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ABSTRACT

NONLINEAR VIBRATIONS OF CURVED SINGLE AND DOUBLEWALLED
CARBON NANOTUBES

Samandari, Hamed
Ph.D., Department of Mechanical Engineering
Supervisor: Assoc. Prof. Dr. Ender Cigeroglu

July 2014, 191 pages

In this thesis, effects of Geometric, initial curvature, and van der Waals (vdW) interlayer force
nonlinearities on the variation of nonlinear natural frequency of Carbon Nanotubes (CNTs)
are investigated in detail throughout several case studies. Galerkin method with a single trial
function, which is the eigenfunction of the linear system, is widely used in literature in
studying nonlinear vibrations of CNTs. However, eigenfunctions of the nonlinear systems
can be significantly different than the eigenfunctions of the linear system. Therefore,
depending on the nonlinearity, it may not be possible to capture the nonlinear characteristics
by using a single trial function. Consequently, for the first time in this thesis, multiple trial
functions are used to investigate the nonlinear free vibrations of CNTs. Moreover, a new
solution approach— describing function method— is proposed which has the advantage of
expressing the nonlinear force as a nonlinear complex stiffness matrix multiplied by
displacement vector, where the off-diagonal terms of the nonlinear stiffness matrix can
provide a comprehensive knowledge about the coupling between the trial functions.
Depending on the boundary conditions considered, it is hard to find suitable trial functions
that satisfies all the boundary conditions; hence, in order to overcome this difficulty, iterative
path following method (IPFM) based on differential quadrature method (DQM) is developed
which does not require trial functions. It is concluded that DQM based nonlinear solution
method is very promising in solving nonlinear continuous systems, since it requires less
number of gird points which results in less number of nonlinear equations compared to finite

element methods.

Keywords: Nonlinear vibration, Curved carbon nanotubes, Nano resonators, Geometric

nonlinearity, Van der Waals force nonlinearity



(074

TEK VE CiFT DUVARLI KAVIiSLi KARBON NANOTUPLERIN DOGRUSAL
OLMAYAN TiTRESIMLERI

Samandari, Hamed
Doktora, Makina Miihendisligi Boliimii
Tez Yoneticisi: Assoc. Prof. Dr. Ender Cigeroglu

Temmuz 2014, 191 sayfa

Bu tezde, geometrik, baslangi¢ kavisi ve van der Waals kuvvetleri kaynakli dogrusal olmayan
etkilerin (dogrusalsizliklarin) karbon nanotiiplerin (KNT’lerin) dogrusal olmayan dogal
frekans degisimi iizerindeki etkisi cesitli vaka analizleri ile detayli olarak incelenmistir.
Sinama (deneme) fonksiyonu dogrusal sistemin 6zfonksitonu olan tek sinama fonksiyonu
kullanan Galerkin metodu literatiirde karbon nanotiiplerin dogrusal olmayan titresimleri igin
siklikla kullanilmaktadir. Ancak, dogrusal olmayan sistemler i¢in elde edilen dogrusal
olmayan sistemlerin 6zfonksiyonlar1 dogrusal sistemlerin 6zfonksiyonlarindan 6nemli dlgiide
farkli olabilmektedir. Dolayisiyla, dogrusalsizlia bagli olarak tek smama fonksiyonu
kullanarak dogrusal olmayan karakteristiklerin yakalanmasi miimkiin olmayabilmektedir. Bu
sebeple, ilk kez bu tez ¢alismasinda KNT’lerin dogrusal olmayan titresimlerini incelemek
icin ¢oklu sinama fonksiyonu kullanilmistir. Buna ek olarak, dogrusal olmayan kuvvetlerin
dogrusal olmayan karmasik direngenlik matrisi ve yer degistirme vektdriiniin ¢arpimi olarak
yazilabildigi yeni bir ¢6ziim metodu — tanimlama fonksiyonu metodu — Onerilmistir. Bu
dogrusal olmayan karmasik direngenlik matrisinin kdsegen dist elemanlart sinama
fonksiyonlar1 arasindaki baglant1 hakkinda ¢ok dnemli bilgiler saglamaktadir. Ele alinan sinir
kosularina bagli olarak biitiin sinir kosullarini saglayan uygun sinama fonksiyonlari bulmak
cok zor olmaktadir. Bu sebeple, bu zorlugu asmak i¢in, sinama fonksiyonu gerektirmeyen
diferansiyel tiimlev metodu (DTM) iizerine kurulu yinelemeli yol takibi metodu (YYTM)
gelistirilmistir . Sonlu elemanlar metoduna gore daha az sayida nokta kullandigi i¢in daha az
sayida dogrusal olmayan denklem elde edilmesini saglayan DTM’in DTM tabanli dogrusal
olmayan ¢6ziim metodunun siirekli sistemlerin ¢dziimil igin gelecek vadeden bir yontem

olduguna kanaat getirilmistir.

Anahtar Kelimeler: Dogrusal olmayan titresim, Kavisli karbon nanotiipler, Nano rezonatér,
Geometrik dogrusalsizlik, Van der Waals kuvvet dogrusalsizlig
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CHAPTER 1

INTRODUCTION

This chapter aims at presenting a general overview of carbon nanotubes and their
application areas as well the need for understanding the dynamic characteristics of

carbon nanotubes.

1.1. General Introduction and Applications

In recent years, the subject area of nanotechnology has become the focus of attention
of industries, scientists and researchers. Among the nano-materials, carbon nanotubes
(CNTs) have received the highest amount of attentions owing to their novel

mechanical, chemical, thermal, and electrical properties [1-3].

Carbon nanotubes are named based on their unique sizes. A CNT has a diameter of
few nanometers while its length can be up to several millimeters. In an article in “nano
letter”, Wang et al [4] show that a single walled carbon nanotube can have a length to
diameter ratio up to 132,000,000:1. A CNT can be constructed by folding a sheet of
graphene into a cylinder. Graphene, Figure 1-1, is a flat, two dimensional, layer of
carbon atoms packed tightly in the shape of a hexagonal lattice (honeycomb lattice).
A graphene sheet can be wrapped into the fullerene or nanotube, or it can be stacked

into the graphite (Figure 1-2).



Fullerene Nanotube = Graphite

Figure 1-2 Graphene can be rolled up into a carbon nanotube,
wrapped into a fullerene, and stacked into graphite [6].

In 1991, Iijima discovered carbon nanotubes while working with NEC Corporation!
[7]. Using a high resolution Electron micrographs, he captured pictures of nanotubes
for the first time (Figure 1-3). Later, studies show that CNTs can be grouped in three
basic groups of zigzag, armchair, and chiral. These groups are categorized based on
the ways in which a graphene sheet can be rolled into a tube. Wrapping a graphene

sheet can be presented by a pair of indices(m,n). The integers show the number of

unit vector along the two directions in the graphene. As shown in Figure 1-4, if m=0
nanotube is called zigzag, if M=nN nanotube is called armchair, and if m=n=0
nanotube is called chiral. CNTs as well can be grouped according to the number of

their walls (layers) as single walled, double walled, and multiple walled tubes.

! NEC Corporation is a Japanese multinational provider of information technology (IT) services and
products, with its headquarters in Minato, Tokyo, Japan.
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Figure 1-3 Electro micrographs of nanotubes where it consists of
a) five tubes b) two tubes c) seven tubes [7]

“(n,0) zigzag

ICy = nay + may

N

(n1) armchair
Figure 1-4 Naming schemes for the nanotubes
Studies show that, to this date, CNTs are the strongest discovered material owing to
the strong “sp? bonds™? formed between the individual carbon atoms. For example a
multiple walled carbon nanotube (MWCNT) can have a tensile strength around 100
GPa. It is worth noting that this strength is equal the ability to endure a weight
equivalent to 10,190 kg on a cable with cross section of one millimeter. In addition
to high strength, carbon nanotubes have a low density for a solid, around 1.3 g/cm®.
As a result, they have a specific strength around 48,000 kN-m-kg™! which is much
higher compared to high-carbon steel's 154 kN-m-kg™!. Table 1-1 represents a

comparison between strength of different types of CNTs and Stainless steel. These

2 Refer to Orbital hybridization on Chemical books for information on sp? bonds
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approximate results are obtained based on theoretical predictions and some

experiments and are given here just to provide an estimate about their properties.

Table 1-1 A comparison between strength of different types of CNTs
and stainless steel [8-11]

. Young's modulus | Tensile strength
Material %TPa) (GPa) &
SWNT around 1 13-53
Zigzag SWNT 0.94 94.5
Armchair SWNT 0.94 126.2
Chiral SWNT 0.92 —
MWNT 0.2-0.95 11-150
Stainless steel 0.186-0.214 0.38-1.55

In addition to unique mechanical characteristics, CNTs show an unrivaled electrical
and thermal properties. For example, electrical and thermal conductivities of a
SWCNT are 1000 and 20 times greater than a metal such as copper, respectively.
All these unique properties give the CNTs the potential to reshape critical
technologies. Nowadays, CNTs are being fabricated and used as parts in the new
emerging nano-devices. CNTs have potential applications in devices such as nano-
actuators, nano-motors, nano-sensors, nano-turbines, and nano shaft and gear
systems. In the following section, application areas of CNTs are explored focusing on

their vibratory applications.

1.1.1. Applications areas of CNTs

Carbon nano-structures have attracted many attentions in the past two decades owing
to their exceptional properties and hence, new applications are introduced by
researchers literally every day. CNTs play an important part in diverse fields of
technology such as medical, sensor, computing, and etc., to make our lives more

comfortable. Some of those applications are as follows:

e Nano sensors:
A nano-sensor obtains data from atomic scales and transfers them to the
macroscopic world where they can be measured. The detection involves in
identifying the mass by measuring the changes of vibration frequencies. The very

small mass of CNTs gives them the capability to even identify atoms. Figure 1-5
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shows a SWCNT mass fabricated by Philippe et al [12]. They show that first
natural frequency of structure shifted from 3.29 MHz to 968 KHz due to attached
mass. They estimate the mass of nano-particle to be equal to 30 femtogram (

30x107" gr).

-

1um

S —

Figure 1-5 A CNT mass sensor taken from [12]

Recent studies show that the behavior of carbon nanotubes are nonlinear in nature
and it is been reported that SWCNT based mass sensors can exhibit super-
harmonic and sub-harmonic responses with different level of mass [13, 14].
Hence, further development in this area needs a complete understanding of the
nonlinear behavior of CNTs. Moreover, recently, it is been suggested that the

higher harmonics can be used to develop a more sensitive sensor.

Tunable Oscillators (resonators):

A resonator is a vibrating structure which is used in radio-frequency signal
processing and transmitting [15, 16] and as a model system for exploring quantum
phenomena in macroscopic systems [17, 18]. The sensitivity of these devices
increases as their size and more importantly their mass decreases. Hence, CNTs
can be the ultimate material for these applications. Furthermore, the high stiffness
of CNTs gives them the ability to oscillate at gigahertz frequencies. In letter to
nature, Sazonova et al [19], proposed an electrical tunable resonator. Figure 1-6
shows the resonator where the nanotubes are suspended over a hole between two
metal electrodes. The gate electrode underneath the tube is used to actuate and
tune the nanotube. Several studies regarding oscillators can be found in literature

[20-24]. Figure 1-7a shows a schematic view of an atomic force microscopy



(AFM) used in quantum researches. The cantilever-tip vibrates due to atomic
forces and its vibration is measured using a laser and quad photodiode. The
resolution, sensitivity, and probing depth of an AFM depend on the structure of
the probe. Recent studies [25, 26] show that probing depth of AFM can be

significantly increased by utilizing carbon nanotubes (Figure 1-7b)

Figure 1-6 A schematic of CNT resonator, taken from [19]

Figure 1-7 Atomic Force Microscopy a) a schematic view b) a Silicon tip with CNT Probe

[26]

Nano switches:

Recent studies show that CNTs can be used as a switch for applications such as
logic devices, memory elements, pulse generators, and current or voltage
amplifiers [27, 28]. Moreover, high natural frequencies of CNTs (gigahertz
regions) give them the ability to respond very fast. Figure 1-8 shows a CNT based
switch where the on and off statues are shown. The researches in this area are still

under development.



Carbon nanotu

(a) (b)
Figure 1-8 A CNT based switch: (a) turn-on and (b) turn-off states, taken form [29]

Nano gears and nano actuators:

The rotating nano-structures are expected to receive an extensive attention in the
near future since they will be the building block of power transmission system of
any nano machines. In the past few years, the feasibility of these machines have
been studied by several researcher [30, 31]. For example, in letter to nature,
Fennimore et al. [32] reported on the construction and successful operation of a
nanoscale electromechanical actuator incorporating a rotatable metal plate.
Figure 1-9 shows the schematic and electron microscope image of nano-actuator.
In the presented study, a multiple walled CNT is acted as shaft. Figure 1-10 shows
a typical carbon nanotube gear reported by Srivastava [31]. A laser electric field

is used to power the driven gear.

Figure 1-9 a) conceptual drawing of nano-actuator b) Scanning electron
microscope image of nano-actuator [32]
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Figure 1-10 Diagrams of two carbon nanotube gears [31]

Reviewing literature, it can be concluded that CNTs will find applications in several
areas. Even though, some of them are still in the prototype stages, they will be a part
of our daily life in the near future. Moreover, the growth of CNTs in the past few
years suggests that these application areas will not be limited to the ones mentioned

here.

1.1.2. Brief literature review and motivations

In order to design a new efficient vibrating nano-scale device, researchers need
detailed information about dynamic properties of the device. In contrast to macro
scale structures, atomic forces play an important role in defining the mechanical
characteristics of nano-structures. Hence, a clear understanding of atomic interactions
are required. Furthermore, producing prototypes without having clear image of the
structural properties can be very time consuming, misleading and sometimes
impossible. Therefore, having a good insight of the dynamic behavior is important for

the practical development of the nanomachines.

Experiments can be used to analyze the behavior of nanostructures. However doing
experiment at nanoscale is a difficult task and even for some cases it is almost
impossible with current technologies. Moreover, an efficient design requires several
experiments in order to identify and optimize the system parameters. Therefore,
molecular dynamic (MD) simulation methods have been developed. MD is a
computer based simulation of physical movement of each atom and molecule in the

context of a body. In this method, each atom is considered as a particle which interacts



with other particles (atoms). The forces between the particles and potential energies
are defined by molecular mechanics force fields. Since a molecular system consists
of a vast number of particles, it is impossible to find the solution analytically. Hence,
the trajectory of particles are commonly obtained numerically by solving the
Newton’s equation of motion. It should be noted that the size of such atomic systems
are limited due to highly time consuming computational requirements. In the past
decades, MD method is used by several researches to study the dynamics of
nanostructure. However, employing the molecular dynamic (MD) simulations for

each case requires a huge amount of time and computational resources.

In recent years, elastic beam models [33-37] and elastic shell models [38-40] have
been effectively used to predict resonant frequencies of CNTs. Using simple
equations of motions offered by the continuum models, key parameters that affect the
free vibration of CNTs can be easily studied. These studies [33-39] show that,
compared to MD simulations, continuum modeling is more practical and useful in the

analysis of CNTs in terms of computational efforts.

Even though classic continuum models can provide quick and approximate
predictions, they fail to account for the size effects. Size effects are emerged from the
interaction of atoms and molecules that create the material. In recent years, several
research efforts have been conducted to bring in the size effects within the formulation
by modifying the traditional classical continuum mechanics. One widely used size-
dependent theory is the nonlocal elasticity theory presented by Eringen [41]. In the
nonlocal elasticity theory, the size effects are captured by assuming that the stress at
a point is a function of the strains at all points in the domain [41]. Therefore, unlike
classical elasticity theory, nonlocal theory can consider long-range inter-atomic
interactions; hence, it yields in the results dependent on the size of a body. Some other
theories which also capture the size effects include couple stress elasticity theory,

strain gradient theory, and modified couple stress theory.

In the majority of studies given in literature, the vibrational behavior of CNTs is
studied by using linear models [42, 43]. Nonlinear vibrational behavior of CNTs has
recently become the interest of research, where both geometric nonlinearity caused

by large transverse displacement and van der Waals force nonlinearity are studied
9



[44-46]. Based on Donnell’s cylindrical shell model, Yan et al. [39] investigated the
nonlinear vibrational behavior of a double wall carbon nanotube (DWCNT) due to
large deformations; whereas, Ke et al. [34] studied the same problem by using
Timoshenko beam model. The effect of surrounding medium on the nonlinear
vibration of the CNTs with geometric nonlinearity has been studied in [44], where
single and multiple walled CNTs (MWCNTs) embedded in polymer matrix are

considered.

CNTs are affected from the pressure of the medium they are embedded in and from
other CNTs that are very close to them due to interlayer molecular forces. The
Winkler model [47] is used to describe the surrounding pressure where the
surrounding medium is assumed to act as a linear spring resulting in a pressure
distribution linearly proportional to the deflection of the outermost tube. On the other
hand, the interlayer force between layers of CNTs is governed by van der Waals force
(vdW). The vdW force estimated by Lennard-Jones potential is inherently nonlinear
[48-50]; hence, the nonlinearity of vdW force should be considered in order to
accurately determine the vibrational behavior of MWCNTSs. However, in the majority
of the studies concerning MWCNTs, the interaction pressure between adjacent tubes
of MWCNTs is linearized and assumed to depend linearly on the difference of the
radial deflections. The nonlinear vibrational behavior of DWCNTs having interlayer
nonlinear vdW forces between the inner and outer tubes was studied by Xu et al. [51].
Authors show that the nonlinear behavior of vdW force affected deflection amplitudes
especially in the case of out-of-phase vibration mode whereas, in the case of in-phase,
vibration mode this effect is very little. In the last few years, the vdW force

nonlinearity has been studied by other researchers as well [52, 53].

Furthermore, recent studies show that CNTs are not straight and have a certain amount
of waviness or initial curvature. The initial curvature can be introduced during
fabrication or manufacturing processes because of pre-stresses and boundary effects.
Figure 1-11 shows a picture of a curved SWCNT. However, in numerous recent
papers, CNTs are assumed to be perfectly straight beams, and only, in few recent
papers, the effect of initial curvature on linear free vibration of CNTs studied [54, 55].

Whereas, the nonlinear effect of initial curvature is not fully studied yet.
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Figure 1-11 Images of a carbon nanotube show1ng_{hé_1nitia_l curvature [54]

1.2. Objectives and Scopes of this thesis

This thesis is going to deal with the study of the nonlinear free vibration of CNTs.
Reviewing and analyzing literature, our studies show that the limited number of
studies on nonlinear vibration of CNTs have serious shortfalls. A CNT can be affected
by three different types of nonlinearities: Geometric nonlinearity, interlayer vdW
nonlinear force, and initial curvature nonlinearity. However, in most of the recent
works, the effect of each nonlinearity is studied independently from other
nonlinearities without including the interaction between different types of
nonlinearities. Moreover, it has been observed that, in all of the studies, single trial
function assumption is used to study the system behavior where the trial function is
considered to be the exact eigenfunction of the relevant linear system. However for
nonlinear systems, the resulting nonlinear eigenfunctions can be significantly
different from the eigenfunctions of the linear system, and depending on the
nonlinearity, it may not be possible to capture the nonlinear characteristics by using a
single trial function [56]. It should be noted that even for linear systems, in order to
solve the eigenvalue problem, multiple trial functions are needed unless the exact

eigenfunctions of the system are known.

Moreover, our studies show that even though Galerkin method is easy to implement,
it requires trial functions or comparison functions that satisfy all the (geometric and
natural) boundary conditions of the system. Hence, most of the researches based on
Galerkin approach are limited in studying hinged-hinged beams where the trial

functions are simple sine functions. Therefore, presenting a general formulation
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capable of predicting the vibrational behavior of CNTs under different boundary

conditions is of high importance.

Furthermore, our studies show that, in all studies regarding the nonlinear vibrations
of CNTs, the boundary conditions (BCs) of CNTs have been assumed to be same as
linear classic beam models. However, our insight on the problem suggests that BCs
will be nonlinear and nonlocal due to inherent nonlinear characteristics of CNTs and

the size effects.

Taking these shortfalls into consideration, the scopes of this thesis are defined as

follows

e To get a solid understanding of the effect of different types of nonlinearities
on the nonlinear free vibrations of CNTs

e To study the interactions between different types of nonlinearities

e To implement multiple trial functions to get a better approximation of the
system mode shape and in the mean time, to develop a novel algorithm using
describing function methods to study the coupling between the trial functions

e To develop and implement an accurate, efficient and relatively fast techniques
for modeling CNTs which does not require any pre-knowledge on the system
comparison functions (differential quadrature method)

e To study the effect of initial curvature and higher harmonics

e To understand the in-phase and out-of-phase natural frequencies of CNTs and
how they get affected by nonlinearities

e To improve the modeling of CNTs by including the equation regarding the

nonlinear nonlocal boundary conditions

Since each of these issues is going to deal with a different aspect of nonlinear
vibrations of CNTs, they will be investigated throughout different case studies in

independent chapters.
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1.3. Outline of Thesis

This thesis is prepared in the integrated form where each chapter is a standalone article
with introduction, literature review, problem definition and modeling, solution
method, discussion and results, and concluding remarks. In second chapter, a
comprehensive literature review is presented starting with a detailed introduction on
the mechanical characteristics of CNT and methods to anticipate and measure these
properties. This chapter covers a critical review on linear and nonlinear vibrations of
CNTs where various simulation methods are discussed and advantage and
disadvantage of each method is mentioned. More than 130 research article are cited
in order to provide a deep understanding on the subject. Simulation methods such as
molecular dynamic simulation, shell theories, and local and nonlocal continuous beam
theories are discussed. It is observed that CNTs are affected by geometric, vdW
interlayer force, initial curvature nonlinearities. The recent works in literature on these
nonlinearities are summarized and discussed. This chapter, in general, provides the

required knowledge to researchers with background in engineering.

In third chapter, nonlinear free vibration of a simply supported double walled carbon
nanotube (DWCNT) with a concentrated-mass is investigated. The proposed model
simulates behavior of nonlinear DWCNT mass sensor where concentrated mass
stands for the absorbed mass of atoms or molecules. Using Galerkin method with a
single trial function, a detailed numerical study on the nonlinear vibrations of double
walled carbon nanotubes is presented. Nonlinearities are due to large deflection of
carbon nanotubes and nonlinear interlayer van der Waals force between tubes. In this
chapter, the effect of both nonlinearities and key parameters of concentrated mass on

the variation of the in-phase and out-of-phase vibration modes of DWCNTs is studied.

Chapter four aims to introduce the concept of multiple trial functions. It is a common
assumption in the literature to use a single trial function assumption to study nonlinear
vibration of CNTs where the trial function is eigenfunction of corresponding linear
system. Hence, in this Chapter, the motion of the DWCNT is represented by multiple
eigenfunctions of the linear system which are referred as trial functions. Describing
function method (DFM) is employed in order to represent the nonlinear forces as a

multiplication of a nonlinear stiffness matrix and a displacement vector, which made
13



it possible to identify when it is necessary to consider multiple trial functions. The
effects of number of trial functions and medium stiffness on the free vibration of

DWCNTs are investigated.

Fifth chapter deals with the effect of higher harmonics on the nonlinear free vibration
of a curved simply supported single walled carbon nanotube. In this chapter, multiple
harmonic balance method (MHBM) in addition to Galerkin method is used to convert
the nonlinear discretized differential equations of motion into a set of nonlinear
algebraic equations where application of MHBM make it possible to study the effect
of higher harmonics. An expression for the variation of nonlinear fundamental natural
frequency of CNTs is derived analytically. The effect of higher harmonics on the

natural frequency of CNTs are studied for the first time in this chapter.

Chapter six is dealing with development and implementation of an accurate and fast
techniques for modeling CNTs where, at the same time, it does not require any pre-
knowledge on the system comparison functions. In this chapter, differential
quadrature method (DQM) as higher order finite element method is introduced. Using
DQM, nonlinear vibration of a curved DWCNT embedded in an elastic medium is
studied. Nonlinearities considered are due to large deflection of carbon nanotubes
(geometric nonlinearity) and nonlinear interlayer van der Waals forces between inner
and outer tubes. The effect of nonlinearities, end conditions, initial curvature, and
stiffness of the surrounding elastic medium, and vibrational modes on the nonlinear

free vibration of DWCNTs is studied in this chapter.

Chapter seven is concerned with linear and nonlinear free vibration of a nonlocal
rotating double walled carbon nanotube (DWCNT). It is worth mentioning that
rotating structure will be inevitable part of the power transmission system of any
future nano machines. Nonlinearities are due to large deflections (geometric
nonlinearity) and interlayer van der Waals force. The cross-sectional area of the CNTs
are assumed to change along the axial direction. The tubes are attached to molecular
hub which rotates at a constant angular speed. Hamilton principle and Euler Bernoulli
beam theory are used to obtain the nonlocal equations of motion and boundary
condition equations based on Eringen theorem. Results show that boundary condition

equations for nonlocal cantilever beam is totally different than classic beams where it
14



includes nonlocal and nonlinear terms. Nonlinear nonlocal BCs are studied for the

first time in this chapter.

Finally, in chapter eight, a general conclusion is presented. This chapter sums up
topics of discussion in the thesis and points out main contributions of the present study

and possible ideas for the future works.
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CHAPTER 2

VIBRATION OF CARBON NANOTUBES: A CRITICAL REVIEW

This chapter aims at reviewing the recent studies in the literature for linear and
nonlinear vibrations of carbon nanotubes. Common methods in studying vibrations of

CNTs are summarized and advantage and disadvantage of each method is discussed.
2.1. Introduction

Carbon nanotubes (CNTs) have the potential to reshape critical technologies owing
to their novel mechanical, chemical, thermal, electrical and electronic properties [1-
3]. Nowadays, CNTs are being fabricated and used as parts in the new emerging nano
devices®. In recent years, there has been a great interest in discovering the mechanical

properties of CNTs.

The mechanical properties of CNTs are characterized by the strength of the sp? bonds.
The most important parameter which describes the mechanical properties of a

material is the Young’s modulus E
o=E¢g , (2.1)

where it describes the slope of stress ¢ vs. strain £ curve. It should be noted that the
natural frequency cannot be calculated without knowing the Young’s modulus. In the
past decades, several experiments have been conducted to measure the Young's
modulus of carbon nanotubes. However, due to small size of CNTs, it is almost

impossible to measure their mechanical properties directly.

3 A review on recent applications of CNTs is presented in previous chapter.
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Even though direct measurement of the strength is impossible with current
technologies, it is possible to determine the strength indirectly. One method is to
measure the amplitudes of intrinsic thermal vibration of cantilevered carbon
nanotubes, which is a function of temperature. In a study, Treacy et al [57] show that
CNTs vibrate due to thermal effects and vibration amplitude adjusted as temperature
changes. This correlation can be used to obtain Young's modulus since, for small
vibration amplitudes, vibration amplitude at the tip of a cantilever beam is related to
Young's modulus and the vibration energy. Using this method, Treacy et al [57]
calculate a Young's modulus of 1.8 TPa (average value) for multi-walled nanotubes,

and Krishnan et al [58] obtained a Young's modulus of 1.25-0.35/+0.45 TPa for

single-walled nanotubes. However, the technique is limited since the thermally
excited vibrations should not be too large or too small for reliable transmission
electron microscopy (TEM) detection. As a result, the sample size is restricted in this

method.

Another method is to measure the exerted force by a nanotube as a function of the
displacement from its equilibrium position when it is bended by the tip of an atomic
force microscopy (AFM). This method provides a direct measurement of bending
force vs. displacement. Then, using beam theories one can extract Young's modulus.
Using this method, Wong et al. [59] calculate a Young's modulus of 1.28 0.5 TPa for

multi-walled carbon nanotubes.

