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ABSTRACT

CONTENT-BASED VIDEO COPY DETECTION

Ozkan, Savas
M.Sc., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Gézde Bozdag1 Akar

June 2014, 88 pages

In recent years, need in automatic video copy detection has been increased rapidly with the
recent technical developments. In general, a developed system should provide a few
requirements to conduct over large database including high detection accuracy, low
comparison time and low memory usage. For that purpose, within the scope of the thesis, we
propose a content-based video copy detection system that consists of three crucial stages
namely feature extraction, quantization-based indexing and geometric verification. In feature
extraction stage, local spatial and spatio-temporal features are extracted from reference and
guery videos to be used for similarity score calculation. In spatial domain, Scale Invariant
Feature Transform (SIFT), Opponent SIFT, Flip Invariant SIFT (F-SIFT) and Speed Up
Robust Transform (SURF) descriptors, in spatio-temporal domain, Histogram of Orientated
Gradient (HoG) and Motion Boundary Histogram (MBH) descriptors are utilized. In the
second stage, in order to make efficient comparison among local features, the local features
are quantized into indices with three state-of-the-art indexing schemes Bag-of-word,
Hamming Embedding and Product Quantization. In the final stage, since there would be
outliers during matching content indices, a geometric post-processing stage is utilized for both
spatial and spatio-temporal features that impose an overall geometric model to refine the
accuracy. Additionally, a compact geometric signature that encodes the local relation of
interest points with binary signature is computed. The experimental results are presented on
the well-known TRECVID 2009 content-based video copy detection dataset. The experiments
show that combination of Flip Invariant SIFT, Hamming embedding, enhanced weak

geometric consistency and visual group binary signature yields the best overall result.
v



Keywords: Content-based Video Copy Detection, Near-Duplicate Video Search, Local
Spatial Descriptors, Local Spatio-Temporal Descriptors, Quantization-based Indexing,
Geometric Consistency, Visual Group Binary Signature.
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ICERIK TABANLI VIDEO KOPYA BULMA

Ozkan, Savas
Yiiksek Lisans, Elektrik Elektronik Miihendisligi Boliimii
Tez Yoneticisi: Prof. Dr. Gozde Bozdagi Akar

Haziran 2014, 88 sayfa

Son yillarda, otomatik video kopya bulmaya olan ihtiyag yeni teknolojik gelismelerle birlikte
artmistir. Genellikle, gelistirilen sistemin biiylik veritabanlarma uygulanabilmesi i¢in birkag
zorunlu gereksinimi karsilamasi gerekmektedir. Gereksinimler yiiksek dogruluk bulma,
diisiik kargilagtirma karmagikligi ve diigiik hafiza ihtiyacidir. Bu amagla, bu tez kapsaminda,
Oznitelik ¢ikarma, nicemleme tabanli indeksleme ve geometric dogrulama olmak iizere ii¢ ana
boliimden olusan bir igerik tabanli kopya bulma sistemi onerilmektedir. Oznitelik ¢ikarma
boliimiinde, referans ve sorgu videolardan, benzerlik hesaplamalarinda kullanilmak igin yerel
uzamsal ve uzamsal-zamansal Oznitelikler ¢ikartilmaktadir. Uzamsal uzayda, Ol¢ek
degisimsiz Oznitelik doniisimii (SIFT), Karsit SIFT, Cevirme Degisimsiz SIFT ve
Hizlandirilmis Dayanikli Dontisiim (SURF) tamimlayicilari, uzamsal-zamansal uzayda,
Doniistim Degisimleri Histogrami (HoG) ve Hareket Sinir Histogrami (MBH) tanimlayicilari
hesaplanmustir. Ikinci boliimde, yerel dznitelikler arasinda hizli karsilastirma yapabilmek icin,
yerel tanimlayicilar, {i¢ yeni Onerilen Kelime Cantasi, Hamming Yerlestirme ve Carpim
Nicemlemesi indekleme metodlariyla indekslere nicemlenmektedir. Son adimda, 6znitelik
indekslerinin eslesmesi sirasinda dogru eslesmeyen noktalar olabilecegi i¢in, her iki uzamsal
ve uzamsal-zamansal 6znitelikler i¢in, geometrik modeli uygularak sonuglari iyilestiren bir

