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ABSTRACT

AERODYNAMIC AND THREE-DEGREE-OF-FREEDOM FLIGHT
MECHANICS ANALYSIS OF A SLENDER BODY OF RECTANGULAR CROSS
SECTION

Selimhocaoglu, Bahri Tugcan
M. Sc., Department of Aerospace Engineering
Supervisor : Prof. Dr. Yusuf Ozyériik

Co-Supervisor : Prof. Dr. Nafiz Alemdaroglu

June 2014, 108 pages

A slender body with rectangular cross section is considered as an aircraft
countermeasure for self-protection purposes as a decoy. An initial design is
necessary, for the detailed aerodynamic design of the decoy. For quick initial design
purposes, three-degree-of-freedom (longitudinal, vertical, pitching) dynamic analyses
of the decoy are carried out. The aerodynamic coefficients for the decoy are obtained
first at different Mach numbers, angles of attack, and tail sizes with two different
methodologies which are DatCOM and steady CFD analyses utilizing RANS. The
comparison of these two methodologies showed that CFD results are more reliable
than the DatCOM results. The aerodynamic coefficients are then input to a code
numerically implementing the 3DOF motion of the decoy at different Mach numbers,

center of gravity values and tail sizes. The aerodynamic coefficients necessary for



this method are obtained assuming quasi-steady conditions exist, that is the angle of
attack corresponding to the time of 3DOF simulation is frozen and aerodynamic
coefficients are computed accordingly. For the assessment of the initial design
methodology, grid independence, selection of time step for both the numerical
implementation and the transient CFD analyses are considered. Also, the comparison
of transient 3DOF CFD and 6DOF CFD analyses are carried out as an evaluation of
3DOF approach. The matrix of results obtained from the 3DOF numerical
implementation are compared with the transient 6DOF CFD analyses. According to
the results, provided the decoy has static stability, the 3DOF initial design
methodology is able to capture the trend of the parameter variations, the trajectory of
the decoy and the pitching angle oscillations in a conservative manner. Hence, this

approach is deemed sufficient for initial design purposes of the decoy.

Keywords: Decoy, Slender Body, Rectangular Cross Section, Initial Design, 3DOF,
Flight Mechanics, CFD, DatCOM, Fluent.
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DIKDORTGEN KESITLI INCE UZUN BiR GOVDENIN AERODINAMIK VE 3
SERBESTLIK DERECELI UCUS MEKANIGI ANALIZI

Selimhocaoglu, Bahri Tugcan
Yiiksek Lisans, Havacilik ve Uzay Miihendisligi Boltimii
Tez Yoneticisi : Prof. Dr. Yusuf Ozyériik

Ortak Tez Yoneticisi  : Prof. Dr. Nafiz Alemdaroglu

Haziran 2014, 108 sayfa

Dikdortgen kesit alanli bir aerodinamik govde ucaklarda kendini koruma amaci ile
kullanilacaktir. Aerodinamik gdvdenin tasarimini yapabilmek i¢in, bir ilk tasarima
ihtiyag duyulmaktadir. ilk tasarima hizli bir sekilde erisebilmek igin 3 serbestlik
derecesinde (yatay, dikey ve yunuslama yonlerinde) dinamik analizler
gerceklestirilmesine karar verilmistir. Oncelikle gdvdenin aerodinamik katsayilarin
bulabilmek i¢in farkli hizlarda, hiicum agilarinda ve kuyruk alani degerlerinde hem
DatCom kullanilmis hem de zamandan bagimsiz Navier Stokes denklemlerini ¢6zen
HAD (Hesaplamali Akiskanlar Dinamigi) analizleri kosturulmustur. Yapilan
karsilagtirmalara gére HAD sonuglarimin s6z edilen aerodinamik govde i¢in daha
giivenilir oldugu degerlendirilmistir. Elde edilen aerodinamik katsayilar, dinamik
analizleri gergeklestiren bir koda girdi olarak saglanmistir. Kod, aerodinamik
gbvdenin dinamik hareketini farklt Mach sayilarinda, agirlik merkezi degerlerinde ve

kuyruk boyutlarinda 3 serbestlik derecesinde zamandan bagimsiz olarak elde edilen
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aerodinamik katsayilarla hesaplama yetenegine sahiptir. Zaman adimi, ¢6ziim ag1 ve
bazi aerodinamik tiirevlerin (yunuslama sonitimlemesi) etkileri HAD analizleri ve kod
tizerinde incelenmistir. Koddan elde edilen hiza, agirlik merkezine ve kuyruk
boyutuna bagli sonu¢ matrisi, zamana bagli oncelikle li¢, daha sonrasinda alti
serbestlik derecesine sahip HAD analiz matrisi ile karsilagtirtlmistir. Elde edilen
sonuclara gore, aerodinamik govde boylamasina duragan kararliliga sahip oldugu
stirece 3 serbestlik dereceli kod, incelenen analiz matrisindeki parametrelerin
degisim egilimlerini, aerodinamik gdvdenin yoriingesini ve yunuslama agisindaki
salinimlar1 korunumlu bir sekilde yakalayabilmistir. Bu sebeple yontem, aerodinamik

gbdvdenin On tasarimini yapabilmek icin yeterli bulunmustur.

Anahtar kelimeler: Aerodinamik Govde, Dikdortgen Kesit Alani, On Tasarim, 3
serbestlik dereceli, Ugus Mekanigi, DatCOM, HAD (Hesaplamali Akiskanlar

Dinamigi), Fluent.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

A decoy is defined as “something designed to deceive an enemy or divert its
attention”. [1] For military aviation purposes, decoys are generally utilized as
countermeasures such as flares (Figure 1) for protection against infrared-homing
missiles or countermeasures that deploys electronic warfare methods to deceive
radar-guided missiles. These decoys produce a more favorable target for the missile
to track; higher infrared emission etc., thus protecting the aircraft. (Figure 2) As they
are expendable, the decoys generally do not have control infrastructures, but some
have stabilizing surfaces due to initial high angle of attack values they are exposed

to.

Figure 1. ChemRing Flare CM 218 K7 Type 1 CounterMeasure [2]



Missile
Field of View

Figure 2. Utilization of Flare Countermeasure [3]

Whenever a decoy is released in flight, there are basically two requirements for the
decoy to satisfy: safe separation from the aircraft and effectiveness, which is the

ability to deceive the threat. These two requirements should be investigated in detail.

Safe separation is always a requirement for any store (a bomb, rocket, fuel tank,
electronic warfare pod, decoy etc.) which is released from an aircraft during flight.
Otherwise, flight safety might be at risk due to a damaged crucial aerodynamic
surface or an aircraft system. Essentially, the decoy should not collide with the
aircraft. As an example, Figure 3 shows the seperation of a 600 gallon fuel tank on
an F-111A aircraft, which was not able to satisfy the safe separation requirement
resulting in the loss of the right horizontal tail. [4]
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Figure 3. Unsafe Seperation of a 600 Gallon Fuel Tank from F-111A Aircraft [4]
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The ability of the decoy to deceive the threat depends not only on the effectiveness of
the methods it employs, but also the flight path of the aircraft as well as that of the
decoy. Today, some seekers have algorithms which may be able to notice the
differences between the horizontal speed of the aircraft and the decoy, with the help
of Doppler effect like a Police radar. [5] For instance, if a decoy’s flight path is
perpendicular to the flight path of an aircraft, the seeker may be able to understand
the impossibility of the aircraft to suddenly decrease its speed in a very short amount
of time thus making the decoy ineffective. In order to remedy this situation, the
decoy should be able to mimic the flight path of the aircraft just long enough to
deceive the threat. In addition, if the decoy is an electronic countermeasure, due to
the placement of antennas and such, the orientation of the decoy is going to be

crucial.

From the aerodynamics point of view of such decoys, the design process can be
problematic. In order to satisfy the two basic requirements mentioned above, the
aerodynamic loads, moments acting on the decoy and the aerodynamic derivatives of
the decoy both in the carriage and after release phase should be known in all
directions. This is due to the fact that the decoy is actually a six-degree-of-freedom
(6DOF) system. Besides the decoy itself, the attitude history of the aircraft should be
known. This includes the maneuvering (level turn, pushdown etc.), hence the
position, orientation and the flowfield, along with the flight conditions (altitude, flow
regime) and the ejector forces and moments. Therefore, a huge matrix of separation
conditions awaits the aerodynamic designer of the decoy.

In order to design such a decoy, the designer needs such a full set of aerodynamic
data for the decoy and the aircraft. This set includes the forces and moments acting
on the decoy at different Mach numbers, angles of attack, angles of sideslip as well
as the aerodynamic derivatives like the pitch, yaw, roll damping and stiffness at
different angular rates and accelerations. The designer might obtain this set by means
of computational fluid dynamics analyses (CFD), wind tunnel testing or flight
testing. However, before spending a big effort on obtaining the set of aerodynamic
data needed, a problem emerges. The design process is iterative. Hence, there should
be an initial design of the decoy to begin the iteration process, as wind tunnel and

flight testing would be time-consuming and costly for an initial design. Although,



CFD analyses are time-consuming and costly as well, compared to testing, they are

still cheaper for an initial design approach.

1.2 OBJECTIVE OF THE THESIS

As a consequence of the above discussions, it may be concluded that the designer
needs a fast initial design tool to begin this iterative design process. The goal is to
develop and validate a fast and cheap initial aerodynamic design methodology for a
decoy. The methodology basically consists of the numerical integration of 3-degree-
of-freedom (3DOF) flight equations in a quasi-steady manner. These equations
model the aerodynamics of the decoy with the help of tabulated aerodynamic data.
The methodology is validated by comparing the results obtained with transient 6-
degree-of-freedom CFD results, in terms of trajectory, orientation and time-history of
the decoy. The flowfield of CFD results are investigated as well. During the
validation phase, the code results are not expected to be identical to the 6DOF

transient CFD results, they are just expected to capture the physics of the problem.

1.3 SCOPE AND OUTLINE OF THE THESIS

This study is divided into six chapters. Chapter 1 gives some background information
about decoys as well as the design methodology of a decoy. In Chapter 2, the
theoretical background of flight mechanics as well as the workflow and the
development of the numerical implementation is explained. In Chapter 3, the
aerodynamic coefficients obtained from different calculation methods are compared.
In Chapter 4, an assessment of the design methodology is presented, which involves
numerical work on grid independence and time step selection for both the numerical
implementation and the transient CFD analyses. Also, it includes the addition of an
aerodynamic derivative to the numerical implementation as well as comparisons of
transient 3DOF and 6DOF CFD analyses with these additional terms as an evaluation
of 3DOF assumption. In Chapter 5, the results obtained from transient CFD analyses

and the 3DOF methodology are compared and discussed thoroughly to validate the



approach in this study; while Chapter 6 consists of conclusion remarks and possible

future work.






CHAPTER 2

THEORY AND NUMERICAL IMPLEMENTATION

In this chapter, the flight mechanics theory of an object in 6DOF flight, the reduction
of 6DOF equations to 3DOF equations and the numerical implementation of 3DOF
equations are discussed. The axes systems are shown on a generic geometry with

circular cross-section.

2.1 COORDINATE SYSTEMS
2.1.1 Body-Fixed Coordinate System

Figure 4. The Body Coordinate System



Body coordinate system translates and rotates with the aircraft and is denoted by the
subscript “B”. In this coordinate system, xz-axis points towards the nose and yz-axis
points towards the right side of the aircraft while the zz-axis forms a right hand rule
as illustrated in Figure 4. The origin of the coordinate system is the center of gravity
(c.g.) of the aircraft. xg-axis is the roll, yg-axis is the pitch and zz-axis is the yaw

axis of the aircraft. [6]

2.1.2 Vehicle Carried Frame of Reference

Yv

C.G.
@ . \
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Figure 5. The Vehicle Carried Frame of Reference

This coordinate system is an “inertial coordinate system” which basically means that
a linear accelerometer or a rate gyro would detect zero linear or angular acceleration
if they were moving with the inertial coordinate system. Newton’s laws of motion is

only valid if they are written in an inertial coordinate system. [6]

Different from the body fixed coordinate system, the vehicle carried coordinate
system does not rotate with the aircraft; though it translates with the aircraft. It is
denoted by the subscript “V”. The origin of the coordinate system is the center of
gravity of the aircraft. The x-axis points towards North (N), y,,-axis points towards

East (E) and z,-axis is along the gravity direction as can be seen from Figure 5. [7]

For ease, the direction of flight is always towards North in this study.