Another approach proposed by Poncharal et al. [12] is to use an alternating electric
field to excite a cantilever beam. Changing the frequency of excitation one can obtain
the resonant frequency of CNTs. Knowing the resonance frequency, one can obtain
Young's modulus according to the results of vibration analysis of beams. However,
results provided by this method are approximates since the effects of nonlinearities

are disregarded.

In 2000, Yu et al. [60] for the first time obtained the stress vs. strain diagram for
carbon nanotubes using double AFM tips. Figure 2-1 shows the principle and results
of measurement done by [60]. When the top cantilever is pulled upward, the lower

cantilever is bent upward by a distance, while the nanotube is stretched from its initial
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length of L to L+JL due to the forces of AFM tips. Knowing the forces and bending
stiffness of cantilever beam, the Stress vs. Strain curve can be obtained. A detailed

review on the mechanical properties of CNTs can be found in [61-63]
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Figure 2-1 a) schematic showing the principle of measurement based on double AFM tips b)

Stress vs. Strain curve, Taken from [60]

2.2. Defects in CNTs

Studies show that the material properties of any material change due to
crystallographic defect. In most of cases, defects occur in the form of atomic
vacancies. A high level of such defects can lower the tensile strength of the material.
As a result, the theoretical strength (=10% of the Young's modulus) is not feasible for
most of the materials. However, studies show that CNTs are almost defect-free where
they can achieve the theoretical strength. A perfect nanotube is a tubular structure of
carbon atoms in which a carbon atom is bonded to three carbon atoms to form a
hexagonal networks. In recent years, three types of native defects formed during the
CNT synthesis process have been identified: isolated point defects or vacancies,
topological defects, and sp?-sp® hybridization defects [64]. Further information on
each type of defects can be found in [65-67]. Studies confirm that the existence of
few detects can change the electrical properties of the CNT from metallic to
semiconducting CNT however the mechanical properties of CNTs remain without

any change. The effect of defects on mechanical properties of CNTs is studied by
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[68]. Using a high-resolution scanning electron microscope, authors [68] have studied
both tensile strength and buckling behavior of a set of CNTs. They observed that most
of the samples reach the strength of the 11% of the Young’s modulus, corresponding
approximately to the theoretical value of the material's strength. Their findings
indicate that CNTs are remarkably free of critical defects. Hence, in the most of the

studies in literature and present study, CNTs are considered to be defects free.

2.3. Linear vibration of carbon nanotubes

In the last two decades, the industrial and academic interest in CNTs have
exponentially increased. Todays, CNTs are utilized in the structure of several nano
devices such as sensors, oscillators, and actuators. However, the performance of these
vibrating structures is directly affected by the vibrational characteristics of nanotubes;
hence, it is very important to know their vibrational characteristics such as natural
frequencies and mode shapes. In the past decades, experiments are used by researcher
to determine the mechanical characteristics of CNTs. However doing experiment at
nanoscale is a difficult task and even for some cases it is almost impossible with
current technologies. Hence, in recent years, several theoretical theories have been
developed in order to study vibrational behavior of CNTs. Simulation methods such
as Molecular dynamics (MD) and local and nonlocal continuum models are widely
used in literature. This section brought a review which covers outstanding literatures

in this area.

2.3.1. Molecular simulations

Molecular dynamic (MD) simulation represents the dynamics of the system of atoms
or molecules by using a discrete solution of Newton's equations of motion. Positions
and velocities of all the molecules are calculated by integrating the equations of
motion numerically in time domain. The interaction between atoms is calculated using
atomic potential forces which can be the classic one or obtained from solving the
Schrodinger equations (known as ab initio method) [63]. MD simulations can provide

a detailed information on the dynamics of structure and interaction of atoms.
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In the past decades, MD simulation is used by several researchers to study the
mechanical properties of CNTs. lijima et al. [69] studied the bending of nanotubes
under compression using molecular dynamics simulations. They investigated the
large deformation and flexible properties of single and multiple walled nanotubes.
They showed that the bending is completely reversible up to angles in excess of 110.
Figure 2-2 represents the results reported in [69] where it shows the exceptional

flexibility of carbon nanotubes at large strain.

Figure 2-2. The network of hexagons is not disturbed hence the tube can unbend without
any damage, Taken from lijima et al. [69]

The bending, axial compression, and torsion of CNTs is studied in [70]. Their results
shows that carbon nanotubes, when subjected to large deformations, reversibly switch
into different morphological patterns. Each shape change corresponds to a sudden
release of energy and a singularity in the stress—strain curve. A similar pattern was

detected in works of Yakobson et al. [71].

In recent years, MD simulation is used by several researcher [72-75] to study the
dynamic behavior of CNTs. For example, Li and Chou [73] investigated the natural
frequencies and mode shapes of a single walled carbon nanotube (SWCNT) using
MD simulations. It is worth noting that the MD simulation provides information on

radial breathing modes and noncoaxial intertube modes in addition to bending modes.
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Figure 2-3 shows typical mode shapes of single and double walled CNTs obtained
using the MD approach.
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Figure 2-3 Typical mode shapes for SWNT and DWNT from MD approach, Taken from [3]

Even though MD simulations are very accurate in anticipating the dynamic and
mechanical properties of CNTs, they are limited by the size of such atomic systems
due to highly time consuming computational requirements. In order to perform the
simulation, special high-performance computational facilities are required. Due to
these limits, researchers get motivated to develop simpler approaches to study the

dynamics of CNTs.
2.3.2. Euler-Bernoulli beam theorem

Recent studies show that even though the diameter of a CNT is only several times
larger than the length of a bond between carbon atoms, continuum models can be used
to study the dynamics of CNTs. The differential equation of motion of a uniform beam

was first written by Bernoulli-Euler as follows

o*w(x,t o*w( x,t
) ol

g(x,t) , (2.2)

where E stands for the Young’s modulus of elasticity, | =7r( iR ) /4 is the

out

moment of inertia, p is the density, A is the tube’s cross section, w(x,t) represents
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the transverse displacement of the tube, and g(x,t) stands for external forces acting

on the beam. X is the axial coordinate and t is temporal variable. R

out

and R, denote

outer and inner radius of the tube. It should be noted that the actual thickness of a
CNT is not more than the size of one carbon atom, however it is a common assumption
in the literature to consider the thickness of carbon tubes to be equal to the distance

between layers of tubes (around 0.34 nm).

The Euler beam assumes that displacements are small and the cross section stays
normal to central axis during bending which is valid for long thin beams. A general

solution to Eq. (2.2) is
w(x,t)=W (X)T (t) =[acosh(/,X) + bsinh(3,X) + ccos(f3,X) + d sin(3,x)]e"" . (2.3)

The constants, a, b, ¢, and d, are defined by the beam boundary conditions and /,

is the eigenvalue for n" vibration mode which is defined by the characteristic
equation. According to Euler beam theory, the natural frequencies of system are

obtained as

f—“’"—i(ﬁjz El 2.4)
"2z 22U L) \pA’ '

Table 2-1 Shows the values of g, for the Clamped-Clamped (C-C), Clamped-Hinged

(C-H), Hinged-Hinged (H-H), and cantilever beams.

Table 2-1Value of frequency parameters, £,

C-C C-H H-H | Cantilever
L | 4.7300 | 3.9266 | 3.1416 1.8751
B

B,L 7.8532 | 7.0686 | 6.2832 | 4.6941
Sl 10.9956 | 10.2102 | 9.4248 7.8548
AL 14.1372 | 13.3518 | 12.566 | 10.9955
Bl 17.2787 | 16.4934 | 14.708 | 14.1372

For a CNT with outer radius R, and inner radius R,, or any tubular beam, Eq. (2.4)

can be simplified as
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Eq. (2.5) have commonly been used by researchers in order to determine the
frequencies of nano resonators and estimate the Young’s modulus of CNTs from

measured frequencies [57, 76].

CNTs are affected by the pressure of the medium which they are embedded in. The
Winkler model [47] is used in literature to describe the surrounding pressure where
the surrounding medium is assumed to act as a linear spring resulting in a pressure

distribution linearly proportional to the deflection of outermost tube as
g(x,t):_kW(X,t), (26)

The negative sign in the above equation shows that the pressure p(x,t) is opposite

to the deflection of the tube and K is defined by the material constants of the

surrounding elastic medium.

In early studies, single and multiple walled CNTs are modeled as a single continuous
beam [12]. However, in this model, all the walls remain in-phase and it is not possible
to study out-of-phase vibration modes. In reality tubes of carbon can interact with
each other. The interlayer force between layers of CNTs is governed by van der Waals
force (vdW). The vdW force estimated by Lennard-Jones potential is inherently
nonlinear [48-50]. However, in the majority of the early studies concerning
MWCNTs, the interaction pressure between adjacent tubes of MWCNTs is linearized

and assumed to depend linearly on the difference of the radial deflections as follows
f(xt)=p, (W, -w), 2.7

where p, is the interaction coefficient between the outer layer w, and inner layerw; .

Yoon et al. [77] were one of first researchers who modified Euler-Bernoulli beam
equations to study the out-of-phase vibration of MWCNTs. Their study, later
followed by several researchers. The transverse vibration of an N-wall CNT is defined

by the following N coupled equations of motion
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w,(k=1,2---N) is the transverse displacement of the k" tube, I, and A are the

moment of inertia and the cross section area of the k™ tube. A similar approach is
used by Zhang et al.[78] to study free vibrations of double walled CNTs under
compressive axial load. They show that natural frequency decreases as axial loads
increases. Moreover, they found out that the amplitude ratios of the inner to the outer

tubes are independent of axial load.
2.3.3. Timoshenko beam theorem

Studies show that the effects of shear deformation and rotary inertia become
significant for the short beam vibrating at higher modes. In recent years, Timoshenko
beam used by several researchers to study the free vibration of short CNTs (length to
diameter ration smaller than ten). Ru [79], Yoon et al. [80], and Wang et al. [81] used
the Timoshenko beam model for vibration analysis of MWCNTs. The buckling of
MWCNTs is studied by Zang et al. [82]. A comparison between results of
Timoshenko and Euler beam theories show that shear deformations get important
when the length-to-diameter ratios are small and the difference is expanded for higher

vibration modes. The coupled differential equations of a SWCNT is given by [83]

oy o'w o’w
KAG| LW _TW_ A0V 2.9
(ax axzj s 9)
o’y ow o’'w
E1 Y k|- W= 1 W 2.10
o ['/’ axj r'e (2.10)

where  is the slope of the deflection curve, w is the transverse deflection, E is the
Young’s modulus of elasticity, G is the shear modulus of elasticity, p is the mass

density per unit volume, K is the shear correction factor which depends on the shape
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of the cross-section, and A and | are the area and second moment of the cross

sections.

Eliminating the y from Eq. (2.9) and (2.10), the coupled equations can be reduced to

single differential equation as

El

4 2 4 21 A4
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Table 2-2 shows a comparison between frequency parameters of SWCNT obtained
from Euler and Timoshenko beam theories where the length ratio is considered to be
equal to 10 and shear factor correction factor equal to 0.563 [84]. It can be seen that
as frequency increases the differences increases. However, it is worth noting that, in
most of the application cases, CNTs are only excited around the first natural

frequencies. Moreover, mainly they have a length to diameter ratio greater than 10.

Table 2-2 A comparison between Euler and Timoshenko beam theories [85]
Mode number Hinged-Hinged Clamped-Hinged Clamped-Clamped
Timoshenko | Euler | Timoshenko | Euler | Timoshenko | Euler

3.0929 3.1416 3.7845 3.9266 4.4491 4.7300
5.9399 6.2832 6.4728 7.0686 6.9524 7.8532
8.4444 9.4248 8.1212 10.2102 9.1626 10.9956
10.626 1.5660 10.880 13.3518 11.113 14.1372
12.541 15.708 12.707 16.4934 12.863 17.2787

DWW |-

2.3.4. Shell theorems

In recent years shell theories are used by researchers to study vibrations of CNTs.
Shell theories have the ability to model the cross sectional deformation of the tubes
as well as their bending, torsional, and extensional modes. However, shell theories
cannot estimate size effects since Atomic force effects are not included in these
theories. Moreover, the geometrical and mechanical parameters which are used in

these studies are basically obtained from empirical or numerical studies.

Yakobson et al. [70, 71] studied similarities between macroscopic shell models and

MD simulation methods. Their results show that mechanical properties of CNTs are
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strongly dependent on helicity and atomic structure of the tubes. Hence, the common
isotropic shell models which neglect the discrete nature of the CNT cannot predict the
effects of curvature and chirality on the mechanical behavior of CNTs. Therefore, to

overcome this problem, anisotropic shell models have been developed [86-88].

In the past years, several shell models have been developed by researchers to study
vibration characteristics of CNTs [89-94]. A review on the validity and accuracy of
cylindrical shell theories such as Donnell thin shell theory, Sanders thin shell theory,
and the first-order shear deformation shell theory in predicting the critical buckling
strains of axially loaded SWCNTs can be found in [94, 95]. Studies show that shallow
shell theories (e.g., Donnell theory [96]) are not accurate for the CNT analysis due to
the CNT non-shallow structure. Only more complex shell theories (e.g., Sanders

theory [97]) are capable of reproducing the results of MD simulations.

Reviewing literature, it can be seen that shell theories are favorable in predicting the
buckling behavior of CNTs where beam theories are more favorable in predicting the

vibration characteristics of CNTs.

2.3.5. Nonlocality

Although classic continuum models can provide quick and approximate predictions,
they fail to account for the size effects. Size effects are emerged from the non-contact
interaction of atoms and molecules due to atomic forces such as van der Waals force.
In recent years, several research efforts have been conducted to bring in the scale
effects within the formulation by modifying the traditional classical continuum
mechanics. One widely used size-dependent theory is the nonlocal elasticity theory
presented by Eringen [41]. In the nonlocal elasticity theory, the small-scale effects are
captured by assuming that the stress at a point is a function of the strains at all points
in the domain [41]. Hence, unlike classical elasticity theory, nonlocal theory can
consider long-range inter-atomic interactions where it yields in the results dependent
on the size of a body. Some other theories which also capture the size effects include
couple stress elasticity theory, strain gradient theory, and modified couple stress

theory.
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Nonlocal Euler—Bernoulli model is used by Peddieson et al. [98]. They studied the
effect of nonlocality on static deflection of cantilever beams. Sudak [99] used the
nonlocal elasticity for column buckling. Wang and Liew [100] studied scale effect on
static deformation of micro and nano tubes using nonlocal Euler—Bernoulli and
Timoshenko beam theories. In recent years, wave propagation and vibration of CNTs
are studied by several researchers using beam theories [101-106]. A review on
application of nonlocal theories in modeling of graphene sheet and CNTs can be

found in [107].

In a study, Hu et al [108] compared the nonlocal continuum shell model and molecular
dynamic simulation for wave propagation in SWCNTs and double walled carbon
nanotubes (DWCNTs). Figure 2-4 shows the dispersion relations between the phase
velocity and the wavenumber of the transverse wave in the armchair (15,15) SWCNT
and zigzag (20,0) SWCNT. Good agreement is predicted between molecular dynamic
simulations and nonlocal continuum modeling. The accuracy and limits of nonlocal

theories are studied in [90, 109, 110]
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Figure 2-4 Dispersion relation of transverse wave in the (a) armchair (15,15) carbon
nanotube and (b) zigzag (20,0) carbon nanotube, Taken from [108]
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2.4. Nonlinear vibration of carbon nanotubes

In the past decade, linear elastic beam models and elastic shell models have been
effectively used by researchers to predict resonant frequencies of CNTs. However,
recent studies show that CNTs are affected by nonlinearities such as geometric
nonlinearity, van der Waals interlayer nonlinear force, and initial curvature

nonlinearity.
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Lee at al. [111] were one of first who experimentally studied statics and nonlinear
bending dynamics of a CNT used in atomic force microscopy (AFM). In AFM
applications, CNT tips are considered advantageous since they have small tip radii, a
high length-to-diameter aspect ratio, a well-defined atomic configuration, a high wear
resistance, and significant bending flexibility [112]. Figure 2-5 shows the MWCNT
probe used by Lee at al. [111]. They studied the deformation of the CNTs as it
approaches and retracts from the surface (Figure 2-6). They observed that as the tip
gets close the surface (from A to F), the cantilever first snaps into contact with the
sample and then bends linearly from point B to C as the CNT tip gets closer to the
surface. From point C the cantilever exhibits a nonlinear deflection with increasing
deflection. The MWCNT buckled at point D. Furthermore, they studied the dynamics
of'the tip as its travel distance, Z , decreases. Figure 2-7 shows the frequency response
of the tip around its first natural frequency. It can be seen that the response is linear
when CNT tip is far away from the sample. As the distance between tip and sample
decreases to 65 nm, the amplitude of vibration is reduced and saturates in the
frequency range where it taps on the sample. Further decrease in Z develops a distinct

feature where a jump in frequency can be detected.

|

Figure 2-5 The MWCNT probe tip (SEM micrograph) used in the experiments by [111].
The MWCNT is approximately 7.5 um long and 10 nm in diameter.
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Figure 2-6 (a) The tip deflection as it approaches and retreats from surface. (b) Schematic
diagrams of the tip deflection at selected point during approach and retreat, Taken from

[111]
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Figure 2-7 Frequency response of the MWCNT tip around its first natural frequency [111]
Later, studies confirm that deformation of CNTs are nonlinear in nature. Hence, static
and dynamics properties of CNTs can accurately be anticipated only when the
nonlinearities in the geometry and physics are considered. Fu et al. [113] were the
first who studied the nonlinear vibrations of CNTs due to large deformations
(geometric nonlinearity) using Euler-Bernoulli beam theory. Later, Based on

Donnell’s cylindrical shell model, Yan et al. [39] investigated the nonlinear
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vibrational behavior of a double wall carbon nanotube (DWCNT) due to large
deformations; whereas, Ke et al. [34] studied the same problem by using Timoshenko
beam model. It is worth noting that nonlinear phenomenon such as bifurcation and
chaos can only be studied when nonlinearities are considered. Moreover, since
Young’s modulus is measured using the vibration methods, accurate measurements
can only be obtained when nonlinear effects are considered. In a similar manner, all
the vibratory applications of CNTs are affected by the same fact. For example, nano
mass sensors work based on the shift in natural frequency therefore the precise mass
is obtained only when nonlinearities are accounted. The importance and effects of
nonlinearities have been studied by several researchers [114-118] in the past few
years. These studies offer understanding and strategies to deal with the nonlinear

behavior of CNTs.

Recently, in nano letters, Cho et al. [119] showed that it is possible to use nonlinearity
of a resonator to improve its performance. It should be noted that, in the linear
operation rage, the small size of a resonator reduces its dynamic range down to the
few nano meter. Whereas, the small vibration amplitudes complicate the development
of the required measurement system and accordingly limits its sensitivity, especially
under ambient and room temperature environments [120]. Figure 2-8 shows the
scanning electron microscope (SEM) image of fabricated resonator by [119].
According to this study [119], the measurement sensitivity of the mass sensor
increases 3.7 times by measuring the drop off frequency instead of the linear
frequency shift. Figure 2-9 shows the frequency response of the resonator which
shows a hardening behavior with a jump from higher amplitude to lower amplitude
as frequency increases. The large amplitude and sharp change are favorable properties
for the precision measurements. Furthermore, the large vibration amplitude indicates
less susceptibility of the resonance system to the thermal noise, and a sharp transition

allows for a narrow measurement bandwidth.

In the past years, several applications for CNTs are proposed where CNTs have length
to diameter ratio between 10 and 20. Studies show that, in these cases, the radial
relative displacement between layers of MWCNTSs can play an important role. Results

[22, 73] show that the out-of-phase vibration mode of MWCNTSs are excited at
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ultrahigh frequencies (above 1 THz) where it has a characteristic wave number just

few times bigger than the diameter of CNT.

Figure 2-8 Fabricated nonlinear carbon nanotube resonator, Taken from [119]
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Figure 2-9 The response spectrum of the nonlinear CNT resonator (O) before
and (*) after adding a center mass [119]
The distortion by out-of-phase mode could significantly affect some important
physical properties) of MWNTs such as electronic and optical properties. Therefore,
it is important to study the out-of-phase vibration mode. The interlayer force between
layers of CNTs is governed by van der Waals force (vdW). The vdW force estimated
by Lennard-Jones potential is inherently nonlinear [48-50]; hence, the nonlinearity of
vdW force should be considered in order to accurately determine the vibrational
behavior of MWCNTs. Xu et al. [51] were the first who study the nonlinear
vibrational behavior of DWCNTs having interlayer nonlinear vdW forces between
the inner and outer tubes. Authors showed that the nonlinear behavior of vdW force
affected the deflection amplitudes especially in the case of out-of-phase vibration

mode, whereas in the case of in-phase vibration mode this effect is very little [52, 53].
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The effect of vdW force on nonlinear natural frequencies of DWCNTs is investigated
by Cigeroglu and Samandari [121] using describing function method and utilizing
multiple trial functions in Galerkin method. It is observed that utilization of multiple
trial functions resulted in the determination of multiple nonlinear natural frequencies
at the same vibration amplitude and identification of single nonlinear natural
frequencies associated with different vibration amplitudes. Later, authors confirmed
their results using differential quadrature method [122]. Figure 2-10 shows a
comparison between different available data in literature for DWCNTs vibrating in

the out-of-phase vibration mode.
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Figure 2-10 Comparison between available data in literature for a DWCNT vibrating in the
out-of-phase vibration mode

Furthermore, recent studies show that CNTs are not straight and have a certain amount
of waviness or initial curvature. The initial curvature can be introduced during
fabrication or manufacturing processes due to the pre-stresses and boundary effects.
Mehdipour et al. [123] studied the nonlinear forced vibration of a curved SWCNT
embedded in Pasternak elastic foundation. They used He’s Energy Balance Method
to obtain the relationships of the nonlinear amplitude and frequency. Similar problem
is studied by Samandari and Cigeroglu [124] using multiple harmonic balance

method. They showed that the nonlinear effects of initial curvature only appear in

33



higher harmonics. Mohammadi et al. [125] study post buckling instability of
nonlinear CNT with initial curvature embedded in elastic foundation. They show that
the bifurcation diagram of a curved CNT with initial sinusoidal configuration is

similar to that of a straight CNT in its nearest buckling mode.

In recent years, chaotic and non-harmonic response of CNTs attracted attention of
few researchers. Mayoof and Hawwa [126] studied the possibility of a chaotic
response for a curved single walled carbon nanotube near its first natural frequencies.
They observed that as excitation force amplitude increases more than a certain value,
period doubling occurs in which it is followed by a chaotic behavior. Figure 2-11
shows the bifurcation diagram around the first natural frequency of the CNT where it
shows the maximum vibration amplitude of the CNT respect to excitation force
amplitude. However, their studies [126] show that the chaotic behavior happens at
high vibration amplitudes. Therefore, since in all the studies in literature on free
vibration of CNTs and the present study, vibration amplitudes are limited to 3 nm, it
can confidently concluded that the harmonic response assumption remains valid for

these vibration amplitudes.

In the past decade, nonlinear vibrations of CNTs are studied by several researchers.
Table 2-3, Table 2-4, Table 2-5, and Table 2-6 present the result of the performed
investigation in this thesis on the recent literature of nonlinear vibrations of CNTs in

chronological order.
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Figure 2-11 Bifurcation diagram of a carbon nanotube resonator near its first natural
frequency, taken from [126]

34



Table 2-3 Theoretical methods for studying the vibrational characteristics of CNTs, part-1
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Table 2-4 Theoretical methods for studying the vibrational characteristics of CNTs, part-2
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Table 2-5 Theoretical methods for studying the vibrational characteristics of CNTs, part-3
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Table 2-6 Theoretical methods for studying the vibrational characteristics of CNTs, part-4
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2.5. Concluding remarks

A comprehensive review on the different modeling techniques in studying linear and
nonlinear vibration of CNTs is provided in this chapter. The modeling techniques for
CNTs can be grouped into three major groups of atomic simulations, continuum

mechanics simulations and nonlocal continuum mechanics simulations.

The atomic modeling methods include molecular dynamic (MD) and ab initio
simulation methods. MD simulation methods relay on the basis of second Newton’s
law whereas ab initio relays on solving Schrédinger equation which is accurate and
potential free method. Even though atomic methods can provide considerable amount
of information to understand the behavior of a structure in nanometer scales, they are
limited by the size of such atomic systems due to highly time consuming
computational requirements and the complexity of the formulations. As a result,
studies based on atomic simulations are mostly focused on predicting the Young’
modulus and linear free vibration of CNTs where vibration amplitudes are limited to

few nano meter.

In recent years, continuum modeling methods originated from continuum mechanics
are used to study the mechanical properties of CNTs. In these studies the lattice
structure of a CNT is replaced with a continuum medium. As a result, the continuum
modeling cannot address the chirality effect of CNTs. The validity and accuracy of
continuum models in predicting the buckling and bending behavior of CNT is studied
by several researchers. Although the mechanical properties of CNTs are extensively
depend on the chirality of CNTs, early studies show that, with a tuning, the key
parameters that affect the mechanical characteristics of CNTs can be easily studied

using simple equations of motions offered by the continuum models.

Furthermore, although classic continuum models can provide quick and approximate
predictions, they fail in predicting the size effects. Size effects are originated by the
non-contact interaction of atoms and molecules of the material. In recent years, the
traditional classical continuum mechanics are modified by several researchers in order
to bring in the scale effects within the formulations. The nonlocal elasticity theory
presented by Eringen [41] is commonly used by researchers to study vibrations of
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CNTs where it has both the accuracy and simple formulation. In the nonlocal elasticity
theory, the small-scale effects are captured by assuming that the stress at a point is a
function of the strains at all points in the domain [41]. Therefore, unlike the classic
elasticity theory, nonlocal theory can include long-range inter-atomic interactions;
thus, it yields in the results dependent on the size of a body. Some other theories which
also capture the size effects include couple stress elasticity theory, strain gradient
theory, and modified couple stress theory. Studies show that nonlocal continuum can
be an acceptable approach to overcome the shortcomings of atomistic simulations.
However, as to this date, MD simulation provides much reliable predictions, thus it

can be used to verify results from other solution methods.

Comparing results in literature obtained from MD methods and continuum methods,
it can be concluded that Euler-Bernoulli beam is reliable in predicating the mechanical
properties of CNTs when the length to diameter ratio (aspect ratio) is higher than ten
(L/D=10) whereas Timoshenko beam is more reliable for the length to diameter
ratio smaller than 10 and higher bending modes. Between shell theories, the Donnell
thin shell theory is unable to include the length dependent critical strains when aspect
ratio is smaller than eight whereas Sanders shell theory is accurate in predicting
buckling strains and mode shapes of axially compressed CNTs with small aspect

ratios.

Recent theoretical and experimental studies show that the deformation of CNTs is
nonlinear in nature and it is possible for CNTs to go through large deformations in
their elastic region. Studies show that nonlinear natural frequency changes
considerably as vibration amplitude increases more than few nano meter. Therefore,
it is very important to include the nonlinearity in identifying of the mechanical
properties of CNTs. Furthermore, depending on the geometry, phenomenon such as
jump and chaos is detected for CNTs theoretically and experimentally. Geometric
nonlinearity of CNTs is studied by several researchers in the past few years using
different methodologies. Most of these studies are concentrated on understanding the
effect of geometric nonlinearity so that its effect can be filtered out for the linear
applications. However, for linear operation, the small size of a CNT reduces its

dynamic range down to the few nano meter which limits its sensitivity, especially
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under ambient and room temperature environments. Recently, it is been suggested by
researchers to improve the efficiency of a CNT resonator using its nonlinear
characteristics. It is worth noting that nowadays nonlinearities have been successfully
used in application such as energy harvesting to improve their efficiency and
bandwidth. Hence, the nonlinear characteristics of a CNT resonator can be integrated
into the ongoing development of nano scale electromechanical systems to extend their

operation limits.

