can provide quick and approximate 

predictions, they fail to account for the size effects. Size effects are emerged from the 

interaction of atoms and molecules that create the material. In recent years, several 

research efforts have been conducted to bring in the size effects within the formulation 

by modifying the traditional classical continuum mechanics. One widely used size-

dependent theory is the nonlocal elasticity theory presented by Eringen [41]. In the 

nonlocal elasticity theory, the size effects are captured by assuming that the stress at 

a point is a function of the strains at all points in the domain [41]. Therefore, unlike 

classical elasticity theory, nonlocal theory can consider long-range inter-atomic 

interactions; hence, it yields in the results dependent on the size of a body. Some other 

theories which also capture the size effects include couple stress elasticity theory, 

strain gradient theory, and modified couple stress theory. 

In the majority of studies given in literature, the vibrational behavior of CNTs is 

studied by using linear models [42, 43]. Nonlinear vibrational behavior of CNTs has 

recently become the interest of research, where both geometric nonlinearity caused 

by large transverse displacement and van der Waals force nonlinearity are studied 
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[44-46]. Based on Donnell’s cylindrical shell model, Yan et al. [39] investigated the 

nonlinear vibrational behavior of a double wall carbon nanotube (DWCNT) due to 

large deformations; whereas, Ke et al. [34] studied the same problem by using 

Timoshenko beam model. The effect of surrounding medium on the nonlinear 

vibration of the CNTs with geometric nonlinearity has been studied in [44], where 

single and multiple walled CNTs (MWCNTs) embedded in polymer matrix are 

considered.  

CNTs are affected from the pressure of the medium they are embedded in and from 

other CNTs that are very close to them due to interlayer molecular forces. The 

Winkler model [47] is used to describe the surrounding pressure where the 

surrounding medium is assumed to act as a linear spring resulting in a pressure 

distribution linearly proportional to the deflection of the outermost tube. On the other 

hand, the interlayer force between layers of CNTs is governed by van der Waals force 

(vdW). The vdW force estimated by Lennard-Jones potential is inherently nonlinear 

[48-50]; hence, the nonlinearity of vdW force should be considered in order to 

accurately determine the vibrational behavior of MWCNTs. However, in the majority 

of the studies concerning MWCNTs, the interaction pressure between adjacent tubes 

of MWCNTs is linearized and assumed to depend linearly on the difference of the 

radial deflections. The nonlinear vibrational behavior of DWCNTs having interlayer 

nonlinear vdW forces between the inner and outer tubes was studied by Xu et al. [51]. 

Authors show that the nonlinear behavior of vdW force affected deflection amplitudes 

especially in the case of out-of-phase vibration mode whereas, in the case of in-phase, 

vibration mode this effect is very little. In the last few years, the vdW force 

nonlinearity has been studied by other researchers as well [52, 53]. 

Furthermore, recent studies show that CNTs are not straight and have a certain amount 

of waviness or initial curvature. The initial curvature can be introduced during 

fabrication or manufacturing processes because of pre-stresses and boundary effects. 

Figure 1-11 shows a picture of a curved SWCNT. However, in numerous recent 

papers, CNTs are assumed to be perfectly straight beams, and only, in few recent 

papers, the effect of initial curvature on linear free vibration of CNTs studied [54, 55]. 

Whereas, the nonlinear effect of initial curvature is not fully studied yet. 
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Figure 1-11 Images of a carbon nanotube showing the initial curvature [54] 

1.2. Objectives and Scopes of this thesis 

This thesis is going to deal with the study of the nonlinear free vibration of CNTs. 

Reviewing and analyzing literature, our studies show that the limited number of 

studies on nonlinear vibration of CNTs have serious shortfalls. A CNT can be affected 

by three different types of nonlinearities: Geometric nonlinearity, interlayer vdW 

nonlinear force, and initial curvature nonlinearity. However, in most of the recent 

works, the effect of each nonlinearity is studied independently from other 

nonlinearities without including the interaction between different types of 

nonlinearities. Moreover, it has been observed that, in all of the studies, single trial 

function assumption is used to study the system behavior where the trial function is 

considered to be the exact eigenfunction of the relevant linear system. However for 

nonlinear systems, the resulting nonlinear eigenfunctions can be significantly 

different from the eigenfunctions of the linear system, and depending on the 

nonlinearity, it may not be possible to capture the nonlinear characteristics by using a 

single trial function [56]. It should be noted that even for linear systems, in order to 

solve the eigenvalue problem, multiple trial functions are needed unless the exact 

eigenfunctions of the system are known. 

Moreover, our studies show that even though Galerkin method is easy to implement, 

it requires trial functions or comparison functions that satisfy all the (geometric and 

natural) boundary conditions of the system. Hence, most of the researches based on 

Galerkin approach are limited in studying hinged-hinged beams where the trial 

functions are simple sine functions. Therefore, presenting a general formulation 
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capable of predicting the vibrational behavior of CNTs under different boundary 

conditions is of high importance. 

Furthermore, our studies show that, in all studies regarding the nonlinear vibrations 

of CNTs, the boundary conditions (BCs) of CNTs have been assumed to be same as 

linear classic beam models. However, our insight on the problem suggests that BCs 

will be nonlinear and nonlocal due to inherent nonlinear characteristics of CNTs and 

the size effects.  

Taking these shortfalls into consideration, the scopes of this thesis are defined as 

follows 

 To get a solid understanding of the effect of different types of nonlinearities 

on the nonlinear free vibrations of CNTs 

 To study the interactions between different types of nonlinearities 

 To implement multiple trial functions to get a better approximation of the 

system mode shape and in the mean time, to develop a novel algorithm using 

describing function methods to study the coupling between the trial functions 

 To develop and implement an accurate, efficient and relatively fast techniques 

for modeling CNTs which does not require any pre-knowledge on the system 

comparison functions (differential quadrature method) 

 To study the effect of initial curvature and higher harmonics 

 To understand the in-phase and out-of-phase natural frequencies of CNTs and 

how they get affected by nonlinearities 

 To improve the modeling of CNTs by including the equation regarding the 

nonlinear nonlocal boundary conditions 

Since each of these issues is going to deal with a different aspect of nonlinear 

vibrations of CNTs, they will be investigated throughout different case studies in 

independent chapters. 
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1.3. Outline of Thesis 

This thesis is prepared in the integrated form where each chapter is a standalone article 

with introduction, literature review, problem definition and modeling, solution 

method, discussion and results, and concluding remarks. In second chapter, a 

comprehensive literature review is presented starting with a detailed introduction on 

the mechanical characteristics of CNT and methods to anticipate and measure these 

properties. This chapter covers a critical review on linear and nonlinear vibrations of 

CNTs where various simulation methods are discussed and advantage and 

disadvantage of each method is mentioned. More than 130 research article are cited 

in order to provide a deep understanding on the subject. Simulation methods such as 

molecular dynamic simulation, shell theories, and local and nonlocal continuous beam 

theories are discussed. It is observed that CNTs are affected by geometric, vdW 

interlayer force, initial curvature nonlinearities. The recent works in literature on these 

nonlinearities are summarized and discussed. This chapter, in general, provides the 

required knowledge to researchers with background in engineering. 

In third chapter, nonlinear free vibration of a simply supported double walled carbon 

nanotube (DWCNT) with a concentrated-mass is investigated. The proposed model 

simulates behavior of nonlinear DWCNT mass sensor where concentrated mass 

stands for the absorbed mass of atoms or molecules. Using Galerkin method with a 

single trial function, a detailed numerical study on the nonlinear vibrations of double 

walled carbon nanotubes is presented. Nonlinearities are due to large deflection of 

carbon nanotubes and nonlinear interlayer van der Waals force between tubes. In this 

chapter, the effect of both nonlinearities and key parameters of concentrated mass on 

the variation of the in-phase and out-of-phase vibration modes of DWCNTs is studied. 

Chapter four aims to introduce the concept of multiple trial functions. It is a common 

assumption in the literature to use a single trial function assumption to study nonlinear 

vibration of CNTs where the trial function is eigenfunction of corresponding linear 

system. Hence, in this Chapter, the motion of the DWCNT is represented by multiple 

eigenfunctions of the linear system which are referred as trial functions. Describing 

function method (DFM) is employed in order to represent the nonlinear forces as a 

multiplication of a nonlinear stiffness matrix and a displacement vector, which made 
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it possible to identify when it is necessary to consider multiple trial functions. The 

effects of number of trial functions and medium stiffness on the free vibration of 

DWCNTs are investigated. 

Fifth chapter deals with the effect of higher harmonics on the nonlinear free vibration 

of a curved simply supported single walled carbon nanotube. In this chapter, multiple 

harmonic balance method (MHBM) in addition to Galerkin method is used to convert 

the nonlinear discretized differential equations of motion into a set of nonlinear 

algebraic equations where application of MHBM make it possible to study the effect 

of higher harmonics. An expression for the variation of nonlinear fundamental natural 

frequency of CNTs is derived analytically. The effect of higher harmonics on the 

natural frequency of CNTs are studied for the first time in this chapter. 

Chapter six is dealing with development and implementation of an accurate and fast 

techniques for modeling CNTs where, at the same time, it does not require any pre-

knowledge on the system comparison functions. In this chapter, differential 

quadrature method (DQM) as higher order finite element method is introduced. Using 

DQM, nonlinear vibration of a curved DWCNT embedded in an elastic medium is 

studied. Nonlinearities considered are due to large deflection of carbon nanotubes 

(geometric nonlinearity) and nonlinear interlayer van der Waals forces between inner 

and outer tubes. The effect of nonlinearities, end conditions, initial curvature, and 

stiffness of the surrounding elastic medium, and vibrational modes on the nonlinear 

free vibration of DWCNTs is studied in this chapter.  

Chapter seven is concerned with linear and nonlinear free vibration of a nonlocal 

rotating double walled carbon nanotube (DWCNT). It is worth mentioning that 

rotating structure will be inevitable part of the power transmission system of any 

future nano machines. Nonlinearities are due to large deflections (geometric 

nonlinearity) and interlayer van der Waals force. The cross-sectional area of the CNTs 

are assumed to change along the axial direction. The tubes are attached to molecular 

hub which rotates at a constant angular speed. Hamilton principle and Euler Bernoulli 

beam theory are used to obtain the nonlocal equations of motion and boundary 

condition equations based on Eringen theorem. Results show that boundary condition 

equations for nonlocal cantilever beam is totally different than classic beams where it 
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includes nonlocal and nonlinear terms. Nonlinear nonlocal BCs are studied for the 

first time in this chapter.  

Finally, in chapter eight, a general conclusion is presented. This chapter sums up 

topics of discussion in the thesis and points out main contributions of the present study 

and possible ideas for the future works. 
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CHAPTER 2 
 
 

2. VIBRATION OF CARBON NANOTUBES: A CRITICAL REVIEW 
 
 
 

This chapter aims at reviewing the recent studies in the literature for linear and 

nonlinear vibrations of carbon nanotubes. Common methods in studying vibrations of 

CNTs are summarized and advantage and disadvantage of each method is discussed.  

2.1. Introduction 

Carbon nanotubes (CNTs) have the potential to reshape critical technologies owing 

to their novel mechanical, chemical, thermal, electrical and electronic properties [1-

3]. Nowadays, CNTs are being fabricated and used as parts in the new emerging nano 

devices3. In recent years, there has been a great interest in discovering the mechanical 

properties of CNTs. 

The mechanical properties of CNTs are characterized by the strength of the sp2 bonds. 

The most important parameter which describes the mechanical properties of a 

material is the Young’s modulus E  

E   ,  (2.1) 

where it describes the slope of stress   vs. strain   curve. It should be noted that the 

natural frequency cannot be calculated without knowing the Young’s modulus. In the 

past decades, several experiments have been conducted to measure the Young's 

modulus of carbon nanotubes. However, due to small size of CNTs, it is almost 

impossible to measure their mechanical properties directly.  

                                                 

3 A review on recent applications of CNTs is presented in previous chapter. 
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Even though direct measurement of the strength is impossible with current 

technologies, it is possible to determine the strength indirectly. One method is to 

measure the amplitudes of intrinsic thermal vibration of cantilevered carbon 

nanotubes, which is a function of temperature. In a study, Treacy et al [57] show that 

CNTs vibrate due to thermal effects and vibration amplitude adjusted as temperature 

changes. This correlation can be used to obtain Young's modulus since, for small 

vibration amplitudes, vibration amplitude at the tip of a cantilever beam is related to 

Young's modulus and the vibration energy. Using this method, Treacy et al [57] 

calculate a Young's modulus of 1.8  TPa (average value) for multi-walled nanotubes, 

and Krishnan et al [58] obtained a Young's modulus of 1.25 0.35 / 0.45   TPa for 

single-walled nanotubes. However, the technique is limited since the thermally 

excited vibrations should not be too large or too small for reliable transmission 

electron microscopy (TEM) detection. As a result, the sample size is restricted in this 

method.  

Another method is to measure the exerted force by a nanotube as a function of the 

displacement from its equilibrium position when it is bended by the tip of an atomic 

force microscopy (AFM). This method provides a direct measurement of bending 

force vs. displacement. Then, using beam theories one can extract Young's modulus. 

Using this method, Wong et al. [59] calculate a Young's modulus of 1.28 0.5  TPa for 

multi-walled carbon nanotubes. 

Another approach proposed by Poncharal et al. [12] is to use an alternating electric 

field to excite a cantilever beam. Changing the frequency of excitation one can obtain 

the resonant frequency of CNTs. Knowing the resonance frequency, one can obtain 

Young's modulus according to the results of vibration analysis of beams. However, 

results provided by this method are approximates since the effects of nonlinearities 

are disregarded. 

In 2000, Yu et al. [60] for the first time obtained the stress vs. strain diagram for 

carbon nanotubes using double AFM tips. Figure 2-1 shows the principle and results 

of measurement done by [60]. When the top cantilever is pulled upward, the lower 

cantilever is bent upward by a distance, while the nanotube is stretched from its initial 
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length of L  to L L  due to the forces of AFM tips. Knowing the forces and bending 

stiffness of cantilever beam, the Stress vs. Strain curve can be obtained. A detailed 

review on the mechanical properties of CNTs can be found in [61-63]  

 
Figure 2-1 a) schematic showing the principle of measurement based on double AFM tips b) 

Stress vs. Strain curve, Taken from [60] 

2.2. Defects in CNTs 

Studies show that the material properties of any material change due to 

crystallographic defect. In most of cases, defects occur in the form of atomic 

vacancies. A high level of such defects can lower the tensile strength of the material. 

As a result, the theoretical strength (≈10% of the Young's modulus) is not feasible for 

most of the materials. However, studies show that CNTs are almost defect-free where 

they can achieve the theoretical strength. A perfect nanotube is a tubular structure of 

carbon atoms in which a carbon atom is bonded to three carbon atoms to form a 

hexagonal networks. In recent years, three types of native defects formed during the 

CNT synthesis process have been identified: isolated point defects or vacancies, 

topological defects, and sp2-sp3 hybridization defects [64]. Further information on 

each type of defects can be found in [65-67]. Studies confirm that the existence of 

few detects can change the electrical properties of the CNT from metallic to 

semiconducting CNT however the mechanical properties of CNTs remain without 

any change. The effect of defects on mechanical properties of CNTs is studied by 
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[68]. Using a high-resolution scanning electron microscope, authors [68] have studied 

both tensile strength and buckling behavior of a set of CNTs. They observed that most 

of the samples reach the strength of the 11% of the Young’s modulus, corresponding 

approximately to the theoretical value of the material's strength. Their findings 

indicate that CNTs are remarkably free of critical defects. Hence, in the most of the 

studies in literature and present study, CNTs are considered to be defects free. 

2.3. Linear vibration of carbon nanotubes 

In the last two decades, the industrial and academic interest in CNTs have 

exponentially increased. Todays, CNTs are utilized in the structure of several nano 

devices such as sensors, oscillators, and actuators. However, the performance of these 

vibrating structures is directly affected by the vibrational characteristics of nanotubes; 

hence, it is very important to know their vibrational characteristics such as natural 

frequencies and mode shapes. In the past decades, experiments are used by researcher 

to determine the mechanical characteristics of CNTs. However doing experiment at 

nanoscale is a difficult task and even for some cases it is almost impossible with 

current technologies. Hence, in recent years, several theoretical theories have been 

developed in order to study vibrational behavior of CNTs. Simulation methods such 

as Molecular dynamics (MD) and local and nonlocal continuum models are widely 

used in literature. This section brought a review which covers outstanding literatures 

in this area. 

 Molecular simulations 

Molecular dynamic (MD) simulation represents the dynamics of the system of atoms 

or molecules by using a discrete solution of Newton׳s equations of motion. Positions 

and velocities of all the molecules are calculated by integrating the equations of 

motion numerically in time domain. The interaction between atoms is calculated using 

atomic potential forces which can be the classic one or obtained from solving the 

Schrödinger equations (known as ab initio method) [63]. MD simulations can provide 

a detailed information on the dynamics of structure and interaction of atoms. 
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In the past decades, MD simulation is used by several researchers to study the 

mechanical properties of CNTs. Iijima et al. [69] studied the bending of nanotubes 

under compression using molecular dynamics simulations. They investigated the 

large deformation and flexible properties of single and multiple walled nanotubes. 

They showed that the bending is completely reversible up to angles in excess of 110. 

Figure 2-2 represents the results reported in [69] where it shows the exceptional 

flexibility of carbon nanotubes at large strain. 

 
Figure 2-2. The network of hexagons is not disturbed hence the tube can unbend without 

any damage, Taken from Iijima et al. [69] 

The bending, axial compression, and torsion of CNTs is studied in [70]. Their results 

shows that carbon nanotubes, when subjected to large deformations, reversibly switch 

into different morphological patterns. Each shape change corresponds to a sudden 

release of energy and a singularity in the stress–strain curve. A similar pattern was 

detected in works of Yakobson et al. [71]. 

In recent years, MD simulation is used by several researcher [72-75] to study the 

dynamic behavior of CNTs. For example, Li and Chou [73] investigated the natural 

frequencies and mode shapes of a single walled carbon nanotube (SWCNT) using 

MD simulations. It is worth noting that the MD simulation provides information on 

radial breathing modes and noncoaxial intertube modes in addition to bending modes. 
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Figure 2-3 shows typical mode shapes of single and double walled CNTs obtained 

using the MD approach. 

 
Figure 2-3 Typical mode shapes for SWNT and DWNT from MD approach, Taken from [3] 

Even though MD simulations are very accurate in anticipating the dynamic and 

mechanical properties of CNTs, they are limited by the size of such atomic systems 

due to highly time consuming computational requirements. In order to perform the 

simulation, special high-performance computational facilities are required. Due to 

these limits, researchers get motivated to develop simpler approaches to study the 

dynamics of CNTs. 

 Euler-Bernoulli beam theorem 

Recent studies show that even though the diameter of a CNT is only several times 

larger than the length of a bond between carbon atoms, continuum models can be used 

to study the dynamics of CNTs. The differential equation of motion of a uniform beam 

was first written by Bernoulli-Euler as follows 

   4 2

4 2

, ,
( , )

w x t w x t
EI A g x t

x t


 
 

 
 ,  (2.2) 

where E  stands for the Young’s modulus of elasticity,  4 4 4out inI R R   is the 

moment of inertia,   is the density, A  is the tube’s cross section,  ,w x t  represents 
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the transverse displacement of the tube, and ( , )g x t  stands for external forces acting 

on the beam. x  is the axial coordinate and t  is temporal variable. outR  and inR  denote 

outer and inner radius of the tube. It should be noted that the actual thickness of a 

CNT is not more than the size of one carbon atom, however it is a common assumption 

in the literature to consider the thickness of carbon tubes to be equal to the distance 

between layers of tubes (around 0.34  nm). 

The Euler beam assumes that displacements are small and the cross section stays 

normal to central axis during bending which is valid for long thin beams. A general 

solution to Eq. (2.2) is 

   , ( ) ( ) cosh( ) sinh( ) cos( ) sin( ) ni t
n n n nw x t W x T t a x b x c x d x e          . (2.3) 

The constants, a , b , c , and d , are defined by the beam boundary conditions and n  

is the eigenvalue for thn  vibration mode which is defined by the characteristic 

equation. According to Euler beam theory, the natural frequencies of system are 

obtained as 

2
1

2 2
n n

n

EI
f

L A

 
  

    
 

.   (2.4) 

Table 2-1 Shows the values of n  for the Clamped-Clamped (C-C), Clamped-Hinged 

(C-H), Hinged-Hinged (H-H), and cantilever beams. 

Table 2-1Value of frequency parameters, n  
 C-C C-H H-H Cantilever

1L  4.7300 3.9266 3.1416 1.8751 

2L  7.8532 7.0686 6.2832 4.6941 

3L  10.9956 10.2102 9.4248 7.8548 

4L  14.1372 13.3518 12.566 10.9955 

5L  17.2787 16.4934 14.708 14.1372 

For a CNT with outer radius outR  and inner radius inR  or any tubular beam, Eq. (2.4) 

can be simplified as  
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
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  

 
.  (2.5) 

Eq. (2.5) have commonly been used by researchers in order to determine the 

frequencies of nano resonators and estimate the Young’s modulus of CNTs from 

measured frequencies [57, 76]. 

CNTs are affected by the pressure of the medium which they are embedded in. The 

Winkler model [47] is used in literature to describe the surrounding pressure where 

the surrounding medium is assumed to act as a linear spring resulting in a pressure 

distribution linearly proportional to the deflection of outermost tube as 

( , ) ( , )g x t kw x t  ,   (2.6) 

The negative sign in the above equation shows that the pressure ( , )p x t  is opposite 

to the deflection of the tube and k  is defined by the material constants of the 

surrounding elastic medium. 

In early studies, single and multiple walled CNTs are modeled as a single continuous 

beam [12]. However, in this model, all the walls remain in-phase and it is not possible 

to study out-of-phase vibration modes. In reality tubes of carbon can interact with 

each other. The interlayer force between layers of CNTs is governed by van der Waals 

force (vdW). The vdW force estimated by Lennard-Jones potential is inherently 

nonlinear [48-50]. However, in the majority of the early studies concerning 

MWCNTs, the interaction pressure between adjacent tubes of MWCNTs is linearized 

and assumed to depend linearly on the difference of the radial deflections as follows 

   1, o if x t p w w  ,   (2.7) 

where 1p  is the interaction coefficient  between the outer layer ow  and inner layer iw . 

Yoon et al. [77] were one of first researchers who modified Euler-Bernoulli beam 

equations to study the out-of-phase vibration of MWCNTs. Their study, later 

followed by several researchers. The transverse vibration of an N-wall CNT is defined 

by the following N coupled equations of motion 
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,   (2.8) 

 1, 2kw k N   is the transverse displacement of the thk  tube, kI  and kA  are the 

moment of inertia and the cross section area of the thk  tube. A similar approach is 

used by Zhang et al.[78] to study free vibrations of double walled CNTs under 

compressive axial load. They show that natural frequency decreases as axial loads 

increases. Moreover, they found out that the amplitude ratios of the inner to the outer 

tubes are independent of axial load. 

 Timoshenko beam theorem 

Studies show that the effects of shear deformation and rotary inertia become 

significant for the short beam vibrating at higher modes. In recent years, Timoshenko 

beam used by several researchers to study the free vibration of short CNTs (length to 

diameter ration smaller than ten). Ru [79], Yoon et al. [80], and Wang et al. [81] used 

the Timoshenko beam model for vibration analysis of MWCNTs. The buckling of 

MWCNTs is studied by Zang et al. [82]. A comparison between results of 

Timoshenko and Euler beam theories show that shear deformations get important 

when the length-to-diameter ratios are small and the difference is expanded for higher 

vibration modes. The coupled differential equations of a SWCNT is given by [83] 

2 2

2 2

w w
kAG A

x x t

 
   

      
,   (2.9) 

2 2

2 2

w w
EI kAG I

x x t

           
,   (2.10) 

where   is the slope of the deflection curve, w  is the transverse deflection, E  is the 

Young’s modulus of elasticity, G  is the shear modulus of elasticity,   is the mass 

density per unit volume, k  is the shear correction factor which depends on the shape 
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of the cross-section, and A  and I  are the area and second moment of the cross 

sections. 

Eliminating the   from Eq. (2.9) and (2.10), the coupled equations can be reduced to 

single differential equation as 

4 2 4 2 4

4 2 2 2 4
1 0

w w E w I w
EI A I

x t kG x t kG t

               
.  (2.11) 

Table 2-2 shows a comparison between frequency parameters of SWCNT obtained 

from Euler and Timoshenko beam theories where the length ratio is considered to be 

equal to 10 and shear factor correction factor equal to 0.563  [84]. It can be seen that 

as frequency increases the differences increases. However, it is worth noting that, in 

most of the application cases, CNTs are only excited around the first natural 

frequencies. Moreover, mainly they have a length to diameter ratio greater than 10.  

Table 2-2 A comparison between Euler and Timoshenko beam theories [85] 
Mode number Hinged-Hinged Clamped-Hinged Clamped-Clamped 

 Timoshenko Euler Timoshenko Euler Timoshenko Euler 
1 3.0929 3.1416 3.7845 3.9266 4.4491 4.7300 
2 5.9399 6.2832 6.4728 7.0686 6.9524 7.8532 
3 8.4444 9.4248 8.1212 10.2102 9.1626 10.9956 
4 10.626 1.5660 10.880 13.3518 11.113 14.1372 
5 12.541 15.708 12.707 16.4934 12.863 17.2787 

 

 Shell theorems 

In recent years shell theories are used by researchers to study vibrations of CNTs. 

Shell theories have the ability to model the cross sectional deformation of the tubes 

as well as their bending, torsional, and extensional modes. However, shell theories 

cannot estimate size effects since Atomic force effects are not included in these 

theories. Moreover, the geometrical and mechanical parameters which are used in 

these studies are basically obtained from empirical or numerical studies. 

Yakobson et al. [70, 71] studied similarities between macroscopic shell models and 

MD simulation methods. Their results show that mechanical properties of CNTs are 
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strongly dependent on helicity and atomic structure of the tubes. Hence, the common 

isotropic shell models which neglect the discrete nature of the CNT cannot predict the 

effects of curvature and chirality on the mechanical behavior of CNTs. Therefore, to 

overcome this problem, anisotropic shell models have been developed [86-88]. 

