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ABSTRACT 

A DYNAMIC MEMORY MANAGER FOR FPGA APPLICATIONS 
 

 
Özer, Cenk 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. Cüneyt F. Bazlamaçcı 

 
June 2014, 49 pages 

 
Recently, FPGAs are shipped with a large amount of internal memory (block RAM) 

sufficient to perform many complex computations without a need for off-chip 

memory. However, block RAMs (BRAMs) of FPGAs should be used efficiently 

especially for computations that need dynamic management of the memory. Thus, 

within the scope of this thesis work, a dynamic memory manager (DMM) unit is 

designed with an objective of meeting memory requests with a low fragmentation at 

runtime for FPGA applications. The unit is designed to have a bounded response 

time for dynamic memory requests to be suitable for real time applications. It can be 

interfaced with FPGA applications quite easily similar to interfacing an arbitrary IP 

core block. The proposed real-time DMM differs from other conventional memory 

allocators in a way that it allows for memory allocations composed of differing size 

blocks that are not necessarily contiguous. The address translator block in design 

provides to access separate non-contiguous blocks as a whole contiguous chunk of 

memory. Implementation and verification of the developed DMM on an FPGA 

demo board is also presented using synthetic memory request streams. 

 

Keywords: Dynamic Memory Allocation, Hardware Allocator, Dynamic Memory 

Management Unit, Field Programmable Gate Array 
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ÖZ 

APKD UYGULAMALARI İÇİN DİNAMİK BELLEK YÖNETİCİSİ 
 
 

Özer, Cenk 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Cüneyt F. Bazlamaçcı 

 
Haziran 2014, 49 sayfa 

 

Son yıllarda APKD’ler, birçok karmaşık işlemin harici bellek ihtiyacı olmadan da 

yapılabilmesini sağlayacak oranda yüksek miktarlarda dahili bellek ile pazara 

sunulmaktadır. Ancak, özellikle dinamik bellek yönetimi gereken işlemlerde 

APKD’lerin blok bellekleri verimli kullanılmalıdır. Bu amaçla, bu tez çalışması 

kapsamında APKD uygulamalarının dinamik bellek isteklerini en düşük parçalanma 

ile karşılama gereksinimi sağlamayı ön planda tutan bir dinamik bellek yöneticisi 

(DBY) tasarlanmıştır. Bu birim, gerçek zamanlı uygulamalara da uygun olması için 

dinamik bellek isteklerini sınırlı zamanda karşılayabilecek biçimde tasarlanmıştır. 

APKD uygulamaları ile arayüzü, herhangi bir IP bloğuna benzer şekilde 

yapılabilmektedir. Önerilen gerçek zamanlı DBY, geleneksel dinamik bellek tahsis 

edicilerden bir yönüyle ayrılmakta ve bellek tahsis isteklerini bitişik tek blok halinde 

değil, birbiriyle ardışık olması gerekmeyen çeşitli büyüklüklerdeki bloklar halinde 

karşılayabilmektedir. Bu ayrık bloklara bitişik bir bellek alanıymış gibi 

erişilebilmesini adres çevirici sağlamaktadır. Geliştirilen DBY, bir APKD gösterim 

kartı üzerinde yapay bellek istek dizileri yaratılarak denenmiş ve doğrulanmıştır. 

 

Anahtar Kelimeler: Dinamik Bellek Tahsisi, Donanımsal Bellek Tahsisi, Dinamik 

Bellek Yöneticisi, Alanda Programlanabilir Kapı Dizileri 
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CHAPTER 1  

 

 

INTRODUCTION 

 

1.1 Dynamic Memory Allocation 

Dynamic memory management has been an attractive topic in computer science 

since 1960s. Many researchers have been interested in managing memory requests 

of applications at runtime. Since the same memory area can be used again and again 

it is found much superior compared to static memory usage.  However, handling 

memory requests in a dynamic fashion requires a special unit called the dynamic 

memory management unit. Part of the main memory, which is reserved to be used 

for such dynamic requests is named as heap memory. Since the requests cannot be 

identified at compile time, a unit, called as dynamic storage allocator or dynamic 

memory allocator, is used to control this heap memory. Basically, what dynamic 

memory manager does is keeping track of free and occupied parts of the managed 

memory. While doing this, it benefits from an internal data structure and a policy 

that governs the heap memory. Simply, two operations are done. The first one is 

allocating a free place and the latter one is freeing an occupied place. In order to 

allocate memory, only the requested size must be known. The response will then be 

the starting address of the reserved memory block. In case of deallocation, starting 

address of the block, which is required to be released should be given as input. Size 

information is not necessary since it is kept by the memory manager. The state of the 

memory blocks, free or not, is also recorded in the data structure, which may be in 

the form of a linked list, bitmap, tree, etc. [1]. Ideally, a dynamic memory manager 
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should perform all these operations in a very short amount of time and minimize 

wasted space in the heap memory. 

1.2 Performance Challenges 

In recent five decades, many different types of dynamic memory management units 

are designed for many different platforms with various approaches. According to 

Wilson et al. [1], there may always be some applications that can beat an allocator 

policy and severely decrease its performance. Thus, it is very hard to design a 

management unit that performs well for all dynamic memory intensive applications. 

To evaluate the performance of an allocator, there are some absolute metrics, which 

will be briefly described below.  

1.2.1 Execution Time  

The time spent for allocation and deallocation of memory blocks is an important 

metric for performance. This may be quite significant while a dynamic memory 

intensive application is running. For software based allocators, execution times can 

reach up to 38% of the total runtime for some allocation intensive object oriented 

applications [2] [3]. However, execution times have been gradually decreased since 

the middle of 90’s. Hardware based allocators decrease the time spent in return for 

extra hardware and complexity. Another important virtue is to have a bounded 

response time. In this way a memory management unit can be used for real time 

applications also. 

1.2.2 Fragmentation 

Fragmentation is simply defined as inability to use free heap memory [1]. It is 

classified as internal and external fragmentation. Internal fragmentation occurs when 

a larger block is reserved for a smaller size. For example a 16B block can be 
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reserved for 10B and the 6B becomes useless, if there is no mechanism to split this 

large block. However, splitting comes with a time burden in a dynamic memory 

manager. External fragmentation, on the other hand, occurs when there are many 

small size blocks but there is no one block with a size larger than or equal to the 

requested size.  