In early studies, tubes of CNT are considered as single beam where interlayer
displacement between layers of nanotubes is disregarded. However, with introducing
applications such as atomic force probe and mass sensor which have aspect ratio
around 10 to 20, the interlayer displacement gets important. The interlayer force
between layers of CNTs is governed by van der Waals force (vdW). The vdW force
estimated by Lennard-Jones potential is inherently nonlinear. Studies show that
nonlinear natural frequency increases as vibration amplitude increases due to vdW
force when the CNTs vibrate in the out-of-phase vibration mode. Moreover, the
highly nonlinear behavior of the tubes resulted in identification of single nonlinear

natural frequencies associated with different vibration amplitudes.

The subject area of carbon nanotube structures is developed in the past few years
considerably; however, it is still in its early stages and new applications, literally
every day, are introduced by researchers. Furthermore, studies show that these
structures are strongly nonlinear. Hence, it is clear for authors that future studies will
be directed toward understanding the nonlinear vibration behavior of these structures
in practice as well as using potential capacities of the nonlinearities in order to extend

their operational capabilities.
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CHAPTER 3

ON THE NONLINEAR VIBRATION OF DOUBLE WALLED
CARBON NANOTUBES WITH CONCENTRATED MASS*

Mechanical resonators are commonly used as a tool to detect small quantities of the
adsorbed mass through shifts in the natural frequency. Recent advances in lithography
and materials synthesis have enabled the fabrication of nanoscale mechanical
resonators. These resonators can be used in application such as atomic probes or

atomic mass Sensors.

In this chapter, nonlinear free vibration of a simply supported double walled carbon
nanotube (DWCNT) with a concentrated-mass is investigated. The proposed model
simulates behavior of a nonlinear DWCNT mass sensor where the concentrated mass
stands for the absorbed mass. Furthermore, for the first time in this chapter, the effect
of both geometric and van der Wall force nonlinearities on the variation of nonlinear

natural frequency of CNTs is studied.

3.1. Introduction

In recent years, vibrational behavior of CNTs studied by a number of researchers [44,
159, 160] where, the continuum mechanics approach is used [161, 162]. Using simple
equations of motions offered by the continuum models, key parameters that affect the
free vibration of CNTs can be easily studied. In the majority of these studies [42, 43],
linear models are used to study the vibrational behavior of CNTs. However, it is

observed from the experiments that CNTs show nonlinear behavior as their vibration

4 A version of this chapter is published in the proceeding of the 15th International Conference on
Machine Design and Production, June 19 - 22, 2012, Pamukkale, Denizli, Turkey as “Nonlinear Free
Vibration Analysis of Double Walled Carbon Nanotubes with a Concentrated-Mass”.
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amplitude passes a certain value. As a result, in order to consider a more realistic

model for CNTs, nonlinear continuum beam models are developed.

Fu et al [44] were the first who studied the nonlinear vibration of carbon nanotubes
caused by large deflections. They showed that the nonlinear natural frequency of
carbon nanotubes increases considerably as the vibration amplitude increases. Later,
their work followed by several researchers. However, reviewing literature, it can be
observed that in the majority of the studies concerning nonlinear vibrations of
MWCNTs, the interaction pressure between adjacent tubes is linearized and is
assumed to depend linearly on the difference of the radial deflections. It should be
noted that the interlayer force between layers of CNTs is governed by nonlinear van
der Waals force (vdW) as estimated by Lennard-Jones potential [48-50]. Therefore,
the nonlinearity of vdW force should be considered in order to determine the
vibrational behavior of MWCNTs accurately. It is worth mentioning that the
nonlinear vibrational behavior of DWCNTs considering only nonlinear interlayer
vdW forces between adjacent tubes was studied in [52, 159, 163]. However, in all of
these studies, the effect of geometric nonlinearity is disregarded. Hence, in this
chapter for the first time, considering the effect of both geometric and vdW force
nonlinearities, nonlinear free vibrations of a DWCNT with a concentrated-mass is
studied. Galerkin method is used to discretize the continuous partial differential
equation of motion and harmonic balance method is used to convert the nonlinear
discretized differential equation of motion into a set of nonlinear algebraic equations

which are solved by a nonlinear equation solver [164, 165].
3.2. Equation of motion using Euler-Bernoulli beam model

A DWCNT with a concentrated mass is shown in Figure 3-1, where L, A, E, I, p
,M,, L, and K are the length of the CNT, cross-sectional area, Young’s modulus, area
moment of inertia, density, mass of the concentrated mass, position of the
concentrated mass and the stiffness per unit length of elastic medium, respectively. It
is worth noting that, in case of DWCNT, two concentric tubes will interact with each
other due to the molecular van der Waals pressure. This pressure acting on the two

adjacent tubes depends on the difference between the transverse deflections of the
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inner and outer tubes. The free vibration equation of embedded nanotubes considering

both geometric and vdW force nonlinearities are [123, 166, 167]°

Ea(; + A‘atz.{ j(aa] } f(xt),
e om0 G (B

. (BD

zZ,w 7

Figure 3-1 Model of an embedded DWCNT.

where i and 0 indicate the inner and outer tubes, respectively, §(x) is the Dirac delta

function. f(x,t) is the nonlinear van der Waals force, which is given by [168, 169]

as follows
f(xt)=p(w,—w)+ p3(wo—wi)3, (3.2)
and
2]

p,=291 2R =-48KR

85 5=

‘ . (3.3)

o'U
Py =— 2R, =-3984K R,

65 5=4,

K=-61.665 meV/atom, R is the inner tube radius, and &, is the equilibrium

interlayer spacing which has a value of 0.34 nm. For equilibrium spacing, i.e. 6 =4, ,

3 The derivation for the nonlinear equation of motion due to stretching of mid-plan is given in Appendix
A
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the vdW force is equal to zero. U is the interlayer potential per unit area, which can

be expressed in terms of the interlayer spacing & as

Us)=K K%T - o.4(%ﬂ . (3.4)

Note that 6 -6, =w, —w, [163]. From Eq. (3.3), it can be observed that the value of
p, is approximately two orders of magnitude larger than the value of p, . Substituting

Eq. (3.2) into Eq. (3.1) results in the following nonlinear partial differential equations
of motion for the DWCNT

o*w oW,
El. L+ L=
e PA e

EA i oW ’ aZWi 3
oL }[[ axj dx} P P (W, —w, )+ py (W, —w; ), (3.5)

° oxt ox 0

o, o, EA F(ow, ) . |&°w,
Bl,— 3+ (PA + MoS (x- L)) — +W%:{§f£( ]dx X (3.6)

_pl(Wo _Wi)_ P, (Wo _\Ni)3
3.3. Solution method

In order to discretize the partial differential equations given by Egs. (3.5) and (3.6),

Galerkin methods is used where the following form of solution is assumed
W, (6,1 =4 (X)W, (). 3.7

Subscript k =i,0 stand for innertube and outertube, respectively. W, (t) is the r"

generalized coordinate and ¢, (X) is the r" eigen-function of simply supported linear

CNT. The boundary conditions for simply supported CNT can be given as follows

W, (0,t) =w, (L,t) =0, (3.8)
2 2

dw | _dwi g (3.9)
dx* |, d? |
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Mass normalized eigen-functions of a simply supported CNT can be expressed as

follows

B, (X) = /pikLSin(rLij’ F=1,2,--. (3.10)

Substituting Eq. (3.7) into Egs. (3.5) and (3.6), multiplying both sides by ¢, (x) and

integrating over the domain, the discretized nonlinear ordinary differential equations

of motion in W, ,(t) is obtained as follows

d’W, (1) Elz'r?
2 + 4
dt pAL

EAZ'r?
41t

3 P,
W (t W2 () ———|W__(t)-W. (t
LD 0= W, 0 W, ]

: (3.11)

-pp;\ [fo=3f+3f, =, ]=0

2 dzw t 4.4 4.2
12 2M .n(mLcj °’{()+ Elofrl; Lk Wor(t)+EA)ﬂ4r WE (0
L dt pAL  pA ) 4L ’

o WM, 0]+ L3030 - 1,]-0

. (3.12)

= (0 0w, 0 1 o G.13)

oo = j((¢ (W, (6 (4 (ML, (6) ks (4) o (3.14)
fos= I((¢ (X)W, (t))(¢, (X)W, (t))2 b (x))dx, (3.15)
foo= f((q, (ML, (1)) ds ()i (3.16)

It should be noted that two nonlinear ordinary differential equation of motions are

obtained for each eigenfunctions, where the nonlinear terms are expressed by f, ;. In
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this study only the undamped nonlinear natural frequency of DWCNTs is
investigated; hence, any form of damping, structural and viscous damping, are

neglected. Assuming a harmonic solution in the following form
W, (t)=a,sin(at), (3.17)

and substituting it into Eq. (3.11) and (3.12), the following set of nonlinear algebraic

equations is obtained

El,z*r* EAZ'r’
|:_a)r2ai,r + ad 4 a'i,r + A172-4 a'i3,r P |:a'0,r -8 r:|
PAL 4L PA

) (3.18)
_;_,f-\[gk’l =30,,+30,5 - gk’J}sin ,t+ O (higher harmonics) = 0

0 2m, . (raL Y Elz'r" &k EAZ'T?
-, | 1+ ——=sin a,, + —t— |, + —a
PAL L PAL  pA ) T 4L &

p] p3 . . .
+——a,, —a, |[+——| 0, =39, +30,,—9 }sm ,1)+ O (higher harmonics ) =0
oA [ . . ] PA [ kil k.2 k3 k.4] (1) +0( )

. (3.19)

where

00, = 2220 (g, (X). (X))o, (3.20)

9. = (2, ()4, (X)6 () (321)

s = 222 (g, (), (X) (X)) (322)
38 o

Oy = 4’ J'(gb,yr(x)gék,s(x))dx. (3.23)

Disregarding the effect of higher harmonic terms, a set of two nonlinear algebraic

equations is derived for the r" eigenfunction as follow

(K—a)f-M)-xr-l—a-x?-l—gN(xr):O, (3.24)
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1 0
M= 2M, . (rmjz , (3.25)
0 1+—=Ssin| —
pAL L
ElLz*r* ¢ C
+
PAL  pA PA
K= 3.26
G El,zr* ¢ | (3.26)
PA, PAL  pA,
EAZ'r?
Al ’ 327
*= EAZ'T |’ (3.27)
0
414
—-C,-(9.,-39.,+30,, — 0,
gN(X): 3 (gl,l gu,z g|,3 g|,4) , (328)
C3 '(go,l _390,2 +3go,3 - 90,4)

ai,r ai,r3
X, :{ao,r}’ X, :{aoyf}. (3.29)

In order to solve the resulting nonlinear algebraic equations given by Eq. (3.24),
Newton’s method with Homotopy continuation and Arc-length continuation is used,

details of which can be found in [165].
3.4. Results

In this section, nonlinear free vibration of simply supported DWCNT with a
concentrated-mass is investigated. The material and geometric parameters of the
simply supported DWCNT used in this study are given in Table 3-1 [163]. It is worth
to present characteristics of the linear system before investigating the effects of

nonlinearities.

Natural frequencies of the linear system without the concentrated-mass are given in
Table 3-2 together with the modal coefficients of the inner and outer tubes. Since the
equation of motion is composed of two partial differential equations, there exist two
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natural frequencies corresponding to the in-phase, and out-of-phase vibration modes.
In the former case, inner and outer tubes move in the same direction; whereas, for the
latter case, they vibrate in opposite directions. The coefficient of mode shape of each
CNT is as well given in the table, where a sign difference indicates the out-of-phase
mode, which are also plotted in Figure 3-2. The effect of concentrated mass on the
natural frequencies of the DWCNT, is presented in Figure 3-3. It is observed that as
the mass ratio increases, the linear natural frequency decreases for both natural

frequencies, which is an expected result.

Table 3-1 Numerical Values of DWCNT Parameters [163]

Parameter value

Inner radius of innertube | 0.35 nm

Outer radius of outertube | 1.4 nm

Density of tubes 2.3 gr/cm’?
Young modulus of tubes | 1 TPa
Thickness of tubes 0.34 nm

In the following section, the effect of concentrated-mass on the first in-phase and out-
of-phase nonlinear natural frequencies of a DWCNT is studied considering the effect
of' mass ratio and the position of the concentrated-mass. In addition to these, as a final
case study, the effect of medium stiffness on the nonlinear natural frequency is
investigated. It should be noted that the nonlinear natural frequency is normalized

with respect to the corresponding linear natural frequency, ,, of the simply
supported DWCNT with a concentrated-mass , and the vibration amplitude, a, , is

normalized with respect to r=/I,/A .

Table 3-2 Natural frequencies of DWCNT without concentrated-mass

Eigen-functions sin 2%

In-phase frequency [THz] 0.4673
Coefficient of Mode Innertube 1

Shape Outertube 0.997

Out-of-phase frequency [THz] 7.8852
Coefficient of Mode Innertube 1

Shape Outertube -0.502
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Figure 3-2 First two linear mode shapes of DWCNT a) in-phase b) out-of-phase
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Figure 3-3 Variation of the first two linear natural frequencies against increasing
concentrated-mass (position of the concentrate-mass is at the middle of the DWCNT) a) in-
phase b) out-of-phase

3.4.1. Effect of key parameters in the first in-phase vibration mode

In Figure 3-4, the variation of the normalized nonlinear natural frequency of the first
in-phase vibration mode, considering only the geometric nonlinearity, is presented for
different ratios of the concentrated-mass to total CNT mass. Position of the
concentrated mass is kept constant at the middle of the outertube. It is observed that
the normalized nonlinear natural frequency is not affected by the variation of the mass
ratio. It is worth noting that as the mass ratio increases, the nonlinear natural
frequency decreases; however its variation after normalizing with respect to the linear
natural frequency is the same for all mass ratios. On the other hand, in Figure 3-5, the
variation of normalized nonlinear natural frequency is plotted in presence of only
vdW force nonlinearity considering different mass ratios. It is seen that the slope of
the normalized nonlinear natural frequency decreases as the mass ratio increases. It
should be noted that the deviation of the nonlinear natural frequency from the linear

one in the presence of only vdW force nonlinearity is negligible. This is an expected
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result, since vdW force nonlinearity depends on the relative motion between the inner

and outer tubes and in case of in-phase vibration modes, this difference is very small.

Considering both the geometric and vdW force nonlinearities, the variation of the
normalized nonlinear natural frequency is given in Figure 3-6 for different values of
mass ratio. Since the effect of vdW force nonlinearity is small in comparison to
geometric nonlinearity in the first in-phase mode, it can be seen that the variation of
the normalized nonlinear natural frequency is identical to the results given in
Figure 3-4. Similar results can be obtained if the effect of position of the concentrated-
mass is studied. For instance, the variation of the normalized nonlinear natural
frequency in the first in phase mode is given in Figure 3-7 in existence of only vdW
force nonlinearity. It is observed that as the concentrated mass moves away from the

center of the outertube the normalized nonlinear natural frequency increases.
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Figure 3-4 Variation of normalized nonlinear natural frequency in the presence of only
geometric nonlinearity in the first in-phase vibration mode
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3.4.2. Effect of key parameters in the first out-of-phase vibration mode

In Figure 3-8 to Figure 3-10, the variation of the normalized nonlinear natural
frequency is given for the first out-of-phase vibration mode considering different
mass ratios in presence of only geometric nonlinearity, only vdW force nonlinearity
and both of nonlinearities keeping the concentrated mass at the middle of the
outertube, respectively. It can be observed that in the first out-of-phase vibration
mode, as the mass ratio increases the effect of the nonlinearity increases as well. A
similar effect is observed for the case with only vdW force nonlinearity; whereas, in
this case, the variation of the nonlinear natural frequency is significantly high.
Therefore, considering both nonlinearities the effect of geometric nonlinearity is not
visible. This is an expected result, since vdW force nonlinearity depends on the
relative motion between the inner and outer tubes and in the case of out-of-phase
vibration mode, this difference is significant. Similar behavior can be identified for
position effect of concentrated-mass where it can be observed that as position of the
concentrated-mass gets closer to the maximum point of vibration amplitude (i.e. the

midpoint), the effect of the nonlinearity increases (Figure 3-11).
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Figure 3-8 Variation of the normalized nonlinear natural frequency in the presence of only
geometric nonlinearity in the first out-of-phase vibration mode
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Figure 3-11 Variation of the normalized nonlinear natural frequency in the presence both
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3.5. Effect of medium stiffness on the first out of-phase nonlinear natural

frequency

Figure 3-12 and Figure 3-13 show the variation of the nonlinear natural frequency of
the outertube against the normalized maximum vibration amplitude for different
values of medium stiffness vibrating in the first out-of-phase mode. In these analyses,
the concentrated mass is kept at the midpoint of the outertube with a mass ratio of 2.5.
It is seen that as the medium stiffness, K , increases, the nonlinear frequency tends to
approach the linear one. Moreover, it is observed in the first out-of-phase mode that
the normalized nonlinear natural frequency curves can be represented by two lines
having different slopes. As the medium stiffness increases the break point shifts to a
higher vibration amplitude and further increase of the medium stiffness results in a
turning point where multiple solutions at a single vibration amplitude can be
observed. It should be noted that the turning point is not detected for the case with no
concentrated-mass. In Figure 3-14, for constant medium stiffness of 1.2x10'2 N/m?,
the variation of nonlinear natural frequency against normalized maximum vibration
amplitude is given for several mass ratios. The break point moves towards left and
the slope of the curves increases as the mass ratio increases. The slope of the part after

the break point increases and at a certain value it becomes nearly perpendicular to X
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axis. Increasing the mass ratio more than this value results in a turning point; hence,

multiple solutions at a single vibration amplitude exist.
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Figure 3-12 Variation of the normalized nonlinear natural frequency for different values of
medium stiffness in the first in-phase vibration mode
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3.6. Concluding remarks

In this chapter, nonlinear free vibration of a simply supported double walled carbon
nanotube is investigated where geometric and vdW force nonlinearities are included
in the analyses. Galerkin method is used to discretize the continuous differential
equation of motion. The discretized ordinary differential equation of motion is
converted into a set of nonlinear algebraic equations by using harmonic balance
method with a single harmonic term. The resulting nonlinear algebraic equations are
solved by using a nonlinear equation solver. Results show that, in the first in-phase
vibration mode, the normalized nonlinear natural frequency of DWCNT is not
affected by the concentrated-mass where only geometric nonlinearity exists. On the
other hand, for the case of vdW force nonlinearity, the normalized nonlinear natural
frequency is affected; but, this effect is very small. Moreover, it can be seen that in
the presence of vdW force nonlinearity, as mass ratio increases or the position of
concentrated-mass gets closer to the maximum point of vibration amplitude of
DWCNT (i.e. the midpoint), the curves tend towards the linear natural frequency of
system. However, for the case of vdW force nonlinearity the change in the normalized

nonlinear natural frequency is very small.

Similarly, the first out-of-phase mode of DWCNT is studied, where It is observed that
as the mass ratio increases, the slope of the normalized nonlinear frequency curves

increases in the case of geometric and vdW force nonlinearities; however, the effect
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of vdW force nonlinearity is significantly higher than the effect of geometric
nonlinearity. Moreover, the effect of medium stiffness in presence of geometric and
vdW force nonlinearities is investigated. Results show that for the increasing values
of medium stiffness, the nonlinear natural frequency of the in-phase and out-of-phase
vibration modes tends to the linear natural frequency of the system. However, for the
case of out-of-phase vibration mode, the curve can be represented by two lines having
different slopes. Increase of medium stiffness or the decrease of mass ratio shifts the
break point at higher vibration amplitudes and at specific medium stiffness and mass
ratio a turning point, which resulted in multiple nonlinear natural frequencies at a
single vibration amplitude, is observed. Moreover, this phenomenon cannot be
obtained when there is no concentrated mass on the DWCNT. Since nano sensors
works on the basis of shifts in natural frequency due to absorbed nanoparticle, results

of the present study can be used in the development of nonlinear nano mass sensors.
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CHAPTER 4

NONLINEAR FREE VIBRATION OF DOUBLE WALLED CARBON
NANOTUBES BY USING DESCRIBING FUNCTION METHOD WITH
MULTIPLE TRIAL FUNCTIONS?®

This Chapter deals with implementing describing function method (DFM) with
multiple trial functions in order to get a better approximation of the system mode
shape. Using DFM, nonlinear free vibration of double walled carbon nanotubes
(DWCNTs) embedded in an elastic medium with both geometric nonlinearity and
interlayer van der Waals force nonlinearity are studied. The motion of the DWCNT
is represented by multiple eigenfunctions of the linear system which are referred as

trial functions.

4.1. Introduction

Reviewing the literature on nonlinear vibrations of CNTs it has been observed that,
in all of the studies, single trial function assumption is used to study the system
behavior where the trial function is considered to be the exact eigenfunction of the
relevant linear system. However for nonlinear systems, the resulting nonlinear
eigenfunctions can be significantly different than the eigenfunctions of the linear
system, and depending on the nonlinearity, it may not be possible to capture the
nonlinear characteristics by using a single trial function [56]. It should be noted that
even for linear systems, in order to solve the eigenvalue problem, multiple trial

functions are needed unless the exact eigenfunctions of the system are known.

6 A version of this chapter is published in the Physica E: Low-dimensional Systems and Nanostructures
as “Nonlinear Free Vibration of Double Walled Carbon Nanotubes by Using Describing Function
Method with Multiple Trial Functions”
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In this chapter, multiple trial functions are used to investigate the nonlinear free
vibrations of DWCNTSs. In addition to this, a new solution approach, describing
function method (DFM), is proposed to solve the resulting system of nonlinear
differential equations. DFM [170-174], in comparison to solution methods like
variational approach [175], or differential quadrature method [34, 176, 177], has the
advantage of expressing the nonlinear force as a nonlinear stiffness matrix multiplied
by a displacement vector, where the off-diagonal terms of the nonlinear stiffness
matrix can provide a comprehensive knowledge about the coupling between the trial
functions. Using DFM, nonlinear differential equations of motion are converted into
a set of nonlinear algebraic equations, which is solved numerically by using Newton's
method [164, 165] with Homotopy continuation [178, 179] or Arc-Length
continuation [165, 180]. In the following section, equation of motion for DWCNTs is

obtained and the basics of DFM are presented.
4.2. Equation of motion using Euler-Bernoulli beam model

Consider a CNT of length L, cross-sectional area A, area moment of inertia |,
Young’s modulus E, and density o embedded in an elastic medium having a

stiffness per unit length of k as shown in Figure 3-1. Free vibration of a CNT
embedded in elastic medium, considering the geometric nonlinearity due to large

deformations, is governed by [166, 167]

o'w o'w | EAR(owY | |o°w

El —+ pA——=| — || — | dx + p(x,1), 4.1
x PR 2L£(6xj o TP “.1)
z,wr L

__________________________________________________ > h %
0 xX,u

Figure 4-1 Model of an embedded DWCNT
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where w(x,t) is the transverse displacement and P(X,t) is the interaction pressure per

unit axial length between the tube and the surrounding medium, which can be

identified by the Winkler-like model [47, 181] as
p(x,t) =—kw(x,t). (4.2)

The negative sign in the above equation shows that the pressure p(X,t) is opposite to

the deflection of the tube and K is defined by the material constants of the surrounding

elastic medium. Substituting Eq. (4.2) into Eq (4.1), gives

o'w o*w EALawY) | |*w
El —+ pA——+kw=| — || — | dX |—-. 4.3
x P LL!(@J o (4.3)

In case of DWCNT, two concentric tubes will interact with each other due to the
molecular van der Waals pressure. This pressure acting on the two adjacent tubes
depends on the difference between the transverse deflections of the inner and outer
tubes. Assuming that the tubes are vibrating in the same plane; the coplanar transverse
motion of an embedded DWCNT is described by the following coupled nonlinear

partial differential equations.

o'w, o’
S TP T

(4.4)

4

o'w, o*w, EA f(ow, Y . |d%w,
Bl +PA—S +kw0:{—£[ j dx ?—f(x,t),

where f (x,t) is the van der Waals force, i and 0 indicate the inner and outer tubes,

respectively.
4.2.1. Van der Waals force

Van der Waals (vdW) forces are composed of weak attractive forces between atoms,
molecules, and surfaces, in addition to other intermolecular forces [80, 182]. The vdW

force per unit area for two originally concentric tubes is given in [168, 169] as
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Y

F="5 (4.5)

U is the interlayer potential per unit area, which can be expressed in terms of the

interlayer spacing o as

US)=K K%T _ o.4(%ﬂ, (4.6)

Where K =-61.665 meV/atom, and &, = 0.34 nm is the equilibrium interlayer spacing.
For equilibrium spacing, i.e. §=¢,, the vdW force, F, is equal to zero. Moreover,

since the vdW force per unit area is an odd function of the interlayer spacing, the

Taylor series expansion of F about § =&, can be written as follows

U 16U

F= (W, —w ) +—
852 5=0, 6 854 8=06,

(w, —w;)’. (4.7)

The change in the inter-tube spacing is given by 6 -5, =w, —w, [163], then the van

der Waals force per unit length of the CNT is

f(x,t)=p, (W, —w, )+ p, (WO—Wi)3, (4.8)
where
2
0, =291 2R =-48KR,
65 5=0;
! 4.9
o'U
p,=——| 2R =-3984KR.
85 0=0,

where R; is the inner tube radius. It can be observed that the value of coefficient p;,
is approximately two orders of magnitude larger than the value of p,. Substituting Eq.

(4.8) into Eq. (4.4) results in the following nonlinear partial differential equation for
the DWCNT
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o'w, o’w,
+pPA =

El, —

boxt

2L 4L ox ox?

0

&T(%Jz dX:|ﬂ+ pl(Wo_Wi)+ P; (Wo_Wi )3, (410)

o*w,
6X20 Y (Wo _\Ni)_ p; (Wo _Wi)S' (411)

o*w, o*w, EA, f(ow, Y’
El o+ S +kw, =| —>|| == | dx
o TPA T T LL![axj

4.2.2. Describing Function Method (DFM)

Describing Function Method was developed by Tanrikulu et al. [173] which is the
generalization of the method developed by Budak and Ozgiiven [170] for all type of
nonlinearities. Using DFM, it is possible to convert nonlinear differential equations
of motion into a set of nonlinear algebraic equations [170, 172]. DFs are used to
represent nonlinear functions by quasi linear describing functions with amplitude
dependent gains. In this method, a sinusoidal input to the nonlinear function is applied
then the fundamental component of output is considered; hence, describing function
is defined as the ratio of the output to the input. Using the method described in [172],
the nonlinear force vector is replaced by a response dependent matrix multiplied by a
displacement vector. In this section, harmonic response analysis of nonlinear multiple
degrees of freedom (mdof) systems using DFM, reported in [172], is briefly
summarized, then the method is applied to nonlinear free vibration problem of

DWCNTs defined by Egs. (4.10) and (4.11).

Equation of motion of a nonlinear structure in the absence of external forcing can be

written as follows
M- §+C-y+iH-y+K-y+f(y,y,¥,)=0, (4.12)

where f and y represent the internal nonlinear force and displacement vectors, and
M, K, C, H,and i are the mass matrix, stiffness matrix, viscous damping matrix,

structural damping matrix and imaginary number, respectively. Assuming single

harmonic motion, the above equation of motion can be written as

(K-0’M+ioC+iH)-x+f,(x)=0, (4.13)
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where x and f, are the complex displacement amplitude vector, and complex
nonlinear internal forcing vector, respectively. Using describing functions, it is
possible to write f,(x) as a multiplication of a displacement dependent complex

matrix, A and complex displacement vector x, where

Ay =V + kaj and Ay =-v,, (4.14)

j=1
J=k

=—_)(j”Inkj e dy. (4.15)

where v, is the harmonic input describing function and can be described as the
equivalent linear complex stiffness for internal nonlinear force and ny; is the nonlinear

force acting between the k™ and the " coordinates. Using DFM the effect of

nonlinear forces and the locations of the nonlinear elements can be easily identified

[183].

