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ABSTRACT

A DYNAMIC MEMORY MANAGER FOR FPGA APPLICATIONS

Ozer, Cenk
M.S., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Ciineyt F. Bazlamagci

June 2014, 49 pages

Recently, FPGAs are shipped with a large amount of internal memory (block RAM)
sufficient to perform many complex computations without a need for off-chip
memory. However, block RAMs (BRAMs) of FPGAs should be used efficiently
especially for computations that need dynamic management of the memory. Thus,
within the scope of this thesis work, a dynamic memory manager (DMM) unit is
designed with an objective of meeting memory requests with a low fragmentation at
runtime for FPGA applications. The unit is designed to have a bounded response
time for dynamic memory requests to be suitable for real time applications. It can be
interfaced with FPGA applications quite easily similar to interfacing an arbitrary IP
core block. The proposed real-time DMM differs from other conventional memory
allocators in a way that it allows for memory allocations composed of differing size
blocks that are not necessarily contiguous. The address translator block in design
provides to access separate non-contiguous blocks as a whole contiguous chunk of
memory. Implementation and verification of the developed DMM on an FPGA

demo board is also presented using synthetic memory request streams.

Keywords: Dynamic Memory Allocation, Hardware Allocator, Dynamic Memory
Management Unit, Field Programmable Gate Array
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APKD UYGULAMALARI ICIN DINAMIK BELLEK YONETICISI

Ozer, Cenk
Yiiksek Lisans, Elektrik ve Elektronik Miithendisligi Boliimii
Tez Yoneticisi: Dog. Dr. Ciineyt F. Bazlamagci

Haziran 2014, 49 sayfa

Son yillarda APKD’ler, birgok karmasik islemin harici bellek ihtiyaci olmadan da
yapilabilmesini saglayacak oranda yliksek miktarlarda dahili bellek ile pazara
sunulmaktadir. Ancak, Ozellikle dinamik bellek yonetimi gereken islemlerde
APKD’lerin blok bellekleri verimli kullanilmalidir. Bu amacla, bu tez calismasi
kapsaminda APKD uygulamalarinin dinamik bellek isteklerini en diisiik pargalanma
ile karsilama gereksinimi saglamay1 6n planda tutan bir dinamik bellek yoneticisi
(DBY) tasarlanmistir. Bu birim, gercek zamanli uygulamalara da uygun olmasi i¢in
dinamik bellek isteklerini sinirli zamanda karsilayabilecek bicimde tasarlanmistir.
APKD uygulamalar1 ile arayiizii, herhangi bir IP bloguna benzer sekilde
yapilabilmektedir. Onerilen ger¢ek zamanli DBY, geleneksel dinamik bellek tahsis
edicilerden bir yoniiyle ayrilmakta ve bellek tahsis isteklerini bitisik tek blok halinde
degil, birbiriyle ardisik olmas1 gerekmeyen cesitli biiytikliiklerdeki bloklar halinde
karsilayabilmektedir. Bu ayrik bloklara bitisik bir bellek alaniymis gibi
erigilebilmesini adres ¢evirici saglamaktadir. Gelistirilen DBY, bir APKD gosterim

kart1 lizerinde yapay bellek istek dizileri yaratilarak denenmis ve dogrulanmastir.

Anahtar Kelimeler: Dinamik Bellek Tahsisi, Donanimsal Bellek Tahsisi, Dinamik

Bellek Yoneticisi, Alanda Programlanabilir Kap1 Dizileri
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CHAPTER 1

INTRODUCTION

1.1 Dynamic Memory Allocation

Dynamic memory management has been an attractive topic in computer science
since 1960s. Many researchers have been interested in managing memory requests
of applications at runtime. Since the same memory area can be used again and again
it is found much superior compared to static memory usage. However, handling
memory requests in a dynamic fashion requires a special unit called the dynamic
memory management unit. Part of the main memory, which is reserved to be used
for such dynamic requests is named as heap memory. Since the requests cannot be
identified at compile time, a unit, called as dynamic storage allocator or dynamic
memory allocator, is used to control this heap memory. Basically, what dynamic
memory manager does is keeping track of free and occupied parts of the managed
memory. While doing this, it benefits from an internal data structure and a policy
that governs the heap memory. Simply, two operations are done. The first one is
allocating a free place and the latter one is freeing an occupied place. In order to
allocate memory, only the requested size must be known. The response will then be
the starting address of the reserved memory block. In case of deallocation, starting
address of the block, which is required to be released should be given as input. Size
information is not necessary since it is kept by the memory manager. The state of the
memory blocks, free or not, is also recorded in the data structure, which may be in

the form of a linked list, bitmap, tree, etc. [1]. Ideally, a dynamic memory manager



should perform all these operations in a very short amount of time and minimize

wasted space in the heap memory.

1.2 Performance Challenges

In recent five decades, many different types of dynamic memory management units
are designed for many different platforms with various approaches. According to
Wilson et al. [1], there may always be some applications that can beat an allocator
policy and severely decrease its performance. Thus, it is very hard to design a
management unit that performs well for all dynamic memory intensive applications.
To evaluate the performance of an allocator, there are some absolute metrics, which

will be briefly described below.

1.2.1 Execution Time

The time spent for allocation and deallocation of memory blocks is an important
metric for performance. This may be quite significant while a dynamic memory
intensive application is running. For software based allocators, execution times can
reach up to 38% of the total runtime for some allocation intensive object oriented
applications [2] [3]. However, execution times have been gradually decreased since
the middle of 90’s. Hardware based allocators decrease the time spent in return for
extra hardware and complexity. Another important virtue is to have a bounded
response time. In this way a memory management unit can be used for real time

applications also.

1.2.2 Fragmentation

Fragmentation is simply defined as inability to use free heap memory [1]. It is
classified as internal and external fragmentation. Internal fragmentation occurs when

a larger block is reserved for a smaller size. For example a 16B block can be



reserved for 10B and the 6B becomes useless, if there is no mechanism to split this
large block. However, splitting comes with a time burden in a dynamic memory
manager. External fragmentation, on the other hand, occurs when there are many
small size blocks but there is no one block with a size larger than or equal to the

requested size.

Different approaches are expressed as fragmentation measure in [20]. Within the
scope of this thesis work, the ratio of the total wasted memory size to the whole heap
memory size at the point of operation where dynamic memory manager cannot
respond to memory allocation requests is used as the fragmentation measure. Since
BRAMs of FPGAs are of limited size, their efficient use gains more importance and

attracts more attention providing motivation for the DMM design in this work.