In the past years, several shell models have been developed by researchers to study 

vibration characteristics of CNTs [89-94]. A review on the validity and accuracy of 

cylindrical shell theories such as Donnell thin shell theory, Sanders thin shell theory, 

and the first-order shear deformation shell theory in predicting the critical buckling 

strains of axially loaded SWCNTs can be found in [94, 95]. Studies show that shallow 

shell theories (e.g., Donnell theory [96]) are not accurate for the CNT analysis due to 

the CNT non-shallow structure. Only more complex shell theories (e.g., Sanders 

theory [97]) are capable of reproducing the results of MD simulations. 

Reviewing literature, it can be seen that shell theories are favorable in predicting the 

buckling behavior of CNTs where beam theories are more favorable in predicting the 

vibration characteristics of CNTs. 

 Nonlocality 

Although classic continuum models can provide quick and approximate predictions, 

they fail to account for the size effects. Size effects are emerged from the non-contact 

interaction of atoms and molecules due to atomic forces such as van der Waals force. 

In recent years, several research efforts have been conducted to bring in the scale 

effects within the formulation by modifying the traditional classical continuum 

mechanics. One widely used size-dependent theory is the nonlocal elasticity theory 

presented by Eringen [41]. In the nonlocal elasticity theory, the small-scale effects are 

captured by assuming that the stress at a point is a function of the strains at all points 

in the domain [41]. Hence, unlike classical elasticity theory, nonlocal theory can 

consider long-range inter-atomic interactions where it yields in the results dependent 

on the size of a body. Some other theories which also capture the size effects include 

couple stress elasticity theory, strain gradient theory, and modified couple stress 

theory. 
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Nonlocal Euler–Bernoulli model is used by Peddieson et al. [98]. They studied the 

effect of nonlocality on static deflection of cantilever beams. Sudak [99] used the 

nonlocal elasticity for column buckling. Wang and Liew [100] studied scale effect on 

static deformation of micro and nano tubes using nonlocal Euler–Bernoulli and 

Timoshenko beam theories. In recent years, wave propagation and vibration of CNTs 

are studied by several researchers using beam theories [101-106]. A review on 

application of nonlocal theories in modeling of graphene sheet and CNTs can be 

found in [107]. 

In a study, Hu et al [108] compared the nonlocal continuum shell model and molecular 

dynamic simulation for wave propagation in SWCNTs and double walled carbon 

nanotubes (DWCNTs). Figure 2-4 shows the dispersion relations between the phase 

velocity and the wavenumber of the transverse wave in the armchair (15,15) SWCNT 

and zigzag (20,0) SWCNT. Good agreement is predicted between molecular dynamic 

simulations and nonlocal continuum modeling. The accuracy and limits of nonlocal 

theories are studied in [90, 109, 110] 

 
Figure 2-4 Dispersion relation of transverse wave in the (a) armchair (15,15) carbon 

nanotube and (b) zigzag (20,0) carbon nanotube, Taken from [108] 

2.4. Nonlinear vibration of carbon nanotubes 

In the past decade, linear elastic beam models and elastic shell models have been 

effectively used by researchers to predict resonant frequencies of CNTs. However, 

recent studies show that CNTs are affected by nonlinearities such as geometric 

nonlinearity, van der Waals interlayer nonlinear force, and initial curvature 

nonlinearity. 
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Lee at al. [111] were one of first who experimentally studied statics and nonlinear 

bending dynamics of a CNT used in atomic force microscopy (AFM). In AFM 

applications, CNT tips are considered advantageous since they have small tip radii, a 

high length-to-diameter aspect ratio, a well-defined atomic configuration, a high wear 

resistance, and significant bending flexibility [112]. Figure 2-5 shows the MWCNT 

probe used by Lee at al. [111]. They studied the deformation of the CNTs as it 

approaches and retracts from the surface (Figure 2-6). They observed that as the tip 

gets close the surface (from A to F), the cantilever first snaps into contact with the 

sample and then bends linearly from point B to C as the CNT tip gets closer to the 

surface. From point C the cantilever exhibits a nonlinear deflection with increasing 

deflection. The MWCNT buckled at point D. Furthermore, they studied the dynamics 

of the tip as its travel distance, Z , decreases. Figure 2-7 shows the frequency response 

of the tip around its first natural frequency. It can be seen that the response is linear 

when CNT tip is far away from the sample. As the distance between tip and sample 

decreases to 65 nm, the amplitude of vibration is reduced and saturates in the 

frequency range where it taps on the sample. Further decrease in Z  develops a distinct 

feature where a jump in frequency can be detected.  

 
Figure 2-5 The MWCNT probe tip (SEM micrograph) used in the experiments by [111]. 

The MWCNT is approximately 7.5 μm long and 10 nm in diameter. 
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Figure 2-6 (a) The tip deflection as it approaches and retreats from surface. (b) Schematic 
diagrams of the tip deflection at selected point during approach and retreat, Taken from 

[111] 

 
Figure 2-7 Frequency response of the MWCNT tip around its first natural frequency [111] 

Later, studies confirm that deformation of CNTs are nonlinear in nature. Hence, static 

and dynamics properties of CNTs can accurately be anticipated only when the 

nonlinearities in the geometry and physics are considered. Fu et al. [113] were the 

first who studied the nonlinear vibrations of CNTs due to large deformations 

(geometric nonlinearity) using Euler-Bernoulli beam theory. Later, Based on 

Donnell’s cylindrical shell model, Yan et al. [39] investigated the nonlinear 
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vibrational behavior of a double wall carbon nanotube (DWCNT) due to large 

deformations; whereas, Ke et al. [34] studied the same problem by using Timoshenko 

beam model. It is worth noting that nonlinear phenomenon such as bifurcation and 

chaos can only be studied when nonlinearities are considered. Moreover, since 

Young’s modulus is measured using the vibration methods, accurate measurements 

can only be obtained when nonlinear effects are considered. In a similar manner, all 

the vibratory applications of CNTs are affected by the same fact. For example, nano 

mass sensors work based on the shift in natural frequency therefore the precise mass 

is obtained only when nonlinearities are accounted. The importance and effects of 

nonlinearities have been studied by several researchers [114-118] in the past few 

years. These studies offer understanding and strategies to deal with the nonlinear 

behavior of CNTs. 

Recently, in nano letters, Cho et al. [119] showed that it is possible to use nonlinearity 

of a resonator to improve its performance. It should be noted that, in the linear 

operation rage, the small size of a resonator reduces its dynamic range down to the 

few nano meter. Whereas, the small vibration amplitudes complicate the development 

of the required measurement system and accordingly limits its sensitivity, especially 

under ambient and room temperature environments [120]. Figure 2-8 shows the 

scanning electron microscope (SEM) image of fabricated resonator by [119]. 

According to this study [119], the measurement sensitivity of the mass sensor 

increases 3.7 times by measuring the drop off frequency instead of the linear 

frequency shift. Figure 2-9 shows the frequency response of the resonator which 

shows a hardening behavior with a jump from higher amplitude to lower amplitude 

as frequency increases. The large amplitude and sharp change are favorable properties 

for the precision measurements. Furthermore, the large vibration amplitude indicates 

less susceptibility of the resonance system to the thermal noise, and a sharp transition 

allows for a narrow measurement bandwidth. 

In the past years, several applications for CNTs are proposed where CNTs have length 

to diameter ratio between 10 and 20. Studies show that, in these cases, the radial 

relative displacement between layers of MWCNTs can play an important role. Results 

[22, 73] show that the out-of-phase vibration mode of MWCNTs are excited at 
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ultrahigh frequencies (above 1 THz) where it has a characteristic wave number just 

few times bigger than the diameter of CNT. 

 
Figure 2-8 Fabricated nonlinear carbon nanotube resonator, Taken from [119] 

 
Figure 2-9 The response spectrum of the nonlinear CNT resonator (O) before  

and (•) after adding a center mass [119]  

The distortion by out-of-phase mode could significantly affect some important 

physical properties) of MWNTs such as electronic and optical properties. Therefore, 

it is important to study the out-of-phase vibration mode. The interlayer force between 

layers of CNTs is governed by van der Waals force (vdW). The vdW force estimated 

by Lennard-Jones potential is inherently nonlinear [48-50]; hence, the nonlinearity of 

vdW force should be considered in order to accurately determine the vibrational 

behavior of MWCNTs. Xu et al. [51] were the first who study the nonlinear 

vibrational behavior of DWCNTs having interlayer nonlinear vdW forces between 

the inner and outer tubes. Authors showed that the nonlinear behavior of vdW force 

affected the deflection amplitudes especially in the case of out-of-phase vibration 

mode, whereas in the case of in-phase vibration mode this effect is very little [52, 53]. 
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The effect of vdW force on nonlinear natural frequencies of DWCNTs is investigated 

by Cigeroglu and Samandari [121] using describing function method and utilizing 

multiple trial functions in Galerkin method. It is observed that utilization of multiple 

trial functions resulted in the determination of multiple nonlinear natural frequencies 

at the same vibration amplitude and identification of single nonlinear natural 

frequencies associated with different vibration amplitudes. Later, authors confirmed 

their results using differential quadrature method [122]. Figure 2-10 shows a 

comparison between different available data in literature for DWCNTs vibrating in 

the out-of-phase vibration mode.  

 
Figure 2-10 Comparison between available data in literature for a DWCNT vibrating in the 

out-of-phase vibration mode 

Furthermore, recent studies show that CNTs are not straight and have a certain amount 

of waviness or initial curvature. The initial curvature can be introduced during 

fabrication or manufacturing processes due to the pre-stresses and boundary effects. 

Mehdipour et al. [123] studied the nonlinear forced vibration of a curved SWCNT 

embedded in Pasternak elastic foundation. They used He’s Energy Balance Method 

to obtain the relationships of the nonlinear amplitude and frequency. Similar problem 

is studied by Samandari and Cigeroglu [124] using multiple harmonic balance 

method. They showed that the nonlinear effects of initial curvature only appear in 
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higher harmonics. Mohammadi et al. [125] study post buckling instability of 

nonlinear CNT with initial curvature embedded in elastic foundation. They show that 

the bifurcation diagram of a curved CNT with initial sinusoidal configuration is 

similar to that of a straight CNT in its nearest buckling mode.  

In recent years, chaotic and non-harmonic response of CNTs attracted attention of 

few researchers. Mayoof and Hawwa [126] studied the possibility of a chaotic 

response for a curved single walled carbon nanotube near its first natural frequencies. 

They observed that as excitation force amplitude increases more than a certain value, 

period doubling occurs in which it is followed by a chaotic behavior. Figure 2-11 

shows the bifurcation diagram around the first natural frequency of the CNT where it 

shows the maximum vibration amplitude of the CNT respect to excitation force 

amplitude. However, their studies [126] show that the chaotic behavior happens at 

high vibration amplitudes. Therefore, since in all the studies in literature on free 

vibration of CNTs and the present study, vibration amplitudes are limited to 3 nm, it 

can confidently concluded that the harmonic response assumption remains valid for 

these vibration amplitudes. 

In the past decade, nonlinear vibrations of CNTs are studied by several researchers. 

Table 2-3, Table 2-4, Table 2-5, and Table 2-6 present the result of the performed 

investigation in this thesis on the recent literature of nonlinear vibrations of CNTs in 

chronological order.  

 
Figure 2-11 Bifurcation diagram of a carbon nanotube resonator near its first natural 

frequency, taken from [126] 
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Table 2-3 Theoretical methods for studying the vibrational characteristics of CNTs, part-1  
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Table 2-4 Theoretical methods for studying the vibrational characteristics of CNTs, part-2 
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Table 2-5 Theoretical methods for studying the vibrational characteristics of CNTs, part-3 

R
es

ea
rc

h 
su

m
m

ar
y 

N
ew

 h
ig

he
r-

or
de

r 
eq

ua
tio

ns
 o

f 
m

ot
io

n 
an

d 
ne

w
 h

ig
he

r-
or

de
r 

bo
un

da
ry

 c
on

di
tio

ns
 &

 n
on

lo
ca

l 
dy

na
m

ic
s 

of
 e

le
ct

ri
ca

ll
y 

ac
tu

at
ed

 
SW

C
N

T
, v

er
if

ie
d 

by
 ti

m
e 

in
te

gr
at

io
n 

m
et

ho
d 

la
rg

e-
am

pl
it

ud
e 

fr
ee

 v
ib

ra
tio

ns
 o

f 
D

W
C

N
T

, d
if

fe
re

nt
 ty

pe
s 

of
 

B
C

sM
ah

da
vi

  
N

on
li

ne
ar

 in
-p

ha
se

 a
nd

 o
ut

-o
f-

ph
as

e 
vi

br
at

io
n 

m
od

es
, m

ul
tip

le
 

so
lu

ti
on

 d
ue

 to
 c

on
ce

nt
ra

te
d 

m
as

s 
T

he
 n

on
lin

ea
r 

fl
ow

-i
nd

uc
ed

 
vi

br
at

io
n 

of
 a

 S
W

C
N

T
 

U
se

 o
f 

D
FM

 d
et

er
m

in
es

 w
he

th
er

 
m

ul
tip

le
 tr

ia
l f

un
ct

io
ns

 a
re

 
ne

ce
ss

ar
y 

or
 n

ot
 

N
on

lin
ea

r 
vi

br
at

io
ns

 o
f 

M
W

C
N

T
 

in
 te

rm
al

 e
nv

ir
om

en
t 

N
on

li
ne

ar
 v

ib
ra

ti
on

s 
of

 u
ni

fo
rm

ly
 

di
st

ri
bu

te
d 

(U
D

) 
an

d 
fu

nc
ti

on
al

ly
 

gr
ad

ed
 (

F
G

) 
re

in
fo

rc
ed

 C
N

T
 

no
nl

in
ea

r 
ef

fe
ct

s 
of

 in
iti

al
 

cu
rv

at
ur

e 
on

ly
 a

pp
ea

rs
 in

 h
ig

he
r 

ha
rm

on
ic

s 
V

ib
ra

tio
n 

an
d 

st
ab

ili
ty

 o
f 

a 
D

W
C

N
T

 u
nd

er
 e

le
ct

ro
st

at
ic

 
ac

tu
at

io
n 

no
nl

in
ea

r 
fo

rc
e 

vi
br

at
io

n 
of

 
cu

rv
ed

 S
W

C
N

T
 

N
on

li
ne

ar
it

y 

N
on

lin
ea

r 
hi

st
or

y 
of

 s
tr

ai
ni

ng
 

G
N

 a
nd

 I
C

 

G
N

 

G
N

 a
nd

 v
dW

 

G
N

 a
nd

 I
C

 

G
N

 a
nd

 v
dW

 

G
N

 

G
N

 

G
N

 a
nd

 I
C

 

G
N

 a
nd

 v
dW

 

G
N

 a
nd

 I
C

 

So
lu

ti
on

 m
et

ho
d 

G
al

er
ki

n 

P
er

tu
rb

at
io

n,
 m

ul
tip

le
 

sc
al

es
 

F
in

it
e 

el
em

en
t 

G
al

er
ki

n 
an

d 
pa

th
 

fo
ll

ow
in

g 
so

lu
ti

on
 

m
et

ho
d 

P
er

tu
rb

at
io

n,
 m

ul
tip

le
 

sc
al

es
 

D
es

cr
ib

in
g 

fu
nc

ti
on

 
(D

F)
 a

nd
 m

ul
tip

le
 tr

ai
l 

fu
nc

ti
on

s 

In
cr

em
en

ta
l h

ar
m

on
ic

 
ba

la
nc

e 

Pe
rt

ur
ba

ti
on

 te
ch

ni
qu

e 

M
ul

tip
le

 h
ar

m
on

ic
 

ba
la

nc
e 

m
et

ho
d 

(M
H

B
M

) 
M

ul
tip

le
 s

ca
le

s 
m

et
ho

ds
 

H
e’

s 
E

ne
rg

y 
B

al
an

ce
 

M
et

ho
d 

Si
m

ul
at

io
n 

M
et

ho
d 

hi
gh

er
-o

rd
er

 s
tr

ai
n 

gr
ad

ie
nt

 T
B

 

E
B

 

E
B

 

E
B

 w
it

h 
co

nc
en

tr
at

ed
 m

as
s 

N
on

lo
ca

l E
ul

er
 b

ea
m

 (
N

E
B

) 

E
B

 

N
E

B
 a

nd
 c

ur
va

tu
re

 d
ep

en
de

nt
 v

dW
 f

or
ce

 
an

d 
te

rm
al

 e
ff

ec
ts

 

ca
rb

on
 n

an
ot

ub
e-

re
in

fo
rc

ed
 c

om
po

si
te

 
(C

N
T

R
C

) 
sh

el
ls

 

E
B

 

E
B

 w
it

h 
el

ec
tr

os
ta

ti
c 

ac
tu

at
io

n 

E
B

 

Y
ea

r 

20
12

 

20
12

 

20
12

 

20
12

 

20
12

 

20
12

 

20
12

 

20
12

 

20
12

 

20
12

 

20
12

 

R
es

ea
rc

he
r 

Y
an

g 
an

d 
L

im
 [

14
1]

 

Q
ua

ka
d 

an
d 

Y
ou

ni
s 

[1
42

] 

A
ns

ar
i a

nd
 

H
em

m
at

ne
zh

ad
 

[1
43

] 
S

am
an

da
ri

 a
nd

 
C

ig
er

og
lo

 [
14

4]
 

Fa
rs

hi
di

an
fa

r 
an

d 
So

lt
an

i [
14

5]
 

C
ig

er
og

lu
 a

nd
 

S
am

an
da

ri
 [

12
1]

 

A
ns

ar
i e

t a
l. 

[1
46

] 

S
he

n 
an

d 
X

ia
ng

 
[1

47
] 

S
am

an
da

ri
 a

nd
 

C
ig

er
og

lu
  [

12
4]

 

H
aj

na
ye

b 
an

d 
K

ha
de

m
 [

14
8]

 

M
eh

di
po

ur
 e

t a
l. 

[1
23

] 

 



38 

 

Table 2-6 Theoretical methods for studying the vibrational characteristics of CNTs, part-4 
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2.5. Concluding remarks 

A comprehensive review on the different modeling techniques in studying linear and 

nonlinear vibration of CNTs is provided in this chapter. The modeling techniques for 

CNTs can be grouped into three major groups of atomic simulations, continuum 

mechanics simulations and nonlocal continuum mechanics simulations.  

The atomic modeling methods include molecular dynamic (MD) and ab initio 

simulation methods. MD simulation methods relay on the basis of second Newton’s 

law whereas ab initio relays on solving Schrödinger equation which is accurate and 

potential free method. Even though atomic methods can provide considerable amount 

of information to understand the behavior of a structure in nanometer scales, they are 

limited by the size of such atomic systems due to highly time consuming 

computational requirements and the complexity of the formulations. As a result, 

studies based on atomic simulations are mostly focused on predicting the Young’ 

modulus and linear free vibration of CNTs where vibration amplitudes are limited to 

few nano meter. 

In recent years, continuum modeling methods originated from continuum mechanics 

are used to study the mechanical properties of CNTs. In these studies the lattice 

structure of a CNT is replaced with a continuum medium. As a result, the continuum 

modeling cannot address the chirality effect of CNTs. The validity and accuracy of 

continuum models in predicting the buckling and bending behavior of CNT is studied 

by several researchers. Although the mechanical properties of CNTs are extensively 

depend on the chirality of CNTs, early studies show that, with a tuning, the key 

parameters that affect the mechanical characteristics of CNTs can be easily studied 

using simple equations of motions offered by the continuum models. 

Furthermore, although classic continuum models can provide quick and approximate 

predictions, they fail in predicting the size effects. Size effects are originated by the 

non-contact interaction of atoms and molecules of the material. In recent years, the 

traditional classical continuum mechanics are modified by several researchers in order 

to bring in the scale effects within the formulations. The nonlocal elasticity theory 

presented by Eringen [41] is commonly used by researchers to study vibrations of 
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CNTs where it has both the accuracy and simple formulation. In the nonlocal elasticity 

theory, the small-scale effects are captured by assuming that the stress at a point is a 

function of the strains at all points in the domain [41]. Therefore, unlike the classic 

elasticity theory, nonlocal theory can include long-range inter-atomic interactions; 

thus, it yields in the results dependent on the size of a body. Some other theories which 

also capture the size effects include couple stress elasticity theory, strain gradient 

theory, and modified couple stress theory. Studies show that nonlocal continuum can 

be an acceptable approach to overcome the shortcomings of atomistic simulations. 

However, as to this date, MD simulation provides much reliable predictions, thus it 

can be used to verify results from other solution methods. 

Comparing results in literature obtained from MD methods and continuum methods, 

it can be concluded that Euler-Bernoulli beam is reliable in predicating the mechanical 

properties of CNTs when the length to diameter ratio (aspect ratio) is higher than ten 

( / 10L D  ) whereas Timoshenko beam is more reliable for the length to diameter 

ratio smaller than 10 and higher bending modes. Between shell theories, the Donnell 

thin shell theory is unable to include the length dependent critical strains when aspect 

ratio is smaller than eight whereas Sanders shell theory is accurate in predicting 

buckling strains and mode shapes of axially compressed CNTs with small aspect 

ratios. 

Recent theoretical and experimental studies show that the deformation of CNTs is 

nonlinear in nature and it is possible for CNTs to go through large deformations in 

their elastic region. Studies show that nonlinear natural frequency changes 

considerably as vibration amplitude increases more than few nano meter. Therefore, 

it is very important to include the nonlinearity in identifying of the mechanical 

properties of CNTs. Furthermore, depending on the geometry, phenomenon such as 

jump and chaos is detected for CNTs theoretically and experimentally. Geometric 

nonlinearity of CNTs is studied by several researchers in the past few years using 

different methodologies. Most of these studies are concentrated on understanding the 

effect of geometric nonlinearity so that its effect can be filtered out for the linear 

applications. However, for linear operation, the small size of a CNT reduces its 

dynamic range down to the few nano meter which limits its sensitivity, especially 
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under ambient and room temperature environments. Recently, it is been suggested by 

researchers to improve the efficiency of a CNT resonator using its nonlinear 

characteristics. It is worth noting that nowadays nonlinearities have been successfully 

used in application such as energy harvesting to improve their efficiency and 

bandwidth. Hence, the nonlinear characteristics of a CNT resonator can be integrated 

into the ongoing development of nano scale electromechanical systems to extend their 

operation limits.  

In early studies, tubes of CNT are considered as single beam where interlayer 

displacement between layers of nanotubes is disregarded. However, with introducing 

applications such as atomic force probe and mass sensor which have aspect ratio 

around 10 to 20, the interlayer displacement gets important. The interlayer force 

between layers of CNTs is governed by van der Waals force (vdW). The vdW force 

estimated by Lennard-Jones potential is inherently nonlinear. Studies show that 

nonlinear natural frequency increases as vibration amplitude increases due to vdW 

force when the CNTs vibrate in the out-of-phase vibration mode. Moreover, the 

highly nonlinear behavior of the tubes resulted in identification of single nonlinear 

natural frequencies associated with different vibration amplitudes.   

The subject area of carbon nanotube structures is developed in the past few years 

considerably; however, it is still in its early stages and new applications, literally 

every day, are introduced by researchers. Furthermore, studies show that these 

structures are strongly nonlinear. Hence, it is clear for authors that future studies will 

be directed toward understanding the nonlinear vibration behavior of these structures 

in practice as well as using potential capacities of the nonlinearities in order to extend 

their operational capabilities. 
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CHAPTER 3 

 
 

3. ON THE NONLINEAR VIBRATION OF DOUBLE WALLED  
CARBON NANOTUBES WITH CONCENTRATED MASS4 

 
 
 

Mechanical resonators are commonly used as a tool to detect small quantities of the 

adsorbed mass through shifts in the natural frequency. Recent advances in lithography 

and materials synthesis have enabled the fabrication of nanoscale mechanical 

resonators. These resonators can be used in application such as atomic probes or 

atomic mass sensors.  

In this chapter, nonlinear free vibration of a simply supported double walled carbon 

nanotube (DWCNT) with a concentrated-mass is investigated. The proposed model 

simulates behavior of a nonlinear DWCNT mass sensor where the concentrated mass 

stands for the absorbed mass. Furthermore, for the first time in this chapter, the effect 

of both geometric and van der Wall force nonlinearities on the variation of nonlinear 

natural frequency of CNTs is studied.  

 

3.1. Introduction 

In recent years, vibrational behavior of CNTs studied by a number of researchers [44, 

159, 160] where, the continuum mechanics approach is used [161, 162]. Using simple 

equations of motions offered by the continuum models, key parameters that affect the 

free vibration of CNTs can be easily studied. In the majority of these studies [42, 43], 

linear models are used to study the vibrational behavior of CNTs. However, it is 

observed from the experiments that CNTs show nonlinear behavior as their vibration 

                                                 

4 A version of this chapter is published in the proceeding of the 15th International Conference on 
Machine Design and Production, June 19 - 22, 2012, Pamukkale, Denizli, Turkey as “Nonlinear Free 
Vibration Analysis of Double Walled Carbon Nanotubes with a Concentrated-Mass”. 
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amplitude passes a certain value. As a result, in order to consider a more realistic 

model for CNTs, nonlinear continuum beam models are developed. 

Fu et al [44] were the first who studied the nonlinear vibration of carbon nanotubes 

caused by large deflections. They showed that the nonlinear natural frequency of 

carbon nanotubes increases considerably as the vibration amplitude increases. Later, 

their work followed by several researchers. However, reviewing literature, it can be 

observed that in the majority of the studies concerning nonlinear vibrations of 

MWCNTs, the interaction pressure between adjacent tubes is linearized and is 

assumed to depend linearly on the difference of the radial deflections. It should be 

noted that the interlayer force between layers of CNTs is governed by nonlinear van 

der Waals force (vdW) as estimated by Lennard-Jones potential [48-50]. Therefore, 

the nonlinearity of vdW force should be considered in order to determine the 

vibrational behavior of MWCNTs accurately. It is worth mentioning that the 

nonlinear vibrational behavior of DWCNTs considering only nonlinear interlayer 

vdW forces between adjacent tubes was studied in [52, 159, 163]. However, in all of 

these studies, the effect of geometric nonlinearity is disregarded. Hence, in this 

chapter for the first time, considering the effect of both geometric and vdW force 

nonlinearities, nonlinear free vibrations of a DWCNT with a concentrated-mass is 

studied. Galerkin method is used to discretize the continuous partial differential 

equation of motion and harmonic balance method is used to convert the nonlinear 

discretized differential equation of motion into a set of nonlinear algebraic equations 

which are solved by a nonlinear equation solver [164, 165]. 