Different approaches are expressed as fragmentation measure in [20]. Within the 

scope of this thesis work, the ratio of the total wasted memory size to the whole heap 

memory size at the point of operation where dynamic memory manager cannot 

respond to memory allocation requests is used as the fragmentation measure. Since 

BRAMs of FPGAs are of limited size, their efficient use gains more importance and 

attracts more attention providing motivation for the DMM design in this work. 

1.2.3 Memory Overhead 

Dynamic memory managers use various data structures, which also need additional 

memory to keep track of the heap memory. Those structures that are based on 

software mostly use object headers to keep information such as size, link, etc. 

Hardware counterparts, on the other hand, mostly use bitmaps for storing such 

information. Bitmaps that show size and availability of a memory block are also 

stored in BRAMs in FPGAs. Thus, memory overhead should be kept as low as 

possible to decrease memory cost of an allocator. However, this may lead to 

inefficiencies in terms of execution time and fragmentation. 

1.2.4 Scalability 

Scalability is another issue that designers should be concerned about. How design 

complexity, execution time and memory overhead are affected when heap memory 

grows should be taken into account.     
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1.3 Motivation 

For decades many different dynamic memory allocation techniques have been used 

for processor based object oriented systems, which tend to allocate and deallocate 

memory blocks frequently [4]. In 90s, object oriented programming languages, such 

as C and C++, were started to be used also for hardware synthesis. Generally, they 

have been used in hybrid CPU-FPGA based systems for acceleration purposes. 

Hardware synthesizable parts of codes are now implemented on FPGAs to benefit 

from parallelism. However, implementing dynamic structures such as dynamic 

memory allocators, pointers, etc. have not been a straightforward task. Semeria et al. 

[5] presented research results that allows synthesizing C code with dynamic memory 

allocation efficiently for hardware by accessing a primitive, which performs the 

allocation and deallocation tasks. Some other similar works have appeared in [4] [6]. 

In the present thesis work, a dynamic memory manager is designed as a hardware 

core block similar to those previously mentioned studies.  

In [22], a reconfigurable platform is developed, which includes a hardware and 

software operating system for handling the context switching of hardware tasks. The 

system area circuitry in [22] is responsible for handling the memory request. The 

DMM developed in the present work may be considered as a candidate primitive 

core block targeting the mentioned system area circuitry.   

The main concern however, is to keep fragmentation at very low levels while 

managing the BRAMs, which are limited and very valuable resources of FPGAs. 

Besides fragmentation, we aim to have a fast DMM with a bounded response time. 

In other words, it should be suitable to be used in systems that have real time 

constraints. Although BRAMS in FPGAs are targeted and are the main source of 

motivation, it should be also applicable for any type of memory.    
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1.4 Contributions 

This thesis work focuses on managing BRAMs of FPGA for dynamic memory 

requests. In order to achieve this goal, a DMM is designed, which is suitable for real 

time FPGA applications that need dynamic memory usage. Our proposed DMM can 

be interfaced with FPGA applications very easily similar to interfacing an arbitrary 

IP core block. It has bounded response time for allocation (21 clock cycles), 

deallocation (10 clock cycles) and address translation (2 clock cycles) processes. 

The fragmentation depends on the average size and distribution of the memory 

request stream. However, it can be optimized by adjusting the block sizes to keep 

fragmentation at low levels.    

1.5 Thesis Organization 

The remainder of the thesis is structured as follows. Background information about 

the thesis subject and prior work about dynamic memory management are given in 

Chapter 2. In Chapter 3, a detailed description of the DMM design is presented. 

Chapter 4 includes the implementation details of the proposed design. Experimental 

setup and evaluations of the design appears in Chapter 5. Finally, Chapter 6 

concludes the thesis, also suggesting some future directions.  
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CHAPTER 2  

 

 

BACKGROUND  

 

2.1 Dynamic Memory Allocation Concepts  

In this chapter, some background information and definitions are given related to 

dynamic memory management. As was mentioned earlier, the purpose of dynamic 

memory manager is to track the availability of the memory area, which is reserved 

for memory requests in runtime. While performing this task, it aims to minimize the 

wasted space and time spent. Furthermore, when the application doesn’t need a 

reserved place anymore, deallocation is done by the DMM. Related commands and 

their arguments should be delivered to DMM to perform the necessary allocation 

and deallocation tasks. For example, in object oriented language C++, new and 

delete represent allocation and deallocation commands, respectively. Allocation 

command takes memory size as an argument and returns the starting address of the 

reserved block for that request. On the other hand, deallocation takes the starting 

address of the block to be freed as its argument. The size is kept in the data structure 

of the memory manager, thus it is not a required argument for deallocation. 

Policy and mechanism are two issues to be addressed within the context of memory 

allocation. Policy is a design procedure that is implementable for the placement of 

the requested memory. Next fit and best fit policies are examples of placement 

policy. Algorithms and data structures that are used to implement a policy is called a 

mechanism [1]. For instance, linked list that keeps free blocks as a list connected to 

each other is a mechanism example.  
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Fragmentation is the inability to use free memory due to allocation policy and 

mechanism [1]. It is classified as internal and external fragmentation [16]. External 

fragmentation occurs when there is free memory for allocation, but there is no 

available block which can meet the requested size. For example, there can be a lot of 

non-contiguous blocks that have 10B size, but it may not be possible to provide a 

place for a 20B request. The other case, internal fragmentation occurs when a larger 

memory is reserved for a small size request. For a 10B request for example, a DMM 

may allocate a 16B block and a 6B internal fragmentation occurs, if there is no 

splitting policy.  

Splitting, as the name implies, divides large blocks into smaller ones to prevent 

internal fragmentation. In the previous example, if splitting were used, 6B would be 

added to the free list and marked as a free block after splitting. However, such a 

policy may generate many small blocks in the memory thus causing external 

fragmentation after a while [1]. In order to prevent this, another policy called as 

coalescing, is used. Coalescing merges adjacent free blocks in order to form larger 

blocks. It is worth noting that each such policy brings extra burden in terms of 

execution time.                

2.2 Classification of Allocators 

One type of classification can be done based on whether the dynamic memory 

allocator is software or hardware based. As a quick comparison, we can say that 

hardware allocators are considerably faster, more expensive and more complex 

compared to software allocators. A better classification is done according to 

mechanism and policy [20]. 

Sequential Fits, usually uses the linked list structure for keeping the free blocks. 