1.2.3 Memory Overhead

Dynamic memory managers use various data structures, which also need additional
memory to keep track of the heap memory. Those structures that are based on
software mostly use object headers to keep information such as size, link, etc.
Hardware counterparts, on the other hand, mostly use bitmaps for storing such
information. Bitmaps that show size and availability of a memory block are also
stored in BRAMs in FPGAs. Thus, memory overhead should be kept as low as
possible to decrease memory cost of an allocator. However, this may lead to

inefficiencies in terms of execution time and fragmentation.

1.2.4 Scalability

Scalability is another issue that designers should be concerned about. How design
complexity, execution time and memory overhead are affected when heap memory

grows should be taken into account.



1.3 Motivation

For decades many different dynamic memory allocation techniques have been used
for processor based object oriented systems, which tend to allocate and deallocate
memory blocks frequently [4]. In 90s, object oriented programming languages, such
as C and C++, were started to be used also for hardware synthesis. Generally, they
have been used in hybrid CPU-FPGA based systems for acceleration purposes.
Hardware synthesizable parts of codes are now implemented on FPGAs to benefit
from parallelism. However, implementing dynamic structures such as dynamic
memory allocators, pointers, etc. have not been a straightforward task. Semeria et al.
[5] presented research results that allows synthesizing C code with dynamic memory
allocation efficiently for hardware by accessing a primitive, which performs the
allocation and deallocation tasks. Some other similar works have appeared in [4] [6].
In the present thesis work, a dynamic memory manager is designed as a hardware
core block similar to those previously mentioned studies.

In [22], a reconfigurable platform is developed, which includes a hardware and
software operating system for handling the context switching of hardware tasks. The
system area circuitry in [22] is responsible for handling the memory request. The
DMM developed in the present work may be considered as a candidate primitive
core block targeting the mentioned system area circuitry.

The main concern however, is to keep fragmentation at very low levels while
managing the BRAMs, which are limited and very valuable resources of FPGAs.
Besides fragmentation, we aim to have a fast DMM with a bounded response time.
In other words, it should be suitable to be used in systems that have real time
constraints. Although BRAMS in FPGAs are targeted and are the main source of

motivation, it should be also applicable for any type of memory.



1.4 Contributions

This thesis work focuses on managing BRAMs of FPGA for dynamic memory
requests. In order to achieve this goal, a DMM is designed, which is suitable for real
time FPGA applications that need dynamic memory usage. Our proposed DMM can
be interfaced with FPGA applications very easily similar to interfacing an arbitrary
IP core block. It has bounded response time for allocation (21 clock cycles),
deallocation (10 clock cycles) and address translation (2 clock cycles) processes.
The fragmentation depends on the average size and distribution of the memory
request stream. However, it can be optimized by adjusting the block sizes to keep

fragmentation at low levels.

1.5 Thesis Organization

The remainder of the thesis is structured as follows. Background information about
the thesis subject and prior work about dynamic memory management are given in
Chapter 2. In Chapter 3, a detailed description of the DMM design is presented.
Chapter 4 includes the implementation details of the proposed design. Experimental
setup and evaluations of the design appears in Chapter 5. Finally, Chapter 6

concludes the thesis, also suggesting some future directions.






CHAPTER 2

BACKGROUND

2.1 Dynamic Memory Allocation Concepts

In this chapter, some background information and definitions are given related to
dynamic memory management. As was mentioned earlier, the purpose of dynamic
memory manager is to track the availability of the memory area, which is reserved
for memory requests in runtime. While performing this task, it aims to minimize the
wasted space and time spent. Furthermore, when the application doesn’t need a
reserved place anymore, deallocation is done by the DMM. Related commands and
their arguments should be delivered to DMM to perform the necessary allocation
and deallocation tasks. For example, in object oriented language C++, new and
delete represent allocation and deallocation commands, respectively. Allocation
command takes memory size as an argument and returns the starting address of the
reserved block for that request. On the other hand, deallocation takes the starting
address of the block to be freed as its argument. The size is kept in the data structure

of the memory manager, thus it is not a required argument for deallocation.

Policy and mechanism are two issues to be addressed within the context of memory
allocation. Policy is a design procedure that is implementable for the placement of
the requested memory. Next fit and best fit policies are examples of placement
policy. Algorithms and data structures that are used to implement a policy is called a
mechanism [1]. For instance, linked list that keeps free blocks as a list connected to

each other is a mechanism example.



Fragmentation is the inability to use free memory due to allocation policy and
mechanism [1]. It is classified as internal and external fragmentation [16]. External
fragmentation occurs when there is free memory for allocation, but there is no
available block which can meet the requested size. For example, there can be a lot of
non-contiguous blocks that have 10B size, but it may not be possible to provide a
place for a 20B request. The other case, internal fragmentation occurs when a larger
memory is reserved for a small size request. For a 10B request for example, a DMM
may allocate a 16B block and a 6B internal fragmentation occurs, if there is no

splitting policy.

Splitting, as the name implies, divides large blocks into smaller ones to prevent
internal fragmentation. In the previous example, if splitting were used, 6B would be
added to the free list and marked as a free block after splitting. However, such a
policy may generate many small blocks in the memory thus causing external
fragmentation after a while [1]. In order to prevent this, another policy called as
coalescing, 1s used. Coalescing merges adjacent free blocks in order to form larger
blocks. It is worth noting that each such policy brings extra burden in terms of

execution time.

2.2 Classification of Allocators

One type of classification can be done based on whether the dynamic memory
allocator is software or hardware based. As a quick comparison, we can say that
hardware allocators are considerably faster, more expensive and more complex
compared to software allocators. A better classification is done according to

mechanism and policy [20].