3.2. Equation of motion using Euler-Bernoulli beam model 

A DWCNT with a concentrated mass is shown in Figure 3-1, where L , A , E , I , 

, cM , cL and k  are the length of the CNT, cross-sectional area, Young’s modulus, area 

moment of inertia, density, mass of the concentrated mass, position of the 

concentrated mass and the stiffness per unit length of elastic medium, respectively. It 

is worth noting that, in case of DWCNT, two concentric tubes will interact with each 

other due to the molecular van der Waals pressure. This pressure acting on the two 

adjacent tubes depends on the difference between the transverse deflections of the 
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inner and outer tubes. The free vibration equation of embedded nanotubes considering 

both geometric and vdW force nonlinearities are [123, 166, 167]5 
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,  (3.1) 

 

Figure 3-1 Model of an embedded DWCNT. 

where i  and o indicate the inner and outer tubes, respectively,  x  is the Dirac delta 

function.  ,f x t  is the nonlinear van der Waals force, which is given by [168, 169] 

as follows 

     3

1 3, o i o if x t p w w p w w    ,   (3.2) 
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

.   (3.3) 

61.665K    meV/atom, iR  is the inner tube radius, and 0  is the equilibrium 

interlayer spacing which has a value of 0.34 nm. For equilibrium spacing, i.e. 0  , 

                                                 

5 The derivation for the nonlinear equation of motion due to stretching of mid-plan is given in Appendix 
A 
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the vdW force is equal to zero. U  is the interlayer potential per unit area, which can 

be expressed in terms of the interlayer spacing   as 

4 10

0 0( ) 0.4U K
 
 

         
     

.   (3.4) 

Note that 0 o iw w     [163]. From Eq. (3.3), it can be observed that the value of 

3p  is approximately two orders of magnitude larger than the value of 1p . Substituting 

Eq. (3.2) into Eq. (3.1) results in the following nonlinear partial differential equations 

of motion for the DWCNT 
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 . (3.6) 

3.3. Solution method 

In order to discretize the partial differential equations given by Eqs. (3.5) and (3.6), 

Galerkin methods is used where the following form of solution is assumed 

   , ,( , )k k r k rw x t x W t .  (3.7) 

Subscript ,k i o  stand for innertube and outertube, respectively.  ,k rW t  is the thr

generalized coordinate and  r x  is the thr  eigen-function of simply supported linear 

CNT. The boundary conditions for simply supported CNT can be given as follows 

(0, ) ( , ) 0k kw t w L t  ,  (3.8) 
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Mass normalized eigen-functions of a simply supported CNT can be expressed as 

follows 

,

2
( ) sin , 1,2,k r

k

r x
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Substituting Eq. (3.7) into Eqs. (3.5) and (3.6), multiplying both sides by  ,k s x  and 

integrating over the domain, the discretized nonlinear ordinary differential equations 

of motion in , ( )k rW t  is obtained as follows 
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It should be noted that two nonlinear ordinary differential equation of motions are 

obtained for each eigenfunctions, where the nonlinear terms are expressed by ,k jf . In 
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this study only the undamped nonlinear natural frequency of DWCNTs is 

investigated; hence, any form of damping, structural and viscous damping, are 

neglected. Assuming a harmonic solution in the following form 

   , , sink r k r rW t a t ,  (3.17) 

and substituting it into Eq. (3.11) and (3.12), the following set of nonlinear algebraic 

equations is obtained 
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Disregarding the effect of higher harmonic terms, a set of two nonlinear algebraic 

equations is derived for the thr  eigenfunction as follow 

   2 3 0r r r N r      K M x α x g x ,  (3.24) 
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In order to solve the resulting nonlinear algebraic equations given by Eq. (3.24), 

Newton’s method with Homotopy continuation and Arc-length continuation is used, 

details of which can be found in [165]. 

3.4. Results 

In this section, nonlinear free vibration of simply supported DWCNT with a 

concentrated-mass is investigated. The material and geometric parameters of the 

simply supported DWCNT used in this study are given in Table 3-1 [163]. It is worth 

to present characteristics of the linear system before investigating the effects of 

nonlinearities. 

Natural frequencies of the linear system without the concentrated-mass are given in 

Table 3-2 together with the modal coefficients of the inner and outer tubes. Since the 

equation of motion is composed of two partial differential equations, there exist two 
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natural frequencies corresponding to the in-phase, and out-of-phase vibration modes. 

In the former case, inner and outer tubes move in the same direction; whereas, for the 

latter case, they vibrate in opposite directions. The coefficient of mode shape of each 

CNT is as well given in the table, where a sign difference indicates the out-of-phase 

mode, which are also plotted in Figure 3-2. The effect of concentrated mass on the 

natural frequencies of the DWCNT, is presented in Figure 3-3. It is observed that as 

the mass ratio increases, the linear natural frequency decreases for both natural 

frequencies, which is an expected result. 

Table 3-1 Numerical Values of DWCNT Parameters [163] 

Parameter value 

Inner radius of innertube 0.35 nm 

Outer radius of outertube 1.4 nm 

Density of tubes 2.3 gr/cm3

Young modulus of tubes 1 TPa 

Thickness of tubes 0.34 nm 

In the following section, the effect of concentrated-mass on the first in-phase and out-

of-phase nonlinear natural frequencies of a DWCNT is studied considering the effect 

of mass ratio and the position of the concentrated-mass. In addition to these, as a final 

case study, the effect of medium stiffness on the nonlinear natural frequency is 

investigated. It should be noted that the nonlinear natural frequency is normalized 

with respect to the corresponding linear natural frequency, l , of the simply 

supported DWCNT with a concentrated-mass , and the vibration amplitude, ka , is 

normalized with respect to i ir I A . 

Table 3-2 Natural frequencies of DWCNT without concentrated-mass 

Eigen-functions sin
x

l


 

In-phase frequency [THz] 0.4673 

Coefficient of Mode 
Shape  

Innertube 1 

Outertube 0.997 

Out-of-phase frequency [THz] 7.8852 

Coefficient of Mode 
Shape  

Innertube 1 

Outertube -0.502 
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Figure 3-2 First two linear mode shapes of DWCNT a) in-phase b) out-of-phase  

 
Figure 3-3 Variation of the first two linear natural frequencies against increasing 

concentrated-mass (position of the concentrate-mass is at the middle of the DWCNT) a) in-
phase b) out-of-phase 

 Effect of key parameters in the first in-phase vibration mode 

In Figure 3-4, the variation of the normalized nonlinear natural frequency of the first 

in-phase vibration mode, considering only the geometric nonlinearity, is presented for 

different ratios of the concentrated-mass to total CNT mass. Position of the 

concentrated mass is kept constant at the middle of the outertube. It is observed that 

the normalized nonlinear natural frequency is not affected by the variation of the mass 

ratio. It is worth noting that as the mass ratio increases, the nonlinear natural 

frequency decreases; however its variation after normalizing with respect to the linear 

natural frequency is the same for all mass ratios. On the other hand, in Figure 3-5, the 

variation of normalized nonlinear natural frequency is plotted in presence of only 

vdW force nonlinearity considering different mass ratios. It is seen that the slope of 

the normalized nonlinear natural frequency decreases as the mass ratio increases. It 

should be noted that the deviation of the nonlinear natural frequency from the linear 

one in the presence of only vdW force nonlinearity is negligible. This is an expected 
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result, since vdW force nonlinearity depends on the relative motion between the inner 

and outer tubes and in case of in-phase vibration modes, this difference is very small. 

Considering both the geometric and vdW force nonlinearities, the variation of the 

normalized nonlinear natural frequency is given in Figure 3-6 for different values of 

mass ratio. Since the effect of vdW force nonlinearity is small in comparison to 

geometric nonlinearity in the first in-phase mode, it can be seen that the variation of 

the normalized nonlinear natural frequency is identical to the results given in 

Figure 3-4. Similar results can be obtained if the effect of position of the concentrated-

mass is studied. For instance, the variation of the normalized nonlinear natural 

frequency in the first in phase mode is given in Figure 3-7 in existence of only vdW 

force nonlinearity. It is observed that as the concentrated mass moves away from the 

center of the outertube the normalized nonlinear natural frequency increases. 

 
Figure 3-4 Variation of normalized nonlinear natural frequency in the presence of only 

geometric nonlinearity in the first in-phase vibration mode 
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Figure 3-5 Variation of the normalized nonlinear natural frequency in the presence of only 

vdW force nonlinearity in the first in-phase vibration mode 

 
Figure 3-6 Variation of normalized nonlinear natural frequency in the presence of both 

geometric and vdW force nonlinearities in the first in-phase vibration mode 

 
Figure 3-7 Variation of the normalized nonlinear natural frequency in the presence of only 

vdW force nonlinearity in the first in-phase vibration mode 
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 Effect of key parameters in the first out-of-phase vibration mode 

In Figure 3-8 to Figure 3-10, the variation of the normalized nonlinear natural 

frequency is given for the first out-of-phase vibration mode considering different 

mass ratios in presence of only geometric nonlinearity, only vdW force nonlinearity 

and both of nonlinearities keeping the concentrated mass at the middle of the 

outertube, respectively. It can be observed that in the first out-of-phase vibration 

mode, as the mass ratio increases the effect of the nonlinearity increases as well. A 

similar effect is observed for the case with only vdW force nonlinearity; whereas, in 

this case, the variation of the nonlinear natural frequency is significantly high. 

Therefore, considering both nonlinearities the effect of geometric nonlinearity is not 

visible. This is an expected result, since vdW force nonlinearity depends on the 

relative motion between the inner and outer tubes and in the case of out-of-phase 

vibration mode, this difference is significant. Similar behavior can be identified for 

position effect of concentrated-mass where it can be observed that as position of the 

concentrated-mass gets closer to the maximum point of vibration amplitude (i.e. the 

midpoint), the effect of the nonlinearity increases (Figure 3-11). 

 
Figure 3-8 Variation of the normalized nonlinear natural frequency in the presence of only 

geometric nonlinearity in the first out-of-phase vibration mode 
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Figure 3-9 Variation of the normalized nonlinear natural frequency in the presence of only 

vdW force nonlinearity in the first out-of-phase vibration mode 

 
Figure 3-10 Variation of the normalized nonlinear natural frequency in the presence both 

nonlinearities in the first out-of-phase vibration mode 
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Figure 3-11 Variation of the normalized nonlinear natural frequency in the presence both 

nonlinearities in the first out-of-phase vibration mode 

3.5. Effect of medium stiffness on the first out of-phase nonlinear natural 

frequency 
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axis. Increasing the mass ratio more than this value results in a turning point; hence, 

multiple solutions at a single vibration amplitude exist. 

 
Figure 3-12 Variation of the normalized nonlinear natural frequency for different values of 

medium stiffness in the first in-phase vibration mode 

   
Figure 3-13 Variation of the normalized nonlinear natural frequency for different values of 

medium stiffness in the first out-of-phase vibration mode 
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Figure 3-14 Variation of the normalized nonlinear natural frequency in the first out-of-phase 

vibration mode 

3.6. Concluding remarks 
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of vdW force nonlinearity is significantly higher than the effect of geometric 

nonlinearity. Moreover, the effect of medium stiffness in presence of geometric and 

vdW force nonlinearities is investigated. Results show that for the increasing values 

of medium stiffness, the nonlinear natural frequency of the in-phase and out-of-phase 

vibration modes tends to the linear natural frequency of the system. However, for the 

case of out-of-phase vibration mode, the curve can be represented by two lines having 

different slopes. Increase of medium stiffness or the decrease of mass ratio shifts the 

break point at higher vibration amplitudes and at specific medium stiffness and mass 

ratio a turning point, which resulted in multiple nonlinear natural frequencies at a 

single vibration amplitude, is observed. Moreover, this phenomenon cannot be 

obtained when there is no concentrated mass on the DWCNT. Since nano sensors 

works on the basis of shifts in natural frequency due to absorbed nanoparticle, results 

of the present study can be used in the development of nonlinear nano mass sensors. 
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CHAPTER 4 
 
 

4. NONLINEAR FREE VIBRATION OF DOUBLE WALLED CARBON 
NANOTUBES BY USING DESCRIBING FUNCTION METHOD WITH 

MULTIPLE TRIAL FUNCTIONS6 
 
 
 

This Chapter deals with implementing describing function method (DFM) with 

multiple trial functions in order to get a better approximation of the system mode 

shape. Using DFM, nonlinear free vibration of double walled carbon nanotubes 

(DWCNTs) embedded in an elastic medium with both geometric nonlinearity and 

interlayer van der Waals force nonlinearity are studied. The motion of the DWCNT 

is represented by multiple eigenfunctions of the linear system which are referred as 

trial functions.  

 

4.1. Introduction 

Reviewing the literature on nonlinear vibrations of CNTs it has been observed that, 

in all of the studies, single trial function assumption is used to study the system 

behavior where the trial function is considered to be the exact eigenfunction of the 

relevant linear system. However for nonlinear systems, the resulting nonlinear 

eigenfunctions can be significantly different than the eigenfunctions of the linear 

system, and depending on the nonlinearity, it may not be possible to capture the 

nonlinear characteristics by using a single trial function [56]. It should be noted that 

even for linear systems, in order to solve the eigenvalue problem, multiple trial 

functions are needed unless the exact eigenfunctions of the system are known.  

                                                 

6 A version of this chapter is published in the Physica E: Low-dimensional Systems and Nanostructures 
as “Nonlinear Free Vibration of Double Walled Carbon Nanotubes by Using Describing Function 
Method with Multiple Trial Functions” 
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In this chapter, multiple trial functions are used to investigate the nonlinear free 

vibrations of DWCNTs. In addition to this, a new solution approach, describing 

function method (DFM), is proposed to solve the resulting system of nonlinear 

differential equations. DFM [170-174], in comparison to solution methods like 

variational approach [175], or differential quadrature method [34, 176, 177], has the 

advantage of expressing the nonlinear force as a nonlinear stiffness matrix multiplied 

by a displacement vector, where the off-diagonal terms of the nonlinear stiffness 

matrix can provide a comprehensive knowledge about the coupling between the trial 

functions. Using DFM, nonlinear differential equations of motion are converted into 

a set of nonlinear algebraic equations, which is solved numerically by using Newton's 

method [164, 165] with Homotopy continuation [178, 179] or Arc-Length 

continuation [165, 180]. In the following section, equation of motion for DWCNTs is 

obtained and the basics of DFM are presented. 

4.2. Equation of motion using Euler-Bernoulli beam model 

Consider a CNT of length L , cross-sectional area A , area moment of inertia I , 

Young’s modulus E , and density   embedded in an elastic medium having a 

stiffness per unit length of k  as shown in Figure 3-1. Free vibration of a CNT 

embedded in elastic medium, considering the geometric nonlinearity due to large 

deformations, is governed by [166, 167] 

24 2 2

4 2 2
0

( , ),
2

Lw w EA w w
EI A dx p x t

x t L x x


               
   (4.1) 

 
Figure 4-1 Model of an embedded DWCNT 
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where ( , )w x t  is the transverse displacement and ( , )p x t  is the interaction pressure per 

unit axial length between the tube and the surrounding medium, which can be 

identified by the Winkler-like model [47, 181] as 

( , ) ( , )p x t kw x t .  (4.2) 

The negative sign in the above equation shows that the pressure ( , )p x t  is opposite to 

the deflection of the tube and k  is defined by the material constants of the surrounding 

elastic medium. Substituting Eq. (4.2) into Eq (4.1), gives 

24 2 2

4 2 2
0

.
2

Lw w EA w w
EI A kw dx

x t L x x


                
   (4.3) 

In case of DWCNT, two concentric tubes will interact with each other due to the 

molecular van der Waals pressure. This pressure acting on the two adjacent tubes 

depends on the difference between the transverse deflections of the inner and outer 

tubes. Assuming that the tubes are vibrating in the same plane; the coplanar transverse 

motion of an embedded DWCNT is described by the following coupled nonlinear 

partial differential equations. 

 

 

24 2 2

4 2 2
0

24 2 2

4 2 2
0

, ,
2

, ,
2

L
i i i i i

i i

L
o o o o o

o o o

w w EA w w
EI A dx f x t

x t L x x

w w EA w w
EI A kw dx f x t

x t L x x





               
                




 (4.4) 

where  ,f x t  is the van der Waals force, i  and o indicate the inner and outer tubes, 

respectively.  

 Van der Waals force 

Van der Waals (vdW) forces are composed of weak attractive forces between atoms, 

molecules, and surfaces, in addition to other intermolecular forces [80, 182]. The vdW 

force per unit area for two originally concentric tubes is given in [168, 169] as 
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U
F







.  (4.5) 

U  is the interlayer potential per unit area, which can be expressed in terms of the 

interlayer spacing   as 

4 10

0 0( ) 0.4U K
 


 

         
     

,  (4.6) 

Where 61.665 meV/atomK   , and 0 0.34 nm   is the equilibrium interlayer spacing. 

For equilibrium spacing, i.e. 0  , the vdW force, F , is equal to zero. Moreover, 

since the vdW force per unit area is an odd function of the interlayer spacing, the 

Taylor series expansion of F  about 0   can be written as follows 

   
0 0

2 4
3

2 4

1

6o i o i

U U
F w w w w

    
 

 
   
 

.  (4.7) 

The change in the inter-tube spacing is given by 0 o iw w     [163], then the van 

der Waals force per unit length of the CNT is 

     3

1 3, o i o if x t p w w p w w    ,  (4.8) 

where 

0

0

2

1 2

4

3 4

2 48 ,

2 3984 .

i i

i i

U
p R K R

U
p R K R

 

 










  



  


  (4.9) 

where iR  is the inner tube radius. It can be observed that the value of coefficient 3p  

is approximately two orders of magnitude larger than the value of 1p . Substituting Eq. 

(4.8) into Eq. (4.4) results in the following nonlinear partial differential equation for 

the DWCNT  
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   
24 2 2

3

1 34 2 2
0

,
2

L
i i i i i

i i o i o i

w w EA w w
EI A dx p w w p w w

x t L x x


                  
  (4.10) 

   
24 2 2

3

1 34 2 2
0

.
2

L
o o o o o

o o o o i o i

w w EA w w
EI A kw dx p w w p w w

x t L x x


                   
  (4.11) 

 Describing Function Method (DFM) 

Describing Function Method was developed by Tanrikulu et al. [173] which is the 

generalization of the method developed by Budak and Özgüven [170] for all type of 

nonlinearities. Using DFM, it is possible to convert nonlinear differential equations 

of motion into a set of nonlinear algebraic equations [170, 172]. DFs are used to 

represent nonlinear functions by quasi linear describing functions with amplitude 

dependent gains. In this method, a sinusoidal input to the nonlinear function is applied 

then the fundamental component of output is considered; hence, describing function 

is defined as the ratio of the output to the input. Using the method described in [172], 

the nonlinear force vector is replaced by a response dependent matrix multiplied by a 

displacement vector. In this section, harmonic response analysis of nonlinear multiple 

degrees of freedom (mdof) systems using DFM, reported in [172], is briefly 

summarized, then the method is applied to nonlinear free vibration problem of 

DWCNTs defined by Eqs. (4.10) and (4.11). 

Equation of motion of a nonlinear structure in the absence of external forcing can be 

written as follows 

( , , , )i   M y + C y + H y + K y + f y y y = 0     ,  (4.12) 

where f  and y  represent the internal nonlinear force and displacement vectors, and 

M , K , C , H , and i  are the mass matrix, stiffness matrix, viscous damping matrix, 

structural damping matrix and imaginary number, respectively. Assuming single 

harmonic motion, the above equation of motion can be written as 

  ( )Ni i  2K - M + C + H x + f x = 0 ,  (4.13) 
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where x  and Nf  are the complex displacement amplitude vector, and complex 

nonlinear internal forcing vector, respectively. Using describing functions, it is 

possible to write ( )Nf x  as a multiplication of a displacement dependent complex 

matrix, Δ  and complex displacement vector x , where 

1

  and  
n

kk kk kj kj kj
j
j k

  



    Δ ,  (4.14) 

2

0

e i
kj kj

k j

i
n d

x x


 




  .  (4.15) 

where kj  is the harmonic input describing function and can be described as the 

equivalent linear complex stiffness for internal nonlinear force and kjn  is the nonlinear 

force acting between the thk  and the thj  coordinates. Using DFM the effect of 

nonlinear forces and the locations of the nonlinear elements can be easily identified 

[183].  

In the next section using multiple trial functions and Galerkin method, partial 

differential equations of motion defined by Eqs. (4.10) and (4.11) are discretized into 

a set of nonlinear ordinary differential equations. Then, using DFM, the set of 

nonlinear ordinary differential equations is converted into a set of nonlinear algebraic 

equations. Finally, the resulting set of nonlinear algebraic equations is solved by using 

Newton’s method. 

 

4.3. Solution Method 

For the discretization of the partial differential equations given by Eqs. (4.10) and 

(4.11), using multiple trial functions the following form of solution is assumed  

,
1

( , ) ( ) ( )
n

k k r r
r

w x t W t x


 .  (4.16) 
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Here, n is the number of trial functions considered in the expansion, subscript ,k i o

stand for innertube and outertube, respectively.  ,k rW t  is the thr  generalized 

coordinate and  r x  is the thr  trial function which is a comparison function satisfying 

all geometric and natural boundary conditions. In this paper, free vibration analysis 

of a simply supported DWCNT is considered and the boundary conditions for simply 

supported case can be given as follows: 

(0, ) ( , ) 0k kw t w L t  ,  (4.17) 

2 2

2 2
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Where ,k i o . The trial functions considered are the eigenfunctions of the linear 

system which are given as 
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Substituting Eq. (4.19) into Eqs. (4.10) and (4.11), multiplying both sides by  s x  

and integrating over the domain, the discretized nonlinear ordinary differential 

equations of motion in terms of , ( )k rW t  are obtained as follows  
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The total number of nonlinear ordinary differential equations of motion obtained from 

Eqs. (4.20) and (4.21) is 2n , where the nonlinear terms are expressed by the last three 

terms in Eqs. (4.20) and (4.21). In this study, only the undamped nonlinear free 

vibration of DWCNTs are investigated; hence, any form of damping, structural and 

viscous damping, are neglected. Assuming a harmonic solution in the following form  

   , , sink r k rW t a t ,  (4.26) 

and substituting it into Eqs. (4.20) and (4.21), and applying DFM the following set of 

nonlinear algebraic equations are obtained: 
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The mass matrix is an identity matrix which is diagonal. However, the linear stiffness 

matrix has some off diagonal terms. The stiffness matrix given by Eq. (4.29) can be 

divided into four square matrices as indicated. The diagonal terms in the off-diagonal 

matrices are due to coupling between inner and outer tubes due to linear vdW forces. 

It should be noted that, since the exact eigenfunctions of the linear system are used in 

the expansion theorem, there is no off-diagonal terms in the four sub-matrices which 

indicates that there is no coupling between the trial functions employed. 

In DWCNTs considered, two major sources of nonlinearity exist: geometric 

nonlinearity, and vdW force nonlinearity. By using DFM, the nonlinear force vector, 

( )Nf x , can be expressed as 

   ( )N g v   f x Δ x x Δ x x ,  (4.31) 

where gΔ  , and vΔ  are geometric nonlinearity matrix and vdW force nonlinearity 

matrix. Using Eqs. (4.14) and (4.15), the geometric nonlinearity matrix,  gΔ x , can 

be written as follows by omitting the functional dependence on x  for brevity 
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Investigating the geometric nonlinearity matrix given by Eq. (4.32), it can be seen 

that gΔ  is a diagonal matrix. Therefore, it can be concluded that considering only 

geometric nonlinearity, there is no coupling between the trial functions of inner or 

outer tubes. Consequently, in the absence of vdW force, each pair of nonlinear 

equations defined by Eq. (4.27) can be solved independent from other pairs; hence, 

using multiple trial functions or a single trial function does not affect the nonlinear 

natural frequencies. 

The second source of nonlinearity considered in DWCNTs is due to the interlayer 

vdW force which has a cubic form. Similar to the geometric nonlinearity matrix, the 

elements of the vdW force nonlinearity matrix can be obtained from Eqs. (4.14) and 

(4.15). An example nonlinearity matrix considering three trial functions is given in 

Eq. (4.33). Nonlinear stiffness matrix for higher number of trial functions can be 

calculated in a similar manner. 
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where ( 1, 2,..., 5)nik i   are given in Appendix A. The nonlinear stiffness matrix is 

divided into four square matrices as shown in Eq. (4.33). Similar to the linear case, 

the off-diagonal matrices indicates the coupling between the inner and outer tubes 

whereas the off-diagonal elements in the four square matrices indicate coupling 

between the trial functions used in the expansion process. For the case of three trial 

functions, Eq. (4.33), it can be observed that due to the nonzero 4nk  and 5nk , there is 

coupling between the 1st and 3rd trial functions of the innertube and similarly there is 

coupling between the 1st and 3rd trial functions of the outertube as well. It is worth 

noting that the second trial function is not coupled with any other trial functions. This 

property is repeated for higher number of trial functions where even trial functions 

are not coupled with any other trial function. Therefore, it can be concluded that even 

trial functions do not affect the natural frequencies associated with odd trial functions. 
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Consequently, nonlinear equations associated with even numbered trail functions can 

be solved independent of the other equations.  

In this study, since the first in-phase and out-of-phase nonlinear natural frequencies 

of a simply supported DWCNT is investigated, only the odd trial functions are 

considered and in the following sections, the term for thr  trial function stands for the 

thr  odd trial function. 

