

 A DYNAMIC MEMORY MANAGER FOR FPGA APPLICATIONS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

CENK ÖZER

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

JUNE 2014

Approval of the thesis:

A DYNAMIC MEMORY MANAGER FOR FPGA APPLICATIONS

submitted by CENK ÖZER in partial fulfillment of the requirements for the degree
of Master of Science in Electrical and Electronics Engineering Department,
Middle East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Gönül Turhan Sayan
Head of Department, Electrical and Electronics Engineering

Assoc. Prof. Dr. Cüneyt F. Bazlamaçcı
Supervisor, Electrical and Electronics Eng. Dept., METU

Examining Committee Members:

Prof. Dr. Semih Bilgen
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Cüneyt F. Bazlamaçcı
Electrical and Electronics Engineering Dept., METU

Prof. Dr. Gözde Bozdağı Akar
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Ece Güran Schmidt
Electrical and Electronics Engineering Dept., METU

Dr. Fatih Say
ASELSAN Inc.

 Date: 20/06/2014

iv

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced
all material and results that are not original to this work.

Name, Last name : Cenk ÖZER

Signature :

v

ABSTRACT

A DYNAMIC MEMORY MANAGER FOR FPGA APPLICATIONS

Özer, Cenk

M.S., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Cüneyt F. Bazlamaçcı

June 2014, 49 pages

Recently, FPGAs are shipped with a large amount of internal memory (block RAM)

sufficient to perform many complex computations without a need for off-chip

memory. However, block RAMs (BRAMs) of FPGAs should be used efficiently

especially for computations that need dynamic management of the memory. Thus,

within the scope of this thesis work, a dynamic memory manager (DMM) unit is

designed with an objective of meeting memory requests with a low fragmentation at

runtime for FPGA applications. The unit is designed to have a bounded response

time for dynamic memory requests to be suitable for real time applications. It can be

interfaced with FPGA applications quite easily similar to interfacing an arbitrary IP

core block. The proposed real-time DMM differs from other conventional memory

allocators in a way that it allows for memory allocations composed of differing size

blocks that are not necessarily contiguous. The address translator block in design

provides to access separate non-contiguous blocks as a whole contiguous chunk of

memory. Implementation and verification of the developed DMM on an FPGA

demo board is also presented using synthetic memory request streams.

Keywords: Dynamic Memory Allocation, Hardware Allocator, Dynamic Memory

Management Unit, Field Programmable Gate Array

vi

ÖZ

APKD UYGULAMALARI İÇİN DİNAMİK BELLEK YÖNETİCİSİ

Özer, Cenk

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Cüneyt F. Bazlamaçcı

Haziran 2014, 49 sayfa

Son yıllarda APKD’ler, birçok karmaşık işlemin harici bellek ihtiyacı olmadan da

yapılabilmesini sağlayacak oranda yüksek miktarlarda dahili bellek ile pazara

sunulmaktadır. Ancak, özellikle dinamik bellek yönetimi gereken işlemlerde

APKD’lerin blok bellekleri verimli kullanılmalıdır. Bu amaçla, bu tez çalışması

kapsamında APKD uygulamalarının dinamik bellek isteklerini en düşük parçalanma

ile karşılama gereksinimi sağlamayı ön planda tutan bir dinamik bellek yöneticisi

(DBY) tasarlanmıştır. Bu birim, gerçek zamanlı uygulamalara da uygun olması için

dinamik bellek isteklerini sınırlı zamanda karşılayabilecek biçimde tasarlanmıştır.

APKD uygulamaları ile arayüzü, herhangi bir IP bloğuna benzer şekilde

yapılabilmektedir. Önerilen gerçek zamanlı DBY, geleneksel dinamik bellek tahsis

edicilerden bir yönüyle ayrılmakta ve bellek tahsis isteklerini bitişik tek blok halinde

değil, birbiriyle ardışık olması gerekmeyen çeşitli büyüklüklerdeki bloklar halinde

karşılayabilmektedir. Bu ayrık bloklara bitişik bir bellek alanıymış gibi

erişilebilmesini adres çevirici sağlamaktadır. Geliştirilen DBY, bir APKD gösterim

kartı üzerinde yapay bellek istek dizileri yaratılarak denenmiş ve doğrulanmıştır.

Anahtar Kelimeler: Dinamik Bellek Tahsisi, Donanımsal Bellek Tahsisi, Dinamik

Bellek Yöneticisi, Alanda Programlanabilir Kapı Dizileri

vii

To my family

viii

ACKNOWLEDGEMENTS

I sincerely thank to my supervisor Assoc. Prof. Dr. Cüneyt F. Bazlamaçcı for all his

guidance and support throughout my study.

I would like to thank to my employer, ASELSAN.

I also thank Turkish Scientific and Technological Research Council (TÜBİTAK) for

their financial support during my study.

I am grateful to my family for their love, trust and support throughout my life.

Last but not least, I would like to thank to my indispensable part of my life, Gözde

Özer, for her endless love, support, encouragement and patience throughout my

study.