Sequential Fits, usually uses the linked list structure for keeping the free blocks.
These blocks are maintained in FIFOs or LIFOs, which are searched according to
the allocation policy. In this technique, search time may be considerably long when
the number of free blocks increases. Best fit, first fit and next fit are the best known

sequential fit policies. In the best fit, the smallest size block, which is enough to



meet the request, is searched. Obviously, it gives better results compared to the other
two policies in terms of fragmentation. However, it may suffer from long search
times. Hence, it does not suit well to large heaps. First fit searches the list starting at
the beginning of the list with every incoming request. The first block found to be
larger than or equal to the requested size is reserved. If the reserved block is larger,
it is split and the remainder part is added to the free list again. In this technique,
large blocks at the beginning of the list will be divided first. Number of small blocks
increase as time goes by and external fragmentation occurs as a result. Also, search
time may considerably increase for larger blocks following the formation of many
small blocks. Next fit can be seen as an optimization to first fit. Searching process
begins at the point where it was left last. This approach improves search time,

however it causes more fragmentation compared to best fit and first fit.

Segregated Free Lists is an array of free lists, which keeps the free blocks separately
according to particular sizes. Since the size range of free lists are known, it is quite a
fast technique. Known implementations can be classified as the simple segregated
storage and segregated fits. In simple segregated storage, splitting is not applied.
Thus, if one of the size classes is demanded a lot, it causes severe problems. On the
other hand, segregated fits enables splitting if requested size class is empty. It
reserves larger block than requested, splits and adds the remainder to related size
class. There are three schemes according to lists and size classes namely, exact lists,
strict size classes with rounding and size classes with range list. There are different
free lists for every possible block size in exact lists. This may lead to a large number
of free lists. In the second scheme, there exists defined sizes (e.g. powers of two)
and requests are rounded to the minimum class size that is available in the size list.
This approach reduces the number of free lists belonging to different sizes, however
rounding up cause internal fragmentation to a certain extent. The last approach has
free lists with a range of size. Since there are different sized blocks in the list, a

sequential search (next fit, best fit, first fit) is generally carried out in the list.

Buddy System is a specialized case of segregated fits mechanism. It uses size classes

with rounding and restricts splitting and coalescing according to some predefined



rules. Binary, fibonacci, double, weighted buddies are examples of buddy systems.
In all of these schemes, newly deallocated block is coalesced with its buddy if the
buddy is free also. Only the size of buddies vary in these buddy systems. For
example, heap area will be divided two equal parts in binary buddy system. These
parts are also divided equal parts to handle sufficiently small area for memory
requests. On the other hand, in Fibonacci buddy system, divisions are arranged to

form a Fibonacci series.

Bitmapped Fits is the policy that uses a bit vector to represent free or used areas in
the heap memory. For each block in the memory, a flag shows whether it is free or
not. This may be regarded as a slow mechanism in software implementations,

however it may be implemented quite fast in hardware [4].

2.3 Literature Overview

There have been many research works conducted about dynamic memory
management since 1960s. The state of the art until 1995 is well summarized in [1]. It
is a good reference, which includes general concepts about dynamic storage,
fundamental techniques, and classification of memory allocation algorithms before
summarizing the articles that have been published until that time. From then on,
there appeared many other articles about dynamic memory management techniques,

among which hardware based techniques also took place.

Chang and Gehringer’s modified buddy system [4] is one hardware implementation
of a buddy system with the bitmap approach. It uses pure combinational logic for
allocation and freeing operations so that they are performed fast and in constant
time. Although it provides a considerable speed-up, in some situations it cannot
allocate free blocks due to the limitation of its AND-OR tree structure. Cam et al.
[7] proposed an efficient memory allocation system, which eliminates fragmentation
and limitation in [4]. However, it uses more logic components compared to its

predecessor.

10



In [9], an active memory module, which is connected to the same bus with a
traditional RAM but used only for dynamic allocations, is proposed. It is a DRAM
with low density but including an active memory processor in addition. The
processor is used to keep the heap status and make garbage collection. The method
used for dynamic allocation is based on the mechanism in [4]. The realization of the
AND-OR tree with hardware description language is explained in detail in [§]. One
step ahead Chang ef al. [10] came up with a hardware memory allocator, which can
be easily integrated to CPUs. It works in conjunction with an application specific

instruction set extension.

[11] targets those systems, which have FPGA as a computational resource only.
Some peripheral devices and memory is connected to FPGA and the management of
memory is performed by FPGA. Free parts of the memory are kept in a stack as
pages. When a request arrives, the page pointed by the stack pointer is allocated.

However, there exist no results in terms of dynamic memory management metrics.

As a continuation of [7], VHDL synthesis of work is presented with minor
improvements in [13]. The proposed OR-gate prefix circuit has more gates than
AND-OR structure mentioned in [4]. The reason why it consumes more resource is
due to the requirement to find any free block existing in the bitmap. However,
Chang’s AND-OR tree [4] can detect a free block of size j under the circumstance
that the free part’s starting address should be a factor of j or &k x j, where k > 0 and j
is a power of 2 [13]. The proposed scheme has been implemented on an FPGA and

some performance results and comparisons with [9] were presented.

Another alternative for dynamic memory allocation in FPGAs is proposed in [14].
Dynamic memory allocation controller (DMAC) core has been developed to manage
output buffers of communication nodes in a high performance FPGA cluster. Free
and occupied blocks are placed on a binary tree and this structure is kept in a BRAM
in FPGA. Adding and deleting nodes from the tree is achieved done via the DMAC
core. When tree gets larger, search time for add and delete operations inevitably

increase.
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CHAPTER 3

DESIGN OF DYNAMIC MEMORY MANAGER

3.1 Design Approach

Recently, block RAMs of FPGAs have become sufficient to carry out many complex
computations without going out of the chip [21]. However, block RAMs (BRAM:s)
of FPGAs should be used efficiently especially for computations that need dynamic
management of the memory. From this point of view, our primary design goal is to
implement a dynamic memory manager in FPGA, which has fast and bounded
response with very low fragmentation. In order to achieve this goal, primarily the
combination of two techniques, namely, segregated free lists and bitmapped fits are
employed simultaneously. Free blocks grouped according to their sizes are stored in
free lists using the segregated free lists approach. On the other hand, availability
information about a block, i.e., whether the block is free or not, is represented as a
flag in a bitmap vector. In order to keep memory overhead low bitmap vector is also
implemented in the BRAM of FPGA. Different from other conventional memory
allocators, the allocated memory to a request is not necessarily a contiguous block in
our design. It can be dispersed on different non-contiguous blocks. However, such
blocks are connected with link vectors that include encoded information about the
allocated blocks. For allocation, a modified version of AND-OR tree in [4] is used.

Our dynamic memory manager (DMM) consists of the following three main parts:
1) allocator,

i1) deallocator and

13



ii1) address translator

The following sections present the conceptual design and its related components

which is realized with VHDL synthesis.