These blocks are maintained in FIFOs or LIFOs, which are searched according to 

the allocation policy. In this technique, search time may be considerably long when 

the number of free blocks increases. Best fit, first fit and next fit are the best known 

sequential fit policies. In the best fit, the smallest size block, which is enough to 
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meet the request, is searched. Obviously, it gives better results compared to the other 

two policies in terms of fragmentation. However, it may suffer from long search 

times. Hence, it does not suit well to large heaps. First fit searches the list starting at 

the beginning of the list with every incoming request. The first block found to be 

larger than or equal to the requested size is reserved. If the reserved block is larger, 

it is split and the remainder part is added to the free list again. In this technique, 

large blocks at the beginning of the list will be divided first. Number of small blocks 

increase as time goes by and external fragmentation occurs as a result. Also, search 

time may considerably increase for larger blocks following the formation of many 

small blocks. Next fit can be seen as an optimization to first fit. Searching process 

begins at the point where it was left last. This approach improves search time, 

however it causes more fragmentation compared to best fit and first fit.  

Segregated Free Lists is an array of free lists, which keeps the free blocks separately 

according to particular sizes. Since the size range of free lists are known, it is quite a 

fast technique. Known implementations can be classified as the simple segregated 

storage and segregated fits. In simple segregated storage, splitting is not applied. 

Thus, if one of the size classes is demanded a lot, it causes severe problems. On the 

other hand, segregated fits enables splitting if requested size class is empty. It 

reserves larger block than requested, splits and adds the remainder to related size 

class. There are three schemes according to lists and size classes namely, exact lists, 

strict size classes with rounding and size classes with range list. There are different 

free lists for every possible block size in exact lists. This may lead to a large number 

of free lists. In the second scheme, there exists defined sizes (e.g. powers of two) 

and requests are rounded to the minimum class size that is available in the size list. 

This approach reduces the number of free lists belonging to different sizes, however 

rounding up cause internal fragmentation to a certain extent. The last approach has 

free lists with a range of size. Since there are different sized blocks in the list, a 

sequential search (next fit, best fit, first fit) is generally carried out in the list. 

Buddy System is a specialized case of segregated fits mechanism. It uses size classes 

with rounding and restricts splitting and coalescing according to some predefined 
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rules. Binary, fibonacci, double, weighted buddies are examples of buddy systems. 

In all of these schemes, newly deallocated block is coalesced with its buddy if the 

buddy is free also. Only the size of buddies vary in these buddy systems. For 

example, heap area will be divided two equal parts in binary buddy system. These 

parts are also divided equal parts to handle sufficiently small area for memory 

requests. On the other hand, in Fibonacci buddy system, divisions are arranged to 

form a Fibonacci series. 

Bitmapped Fits is the policy that uses a bit vector to represent free or used areas in 

the heap memory. For each block in the memory, a flag shows whether it is free or 

not. This may be regarded as a slow mechanism in software implementations, 

however it may be implemented quite fast in hardware [4].            

2.3 Literature Overview 

There have been many research works conducted about dynamic memory 

management since 1960s. The state of the art until 1995 is well summarized in [1]. It 

is a good reference, which includes general concepts about dynamic storage, 

fundamental techniques, and classification of memory allocation algorithms before 

summarizing the articles that have been published until that time. From then on, 

there appeared many other articles about dynamic memory management techniques, 

among which hardware based techniques also took place.  

Chang and Gehringer’s modified buddy system [4] is one hardware implementation 

of a buddy system with the bitmap approach. It uses pure combinational logic for 

allocation and freeing operations so that they are performed fast and in constant 

time. Although it provides a considerable speed-up, in some situations it cannot 

allocate free blocks due to the limitation of its AND-OR tree structure. Cam et al. 

[7] proposed an efficient memory allocation system, which eliminates fragmentation 

and limitation in [4]. However, it uses more logic components compared to its 

predecessor.  
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In [9], an active memory module, which is connected to the same bus with a 

traditional RAM but used only for dynamic allocations, is proposed. It is a DRAM 

with low density but including an active memory processor in addition. The 

processor is used to keep the heap status and make garbage collection. The method 

used for dynamic allocation is based on the mechanism in [4]. The realization of the 

AND-OR tree with hardware description language is explained in detail in [8]. One 

step ahead Chang et al. [10] came up with a hardware memory allocator, which can 

be easily integrated to CPUs. It works in conjunction with an application specific 

instruction set extension.  

[11] targets those systems, which have FPGA as a computational resource only. 

Some peripheral devices and memory is connected to FPGA and the management of 

memory is performed by FPGA. Free parts of the memory are kept in a stack as 

pages. When a request arrives, the page pointed by the stack pointer is allocated. 

However, there exist no results in terms of dynamic memory management metrics.  

As a continuation of [7], VHDL synthesis of work is presented with minor 

improvements in [13]. The proposed OR-gate prefix circuit has more gates than 

AND-OR structure mentioned in [4]. The reason why it consumes more resource is 

due to the requirement to find any free block existing in the bitmap. However, 

Chang’s AND-OR tree [4] can detect a free block of size j under the circumstance 

that the free part’s starting address should be a factor of j or k x j, where k ≥ 0 and j 

is a power of 2 [13]. The proposed scheme has been implemented on an FPGA and 

some performance results and comparisons with [9] were presented.  

Another alternative for dynamic memory allocation in FPGAs is proposed in [14]. 

Dynamic memory allocation controller (DMAC) core has been developed to manage 

output buffers of communication nodes in a high performance FPGA cluster. Free 

and occupied blocks are placed on a binary tree and this structure is kept in a BRAM 

in FPGA. Adding and deleting nodes from the tree is achieved done via the DMAC 

core. When tree gets larger, search time for add and delete operations inevitably 

increase.  
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CHAPTER 3  

 

 

DESIGN OF DYNAMIC MEMORY MANAGER 

 

3.1 Design Approach 

Recently, block RAMs of FPGAs have become sufficient to carry out many complex 

computations without going out of the chip [21]. However, block RAMs (BRAMs) 

of FPGAs should be used efficiently especially for computations that need dynamic 

management of the memory. From this point of view, our primary design goal is to 

implement a dynamic memory manager in FPGA, which has fast and bounded 

response with very low fragmentation. In order to achieve this goal, primarily the 

combination of two techniques, namely, segregated free lists and bitmapped fits are 

employed simultaneously. Free blocks grouped according to their sizes are stored in 

free lists using the segregated free lists approach. On the other hand, availability 

information about a block, i.e., whether the block is free or not, is represented as a 

flag in a bitmap vector. In order to keep memory overhead low bitmap vector is also 

implemented in the BRAM of FPGA.  Different from other conventional memory 

allocators, the allocated memory to a request is not necessarily a contiguous block in 

our design. It can be dispersed on different non-contiguous blocks. However, such 

blocks are connected with link vectors that include encoded information about the 

allocated blocks. For allocation, a modified version of AND-OR tree in [4] is used. 

