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ABSTRACT 

 

 

AERODYNAMIC AND THREE-DEGREE-OF-FREEDOM FLIGHT 

MECHANICS ANALYSIS OF A SLENDER BODY OF RECTANGULAR CROSS 

SECTION 

 

 

 

Selimhocaoğlu, Bahri Tuğcan 

M. Sc., Department of Aerospace Engineering 

Supervisor   : Prof. Dr. Yusuf Özyörük 

Co-Supervisor : Prof. Dr. Nafiz Alemdaroğlu 

     

June 2014, 108 pages 

 

A slender body with rectangular cross section is considered as an aircraft 

countermeasure for self-protection purposes as a decoy. An initial design is 

necessary, for the detailed aerodynamic design of the decoy. For quick initial design 

purposes, three-degree-of-freedom (longitudinal, vertical, pitching) dynamic analyses 

of the decoy are carried out. The aerodynamic coefficients for the decoy are obtained 

first at different Mach numbers, angles of attack, and tail sizes with two different 

methodologies which are DatCOM and steady CFD analyses utilizing RANS. The 

comparison of these two methodologies showed that CFD results are more reliable 

than the DatCOM results. The aerodynamic coefficients are then input to a code 

numerically implementing the 3DOF motion of the decoy at different Mach numbers, 

center of gravity values and tail sizes. The aerodynamic coefficients necessary for 
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this method are obtained assuming quasi-steady conditions exist, that is the angle of 

attack corresponding to the time of 3DOF simulation is frozen and aerodynamic 

coefficients are computed accordingly. For the assessment of the initial design 

methodology, grid independence, selection of time step for both the numerical 

implementation and the transient CFD analyses are considered. Also, the comparison 

of transient 3DOF CFD and 6DOF CFD analyses are carried out as an evaluation of 

3DOF approach. The matrix of results obtained from the 3DOF numerical 

implementation are compared with the transient 6DOF CFD analyses. According to 

the results, provided the decoy has static stability, the 3DOF initial design 

methodology is able to capture the trend of the parameter variations, the trajectory of 

the decoy and the pitching angle oscillations in a conservative manner. Hence, this 

approach is deemed sufficient for initial design purposes of the decoy.  

 

Keywords: Decoy, Slender Body, Rectangular Cross Section, Initial Design, 3DOF, 

Flight Mechanics, CFD, DatCOM, Fluent.  
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ÖZ 

 

 

DİKDÖRTGEN KESİTLİ İNCE UZUN BİR GÖVDENİN AERODİNAMİK VE 3 

SERBESTLİK DERECELİ UÇUŞ MEKANİĞİ ANALİZİ 

 

 

 

Selimhocaoğlu, Bahri Tuğcan 

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü 

       Tez Yöneticisi                : Prof. Dr. Yusuf Özyörük 

    Ortak Tez Yöneticisi      : Prof. Dr. Nafiz Alemdaroğlu 

       

Haziran 2014, 108 sayfa 

 

Dikdörtgen kesit alanlı bir aerodinamik gövde uçaklarda kendini koruma amacı ile 

kullanılacaktır. Aerodinamik gövdenin tasarımını yapabilmek için, bir ilk tasarıma 

ihtiyaç duyulmaktadır. İlk tasarıma hızlı bir şekilde erişebilmek için 3 serbestlik 

derecesinde (yatay, dikey ve yunuslama yönlerinde) dinamik analizler 

gerçekleştirilmesine karar verilmiştir. Öncelikle gövdenin aerodinamik katsayılarını 

bulabilmek için farklı hızlarda, hücum açılarında ve kuyruk alanı değerlerinde hem 

DatCom kullanılmış hem de zamandan bağımsız Navier Stokes denklemlerini çözen 

HAD (Hesaplamalı Akışkanlar Dinamiği) analizleri koşturulmuştur. Yapılan 

karşılaştırmalara göre HAD sonuçlarının söz edilen aerodinamik gövde için daha 

güvenilir olduğu değerlendirilmiştir. Elde edilen aerodinamik katsayılar, dinamik 

analizleri gerçekleştiren bir koda girdi olarak sağlanmıştır. Kod, aerodinamik 

gövdenin dinamik hareketini farklı Mach sayılarında, ağırlık merkezi değerlerinde ve 

kuyruk boyutlarında 3 serbestlik derecesinde zamandan bağımsız olarak elde edilen 
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aerodinamik katsayılarla hesaplama yeteneğine sahiptir. Zaman adımı, çözüm ağı ve 

bazı aerodinamik türevlerin (yunuslama sönümlemesi) etkileri HAD analizleri ve kod 

üzerinde incelenmiştir. Koddan elde edilen hıza, ağırlık merkezine ve kuyruk 

boyutuna bağlı sonuç matrisi, zamana bağlı öncelikle üç, daha sonrasında altı 

serbestlik derecesine sahip HAD analiz matrisi ile karşılaştırılmıştır. Elde edilen 

sonuçlara göre, aerodinamik gövde boylamasına durağan kararlılığa sahip olduğu 

sürece 3 serbestlik dereceli kod, incelenen analiz matrisindeki parametrelerin 

değişim eğilimlerini, aerodinamik gövdenin yörüngesini ve yunuslama açısındaki 

salınımları korunumlu bir şekilde yakalayabilmiştir. Bu sebeple yöntem, aerodinamik 

gövdenin ön tasarımını yapabilmek için yeterli bulunmuştur. 

Anahtar kelimeler: Aerodinamik Gövde, Dikdörtgen Kesit Alanı, Ön Tasarım, 3 

serbestlik dereceli, Uçuş Mekaniği, DatCOM, HAD (Hesaplamalı Akışkanlar 

Dinamiği), Fluent. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1 BACKGROUND 

A decoy is defined as “something designed to deceive an enemy or divert its 

attention”. [1] For military aviation purposes, decoys are generally utilized as 

countermeasures such as flares (Figure 1) for protection against infrared-homing 

missiles or countermeasures that deploys electronic warfare methods to deceive 

radar-guided missiles. These decoys produce a more favorable target for the missile 

to track; higher infrared emission etc., thus protecting the aircraft. (Figure 2) As they 

are expendable, the decoys generally do not have control infrastructures, but some 

have stabilizing surfaces due to initial high angle of attack values they are exposed 

to. 

 

 

 

Figure 1. ChemRing Flare CM 218 K7 Type 1 CounterMeasure [2] 



2 

 

 

 

Figure 2. Utilization of Flare Countermeasure [3] 

Whenever a decoy is released in flight, there are basically two requirements for the 

decoy to satisfy: safe separation from the aircraft and effectiveness, which is the 

ability to deceive the threat. These two requirements should be investigated in detail. 

Safe separation is always a requirement for any store (a bomb, rocket, fuel tank, 

electronic warfare pod, decoy etc.) which is released from an aircraft during flight. 

Otherwise, flight safety might be at risk due to a damaged crucial aerodynamic 

surface or an aircraft system. Essentially, the decoy should not collide with the 

aircraft. As an example, Figure 3 shows the seperation of a 600 gallon fuel tank on 

an F-111A aircraft, which was not able to satisfy the safe separation requirement 

resulting in the loss of the right horizontal tail. [4] 

 

Figure 3. Unsafe Seperation of a 600 Gallon Fuel Tank from F-111A Aircraft [4]  

javascript:ShowLargerImageWindowName('ew108_6','/article_images/large/ew108_6.jpg')
javascript:ShowLargerImageWindowName('ew108_2','/article_images/large/ew108_2.jpg')
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The ability of the decoy to deceive the threat depends not only on the effectiveness of 

the methods it employs, but also the flight path of the aircraft as well as that of the 

decoy. Today, some seekers have algorithms which may be able to notice the 

differences between the horizontal speed of the aircraft and the decoy, with the help 

of Doppler effect like a Police radar. [5] For instance, if a decoy’s flight path is 

perpendicular to the flight path of an aircraft, the seeker may be able to understand 

the impossibility of the aircraft to suddenly decrease its speed in a very short amount 

of time thus making the decoy ineffective. In order to remedy this situation, the 

decoy should be able to mimic the flight path of the aircraft just long enough to 

deceive the threat. In addition, if the decoy is an electronic countermeasure, due to 

the placement of antennas and such, the orientation of the decoy is going to be 

crucial. 

From the aerodynamics point of view of such decoys, the design process can be 

problematic. In order to satisfy the two basic requirements mentioned above, the 

aerodynamic loads, moments acting on the decoy and the aerodynamic derivatives of 

the decoy both in the carriage and after release phase should be known in all 

directions. This is due to the fact that the decoy is actually a six-degree-of-freedom 

(6DOF) system. Besides the decoy itself, the attitude history of the aircraft should be 

known. This includes the maneuvering (level turn, pushdown etc.), hence the 

position, orientation and the flowfield, along with the flight conditions (altitude, flow 

regime) and the ejector forces and moments. Therefore, a huge matrix of separation 

conditions awaits the aerodynamic designer of the decoy.  

In order to design such a decoy, the designer needs such a full set of aerodynamic 

data for the decoy and the aircraft. This set includes the forces and moments acting 

on the decoy at different Mach numbers, angles of attack, angles of sideslip as well 

as the aerodynamic derivatives like the pitch, yaw, roll damping and stiffness at 

different angular rates and accelerations. The designer might obtain this set by means 

of computational fluid dynamics analyses (CFD), wind tunnel testing or flight 

testing. However, before spending a big effort on obtaining the set of aerodynamic 

data needed, a problem emerges. The design process is iterative. Hence, there should 

be an initial design of the decoy to begin the iteration process, as wind tunnel and 

flight testing would be time-consuming and costly for an initial design. Although, 
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CFD analyses are time-consuming and costly as well, compared to testing, they are 

still cheaper for an initial design approach. 

 

1.2 OBJECTIVE OF THE THESIS 

As a consequence of the above discussions, it may be concluded that the designer 

needs a fast initial design tool to begin this iterative design process. The goal is to 

develop and validate a fast and cheap initial aerodynamic design methodology for a 

decoy. The methodology basically consists of the numerical integration of 3-degree-

of-freedom (3DOF) flight equations in a quasi-steady manner. These equations 

model the aerodynamics of the decoy with the help of tabulated aerodynamic data. 

The methodology is validated by comparing the results obtained with transient 6-

degree-of-freedom CFD results, in terms of trajectory, orientation and time-history of 

the decoy. The flowfield of CFD results are investigated as well. During the 

validation phase, the code results are not expected to be identical to the 6DOF 

transient CFD results, they are just expected to capture the physics of the problem. 

 

1.3 SCOPE AND OUTLINE OF THE THESIS 

This study is divided into six chapters. Chapter 1 gives some background information 

about decoys as well as the design methodology of a decoy. In Chapter 2, the 

theoretical background of flight mechanics as well as the workflow and the 

development of the numerical implementation is explained. In Chapter 3, the 

aerodynamic coefficients obtained from different calculation methods are compared. 

In Chapter 4, an assessment of the design methodology is presented, which involves 

numerical work on grid independence and time step selection for both the numerical 

implementation and the transient CFD analyses. Also, it includes the addition of an 

aerodynamic derivative to the numerical implementation as well as comparisons of 

transient 3DOF and 6DOF CFD analyses with these additional terms as an evaluation 

of 3DOF assumption. In Chapter 5, the results obtained from transient CFD analyses 

and the 3DOF methodology are compared and discussed thoroughly to validate the 
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approach in this study; while Chapter 6 consists of conclusion remarks and possible 

future work. 
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CHAPTER 2 

 

 

THEORY AND NUMERICAL IMPLEMENTATION 

 

 

 

In this chapter, the flight mechanics theory of an object in 6DOF flight, the reduction 

of 6DOF equations to 3DOF equations and the numerical implementation of 3DOF 

equations are discussed. The axes systems are shown on a generic geometry with 

circular cross-section. 

 

2.1 COORDINATE SYSTEMS 

2.1.1 Body-Fixed Coordinate System 

 

 

 

Figure 4. The Body Coordinate System 
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Body coordinate system translates and rotates with the aircraft and is denoted by the 

subscript “B”. In this coordinate system, 𝑥𝐵-axis points towards the nose and 𝑦𝐵-axis 

points towards the right side of the aircraft while the 𝑧𝐵-axis forms a right hand rule 

as illustrated in Figure 4. The origin of the coordinate system is the center of gravity 

(c.g.) of the aircraft. 𝑥𝐵-axis is the roll, 𝑦𝐵-axis is the pitch and 𝑧𝐵-axis is the yaw 

axis of the aircraft. [6] 

2.1.2 Vehicle Carried Frame of Reference 

 

 

 

Figure 5. The Vehicle Carried Frame of Reference 

This coordinate system is an “inertial coordinate system” which basically means that 

a linear accelerometer or a rate gyro would detect zero linear or angular acceleration 

if they were moving with the inertial coordinate system. Newton’s laws of motion is 

only valid if they are written in an inertial coordinate system. [6] 

Different from the body fixed coordinate system, the vehicle carried coordinate 

system does not rotate with the aircraft; though it translates with the aircraft. It is 

denoted by the subscript “V”. The origin of the coordinate system is the center of 

gravity of the aircraft. The 𝑥𝑉-axis points towards North (N), 𝑦𝑉-axis points towards 

East (E) and 𝑧𝑉-axis is along the gravity direction as can be seen from Figure 5. [7] 

For ease, the direction of flight is always towards North in this study. 
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2.1.3 Wind Frame of Reference 

 

 

 

 

Figure 6. The Wind Frame of Reference 

This coordinate system is derived from the local air around the aircraft. It is denoted 

by the subscript “w”. The origin of the coordinate system is the center of gravity of 

the aircraft. The 𝑥𝑤 -axis points towards the local vehicle relative atmospheric 

movement, 𝑧𝑤-axis is perpendicular to 𝑥𝑤-axis and in the symmetry plane of the 

aircraft, while the 𝑦𝑤-axis forms a right-handed rule as can be seen from Figure 6. [6] 
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2.2 COORDINATE SYSTEM TRANSFORMATIONS 

Any coordinate system can be transformed into one another, with the help of a 

sequence of three rotations with three different angles.  

 

2.2.1 Vehicle Carried to Body Fixed Coordinate System Transformation 

During the transformation of the vehicle carried coordinate system to the body fixed 

coordinate system, the angles are defined as the “Euler angles”, if the transformation 

is initiated about the 𝑧𝑣 -axis and continued with the new 𝑦1 -axis and 𝑥2 -axis 

respectively. The angle about the 𝑧𝑣-axis transformation is defined as the “yaw”, 𝑦1-

axis transformation is the “pitch” and 𝑥2 -axis transformation is the “roll” angle. 