2.1.3 Wind Frame of Reference

Figure 6. The Wind Frame of Reference

This coordinate system is derived from the local air around the aircraft. It is denoted
by the subscript “w”. The origin of the coordinate system is the center of gravity of
the aircraft. The x,, -axis points towards the local vehicle relative atmospheric
movement, z,,-axis is perpendicular to x,,-axis and in the symmetry plane of the

aircraft, while the y,,-axis forms a right-handed rule as can be seen from Figure 6. [6]



2.2 COORDINATE SYSTEM TRANSFORMATIONS

Any coordinate system can be transformed into one another, with the help of a

sequence of three rotations with three different angles.

2.2.1 Vehicle Carried to Body Fixed Coordinate System Transformation

During the transformation of the vehicle carried coordinate system to the body fixed
coordinate system, the angles are defined as the “Euler angles”, if the transformation
is initiated about the z,-axis and continued with the new y; -axis and x, -axis
respectively. The angle about the z,-axis transformation is defined as the “yaw”, y;-
axis transformation is the “pitch” and x,-axis transformation is the “roll” angle.

Figure 7 shows the Euler angles and the defined transformations. [6]

X, X2
Xy X
‘ /yv y
L Y1 @ Vi, Y
0
Z)
Zy, 74 Zy,Z,
XZ , X3 = XB

Y, ¥

Y3 =¥

Figure 7. The Three Transformations and Euler Angles
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For instance, for the transformation around the z,-axis (first transformation), the

following equations can be written:

Z1 = Zy (1)
y1 = yv cos(P)—xy sin(yh) 2)
x1 = yy sin(y) + xy cos() (3)

which basically means that in order to make a transformation around the z-axis, the

following transformation matrix can be written as:

R=|-siny cosyp 0

0 0 1

(4)

cosyp siny O]

If the transformation matrices are written for all of directions and multiplied

together:
cos@ 0 —sin@)[cosy siny O0][*v
[ l [ coscp sin ¢] [ 0 1 0 ] [—sinl,b cos 0] [yvl (5)
—sin¢g cos¢pllsind 0 cos@ 0 0 111lzy
Then the transformation can be denoted as:

XB
[yB] = LVB

Zp

Xy
YV] (6)

Zy

For the inverse transformation, which is from the vehicle carried coordinate system

to the body coordinate system, the following statement can be used:

[yV] = LVB_l [yB] (7)
Zy Zg
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2.2.2 Body-Fixed Coordinate System to Wind Axes Transformation

Wind Axis coordinate system has one of the axes defined in the plane of symmetry
of the aircraft. There is no rotation around the x,,-axis of the wind axis coordinate
system. The drag force is along the x,,-axis with negative direction, the lift force is
along the z,,-axis with negative direction, while the aerodynamic pitching moment is
along the y-axis with a positive direction. Hence, there are only two angles defined
for the wind axis coordinate system which are the angle of attack («) and the angle of
sideslip (8). Due to the positive sign convention of the angle of sideslip (Figure 6),
the transformation is done with the negative sign of angle of sideslip. Applying the
same method discussed in the section above, the transformation matrix is found out

to be:

Xy cosacosf —cosasinf —sinal[Xg
Yw| = [ —sinf cos 0 [yB] (8)
Zw sinacosff —sinasinf cosa 112

2.2.3 Derivative of a Vector using the Theorem of Coriolis
When the derivative of a vector is written as components of a rotating frame (body-
fixed) with respect to a non-rotating frame (vehicle-carried, inertial), the theorem of

coriolis should be applied. For the derivative of vector V defined in an inertial

coordinate system with respect to time, the theorem is written as:

av
dt

vl . .
I=E +(UBXVB (9)

where wy is the angular velocity of the rotating coordinate system (body-fixed) with

respect to the non-rotating frame. (vehicle-carried)

In order to find the relation of the body angular rates (wz ) with Euler angular rates
(wy), a transformation is required. When the transformation is done from body-fixed
coordinate system to the vehicle carried coordinate system according to the same
order defined above, of the three transformations the last one is not necessary. This is
due to the fact that at the last transformation, the x-axis, at which the rates are being

12



measured in two coordinate systems, are aligned; so that the values of the angular
rates are the same. When the transformation is done according to the necessary two

axes, the result is as follows:

D 1 0 —sin@ 1 0 —sing 1[¢
g = [q] = [O cos¢p  sin¢cos 9] Wy = [0 cos¢  sin¢cos 9] 0 (10)
T 0 —sin¢g cos¢pcosB 0 —sing cos¢pcosb P
The inverse transformation, then, is found out to be:
¢ 1 singtan@ cos¢tan)p
ol = [O cos ¢ —sing ] lql (11)
P 0 singpsecd cospsecOllr

2.3 ABODY IN6DOF MOTION

Figure 8. Forces and Moments acting on the Decoy with respect to body axes

When a body is in motion, Newton’s 2" Law of Motion should be satisfied, which is

written for forces and moments separately:

—m<— + wp X V_B’> (12)
B
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_dH

T +@p X Hp (13)

B

Zé_dﬁ
T dt

In this representation, the linear accelerations are given in a straightforward manner;

while the angular accelerations are given as the time derivative of the angular
momentum H. Also, the derivatives written according to the inertial coordinate

systems are expanded as well. [6]

For the forces acting on the body, as can be seen from Figure 8, given that the

components of the vectors are written in the body-fixed coordinate system:

. [X
Z
0
ZF=FB+LBV 0] (15)
mg
u
VB = [U (16)
w
dv H an
| =v»
dt 5 W
The 2™ Law of Motion can be written as:
R L. 0 U p u
ZF= Y|+ Ly 0]=m{1’7 +lq xlvl} (18)
Z myg w T w
Expanding the equation and rearranging:
X
uzrv—qw+a—gsin9 (19)

Y
1}=pw—ru+g+gsin¢>cose (20)
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Z
W:qu—pv+g+gcosq§cos€ (21)

For the moments acting on the body, as can be seen from Figure 8, given that the

components of the vectors are written in the body-fixed coordinate system:

Xm
Z ¢ =, (22)
Zm
Hg = [I3] @5 (23)
where Ig is the inertia matrix denoted as:
Ixx _Ixy _Ixz
Ip ==Ly Iy -l (24)
_Ixz _Iyz Izz
where:
L, = f(y2 +z%)dm (25)
L, = f(x2 +z%) dm (26)
I, = f(x2 + y2) dm (27)
ley = [ Go) dm (28)
Iy, = J(yz) dm (29)
L, = f (xz) dm (30)
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It is clear that the inertia matrix is going to change with respect to an inertial
coordinate system due to the fact that the mass distribution is going to change when
the body rotates. Hence, the inertia matrix should be based on a coordinate system
which is rotating and translating with the aircraft which is the body-fixed coordinate
system. The reason behind the presentation of Newton’s 2" Law of Motion with the
body fixed coordinate system is the difficulty of calculating the mass moment of
inertia matrix with an inertial coordinate system. With this information on mind,

expanding the 2" Law of Motion for the moments:

di| dlz__.  dwp
— === I;—= 31
de|, dt @p+ s gy (31)

As the inertia of the decoy does not change with time, dIg/dt term is zero, resulting

in:
Xm]  dH s [P P
ZG= m| = +w_B)XHB:IB%+qXIB Q] (32)
Zm t t T T
where:
@: Z (33)
dt ;

24 THE 3DOF ASSUMPTION

As the decoy is released during flight, the dynamics of the problem should be
resolved in six-degrees-of-freedom due to the fact that when an aircraft is in flight, it
might be in a level flight or in a climbing or a maneuvering flight condition. This
means that it might have any arbitrary orientations and all of the translational and
rotational components of accelerations and velocities may be involved. A three-
degrees-of-freedom dynamics model of a decoy is not going to be able to cover all of
the components, but as explained before there is a need for a fast, cheap initial

estimation tool. A 3DOF dynamics model requires less effort as there is only need

16



for the aerodynamic data of a three-dimensional model of a decoy in two-

dimensions.

There are applications of making a 3DOF assumption to reduce the calculation time
required to find the aerodynamic coefficients as well as the time required for the
solution of the dynamics of the model. For instance, Brochu et. al [9] developed and
compared a 3DOF missile model,which eliminates the moments on the missile, with
a high fidelity 6DOF model. The missile was a generic DND AIM-7 air-to-air
missile which had autopilot control. They found out that the calculation time is about
1.7 times faster than the 6DOF model. The error for maximum range envelope
calculations, which was the main purpose of the study, was 12% for 15km of
altitude.

During most of the flight, the aircraft is going to be in a trimmed level flight
condition which means that sum of all of the forces and moments acting on the
aircraft is zero. The heading, altitude and attitude of the aircraft are constant. If the
decoy were to be released during such a flight condition, as long as there were no
lateral perturbations in the flow around the decoy and the decoy is symmetrical in the
lateral direction, ideally the decoy should have no motion on the lateral directions.
Hence, the decoy should move strictly in the longitudinal direction eliminating the
two rotational and one translational degree-of-freedoms, resulting in a three-degrees-
of-freedom motion. Of course, this is a strictly ideal case. The flowfield around the
decoy most definitely is going to have lateral perturbations and the aircraft is going
to be oscillating around both the longitudinal and rotational directions during flight
affecting the release of the decoy. The strict movement of the decoy in longitudinal

direction is only an assumption, a starting point.

The three-degree-of-freedom assumption basically restricts the motion of the body
into two dimensions with three dimensional forces and pitching moment. In this
study, the body is limited to travel in the longitudinal directions implying that there
are no lateral movement or rotation both initially and during the motion. In other
words, the body is limited to travel in forward-backward (x) and upward-downward
(z) direction and rotate around pitch axis in vehicle carried coordinate system. For
ease, the direction of flight is always towards North in this thesis.

17



With these limitations, it is understood that:

(34)

Applying these conditions to the translational and rotational equations of motion and
given that the mass and the inertia of the decoy is constant throughout the whole
motion, three equations are obtained:

X
= — —_— 1 35
U qw+m gsinf (35)
v = +Z+ 0 (36)
W = qu+—+ g cos
) Y,
4=1- (37)
vy

Examining these equations, it is seen that there is only one mass moment of inertia
value required, which is the pitch moment of inertia. Given that there is no lateral
motion, pitch moment of inertia is only dependent on the center of gravity location of
the decoy, hence actually there is no need to write the equations of motion in the
body axes. To be explained in Section 4.5.1, the flow solver utilizes an inertial frame
of reference while calculating the motion of the decoy. The output is also given in

this particular frame as well. In order to avoid another transformation from body axes

18



to an inertial frame of reference, the equations of motion written in the vehicle
carried coordinate system are used in this study. In order to transform these equations
to vehicle carried coordinate system, firstly the terms emerging from the coriolis

theorem should be eliminated. This is done according to:

av|l dv

—| == +@5 xVp (38)
dt| — dt|,
dv X1 qv B 2 O s B
N ] o[ ] e
1 7 B w r w

Eliminating the lateral terms due to the 3DOF assumption:

¥ [l [aw
[y =|v|[+] O ] (40)
A lwl [—qu

It should also be noted that the gravity force were transformed to body axes
coordinate system as well. Untransforming the gravity force into vehicle carried
coordinate system and using the relation above (40), the translational equations of

motion transform into:

== (41)

i=—=—g (42)

As the pitch axis on the vehicle carried coordinate system and the y-axis on the body

axis coordinate system is coincident, the following relation can be written:

Y, Y.,
1 Iyy Iyy (43)



The axes, forces and moments on the decoy can be seen from Figure 9.