4.4. Solution of Nonlinear Algebraic Equations 

In this study, in order to solve the resulting nonlinear algebraic equations, Newton’s 

method with Homotopy continuation and Arc-length continuation is used. The 

nonlinear equation of motion given in Eq. (4.27) can be written as a residual vector 

function as 
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Where  TT y x , and   is the vibration amplitude at *x x , which is used to 

follow the solution path as described by the bottom row of Eq. (4.34). It should be 

noted that since the even numbered trial functions are not coupled with other 

equations, only odd numbered trial functions are used in Eq. (4.34). Moreover, in this 

formulation innertube vibration amplitude is used to follow the path, which can be 

replaced with outertube by simply switching the trial functions on the left of bottom 

row with the zeros in the middle of the bottom row. Solution of this nonlinear 

algebraic equation set can be obtained by utilizing Newton’s method [165], for which 

an iteration step is given as follows 
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where ( , ) r y y  is the Jacobian matrix. Newton’s method converges to the correct 

solution quadratically if the initial guess is sufficiently close to the actual solution. 
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However, convergence problems arise when a solution is around a turning point, since 

the Jacobian matrix becomes singular. Moreover, in order to follow the solution 

branch even it reverses its direction, continuation parameter   has to be replaced with 

another parameter for which it is possible to follow the path. Therefore, an additional 

parameter, arc- length parameter, is added to the vector of unknowns, which results 

in a nonsingular Jacobian matrix at the turning points. 

The new arc length parameter can be defined as the radius of a fictitious n-

dimensional sphere centered at the previous converged solution point. The new 

solution will be searched on the surface of this sphere rather than at the next vibration 

amplitude. A graphical explanation is given in Figure 4-2, where the fictitious n-

dimensional sphere becomes a circle in the two-dimensional case. It should be noted 

that, there exists two solutions, which are the intersection points of the solution path 

and the circle as shown in Figure 4-2. Therefore, in order not follow the solution path 

backwards, an initial guess close to the next solution point should be used. 

 
Figure 4-2 Arc-length continuation method 

Since vibration amplitude,  , becomes an unknown, a new equation is needed in 

order to obtain the solution. This new equation is the equation of the n-dimensional 

sphere centered at the previous solution point which can be given as follows 
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Here,  iq  is the new vector of unknowns at the thi  solution point which is given as 

 
 

 

    

    
i

i
i

    
  

y
q ,  (4.37) 

and 

     1i i i  q q q .  (4.38) 

Therefore the new equation added to the system can be written as 
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Therefore, Newton's iteration for the new system of equations becomes 
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where the last row of the new Jacobian matrix can be obtained as follows, 
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4.5. Results 

In this section, nonlinear free vibration of simply supported DWCNTs is investigated 

by using multiple trial functions. In order to present the results in a proper form, the 

nonlinear natural frequency is normalized with respect to the corresponding linear 

natural frequency of the simply supported DWCNT, l , and the deflections, ( , )kw x t

, are normalized with respect to i iI A . The material and geometric parameters of the 

simply supported DWCNT used in this study are given in Table 4-1. 
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The first 5 natural frequencies of the linear system and the corresponding 

eigenfunctions are given in Table 4-2. Since the equation of motion is composed of 

two partial differential equations, for every eigenfunction, two natural frequencies 

exist: in-phase, and out-of-phase. In the former case, inner and outer tubes move in 

the same direction; whereas for the latter case, they vibrate in opposite directions. The 

coefficient of mode shape of each CNT is as well given in the table, where a sign 

difference indicates an out-of-phase mode. The first three in-phase and out-of-phase 

mode shapes of the system are given in Figure 4-3. 

Table 4-1 Numerical values of parameters used 

Parameter Value 

Inner radius of innertube 0.35 nm 
Outer radius of outertube 1.4 nm 

Density of tubes 2.3 gr/cm3

Young modulus of tubes 1 TPa 
Thickness of tubes 0.34 nm 

Table 4-2 First five natural frequencies and modes of the linear DWCNT 

Eigen-functions sin
x

l

 2
sin

x

l

 3
sin

x

l

 4
sin

x

l

 5
sin

x

l


 

In-phase frequency [THz] 0.4673 1.8595 4.0817 6.7209 9.2723 

Coefficient of Mode shape  
Inner tube 1 1 1 1 1 
Outer tube 0.997 0.949 0.761 0.424 0.182 

Out-of-phase frequency [THz] 7.8852 8.0299 8.6772 10.5567 14.3868 

Coefficient of Mode shape  
Inner tube 1 1 1 1 1 
Outer tube -0.502 -0.527 -0.657 -1.179 -2.744 

In the following section, the effect of using multiple trial functions on the first in-

phase and out-of-phase vibration modes of a DWCNT is investigated by presenting 

the variation of normalized nonlinear natural frequency with respect to the normalized 

maximum vibration amplitude. Firstly, only vdW force nonlinearity is considered and 

the effect of using multiple trial functions is investigated. Later, the same study is 

repeated considering only the geometric nonlinearity. Finally, considering both 

nonlinearities and multiple trial functions, the effect of medium stiffness on the 

nonlinear natural frequency of simply supported DWCNTs is investigated. 
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Figure 4-3 First three in-phase and out-of-phase linear mode shapes of DWCNT  

 First in-phase natural frequency considering vdW force nonlinearity 

In Figure 4-4 and Figure 4-5, variation of normalized nonlinear natural frequency for 

the first in-phase vibration mode of inner and outer tubes are given for the cases 

utilizing different number of trial functions. It should be noted that, even trial 

functions do not affect other natural frequencies; therefore, the solutions are obtained 

by utilizing different number of odd trial functions. Results show that for the first in-

phase vibration mode, increasing the number of trial functions used in the solution 

more than two does not affect the nonlinear natural frequency.  

In Figure 4-6, amplitudes of the coefficients of trial functions used in the expansion 

are plotted for the outer tube where the contribution of each trial function can be 

clearly seen. It is observed that majority of the contribution is due to the first trial 

function. This is an expected result, since vdW force nonlinearity depends on the 

relative motion between the inner and outer tubes and in case of in-phase vibration 

modes, this difference changes slightly during free vibration. As a result of this, the 

nonlinear coupling terms are not strong enough to affect the natural frequency 

significantly. 
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Figure 4-4 Variation of normalized nonlinear natural frequency of innertube vibrating 

 in the first in-phase mode 

 
Figure 4-5 Variation of normalized nonlinear natural frequency of outertube vibrating 

 in the first in-phase mode 
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Figure 4-6 Coefficient of trial functions of outertube vibrating in the first in-phase mode 

 First out-of-phase natural frequency considering vdW force nonlinearity 

In Figure 4-7 and Figure 4-8, variation of normalized nonlinear natural frequency of 

the innertube and the outertube for the first out-of-phase vibration mode are given 

utilizing different number of trial functions, respectively. Results show that, as the 

number of trial functions used in the expansion is increased more than two, nonlinear 

natural frequency vs. vibration amplitude curves change considerably. It is observed 

that for the case of three and more trial functions, and for increasing vibration 

amplitude, multiple natural frequencies for a single maximum vibration amplitude are 

observed. Similarly, for some nonlinear natural frequencies, multiple maximum 

vibration amplitudes can be obtained. It should be noted that since the free vibration 

of the DWCNT is expressed in terms of multiple trial functions, the maximum 

vibration amplitude does not occur at the same point on the CNT, which is not the 

case if a single trial function is used in the expansion.  
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Figure 4-7 Variation of normalized nonlinear natural frequency of innertube vibrating 

 in the first out-of-phase mode 

 
Figure 4-8 Variation of normalized nonlinear natural frequency of outertube vibrating 

 in the first out-of-phase mode 
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In Figure 4-9, variation of the normalized nonlinear natural frequency using three trial 

functions is given, where the curve is divided into 7 different regions indicated by 

different markers and colors. In the first region, the first trial function has the 

dominant value; whereas, in the second region, the first and the third trial functions 

are dominant. As the number of regions increases, the characteristics of the nonlinear 

mode shapes also change. Example mode shapes calculated at the midpoint of each 

region are presented in Figure 4-10. It is observed that, in the first and the last regions, 

the first (out-of-phase) trial function is dominant, whereas, in between them a 

combination of the first three trial functions exist. Studying the mode shapes 

presented, it can be concluded that most of the contribution is due to the first and the 

third (odd) trial functions. 

 
Figure 4-9 Variation of normalized nonlinear natural frequency of innertube vibrating 

 in the first out-of-phase mode 
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Figure 4-10 Transition of mode shapes from one region to another for innertube 

Coefficients of trial functions for the outertube, which are used in the solution 

expansion, are presented in Figure 4-11 in a bar chart due to their complex behavior 

as a result of multiple solutions. It is clearly observed that, in addition to the variation 

of the nonlinear natural frequency of the CNT, mode shape of the CNT also changes 

as a function of the maximum vibration amplitude. The results obtained in Figure 4-10 

are supported and clarified by the coefficients given in Figure 4-11. It is observed that 

in the first region, the first (out-of-phase) trial function is dominant. However, as we 

proceed towards higher regions the contribution of the third (in-phase) trial function 

gets larger in addition to the first (out-of-phase) trial function. There exist a 

contribution from the second (out-of-phase) trial function which reaches to the same 

order as the first and third trial functions in the middle of the 4th and starting of the 5th 

regions. Proceeding further in the regions, the first (out-phase) trial function becomes 

dominant again and the effect of other trial functions are ceased. In addition to these, 

interestingly, at the end of the 2nd region the DWCNT vibrates as if it is vibrating in 

the third (odd) in-phase vibration mode, since, the only contribution is due to the third 

(odd) trial function. 
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Figure 4-11 Normalized coefficients of trail functions of inner and outer tubes at the 

beginning and middle of each region 

In Figure 4-12, variation of normalized nonlinear natural frequency of DWCNT 

obtained for different vibration modes are presented for inner and outer tubes. It 

should be noted that, since the point of the maximum vibration amplitude is not the 

same for inner and outer tubes, the variation of the normalized nonlinear natural 

frequencies are different as well. It can be observed that in-phase natural frequencies 

change slightly with respect to the normalized vibration amplitude; whereas, out-of-

phase natural frequencies increase significantly as the normalized maximum vibration 

amplitude increases. Therefore, it is possible for the curve of one out-of-phase 

nonlinear natural frequency to reach and intersect a curve of an in-phase natural 

frequency as seen in Figure 4-12. When the enlarged region in Figure 4-12 is studied 

it is observed that one particular intersection of the out-of-phase natural frequency 

with the in-phase natural frequency for inner and outer tubes occurs at the same 

normalized nonlinear natural frequency as indicated by the horizontal line and the 

black circles. This particular point corresponds to the case where the DWCNT 

vibrates as if it is in the third (odd) vibration mode or third in-phase vibration mode 

as depicted by the coefficients of the trial functions presented in Figure 4-11. 
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Figure 4-12 Variation of normalized nonlinear natural frequency of outertube for different 

natural frequencies 

In Figure 4-13, results obtained by the proposed method are compared with the results 

available in literature, where the parameters of the DWCNT can be obtained from 

[184, 185]. It can be seen that the data given in literature and the results obtained from 

the proposed method using single trial function are identical. However, when multiple 

trial functions are utilized, significant difference between the results obtained by the 

proposed method and the data available in literature is observed, especially at the 

region where multiple solutions exist. For the regions where a single solution is 

present, the difference between the results is moderate; however, it increases as the 

maximum vibration amplitude increases. 
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Figure 4-13 Comparison with data available in literature 

 Geometric nonlinearity 

In Figure 4-14 considering just geometric nonlinearity, the variation of the normalized 

nonlinear natural frequency of the first in-phase vibration mode is given utilizing one 

and six trial functions. It is observed that using multiple trial functions does not affect 

the nonlinear natural frequencies, which is an expected result as observed from the 

nonlinearity matrix determined by DFM in Section 3. For geometric nonlinearity, in 

Eq. (4.32), no coupling between the trial functions is observed. This is also true for 

the out-of-phase modes as well, where the same results are obtained. From the 

nonlinearity matrixes obtained and the results shown, it can be concluded that if only 

geometric nonlinearity is considered, single trial function is sufficient to obtain the 

nonlinear free vibration frequencies of CNTs. 

 Effect of medium stiffness 

In this final case study, considering geometric and vdW force nonlinearity, the effect 

of medium stiffness on the nonlinear natural frequency of DWCNTs using multiple 

trial functions is investigated. Figure 4-15 shows the variation of normalized 
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nonlinear natural frequency of the outertube for the first in-phase vibration mode 

considering different values of medium stiffness. It is seen that as the medium 

stiffness, k , increases, the nonlinear free vibration frequency tends to approach to the 

linear one. The same analysis is performed for the first out-of-phase vibration mode 

of DWCNT, the results of which are given in Figure 4-16. It is observed that as the 

medium stiffness per length, k , increases, the nonlinear natural frequency of 

DWCNT approaches to the linear one. Moreover, in the maximum vibration 

amplitude range considered, multiple solutions are not observed for medium stiffness 

per length of 11 22 10 N/m  and larger. 

 
Figure 4-14 amplitude frequency curve of the outertube vibrating in the first in-phase mode 
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Figure 4-15 Effect of medium stiffness on the nonlinear natural frequency for the first 

 in-phase vibration mode 

 
Figure 4-16 Effect of medium stiffness on the nonlinear natural frequency  

for the first out-of-phase mode 
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4.6. Concluding remarks 

Nonlinear free vibration of a DWCNT is studied in this chapter using DFM with 

multiple trial functions where geometric and interlayer vdW force nonlinearities are 

considered. Application of DFM made it possible to observe the coupling between 

the trial functions used in the modal expansion process. The nonlinearity matrices 

obtained show that for simply supported CNTs considering geometric nonlinearity, a 

single trial function is sufficient to obtain the nonlinear natural frequencies. On the 

other hand, in case of vdW force nonlinearity, multiple trial functions are necessary, 

especially for the out-of-phase modes for which the nonlinear effects are more 

significant. These findings are also verified with the numerical results obtained. 

It is observed that for the first out-of-phase vibration mode with vdW force 

nonlinearity, utilizing three or more trial functions resulted in multiple solutions 

where a single nonlinear natural frequency is associated with multiple vibration 

modes and a single maximum vibration amplitude is associated with multiple 

nonlinear natural frequencies. Moreover, the variation of the nonlinear mode shape of 

the DWCNT for different maximum vibration amplitudes is presented. It is revealed 

from the results that nonlinear vibration modes of the DWCNT is composed of several 

trial functions which can never be captured if a single trial function is used in the 

modal expansion. Furthermore, the effect of medium stiffness is studied and it is 

observed that as the medium stiffness increases normalized nonlinear natural 

frequencies decrease and approach to the linear one for in-phase and out-of-phase 

vibration modes. Moreover, for the case of out-of-phase vibration mode, increasing 

the medium stiffness above a certain value, multiple solutions disappear and there 

exists a single nonlinear natural frequency for every vibration amplitude. 

It can be concluded that in order to determine the nonlinear natural frequencies of 

DWCNTs with nonlinear interlayer vdW forces accurately, multiple trial functions 

should be considered in the modal expansion. Moreover, using DFM, it is possible to 

identify if a specific type of nonlinearity requires multiple trial functions by studying 

the nonlinearity matrix obtained. 
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CHAPTER 5 
 
 

5. EFFECT OF CURVATURE NONLINEARITY ON THE VARIATION OF 
FUNDAMENTAL NONLINEAR NATURAL FREQUENCY7  

 
 
 

This chapter deals with nonlinear free vibration of a curved single walled carbon 

nanotube. In the previous chapters, geometric and vdW force nonlinearities are 

studied in detail. This chapter mainly concern about the effect of initial curvature 

nonlinearity on the variation of nonlinear natural frequency of CNTs. Recent 

experiments show that it is possible to detect a peak at system higher harmonics for 

the curved CNTs going through large deflections. Hence, in this chapter, multiple 

harmonic balance method (MHBM) in addition to Galerkin method is used to convert 

the nonlinear discretized differential equations of motion into a set of nonlinear 

algebraic equations where application of MHBM make it possible to study the effect 

of higher harmonics. It is worth mentioning that in this chapter single trial function 

assumption is used in Galerkin method since, according to previous chapter results, a 

single trial function is sufficient to obtain the nonlinear natural frequencies in the 

presence of only geometric nonlinearity. An expression for the variation of nonlinear 

fundamental natural frequency of CNTs is derived analytically. 

 

5.1. Introduction  

Recent studies show that even though CNTs are commonly assumed to be straight, in 

reality they are not straight and they are curved structures. Studies confirmed that the 

initial curvature in CNTs can be formed during the fabrication or due to boundary 

                                                 

7 A version of this chapter is published in the proceeding of the 2012 Space Elevator Conference, 
August 25-27, 2012, Seattle, Washington, USA as “Effect of Waviness on the Variation of Nonlinear 
Fundamental Natural Frequency of Single Wall Carbon Nanotube by Using Multiple Harmonic 
Balance Method” 
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conditions. The effect of initial curvature on the nonlinear free vibration of a SWCNT 

is studied numerically by Mehdipour et al. [123]. They observed that as initial 

curvature increases, the normalized nonlinear natural frequency increases. However, 

reviewing literature, it has been observed that that, in the all few studies on the 

nonlinear effect of initial curvature, single harmonic assumption is used where the 

effect of higher harmonics is disregarded. However, for nonlinear systems higher 

harmonics of the system can be excited; hence, in order to capture system behavior 

accurately, terms corresponded to higher harmonics of the system are needed to be 

considered. Furthermore, some nonlinearities, it may not be possible to capture the 

nonlinear characteristics of the system using a single harmonic. 

In this chapter, nonlinear fundamental natural frequency of a curved simply supported 

single walled carbon nanotube is studied considering the higher harmonics of the 

system. Galerkin method is used to convert the partial differential equations (PDEs) 

of motion into a set of ordinary differential equations (ODEs). In order to consider 

the effect of higher harmonics, multiple harmonic balance method is utilized which 

transforms nonlinear ODEs of motion into a set of nonlinear algebraic equations. 

Considering different number of harmonics, several case studies are defined, where, 

in each case, an expression for the variation of nonlinear fundamental natural 

frequency of CNTs is derived analytically. Using these expressions the effect of 

higher harmonics in the presence of waviness and geometric nonlinearities is 

investigated. 

 

5.2. Equation of motion using Euler Bernoulli beam model for thin tubes 

Figure 5-1 shows the schematic diagram of a SWCNT embedded in an elastic 

medium. The equation of motion of an embedded nanotube considering both 

geometric and waviness nonlinearities is given as [123, 166, 167] 

24 2 2 2 2

4 2 2 2 2
0

1

2

L

p

w w w EA Z w w w Z
EI k A kw dx

x x t L x x x x x


                                 
   (5.1) 
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where L , A , E , I  and   are the length, cross-sectional area, Young’s modulus, area 

moment of inertia and density of the CNT, respectively. pk and k are the torsional 

stiffness and the bending stiffness per unit length of the elastic medium, respectively. 

In this chapter, it is assumed that the waviness of the tube follow the first 

eigenfunction of the linear simply supported beam as described by    sinZ x e x L  

[126], where e  is the amplitude of the initial waviness (curvature). 

The partial differential equation of motion is subjected to the following boundary 

conditions, which correspond to a simply supported beam 

(0, ) ( , ) 0w t w L t  ,  (5.2) 

2 2

2 2

0

0
x x L

d w d w

dx dx
 

  .  (5.3) 

The partial differential equation of motion given by Eq (5.1) is discretized using 

Galerkin method. The following form of solution is assumed  

   ( , ) r rw x t x W t ,  (5.4) 

where  rW t  is the thr generalized coordinate and  r x  is the thr  eigenfunction of 

simply supported linear CNT. For simply supported CNT, the mass normalized 

eigenfunctions can be expressed as follows 

2
( ) sin , 1,2,r

r x
x r

AL L




   
 

 .  (5.5) 

Since, in this study, the fundamental natural frequency of CNT is studied,  r x  is 

assumed to be the fundamental eigenfunction of the simply supported CNT which can 

be obtained by substituting 1r   in Eq.(5.5). 
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Figure 5-1 Model of an Embedded curved SWCNT. 

Substituting Eq. (5.5) and Eq. (5.4) into Eq. (5.1), multiplying both sides by  1 x  

and integrating over the domain, the discretized nonlinear ordinary differential 

equation of motion in 1( )W t  is obtained as follows  

2
2 31

1 1 2 1 3 12

( )
( ) ( ) ( ) 0

d W t
W t W t W t

dt
      ,  (5.6) 

where 

24 4

1 4 2 4

1

2
pkEI E k

e
AL AL L A

 
   

    ,  (5.7) 

4

2 4

3

4

E
e

L




 ,  (5.8) 

4

3 4

1

4

E

L




 .  (5.9) 

In Eq. (5.6), 1  denotes the square of the fundamental natural frequency of the 

corresponding linear system, which also includes the effect of initial curvature, 2  

represents the nonlinear effect of initial curvature, and 3  characterizes the effect of 

mid-plane stretching and geometric nonlinearity. It is worth noting that, in Eq. (5.6), 

cubic nonlinearity is due to large deformation of the CNT, whereas quadratic 

nonlinearity is due to the initial curvature nonlinearity. 

To facilitate theoretical formulations, the following dimensionless quantities are 

introduced 

e

k

L

,x u

,z w

pk
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24 4
1

1 4 4 2

( )
, ( ) , , , , p

l n n pn

k LW tI EI e kL
r W t e k k

A r AL r EI EI


  

      . (5.10) 

Therefore, Eq. (5.6) can be rewritten in dimensionless form as 

2
2 2 2 2 31

1 1 12

( ) 1 3 1
1 ( ) ( ) ( ) 0

2 4 4l n n pn l n l

d W t
e k k W t e W t W t

dt
                    

     
  (5.11) 

5.3. Analytical Solutions 

In this study, harmonic balance method (HBM), a very effective and convenient 

method, is utilized to convert the discretized the ordinary differential equation of 

motion in time domain to a set of algebraic equation. [144, 186-188] According to 

HBM, the steady state solution of a differential equation can be expressed as 

summation of multiple harmonics as follows 

 ( ) cosm n
m

W t a m t ,  (5.12) 

where ma  is the amplitude of the thm  harmonic, and n  is the fundamental natural 

frequency of the CNT. By substituting the assumed solution into differential equation 

and equating the coefficient of each harmonic to zero, a set of algebraic equations 

relating ma  and n  is obtained. Although HBM is very easy to apply, the accuracy of 

results depends on the number of harmonics used the solution. [189] 

On the basis of the number of harmonics, HBM can be grouped in two major 

categories: single harmonic balance method (SHBM) and multiple harmonic balance 

method (MHBM). For weakly nonlinear systems, SHBM can be used without 

introducing any considerable error. However, in presence of highly nonlinear sources, 

MHBM should be used to track system behavior [189]. 

 Single harmonic balance method 

According to SHBM, the steady solution of a differential equation can be expressed 

by the fundamental harmonic as follows 
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 1( ) cos nW t a t ,  (5.13) 

where 1a  stands for the normalized maximum vibration amplitude of the CNT. 

Substituting Eq. (5.13) into Eq. (5.11) and disregarding higher harmonics, the 

following nonlinear algebraic equation is obtained 

2 2 2 2 2 2 2
1

1 3
0

2 16n l l n l n l pn le k k a               , (5.14) 

From Eq. (5.14), n  can be obtained as follows, where only the positive value is 

considered to be the acceptable solution 

2
1

1 3
1

2 16n l n n pne k k a      .  (5.15) 

In Eq. (5.15), it can be seen that the nonlinear fundamental natural frequency is a 

function of the maximum vibration amplitude, 1a . Moreover, it is observed that, for 

the case of single harmonic, the term associated with the nonlinear effect of initial 

curvature is not incorporated in equation and only the term associated with large 

deflection, 2
13 16a , is included. Although the nonlinear natural frequency is affected 

by waviness in Eq. (5.15), it should be noted that the term 2e  corresponds to the 

linear effect of waviness and does not represent the quadratic nonlinearity associated 

with the initial curvature nonlinearity. 

 Multiple harmonic balance method 

In the previous case, it is observed that the nonlinear effect of initial curvature cannot 

be studied when a single harmonic solution is assumed. Hence, the effect of higher 

harmonics on the variation of nonlinear natural frequency of the CNT is studied. 

Three case studies are defined. In the first case, the first and the second harmonics are 

considered, whereas, in the second case, the first and the third harmonics are 

considered. In case three, both the second and the third harmonics in addition to 

fundamental harmonic are considered. 
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Case 1: first and second harmonics 

In this case, the steady state solution of the system is expressed as follows 

   2( ) cos cos 2n nW t a t a t    ,  (5.16) 

where 1a  and 2a  are the coefficients of the first and the second harmonics, 

respectively. Substituting Eq. (5.16) into Eq. (5.11) and considering the terms 

corresponded to the first and the second harmonics, the following nonlinear set of 

algebraic equations is obtained for 2 0a    

2 2 2 2 2 2 2
2 1 2

1 3 3 3
1 0

2 4 16 8n n n pn l l n l le k k e a a a              
 

, (5.17) 

2 2 2 2 2 2
1 2

2

1 3 3
4 1 1 0

2 8 16
n

n n n pn l l l

e
e k k a a

a
   

            
   

, (5.18) 

From Eqs. (5.17) and (5.18), n  can be respectively obtained as follows, where only 

the positive value is considered to be the acceptable solution, 

2 2
2 1 2

1 3 3 3
1

2 4 16 8n l n n pn ne k k e a a a          
 

, (5.19) 

2 2
1 2

2

1 1 3 3
1 1

2 2 8 16
n

n l n n pn

e
e k k a a

a
 

          
   

. (5.20) 

In Eq. (5.17), 2
23 4 l ne a  corresponds to the nonlinear effect of waviness and the last 

two terms stand for the geometric nonlinearity. A similar interpretation can be done 

for Eq. (5.18). By equating the nonlinear natural frequencies obtained from Eqs. 

(5.19) and (5.20) the following relation is obtained 

 2 2 2 3 2
1 2 2 2 2 1 2 26 24 48 48 6 21 48 0n n n pn ne a a e a k k a a a a e a        . (5.21) 

Eq. (5.21) expresses the variation of the second harmonic with respect to the first 

harmonic. 
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Case 2: first and third harmonics 

In this case, the steady state solution of system is considered to include the first and 

third harmonic of the system as follows 

   1 3( ) cos cos 3n nW t a t a t   ,  (5.22) 

where 1a  and 3a  are the coefficients of the first and the third harmonics, respectively. 