Figure 7 shows the Euler angles and the defined transformations. [6] 

 

  

 

Figure 7. The Three Transformations and Euler Angles 
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For instance, for the transformation around the 𝑧𝑉 -axis (first transformation), the 

following equations can be written: 

 𝑧1 = 𝑧𝑉 (1) 

 𝑦1 = 𝑦𝑉  𝑐𝑜𝑠(𝜓)−𝑥𝑉 𝑠𝑖𝑛(𝜓)  (2) 

 𝑥1 = 𝑦𝑉 𝑠𝑖𝑛(𝜓) + 𝑥𝑉 𝑐𝑜𝑠(𝜓)  (3) 

which basically means that in order to make a transformation around the z-axis, the 

following transformation matrix can be written as: 

 

𝑅 = [
𝑐𝑜𝑠 𝜓 𝑠𝑖𝑛 𝜓 0
−𝑠𝑖𝑛 𝜓 𝑐𝑜𝑠 𝜓 0

0 0 1

] (4) 

If the transformation matrices are written for all of directions and multiplied 

together: 

 
[

𝑥𝐵

𝑦𝐵

𝑧𝐵

] = [

1 0 0
0 𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛 𝜙
0 −𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜙

] [
𝑐𝑜𝑠 𝜃 0 −𝑠𝑖𝑛 𝜃

0 1 0
𝑠𝑖𝑛 𝜃 0 𝑐𝑜𝑠 𝜃

] [
𝑐𝑜𝑠 𝜓 𝑠𝑖𝑛 𝜓 0
−𝑠𝑖𝑛 𝜓 𝑐𝑜𝑠 𝜓 0

0 0 1

] [

𝑥𝑉

𝑦𝑉

𝑧𝑉

] (5) 

Then the transformation can be denoted as: 

 

[

𝑥𝐵

𝑦𝐵

𝑧𝐵

] = 𝐿𝑉𝐵 [

𝑥𝑉

𝑦𝑉

𝑧𝑉

] (6) 

For the inverse transformation, which is from the vehicle carried coordinate system 

to the body coordinate system, the following statement can be used: 

 

[

𝑥𝑉

𝑦𝑉

𝑧𝑉

] = 𝐿𝑉𝐵
−1 [

𝑥𝐵

𝑦𝐵

𝑧𝐵

] (7) 
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2.2.2 Body-Fixed Coordinate System to Wind Axes Transformation 

Wind Axis coordinate system has one of the axes defined in the plane of symmetry 

of the aircraft. There is no rotation around the 𝑥𝑤-axis of the wind axis coordinate 

system. The drag force is along the 𝑥𝑤-axis with negative direction, the lift force is 

along the 𝑧𝑤-axis with negative direction, while the aerodynamic pitching moment is 

along the y-axis with a positive direction. Hence, there are only two angles defined 

for the wind axis coordinate system which are the angle of attack (𝛼) and the angle of 

sideslip (𝛽). Due to the positive sign convention of the angle of sideslip (Figure 6), 

the transformation is done with the negative sign of angle of sideslip. Applying the 

same method discussed in the section above, the transformation matrix is found out 

to be: 

 

[

𝑥𝑊

𝑦𝑊

𝑧𝑊

] = [

𝑐𝑜𝑠 𝛼 𝑐𝑜𝑠 𝛽 −𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝛽 −𝑠𝑖𝑛 𝛼
−𝑠𝑖𝑛 𝛽 𝑐𝑜𝑠 𝛽 0

𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛽 − 𝑠𝑖𝑛 𝛼 𝑠𝑖𝑛 𝛽 𝑐𝑜𝑠 𝛼
] [

𝑥𝐵

𝑦𝐵

𝑧𝐵

] (8) 

 

2.2.3 Derivative of a Vector using the Theorem of Coriolis 

When the derivative of a vector is written as components of a rotating frame (body-

fixed) with respect to a non-rotating frame (vehicle-carried, inertial), the theorem of 

coriolis should be applied. For the derivative of vector �⃗�  defined in an inertial 

coordinate system with respect to time, the theorem is written as: 

 𝑑�⃗� 

𝑑𝑡
|
𝐼

=
𝑑�⃗� 

𝑑𝑡
|
𝐵

+ 𝜔𝐵⃗⃗ ⃗⃗  ⃗ × 𝑉𝐵
⃗⃗⃗⃗  (9) 

where 𝜔𝐵⃗⃗ ⃗⃗  ⃗  is the angular velocity of the rotating coordinate system (body-fixed) with 

respect to the non-rotating frame. (vehicle-carried) 

In order to find the relation of the body angular rates (𝜔𝐵⃗⃗ ⃗⃗  ⃗ ) with Euler angular rates 

(𝜔𝑉⃗⃗ ⃗⃗  ⃗), a transformation is required. When the transformation is done from body-fixed 

coordinate system to the vehicle carried coordinate system according to the same 

order defined above, of the three transformations the last one is not necessary. This is 

due to the fact that at the last transformation, the x-axis, at which the rates are being 
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measured in two coordinate systems, are aligned; so that the values of the angular 

rates are the same. When the transformation is done according to the necessary two 

axes, the result is as follows: 

 

𝜔𝐵⃗⃗ ⃗⃗  ⃗ = [
𝑝
𝑞
𝑟
] = [

1 0 − 𝑠𝑖𝑛 𝜃
0 𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜃
0 − 𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 𝜃

]𝜔𝑉⃗⃗ ⃗⃗  ⃗ = [
1 0 − 𝑠𝑖𝑛 𝜃
0 𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜃
0 − 𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 𝜃

] [

�̇�

�̇�
�̇�

] (10) 

The inverse transformation, then, is found out to be: 

 

[

�̇�

�̇�
�̇�

] = [

1 𝑠𝑖𝑛 𝜙 𝑡𝑎𝑛 𝜃 𝑐𝑜𝑠 𝜙 𝑡𝑎𝑛 𝜃
0 𝑐𝑜𝑠 𝜙 − 𝑠𝑖𝑛 𝜙
0 𝑠𝑖𝑛 𝜙 𝑠𝑒𝑐 𝜃 𝑐𝑜𝑠 𝜙 𝑠𝑒𝑐 𝜃

] [
𝑝
𝑞
𝑟
] (11) 

 

2.3 A BODY IN 6DOF MOTION 

 

 

Figure 8. Forces and Moments acting on the Decoy with respect to body axes 

When a body is in motion, Newton’s 2nd Law of Motion should be satisfied, which is 

written for forces and moments separately: 

 
∑𝐹 = 𝑚𝑎 = 𝑚

𝑑�⃗� 

𝑑𝑡
|
𝐼

= 𝑚 (
𝑑�⃗� 

𝑑𝑡
|
𝐵

+ 𝜔𝐵⃗⃗ ⃗⃗  ⃗ ×  𝑉𝐵
⃗⃗⃗⃗ ) (12) 
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∑𝐺 =

𝑑�⃗⃗� 

𝑑𝑡
|
𝐼

=
𝑑�⃗⃗� 

𝑑𝑡
|
𝐵

+ 𝜔𝐵⃗⃗ ⃗⃗  ⃗  × 𝐻𝐵
⃗⃗⃗⃗  ⃗ (13) 

In this representation, the linear accelerations are given in a straightforward manner; 

while the angular accelerations are given as the time derivative of the angular 

momentum  �⃗⃗� . Also, the derivatives written according to the inertial coordinate 

systems are expanded as well. [6] 

For the forces acting on the body, as can be seen from Figure 8, given that the 

components of the vectors are written in the body-fixed coordinate system: 

 
𝐹𝐵
⃗⃗⃗⃗ = [

𝑋
𝑌
𝑍
] (14) 

 
∑𝐹 = 𝐹𝐵

⃗⃗⃗⃗ + 𝐿𝐵𝑉 [
0
0

𝑚𝑔
] (15) 

 
𝑉𝐵
⃗⃗⃗⃗ = [

𝑢
𝑣
𝑤

] (16) 

 𝑑�⃗� 

𝑑𝑡
|
𝐵

= [
�̇�
�̇�
�̇�

] (17) 

The 2nd Law of Motion can be written as: 

 
∑ 𝐹 = [

𝑋
𝑌
𝑍
] + 𝐿𝐵𝑉 [

0
0

𝑚𝑔
] = 𝑚 {[

�̇�
�̇�
�̇�

] + [
𝑝
𝑞
𝑟
] × [

𝑢
𝑣
𝑤

]} (18) 

   

Expanding the equation and rearranging: 

 
�̇� = 𝑟𝑣 − 𝑞𝑤 +

𝑋

𝑚
− 𝑔 𝑠𝑖𝑛 𝜃 (19) 

 
�̇� = 𝑝𝑤 − 𝑟𝑢 +

𝑌

𝑚
+ 𝑔 𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜃 (20) 



15 

 

 
�̇� = 𝑞𝑢 − 𝑝𝑣 +

𝑍

𝑚
+ 𝑔 𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 𝜃 (21) 

For the moments acting on the body, as can be seen from Figure 8, given that the 

components of the vectors are written in the body-fixed coordinate system: 

 

∑𝐺 = [
𝑋𝑚

𝑌𝑚

𝑍𝑚

] (22) 

 𝐻𝐵
⃗⃗⃗⃗  ⃗ = [𝐼𝐵] 𝜔𝐵⃗⃗ ⃗⃗  ⃗  (23) 

where IB is the inertia matrix denoted as: 

 

𝐼𝐵 = [

𝐼𝑥𝑥 −𝐼𝑥𝑦 −𝐼𝑥𝑧

−𝐼𝑥𝑦 𝐼𝑦𝑦 −𝐼𝑦𝑧

−𝐼𝑥𝑧 −𝐼𝑦𝑧 𝐼𝑧𝑧

] (24) 

where:  

 
𝐼𝑥𝑥 = ∫(𝑦2 + 𝑧2) 𝑑𝑚 (25) 

 
𝐼𝑦𝑦 = ∫(𝑥2 + 𝑧2) 𝑑𝑚 (26) 

 
𝐼𝑧𝑧 = ∫(𝑥2 + 𝑦2) 𝑑𝑚 (27) 

 
𝐼𝑥𝑦 = ∫(𝑥𝑦) 𝑑𝑚 (28) 

 
𝐼𝑦𝑧 = ∫(𝑦𝑧) 𝑑𝑚 (29) 

 
𝐼𝑥𝑧 = ∫(𝑥𝑧) 𝑑𝑚 (30) 
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It is clear that the inertia matrix is going to change with respect to an inertial 

coordinate system due to the fact that the mass distribution is going to change when 

the body rotates. Hence, the inertia matrix should be based on a coordinate system 

which is rotating and translating with the aircraft which is the body-fixed coordinate 

system. The reason behind the presentation of Newton’s 2nd Law of Motion with the 

body fixed coordinate system is the difficulty of calculating the mass moment of 

inertia matrix with an inertial coordinate system. With this information on mind, 

expanding the 2nd Law of Motion for the moments: 

 𝑑�⃗⃗� 

𝑑𝑡
|
𝐵

=
𝑑𝐼𝐵
𝑑𝑡

𝜔𝐵⃗⃗ ⃗⃗  ⃗ + 𝐼𝐵
𝑑𝜔𝐵⃗⃗ ⃗⃗  ⃗

𝑑𝑡
  (31) 

As the inertia of the decoy does not change with time, 𝑑𝐼𝐵 𝑑𝑡⁄  term is zero, resulting 

in: 

 

∑𝐺 =[

𝑋𝑚

𝑌𝑚

𝑍𝑚

] =
𝑑�⃗⃗� 

𝑑𝑡
|

𝐵

+ 𝜔𝐵⃗⃗ ⃗⃗  ⃗  × 𝐻𝐵
⃗⃗⃗⃗  ⃗ = 𝐼𝐵

𝑑𝜔𝐵⃗⃗ ⃗⃗  ⃗

𝑑𝑡
+ [

𝑝
𝑞
𝑟
] × [𝐼𝐵 [

𝑝
𝑞
𝑟
]] (32) 

where: 

 𝑑𝜔𝐵⃗⃗ ⃗⃗  ⃗

𝑑𝑡
= [

�̇�
�̇�
�̇�

] (33) 

 

2.4 THE 3DOF ASSUMPTION 

As the decoy is released during flight, the dynamics of the problem should be 

resolved in six-degrees-of-freedom due to the fact that when an aircraft is in flight, it 

might be in a level flight or in a climbing or a maneuvering flight condition. This 

means that it might have any arbitrary orientations and all of the translational and 

rotational components of accelerations and velocities may be involved. A three-

degrees-of-freedom dynamics model of a decoy is not going to be able to cover all of 

the components, but as explained before there is a need for a fast, cheap initial 

estimation tool. A 3DOF dynamics model requires less effort as there is only need 
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for the aerodynamic data of a three-dimensional model of a decoy in two-

dimensions.  

There are applications of making a 3DOF assumption to reduce the calculation time 

required to find the aerodynamic coefficients as well as the time required for the 

solution of the dynamics of the model. For instance, Brochu et. al [9] developed and 

compared a 3DOF missile model,which eliminates the moments on the missile, with 

a high fidelity 6DOF model. The missile was a generic DND AIM-7 air-to-air 

missile which had autopilot control. They found out that the calculation time is about 

1.7 times faster than the 6DOF model. The error for maximum range envelope 

calculations, which was the main purpose of the study, was 12% for 15km of 

altitude. 

During most of the flight, the aircraft is going to be in a trimmed level flight 

condition which means that sum of all of the forces and moments acting on the 

aircraft is zero. The heading, altitude and attitude of the aircraft are constant. If the 

decoy were to be released during such a flight condition, as long as there were no 

lateral perturbations in the flow around the decoy and the decoy is symmetrical in the 

lateral direction, ideally the decoy should have no motion on the lateral directions. 

Hence, the decoy should move strictly in the longitudinal direction eliminating the 

two rotational and one translational degree-of-freedoms, resulting in a three-degrees-

of-freedom motion. Of course, this is a strictly ideal case. The flowfield around the 

decoy most definitely is going to have lateral perturbations and the aircraft is going 

to be oscillating around both the longitudinal and rotational directions during flight 

affecting the release of the decoy. The strict movement of the decoy in longitudinal 

direction is only an assumption, a starting point. 