Ly

Figure 9. Forces and Moments acting on the Decoy with respect to inertial axes in 3DOF

25 AERODYNAMIC FORCES AND MOMENTS ACTING ON
THE BODY

The decoy studied in this thesis has a tail geometry with no control infrastructure and

no propulsion, hence the only forces and moment acting on the decoy are the
aerodynamic forces and moments, which are drag, lift and the pitching moment
created due to the asymmetrical pressure distribution on the longitudinal axis. They

are defined in the wind axes coordinate system and given as:

D= g Py M2 Syef Cp (44)
)4 2
L= E P, Mg, Sref C, (45)
)4 2
M =E Poo Moo Sref lref CM (46)

Due to the three-degree-of-freedom assumption, there is no sideslip angle on the
wind axis, which implies that the y-axis on the wind frame, body frame and vehicle

carried coordinate system are coincident. Hence there is no need for the pitching
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moment on the wind axis to be transformed. In order to transform the remaining

aerodynamic forces from wind axes to vehicle carried coordinate system:

X; D C059 0 —sme cosa 0 —sma D

FV = 0 = LBV LWB 0 = l [ 0 (47)
Z; L sm9 0 cos O llsina O cosa 1lLL

X; =D cos(a+0)—Lsin(a+6) (48)

Z; =Dsin(a+0) + L cos(a + 0) (49)

Ym‘l =Y.=M (50)

Note that the aerodynamic force and moment equations, a coefficient term is present.
The coefficient term is dependent on Reynolds Number, which is a dimensionless
number representing the flow characteristics, the orientation of the body according to
the flow (e, ), Mach number of the flow, which represents the compressibility of
the flow, and the rates the body is rotating. Besides, the moment coefficient also
depends on the center of gravity location of the decoy. [8] For the drag coefficient,

with the help of Taylor Series expansion, the dependencies can be written such as:

Cp(a, B, My, Re,p,q,7) = Cpo(Re,My,) + Cp g + CppB +
(51)
CD,aZQfZ + CD,ﬁZﬁZ + CD,(Xﬂ a ﬁ + CD,pp + CD,qq + CD,rT + b

According to reference [8], drag, lift and moment coefficient for a missile can be

written as:
Cp(a, B, Mo, Re,p,q,7) = Cpo(Re,Ms,) + Cp g2 (52)
CL(a) ﬁl Moo: Rel p' q; r) = CLO(ReI MOO) + CL,C{a (53)

Cu(a,B, My, Re,p,q,7,cg) = Cyo(Re, M, cg) + Cy g + Cyqq  (54)
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Note that, while the drag and lift coefficients are dependent on only angle of attack,
the moment coefficient is also dependent on the pitching rate, which equals to § with
the three-degree-of-freedom motion assumption. The term Cy, 4 also known as the
“pitch damping” term, is found out to be crucial for estimating the pitch angle, which

IS going to be explained in Section 4.3.

The methodology to find the variation of drag, lift and moment coefficient with angle
of attack, Reynolds Number and pitching rate for only the moment coefficient are

going to be explained in Chapter 3 and Section 4.3.1.

26 NUMERICAL IMPLEMENTATION

The numerical implementation of the problem was done by using four modules:
atmospheric conditions module, geometrical properties module, aerodynamic data
table lookup module and the time integration module. The flowchart of the numerical
implementation can be seen from Figure 10. The 3DOF Numerical Implementation is
called 3FL-DYN throughout the thesis. (3DOF Flight Dynamics)

'l .......................... Geometrlc
Inpu.t Fi ? Calculations Module
{ s
Atmospheric Aerodynamic Data

A

Lookup Module

Calculations Module
E

Time Integration |

d

Output File

Initial Calculation  Calculation Cycle

Figure 10. The flowchart of 3FL-DYN
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Atmospheric conditions module calculates the ISA conditions at which altitude the
decoy is after its release and feeds this information to the aerodynamic data table
lookup and time-integration module during both the initial calculations and the

calculation cycle.

Geometric properties module calculates the inertia and keeps the mass and the tail
size information of the decoy. This module is not included in the calculation cycle, it
is used only in the initial calculations phase due to the fact that the mass and the

inertia of the decoy does not change as time progresses.

Aerodynamic data table lookup module reads the aerodynamic data tables of the
decoy at different Mach numbers and angles of attack and linearly interpolates these
data according to the flight parameters of the decoy calculated by the time integration
module. Then, it feeds the new information to the time integration module. Hence, it

is used for both the initial calculations and calculation cycle.

Time-integration module integrates the 3DOF flight equations over time to find the
orientation and the position of the decoy after one time step utilizing Runge-Kutta
time integration algorithm. It is fed by all of the other modules. It is the main element

of the calculation cycle.

2.6.1 Atmospheric Conditions Module

The atmospheric conditions during decoy flight are calculated by using the
International Standard Atmosphere (ISA) model. International Standard Atmosphere
is a model [10] used to obtain the atmospheric conditions at different altitudes like
density, pressure, temperature etc. The equations to find these atmospheric properties
until the stratosphere (36089 ft) are given below, in where SL subscript defines the

standard sea level conditions.
Typr = Ts, — Lp. hALT (55)

g/LnR

T,
Pyr = Pgy, <—;LT) (56)
SL
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Par Tsy,
= po ——— 2= 57
PaLt = PsL Py, Tar (57)

2.6.2 Geometric Calculations Module

The center of gravity (c.g.) of the decoy is calculated from the longitudinal center
(half-length) of the decoy. (Figure 11) If the center of gravity is located towards the
nose of the decoy it is positive. The mass distribution of the decoy is assumed to be
symmetrical on the lateral axes, so that the center of gravity only changes in the

longitudinal axis.

1/2 1/2
i i 172 i i
i i leg i i leg i
1 I - 1 >
! p F G U R
i 1C.G. Origin i :
i i ! i
1/2 -1, 1/2 -1, " 21,
« Block 1 ’ Block2 —

Figure 11. Center of Gravity Reference and Inertia Calculation

Accordingly, the inertia along the pitch axis of the decoy varies with the center of
gravity location of the decoy as well. During the inertia calculations, it is assumed
that the decoy is a rectangular prism implying that the mass is distributed
homogeneously along the decoy and the curvatures on the nose and sides of the
decoy is not accounted for. After these assumptions, the pitch inertia variation with

the center of gravity can be calculated.

The mass moment of inertia of the decoy around the axis shown in Figure 11 whose

center of gravity is located on the centroid of the volume is:

1
- 2 4 p2 58
I 12m(l + h*) (58)
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So when the center of gravity of the decoy is shifted, the parallel axis theorem should
be applied. This is due to the fact that the mass moment of inertia is actually the
superposition of a new rectangular block whose centroid is located on the center of
gravity of the decoy named Block 1 and Block 2, which is the remaining part. Block
1 and Block 2 are illustrated in Figure 11.

Taking the even mass distribution assumption into account, the mass of Block 1 and

Block 2 is as follows:

m=my +m, (59)
21
m, = (1 — lcg>m (60)
21
m, = —2m (61)

Then, the mass moment of inertia of the block 1 is:

I = %ml (1 - 21,4)" + 2 (62)
1 21,
L =Em<1— lg> [(l—Zlcg)2+hZ] (63)

Applying the parallel axes theorem, the mass moment of inertia of the block 2 is:

1 l
21,
1 21 —=ml

Adding the two together:

1 21 z
I=1ly=—m (1 - lcg) ((1-2Lg)" +02) + <Im(4leg” +h?) +lgm  (66)
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2.6.3 Aerodynamic Data Table Lookup Module

The methodology to obtain the aerodynamic forces and moments acting on the decoy
are to be explained in Chapter 3. Owing to the fact that the analyses were run at a
matrix of certain conditions (angle of attack, Mach number etc.), the conditions
required by the 3FL-DYN which falls between these conditions should be
interpolated. All conditions covered are interpolated linearly. For instance, when the
decoy has a flight Mach number of M and angle of attack of «, the interpolation of

lift coefficient of the decoy is done according to:

My, <M< M,
a <a<a,
C(a,M,)—C(a,M
€, M) = Gy ) + 28 ,j,)_]v;( 2 - )
2 1 (67)
C (a,,M,)—C/(a;,M
Cola,My) = Cp(ay, My) + A ;)_aL( - 1)(0—’—“1)
2 1

C a ,M _C a'M
€1, My) = Cylan, M) + ;)_;( LA
2 1

For the moment coefficient of the decoy, the interpolation for the angle of attack and
Mach number is done exactly as the example for the lift coefficient above, but in
addition another interpolation for the pitching rate is done:

M, <M< M,

g <a<a,

Cmo (a, M) — Cmo (a, M)

Cyo(a, M) = Cppo(a, My) + (M — M)
MO Mo 1 M, — M, 1
(68)
Cumo(az, M) — Cyolay, My)
Cmo(a, My) = Cyo(ay, My) + ; 4 ~(a—a)
2T

C ,My) —C , M

Cumo(a, M3) = Cyo(as, M3) + o (22 ;z — QIIIO(al ) (@ —ay)
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CM,q (a, Mz) - CM,q (a, Ml)

CM,q(a: M) = CM,q(a: Ml) + Mz _ M1

M — M)

CM,q (az,M;) — CM,q (a1, M)

Cmgq (a,My) = Cmgq (a;, M) +
0y — 0

(a—ay)

CM,q (az, M) — CM,q (ay, M)

Cum,q(a, M3) = Cy q(as, M) +
0 — g

(@ —ay)
CM(a’M) = CMO(“IM) + CM,q(an) q

As stated in Section 2.6.2, the center of gravity is measured from the half length of
the decoy with positive direction pointing towards the nose, the output of the
methodology for obtaining the aerodynamic moments was taken out according to this
reference point as well. In order to add the effect of center of gravity location to the
moment coefficient, a recalculation of the moment coefficient according to the cg
location of the decoy is done. From Figure 12, when the moment is taken according
to the new cg location:

Cu(leg) = Cu(leyg = 0) — ley (C,cos a+ Cp sina) (69)

Cy

CM (lcg)

Figure 12. Recalculation of Moment Coefficient
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2.6.4 Time Integration Module

Runge-Kutta methods are numerical methods involving successive steps that are
used to solve differential equations. Runge-Kutta methods have different orders of
accuracy. The classical Runge-Kutta method, which is a fourth-order method and
sometimes referred to as RK4 method, is utilized in 3FL-DYN. RK4 method
discretizes the time step that is being calculated into four steps: calculation is done at
the beginning, the midpoint followed by a reiteration of the midpoint of the time
interval and the end of the time interval with more weight on the values calculated at
midpoint. [11]

The 3DOF equations of motion in this thesis given in Section 2.4 are three second
order ordinary differential equations (ODE) that depend on time. Writing the three
2" order ODE’s as six 1% order ODE’s with variable manipulation in terms of

displacement and its derivatives (Figure 9):

¢
i=V. =2 (70)
m
Y/
Z=VZ=EV_9 (71)
. Y
§=gq="" (72)
Iyy
x =V, (73)
z=1, (74)
6=q (75)
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When RK4 is applied this system of equations and the variables are written as a

vector X:

x(t, V)
z(t, V)
_ 0(t,q)
Vit ViV, 0) (76)
Vo (t, Ve, Vy, )
Lq(t, Ve, V2, 6, q)

>
Il

-'Q,\Sﬁmwé
I

With the initial values written as a vector of X,:

Xo = Vieo (77)
VZ,O
L (o

Writing the gradients calculated at four different steps in the time interval for

variable V, at time n, with a time step of At:

kl,Vx = Vet Ve, Vo O) (78)
At At At At

kay, = Vx (tn + = Ventkiy, =5 Vontkiy, =, 00+ kip —) (79)
x 2 x 2 z 2 2
At At At At

ksy, =V (tn + > Ven + Koy, > Vin + Koy, > On +kop 7) (80)

kay, = Ve(tn + AL, Ve + kay A,V + kay AL, 6, + k3 gAt) (81)

Calculating the variable at the next time step n + 1:

1
Viner = Von + 3 (kl,Vx + 2k, + 2ksy + k4,Vx)At (82)
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Writing all the gradients for all the variables as a matrix and the integration as a

matrix addition and multiplication:

r Xn+1 7 - Xn T kl X kz,x k3,x k4x
Zn+1 Zn kl,z kz,z k3,Z k4,z 1
X = On+1 _ On n A_t k1,e kz,e k3,e k4,e 2 (83)
P+ Vene1| ™ [ Vin 6 [Kiv, Kzv, Ksv, Kkav, |2
Vz,n+1 Vz,n k1 V, kZ,VZ k3 v, k4 v, 1
L On+1 4 LQn [ ki,q  kaq kisq Kaigl
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CHAPTER 3

CALCULATION OF AERODYNAMIC COEFFICIENTS

In this chapter, two different methodologies for calculating the aerodynamic
coefficients of the decoy are compared with each other. One of the methodologies is
a lower order method based on empirical data while the other is based on the

numerical solution of the decoy flowfield.