Following a similar procedure, the following nonlinear set of algebraic equations is 

obtained for 3 0a   : 

 2 2
1 1 3 3

1 3
1 2

2 16n l n n pne k k a a a a          
 

, (5.23) 

 
3

2 2 1
3 1

3

1 1 3 1
1 2

3 2 16 16n l n n pn

a
e k k a a

a
          

 
. (5.24) 

In Eqs. (5.23) and (5.24), the waviness term does not depend to vibration amplitude, 

ia ; hence, even though the third harmonic of system is considered, the present 

formulation fails to capture the nonlinear effect of initial curvature. Therefore, it can 

be concluded, in order to capture the quadratic nonlinearity of initial curvature, the 

second harmonic (even harmonics) of system should be considered. Furthermore, 

comparing the magnitude of coefficient of second and third harmonics in their 

corresponding closed form formulations, it is observed that the third harmonic (odd 

harmonic) has higher priority in comparison to the second harmonic (even harmonic) 

in capturing the effect of geometric nonlinearity. By equating the nonlinear natural 

frequencies obtained from Eqs. (5.23) and (5.24) the following relation is obtained: 

3 2 2 3 2
1 3 3 3 3 3 1 3 1 364 128 128 128 21 5 01 27n n pna a e a k a a k a a a a a         (5.25) 

Eq. (5.25) expresses the variation of the third harmonic with respect to the first 

harmonic. 

Case 3: first, second, and third harmonics 
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In this case it is assumed that the solution contains the first, the second, and the third 

harmonics as follows 

     1 2 3( ) cos cos 2 cos 3n n nW t a t a t a t     ,  (5.26) 

where 1a , 2a  , and 3a  are the coefficients of the first, the second, and the third 

harmonics, respectively. Substituting Eq. (5.26) into equation (5.11) and collecting 

the coefficients of each harmonic, the following set of nonlinear equations is obtained 

2
2 2 2 2 2 2 22 3 2 3

2 1 2 3 1 3
1 1

1 3 3
1 2 2 0

2 4 16n n n pn l n l l

a a a a
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From Eqs. (5.27) to (5.29) , n  can be respectively obtained as follows, where only 

the positive value is considered to be the acceptable solution 
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By equating these equations, solutions for the variation of the second and third 

harmonics with respect to the first harmonic can be obtained as follows 
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5.4. Numerical results and discussion 

In this section, nonlinear free vibration of simply supported curved SWCNT is 

investigated. The material and geometric parameters of the CNT used in this study 

are given in Table 5-1 [51]. 

Table 5-1 Numerical Values of SWCNT Parameters [51]. 

Parameter value 

Inner radius of innertube 0.7 nm
Outer radius of outertube 0.8 nm
Density of tubes 2.3 gr/cm3

Young modulus of tubes 1 TPa 
Thickness of tubes 0.1 nm 

It is worth studying the characteristics of the linear system before examining the 

effects of nonlinearities. The natural frequency of the linear system can be obtained 

as 

2 2 21
1

2l n n pn le k k      
 

,  (5.35) 

The effect of waviness on the variation of the linear natural frequencies of the 

SWCNT, is presented in Figure 5-2. It is observed that the linear natural frequency 

increases as the waviness increases, which is an expected result. The mode shape of 

the system is given in Figure 5-3 in the presence of initial curvature. 

 
Figure 5-2 Variation of the fundamental linear natural frequencies of the SWCNT versus 

waviness 
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Figure 5-3 Fundamental mode shape of the SWCNT when mid-center is at its positive and 

negative maximum values 

In the following section, the effect of large deformation and waviness on the variation 

of first nonlinear natural frequency of a simply supported SWCNT is studied 

considering the effect of number of harmonics used in the HBM. In addition to these 

the effect of medium stiffness on the nonlinear natural frequency of the SWCNT is 

studied. It should be noted that the variation of nonlinear natural frequency is 

normalized with respect to the corresponding linear natural frequency, l , of the 

simply supported curved SWCNT, and the maximum vibration amplitude is 

normalized with respect to r I A . 

 

 Effect of number of harmonics in the presence of large deformations 

In Figure 5-4, the variation of the normalized nonlinear natural frequency of the 

SWCNT is presented considering only the geometric nonlinearity where effect of 

higher harmonics is studied. The waviness, ne , is considered to be equal to zero. 

Results show that in the absence of waviness, including the second harmonic in the 

solution expansion does not affect the nonlinear natural frequency. On the other hand, 

it is seen that the variation of the normalized nonlinear natural frequency decreases as 

the third harmonic is included in solution expansion. In Figure 5-5, amplitudes of the 

coefficients of harmonics are plotted for the case of multiple harmonics where the 

contribution of each trial function can be clearly seen. It is observed that when 
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normalized maximum vibration amplitude is small, majority of the contribution 

comes from the first harmonic, but the contribution of the third coefficient increases 

as vibration amplitude increases. It should be noted that the coefficient of second 

harmonic is zero so it does not affect system behavior at all in the presence of only 

geometric nonlinearity. 

 
Figure 5-4 Variation of normalized nonlinear natural frequency in the presence of only 

geometric nonlinearity 

 
Figure 5-5 Coefficients of the first and third harmonics 

Figure 5-6 shows the variation of the nonlinear natural frequency against the 
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vibrating in the first vibration mode. It is seen that as the normalized medium stiffness, 

nk , increases, the normalized nonlinear frequency tends to approach the linear one. 

Moreover, it is observed that, as the medium stiffness increases, the normalized 

nonlinear natural frequency for single harmonic and multiple harmonic solutions 

converge to each other. This is an expected result, since the effect of geometric 

nonlinearity decreases as medium stiffness increases. Since the torsional stiffness 

resulted in a term similar to medium stiffness in the equation of motion, similar results 

can be obtained if the effect of torsional stiffness is studied. 

  
Figure 5-6 Variation of the normalized nonlinear natural frequency for different values of 

medium stiffness in the presence of only geometric nonlinearity 

 Effect of number of harmonics in the presence of both large deflection and 

waviness 

In Figure 5-7 and Figure 5-8, the variation of normalized nonlinear natural frequency 

is given for different value of initial curvature where the effect of higher harmonics 

is studied in the presence of both initial curvature and geometric nonlinearities. It is 

observed that, in the presence of initial curvature, the system response is mainly 

affected by the second harmonic of system and including the third harmonic in 

solution expansion does not affect the results. Furthermore, it can be seen that the 

effect of second harmonics becomes more dominant as value of initial curvature 

increases (Figure 5-8) where it cannot be disregarded.  
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Figure 5-7 Variation of the normalized nonlinear natural frequency in the presence of both 

geometric nonlinearity and waviness nonlinearity 

 
Figure 5-8 Variation of the normalized nonlinear natural frequency in the presence of both 

geometric nonlinearity and waviness nonlinearity 
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decreases as waviness increases. Moreover, it can also be observed that the difference 

between the single and multiple harmonics solutions increases as initial curvature 

increases.  

As a final case study, considering both geometric and waviness nonlinearities, the 

effect of medium stiffness on the variation of normalized nonlinear natural frequency 

of SWCNT is investigated using single and multiple harmonics where 3ne  . 

Figure 5-11 shows the variation of the normalized nonlinear natural frequency 

considering different values of medium stiffness. It is observed that, as the normalized 

medium stiffness, nk , increases, the normalized nonlinear natural frequency tends to 

approach to the linear one. It is worth noting that, for similar initial curvature, single 

harmonic solution estimates a lower normalized nonlinear frequency compared to the 

multiple harmonics solution.  

  
Figure 5-9 Coefficient of harmonics of SWCNT vibrating in the fundamental natural 

frequency for different initial curvature 
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Figure 5-10 Variation of the normalized nonlinear natural frequency for different values of 

initial curvature utilizing single and multiple harmonic solutions 

  
Figure 5-11 Variation of the normalized nonlinear natural frequency for different values of 

normalized medium stiffness 
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harmonic balance method is utilized to convert the discretized ordinary differential 

equations of motion into nonlinear algebraic equations and study the effect of higher 

harmonics. On the basis of the number of harmonics used in the solution expansion, 

several case studies are defined in order to explore the effect of higher harmonics on 

the variation of normalized nonlinear natural frequency in the presence of geometric 

and waviness nonlinearities. In each case, a closed form expression for the variation 

of the nonlinear fundamental natural frequency of CNTs is obtained analytically.  

Results show that in the case of only geometric nonlinearity, the variation of nonlinear 

natural frequency is only affected by odd harmonics, however, the effect is not 

significant. On the other hand, in the case of both waviness and geometric 

nonlinearities, it is observed that the variation of normalized nonlinear natural 

frequency is affected by even harmonics as well. Our further studies show that the 

effect of waviness on the natural frequency can be classified in two categories named 

as: linear effect, and nonlinear effect. It is observed that the single harmonic approach 

is enough to detect linear effect of waviness on the variations of the nonlinear 

fundamental natural frequency, however, in order to detect the nonlinear effect of 

waviness, higher even harmonics should be considered. Moreover, it is observed that 

as medium stiffness increases the difference between solutions of single harmonic and 

multiple harmonic solutions decreases. 
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CHAPTER 6 
 
 

6.  DIFFERENTIAL QUADRATURE METHOD, A NOVEL METHOD TO 
STUDY NONLINEAR VIBRATIONS OF CNTS8 

 
 
 

Depending on nonlinearity, common solution methods such as Galerkin require a set 

of multiple comparison functions to anticipate the system behavior. The effect of trial 

functions on the system response is studied in detail in chapter 4. However, these 

solution methods are limited to simple cases such as simply supported beams where 

the comparison functions have simple known forms. The objective of this chapter is 

to overcome the shortfalls of solution methods such as Galerkin by developing and 

implementing an accurate, efficient and relatively fast techniques for modeling CNTs 

which does not require any pre-knowledge on the system comparison functions, i.e. 

differential quadrature method. The method is introduced through its application in 

studying nonlinear free vibration analysis of curved double-walled carbon nanotubes 

(DWNTs) embedded in an elastic medium. Nonlinearities considered are due to large 

deflection of carbon nanotubes (geometric nonlinearity) and nonlinear interlayer van 

der Waals forces between inner and outer tubes.  

 

6.1. Introduction 

After the discovery of carbon nanotubes (CNTs) by Iigima [7], considerable attention 

has been devoted to carbon nanotubes (CNTs), since they have the ability to 

revolutionize critical technologies owing to their remarkable physical, mechanical, 

and electrical properties [61, 190-196].  

                                                 

8 A version of this chapter is submitted to be published in Physica E as “Nonlinear Free Vibrations of 
Curved Double Walled Carbon Nanotubes Using Differential Quadrature Method” 
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Recent theoretical and experimental studies show that the deformation of CNTs is 

nonlinear in nature where they are affected by geometric and vdW force 

nonlinearities. Therefore, in order to accurately predict the vibrational behavior of 

CNTs, the nonlinear effect of both geometric and vdW force should be considered 

[51, 184, 197]. The effect of nonlinearities on nonlinear natural frequencies of 

DWCNTs is investigated in chapter 4 using describing function method and utilizing 

multiple trail functions in Galerkin method. It is observed that utilization of multiple 

trial functions resulted in the determination of multiple nonlinear natural frequencies 

at the same vibration amplitude and identification of single nonlinear natural 

frequencies associated with different vibration amplitudes. However, Even though 

Galerkin method is easy to implement, it requires trial functions or comparison 

functions that satisfy all the (geometric and natural) boundary conditions of the 

system. Hence, Galerkin approach is used only for studying hinged-hinged beams 

where the trial functions are simple sine functions. Therefore, presenting a general 

formulation capable of predicting the vibrational behavior of CNTs under different 

boundary conditions is of high importance. Recently, finite element method (FEM) is 

proposed to study the free vibration of CNTs where solution method such as Galerkin 

method is not applicable. Applicability of FEM in studying the free vibration of CNTs 

is investigated by Ansari et al. [143] in the presence of only geometric nonlinearity. 

Using FEM, authors were able to study the effect of boundary conditions on nonlinear 

natural frequencies for the first time. Even though classic FEMs can predict 

vibrational behavior of CNTs, they are disadvantaged in terms of computational time 

since they require higher number of grid points which results in large number of 

nonlinear equations. In order to overcome this difficulty differential quadrature 

method is utilized in this study. 

The differential quadrature method (DQM) is a well-developed numerical method for 

quick solutions of linear and nonlinear partial differential equations. DQM developed 

by Bellman and Casti [198] is a discrete approach to directly solve the governing 

equations of various engineering problems. Different from conventional methods 

such as finite difference (FD) and finite element (FE) methods, DQM requires less 

grid points to obtain an acceptable accuracy. A comprehensive review on the DQM 

can be found in [199]. Owing to its efficiency and accuracy, DQM has the potential 
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to be used in variety of application areas. Applicability of DQM for micro and 

nanoscale beams and tubes is studied by Civalek et al. [200] and Wang et al. [201] 

for linear systems. Later, considering the nonlocal effect and temperature effects, 

same problem has been solved by Zhen and Fang [202]. Based on Eringen’s nonlocal 

elasticity theory and von Kármán geometric nonlinearity, the nonlinear free vibration 

of a DWCNT is studied by Ke et al. [34] where a direct iterative method is used to 

solve the resulting system of equations. They studied the effect of system parameters 

on variation of nonlinear natural frequency of a DWCNT vibrating in the first in-

phase vibration mode where different types of boundary conditions are considered. 

Later, benefiting from the advantages of DQM, Janghorban and Zare [203] studied 

the linear free vibration of functionally graded carbon nanotubes with variable 

thickness, where material properties are assumed to be graded in the longitudinal 

direction and a similar problem using different beam theories is studied by Ansari et 

al. [204].  

The number of nonlinear studies on vibrations of CNTs having different end 

conditions is rare in literature due to the limitation of Galerkin method explained 

formerly. In addition to this, it is observed that only geometric nonlinearity is studied 

in these studies and nonlinear van der Waals effects between the layers of CNTs are 

neglected, since existence of vdW force complicates the solution. Therefore, to the 

best of author’s knowledge, this is the first study which considers nonlinear free 

vibrations of curved double walled carbon nanotubes (DWCNTs) with different types 

of boundary conditions, where in addition to geometric nonlinearity, nonlinear 

interlayer van der Waals (vdW) force is also included. Differential quadrature method 

is used to discretize the partial differential equations of motion resulting in a system 

of nonlinear ordinary differential equations. The main advantage of DQM, in 

comparison to solution methods like variational approach [175], or Galerkin method 

[184, 197], is its inherent simplicity in formulation, where different end conditions 

can be easily adopted. Using DQM and considering a harmonic solution in time, 

nonlinear differential equations of motion are converted into a set of nonlinear 

algebraic equations, which is solved by the developed iterative path following method 

(IPFM). 
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6.2. Modeling 

Consider a DWCNT of length L , cross-sectional areas ,i oA A , area moment of inertias 

,i oI I , Young’s modules ,i oE E , and densities   embedded in an elastic medium having 

a stiffness per unit length of k  as shown in Figure 6-1, where i and o  indicate the 

inner and outer tubes, respectively,. Assume that the transverse displacements of 

nanotubes are    , , ,i ow x t w x t  where x  and t are the spatial coordinate and the 

temporal variable. Equations of motion for free vibration of embedded curved 

DWCNTs considering geometric, initial curvature, and vdW force nonlinearities are 

given as [123, 166, 167] 

 
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 . (6.2) 

( )Z x  is the initial curvature (waviness) of the cylindrical tubes.  ,mp x t  is the contact 

force between the surrounding medium and the tube which can be identified by 

Winkler-like model [47, 181] and  ,vp x t  is the nonlinear vdW force. According to 

Winkler-like model theory, the interaction between surfaces can be simulated as a 

linear spring resulting in a pressure distribution linearly proportional to the relative 

displacement between the surfaces as 

   , ,m op x t kw x t  .  (6.3) 

The negative sign in the above equation indicates that the pressure is opposite to the 

deflection of the tube and k  is defined by the material constants of the surrounding 

elastic medium. On the other hand, vdW force is composed of attractive forces 

between atoms, molecules, and surfaces which only come into action when the 
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relative displacements are comparable with the atom sizes [80, 182]. The vdW force 

per unit area for two originally-concentric tubes is given in [168, 169] as 

     3

1 2,v o i o ip x t p w w p w w    ,  (6.4) 
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 , ir  is innertube radius, and U  is potential 

energy expressed in terms of the interlayer spacing ir  as follows [121, 184] 
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where 20.4089101874 J/mILK   , and 0 0.34 nm   is the equilibrium interfacial 

spacing. Substituting Eqs. (6.3) and (6.4) into Eqs. (6.1) and (6.2), the following 

nonlinear partial differential equations for the DWCNT are obtained: 
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It is assumed that the waviness of the tubes,  Z x , follow the first eigenfunction of 

the linear system, i.e. ,   1( )Z x e x  , where 1( )x  is the first eigenfunction of the 

linear CNT. For instance,  ( ) sinZ x e x L   [126] for the case of simply supported 

tubes, where e  is the amplitude of the initial waviness. 
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Figure 6-1 Model of an Embedded Curved DWCNT 

 

6.3. Generalized differential quadrature method 

Generalized differential quadrature method (GDQM) approximates the derivatives of 

a function with respect to a spatial variable at a given discrete point by a weighted 

linear summation of function values at all the discrete points in the computational 

domain. For example, the thn  derivative of a function  ( )rW x  at the t hm  point, mx  , can 

be estimated b 

( ) ( )
m,s

1

, 1,2,...,
N

n n
m r s r

s

W c W j N


  .  (6.8) 

In the generalized differential quadrature method [205], the global Lagrange 

interpolation polynomial is used to calculate the weighting coefficients, where Eq. 

(6.8) is considered to be exact for a test function of 

  (1)

( )
( ) , 1,2,...,

( )s
s s

l x
g x s N

x x l x
 

 
,  (6.9) 

 l x  is the Lagrange interpolating polynomial and    1l x  is its first derivative which 

are defined as follows  

.  (1)

1 1,s

( ) ( ), ( )
N N

s j j s
s s j

l x x x l x x x
  

     .  (6.10) 

e

L

k
x

,z w
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Thus, differentiating Eq. (6.9), weighting coefficients,  1 
, ,   1,2,... ),(i jc i j N , can be 

computed analytically as 

 
(1)

(1)
(1)
m,s

(1)
m,s

1,s

( )
for

( )

for

m

m s s

N

s m

l x
s m

x x l x
c

c s m
 


   

  


.  (6.11) 

The weighting coefficients for higher order derivatives can be found likewise. A 

recurrence relationship can be obtained for higher order derivatives as follows 

(n 1)
m,s(1) (n 1)

m,s m,m
(n)
m,s

(n)
m,s

1,s

m s

N

s m

c
n c c s m

x x
c

c s m




 

  
         

  



.  (6.12) 

Since the positions of the sampling points play a significant role in the accuracy of 

DQM [206], Gauss–Lobatto quadrature points are used which result in minimum 

error. 

6.4. Application of DQM 

Assuming a separable solution as ( , ) ( ) ( )r rw x t W x T t   and using Eq. (6.8), the partial 

differential equation of motion given by Eqs. (6.6) and (6.7) can be discretized at t hm  

point as 

 

2
(4) (1)

,s ,s2
1 1 1

2 2
(1) 2 (2)

,s ,s 2
1 1

1

( )
( ) ( )

1
( ) ( )

2

(

n

m

N N N
i i

i i m s i i i m i n n s i
s n sx x

N N

n s i m s i
s s x x

m o m i

E Ad T t dZ
E I c W T t A W d c W T t

dt L dx

d Z
c W T t c W T t

dx

p W W T


  

  

               
                    

  

  

 
 3 3

2) ( ),m o m it p W W T t  

, (6.13) 
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 

2
(4) (1)

,s ,s2
1 1 1

2 2
(1) 2 (2)
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1
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N N

n s o m s o
s s x x
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E Ad T t dZ
E I c W T t A W d c W T t

dt L dx

d Z
c W T t c W T t

dx

p W W T t


  

  

              
                    

  

  

 
 3 3

2) ( ) ( )m o m i m op W W T t k W T t   

, (6.14) 

where nd   is the weighting function which is calculated using Gauss–Lobatto 

integration rule. According to quadrature integration rule, integration value can be 

stated as a weighted sum of function values at specified points within the domain of 

integration (Eqs. (6.15) and (6.16)). The evaluation points are the roots of a 

polynomial belonging to a class of orthogonal polynomials which, in our case, is 

Gauss–Lobatto points which are as well used in the GDQM. It is worth noting that 

Gauss-Lobatto rule is accurate for polynomials up to the degree of 2 3n   , where n  

is the number of integration points [207]. 

1

1
2

( ) ( ) ( )
2 2 2

b n

n i i
ia

b a b a b a
f x dx d f a d f b d f z





          
  

  , (6.15) 

   

 

2

1

2
,    2 1

1

2
,                       1,

1

n i
i

i n
n n P z

d

i n
n n



         
  

,  (6.16) 

where  nP z is the thn  order Legendre polynomial. 

Assuming a single harmonic solution in time, i.e. utilizing harmonic balance method 

(HBM) with a single harmonic Eqs. (6.13) and (6.14) become  

 

2
(4) 2 (1)

,s ,s 2
1 1 1

2

(2)
,s ,s

1 1 1

2
1

3 1
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i
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s n sx x x x
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i i

n n s i m s i
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m o m i m o m

EA dZ d Z
E I c W A W d c W

L dx dx

E A
d c W c W

L
p

p W W W W

 
   

  

                     
                   

   

  

  

 3

i

, (6.17) 
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p W W W

 
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  

                     
                   

   

  

  

 3

i m oW k W

. (6.18) 

The above equation can be written in matrix form as follows 

  2   L NLK + K x M x 0  ,  (6.19) 

NL NLg NLvK = K + K ,   (6.20) 

where x  denotes the unknown dynamic displacement vector defined as 

 1 2 1 2

T

i i N i o o N oW W W W W Wx   ,  (6.21) 

and M , LK , NLgK  and NLvK  represent mass matrix, linear stiffness matrix, and 

nonlinear stiffness matrices associated with geometric and vdW force nonlinearities 

of the system, respectively. These matrices are defined as 

2 2N N identity M  ,   (6.22) 

 

   

2
4 1 1

2
4 11

i i i

i i i i i i i

o o o

o o o o o o o

E I E ep p

A A L A

p kE I E ep

A A A L

   

   

 
       

 
 
       
  

L

C I E I

K =

I C I E
, (6.23) 
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 
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NLv
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.  (6.25) 

I  is identity matrix,  nC  indicates weighting function matrix for the nth order 

derivative using DQM, E  stands for initial waviness matrix, r ( ,r i o ) is a 

displacement dependent coefficient representing geometric nonlinearity, and 1K  , and 

2K  are displacement dependent matrices. The initial waviness matrix given in Eq. 

(6.23) is defined as follow 

3
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1 1
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( ) 0

( )
( )
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 
                     

 E


, (6.26) 

where ( )x   and ( )x   are first and second derivatives of the first linear eigenfunction 

of the system that is used to define the waviness, respectively; and r ( ,r i o ), 1K  , 

and 2K  given in Eqs. (6.24) and (6.25) are defined as follows: 
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1
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N N
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n s

d c W
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  ,  (6.27) 
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It should be noted that the higher order DQM weighting function matrix can as well 

be calculated through matrix multiplication, e.g.  2  C C C , where the elements of 

C  are given by Eq. (6.11). 

In the present study, three common sets of boundary conditions namely as hinged-

hinged (H-H), clamped–hinged (C-H), and clamped–clamped (C-C) are investigated. 

Boundary conditions for hinged and clamped ends are 

2

2
( , ) 0,   0

s

r
r s

x x

d w
w x t

dx


  ,  (6.30) 

2
( , ) 0,    0

s

r
r s

x x

dw
w x t

dx 

  ,  (6.31) 

respectively. Where 1s  and s N  represents the end points. Using the GDQM, the 

discretized counterparts of different boundary conditions given by Eqs. (6.30) and 

(6.31) can be written as follows 

 
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1 2 1
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
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 
 (6.32) 
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 
 (6.33) 

respectively. Where  11 0 0 0s N
a =   for 1s  and  10 0 0 1s N

a =   for 

s N Boundary conditions given by Eqs. (6.32) and (6.33) can as well be expressed 

in matrix form as follows 
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.  (6.34) 

Where superscript n  is assigned by the type of end conditions, where it is equal to 1 

for the clamped end and 2 for the hinged end. By using matrix manipulation Eq. (6.34) 

can be written as 

*   B s SK x K x 0 ,  (6.35) 

where 

 1 2 1 1 2 1, , , , , ,
T

i i N i N o o N o N oW W W W W W W W sx  ,  (6.36) 

 *
3 4 2 3 4 2

T

i i N i o o N oW W W W W W x    ,  (6.37) 

representing boundary and interior nodes and BK  and SK  are 8 8  and  8 2 8N   

matrices related with boundary and interior nodes, respectively. Following a similar 

approach Eq. (6.19) can be written as 

 * * * 2 * *     D s L NLK x K + K x M x 0 .  (6.38) 

Here *
LK , *

NLK , and *M  are    2 8   2 8N N    matrices, representing the linear 

stiffness matrix, nonlinear stiffness matrix, and mass matrix for the interior nodes, 

respectively. It is worth noting that *
LK , *

NLK , and *M are coefficient matrices for the 

non-boundary nodes, where *
NLK  is a displacement dependent matrix whose values 
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depend on the values of the boundary nodes in addition to the interior nodes. DK  is 

an  2 8 8N    matrix, which contains coefficient of boundary nodes. 

Solving sx  from Eq. (6.35) and substituting it in Eq. (6.38), equation of motion of the 

system is obtained as follows 

 * * * 2 * *     
-1

L NL D B SK + K K K K x M x .  (6.39) 

6.5. Solution method 

The set of nonlinear algebraic equations given by Eq. (6.39) can be solved 

numerically by using Newton's method with Arc-length continuation. Newton’s 

method converges to the correct solution quadratically, if the initial guess is 

sufficiently close to the actual solution. However, convergence problems arise when 

a solution is around a turning point since the Jacobian matrix becomes singular. 

Moreover, in order to follow the solution branch even it reverses its direction; 

continuation parameter has to be replaced with another parameter for which it is 

possible to follow the path (arc-length continuation). Details of Newton’s method 

with arc-length continuation can be found in [121]. 