In the next section using multiple trial functions and Galerkin method, partial
differential equations of motion defined by Eqgs. (4.10) and (4.11) are discretized into
a set of nonlinear ordinary differential equations. Then, using DFM, the set of
nonlinear ordinary differential equations is converted into a set of nonlinear algebraic
equations. Finally, the resulting set of nonlinear algebraic equations is solved by using

Newton’s method.

4.3. Solution Method

For the discretization of the partial differential equations given by Egs. (4.10) and

(4.11), using multiple trial functions the following form of solution is assumed

W00 = YW, (04 (0. (4.16)
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Here, n is the number of trial functions considered in the expansion, subscript k = i,o0
stand for innertube and outertube, respectively. W, (t) is the r" generalized
coordinate and ¢, (x) is the r" trial function which is a comparison function satisfying

all geometric and natural boundary conditions. In this paper, free vibration analysis
of a simply supported DWCNT is considered and the boundary conditions for simply

supported case can be given as follows:

W, (0,6) =w, (L,t)=0, (4.17)
d*w, d*w,

_ _o0, 4.18

dx’ o dx? L ( )

Where k=i,0. The trial functions considered are the eigenfunctions of the linear

system which are given as

rzX

¢r(X)=sin(T], r:1,2,"‘,n. (419)

Substituting Eq. (4.19) into Egs. (4.10) and (4.11), multiplying both sides by ¢, (x)

and integrating over the domain, the discretized nonlinear ordinary differential

equations of motion in terms of W, , (t) are obtained as follows

d°W,, (t)  Elz'r
a
-B [Wo,r(t)_wi,r(t)]_ Ps [ f1 -3 fz +3 fz - f4] =0

pAi Wi,r (D"'%Wi,r(t){iszwii (t):|

, (4.20)

dw,  (t fr r’ y
Ab o,r( ) +( Elolii r + k}wo,r (t) +EAbL4rWo,r (t)|:z SZWO%S (t):|
s=1

dt® 4L : 4.21)
+p, [ W, () -W, (1) ]+ p, [ f,=3f, +3f,— £,]=0
f ZEJL. Zn:W (t)sm(mﬂx) 3sinm dx (4.22)
AN T L L) '
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s=1

f, =%i[(2w (t)sin( m;sz)j (ZW (t)sin(sil_x)jsinril_xjdx, (4.23)

f, =%I[(ZW (t)sin mfx)j(iwiys (t)sin(s”TX)] sianLX]dX : (4.24)

25((@ _sax ) . rax
f, _EJ([ZWLS (t)sm(T)j smTde. (4.25)

The total number of nonlinear ordinary differential equations of motion obtained from
Egs. (4.20) and (4.21) is 2n, where the nonlinear terms are expressed by the last three
terms in Egs. (4.20) and (4.21). In this study, only the undamped nonlinear free
vibration of DWCNTs are investigated; hence, any form of damping, structural and

viscous damping, are neglected. Assuming a harmonic solution in the following form
W, (t)=a,,sin(at), (4.26)

and substituting it into Egs. (4.20) and (4.21), and applying DFM the following set of

nonlinear algebraic equations are obtained:

(K- o’M)-x+1,(x)=0, (4.27)
M, ., = ldentity, (4.28)
4 | T
Eli”4 _,_ﬁ 0 | __P 0
PAIT - pA | PA
|
|
0 4Eliﬂ:+ P 0 P
S P PAY PAL PA
2nx2n L 0 i E|07Z'4 i 0
PA, L PALY T pA
i
: 4
0 —& : 0 4 E|07Z' +L
I PA, | PAI" " pA |
, (4.29)
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X=4="t. (4.30)

The mass matrix is an identity matrix which is diagonal. However, the linear stiffness
matrix has some off diagonal terms. The stiffness matrix given by Eq. (4.29) can be
divided into four square matrices as indicated. The diagonal terms in the off-diagonal
matrices are due to coupling between inner and outer tubes due to linear vdW forces.
It should be noted that, since the exact eigenfunctions of the linear system are used in
the expansion theorem, there is no off-diagonal terms in the four sub-matrices which

indicates that there is no coupling between the trial functions employed.

In DWCNTs considered, two major sources of nonlinearity exist: geometric
nonlinearity, and vdW force nonlinearity. By using DFM, the nonlinear force vector,

f, (x), can be expressed as
fN(x)=Ag(x)-x+Av(x)-x, (4.31)

where A, , and A, are geometric nonlinearity matrix and vdW force nonlinearity
matrix. Using Eqs. (4.14) and (4.15), the geometric nonlinearity matrix, A, (x), can

be written as follows by omitting the functional dependence on x for brevity

B 2
r’la,

3Ext &
) R - (4.32)
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Investigating the geometric nonlinearity matrix given by Eq. (4.32), it can be seen

that A, is a diagonal matrix. Therefore, it can be concluded that considering only

geometric nonlinearity, there is no coupling between the trial functions of inner or
outer tubes. Consequently, in the absence of vdW force, each pair of nonlinear
equations defined by Eq. (4.27) can be solved independent from other pairs; hence,
using multiple trial functions or a single trial function does not affect the nonlinear

natural frequencies.

The second source of nonlinearity considered in DWCNTs is due to the interlayer
vdW force which has a cubic form. Similar to the geometric nonlinearity matrix, the
elements of the vdW force nonlinearity matrix can be obtained from Eqgs. (4.14) and
(4.15). An example nonlinearity matrix considering three trial functions is given in
Eq. (4.33). Nonlinear stiffness matrix for higher number of trial functions can be

calculated in a similar manner.

1 I(nl 0 kn4_!_1 I(nl 0 I(n4
E 0 an 0 :K 0 an 0
k. 0 k.,|I k. 0 k
AV=9C3 . L R o, (4.33)
16p _1 nl 0 kn4 : 1 nl 0 k|’14
10k, 0l—[0 Kk, 0
|
L _kns 0 kn3_ : Ab _an 0 I(n3__

where k,(i=1,2,..,5) are given in Appendix A. The nonlinear stiffness matrix is

divided into four square matrices as shown in Eq. (4.33). Similar to the linear case,
the off-diagonal matrices indicates the coupling between the inner and outer tubes
whereas the off-diagonal elements in the four square matrices indicate coupling
between the trial functions used in the expansion process. For the case of three trial

functions, Eq. (4.33), it can be observed that due to the nonzero k,, and Kk, there is

coupling between the 1t and 3™ trial functions of the innertube and similarly there is
coupling between the 1% and 3™ trial functions of the outertube as well. It is worth
noting that the second trial function is not coupled with any other trial functions. This
property is repeated for higher number of trial functions where even trial functions
are not coupled with any other trial function. Therefore, it can be concluded that even
trial functions do not affect the natural frequencies associated with odd trial functions.
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Consequently, nonlinear equations associated with even numbered trail functions can

be solved independent of the other equations.

In this study, since the first in-phase and out-of-phase nonlinear natural frequencies

of a simply supported DWCNT is investigated, only the odd trial functions are

considered and in the following sections, the term for r" trial function stands for the

h

r'" odd trial function.

4.4. Solution of Nonlinear Algebraic Equations

In this study, in order to solve the resulting nonlinear algebraic equations, Newton’s
method with Homotopy continuation and Arc-length continuation is used. The
nonlinear equation of motion given in Eq. (4.27) can be written as a residual vector

function as

Where y =(xT | a))T ,and A is the vibration amplitude at x = x", which is used to

follow the solution path as described by the bottom row of Eq. (4.34). It should be
noted that since the even numbered trial functions are not coupled with other
equations, only odd numbered trial functions are used in Eq. (4.34). Moreover, in this
formulation innertube vibration amplitude is used to follow the path, which can be
replaced with outertube by simply switching the trial functions on the left of bottom
row with the zeros in the middle of the bottom row. Solution of this nonlinear
algebraic equation set can be obtained by utilizing Newton’s method [165], for which

an iteration step is given as follows

T(Yio A (4.35)

Yiok

-1
or(y,A

yk+IZYk_|: v )}
oy

where dr(y,4)/dy is the Jacobian matrix. Newton’s method converges to the correct

solution quadratically if the initial guess is sufficiently close to the actual solution.
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However, convergence problems arise when a solution is around a turning point, since
the Jacobian matrix becomes singular. Moreover, in order to follow the solution
branch even it reverses its direction, continuation parameter A has to be replaced with
another parameter for which it is possible to follow the path. Therefore, an additional
parameter, arc- length parameter, is added to the vector of unknowns, which results

in a nonsingular Jacobian matrix at the turning points.

The new arc length parameter can be defined as the radius of a fictitious n-
dimensional sphere centered at the previous converged solution point. The new
solution will be searched on the surface of this sphere rather than at the next vibration
amplitude. A graphical explanation is given in Figure 4-2, where the fictitious n-
dimensional sphere becomes a circle in the two-dimensional case. It should be noted
that, there exists two solutions, which are the intersection points of the solution path
and the circle as shown in Figure 4-2. Therefore, in order not follow the solution path

backwards, an initial guess close to the next solution point should be used.

Previous Solution

Next Solution

Figure 4-2 Arc-length continuation method

Since vibration amplitude, 4, becomes an unknown, a new equation is needed in
order to obtain the solution. This new equation is the equation of the n-dimensional

sphere centered at the previous solution point which can be given as follows

Aq)'-Aq =5’ (4.36)
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Here, q; is the new vector of unknowns at the i" solution point which is given as

i) = {_)/%(_i')_} ) (4.37)

AQg) =93 =Y - (4.38)
Therefore the new equation added to the system can be written as

h(y iy A)) = AQ(i)T Aq;) — s =0. (4.39)
Therefore, Newton's iteration for the new system of equations becomes

ar(y,2) L or(y,A)]"

|
oy | oA r(Ye, - A4p,)
NP P A P _ D , 4.40
i, =0, oh(y. A) | h(y. 2) h(y g, A (4.40)
oy | oA

Yoy Ay

where the last row of the new Jacobian matrix can be obtained as follows,

{8h(y,/1) | 8h(x,/1)}

i =[2aq,, |- (4.41)

V(i) A0y

4.5. Results

In this section, nonlinear free vibration of simply supported DWCNTs is investigated
by using multiple trial functions. In order to present the results in a proper form, the
nonlinear natural frequency is normalized with respect to the corresponding linear

natural frequency of the simply supported DWCNT, o, , and the deflections, w, (x,t)
, are normalized with respect to ./1,/A . The material and geometric parameters of the

simply supported DWCNT used in this study are given in Table 4-1.
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The first 5 natural frequencies of the linear system and the corresponding
eigenfunctions are given in Table 4-2. Since the equation of motion is composed of
two partial differential equations, for every eigenfunction, two natural frequencies
exist: in-phase, and out-of-phase. In the former case, inner and outer tubes move in
the same direction; whereas for the latter case, they vibrate in opposite directions. The
coefficient of mode shape of each CNT is as well given in the table, where a sign
difference indicates an out-of-phase mode. The first three in-phase and out-of-phase

mode shapes of the system are given in Figure 4-3.

Table 4-1 Numerical values of parameters used

Parameter Value

Inner radius of innertube | 0.35 nm
Outer radius of outertube 1.4 nm

Density of tubes 2.3 gr/cm’?
Young modulus of tubes 1 TPa
Thickness of tubes 0.34 nm

Table 4-2 First five natural frequencies and modes of the linear DWCNT

. . L X| . 2ax| . 3zx| . 4mX| . SxXx
Elgen-functlons SIHT sml— SII’IT Sll’lT SII’IT
In-phase frequency [THz] 0.4673| 1.8595 | 4.0817 | 6.7209 | 9.2723
. Inner tube 1 1 1 1 1
Cocfficient of Mode shape 15y 2 1he [0.097 | 0.949 | 0.761 | 0.424 | 0.182
Out-of-phase frequency [THz 7.8852| 8.0299 | 8.6772 [10.5567(14.3868
Inner tube 1 1 1 1 1

Coefficient of Mode shape 5 o 0 170502] 20527 | 20,657 | -1.179 | -2.744

In the following section, the effect of using multiple trial functions on the first in-
phase and out-of-phase vibration modes of a DWCNT is investigated by presenting
the variation of normalized nonlinear natural frequency with respect to the normalized
maximum vibration amplitude. Firstly, only vdW force nonlinearity is considered and
the effect of using multiple trial functions is investigated. Later, the same study is
repeated considering only the geometric nonlinearity. Finally, considering both
nonlinearities and multiple trial functions, the effect of medium stiffness on the

nonlinear natural frequency of simply supported DWCNTs is investigated.
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Figure 4-3 First three in-phase and out-of-phase linear mode shapes of DWCNT

4.5.1. First in-phase natural frequency considering vdW force nonlinearity

In Figure 4-4 and Figure 4-5, variation of normalized nonlinear natural frequency for
the first in-phase vibration mode of inner and outer tubes are given for the cases
utilizing different number of trial functions. It should be noted that, even trial
functions do not affect other natural frequencies; therefore, the solutions are obtained
by utilizing different number of odd trial functions. Results show that for the first in-
phase vibration mode, increasing the number of trial functions used in the solution

more than two does not affect the nonlinear natural frequency.

In Figure 4-6, amplitudes of the coefficients of trial functions used in the expansion
are plotted for the outer tube where the contribution of each trial function can be
clearly seen. It is observed that majority of the contribution is due to the first trial
function. This is an expected result, since vdW force nonlinearity depends on the
relative motion between the inner and outer tubes and in case of in-phase vibration
modes, this difference changes slightly during free vibration. As a result of this, the
nonlinear coupling terms are not strong enough to affect the natural frequency

significantly.
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Figure 4-4 Variation of normalized nonlinear natural frequency of innertube vibrating
in the first in-phase mode
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Figure 4-6 Coefficient of trial functions of outertube vibrating in the first in-phase mode

4.5.2. First out-of-phase natural frequency considering vdW force nonlinearity

In Figure 4-7 and Figure 4-8, variation of normalized nonlinear natural frequency of
the innertube and the outertube for the first out-of-phase vibration mode are given
utilizing different number of trial functions, respectively. Results show that, as the
number of trial functions used in the expansion is increased more than two, nonlinear
natural frequency vs. vibration amplitude curves change considerably. It is observed
that for the case of three and more trial functions, and for increasing vibration
amplitude, multiple natural frequencies for a single maximum vibration amplitude are
observed. Similarly, for some nonlinear natural frequencies, multiple maximum
vibration amplitudes can be obtained. It should be noted that since the free vibration
of the DWCNT is expressed in terms of multiple trial functions, the maximum
vibration amplitude does not occur at the same point on the CNT, which is not the

case if a single trial function is used in the expansion.
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In Figure 4-9, variation of the normalized nonlinear natural frequency using three trial
functions is given, where the curve is divided into 7 different regions indicated by
different markers and colors. In the first region, the first trial function has the
dominant value; whereas, in the second region, the first and the third trial functions
are dominant. As the number of regions increases, the characteristics of the nonlinear
mode shapes also change. Example mode shapes calculated at the midpoint of each
region are presented in Figure 4-10. It is observed that, in the first and the last regions,
the first (out-of-phase) trial function is dominant, whereas, in between them a
combination of the first three trial functions exist. Studying the mode shapes
presented, it can be concluded that most of the contribution is due to the first and the

third (odd) trial functions.

1.7

—o— 1st Region
—=— 2nd Region
—— 3rd Region
—=— 4th Region
5th Region
6th Region
—0o— 7th Region

|
[

=
w
!

Normailzed nonlinear natural frequency

1.1 7

T T T T T T T
0.0 0.4 0.8 11 1.5
Normalized maximum vibration amplitude of innertube

Figure 4-9 Variation of normalized nonlinear natural frequency of innertube vibrating
in the first out-of-phase mode
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Figure 4-10 Transition of mode shapes from one region to another for innertube

Coefficients of trial functions for the outertube, which are used in the solution
expansion, are presented in Figure 4-11 in a bar chart due to their complex behavior
as a result of multiple solutions. It is clearly observed that, in addition to the variation
of the nonlinear natural frequency of the CNT, mode shape of the CNT also changes
as a function of the maximum vibration amplitude. The results obtained in Figure 4-10
are supported and clarified by the coefficients given in Figure 4-11. It is observed that
in the first region, the first (out-of-phase) trial function is dominant. However, as we
proceed towards higher regions the contribution of the third (in-phase) trial function
gets larger in addition to the first (out-of-phase) trial function. There exist a
contribution from the second (out-of-phase) trial function which reaches to the same
order as the first and third trial functions in the middle of the 4™ and starting of the 5%
regions. Proceeding further in the regions, the first (out-phase) trial function becomes
dominant again and the effect of other trial functions are ceased. In addition to these,
interestingly, at the end of the 2" region the DWCNT vibrates as if it is vibrating in
the third (odd) in-phase vibration mode, since, the only contribution is due to the third

(odd) trial function.
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In Figure 4-12, variation of normalized nonlinear natural frequency of DWCNT
obtained for different vibration modes are presented for inner and outer tubes. It
should be noted that, since the point of the maximum vibration amplitude is not the
same for inner and outer tubes, the variation of the normalized nonlinear natural
frequencies are different as well. It can be observed that in-phase natural frequencies
change slightly with respect to the normalized vibration amplitude; whereas, out-of-
phase natural frequencies increase significantly as the normalized maximum vibration
amplitude increases. Therefore, it is possible for the curve of one out-of-phase
nonlinear natural frequency to reach and intersect a curve of an in-phase natural
frequency as seen in Figure 4-12. When the enlarged region in Figure 4-12 is studied
it is observed that one particular intersection of the out-of-phase natural frequency
with the in-phase natural frequency for inner and outer tubes occurs at the same
normalized nonlinear natural frequency as indicated by the horizontal line and the
black circles. This particular point corresponds to the case where the DWCNT
vibrates as if it is in the third (odd) vibration mode or third in-phase vibration mode

as depicted by the coefficients of the trial functions presented in Figure 4-11.
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Figure 4-12 Variation of normalized nonlinear natural frequency of outertube for different
natural frequencies

In Figure 4-13, results obtained by the proposed method are compared with the results
available in literature, where the parameters of the DWCNT can be obtained from
[184, 185]. It can be seen that the data given in literature and the results obtained from
the proposed method using single trial function are identical. However, when multiple
trial functions are utilized, significant difference between the results obtained by the
proposed method and the data available in literature is observed, especially at the
region where multiple solutions exist. For the regions where a single solution is
present, the difference between the results is moderate; however, it increases as the

maximum vibration amplitude increases.
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Figure 4-13 Comparison with data available in literature

4.5.3. Geometric nonlinearity

In Figure 4-14 considering just geometric nonlinearity, the variation of the normalized
nonlinear natural frequency of the first in-phase vibration mode is given utilizing one
and six trial functions. It is observed that using multiple trial functions does not affect
the nonlinear natural frequencies, which is an expected result as observed from the
nonlinearity matrix determined by DFM in Section 3. For geometric nonlinearity, in
Eq. (4.32), no coupling between the trial functions is observed. This is also true for
the out-of-phase modes as well, where the same results are obtained. From the
nonlinearity matrixes obtained and the results shown, it can be concluded that if only
geometric nonlinearity is considered, single trial function is sufficient to obtain the

nonlinear free vibration frequencies of CNTs.

4.5.4. Effect of medium stiffness

In this final case study, considering geometric and vdW force nonlinearity, the effect
of medium stiffness on the nonlinear natural frequency of DWCNTSs using multiple

trial functions is investigated. Figure 4-15 shows the variation of normalized
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nonlinear natural frequency of the outertube for the first in-phase vibration mode
considering different values of medium stiffness. It is seen that as the medium
stiffness, K , increases, the nonlinear free vibration frequency tends to approach to the
linear one. The same analysis is performed for the first out-of-phase vibration mode
of DWCNT, the results of which are given in Figure 4-16. It is observed that as the
medium stiffness per length, K, increases, the nonlinear natural frequency of
DWCNT approaches to the linear one. Moreover, in the maximum vibration
amplitude range considered, multiple solutions are not observed for medium stiffness

per length of 2x10" N/m* and larger.
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Figure 4-14 amplitude frequency curve of the outertube vibrating in the first in-phase mode

84



Normalized nonlinear natural frequency

1.30

1.25

1.20

1.15

1.10

1.05

0.05 0.20 0.35 0.50 0.65 0.80

Normalized maximum vibration amplitude of outertube

Figure 4-15 Effect of medium stiffness on the nonlinear natural frequency for the first

Normalized nonlinear natural frequency

in-phase vibration mode

0.00

0.17 0.34 0.51 0.68 0.85
Normalized maximum vibration amplitude of outertube

Figure 4-16 Effect of medium stiffness on the nonlinear natural frequency

for the first out-of-phase mode

85



4.6. Concluding remarks

Nonlinear free vibration of a DWCNT is studied in this chapter using DFM with
multiple trial functions where geometric and interlayer vdW force nonlinearities are
considered. Application of DFM made it possible to observe the coupling between
the trial functions used in the modal expansion process. The nonlinearity matrices
obtained show that for simply supported CNTs considering geometric nonlinearity, a
single trial function is sufficient to obtain the nonlinear natural frequencies. On the
other hand, in case of vdW force nonlinearity, multiple trial functions are necessary,
especially for the out-of-phase modes for which the nonlinear effects are more

significant. These findings are also verified with the numerical results obtained.

It is observed that for the first out-of-phase vibration mode with vdW force
nonlinearity, utilizing three or more trial functions resulted in multiple solutions
where a single nonlinear natural frequency is associated with multiple vibration
modes and a single maximum vibration amplitude is associated with multiple
nonlinear natural frequencies. Moreover, the variation of the nonlinear mode shape of
the DWCNT for different maximum vibration amplitudes is presented. It is revealed
from the results that nonlinear vibration modes of the DWCNT is composed of several
trial functions which can never be captured if a single trial function is used in the
modal expansion. Furthermore, the effect of medium stiffness is studied and it is
observed that as the medium stiffness increases normalized nonlinear natural
frequencies decrease and approach to the linear one for in-phase and out-of-phase
vibration modes. Moreover, for the case of out-of-phase vibration mode, increasing
the medium stiffness above a certain value, multiple solutions disappear and there

exists a single nonlinear natural frequency for every vibration amplitude.

It can be concluded that in order to determine the nonlinear natural frequencies of
DWCNTs with nonlinear interlayer vdW forces accurately, multiple trial functions
should be considered in the modal expansion. Moreover, using DFM, it is possible to
identify if a specific type of nonlinearity requires multiple trial functions by studying

the nonlinearity matrix obtained.
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CHAPTER 5

EFFECT OF CURVATURE NONLINEARITY ON THE VARIATION OF
FUNDAMENTAL NONLINEAR NATURAL FREQUENCY’

This chapter deals with nonlinear free vibration of a curved single walled carbon
nanotube. In the previous chapters, geometric and vdW force nonlinearities are
studied in detail. This chapter mainly concern about the effect of initial curvature
nonlinearity on the variation of nonlinear natural frequency of CNTs. Recent
experiments show that it is possible to detect a peak at system higher harmonics for
the curved CNTs going through large deflections. Hence, in this chapter, multiple
harmonic balance method (MHBM) in addition to Galerkin method is used to convert
the nonlinear discretized differential equations of motion into a set of nonlinear
algebraic equations where application of MHBM make it possible to study the effect
of higher harmonics. It is worth mentioning that in this chapter single trial function
assumption is used in Galerkin method since, according to previous chapter results, a
single trial function is sufficient to obtain the nonlinear natural frequencies in the
presence of only geometric nonlinearity. An expression for the variation of nonlinear

fundamental natural frequency of CNTs is derived analytically.

5.1. Introduction

Recent studies show that even though CNTs are commonly assumed to be straight, in
reality they are not straight and they are curved structures. Studies confirmed that the

initial curvature in CNTs can be formed during the fabrication or due to boundary

7 A version of this chapter is published in the proceeding of the 2012 Space Elevator Conference,
August 25-27, 2012, Seattle, Washington, USA as “Effect of Waviness on the Variation of Nonlinear
Fundamental Natural Frequency of Single Wall Carbon Nanotube by Using Multiple Harmonic
Balance Method”
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conditions. The effect of initial curvature on the nonlinear free vibration of a SWCNT
is studied numerically by Mehdipour et al. [123]. They observed that as initial
curvature increases, the normalized nonlinear natural frequency increases. However,
reviewing literature, it has been observed that that, in the all few studies on the
nonlinear effect of initial curvature, single harmonic assumption is used where the
effect of higher harmonics is disregarded. However, for nonlinear systems higher
harmonics of the system can be excited; hence, in order to capture system behavior
accurately, terms corresponded to higher harmonics of the system are needed to be
considered. Furthermore, some nonlinearities, it may not be possible to capture the

nonlinear characteristics of the system using a single harmonic.

In this chapter, nonlinear fundamental natural frequency of a curved simply supported
single walled carbon nanotube is studied considering the higher harmonics of the
system. Galerkin method is used to convert the partial differential equations (PDEs)
of motion into a set of ordinary differential equations (ODEs). In order to consider
the effect of higher harmonics, multiple harmonic balance method is utilized which
transforms nonlinear ODEs of motion into a set of nonlinear algebraic equations.
Considering different number of harmonics, several case studies are defined, where,
in each case, an expression for the variation of nonlinear fundamental natural
frequency of CNTs is derived analytically. Using these expressions the effect of
higher harmonics in the presence of waviness and geometric nonlinearities is

investigated.

5.2. Equation of motion using Euler Bernoulli beam model for thin tubes

Figure 5-1 shows the schematic diagram of a SWCNT embedded in an elastic
medium. The equation of motion of an embedded nanotube considering both

geometric and waviness nonlinearities is given as [123, 166, 167]

4 2 2 L 2 2 2
ow_ dw_dw EAIFZ&W 1(awj }dx_[aw ﬂj G.0)
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where L, A, E, | and p are the length, cross-sectional area, Young’s modulus, area

moment of inertia and density of the CNT, respectively. k and k are the torsional

stiffness and the bending stiffness per unit length of the elastic medium, respectively.
In this chapter, it is assumed that the waviness of the tube follow the first

eigenfunction of the linear simply supported beam as described by Z (x)=esin(7zx/L)

[126], where e is the amplitude of the initial waviness (curvature).

The partial differential equation of motion is subjected to the following boundary

conditions, which correspond to a simply supported beam

w(0,t) =w(L,t)=0, (5.2)
2 2

dwi - _dwi g (5.3)
x|, dx7|

The partial differential equation of motion given by Eq (5.1) is discretized using

Galerkin method. The following form of solution is assumed

w(x,t) =g, (X)W, (t), (5.4)

where W, (t) is the r" generalized coordinate and ¢, (x) is the r" eigenfunction of

simply supported linear CNT. For simply supported CNT, the mass normalized

eigenfunctions can be expressed as follows

4.(x) = /piL sin(ril_xj, F=1,2,-. (5.5)

Since, in this study, the fundamental natural frequency of CNT is studied, ¢, (x) is

assumed to be the fundamental eigenfunction of the simply supported CNT which can

be obtained by substituting r=1 in Eq.(5.5).
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Figure 5-1 Model of an Embedded curved SWCNT.