The three-degree-of-freedom assumption basically restricts the motion of the body 

into two dimensions with three dimensional forces and pitching moment. In this 

study, the body is limited to travel in the longitudinal directions implying that there 

are no lateral movement or rotation both initially and during the motion. In other 

words, the body is limited to travel in forward-backward (x) and upward-downward 

(z) direction and rotate around pitch axis in vehicle carried coordinate system. For 

ease, the direction of flight is always towards North in this thesis. 
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With these limitations, it is understood that: 

 𝑣 = 0 

𝑝 = 0 

𝑟 = 0 

�̇� = 0 

�̇� = 0 

�̇� = 0 

𝜙 = 0 

𝜓 = 0 

𝑌 = 0 

𝑋𝑚 = 0 

𝑍𝑚 = 0 

(34) 

 

Applying these conditions to the translational and rotational equations of motion and 

given that the mass and the inertia of the decoy is constant throughout the whole 

motion, three equations are obtained: 

 
�̇� = −𝑞𝑤 +

𝑋

𝑚
− 𝑔 𝑠𝑖𝑛 𝜃 (35) 

 
�̇� = 𝑞𝑢 +

𝑍

𝑚
+ 𝑔 𝑐𝑜𝑠 𝜃 (36) 

 
�̇� =

𝑌𝑚

𝐼𝑦𝑦
 (37) 

   

Examining these equations, it is seen that there is only one mass moment of inertia 

value required, which is the pitch moment of inertia. Given that there is no lateral 

motion, pitch moment of inertia is only dependent on the center of gravity location of 

the decoy, hence actually there is no need to write the equations of motion in the 

body axes. To be explained in Section 4.5.1, the flow solver utilizes an inertial frame 

of reference while calculating the motion of the decoy. The output is also given in 

this particular frame as well. In order to avoid another transformation from body axes 
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to an inertial frame of reference, the equations of motion written in the vehicle 

carried coordinate system are used in this study. In order to transform these equations 

to vehicle carried coordinate system, firstly the terms emerging from the coriolis 

theorem should be eliminated. This is done according to: 

 𝑑�⃗� 

𝑑𝑡
|
𝐼

=
𝑑�⃗� 

𝑑𝑡
|
𝐵

+ 𝜔𝐵⃗⃗ ⃗⃗  ⃗  × 𝑉𝐵
⃗⃗⃗⃗  (38) 

 𝑑�⃗� 

𝑑𝑡
|
𝐼

= [
�̈�
�̈�
�̈�
] =

𝑑�⃗� 

𝑑𝑡
|
𝐵

+ 𝜔𝐵⃗⃗ ⃗⃗  ⃗ ×  𝑉𝐵
⃗⃗⃗⃗ = [

�̇�
�̇�
�̇�

] + [
𝑝
𝑞
𝑟
] × [

𝑢
𝑣
𝑤

] (39) 

 

Eliminating the lateral terms due to the 3DOF assumption: 

 
[
�̈�
�̈�
�̈�
] = [

�̇�
�̇�
�̇�

] + [

𝑞𝑤
0

−𝑞𝑢
] (40) 

 

It should also be noted that the gravity force were transformed to body axes 

coordinate system as well. Untransforming the gravity force into vehicle carried 

coordinate system and using the relation above (40), the translational equations of 

motion transform into: 

 
�̈� =

𝑋𝑉

𝑚
 (41) 

 
�̈� =

𝑍𝑉

𝑚
− 𝑔 (42) 

 

As the pitch axis on the vehicle carried coordinate system and the y-axis on the body 

axis coordinate system is coincident, the following relation can be written: 

 
�̇� = �̈� =

𝑌𝑚

𝐼𝑦𝑦
=

𝑌𝑚,𝑉

𝐼𝑦𝑦
 (43) 
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The axes, forces and moments on the decoy can be seen from Figure 9. 

 

Figure 9. Forces and Moments acting on the Decoy with respect to inertial axes in 3DOF 

2.5 AERODYNAMIC FORCES AND MOMENTS ACTING ON 

THE BODY 

The decoy studied in this thesis has a tail geometry with no control infrastructure and 

no propulsion, hence the only forces and moment acting on the decoy are the 

aerodynamic forces and moments, which are drag, lift and the pitching moment 

created due to the asymmetrical pressure distribution on the longitudinal axis. They 

are defined in the wind axes coordinate system and given as: 

 𝐷 =
𝛾

2
 𝑃∞ 𝑀∞

2  𝑆𝑟𝑒𝑓 𝐶𝐷 (44) 

 𝐿 =
𝛾

2
 𝑃∞ 𝑀∞

2  𝑆𝑟𝑒𝑓 𝐶𝐿 (45) 

 𝑀 =
𝛾

2
 𝑃∞ 𝑀∞

2  𝑆𝑟𝑒𝑓 𝑙𝑟𝑒𝑓 𝐶𝑀 (46) 

   

Due to the three-degree-of-freedom assumption, there is no sideslip angle on the 

wind axis, which implies that the y-axis on the wind frame, body frame and vehicle 

carried coordinate system are coincident. Hence there is no need for the pitching 
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moment on the wind axis to be transformed. In order to transform the remaining 

aerodynamic forces from wind axes to vehicle carried coordinate system: 

 
𝐹𝑉 = [

𝑋𝐼

0
𝑍𝐼

] = 𝐿𝐵𝑉  𝐿𝑊𝐵 [
𝐷
0
𝐿
] = [

𝑐𝑜𝑠 𝜃 0 −𝑠𝑖𝑛 𝜃
0 1 0

𝑠𝑖𝑛 𝜃 0 𝑐𝑜𝑠 𝜃
] [

𝑐𝑜𝑠 𝛼 0 −𝑠𝑖𝑛 𝛼
0 1 0

𝑠𝑖𝑛 𝛼 0 𝑐𝑜𝑠 𝛼
] [

𝐷
0
𝐿
] (47) 

 𝑋𝐼 = 𝐷 𝑐𝑜𝑠(𝛼 + 𝜃) − 𝐿 𝑠𝑖𝑛(𝛼 + 𝜃) (48) 

 𝑍𝐼 = 𝐷 𝑠𝑖𝑛(𝛼 + 𝜃) + 𝐿 𝑐𝑜𝑠(𝛼 + 𝜃) (49) 

 𝑌𝑚,𝐼 = 𝑌𝑚 = 𝑀 (50) 

Note that the aerodynamic force and moment equations, a coefficient term is present. 

The coefficient term is dependent on Reynolds Number, which is a dimensionless 

number representing the flow characteristics, the orientation of the body according to 

the flow (𝛼, 𝛽), Mach number of the flow, which represents the compressibility of 

the flow, and the rates the body is rotating. Besides, the moment coefficient also 

depends on the center of gravity location of the decoy. [8] For the drag coefficient, 

with the help of Taylor Series expansion, the dependencies can be written such as: 

 𝐶𝐷(𝛼, 𝛽,𝑀∞, 𝑅𝑒, 𝑝, 𝑞, 𝑟) = 𝐶𝐷0(𝑅𝑒,𝑀∞) + 𝐶𝐷,𝛼𝛼 + 𝐶𝐷,𝛽𝛽 + 

𝐶𝐷,𝛼2𝛼2 + 𝐶𝐷,𝛽2𝛽2 + 𝐶𝐷,𝛼𝛽 𝛼 𝛽 + 𝐶𝐷,𝑝𝑝 + 𝐶𝐷,𝑞𝑞 + 𝐶𝐷,𝑟𝑟 + ⋯ 
(51) 

 

According to reference [8], drag, lift and moment coefficient for a missile can be 

written as: 

 𝐶𝐷(𝛼, 𝛽,𝑀∞, 𝑅𝑒, 𝑝, 𝑞, 𝑟) = 𝐶𝐷0(𝑅𝑒,𝑀∞) + 𝐶𝐷,𝛼2𝛼2 (52) 

 𝐶𝐿(𝛼, 𝛽,𝑀∞, 𝑅𝑒, 𝑝, 𝑞, 𝑟) = 𝐶𝐿0(𝑅𝑒,𝑀∞) + 𝐶𝐿,𝛼𝛼 (53) 

 𝐶𝑀(𝛼, 𝛽,𝑀∞, 𝑅𝑒, 𝑝, 𝑞, 𝑟, 𝑐𝑔) = 𝐶𝑀0(𝑅𝑒,𝑀∞, 𝑐𝑔) + 𝐶𝑀,𝛼𝛼 + 𝐶𝑀,𝑞𝑞 (54) 
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Note that, while the drag and lift coefficients are dependent on only angle of attack, 

the moment coefficient is also dependent on the pitching rate, which equals to �̇� with 

the three-degree-of-freedom motion assumption. The term 𝐶𝑀,𝑞  also known as the 

“pitch damping” term, is found out to be crucial for estimating the pitch angle, which 

is going to be explained in Section 4.3. 

The methodology to find the variation of drag, lift and moment coefficient with angle 

of attack, Reynolds Number and pitching rate for only the moment coefficient are 

going to be explained in Chapter 3 and Section 4.3.1. 

 

2.6 NUMERICAL IMPLEMENTATION 

The numerical implementation of the problem was done by using four modules: 

atmospheric conditions module, geometrical properties module, aerodynamic data 

table lookup module and the time integration module. The flowchart of the numerical 

implementation can be seen from Figure 10. The 3DOF Numerical Implementation is 

called 3FL-DYN throughout the thesis. (3DOF Flight Dynamics) 

 

Figure 10. The flowchart of 3FL-DYN 
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Atmospheric conditions module calculates the ISA conditions at which altitude the 

decoy is after its release and feeds this information to the aerodynamic data table 

lookup and time-integration module during both the initial calculations and the 

calculation cycle. 

Geometric properties module calculates the inertia and keeps the mass and the tail 

size information of the decoy. This module is not included in the calculation cycle, it 

is used only in the initial calculations phase due to the fact that the mass and the 

inertia of the decoy does not change as time progresses. 

Aerodynamic data table lookup module reads the aerodynamic data tables of the 

decoy at different Mach numbers and angles of attack and linearly interpolates these 

data according to the flight parameters of the decoy calculated by the time integration 

module. Then, it feeds the new information to the time integration module. Hence, it 

is used for both the initial calculations and calculation cycle. 

Time-integration module integrates the 3DOF flight equations over time to find the 

orientation and the position of the decoy after one time step utilizing Runge-Kutta 

time integration algorithm. It is fed by all of the other modules. It is the main element 

of the calculation cycle. 

 

2.6.1 Atmospheric Conditions Module 

The atmospheric conditions during decoy flight are calculated by using the 

International Standard Atmosphere (ISA) model. International Standard Atmosphere 

is a model [10] used to obtain the atmospheric conditions at different altitudes like 

density, pressure, temperature etc. The equations to find these atmospheric properties 

until the stratosphere (36089 ft) are given below, in where SL subscript defines the 

standard sea level conditions. 

 𝑇𝐴𝐿𝑇 = 𝑇𝑆𝐿 − 𝐿ℎ . ℎ𝐴𝐿𝑇 (55) 

 
𝑃𝐴𝐿𝑇 = 𝑃𝑆𝐿 (

𝑇𝐴𝐿𝑇

𝑇𝑆𝐿
)

𝑔/𝐿ℎ𝑅

 (56) 
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𝜌𝐴𝐿𝑇 = 𝜌𝑆𝐿

𝑃𝐴𝐿𝑇

𝑃𝑆𝐿
 
𝑇𝑆𝐿

𝑇𝐴𝐿𝑇
 (57) 

2.6.2 Geometric Calculations Module 

The center of gravity (c.g.) of the decoy is calculated from the longitudinal center 

(half-length) of the decoy. (Figure 11) If the center of gravity is located towards the 

nose of the decoy it is positive. The mass distribution of the decoy is assumed to be 

symmetrical on the lateral axes, so that the center of gravity only changes in the 

longitudinal axis. 

 

Figure 11. Center of Gravity Reference and Inertia Calculation 

Accordingly, the inertia along the pitch axis of the decoy varies with the center of 

gravity location of the decoy as well. During the inertia calculations, it is assumed 

that the decoy is a rectangular prism implying that the mass is distributed 

homogeneously along the decoy and the curvatures on the nose and sides of the 

decoy is not accounted for. After these assumptions, the pitch inertia variation with 

the center of gravity can be calculated. 

The mass moment of inertia of the decoy around the axis shown in Figure 11 whose 

center of gravity is located on the centroid of the volume is: 

 
𝐼 =

1

12
𝑚(𝑙2 + ℎ2) (58) 
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So when the center of gravity of the decoy is shifted, the parallel axis theorem should 

be applied. This is due to the fact that the mass moment of inertia is actually the 

superposition of a new rectangular block whose centroid is located on the center of 

gravity of the decoy named Block 1 and Block 2, which is the remaining part. Block 

1 and Block 2 are illustrated in Figure 11. 

Taking the even mass distribution assumption into account, the mass of Block 1 and 

Block 2 is as follows: 

 𝑚 = 𝑚1 + 𝑚2 (59) 

 
𝑚1 = (1 −

2𝑙𝑐𝑔

𝑙
)𝑚 (60) 

 
𝑚2 =

2𝑙𝑐𝑔

𝑙
𝑚 (61) 

Then, the mass moment of inertia of the block 1 is: 

 
𝐼1 =

1

12
𝑚1 [(𝑙 − 2𝑙𝑐𝑔)

2
+ ℎ2] (62) 

 
𝐼1 =

1

12
𝑚 (1 −

2𝑙𝑐𝑔

𝑙
) [(𝑙 − 2𝑙𝑐𝑔)

2
+ ℎ2] (63) 

Applying the parallel axes theorem, the mass moment of inertia of the block 2 is: 

 
𝐼2 =

1

12
𝑚2 [(2𝑙𝑐𝑔)

2
+ ℎ2] +

𝑚2𝑙

2
 (64) 

 

𝐼2 =
1

12

2𝑙𝑐𝑔

𝑙
𝑚 [(2𝑙𝑐𝑔)

2
+ ℎ2] +

2𝑙𝑐𝑔
𝑙

𝑚𝑙

2
 

(65) 

Adding the two together: 

 
𝐼 = 𝐼𝑦𝑦 =

1

12
𝑚(1 −

2𝑙𝑐𝑔

𝑙
) ((𝑙 − 2𝑙𝑐𝑔)

2
+ ℎ2) +

𝑙𝑐𝑔

6𝑙
𝑚(4𝑙𝑐𝑔

2 + ℎ2) + 𝑙𝑐𝑔𝑚 (66) 
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2.6.3 Aerodynamic Data Table Lookup Module 

The methodology to obtain the aerodynamic forces and moments acting on the decoy 

are to be explained in Chapter 3. Owing to the fact that the analyses were run at a 

matrix of certain conditions (angle of attack, Mach number etc.), the conditions 

required by the 3FL-DYN which falls between these conditions should be 

interpolated. All conditions covered are interpolated linearly. For instance, when the 

decoy has a flight Mach number of 𝑀 and angle of attack of 𝛼, the interpolation of 

lift coefficient of the decoy is done according to: 