Another solution approach commonly used by a number of researchers is a direct 

iterative process (DIP) by using eigenvalue solvers. In this method [34, 122], 

vibration amplitude increases incrementally. At each step, nonlinear vibration 

dependent stiffness matrices are calculated based on the mode shape of the previous 

solution. The resultant linear system can be solved using an eigenvalue solver. This 

process is repeated until the difference between the assumed and calculated 

eigenmodes decreases to a predetermined tolerance. It should be noted that DIP 

method is established based on the assumption that variation of mode shapes along 

the solution path is small. However, due to strong nonlinearities existing in the 

problem, nonlinear system mode shape changes significantly along the solution path 

as shown in [121], where DIP fails in finding the correct solution and therefore it 

cannot be used directly. Moreover, the effect of each nonlinearity is different whether 

the in-phase vibration mode or out-of-phase vibration mode is considered. For 
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example, due to vdW force nonlinearity out-of-phase natural frequencies increase 

significantly as the maximum vibration amplitude increases; whereas, in-phase 

natural frequencies change slightly with respect to the maximum vibration amplitude. 

As a result of this, it is possible for the path of system natural frequencies to cross 

each other as presented in [121]. For instance, system can vibrate in the second mode 

(out-of-phase mode) with a nonlinear natural frequency higher than the nonlinear 

natural frequency of the third mode (in-phase mode) as vibration amplitude increases. 

Hence, in the present study, in order to overcome these two problems, a new method 

referred as “iterative path following method” is developed, which combines modal 

assurance criterion (MAC) and arc-length continuation method with DIP in order to 

improve its performance. In the iterative path following method (IPFM), by utilizing 

MAC it is possible to track the correct natural frequency and by using arc-length 

continuation it is possible to follow the solution path in the presence of multiple 

solutions. 

The modal assurance criterion is outlined as a scalar constant relating the degree of 

consistency (linearity) between two vectors as follows 

   
       

2T

A x

T T

A A x x

MAC
 

   
 ,  (6.40) 

where  A  and  x  are two vectors that are compared with each other. The modal 

assurance criterion takes values between 0 and 1, where 0 and 1 indicate two 

independent and identical vectors, respectively. Thus, if the modal vectors under 

study truly express a consistent, linear relationship, the modal assurance criterion 

approaches unity. This fact is utilized in finding the system eigenvalues. Additionally, 

instead of increasing incrementally the vibration amplitude, which may result in jump 

up or down in case of multiple solutions, arc-length continuation is utilized to follow 

the solution branch around turning points, in which the maximum vibration amplitude 

becomes an unknown and arc-length is the parameter used in path following. 

The solution method consists of two major loops: the arc-length loop and direct 

iterative process loop which acts inside the arc-length loop. The step by step 
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description of the developed iterative path following method (IPFM) is given as 

follows: 

Step 1:  

The nonlinear equation of motion given in Eq. (6.39) can be written as a residual 

vector function as 

  * * * 2 * *, 0     * -1
L NL D B Sf(x ) = K + K K K K x M x ,  (6.41) 

 max 3 4 2 3 4 2 max

T

i i N i o o N oW W W W W W W W   * *x x         , (6.42) 

where 
k iW  and 

k oW  represent the normalized vibration amplitudes of the mode 

shapes of inner and outer tubes with respect to the grid point of the innertube or 

outertube that result in the maximum absolute value. The arc length parameter is 

defined as the radius of a fictitious n-dimensional sphere centered at the previous 

converged solution point. It should be noted that in the first step, linear system 

eigenvector is considered as the reference mode. The new solution will be 

searched on the surface of this sphere rather than at the next vibration amplitude, 

where the amplitude become an unknown and the radius of the fictitious sphere is 

the parameter specified. Details about applying the arc-length method to a residual 

function can be found in [121]. Arc-length continuation is used to update the mode 

shapes obtained in the previous solution and predict the next vibration amplitude. 

Step 2:  

DIP loop starts here, where calculated eigenvectors are used to determine the 

nonlinear stiffness matrix, *
NLK , and new eigenvalues and eigenvectors are 

calculated from the updated eigensystem. MAC is calculated based on the 

eigenvector of previous solution in order to select the correct eigenvector and the 

eigenvalue associated with it. 
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Step 3:  

The calculated eigenvector is normalized and step 2 is repeated until the error in 

the residual function given by Eq. (6.41) is within predefined tolerance limit. 

It should be noted that the maximum vibration amplitude does not occur at the same 

point on the CNTs; moreover, it can occur at points other than DQM points. Hence, 

in order to find the maximum vibration amplitude, after obtaining the nonlinear 

eigenvector, the full mode shape is reconstructed using Lagrange interpolation and 

the point of maximum amplitude is determined. 

6.6. Results 

In the following section, the effect of nonlinearities on the first in-phase and out-of-

phase fundamental natural frequencies of a curved DWCNT is investigated. Firstly, 

the effect of geometric nonlinearity and initial curvature on the nonlinear natural 

frequency of a DWCNT is studied by presenting the variation of normalized nonlinear 

natural frequency with respect to the maximum vibration amplitude. Later, the same 

study is repeated considering the effect of vdW force nonlinearity together with the 

geometric nonlinearity. Finally, considering both nonlinearities medium stiffness on 

the nonlinear natural frequency of the DWCNTs are investigated. Meanwhile, the 

effects of different end conditions are as well considered in the studies performed. In 

order to present the results in a proper form, the nonlinear natural frequency is 

normalized with respect to the corresponding linear natural frequency of the curved 

DWCNT and vibration amplitudes are normalized with respect to i iI A . 

The numerical values of the parameters used in this study are given in Table 6-2. 

Before proceeding into the nonlinear analysis, the effect of number of grid points is 

studied on the linear system (Table 6-1), where it is observed that the natural 

frequencies obtained for all types of boundary conditions considered are identical in 

case the number of grid points is larger or equal to 13. Therefore, in all the results 

presented, 18 grid points are utilized which is observed to be sufficient for the 

nonlinear cases as well.  
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Table 6-1 Effect of the Number of Grid Points on the Linear Fundamental Frequencies of 
the DWCNTs with Different Boundary Conditions 

N  - H-H (THz) C-H (THz) C-C (THz) 

10 In-phase 0.46727276 0.72958103 1.05775816 

Out-of-phase 7.67867366 7.94739767 7.92494566 

11 In-phase 0.46728898 0.72963714 1.05780658 

Out-of-phase 7.88518860 7.89901304 7.92495020 

12 In-phase 0.46728882 0.72963963 1.05780510 

Out-of-phase 7.88518860 7.89901320 7.92495006 

13 In-phase 0.46728867 0.72963869 1.05780414 

Out-of-phase 7.88518859 7.89901314 7.92494997 

14 In-phase 0.46728868 0.72963868 1.05780415 

Out-of-phase 7.88518859 7.89901314 7.92494998 

18 In-phase 0.46728868 0.72963869 1.05780416 

Out-of-phase 7.88518859 7.89901314 7.92494998 

In Table 6-3, the fundamental natural frequency of the linear DWCNT with H-H end 

conditions are compared with the analytical solution and the results given in literature. 

It can be seen that the results of DQM and analytical solution are in very good 

agreement. 

Table 6-2 Numerical Values of Tubes Parameters 
Parameter Value 

Innertube diameter 0.7id   nm 

Outertube diameter 0 1.4d   nm 

Young’s modulus 1E   TPa 
Poisson’s ratio 0.25   
Thickness of each tube 0.34t  nm 

 

Table 6-3 Fundamental Linear Natural Frequencies of a Simply Supported DWCNT 
Natural frequencies In-phase Out-of-phase 

Ref. [121] 0.4673 7.8852 

Ref. [51] 0.46 7.71 

Analytical solution 0.467289 7.885189 

Present study, DQM 0.467289 7.885189 

 Geometric nonlinearity 

In Figure 6-2, the variation of the normalized nonlinear natural frequency of the first 

in-phase vibration mode of a DWCNT is given for different types of end conditions 

in the presence of only geometric nonlinearity. A hardening stiffness behavior is 

observed for all types of boundary conditions, i.e. the nonlinear natural frequency 

increases as the vibration amplitude increases. Furthermore, it is observed that 
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although the clamped-clamped DWCNT have the highest fundamental linear natural 

frequencies, it has the lowest normalized nonlinear natural frequency at the same 

maximum vibration amplitude. This is an expected result, since the effect of 

geometric nonlinearity decreases due to the limited deformation obtained for stronger 

end supports 

Figure 6-3 shows the variation of the normalized nonlinear natural frequency of a 

DWCNT vibrating in the first out-of-phase vibration mode where the effect of 

different boundary conditions is investigated. Results show that in contrast to in-phase 

vibration mode, the variation of nonlinear natural frequency increases as end 

conditions get stronger for the out-of-phase vibration mode. However, the amount of 

the increase in the nonlinear natural frequency is lower than the case of in-phase 

vibration mode and for H-H and C-C boundary conditions, it is negligible. Moreover, 

several turning points are observed for C-H end conditions, where at a single vibration 

amplitude multiple nonlinear natural frequencies exist. 

 
Figure 6-2 Variation of Normalized Nonlinear Natural Frequency of Inner and Outer Tubes 

Vibrating in the First in-Phase Mode for Different End Conditions ( 0e  ) 

(a) (b)
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Figure 6-3 Variation of Normalized Nonlinear Natural Frequency of Inner and Outer Tubes 

Vibrating in the First out-of-Phase Mode for Different End Conditions ( 0e  ) 

In Figure 6-4, the variation of nonlinear natural frequency for the C-H end conditions 

is re-plotted by dividing the plot into five regions where the corresponding mode 

shapes of the tubes at the center of each region is given as well. The regions are 

defined by considering the changes in the characteristics of the nonlinear mode shape, 

where, for some cases, it occurs around turning points. It can be seen that in the first 

region, the system vibrates in a mode shape similar to the fundamental out-of-phase 

mode shape of the linear system. However as the region number increases, the 

contribution of other linear modes become significant in the nonlinear solution. For 

instance, in the second region the system vibrates in a mode shape which can be 

identified as a combination of the first out-of-phase and the fourth in-phase linear 

vibration modes. In order to clearly study the contribution of each linear vibration 

mode to the nonlinear solution, variation of normalized modal contributions along the 

solution curve is plotted in Figure 6-5 for the first six modes that have the highest 
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the nonlinear mode shape is compared with the linear modes of corresponding system. 

It can be seen that moving forward along the solution curve the contribution of the 

first out-of- phase mode decreases and at the same time the contribution of the forth 

in-phase mode increases and becomes maximum in the middle of the third region. 

Proceeding further contribution of the fourth in-phase mode decreases; whereas, the 

contribution of the second out-of-phase mode starts to increase and dominates the 

nonlinear solution. Our further studies show that system continues to vibrate in the 
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method, the nonlinear vibration mode which is closer to the one at the previous 

amplitude step is followed; however, for H-H and C-C boundary conditions, which 

are symmetric, the first out-of-phase vibration mode is dominant in the nonlinear 

vibration mode.  

 
Figure 6-4 Variation of Normalized Nonlinear Natural Frequency of Outertube Vibrating in 

the First Out-of-Phase Mode and the Corresponding Mode Shapes in the Middle of Each 
Region 

    
Figure 6-5 Variation of Normalized Modal Contributions vs. Normalized Total Arc-length 
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In Figure 6-6, variation of normalized fundamental nonlinear natural frequency is 

given for different values of initial curvature (waviness) for hinged-hinged, clamped-

hinged, and clamped-clamped DWCNT vibrating in the first in-phase vibration mode. 

It is observed that for all the cases normalized nonlinear natural frequency decreases 

as waviness increases and tends to approach to the linear one. It can be seen that as 

the end conditions get stronger, the effect of initial curvature on variation of nonlinear 

natural frequency decreases. 

Figure 6-7 shows the effect of initial curvature on the nonlinear natural frequency of 

the DWCNT vibrating in the first out-of-phase vibration mode. It is observed that 

comparing to in-phase vibration mode the effect of initial curvature on the nonlinear 

natural frequency is insignificant in the out-of-phase vibration mode. 

 
Figure 6-6 Effect of Initial Curvature on the Variation of Normalized Nonlinear Natural 

Frequency of Inner and Outer Tubes Vibrating in the  
First In-Phase Mode a) H-H b) C-H c) C-C 
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Figure 6-7 Effect of Initial Curvature on the Variation of Normalized Nonlinear Natural 

Frequency of Inner and Outer Tubes Vibrating in the  
First out-of-Phase Mode a) H-H b) C-H c) C-C 

 Van der Waals force nonlinearity together with geometric nonlinearity 

In Figure 6-8, variation of normalized nonlinear natural frequency in the first in-phase 

vibration mode is given for different types of end conditions and initial curvature. 

Results show that in the in-phase vibration mode, nonlinear natural frequency majorly 
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DWCNT. Moreover, as initial curvature increases, a similar behavior as in Figure 6-6 
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relative motion between the tubes changes slightly during free vibration. Furthermore, 
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clarity, initial curvature is considered to be equal to zero for out-of-phase vibration 

modes presented from now on.  

  
Figure 6-8 Variation of Normalized Nonlinear Natural Frequency of Inner and Outer Tubes 
Vibrating in the First In-Phase Mode for Different End Conditions in the Presence of both 

vdW Force and Geometric Nonlinearities 

Figure 6-9 shows the variation of the normalized nonlinear natural frequency for the 

case of the first out-of-phase vibration mode considering different types of end 

conditions. Results show that due to the vdW force nonlinearity, nonlinear natural 

frequency changes considerably where several turning points are observed for all end 

conditions considered. The results obtained for the H-H DWCNT are the same as the 

ones presented by Cigeroglu and Samandari [121], where authors used a Galerkin 

based discretization method. In Figure 6-10, variation of the normalized nonlinear 

natural frequency for each end condition is given, where the curves are divided into 

seven different regions indicated by different markers and colors. In Figure 6-11, 

variation of the normalized contribution of each linear mode shape is plotted for the 

first seven modes that have the highest contributions, where different regions are 

indicated by numbers.  It can be seen that for all the cases as total arc-length increases, 

or as the region number increases, the contribution of the first linear out-of-phase 

mode decreases and later increases again. Moreover, it is observed that for all the 

cases in the region for which the contribution of the first mode becomes a minimum 

(2nd region for C-C and C-H, and 2nd-4th regions for H-H), CNTs vibrate as if it is 

vibrating in the fifth linear in-phase mode.  
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Figure 6-9 Variation of Normalized Nonlinear Natural Frequency of Inner and Outer Tubes 
Vibrating in the First Out-of-Phase Mode for Different End Conditions in the Presence of 

both vdW Force and Geometric Nonlinearities ( 0e  ) 

 
Figure 6-10 Variation of Normalized Nonlinear Natural Frequency of Innertube Vibrating 

in the First Out-of-Phase Mode a) H-H b) C-H c) C-C 
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Figure 6-11 Variation of Normalized Modal Contributions vs. Total 

 Arc-length a) H-H b) C-H c) C-C  

Figure 6-12 shows a bar plot of normalized modal contributions of the system for H-

H DWCNT at the end of each region, shown in Figure 6-10, in addition to the 

corresponding nonlinear mode shapes of the inner and outer tubes. It can be seen that 

at the end of the first region CNTs vibrate in a nonlinear mode shape completely 

different from the first linear out-of-phase mode shape where the contribution of the 

fifth in-phase mode passes the contribution of the first out-of-phase mode. It can be 

seen that at the end of the 2nd region, the contribution of the fifth in-phase mode 

reaches to its maximum, which starts to decrease and become zero at the end of the 

sixth region. It is worth noting that for the case of H-H DWCNT only the odd mode 

shapes are excited which verifies the results given in [121]. 

In Figure 6-13, normalized modal contribution of C-H DWCNT is given around the 

middle of each region in addition to the corresponding nonlinear mode shapes of the 

inner and outer tubes. It is observed that for the case of C-H DWCNT, in addition to 

odd modes, even modes are also excited. Moreover, it can be seen that asymmetric 

boundaries resulted in asymmetric mode shapes. Figure 6-14 shows a similar plot for 

C-C DWCNT. It is observed that, for the present case, only the odd modes are excited. 

Therefore, it can be concluded that for symmetric boundary conditions only the odd 
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mode shapes are present in the nonlinear modes whereas for asymmetrical end 

conditions in addition to the odd modes, even modes as well contribute to the 

nonlinear mode shapes. 

 

 
Figure 6-12 Normalized Modal Contribution of Innertube and the Mode Shapes of Inner 

and Outer Tubes at the End of each Region for H-H DWCNT 

 
Figure 6-13 Normalized Modal Contributions of Innertube and the Mode Shapes of Inner 

and Outer Tubes around the Middle of each Region for C-H DWCNT 

 

 
Figure 6-14 Normalized Modal Contributions of Innertube and the Mode Shapes of Inner 

and Outer Tubes around the Middle of each Region for C-C DWCNT 

1st region 2nd region 3rd region

4th region 5th region 6th region

1st OP
2nd OP

3rd OP
4th OP

5th IP
6th IP

7th IP
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 m
od

al
 c

on
tr

ib
ut

io
ns

1st OP
2nd OP

3rd OP
4th OP

5th IP
6th IP

7th IP 1st OP
2nd OP

3rd OP
4th OP

5th IP
6th IP

7th IP

Innertube Mode shape
Outertube Mode shape

-1.0

-0.5

0.0

0.5

1.0

M
od

e 
sh

ap
es

 a
m

pl
it

ud
e

1st OP
2nd OP

3rd OP
4th OP

5th IP
6th IP

7th IP

Normalized length of tubes
0.0 0.2 0.4 0.6 0.8 1.0

1st OP
2nd OP

3rd OP
4th OP

5th IP
6th IP

7th IP

Normalized length of tubes
0.0 0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.0

0.5

1.0

M
od

e 
sh

ap
es

 a
m

pl
it

ud
e

1st OP
2nd OP

3rd OP
4th OP

5th IP
6th IP

7th IP
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 m
od

al
 c

on
tr

ib
ut

io
ns

Normalized length of tubes
0.0 0.2 0.4 0.6 0.8 1.0

1st OP
2nd OP

3rd OP
4th OP

5th IP
6th IP

7th IP
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 m
od

al
 c

on
tr

ib
ut

io
ns

Normalized length of tubes
0.0 0.2 0.4 0.6 0.8 1.0

Innertube Mode Shape
Outertube Mode Shape

1st OP
2nd OP

3rd OP
4th OP

5th IP
6th IP

7th IP

Normalized length of tubes
0.0 0.2 0.4 0.6 0.8 1.0

1st region 2nd region 3rd region

1st OP
2nd OP

3rd OP
4th OP

5th IP
6th IP

7th IP

Normalized length of tubes
0.0 0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.0

0.5

1.0

M
od

e 
sh

ap
es

 a
m

pl
it

ud
e

1st OP
2nd OP

3rd OP
4th OP

5th IP
6th IP

7th IP
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 m
od

al
 c

on
tr

ib
ut

io
ns

Normalized length of tubes
0.0 0.2 0.4 0.6 0.8 1.0

Innertube Mode Shape
Outertube Mode Shape

1st OP
2nd OP

3rd OP
4th OP

5th IP
6th IP

7th IP

Normalized length of tubes
0.0 0.2 0.4 0.6 0.8 1.0

1st OP
2nd OP

3rd OP
4th OP

5th IP
6th IP

7th IP

Normalized length of tubes
0.0 0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.0

0.5

1.0

M
od

e 
sh

ap
es

 a
m

pl
it

ud
e1st region 2nd

region
3rd region



131 

 

Figure 6-15 represents a comparison between the results of current study and available 

results in the literature. It is observed that the solutions obtained in the present study 

by utilizing DQM and the results given in literature by using multiple trail function 

and Galerkin method [121] are in good agreement. For the case of H-H DWCNT, the 

results at selected points obtained by the present study (DQM) and by Galerkin 

method [121] are tabulated in Table 6-4. It observed that both results are in good 

agreement and slight differences between the values are due to the nature of the two 

different methods compared. 

 
Figure 6-15 Comparison with Available Data in the Literature for a H-H DWCNT 

Table 6-4 DQM and Galerkin Results at Selected Points for a H-H DWCNT 
Normalized 

maximum vibration 
amplitude 

0.03 0.06 0.09 0.12 

Normalized 
nonlinear natural 

frequency (Present 
study, DQM) 

1.0700 
1.2022, 1.2314, 

1.2355 
1.2496, 1.2682, 

1.2891 
1.2583, 1.2682, 1.3011, 

1.3242, 1.6890 

Normalized 
nonlinear natural 

frequency 
(Galerkin) [121] 

1.0700 
1.1995, 1.2258, 

1.2317 
1.2460, 1.2652, 

1.2875 
1.2568, 1.2659, 1.2989, 

1.3235, 1.6885  
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6.7. Effect of Medium stiffness 

Table 6-5 shows the effect of medium stiffness on fundamental linear natural 

frequency of a DWCNT with hinged-hinged, clamped-hinged, and clamped-clamped 

end conditions. It can be seen that linear natural frequency of DWCNT increases 

slightly as medium stiffness increases for all type of boundary conditions. A similar 

pattern is detected in [34]; however, it can be seen that as medium stiffness increases 

beyond a certain limit (solid lines), in-phase natural frequencies increase significantly.  

Table 6-5 Effect of Medium Stiffness on Fundamental Linear Natural Frequency of 
DWCNT 

k  - H-H (THz) C-H (THz) C-C (THz) 

0 
In-phase 0.4673 0.7296 1.0578 

Out-of-phase 7.8852 7.8990 7.9249 

81 0  
In-phase 0.4875 0.7427 1.0668 

Out-of-phase 7.8858 7.8996 7.9256 

91 0  
In-phase 0.6415 0.8514 1.1447 

Out-of-phase 7.8914 7.9052 7.9312 

1010  
In-phase 1.4566 1.5586 1.7332 

Out-of-phase 7.9486 7.96272 7.9892 

Figure 6-16 presents the effect of the medium stiffness, k , on the variation of 

normalized nonlinear natural frequency versus maximum vibration amplitude for H-

H, C-H, and C-C  DWCNT. It is observed that with an increase in the medium 

stiffness, k , the normalized nonlinear frequency tends to approach to the linear one for 

all end conditions. It is seen that for H-H end condition with medium stiffness less 

than 108 N/m2, variation of normalized nonlinear natural frequency changes slightly; 

whereas, for medium stiffness larger than 108 N/m2 significant changes in the 

normalized nonlinear natural frequency are observed. A similar behavior is observed 

formerly for variation of linear natural frequencies. This shows that the effect of 

geometric nonlinearity becomes negligible in the presence of sufficiently large 

medium stiffness. Moreover, it is observed that as boundary conditions get stiffer in 

addition to decreasing in variation of nonlinear natural frequency, the threshold value 

of medium stiffness increases. The results are tabulated in Table 6-6. A similar 

behavior is detected for the case of out-of-phase vibration modes. The results for the 
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case of H-H DWCNT vibrating in the first out of phase vibration mode can be found 

in chapter 4. 

 
Figure 6-16 Effect of Medium Stiffness on the Nonlinear Fundamental Natural Frequency 

of DWCNT vibrating in the First in-phase Vibration Mode a) Hinged-Hinged  
b) Clamped-Hinged c) Clamped-Clamped ( 0e  ) 

Table 6-6 Normalized Nonlinear Natural Frequencies at Selected Normalized 
 Vibration Amplitudes of Outertube 

Normalized 

Vibration 

Amplitude 

of 

Outertube 

Normalized Nonlinear Natural Frequency 

H-H C-H C-C 

Medium Stiffness Medium Stiffness Medium Stiffness 

0 108 109 1010 
0 108 109 1010 0 108 109 1010 

0.8 1.0234 1.0216 1.0126 1.0025 1.0162 1.0156 1.0119 1.0039 1.0060 1.0059 1.0052 1.0025 

1.5 1.0799 1.0736 1.0434 1.0089 1.0473 1.0457 1.0351 1.0115 1.0208 1.0204 1.0178 1.0091 

2.3 1.1793 1.1658 1.0992 1.0206 1.1019 1.0985 1.0759 1.0251 1.0480 1.0472 1.0412 1.0203 

6.8. Concluding remarks 

In this chapter, nonlinear free vibration of a curved DWCNT embedded in elastic 

medium is studied by using differential quadrature method (DQM) where in addition 

to geometric nonlinearity, interlayer vdW force nonlinearity is also included. The 

effect of nonlinearities, end conditions, initial curvature, stiffness of the surrounding 

elastic medium, and vibrational modes on the nonlinear free vibration of DWCNTs is 

studied in detail.  

Results show that nonlinear natural frequency increases as vibration amplitude 

increases in the presence of only geometric nonlinearity for all the type of end 

conditions. Moreover, it is observed that multiple solution at same vibration 
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amplitude can exist due to interaction of nonlinear in-phase and out-of-phase 

vibration modes. 

Furthermore, application of DQM made it possible for the first time to study the effect 

of different boundary conditions in the presence of vdW force nonlinearity on the 

variation of the nonlinear natural frequencies of DWCNTs. Results show that due to 

the vdW force nonlinearity, nonlinear natural frequency changes considerably where 

several turning points are as well observed. It is been observed that the number of 

turning points is different for each boundary condition considered. Moreover, it is 

observed that for symmetric boundary conditions only the odd mode shapes are 

present in the nonlinear modes whereas for asymmetrical end conditions in addition 

to the odd modes, even modes as well contribute to the nonlinear mode shapes. 
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CHAPTER 7 
 
 

7. NONLINEAR FREE VIBRATION OF NONUNIFORM ROTATING  
CARBON NANOTUBES BASES ON ERINGEN THEORY 

 
 
 

The main objective of this chapter is to include and study the size effects in nonlinear 

equations of motion of CNTs. Size effects are emerged from the non-contact 

interactions of the atoms and molecules due to atomic potential forces. Classic 

continuum models fails to capture size effects because of their atomic origins. Hence, 

in this chapter based of Eringen nonlocal theory, nonlinear nonlocal equations of 

motion of CNTs are studied. Results show that boundary condition equations for 

nonlocal cantilever beam is totally different than classic beams where it includes 

nonlocal and nonlinear terms. It is worth mentioning that nonlinear nonlocal BCs are 

studied for the first time in this chapter.  