Our dynamic memory manager (DMM) consists of the following three main parts: 

i) allocator,  

ii) deallocator and  
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iii) address translator  

The following sections present the conceptual design and its related components 

which is realized with VHDL synthesis. 

3.2 Memory Representation 

The memory area which is to be used as heap is partitioned into blocks and sub-

blocks having strict boundaries (Figure-3.1). Heap area is first divided into main 

blocks of size 32x2n. n can be used as a parameter for arranging the block sizes in 

the main block. In this scheme, one can allocate blocks ranging from 1 byte up to 

32x2n bytes with a resolution of 2n. Therefore, as will be detailed in Section-5.3, 

more than one DMMs having different n values can be combined to increase the 

range of sizes. These main blocks are partitioned logically further into sub-blocks as 

shown in Figure-3.1. Allocations will be done as a combination of different sized 

sub-blocks from the heap memory. For example for a request of 11x2n bytes 

(8+2+1) x 2n or (4+4+1+1+1) x 2n, sub-blocks can be provided. 
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The motivation behind the choice of the sub-block distribution in Figure-3.1 is to 

provide an infrastructure, which is capable of allocating memory sizes ranging from 

2n to 32x2n with 2n increments. 

3.3 Bitmap and Link Vector 

As was mentioned earlier, whether a block is free or not is decided by checking this 

state information in the bitmap vector. Each bitmap and its associated link vector 

corresponds to only one main block of size 32x2n. Since every sub-block is 

represented as a flag, 15 bits are used for each main block. The vector also includes 

maximum number of available contiguous sub-blocks with the same size. Figure-3.2 

illustrates the fields of the bit vector. This example bit vector of “1-01-1100-

00101000-01-010-0011” is interpreted as follows: there exists one free block with 

size 4x2n, two free blocks with size 2x2n (also contiguous) and six free blocks of 

size 2n (however, 3 of them are contiguous).  

 

1 0    1 1    1    0    0 0    0    1    0    1    0    0    0 0    1 0    1    0 0    0    1    1

23 0

# of 2n 
contiguous 

blocks

# of 2x2n 
contiguous 

blocks

# of 4x2n 
contiguous 

blocks

2n 
blocks

2x2n 

blocks
4x2n 

blocks
8x2n 
block

 

 

Figure 3.2: Bitmap Vector 

Our second data structure is the link vector, which shows sub-block connections of 

an allocation (Figure-3.3). Allocation details are encoded in link vector. It includes 

all combinations that can be chosen using 8x2n, 4x2n, 2x2n and 2n sized blocks. 

There are 3 different fields in the link vector, namely next block information, 

number of blocks with same size and next block starting address. Next block 

information is encoded in 2 bits for 8x2n and 4x2n blocks and in one bit for 2x2n 

0: free 
1: allocated 

Binary encoding 
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blocks because the next block of 8x2n can be 4x2n, 2x2n, 2n sized blocks or none. 

Thus, there are 4 possibilities for 8x2n block, 3 possibilities for 4x2n blocks and 2 

possibilities for 2x2n blocks. There is no next block for 2n sized blocks.  

 

 Table 3-1: Next Block Encoding in Link Vector 

 4x2n 2x2n 2n No next block 

8x2n “01” “10” “11” “00” 

4x2n - “01” “10” “00” 

2x2n - - “1” “0” 

 

The number of blocks with same size shows the number of used blocks that are 

contiguous in the same sub-block. For instance, there are eight n sized blocks. If four 

of the n sized blocks are used, there should be “011” in the corresponding field in 

the link vector. This indicates that three contiguous blocks following the starting 

block, i.e. four in total are allocated 

Next block starting address is a 3-bit field for all the blocks because next block can 

be one of the eight 2n sized blocks and they are addressed using 3 bits only. If the 

next block is a 4x2n block, one least significant bit is sufficient to determine which 

one is the next block. Similarly when the next block is a 2x2n sized block, two least 

significant bits are sufficient to determine the address of the block. Figure-3.3 

illustrates an example memory request of size 13x2n where the bitmap vector is as 

“0-11-1000-11000011-00-011-0100”. The request is met by allocating the first 

available blocks of 8x2n, 2x2n, and three 2n.  Then the link vector becomes “10-001-

XXXXXX-XXXXX-XXXXXX-1-00-010-XXXXX-XXXX-XXX-XXX-010-XXX-

XX-XX-X” (where only the affected bits are shown). Link vector is then updated as 

Next 
Current 
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a result of the allocation request and accessed for deallocation and address 

translation requests later. 
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Figure 3.3: Link Vector 

3.4 Free Lists and BRAM Structure 

As was previously mentioned, we use the segregated free lists approach in order to 

find the block with the requested size quickly. In this scheme, there are lists of 

blocks organized according to the available size in corresponding blocks. Free lists 

in this design are similar to that used in software based TLSF allocator in [12]. As 

seen in Figure-3.4, there are 32 free list FIFOs that keeps BRAM addresses. The 

content of an addressed BRAM is the bitmap and link vectors of the corresponding 

main block. Free lists are arranged according to maximum available free block size 

that can be allocated in return to a request. Their size range from 2n to 32x2n. 
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Figure 3.4: Free Lists and BRAM Structure 
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Besides the free list structure, there are BRAMs that store bitmap and link vectors. 

For a main block with size 32x2n, one word is reserved in link BRAM and bitmap 

BRAM each. The address of BRAM, which stores these vectors, is related to the 

starting address of the main block in the heap memory.         

3.5 Hashing  

In order to be able to use BRAM structures mentioned above efficiently, a simple 

hashing is applied to the actual address of the heap area in the main memory. 

Starting address of the heap memory should be given as a generic input to the 

DMM. Starting address of the heap partition is then regarded as an offset. The 

difference between the starting and ending address of the heap partition defines 

BRAM size for that partition. Since every word in the BRAM corresponds to a main 

block with 32x2n (2n+5) size, link and bitmap BRAMs have word length that is equal 

to heap memory size divided by the main block size. In other words, if the heap size 

is 2k words, BRAMs will have 2k-(n+5) words. The process is summarized in Figure-

3.5.  