3.2 Memory Representation

The memory area which is to be used as heap is partitioned into blocks and sub-
blocks having strict boundaries (Figure-3.1). Heap area is first divided into main
blocks of size 32x2". n can be used as a parameter for arranging the block sizes in
the main block. In this scheme, one can allocate blocks ranging from 1 byte up to
32x2" bytes with a resolution of 2". Therefore, as will be detailed in Section-5.3,
more than one DMMs having different n values can be combined to increase the
range of sizes. These main blocks are partitioned logically further into sub-blocks as
shown in Figure-3.1. Allocations will be done as a combination of different sized
sub-blocks from the heap memory. For example for a request of 11x2" bytes

(8+2+1) x 2" or (4+4+1+1+1) x 2", sub-blocks can be provided.

14
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Figure 3.1: Heap Memory Partitioning
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The motivation behind the choice of the sub-block distribution in Figure-3.1 is to
provide an infrastructure, which is capable of allocating memory sizes ranging from

2™ to 32x2" with 2" increments.

3.3 Bitmap and Link Vector

As was mentioned earlier, whether a block is free or not is decided by checking this
state information in the bitmap vector. Each bitmap and its associated link vector
corresponds to only one main block of size 32x2". Since every sub-block is
represented as a flag, 15 bits are used for each main block. The vector also includes
maximum number of available contiguous sub-blocks with the same size. Figure-3.2
illustrates the fields of the bit vector. This example bit vector of “I1-01-1100-
00101000-01-010-0011" is interpreted as follows: there exists one free block with
size 4x2", two free blocks with size 2x2" (also contiguous) and six free blocks of

size 2" (however, 3 of them are contiguous).

23 0
(T T T T e e
8x2"  4x2" 2x2" 2" #of4x2"  #of2x2" #of2"
block blocks blocks blocks contiguous contiguous contiguous

blocks blocks blocks

~ N = Y

0: free Binary encoding
1: allocated

Figure 3.2: Bitmap Vector

Our second data structure is the link vector, which shows sub-block connections of
an allocation (Figure-3.3). Allocation details are encoded in link vector. It includes
all combinations that can be chosen using 8x2", 4x2", 2x2" and 2" sized blocks.
There are 3 different fields in the link vector, namely next block information,
number of blocks with same size and next block starting address. Next block

information is encoded in 2 bits for 8x2" and 4x2" blocks and in one bit for 2x2"
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blocks because the next block of 8x2" can be 4x2", 2x2", 2" sized blocks or none.

Thus, there are 4 possibilities for 8x2" block, 3 possibilities for 4x2" blocks and 2

possibilities for 2x2" blocks. There is no next block for 2" sized blocks.

Table 3-1: Next Block Encoding in Link Vector

Next 4x2" 2x2" on No next block
Current
8X2n ‘COI,, ‘CIO,, (‘1 17’ G‘OO”
4X21‘l - 6‘01” “10,, ‘GOO,,
2X2n _ _ “1,, “0,,

The number of blocks with same size shows the number of used blocks that are
contiguous in the same sub-block. For instance, there are eight » sized blocks. If four
of the n sized blocks are used, there should be “011” in the corresponding field in
the link vector. This indicates that three contiguous blocks following the starting

block, i.e. four in total are allocated

Next block starting address is a 3-bit field for all the blocks because next block can
be one of the eight 2" sized blocks and they are addressed using 3 bits only. If the
next block is a 4x2" block, one least significant bit is sufficient to determine which
one is the next block. Similarly when the next block is a 2x2" sized block, two least
significant bits are sufficient to determine the address of the block. Figure-3.3
illustrates an example memory request of size 13x2" where the bitmap vector is as
“0-11-1000-11000011-00-011-0100". The request is met by allocating the first
available blocks of 8x2", 2x2", and three 2". Then the link vector becomes “10-001-
XXXXXX-XXXXX-XXXXXX-1-00-010-X XXX X-XXXX-XXX-XXX-010-XXX-
XX-XX-X (where only the affected bits are shown). Link vector is then updated as

17



a result of the allocation request and accessed for deallocation and address

translation requests later.

16 14
000 [T [0 0 0]
00‘ ax ]
0 g - o 0 [ [0 0 0]
5 [0]o 0o 0 0] 0 s
7 5
[00]
[0 0]
10
] o e
! L 20 17 o
i [T 110 [0]

1

[[] => Next block information
[ ] => Number of blocks with same size

[ ] => Next block starting address

Figure 3.3: Link Vector

3.4 Free Lists and BRAM Structure

As was previously mentioned, we use the segregated free lists approach in order to
find the block with the requested size quickly. In this scheme, there are lists of
blocks organized according to the available size in corresponding blocks. Free lists
in this design are similar to that used in software based TLSF allocator in [12]. As
seen in Figure-3.4, there are 32 free list FIFOs that keeps BRAM addresses. The
content of an addressed BRAM is the bitmap and link vectors of the corresponding
main block. Free lists are arranged according to maximum available free block size

that can be allocated in return to a request. Their size range from 2" to 32x2".
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Figure 3.4: Free Lists and BRAM Structure
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Besides the free list structure, there are BRAMs that store bitmap and link vectors.
For a main block with size 32x2", one word is reserved in link BRAM and bitmap
BRAM each. The address of BRAM, which stores these vectors, is related to the

starting address of the main block in the heap memory.

3.5 Hashing

In order to be able to use BRAM structures mentioned above efficiently, a simple
hashing is applied to the actual address of the heap area in the main memory.
Starting address of the heap memory should be given as a generic input to the
DMM. Starting address of the heap partition is then regarded as an offset. The
difference between the starting and ending address of the heap partition defines
BRAM size for that partition. Since every word in the BRAM corresponds to a main
block with 32x2" (2*) size, link and bitmap BRAMs have word length that is equal
to heap memory size divided by the main block size. In other words, if the heap size
is 2 words, BRAMs will have 2X"*3 words. The process is summarized in Figure-

3.5.

Heap End Address | | Heap Start Address

Subtraction

k-1 0
| k bits |

| k=(n+5) bits | n+5 bits |
BRAM
Address Bits

Figure 3.5: Address Hashing

20



3.6 Description of Subcomponents

3.6.1 Free List Manager

There are 32 free lists each of which keeps BRAM addresses of the bitmap and link
vectors grouped according to corresponding free block sizes. These are FIFO

structures with a word size of 16, which is the minimum number that can be created.