3.1 METHOD 1-THE EMPIRICAL SOLUTION (DatCOM)

For the empirical acquirement of the aerodynamic coefficients of the decoy,
DatCOM [12] software was utilized. DatCOM is a rapid estimation tool which
calculates the aerodynamic coefficients and derivatives of the input geometry. It uses
these values to give an estimation about the aerodynamic stability and control
characteristics of the body in seconds. DatCOM is able to make estimations about
missiles, aircraft etc. by the calculation of aerodynamic coefficients and derivatives
done utilizing a component build-up method based on experimental data. DatCOM
can be used for preliminary aircraft and missile designs, so the embedded
experimental data may not accommodate the Mach and Reynolds Number

combination of the decoy.

DatCOM has the capability to address many configurations such as body, wing-body,
wing-body-horizontal tail etc., but for comparison purposes only the body
configuration was used. [12] An example input file used for tutorials in DatCOM of a
MIG-17 aircraft is given in Figure 13.

31



SFLTCON NMACH=1.0,MACH(1)=0.6%

$FLTCON NALT=1.0,ALT(1)=5000.0%

$FLTCON NALPHA=5.,ALSCHD(1)=-4.0,-2.0,0.0,2.0,4.0,
WT=13395.0,LO0OP=1.0%

SOPTINS SREF=243.0,CBARR=5.75,BLREF=41.15%

$SYNTHS XCG=11.17,%CG=0.0,XW=3.63,2W=0.42,ALIW=1.0,XH=28.73,
ZH=5.24,ALTIH=0.0,XV=18.3, ZV=0.0, VERTUP=.TRUE. $

$BODY NX=8.0,

X(l)=0.0,0.74,8.35,13.14,19.35,24.41,28.41,30.77,
R(1)=1.29,1.72,2.32,2.32,2.25,1.88,1.36,0.69
METHOD=2 . 0%

SWGPLNF CHRDTP=7.02,SSPNOP=11.32,SSPNE=13.41, SSPN=15.71, CHRDBP=8. 4,
CHRDR=14.0, SAVSI=45.0, SAVSO=45.0, CHSTAT=0.25, TWISTA=0.0,
DHDADI=-3.0, DHDADO=-3.0, TYPE=2.0%

NACA-W-6-64A412

SHTPLNF CHRDTP=1.86,SSPNE=5.42, SSPN=5.43, CHRDR=4 .69, SAVSI=45.0,

CHSTAT=0.25, TWISTA=0.0, TYPE=1.0$
NACA-H-4-0012
$VTPLNF CHRDTP=3.76,SSPNE=6.05,SSPN=8.18, CHRDR=12.47, SAVSI=55.0,
CHSTAT=0.25, TWISTA=0.0, TYPE=1.0$
NACA-V-4-0012
CASEID MIGl7 BODY-WING-HORIZONTAL TAIL-VERTICAL TAIL CONFIG
DAMP
NEXT CASE

Figure 13. Sample DatCOM Input File for MIG-17

In DatCOM, in order to model a body with a rectangular cross-section, the properties
of different cross-sections at different longitudinal locations should be input. The
parameters to model the body include the cross-sectional area, the periphery,
planform half-width and the vertical coordinates at the lower/upper body surfaces.
The center of gravity location of the body should be given as well. The nature of the
cross-sectional parameters suggests that a true rectangular cross-section cannot be
defined in DatCOM due to the fact that only height and width of a rectangle is
enough to define a true rectangular cross-section. Besides, DatCOM has a limitation
such that no external stores can be modeled because of the fact that it analyzes the
body as a body of revolution. Due to this approach, separation from sides of the
decoy caused by the blunt edges may not be modeled effectively. [12]

DatCOM is also able to evaluate a configuration at different Mach numbers ranging
from subsonic to hypersonic speeds at different altitudes. In this study, subsonic
Mach numbers at subsonic flow region are considered. [12]
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DatCOM has many limitations like the “body-of-revolution” approach and the
possible non-existence of the Reynolds — Mach number range of the decoy, but as it

can calculate aerodynamic data tables in seconds, it was decided to be evaluated.

3.2 METHOD 2 -THE NUMERICAL SOLUTION

For the numerical solution of the decoy, the commercial solver FLUENT was used.
FLUENT is a computational fluid dynamics (CFD) solver utilizing the Reynolds-
Averaged Navier-Stokes (RANS) equations for steady or unsteady inviscid, turbulent
and laminar flow problems. FLUENT has a variety of turbulence models like k-
omega, k-epsilon, Spalart-Allmaras etc. utilizing different wall treatment models as
well as different discretization schemes. It is able to solve every flow regime such as

subsonic, transonic, supersonic etc. [14]

HyperMesh [13] is a pre-processor which is able to create both triangular and quad
surface meshes for geometries. It has a CFD meshing algorithm that is able to create
finer meshes on curved surfaces, while the mesh on the straight surfaces are
coarsened. For boundary-layer and volume meshing, Tgrid [14] software which has
well-defined algorithms embedded in FLUENT that can produce quality meshes was

used.

FLUENT also has the capability to solve the problems with parallel processes to

speed up the analysis.

3.2.1 Governing Equations

For all types of flows, FLUENT solves the Reynolds-Averaged Navier-Stokes
equations, which involves one conservation of mass (continuity) and three
conservation of momentum equations in three directions. If the flow is compressible,
due to the necessity for solving the density, the energy equation is also needed to be
solved. As the static temperature variable emerges from the energy equation, the

ideal gas law has to be solved as well. [15]

When the decoy is ejected from the aircraft, it is exposed to the turbulent flowfield

around the aircraft implying that the flow around the decoy is turbulent. Hence,
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turbulence should also be included in the solution. In order to do this, FLUENT
solves additional transport equations like kinetic energy transport equation. All these

equations are given below. The subcripts i and j differ from 1 to 3.

Continuity equation:

% .9 uy=o0 (84)
ot " 9x, P

The averaged momentum equations:

alTl+Ua1IL _9 P + aﬁ‘+aﬁ’ u'u,’ 85
P\t " %0x ) Tax \ 00 T M ax, T ax ) T P (85)

where the terms on the right hand side of the equation is isotropic pressure

component, viscous stress and Reynolds stresses respectively.

Ideal gas law:
P = pRT (86)
Energy equation for a flow involving turbulent conductivity and viscous dissipation:
d N
o7 (PE) + V. [u(pE + P)] = V. (key VT + Topy. D) (87)

Kinetic energy transport equation:

ok ok 1 1 ——00,
s U/a_x,- =5 [Zu wu +pp u — 2vu; SU] U —— ox, — 2vs,S, (88)

Where s;; is the strain rate term and defined as:

_1(0y; N ou; (89)
Sij B 2 ax] axi
3.2.2 Turbulence Modeling

Turbulent flow is the flow of a fluid in which its vorticity at any point and time is
random and has a wide and continuous distribution of length and time scales. The

flow is essentially unsteady, three-dimensional and any flow quantity is random in
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time and space. [16] Turbulent flow problem has its own set of differential equations,
but solving them, called the Direct Numerical Simulation (DNS), is computationally
expensive due to very fine mesh requirements in the order of billions as well as the

complexity of equations. [17]

Luckily, the mean quantities of turbulent flows are deterministic implying that if the
governing equations are to be time-averaged, the fluctuations are going to be
smoothed out, decreasing the computational expense. This is achieved by using
Reynolds-Averaging and filtering methods on the turbulent Navier-Stokes equations.
However, these methods yield some unknowns, resulting in the “Closure problem”.
[15] The problem with the averaging is the number of unknowns is always one
higher than the number of equations. At this point, the turbulence modeling is
utilized in such a way that using the known quantities, the unknown parameters are

simulated.

There are many turbulence models with each having their strengths and weaknesses

for different flow solutions:

Spalart-Allmaras model is a one-equation low-cost model that solves a Reynolds
Averaged transport equation for the eddy viscosity. Generally, it is used for wall-
bounded flow with mild separation like supersonic/transonic flows over airfoils,

boundary layer flows etc. [18]

k-omega model is a two-equation model that solves transport equations for both the
turbulent kinetic energy and omega, which is the ratio of turbulent dissipation rate to
turbulent Kinetic energy, k. This model is superior for wall-bounded low Reynolds
number flows due to the fact that it solves the viscous sublayer with no wall-
treatment. As this model resolves the viscous sublayer, it requires very fine mesh

near the wall increasing the computational cost. [18]

k-epsilon model is a two equation model that solves transport equations for both the
turbulent Kinetic energy and turbulent dissipation rate. This model is the most widely
used turbulence model in the industry for especially external flow problems. It is
proven to be sufficiently accurate for a wide range of flow problems. It also has

different formulations such as RNG k-epsilon and Realizable k-epsilon. They are
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computationally lower-cost than k-omega model due to the fact that near the walls, a
wall treatment model is applied since the viscous sublayer is not resolved. [18]

There are also three, four equation models such as Transition k-kl-omega, Transition
SST as well as Reynolds Stress Model (RSM) which have seven extra equations, but

due to computational expenses they are not utilized in flow solutions.

Realizable k-epsilon model was selected due to the fact that it handles separation,
recirculation, swirling etc. better than the other k-epsilon models with being easiest

to converge among them. [14]

3.2.3 Boundary Conditions

In this study, pressure-farfield boundary condition was utilized for a spherical
domain. Pressure farfield is a boundary condition that models the free-stream
conditions at infinity, using the freestream Mach number and static conditions such
as temperature. [14] This boundary condition can only be applied if the flow is
compressible. FLUENT extrapolates the flow variables inside of the domain starting

from the freestream conditions.

Adiabatic wall boundary condition with no slip was used for the decoy geometry.

3.2.4 Solver Approaches And Discretization

FLUENT has two types of solvers: Pressure-Based Solver and Density Based Solver.
In the Pressure-Based Approach, pressure is an unknown variable in the governing
equations and the density of the flow is derived from the ideal-gas law; while in the
density based approach, density is the unknown and pressure is the one being derived
from the ideal-gas law. Density-based approach yields better results when a strong
coupling between momentum, pressure and density is expected, like a high-speed
compressible flow with combustion. Hence, in this thesis the pressure-based

approach was used. [14]

FLUENT has two types of Pressure-Based solver approaches: Segregated and

Coupled. As the name implies, Segregated approach solves the pressure and
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momentum sequentially; while the Coupled approach solves them at the same time.
Although the simultaneous solution of pressure and momentum results in higher
memory usage, it yields better results than the Segregated approach. Hence, in this

study the Coupled approach was utilized. [14]

FLUENT keeps the scalar values stored at cell centers. For the flux terms at the cell
faces, upwind scheme is utilized. In first-order upwind scheme, it is assumed that the
values at the cell centers are equal to the values at cell faces, while in higher-order
upwind scheme Taylor Series expansion of the values at cell centers to find the
values at cell faces. For pressure, density, momentum, energy, turbulent dissipation
rate and turbulent kinetic energy, second-order upwind discretization schemes were

utilized.