 

 

Figure 3.5: Address Hashing 
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3.6 Description of Subcomponents 

3.6.1 Free List Manager 

There are 32 free lists each of which keeps BRAM addresses of the bitmap and link 

vectors grouped according to corresponding free block sizes. These are FIFO 

structures with a word size of 16, which is the minimum number that can be created.  

Obviously, free sub-blocks in a main block will be updated following an allocation 

or deallocation task. Therefore, free list FIFOs should be re-arranged according to 

the new condition. This task is realized by free list manager (FLM) in our DMM.  

Managing free lists in the allocation task is relatively easy. When an allocation 

request arrives, the top element of the corresponding size FIFO is popped out. If it is 

empty, one greater size FIFO is used concurrently. Following the completion of the 

allocation process, BRAM address of the related block is pushed into the FIFO 

corresponding to new free size in that block.  

On the other hand, when deallocation takes place it is not known whether the 

deallocated block’s BRAM address is in the free list FIFO or not. Hence the 

corresponding size FIFO is emptied via a reset input.  

The other task that free list manager performs is filling up the FIFOs. When there is 

no allocation or deallocation, FLM deals with pushing BRAM addresses to FIFOs. It 

starts with the first address, reads BRAM content and sends it to the related free list, 

which is empty, by checking the free size in that block. If there is an element in the 

corresponding FIFO, FLM does not push the new BRAM address. Instead, it goes to 

the next address and this process continues in the same fashion.  

3.6.2 Allocator 

DMM basically performs the task of reserving memory of the requested amount. 

The only parameter that should be provided to the allocator is the size of the 
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requested memory. While performing this task, DMM benefits from hardware 

structures such as AND-OR tree similar to the one in [4] and some combinational 

blocks namely, the bit flipper, address conversion and size conversion blocks 

(Figure-3.6).  

 

 

Figure 3.6: Modified AND-OR tree 

 

Each node in Figure-3.6 is composed of and gates, or gates, multiplexer and D-type 

flip-flop. Similar to the node structure in [8] is used in the modified AND-OR tree 

nodes with a slight change. The node have been changed to eliminate combination 

gate delays. A flip-flop is added to output of the nodes. Thus, it provides the 

increase in the overall circuit operating frequency. In Figure-3.7, the inner structure 

of node number 15 is given as an example. Furthermore, tree structure is modified in 

this work to eliminate the shortcomings of Chang’s AND-OR tree in [4]. Chang’s 

AND-OR tree can detect a free block of size j under the condition that the free part’s 

starting address is a factor of j or k x j, where k ≥ 0 and j is a power of 2. However in 

the modified AND-OR tree, a requested blocks can be found anywhere in the given 

bitmap.  
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Modified AND-OR tree is used to determine the starting address of the sub-block 

(Figure-3.6). For every sub-block group, there are gate trees. Thus, the design has a 

total of three gate trees for different widths corresponding to 2, 4, and 8 bit width 

bitmap vectors (not needed for 1 bit). For example, there are four 2x2n sub-block in 

a main block, therefore the corresponding 4 bit part of the bitmap vector is provided 

as input to the 4-bit width gate tree. The output will be the starting address of the 

sub-block to be allocated. Since the memory is partitioned according to a predefined 

rule, finding the actual starting address of the given memory block is 

straightforward. Then this is given as an input parameter to bit flipper with the 

allocated size. The corresponding bits are flipped to indicate that these blocks are 

not free anymore. Finally, FLM places the block to a new free list FIFO according to 

the maximum available size of blocks. 

 

 

Figure 3.7: AND-OR structure 

3.6.2.1 Allocation Process 

The following tasks are performed within the context of the allocation process: 

• Pick the non-empty FIFO with the requested size or more,  

• Read the top element, which is the BRAM address of both bitmap and link 

vector 
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• Read the content of the BRAMs, send the bitmap vector to modified AND-

OR trees 

• After obtaining the starting addresses of sub-blocks, update the link and 

bitmap vectors 

•  Write the vectors to BRAMs  

• Place the BRAM address according to free contiguous size to the 

corresponding free list FIFO 

3.6.3 Deallocator 

When the application does not need the allocated memory anymore, it releases the 

previously occupied part. Starting address of the memory block that will be freed is 

sufficient to perform this task. The size and link information of other blocks can be 

extracted from the link vector of the corresponding block. Then link and bitmap 

vectors are updated. Finally, similar to FLM section, it places the block to a new free 

list FIFO by checking the maximum available size of the block.  

3.6.3.1 Deallocation Process 

The following tasks are performed within the context of the deallocation process: 

• Find the BRAM address from the provided starting address by hashing  

• Read the BRAM content 

• Find the link between blocks using the link vector 

• Update the link and bitmap vectors 

• Reset the corresponding size FIFO (size before the deallocation) 

• Place the BRAM address according to new free size to corresponding free 

list FIFO  
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3.6.4 Address Translator 

The obvious difference of our DMM from conventional memory allocators is the 

fact that the requested memory is not provided as a whole contiguous chunk. 

Instead, it may be provided as a combination of different blocks with varying sizes. 

Therefore, an extra task in DMM, i.e. address translation is required. In return to an 

allocation request, DMM sends smallest of the starting addresses of the allocated 

blocks. An application should only know the starting address of the object, the rest, 

i.e. link between blocks and total size, is in the DMM data structure. Thus, when an 

application demands to access the heap memory, a simple offset calculation won’t 

be sufficient due to the non-contiguous nature of the system. Instead actual address 

should be calculated using the starting address and the offset in the DMM with a two 

cycle delay. At first, block combination is extracted from the link vector and then 

the actual address is returned using this and the offset value. 
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CHAPTER 4  

 

 

IMPLEMENTATION OF DYNAMIC MEMORY MANAGER 

 

In this chapter, implementation details of DMM are presented. It is implemented in 

VHDL. Xilinx ISE 14.6 [17] tool is used as the development environment. 

Specifications of the units that are developed in this design are described in the 

following sections. 

4.1 Top Level 

In Table-4.1, top level ports of the DMM are explained. Besides the ports, some 

generic values are shown in Table-4.2.  