Substituting Eq. (5.5) and Eq. (5.4) into Eq. (5.1), multiplying both sides by ¢ ()
and integrating over the domain, the discretized nonlinear ordinary differential

equation of motion in W,(t) is obtained as follows

d*W,(t)

o +a,W, (1) + o, W, (1) + o, W, (1)’ =0, (5.6)
where
4 k 2 4
o = EIA”L4 i b LET e K (5.7)
P P 2pL"  pA
E 4
o, =2E" ¢ (5.8)
4 pL
1 Ex*
o= (5.9)
4 pL

In Eq. (5.6), «, denotes the square of the fundamental natural frequency of the
corresponding linear system, which also includes the effect of initial curvature, «,
represents the nonlinear effect of initial curvature, and «, characterizes the effect of

mid-plane stretching and geometric nonlinearity. It is worth noting that, in Eq. (5.6),
cubic nonlinearity is due to large deformation of the CNT, whereas quadratic

nonlinearity is due to the initial curvature nonlinearity.

To facilitate theoretical formulations, the following dimensionless quantities are

introduced
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Therefore, Eq. (5.6) can be rewritten in dimensionless form as

-
%+a)ﬁ -(1+%en +k, +kpnjvvl(t)+8af -enjvvl('[)2 +(%a),2jvvl(t)3 =0 (5.11)

5.3. Analytical Solutions

In this study, harmonic balance method (HBM), a very effective and convenient
method, is utilized to convert the discretized the ordinary differential equation of
motion in time domain to a set of algebraic equation. [144, 186-188] According to
HBM, the steady state solution of a differential equation can be expressed as

summation of multiple harmonics as follows

W (t) =) a,cos(ma,t), (5.12)

where a, is the amplitude of the m" harmonic, and ®, is the fundamental natural

frequency of the CNT. By substituting the assumed solution into differential equation
and equating the coefficient of each harmonic to zero, a set of algebraic equations

relating a, and o, is obtained. Although HBM is very easy to apply, the accuracy of

results depends on the number of harmonics used the solution. [189]

On the basis of the number of harmonics, HBM can be grouped in two major
categories: single harmonic balance method (SHBM) and multiple harmonic balance
method (MHBM). For weakly nonlinear systems, SHBM can be used without
introducing any considerable error. However, in presence of highly nonlinear sources,

MHBM should be used to track system behavior [189].
5.3.1. Single harmonic balance method

According to SHBM, the steady solution of a differential equation can be expressed

by the fundamental harmonic as follows
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W (t) = a, cos(a,t), (5.13)

where a, stands for the normalized maximum vibration amplitude of the CNT.

Substituting Eq. (5.13) into Eq. (5.11) and disregarding higher harmonics, the

following nonlinear algebraic equation is obtained
2 2 1 2 2 k 2 k 3 242 _0 5 14
-, + @, +Ew' e, +a K +a- pn+Ea),a1 =0, (5.14)

From Eq. (5.14), », can be obtained as follows, where only the positive value is

considered to be the acceptable solution

2

:a),\/1+%en+kn+kpn+%af. (5.15)
In Eq. (5.15), it can be seen that the nonlinear fundamental natural frequency is a
function of the maximum vibration amplitude, a,. Moreover, it is observed that, for
the case of single harmonic, the term associated with the nonlinear effect of initial
curvature is not incorporated in equation and only the term associated with large
deflection, 3/16a], is included. Although the nonlinear natural frequency is affected

by waviness in Eq. (5.15), it should be noted that the term e/2 corresponds to the

linear effect of waviness and does not represent the quadratic nonlinearity associated

with the initial curvature nonlinearity.
5.3.2. Multiple harmonic balance method

In the previous case, it is observed that the nonlinear effect of initial curvature cannot
be studied when a single harmonic solution is assumed. Hence, the effect of higher
harmonics on the variation of nonlinear natural frequency of the CNT is studied.
Three case studies are defined. In the first case, the first and the second harmonics are
considered, whereas, in the second case, the first and the third harmonics are
considered. In case three, both the second and the third harmonics in addition to

fundamental harmonic are considered.
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Case 1: first and second harmonics

In this case, the steady state solution of the system is expressed as follows
W (t) = acos(m,t)+a, cos(2a,t) . (5.16)

where a, and a, are the coefficients of the first and the second harmonics,
respectively. Substituting Eq. (5.16) into Eq. (5.11) and considering the terms
corresponded to the first and the second harmonics, the following nonlinear set of

algebraic equations is obtained for a, #0

1 3 3 3
—@’ +|1+—e +k +k ‘rwlea +—afa’+-wa’=0, 5.17
n 2 n n pn a)l 4 1 na2 16w| 1 SwlaQ ( )
2 1 2 3 242 € 3 24 2
—4a)n+(1+—en+kn+kpnja), +=wa |1+ |+—wa,” =0, (5.18)
2 8 a,) 16

From Egs. (5.17) and (5.18), @, can be respectively obtained as follows, where only

the positive value is considered to be the acceptable solution,

1 3 3 3
o, :a)l\/(HEeH+kn+kpnj+zena2+galz+§a22, (5.19)
o, :la)l lJrlenJrknﬁLkpn +§al2 1450 +ia22. (5.20)
2 2 8 a, | 16

In Eq. (5.17), 3/4®e,a, corresponds to the nonlinear effect of waviness and the last

two terms stand for the geometric nonlinearity. A similar interpretation can be done
for Eq. (5.18). By equating the nonlinear natural frequencies obtained from Egs.
(5.19) and (5.20) the following relation is obtained

6e,a° —24ae,’ —48a, (k, +k,, )—48a, —6a,a’ —21a,’ —48e,a,” =0. (5.21)

Eq. (5.21) expresses the variation of the second harmonic with respect to the first

harmonic.
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Case 2: first and third harmonics

In this case, the steady state solution of system is considered to include the first and

third harmonic of the system as follows
W (t) =a, cos(myt)+a, cos(3mpt), (5.22)

where a, and a, are the coefficients of the first and the third harmonics, respectively.

Following a similar procedure, the following nonlinear set of algebraic equations is

obtained for a, #0 :

n

1 3
o, =0 \/[Hzen +k, + kpnj+E(a12 +a,a, +2a32) , (5.23)

1 1 3 1 a
== 1+—e +k +k [+—(&a’+23’)+——L. 5.24
, 3C()I \/[ 2 n n pnj 16( 3 1) 16 a ( )

In Egs. (5.23) and (5.24), the waviness term does not depend to vibration amplitude,

a,; hence, even though the third harmonic of system is considered, the present

formulation fails to capture the nonlinear effect of initial curvature. Therefore, it can
be concluded, in order to capture the quadratic nonlinearity of initial curvature, the
second harmonic (even harmonics) of system should be considered. Furthermore,
comparing the magnitude of coefficient of second and third harmonics in their
corresponding closed form formulations, it is observed that the third harmonic (odd
harmonic) has higher priority in comparison to the second harmonic (even harmonic)
in capturing the effect of geometric nonlinearity. By equating the nonlinear natural

frequencies obtained from Eqgs. (5.23) and (5.24) the following relation is obtained:
a’ —64a.e’ —128ak —128a, —128ak,, —2la,a’ —51a’ —27aa, =0 (5.25)

Eq. (5.25) expresses the variation of the third harmonic with respect to the first

harmonic.

Case 3: first, second, and third harmonics
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In this case it is assumed that the solution contains the first, the second, and the third

harmonics as follows
W (t) = a, cos(w,t)+ a, cos(2m,t) + &, cos (3a,t)., (5.26)

where a,, a, , and a, are the coefficients of the first, the second, and the third

harmonics, respectively. Substituting Eq. (5.26) into equation (5.11) and collecting

the coefficients of each harmonic, the following set of nonlinear equations is obtained

2
_a)n2+(1+%en+kn+kana),2+%enm,{a2 Jr%j+iwf{af+2::122+2::132+ala3 1 &% J:O, (5.27)
a ) 16 3,

2 1 2 3 2 a'l2 2a1a3 3 2 2 2 2 28
4w} + 1+Een+kn+kpn o+ | ot g Y (a2 +2a’ +2a, +2a1a3)=0, (5.28)
2 2

a,a
9w} +[1+%en +k, +kpnjw|2 +%ena),2 2 1

2 3
+iw.2[a32+2a22+2a12+ﬂ+a—‘j:0. (5.29)

, 16 a, a

From Egs. (5.27) to (5.29) , w, can be respectively obtained as follows, where only

the positive value is considered to be the acceptable solution

1 3 a,a 3 a,a,’
= l+—e +k +k_ |+=e |a +—== |[+—| a’+2a,° +2a° +aa, + = 5.30
@, a)l\/( 2 n n pnj 4 n( 2 al j 16( 1 2 a’} 1a3 al j ( )

2
o, =la)| \/(H%em+kn+kpnj+§en[a;+%_la3J+%(az2+2a12+2a32+2a1a3) (5.31)

"2 a, a
2 3
a)f:la), \/[Hlen+kn+kpnj+§en%+i[a32+2a22+2a12+ﬂ+a—lj (5.32)
3 2 4 " a 16 a, a

By equating these equations, solutions for the variation of the second and third

harmonics with respect to the first harmonic can be obtained as follows

384a,e,’a, +768a,a +768a,k a, +288a,a,’a, +192a,’a, +768a,k , a, +768¢,a,’a, +96a,a’ (5.33)

2™ pn

+336a,’a, +768e,a,’a, +96a,a,°a, —192e,a,’a, -96e,a° =0’

1024a,e,’a, +2048a,a, +2048a,k a, +816a,’a, +432a,’a,” +2048a,k a +1728¢,a,a,a, (5.34)
+336a’a, + 768a,a,’a, +1728e,a,a,” +432a,’a’ —48a,’a’ —16a,* -192¢,a,a°> =0 '
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5.4. Numerical results and discussion

In this section, nonlinear free vibration of simply supported curved SWCNT is
investigated. The material and geometric parameters of the CNT used in this study

are given in Table 5-1 [51].

Table 5-1 Numerical Values of SWCNT Parameters [51].

Parameter value
Inner radius of innertube 0.7 nm
Outer radius of outertube 0.8 nm
Density of tubes 2.3 gr/cm’
Young modulus of tubes 1 TPa
Thickness of tubes 0.1 nm

It is worth studying the characteristics of the linear system before examining the
effects of nonlinearities. The natural frequency of the linear system can be obtained

as

oy :(1+%e§+kn+kpnjwf, (5.35)

The effect of waviness on the variation of the linear natural frequencies of the
SWCNT, is presented in Figure 5-2. It is observed that the linear natural frequency
increases as the waviness increases, which is an expected result. The mode shape of

the system is given in Figure 5-3 in the presence of initial curvature.
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Figure 5-2 Variation of the fundamental linear natural frequencies of the SWCNT versus
waviness
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Figure 5-3 Fundamental mode shape of the SWCNT when mid-center is at its positive and
negative maximum values

In the following section, the effect of large deformation and waviness on the variation
of first nonlinear natural frequency of a simply supported SWCNT is studied
considering the effect of number of harmonics used in the HBM. In addition to these
the effect of medium stiffness on the nonlinear natural frequency of the SWCNT is
studied. It should be noted that the variation of nonlinear natural frequency is

normalized with respect to the corresponding linear natural frequency, @, of the
simply supported curved SWCNT, and the maximum vibration amplitude is

normalized with respect to r=4/1/A.

5.4.1. Effect of number of harmonics in the presence of large deformations

In Figure 5-4, the variation of the normalized nonlinear natural frequency of the
SWCNT is presented considering only the geometric nonlinearity where effect of

higher harmonics is studied. The waviness, e, , is considered to be equal to zero.

Results show that in the absence of waviness, including the second harmonic in the
solution expansion does not affect the nonlinear natural frequency. On the other hand,
it is seen that the variation of the normalized nonlinear natural frequency decreases as
the third harmonic is included in solution expansion. In Figure 5-5, amplitudes of the
coefficients of harmonics are plotted for the case of multiple harmonics where the

contribution of each trial function can be clearly seen. It is observed that when
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normalized maximum vibration amplitude is small, majority of the contribution
comes from the first harmonic, but the contribution of the third coefficient increases
as vibration amplitude increases. It should be noted that the coefficient of second
harmonic is zero so it does not affect system behavior at all in the presence of only

geometric nonlinearity.
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Figure 5-4 Variation of normalized nonlinear natural frequency in the presence of only
geometric nonlinearity
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Figure 5-5 Coefficients of the first and third harmonics
Figure 5-6 shows the variation of the nonlinear natural frequency against the

normalized maximum vibration amplitude for different values of medium stiffness
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vibrating in the first vibration mode. It is seen that as the normalized medium stiffness,

k,, increases, the normalized nonlinear frequency tends to approach the linear one.

Moreover, it is observed that, as the medium stiffness increases, the normalized
nonlinear natural frequency for single harmonic and multiple harmonic solutions
converge to each other. This is an expected result, since the effect of geometric
nonlinearity decreases as medium stiffness increases. Since the torsional stiffness
resulted in a term similar to medium stiffness in the equation of motion, similar results

can be obtained if the effect of torsional stiffness is studied.
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Figure 5-6 Variation of the normalized nonlinear natural frequency for different values of
medium stiffness in the presence of only geometric nonlinearity

5.4.2. Effect of number of harmonics in the presence of both large deflection and

waviness

In Figure 5-7 and Figure 5-8, the variation of normalized nonlinear natural frequency
is given for different value of initial curvature where the effect of higher harmonics
is studied in the presence of both initial curvature and geometric nonlinearities. It is
observed that, in the presence of initial curvature, the system response is mainly
affected by the second harmonic of system and including the third harmonic in
solution expansion does not affect the results. Furthermore, it can be seen that the
effect of second harmonics becomes more dominant as value of initial curvature

increases (Figure 5-8) where it cannot be disregarded.
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Figure 5-7 Variation of the normalized nonlinear natural frequency in the presence of both
geometric nonlinearity and waviness nonlinearity
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Figure 5-8 Variation of the normalized nonlinear natural frequency in the presence of both
geometric nonlinearity and waviness nonlinearity

The coefficients of the first three harmonics are presented in Figure 5-9. It is observed
that the coefficient all the harmonic increases slightly and reaches to a constant value
as the maximum vibration amplitude increases. Increasing waviness only effects the

third harmonic, which is two orders of magnitude less than the first harmonic

In Figure 5-10, the variation of normalized nonlinear natural frequency is presented
for different values of initial curvature utilizing single and multiple harmonics in

solution expansion. It is observed that the normalized nonlinear natural frequency
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decreases as waviness increases. Moreover, it can also be observed that the difference

between the single and multiple harmonics solutions increases as initial curvature
increases.

As a final case study, considering both geometric and waviness nonlinearities, the
effect of medium stiffness on the variation of normalized nonlinear natural frequency
of SWCNT is investigated using single and multiple harmonics where e, =3.
Figure 5-11 shows the variation of the normalized nonlinear natural frequency
considering different values of medium stiffness. It is observed that, as the normalized
medium stiffness, k,, increases, the normalized nonlinear natural frequency tends to
approach to the linear one. It is worth noting that, for similar initial curvature, single

harmonic solution estimates a lower normalized nonlinear frequency compared to the

multiple harmonics solution.
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Figure 5-9 Coefficient of harmonics of SWCNT vibrating in the fundamental natural
frequency for different initial curvature
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Figure 5-10 Variation of the normalized nonlinear natural frequency for different values of
initial curvature utilizing single and multiple harmonic solutions

Normalized nonlinear natural frequency

1.15

=
[

1.05

= Single Harmonic k =0
—6— Multiple Harmonics kn:O
= == Single Harmonic k =2

n
- -~ Multiple Harmonics kn:2

== Single Harmonic kn=4

0O 05 1
Normalized maximum vibration amplitude

—#-- Multiple Harmonics k =4 s &¢£
/ X
-
A T
1.5 2 2.5
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5.5. Concluding remarks

In this chapter, the variation of normalized nonlinear fundamental natural frequency

of a curved SWCNT is investigated where the effect of higher harmonics is studied

in detail. Galerkin method is used to discretize the equation of motion. Multiple
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harmonic balance method is utilized to convert the discretized ordinary differential
equations of motion into nonlinear algebraic equations and study the effect of higher
harmonics. On the basis of the number of harmonics used in the solution expansion,
several case studies are defined in order to explore the effect of higher harmonics on
the variation of normalized nonlinear natural frequency in the presence of geometric
and waviness nonlinearities. In each case, a closed form expression for the variation

of the nonlinear fundamental natural frequency of CNTs is obtained analytically.

Results show that in the case of only geometric nonlinearity, the variation of nonlinear
natural frequency is only affected by odd harmonics, however, the effect is not
significant. On the other hand, in the case of both waviness and geometric
nonlinearities, it is observed that the variation of normalized nonlinear natural
frequency is affected by even harmonics as well. Our further studies show that the
effect of waviness on the natural frequency can be classified in two categories named
as: linear effect, and nonlinear effect. It is observed that the single harmonic approach
is enough to detect linear effect of waviness on the variations of the nonlinear
fundamental natural frequency, however, in order to detect the nonlinear effect of
waviness, higher even harmonics should be considered. Moreover, it is observed that
as medium stiffness increases the difference between solutions of single harmonic and

multiple harmonic solutions decreases.
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CHAPTER 6

DIFFERENTIAL QUADRATURE METHOD, A NOVEL METHOD TO
STUDY NONLINEAR VIBRATIONS OF CNTS?

Depending on nonlinearity, common solution methods such as Galerkin require a set
of multiple comparison functions to anticipate the system behavior. The effect of trial
functions on the system response is studied in detail in chapter 4. However, these
solution methods are limited to simple cases such as simply supported beams where
the comparison functions have simple known forms. The objective of this chapter is
to overcome the shortfalls of solution methods such as Galerkin by developing and
implementing an accurate, efficient and relatively fast techniques for modeling CNTs
which does not require any pre-knowledge on the system comparison functions, i.e.
differential quadrature method. The method is introduced through its application in
studying nonlinear free vibration analysis of curved double-walled carbon nanotubes
(DWNTs) embedded in an elastic medium. Nonlinearities considered are due to large
deflection of carbon nanotubes (geometric nonlinearity) and nonlinear interlayer van

der Waals forces between inner and outer tubes.

6.1. Introduction

After the discovery of carbon nanotubes (CNTs) by ligima [7], considerable attention
has been devoted to carbon nanotubes (CNTs), since they have the ability to
revolutionize critical technologies owing to their remarkable physical, mechanical,

and electrical properties [61, 190-196].

8 A version of this chapter is submitted to be published in Physica E as “Nonlinear Free Vibrations of
Curved Double Walled Carbon Nanotubes Using Differential Quadrature Method”
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Recent theoretical and experimental studies show that the deformation of CNTs is
nonlinear in nature where they are affected by geometric and vdW force
nonlinearities. Therefore, in order to accurately predict the vibrational behavior of
CNTs, the nonlinear effect of both geometric and vdW force should be considered
[51, 184, 197]. The effect of nonlinearities on nonlinear natural frequencies of
DWCNTs is investigated in chapter 4 using describing function method and utilizing
multiple trail functions in Galerkin method. It is observed that utilization of multiple
trial functions resulted in the determination of multiple nonlinear natural frequencies
at the same vibration amplitude and identification of single nonlinear natural
frequencies associated with different vibration amplitudes. However, Even though
Galerkin method is easy to implement, it requires trial functions or comparison
functions that satisfy all the (geometric and natural) boundary conditions of the
system. Hence, Galerkin approach is used only for studying hinged-hinged beams
where the trial functions are simple sine functions. Therefore, presenting a general
formulation capable of predicting the vibrational behavior of CNTs under different
boundary conditions is of high importance. Recently, finite element method (FEM) is
proposed to study the free vibration of CNTs where solution method such as Galerkin
method is not applicable. Applicability of FEM in studying the free vibration of CNTs
is investigated by Ansari et al. [143] in the presence of only geometric nonlinearity.
Using FEM, authors were able to study the effect of boundary conditions on nonlinear
natural frequencies for the first time. Even though classic FEMs can predict
vibrational behavior of CNTs, they are disadvantaged in terms of computational time
since they require higher number of grid points which results in large number of
nonlinear equations. In order to overcome this difficulty differential quadrature

method is utilized in this study.

The differential quadrature method (DQM) is a well-developed numerical method for
quick solutions of linear and nonlinear partial differential equations. DQM developed
by Bellman and Casti [198] is a discrete approach to directly solve the governing
equations of various engineering problems. Different from conventional methods
such as finite difference (FD) and finite element (FE) methods, DQM requires less
grid points to obtain an acceptable accuracy. A comprehensive review on the DQM

can be found in [199]. Owing to its efficiency and accuracy, DQM has the potential
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to be used in variety of application areas. Applicability of DQM for micro and
nanoscale beams and tubes is studied by Civalek et al. [200] and Wang et al. [201]
for linear systems. Later, considering the nonlocal effect and temperature effects,
same problem has been solved by Zhen and Fang [202]. Based on Eringen’s nonlocal
elasticity theory and von Karman geometric nonlinearity, the nonlinear free vibration
of a DWCNT is studied by Ke et al. [34] where a direct iterative method is used to
solve the resulting system of equations. They studied the effect of system parameters
on variation of nonlinear natural frequency of a DWCNT vibrating in the first in-
phase vibration mode where different types of boundary conditions are considered.
Later, benefiting from the advantages of DQM, Janghorban and Zare [203] studied
the linear free vibration of functionally graded carbon nanotubes with variable
thickness, where material properties are assumed to be graded in the longitudinal
direction and a similar problem using different beam theories is studied by Ansari et

al. [204].

The number of nonlinear studies on vibrations of CNTs having different end
conditions is rare in literature due to the limitation of Galerkin method explained
formerly. In addition to this, it is observed that only geometric nonlinearity is studied
in these studies and nonlinear van der Waals effects between the layers of CNTs are
neglected, since existence of vdW force complicates the solution. Therefore, to the
best of author’s knowledge, this is the first study which considers nonlinear free
vibrations of curved double walled carbon nanotubes (DWCNTs) with different types
of boundary conditions, where in addition to geometric nonlinearity, nonlinear
interlayer van der Waals (vdW) force is also included. Differential quadrature method
is used to discretize the partial differential equations of motion resulting in a system
of nonlinear ordinary differential equations. The main advantage of DQM, in
comparison to solution methods like variational approach [175], or Galerkin method
[184, 197], is its inherent simplicity in formulation, where different end conditions
can be easily adopted. Using DQM and considering a harmonic solution in time,
nonlinear differential equations of motion are converted into a set of nonlinear
algebraic equations, which is solved by the developed iterative path following method

(IPFM).
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6.2. Modeling

Consider a DWCNT of length L, cross-sectional areas A, A,  area moment of inertias
I,,1,, Young’s modules E,, E , and densities embedded in an elastic medium having

a stiffness per unit length of k as shown in Figure 6-1, where i and 0 indicate the
inner and outer tubes, respectively,. Assume that the transverse displacements of

nanotubes are w;(x,t),w,(x,t) where x and { are the spatial coordinate and the

temporal variable. Equations of motion for free vibration of embedded curved
DWCNTs considering geometric, initial curvature, and vdW force nonlinearities are

given as [123, 166, 167]

g1, W P i EAI{dzaW 1(%)2}@ £62W+szj+pv(xt) 6.1)

"84 dx ox X ox?

E 1 S0 —~
X P ot? X o dx?

dx ox 2 (6.2)
+Pn (X.1) = P, (X.1)

o'w, o*w, EA)J-{dzaw 1(awo)2 0. (az ﬂj

Z(X) is the initial curvature (waviness) of the cylindrical tubes. p, (x,t) is the contact
force between the surrounding medium and the tube which can be identified by

Winkler-like model [47, 181] and p, (x,t) is the nonlinear vdW force. According to

Winkler-like model theory, the interaction between surfaces can be simulated as a
linear spring resulting in a pressure distribution linearly proportional to the relative

displacement between the surfaces as
P (X, 1) =—kw, (x,t). (6.3)

The negative sign in the above equation indicates that the pressure is opposite to the
deflection of the tube and k is defined by the material constants of the surrounding
elastic medium. On the other hand, vdW force is composed of attractive forces

between atoms, molecules, and surfaces which only come into action when the
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relative displacements are comparable with the atom sizes [80, 182]. The vdW force

per unit area for two originally-concentric tubes is given in [168, 169] as

p, (X,t)=p, (W, —w, )+ p, (W, —w, )3, (6.4)
ou 10'U .. . . .

where p,=2——3| , P,=2L——— I is innertube radius, and U is potential
00" |,_, 600" |,_,

energy expressed in terms of the interlayer spacing I as follows [121, 184]

U(5)=K, K%} —0.4(%}0}, (6.5)

where K, =0.4089101874 J/m* , and &, =0.34 nm is the equilibrium interfacial

spacing. Substituting Egs. (6.3) and (6.4) into Egs. (6.1) and (6.2), the following
nonlinear partial differential equations for the DWCNT are obtained:

0w, O'w, _EA | dZow  1(ow ’ o'w  d’z
El —| — |dx-
Yo ] 'A I{dx X (8x] (ax dx? J (6.6)
+p1(Wo_\Ni)+p2(Wo_vvi)
o'w, aw _EAfldzow, 1(ow ’ o*w, d’z
E,l — 0 dx - 0 4 — —
oo TR J{dx ox (ax” (8x2+dx2]. (6.7)

—kw, — p, (W, —w,) = p, (W, —w;)’

It is assumed that the waviness of the tubes, Z(x), follow the first eigenfunction of
the linear system, i.e. , Z(x)=e-¢(x), where @(X) is the first eigenfunction of the

linear CNT. For instance, Z(x)=e-sin(zx/L) [126] for the case of simply supported

tubes, where ¢ is the amplitude of the initial waviness.
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Figure 6-1 Model of an Embedded Curved DWCNT

6.3. Generalized differential quadrature method

Generalized differential quadrature method (GDQM) approximates the derivatives of
a function with respect to a spatial variable at a given discrete point by a weighted
linear summation of function values at all the discrete points in the computational

domain. For example, the n" derivative of a function W, (x) at the m " point, X, , can

be estimated b
N

W=D W,  j=12..,N. (6.8)
s=1

In the generalized differential quadrature method [205], the global Lagrange
interpolation polynomial is used to calculate the weighting coefficients, where Eq.

(6.8) is considered to be exact for a test function of

gs(x):l(—x) s=1,2,..,N, (6.9)

(x=%)1706)°
I(x) is the Lagrange interpolating polynomial and I(”(x) is its first derivative which
are defined as follows

N

.I(x)=ﬁ(x—xs), )= 11 (xj —xs). (6.10)

s=1,s#]
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Thus, differentiating Eq. (6.9), weighting coefficients, ¢; j(l Ji,j = 1,2,..,N), can be

computed analytically as

1 (%)

— L for s#m
X =X ) 1P (x
Cons = G ;) . (6.11)
> el for s=m
s=I,s#m ’

The weighting coefficients for higher order derivatives can be found likewise. A

recurrence relationship can be obtained for higher order derivatives as follows
oD
n-cl.crl——= | sxm
’ ’ Xn = Xs

) )
(n) _
- s=m

s=l,s#m

) _
Cos =

(6.12)

Since the positions of the sampling points play a significant role in the accuracy of
DQM [206], Gauss—Lobatto quadrature points are used which result in minimum

error.
6.4. Application of DQM

Assuming a separable solution as w,(x,t)=W,(x)-T(t) and using Eq. (6.8), the partial
differential equation of motion given by Egs. (6.6) and (6.7) can be discretized at m

point as

N d°T@t) EA | (dz
El E ¢ W AT () + p, A W, =1 E d | —
i |{S=l ms s |} ( )+ i mtYi dtz L Lt n dx

l N )] 2. 2 . N (2) dzz
2{;(:”’5 sWi} T (t)]} {{;Cm,s svvi}-r(t)+ dX2

+p (mWo - mWI)T(t)+ pz(mWo - mWi )3 TS(t)a

N
{Zc;?: W, } T(t)+

s=1

X=Xg J

: (6.13)
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et T T w0, ST EA {Zd[

n=1

{Zc H SWO}T(t) +

=x, Us=l

2 m c?® d’z
2{SZCMWO} T (t)]}[ msSWO}T(m i J

= (W, = W) T () - z(mu WY T -k W,T ()

: (6.14)

where d, is the weighting function which is calculated using Gauss—Lobatto

integration rule. According to quadrature integration rule, integration value can be
stated as a weighted sum of function values at specified points within the domain of
integration (Eqgs. (6.15) and (6.16)). The evaluation points are the roots of a
polynomial belonging to a class of orthogonal polynomials which, in our case, is
Gauss—Lobatto points which are as well used in the GDQM. It is worth noting that
Gauss-Lobatto rule is accurate for polynomials up to the degree of 2n—3 |, where N

is the number of integration points [207].

jf(x)dx~ [d f(a)+d, - f(b)+n§fdif(b;2a‘zi+b+7""n, (6.15)

d = n(n—l)[Pn_l(zi)]p (6.16)

where P(z)is the n" order Legendre polynomial.