ix

TABLE OF CONTENTS

ABSTRACT .. V

ÖZ ... VI

ACKNOWLEDGEMENTS ... VIII

TABLE OF CONTENTS .. IX

LIST OF TABLES .. XII

LIST OF FIGURES ... XIII

LIST OF ABBREVIATIONS ... XIV

CHAPTERS

1. INTRODUCTION ... 1

1.1 DYNAMIC MEMORY ALLOCATION .. 1

1.2 PERFORMANCE CHALLENGES ... 2

1.2.1 Execution Time .. 2

1.2.2 Fragmentation .. 2

1.2.3 Memory Overhead ... 3

1.2.4 Scalability ... 3

1.3 MOTIVATION .. 4

1.4 CONTRIBUTIONS ... 5

1.5 THESIS ORGANIZATION .. 5

2. BACKGROUND ... 7

2.1 DYNAMIC MEMORY ALLOCATION CONCEPTS .. 7

2.2 CLASSIFICATION OF ALLOCATORS.. 8

2.3 LITERATURE OVERVIEW ... 10

x

3. DESIGN OF DYNAMIC MEMORY MANAGER .. 13

3.1 DESIGN APPROACH ... 13

3.2 MEMORY REPRESENTATION ... 14

3.3 BITMAP AND LINK VECTOR .. 16

3.4 FREE LISTS AND BRAM STRUCTURE ... 18

3.5 HASHING .. 20

3.6 DESCRIPTION OF SUBCOMPONENTS .. 21

3.6.1 Free List Manager .. 21

3.6.2 Allocator ... 21

3.6.2.1 Allocation Process ... 23

3.6.3 Deallocator ... 24

3.6.3.1 Deallocation Process ... 24

3.6.4 Address Translator ... 25

4. IMPLEMENTATION OF DYNAMIC MEMORY MANAGER 27

4.1 TOP LEVEL ... 27

4.2 FREE LIST MANAGER ... 30

4.3 AND-OR TREES ... 32

4.4 ADDRESS CONVERSION .. 33

4.5 SIZE TO LEVEL CONVERSION .. 33

5. EXPERIMENTAL SETUP AND EVALUATION ... 35

5.1 SETUP ... 35

5.2 CHARACTERISTICS OF DMM .. 36

5.2.1 Logic Resources and Operating Frequency.. 36

5.2.2 Memory Overhead .. 36

5.2.3 Allocation Time .. 37

5.2.4 Deallocation Time .. 37

5.2.5 Experiments with Synthetic Trace ... 40

5.3 EVALUATION OF THE DESIGN ... 42

5.3.1 Limitations.. 42

xi

5.3.2 Scalability ... 42

5.3.3 Memory Access Delay ... 42

5.3.4 Comparison with Other Works .. 43

6. CONCLUSIONS AND FUTURE WORK .. 45

REFERENCES .. 47

xii

LIST OF TABLES

TABLES

Table 3-1: Next Block Encoding in Link Vector ... 17

Table 4-1: Port definitions of DMM .. 27

Table 4-2: Generic Values of Top Level .. 28

Table 4-3: Port Definitions of FLM ... 31

Table 4-4: AND-OR tree ports ... 32

Table 4-5: Ports of Address Conversion Block .. 33

Table 4-6: Ports of Size to Level Conversion Block .. 34

Table 5-1: Resource Usage ... 36

xiii

LIST OF FIGURES

FIGURES

Figure 3.1: Heap Memory Partitioning .. 15

Figure 3.2: Bitmap Vector ... 16

Figure 3.3: Link Vector .. 18

Figure 3.4: Free Lists and BRAM Structure .. 19

Figure 3.5: Address Hashing .. 20

Figure 3.6: Modified AND-OR tree ... 22

Figure 3.7: AND-OR structure... 23

Figure 4.1: Top Level Flowchart ... 30

Figure 5.1: KC705 Demo Board .. 35

Figure 5.2: Allocation Process ... 38

Figure 5.3: Deallocation Process ... 39

Figure 5.4: Serial Channel Commands .. 40

Figure 5.5: Percentage of wasted memory according to average allocation sizes ... 41

xiv

LIST OF ABBREVIATIONS

APKD Alanda Programlanabilir Kapı Dizileri

BRAM Block Random Access Memory

CPU Central Processing Unit

DBY Dinamik Bellek Yöneticisi

DMAC Dynamic Memory Allocation Core

DMM Dynamic Memory Manager

DMMX Dynamic Memory Management Extension

EMA Efficient Memory Allocation

FIFO First In First Out

FLM Free List Manager

FPGA Field Programmable Gate Array

HS Heap Size

IP Intellectual Property

KB Kilobyte

LUT Look Up Table

MO Memory Overhead

RAM Random Access Memory

TLSF Two Level Segregated Fits

UART Universal Asynchronous Receiver Transmitter

USB Universal Serial Bus

VHDL Very High Speed Integrated Circuit Hardware Description Language

1

CHAPTER 1

INTRODUCTION

1.1 Dynamic Memory Allocation

Dynamic memory management has been an attractive topic in computer science

since 1960s. Many researchers have been interested in managing memory requests

of applications at runtime. Since the same memory area can be used again and again

it is found much superior compared to static memory usage. However, handling

memory requests in a dynamic fashion requires a special unit called the dynamic

memory management unit. Part of the main memory, which is reserved to be used

for such dynamic requests is named as heap memory. Since the requests cannot be

identified at compile time, a unit, called as dynamic storage allocator or dynamic

memory allocator, is used to control this heap memory. Basically, what dynamic

memory manager does is keeping track of free and occupied parts of the managed

memory. While doing this, it benefits from an internal data structure and a policy

that governs the heap memory. Simply, two operations are done. The first one is

allocating a free place and the latter one is freeing an occupied place. In order to

allocate memory, only the requested size must be known. The response will then be

the starting address of the reserved memory block. In case of deallocation, starting

address of the block, which is required to be released should be given as input. Size

information is not necessary since it is kept by the memory manager. The state of the

memory blocks, free or not, is also recorded in the data structure, which may be in

the form of a linked list, bitmap, tree, etc. [1]. Ideally, a dynamic memory manager

2

should perform all these operations in a very short amount of time and minimize

wasted space in the heap memory.

1.2 Performance Challenges

In recent five decades, many different types of dynamic memory management units

are designed for many different platforms with various approaches. According to

Wilson et al. [1], there may always be some applications that can beat an allocator

policy and severely decrease its performance. Thus, it is very hard to design a

management unit that performs well for all dynamic memory intensive applications.

To evaluate the performance of an allocator, there are some absolute metrics, which

will be briefly described below.

1.2.1 Execution Time

The time spent for allocation and deallocation of memory blocks is an important

metric for performance. This may be quite significant while a dynamic memory

intensive application is running. For software based allocators, execution times can

reach up to 38% of the total runtime for some allocation intensive object oriented

applications [2] [3]. However, execution times have been gradually decreased since

the middle of 90’s. Hardware based allocators decrease the time spent in return for

extra hardware and complexity. Another important virtue is to have a bounded

response time. In this way a memory management unit can be used for real time

applications also.

1.2.2 Fragmentation

Fragmentation is simply defined as inability to use free heap memory [1]. It is

classified as internal and external fragmentation. Internal fragmentation occurs when

a larger block is reserved for a smaller size. For example a 16B block can be

3

reserved for 10B and the 6B becomes useless, if there is no mechanism to split this

large block. However, splitting comes with a time burden in a dynamic memory

manager. External fragmentation, on the other hand, occurs when there are many

small size blocks but there is no one block with a size larger than or equal to the

requested size.

Different approaches are expressed as fragmentation measure in [20]. Within the

scope of this thesis work, the ratio of the total wasted memory size to the whole heap

memory size at the point of operation where dynamic memory manager cannot

respond to memory allocation requests is used as the fragmentation measure. Since

BRAMs of FPGAs are of limited size, their efficient use gains more importance and

attracts more attention providing motivation for the DMM design in this work.

1.2.3 Memory Overhead

Dynamic memory managers use various data structures, which also need additional

memory to keep track of the heap memory. Those structures that are based on

software mostly use object headers to keep information such as size, link, etc.

Hardware counterparts, on the other hand, mostly use bitmaps for storing such

information. Bitmaps that show size and availability of a memory block are also

stored in BRAMs in FPGAs. Thus, memory overhead should be kept as low as

possible to decrease memory cost of an allocator. However, this may lead to

inefficiencies in terms of execution time and fragmentation.

1.2.4 Scalability

Scalability is another issue that designers should be concerned about. How design

complexity, execution time and memory overhead are affected when heap memory

grows should be taken into account.

4

1.3 Motivation

For decades many different dynamic memory allocation techniques have been used

for processor based object oriented systems, which tend to allocate and deallocate

memory blocks frequently [4]. In 90s, object oriented programming languages, such

as C and C++, were started to be used also for hardware synthesis. Generally, they

have been used in hybrid CPU-FPGA based systems for acceleration purposes.

Hardware synthesizable parts of codes are now implemented on FPGAs to benefit

from parallelism. However, implementing dynamic structures such as dynamic

memory allocators, pointers, etc. have not been a straightforward task. Semeria et al.

[5] presented research results that allows synthesizing C code with dynamic memory

allocation efficiently for hardware by accessing a primitive, which performs the

allocation and deallocation tasks. Some other similar works have appeared in [4] [6].

In the present thesis work, a dynamic memory manager is designed as a hardware

core block similar to those previously mentioned studies.

In [22], a reconfigurable platform is developed, which includes a hardware and

software operating system for handling the context switching of hardware tasks. The

system area circuitry in [22] is responsible for handling the memory request. The

DMM developed in the present work may be considered as a candidate primitive

core block targeting the mentioned system area circuitry.

The main concern however, is to keep fragmentation at very low levels while

managing the BRAMs, which are limited and very valuable resources of FPGAs.

Besides fragmentation, we aim to have a fast DMM with a bounded response time.

In other words, it should be suitable to be used in systems that have real time

constraints. Although BRAMS in FPGAs are targeted and are the main source of

motivation, it should be also applicable for any type of memory.

5

1.4 Contributions

This thesis work focuses on managing BRAMs of FPGA for dynamic memory

requests. In order to achieve this goal, a DMM is designed, which is suitable for real

time FPGA applications that need dynamic memory usage. Our proposed DMM can

be interfaced with FPGA applications very easily similar to interfacing an arbitrary

IP core block. It has bounded response time for allocation (21 clock cycles),

deallocation (10 clock cycles) and address translation (2 clock cycles) processes.