 

Table 4-1: Port definitions of DMM 

Port Name Direction Explanation 

Clk IN System clock 

rst IN System reset 

allocate IN When asserted with alloc_size(23:0), 

allocator starts to search for available 

memory place as requested size 

alloc_size(15:0) IN Size of requested memory 

deallocate IN When asserted with dealloc_addr(31:0), 

allocator frees the memory allocated 

before using starting  dealloc_addr(31:0)  
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Table 4.1: Port definitions of DMM (Continued) 

Port Name Direction Explanation 

dealloc_addr(31:0) IN Starting address of the memory to be 

freed 

find_address IN To find the address that the application 

wants to access  

mem_addr_start(31:0) IN The starting address of the block that has 

the desired data in it. It uses 

addr_offset(23:0) to reach the desired 

address in the memory 

addr_offset(23:0) IN The offset value that is used with 

mem_addr_start(31:0) to access desired 

data 

alloc_done OUT Indicates that allocation is done 

successfully 

mem_addr_return(31:0) OUT The starting address of allocated block. It 

is ready when the alloc_done signal is 

high 

dealloc_done OUT Indicates that deallocation is done 

successfully 

mem_addr_actual(31:0) OUT It is the actual address that the application 

wants to access. It is found using 

mem_addr_start(31:0) and 

addr_offset(23:0) 

error OUT Indicates that an error has occurred 

error_reg(7:0) OUT Type of the error 
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Table 4-2: Generic Values of Top Level 

Generic Value Type Explanation 

min_block_size Integer n value in minimum 

block of size 2n 

heap_start_address(31:0) std_logic_vector Starting address of the 

managed heap  

heap_end_address(31:0) std_logic_vector Ending address of the 

managed heap 

 

There are three main functionalities of the DMM. One of them is to reserve memory 

as the requested size. In order to start the process, allocate signal and 

alloc_size(15:0) should be applied. One of the free lists that is greater than or equal 

to the desired size is chosen. Top element of chosen free list FIFO, i.e. BRAM 

address, is popped out. Content of the bitmap and link BRAMs are read and sent for 

doing the necessary arrangements on the bitmap and link vectors. When the process 

is done, the smallest of the starting addresses of the allocated sub-blocks is returned 

as mem_addr_return(31:0).  

Second task is tp free memory area, which is not necessary any more. For this 

purpose, applying deallocate signal and dealloc_addr(31:0) is required. Obviously, 

dealloc_addr(31:0) is the address that has been sent by DMM when the allocation 

has been done. BRAM address that holds the corresponding bitmap and link vectors 

is found using hashing. From this point onwards, starting block and how they are 

linked are known. Thus, necessary bits on the vectors are flipped. Deallocation 

process is finally done after resetting the corresponding free list FIFO. This will be 

detailed more in the implementation of the free list manager. 

The final task is about address translation in DMM. Since the provided area is non-

contiguous, the application cannot access data using only starting address of the 

object. Linking of the blocks must be known and the offset calculation must be done 

accordingly. So, when the desired address in heap (mem_addr_start(31:0) + 
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addr_offset(15:0)) and find_address signals are provided to DMM, link vector 

should be found first as in the deallocation process. Afterwards, the actual address, 

i.e. mem_addr_actual(31:0), is calculated and returned. This is completely 

independent from allocation and deallocation processes since it uses another other 

port of the link vector BRAM.  Top level state flow is shown in Figure-4.1.  

 

 

Figure 4.1: Top Level Flowchart 

4.2 Free List Manager 

4.2 Free List Manager (FLM) makes the necessary arrangements about free list 

FIFOs. It simply reads from or writes to the free list FIFOs in response to requests 

arriving from the top level. Besides these tasks, another important task is to reset the 

FIFO. When deallocation occurs, corresponding BRAM address could be in the free 
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list FIFO. Following the deallocation, free size can be changed, so it should not stay 

in the previous free list FIFO.  

 

Table 4-3: Port Definitions of FLM 

Port Name Direction Explanation 

clk IN System clock 

rst IN System reset 

wr_fifo IN bitmap_bram_addr_in (15:0) is 

written to the stated FIFO having the 

number wr_fifo_number (4:0)  

rd_fifo IN bitmap_bram_addr_out (15:0) is 

read from the stated FIFO having the 

number rd_fifo_number (4:0) 

find_in_fifo IN After deallocation it empties (resets) 

FIFO having the number 

rd_fifo_number (4:0) 

wr_fifo_number(4:0) IN Shows which FIFO will be written 

rd_fifo_number (4:0) IN States which FIFO will be read 

bitmap_bram_addr_in(15:0) IN Bitmap and link vector BRAM 

address that will be written to FIFO 

fifo_ready OUT States that the process is completed 

fifo_full(31:0) OUT FIFO full signal, every bit 

corresponds to one FIFO 

fifo_empty(31:0) OUT FIFO empty signal, every bit 

corresponds to one FIFO 

bitmap_bram_addr_out(15:0) OUT Bitmap and link vector BRAM 

address that will be read from FIFO 
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FLM continuously loads the FIFOs if they are empty. It reads the bitmap BRAM 

consecutively and sends the address by checking the free contiguous size in it. If 

corresponding FIFO is not empty, it passes the next BRAM address. The interface of 

FLM is given in Table-4.3.  

4.3 AND-OR Trees 

AND-OR trees are used to determine free spaces of the heap memory using the 

bitmap vector that corresponds to a section of the heap memory. It is the modified 

version of the gate tree used in [4]. In [4], it provides a considerable speed-up, 

however it is not guaranteed to allocate free blocks in all cases due to the limitation 

of the used gate tree structure. This disadvantage is eliminated by using more 

resources in the present work. The ports of the AND-OR tree is shown in Table-4.4. 

 

Table 4-4: AND-OR tree ports 

Port Name Direction Explanation 

clk IN System clock 

rst IN System reset 

bitmap_in(n:0) IN n+1 bits bitmap vector  

level(n:0) IN Defined according to the requested 

size 

free_address(n-1:0) OUT The number of ‘1’s in this vector 

gives the starting address of the 

reserved area. 

 

There are three ‘n’ values 1, 3 and 7 in the present design. These AND-OR gates are 

used for 2, 4 and 8 bits bitmap vectors. Although gate tree can be used as a 

combinational block, it is implemented as a clocked circuitry to prevent large gate 
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delay. In order not to decrease the frequency of the overall design, the operation in 

the 8 bit gate tree is made to last in 7 clock cycles.      

4.4 Address Conversion 

Address conversion block is a simple one that converts AND-OR gates’ free address 

output to an actual address. It simply checks the number of ‘1’s in the input vector. 

For example, a free address output of 8-bit AND-OR tree “1100110” is converted to 

“100”, which is a one clock cycle operation. 