Assuming a single harmonic solution in time, i.e. utilizing harmonic balance method

(HBM) with a single harmonic Egs. (6.13) and (6.14) become

“(genonn 2oL o)
3“‘& ZW}J}{Zw} (6.17)

n=1 S:I

+p1 m o 3p2 W - W)3

ml o m7
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Eolo{zc(m4: swo} @ poA) mWO = EOA) Zdn [d_z

The above equation can be written in matrix form as follows

(K, +Ky ) x-0’M-x=0 , (6.19)

SKy, Ky (6.20)

NL NLg

where x denotes the unknown dynamic displacement vector defined as

;
W W W W (6:21)
and M, K, , Ky, and K, represent mass matrix, linear stiffness matrix, and

nonlinear stiffness matrices associated with geometric and vdW force nonlinearities

of the system, respectively. These matrices are defined as

M,, .,y = identity , (6.22)
|
El o, P E& oo P
| AA pA  plL : PA
K, =| - ST I (k) Ee 0 ©2
_ P : oo_C(4) 1 I ° .E
,DOA] :pvo poAJ IDOL
|
A
i |
A TI =N ; (6.24)
[o] |p—c?
L P
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_[Kl : Kz]
Ky, =222 —’3_? ————————— . (6.25)
(K, | K,]
Poh,

I is identity matrix, ¢™ indicates weighting function matrix for the n" order
derivative using DQM, E stands for initial waviness matrix, g, (r=i,0) is a
displacement dependent coefficient representing geometric nonlinearity, and K, , and
K, are displacement dependent matrices. The initial waviness matrix given in Eq.

(6.23) is defined as follow

#'(%,) 0
E= {Z d, (czﬁ'(xn){ic;‘; w}j} ) : (6.26)

n=1 s=1
0 $"(Xy-2)

where ¢'(x) and ¢"(x) are first and second derivatives of the first linear eigenfunction
of the system that is used to define the waviness, respectively; and g (r =i,0), K, ,

and K, given in Eqgs. (6.24) and (6.25) are defined as follows:

s, %{z 0, {3l | } (6.27)

W2 43 W2 0
K, = WE3W : (6.28)
0 | N72Wi2 +3 N72W02
W23 W 0
K, - Mg+ 305 . (6.29)
0 ‘ N 2W02 -|-3,\172Wi2

114



It should be noted that the higher order DQM weighting function matrix can as well
be calculated through matrix multiplication, e.g. c® = c x c , where the elements of

C are given by Eq. (6.11).

In the present study, three common sets of boundary conditions namely as hinged-
hinged (H-H), clamped—hinged (C-H), and clamped—clamped (C-C) are investigated.

Boundary conditions for hinged and clamped ends are

d*w

w.(X.,t)=0, . =0, 6.30

(D=0 55 (630)
dw

w, (X,,t) =0, o =0, (6.31)
dX X=Xg

respectively. Where s=1 and s=N represents the end points. Using the GDQM, the
discretized counterparts of different boundary conditions given by Egs. (6.30) and

(6.31) can be written as follows

a (W, W, - W W) =0,
@ ~@ S (zz; 2<2r> BN f) T (6.32)
(Cs,l Cs,z T Cs,N—l Cs,N ) ! ( lvvr 2Wr T N—I\Nr NWr) = 0’
a (W W - W W) =0,
M~ S (<11) f 2(1; T f) T (6.33)
(Cs,l Cso = Cona Con ) ’ ( W Weoe W W ) =0,
respectively. Where a,=(1 0 - 0 0)  fors=land a,=(0 0 --- 0 1) for

s=N Boundary conditions given by Egs. (6.32) and (6.33) can as well be expressed

in matrix form as follows
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R
1 0 0 0 I W,
() () () o ! .
C1,1 Cl,Z C1,N—1 Cl,N: [O] :
(0) (n) (m m !
Cnag Cnz 0 Cuna Cun | v,
0 0 0 1 W
---------------------- b NS L (). (6.34)
I 0 - 0 0 W,
|
I ~m) (n) (n) (n)
[0] : C.. Co  Cina Cin 2W0
Lo o L o® c
1 NI N2 N,N-1 N.N :
|
|
L I 0 0 0 1_8x2N n-Wo
NWO 2Nx1

Where superscript N is assigned by the type of end conditions, where it is equal to 1
for the clamped end and 2 for the hinged end. By using matrix manipulation Eq. (6.34)

can be written as

K, x, +K -x =0, (6.35)

where

X, = W, W, W W W W, W, WL (6.36)

1"V 0°2"70> N-1""0> N" "o
;
W W W W, LW (6.37)

representing boundary and interior nodes and K and K are 8x8 and 8x (2N -8)

matrices related with boundary and interior nodes, respectively. Following a similar

approach Eq. (6.19) can be written as
KD-XS+(K*L+K;L)-x*—a)2M*~x*:0. (6.38)
Here K, Ky, , and M are (2N -8) x (2N -8) matrices, representing the linear

stiffness matrix, nonlinear stiffness matrix, and mass matrix for the interior nodes,

respectively. It is worth noting that K; , Ky, , and M"are coefficient matrices for the

non-boundary nodes, where Ky, is a displacement dependent matrix whose values
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depend on the values of the boundary nodes in addition to the interior nodes. K, is

an (2N -8)x8 matrix, which contains coefficient of boundary nodes.

Solving x, from Eq. (6.35) and substituting it in Eq. (6.38), equation of motion of the

system is obtained as follows

(K} + K )~ KKK ox =M x (6.39)

6.5. Solution method

The set of nonlinear algebraic equations given by Eq. (6.39) can be solved
numerically by using Newton's method with Arc-length continuation. Newton’s
method converges to the correct solution quadratically, if the initial guess is
sufficiently close to the actual solution. However, convergence problems arise when
a solution is around a turning point since the Jacobian matrix becomes singular.
Moreover, in order to follow the solution branch even it reverses its direction;
continuation parameter has to be replaced with another parameter for which it is
possible to follow the path (arc-length continuation). Details of Newton’s method

with arc-length continuation can be found in [121].

Another solution approach commonly used by a number of researchers is a direct
iterative process (DIP) by using eigenvalue solvers. In this method [34, 122],
vibration amplitude increases incrementally. At each step, nonlinear vibration
dependent stiffness matrices are calculated based on the mode shape of the previous
solution. The resultant linear system can be solved using an eigenvalue solver. This
process is repeated until the difference between the assumed and calculated
eigenmodes decreases to a predetermined tolerance. It should be noted that DIP
method is established based on the assumption that variation of mode shapes along
the solution path is small. However, due to strong nonlinearities existing in the
problem, nonlinear system mode shape changes significantly along the solution path
as shown in [121], where DIP fails in finding the correct solution and therefore it
cannot be used directly. Moreover, the effect of each nonlinearity is different whether

the in-phase vibration mode or out-of-phase vibration mode is considered. For
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example, due to vdW force nonlinearity out-of-phase natural frequencies increase
significantly as the maximum vibration amplitude increases; whereas, in-phase
natural frequencies change slightly with respect to the maximum vibration amplitude.
As a result of this, it is possible for the path of system natural frequencies to cross
each other as presented in [121]. For instance, system can vibrate in the second mode
(out-of-phase mode) with a nonlinear natural frequency higher than the nonlinear
natural frequency of the third mode (in-phase mode) as vibration amplitude increases.
Hence, in the present study, in order to overcome these two problems, a new method
referred as “iterative path following method” is developed, which combines modal
assurance criterion (MAC) and arc-length continuation method with DIP in order to
improve its performance. In the iterative path following method (IPFM), by utilizing
MAC it is possible to track the correct natural frequency and by using arc-length
continuation it is possible to follow the solution path in the presence of multiple

solutions.

The modal assurance criterion is outlined as a scalar constant relating the degree of

consistency (linearity) between two vectors as follows

2

v )
v v

MAC = , (6.40)

vl {wa)

where {y,} and {y,} are two vectors that are compared with each other. The modal

assurance criterion takes values between 0 and 1, where O and 1 indicate two
independent and identical vectors, respectively. Thus, if the modal vectors under
study truly express a consistent, linear relationship, the modal assurance criterion
approaches unity. This fact is utilized in finding the system eigenvalues. Additionally,
instead of increasing incrementally the vibration amplitude, which may result in jump
up or down in case of multiple solutions, arc-length continuation is utilized to follow
the solution branch around turning points, in which the maximum vibration amplitude

becomes an unknown and arc-length is the parameter used in path following.

The solution method consists of two major loops: the arc-length loop and direct

iterative process loop which acts inside the arc-length loop. The step by step
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description of the developed iterative path following method (IPFM) is given as
follows:
Step 1:

The nonlinear equation of motion given in Eq. (6.39) can be written as a residual

vector function as
f(x", w) = {(K’; +K*NL)—KDK;;KS}-x* oM X" =0, (6.41)
X :Wmax'{ W W LW, :3\/\7 W, Nfzvvo}T =W, X, (6.42)

where \w and w_ represent the normalized vibration amplitudes of the mode

shapes of inner and outer tubes with respect to the grid point of the innertube or
outertube that result in the maximum absolute value. The arc length parameter is
defined as the radius of a fictitious n-dimensional sphere centered at the previous
converged solution point. It should be noted that in the first step, linear system
eigenvector is considered as the reference mode. The new solution will be
searched on the surface of this sphere rather than at the next vibration amplitude,
where the amplitude become an unknown and the radius of the fictitious sphere is
the parameter specified. Details about applying the arc-length method to a residual
function can be found in [121]. Arc-length continuation is used to update the mode
shapes obtained in the previous solution and predict the next vibration amplitude.

Step 2:
DIP loop starts here, where calculated eigenvectors are used to determine the
nonlinear stiffness matrix, K}, , and new eigenvalues and eigenvectors are
calculated from the updated eigensystem. MAC is calculated based on the

eigenvector of previous solution in order to select the correct eigenvector and the

eigenvalue associated with it.
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Step 3:
The calculated eigenvector is normalized and step 2 is repeated until the error in

the residual function given by Eq. (6.41) is within predefined tolerance limit.

It should be noted that the maximum vibration amplitude does not occur at the same
point on the CNTs; moreover, it can occur at points other than DQM points. Hence,
in order to find the maximum vibration amplitude, after obtaining the nonlinear
eigenvector, the full mode shape is reconstructed using Lagrange interpolation and

the point of maximum amplitude is determined.
6.6. Results

In the following section, the effect of nonlinearities on the first in-phase and out-of-
phase fundamental natural frequencies of a curved DWCNT is investigated. Firstly,
the effect of geometric nonlinearity and initial curvature on the nonlinear natural
frequency of a DWCNT is studied by presenting the variation of normalized nonlinear
natural frequency with respect to the maximum vibration amplitude. Later, the same
study is repeated considering the effect of vdW force nonlinearity together with the
geometric nonlinearity. Finally, considering both nonlinearities medium stiffness on
the nonlinear natural frequency of the DWCNTs are investigated. Meanwhile, the
effects of different end conditions are as well considered in the studies performed. In
order to present the results in a proper form, the nonlinear natural frequency is

normalized with respect to the corresponding linear natural frequency of the curved

DWCNT and vibration amplitudes are normalized with respect to /I, /A .

The numerical values of the parameters used in this study are given in Table 6-2.
Before proceeding into the nonlinear analysis, the effect of number of grid points is
studied on the linear system (Table 6-1), where it is observed that the natural
frequencies obtained for all types of boundary conditions considered are identical in
case the number of grid points is larger or equal to 13. Therefore, in all the results
presented, 18 grid points are utilized which is observed to be sufficient for the

nonlinear cases as well.
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Table 6-1 Effect of the Number of Grid Points on the Linear Fundamental Frequencies of
the DWCNTs with Different Boundary Conditions

N - H-H (THz) | C-H (THz) | C-C (THz)
10 In-phase 0.46727276 | 0.72958103 | 1.05775816
Out-of-phase 7.67867366 | 7.94739767 | 7.92494566
11 In-phase 0.46728898 | 0.72963714 | 1.05780658
Out-of-phase 7.88518860 | 7.89901304 | 7.92495020
12 In-phase 0.46728882 | 0.72963963 | 1.05780510
Out-of-phase 7.88518860 | 7.89901320 | 7.92495006
13 In-phase 0.46728867 | 0.72963869 | 1.05780414
Out-of-phase 7.88518859 | 7.89901314 | 7.92494997
14 In-phase 0.46728868 | 0.72963868 | 1.05780415
Out-of-phase 7.88518859 | 7.89901314 | 7.92494998
18 In-phase 0.46728868 | 0.72963869 | 1.05780416
Out-of-phase 7.88518859 | 7.89901314 | 7.92494998

In Table 6-3, the fundamental natural frequency of the linear DWCNT with H-H end
conditions are compared with the analytical solution and the results given in literature.
It can be seen that the results of DQM and analytical solution are in very good

agreement.

Table 6-2 Numerical Values of Tubes Parameters

Parameter Value
Innertube diameter d; =0.7 nm
Outertube diameter d, =1.4 nm
Young’s modulus E=1 TPa
Poisson’s ratio v=025
Thickness of each tube | t=0.34 nm

Table 6-3 Fundamental Linear Natural Frequencies of a Simply Supported DWCNT

Natural frequencies | In-phase | Out-of-phase
Ref. [121] 0.4673 7.8852
Ref. [51] 0.46 7.71

Analytical solution | 0.467289 7.885189

Present study, DQM | 0.467289 7.885189

6.6.1. Geometric nonlinearity

In Figure 6-2, the variation of the normalized nonlinear natural frequency of the first
in-phase vibration mode of a DWCNT is given for different types of end conditions
in the presence of only geometric nonlinearity. A hardening stiffness behavior is
observed for all types of boundary conditions, i.e. the nonlinear natural frequency

increases as the vibration amplitude increases. Furthermore, it is observed that
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although the clamped-clamped DWCNT have the highest fundamental linear natural
frequencies, it has the lowest normalized nonlinear natural frequency at the same
maximum vibration amplitude. This is an expected result, since the effect of
geometric nonlinearity decreases due to the limited deformation obtained for stronger

end supports

Figure 6-3 shows the variation of the normalized nonlinear natural frequency of a
DWCNT vibrating in the first out-of-phase vibration mode where the effect of
different boundary conditions is investigated. Results show that in contrast to in-phase
vibration mode, the variation of nonlinear natural frequency increases as end
conditions get stronger for the out-of-phase vibration mode. However, the amount of
the increase in the nonlinear natural frequency is lower than the case of in-phase
vibration mode and for H-H and C-C boundary conditions, it is negligible. Moreover,
several turning points are observed for C-H end conditions, where at a single vibration

amplitude multiple nonlinear natural frequencies exist.
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Figure 6-2 Variation of Normalized Nonlinear Natural Frequency of Inner and Outer Tubes
Vibrating in the First in-Phase Mode for Different End Conditions (e =0)
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Figure 6-3 Variation of Normalized Nonlinear Natural Frequency of Inner and Outer Tubes
Vibrating in the First out-of-Phase Mode for Different End Conditions (e =0)
In Figure 6-4, the variation of nonlinear natural frequency for the C-H end conditions
is re-plotted by dividing the plot into five regions where the corresponding mode
shapes of the tubes at the center of each region is given as well. The regions are
defined by considering the changes in the characteristics of the nonlinear mode shape,
where, for some cases, it occurs around turning points. It can be seen that in the first
region, the system vibrates in a mode shape similar to the fundamental out-of-phase
mode shape of the linear system. However as the region number increases, the
contribution of other linear modes become significant in the nonlinear solution. For
instance, in the second region the system vibrates in a mode shape which can be
identified as a combination of the first out-of-phase and the fourth in-phase linear
vibration modes. In order to clearly study the contribution of each linear vibration
mode to the nonlinear solution, variation of normalized modal contributions along the
solution curve is plotted in Figure 6-5 for the first six modes that have the highest
contributions. Normalized modal contributions are calculated using Eq. (6.40), where
the nonlinear mode shape is compared with the linear modes of corresponding system.
It can be seen that moving forward along the solution curve the contribution of the
first out-of- phase mode decreases and at the same time the contribution of the forth
in-phase mode increases and becomes maximum in the middle of the third region.
Proceeding further contribution of the fourth in-phase mode decreases; whereas, the
contribution of the second out-of-phase mode starts to increase and dominates the
nonlinear solution. Our further studies show that system continues to vibrate in the
second out-of-phase mode and does not return to the first out-of-phase vibration mode

as vibration amplitude increases. This is due to the fact that, in the path following
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method, the nonlinear vibration mode which is closer to the one at the previous
amplitude step is followed; however, for H-H and C-C boundary conditions, which
are symmetric, the first out-of-phase vibration mode is dominant in the nonlinear

vibration mode.
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Figure 6-4 Variation of Normalized Nonlinear Natural Frequency of Outertube Vibrating in
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6.6.2. Effect of initial curvature on the fundamental natural frequencies of the

DWCNT
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In Figure 6-6, variation of normalized fundamental nonlinear natural frequency is
given for different values of initial curvature (waviness) for hinged-hinged, clamped-
hinged, and clamped-clamped DWCNT vibrating in the first in-phase vibration mode.
It is observed that for all the cases normalized nonlinear natural frequency decreases
as waviness increases and tends to approach to the linear one. It can be seen that as
the end conditions get stronger, the effect of initial curvature on variation of nonlinear

natural frequency decreases.

Figure 6-7 shows the effect of initial curvature on the nonlinear natural frequency of
the DWCNT vibrating in the first out-of-phase vibration mode. It is observed that
comparing to in-phase vibration mode the effect of initial curvature on the nonlinear

natural frequency is insignificant in the out-of-phase vibration mode.
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Figure 6-6 Effect of Initial Curvature on the Variation of Normalized Nonlinear Natural
Frequency of Inner and Outer Tubes Vibrating in the
First In-Phase Mode a) H-H b) C-H ¢) C-C
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6.6.3. Van der Waals force nonlinearity together with geometric nonlinearity

In Figure 6-8, variation of normalized nonlinear natural frequency in the first in-phase
vibration mode is given for different types of end conditions and initial curvature.
Results show that in the in-phase vibration mode, nonlinear natural frequency majorly
changes due to the geometric nonlinearity and considering the vdW force nonlinearity
in addition to geometric nonlinearity does not affect the vibratory behavior of the
DWCNT. Moreover, as initial curvature increases, a similar behavior as in Figure 6-6
is observed. This is an expected result, since vdW force nonlinearity depends on the
relative motion between the inner and outer tubes and in the in-phase vibration modes,
relative motion between the tubes changes slightly during free vibration. Furthermore,
our studies show that, similar to the case of geometric nonlinearity, the effect of initial

curvature is insignificant for the case of out-of-phase vibration mode. Hence, for
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clarity, initial curvature is considered to be equal to zero for out-of-phase vibration

modes presented from now on.
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Figure 6-8 Variation of Normalized Nonlinear Natural Frequency of Inner and Outer Tubes
Vibrating in the First In-Phase Mode for Different End Conditions in the Presence of both
vdW Force and Geometric Nonlinearities

Figure 6-9 shows the variation of the normalized nonlinear natural frequency for the
case of the first out-of-phase vibration mode considering different types of end
conditions. Results show that due to the vdW force nonlinearity, nonlinear natural
frequency changes considerably where several turning points are observed for all end
conditions considered. The results obtained for the H-H DWCNT are the same as the
ones presented by Cigeroglu and Samandari [121], where authors used a Galerkin
based discretization method. In Figure 6-10, variation of the normalized nonlinear
natural frequency for each end condition is given, where the curves are divided into
seven different regions indicated by different markers and colors. In Figure 6-11,
variation of the normalized contribution of each linear mode shape is plotted for the
first seven modes that have the highest contributions, where different regions are
indicated by numbers. It can be seen that for all the cases as total arc-length increases,
or as the region number increases, the contribution of the first linear out-of-phase
mode decreases and later increases again. Moreover, it is observed that for all the
cases in the region for which the contribution of the first mode becomes a minimum
(2™ region for C-C and C-H, and 2"-4"" regions for H-H), CNTs vibrate as if it is

vibrating in the fifth linear in-phase mode.
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Figure 6-12 shows a bar plot of normalized modal contributions of the system for H-
H DWCNT at the end of each region, shown in Figure 6-10, in addition to the
corresponding nonlinear mode shapes of the inner and outer tubes. It can be seen that
at the end of the first region CNTs vibrate in a nonlinear mode shape completely
different from the first linear out-of-phase mode shape where the contribution of the
fifth in-phase mode passes the contribution of the first out-of-phase mode. It can be
seen that at the end of the 2™ region, the contribution of the fifth in-phase mode
reaches to its maximum, which starts to decrease and become zero at the end of the
sixth region. It is worth noting that for the case of H-H DWCNT only the odd mode

shapes are excited which verifies the results given in [121].

In Figure 6-13, normalized modal contribution of C-H DWCNT is given around the
middle of each region in addition to the corresponding nonlinear mode shapes of the
inner and outer tubes. It is observed that for the case of C-H DWCNT, in addition to
odd modes, even modes are also excited. Moreover, it can be seen that asymmetric
boundaries resulted in asymmetric mode shapes. Figure 6-14 shows a similar plot for
C-C DWCNT. It is observed that, for the present case, only the odd modes are excited.

Therefore, it can be concluded that for symmetric boundary conditions only the odd
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mode shapes are present in the nonlinear modes whereas for asymmetrical end
conditions in addition to the odd modes, even modes as well contribute to the

nonlinear mode shapes.

Normalized length of tubes Normalized length of tubes Normalized length of tubes
) 00.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.01 0
1%t region 2" region 3% region
0.8

o

o
e
n

N
~

=3
=3
Mode shapes amplitude

Normalized modal contributions

0.2 X g
ope” — — - i I 1 10
st OP 3rd OP 5thIP Tth IP 1st OP 3rd OP SthIP TthIP 1st OP 3rd OP SthIP 7th IP :
2nd OP 4th OP 6th IP 2nd OP 4th OP 6th IP 2nd OP 4th OP 6th IP
1.0 1.0
4t region 5t region 1 6™ region

=)
=)
Mode shapes amplitude

—o— Innertube Mode shape
— Outertube Mode shape
—

ItOP  3:dOP  SthIP  7thIP IstOP  3:dOP  5thIP  7thIP IstOP  3rdOP  SthIP  7thIP
2ndOP  4thOP  6thIP 2mdOP  4hOP  6thIP dOP  4hOP  6thIP

Normalized modal contributions

Figure 6-12 Normalized Modal Contribution of Innertube and the Mode Shapes of Inner
and Outer Tubes at the End of each Region for H-H DWCNT

Normalized length of tubes Normalized length of tubes Normalized length of tubes
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1 01 0
» 1.0 .
8 1%t region 2" region 3 region 3
2 0.8 2
_g 0.5 =
E]
S 0.6 %
g 0.0 &
=} <
£ 04 G
3 3
3 053
= 0.2 =
g
Z 00 oo — — ——— 0
IstOP  3rdOP  5thIP 7th IP IstOP  3rdOP  5thIP 7th IP IstOP  3rd OP  5thIP 7th IP
2nd OP  4th OP 6th TP 2nd OP  4th OP Gth TP 2nd OP  4th OP 6th TP

Figure 6-13 Normalized Modal Contributions of Innertube and the Mode Shapes of Inner
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Figure 6-15 represents a comparison between the results of current study and available
results in the literature. It is observed that the solutions obtained in the present study
by utilizing DQM and the results given in literature by using multiple trail function
and Galerkin method [121] are in good agreement. For the case of H-H DWCNT, the
results at selected points obtained by the present study (DQM) and by Galerkin
method [121] are tabulated in Table 6-4. It observed that both results are in good
agreement and slight differences between the values are due to the nature of the two

different methods compared.
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Figure 6-15 Comparison with Available Data in the Literature for a H-H DWCNT

Table 6-4 DQM and Galerkin Results at Selected Points for a H-H DWCNT

Normalized
maximum vibration | 0.03 0.06 0.09 0.12
amplitude
Normalized
nonlinear natural 1.0700 1.2022,1.2314, | 1.2496, 1.2682, 1.2583,1.2682, 1.3011,
frequency (Present ’ 1.2355 1.2891 1.3242, 1.6890
study, DQM)
Normalized
nonlinear natural 1.0700 1.1995, 1.2258, | 1.2460, 1.2652, 1.2568, 1.2659, 1.2989,
frequency ) 1.2317 1.2875 1.3235, 1.6885
(Galerkin) [121]
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6.7. Effect of Medium stiffness

Table 6-5 shows the effect of medium stiffness on fundamental linear natural
frequency of a DWCNT with hinged-hinged, clamped-hinged, and clamped-clamped
end conditions. It can be seen that linear natural frequency of DWCNT increases
slightly as medium stiffness increases for all type of boundary conditions. A similar
pattern is detected in [34]; however, it can be seen that as medium stiffness increases

beyond a certain limit (solid lines), in-phase natural frequencies increase significantly.

Table 6-5 Effect of Medium Stiffness on Fundamental Linear Natural Frequency of

DWCNT

k - H-H (THz) C-H (THz) C-C (THz)
In-phase 0.4673 0.7296 1.0578
0 Out-of-phase 7.8852 7.8990 7.9249
Lo® In-phase 0.4875 0.7427 1.0668
Out-of-phase 7.8858 7.8996 7.9256
10° In-phase 0.6415 0.8514 1.1447
Out-of-phase 7.8914 7.9052 7.9312
Lo™ In-phase 1.4566 1.5586 1.7332
Out-of-phase 7.9486 7.96272 7.9892

Figure 6-16 presents the effect of the medium stiffness,k, on the variation of
normalized nonlinear natural frequency versus maximum vibration amplitude for H-
H, C-H, and C-C DWCNT. It is observed that with an increase in the medium
stiffness, k, the normalized nonlinear frequency tends to approach to the linear one for
all end conditions. It is seen that for H-H end condition with medium stiffness less
than 108 N/m?, variation of normalized nonlinear natural frequency changes slightly;
whereas, for medium stiffness larger than 10® N/m? significant changes in the
normalized nonlinear natural frequency are observed. A similar behavior is observed
formerly for variation of linear natural frequencies. This shows that the effect of
geometric nonlinearity becomes negligible in the presence of sufficiently large
medium stiffness. Moreover, it is observed that as boundary conditions get stiffer in
addition to decreasing in variation of nonlinear natural frequency, the threshold value
of medium stiffness increases. The results are tabulated in Table 6-6. A similar

behavior is detected for the case of out-of-phase vibration modes. The results for the
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case of H-H DWCNT vibrating in the first out of phase vibration mode can be found

in chapter 4.
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Figure 6-16 Effect of Medium Stiffness on the Nonlinear Fundamental Natural Frequency
of DWCNT vibrating in the First in-phase Vibration Mode a) Hinged-Hinged
b) Clamped-Hinged c¢) Clamped-Clamped (e =0)

Table 6-6 Normalized Nonlinear Natural Frequencies at Selected Normalized
Vibration Amplitudes of Outertube

Normalized Normalized Nonlinear Natural Frequency
Vibration H-H C-H Cc-C
Amplitude Medium Stiffness Medium Stiffness Medium Stiffness
of
Outertube 0 10¢ 10° 1010 0 10% 10° 101 0 10° 10° 101
0.8 1.0234 | 1.0216 | 1.0126 | 1.0025 | 1.0162 | 1.0156 | 1.0119 | 1.0039 | 1.0060 | 1.0059 | 1.0052 | 1.0025
1.5 1.0799 | 1.0736 | 1.0434 | 1.0089 | 1.0473 | 1.0457 | 1.0351 | 1.0115 | 1.0208 | 1.0204 | 1.0178 | 1.0091
23 1.1793 | 1.1658 | 1.0992 | 1.0206 | 1.1019 | 1.0985 | 1.0759 | 1.0251 | 1.0480 | 1.0472 | 1.0412 | 1.0203

6.8. Concluding remarks

In this chapter, nonlinear free vibration of a curved DWCNT embedded in elastic
medium is studied by using differential quadrature method (DQM) where in addition
to geometric nonlinearity, interlayer vdW force nonlinearity is also included. The
effect of nonlinearities, end conditions, initial curvature, stiffness of the surrounding
elastic medium, and vibrational modes on the nonlinear free vibration of DWCNTS is

studied in detail.