 𝑀1 < 𝑀 < 𝑀2 

𝛼1 < 𝛼 < 𝛼2 

𝐶𝐿(𝛼,𝑀) = 𝐶𝐿(𝛼,𝑀1) +
𝐶𝐿(𝛼,𝑀2) − 𝐶𝐿(𝛼,𝑀1)

𝑀2 − 𝑀1
(𝑀 − 𝑀1) 

𝐶𝐿(𝛼,𝑀1) = 𝐶𝐿(𝛼1,𝑀1) +
𝐶𝐿(𝛼2,𝑀1) − 𝐶𝐿(𝛼1,𝑀1)

𝛼2 − 𝛼1
(𝛼 − 𝛼1) 

𝐶𝐿(𝛼,𝑀2) = 𝐶𝐿(𝛼1,𝑀2) +
𝐶𝐿(𝛼2,𝑀2) − 𝐶𝐿(𝛼1, 𝑀2)

𝛼2 − 𝛼1
(𝛼 − 𝛼1) 

(67) 

For the moment coefficient of the decoy, the interpolation for the angle of attack and 

Mach number is done exactly as the example for the lift coefficient above, but in 

addition another interpolation for the pitching rate is done: 

 𝑀1 < 𝑀 < 𝑀2 

𝛼1 < 𝛼 < 𝛼2 

𝐶𝑀0(𝛼,𝑀) = 𝐶𝑀0(𝛼,𝑀1) +
𝐶𝑀0(𝛼,𝑀2) − 𝐶𝑀0(𝛼,𝑀1)

𝑀2 − 𝑀1
(𝑀 − 𝑀1) 

𝐶𝑀0(𝛼,𝑀1) = 𝐶𝑀0(𝛼1,𝑀1) +
𝐶𝑀0(𝛼2, 𝑀1) − 𝐶𝑀0(𝛼1, 𝑀1)

𝛼2 − 𝛼1
(𝛼 − 𝛼1) 

𝐶𝑀0(𝛼,𝑀2) = 𝐶𝑀0(𝛼1,𝑀2) +
𝐶𝑀0(𝛼2,𝑀2) − 𝐶𝑀0(𝛼1,𝑀2)

𝛼2 − 𝛼1
(𝛼 − 𝛼1) 

 

(68) 
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𝐶𝑀,𝑞(𝛼,𝑀) = 𝐶𝑀,𝑞(𝛼, 𝑀1) +
𝐶𝑀,𝑞(𝛼,𝑀2) − 𝐶𝑀,𝑞(𝛼,𝑀1)

𝑀2 − 𝑀1
(𝑀 − 𝑀1) 

𝐶𝑀,𝑞(𝛼, 𝑀1) = 𝐶𝑀,𝑞(𝛼1,𝑀1) +
𝐶𝑀,𝑞(𝛼2,𝑀1) − 𝐶𝑀,𝑞(𝛼1,𝑀1)

𝛼2 − 𝛼1
(𝛼 − 𝛼1) 

𝐶𝑀,𝑞(𝛼,𝑀2) = 𝐶𝑀,𝑞(𝛼1,𝑀2) +
𝐶𝑀,𝑞(𝛼2,𝑀2) − 𝐶𝑀,𝑞(𝛼1, 𝑀2)

𝛼2 − 𝛼1
(𝛼 − 𝛼1) 

𝐶𝑀(𝛼,𝑀) = 𝐶𝑀0(𝛼,𝑀) + 𝐶𝑀,𝑞(𝛼,𝑀) 𝑞 

As stated in Section 2.6.2, the center of gravity is measured from the half length of 

the decoy with positive direction pointing towards the nose, the output of the 

methodology for obtaining the aerodynamic moments was taken out according to this 

reference point as well. In order to add the effect of center of gravity location to the 

moment coefficient, a recalculation of the moment coefficient according to the cg 

location of the decoy is done. From Figure 12, when the moment is taken according 

to the new cg location: 

 𝐶𝑀(𝑙𝑐𝑔) = 𝐶𝑀(𝑙𝑐𝑔 = 0) − 𝑙𝑐𝑔 (𝐶𝐿 𝑐𝑜𝑠 𝛼 + 𝐶𝐷 𝑠𝑖𝑛 𝛼) (69) 

 

Figure 12. Recalculation of Moment Coefficient 
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2.6.4 Time Integration Module 

Runge-Kutta methods are numerical methods involving successive steps that are 

used to solve differential equations. Runge-Kutta methods have different orders of 

accuracy. The classical Runge-Kutta method, which is a fourth-order method and 

sometimes referred to as RK4 method, is utilized in 3FL-DYN. RK4 method 

discretizes the time step that is being calculated into four steps: calculation is done at 

the beginning, the midpoint followed by a reiteration of the midpoint of the time 

interval and the end of the time interval with more weight on the values calculated at 

midpoint. [11]  

The 3DOF equations of motion in this thesis given in Section 2.4 are three second 

order ordinary differential equations (ODE) that depend on time. Writing the three 

2nd order ODE’s as six 1st order ODE’s with variable manipulation in terms of 

displacement and its derivatives (Figure 9): 

 
�̈� = 𝑉�̇� =

𝑋𝑉

𝑚
 (70) 

 
�̈� = 𝑉�̇� =

𝑍𝑉

𝑚
− 𝑔 (71) 

 
�̈� = �̇� =

𝑌𝑚,𝑉

𝐼𝑦𝑦
 (72) 

 �̇� = 𝑉𝑥 (73) 

 �̇� = 𝑉𝑧 (74) 

 �̇� = 𝑞 (75) 
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When RK4 is applied this system of equations and the variables are written as a 

vector 𝑋 : 

 

𝑋 =

[
 
 
 
 
 
𝑥
𝑧
𝜃
𝑉𝑥

𝑉𝑧

𝑞 ]
 
 
 
 
 

=

[
 
 
 
 
 

𝑥(𝑡, 𝑉𝑥)

𝑧(𝑡, 𝑉𝑧)
𝜃(𝑡, 𝑞)

𝑉𝑥(𝑡, 𝑉𝑥, 𝑉𝑧 , 𝜃)
𝑉𝑧(𝑡, 𝑉𝑥, 𝑉𝑧, 𝜃)
𝑞(𝑡, 𝑉𝑥, 𝑉𝑧, 𝜃, 𝑞)]

 
 
 
 
 

 (76) 

With the initial values written as a vector of 𝑋 0: 

 

𝑋 0 =

[
 
 
 
 
 
𝑥0

𝑧0

𝜃0

𝑉𝑥,0

𝑉𝑧,0

𝑞0 ]
 
 
 
 
 

 (77) 

Writing the gradients calculated at four different steps in the time interval for 

variable 𝑉𝑥 at time 𝑛, with a time step of 𝛥𝑡: 

 𝑘1,𝑉𝑥
= 𝑉𝑥(𝑡𝑛, 𝑉𝑥,𝑛, 𝑉𝑧,𝑛, 𝜃𝑛) (78) 

 
𝑘2,𝑉𝑥

= 𝑉𝑥 (𝑡𝑛 +
𝛥𝑡

2
, 𝑉𝑥,𝑛 + 𝑘1,𝑉𝑥

𝛥𝑡

2
, 𝑉𝑧,𝑛 + 𝑘1,𝑉𝑧

𝛥𝑡

2
, 𝜃𝑛 + 𝑘1,𝜃

𝛥𝑡

2
) (79) 

 
𝑘3,𝑉𝑥

= 𝑉𝑥 (𝑡𝑛 +
𝛥𝑡

2
, 𝑉𝑥,𝑛 + 𝑘2,𝑉𝑥

𝛥𝑡

2
, 𝑉𝑧,𝑛 + 𝑘2,𝑉𝑧

𝛥𝑡

2
, 𝜃𝑛 + 𝑘2,𝜃

𝛥𝑡

2
) (80) 

 𝑘4,𝑉𝑥
= 𝑉𝑥(𝑡𝑛 + ∆𝑡, 𝑉𝑥,𝑛 + 𝑘3,𝑉𝑥

∆𝑡, 𝑉𝑧,𝑛 + 𝑘3,𝑉𝑧
∆𝑡, 𝜃𝑛 + 𝑘3,𝜃∆𝑡) (81) 

 

Calculating the variable at the next time step 𝑛 + 1: 

 
𝑉𝑥,𝑛+1 = 𝑉𝑥,𝑛 +

1

6
(𝑘1,𝑉𝑥

+ 2𝑘2,𝑉𝑥
+ 2𝑘3,𝑉𝑥

+ 𝑘4,𝑉𝑥
)𝛥𝑡 (82) 
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Writing all the gradients for all the variables as a matrix and the integration as a 

matrix addition and multiplication: 

 

Xn+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =

[
 
 
 
 
 
xn+1

zn+1

θn+1

Vx,n+1

Vz,n+1

qn+1 ]
 
 
 
 
 

=

[
 
 
 
 
 
xn

zn

θn

Vx,n

Vz,n

qn ]
 
 
 
 
 

+
Δt

6

[
 
 
 
 
 
 
k1,x k2,x k3,x k4,x

k1,z k2,z k3,z k4,z

k1,θ k2,θ k3,θ k4,θ

k1,Vx
k2,Vx

k3,Vx
k4,Vx

k1,Vz
k2,Vz

k3,Vz
k4,Vz

k1,q k2,q k3,q k4,q ]
 
 
 
 
 
 

[

1
2
2
1

]   (83) 
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CHAPTER 3 

 

 

CALCULATION OF AERODYNAMIC COEFFICIENTS 

 

 

 

In this chapter, two different methodologies for calculating the aerodynamic 

coefficients of the decoy are compared with each other. One of the methodologies is 

a lower order method based on empirical data while the other is based on the 

numerical solution of the decoy flowfield.  

 

3.1 METHOD 1 – THE EMPIRICAL SOLUTION (DatCOM) 

For the empirical acquirement of the aerodynamic coefficients of the decoy, 

DatCOM [12] software was utilized. DatCOM is a rapid estimation tool which 

calculates the aerodynamic coefficients and derivatives of the input geometry. It uses 

these values to give an estimation about the aerodynamic stability and control 

characteristics of the body in seconds. DatCOM is able to make estimations about 

missiles, aircraft etc. by the calculation of aerodynamic coefficients and derivatives 

done utilizing a component build-up method based on experimental data. DatCOM 

can be used for preliminary aircraft and missile designs, so the embedded 

experimental data may not accommodate the Mach and Reynolds Number 

combination of the decoy.  

DatCOM has the capability to address many configurations such as body, wing-body, 

wing-body-horizontal tail etc., but for comparison purposes only the body 

configuration was used. [12] An example input file used for tutorials in DatCOM of a 

MIG-17 aircraft is given in Figure 13. 
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Figure 13. Sample DatCOM Input File for MIG-17 

 

In DatCOM, in order to model a body with a rectangular cross-section, the properties 

of different cross-sections at different longitudinal locations should be input. The 

parameters to model the body include the cross-sectional area, the periphery, 

planform half-width and the vertical coordinates at the lower/upper body surfaces. 

The center of gravity location of the body should be given as well. The nature of the 

cross-sectional parameters suggests that a true rectangular cross-section cannot be 

defined in DatCOM due to the fact that only height and width of a rectangle is 

enough to define a true rectangular cross-section. Besides, DatCOM has a limitation 

such that no external stores can be modeled because of the fact that it analyzes the 

body as a body of revolution. Due to this approach, separation from sides of the 

decoy caused by the blunt edges may not be modeled effectively. [12] 

DatCOM is also able to evaluate a configuration at different Mach numbers ranging 

from subsonic to hypersonic speeds at different altitudes. In this study, subsonic 

Mach numbers at subsonic flow region are considered. [12] 
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DatCOM has many limitations like the “body-of-revolution” approach and the 

possible non-existence of the Reynolds – Mach number range of the decoy, but as it 

can calculate aerodynamic data tables in seconds, it was decided to be evaluated. 

 

3.2 METHOD 2 – THE NUMERICAL SOLUTION 

For the numerical solution of the decoy, the commercial solver FLUENT was used. 

FLUENT is a computational fluid dynamics (CFD) solver utilizing the Reynolds-

Averaged Navier-Stokes (RANS) equations for steady or unsteady inviscid, turbulent 

and laminar flow problems. FLUENT has a variety of turbulence models like k-

omega, k-epsilon, Spalart-Allmaras etc. utilizing different wall treatment models as 

well as different discretization schemes. It is able to solve every flow regime such as 

subsonic, transonic, supersonic etc. [14] 

HyperMesh [13] is a pre-processor which is able to create both triangular and quad 

surface meshes for geometries. It has a CFD meshing algorithm that is able to create 

finer meshes on curved surfaces, while the mesh on the straight surfaces are 

coarsened. For boundary-layer and volume meshing, Tgrid [14] software which has 

well-defined algorithms embedded in FLUENT that can produce quality meshes was 

used.  

FLUENT also has the capability to solve the problems with parallel processes to 

speed up the analysis.  

 

3.2.1 Governing Equations 

For all types of flows, FLUENT solves the Reynolds-Averaged Navier-Stokes 

equations, which involves one conservation of mass (continuity) and three 

conservation of momentum equations in three directions. If the flow is compressible, 

due to the necessity for solving the density, the energy equation is also needed to be 

solved. As the static temperature variable emerges from the energy equation, the 

ideal gas law has to be solved as well. [15] 

When the decoy is ejected from the aircraft, it is exposed to the turbulent flowfield 

around the aircraft implying that the flow around the decoy is turbulent. Hence, 
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turbulence should also be included in the solution. In order to do this, FLUENT 

solves additional transport equations like kinetic energy transport equation. All these 

equations are given below. The subcripts 𝑖 and 𝑗 differ from 1 to 3. 

Continuity equation: 

 𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥𝑖

(𝜌𝑢𝑖) = 0 (84) 

The averaged momentum equations: 

 
𝜌 (

𝜕𝑢�̅�

𝜕𝑡
+ 𝑈𝑗

𝜕𝑢�̅�

𝜕𝑥𝑗
) =

𝜕

𝜕𝑥𝑗
(−�̅�𝛿𝑖𝑗 + 𝜇 (

𝜕𝑢�̅�

𝜕𝑥𝑗
+

𝜕𝑢�̅�

𝜕𝑥𝑖
) − 𝜌𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅ ̅) (85) 

where the terms on the right hand side of the equation is isotropic pressure 

component, viscous stress and Reynolds stresses respectively. 