Obviously, free sub-blocks in a main block will be updated following an allocation
or deallocation task. Therefore, free list FIFOs should be re-arranged according to

the new condition. This task is realized by free list manager (FLM) in our DMM.

Managing free lists in the allocation task is relatively easy. When an allocation
request arrives, the top element of the corresponding size FIFO is popped out. If it is
empty, one greater size FIFO is used concurrently. Following the completion of the
allocation process, BRAM address of the related block is pushed into the FIFO

corresponding to new free size in that block.

On the other hand, when deallocation takes place it is not known whether the
deallocated block’s BRAM address is in the free list FIFO or not. Hence the

corresponding size FIFO is emptied via a reset input.

The other task that free list manager performs is filling up the FIFOs. When there is
no allocation or deallocation, FLM deals with pushing BRAM addresses to FIFOs. It
starts with the first address, reads BRAM content and sends it to the related free list,
which is empty, by checking the free size in that block. If there is an element in the
corresponding FIFO, FLM does not push the new BRAM address. Instead, it goes to

the next address and this process continues in the same fashion.

3.6.2 Allocator

DMM basically performs the task of reserving memory of the requested amount.

The only parameter that should be provided to the allocator is the size of the
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requested memory. While performing this task, DMM benefits from hardware
structures such as AND-OR tree similar to the one in [4] and some combinational

blocks namely, the bit flipper, address conversion and size conversion blocks

(Figure-3.6).

S6 S5 S4 S3 S2 S1 SO

-‘0|0|0|o|1|1|1’—;‘—

bopn

Size to Level
Conversion

Address Conversion

|
L[]

MUX  |sesssa

vvvvv

MUX' sesssass

64-to-1
MUX

Figure 3.6: Modified AND-OR tree

Each node in Figure-3.6 is composed of and gates, or gates, multiplexer and D-type
flip-flop. Similar to the node structure in [8] is used in the modified AND-OR tree
nodes with a slight change. The node have been changed to eliminate combination
gate delays. A flip-flop is added to output of the nodes. Thus, it provides the
increase in the overall circuit operating frequency. In Figure-3.7, the inner structure
of node number 15 is given as an example. Furthermore, tree structure is modified in
this work to eliminate the shortcomings of Chang’s AND-OR tree in [4]. Chang’s
AND-OR tree can detect a free block of size j under the condition that the free part’s
starting address is a factor of j or k x j, where k£ > 0 and j is a power of 2. However in
the modified AND-OR tree, a requested blocks can be found anywhere in the given
bitmap.
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Modified AND-OR tree is used to determine the starting address of the sub-block
(Figure-3.6). For every sub-block group, there are gate trees. Thus, the design has a
total of three gate trees for different widths corresponding to 2, 4, and 8 bit width
bitmap vectors (not needed for 1 bit). For example, there are four 2x2" sub-block in
a main block, therefore the corresponding 4 bit part of the bitmap vector is provided
as input to the 4-bit width gate tree. The output will be the starting address of the
sub-block to be allocated. Since the memory is partitioned according to a predefined
rule, finding the actual starting address of the given memory block is
straightforward. Then this is given as an input parameter to bit flipper with the
allocated size. The corresponding bits are flipped to indicate that these blocks are
not free anymore. Finally, FLM places the block to a new free list FIFO according to

the maximum available size of blocks.

" FD

[OUuT_217
[OUT 22 ol - D Q ] OUT_15

AND2 g

=
S| o

[OUT_21 j c
[OUT 22

OR2

CLK

Figure 3.7: AND-OR structure

3.6.2.1 Allocation Process

The following tasks are performed within the context of the allocation process:
e Pick the non-empty FIFO with the requested size or more,

e Read the top element, which is the BRAM address of both bitmap and link

vector
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e Read the content of the BRAMs, send the bitmap vector to modified AND-
OR trees

e After obtaining the starting addresses of sub-blocks, update the link and

bitmap vectors
e  Write the vectors to BRAMSs

e Place the BRAM address according to free contiguous size to the

corresponding free list FIFO

3.6.3 Deallocator

When the application does not need the allocated memory anymore, it releases the
previously occupied part. Starting address of the memory block that will be freed is
sufficient to perform this task. The size and link information of other blocks can be
extracted from the link vector of the corresponding block. Then link and bitmap
vectors are updated. Finally, similar to FLM section, it places the block to a new free

list FIFO by checking the maximum available size of the block.

3.6.3.1 Deallocation Process

The following tasks are performed within the context of the deallocation process:
¢ Find the BRAM address from the provided starting address by hashing
e Read the BRAM content
¢ Find the link between blocks using the link vector
e Update the link and bitmap vectors
e Reset the corresponding size FIFO (size before the deallocation)

e Place the BRAM address according to new free size to corresponding free

list FIFO
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3.6.4 Address Translator

The obvious difference of our DMM from conventional memory allocators is the
fact that the requested memory is not provided as a whole contiguous chunk.
Instead, it may be provided as a combination of different blocks with varying sizes.
Therefore, an extra task in DMM, i.e. address translation is required. In return to an
allocation request, DMM sends smallest of the starting addresses of the allocated
blocks. An application should only know the starting address of the object, the rest,
1.e. link between blocks and total size, is in the DMM data structure. Thus, when an
application demands to access the heap memory, a simple offset calculation won’t
be sufficient due to the non-contiguous nature of the system. Instead actual address
should be calculated using the starting address and the offset in the DMM with a two
cycle delay. At first, block combination is extracted from the link vector and then

the actual address is returned using this and the offset value.
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CHAPTER 4

IMPLEMENTATION OF DYNAMIC MEMORY MANAGER

In this chapter, implementation details of DMM are presented. It is implemented in
VHDL. Xilinx ISE 14.6 [17] tool is used as the development environment.
Specifications of the units that are developed in this design are described in the

following sections.

4.1 Top Level

In Table-4.1, top level ports of the DMM are explained. Besides the ports, some

generic values are shown in Table-4.2.