For the evaluation of diffusive fluxes, velocity derivatives etc., the gradients of some
solution variables, such as pressure, should be found. There are three methods in
FLUENT to calculate the gradients of solution variables, from which the Green-
Gauss Node-Based was selected due to the fact that although it is computationally
more intensive, it minimizes false diffusion, is more accurate and appropriate for

unstructured meshes. [14]

3.2.5 Computational Grid Generation

For grid generation, two preprocessors were used: HyperMesh for unstructured
surface mesh generation for both the domain and the decoy; TGrid for boundary
layer and tetrahedral flow domain meshes.

For the decoy surface mesh generation, the step model of the decoy geometry was
imported into HyperMesh and some modifications were made in order to have better
quality mesh. Taking the necessary first layer height emerging from the required y-
plus value for wall-treatment model into account, surface mesh sizes was selected.
This is important due to the fact the aspect ratio between the first prism layer cell and
the surface mesh should not be too high to obtain better numerical accuracy. Besides,
in the curved surfaces of the geometry as well as the tail section, “R-tria” mesh type,
which is actually a triangular mesh type with a right angle, was utilized due to the
fact that especially the curved surfaces are more accurately defined. [13] Figure 14
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and Figure 15 show the surface mesh of the decoy for Grid #2 around the nose and

tail regions.

Figure 14. The Surface Mesh Around the Nose Region of the Decoy (Grid #2)

Figure 15. The Surface Mesh Around the Tail Region of the Decoy (Grid #2)

For the domain surface mesh generation, in order to find the surface mesh size of the
domain geometry, the tethahedral size growing with a constant rate from the
boundary layer of the decoy was taken into account. Figure 16 shows the domain

surface mesh.
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Figure 16. The Surface Mesh Around the Domain

After the surface mesh generation was finalized, the mesh was imported to TGrid
software to first generate the boundary layer prisms, then the domain mesh

tetrahedrals.

For boundary layer generation, a first layer height which is going to yield a y-plus
value between 30 and 300, at different flow velocities was selected. This y-plus
interval emerges from the turbulence and wall-treatment model selection. [18] In
order to estimate the boundary layer thickness, a turbulent flat plate boundary layer
thickness formulation was utilized. As the decoy geometry is simple, prism layer
mesh generation was done with a constant geometric growth rate methodology. The
number of prism layers is dependent on the estimated boundary layer thickness.
Figure 17 shows the overall prism layer thickness distribution around the decoy,

while Table 1 represents the prism layer mesh parameters.

Table 1. Prism Layer Mesh Parameters

First Layer Thickness (mm) | 0.1

Number of Prism Layers 11
Growth Rate 1.2
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Figure 17. Overall Prism Layer Thickness Distribution Around the Decoy

The flow domain is a sphere, whose radius is fifteen times bigger than the length of
the decoy. This was done so that the flow around the geometry does not affect the
freestream boundary conditions.

The selected mesh size and its reasons of selection are going to be explained in the
grid independence study at Section 4.4.

3.3 METHODOLOGY COMPARISON

To compare the two methodologies, the same decoy body was modeled at two
different Mach numbers, one of which had compressibility effects, and the drag, lift
and moment coefficients of the decoy were found. The decoy body was solved at

angles of attack up to 90° with an interval of 5° between them for both
methodologies.

Between Figure 18 and Figure 23, the comparison between DatCOM and FLUENT
for drag, lift and moment coefficients at Mach numbers of 0.3 and 0.6 are shown,
respectively.
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Figure 18. Comparison of drag coefficients calculated by two methodologies at M=0.3
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Figure 19. Comparison of lift coefficients calculated by two methodologies at M=0.3
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Figure 20. Comparison of pitching moment coefficients calculated by two methodologies at
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Figure 21. Comparison of drag coefficients calculated by two methodologies at M=0.6
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Figure 22. Comparison of lift coefficients calculated by two methodologies at M=0.6

L 2
0..
O
hd

*
*

. *

..I.....

I..
O
|-

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 # 9

*

Angle of Attack (deg)

# Steady CFD mDatCOM

Figure 23. Comparison of pitching moment coefficients calculated by two methodologies at
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The figures clearly show that the results of two methodologies are not similar.
Generally, DatCOM predicts smaller forces and moments. The differences between
two methodologies are especially greater for lift and moment coefficients. For M =
0.6, the lift coefficient predicted by FLUENT is two and a half times the value
predicted by DatCOM at 50° angle of attack. Besides, in some cases the trends of the
results are not similar either. For instance, in Figure 23 the pitching moment peak
predicted at 55° angle of attack is not observable in DatCOM predictions, while in
Figure 21, the increase in drag due to accelerated flow reaching transonic flow region

on the nose area is not predicted by DatCOM method.

Based on such differences observed, FLUENT solutions were decided to be the
reference solutions because of higher level of equations solved with compressibility
and seperated boundary layer effects. The reasons behind the lack of accuracy of

DatCOM, its limitations was explained in Section 3.1.
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CHAPTER 4

ASSESSMENT OF THE METHODOLOGY

4.1 NON-DIMENSIONAL QUANTITIES

In this study, from this point on, time histories of Euler Angles and angular rates /
accelerations as well as trajectories are going to be given as results. These quantities
are non-dimensionalized with a reference value and given with the subscript of “nd”.

They are non-dimensionalized as:

tna = 7— X 100
ref
X
xTLd lref
hALT
h = X 100
ALT,nd hALT,ref
¢
bna = 90
nd d)ref ( )
p 0
nd — gref
Y
1/1 =
nd lpref
na = d
nd qref
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A
nd C.Iref

where L is the reference length and hy;r . is the reference pressure altitude of the

decoy. t,.. is the total flight duration of interest.

42 TIME-STEP SELECTION

Both the 3FL-DYN and the transient CFD analyses are based on the integration of
certain variables like acceleration or velocity with time. The time step utilized in the
integrations directly affects the accuracy of the integrated quantities, but a very small
time step is going to increase the calculation cost in terms of time and computational
power. Hence, a time step which is going to yield the sufficient accuracy with an

optimization of calculational cost should be selected.

4.2.1 Time Step Selection for 3FL-DYN

For the evalulation of the time step size for 3FL-DYN, pitch angle () and pitching
rate (q) vs. time graphs are plotted for different time step sizes for a dynamically
stable case at two different Mach numbers as can be seen from Figure 24 to Figure
27. Pitch angle and pitching rate time histories are picked for time step selection, as

these quantities are most prone to numerical errors.

The graphs show that effect of time step size on the accuracy of the solution is more
evident in the M = 0.6 case due to the fact that the forces and moments acting on the
decoy are higher. In the M = 0.3 case, the solution acquired at a time step of 0.2ms
yields a sufficiently accurate solution as it shows nearly identical results with the
solutions attained with time steps of 0.01 and 0.02ms. However, for the M = 0.6
case, the solution acquired at 0.2ms starts to differ from the solutions at 0.01 and
0.02ms as time marches on. The solutions for 0.01 and 0.02ms are identical to each
other. Therefore, in order to reduce computational cost and preserve accuracy, a time

step of 0.02ms is selected for the dynamic analyses with 3FL-DYN.
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Figure 24. Non-dimensional Theta vs. Time at M = 0.3 for various timesteps utilized in 3FL-
DYN
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4.2.2 Time Step Selection for Transient CFD Analyses

Correct time step selection in transient CFD analyses is essential for the accuracy of
the solution due to the fact that the time-integration of non-linear RANS equations is
done utilizing the selected time step. For instance, Rumsey et. al [18] solved time-
dependent flow around a 18% thickness arc airfoil and found out that drag and lift of
the airfoil can change about 20% with a coarse time step size.

To select a suitable time step size for transient CFD analyses, solutions utilizing
6DOF motion were carried out at a statically unstable M = 0.6 case to evaluate the
solution on the lateral direction in more detail. Fixed time steps of 0.02, 0.05, 0.2 and
0.5ms were used on the same boundary conditions described in Sections 3.2 and
4.5.1. Figure 28 to Figure 30 show the Euler angles (¢, 8,1) obtained from the

transient 6DOF CFD solutions carried out at four different time step sizes.
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Figure 28. Non-dimensional Phi vs. Time at M = 0.6 for various timesteps utilized in transient
6DOF CFD
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Due to the 3DOF nature of 3FL-DYN, the main Euler angle used for comparison in

this study is going to be the pitch angle (6). Taking the finest time interval of 0.02ms

results as reference, when a comparison was done, the least difference occurs at a

time interval of 0.05ms, which was 0.7% overall. For time intervals of 0.2ms and

0.5ms, the differences were found out to be 4.1% and 5.0% respectively. Taking the

roll angle (¢) into account, for time intervals of 0.05ms, 0.2ms and 0.5ms, the
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differences were 5.4%, 27.7% and 9.6% respectively. For the yaw angle (y), they
were 2.8%, 16.5% and 11.7%.

Based on these results, a time interval of 0.05ms was selected for all the transient
CFD analyses carried out throughout the thesis. Taking the main Euler angle, the
pitch angle, into account, the difference of 0.7% was deemed sufficient. Although
there is 5.4% difference for the roll angle (¢), the transient CFD solution duration of
the 0.02ms case is roughly 2.5 times of the 0.05ms time interval, which is about 3-4
weeks of solution time for transient 6DOF solutions. Hence, an optimization was
made between calculation cost and solution accuracy in the lateral directions with the

selection of a 0.05ms time interval.

4.3 PITCHDAMPING TERM REQUIREMENT IN 3FL-DYN

Pitch damping term denoted by Cy, is the derivative of the pitching moment
Cy With respect to the pitching rate q. The term “damping” is used as an analogy of
the effect of a damper in a spring-damper system. Ideally, if a spring system had no
energy loss, it would oscillate forever. However; adding a damper to a spring system
would dissipate the energy of the system and bring the oscillations to a stop. A
damper dissipates energy utilizing a variety of methods such as viscous damping in
mechanical systems, resistance in electronic oscillators, etc. [20]

For the case of a decoy in 6DOF flight, the damping could be due to viscous drag
depending on the angles of attack and sideslip, the atmospheric conditions, the flow
conditions etc. As damping relies on the rate of change of position (linear or
rotational velocity etc.) for a mechanical system, damping terms written for a decoy

in flight are dependent on the linear and angular velocities of the decoy.

As the decoy flight is modeled in 3DOF, there can only be nine damping terms
which are Cp .y, , Cpo s Cypu s Cow s Cow » Cuw » Cp g Cr g @nd Cyy q. Owing to the fact
that the aerodynamic coefficients are obtained as a function of Mach number and
angle of attack, which is a function of u and w, the first six terms are inherently

present in the 3DOF model. However, the last three terms depending on the pitching
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rate g are not. In Section 2.5, according to reference [8], Cp, , Cp 4 terms are not

deemed necessary for 3DOF decoy flight modeling.

In this study, initially the pitch damping term was not included in 3FL-DYN.
However, the resulting model turned out to have insufficient and unphysical damping
characteristics making it nearly impossible to find a configuration working

effectively as a countermeasure against threats.