Ideal gas law: 

 𝑃 = 𝜌𝑅𝑇 (86) 

Energy equation for a flow involving turbulent conductivity and viscous dissipation: 

 𝜕

𝜕𝑡
(𝜌𝐸) + 𝛻. [𝑢(𝜌𝐸 + 𝑃)] = 𝛻. (𝑘𝑒𝑓𝑓𝛻𝑇 + 𝜏𝑒𝑓𝑓̿̿ ̿̿ ̿. �⃗� ) (87) 

Kinetic energy transport equation: 

 
[
𝜕𝑘

𝜕𝑡
+ 𝑈�̅�

𝜕𝑘

𝜕𝑥𝑗

] = −
𝜕

𝜕𝑥𝑗

[
1

2
𝑢𝑖

′𝑢𝑗
′𝑢𝑗

′̅̅ ̅̅ ̅̅ ̅̅ +
1

𝜌
𝑝′𝑢𝑗

′̅̅ ̅̅ ̅ − 2𝜈𝑢𝑖
′𝑠𝑖𝑗

̅̅ ̅̅ ̅̅ ] − 𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅
𝜕𝑈�̅�

𝜕𝑥𝑗

− 2𝜈𝑠𝑖𝑗𝑠𝑖𝑗̅̅ ̅̅ ̅̅  (88) 

Where 𝑠𝑖𝑗  is the strain rate term and defined as: 

 
𝑠𝑖𝑗 =

1

2
(
𝜕𝑢𝑖

′

𝜕𝑥𝑗
+

𝜕𝑢𝑗
′

𝜕𝑥𝑖
) (89) 

3.2.2 Turbulence Modeling 

Turbulent flow is the flow of a fluid in which its vorticity at any point and time is 

random and has a wide and continuous distribution of length and time scales. The 

flow is essentially unsteady, three-dimensional and any flow quantity is random in 
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time and space. [16] Turbulent flow problem has its own set of differential equations, 

but solving them, called the Direct Numerical Simulation (DNS), is computationally 

expensive due to very fine mesh requirements in the order of billions as well as the 

complexity of equations. [17] 

Luckily, the mean quantities of turbulent flows are deterministic implying that if the 

governing equations are to be time-averaged, the fluctuations are going to be 

smoothed out, decreasing the computational expense. This is achieved by using 

Reynolds-Averaging and filtering methods on the turbulent Navier-Stokes equations. 

However, these methods yield some unknowns, resulting in the “Closure problem”. 

[15] The problem with the averaging is the number of unknowns is always one 

higher than the number of equations. At this point, the turbulence modeling is 

utilized in such a way that using the known quantities, the unknown parameters are 

simulated.  

There are many turbulence models with each having their strengths and weaknesses 

for different flow solutions: 

Spalart-Allmaras model is a one-equation low-cost model that solves a Reynolds 

Averaged transport equation for the eddy viscosity. Generally, it is used for wall-

bounded flow with mild separation like supersonic/transonic flows over airfoils, 

boundary layer flows etc. [18] 

k-omega model is a two-equation model that solves transport equations for both the 

turbulent kinetic energy and omega, which is the ratio of turbulent dissipation rate to 

turbulent kinetic energy, k. This model is superior for wall-bounded low Reynolds 

number flows due to the fact that it solves the viscous sublayer with no wall-

treatment. As this model resolves the viscous sublayer, it requires very fine mesh 

near the wall increasing the computational cost. [18] 

k-epsilon model is a two equation model that solves transport equations for both the 

turbulent kinetic energy and turbulent dissipation rate. This model is the most widely 

used turbulence model in the industry for especially external flow problems. It is 

proven to be sufficiently accurate for a wide range of flow problems. It also has 

different formulations such as RNG k-epsilon and Realizable k-epsilon. They are 
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computationally lower-cost than k-omega model due to the fact that near the walls, a 

wall treatment model is applied since the viscous sublayer is not resolved. [18] 

There are also three, four equation models such as Transition k-kl-omega, Transition 

SST as well as Reynolds Stress Model (RSM) which have seven extra equations, but 

due to computational expenses they are not utilized in flow solutions. 

Realizable k-epsilon model was selected due to the fact that it handles separation, 

recirculation, swirling etc. better than the other k-epsilon models with being easiest 

to converge among them. [14] 

 

3.2.3 Boundary Conditions 

In this study, pressure-farfield boundary condition was utilized for a spherical 

domain. Pressure farfield is a boundary condition that models the free-stream 

conditions at infinity, using the freestream Mach number and static conditions such 

as temperature. [14] This boundary condition can only be applied if the flow is 

compressible. FLUENT extrapolates the flow variables inside of the domain starting 

from the freestream conditions. 

Adiabatic wall boundary condition with no slip was used for the decoy geometry. 

 

3.2.4 Solver Approaches And Discretization 

FLUENT has two types of solvers: Pressure-Based Solver and Density Based Solver. 

In the Pressure-Based Approach, pressure is an unknown variable in the governing 

equations and the density of the flow is derived from the ideal-gas law; while in the 

density based approach, density is the unknown and pressure is the one being derived 

from the ideal-gas law. Density-based approach yields better results when a strong 

coupling between momentum, pressure and density is expected, like a high-speed 

compressible flow with combustion. Hence, in this thesis the pressure-based 

approach was used. [14] 

FLUENT has two types of Pressure-Based solver approaches: Segregated and 

Coupled. As the name implies, Segregated approach solves the pressure and 



37 

 

momentum sequentially; while the Coupled approach solves them at the same time. 

Although the simultaneous solution of pressure and momentum results in higher 

memory usage, it yields better results than the Segregated approach. Hence, in this 

study the Coupled approach was utilized. [14] 

FLUENT keeps the scalar values stored at cell centers. For the flux terms at the cell 

faces, upwind scheme is utilized. In first-order upwind scheme, it is assumed that the 

values at the cell centers are equal to the values at cell faces, while in higher-order 

upwind scheme Taylor Series expansion of the values at cell centers to find the 

values at cell faces. For pressure, density, momentum, energy, turbulent dissipation 

rate and turbulent kinetic energy, second-order upwind discretization schemes were 

utilized. 

For the evaluation of diffusive fluxes, velocity derivatives etc., the gradients of some 

solution variables, such as pressure, should be found. There are three methods in 

FLUENT to calculate the gradients of solution variables, from which the Green-

Gauss Node-Based was selected due to the fact that although it is computationally 

more intensive, it minimizes false diffusion, is more accurate and appropriate for 

unstructured meshes. [14] 

 

3.2.5 Computational Grid Generation 

For grid generation, two preprocessors were used: HyperMesh for unstructured 

surface mesh generation for both the domain and the decoy; TGrid for boundary 

layer and tetrahedral flow domain meshes. 

For the decoy surface mesh generation, the step model of the decoy geometry was 

imported into HyperMesh and some modifications were made in order to have better 

quality mesh. Taking the necessary first layer height emerging from the required y-

plus value for wall-treatment model into account, surface mesh sizes was selected. 

This is important due to the fact the aspect ratio between the first prism layer cell and 

the surface mesh should not be too high to obtain better numerical accuracy. Besides, 

in the curved surfaces of the geometry as well as the tail section, “R-tria” mesh type, 

which is actually a triangular mesh type with a right angle, was utilized due to the 

fact that especially the curved surfaces are more accurately defined. [13] Figure 14 
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and Figure 15 show the surface mesh of the decoy for Grid #2 around the nose and 

tail regions. 

 

 

Figure 14. The Surface Mesh Around the Nose Region of the Decoy (Grid #2) 

 

Figure 15. The Surface Mesh Around the Tail Region of the Decoy (Grid #2) 

For the domain surface mesh generation, in order to find the surface mesh size of the 

domain geometry, the tethahedral size growing with a constant rate from the 

boundary layer of the decoy was taken into account. Figure 16 shows the domain 

surface mesh. 
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Figure 16. The Surface Mesh Around the Domain 

After the surface mesh generation was finalized, the mesh was imported to TGrid 

software to first generate the boundary layer prisms, then the domain mesh 

tetrahedrals. 

For boundary layer generation, a first layer height which is going to yield a y-plus 

value between 30 and 300, at different flow velocities was selected. This y-plus 

interval emerges from the turbulence and wall-treatment model selection. [18] In 

order to estimate the boundary layer thickness, a turbulent flat plate boundary layer 

thickness formulation was utilized. As the decoy geometry is simple, prism layer 

mesh generation was done with a constant geometric growth rate methodology. The 

number of prism layers is dependent on the estimated boundary layer thickness. 

Figure 17 shows the overall prism layer thickness distribution around the decoy, 

while Table 1 represents the prism layer mesh parameters. 

 

Table 1. Prism Layer Mesh Parameters 

 

First Layer Thickness (mm) 0.1 

Number of Prism Layers 11 

Growth Rate 1.2 
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Figure 17. Overall Prism Layer Thickness Distribution Around the Decoy 

The flow domain is a sphere, whose radius is fifteen times bigger than the length of 

the decoy. This was done so that the flow around the geometry does not affect the 

freestream boundary conditions. 

The selected mesh size and its reasons of selection are going to be explained in the 

grid independence study at Section 4.4. 

 

3.3 METHODOLOGY COMPARISON 

To compare the two methodologies, the same decoy body was modeled at two 

different Mach numbers, one of which had compressibility effects, and the drag, lift 

and moment coefficients of the decoy were found. The decoy body was solved at 

angles of attack up to 90° with an interval of 5° between them for both 

methodologies.  

Between Figure 18 and Figure 23, the comparison between DatCOM and FLUENT 

for drag, lift and moment coefficients at Mach numbers of 0.3 and 0.6 are shown, 

respectively. 
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Figure 18. Comparison of drag coefficients calculated by two methodologies at M=0.3 

 

Figure 19. Comparison of lift coefficients calculated by two methodologies at M=0.3 
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Figure 20. Comparison of pitching moment coefficients calculated by two methodologies at 

M=0.3 

 

Figure 21. Comparison of drag coefficients calculated by two methodologies at M=0.6 
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Figure 22. Comparison of lift coefficients calculated by two methodologies at M=0.6 

 

 

Figure 23. Comparison of pitching moment coefficients calculated by two methodologies at 

M=0.6 
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The figures clearly show that the results of two methodologies are not similar. 

Generally, DatCOM predicts smaller forces and moments. The differences between 

two methodologies are especially greater for lift and moment coefficients. For M = 

0.6, the lift coefficient predicted by FLUENT is two and a half times the value 

predicted by DatCOM at 50° angle of attack. Besides, in some cases the trends of the 

results are not similar either. For instance, in Figure 23 the pitching moment peak 

predicted at 55° angle of attack is not observable in DatCOM predictions, while in 

Figure 21, the increase in drag due to accelerated flow reaching transonic flow region 

on the nose area is not predicted by DatCOM method. 

Based on such differences observed, FLUENT solutions were decided to be the 

reference solutions because of higher level of equations solved with compressibility 

and seperated boundary layer effects. The reasons behind the lack of accuracy of 

DatCOM, its limitations was explained in Section 3.1. 
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CHAPTER 4 

 

 

ASSESSMENT OF THE METHODOLOGY 

 

 

 

4.1 NON-DIMENSIONAL QUANTITIES 

In this study, from this point on, time histories of Euler Angles and angular rates / 

accelerations as well as trajectories are going to be given as results. These quantities 

are non-dimensionalized with a reference value and given with the subscript of “nd”. 

They are non-dimensionalized as: 

 
𝑡𝑛𝑑 =

𝑡

𝑡𝑟𝑒𝑓
× 100 

𝑥𝑛𝑑 =
𝑥

𝑙𝑟𝑒𝑓
 

ℎ𝐴𝐿𝑇,𝑛𝑑 =
ℎ𝐴𝐿𝑇

ℎ𝐴𝐿𝑇,𝑟𝑒𝑓
× 100 

𝜙𝑛𝑑 =
𝜙

𝜙𝑟𝑒𝑓
 

𝜃𝑛𝑑 =
𝜃

𝜃𝑟𝑒𝑓
 

𝜓𝑛𝑑 =
𝜓

𝜓𝑟𝑒𝑓
 

𝑞𝑛𝑑 =
𝑞

𝑞𝑟𝑒𝑓
 

(90) 
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�̇�𝑛𝑑 =
�̇�

�̇�𝑟𝑒𝑓
 

where 𝑙 is the reference length and ℎ𝐴𝐿𝑇,𝑟𝑒𝑓 is the reference pressure altitude of the 

decoy. 𝑡𝑟𝑒𝑓 is the total flight duration of interest. 

 

4.2 TIME-STEP SELECTION 

Both the 3FL-DYN and the transient CFD analyses are based on the integration of 

certain variables like acceleration or velocity with time. The time step utilized in the 

integrations directly affects the accuracy of the integrated quantities, but a very small 

time step is going to increase the calculation cost in terms of time and computational 

power. Hence, a time step which is going to yield the sufficient accuracy with an 

optimization of calculational cost should be selected. 

 

4.2.1 Time Step Selection for 3FL-DYN 

For the evalulation of the time step size for 3FL-DYN, pitch angle (𝜃) and pitching 

rate (𝑞) vs. time graphs are plotted for different time step sizes for a dynamically 

stable case at two different Mach numbers as can be seen from Figure 24 to Figure 

27. Pitch angle and pitching rate time histories are picked for time step selection, as 

these quantities are most prone to numerical errors. 

The graphs show that effect of time step size on the accuracy of the solution is more 

evident in the M = 0.6 case due to the fact that the forces and moments acting on the 

decoy are higher. In the M = 0.3 case, the solution acquired at a time step of 0.2ms 

yields a sufficiently accurate solution as it shows nearly identical results with the 

solutions attained with time steps of 0.01 and 0.02ms. However, for the M = 0.6 

case, the solution acquired at 0.2ms starts to differ from the solutions at 0.01 and 

0.02ms as time marches on. The solutions for 0.01 and 0.02ms are identical to each 

other. Therefore, in order to reduce computational cost and preserve accuracy, a time 

step of 0.02ms is selected for the dynamic analyses with 3FL-DYN. 
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Figure 24. Non-dimensional Theta vs. Time at M = 0.3 for various timesteps utilized in 3FL-

DYN 

 

Figure 25. Non-dimensional 𝒒 vs. Time at M = 0.3 for various timesteps utilized in 3FL-DYN 
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Figure 26. Non-dimensional Theta vs. Time at M = 0.6 for various timesteps utilized in 3FL-

DYN  

 

Figure 27. Non-dimensional 𝒒 vs. Time at M = 0.6 for various timesteps utilized in 3FL-DYN   
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4.2.2 Time Step Selection for Transient CFD Analyses 

Correct time step selection in transient CFD analyses is essential for the accuracy of 

the solution due to the fact that the time-integration of non-linear RANS equations is 

done utilizing the selected time step. For instance, Rumsey et. al [18] solved time-

dependent flow around a 18% thickness arc airfoil and found out that drag and lift of 

the airfoil can change about 20% with a coarse time step size. 