The fragmentation depends on the average size and distribution of the memory

request stream. However, it can be optimized by adjusting the block sizes to keep

fragmentation at low levels.

1.5 Thesis Organization

The remainder of the thesis is structured as follows. Background information about

the thesis subject and prior work about dynamic memory management are given in

Chapter 2. In Chapter 3, a detailed description of the DMM design is presented.

Chapter 4 includes the implementation details of the proposed design. Experimental

setup and evaluations of the design appears in Chapter 5. Finally, Chapter 6

concludes the thesis, also suggesting some future directions.

6

7

CHAPTER 2

BACKGROUND

2.1 Dynamic Memory Allocation Concepts

In this chapter, some background information and definitions are given related to

dynamic memory management. As was mentioned earlier, the purpose of dynamic

memory manager is to track the availability of the memory area, which is reserved

for memory requests in runtime. While performing this task, it aims to minimize the

wasted space and time spent. Furthermore, when the application doesn’t need a

reserved place anymore, deallocation is done by the DMM. Related commands and

their arguments should be delivered to DMM to perform the necessary allocation

and deallocation tasks. For example, in object oriented language C++, new and

delete represent allocation and deallocation commands, respectively. Allocation

command takes memory size as an argument and returns the starting address of the

reserved block for that request. On the other hand, deallocation takes the starting

address of the block to be freed as its argument. The size is kept in the data structure

of the memory manager, thus it is not a required argument for deallocation.

Policy and mechanism are two issues to be addressed within the context of memory

allocation. Policy is a design procedure that is implementable for the placement of

the requested memory. Next fit and best fit policies are examples of placement

policy. Algorithms and data structures that are used to implement a policy is called a

mechanism [1]. For instance, linked list that keeps free blocks as a list connected to

each other is a mechanism example.

8

Fragmentation is the inability to use free memory due to allocation policy and

mechanism [1]. It is classified as internal and external fragmentation [16]. External

fragmentation occurs when there is free memory for allocation, but there is no

available block which can meet the requested size. For example, there can be a lot of

non-contiguous blocks that have 10B size, but it may not be possible to provide a

place for a 20B request. The other case, internal fragmentation occurs when a larger

memory is reserved for a small size request. For a 10B request for example, a DMM

may allocate a 16B block and a 6B internal fragmentation occurs, if there is no

splitting policy.

Splitting, as the name implies, divides large blocks into smaller ones to prevent

internal fragmentation. In the previous example, if splitting were used, 6B would be

added to the free list and marked as a free block after splitting. However, such a

policy may generate many small blocks in the memory thus causing external

fragmentation after a while [1]. In order to prevent this, another policy called as

coalescing, is used. Coalescing merges adjacent free blocks in order to form larger

blocks. It is worth noting that each such policy brings extra burden in terms of

execution time.

2.2 Classification of Allocators

One type of classification can be done based on whether the dynamic memory

allocator is software or hardware based. As a quick comparison, we can say that

hardware allocators are considerably faster, more expensive and more complex

compared to software allocators. A better classification is done according to

mechanism and policy [20].

Sequential Fits, usually uses the linked list structure for keeping the free blocks.

These blocks are maintained in FIFOs or LIFOs, which are searched according to

the allocation policy. In this technique, search time may be considerably long when

the number of free blocks increases. Best fit, first fit and next fit are the best known

sequential fit policies. In the best fit, the smallest size block, which is enough to

9

meet the request, is searched. Obviously, it gives better results compared to the other

two policies in terms of fragmentation. However, it may suffer from long search

times. Hence, it does not suit well to large heaps. First fit searches the list starting at

the beginning of the list with every incoming request. The first block found to be

larger than or equal to the requested size is reserved. If the reserved block is larger,

it is split and the remainder part is added to the free list again. In this technique,

large blocks at the beginning of the list will be divided first. Number of small blocks

increase as time goes by and external fragmentation occurs as a result. Also, search

time may considerably increase for larger blocks following the formation of many

small blocks. Next fit can be seen as an optimization to first fit. Searching process

begins at the point where it was left last. This approach improves search time,

however it causes more fragmentation compared to best fit and first fit.

Segregated Free Lists is an array of free lists, which keeps the free blocks separately

according to particular sizes. Since the size range of free lists are known, it is quite a

fast technique. Known implementations can be classified as the simple segregated

storage and segregated fits. In simple segregated storage, splitting is not applied.

Thus, if one of the size classes is demanded a lot, it causes severe problems. On the

other hand, segregated fits enables splitting if requested size class is empty. It

reserves larger block than requested, splits and adds the remainder to related size

class. There are three schemes according to lists and size classes namely, exact lists,

strict size classes with rounding and size classes with range list. There are different

free lists for every possible block size in exact lists. This may lead to a large number

of free lists. In the second scheme, there exists defined sizes (e.g. powers of two)

and requests are rounded to the minimum class size that is available in the size list.

This approach reduces the number of free lists belonging to different sizes, however

rounding up cause internal fragmentation to a certain extent. The last approach has

free lists with a range of size. Since there are different sized blocks in the list, a

sequential search (next fit, best fit, first fit) is generally carried out in the list.

Buddy System is a specialized case of segregated fits mechanism. It uses size classes

with rounding and restricts splitting and coalescing according to some predefined

10

rules. Binary, fibonacci, double, weighted buddies are examples of buddy systems.

In all of these schemes, newly deallocated block is coalesced with its buddy if the

buddy is free also. Only the size of buddies vary in these buddy systems. For

example, heap area will be divided two equal parts in binary buddy system. These

parts are also divided equal parts to handle sufficiently small area for memory

requests. On the other hand, in Fibonacci buddy system, divisions are arranged to

form a Fibonacci series.

Bitmapped Fits is the policy that uses a bit vector to represent free or used areas in

the heap memory. For each block in the memory, a flag shows whether it is free or

not. This may be regarded as a slow mechanism in software implementations,

however it may be implemented quite fast in hardware [4].

2.3 Literature Overview

There have been many research works conducted about dynamic memory

management since 1960s. The state of the art until 1995 is well summarized in [1]. It

is a good reference, which includes general concepts about dynamic storage,

fundamental techniques, and classification of memory allocation algorithms before

summarizing the articles that have been published until that time. From then on,

there appeared many other articles about dynamic memory management techniques,

among which hardware based techniques also took place.

Chang and Gehringer’s modified buddy system [4] is one hardware implementation

of a buddy system with the bitmap approach. It uses pure combinational logic for

allocation and freeing operations so that they are performed fast and in constant

time. Although it provides a considerable speed-up, in some situations it cannot

allocate free blocks due to the limitation of its AND-OR tree structure. Cam et al.

[7] proposed an efficient memory allocation system, which eliminates fragmentation

and limitation in [4]. However, it uses more logic components compared to its

predecessor.

11

In [9], an active memory module, which is connected to the same bus with a

traditional RAM but used only for dynamic allocations, is proposed. It is a DRAM

with low density but including an active memory processor in addition. The

processor is used to keep the heap status and make garbage collection. The method

used for dynamic allocation is based on the mechanism in [4]. The realization of the

AND-OR tree with hardware description language is explained in detail in [8]. One

step ahead Chang et al. [10] came up with a hardware memory allocator, which can

be easily integrated to CPUs. It works in conjunction with an application specific

instruction set extension.

[11] targets those systems, which have FPGA as a computational resource only.