4.3.1 Obtaining the Pitch Damping Term

In order to obtain the pitch damping terms at different angles of attack and Mach
numbers, CFD methodology is utilized. As explained in Section 2.5, [8] states that
for 3DOF flight modeling, at identical angles of attack and Mach numbers, the
moment coefficient varies linearly with pitching rate. The moment coefficients are
obtained at a pitching rate of zero while the aerodynamic coefficients of the decoy
are calculated. Hence, a transient CFD analysis with a constant pitching rate is going
to yield the AC,, related to the pitching motion of the decoy. Dividing AC,, with the
pitching rate utilized in the CFD analyses, the pitch damping term at different angles

of attack and Mach numbers can be found.

For the methodology of transient CFD analyses with a constant pitching rate, the
mesh motion feature of the commercial program FLUENT was used. Mesh motion
feature is able to rotate and/or translate the defined zone with a constant rotational or

translational velocity.

Differing from the boundary conditions defined in Section 3.2.3, there is an extra
boundary condition called the interface. It was used to assert the pressure-farfield
boundary condition without any effect on convergence and accuracy due to the
rotation of the decoy. The domain is divided into two parts which are the rotating
part called the inner domain and the non-rotating part called the outer domain, which
can be seen from Figure 31. The pressure-farfield boundary condition was applied to
the outer shell of the outer domain while the interface boundary condition was
applied between the inner and outer domains. The reason behind the utilization of the

interface boundary condition is the non-conformal mesh emerging from the rotation
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of the inner domain. With an interface, FLUENT is able to handle the non-conformal
mesh. [14] The boundary condition on the wall of the decoy was again an adiabatic

no-slip wall condition.
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Figure 31. The outer domain solution mesh used for the interface boundary condition in
FLUENT

The constant pitching rate utilized in the CFD analyses was obtained from the
pitching rate value of the first-time step from 3FL-DYN, which is the highest
pitching rate value the decoy is going to have throughout the motion. The constant
time step used in the CFD analyses was 0.05ms, which is the same time step used for
the transient 3DOF/6DOF CFD analyses explained in Section 4.2.2.

An example graph of the results of the CFD analyses carried out to obtain the pitch
damping values at M = 0.3 for different angles of attack can be seen in Figure 32.
The pitch damping coefficient remains almost constant until about 40° angle of
attack, but from this point on at high angles of attack a sharp increase is observed.
This proves useful for the damping of high magnitudes of oscillations.
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Figure 32. Pitch Damping Coefficient €y, 4 vs. Angle of Attack at M = 0.3

4.3.2 Evaluating the Effect of Pitch Damping

To evaluate the effect of pitch damping term, 3FL-DYN was run at M = 0.6, due to
higher forces and moments for two different cases, emphasizing the differences.
They are the cases with and without the pitch damping term C,, , obtained from the
transient CFD analyses. For comparison purposes, the quantities most affected from

the presence of C,, , term: pitch angle 6, pitching rate g and pitching acceleration g,

are plotted with respect to time, which can be seen from Figure 33 to Figure 35.
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Figure 35. Non-dimensional g vs. Time at M = 0.6 for the evaluation of the pitch damping term
Cp 4 Utilized in 3DOF numerical implementation

When the results are compared, it is observed that both cases are underdamped; as
the magnitude of the oscillations are decreasing as time progresses. The reason of
damping in the case without pitch damping term is due to other terms like
Cpu s Cry , Cyy etc. However, when the rate of decrease in the magnitude of the
oscillations are concerned, the model with pitch damping derivative is superior due
to the fact that the oscillations observed in all figures are decreasing in an increasing
rate. Addition of pitch damping derivative proves to be most effective on the pitching

rate with a difference of about 60% between the initial and final time steps.

For the design of a decoy of which the orientation is essential, the oscillations
obtained from the model without pitch damping is going to be make the overall
countermeasure design process harder. Because, coming up with an effective
configuration against threats is going to be harder. Moreover, taking the results given
in Chapter 5 into account, the case with the pitch damping derivative was found out
to be closer to the transient CFD results.
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44 GRID INDEPENDENCE

In CFD applications, in order for the solution to be accurate, the grid used in the
problem should not affect the solution to unacceptable levels. In other words, the
solution has to be grid independent. The effect of the grid on the solution might
occur in various ways. For instance, for a very coarse domain mesh due to
insufficient resolution of the eddies created by the geometry, the diffusion of the
turbulent parameters might be unnaturally faster. As an example, Karcz et al. [21]
found out that distribution of the kinetic energy and its dissipation is significantly
affected by the density of the computational grid for their test case of an agitated

vessel resulting underestimated local velocity values.

To evaluate the grid independence of the solution, four different grid sizes were
solved with the exact same conditions specified in Section 3.2. The comparisons of
these grids in terms of drag, lift and pitching moment coefficients at five different
angles of attack can be seen from Figure 36 to Figure 38. At high angles of attack
achieving better accuracy of the forces and moments calculated is going to be harder.
Therefore, the angle of attack values were chosen to be relatively high angle of attack
values to better evaluate the accuracy of the solution. Table 2 shows the sizes of the
different grids utilized in the grid independence study in terms of decoy surface and

domain mesh size.

Table 2. The different grid sizes used for the grid independence study

Surface mesh size | Domain mesh size
(# elements) (# elements)
Grid 1 32856 1126275
Grid 2 71434 1744834
Grid 3 104986 2798373
Grid 4 141498 3667583
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Taking the results of Grid 4 as the reference values, comparison between the results
reveals that for the drag coefficient values the differences between the grids are less
than 3% except Grid 1. The largest differences for the lift coefficient values occur at
30° angle of attack which are 8.9% for Grid 1, 5.9% for Grid 2 and 0.8% for Grid 3.
At pitching moment coefficient values, the highest differences between the grids
occur. The moment coefficient is dependent on the overall pressure distribution
around the decoy different than the drag and lift coefficients. For instance, two
identical decoys with different pressure distributions can have the same drag
coefficient but cannot have the same moment coefficient. As can be observed in
Figure 38, Grid 1 and Grid 2 are very different from the results of Grid 4. For Grid 3
however, the largest difference is found out to be 3.5% occurring at 60° angle of

attack.

According to these results, Grid 3 was used for all the steady and transient CFD
analyses carried out throughout the thesis. Due to the fact that Grid 3 has 23.7% less
number of elements compared to Grid 4 and a largest error of 3.5% occurring at very
high angles of attack, it is evaluated to be an optimization of solution accuracy and
calculation cost, especially for the 6DOF transient CFD analyses explained in
Chapter 5 considering the calculation times are measured in days / weeks.

45 EVALUATION OF THE 3DOF ASSUMPTION

In Section 2.4, the reasons for adopting a 3DOF approach were discussed. Before
carrying out the runs for the whole 6DOF analysis matrix, the validity of the 3DOF
assumption should be checked. To evaluate the 3DOF assumption, the CFD solution
of two different cases, one of which is 3DOF and the other 6DOF, is compared in
terms of trajectory, angle, velocity, acceleration, forces and moments.

45.1 3DOF /6DOF Solution Methodology

CFD methodology with FLUENT was utilized for the calculation of 3DOF / 6DOF
motion of the decoy with the flowfield. The analysis conditions were similar to the

conditions described in Section 3.2, with two basic differences: the dynamic mesh
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model and the pressure-farfield boundary condition. The same grid explained in
Section 3.2.5 was utilized.

For 3DOF / 6DOF motion applications, FLUENT is able to remesh and smooth the
volume mesh around the geometry or move the entire domain utilizing the equations
of motion, with the dynamic mesh model. The calculations were done and outputs,

such as Euler Angles were given in the inertial frame. [14]

FLUENT does not have a feature to model the motion of the body in 3DOF. Hence,
to achieve 3DOF motion, the inertia values except the mass moment of inertia in the
pitching axis were taken as very unrealistically high values. This prevents angular
motion in roll and yaw axes. As there is no initial velocity in lateral direction, there is

no translational motion as well.

The problem is not a safe-seperation problem, so there is no relative motion between
two bodies. Because of this fact, there is no need to remesh or smooth the domain
mesh around the decoy as its motion progresses. In addition, it is going to increase
the computational calculation time of the solution. To avoid this situation, the whole
domain around the decoy moves according to the translational and rotational
velocities around the decoy. In other words, it is different than the usual
methodology of CFD analyses in where the domain and the geometry is fixed and
there is flow velocity on the domain like a wind tunnel. To achieve this, the boundary
condition on the outside of the domain, which is a pressure-farfield boundary

condition should have zero relative velocity.

The time step used in this analyses were based on the time step selection study

discussed in Section 4.1, which was a time step of 0.05ms.

4.5.2 Comparison of 3DOF / 6DOF Motion

The analyses were done for two different center of gravity values CG1 and CG2 at
Mach numbers of 0.3 and 0.6. At CG1 cases, the decoy does not have static stability,
while at CG2 cases, the decoy does. The static stability of the decoys was evaluated

with the preliminary calculations done with 3FL-DYN. A statically unstable case
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was selected in order to evaluate the validation of the 3DOF assumption for this case

as well. The pitching angle () of the decoy were used for comparison purposes.
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Figure 39. Non-dimensional Theta vs. Time 3DOF / 6DOF comparison for M = 0.3, CG1
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Figure 42. Non-dimensional Theta vs. Time 3DOF / 6DOF comparison for M = 0.6, CG2

The 6DOF results of the statically unstable case (CG1) were found out to be very
different from the 3DOF results for both Mach numbers. The behavior of the decoy,
the magnitude and frequency of the oscillations are not consistent. This is the
consequence of the yawing and rolling in 6DOF motion, which can be seen from
Figure 43 and Figure 44 for M = 0.6 case. Patel et al. [22] state that according to the
wind tunnel results even if the angle of sideslip is zero, due to asymmetrical vortex

shedding, at high angles of attack large side forces and dynamic out-of-plane
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loadings may occur, resulting in a yawing motion. As high angles of attacks occur
during the pitching motion, a rolling motion is inevitable with the coupling of
yawing and pitching motion for the decoy. This is due to the smaller mass moment of
inertia in the roll axis for slender bodies. However, for the statically stable case, the
results were found out to be very similar for both Mach numbers. They were not
expected to be on top of each other, which is again due to the effect of 6DOF motion
(Figure 45) resulting in a rolling motion, but the trends of the oscillations are
consistent. The effect of rolling motion of the statically stable decoy is similar to that
of a roll-stable missile, which utilizes the conservation of angular momentum for
lateral stability during flight. [25] Considering the yawing motion, it is observed that
the magnitude of the oscillations is one quarter of the magnitude of pitching

oscillations and start to diminish after a certain time. (Figure 46)

It is understood that in order for the 3DOF assumption to work effectively, the cases
investigated should have static stability. In the nonexistence of static stability, the

motion in the lateral direction is dominant proving the 3DOF assumption invalid.
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Figure 43. Non-dimensional Phi vs. Time of 6DOF motion for M = 0.6, CG1
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CHAPTER 5

RESULTS AND DISCUSSIONS

In this chapter, the results obtained from 3FL-DYN are compared with those of
transient 6DOF CFD analyses. 3FL-DYN’s ability to capture the effects of the

variation of center of gravity, Mach number and tail sizes is investigated.

5.1 ANALYSIS CONDITIONS

The relevant analysis parameters / conditions required (boundary conditions, time
step size etc.) for the 6DOF FLUENT CFD analyses discussed in Sections 3.2, 4.1,
4.4 and 4.5.1. To ease the reader, all relevant parameters are gathered together and

summarized here in Table 3.
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Table 3. The analysis conditions

Boundary Conditions Pressure-Farfield (domain)
Adiabatic No-slip Wall (decoy)

Turbulence Model Realizable k-epsilon

Air Compressible Ideal-Gas

Solver Approach Pressure-Based Coupled

Discretization Second-Order, Green-Gauss Node Based
Grid Size 2798373 cells (Tail = 100% case)

First Layer Thickness (mm) | 0.1

# of Prism Layers 11
Motion Model Dynamic Mesh model with 6DOF
Time Step (ms) 0.05

The analysis matrix consists of two center of gravity positions, three Mach number
and two different tail sizes, which can be seen in Table 4. Considering the cross-
matching of all the combinations of these analyses, in order not to overwhelm the
reader, the results are given here for a selected reference case. This case is the most
probable configuration and flight condition used for the decoy design. The results of
all the other cases are given in APPENDIX A.