Results show that nonlinear natural frequency increases as vibration amplitude
increases in the presence of only geometric nonlinearity for all the type of end

conditions. Moreover, it is observed that multiple solution at same vibration
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amplitude can exist due to interaction of nonlinear in-phase and out-of-phase

vibration modes.

Furthermore, application of DQM made it possible for the first time to study the effect
of different boundary conditions in the presence of vdW force nonlinearity on the
variation of the nonlinear natural frequencies of DWCNTs. Results show that due to
the vdW force nonlinearity, nonlinear natural frequency changes considerably where
several turning points are as well observed. It is been observed that the number of
turning points is different for each boundary condition considered. Moreover, it is
observed that for symmetric boundary conditions only the odd mode shapes are
present in the nonlinear modes whereas for asymmetrical end conditions in addition

to the odd modes, even modes as well contribute to the nonlinear mode shapes.
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CHAPTER 7

NONLINEAR FREE VIBRATION OF NONUNIFORM ROTATING
CARBON NANOTUBES BASES ON ERINGEN THEORY

The main objective of this chapter is to include and study the size effects in nonlinear
equations of motion of CNTs. Size effects are emerged from the non-contact
interactions of the atoms and molecules due to atomic potential forces. Classic
continuum models fails to capture size effects because of their atomic origins. Hence,
in this chapter based of Eringen nonlocal theory, nonlinear nonlocal equations of
motion of CNTs are studied. Results show that boundary condition equations for
nonlocal cantilever beam is totally different than classic beams where it includes
nonlocal and nonlinear terms. It is worth mentioning that nonlinear nonlocal BCs are

studied for the first time in this chapter.

7.1. Introduction

In recent years, there has been great interest in the application of nonlocal continuum
mechanics for modeling and analysis of rotating nanobeams and nanotubes. It is worth
noting that rotating structure will be inevitable part of the power transmission system
of any future nano machines and nano robots. Pradhan and Murmu [208] used
nonlocal Euler Bernoulli beam model to study the linear free vibration characteristics
of a uniform rotating nano-cantilever. However, they failed to consider the nonlocal
boundary conditions related to the free end of the nanobeams. Later, Murmu and
Adhikari [209], investigated an initially pre-stressed single-walled carbon nanotube
via nonlocal elasticity to analyze the effect of the initial preload. They show that
vibration characteristic of CNTs is influenced by the existence of a preload. Narendar
and Gopalakrishnan [210] studied the wave dispersion behavior of a rotating nanotube

using the nonlocal Euler Bernoulli beam theory. Later, Narendar [211] used nonlocal
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Timoshenko beam theory to investigate free vibration of uniform rotating nanotubes
where shear deformation and rotary inertia are accounted. Aranda-Ruiz et al [212]
studied natural frequencies of the transverse bending vibrations of a nonuniform
rotating nano-cantilever. They have assumed that the nanobeam cross-section changes

linearly.

It should be noted that in all of these studies CNTs have been assumed to behave
linear; however, recent theoretical and experimental studies show that the
deformation of CNTs is nonlinear in nature. Fu et al. [113] show that as vibration
amplitude increases, the nonlinear natural frequency increases significantly for
nonrotating simply supported single and double walled CNTs. In recent years,
nonlinear vibration of CNTs have been studied by several researchers [51, 121, 184].
However, these studies are only limited to the case of nonrotating tubes. Therefore, it
is important to study the behavior of rotating CNTs where effect of nonlinearities is

considered.

Moreover, reviewing literature it can be seen that it is common assumption to use
boundary condition equations of classic beam in studying the nonlocal beams.
However, it should be noted that, in the case of cantilever beam, the system boundary
condition equations are different than boundary conditions of a classic beam and they
include nonlinear and nonlocal terms. Even though the effect of nonlocality on BCs
have been reported for the first time by Lu et al. [213] and Wang et al [85] for
nonrotating SWCNT, they have not been correctly incorporated in studies regarding
the rotating nano structures. Furthermore, to the best of authors’ knowledge, this is
the first study that investigate the effect of nonlinear terms in boundaries on the

variation of nonlinear natural frequencies.

7.2. Nonlocal constitutive relations

According to the nonlocal elastic stress theory developed by Eringen [41], stress,

o;(x), at a reference point in a body, X, is dependent not only on the strain at

reference point but also on the strain at all other points, x, of the body as follows

136



o} (x):Ia(|x*-X|,r) t;(x) dV(x'), (7.1)

where t; (x") are the components of the classic local stress tensor at point x . The

classic stress tensor for a Hookean material is
5 (x')= Cija & x). (7.2)

Equation (7.1) states that the nonlocal stress is given by spatial integration of weighted

averages of local stress where spatial weight is represented by the specific nonlocal
modulus a(|x* - x|,r) . 7 1s a constant given by
e,a

r=52, (7.3)

where it represents the ratio between a characteristic internal length, a, (e.g. the
lattice spacing, distance between the C--C bonds) and a characteristic external length,

I, (e.g. wavelength and length of tube). Here, e, is a constant for calibrating the

model and experimental results.

According to Eringen, Eq. (7.1) can be written in differential form as
(l_(eoa)2 vz)o—kl =ty (7.4)

where V? is the Laplacian operator. For the case of one dimensional structures such
as Euler beam, the Laplacian operator is reduced to one dimensional form and since
the strains in the transverse directions are negligible, Eq. (7.4) can be expressed as

» 8o

Oy — (eoa) a?: Ee (75)

XX 2

where o, and ¢, are nonlocal axial stress and strain accordingly.
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7.3. Modeling

Consider a CNT of length L, cross-sectional area A(x) , area moment of inertia I(x)
, Young’s modulus E , and density o attached to a rotating molecular hub at x=0.

The tube is clamped to the hub located at distance I from the axes of rotation. The

structure rotates at a constant angular velocity Q as shown in Figure 7-1-a.

Based on the Euler—Bernoulli beam theory and a nonlinear strain—displacement
relationship of Von Karman type [153], the relation between displacement field and

strain can be written as follows

&(X,2) = (7.6)

ox ox?

OX 2

uxt) | 1 (aw(x,t)jz oW

b)

-

Figure 7-1 Schematic view of a rotating nanotube.

I(vdW

(
X, U(X)

where x is the axial coordinate, t is the temporal variable, u(x,t) and w(x,t) denote

the total axial and transverse displacements of the tube along the x coordinate

directions, and &(x,z) is the corresponding total strain.

The potential energy V and the kinetic energy T stored in the tube can be written as

follows

L L 2

V=1[[o-sx2dAdx==[[o a—“+1(@J—za—‘f dAdx, (1.7)
24 2N & 2 )
1§ wY 1§ owY

7oL ) gadx=L [ p- a0 [2) d 78
ZMP(atj x=ale (X)(at) - 79
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where o stands for stress on the section surface, and A(x) is cross section area at

distance x. It should be noted that, in writing the kinetic energy, rotary and axial
kinetic energy of the beam are neglected. For the beam, the resultant normal force,

and the bending moment are defined as:
N, =[odA, (7.9)
A

szjz.adA, (7.10)
A
respectively. Therefore, Eq. (7.7) can be written as:
L 2 2
V:lf Nxa_u+le(6_Wj _an_vzv dx . (7.11)
25 OX 2\ ox OX

The work done by the external forces in axial direction (such as centrifugal force) and

transverse direction (such as medium force) can be calculated by
L L

W, =W, +W, = [ f(xt)-wax+ [T(x)-udx, (7.12)
0 0

f (x,t) and T(x) represent the medium stiffness force and average centrifugal force

on the cross section at distance x, respectively. Here, T(x) is equal to

L
T(x):—aijp-A(x)-Qz-(r+g)d§, (7.13)
X X
where r is the molecular hub radius. The minus sign indicates that the force decreases
as x increases. The equations of motion of the nonlocal rotating tube can be derived
by using Hamilton’s principle as
4
S[(T-V+w,)dt=0, (7.14)

Y
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where J stands for variation. Substituting Egs. (7.8), (7.11), and (7.12) into Eq. (7.14)
, applying integrating by parts and setting the coefficients of dU, SwW equal to zero

lead to the following equations of motion

N
T(><)+6 ~=0, (7.15)
OoX
o’w 0 ow| o8°M
—pA ZIN f(x,t)=0, 7.16
L (X)atﬁax{ *ax}+ o T D (7.16)

and the general form of boundary conditions as:

N, sul; =0, (7.17)
L L
Nxﬂﬁw +6MX5W =0, (7.18)
ox |, OX 0
aWL
-M,6—| =0. (7.19)
X |,

Note that the expressions of the normal resultant force and bending moment in the
nonlocal beam theory are different from those in the classical Euler Bernoulli beam
theory due to the nonlocal constitutive relation. From Egs. (7.5), (7.6), (7.12), and

(7.13), the normal resultant force and bending moment can be expressed as

a°N ou 1(owY

2 0°M, o’w
Mx —(eoa) W:—EI(X) axz .

(7.21)

It is worth noting that, due to Egs. (7.20) and (7.21), Egs. (7.18) and (7.19) are
nonlinear boundary conditions. By substituting Egs. (7.15) and (7.16) into Egs. (7.20)
and (7.21), the expressions for nonlocal normal resultant force and bending moment

can be obtained as

N, = EA(x).I:Z—l;Jr%(Z—\;Vj }—(eoa)z%, (7.22)
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o’'w w0 ow
M, =-ElI(X)—- A(X N, — |+ f(x.1)|. 7.23
- e [R Bt (129
Even though N, depends on axial elongation u(x), it can be assumed that the tube

total axial elongation is majorly due to the rotation. Therefore, by integrating Eq.
(7.15) over the tube length and substituting Eq. (7.22), one can get the following

equation for the normal force
:—IEA(X) ( j dx+_[pA(x)Qz(r+§) . (7.24)

Inserting Eq. (7.23) into Eq.(7.16), the nonlinear equations of motion for the nonlocal

rotating tube can be obtained as

ik {El(x)aw} Gl 6[Nx@}—f(x,t)
ox’ OX OX

& w ol ow ’ (7:23)
_(eoa) W[pA(X)?_&[NX&:I_ f(X,t)j:

where N, is given by Eq. (7.24).

In the case of double walled CNT (DWCNT), two concentric tubes will interact with
each other through the medium force due to the interlayer molecular van der Waals
(vdW) pressure [80, 182]. This pressure acting on the two adjacent tubes depends on
the difference between the transverse deflections of the inner and outer tubes and can
be considered as an external force (Figure 7-1-b). The vdW force per unit area for two

originally-concentric tubes is given in [168, 169] as

F ()= py (W, —w )+ p, (w, —w,)’, (7.26)
o’V o'U . . . .

where p,=2r—{ , p,=2——| . r, is innertube radius, and U is potential
06|, , 6 05*, ,

energy expressed in terms of the interlayer spacing ¢ as follows [184, 197]
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U(8)=K, H%T —0.4(%)10} , (7.27)

where K, =0.4089101874 J/m® , and &,=0.34nm is the equilibrium interfacial
spacing. It is worth noting that p, and p, are functions of the equilibrium interlayer
spacing and innertube radius. However, since in the present study the equilibrium

interlayer spacing is considered to be constant, they will only be functions of

innertube radius and consequently functions of x.

The vdW force can be considered as external force acting in transverse direction;

hence, the virtual work done by the vdW force is

oW, . =W, =

e,vdwW

[pl(x)-(w0 —W, )+ P, (x)- (W, —vvi)3](6wo — 6w, )dx. (7.28)

O —y

Adding the virtual work done by vdW force to Eq.(7.12), the equation of motion for
a DWCNT can be derived by applying Hamilton’s principle to the lagrangian of inner

and outer tubes assuming that the tubes are vibrating in the same plane.

The coplanar transverse motion of an embedded DWCNT is described by the

following coupled nonlinear partial differential equations.

o oO°W, orw, 0 ow, L )

y{Eux) axz}pA)(x)? o0 B (-~ B, (0, -w)
2 0 o’w, 0 ow, L V|

(e 2 om0 2T 2 b (0o () |0

: (7.29)

o 0w OO M (w (W —w )

e Dt AT - 2 2 ) 1))
2 0 o'w, 0 ow, | L V|

(e 2] A0 T - 2 B ), ) (0 ) o

: (7.30)

where
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ow,
OX

Nx’r=i.([EA(x)-( ) dx+_[pA(x)Qz(rh+.§)d§, (7.31)

and subscript I' is equal to i and o indicating inner and outer tube, respectively.
7.4. Generalized differential quadrature method

Generalized differential quadrature method (GDQM) approximates the derivatives of
a function with respect to a spatial variable at a given discrete point by a weighted
linear summation of function values at all the discrete points in the computational

domain [205]. For example, the n" derivative of a function W, (x) at the m™ point,

X, , can be estimated by

N
W2 (%,) =D cOW.(x), m=12,..N, (7.32)
s=1

where W," (x,,) is the n" order derivative of W, (x) atpoint x,, and N is the number
of grid points utilized in the discretization of the partial derivatives. In Eq. (7.32),
r =i,0 refers to inner tube or outer tube, and cmqs(”)(s =1,...,N) are the weighting

coefficients for the n" derivative estimation of the m™ point, which can be pre-

determined (given in previous chapter) [122]. Defining W, =W.(X;), Eq. (7.32) can

be shorten as follows

N
;
M N oM W = o™ am m  am
mWr = zcm,s sWr = {Cs,l Cs,z e Cs,N—l Cs,N } : { IWr 2Wr NWr }
- (7.33)
= c::)T X,
where ¢ represents the m™ column vector of matrix C® formed by

cm,s(”)(s =1,..,N). Superscript T stands for the matrix transport. It is worth noting

that the higher order of the weighting coefficients can be calculated by using matrix

multiplication as follows

co=coevc, (7.34)

143



where C™ is the matrix of weighting coefficients at all points. Since the positions of
the sampling points play a significant role in the accuracy of DQM [214], Gauss—
Lobatto quadrature points are used in the present study which contains points at

boundaries.
7.5. Utilizing DQM

Assuming a separable solution as w, (x,t) =W, (x)-T (t) , the partial differential equation
of motion given by Egs. (7.29) and (7.30) can be expressed as

o’ oW, o°T 0 oW, s
Z_|El,=—eT oW ——| N, 2T (W, =WT +p, - (W, -W,)°T

Z BT | o w2, B T, )

) & T, ol oW, )
(o) 2] o S0 2 0, 2t g+, )T -

: (7.35)

2\ 2:
o [El aW‘T} oA Tw —E{Nx,i%ﬂ—pl-(Wo—VVi)T—pz'(Wo—VVi)STS

o o ot x
o o°T 0 W, > (739)
? T oW ——|N T (W, —W)T = p, - (W, =W, )°T? | =

(ea) axz[ atz i 6X|: X,i X :| p ( 0 |) pZ( 0 I) \J 0

where

N,, =G, T>+F,, ( jEA (x)- ( jdx]T +ij,(x)Q (r,+&)de. (7.37)

Assuming a single harmonic solution in time, i.e. utilizing harmonic balance method
(HBM) with a single harmonic, and applying the GDQM (Eq. (6.8)), the discrete

nonlinear algebraic equation of motion at the m" given point become

I T S N O 5| oMo | 0 Ifx, (7.38)
mkoi_mk;\“_v ! mki +mkiNLg_mklNLv X; - 0 § mMi X; ’ .
i 2x2N ! ' !

where

144



O’El OEl oF
_ )T 3T @7 T )T Xm> I (DT
m r_aTzrx Cm +2Wrx Cw +EL G +pay, —F e —— e,
AP v P o @ OF T O'Fyr @t
—(e,) Loay +2— eyt +p el —— el -3 — el ,  (7.39)
oX™ |, X |y, OX OX

-3 R r O = c(m}

6X m Xp, I m
2
ko =—p,at+(e,) [a—p af +2 20 qor g ] (7.40)
OX . X,
ok =—%GN, e +%(eoa)2 (G, i) (741)

Sk =% [pz ~(e,a)’ aaxez ] (afn '(xo X, +3X, - X, ))—6(e0a)2 pz( o .(x X, ))2
6(eoa)2%x (e97-(x, —x,))(an -(x, —x,)) , (7.42)

o’pA
ox*

e+ pAl c;ﬂ. (7.44)

x }afn ~(e,a)’ l:z%

mMr = [pA'Lm - (eOa)2

Xm

k,, kM (r=i,0), and kM (s=1,2) represent the linear stiffness, geometric

m r’>m r

nonlinear stiffness, and vdW force nonlinear stiffness counterparts of equation of

motion for inner and outer tubes. M, stands for the system inertia. a,, is a unit vector

which its m" component is equal to unity. e.g.a,={1 0 --- 0 O}LN' G, 1is a

r

nonlinear coefficient dependent on the system mode shape where it is calculated as

follows
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Gy, =2, (EAL (07 %)) (7.45)
n=1

where d, is the weighting function calculated using Gauss—Lobatto integration rule

[207]. Adding and re-ordering equations for all point, equation of motion can be

written in matrix form as follows
[K, +Ky, ]xq=0’Mxq , (7.46)

where q denotes the unknown dynamic displacement vector defined as
: T
q=1-- :{{1\/\/ W, NW}E {IWi W N\/\/_}} ) (7.47)

M ,K,, and K, represent mass matrix, linear stiffness matrix, and nonlinear

stiffness matrix including geometric and vdW force nonlinearities, respectively.
7.5.1. Nonlinear nonlocal boundary conditions

In the present study, free vibration of cantilever tubes is studied where they are

clamped at x=0. Hence, the boundary condition for the tubes will be

dw
W, (X,,t) =0, s =0, 7.48
(%, o, (7.48)
oM
Cowl M Lo —m | =0, (7.49)
"OX [y, OX L

X=Xy

where x, and x, represent the position of clamped and free ends, respectively. Using

the DQM, the discretized counterparts of boundary conditions for inner and outer

tubes at the end become

al -x, =0, ¢{""-x, =0, (7.50)
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2 OpA

.
3. . OEl o

=G, ¢V —— a, +— (3\n ey || -x
{4 N N r

c? —El |x ' —(e, ){pAJ @’ e+’

0
(e a)aX|: fr'(xo_xi)]zos
[EI |, e+ [pA| o al +> qN c“)TD cE(ea) f, (x,-x, ) =0

(7.51)

Xy Xy

In the above equations, the first and second terms are added for the innertube and

subtracted for the outertube and
3
=[p1+zpz-(aL-(xo—xi))z}aL, (7.52)

shows the value of vdW force for inner and outer tubes (r =i,0 ) at the tip. It should
be noted that the obtained boundaries are nonlinear and eigenvalue dependent
boundaries due to nonlocality and geometric nonlinearity. Furthermore, it can be seen
that boundary conditions are affected by linear and nonlinear counterparts of vdW
interlayer force due to nonlocality. Considering the nonlocal effects equal to zero, the

BCs, after simplifications, are become similar to the one reported in Ref [215].
7.6. Solution method

By using matrix manipulation, the boundary condition equations can be written in

matrix form as follows

(K, + Ky -0'My [x, +[ K, + KM -0’M, |x, =0, (7.53)

s

where x, and x, represent the boundaries and interior gird points, respectively, as

follows
{ W|72\N|7N IVVM NW Wo’ZWO’N IVVO’ NW} (754)
T
X, :{ W W, n-2 Wi : Wo W, N—ZWO} . (7.55)
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K; and K" are 8x8 and K and K" are 8x (2N -8) linear and nonlinear stiffness
matrices of boundaries and interior gird points, and M, and Mg are 8x8 and

8x (2N —8) mass matrices of boundaries and interior gird points, respectively.

Furthermore, considering the interior and boundary grid points separately, the

equation of motion (Eq. (7.46)) can be written as
K, x4 +[(K1 +K;L)—a)2M*]xs =0. (7.56)

s

Here, K;, Ky, , and M are (2N -8) x (2N -8) matrices, representing the linear

stiffness matrix, nonlinear stiffness matrix, and mass matrix for the interior nodes,

respectively. It is worth noting that K; and M are coefficient matrices for the non-
boundary (interior) nodes whereas Ky, is a displacement dependent matrix whose

values depend on the values of the boundary nodes in addition to the interior nodes.

K, is an (2N -8)x8 displacement dependent matrix which contains coefficients of

boundary nodes.

Solving x, from Eq. (7.53) and substituting it in Eq. (7.56), Eq. (7.56) can be

simplified as follows
K, [Ky + Ky -orM, | [K K -0'M, ] x, +[ (K 4K, )-o™ | x, =0 . (7.57)

It should be noted since boundary conditions are nonlinear, it is almost impossible to
use commonly eigenvalue solvers [34, 122]. Hence, the resulting nonlinear algebraic
equation is solved using Arc-length method details of which are given in Ref [197]

where the residual vector function is defined as follows

r(x,,) =[[(K; +K;L)—a;2M*]—KD (K, + K} -a)zMBT (K, +K" -a)zMsﬂxs .(7.58)
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7.7. Results

In this section, first, the effect of nonlocal parameter, rotation speed, and variation of
cross section on the linear natural frequencies of a non-uniform rotating DWCNT is
studied. Later, the same study is repeated considering the effect of geometric and vdW
force nonlinearities. The material and geometric parameters of the rotating DWCNT
used in this study are given in Table 7-1. The hub radius and variation of cross section

are considered to be equal to =2 nm and B=0, respectively, unless they are

mentioned. The effect of number of grid points is studied on the linear system, where
it is detected that the natural frequencies obtained are identical when the number of
grid points is larger or equal to 14. Therefore, in all the present results, 18 grid points
are used which later it is observed to be sufficient for the nonlinear cases as well
(Table 6-1 in previous chapter). The variation of the radius of the CNTs is assumed

to change linearly along the axial direction with the following relation

c_ rrc_rrF —r _ 1
rr(x)_rr [ L JX rr (1 ﬂLja (759)

where r° and r." denote radius of the tube at clamped and free ends, respectively. g

is the normalized slope of the variation of the radius (i.e. variation of cross section)

along the axial direction.

Table 7-1 Numerical Values of tubes Parameters

Parameter Value

Casel =0 | Case2 f=0.3 | Case3 f=0.5
Diameter of innertube at free end 0.7 nm 0.7 nm 0.7 nm
Diameter of innertube at clamped end 0.7 nm 1.0 nm 1.4 nm
Density of tubes 2.3 gr/cm’ 2.3 gr/ecm?3 2.3 gr/ecm?3
Young modulus of tubes 1 TPa 1 TPa 1 TPa
Thickness of tubes 0.34 nm 0.34 nm 0.34 nm
Interlayer space between tubes 0.35 nm 0.35 nm 0.35 nm

In order to present the results in a proper form, the linear and nonlinear natural
frequencies are normalized with respect to the corresponding linear natural frequency
of nonrotating uniform local DWCNT (Table 7-2). Furthermore, nonlocal parameter

e,a is normalized with respect to the tubes length. Normalized nonlocal parameter in
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equation of motion is named as g, whereas, in boundary equations, it is named as g

. The naming scheme makes it possible to study the effect of nonlocality in equation

of motion and boundary equations, separately.

Table 7-2 Linear natural frequencies of the non-rotating local DWCNT

Linear natural frequencies [THz] | Case 1 | Case 2 | Case 3
1*" in-phase 0.1665 | 0.1417 | 0.1194
2™ in-phase 1.0418 | 0.8101 | 0.6220
3 in-phase 2.8819 | 2.1933 | 1.6429
1% out-of-phase 7.8768 | 7.2130 | 6.4504

7.7.1. Linear vibration analysis and verifications

The validity of the present nonlocal model in anticipating vibration response of non-
rotating CNT has been investigated in Figure 7-2. The nonlocal results are compared
with the results reported by Lu et al. [213] and Wang et al [85] for SWCNTs.
Furthermore, mode shapes of the system at selected nonlocal parameter are plotted in

Figure 7-3 when nonlocality in boundaries are disregarded g =0 and included
U =1, . A good agreement between the results is observed. It can be seen that, in the

1% in-phase vibration mode, the frequency parameter slightly increases as the nonlocal
parameter increases. However, it is observed that even though disregarding the
nonlocality in boundaries (z =0) does not change the variation of frequency
parameter for a nonrotating tube, it has a considerable effect on the system mode
shape as shown in Figure 7-3. It is worth noting that by setting vdW force coefficient
equal to zero the DWCNT can be reduced to two SWCNT.
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Figure 7-2 Validation of present study, DQM, with the results reported by Lu et al. [213]
and Wang et al [85]
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Figure 7-3 Variation of mode shape of CNT with normalized nonlocal parameter ,, a)

4, =0 i.e. disregarding the nonlocality effect in BCs b) y, = g, including the nonlocality
effect in BCs

Figure 7-4-a presents a comparison between results of present study for a nonlocal
rotating SWCNT with results reported in Pradhan and Murmu [208] where the hub

radius is considered to be equal to the tube length. Rotation speed Q is normalized
with respect to /El,/pAL* at clamped end. It should be noted that in [208] local BCs

assumption is incorrectly used to study the variation of natural frequency of a nonlocal
SWCNT. Hence, for the sake of comparison, ; is considered to be equal to zero. A

good agreement between results can be observed. However, disregarding nonlocality
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effect in boundaries results in a considerable amount of error. Figure 7-4-b shows
variation of normalized linear natural frequency when nonlocality effect in boundaries
are included ( z, = 4, ). It can be seen that nonlocality effect in boundaries results in a
faster increase of normalized linear natural frequency as rotation speed increases.
Hence, it is important to consider nonlocal terms in boundaries. Therefore, in the

following sections, z =, in order to present a correct application of theorem.

w
[

35

Present study, DQM ;=0  Pradhan amd Murmu (a) ) Present Study, DQM 1, =p ./: (b)
s S
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Normalized linear natural frequency
Normalized linear natural frequency

wn
|

Normalized rotation speed Normalized rotation speed

Figure 7-4 Variation of normalized linear natural frequency versus normalized rotation
speed a) present study with g =0 comparing to Pradhan and Murmu [208] b) present study

with 24 = 1,

It is worth mentioning that in Ref. [211] linear free vibration of rotating nonlocal
SWCNT is studied where nonlocal boundaries are correctly obtained (equation 31).
However, following solution procedure and results, it is observed the matrix form of
boundaries, equation 49 in [211] in comparison to Eq. (7.53) in present study, is
reported incorrectly. Furthermore, since boundaries are eigenvalue dependent, an
iterative procedure is required to obtain the correct values of system eigenvalues

where it has not been specified in [211].