geometri son basamagindan faydalanilmaktadir. Ayrica, yerel ilgi noktalar1 bilgisini kodlayan
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yogun bir geometrik imza hesaplanmaktadir. Test sonuglari, iyi bilinen TRECVID 2009 igerik
tabanli kopya bulma veritabaninda sunulmaktadir. Sonuglar gostermektedirki, Cevirme
degisimsiz SIFT, Hamming yerlestirme, iyilestirilmis zay1f geometrik tutarlilik ve gorsel grup

ikili imza kombinasyonu en iyi toplam sonucu vermektedir.
Anahtar Kelimeler: igerik Tabanli Video Kopya Bulma, Benzer-Cift Video Arama, Uzamsal

Yerel Tanimlayicilar, Uzamsal-Zamansal Yerel Tanimlayicilar, Nicemleme Tabanl

Indeksleme, Geometric Tutarlilik, Gérsel Grup ikili imza
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CHAPTER 1

INTRODUCTION

1.1 Introduction

With the developments in internet technologies and proliferation of multimedia sharing
websites, unprecedented copyright infringements have emerged in the recent years. Due to
the fact that amount of circulated multimedia data over internet reach to huge vast, handling
this data with bare human-based interactions becomes impractical. Thus, demands for finding
a generic solution have had immense attractions than ever before. By the help of the
advancement on computer vision and machine learning, researchers have been investigating

this problem under the title of copy detection [1-19].

The primary goal of copy detection is to search a query video in a large reference video
archive and obtain if original source of the video is in this reference archive or not without

any external intervention.

Frequently, in order to impede identification of source data, several deformations are inserted
purposely into original data source including compression, scaling, cropping, picture-in-

picture, insertion of text, etc. [58].

As inferred from its usability, this field can be used as a base in many applications like
content-based search [20], advertisement tracking [21] and multimedia linking [22]

successfully.

In literature [1-19], the studies have gathered on two complimentary approaches, digital
watermarking [19] and content-based copy detection [1-18]. The core idea of digital

watermarking is to embed irreversible signatures into media which can be either visible (text



or logo) or invisible (it would not be perceived by human-eyes) for future copy determination.
A deficiency of this method is that as the embedded signatures are sensitive to geometric
transformation and compression, it needs a pre-modeling stage to model these signatures to
all possible attacks in advance. Inherently, this causes an increase on storage size of the data
alongside of itself. Since these signatures should be inserted before video is released; the

method cannot be deployed on currently circulated data over internet.

Second approach is content-based copy detection. The underlying assumption is that instead
of embedding any information; content signatures are extracted from multimedia data. Thus,
this procedure makes this approach easier and applicable to copy detection without increasing

video size or needing any pre-modeling stage.

Mainly, this approach consists of two main steps. In first step, known as offline step,
sufficiently distinctive signatures are obtained from multimedia contents using different
feature models and different sampling strategies, and an archive is constructed by storing
these signatures for future copy search. In second step, which is called online step, query
signatures are compared within all the reference database to determine whether query data is

transformed from this reference archive or not.

Typically, such an automatic copy detection system should provide couple of essential
requirements when large amount of the data is considered. Two properties come in
prominence alongside of high detection accuracy: low computational complexity and less
burden of memory usage. In the scope of this thesis, we have explored these three essential

aspects via configuring different computer vision and machine learning techniques.

1.2 Related Works

As we have mentioned in section 1.1, content-based copy detection can be distinguished into
two crucial steps as offline and online. In offline step, by exploiting visual, temporal and/or

even aural contents of video, sufficiently discriminative and robust signatures are extracted.



Saragoglu et al [1] assert that audio content would appear to be more robust over utilizing
visual and temporal contents. Interestingly, from their experiments, they observe that joint
usage of visual and audio contents makes significant improvements on detection rate.
Nevertheless, studies in literature [2-18] have predominantly concentrated on visual and

temporal contents owing to frequency of attack incidences.