Some peripheral devices and memory is connected to FPGA and the management of

memory is performed by FPGA. Free parts of the memory are kept in a stack as

pages. When a request arrives, the page pointed by the stack pointer is allocated.

However, there exist no results in terms of dynamic memory management metrics.

As a continuation of [7], VHDL synthesis of work is presented with minor

improvements in [13]. The proposed OR-gate prefix circuit has more gates than

AND-OR structure mentioned in [4]. The reason why it consumes more resource is

due to the requirement to find any free block existing in the bitmap. However,

Chang’s AND-OR tree [4] can detect a free block of size j under the circumstance

that the free part’s starting address should be a factor of j or k x j, where k ≥ 0 and j

is a power of 2 [13]. The proposed scheme has been implemented on an FPGA and

some performance results and comparisons with [9] were presented.

Another alternative for dynamic memory allocation in FPGAs is proposed in [14].

Dynamic memory allocation controller (DMAC) core has been developed to manage

output buffers of communication nodes in a high performance FPGA cluster. Free

and occupied blocks are placed on a binary tree and this structure is kept in a BRAM

in FPGA. Adding and deleting nodes from the tree is achieved done via the DMAC

core. When tree gets larger, search time for add and delete operations inevitably

increase.

12

13

CHAPTER 3

DESIGN OF DYNAMIC MEMORY MANAGER

3.1 Design Approach

Recently, block RAMs of FPGAs have become sufficient to carry out many complex

computations without going out of the chip [21]. However, block RAMs (BRAMs)

of FPGAs should be used efficiently especially for computations that need dynamic

management of the memory. From this point of view, our primary design goal is to

implement a dynamic memory manager in FPGA, which has fast and bounded

response with very low fragmentation. In order to achieve this goal, primarily the

combination of two techniques, namely, segregated free lists and bitmapped fits are

employed simultaneously. Free blocks grouped according to their sizes are stored in

free lists using the segregated free lists approach. On the other hand, availability

information about a block, i.e., whether the block is free or not, is represented as a

flag in a bitmap vector. In order to keep memory overhead low bitmap vector is also

implemented in the BRAM of FPGA. Different from other conventional memory

allocators, the allocated memory to a request is not necessarily a contiguous block in

our design. It can be dispersed on different non-contiguous blocks. However, such

blocks are connected with link vectors that include encoded information about the

allocated blocks. For allocation, a modified version of AND-OR tree in [4] is used.

Our dynamic memory manager (DMM) consists of the following three main parts:

i) allocator,

ii) deallocator and

14

iii) address translator

The following sections present the conceptual design and its related components

which is realized with VHDL synthesis.

3.2 Memory Representation

The memory area which is to be used as heap is partitioned into blocks and sub-

blocks having strict boundaries (Figure-3.1). Heap area is first divided into main

blocks of size 32x2n. n can be used as a parameter for arranging the block sizes in

the main block. In this scheme, one can allocate blocks ranging from 1 byte up to

32x2n bytes with a resolution of 2n. Therefore, as will be detailed in Section-5.3,

more than one DMMs having different n values can be combined to increase the

range of sizes. These main blocks are partitioned logically further into sub-blocks as

shown in Figure-3.1. Allocations will be done as a combination of different sized

sub-blocks from the heap memory. For example for a request of 11x2n bytes

(8+2+1) x 2n or (4+4+1+1+1) x 2n, sub-blocks can be provided.

15

32 x 2n

8 x 2n

32 x 2n
32 x 2n
32 x 2n

…
…

…

4 x 2n

4 x 2n

32 x 2n
32 x 2n

2 x 2n
32 x 2n
32 x 2n

2 x 2n

 …
…

…
.

2 x 2n

2 x 2n
Heap Memory

2n
2n
2n
2n

32 x 2n 2n
32 x 2n 2n
32 x 2n 2n
32 x 2n 2n

 Main Memory Main Blocks Sub-Blocks

Figure 3.1: Heap Memory Partitioning

16

The motivation behind the choice of the sub-block distribution in Figure-3.1 is to

provide an infrastructure, which is capable of allocating memory sizes ranging from

2n to 32x2n with 2n increments.

3.3 Bitmap and Link Vector

As was mentioned earlier, whether a block is free or not is decided by checking this

state information in the bitmap vector. Each bitmap and its associated link vector

corresponds to only one main block of size 32x2n. Since every sub-block is

represented as a flag, 15 bits are used for each main block. The vector also includes

maximum number of available contiguous sub-blocks with the same size. Figure-3.2

illustrates the fields of the bit vector. This example bit vector of “1-01-1100-

00101000-01-010-0011” is interpreted as follows: there exists one free block with

size 4x2n, two free blocks with size 2x2n (also contiguous) and six free blocks of

size 2n (however, 3 of them are contiguous).

1 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 1 1

23 0

of 2n
contiguous

blocks

of 2x2n
contiguous

blocks

of 4x2n
contiguous

blocks

2n
blocks

2x2n

blocks
4x2n

blocks
8x2n
block

Figure 3.2: Bitmap Vector

Our second data structure is the link vector, which shows sub-block connections of

an allocation (Figure-3.3). Allocation details are encoded in link vector. It includes

all combinations that can be chosen using 8x2n, 4x2n, 2x2n and 2n sized blocks.

There are 3 different fields in the link vector, namely next block information,

number of blocks with same size and next block starting address. Next block

information is encoded in 2 bits for 8x2n and 4x2n blocks and in one bit for 2x2n

0: free
1: allocated

Binary encoding

17

blocks because the next block of 8x2n can be 4x2n, 2x2n, 2n sized blocks or none.

Thus, there are 4 possibilities for 8x2n block, 3 possibilities for 4x2n blocks and 2

possibilities for 2x2n blocks. There is no next block for 2n sized blocks.

 Table 3-1: Next Block Encoding in Link Vector

 4x2n 2x2n 2n No next block

8x2n “01” “10” “11” “00”

4x2n - “01” “10” “00”

2x2n - - “1” “0”

The number of blocks with same size shows the number of used blocks that are

contiguous in the same sub-block. For instance, there are eight n sized blocks. If four

of the n sized blocks are used, there should be “011” in the corresponding field in

the link vector. This indicates that three contiguous blocks following the starting

block, i.e. four in total are allocated

Next block starting address is a 3-bit field for all the blocks because next block can

be one of the eight 2n sized blocks and they are addressed using 3 bits only. If the

next block is a 4x2n block, one least significant bit is sufficient to determine which

one is the next block. Similarly when the next block is a 2x2n sized block, two least

significant bits are sufficient to determine the address of the block. Figure-3.3

illustrates an example memory request of size 13x2n where the bitmap vector is as

“0-11-1000-11000011-00-011-0100”. The request is met by allocating the first

available blocks of 8x2n, 2x2n, and three 2n. Then the link vector becomes “10-001-

XXXXXX-XXXXX-XXXXXX-1-00-010-XXXXX-XXXX-XXX-XXX-010-XXX-

XX-XX-X” (where only the affected bits are shown). Link vector is then updated as

Next
Current

18

a result of the allocation request and accessed for deallocation and address

translation requests later.

1 0 0 0 1
0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 1 0

0 0 0 0 0

0 0 0 0

0 0 0

0 0 0

0 1 0

0 0 0

0 0

0 0

0

53 49
48

38

37

17

16

04 x 2n

2 x 2n

2n

2 x 2n

2n

2n

2n

2n

2n

2n

2n

4 x 2n

2 x 2n

2 x 2n

8 x 2n

1

0

00

01

10

11

000

001

010

011

100

101

110

111

=> Next block information

=> Number of blocks with same size

=> Next block starting address

43

42

32

31 26

25 21

20

12

34

57

810

1113

14

Figure 3.3: Link Vector

3.4 Free Lists and BRAM Structure

As was previously mentioned, we use the segregated free lists approach in order to

find the block with the requested size quickly. In this scheme, there are lists of

blocks organized according to the available size in corresponding blocks. Free lists

in this design are similar to that used in software based TLSF allocator in [12]. As

seen in Figure-3.4, there are 32 free list FIFOs that keeps BRAM addresses. The

content of an addressed BRAM is the bitmap and link vectors of the corresponding

main block. Free lists are arranged according to maximum available free block size

that can be allocated in return to a request. Their size range from 2n to 32x2n.