 

7.1. Introduction 

In recent years, there has been great interest in the application of nonlocal continuum 

mechanics for modeling and analysis of rotating nanobeams and nanotubes. It is worth 

noting that rotating structure will be inevitable part of the power transmission system 

of any future nano machines and nano robots. Pradhan and Murmu [208] used 

nonlocal Euler Bernoulli beam model to study the linear free vibration characteristics 

of a uniform rotating nano-cantilever. However, they failed to consider the nonlocal 

boundary conditions related to the free end of the nanobeams. Later, Murmu and 

Adhikari [209], investigated an initially pre-stressed single-walled carbon nanotube 

via nonlocal elasticity to analyze the effect of the initial preload. They show that 

vibration characteristic of CNTs is influenced by the existence of a preload. Narendar 

and Gopalakrishnan [210] studied the wave dispersion behavior of a rotating nanotube 

using the nonlocal Euler Bernoulli beam theory. Later, Narendar [211] used nonlocal 
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Timoshenko beam theory to investigate free vibration of uniform rotating nanotubes 

where shear deformation and rotary inertia are accounted. Aranda-Ruiz et al [212] 

studied natural frequencies of the transverse bending vibrations of a nonuniform 

rotating nano-cantilever. They have assumed that the nanobeam cross-section changes 

linearly. 

It should be noted that in all of these studies CNTs have been assumed to behave 

linear; however, recent theoretical and experimental studies show that the 

deformation of CNTs is nonlinear in nature. Fu et al. [113] show that as vibration 

amplitude increases, the nonlinear natural frequency increases significantly for 

nonrotating simply supported single and double walled CNTs. In recent years, 

nonlinear vibration of CNTs have been studied by several researchers [51, 121, 184]. 

However, these studies are only limited to the case of nonrotating tubes. Therefore, it 

is important to study the behavior of rotating CNTs where effect of nonlinearities is 

considered. 

Moreover, reviewing literature it can be seen that it is common assumption to use 

boundary condition equations of classic beam in studying the nonlocal beams. 

However, it should be noted that, in the case of cantilever beam, the system boundary 

condition equations are different than boundary conditions of a classic beam and they 

include nonlinear and nonlocal terms. Even though the effect of nonlocality on BCs 

have been reported for the first time by Lu et al. [213] and Wang et al [85] for 

nonrotating SWCNT, they have not been correctly incorporated in studies regarding 

the rotating nano structures. Furthermore, to the best of authors’ knowledge, this is 

the first study that investigate the effect of nonlinear terms in boundaries on the 

variation of nonlinear natural frequencies.  

 

7.2. Nonlocal constitutive relations 

According to the nonlocal elastic stress theory developed by Eringen [41], stress, 

( )ij x , at a reference point in a body, x , is dependent not only on the strain at 

reference point but also on the strain at all other points, *x , of the body as follows 
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  *( ) , ( ) ( )ij ij

V

t dV    * *x x - x x x ,  (7.1) 

where *( )ijt x  are the components of the classic local stress tensor at point *x . The 

classic stress tensor for a Hookean material is 

( ) ( )ij ijkl ijt C * *x x .  (7.2) 

Equation (7.1) states that the nonlocal stress is given by spatial integration of weighted 

averages of local stress where spatial weight is represented by the specific nonlocal 

modulus  , *x - x .   is a constant given by 

0e a

l
   ,  (7.3) 

where it represents the ratio between a characteristic internal length, a , (e.g. the 

lattice spacing, distance between the C--C bonds) and a characteristic external length, 

l , (e.g. wavelength and length of tube). Here, 0e  is a constant for calibrating the 

model and experimental results. 

According to Eringen, Eq. (7.1) can be written in differential form as 

  2 2
01 kl kle a t   ,   (7.4) 

where 2  is the Laplacian operator. For the case of one dimensional structures such 

as Euler beam, the Laplacian operator is reduced to one dimensional form and since 

the strains in the transverse directions are negligible, Eq. (7.4) can be expressed as 

 
2

2

0 2xx xxe a E
x

 
 


 ,  (7.5) 

where xx  and xx  are nonlocal axial stress and strain accordingly. 
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7.3. Modeling 

Consider a CNT of length L , cross-sectional area ( )A x , area moment of inertia ( )I x

, Young’s modulus E , and density   attached to a rotating molecular hub at 0x  . 

The tube is clamped to the hub located at distance r  from the axes of rotation. The 

structure rotates at a constant angular velocity   as shown in Figure 7-1-a. 

Based on the Euler–Bernoulli beam theory and a nonlinear strain–displacement 

relationship of Von Karman type [153], the relation between displacement field and 

strain can be written as follows 

2 2

2

( , ) 1 ( , ) ( , )
( , )

2

u x t w x t w x t
x z z

x x x
          

,  (7.6) 

 
Figure 7-1 Schematic view of a rotating nanotube. 

where x  is the axial coordinate, t  is the temporal variable, ( , )u x t  and ( , )w x t  denote 

the total axial and transverse displacements of the tube along the x  coordinate 

directions, and ( , )x z  is the corresponding total strain. 

The potential energy V  and the kinetic energy T  stored in the tube can be written as 

follows 

2

2
0 0

1 1 1
( , )

2 2 2

L L

A A

u w w
V x z dAdx z dAdx

x x x
  

               
    , (7.7) 

2 2

0 0

1 1
( )

2 2

L L

A

w w
T dAdx A x dx

t t
                   ,  (7.8) 

vdWk

 

, ( )E I x

L

x dx

, ( )A x

, ( )x u x

, ( )z w x

r


(a)

(b)
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where   stands for stress on the section surface, and ( )A x  is cross section area at 

distance x . It should be noted that, in writing the kinetic energy, rotary and axial 

kinetic energy of the beam are neglected. For the beam, the resultant normal force, 

and the bending moment are defined as: 

x

A

N dA   ,  (7.9) 

x

A

M z dA  ,  (7.10) 

respectively. Therefore, Eq. (7.7) can be written as: 

2 2

2
0

1 1

2 2

L

x x x

u w w
V N N M dx

x x x

              
 .  (7.11) 

The work done by the external forces in axial direction (such as centrifugal force) and 

transverse direction (such as medium force) can be calculated by 

, ,

0 0

( , ) ( )
L L

e e m e cW W W f x t wdx T x udx       ,  (7.12) 

( , )f x t  and ( )T x  represent the medium stiffness force and average centrifugal force 

on the cross section at distance x , respectively. Here, ( )T x  is equal to 

 2( ) ( )
L

x

T x A x r d
x

  
     

  ,  (7.13) 

where r  is the molecular hub radius. The minus sign indicates that the force decreases 

as x  increases. The equations of motion of the nonlocal rotating tube can be derived 

by using Hamilton’s principle as 

 
2

1

0
t

e

t

T V W dt    ,  (7.14) 
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where   stands for variation. Substituting Eqs. (7.8), (7.11), and (7.12) into Eq. (7.14)

, applying integrating by parts and setting the coefficients of u , w  equal to zero 

lead to the following equations of motion 

( ) 0xN
T x

x


 


,  (7.15) 

2 2

2 2
( ) ( , ) 0x

w w M
A x N f x t

t x x x
              

,   (7.16) 

and the general form of boundary conditions as: 

0
0

L

xN u  ,  (7.17) 

0

0
LL

x
x

o

Mw
N w w

x x
 


 

 
,  (7.18) 

0

0
L

x

w
M

x
 

 


.  (7.19) 

Note that the expressions of the normal resultant force and bending moment in the 

nonlocal beam theory are different from those in the classical Euler Bernoulli beam 

theory due to the nonlocal constitutive relation. From Eqs. (7.5), (7.6), (7.12), and 

(7.13), the normal resultant force and bending moment can be expressed as 

 
22

2

0 2

1
( )

2
x

x

N u w
N e a EA x

x x x

              
,  (7.20) 

 
2 2

2

0 2 2
( )x

x

M w
M e a EI x

x x

 
  

 
.  (7.21) 

It is worth noting that, due to Eqs. (7.20) and (7.21), Eqs. (7.18) and (7.19) are 

nonlinear boundary conditions. By substituting Eqs. (7.15) and (7.16) into Eqs. (7.20) 

and (7.21), the expressions for nonlocal normal resultant force and bending moment 

can be obtained as 

 
2

2

0

1
( )

2x

u w T
N EA x e a

x x x

              
,  (7.22) 
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 
2 2

2

02 2
( ) ( ) ( , )x x

w w w
M EI x e a A x N f x t

x t x x


                 
. (7.23) 

Even though xN  depends on axial elongation ( )u x , it can be assumed that the tube 

total axial elongation is majorly due to the rotation. Therefore, by integrating Eq. 

(7.15) over the tube length and substituting Eq. (7.22), one can get the following 

equation for the normal force 

 
2

2

0

1
( ) ( )

2

L L

x

x

w
N EA x dx A x r d

L x
           . (7.24) 

Inserting Eq. (7.23) into Eq.(7.16), the nonlinear equations of motion for the nonlocal 

rotating tube can be obtained as  

 

2 2 2

2 2 2

2 2
2

0 2 2

( ) ( ) ( , )

( ) ( , ) 0

x

x

w w w
EI x A x N f x t

x x t x x

w w
e a A x N f x t

x t x x





                 
               

, (7.25) 

where xN  is given by Eq. (7.24). 

In the case of double walled CNT (DWCNT), two concentric tubes will interact with 

each other through the medium force due to the interlayer molecular van der Waals 

(vdW) pressure [80, 182]. This pressure acting on the two adjacent tubes depends on 

the difference between the transverse deflections of the inner and outer tubes and can 

be considered as an external force (Figure 7-1-b). The vdW force per unit area for two 

originally-concentric tubes is given in [168, 169] as 

     3

1 2, o i o if x t p w w p w w    ,  (7.26) 

where 
0

2

1 2
2 i

U
p r

 






, 

0

4

2 4

1
2

6i

U
p r

 






. ir  is innertube radius, and U  is potential 

energy expressed in terms of the interlayer spacing   as follows [184, 197] 
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 
4 10

0 00.4ILU K
 
 

         
     

 ,  (7.27) 

where 20.4089101874 J/mILK   , and 0 0.34 nm   is the equilibrium interfacial 

spacing. It is worth noting that 1p  and 2p  are functions of the equilibrium interlayer 

spacing and innertube radius. However, since in the present study the equilibrium 

interlayer spacing is considered to be constant, they will only be functions of 

innertube radius and consequently functions of x . 

The vdW force can be considered as external force acting in transverse direction; 

hence, the virtual work done by the vdW force is 

         3

, , 1 2

0

L

e m e vdW o i o i o iW W p x w w p x w w w w dx              . (7.28) 

Adding the virtual work done by vdW force to Eq.(7.12), the equation of motion for 

a DWCNT can be derived by applying Hamilton’s principle to the lagrangian of inner 

and outer tubes assuming that the tubes are vibrating in the same plane.  

The coplanar transverse motion of an embedded DWCNT is described by the 

following coupled nonlinear partial differential equations. 

       

         

2 22
3

, 1 22 2 2

22
2 3

0 , 1 22 2

( ) ( )

( ) 0

o o o
o o x o o i o i

o o
o x o o i o i

w w w
EI x A x N p x w w p x w w

x x t x x

w w
e a A x N p x w w p x w w

x t x x





                      
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, (7.30) 

where 
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and subscript r  is equal to i  and o  indicating inner and outer tube, respectively. 

7.4. Generalized differential quadrature method 

Generalized differential quadrature method (GDQM) approximates the derivatives of 

a function with respect to a spatial variable at a given discrete point by a weighted 

linear summation of function values at all the discrete points in the computational 

domain [205]. For example, the thn  derivative of a function  rW x  at the thm  point, 

mx , can be estimated by 

(n) (n)
m,

1

( ) ( ), 1,2,...,
N

r m s r s
s

W x c W x m N


  ,  (7.32) 

where   ( )n
r mW x  is the thn  order derivative of  rW x  at point mx , and N  is the number 

of grid points utilized in the discretization of the partial derivatives. In Eq. (7.32), 

,r i o  refers to inner tube or outer tube, and  
m,s 1 .s ,( ),..nc N  are the weighting 

coefficients for the thn  derivative estimation of the thm  point, which can be pre-

determined (given in previous chapter) [122]. Defining ( )s r r sW W x , Eq. (7.32) can 

be shorten as follows 

   ( ) ( ) (m) (m) (m) (m)
m,s ,1 ,2 , 1 , 1 2

1

N Tn n
m r s r s s s N s N r r N r

s

T
r

W c W c c c c W W W


  

 


(n)
mc x

 
. (7.33) 

where (n)
mc  represents the thm  column vector of matrix (n)C  formed by 

 
m,s  1 .s ,( ),..nc N . Superscript T  stands for the matrix transport. It is worth noting 

that the higher order of the weighting coefficients can be calculated by using matrix 

multiplication as follows 

(n) (n -1)C = C C ,  (7.34) 
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where (n)C  is the matrix of weighting coefficients at all points. Since the positions of 

the sampling points play a significant role in the accuracy of DQM [214], Gauss–

Lobatto quadrature points are used in the present study which contains points at 

boundaries. 

7.5. Utilizing DQM 

Assuming a separable solution as ( , ) ( ) ( )r rw x t W x T t  , the partial differential equation 

of motion given by Eqs. (7.29) and (7.30) can be expressed as 
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where 
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  . (7.37) 

Assuming a single harmonic solution in time, i.e. utilizing harmonic balance method 

(HBM) with a single harmonic, and applying the GDQM (Eq. (6.8)), the discrete 

nonlinear algebraic equation of motion at the thm  given point become 

1 2 2
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2 2
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, (7.38) 

where  
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m rk , NLg
m rk  ( ,r i o ), and NLv

m sk  ( 1, 2s  ) represent the linear stiffness, geometric 

nonlinear stiffness, and vdW force nonlinear stiffness counterparts of equation of 

motion for inner and outer tubes. m rM  stands for the system inertia. ma  is a unit vector 

which its thm  component is equal to unity. e.g.  1 1
1 0 0 0

T

N
a  . 

rWG  is a 

nonlinear coefficient dependent on the system mode shape where it is calculated as 

follows 
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where nd  is the weighting function calculated using Gauss–Lobatto integration rule 

[207]. Adding and re-ordering equations for all point, equation of motion can be 

written in matrix form as follows 

  2L NLK + K × q = M × q  ,  (7.46) 

where q  denotes the unknown dynamic displacement vector defined as 
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M  , LK , and NLK  represent mass matrix, linear stiffness matrix, and nonlinear 

stiffness matrix including geometric and vdW force nonlinearities, respectively. 

 Nonlinear nonlocal boundary conditions 

In the present study, free vibration of cantilever tubes is studied where they are 

clamped at 0x  . Hence, the boundary condition for the tubes will be   

1

1( , ) 0,    0 r
r

x x

dw
w x t

dx 

  ,  (7.48) 
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 
,  (7.49) 

where 1x  and Nx  represent the position of clamped and free ends, respectively. Using 

the DQM, the discretized counterparts of boundary conditions for inner and outer 

tubes at the end become 

1 0,    0T T   (1)
r 1 ra x c x ,  (7.50) 
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In the above equations, the first and second terms are added for the innertube and 

subtracted for the outertube and 

   2
1 2

3

4
T Tp p

       
r N o i Nf a x x a ,  (7.52) 

shows the value of vdW force for inner and outer tubes ( , or i ) at the tip. It should 

be noted that the obtained boundaries are nonlinear and eigenvalue dependent 

boundaries due to nonlocality and geometric nonlinearity. Furthermore, it can be seen 

that boundary conditions are affected by linear and nonlinear counterparts of vdW 

interlayer force due to nonlocality. Considering the nonlocal effects equal to zero, the 

BCs, after simplifications, are become similar to the one reported in Ref [215]. 

7.6. Solution method 

By using matrix manipulation, the boundary condition equations can be written in 

matrix form as follows 

2 2        
NL NL

B B B B s s s sK K - M x + K K - M x = 0  , (7.53) 

where Bx  and sx  represent the boundaries and interior gird points, respectively, as 

follows  

 1 2 1 1 2 1, , , , , ,
T

i i N i N o o N o N oW W W W W W W W Bx ,  (7.54) 

 3 4 2 3 4 2

T

i i N i o o N oW W W W W W sx   . (7.55) 



148 

 

BK  and NL
BK  are 8 8  and SK  and NL

sK  are  8 2 8N   linear and nonlinear stiffness 

matrices of boundaries and interior gird points, and BM  and SM  are 8 8  and 

 8 2 8N   mass matrices of boundaries and interior gird points, respectively. 

Furthermore, considering the interior and boundary grid points separately, the 

equation of motion (Eq. (7.46)) can be written as 

 * * 2 *      D B L NL sK x K + K M x 0 .  (7.56) 

Here, *
LK , *

NLK , and *M  are    2 8   2 8N N    matrices, representing the linear 

stiffness matrix, nonlinear stiffness matrix, and mass matrix for the interior nodes, 

respectively. It is worth noting that *
LK  and *M  are coefficient matrices for the non-

boundary (interior) nodes whereas *
NLK  is a displacement dependent matrix whose 

values depend on the values of the boundary nodes in addition to the interior nodes. 

DK  is an  2 8 8N    displacement dependent matrix which contains coefficients of 

boundary nodes. 

Solving Bx  from Eq. (7.53) and substituting it in Eq. (7.56), Eq. (7.56) can be 

simplified as follows 

 12 2 * * 2 *  
                   

NL NL
D B B B s s s s L NL sK K K - M K K - M x K + K M x 0  . (7.57) 

It should be noted since boundary conditions are nonlinear, it is almost impossible to 

use commonly eigenvalue solvers [34, 122]. Hence, the resulting nonlinear algebraic 

equation is solved using Arc-length method details of which are given in Ref [197] 

where the residual vector function is defined as follows 

    1* * 2 * 2 2,   
                 

NL NL
s L NL D B B B s s s sr x K + K M K K K - M K K - M x  . (7.58) 
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7.7. Results 

In this section, first, the effect of nonlocal parameter, rotation speed, and variation of 

cross section on the linear natural frequencies of a non-uniform rotating DWCNT is 

studied. Later, the same study is repeated considering the effect of geometric and vdW 

force nonlinearities. The material and geometric parameters of the rotating DWCNT 

used in this study are given in Table 7-1. The hub radius and variation of cross section 

are considered to be equal to 2hr   nm and 0  , respectively, unless they are 

mentioned. The effect of number of grid points is studied on the linear system, where 

it is detected that the natural frequencies obtained are identical when the number of 

grid points is larger or equal to 14. Therefore, in all the present results, 18 grid points 

are used which later it is observed to be sufficient for the nonlinear cases as well 

(Table 6-1 in previous chapter). The variation of the radius of the CNTs is assumed 

to change linearly along the axial direction with the following relation 

( ) 1
c F

c cr r
r r r

r r x
r x r x r

L L


         
  

,  (7.59) 

where c
rr  and F

rr  denote radius of the tube at clamped and free ends, respectively.   

is the normalized slope of the variation of the radius (i.e. variation of cross section) 

along the axial direction. 

Table 7-1 Numerical Values of tubes Parameters 

Parameter 
Value 

Case 1 0    Case 2 0.3   Case 3 0.5   

Diameter of innertube at free end 0.7 nm 0.7 nm 0.7 nm 

Diameter of innertube at clamped end 0.7 nm 1.0 nm 1.4 nm 

Density of tubes 2.3 gr/cm3 2.3 gr/cm3 2.3 gr/cm3 

Young modulus of tubes 1 TPa 1 TPa 1 TPa 

Thickness of tubes 0.34 nm 0.34 nm 0.34 nm 

Interlayer space between tubes 0.35 nm 0.35 nm 0.35 nm 

In order to present the results in a proper form, the linear and nonlinear natural 

frequencies are normalized with respect to the corresponding linear natural frequency 

of nonrotating uniform local DWCNT (Table 7-2). Furthermore, nonlocal parameter 

0e a  is normalized with respect to the tubes length. Normalized nonlocal parameter in 



150 

 

equation of motion is named as 2  whereas, in boundary equations, it is named as 1

. The naming scheme makes it possible to study the effect of nonlocality in equation 

of motion and boundary equations, separately. 

Table 7-2 Linear natural frequencies of the non-rotating local DWCNT  

Linear natural frequencies [THz] Case 1 Case 2 Case 3 

1st in-phase 0.1665 0.1417 0.1194 

2nd in-phase 1.0418 0.8101 0.6220 

3rd in-phase  2.8819 2.1933 1.6429 

1st out-of-phase 7.8768 7.2130 6.4504 

 Linear vibration analysis and verifications 

The validity of the present nonlocal model in anticipating vibration response of non-

rotating CNT has been investigated in Figure 7-2. The nonlocal results are compared 

with the results reported by Lu et al. [213] and Wang et al [85] for SWCNTs. 

Furthermore, mode shapes of the system at selected nonlocal parameter are plotted in 

Figure 7-3 when nonlocality in boundaries are disregarded 1 0   and included 

1 2  . A good agreement between the results is observed. It can be seen that, in the 

1st in-phase vibration mode, the frequency parameter slightly increases as the nonlocal 

parameter increases. However, it is observed that even though disregarding the 

nonlocality in boundaries ( 1 0  ) does not change the variation of frequency 

parameter for a nonrotating tube, it has a considerable effect on the system mode 

shape as shown in Figure 7-3. It is worth noting that by setting vdW force coefficient 

equal to zero the DWCNT can be reduced to two SWCNT. 
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Figure 7-2 Validation of present study, DQM, with the results reported by Lu et al. [213] 

and Wang et al [85] 

 
Figure 7-3 Variation of mode shape of CNT with normalized nonlocal parameter 

2  a) 

1 0   i.e. disregarding the nonlocality effect in BCs b) 1 2   including the nonlocality 

effect in BCs 

Figure 7-4-a presents a comparison between results of present study for a nonlocal 

rotating SWCNT with results reported in Pradhan and Murmu [208] where the hub 

radius is considered to be equal to the tube length. Rotation speed   is normalized 

with respect to 4
1 1EI A L  at clamped end. It should be noted that in [208] local BCs 

assumption is incorrectly used to study the variation of natural frequency of a nonlocal 

SWCNT. Hence, for the sake of comparison, 1  is considered to be equal to zero. A 

good agreement between results can be observed. However, disregarding nonlocality 
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effect in boundaries results in a considerable amount of error. Figure 7-4-b shows 

variation of normalized linear natural frequency when nonlocality effect in boundaries 

are included ( 1 2  ). It can be seen that nonlocality effect in boundaries results in a 

faster increase of normalized linear natural frequency as rotation speed increases. 

Hence, it is important to consider nonlocal terms in boundaries. Therefore, in the 

following sections, 1 2   in order to present a correct application of theorem. 

 
Figure 7-4 Variation of normalized linear natural frequency versus normalized rotation 

speed a) present study with 1 0   comparing to Pradhan and Murmu [208] b) present study 

with 1 2   

It is worth mentioning that in Ref. [211] linear free vibration of rotating nonlocal 

SWCNT is studied where nonlocal boundaries are correctly obtained (equation 31). 

However, following solution procedure and results, it is observed the matrix form of 

boundaries, equation 49 in [211] in comparison to Eq. (7.53) in present study, is 

reported incorrectly. Furthermore, since boundaries are eigenvalue dependent, an 

iterative procedure is required to obtain the correct values of system eigenvalues 

where it has not been specified in [211].  

Table 7-3 shows the variation of the 1st and 2nd in-phase natural frequency of the 

nonlocal rotating DWCNT for different set of parameters. It is observed that no 

nontrivial real frequencies exist for some sets of rotation speeds and nonlocal 

parameters which we named them as unstable values. A similar phenomenon is 

reported by Lu et al. [213] and Wang et al. [85] for nonrotating SWCNT using 

Galerkin method. Results show that as nonlocal parameter increases, successive 

natural frequencies approach each other which results in no real frequencies. 
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Table 7-3 Variation of normalized 1st and 2nd linear in-phase vibration mode of DWCNT 
 1st in-phase 2nd in-phase 

 0   0   

 [THz] 
Nonlocal Parameter [nm] Nonlocal Parameter [nm] 

0 0e a  0 2e a  0 4e a  0 6e a  0 0e a  0 2e a  0 4e a  0 6e a   

0 1.0000 1.0090 1.0389 1.1034 1.0000 0.8837 0.6654 - 

0.1 1.1986 1.2422 1.5077 2.5328 1.0300 0.9358 0.8121 0.7807 

0.2 1.6514 1.8792 3.1809 3.9834 1.1150 - 1.2204 1.1117 

0.3 2.1918 - 8.3356 8.4143 1.2438 - 1.5728 1.4549 

 0.3   0.3   

 [THz] 
Nonlocal Parameter [nm] Nonlocal Parameter [nm] 

0 0e a  0 2e a  0 4e a  0 6e a  0 0e a  0 2e a  0 4e a  0 6e a   

0 1.0000 1.0075 1.0323 1.0831 1.0000 0.9177 0.7401 - 

0.1 1.3199 1.3655 1.6858 2.7664 1.0569 1.0045 0.9769 0.9640 

0.2 1.9759 2.1814 3.7183 4.5862 1.2119 1.2681 1.5080 1.4086 

0.3 2.7166 - 9.9821 10.448 1.4331 - 1.9852 1.9152 

 0.5   0.5   

 [THz] 
Nonlocal Parameter [nm] Nonlocal Parameter [nm] 

0 0e a  0 2e a  0 4e a  0 6e a  0 0e a  0 2e a  0 4e a  0 6e a   

0 1.0000 1.0059 1.0260 1.0654 1.0000 0.9447 0.8113 0.6520 

0.1 1.5100 1.5551 1.9517 3.0686 1.1102 1.0945 1.1907 1.1928 

0.2 2.4324 2.6215 4.3572 5.3450 1.3895 1.5029 1.8892 1.8359 

0.3 3.4172 3.9445 6.6563 7.7348 1.7572 2.1481 2.5708 2.5778 

Figure 7-5 shows instability plots for a rotating DWCNT in the 1st and 2nd in-phase 

vibration mode. It is observed that instability region fade away as rotation speed 

increases for the 1st and 2nd in-phase vibration mode. However, as rotation speed 

increases more, a new unstable region takes form at lower nonlocal parameters. The 

observed phenomenon does not have any physical interpretation and it is a direct 

result of the application of Eringen theorem. 