Table 4-1: Port definitions of DMM

Port Name Direction | Explanation

Clk IN System clock

rst IN System reset

allocate IN When asserted with alloc_size(23:0),

allocator starts to search for available

memory place as requested size

alloc_size(15:0)

7

Size of requested memory

When asserted with dealloc_addr(31:0),

Z

deallocate

allocator frees the memory allocated

before using starting dealloc_addr(31:0)
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Table 4.1: Port definitions of DMM (Continued)

Port Name Direction | Explanation

dealloc_addr(31:0) IN Starting address of the memory to be
freed

find address IN To find the address that the application
wants to access

mem_addr_start(31:0) IN The starting address of the block that has
the desired data in it. It uses
addr offset(23:0) to reach the desired
address in the memory

addr_offset(23:0) IN The offset value that is used with
mem_addr_start(31:0) to access desired
data

alloc_done ouT Indicates  that allocation is done
successfully

mem_addr return(31:0) | OUT The starting address of allocated block. It
is ready when the alloc_done signal is
high

dealloc_done ouT Indicates that deallocation is done
successfully

mem_addr_actual(31:0) | OUT It is the actual address that the application
wants to access. It is found using
mem_addr_start(31:0) and
addr_offset(23:0)

error ouT Indicates that an error has occurred

error_reg(7:0) ouT Type of the error
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Table 4-2: Generic Values of Top Level

Generic Value Type Explanation

min_block size Integer n value in minimum
block of size 2"

heap start address(31:0) | std logic vector Starting address of the

managed heap

heap end address(31:0) std_logic_vector Ending address of the

managed heap

There are three main functionalities of the DMM. One of them is to reserve memory
as the requested size. In order to start the process, allocate signal and
alloc_size(15:0) should be applied. One of the free lists that is greater than or equal
to the desired size is chosen. Top element of chosen free list FIFO, i.e. BRAM
address, is popped out. Content of the bitmap and link BRAMSs are read and sent for
doing the necessary arrangements on the bitmap and link vectors. When the process
is done, the smallest of the starting addresses of the allocated sub-blocks is returned

as mem_addr _return(31:0).

Second task is tp free memory area, which is not necessary any more. For this
purpose, applying deallocate signal and dealloc_addr(31:0) is required. Obviously,
dealloc_addr(31:0) is the address that has been sent by DMM when the allocation
has been done. BRAM address that holds the corresponding bitmap and link vectors
is found using hashing. From this point onwards, starting block and how they are
linked are known. Thus, necessary bits on the vectors are flipped. Deallocation
process is finally done after resetting the corresponding free list FIFO. This will be

detailed more in the implementation of the free list manager.

The final task is about address translation in DMM. Since the provided area is non-
contiguous, the application cannot access data using only starting address of the
object. Linking of the blocks must be known and the offset calculation must be done

accordingly. So, when the desired address in heap (mem addr start(31:0) +
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addr offset(15:0)) and find address signals are provided to DMM, link vector
should be found first as in the deallocation process. Afterwards, the actual address,
i.e. mem_addr _actual(31:0), is calculated and returned. This is completely
independent from allocation and deallocation processes since it uses another other

port of the link vector BRAM. Top level state flow is shown in Figure-4.1.

Idle State |«——— Idle State
Find

Read FIFO

Read BRAMs

State State

Address
Calculation

State

Deallocation
State State

Alloc. Done
Done

Allocation

Arrange FIFO
lists

Fifo Ready > ——Mm——————

Figure 4.1: Top Level Flowchart

4.2 Free List Manager

4.2 Free List Manager (FLM) makes the necessary arrangements about free list
FIFOs. It simply reads from or writes to the free list FIFOs in response to requests
arriving from the top level. Besides these tasks, another important task is to reset the

FIFO. When deallocation occurs, corresponding BRAM address could be in the free

30



list FIFO. Following the deallocation, free size can be changed, so it should not stay

in the previous free list FIFO.

Table 4-3: Port Definitions of FLM

Port Name Direction | Explanation

clk IN System clock

rst IN System reset

wr_fifo IN bitmap bram_addr in  (15:0) s

written to the stated FIFO having the
number wr_fifo_number (4:0)
rd_fifo IN bitmap bram_addr out (15:0) is
read from the stated FIFO having the
number rd_fifo number (4:0)

find in_fifo IN After deallocation it empties (resets)
FIFO having the number
rd_fifo_number (4.0)

wr_fifo number(4:0) IN Shows which FIFO will be written
rd_fifo_number (4:0) IN States which FIFO will be read
bitmap bram_addr in(15:0) | IN Bitmap and link vector BRAM
address that will be written to FIFO
fifo_ready ouT States that the process is completed
fifo_full(31:0) OouT FIFO full signal, every bit
corresponds to one FIFO
fifo_empty(31:0) ouT FIFO empty signal, every bit

corresponds to one FIFO
bitmap bram_addr out(15:0) | OUT Bitmap and link vector BRAM
address that will be read from FIFO
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FLM continuously loads the FIFOs if they are empty. It reads the bitmap BRAM
consecutively and sends the address by checking the free contiguous size in it. If
corresponding FIFO is not empty, it passes the next BRAM address. The interface of
FLM is given in Table-4.3.

4.3 AND-OR Trees

AND-OR trees are used to determine free spaces of the heap memory using the
bitmap vector that corresponds to a section of the heap memory. It is the modified
version of the gate tree used in [4]. In [4], it provides a considerable speed-up,
however it is not guaranteed to allocate free blocks in all cases due to the limitation
of the used gate tree structure. This disadvantage is eliminated by using more

resources in the present work. The ports of the AND-OR tree is shown in Table-4.4.

Table 4-4: AND-OR tree ports

Port Name Direction | Explanation

clk IN System clock

rst IN System reset

bitmap_in(n:0) IN n+1 bits bitmap vector

level(n:0) IN Defined according to the requested
size

free_address(n-1:0) ouT The number of ‘1’s in this vector
gives the starting address of the
reserved area.

There are three ‘n’ values 1, 3 and 7 in the present design. These AND-OR gates are
used for 2, 4 and 8 bits bitmap vectors. Although gate tree can be used as a

combinational block, it is implemented as a clocked circuitry to prevent large gate
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delay. In order not to decrease the frequency of the overall design, the operation in

the 8 bit gate tree is made to last in 7 clock cycles.

4.4 Address Conversion

Address conversion block is a simple one that converts AND-OR gates’ free address
output to an actual address. It simply checks the number of “1’s in the input vector.
For example, a free address output of 8-bit AND-OR tree “1100110” is converted to

“100”, which is a one clock cycle operation.