Table 7-3 shows the variation of the 1% and 2" in-phase natural frequency of the
nonlocal rotating DWCNT for different set of parameters. It is observed that no
nontrivial real frequencies exist for some sets of rotation speeds and nonlocal
parameters which we named them as unstable values. A similar phenomenon is
reported by Lu et al. [213] and Wang et al. [85] for nonrotating SWCNT using
Galerkin method. Results show that as nonlocal parameter increases, successive

natural frequencies approach each other which results in no real frequencies.
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Table 7-3 Variation of normalized 1% and 2™ linear in-phase vibration mode of DWCNT
1% in-phase 2" jn-phase

B=0 B=0

Nonlocal Parameter [nm] Nonlocal Parameter [nm]

(2 [THz]

ga=0[e,a=2lea=4|e,a=6|e,a=0[e,a=2|e,a=4[e,a=6
0 1.0000{1.0090{1.0389{1.1034]1.0000/0.8837|0.6654| -
0.1 |1.1986{1.2422|1.5077(2.5328]1.0300{0.9358]|0.8121|0.7807

02 [1.6514|1.8792|3.1809(3.9834]1.1150] - [1.2204|1.1117
03 |2.1918] - [8.3356(8.4143]1.2438| - [1.5728|1.4549
B=023 5=03
Nonlocal Parameter [nm] | Nonlocal Parameter [nm]

Q[THz]

e,a=0|e,a=2le,a=4[e,a=6|e,a=0]e,a=2|e,a=4[e,a=6
0 1.0000]1.0075{1.0323|1.0831}1.0000{0.9177]0.7401| -

0.1 [1.3199]1.3655|1.6858|2.7664]1.0569(1.0045|0.9769(0.9640
02 [1.9759|2.1814|3.7183|4.5862]1.2119{1.2681|1.5080(1.4086
03 |2.7166] - 9.9821|10.448|1.4331| - |1.9852{1.9152
B=05 B=05

Nonlocal Parameter [nm] Nonlocal Parameter [nm]

Q) [THz]

ga=0[e,a=2lea=4|e,a=6|e,a=0[e,a=2|e,a=4[e,a=6
0 1.0000{1.0059|1.0260(1.0654]1.0000{0.9447/0.8113|0.6520
0.1 [1.5100{1.5551{1.9517{3.0686]1.1102(1.0945(1.1907(1.1928
02 |2.4324|2.6215|4.3572(5.3450]1.3895|1.5029|1.8892(1.8359
03 [3.4172|3.9445(6.6563|7.7348]1.7572|2.1481|2.5708|2.5778

Figure 7-5 shows instability plots for a rotating DWCNT in the 1% and 2™ in-phase
vibration mode. It is observed that instability region fade away as rotation speed
increases for the 1% and 2" in-phase vibration mode. However, as rotation speed
increases more, a new unstable region takes form at lower nonlocal parameters. The
observed phenomenon does not have any physical interpretation and it is a direct

result of the application of Eringen theorem.
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Figure 7-5 Instability plot a) 1 in-phase vibration mode b) 2™ in-phase vibration mode
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7.7.2. Nonlinear vibrations

In the following section, nonlinear free vibration of a nonuniform rotating DWCNT
is studied where the effect of nonlocal parameter, rotation speed, and normalized

slope, g , on the nonlinear natural frequencies is investigated. It should be mentioned

that the effect of nonlinearities in the boundaries on the variation of nonlinear natural

frequency is investigated for the first time in present study.

In Figure 7-6, the variation of the normalized nonlinear natural frequency of the first
in-phase vibration mode of a nonrotating uniform DWCNT is given for different
values of nonlocal parameter disregarding and including the effects of nonlinear terms
in boundary condition equations. Results show that the nonlinear terms in boundaries
have a huge effect on the variation of normalized nonlinear natural frequency of the

DWCNT. The effect is more detectable for the case of local DWCNT ( &, =0) where

the behavior changes from a softening behavior to a hardening behavior as nonlinear
terms in boundaries are included. It is observed that the nonlocal parameter has a
hardening effect on the system. It is worth mentioning that boundary equation are
affected by both nonlocal terms and nonlinear terms where the effect of nonlocal
terms surpass the effect of nonlinear terms as nonlocal parameter increases. As a
result, it can be seen that the difference between the variation of nonlinear frequency
between the two cases in Figure 7-6 decreases as nonlocal parameter increases.
Figure 7-7 shows the corresponding nonlinear mode shapes of the DWCNT at

normalized vibration amplitude equal to 2.5 for local DWCNT g, =0 and nonlocal
DWCNT x4, =0.4. Results show that the mode shapes are more affected by

nonlinearities for the case of nonlocal DWCNT in comparison to local DWCNT.
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first in-phase mode a) Disregarding nonlinear terms in boundaries b) Including the
nonlinear terms

Including the nonlinear terms
---A&-- Disregarding the nonlinear terms
—=—-= Linear mode shape

2 (a) Hy = 0

T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Normalized length of CNT Normalized length of CNT

Figure 7-7 Variation of outer tube mode shape vibrating in the 1% in-phase vibration mode
at normalized vibration amplitude equal to 2.5 a) Local DWCNT b) Nonlocal DWCNT
1, =04
In Figure 7-8, the variation of the normalized nonlinear natural frequency of the first
in-phase vibration mode of uniform rotating DWCNT is given for different rotation
speed and nonlocal parameter. It is observed that, with an increase in the rotation
speed, the normalized nonlinear frequency tends to approach to the linear ones for the

local DWCNT g, =0. This shows that the effect of geometric nonlinearity becomes

negligible in the presence of sufficiently large rotation speed. On the other hand, for
the case of nonlocal DWCNT with g, =0.2 , for rotation speed larger than 0.3 THz
significant changes in the normalized nonlinear natural frequency are observed.
Moreover, for the case of rotation speed equal to 0.4 THz no real solution can be
found for normalized vibration amplitude larger than 0.6 based on the Eringen

theorem. Referring to Figure 7-5, it can be seen that, at s, =0.2, these rotation speeds

reside around second unstable region where successive natural frequencies with a
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sudden increase approach each other and result in no real solution cases. The accuracy

and validity of Eringen theorem in these regions is strictly questionable.

Figure 7-8-c shows the variation of the normalized nonlinear natural frequency for

i, =04. It is observed that the variation of the normalized nonlinear natural

frequency decreases as rotation speed increases. However, as rotation speed increases
beyond a certain value, the variation of the normalized nonlinear natural frequency
suddenly increases and then decreases and settles down around rotation speed of 0.1
THz. The reason for this behavior can be found by studying the variation of mode
shapes. Figure 7-9 shows the mode shapes of local and nonlocal DWCNT at
normalized vibration amplitude equal to 2.5 for different rotation speeds. It is
observed that the mode shapes of local DWCNT changes slightly as rotation speed
increases whereas mode shape of nonlocal DWCNT changes significantly.
Furthermore, results show that they take a shape similar to the clamped-hinged beam

modes in large rotation speed due to eigenvalue dependent boundary conditions.
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Figure 7-9 Variation of outer tube mode shape vibrating in the 1* in-phase vibration mode
at different rotation speed a) local DWCNT g, =0 b) nonlocal DWCNT 4, =0.4

Figure 7-10 presents the effect of the normalized slope, B , on the variation of

normalized nonlinear natural frequency versus maximum vibration amplitude for the
1t and 2™ in-phase vibration modes. Results show that the normalized slope has a
significant effect on the variation of normalized nonlinear natural frequency where it
can changes its behavior from a hardening behavior to a softening behavior for the 1
in-phase vibration mode. On the other hand, it is observed that 2"¢ in-phase vibration

mode are slightly affected by the normalized slope.
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Figure 7-10 Variation of normalized nonlinear natural frequency of outertube with different
cross sections at constant rotation speed of Q=0.4 THz with 4, =04

vibrating in the a) 1 in-phase b) 2™ in-phase
In Figure 7-11, the variation of the normalized nonlinear natural frequency is given
for different hub radius of local and nonlocal DWCNT at rotation speed Q=0.2 THz

for different g values. It is observed that the change in normalized nonlinear natural

frequency decreases as hub radius increases in all the cases. Furthermore, the

hardening effect of nonlocal parameter on normalized nonlinear natural frequency
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decreases as B parameter increases and, as a result, local and nonlocal solutions

approach each other.

Figure 7-12 shows the variation of the normalized nonlinear natural frequency of
uniform and nonuniform nonlocal DWCNT vibrating in the first in-phase vibration
mode where the effect of different length to diameter ratios is investigated. Results
shows that as the length to diameter ratio increases, the variation of the normalized
nonlinear natural frequency decreases even for some cases it changes from a
hardening behavior to a softening behavior. Furthermore, for large ratios, the
normalized nonlinear frequency approaches to the linear one due to increase in the
rotation force. Moreover, results show that the variation of the normalized nonlinear

natural frequency approaches to linear one faster for the nonuniform DWCNT.
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7.8. Concluding remarks

In this chapter, linear and nonlinear free vibration of a rotating nonuniform DWCNT
studied where equations of motion are derived based on Eringen theorem using
Hamilton principle and Euler Bernoulli beam theory. The classic boundary conditions
are widely used in studying nonlocal beams in literature. However, our study shows
that boundary condition (BC) equations for a nonlocal cantilever beam is different
than the classic beam where it includes nonlocal and nonlinear terms. It is observed
that including the terms of nonlocal parameter in boundaries have significant effects
on the system mode shape. Furthermore, it is observed that, in addition to mode
shapes, the variation of linear natural frequency is also affected as rotation speed
increases. The effect of nonlocality, rotation speed, normalized slope, and boundaries
on the variation of linear natural frequency is studied and compared with existed

results in literature for classic boundary assumptions.

Later, considering nonlinearities, similar studies are repeated where the effect of
nonlinearities on the variation of normalized nonlinear natural frequency is studied in
detail. Results show that nonlinear behavior of DWCNT in the 1% in-phase vibration
mode is significantly affected by the nonlinear terms in boundaries where system
behavior changes from a softening behavior to a hardening behavior as the nonlinear
terms in boundaries are included in the solution expansion. It is observed that the
variation of normalize nonlinear natural frequency decreases as rotation speed

increases. Furthermore, our study shows that nonlocal mode shape of DWCNT takes
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a form similar to mode shape of clamped-hinged beam in large rotation speeds due to

nonlocal eigenvalue dependent terms in boundaries.

It should be mentioned that application of Eringen theorem for cantilever beam results
in unstable solution for some set of system parameters. Instability of theorem is
studied where unstable regions are determined. In unstable regions, successive natural
frequency approach each other as nonlocal parameter changes which results in no real
frequency cases. A similar phenomenon is observed by Lu et al. [213] and Wang et

al. [85] for case of nonrotating SWCNTs.
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CHAPTER 8

CONCLUSIONS, CONTRIBUTIONS AND FUTURE WORKS

In this thesis, nonlinear vibrations of curved single and double walled carbon
nanotubes is investigated. In this chapter, the results of present study are summarized
and the contributions are highlighted. Furthermore, several recommendations are

provided for future works in this subject.

8.1. Introduction

In the past years, the subject area of nanotechnology has become the focus of attention
of industries, scientists and researchers. Among nanomaterial, Carbon nanotubes
(CNTs) have gained great amount of attention owing to their extraordinary strength,
efficiency in heat conduction and unique electrical properties. CNTs have great
potential in many applications such as nanotechnology, electrics, optics, sensors,
materials science, and architecture. Nowadays, literally every day, a new application
is proposed for CNTs. Among application areas, recently, considerable among of
efforts have been given to comprehend the vibrational behavior of CNTs. A CNT
resonator can oscillate at megahertz frequency. A resonator being able to oscillate at
high frequency unfolds several applications for CNTs. In recent years, CNTs have
been successfully fabricated and used as different parts in the new emerging nano-
devices. CNTs are being used as nano-actuators, nano-motors, nano-sensors, nano-
turbines, and nano shaft and gear systems. Several application areas of CNT were

summarized in the second chapter.

However, in order to design a new efficient vibrating nano-scale device, detailed
information about dynamic properties of such device are needed. In contrast to macro
scale structures, atomic forces play an important role in the mechanical characteristics

of nano-structures. Hence, a clear understanding of atomic interactions are required.
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Furthermore, fabricating prototypes without having clear image of the structural
properties can be very time consuming, misleading and sometimes impossible.
Therefore, having a good insight of the dynamic behavior of such nano-structures is

important in order to develop practical nanomachines.

In the second chapter, several well-known methods which are being used in the
literature were studied. Molecular dynamics (MD) simulation is used by several
researchers in studying the mechanical properties of CNTs. Although MD simulations
provide considerable amount of information on mechanical properties of CNTs, they
are limited by the size of such atomic systems due to highly time consuming
computational requirements. Hence, in recent years, continuum mechanic models
have been used by researchers in studying the free vibrations of CNTs. Using simple
closed form equations of motion offered by the continuum models, key parameters
that affect the free vibration of CNTs can be easily studied. Several continuum beam
and shell models were summarized in the second chapter where advantages and dis-
advantages of each model were also discussed in detail. However, majority of studies
given in literature deal with linear free vibrations of CNTs while the nature of such
structures is highly nonlinear. Nonlinear vibrational behavior of CNTs has recently
become the interest of research. Recent developments in studying the effect of
nonlinearity on vibration of CNT was investigated in the second chapter. It was
observed that CNTs are affected by nonlinearities caused by large deflections
(geometric nonlinearity), interlayer van der Waals force, and initial curvature of the
tubes. Chapter two provides a detailed literature review on current state of studies
regarding the effect of nonlinearity on nonlinear vibrations of CNTs whereas in the
chapter’s three to seven the effect of nonlinearities on the nonlinear vibrations of
CNTs is investigate through several case studies. In each case, the structure was
modeled accordingly and appropriate analyses were carried out to study the nonlinear

free vibrations of CNTs.

8.2. Conclusions

In the chapter three of this thesis, nonlinear free vibration of a simply supported
double walled carbon nanotube (DWCNT) with a concentrated-mass was

investigated. The proposed model simulates behavior of nonlinear DWCNT mass
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sensor where concentrated mass stands for the absorbed mass. The effect of
nonlinearities and mass ratio of concentrated mass on the variation of nonlinear in-
phase and out-of-phase natural frequency of the DWCNT was studied. Based on the

numerical simulations, it was concluded that

e In the first in-phase vibration mode, the normalized nonlinear natural
frequency of DWCNT is not affected by the concentrated-mass where only
geometric nonlinearity exists. On the other hand, in the presence of the vdW
force nonlinearity, the normalized nonlinear natural frequency is affected; but,
this effect is very small.

o In the first out-of-phase vibration mode, it was observed that as the mass ratio
increases, the slope of the normalized nonlinear frequency curves increases in
the case of geometric and vdW force nonlinearities; however, the effect of
vdW force nonlinearity is significantly higher than the effect of geometric

nonlinearity.

It is worth mentioning that nano-sensors work based on the effect of nanoparticles on
natural frequency shifts. However, the results provided in the chapter three show that
the system natural frequency changes considerably as the vibration amplitude
increases due to the inherent nonlinearity of CNTs. Hence in order to predict the shift
in the natural frequency of the system accurately, one needs a comprehensive
understanding of the nonlinear behavior of system. Moreover, in the presence of
medium stiffness, it was concluded that due to nonlinearity, the rate of changes in the
frequency increases suddenly after a certain value of vibration amplitudes. Provided
results and the methods in this thesis can be used in development of future new

nonlinear nano sensors.

In the chapter four, nonlinear free vibrations of a DWCNT was studied using
describing function method (DFM) with multiple trial functions where geometric and
interlayer vdW force nonlinearities were considered. Owing to DFM, the coupling
between the trial functions used in the modal expansion process can be investigated.
The nonlinearity matrices obtained using DFM showed that for simply supported
CNTs considering geometric nonlinearity, a single trial function is sufficient to obtain
the nonlinear natural frequencies; whereas, in case of vdW force nonlinearity,
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multiple trial functions are necessary, especially for the out-of-phase modes in which
the nonlinear effects are more significant. These findings were also verified with the

numerical results obtained.

Within the chapter five, the effect of initial curvature on the variation of nonlinear
natural frequencies was investigated. Galerkin method was used to discretize the
equation of motion in spatial domain. Multiple harmonic balance method was utilized
to convert the discretized ordinary differential equations of motion in time domain
into nonlinear algebraic equations. On the basis of the number of harmonics used in
the solution expansion, several case were studied in order to investigate the effect of
higher harmonics on the nonlinear fundamental natural frequency in the presence of
geometric and waviness nonlinearities. In each case, an analytical expression for the
variation of the nonlinear fundamental natural frequency of CNTs was obtained.
Results showed that the effect of initial curvature can be classified in two linear and
nonlinear categories. It was observed that the higher harmonics should be considered

in order to detect the nonlinear effect of initial curvature.

In the chapter six, nonlinear free vibrations of curved DWCNT was studied
introducing a new accurate, efficient, and relatively fast technique for modeling the
CNTs. Differential quadrature method (DQM), a solution method which does not
require any pre-knowledge on the system comparison functions was developed in this
chapter. The main advantage of DQM, compared to solution methods like variational
approach or Galerkin method is its inherent simplicity in formulation, where different
end conditions can be easily adopted. The effect of nonlinearities, end conditions,
initial curvature, stiffness of the surrounding elastic medium, and vibrational modes
on the nonlinear free vibration of DWCNTSs was studied. Results showed that it is
possible to detect different vibration modes occurring at a single vibration frequency
when CNTs vibrate in the out-of-phase vibration mode. Moreover, it was concluded
that the end conditions have significant effect on the nonlinear natural frequencies of

the DWCNT including multiple solutions.

In the chapter seven, linear and nonlinear free vibration of a nonlocal rotating double
walled carbon nanotube (DWCNT) was investigated. Based on Eringen theorem and

Euler Bernoulli beam theory, Hamilton principle was used to obtain nonlinear and
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nonlocal equations of motion and equation of boundaries. Results showed that the
boundary condition equations for nonlocal cantilever beam is totally different than
classic beams where it includes nonlocal and nonlinear terms. Nonlinear nonlocal BCs
of CNTs were studied for the first time in this chapter. The effects of the nonlocal
parameter and nonlinearities in boundary conditions and equation of motion on linear
and nonlinear natural frequencies of the rotating carbon nanotubes were studied with
respect to the rotation speed, variation of cross section, length to diameter ratio, hub
radius, and vibration modes. It was concluded that the nonlinear behavior of DWCNT
in the 1% in-phase vibration mode is significantly affected by the nonlinear terms in
boundaries where system behavior changes from a softening behavior to a hardening
behavior. It was observed that the variation of normalize nonlinear natural frequency

decreases as rotation speed increases.

It is worth mentioning that in this thesis H-H, C-H, C-C, and C-F boundary conditions
for the CNTs are studied. The F-F boundary condition is excluded since it does not
represent any realistic case for a CNT resonator. C-C and C-F BCs are the realistic
cases for the CNT resonators. However, in most of the studies H-H BC is considered
for CNTs due to limits of methods such as Galerkin where it is easy to formulate and

study.

It is worth mentioning that in this thesis H-H, C-H, C-C, and C-F boundary conditions
for the CNTs are studied. The F-F boundary condition is excluded since it does not
represent any realistic boundary condition for a CNT resonator while C-C and C-F
BCs are the realistic ones. Moreover, it should be noted that in most of the studies in
the literature H-H BC is considered for CNTs due to the limitations of numerical

methods such as Galerkin as discussed in chapter 6.

8.3. Contributions

The following points outline the major contributions of this thesis:

e A comprehensive literature review is provided where shortfalls and
advantageous of different methods in simulation of linear and nonlinear

vibrations of CNTs are distinguished.
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Effect of geometric, vdW force, and initial curvature nonlinearities on the
variation of nonlinear natural frequency of CNTs is investigated and a solid
understanding of the effect of each nonlinearity and the interaction of
nonlinearities with each other is provided.

Describing function method with multiple trial functions is implemented for
the first time in studying the vibrations of CNTs in order to get a better
approximation of the system mode shape. DFM has the advantage of
expressing the nonlinear force as a nonlinear stiffness matrix multiplied by a
displacement vector, where the off-diagonal terms of the nonlinear stiffness
matrix can provide a comprehensive knowledge about the coupling between
the trial functions.

Higher harmonic excitation of the system is studied using multiple balance
harmonic method for the first time.

Differential quadrature method, an accurate, efficient, and relatively fast
techniques for modeling CNTs, is provided where in comparison to methods
such as Galerkin does not require any pre-knowledge on the system
comparison functions.

In-phase and out-of-phase vibration of curved single and double walled carbon
nanotubes are studied in detail using local and nonlocal beam models.

Using Hamilton principle and Eringen nonlocal theorem, nonlinear nonlocal
equations of motion and boundary conditions are obtained where the effect of
nonlinear nonlocal boundary conditions on the variation of normalized

nonlinear natural frequency of DWCNT is studied in detail.

All the goal of this thesis have been met to this end. However, the advancing area of

nano structure has the potential for much deeper studies and there still exist several

unsolved issues which need attention. Following section provides ideas for the

possible future research areas.

8.4. Future works

In this thesis, the variation of nonlinear natural frequency of Carbon nanotube

resonator is studied in detail. Several dynamic models are developed where effect of

geometric, van der Waals force, and initial curvature nonlinearities are included in
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equations of motion. Author believe that the accurate dynamic models which are

developed in this thesis can be used as a practical tool in further developments of nano

devices. Even though present study covers several aspect of nonlinear vibration of

CNTs, there are still topics which need further investigations.

Recent studies show that natural frequency of CNTs are affected by the
temperature of their environment. Also experimental Studies have confirmed
that the actual mass sensor performance is significantly affected by the
variations of environment temperature. Hence, the effect of temperature on
variation of natural frequency in the presence of nonlinearities can be a topic
for future investigations.

Recently, CNTs have been suggested to be used in fluid delivery nano
mechanics. Therefore, another important subject can be the effect of
conveying fluid on the system natural frequency.

Eringen nonlocal theory was used in this thesis to model the size effects. Here
it was shown that besides the plus points of using this theory, Eringen theory
has its own shortfalls where the system natural frequency can become
complex (unstable) as nonlocal parameter in Eringen theory increases more
than a certain value. On the other hand, theories which include the atomic
interactions are not limited to Eringen theory and there exist other theories
such as couple stress elasticity theory, strain gradient theory, and modified
couple stress theory which include nonlocality. Therefore, a thorough study to
investigate and compare the advantages and shortfalls of these nonlocal
theories can be a subject of a future investigation.

In the present study, since the maximum vibration amplitude of the CNTs is
limited to small vibration amplitudes, it is assumed that the cross section of
CNTs remains circular during the nonlinear bending. It is worth mentioning
that the present study studied the nonlinear bending up to the bending angle
of 15 degree. However, Molecular dynamic simulations [69] concluded that
for bending angles more than 30 degree the cross section of tube did not
remain circular. Hence, a study using theorems where it consider the effect of
cross section change can be a subject of a future investigation in studying the

large bending angles.
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Last but not least, Euler Bernoulli beam theory was used in this thesis.
However, for beams with length to diameter less than ten, Timoshenko beam
or higher order beam theories can be used in future studies to get better

responscs.
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APPENDIX A. Nonlinear equations of motion

The mid-plan stretching relation of a beam which goes through of large deformation

can be determined using Figure A.l. Figure A.l shows how a point A with
coordinates of x; and z in the axial and transverse directions respectively moves to

a point A, with coordinates of x, and z, during deformation. The relation between

the coordinates of A, and A and the elongation of differential element are expressed

as
X; =X +U=X+U, (A.1)
Z, =7, +W=Z+W, (A.2)

ds :,/(dxf )2 +(dzf )2 :\/(dx+du)2 +(dz +dw)2 :\/(1+u’)2 +(Z'+W')2 dx , (A.3)

where ' stands for the derivative with respect to x. The slope of the initial rise of the

curved beam is smaller than unity according to the shallow arch approximations i.e.

(Z’)2 <1 ; hence, Eq. (A.3) reduces to

ds=+1+2u"+U” +W? +2wZ'dx . (A.4)

The strain for the differential element is obtained as follows

g:dsd_dx=\/l+2u’+u'2+w'2+2W'Z’—1, (A-3)
X

Expanding Eq. (A.5) up to quadratic terms using Taylor series expansion for small u’

and W', the mid-plan stretching is obtained as

12

g:u'+""7+w’z'. (A.6)
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Now, the total strain at a point at distance z from the mid-plan us given by

12
& =—W'=U+—+WZ'-2W". A7
‘ 2

Figure A.1 Segment of the beam before and after deformation

Consider a thin tube of length L, cross-sectional area A, area moment of inertia 1,

Young’s modulus E , and density p , the potential energy V and the kinetic energy

T stored in the tube can be written as follows

V= % _m ( Ee; ) dydzdx

Volume
W,z 2 W72
E (u,+T+W’le _ ZW"(U"{‘T‘FW,Z,}‘F ZZWHZ ddedX , (A8)

=7

Volume

AL
T =22 [wrd, (A.9)
2 0

where the dot stands for the partial derivative with respect to the time variable.

The equations of motion of the tube can be derived by using Hamilton’s principle as
t,

S(T-V+W,)dt=o0, (A.10)
G

where W, is the work done by external loads on the system. Here, W, is considered

to be equal to zero. t, and t, are the initial and final times, respectively. Applying
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integrating by parts and setting the coefficients of ou, oW equal to zero lead to the

following equations of motion

12
(u'+‘”7+w'2'j -0, (A.11)

12 2

p A+ EIW" EA[u’+WT+W'Z’J (W+2')- EA(U'+WT+W'Z’](W”+Z”) =0, (A.12)

respectively. Eq. (A.11) can be integrated over beam domain to obtain the beam

elongation in axial direction as follows

WrZ L Wr2
u(L,t)-u(0,t) =[u’+7+w’2'jL—j(T+W'Z’de (A.13)

0

Assuming small elongation in axial direction, Eq. (A.13) reduces to

12

L 2
v+ wz :l_[ W wz' | dx. (A.14)
2 L2

Substituting Egs. (A.11) and (A.14) into Eq. (A.12), the nonlinear equation of motion

in transverse direction can be obtained as follows

L 12
PAW+EIW” = {% | (WT+ W'Z’]dx}(w” +2"). (A.15)

0
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APPENDIX B. Nonlinear vdW force terms

The nonlinearity matrix for the interlayer vdW force nonlinearity, considering three

trial functions, is given in Eq. (4.33) where k; are defined as follow

2

2 2
kn1=||ai,1||+||ai,1ao,3 _2||ai,1ao,1 _4||ai,3ao,3 _2||ai,1ai,3||+2||ai,3||_4||ai,3ao,3 T
2 ) (B.1)
et T |+ 2+ 2{ s | o)
2 2 2
knz =||ai,2||_2||ai,2ao,2 _2||ai,3ao,1 +2||ai,3||_2||ai,1ao,3 +2||ai,3ai,1||+ &2 (B 2)
2 2 2 )
2@l |+ 2|+ 2] - 4] 2. + 28 20| - 4225
2
2 2 2
K =||ai,3||—3||ai,3au,3 +2||ai,1||—4||ai,lau,1 +2|ay, +2(||ai’2||— a,, ) , (B.3)
2
Ko =[] [z (B.4)
2
2
Kis =—||ai’1||+3,||ai,lao’1 +(||ai,2||— a, , ) . (B.5)
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