 
Figure 7-5 Instability plot a) 1st in-phase vibration mode b) 2nd in-phase vibration mode 
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 Nonlinear vibrations 

In the following section, nonlinear free vibration of a nonuniform rotating DWCNT 

is studied where the effect of nonlocal parameter, rotation speed, and normalized 

slope,  , on the nonlinear natural frequencies is investigated. It should be mentioned 

that the effect of nonlinearities in the boundaries on the variation of nonlinear natural 

frequency is investigated for the first time in present study.  

In Figure 7-6, the variation of the normalized nonlinear natural frequency of the first 

in-phase vibration mode of a nonrotating uniform DWCNT is given for different 

values of nonlocal parameter disregarding and including the effects of nonlinear terms 

in boundary condition equations. Results show that the nonlinear terms in boundaries 

have a huge effect on the variation of normalized nonlinear natural frequency of the 

DWCNT. The effect is more detectable for the case of local DWCNT ( 2 0  ) where 

the behavior changes from a softening behavior to a hardening behavior as nonlinear 

terms in boundaries are included. It is observed that the nonlocal parameter has a 

hardening effect on the system. It is worth mentioning that boundary equation are 

affected by both nonlocal terms and nonlinear terms where the effect of nonlocal 

terms surpass the effect of nonlinear terms as nonlocal parameter increases. As a 

result, it can be seen that the difference between the variation of nonlinear frequency 

between the two cases in Figure 7-6 decreases as nonlocal parameter increases. 

Figure 7-7 shows the corresponding nonlinear mode shapes of the DWCNT at 

normalized vibration amplitude equal to 2.5 for local DWCNT 2 0   and nonlocal 

DWCNT 2 0.4  . Results show that the mode shapes are more affected by 

nonlinearities for the case of nonlocal DWCNT in comparison to local DWCNT.  
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Figure 7-6 Variation of normalized nonlinear natural frequency of outertube vibrating in the 

first in-phase mode a) Disregarding nonlinear terms in boundaries b) Including the 
nonlinear terms 

 
Figure 7-7 Variation of outer tube mode shape vibrating in the 1st in-phase vibration mode 

at normalized vibration amplitude equal to 2.5 a) Local DWCNT b) Nonlocal DWCNT 

2 0.4   

In Figure 7-8, the variation of the normalized nonlinear natural frequency of the first 

in-phase vibration mode of uniform rotating DWCNT is given for different rotation 

speed and nonlocal parameter. It is observed that, with an increase in the rotation 

speed, the normalized nonlinear frequency tends to approach to the linear ones for the 

local DWCNT 2 0  . This shows that the effect of geometric nonlinearity becomes 

negligible in the presence of sufficiently large rotation speed. On the other hand, for 

the case of nonlocal DWCNT with 2 0.2   , for rotation speed larger than 0.3 THz 

significant changes in the normalized nonlinear natural frequency are observed. 

Moreover, for the case of rotation speed equal to 0.4 THz no real solution can be 

found for normalized vibration amplitude larger than 0.6 based on the Eringen 

theorem. Referring to Figure 7-5, it can be seen that, at 2 0.2  , these rotation speeds 

reside around second unstable region where successive natural frequencies with a 
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sudden increase approach each other and result in no real solution cases. The accuracy 

and validity of Eringen theorem in these regions is strictly questionable. 

Figure 7-8-c shows the variation of the normalized nonlinear natural frequency for 

2 0.4  . It is observed that the variation of the normalized nonlinear natural 

frequency decreases as rotation speed increases. However, as rotation speed increases 

beyond a certain value, the variation of the normalized nonlinear natural frequency 

suddenly increases and then decreases and settles down around rotation speed of 0.1 

THz. The reason for this behavior can be found by studying the variation of mode 

shapes. Figure 7-9 shows the mode shapes of local and nonlocal DWCNT at 

normalized vibration amplitude equal to 2.5 for different rotation speeds. It is 

observed that the mode shapes of local DWCNT changes slightly as rotation speed 

increases whereas mode shape of nonlocal DWCNT changes significantly. 

Furthermore, results show that they take a shape similar to the clamped-hinged beam 

modes in large rotation speed due to eigenvalue dependent boundary conditions.  

 
Figure 7-8 Variation of normalized nonlinear natural frequency of outertube vibrating in the 

first in-phase mode at different rotation speeds a) 2 0   b) 2 0.2   c) 2 0.4   
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Figure 7-9 Variation of outer tube mode shape vibrating in the 1st in-phase vibration mode 

at different rotation speed a) local DWCNT 2 0   b) nonlocal DWCNT 2 0.4   

Figure 7-10 presents the effect of the normalized slope,  , on the variation of 

normalized nonlinear natural frequency versus maximum vibration amplitude for the 

1st and 2nd in-phase vibration modes. Results show that the normalized slope has a 

significant effect on the variation of normalized nonlinear natural frequency where it 

can changes its behavior from a hardening behavior to a softening behavior for the 1st 

in-phase vibration mode. On the other hand, it is observed that 2nd in-phase vibration 

mode are slightly affected by the normalized slope. 

 
Figure 7-10 Variation of normalized nonlinear natural frequency of outertube with different 

cross sections at constant rotation speed of 0.4   THz with 2 0.4    

vibrating in the a) 1st in-phase b) 2nd in-phase 

In Figure 7-11, the variation of the normalized nonlinear natural frequency is given 

for different hub radius of local and nonlocal DWCNT at rotation speed 0.2   THz 
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decreases as   parameter increases and, as a result, local and nonlocal solutions 

approach each other. 

Figure 7-12 shows the variation of the normalized nonlinear natural frequency of 

uniform and nonuniform nonlocal DWCNT vibrating in the first in-phase vibration 

mode where the effect of different length to diameter ratios is investigated. Results 

shows that as the length to diameter ratio increases, the variation of the normalized 

nonlinear natural frequency decreases even for some cases it changes from a 

hardening behavior to a softening behavior. Furthermore, for large ratios, the 

normalized nonlinear frequency approaches to the linear one due to increase in the 

rotation force. Moreover, results show that the variation of the normalized nonlinear 

natural frequency approaches to linear one faster for the nonuniform DWCNT. 

 
Figure 7-11 Variation of normalized nonlinear natural frequency of outertube vibrating in 

the first in-phase mode with different hub radius rotating at constant speed 
 of 0.2   THz a) 0   b) 0.3   c) 0.5   
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Figure 7-12 Variation of normalized nonlinear natural frequency of outertube vibrating in 
the first in-phase mode with different length to diameter ratio rotating at constant rotation 

speed of 0.2   THz with 2 0.4   a) 0   b) 0.5   

7.8. Concluding remarks 

In this chapter, linear and nonlinear free vibration of a rotating nonuniform DWCNT 

studied where equations of motion are derived based on Eringen theorem using 

Hamilton principle and Euler Bernoulli beam theory. The classic boundary conditions 

are widely used in studying nonlocal beams in literature. However, our study shows 

that boundary condition (BC) equations for a nonlocal cantilever beam is different 

than the classic beam where it includes nonlocal and nonlinear terms. It is observed 

that including the terms of nonlocal parameter in boundaries have significant effects 

on the system mode shape. Furthermore, it is observed that, in addition to mode 

shapes, the variation of linear natural frequency is also affected as rotation speed 

increases. The effect of nonlocality, rotation speed, normalized slope, and boundaries 

on the variation of linear natural frequency is studied and compared with existed 

results in literature for classic boundary assumptions. 

Later, considering nonlinearities, similar studies are repeated where the effect of 

nonlinearities on the variation of normalized nonlinear natural frequency is studied in 

detail. Results show that nonlinear behavior of DWCNT in the 1st in-phase vibration 

mode is significantly affected by the nonlinear terms in boundaries where system 

behavior changes from a softening behavior to a hardening behavior as the nonlinear 

terms in boundaries are included in the solution expansion. It is observed that the 

variation of normalize nonlinear natural frequency decreases as rotation speed 

increases. Furthermore, our study shows that nonlocal mode shape of DWCNT takes 
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a form similar to mode shape of clamped-hinged beam in large rotation speeds due to 

nonlocal eigenvalue dependent terms in boundaries. 

It should be mentioned that application of Eringen theorem for cantilever beam results 

in unstable solution for some set of system parameters. Instability of theorem is 

studied where unstable regions are determined. In unstable regions, successive natural 

frequency approach each other as nonlocal parameter changes which results in no real 

frequency cases. A similar phenomenon is observed by Lu et al. [213] and Wang et 

al. [85] for case of nonrotating SWCNTs.  
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CHAPTER 8 
 
 

8. CONCLUSIONS, CONTRIBUTIONS AND FUTURE WORKS 
 
 
 

In this thesis, nonlinear vibrations of curved single and double walled carbon 

nanotubes is investigated. In this chapter, the results of present study are summarized 

and the contributions are highlighted. Furthermore, several recommendations are 

provided for future works in this subject.  

 

8.1. Introduction 

In the past years, the subject area of nanotechnology has become the focus of attention 

of industries, scientists and researchers. Among nanomaterial, Carbon nanotubes 

(CNTs) have gained great amount of attention owing to their extraordinary strength, 

efficiency in heat conduction and unique electrical properties. CNTs have great 

potential in many applications such as nanotechnology, electrics, optics, sensors, 

materials science, and architecture. Nowadays, literally every day, a new application 

is proposed for CNTs. Among application areas, recently, considerable among of 

efforts have been given to comprehend the vibrational behavior of CNTs. A CNT 

resonator can oscillate at megahertz frequency. A resonator being able to oscillate at 

high frequency unfolds several applications for CNTs. In recent years, CNTs have 

been successfully fabricated and used as different parts in the new emerging nano-

devices. CNTs are being used as nano-actuators, nano-motors, nano-sensors, nano-

turbines, and nano shaft and gear systems. Several application areas of CNT were 

summarized in the second chapter. 

However, in order to design a new efficient vibrating nano-scale device, detailed 

information about dynamic properties of such device are needed. In contrast to macro 

scale structures, atomic forces play an important role in the mechanical characteristics 

of nano-structures. Hence, a clear understanding of atomic interactions are required. 
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Furthermore, fabricating prototypes without having clear image of the structural 

properties can be very time consuming, misleading and sometimes impossible. 

Therefore, having a good insight of the dynamic behavior of such nano-structures is 

important in order to develop practical nanomachines. 

In the second chapter, several well-known methods which are being used in the 

literature were studied. Molecular dynamics (MD) simulation is used by several 

researchers in studying the mechanical properties of CNTs. Although MD simulations 

provide considerable amount of information on mechanical properties of CNTs, they 

are limited by the size of such atomic systems due to highly time consuming 

computational requirements. Hence, in recent years, continuum mechanic models 

have been used by researchers in studying the free vibrations of CNTs. Using simple 

closed form equations of motion offered by the continuum models, key parameters 

that affect the free vibration of CNTs can be easily studied. Several continuum beam 

and shell models were summarized in the second chapter where advantages and dis-

advantages of each model were also discussed in detail. However, majority of studies 

given in literature deal with linear free vibrations of CNTs while the nature of such 

structures is highly nonlinear. Nonlinear vibrational behavior of CNTs has recently 

become the interest of research. Recent developments in studying the effect of 

nonlinearity on vibration of CNT was investigated in the second chapter. It was 

observed that CNTs are affected by nonlinearities caused by large deflections 

(geometric nonlinearity), interlayer van der Waals force, and initial curvature of the 

tubes. Chapter two provides a detailed literature review on current state of studies 

regarding the effect of nonlinearity on nonlinear vibrations of CNTs whereas in the 

chapter’s three to seven the effect of nonlinearities on the nonlinear vibrations of 

CNTs is investigate through several case studies. In each case, the structure was 

modeled accordingly and appropriate analyses were carried out to study the nonlinear 

free vibrations of CNTs.  

8.2. Conclusions  

In the chapter three of this thesis, nonlinear free vibration of a simply supported 

double walled carbon nanotube (DWCNT) with a concentrated-mass was 

investigated. The proposed model simulates behavior of nonlinear DWCNT mass 
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sensor where concentrated mass stands for the absorbed mass. The effect of 

nonlinearities and mass ratio of concentrated mass on the variation of nonlinear in-

phase and out-of-phase natural frequency of the DWCNT was studied. Based on the 

numerical simulations, it was concluded that 

 In the first in-phase vibration mode, the normalized nonlinear natural 

frequency of DWCNT is not affected by the concentrated-mass where only 

geometric nonlinearity exists. On the other hand, in the presence of the vdW 

force nonlinearity, the normalized nonlinear natural frequency is affected; but, 

this effect is very small. 

 In the first out-of-phase vibration mode, it was observed that as the mass ratio 

increases, the slope of the normalized nonlinear frequency curves increases in 

the case of geometric and vdW force nonlinearities; however, the effect of 

vdW force nonlinearity is significantly higher than the effect of geometric 

nonlinearity. 

It is worth mentioning that nano-sensors work based on the effect of nanoparticles on 

natural frequency shifts. However, the results provided in the chapter three show that 

the system natural frequency changes considerably as the vibration amplitude 

increases due to the inherent nonlinearity of CNTs. Hence in order to predict the shift 

in the natural frequency of the system accurately, one needs a comprehensive 

understanding of the nonlinear behavior of system. Moreover, in the presence of 

medium stiffness, it was concluded that due to nonlinearity, the rate of changes in the 

frequency increases suddenly after a certain value of vibration amplitudes. Provided 

results and the methods in this thesis can be used in development of future new 

nonlinear nano sensors.  

In the chapter four, nonlinear free vibrations of a DWCNT was studied using 

describing function method (DFM) with multiple trial functions where geometric and 

interlayer vdW force nonlinearities were considered. Owing to DFM, the coupling 

between the trial functions used in the modal expansion process can be investigated. 

The nonlinearity matrices obtained using DFM showed that for simply supported 

CNTs considering geometric nonlinearity, a single trial function is sufficient to obtain 

the nonlinear natural frequencies; whereas, in case of vdW force nonlinearity, 
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multiple trial functions are necessary, especially for the out-of-phase modes in which 

the nonlinear effects are more significant. These findings were also verified with the 

numerical results obtained. 

Within the chapter five, the effect of initial curvature on the variation of nonlinear 

natural frequencies was investigated. Galerkin method was used to discretize the 

equation of motion in spatial domain. Multiple harmonic balance method was utilized 

to convert the discretized ordinary differential equations of motion in time domain 

into nonlinear algebraic equations. On the basis of the number of harmonics used in 

the solution expansion, several case were studied in order to investigate the effect of 

higher harmonics on the nonlinear fundamental natural frequency in the presence of 

geometric and waviness nonlinearities. In each case, an analytical expression for the 

variation of the nonlinear fundamental natural frequency of CNTs was obtained. 

Results showed that the effect of initial curvature can be classified in two linear and 

nonlinear categories. It was observed that the higher harmonics should be considered 

in order to detect the nonlinear effect of initial curvature. 

In the chapter six, nonlinear free vibrations of curved DWCNT was studied 

introducing a new accurate, efficient, and relatively fast technique for modeling the 

CNTs. Differential quadrature method (DQM), a solution method which does not 

require any pre-knowledge on the system comparison functions was developed in this 

chapter. The main advantage of DQM, compared to solution methods like variational 

approach or Galerkin method is its inherent simplicity in formulation, where different 

end conditions can be easily adopted. The effect of nonlinearities, end conditions, 

initial curvature, stiffness of the surrounding elastic medium, and vibrational modes 

on the nonlinear free vibration of DWCNTs was studied. Results showed that it is 

possible to detect different vibration modes occurring at a single vibration frequency 

when CNTs vibrate in the out-of-phase vibration mode. Moreover, it was concluded 

that the end conditions have significant effect on the nonlinear natural frequencies of 

the DWCNT including multiple solutions. 

In the chapter seven, linear and nonlinear free vibration of a nonlocal rotating double 

walled carbon nanotube (DWCNT) was investigated. Based on Eringen theorem and 

Euler Bernoulli beam theory, Hamilton principle was used to obtain nonlinear and 
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nonlocal equations of motion and equation of boundaries. Results showed that the 

boundary condition equations for nonlocal cantilever beam is totally different than 

classic beams where it includes nonlocal and nonlinear terms. Nonlinear nonlocal BCs 

of CNTs were studied for the first time in this chapter. The effects of the nonlocal 

parameter and nonlinearities in boundary conditions and equation of motion on linear 

and nonlinear natural frequencies of the rotating carbon nanotubes were studied with 

respect to the rotation speed, variation of cross section, length to diameter ratio, hub 

radius, and vibration modes. It was concluded that the nonlinear behavior of DWCNT 

in the 1st in-phase vibration mode is significantly affected by the nonlinear terms in 

boundaries where system behavior changes from a softening behavior to a hardening 

behavior. It was observed that the variation of normalize nonlinear natural frequency 

decreases as rotation speed increases. 

It is worth mentioning that in this thesis H-H, C-H, C-C, and C-F boundary conditions 

for the CNTs are studied. The F-F boundary condition is excluded since it does not 

represent any realistic case for a CNT resonator. C-C and C-F BCs are the realistic 

cases for the CNT resonators. However, in most of the studies H-H BC is considered 

for CNTs due to limits of methods such as Galerkin where it is easy to formulate and 

study. 

It is worth mentioning that in this thesis H-H, C-H, C-C, and C-F boundary conditions 

for the CNTs are studied. The F-F boundary condition is excluded since it does not 

represent any realistic boundary condition for a CNT resonator while C-C and C-F 

BCs are the realistic ones. Moreover, it should be noted that in most of the studies in 

the literature H-H BC is considered for CNTs due to the limitations of numerical 

methods such as Galerkin as discussed in chapter 6. 

8.3. Contributions 

The following points outline the major contributions of this thesis: 

 A comprehensive literature review is provided where shortfalls and 

advantageous of different methods in simulation of linear and nonlinear 

vibrations of CNTs are distinguished. 
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 Effect of geometric, vdW force, and initial curvature nonlinearities on the 

variation of nonlinear natural frequency of CNTs is investigated and a solid 

understanding of the effect of each nonlinearity and the interaction of 

nonlinearities with each other is provided.  

 Describing function method with multiple trial functions is implemented for 

the first time in studying the vibrations of CNTs in order to get a better 

approximation of the system mode shape. DFM has the advantage of 

expressing the nonlinear force as a nonlinear stiffness matrix multiplied by a 

displacement vector, where the off-diagonal terms of the nonlinear stiffness 

matrix can provide a comprehensive knowledge about the coupling between 

the trial functions. 

 Higher harmonic excitation of the system is studied using multiple balance 

harmonic method for the first time. 

 Differential quadrature method, an accurate, efficient, and relatively fast 

techniques for modeling CNTs, is provided where in comparison to methods 

such as Galerkin does not require any pre-knowledge on the system 

comparison functions. 

 In-phase and out-of-phase vibration of curved single and double walled carbon 

nanotubes are studied in detail using local and nonlocal beam models. 

 Using Hamilton principle and Eringen nonlocal theorem, nonlinear nonlocal 

equations of motion and boundary conditions are obtained where the effect of 

nonlinear nonlocal boundary conditions on the variation of normalized 

nonlinear natural frequency of DWCNT is studied in detail. 

All the goal of this thesis have been met to this end. However, the advancing area of 

nano structure has the potential for much deeper studies and there still exist several 

unsolved issues which need attention. Following section provides ideas for the 

possible future research areas. 

8.4. Future works 

In this thesis, the variation of nonlinear natural frequency of Carbon nanotube 

resonator is studied in detail. Several dynamic models are developed where effect of 

geometric, van der Waals force, and initial curvature nonlinearities are included in 
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equations of motion. Author believe that the accurate dynamic models which are 

developed in this thesis can be used as a practical tool in further developments of nano 

devices. Even though present study covers several aspect of nonlinear vibration of 

CNTs, there are still topics which need further investigations. 

 Recent studies show that natural frequency of CNTs are affected by the 

temperature of their environment. Also experimental Studies have confirmed 

that the actual mass sensor performance is significantly affected by the 

variations of environment temperature. Hence, the effect of temperature on 

variation of natural frequency in the presence of nonlinearities can be a topic 

for future investigations.  

 Recently, CNTs have been suggested to be used in fluid delivery nano 

mechanics. Therefore, another important subject can be the effect of 

conveying fluid on the system natural frequency. 

 Eringen nonlocal theory was used in this thesis to model the size effects. Here 

it was shown that besides the plus points of using this theory, Eringen theory 

has its own shortfalls where the system natural frequency can become 

complex (unstable) as nonlocal parameter in Eringen theory increases more 

than a certain value. On the other hand, theories which include the atomic 

interactions are not limited to Eringen theory and there exist other theories 

such as couple stress elasticity theory, strain gradient theory, and modified 

couple stress theory which include nonlocality. Therefore, a thorough study to 

investigate and compare the advantages and shortfalls of these nonlocal 

theories can be a subject of a future investigation. 

 In the present study, since the maximum vibration amplitude of the CNTs is 

limited to small vibration amplitudes, it is assumed that the cross section of 

CNTs remains circular during the nonlinear bending. It is worth mentioning 

that the present study studied the nonlinear bending up to the bending angle 

of 15 degree. However, Molecular dynamic simulations [69] concluded that 

for bending angles more than 30 degree the cross section of tube did not 

remain circular. Hence, a study using theorems where it consider the effect of 

cross section change can be a subject of a future investigation in studying the 

large bending angles.  
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 Last but not least, Euler Bernoulli beam theory was used in this thesis. 

However, for beams with length to diameter less than ten, Timoshenko beam 

or higher order beam theories can be used in future studies to get better 

responses. 
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APPENDIX A. Nonlinear equations of motion 
 
 
 

The mid-plan stretching relation of a beam which goes through of large deformation 

can be determined using Figure A.1. Figure A.1 shows how a point iA  with 

coordinates of ix  and iz  in the axial and transverse directions respectively moves to 

a point fA  with coordinates of fx  and fz  during deformation. The relation between 

the coordinates of fA  and iA  and the elongation of differential element are expressed 

as  

f ix x u x u    ,   (A.1) 

f iz z w Z w    ,   (A.2) 

           2 2 2 2 2 2
1f fds dx dz dx du dZ dw u Z w dx            ,  (A.3) 

where  '  stands for the derivative with respect to x . The slope of the initial rise of the 

curved beam is smaller than unity according to the shallow arch approximations i.e. 

 2
1Z    ; hence, Eq. (A.3) reduces to  

2 21 2 2ds u u w w Z dx         .   (A.4) 

The strain for the differential element is obtained as follows 

2 21 2 2 1
ds dx

u u w w Z
dx

             ,   (A.5) 

Expanding Eq. (A.5) up to quadratic terms using Taylor series expansion for small u  

and w , the mid-plan stretching is obtained as 

2

2

w
u w Z


    .   (A.6) 
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Now, the total strain at a point at distance z  from the mid-plan us given by 

2

2z

w
zw u w Z zw 


         .   (A.7) 

 
Figure A.1 Segment of the beam before and after deformation 

Consider a thin tube of length L , cross-sectional area A , area moment of inertia I , 

Young’s modulus E , and density  , the potential energy V  and the kinetic energy 

T  stored in the tube can be written as follows 

 2

22 2
2 2
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0 0
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,  (A.8) 

2

02

LA
T w dx


   ,  (A.9) 

where the dot stands for the partial derivative with respect to the time variable. 

The equations of motion of the tube can be derived by using Hamilton’s principle as 

 
2

1

0
t

e

t

T V W dt    ,   (A.10) 

where eW  is the work done by external loads on the system. Here, eW  is considered 

to be equal to zero. 1t  and 2t  are the initial and final times, respectively. Applying 

idxix

x

z

w

u
ds

fdx

fdz

( )Z x  ,i i iA x z

 ,f f fA x z
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integrating by parts and setting the coefficients of u , w  equal to zero lead to the 

following equations of motion 

2

0
2

w
u w Z

 
     

 
,   (A.11) 
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2 2
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2 2

w w
Aw EIw EA u w Z w Z EA u w Z w Z

    
                      

   
 ,  (A.12) 

respectively. Eq. (A.11) can be integrated over beam domain to obtain the beam 

elongation in axial direction as follows 

   
2 2

0

, 0,
2 2

Lw w
u L t u t u w Z L w Z dx

    
            

   
   (A.13) 

Assuming small elongation in axial direction, Eq. (A.13) reduces to 

2 2

0

1

2 2

Lw w
u w Z w Z dx

L

    
          

   
 .   (A.14) 

Substituting Eqs. (A.11) and (A.14) into Eq. (A.12), the nonlinear equation of motion 

in transverse direction can be obtained as follows 

 
2

0 2

LEA w
Aw EIw w Z dx w Z
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

  
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  
 .   (A.15) 
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APPENDIX B. Nonlinear vdW force terms 
 
 
 

The nonlinearity matrix for the interlayer vdW force nonlinearity, considering three 

trial functions, is given in Eq. (4.33) where nik  are defined as follow 

 

2 2 2
1 ,1 ,1 ,3 ,1 ,1 ,3 ,3 ,1 ,3 ,3 ,3 ,3 ,1

2
2

,3 ,1 ,1 ,3 ,3 ,2 ,2

2 4 2 2 4

2 2

n i i o i o i o i i i i o o

i o o o i i o

k a a a a a a a a a a a a a

a a a a a a a

       

    
,  (B.1) 

2 2 2
2 ,2 ,2 ,2 ,3 ,1 ,3 ,1 ,3 ,3 ,1 ,2

2 2 2
,1 ,1 ,3 ,1 ,1 ,1 ,3 ,3 ,3

2 2 2 2 2

2 2 2 4 2 4

n i i o i o i i o i i o

o i o i o o o i o

k a a a a a a a a a a a

a a a a a a a a a

      

     
,  (B.2) 

 2
2 2 2

3 ,3 ,3 ,3 ,1 ,1 ,1 ,1 ,2 ,23 2 4 2 2n i i o i i o o i ok a a a a a a a a a       ,  (B.3) 

 2

4 ,2 ,2n i ok a a  ,   (B.4) 

 2
2

5 ,1 ,1 ,1 ,2 ,23n i i o i ok a a a a a     .   (B.5) 
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