19

1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 011001 11000000 0 00

31 0

………….. ………………………………………………….

00100111
00111111

11100000
00111000

11111111

00100000

00100111

00100111

00000000

11111111

00000000

11111111

Bitmap BRAM

Link BRAM

FIFO
32x2n

FIFO
25x2n

FIFO
2n

Bitmap Vector

Link Vector

Figure 3.4: Free Lists and BRAM Structure

20

Besides the free list structure, there are BRAMs that store bitmap and link vectors.

For a main block with size 32x2n, one word is reserved in link BRAM and bitmap

BRAM each. The address of BRAM, which stores these vectors, is related to the

starting address of the main block in the heap memory.

3.5 Hashing

In order to be able to use BRAM structures mentioned above efficiently, a simple

hashing is applied to the actual address of the heap area in the main memory.

Starting address of the heap memory should be given as a generic input to the

DMM. Starting address of the heap partition is then regarded as an offset. The

difference between the starting and ending address of the heap partition defines

BRAM size for that partition. Since every word in the BRAM corresponds to a main

block with 32x2n (2n+5) size, link and bitmap BRAMs have word length that is equal

to heap memory size divided by the main block size. In other words, if the heap size

is 2k words, BRAMs will have 2k-(n+5) words. The process is summarized in Figure-

3.5.

Figure 3.5: Address Hashing

21

3.6 Description of Subcomponents

3.6.1 Free List Manager

There are 32 free lists each of which keeps BRAM addresses of the bitmap and link

vectors grouped according to corresponding free block sizes. These are FIFO

structures with a word size of 16, which is the minimum number that can be created.

Obviously, free sub-blocks in a main block will be updated following an allocation

or deallocation task. Therefore, free list FIFOs should be re-arranged according to

the new condition. This task is realized by free list manager (FLM) in our DMM.

Managing free lists in the allocation task is relatively easy. When an allocation

request arrives, the top element of the corresponding size FIFO is popped out. If it is

empty, one greater size FIFO is used concurrently. Following the completion of the

allocation process, BRAM address of the related block is pushed into the FIFO

corresponding to new free size in that block.

On the other hand, when deallocation takes place it is not known whether the

deallocated block’s BRAM address is in the free list FIFO or not. Hence the

corresponding size FIFO is emptied via a reset input.

The other task that free list manager performs is filling up the FIFOs. When there is

no allocation or deallocation, FLM deals with pushing BRAM addresses to FIFOs. It

starts with the first address, reads BRAM content and sends it to the related free list,

which is empty, by checking the free size in that block. If there is an element in the

corresponding FIFO, FLM does not push the new BRAM address. Instead, it goes to

the next address and this process continues in the same fashion.

3.6.2 Allocator

DMM basically performs the task of reserving memory of the requested amount.

The only parameter that should be provided to the allocator is the size of the

22

requested memory. While performing this task, DMM benefits from hardware

structures such as AND-OR tree similar to the one in [4] and some combinational

blocks namely, the bit flipper, address conversion and size conversion blocks

(Figure-3.6).

Figure 3.6: Modified AND-OR tree

Each node in Figure-3.6 is composed of and gates, or gates, multiplexer and D-type

flip-flop. Similar to the node structure in [8] is used in the modified AND-OR tree

nodes with a slight change. The node have been changed to eliminate combination

gate delays. A flip-flop is added to output of the nodes. Thus, it provides the

increase in the overall circuit operating frequency. In Figure-3.7, the inner structure

of node number 15 is given as an example. Furthermore, tree structure is modified in

this work to eliminate the shortcomings of Chang’s AND-OR tree in [4]. Chang’s

AND-OR tree can detect a free block of size j under the condition that the free part’s

starting address is a factor of j or k x j, where k ≥ 0 and j is a power of 2. However in

the modified AND-OR tree, a requested blocks can be found anywhere in the given

bitmap.

23

Modified AND-OR tree is used to determine the starting address of the sub-block

(Figure-3.6). For every sub-block group, there are gate trees. Thus, the design has a

total of three gate trees for different widths corresponding to 2, 4, and 8 bit width

bitmap vectors (not needed for 1 bit). For example, there are four 2x2n sub-block in

a main block, therefore the corresponding 4 bit part of the bitmap vector is provided

as input to the 4-bit width gate tree. The output will be the starting address of the

sub-block to be allocated. Since the memory is partitioned according to a predefined

rule, finding the actual starting address of the given memory block is

straightforward. Then this is given as an input parameter to bit flipper with the

allocated size. The corresponding bits are flipped to indicate that these blocks are

not free anymore. Finally, FLM places the block to a new free list FIFO according to

the maximum available size of blocks.

Figure 3.7: AND-OR structure

3.6.2.1 Allocation Process

The following tasks are performed within the context of the allocation process:

• Pick the non-empty FIFO with the requested size or more,

• Read the top element, which is the BRAM address of both bitmap and link

vector

24

• Read the content of the BRAMs, send the bitmap vector to modified AND-

OR trees

• After obtaining the starting addresses of sub-blocks, update the link and

bitmap vectors

• Write the vectors to BRAMs

• Place the BRAM address according to free contiguous size to the

corresponding free list FIFO

3.6.3 Deallocator

When the application does not need the allocated memory anymore, it releases the

previously occupied part. Starting address of the memory block that will be freed is

sufficient to perform this task. The size and link information of other blocks can be

extracted from the link vector of the corresponding block. Then link and bitmap

vectors are updated. Finally, similar to FLM section, it places the block to a new free

list FIFO by checking the maximum available size of the block.

3.6.3.1 Deallocation Process

The following tasks are performed within the context of the deallocation process:

• Find the BRAM address from the provided starting address by hashing

• Read the BRAM content

• Find the link between blocks using the link vector

• Update the link and bitmap vectors

• Reset the corresponding size FIFO (size before the deallocation)

• Place the BRAM address according to new free size to corresponding free

list FIFO

25

3.6.4 Address Translator

The obvious difference of our DMM from conventional memory allocators is the

fact that the requested memory is not provided as a whole contiguous chunk.

Instead, it may be provided as a combination of different blocks with varying sizes.

Therefore, an extra task in DMM, i.e. address translation is required. In return to an

allocation request, DMM sends smallest of the starting addresses of the allocated

blocks. An application should only know the starting address of the object, the rest,

i.e. link between blocks and total size, is in the DMM data structure. Thus, when an

application demands to access the heap memory, a simple offset calculation won’t

be sufficient due to the non-contiguous nature of the system. Instead actual address

should be calculated using the starting address and the offset in the DMM with a two

cycle delay. At first, block combination is extracted from the link vector and then

the actual address is returned using this and the offset value.

26

27

CHAPTER 4

IMPLEMENTATION OF DYNAMIC MEMORY MANAGER

In this chapter, implementation details of DMM are presented. It is implemented in

VHDL. Xilinx ISE 14.6 [17] tool is used as the development environment.

Specifications of the units that are developed in this design are described in the

following sections.

4.1 Top Level

In Table-4.1, top level ports of the DMM are explained. Besides the ports, some

generic values are shown in Table-4.2.