Table 4-5: Ports of Address Conversion Block

Port Name Direction | Explanation

Clk IN System clock

rst IN System reset

free address 8bit(7:0) IN Free address output of 8 bits tree
free address 4bit(3:0) IN Free address output of 4 bits tree
address8(2:0) ouT Actual address of 2" sized blocks
address4(1:0) ouT Actual address of 2 x 2" sized blocks

4.5 Size to Level Conversion

Size to level conversion block converts binary size data to level information that can
be understood by the AND-OR tree. For example, for the requested size of “0010”
and “0011” from 2" blocks, level information will be “00000010” and “00000100”

respectively. Similar to address conversion, this is also a one clock cycle operation.
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Table 4-6: Ports of Size to Level Conversion Block

Port Name Direction | Explanation

Clk IN System clock

Rst IN System reset

size8(3:0) IN Requested size from 2" sized blocks

size4(2:0) IN Requested size from 2 x 2" sized
blocks

level 8bit(7:0) ouT Level of 8 bits gate tree

level 4bit(3:0) OuUT Level of 4 bits gate tree
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CHAPTER 5

EXPERIMENTAL SETUP AND EVALUATION

5.1 Setup

Following the implementation of DMM, experiments are conducted to reveal the
characteristics and performance of DMM. As the setup, a test computer and Xilinx
KC705 demo board [18] shown in Figure-5.1 have been used. We prepared a
simulator program in C# to communicate with the demo board via UART. Since the
board has a USB to UART bridge, it can also be connected to the computer’s USB
port via its mini USB port. The demo board has Kintex-7 FPGA (XC7K325T) [19]

which includes a large amount of logic resources.

HADC Header Uer SMA Clock User SMA

Linear BPI
Flash Memory (1268MB)

Coaig Mede/Ugger Lincar
Fiazh Addross Swich
User DIP Switch

\—!WFMF

EPGA Prog
Push Button

interface

W00/ 1000 MH:
Ethernal FHY

HEMI Gutput

GTH SMA Transeaivar
and Clack

Usar Rotary Switch LGD Gharacter
Docated under LCD) Display

PCI Express Kintex-7 XCTRIZET- DDR3 SODIMM
Connea!

2FFOOCOCES FFGA Muencey (1GE)

Figure 5.1: KC705 Demo Board
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5.2 Characteristics of DMM

5.2.1 Logic Resources and Operating Frequency

Table-5.1 shows FPGA resource usage and the maximum operating frequency. In
XC7K325T FPGA, LUTs and slices consumed for the DMM implementation
correspond to 2% and 4% respectively while the minimum clock period is equal to

6ns corresponding to 166 MHz operating frequency.

Table 5-1: Resource Usage

LUTs Slice Max. Frequency

6075 2295 175,26 MHz

5.2.2 Memory Overhead

As was mentioned in the previous chapter, a data structure is used to keep track of
the heap memory. For every main block there are two vectors that are bitmap and
link vectors. Bitmap vectors are of 24 bits in length while link vectors are 54 bits in
length for a main block of size 32x2". These are kept in BRAMs of the FGPA.
Therefore, heap size (HS) affects the overhead directly. Besides these, memory
resources of the FPGA are also used for keeping the free list FIFOs, each of which
occupies 16 BRAM addresses. However, we implemented these in the form of
distributed RAM storage by using the FPGA’s register sources instead of BRAM

blocks. Therefore, memory overhead (MO) became

MO = (24 +54) x bits

32x2™
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In synthesizing the FPGA 18Kbit memory blocks are employed as bitmap and link
vector BRAMs. Thus, memory overhead for our DMM design in FPGA is given in

the formula

HS 24 HS 54
o = | |

32227 *18K| T |32%27 18K )x 18 Kbits.

For example, for n=3 and 512KB heap size, link and bitmap BRAMs have 2048
(512K/256) words. Therefore, first part of the formula becomes 3 and the second
part becomes 6. The resulting memory overhead will then be 20.25 KB (9x18Kbits)

for managing a 512 KB area.

5.2.3 Allocation Time

Allocation time is the time spent from incoming allocation request to the completion
of the allocation process. As was previously mentioned in Chapter 3, popping out a
BRAM address from a free list FIFO, reading the content of that address, processing
the bit vectors and writing again to BRAM are the main tasks that are performed for

the allocation. But it lasts no more than 21 clock cycles (Figure-5.2).

5.2.4 Deallocation Time

Deallocation time is the time spent for reading the content of the BRAM address to
be freed, processing bit vectors and writing to BRAMs again. Deallocation time is

bounded and lasts no more than 10 clock cycles (Figure-5.3).
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5.2.5 Experiments with Synthetic Trace

The configuration file, which is formed as a result of code implementation is loaded
to KC705 demo board. It is connected via the USB port to the test computer.
Computer and the board communicate via UART thanks to USB to UART bridge on
the demo board. Then, a simple C# code is written to send commands and to gather
replies from the DMM. The program sends 3 bytes (command code and size) as the
allocation command, 5 bytes (command code and deallocation address) as the

deallocation command (Figure-5.4).

Allocation

Command | . 0 15.8) | Size (7:0)

(0xAA)

Deallocation

Command Address Address Address Address
(0xDD) (31:24) (23:16) (15:8) (7:0)

Figure 5.4: Serial Channel Commands

To record the effect of average block size to fragmentation, a set of synthetic
allocation commands are sent to the DMM, consecutively. The sum of the allocated
object sizes are recorded until the DMM cannot return an affirmative respond to an
allocation request. The ratio of the total allocated places to the whole heap size
shows to the unused memory area due to fragmentation. To create object sizes
randomly, Random() function of the C# is used, which creates random numbers with
a uniform distribution in a given interval. To provide various traces with different
average allocation sizes three Random() functions are used. First one creates a
uniformly distributed number between 0.0 and 1.0. Then, a second random function
generates allocation sizes between 1 (minimum size) to average size and a third
random function generates allocation sizes (average size + 1) to 32x2" (maximum
size). In this way, uniformly distributed traces having different average sizes are

handled.
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In the experiment, 512 KB of heap memory is managed using 2048 bitmap and link
vectors, i.e. n = 3 and average sizes are selected in the range from 8§ to 248 with
increments of 8. Every random trace are sent to DMM for one hundred times.
Memory usage at the point where DMM becomes irresponsive is recorded. Figure-
5.5 presents the average percentage of unused memory to whole heap size due to

fragmentation is shown.