Feature extraction methods can be grouped as local and global according to their
representation procedures [23-25, 39]. Global signatures represent color, edge, texture and
motion properties with single feature vector that is obtained from whether an entire frame or

concatenation of sub-partitioned frame windows [39, 41].

In [2], spatial average intensity variations are modeled on 2 x 2 sub-partitioned successive
frames. According to the author’s statements, this provides extra robustness particularly on
intensity and brightness changes. In [3], authors explain that effective copy detection should
be robust against changes in spatial and temporal variations with low calculation cost. Thus,
they accept global signature matching stage as a probabilistic model and turn into a graph
problem. As authors emphasize that this approach yields fair results on the attacks which aim
video sequence like frame dropping. In another study [4] that is proposed by again this team,
statistical characteristics of pair wise correlation of sub-partitioned frames are computed by
employing average intensity on each partition. Besides fast computational capability,
according to author’s explanation, this representation is robust to signal-based attacks

including contrast and blurring changes.

At the side of motion content, Tasdemir et al [5] assert that motion is useless under high
sampling rate and according to their evaluation results, applying lower sampling rate (for
example, 5 frame per second) gives promisingly better accuracy with distributions of
magnitude and angle of motion features. Using the previous contribution, Roopalashmi [6]
investigates this task with couples of novel motion features including motion intensity (mean

and deviation of motion magnitude), spatial distribution of activity (predicts the active



regions) and dominant direction of activity (dominant direction of motion) which all extracted
globally.

In [7], in addition to low-level global visual signatures and sequence matching, facial human
appearance features are utilized. According to their statements, interestingly, lower side of
human body appears more distinctive than face region due to clothing color and background

for duplicate video detection.

However the weak spot of modeling contents with similar manner is that owing to lack of
invariance against scaling and cropping, global feature extraction methods would fail on
picture-in-picture and cropping attacks which contain geometric transformations. Although
dividing frame into sub-windows inserts distinct localization information, it would still

deteriorate accuracy for geometric attacks.

In local signature [23-29], video content is represented around sparsely or densely sampled
points that are scale and rotation invariant [23, 25]. Inherently, this strategy gives strength to
occlusion clutter alongside of geometric transformation because of the ability to make

comparisons on these features individually.

However the main disadvantage of local signatures is that total number of local patches is
prohibitively high to represent the video completely. Hence, this causes a deceleration on
comparison stage. Particularly, considering large amount of media collection, direct use of
these signatures becomes senseless. Although dimension reduction that changes the feature
space with smaller one seems as a primitive solution for scene understanding [41] and object

detection [43], it might lead an overshooting when noisy version of signal is encountered.

Although dimension of signature become smaller, comparison stage would still take place
exhaustively and it creates a redundancy on comparison stage. Hence, in literature [45, 48,
49], quantization-based indexing procedure are generally deployed due to effectiveness on

memory usage and efficient search capability. The simple idea relies on mapping local



features into indices by finding corresponding cluster center from pre-clustered feature space.
Expectedly, during the quantization stage, there would have some information losses on

distinctive power of feature vector.

To be able to conduct an effective search on a large dataset, the storing procedure should be
integrated with inverted index data structure [45]. This structure is composed of descriptor
entries where each are associated with indices. Therefore query descriptor is only compared

with the same indexed descriptor and this greatly reduces the search complexity.

Ates et al [8] present a case study that investigates the performances of SURF [28] and SIFT
[25] local visual features on this task. Their results show that the performances of two local
features are nearly equal. Also, for smaller codeword size like from 128 to 1024, the increment
of codebook size enhances performance alongside of acceleration of comparison speed. In
[9], authors emphasize that predominant drawback of derivation-based descriptors [25] is that
derivations are only taken in x and y directions. For that purpose, they propose a novel visual
feature extraction scheme that prevents underestimation of other direction. This representation
provides robustness particularly on the attacks that aim the signal content like compression.
Heritier et al [10] concentrate on efficient signature indexing and thus they propose

hierarchical indexing mechanism.