Table 4-1: Port definitions of DMM

Port Name Direction Explanation

Clk IN System clock

rst IN System reset

allocate IN When asserted with alloc_size(23:0),

allocator starts to search for available

memory place as requested size

alloc_size(15:0) IN Size of requested memory

deallocate IN When asserted with dealloc_addr(31:0),

allocator frees the memory allocated

before using starting dealloc_addr(31:0)

28

Table 4.1: Port definitions of DMM (Continued)

Port Name Direction Explanation

dealloc_addr(31:0) IN Starting address of the memory to be

freed

find_address IN To find the address that the application

wants to access

mem_addr_start(31:0) IN The starting address of the block that has

the desired data in it. It uses

addr_offset(23:0) to reach the desired

address in the memory

addr_offset(23:0) IN The offset value that is used with

mem_addr_start(31:0) to access desired

data

alloc_done OUT Indicates that allocation is done

successfully

mem_addr_return(31:0) OUT The starting address of allocated block. It

is ready when the alloc_done signal is

high

dealloc_done OUT Indicates that deallocation is done

successfully

mem_addr_actual(31:0) OUT It is the actual address that the application

wants to access. It is found using

mem_addr_start(31:0) and

addr_offset(23:0)

error OUT Indicates that an error has occurred

error_reg(7:0) OUT Type of the error

29

Table 4-2: Generic Values of Top Level

Generic Value Type Explanation

min_block_size Integer n value in minimum

block of size 2n

heap_start_address(31:0) std_logic_vector Starting address of the

managed heap

heap_end_address(31:0) std_logic_vector Ending address of the

managed heap

There are three main functionalities of the DMM. One of them is to reserve memory

as the requested size. In order to start the process, allocate signal and

alloc_size(15:0) should be applied. One of the free lists that is greater than or equal

to the desired size is chosen. Top element of chosen free list FIFO, i.e. BRAM

address, is popped out. Content of the bitmap and link BRAMs are read and sent for

doing the necessary arrangements on the bitmap and link vectors. When the process

is done, the smallest of the starting addresses of the allocated sub-blocks is returned

as mem_addr_return(31:0).

Second task is tp free memory area, which is not necessary any more. For this

purpose, applying deallocate signal and dealloc_addr(31:0) is required. Obviously,

dealloc_addr(31:0) is the address that has been sent by DMM when the allocation

has been done. BRAM address that holds the corresponding bitmap and link vectors

is found using hashing. From this point onwards, starting block and how they are

linked are known. Thus, necessary bits on the vectors are flipped. Deallocation

process is finally done after resetting the corresponding free list FIFO. This will be

detailed more in the implementation of the free list manager.

The final task is about address translation in DMM. Since the provided area is non-

contiguous, the application cannot access data using only starting address of the

object. Linking of the blocks must be known and the offset calculation must be done

accordingly. So, when the desired address in heap (mem_addr_start(31:0) +

30

addr_offset(15:0)) and find_address signals are provided to DMM, link vector

should be found first as in the deallocation process. Afterwards, the actual address,

i.e. mem_addr_actual(31:0), is calculated and returned. This is completely

independent from allocation and deallocation processes since it uses another other

port of the link vector BRAM. Top level state flow is shown in Figure-4.1.

Figure 4.1: Top Level Flowchart

4.2 Free List Manager

4.2 Free List Manager (FLM) makes the necessary arrangements about free list

FIFOs. It simply reads from or writes to the free list FIFOs in response to requests

arriving from the top level. Besides these tasks, another important task is to reset the

FIFO. When deallocation occurs, corresponding BRAM address could be in the free

31

list FIFO. Following the deallocation, free size can be changed, so it should not stay

in the previous free list FIFO.

Table 4-3: Port Definitions of FLM

Port Name Direction Explanation

clk IN System clock

rst IN System reset

wr_fifo IN bitmap_bram_addr_in (15:0) is

written to the stated FIFO having the

number wr_fifo_number (4:0)

rd_fifo IN bitmap_bram_addr_out (15:0) is

read from the stated FIFO having the

number rd_fifo_number (4:0)

find_in_fifo IN After deallocation it empties (resets)

FIFO having the number

rd_fifo_number (4:0)

wr_fifo_number(4:0) IN Shows which FIFO will be written

rd_fifo_number (4:0) IN States which FIFO will be read

bitmap_bram_addr_in(15:0) IN Bitmap and link vector BRAM

address that will be written to FIFO

fifo_ready OUT States that the process is completed

fifo_full(31:0) OUT FIFO full signal, every bit

corresponds to one FIFO

fifo_empty(31:0) OUT FIFO empty signal, every bit

corresponds to one FIFO

bitmap_bram_addr_out(15:0) OUT Bitmap and link vector BRAM

address that will be read from FIFO

32

FLM continuously loads the FIFOs if they are empty. It reads the bitmap BRAM

consecutively and sends the address by checking the free contiguous size in it. If

corresponding FIFO is not empty, it passes the next BRAM address. The interface of

FLM is given in Table-4.3.

4.3 AND-OR Trees

AND-OR trees are used to determine free spaces of the heap memory using the

bitmap vector that corresponds to a section of the heap memory. It is the modified

version of the gate tree used in [4]. In [4], it provides a considerable speed-up,

however it is not guaranteed to allocate free blocks in all cases due to the limitation

of the used gate tree structure. This disadvantage is eliminated by using more

resources in the present work. The ports of the AND-OR tree is shown in Table-4.4.

Table 4-4: AND-OR tree ports

Port Name Direction Explanation

clk IN System clock

rst IN System reset

bitmap_in(n:0) IN n+1 bits bitmap vector

level(n:0) IN Defined according to the requested

size

free_address(n-1:0) OUT The number of ‘1’s in this vector

gives the starting address of the

reserved area.

There are three ‘n’ values 1, 3 and 7 in the present design. These AND-OR gates are

used for 2, 4 and 8 bits bitmap vectors. Although gate tree can be used as a

combinational block, it is implemented as a clocked circuitry to prevent large gate

33

delay. In order not to decrease the frequency of the overall design, the operation in

the 8 bit gate tree is made to last in 7 clock cycles.

4.4 Address Conversion

Address conversion block is a simple one that converts AND-OR gates’ free address

output to an actual address. It simply checks the number of ‘1’s in the input vector.

For example, a free address output of 8-bit AND-OR tree “1100110” is converted to

“100”, which is a one clock cycle operation.

Table 4-5: Ports of Address Conversion Block

Port Name Direction Explanation

Clk IN System clock

rst IN System reset

free_address_8bit(7:0) IN Free address output of 8 bits tree

free_address_4bit(3:0) IN Free address output of 4 bits tree

address8(2:0) OUT Actual address of 2n sized blocks

address4(1:0) OUT Actual address of 2 x 2n sized blocks

4.5 Size to Level Conversion

Size to level conversion block converts binary size data to level information that can

be understood by the AND-OR tree. For example, for the requested size of “0010”

and “0011” from 2n blocks, level information will be “00000010” and “00000100”

respectively. Similar to address conversion, this is also a one clock cycle operation.

34

Table 4-6: Ports of Size to Level Conversion Block

Port Name Direction Explanation

Clk IN System clock

Rst IN System reset

size8(3:0) IN Requested size from 2n sized blocks

size4(2:0) IN Requested size from 2 x 2n sized

blocks

level_8bit(7:0) OUT Level of 8 bits gate tree

level_4bit(3:0) OUT Level of 4 bits gate tree

35

CHAPTER 5

EXPERIMENTAL SETUP AND EVALUATION

5.1 Setup

Following the implementation of DMM, experiments are conducted to reveal the

characteristics and performance of DMM. As the setup, a test computer and Xilinx

KC705 demo board [18] shown in Figure-5.1 have been used. We prepared a

simulator program in C# to communicate with the demo board via UART. Since the

board has a USB to UART bridge, it can also be connected to the computer’s USB

port via its mini USB port. The demo board has Kintex-7 FPGA (XC7K325T) [19]

which includes a large amount of logic resources.