To select a suitable time step size for transient CFD analyses, solutions utilizing 

6DOF motion were carried out at a statically unstable M = 0.6 case to evaluate the 

solution on the lateral direction in more detail. Fixed time steps of 0.02, 0.05, 0.2 and 

0.5ms were used on the same boundary conditions described in Sections 3.2 and 

4.5.1. Figure 28 to Figure 30 show the Euler angles (𝜙, 𝜃, 𝜓) obtained from the 

transient 6DOF CFD solutions carried out at four different time step sizes.  

 

 

Figure 28. Non-dimensional Phi vs. Time at M = 0.6 for various timesteps utilized in transient 

6DOF CFD 
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Figure 29. Non-dimensional Theta vs. Time at M = 0.6 for various timesteps utilized in transient 

6DOF CFD 

 

Figure 30. Non-dimensional Psi vs. Time at M = 0.6 for various timesteps utilized in transient 

6DOF CFD 

Due to the 3DOF nature of 3FL-DYN, the main Euler angle used for comparison in 

this study is going to be the pitch angle (𝜃). Taking the finest time interval of 0.02ms 

results as reference, when a comparison was done, the least difference occurs at a 

time interval of 0.05ms, which was 0.7% overall. For time intervals of 0.2ms and 

0.5ms, the differences were found out to be 4.1% and 5.0% respectively. Taking the 

roll angle (𝜙) into account, for time intervals of 0.05ms, 0.2ms and 0.5ms, the 
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differences were 5.4%, 27.7% and 9.6% respectively. For the yaw angle (𝜓), they 

were 2.8%, 16.5% and 11.7%. 

Based on these results, a time interval of 0.05ms was selected for all the transient 

CFD analyses carried out throughout the thesis. Taking the main Euler angle, the 

pitch angle, into account, the difference of 0.7% was deemed sufficient. Although 

there is 5.4% difference for the roll angle (𝜙), the transient CFD solution duration of 

the 0.02ms case is roughly 2.5 times of the 0.05ms time interval, which is about 3-4 

weeks of solution time for transient 6DOF solutions. Hence, an optimization was 

made between calculation cost and solution accuracy in the lateral directions with the 

selection of a 0.05ms time interval.  

 

4.3 PITCH DAMPING TERM REQUIREMENT IN 3FL-DYN 

Pitch damping term denoted by 𝐶𝑀,𝑞  is the derivative of the pitching moment 

𝐶𝑀 with respect to the pitching rate 𝑞. The term “damping” is used as an analogy of 

the effect of a damper in a spring-damper system. Ideally, if a spring system had no 

energy loss, it would oscillate forever. However; adding a damper to a spring system 

would dissipate the energy of the system and bring the oscillations to a stop. A 

damper dissipates energy utilizing a variety of methods such as viscous damping in 

mechanical systems, resistance in electronic oscillators, etc. [20] 

For the case of a decoy in 6DOF flight, the damping could be due to viscous drag 

depending on the angles of attack and sideslip, the atmospheric conditions, the flow 

conditions etc. As damping relies on the rate of change of position (linear or 

rotational velocity etc.) for a mechanical system, damping terms written for a decoy 

in flight are dependent on the linear and angular velocities of the decoy.  

As the decoy flight is modeled in 3DOF, there can only be nine damping terms 

which are 𝐶𝐷,𝑢 , 𝐶𝐿,𝑢 , 𝐶𝑀,𝑢 , 𝐶𝐷,𝑤 , 𝐶𝐿,𝑤 , 𝐶𝑀,𝑤 , 𝐶𝐷,𝑞 , 𝐶𝐿,𝑞 and 𝐶𝑀,𝑞. Owing to the fact 

that the aerodynamic coefficients are obtained as a function of Mach number and 

angle of attack, which is a function of 𝑢 and 𝑤, the first six terms are inherently 

present in the 3DOF model. However, the last three terms depending on the pitching 
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rate 𝑞 are not. In Section 2.5, according to reference [8], 𝐶𝐷,𝑞 , 𝐶𝐿,𝑞  terms are not 

deemed necessary for 3DOF decoy flight modeling. 

In this study, initially the pitch damping term was not included in 3FL-DYN. 

However, the resulting model turned out to have insufficient and unphysical damping 

characteristics making it nearly impossible to find a configuration working 

effectively as a countermeasure against threats. 

 

4.3.1 Obtaining the Pitch Damping Term 

In order to obtain the pitch damping terms at different angles of attack and Mach 

numbers, CFD methodology is utilized. As explained in Section 2.5, [8] states that 

for 3DOF flight modeling, at identical angles of attack and Mach numbers, the 

moment coefficient varies linearly with pitching rate. The moment coefficients are 

obtained at a pitching rate of zero while the aerodynamic coefficients of the decoy 

are calculated. Hence, a transient CFD analysis with a constant pitching rate is going 

to yield the ∆𝐶𝑀 related to the pitching motion of the decoy. Dividing ∆𝐶𝑀 with the 

pitching rate utilized in the CFD analyses, the pitch damping term at different angles 

of attack and Mach numbers can be found. 

For the methodology of transient CFD analyses with a constant pitching rate, the 

mesh motion feature of the commercial program FLUENT was used. Mesh motion 

feature is able to rotate and/or translate the defined zone with a constant rotational or 

translational velocity.  

Differing from the boundary conditions defined in Section 3.2.3, there is an extra 

boundary condition called the interface. It was used to assert the pressure-farfield 

boundary condition without any effect on convergence and accuracy due to the 

rotation of the decoy. The domain is divided into two parts which are the rotating 

part called the inner domain and the non-rotating part called the outer domain, which 

can be seen from Figure 31. The pressure-farfield boundary condition was applied to 

the outer shell of the outer domain while the interface boundary condition was 

applied between the inner and outer domains. The reason behind the utilization of the 

interface boundary condition is the non-conformal mesh emerging from the rotation 
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of the inner domain. With an interface, FLUENT is able to handle the non-conformal 

mesh. [14] The boundary condition on the wall of the decoy was again an adiabatic 

no-slip wall condition. 

 

 

 

Figure 31. The outer domain solution mesh used for the interface boundary condition in 

FLUENT 

The constant pitching rate utilized in the CFD analyses was obtained from the 

pitching rate value of the first-time step from 3FL-DYN, which is the highest 

pitching rate value the decoy is going to have throughout the motion. The constant 

time step used in the CFD analyses was 0.05ms, which is the same time step used for 

the transient 3DOF/6DOF CFD analyses explained in Section 4.2.2. 

An example graph of the results of the CFD analyses carried out to obtain the pitch 

damping values at M = 0.3 for different angles of attack can be seen in Figure 32. 

The pitch damping coefficient remains almost constant until about 40° angle of 

attack, but from this point on at high angles of attack a sharp increase is observed. 

This proves useful for the damping of high magnitudes of oscillations. 
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Figure 32. Pitch Damping Coefficient 𝑪𝑴,𝒒 vs. Angle of Attack at M = 0.3 

 

4.3.2 Evaluating the Effect of Pitch Damping 

To evaluate the effect of pitch damping term, 3FL-DYN was run at M = 0.6, due to 

higher forces and moments for two different cases, emphasizing the differences.  

They are the cases with and without the pitch damping term 𝐶𝑚,𝑞 obtained from the 

transient CFD analyses. For comparison purposes, the quantities most affected from 

the presence of 𝐶𝑀,𝑞 term: pitch angle 𝜃, pitching rate 𝑞 and pitching acceleration �̇�, 

are plotted with respect to time, which can be seen from Figure 33 to Figure 35. 
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Figure 33. Non-dimensional Theta vs. Time at M = 0.6 for the evaluation of the pitch damping 

term 𝑪𝑴,𝒒 utilized in 3DOF numerical implementation 

 

Figure 34. Non-dimensional 𝒒 vs. Time at M = 0.6 for the evaluation of the pitch damping term 

𝑪𝑴,𝒒 utilized in 3DOF numerical implementation 
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Figure 35. Non-dimensional �̇� vs. Time at M = 0.6 for the evaluation of the pitch damping term 

𝑪𝑴,𝒒 utilized in 3DOF numerical implementation 

When the results are compared, it is observed that both cases are underdamped; as 

the magnitude of the oscillations are decreasing as time progresses. The reason of 

damping in the case without pitch damping term is due to other terms like 

𝐶𝐷,𝑢 , 𝐶𝐿,𝑢 , 𝐶𝑀,𝑢 etc. However, when the rate of decrease in the magnitude of the 

oscillations are concerned, the model with pitch damping derivative is superior due 

to the fact that the oscillations observed in all figures are decreasing in an increasing 

rate. Addition of pitch damping derivative proves to be most effective on the pitching 

rate with a difference of about 60% between the initial and final time steps. 

For the design of a decoy of which the orientation is essential, the oscillations 

obtained from the model without pitch damping is going to be make the overall 

countermeasure design process harder. Because, coming up with an effective 

configuration against threats is going to be harder. Moreover, taking the results given 

in Chapter 5 into account, the case with the pitch damping derivative was found out 

to be closer to the transient CFD results. 
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4.4 GRID INDEPENDENCE 

In CFD applications, in order for the solution to be accurate, the grid used in the 

problem should not affect the solution to unacceptable levels. In other words, the 

solution has to be grid independent. The effect of the grid on the solution might 

occur in various ways. For instance, for a very coarse domain mesh due to 

insufficient resolution of the eddies created by the geometry, the diffusion of the 

turbulent parameters might be unnaturally faster. As an example, Karcz et al. [21] 

found out that distribution of the kinetic energy and its dissipation is significantly 

affected by the density of the computational grid for their test case of an agitated 

vessel resulting underestimated local velocity values. 

To evaluate the grid independence of the solution, four different grid sizes were 

solved with the exact same conditions specified in Section 3.2. The comparisons of 

these grids in terms of drag, lift and pitching moment coefficients at five different 

angles of attack can be seen from Figure 36 to Figure 38. At high angles of attack 

achieving better accuracy of the forces and moments calculated is going to be harder. 

Therefore, the angle of attack values were chosen to be relatively high angle of attack 

values to better evaluate the accuracy of the solution. Table 2 shows the sizes of the 

different grids utilized in the grid independence study in terms of decoy surface and 

domain mesh size. 

 

Table 2. The different grid sizes used for the grid independence study 

 Surface mesh size 

(# elements) 

Domain mesh size  

(# elements) 

Grid 1 32856 1126275 

Grid 2 71434 1744834 

Grid 3 104986 2798373 

Grid 4 141498 3667583 
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Figure 36. Drag coefficient comparison of four different grid sizes 

 

Figure 37. Lift coefficient comparison of four different grid sizes 

 

Figure 38. Pitching moment coefficient comparison of four different grid sizes 
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Taking the results of Grid 4 as the reference values, comparison between the results 

reveals that for the drag coefficient values the differences between the grids are less 

than 3% except Grid 1. The largest differences for the lift coefficient values occur at 

30° angle of attack which are 8.9% for Grid 1, 5.9% for Grid 2 and 0.8% for Grid 3. 

At pitching moment coefficient values, the highest differences between the grids 

occur. The moment coefficient is dependent on the overall pressure distribution 

around the decoy different than the drag and lift coefficients. For instance, two 

identical decoys with different pressure distributions can have the same drag 

coefficient but cannot have the same moment coefficient. As can be observed in 

Figure 38, Grid 1 and Grid 2 are very different from the results of Grid 4. For Grid 3 

however, the largest difference is found out to be 3.5% occurring at 60° angle of 

attack.  

According to these results, Grid 3 was used for all the steady and transient CFD 

analyses carried out throughout the thesis. Due to the fact that Grid 3 has 23.7% less 

number of elements compared to Grid 4 and a largest error of 3.5% occurring at very 

high angles of attack, it is evaluated to be an optimization of solution accuracy and 

calculation cost, especially for the 6DOF transient CFD analyses explained in 

Chapter 5 considering the calculation times are measured in days / weeks.  

 

4.5 EVALUATION OF THE 3DOF ASSUMPTION 

In Section 2.4, the reasons for adopting a 3DOF approach were discussed. Before 

carrying out the runs for the whole 6DOF analysis matrix, the validity of the 3DOF 

assumption should be checked. To evaluate the 3DOF assumption, the CFD solution 

of two different cases, one of which is 3DOF and the other 6DOF, is compared in 

terms of trajectory, angle, velocity, acceleration, forces and moments. 

 

4.5.1 3DOF / 6DOF Solution Methodology 

CFD methodology with FLUENT was utilized for the calculation of 3DOF / 6DOF 

motion of the decoy with the flowfield. The analysis conditions were similar to the 

conditions described in Section 3.2, with two basic differences: the dynamic mesh 
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model and the pressure-farfield boundary condition. The same grid explained in 

Section 3.2.5 was utilized. 

For 3DOF / 6DOF motion applications, FLUENT is able to remesh and smooth the 

volume mesh around the geometry or move the entire domain utilizing the equations 

of motion, with the dynamic mesh model. The calculations were done and outputs, 

such as Euler Angles were given in the inertial frame. [14] 

FLUENT does not have a feature to model the motion of the body in 3DOF. Hence, 

to achieve 3DOF motion, the inertia values except the mass moment of inertia in the 

pitching axis were taken as very unrealistically high values. This prevents angular 

motion in roll and yaw axes. As there is no initial velocity in lateral direction, there is 

no translational motion as well. 

The problem is not a safe-seperation problem, so there is no relative motion between 

two bodies. Because of this fact, there is no need to remesh or smooth the domain 

mesh around the decoy as its motion progresses. In addition, it is going to increase 

the computational calculation time of the solution. To avoid this situation, the whole 

domain around the decoy moves according to the translational and rotational 

velocities around the decoy. In other words, it is different than the usual 

methodology of CFD analyses in where the domain and the geometry is fixed and 

there is flow velocity on the domain like a wind tunnel. To achieve this, the boundary 

condition on the outside of the domain, which is a pressure-farfield boundary 

condition should have zero relative velocity. 

The time step used in this analyses were based on the time step selection study 

discussed in Section 4.1, which was a time step of 0.05ms. 

 

4.5.2 Comparison of 3DOF / 6DOF Motion 

The analyses were done for two different center of gravity values CG1 and CG2 at 

Mach numbers of 0.3 and 0.6. At CG1 cases, the decoy does not have static stability, 

while at CG2 cases, the decoy does. The static stability of the decoys was evaluated 

with the preliminary calculations done with 3FL-DYN. A statically unstable case 
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was selected in order to evaluate the validation of the 3DOF assumption for this case 

as well. The pitching angle (𝜃) of the decoy were used for comparison purposes. 