 

Table 4-5: Ports of Address Conversion Block 

Port Name Direction Explanation 

Clk IN System clock 

rst IN System reset 

free_address_8bit(7:0) IN Free address output of 8 bits tree 

free_address_4bit(3:0) IN Free address output of 4 bits tree 

address8(2:0) OUT Actual address of 2n sized blocks 

address4(1:0) OUT Actual address of 2 x 2n sized blocks 

4.5 Size to Level Conversion 

Size to level conversion block converts binary size data to level information that can 

be understood by the AND-OR tree. For example, for the requested size of “0010” 

and “0011” from 2n blocks, level information will be “00000010” and “00000100” 

respectively. Similar to address conversion, this is also a one clock cycle operation. 

 

 

 



34 

Table 4-6: Ports of Size to Level Conversion Block 

Port Name Direction Explanation 

Clk IN System clock 

Rst IN System reset 

size8(3:0) IN Requested size from 2n sized blocks 

size4(2:0) IN Requested size from 2 x 2n sized 

blocks 

level_8bit(7:0) OUT Level of 8 bits gate tree 

level_4bit(3:0) OUT Level of 4 bits gate tree 
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CHAPTER 5  

 

 

EXPERIMENTAL SETUP AND EVALUATION 

 

5.1 Setup 

Following the implementation of DMM, experiments are conducted to reveal the 

characteristics and performance of DMM. As the setup, a test computer and Xilinx 

KC705 demo board [18] shown in Figure-5.1 have been used. We prepared a 

simulator program in C# to communicate with the demo board via UART. Since the 

board has a USB to UART bridge, it can also be connected to the computer’s USB 

port via its mini USB port. The demo board has Kintex-7 FPGA (XC7K325T) [19] 

which includes a large amount of logic resources. 

 

 

 

Figure 5.1: KC705 Demo Board 
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5.2 Characteristics of DMM 

5.2.1 Logic Resources and Operating Frequency 

Table-5.1 shows FPGA resource usage and the maximum operating frequency. In 

XC7K325T FPGA, LUTs and slices consumed for the DMM implementation 

correspond to 2% and 4% respectively while the minimum clock period is equal to 

6ns corresponding to 166 MHz operating frequency. 

 

Table 5-1: Resource Usage 

LUTs Slice  Max. Frequency 

6075 2295 175,26 MHz 

 

5.2.2 Memory Overhead 

As was mentioned in the previous chapter, a data structure is used to keep track of 

the heap memory. For every main block there are two vectors that are bitmap and 

link vectors. Bitmap vectors are of 24 bits in length while link vectors are 54 bits in 

length for a main block of size 32x2n. These are kept in BRAMs of the FGPA. 

Therefore, heap size (HS) affects the overhead directly. Besides these, memory 

resources of the FPGA are also used for keeping the free list FIFOs, each of which 

occupies 16 BRAM addresses. However, we implemented these in the form of 

distributed RAM storage by using the FPGA’s register sources instead of BRAM 

blocks. Therefore, memory overhead (MO) became 

�� � �24 � 54		�	 �

32�2� 	���� 
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In synthesizing the FPGA 18Kbit memory blocks are employed as bitmap and link 

vector BRAMs. Thus, memory overhead for our DMM design in FPGA is given in 

the formula  

�� � �� �

32�2� 	�

24
18�� �	�

�

32�2� 	�

54
18��� �	18	�����. 

For example, for n=3 and 512KB heap size, link and bitmap BRAMs have 2048 

(512K/256) words. Therefore, first part of the formula becomes 3 and the second 

part becomes 6. The resulting memory overhead will then be 20.25 KB (9x18Kbits) 

for managing a 512 KB area.     

5.2.3 Allocation Time 

Allocation time is the time spent from incoming allocation request to the completion 

of the allocation process. As was previously mentioned in Chapter 3, popping out a 

BRAM address from a free list FIFO, reading the content of that address, processing 

the bit vectors and writing again to BRAM are the main tasks that are performed for 

the allocation. But it lasts no more than 21 clock cycles (Figure-5.2). 

5.2.4 Deallocation Time 

Deallocation time is the time spent for reading the content of the BRAM address to 

be freed, processing bit vectors and writing to BRAMs again. Deallocation time is 

bounded and lasts no more than 10 clock cycles (Figure-5.3).  
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Figure 5.2: Allocation Process 
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Figure 5.3: Deallocation Process 
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5.2.5 Experiments with Synthetic Trace  

The configuration file, which is formed as a result of code implementation is loaded 

to KC705 demo board. It is connected via the USB port to the test computer. 

Computer and the board communicate via UART thanks to USB to UART bridge on 

the demo board. Then, a simple C# code is written to send commands and to gather 

replies from the DMM. The program sends 3 bytes (command code and size) as the 

allocation command, 5 bytes (command code and deallocation address) as the 

deallocation command (Figure-5.4). 

Allocation 

Command 
(0xAA) 

Size (15:8)                Size (7:0) 

Deallocation 

Command 
(0xDD) 

Address 
(31:24)                

Address 
(23:16)                

Address 
(15:8)                

Address 
(7:0)                

 

Figure 5.4: Serial Channel Commands 

To record the effect of average block size to fragmentation, a set of synthetic 

allocation commands are sent to the DMM, consecutively. The sum of the allocated 

object sizes are recorded until the DMM cannot return an affirmative respond to an 

allocation request. The ratio of the total allocated places to the whole heap size 

shows to the unused memory area due to fragmentation. To create object sizes 

randomly, Random() function of the C# is used, which creates random numbers with 

a uniform distribution in a given interval. To provide various traces with different 

average allocation sizes three Random() functions are used. First one creates a 

uniformly distributed number between 0.0 and 1.0. Then, a second random function 

generates allocation sizes between 1 (minimum size) to average size and a third 

random function generates allocation sizes (average size + 1) to 32x2n (maximum 

size). In this way, uniformly distributed traces having different average sizes are 

handled.  
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In the experiment, 512 KB of heap memory is managed using 2048 bitmap and link 

vectors, i.e. n = 3 and average sizes are selected in the range from 8 to 248 with 

increments of 8. Every random trace are sent to DMM for one hundred times. 

Memory usage at the point where DMM becomes irresponsive is recorded. Figure-

5.5 presents the average percentage of unused memory to whole heap size due to 

fragmentation is shown. 