Figure 5.1: KC705 Demo Board

36

5.2 Characteristics of DMM

5.2.1 Logic Resources and Operating Frequency

Table-5.1 shows FPGA resource usage and the maximum operating frequency. In

XC7K325T FPGA, LUTs and slices consumed for the DMM implementation

correspond to 2% and 4% respectively while the minimum clock period is equal to

6ns corresponding to 166 MHz operating frequency.

Table 5-1: Resource Usage

LUTs Slice Max. Frequency

6075 2295 175,26 MHz

5.2.2 Memory Overhead

As was mentioned in the previous chapter, a data structure is used to keep track of

the heap memory. For every main block there are two vectors that are bitmap and

link vectors. Bitmap vectors are of 24 bits in length while link vectors are 54 bits in

length for a main block of size 32x2n. These are kept in BRAMs of the FGPA.

Therefore, heap size (HS) affects the overhead directly. Besides these, memory

resources of the FPGA are also used for keeping the free list FIFOs, each of which

occupies 16 BRAM addresses. However, we implemented these in the form of

distributed RAM storage by using the FPGA’s register sources instead of BRAM

blocks. Therefore, memory overhead (MO) became

�� � �24 � 54		�	 �

32�2� 	����

37

In synthesizing the FPGA 18Kbit memory blocks are employed as bitmap and link

vector BRAMs. Thus, memory overhead for our DMM design in FPGA is given in

the formula

�� � �� �

32�2� 	�

24
18�� �	�

�

32�2� 	�

54
18��� �	18	�����.

For example, for n=3 and 512KB heap size, link and bitmap BRAMs have 2048

(512K/256) words. Therefore, first part of the formula becomes 3 and the second

part becomes 6. The resulting memory overhead will then be 20.25 KB (9x18Kbits)

for managing a 512 KB area.

5.2.3 Allocation Time

Allocation time is the time spent from incoming allocation request to the completion

of the allocation process. As was previously mentioned in Chapter 3, popping out a

BRAM address from a free list FIFO, reading the content of that address, processing

the bit vectors and writing again to BRAM are the main tasks that are performed for

the allocation. But it lasts no more than 21 clock cycles (Figure-5.2).

5.2.4 Deallocation Time

Deallocation time is the time spent for reading the content of the BRAM address to

be freed, processing bit vectors and writing to BRAMs again. Deallocation time is

bounded and lasts no more than 10 clock cycles (Figure-5.3).

38

Figure 5.2: Allocation Process

39

Figure 5.3: Deallocation Process

40

5.2.5 Experiments with Synthetic Trace

The configuration file, which is formed as a result of code implementation is loaded

to KC705 demo board. It is connected via the USB port to the test computer.

Computer and the board communicate via UART thanks to USB to UART bridge on

the demo board. Then, a simple C# code is written to send commands and to gather

replies from the DMM. The program sends 3 bytes (command code and size) as the

allocation command, 5 bytes (command code and deallocation address) as the

deallocation command (Figure-5.4).

Allocation

Command
(0xAA)

Size (15:8) Size (7:0)

Deallocation

Command
(0xDD)

Address
(31:24)

Address
(23:16)

Address
(15:8)

Address
(7:0)

Figure 5.4: Serial Channel Commands

To record the effect of average block size to fragmentation, a set of synthetic

allocation commands are sent to the DMM, consecutively. The sum of the allocated

object sizes are recorded until the DMM cannot return an affirmative respond to an

allocation request. The ratio of the total allocated places to the whole heap size

shows to the unused memory area due to fragmentation. To create object sizes

randomly, Random() function of the C# is used, which creates random numbers with

a uniform distribution in a given interval. To provide various traces with different

average allocation sizes three Random() functions are used. First one creates a

uniformly distributed number between 0.0 and 1.0. Then, a second random function

generates allocation sizes between 1 (minimum size) to average size and a third

random function generates allocation sizes (average size + 1) to 32x2n (maximum

size). In this way, uniformly distributed traces having different average sizes are

handled.

41

In the experiment, 512 KB of heap memory is managed using 2048 bitmap and link

vectors, i.e. n = 3 and average sizes are selected in the range from 8 to 248 with

increments of 8. Every random trace are sent to DMM for one hundred times.

Memory usage at the point where DMM becomes irresponsive is recorded. Figure-

5.5 presents the average percentage of unused memory to whole heap size due to

fragmentation is shown.

Figure 5.5: Percentage of wasted memory vs. average allocation sizes

It is worth emphasizing that this is an example used to demonstrate how

fragmentation changes under a uniformly distributed memory request pattern. The

values in Figure-5.5 may be different for other distributions. Similar graphs can be

handled using different memory request distributions and accordingly the parameter

n can be arranged to keep fragmentation low. For example, from the graph in

Figure-5.5, we can choose n=4 (min. block size = 16) for a uniformly distributed

trace with an average size of 176 bytes. For n=3 wasted memory percentage would

be around 12.2% at 176 bytes. However, for n=4 it is around 4.2%, which is the

fragmentation for n=3 case with 88 bytes.

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160 168 176 184 192 200 208 216 224 232 240 248

Avg. Alloc. Size (Byte) vs. Wasted Memory (%)

42

5.3 Evaluation of the Design

5.3.1 Limitations

The proposed DMM in this work can allocate memory of size at most 32x2n. This

value is flexible and depends on n, however it cannot exceed 32x2n. The partitioning

of the heap memory is strict. Therefore, heap can be enlarged either by enlarging the

bitmap and link vector BRAMs or by increasing the number n.

5.3.2 Scalability

Since the heap memory partitioning is not flexible, DMM can be scaled only by

sacrificing some FPGA resources or fragmentation performance. One option to deal

with a bigger heap memory is simply by increasing n. However, increasing n can

cause more wasted memory. On the other hand, it may also cause a decrease in

memory overhead percentage.

Another issue in scalability is the increase in the range of allocated sizes. For

example, with n=3, allocation of 1 byte to 256 byte is possible. If another DMM is

used with n=8, two of them can be linked in a pipelined manner. Hence, allocation

size range can be extended to 32x28, i.e., 8KB. In return, LUT usage in FPGA will

be doubled and execution time will increase. Since two DMMs can work

concurrently, execution time will not be doubled, but increase a few clock cycles

only. On the other hand, memory overhead will drop as a percentage of the managed

heap size. Lastly, the address translation mechanism is also affected. It would need

an extra clock cycle for the translation of addresses to be accessed.

5.3.3 Memory Access Delay

Due to the non-contiguous reservation of the heap memory, our design includes an

address translator, which computes the desired address. When the starting address

43

and the offset are provided to access the desired data, firstly link vector BRAM is

read using the starting address info. The result is the corresponding link vector,

which keeps the information about block combinations. Then, the offset is added

and the actual address is handled in the second cycle.

5.3.4 Comparison with Other Works

An alternative way of dynamic memory allocation in FPGA is proposed in [14].

Dynamic memory allocation controller (DMAC) core has been developed to manage

the output buffers of the communication nodes in a high performance FPGA cluster.

Free and occupied blocks are placed on a binary tree and this structure is kept in

BRAMs of the FPGA. Adding and deleting nodes from the tree are done via DMAC

core. When the tree gets larger, search time for add and delete operations increases

inevitably. Compared to our DMM, execution time is much longer in DMAC. But it

can allocate a broader range of object sizes.