 

 

Figure 39. Non-dimensional Theta vs. Time 3DOF / 6DOF comparison for M = 0.3, CG1 

 

Figure 40. Non-dimensional Theta vs. Time 3DOF / 6DOF comparison for M = 0.6, CG1 

 



62 

 

 

Figure 41. Non-dimensional Theta vs. Time 3DOF / 6DOF comparison for M = 0.3, CG2 

 

Figure 42. Non-dimensional Theta vs. Time 3DOF / 6DOF comparison for M = 0.6, CG2 

The 6DOF results of the statically unstable case (CG1) were found out to be very 

different from the 3DOF results for both Mach numbers. The behavior of the decoy, 

the magnitude and frequency of the oscillations are not consistent. This is the 

consequence of the yawing and rolling in 6DOF motion, which can be seen from 

Figure 43 and Figure 44 for M = 0.6 case. Patel et al. [22] state that according to the 

wind tunnel results even if the angle of sideslip is zero, due to asymmetrical vortex 

shedding, at high angles of attack large side forces and dynamic out-of-plane 
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loadings may occur, resulting in a yawing motion. As high angles of attacks occur 

during the pitching motion, a rolling motion is inevitable with the coupling of 

yawing and pitching motion for the decoy. This is due to the smaller mass moment of 

inertia in the roll axis for slender bodies. However, for the statically stable case, the 

results were found out to be very similar for both Mach numbers. They were not 

expected to be on top of each other, which is again due to the effect of 6DOF motion 

(Figure 45) resulting in a rolling motion, but the trends of the oscillations are 

consistent. The effect of rolling motion of the statically stable decoy is similar to that 

of a roll-stable missile, which utilizes the conservation of angular momentum for 

lateral stability during flight. [25] Considering the yawing motion, it is observed that 

the magnitude of the oscillations is one quarter of the magnitude of pitching 

oscillations and start to diminish after a certain time. (Figure 46) 

It is understood that in order for the 3DOF assumption to work effectively, the cases 

investigated should have static stability. In the nonexistence of static stability, the 

motion in the lateral direction is dominant proving the 3DOF assumption invalid. 

 

Figure 43. Non-dimensional Phi vs. Time of 6DOF motion for M = 0.6, CG1 
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Figure 44. Non-dimensional Psi vs. Time of 6DOF motion for M = 0.6, CG1 

 

Figure 45. Non-dimensional Phi vs. Time of 6DOF motion for M = 0.6, CG2 
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Figure 46. Non-dimensional Psi vs. Time of 6DOF motion for M = 0.6, CG2 
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CHAPTER 5 

 

 

RESULTS AND DISCUSSIONS 

 

 

 

In this chapter, the results obtained from 3FL-DYN are compared with those of 

transient 6DOF CFD analyses. 3FL-DYN’s ability to capture the effects of the 

variation of center of gravity, Mach number and tail sizes is investigated.  

 

5.1 ANALYSIS CONDITIONS 

The relevant analysis parameters / conditions required (boundary conditions, time 

step size etc.) for the 6DOF FLUENT CFD analyses discussed in Sections 3.2, 4.1, 

4.4 and 4.5.1. To ease the reader, all relevant parameters are gathered together and 

summarized here in Table 3. 
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Table 3. The analysis conditions 

Boundary Conditions Pressure-Farfield (domain) 

Adiabatic No-slip Wall (decoy) 

Turbulence Model Realizable k-epsilon 

Air Compressible Ideal-Gas 

Solver Approach Pressure-Based Coupled 

Discretization Second-Order, Green-Gauss Node Based 

Grid Size 2798373 cells  (Tail  = 100% case) 

First Layer Thickness (mm) 0.1 

# of Prism Layers 11 

Motion Model Dynamic Mesh model with 6DOF 

Time Step (ms) 0.05 

 

The analysis matrix consists of two center of gravity positions, three Mach number 

and two different tail sizes, which can be seen in Table 4. Considering the cross-

matching of all the combinations of these analyses, in order not to overwhelm the 

reader, the results are given here for a selected reference case. This case is the most 

probable configuration and flight condition used for the decoy design. The results of 

all the other cases are given in APPENDIX A. 

As explained in Section 2.6.2, the center of gravity of the decoy is measured from 

half of the length of the decoy (positive direction pointing towards the nose of the 

decoy) and given as the percentage fraction of the length. For instance, CG = 15% 

means that the center of gravity of the decoy is 0.15 𝑙 front of the half length of the 

decoy. Tail size is varied by changing the chord of the tail and given as a percentage 

of the tail size of the reference case. For the analysis matrix, apart from the values for 

the reference case, a center of gravity and a tail size value which are going to reduce 

the static stability of the decoy were selected considering the static stability 

discussion in Section 4.5.2. All the cases have longitudinal static stability and have 

the same initial conditions in terms of altitude and attitude. For Tail = 80% case, a 
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whole new set of time-independent CFD analyses were done with the conditions 

given in Sections 3.2 and 4.3.1. 

Taking this information into account, the reference case has a Mach number of 0.6, 

CG position of 30% and a tail size of 100%. For the investigation of every variable, 

the pitch angle (𝜃), and the trajectories were compared with each other to observe the 

differences between the 3FL-DYN and 6DOF CFD analyses. In addition, to observe 

the trends more clearly, the results of 3FL-DYN for different variables and the 

results of the 6DOF CFD are plotted seperately. Moreover, pressure and Mach 

number distributions around the decoy at different times are given. For flowfield 

visualization, FieldView and Tecplot software which have the capability to draw 

streamlines, shear lines, pressure distributions etc. were used. [23, 24] 

 

Table 4. The analysis matrix 

Mach Numbers 0.30 0.45 0.60 

Center of Gravity (CG) 10 % 30 % 

Tail Size 80 % 100 % 

 

5.2 CENTER OF GRAVITY EFFECT 

To investigate the ability to capture effect of center of gravity position, two center of 

gravity positions of 10% and 30% were analyzed at every Mach number and tail size 

in the analysis matrix. For convenience, effects of the center of gravity locations at 

M = 0.6, Tail size = 100% condition was thoroughly examined in this section. The 

results of the other cases individually can be seen from APPENDIX A. 

From Figure 47 to Figure 50, pitch angles (𝜃) obtained from two methodologies at 

two center of gravity locations were plotted with respect to time. To ease the reader, 

plots are organized so that either the methodologies (Figure 47, Figure 48) or either 

the effect of c.g. position are compared. (Figure 49, Figure 50) 
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Figure 47. Non-dimensional Theta vs. Time 3FL-DYN / 6DOF CFD comparison for M = 0.6, CG 

= 30%, Tail = 100% 

 

Figure 48. Non-dimensional Theta vs. Time 3FL-DYN / 6DOF CFD comparison for M = 0.6, CG 

= 10%, Tail = 100% 
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Figure 49. 3FL-DYN Non-dimensional Theta vs. Time comparison of two center of gravity 

values for M = 0.6, Tail = 100% 

 

Figure 50. 6DOF CFD Non-dimensional Theta vs. Time comparison of two center of gravity 

values for M = 0.6, Tail = 100% 

Comparing the 3FL-DYN with the 6DOF CFD results, it is obvious that for the CG = 

10% case the results are closer. This is due to the fact that initially as the decoy has a 

high angle of attack, CG = 30% case has a higher moment arm compared to the CG = 

10% case for the pitching moment resulting in higher accelerations in the pitching 

direction hence higher frequency of oscillations. 
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Trendwise, 3FL-DYN was able to capture the higher frequency of the oscillations for 

the CG = 30% case. But as 6DOF CFD was able to dissipate more energy by 

damping mechanisms in the lateral directions, the magnitude of the oscillations 

decreases more rapidly as well as the frequency. As damping is dependent on the rate 

of change of position in the motion, the higher accelerations in CG = 30% case 

causes this situation, which is benign for the CG = 10% case. The 3DOF method is 

more conservative for initial design purposes owing to the fact that the frequency and 

the magnitude of the oscillations are greater than that of the 6DOF CFD results. 

 

Figure 51. 6DOF CFD Non-dimensional Psi vs. Time comparison of two center of gravity values 

for M = 0.6, Tail = 100% 

In Figure 51, the lateral motion in the yaw direction can be observed. All of the cases 

have continuous rolling motion as can be seen from APPENDIX A. The lateral 

motion is caused by the asymmetrical vortex shedding occurring at high angles of 

attack as explained in [22]. As the decoy is a slender body, its mass moment of 

inertia in the roll direction is about one order of magnitude less than the mass 

moment of inertia values in pitch and yaw directions. This fact leads to a continuous 

motion in the roll axis for both CG values, just like a roll-stabilized missile. There is 

motion in the yaw direction for both cases, but the highest magnitude of the 

oscillations is about 5-6 times smaller than that of the pitching motion. Higher 

magnitude of oscillations in the yaw direction are observed for the CG = 10% case as 

expected because of lower correcting yaw moments. 
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Figure 52. 3FL-DYN / 6DOF CFD Trajectory Comparison for M = 0.6, CG = 30%, Tail = 100% 

 

Figure 53. 3FL-DYN / 6DOF CFD Trajectory Comparison for M = 0.6, CG = 10%, Tail = 100% 

For both cases, the trajectory of the decoy was captured very well by the 3FL-DYN 

which can be seen from Figure 52 and Figure 53. Translation in lateral direction is 

not comparable to that of the longitudinal direction. 

Visualization of the motion history of the decoy at two different center of gravity 

values obtained from 6DOF CFD analyses is given in Figure 54, in where the decoy 

is colored with the gage pressure values. Starting from the initial time point, the 

motion history is given with a non-dimensional time interval of 10 as well. The tail 
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portion of the decoy was made transparent to ease the observation of the pressure 

distribution on the decoy. The horizontal and vertical distances covered by the decoy 

is scaled down to 2.5%, while the decoy itself is not scaled. More dominant yawing 

motion of the CG = 10% case as well as the rolling motion for the both cases can be 

observed from the motion history. Besides, the higher pressures seen on the direction 

to where the decoy moves shows the yawing correction made by the decoy, while the 

lower pressures (blue) at higher pitch angle positions shows a separation around that 

region indicating a high angle of attack value for the decoy. The lower pressures start 

to diminish as the time marches on, implying the stabilization of the decoy. 

The comparisons of pitch angles, trajectories as well as the flowfield for center of 

gravity values at different Mach numbers and tail sizes are proved to be coherent 

with the results explained above. These results are given in APPENDIX A.  
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Figure 54. Motion history of the decoy at different time points with 10 non-dimensional time 

interval obtained from 6DOF CFD analyses colored with the pressure distribution around the 

decoy for two different center of gravity values for M = 0.6, Tail = 100% (CG = 10% : Left, CG 

= 30% Right)  
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5.3 MACH NUMBER EFFECT 

To study the effect of Mach number variation, three Mach number values, 0.3, 0.45 

and 0.6, were considered at every center of gravity and tail size value in the analysis 

matrix. For ease, effect of Mach number variation at CG = 30%, Tail Size = 100% 

condition was thoroughly examined throughout this section. For the results of the 

other cases, APPENDIX A should be referred. 

From Figure 55 to Figure 59, pitch angle (𝜃) obtained from two methodologies at 

three Mach numbers were plotted with respect to time. To ease the reader, plots are 

organized so that either the methodologies (Figure 55 to Figure 57) or either the 

Mach number effect are compared. (Figure 58, Figure 59) 

 

 

Figure 55. Non-dimensional Theta vs. Time 3FL-DYN / 6DOF CFD comparison for M = 0.6, CG 

= 30%, Tail = 100% 
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Figure 56. Non-dimensional Theta vs. Time 3FL-DYN / 6DOF CFD comparison for M = 0.45, 

CG = 30%, Tail = 100% 

 

 

Figure 57. Non-dimensional Theta vs. Time 3FL-DYN / 6DOF CFD comparison for M = 0.3, CG 

= 30%, Tail = 100% 
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Figure 58. 3FL-DYN Non-dimensional Theta vs. Time comparison of three Mach number values 

for CG = 30%, Tail = 100% 

 

Figure 59. 6DOF CFD Non-dimensional Theta vs. Time comparison of three Mach number 

values for CG = 30%, Tail = 100% 

When the 3FL-DYN results with the 6DOF CFD results are compared, it is clear that 

the magnitude of the oscillations of pitch angle (𝜃) are overestimated by the 3FL-

DYN. This is due to the fact that being similar to the center of gravity cases, 

dissipation due to damping mechanisms in lateral direction causes the oscillations to 

decay faster. When the rate of change of the magnitudes of the oscillations and rate 

of change of position affecting the damping derivatives are considered, higher the 
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Mach number, higher the difference between the two methodologies is. Trendwise, 

3FL-DYN was able to capture the frequency increasing with Mach number. As the 

magnitude and frequency of the oscillations are higher in 3FL-DYN, this method is 

more conservative for initial design purposes. 

 

 

Figure 60. 6DOF CFD Non-dimensional Psi vs. Time comparison of three Mach number values 

for CG = 30%, Tail = 100% 

The yawing motion of the decoy can be observed from Figure 60. All of the cases 

have continuous rolling motion as can be seen from APPENDIX A. As explained 

thoroughly in Section 5.2, due to the fact that the decoy is exposed to high angles of 

attack, lateral out-of-plane forces and large side forces occur causing motion in 

lateral direction. [22] The forces and moments are larger for M = 0.6 case, hence the 

continuous rolling motion is more effective compared to other Mach numbers. 

Trendwise, higher the Mach number, higher the forces / moments and more effective 

the rolling motion is. Examining the yawing motion, it is clear that the highest 

magnitude of oscillations is 7-8 times smaller than that of the motion in pitching 

direction. 
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Figure 61. 3FL-DYN / 6DOF CFD Trajectory Comparison for M = 0.6, CG = 30%, Tail = 100% 

 

 

Figure 62. 3FL-DYN / 6DOF CFD Trajectory Comparison for M = 0.45, CG = 30%, Tail = 

100% 
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Figure 63. 3FL-DYN / 6DOF CFD Trajectory Comparison for M = 0.3, CG = 30%, Tail = 100% 

Concerning the trajectories drawn for different Mach numbers, it is obvious that, 

taking Figure 61 to Figure 63 into account, they are captured very well by 3FL-DYN. 

Translation in lateral direction is not comparable to that of the longitudinal direction. 