 

 

Figure 5.5: Percentage of wasted memory vs. average allocation sizes 

 

It is worth emphasizing that this is an example used to demonstrate how 

fragmentation changes under a uniformly distributed memory request pattern. The 

values in Figure-5.5 may be different for other distributions. Similar graphs can be 

handled using different memory request distributions and accordingly the parameter 

n can be arranged to keep fragmentation low. For example, from the graph in 

Figure-5.5, we can choose n=4 (min. block size = 16) for a uniformly distributed 

trace with an average size of 176 bytes. For n=3 wasted memory percentage would 

be around 12.2% at 176 bytes. However, for n=4 it is around 4.2%, which is the 

fragmentation for n=3 case with 88 bytes.   

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160 168 176 184 192 200 208 216 224 232 240 248

Avg. Alloc. Size (Byte) vs. Wasted Memory (%)
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5.3 Evaluation of the Design 

5.3.1 Limitations 

The proposed DMM in this work can allocate memory of size at most 32x2n. This 

value is flexible and depends on n, however it cannot exceed 32x2n. The partitioning 

of the heap memory is strict. Therefore, heap can be enlarged either by enlarging the 

bitmap and link vector BRAMs or by increasing the number n.    

5.3.2 Scalability 

Since the heap memory partitioning is not flexible, DMM can be scaled only by 

sacrificing some FPGA resources or fragmentation performance. One option to deal 

with a bigger heap memory is simply by increasing n. However, increasing n can 

cause more wasted memory. On the other hand, it may also cause a decrease in 

memory overhead percentage.  

Another issue in scalability is the increase in the range of allocated sizes. For 

example, with n=3, allocation of 1 byte to 256 byte is possible. If another DMM is 

used with n=8, two of them can be linked in a pipelined manner. Hence, allocation 

size range can be extended to 32x28, i.e., 8KB. In return, LUT usage in FPGA will 

be doubled and execution time will increase. Since two DMMs can work 

concurrently, execution time will not be doubled, but increase a few clock cycles 

only. On the other hand, memory overhead will drop as a percentage of the managed 

heap size. Lastly, the address translation mechanism is also affected. It would need 

an extra clock cycle for the translation of addresses to be accessed. 

5.3.3 Memory Access Delay 

Due to the non-contiguous reservation of the heap memory, our design includes an 

address translator, which computes the desired address. When the starting address 
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and the offset are provided to access the desired data, firstly link vector BRAM is 

read using the starting address info. The result is the corresponding link vector, 

which keeps the information about block combinations. Then, the offset is added 

and the actual address is handled in the second cycle.  

5.3.4 Comparison with Other Works 

An alternative way of dynamic memory allocation in FPGA is proposed in [14]. 

Dynamic memory allocation controller (DMAC) core has been developed to manage 

the output buffers of the communication nodes in a high performance FPGA cluster. 

Free and occupied blocks are placed on a binary tree and this structure is kept in 

BRAMs of the FPGA. Adding and deleting nodes from the tree are done via DMAC 

core. When the tree gets larger, search time for add and delete operations increases 

inevitably. Compared to our DMM, execution time is much longer in DMAC. But it 

can allocate a broader range of object sizes.  

Another work in [13] allocates a free block in 6 clock cycles. It uses approximately 

12,600 LUTs for the allocator with a bit vector length of 512 bytes. Each bit of the 

vector represents one block and it can allocate a maximum of 64 blocks for an 

allocation request. It uses more FPGA resources than our DMM. In order to enlarge 

the managed heap area, two options arise: bit vector length and the block size. If the 

bit vector length increases to 1024 bytes, LUT usage will also be doubled. Instead of 

increasing the bit vector length, block size can be arranged to increase the managed 

heap memory size. However, it causes more fragmentation due to reduced 

granularity. 

In DMMX [10], a scalable dynamic memory manager is proposed primarily for 

CPUs. It has a worst case allocation time of 96 clock cycles and uses a cache like 

architecture to keep bit vectors. It is claimed that bit vector of size 500 bits is 

sufficient to handle a cache hit ratio of 97%. Maximum allocation size in one request 

is bounded with the bit vector length times the block size. The only disadvantage of 
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DMMX when compared to DMM is the worst case allocation time for the requested 

object. 

  



45 

CHAPTER 6 

 

 

CONCLUSIONS AND FUTURE WORK 

 

Dynamic memory usage for high level synthesis tools still remains a hard problem 

to be implement well [15]. This thesis proposes a memory manager for dynamic 

memory allocations as a hardware IP core. By merging the bitmapped fits and the 

segregated free lists approach, the DMM tracks free and occupied parts of the 

managed memory. In achieving this, it aims to minimize the wasted space in the 

heap memory. Unlike conventional memory allocators, it satisfies memory requests 

by providing a combination of non-contiguous blocks to keep fragmentation at low 

levels.  

The proposed DMM can be integrated to applications quite easily. Time spent for 

allocation and deallocation processes are 21 clock cycles and 10 clock cycles, 

respectively. Due to the non-contiguous nature of the reserved spaces, it adds a delay 

of 2 clock cycles when an application accesses to memory which is previously 

reserved by the DMM.  

Bounded response time and low fragmentation are two major advantages of the 

proposed DMM while slightly increased access delay is the drawback. In terms of 

scalability, two cases should be regarded. One is increasing the heap size without 

changing the object size range by increasing the bitmap and link vector BRAM 

sizes. Performance metrics will not be influenced in this situation but memory 

overhead will increase. The second case is enlarging the object size range by 

increasing the n parameter. In this case memory overhead will drop, but wasted 

memory figures may be affected adversely..  
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It is believed that working towards eliminating the limitations mentioned in the 

previous chapter and decreasing memory access delay are two possible future 

directions to follow in this line of research. In order to increase object size range 

without affecting fragmentation, more than one DMM block can be used in a 

pipelined manner with a slight modification in the link vector. A next address area 

should be added to the first stage DMM to link the second stage DMM. In order to 

handle different object size ranges, n parameter should be different. For example, 

with n=3, allocation of 1 byte to 256 byte is possible. If another DMM is used with 

n=8, two of them can be linked. Hence, allocation size range can be extended up to 

32x28, i.e., 8KB. As a result, LUT usage in FPGA will be doubled and execution 

time will increase a few clock cycles only. However, memory overhead will drop.  

Another future work is to minimize the effects of memory access delay. For this, one 

can benefit from the memory access distribution of the applications. Generally, 

applications tend to access allocated objects sequentially. So, the next access of the 

application can be guessed and this avoids the two clock cycles delay for every 

access. Cache may also be used to keep the most recently accessed objects and their 

possible next addresses.  
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