As explained in Section 2.6.2, the center of gravity of the decoy is measured from
half of the length of the decoy (positive direction pointing towards the nose of the
decoy) and given as the percentage fraction of the length. For instance, CG = 15%
means that the center of gravity of the decoy is 0.15 [ front of the half length of the
decoy. Tail size is varied by changing the chord of the tail and given as a percentage
of the tail size of the reference case. For the analysis matrix, apart from the values for
the reference case, a center of gravity and a tail size value which are going to reduce
the static stability of the decoy were selected considering the static stability
discussion in Section 4.5.2. All the cases have longitudinal static stability and have
the same initial conditions in terms of altitude and attitude. For Tail = 80% case, a
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whole new set of time-independent CFD analyses were done with the conditions

given in Sections 3.2 and 4.3.1.

Taking this information into account, the reference case has a Mach number of 0.6,
CG position of 30% and a tail size of 100%. For the investigation of every variable,
the pitch angle (8), and the trajectories were compared with each other to observe the
differences between the 3FL-DYN and 6DOF CFD analyses. In addition, to observe
the trends more clearly, the results of 3FL-DYN for different variables and the
results of the 6DOF CFD are plotted seperately. Moreover, pressure and Mach
number distributions around the decoy at different times are given. For flowfield
visualization, FieldView and Tecplot software which have the capability to draw

streamlines, shear lines, pressure distributions etc. were used. [23, 24]

Table 4. The analysis matrix

Mach Numbers 0.30 | 0.45 | 0.60

Center of Gravity (CG) | 10 % 30 %

Tail Size 80% | 100 %

5.2 CENTER OF GRAVITY EFFECT

To investigate the ability to capture effect of center of gravity position, two center of
gravity positions of 10% and 30% were analyzed at every Mach number and tail size
in the analysis matrix. For convenience, effects of the center of gravity locations at
M = 0.6, Tail size = 100% condition was thoroughly examined in this section. The

results of the other cases individually can be seen from APPENDIX A.

From Figure 47 to Figure 50, pitch angles (6) obtained from two methodologies at
two center of gravity locations were plotted with respect to time. To ease the reader,
plots are organized so that either the methodologies (Figure 47, Figure 48) or either

the effect of c.g. position are compared. (Figure 49, Figure 50)
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Figure 47. Non-dimensional Theta vs. Time 3FL-DYN / 6DOF CFD comparison for M = 0.6, CG
= 30%, Tail = 100%
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Figure 49. 3FL-DYN Non-dimensional Theta vs. Time comparison of two center of gravity
values for M = 0.6, Tail = 100%
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Figure 50. 6DOF CFD Non-dimensional Theta vs. Time comparison of two center of gravity
values for M = 0.6, Tail = 100%

Comparing the 3FL-DYN with the 6DOF CFD results, it is obvious that for the CG =
10% case the results are closer. This is due to the fact that initially as the decoy has a
high angle of attack, CG = 30% case has a higher moment arm compared to the CG =
10% case for the pitching moment resulting in higher accelerations in the pitching
direction hence higher frequency of oscillations.
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Trendwise, 3FL-DYN was able to capture the higher frequency of the oscillations for
the CG = 30% case. But as 6DOF CFD was able to dissipate more energy by
damping mechanisms in the lateral directions, the magnitude of the oscillations
decreases more rapidly as well as the frequency. As damping is dependent on the rate
of change of position in the motion, the higher accelerations in CG = 30% case
causes this situation, which is benign for the CG = 10% case. The 3DOF method is
more conservative for initial design purposes owing to the fact that the frequency and

the magnitude of the oscillations are greater than that of the 6DOF CFD results.
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Figure 51. 6DOF CFD Non-dimensional Psi vs. Time comparison of two center of gravity values
for M = 0.6, Tail = 100%

In Figure 51, the lateral motion in the yaw direction can be observed. All of the cases
have continuous rolling motion as can be seen from APPENDIX A. The lateral
motion is caused by the asymmetrical vortex shedding occurring at high angles of
attack as explained in [22]. As the decoy is a slender body, its mass moment of
inertia in the roll direction is about one order of magnitude less than the mass
moment of inertia values in pitch and yaw directions. This fact leads to a continuous
motion in the roll axis for both CG values, just like a roll-stabilized missile. There is
motion in the yaw direction for both cases, but the highest magnitude of the
oscillations is about 5-6 times smaller than that of the pitching motion. Higher
magnitude of oscillations in the yaw direction are observed for the CG = 10% case as

expected because of lower correcting yaw moments.
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Figure 52. 3FL-DYN / 6DOF CFD Trajectory Comparison for M = 0.6, CG = 30%, Tail = 100%
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Figure 53. 3FL-DYN / 6DOF CFD Trajectory Comparison for M = 0.6, CG = 10%, Tail = 100%

For both cases, the trajectory of the decoy was captured very well by the 3FL-DYN
which can be seen from Figure 52 and Figure 53. Translation in lateral direction is

not comparable to that of the longitudinal direction.

Visualization of the motion history of the decoy at two different center of gravity
values obtained from 6DOF CFD analyses is given in Figure 54, in where the decoy
is colored with the gage pressure values. Starting from the initial time point, the

motion history is given with a non-dimensional time interval of 10 as well. The tail
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portion of the decoy was made transparent to ease the observation of the pressure
distribution on the decoy. The horizontal and vertical distances covered by the decoy
is scaled down to 2.5%, while the decoy itself is not scaled. More dominant yawing
motion of the CG = 10% case as well as the rolling motion for the both cases can be
observed from the motion history. Besides, the higher pressures seen on the direction
to where the decoy moves shows the yawing correction made by the decoy, while the
lower pressures (blue) at higher pitch angle positions shows a separation around that
region indicating a high angle of attack value for the decoy. The lower pressures start

to diminish as the time marches on, implying the stabilization of the decoy.

The comparisons of pitch angles, trajectories as well as the flowfield for center of
gravity values at different Mach numbers and tail sizes are proved to be coherent

with the results explained above. These results are given in APPENDIX A.
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5.3 MACH NUMBER EFFECT

To study the effect of Mach number variation, three Mach number values, 0.3, 0.45
and 0.6, were considered at every center of gravity and tail size value in the analysis
matrix. For ease, effect of Mach number variation at CG = 30%, Tail Size = 100%
condition was thoroughly examined throughout this section. For the results of the
other cases, APPENDIX A should be referred.

From Figure 55 to Figure 59, pitch angle (8) obtained from two methodologies at
three Mach numbers were plotted with respect to time. To ease the reader, plots are
organized so that either the methodologies (Figure 55 to Figure 57) or either the
Mach number effect are compared. (Figure 58, Figure 59)
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Figure 55. Non-dimensional Theta vs. Time 3FL-DYN / 6DOF CFD comparison for M = 0.6, CG
= 30%, Tail = 100%
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Figure 56. Non-dimensional Theta vs. Time 3FL-DYN / 6DOF CFD comparison for M = 0.45,
CG = 30%, Tail = 100%
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Figure 57. Non-dimensional Theta vs. Time 3FL-DYN / 6DOF CFD comparison for M = 0.3, CG
= 30%, Tail = 100%
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Figure 58. 3FL-DYN Non-dimensional Theta vs. Time comparison of three Mach number values
for CG = 30%, Tail = 100%
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Figure 59. 6DOF CFD Non-dimensional Theta vs. Time comparison of three Mach number
values for CG = 30%, Tail = 100%

When the 3FL-DYN results with the 6DOF CFD results are compared, it is clear that
the magnitude of the oscillations of pitch angle (6) are overestimated by the 3FL-
DYN. This is due to the fact that being similar to the center of gravity cases,
dissipation due to damping mechanisms in lateral direction causes the oscillations to
decay faster. When the rate of change of the magnitudes of the oscillations and rate

of change of position affecting the damping derivatives are considered, higher the
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Mach number, higher the difference between the two methodologies is. Trendwise,
3FL-DYN was able to capture the frequency increasing with Mach number. As the
magnitude and frequency of the oscillations are higher in 3FL-DYN, this method is

more conservative for initial design purposes.
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Figure 60. 6DOF CFD Non-dimensional Psi vs. Time comparison of three Mach number values
for CG = 30%, Tail = 100%

The yawing motion of the decoy can be observed from Figure 60. All of the cases
have continuous rolling motion as can be seen from APPENDIX A. As explained
thoroughly in Section 5.2, due to the fact that the decoy is exposed to high angles of
attack, lateral out-of-plane forces and large side forces occur causing motion in
lateral direction. [22] The forces and moments are larger for M = 0.6 case, hence the
continuous rolling motion is more effective compared to other Mach numbers.
Trendwise, higher the Mach number, higher the forces / moments and more effective
the rolling motion is. Examining the yawing motion, it is clear that the highest
magnitude of oscillations is 7-8 times smaller than that of the motion in pitching

direction.
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Figure 61. 3FL-DYN / 6DOF CFD Trajectory Comparison for M = 0.6, CG = 30%, Tail = 100%
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Figure 62. 3FL-DYN / 6DOF CFD Trajectory Comparison for M = 0.45, CG = 30%, Tail =

100%
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Figure 63. 3FL-DYN / 6DOF CFD Trajectory Comparison for M = 0.3, CG = 30%, Tail = 100%

Concerning the trajectories drawn for different Mach numbers, it is obvious that,
taking Figure 61 to Figure 63 into account, they are captured very well by 3FL-DYN.

Translation in lateral direction is not comparable to that of the longitudinal direction.

Mach number distributions around a plane cutting the decoy at different time points
with a non-dimensional time interval of 20 are given in Figure 64. The tail portion of
the decoy was made transparent to ease the observation of the Mach distribution on
the cutting plane. It is clear that taking the size of the separation zones, especially “a”
and “b” time points, into account, the decoy is exposed to high angles of attack at
every Mach number case. This results in a lateral motion explained above, as can be
observed from the other time points in terms of decoy position. As time marches on
due to the stabilization of the decoy, the separation zone sizes begin to decrease as
the angle of attack values start to decrease. Motion history of the decoy is not given
as due to the horizontal distances covered by the three Mach number cases are
different.

Concerning the Mach number effect at different center of gravity and tail size values,
given in APPENDIX A, the comparisons of pitch angles and trajectories as well as

the flowfield proved to be consistent with the results explained above.
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Figure 64. Mach Number distribution around the decoy at different time points a, b, ¢, d with 20

non-dimensional time interval obtained from 6DOF CFD analyses for three different Mach
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54 TAIL SIZE EFFECT

Investigation of the effects of tail size variation was done by considering two
different tail sizes. Only the chord lengths of the tail were changed. The tail sizes of
80% and 100% were investigated at every Mach number and center of gravity value
present in the analysis matrix. For convenience, the effects of tail size variation of

the CG = 30%, M = 0.6 condition was considered for this section. APPENDIX A
includes the other cases at different CG and Mach number values.