Another work in [13] allocates a free block in 6 clock cycles. It uses approximately

12,600 LUTs for the allocator with a bit vector length of 512 bytes. Each bit of the

vector represents one block and it can allocate a maximum of 64 blocks for an

allocation request. It uses more FPGA resources than our DMM. In order to enlarge

the managed heap area, two options arise: bit vector length and the block size. If the

bit vector length increases to 1024 bytes, LUT usage will also be doubled. Instead of

increasing the bit vector length, block size can be arranged to increase the managed

heap memory size. However, it causes more fragmentation due to reduced

granularity.

In DMMX [10], a scalable dynamic memory manager is proposed primarily for

CPUs. It has a worst case allocation time of 96 clock cycles and uses a cache like

architecture to keep bit vectors. It is claimed that bit vector of size 500 bits is

sufficient to handle a cache hit ratio of 97%. Maximum allocation size in one request

is bounded with the bit vector length times the block size. The only disadvantage of

44

DMMX when compared to DMM is the worst case allocation time for the requested

object.

45

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

Dynamic memory usage for high level synthesis tools still remains a hard problem

to be implement well [15]. This thesis proposes a memory manager for dynamic

memory allocations as a hardware IP core. By merging the bitmapped fits and the

segregated free lists approach, the DMM tracks free and occupied parts of the

managed memory. In achieving this, it aims to minimize the wasted space in the

heap memory. Unlike conventional memory allocators, it satisfies memory requests

by providing a combination of non-contiguous blocks to keep fragmentation at low

levels.

The proposed DMM can be integrated to applications quite easily. Time spent for

allocation and deallocation processes are 21 clock cycles and 10 clock cycles,

respectively. Due to the non-contiguous nature of the reserved spaces, it adds a delay

of 2 clock cycles when an application accesses to memory which is previously

reserved by the DMM.

Bounded response time and low fragmentation are two major advantages of the

proposed DMM while slightly increased access delay is the drawback. In terms of

scalability, two cases should be regarded. One is increasing the heap size without

changing the object size range by increasing the bitmap and link vector BRAM

sizes. Performance metrics will not be influenced in this situation but memory

overhead will increase. The second case is enlarging the object size range by

increasing the n parameter. In this case memory overhead will drop, but wasted

memory figures may be affected adversely..

46

It is believed that working towards eliminating the limitations mentioned in the

previous chapter and decreasing memory access delay are two possible future

directions to follow in this line of research. In order to increase object size range

without affecting fragmentation, more than one DMM block can be used in a

pipelined manner with a slight modification in the link vector. A next address area

should be added to the first stage DMM to link the second stage DMM. In order to

handle different object size ranges, n parameter should be different. For example,

with n=3, allocation of 1 byte to 256 byte is possible. If another DMM is used with

n=8, two of them can be linked. Hence, allocation size range can be extended up to

32x28, i.e., 8KB. As a result, LUT usage in FPGA will be doubled and execution

time will increase a few clock cycles only. However, memory overhead will drop.

Another future work is to minimize the effects of memory access delay. For this, one

can benefit from the memory access distribution of the applications. Generally,

applications tend to access allocated objects sequentially. So, the next access of the

application can be guessed and this avoids the two clock cycles delay for every

access. Cache may also be used to keep the most recently accessed objects and their

possible next addresses.

47

REFERENCES

[1] Wilson, P. R., Johnstone, M. S., Neely, M., Boles, D., "Dynamic storage

allocation: a survey and critical review”, Proc. of the Int. Workshop on Memory

Management, September, 1995.

[2] Detlefs, D. L., Dosser, A., Zorn, B., “Memory allocation costs in large C and

C++ programs”, Software Practice and Experience, vol. 24, no. 6, pp. 527-542,

1994.

[3] Zorn, B., “The measured cost of conservative garbage collection”, Software

Practice and Experience, vol. 23, no. 7, pp. 733-756, July 1993.

[4] Chang, J. M., Gehringer E. F., “A high performance memory allocator for object

oriented systems”, IEEE Trans. Computers, vol. 45, no. 3, pp. 357-366, March 1995.

[5] Semeria, L., Sato, K., De Micheli, G., “Synthesis of hardware models in C with

pointers and complex data structures”, IEEE Trans. Very Large Scale Integration

Systems, vol. 9, no. 6, pp. 743–756, December 2001.

[6] Wuytack, S., Da Silva, J., Catthoor, F., De Jong, G., Ykman, C., “Memory

management for embedded network applications”, IEEE Trans. Computer Aided

Design, vol. 18, pp. 533-544, May 1999.

[7] Cam, H., Abd-El-Barr, M., Sait, S. M., “A high performance hardware efficient

memory allocation technique and design”, Proc. of the Int. Conf. on Computer

Design, pp. 274–276, October 1999.

[8] Agun, S. K., Chang, J.M., “Design of a reusable memory management system”,

Proc. of the Int. ASIC/SOC Conference, pp. 369-373, September 2001.

[9] Srisa-an, W., Lo, C. D., Chang, J. M., “A performance analysis of the active

memory system”, Proc. of the Int. Conf. on Computer Design, pp. 493–496,

September 2001.

[10] Chang, J. M., Srisa-an, W., Lo, C. D., Gehringer E. F., “DMMX: dynamic

memory management extensions”, The Journal of Systems and Software, vol. 63,

no. 3, pp. 187–199, September 2002.

48

[11] Danne, K., “Memory management to support multitasking on FPGA based

systems”, Proc. of the Int. Conf. on Reconfigurable Computing and FPGAs,

September 2004.

[12] Masmano, M., Ripoll, I., Crespo, A., Real, J., “TLSF: a new dynamic memory

allocator for real time systems”, Proc. of Euromicro Conf. on Real Time Systems,

pp. 79–88, June 2004.

[13] Karabiber, F., Sertbas, A., Ozdemir, S., Cam, H., “An efficient memory

allocation algorithm and hardware design with VHDL synthesis”, Int. Journal of

Electronics, vol. 95, no. 2, pp. 125–138, February 2008.

[14] Rajasekhar, Y., Sass, R., “A first analysis of a dynamic memory allocation

controller (DMAC) core”, Symposium on Application Accelerators in High

Performance Computing, pp. 64-67, July 2011.

[15] Winterstein, F., Bayliss, S., Constantinides, G.A., “High level synthesis of

dynamic data structures: a case study using Vivado HLS”, Int. Conf. on Field

Programmable Technology, pp.362-365, December 2013.

[16] Randell, B., “A note on storage fragmentation and program segmentation”,

Communications of the ACM, vol. 12, no. 7, pp. 365-372, July 1969.

[17] Xilinx ISE Design Suite, http://www.xilinx.com/products/design-tools/ise-

design-suite/index.htm, last visited on May 2014.

[18] Xilinx KC705 Evaluation Kit, http://www.xilinx.com/products/boards-and-

kits/EK-K7-KC705-G.htm, last visited on May 2014.

[19] Xilinx Kintex-7 FPGA Family, http://www.xilinx.com/products/silicon-

devices/fpga/kintex-7/index.htm, last visited on May 2014.

[20] Johnstone, M. S., Wilson, P. R., “The memory fragmentation problem:

solved?”, Proc. of the Int. Symp. on Memory Management, pp. 26-36, October

1998.

[21] Bacon, D. F., Cheng, P., Shukla, S., “And then there were none: a stall-free

real-time garbage collector for FPGAs”, Proc. of the ACM SIGPLAN Conf. on

Programming Language Design and Implementation, pp. 23-34, June 2012.

49

[22] Say, F., Bazlamacci, C. F., “A reconfigurable computing platform for real time

embedded applications”, Microprocessors and Microsystems, vol. 36, no. 1, pp. 13-

32, September 2011.