Mach number distributions around a plane cutting the decoy at different time points 

with a non-dimensional time interval of 20 are given in Figure 64. The tail portion of 

the decoy was made transparent to ease the observation of the Mach distribution on 

the cutting plane. It is clear that taking the size of the separation zones, especially “a” 

and “b” time points, into account, the decoy is exposed to high angles of attack at 

every Mach number case. This results in a lateral motion explained above, as can be 

observed from the other time points in terms of decoy position. As time marches on 

due to the stabilization of the decoy, the separation zone sizes begin to decrease as 

the angle of attack values start to decrease. Motion history of the decoy is not given 

as due to the horizontal distances covered by the three Mach number cases are 

different. 

Concerning the Mach number effect at different center of gravity and tail size values, 

given in APPENDIX A, the comparisons of pitch angles and trajectories as well as 

the flowfield proved to be consistent with the results explained above. 
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Figure 64. Mach Number distribution around the decoy at different time points a, b, c, d with 20 

non-dimensional time interval obtained from 6DOF CFD analyses for three different Mach 

Number values for CG = 30%, Tail = 100% 

(M = 0.3 : Top, M = 0.45 : Middle, M = 0.6 : Bottom)  

  

a b 

c d 
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5.4 TAIL SIZE EFFECT 

Investigation of the effects of tail size variation was done by considering two 

different tail sizes. Only the chord lengths of the tail were changed. The tail sizes of 

80% and 100% were investigated at every Mach number and center of gravity value 

present in the analysis matrix. For convenience, the effects of tail size variation of 

the CG = 30%, M = 0.6 condition was considered for this section. APPENDIX A 

includes the other cases at different CG and Mach number values. 

From Figure 47 to Figure 50, pitch angle (𝜃) obtained from two methodologies at 

two center of gravity locations were plotted with respect to time. To ease the reader, 

plots are organized so that either the methodologies (Figure 47, Figure 48) or either 

the effect of center of gravity position is observed. (Figure 49, Figure 50) 

 

 

Figure 65. Non-dimensional Theta vs. Time 3FL-DYN / 6DOF CFD comparison for M = 0.6, CG 

= 30%, Tail = 100% 
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Figure 66. Non-dimensional Theta vs. Time 3FL-DYN / 6DOF CFD comparison for M = 0.6, CG 

= 30%, Tail = 80% 

 

 

Figure 67. 3FL-DYN Non-dimensional Theta vs. Time comparison of two tail size values for M = 

0.6, CG = 30% 
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Figure 68. 6DOF CFD Non-dimensional Theta vs. Time comparison of two tail size values for M 

= 0.6, CG = 30% 

The effect of tail size is similar to that of the center of gravity effect, especially in 

terms of stability. Increasing the tail size has the same effect as positioning the center 

of gravity to a location more closer to the nose. For instance, similar to the effect 

observed for CG = 10% case in Section 5.2, the 3FL-DYN results for the Tail = 80% 

case are closer to 6DOF CFD results than that of the Tail = 100% case. Especially, 

the magnitude of oscillations is very similar. The CG = 30% case had a larger 

moment arm, hence larger pitching moments resulting in higher angular 

accelerations. This is the same situation for the Tail = 100% case. The higher force 

on the tail section of the decoy can be seen from Figure 69 for the initial time step. 

There is more area with high pressure values for the Tail = 100% as expected, 

resulting in a higher moment value hence higher angular acceleration. For the 

purpose of initial design, as the magnitudes of oscillations are higher for the 3DOF 

method compared to 6DOF CFD results, the 3DOF method is more conservative.  

From Figure 67 and Figure 68, it is observed that the increase in 20% tail size has 

less effect than an increase in 20% center of gravity location. An increase in 20% tail 

size results in more similar frequency and magnitudes of oscillations compared to a 

20% increase in center of gravity position. 
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Figure 69. Pressure distribution on the tail section of the decoy for two different tail sizes at 

initial time step (Tail = 100% : Left, Tail = 80% Right)  

 

 

Figure 70. 6DOF CFD Non-dimensional Psi vs. Time comparison of two tail size values for M = 

0.6, CG = 30% 
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The lateral motion in the yaw direction can be observed in Figure 70. All of the cases 

have continuous rolling motion as can be seen from APPENDIX A. Similar to the 

cases presented in the previous sections, there is a continuous rolling motion for both 

tail size values as expected due to lower roll mass moment of inertia. The decoy with 

a smaller tail size value starts the continuous rolling motion sooner than the Tail = 

100% case due to smaller correcting moments in lateral direction. There is motion in 

yaw direction for both cases, but the magnitudes of the yaw angle oscillations are 

smaller for Tail = 100% case. This is  due to larger correcting yawing moments as 

expected. The highest magnitude of the yaw angle oscillations is 5-6 times smaller 

than that of the pitching angle oscillations.  

 

 

Figure 71. 3FL-DYN / 6DOF CFD Trajectory Comparison for M = 0.6, CG = 30%, Tail = 100% 
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Figure 72. 3FL-DYN / 6DOF CFD Trajectory Comparison for M = 0.6, CG = 30%, Tail = 80% 

Trajectory-wise, for both cases, 3FL-DYN results seem to agree very well with 

6DOF CFD results which can be seen from Figure 71 and Figure 72. Translation in 

lateral direction is not comparable to that of the longitudinal direction. 

Motion history of the decoy was visualized at two different tail sizes and colored 

with the gage pressure values obtained from 6DOF CFD in Figure 73. The motion 

history is given with a non-dimensional time interval of 10, starting from the initial 

time point similar to the center of gravity effect visualization above. The horizontal 

and vertical distances covered by the decoy is scaled down to 2.5% while the decoy 

itself is not scaled down. The rolling motion is apparent for both cases and they both 

have low pressure zones at the first three time points indicating flow seperation. This 

shows that the decoy is being exposed to high angles of attack. The low pressure 

zones diminish at the last time steps indicating the stabilization of the decoy. The 

pressure distribution of the Tail = 100% case is more uniform as this case stabilizes 

faster than the Tail = 80% case.  

Tail size effect comparisons in terms of pitch angle, trajectory etc. at different center 

of gravity values and Mach numbers are proved to be consistent with the 

explanations made above. These results are given in APPENDIX A.  
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Figure 73. Motion history of the decoy at different time points with 10% time interval obtained 

from 6DOF CFD analyses colored with the pressure distribution around the decoy for two 

different tail size values for M = 0.6, CG = 30% (Tail = 100% : Left, Tail = 80% Right)  
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CHAPTER 6 

 

 

CONCLUSION AND FUTURE WORK 

 

 

 

The thesis has described a fast initial design methodology for a decoy and 

investigated the validity of the approach. For the decoy, a 3DOF motion assumption 

was discussed and the equations of motion were derived. The equations were 

numerically integrated by a code in a quasi-steady manner with the help of tabulated 

aerodynamic data. The aerodynamic coefficients in the tables were obtained from 

steady CFD calculations. An attempt to obtain the data by DatCOM did not yield 

satisfactory results.  

An assessment of the methodology was made in terms of time step size selection for 

both 3FL-DYN and transient CFD calculations, grid independence, inclusion of the 

pitch damping term and the evaluation of 3DOF assumption. In these studies, time 

step and the grid size were selected such that the solution is independent from these 

numerical parameters. During the discussion of pitch damping inclusion, without the 

pitch damping term, the other terms such as damping caused by drag, lift etc. were 

found out to be insufficient. 3DOF assumption was evaluated by comparing transient 

3DOF CFD and 6DOF CFD results. The results showed that given the decoy has 

static stability and the motion in the lateral direction is benign, the 3DOF assumption 

can be made for a level flight condition. 

To validate the 3DOF initial design methodology, comparisons between the results 

obtained from 3FL-DYN and transient 6DOF CFD were carried out. The terms of 

comparisons were angular / translational velocities, accelerations, trajectories and 

angular positions. For comparing purposes, instead of expecting the results to be on 
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top of each other, the ability to capture the effects of the variations of different 

variables such as Mach number, center of gravity and tail sizes was considered. The 

flowfields of some of the 6DOF CFD results were investigated as well. According to 

the results, 3FL-DYN was able to capture the effect of the variations of the variables 

as well as the magnitude / frequency of the oscillations. As expected, the results of 

the two methodologies were not identical due to lateral motion as expected. But, as 

3DOF method was found out to be more conservative, it was deemed sufficient for 

fast initial design purposes. The trajectories obtained from 3FL-DYN agreed very 

well with the 6DOF CFD results. 

For future studies, the effect of the flowfield around the aircraft, from which the 

decoy is deployed, should be added to 3FL-DYN as an initial condition. This way, 

the safe separation of the decoy from the aircraft could be initially evaluated as well. 

This could be done by using CFD analyses or a panel code. In addition, other 

configurations different than body-tail should also be investigated. (like wing-body-

tail) Besides, as the methodology was compared with transient CFD results for the 

validation the initial design methodology, the comparison should be done with flight 

test results of the decoy itself.  
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APPENDIX A  

 

 

SUPPLEMENTARY RESULTS 

 

 

 

In this part, the pitch and yaw angles as well as the trajectories of the other 

combinations of center of gravity, Mach number and tail sizings other than the 

reference case explained in Section 5.1 are given. 

 

 

Figure 74. 6DOF CFD Non-dimensional Phi vs. Time comparison of two center of gravity values 

for M = 0.6, Tail = 100% 
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Figure 75. 6DOF CFD Non-dimensional Phi vs. Time comparison of three Mach numbers for 

CG = 30%, Tail = 100% 

 

Figure 76. 6DOF CFD Non-dimensional Phi vs. Time comparison of two tail sizes for M = 0.6, 

CG = 30% 
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Figure 77. Non-dimensional Theta vs. Time 3FL-DYN / 6DOF CFD comparison for M = 0.3, CG 

= 10%, Tail = 80% 

 

Figure 78. 3FL-DYN / 6DOF CFD Trajectory Comparison for M = 0.3, CG = 10%, Tail = 80%  

 

Figure 79. 6DOF CFD Non-dimensional Psi vs. Time for M = 0.3, CG = 10%, Tail = 80% 
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Figure 80. Non-dimensional Theta vs. Time 3FL-DYN / 6DOF CFD comparison for M = 0.45, 

CG = 10%, Tail = 80% 

 

Figure 81. 3FL-DYN / 6DOF CFD Trajectory Comparison for M = 0.45, CG = 10%, Tail = 80% 

 

Figure 82. 6DOF CFD Non-dimensional Psi vs. Time for M = 0.45, CG = 10%, Tail = 80% 
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Figure 83. Non-dimensional Theta vs. Time 3FL-DYN / 6DOF CFD comparison for M = 0.6, CG 

= 10%, Tail = 80% 

 

Figure 84. 3FL-DYN / 6DOF CFD Trajectory Comparison for M = 0.6, CG = 10%, Tail = 80% 

 

Figure 85. 6DOF CFD Non-dimensional Psi vs. Time for M = 0.6, CG = 10%, Tail = 80% 



100 

 

 

Figure 86. Non-dimensional Theta vs. Time 3FL-DYN / 6DOF CFD comparison for M = 0.3, CG 

= 30%, Tail = 80% 

 

Figure 87. 3FL-DYN / 6DOF CFD Trajectory Comparison for M = 0.3, CG = 30%, Tail = 80% 

 

Figure 88. 6DOF CFD Non-dimensional Psi vs. Time for M = 0.3, CG = 30%, Tail = 80% 
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Figure 89. Non-dimensional Theta vs. Time 3FL-DYN / 6DOF CFD comparison for M = 0.45, 

CG = 30%, Tail = 80% 

 

Figure 90. 3FL-DYN / 6DOF CFD Trajectory Comparison for M = 0.45, CG = 30%, Tail = 80% 

 

Figure 91. 6DOF CFD Non-dimensional Psi vs. Time for M = 0.45, CG = 30%, Tail = 80% 
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Figure 92. Non-dimensional Theta vs. Time 3FL-DYN / 6DOF CFD comparison for M = 0.6, CG 

= 30%, Tail = 80% 

 

Figure 93. 3FL-DYN / 6DOF CFD Trajectory Comparison for M = 0.6, CG = 30%, Tail = 80% 

 

Figure 94. 6DOF CFD Non-dimensional Psi vs. Time for M = 0.6, CG = 30%, Tail = 80% 
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Figure 95. Non-dimensional Theta vs. Time 3FL-DYN / 6DOF CFD comparison for M = 0.3, CG 

= 10%, Tail = 100% 

 

Figure 96. 3FL-DYN / 6DOF CFD Trajectory Comparison for M = 0.3, CG = 10%, Tail = 100% 

 

Figure 97. 6DOF CFD Non-dimensional Psi vs. Time for M = 0.3, CG = 10%, Tail = 100% 
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Figure 98. Non-dimensional Theta vs. Time 3FL-DYN / 6DOF CFD comparison for M = 0.45, 

CG = 10%, Tail = 100% 

 

Figure 99. 3FL-DYN / 6DOF CFD Trajectory Comparison for M = 0.45, CG = 10%, Tail = 

100% 

 

Figure 100. 6DOF CFD Non-dimensional Psi vs. Time for M = 0.45, CG = 10%, Tail = 100% 



105 

 

 

Figure 101. Non-dimensional Theta vs. Time 3FL-DYN / 6DOF CFD comparison for M = 0.6, 

CG = 10%, Tail = 100% 

 

Figure 102. 3FL-DYN / 6DOF CFD Trajectory Comparison for M = 0.6, CG = 10%, Tail = 

100% 

 

Figure 103. 6DOF CFD Non-dimensional Psi vs. Time for M = 0.6, CG = 10%, Tail = 100% 
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Figure 104. Non-dimensional Theta vs. Time 3FL-DYN / 6DOF CFD comparison for M = 0.3, 

CG = 30%, Tail = 100% 

 

Figure 105. 3FL-DYN / 6DOF CFD Trajectory Comparison for M = 0.3, CG = 30%, Tail = 

100% 

 

Figure 106. 6DOF CFD Non-dimensional Psi vs. Time for M = 0.3, CG = 30%, Tail = 100% 
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Figure 107. Non-dimensional Theta vs. Time 3FL-DYN / 6DOF CFD comparison for M = 0.45, 

CG = 30%, Tail = 100% 

 

Figure 108. 3FL-DYN / 6DOF CFD Trajectory Comparison for M = 0.45, CG = 30%, Tail = 

100% 

 

Figure 109. 6DOF CFD Non-dimensional Psi vs. Time for M = 0.45, CG = 30%, Tail = 100% 
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Figure 110. Non-dimensional Theta vs. Time 3FL-DYN / 6DOF CFD comparison for M = 0.6, 

CG = 30%, Tail = 100% 

 

Figure 111. 3FL-DYN / 6DOF CFD Trajectory Comparison for M = 0.6, CG = 30%, Tail = 

100% 

 

Figure 112. 6DOF CFD Non-dimensional Psi vs. Time for M = 0.6, CG = 30%, Tail = 100% 