From Figure 47 to Figure 50, pitch angle (8) obtained from two methodologies at
two center of gravity locations were plotted with respect to time. To ease the reader,
plots are organized so that either the methodologies (Figure 47, Figure 48) or either

the effect of center of gravity position is observed. (Figure 49, Figure 50)
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Figure 65. Non-dimensional Theta vs. Time 3FL-DYN / 6DOF CFD comparison for M = 0.6, CG
= 30%, Tail = 100%
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Figure 66. Non-dimensional Theta vs. Time 3FL-DYN / 6DOF CFD comparison for M = 0.6, CG
= 30%, Tail =80%
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Figure 67. 3FL-DYN Non-dimensional Theta vs. Time comparison of two tail size values for M =
0.6, CG =30%
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Figure 68. 6DOF CFD Non-dimensional Theta vs. Time comparison of two tail size values for M
=0.6, CG =30%

The effect of tail size is similar to that of the center of gravity effect, especially in
terms of stability. Increasing the tail size has the same effect as positioning the center
of gravity to a location more closer to the nose. For instance, similar to the effect
observed for CG = 10% case in Section 5.2, the 3FL-DYN results for the Tail = 80%
case are closer to 6DOF CFD results than that of the Tail = 100% case. Especially,
the magnitude of oscillations is very similar. The CG = 30% case had a larger
moment arm, hence larger pitching moments resulting in higher angular
accelerations. This is the same situation for the Tail = 100% case. The higher force
on the tail section of the decoy can be seen from Figure 69 for the initial time step.
There is more area with high pressure values for the Tail = 100% as expected,
resulting in a higher moment value hence higher angular acceleration. For the
purpose of initial design, as the magnitudes of oscillations are higher for the 3DOF

method compared to 6DOF CFD results, the 3DOF method is more conservative.

From Figure 67 and Figure 68, it is observed that the increase in 20% tail size has
less effect than an increase in 20% center of gravity location. An increase in 20% tail
size results in more similar frequency and magnitudes of oscillations compared to a

20% increase in center of gravity position.
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The lateral motion in the yaw direction can be observed in Figure 70. All of the cases
have continuous rolling motion as can be seen from APPENDIX A. Similar to the
cases presented in the previous sections, there is a continuous rolling motion for both
tail size values as expected due to lower roll mass moment of inertia. The decoy with
a smaller tail size value starts the continuous rolling motion sooner than the Tail =
100% case due to smaller correcting moments in lateral direction. There is motion in
yaw direction for both cases, but the magnitudes of the yaw angle oscillations are
smaller for Tail = 100% case. This is due to larger correcting yawing moments as
expected. The highest magnitude of the yaw angle oscillations is 5-6 times smaller
than that of the pitching angle oscillations.
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Figure 71. 3FL-DYN / 6DOF CFD Trajectory Comparison for M = 0.6, CG = 30%, Tail = 100%
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Figure 72. 3FL-DYN / 6DOF CFD Trajectory Comparison for M = 0.6, CG = 30%, Tail = 80%

Trajectory-wise, for both cases, 3FL-DYN results seem to agree very well with
6DOF CFD results which can be seen from Figure 71 and Figure 72. Translation in

lateral direction is not comparable to that of the longitudinal direction.

Motion history of the decoy was visualized at two different tail sizes and colored
with the gage pressure values obtained from 6DOF CFD in Figure 73. The motion
history is given with a non-dimensional time interval of 10, starting from the initial
time point similar to the center of gravity effect visualization above. The horizontal
and vertical distances covered by the decoy is scaled down to 2.5% while the decoy
itself is not scaled down. The rolling motion is apparent for both cases and they both
have low pressure zones at the first three time points indicating flow seperation. This
shows that the decoy is being exposed to high angles of attack. The low pressure
zones diminish at the last time steps indicating the stabilization of the decoy. The
pressure distribution of the Tail = 100% case is more uniform as this case stabilizes
faster than the Tail = 80% case.

Tail size effect comparisons in terms of pitch angle, trajectory etc. at different center
of gravity values and Mach numbers are proved to be consistent with the

explanations made above. These results are given in APPENDIX A.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

The thesis has described a fast initial design methodology for a decoy and
investigated the validity of the approach. For the decoy, a 3DOF motion assumption
was discussed and the equations of motion were derived. The equations were
numerically integrated by a code in a quasi-steady manner with the help of tabulated
aerodynamic data. The aerodynamic coefficients in the tables were obtained from
steady CFD calculations. An attempt to obtain the data by DatCOM did not vyield

satisfactory results.

An assessment of the methodology was made in terms of time step size selection for
both 3FL-DYN and transient CFD calculations, grid independence, inclusion of the
pitch damping term and the evaluation of 3DOF assumption. In these studies, time
step and the grid size were selected such that the solution is independent from these
numerical parameters. During the discussion of pitch damping inclusion, without the
pitch damping term, the other terms such as damping caused by drag, lift etc. were
found out to be insufficient. 3DOF assumption was evaluated by comparing transient
3DOF CFD and 6DOF CFD results. The results showed that given the decoy has
static stability and the motion in the lateral direction is benign, the 3DOF assumption

can be made for a level flight condition.

To validate the 3DOF initial design methodology, comparisons between the results
obtained from 3FL-DYN and transient 6DOF CFD were carried out. The terms of
comparisons were angular / translational velocities, accelerations, trajectories and

angular positions. For comparing purposes, instead of expecting the results to be on
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top of each other, the ability to capture the effects of the variations of different
variables such as Mach number, center of gravity and tail sizes was considered. The
flowfields of some of the 6DOF CFD results were investigated as well. According to
the results, 3FL-DYN was able to capture the effect of the variations of the variables
as well as the magnitude / frequency of the oscillations. As expected, the results of
the two methodologies were not identical due to lateral motion as expected. But, as
3DOF method was found out to be more conservative, it was deemed sufficient for
fast initial design purposes. The trajectories obtained from 3FL-DYN agreed very
well with the 6DOF CFD results.

For future studies, the effect of the flowfield around the aircraft, from which the
decoy is deployed, should be added to 3FL-DYN as an initial condition. This way,
the safe separation of the decoy from the aircraft could be initially evaluated as well.
This could be done by using CFD analyses or a panel code. In addition, other
configurations different than body-tail should also be investigated. (like wing-body-
tail) Besides, as the methodology was compared with transient CFD results for the
validation the initial design methodology, the comparison should be done with flight

test results of the decoy itself.
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APPENDIX A

SUPPLEMENTARY RESULTS

In this part, the pitch and yaw angles as well as the trajectories of the other
combinations of center of gravity, Mach number and tail sizings other than the

reference case explained in Section 5.1 are given.
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Figure 74. 6DOF CFD Non-dimensional Phi vs. Time comparison of two center of gravity values
for M = 0.6, Tail = 100%
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Figure 75. 6DOF CFD Non-dimensional Phi vs. Time comparison of three Mach numbers for
CG = 30%, Tail = 100%
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Figure 76. 6DOF CFD Non-dimensional Phi vs. Time comparison of two tail sizes for M = 0.6,
CG =30%
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Figure 77. Non-dimensional Theta vs. Time 3FL-DYN / 6DOF CFD comparison for M = 0.3, CG
=10%, Tail = 80%
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Figure 78. 3FL-DYN / 6DOF CFD Trajectory Comparison for M = 0.3, CG = 10%, Tail = 80%
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Figure 79. 6DOF CFD Non-dimensional Psi vs. Time for M = 0.3, CG = 10%, Tail = 80%

97



0.45
0.40 i
0.35 P/ \ N
0.30 / ,
=025 ,’ \ ’
= r
Fo2 | \ ) . )
01s | ) \ / N L
010 | / \ ) N
0.05 |/ w
0.00

----3FL-DYN — .- 6DOFCFD

Figure 80. Non-dimensional Theta vs. Time 3FL-DYN / 6DOF CFD comparison for M = 0.45,
CG = 10%, Tail =80%
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Figure 81. 3FL-DYN / 6DOF CFD Trajectory Comparison for M = 0.45, CG = 10%, Tail = 80%
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Figure 82. 6DOF CFD Non-dimensional Psi vs. Time for M = 0.45, CG = 10%, Tail = 80%
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Figure 83. Non-dimensional Theta vs. Time 3FL-DYN / 6DOF CFD comparison for M = 0.6, CG
=10%, Tail = 80%
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Figure 84. 3FL-DYN / 6DOF CFD Trajectory Comparison for M = 0.6, CG = 10%, Tail = 80%
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Figure 85. 6DOF CFD Non-dimensional Psi vs. Time for M = 0.6, CG = 10%, Tail = 80%

99



0.45
0.40
0.35
0.30
< 0.25
T 0.20 /
0.15 )
010 | f
0.05 | /
0.00

=
)‘\
e
\
7

----3FL-DYN —-: 6DOFCFD

Figure 86. Non-dimensional Theta vs. Time 3FL-DYN / 6DOF CFD comparison for M = 0.3, CG
= 30%, Tail =80%
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Figure 87. 3FL-DYN / 6DOF CFD Trajectory Comparison for M = 0.3, CG = 30%, Tail = 80%
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Figure 88. 6DOF CFD Non-dimensional Psi vs. Time for M = 0.3, CG = 30%, Tail = 80%
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Figure 89. Non-dimensional Theta vs. Time 3FL-DYN / 6DOF CFD comparison for M = 0.45,
CG = 30%, Tail =80%
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Figure 90. 3FL-DYN / 6DOF CFD Trajectory Comparison for M = 0.45, CG = 30%, Tail = 80%
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Figure 91. 6DOF CFD Non-dimensional Psi vs. Time for M = 0.45, CG = 30%, Tail = 80%
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Figure 92. Non-dimensional Theta vs. Time 3FL-DYN / 6DOF CFD comparison for M = 0.6, CG
= 30%, Tail =80%
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Figure 93. 3FL-DYN / 6DOF CFD Trajectory Comparison for M = 0.6, CG = 30%, Tail = 80%
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Figure 94. 6DOF CFD Non-dimensional Psi vs. Time for M = 0.6, CG = 30%, Tail = 80%
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Figure 95. Non-dimensional Theta vs. Time 3FL-DYN / 6DOF CFD comparison for M = 0.3, CG
= 10%, Tail = 100%
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Figure 96. 3FL-DYN / 6DOF CFD Trajectory Comparison for M = 0.3, CG = 10%, Tail = 100%
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Figure 97. 6DOF CFD Non-dimensional Psi vs. Time for M = 0.3, CG = 10%, Tail = 100%
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Figure 98. Non-dimensional Theta vs. Time 3FL-DYN / 6DOF CFD comparison for M = 0.45,
CG = 10%, Tail = 100%
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Figure 99. 3FL-DYN / 6DOF CFD Trajectory Comparison for M = 0.45, CG = 10%, Tail =
100%
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Figure 100. 6DOF CFD Non-dimensional Psi vs. Time for M = 0.45, CG = 10%, Tail = 100%
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Figure 101. Non-dimensional Theta vs. Time 3FL-DYN / 6DOF CFD comparison for M = 0.6,
CG = 10%, Tail = 100%
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Figure 102. 3FL-DYN / 6DOF CFD Trajectory Comparison for M = 0.6, CG = 10%, Tail =
100%
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Figure 103. 6DOF CFD Non-dimensional Psi vs. Time for M = 0.6, CG = 10%, Tail = 100%
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Figure 104. Non-dimensional Theta vs. Time 3FL-DYN / 6DOF CFD comparison for M = 0.3,
CG = 30%, Tail = 100%
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Figure 105. 3FL-DYN / 6DOF CFD Trajectory Comparison for M = 0.3, CG = 30%, Tail =
100%
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Figure 106. 6DOF CFD Non-dimensional Psi vs. Time for M = 0.3, CG = 30%, Tail = 100%
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Figure 107. Non-dimensional Theta vs. Time 3FL-DYN / 6DOF CFD comparison for M = 0.45,
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Figure 108. 3FL-DYN / 6DOF CFD Trajectory Comparison for M = 0.45, CG = 30%, Tail =
100%
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Figure 109. 6DOF CFD Non-dimensional Psi vs. Time for M = 0.45, CG = 30%, Tail = 100%
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Figure 110. Non-dimensional Theta vs. Time 3FL-DYN / 6DOF CFD comparison for M = 0.6,
CG = 30%, Tail = 100%
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Figure 111. 3FL-DYN / 6DOF CFD Trajectory Comparison for M = 0.6, CG = 30%, Tail =
100%
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Figure 112. 6DOF CFD Non-dimensional Psi vs. Time for M = 0.6, CG = 30%, Tail = 100%
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