Avg. Alloc. Size (Byte) vs. Wasted Memory (%)
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Figure 5.5: Percentage of wasted memory vs. average allocation sizes

It is worth emphasizing that this is an example used to demonstrate how
fragmentation changes under a uniformly distributed memory request pattern. The
values in Figure-5.5 may be different for other distributions. Similar graphs can be
handled using different memory request distributions and accordingly the parameter
n can be arranged to keep fragmentation low. For example, from the graph in
Figure-5.5, we can choose n=4 (min. block size = 16) for a uniformly distributed
trace with an average size of 176 bytes. For n=3 wasted memory percentage would
be around 12.2% at 176 bytes. However, for n=4 it is around 4.2%, which is the

fragmentation for n=3 case with 88 bytes.
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5.3 Evaluation of the Design

5.3.1 Limitations

The proposed DMM in this work can allocate memory of size at most 32x2". This
value is flexible and depends on 7, however it cannot exceed 32x2". The partitioning
of the heap memory is strict. Therefore, heap can be enlarged either by enlarging the

bitmap and link vector BRAMs or by increasing the number 7.

5.3.2 Scalability

Since the heap memory partitioning is not flexible, DMM can be scaled only by
sacrificing some FPGA resources or fragmentation performance. One option to deal
with a bigger heap memory is simply by increasing n. However, increasing n can
cause more wasted memory. On the other hand, it may also cause a decrease in

memory overhead percentage.

Another issue in scalability is the increase in the range of allocated sizes. For
example, with n=3, allocation of 1 byte to 256 byte is possible. If another DMM is
used with n=8, two of them can be linked in a pipelined manner. Hence, allocation
size range can be extended to 32x28, i.e., 8KB. In return, LUT usage in FPGA will
be doubled and execution time will increase. Since two DMMs can work
concurrently, execution time will not be doubled, but increase a few clock cycles
only. On the other hand, memory overhead will drop as a percentage of the managed
heap size. Lastly, the address translation mechanism is also affected. It would need

an extra clock cycle for the translation of addresses to be accessed.

5.3.3 Memory Access Delay

Due to the non-contiguous reservation of the heap memory, our design includes an

address translator, which computes the desired address. When the starting address
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and the offset are provided to access the desired data, firstly link vector BRAM is
read using the starting address info. The result is the corresponding link vector,
which keeps the information about block combinations. Then, the offset is added

and the actual address is handled in the second cycle.

5.3.4 Comparison with Other Works

An alternative way of dynamic memory allocation in FPGA is proposed in [14].
Dynamic memory allocation controller (DMAC) core has been developed to manage
the output buffers of the communication nodes in a high performance FPGA cluster.
Free and occupied blocks are placed on a binary tree and this structure is kept in
BRAMs of the FPGA. Adding and deleting nodes from the tree are done via DMAC
core. When the tree gets larger, search time for add and delete operations increases
inevitably. Compared to our DMM, execution time is much longer in DMAC. But it

can allocate a broader range of object sizes.

Another work in [13] allocates a free block in 6 clock cycles. It uses approximately
12,600 LUTs for the allocator with a bit vector length of 512 bytes. Each bit of the
vector represents one block and it can allocate a maximum of 64 blocks for an
allocation request. It uses more FPGA resources than our DMM. In order to enlarge
the managed heap area, two options arise: bit vector length and the block size. If the
bit vector length increases to 1024 bytes, LUT usage will also be doubled. Instead of
increasing the bit vector length, block size can be arranged to increase the managed
heap memory size. However, it causes more fragmentation due to reduced

granularity.

In DMMX [10], a scalable dynamic memory manager is proposed primarily for
CPUs. It has a worst case allocation time of 96 clock cycles and uses a cache like
architecture to keep bit vectors. It is claimed that bit vector of size 500 bits is
sufficient to handle a cache hit ratio of 97%. Maximum allocation size in one request

is bounded with the bit vector length times the block size. The only disadvantage of

43



DMMX when compared to DMM is the worst case allocation time for the requested

object.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

Dynamic memory usage for high level synthesis tools still remains a hard problem
to be implement well [15]. This thesis proposes a memory manager for dynamic
memory allocations as a hardware IP core. By merging the bitmapped fits and the
segregated free lists approach, the DMM tracks free and occupied parts of the
managed memory. In achieving this, it aims to minimize the wasted space in the
heap memory. Unlike conventional memory allocators, it satisfies memory requests
by providing a combination of non-contiguous blocks to keep fragmentation at low

levels.

The proposed DMM can be integrated to applications quite easily. Time spent for
allocation and deallocation processes are 21 clock cycles and 10 clock cycles,
respectively. Due to the non-contiguous nature of the reserved spaces, it adds a delay
of 2 clock cycles when an application accesses to memory which is previously

reserved by the DMM.

Bounded response time and low fragmentation are two major advantages of the
proposed DMM while slightly increased access delay is the drawback. In terms of
scalability, two cases should be regarded. One is increasing the heap size without
changing the object size range by increasing the bitmap and link vector BRAM
sizes. Performance metrics will not be influenced in this situation but memory
overhead will increase. The second case is enlarging the object size range by
increasing the n parameter. In this case memory overhead will drop, but wasted

memory figures may be affected adversely..
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It is believed that working towards eliminating the limitations mentioned in the
previous chapter and decreasing memory access delay are two possible future
directions to follow in this line of research. In order to increase object size range
without affecting fragmentation, more than one DMM block can be used in a
pipelined manner with a slight modification in the link vector. A next address area
should be added to the first stage DMM to link the second stage DMM. In order to
handle different object size ranges, n parameter should be different. For example,
with n=3, allocation of 1 byte to 256 byte is possible. If another DMM is used with
n=38, two of them can be linked. Hence, allocation size range can be extended up to
32x2% i.e., 8KB. As a result, LUT usage in FPGA will be doubled and execution

time will increase a few clock cycles only. However, memory overhead will drop.

Another future work is to minimize the effects of memory access delay. For this, one
can benefit from the memory access distribution of the applications. Generally,
applications tend to access allocated objects sequentially. So, the next access of the
application can be guessed and this avoids the two clock cycles delay for every
access. Cache may also be used to keep the most recently accessed objects and their

possible next addresses.
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