In the recent years, to describe the regions more precisely, combining local spatial and
temporal descriptors as single feature has been appeared as a hot-topic. Extensively, this
representation is deployed on action recognition [35, 36] and it is known as spatio-temporal
or trajectory-based representation. The core advantage of this type of feature model is that
spatial content variations on consecutive frames are exploited in feature extraction. Thus, it
helps to augment the distinctivity of feature. Law-To et al [11] assert that employing visual
content singly cannot model the sequential variation which might occur while small
transformation. Thus, they propose the method that combines visual and temporal contents.

The idea is to extract local spatial features on successfully tracked consecutive frames in time.



Similarly, in [12], a novel trajectory-based signature is introduced that encodes the relative
spatial position of each tracked point in proceeding time instance instead of any visual content.

The crucial observation of Wilems et al [13] is that local visual features need to be computed
on uniformly sampled frames. Hence, in spatial domain, matching stage takes a few frames
into account. As the nature of spatio-temporal features, interest points are computed on spatial
and temporal spaces jointly. Therefore this method extends the matching stage from a few

frames to entire video.

Even if selection of best feature and indexing schemes seem as two core steps for successful
copy detection, in literature, there are several crucial observations and solutions that might
improve accuracy of detection even better. In [14], to increase the accuracy on strong
encoding and picture-in-picture attacks, all the reference videos are modeled with these
attacks in advance with various configuration parameters and they are stored alongside of raw
visual content signatures. According to their results, proposed method improves the
performance particularly on the pre-modeled attacks. However it causes notable increases on
memory usage and computational complexity. In other work [15], authors assert that logos,
banners and texts generate many mismatching results owing to the occurrence frequency and
repeatability. Hence, they propose an algorithm that detects the text, logo and banner on
frame. Later, it discards the local signatures that overlap with these regions for future copy
determination. Uchide et al [16] state that since global features are not scale invariant, they
do not work well when frame undergoes change in scale. To mitigate this drawback, they
propose a picture-in-picture boundary detection algorithm for query video that simply

accumulates image gradient in x and y directions.

As stated previously, the deficiency of quantization-based indexing on local features is that
geometric relations among local signatures are discarded while comparing similarity of
indices. For that purpose, Douze et al [17] appends two post-filtering stages to refine true
corresponding matches in spatial and temporal domains. In this system, weak geometric

consistency [48] method and 1D hough estimation techniques are deployed in spatial and



temporal domains respectively. The evaluation results validate that these simple but effective
post-processing stages make a drastic contribution on performance. In another study [14], in
order to maintain the trade-off between scalability and robustness, authors combine local
visual signatures with hashing-based indexing and 2D homography [50] estimation.

In a comparative work, which is done by Law-to et al [18], the performances of several state-
of-the-art local and global descriptors are analyzed comprehensively. The first observation is
that even if local visual features have excessive computation cost rather than global visual
features, their performances seem as optimum. The second observation is spatio-temporal

features work well in small transformations.

1.3 Scope of Thesis

As we stated in section 1.1, convenient copy detection should provide couple of core
requirements. High success rate can be accepted as an indispensable necessity among others.
Therefore, selecting discriminative and robust features would have a crucial importance for
future copy determination. The recent studies [23, 25] validates that even if global signatures
yield fast and compatible results on this task, they lack invariance on a few attacks that include
geometric distorters. Hence, local feature extraction methods are frequently exploited owing
to the robustness to the attacks. Also, this type of representation has invariance to illumination

and compression [25].

Although local signatures yield complementary results on geometric attacks, large amount of
features need to be computed from single image to detect the duplicate frame pairs truly. As
expected, this large amount triggers undesirable increases on memory usage and slows down

calculation speed.

Hence, dimension reduction should be applied over feature vectors in order to make prompt
comparisons. In literature [45, 48, 49], there are couple of approaches to mitigate this

bottleneck of local descriptors. Utilization of quantization-based indexing schemes have



shown superior performances on comparison speed and accuracy. Thus, in the recent years,
combination of this type of approach with inverted index data structure [45] have been
introduced on many computer vision tasks seamlessly. The core idea is to map feature vectors
to indices or more correctly for this domain visual words [45] using a pre-clustered feature

space.

Although the joint usage of local descriptors with quantization-based indexing schemes yield
excellent results, these representations discards the geometric relation that exists among local
signatures. Thus, use of the geometric relations enables to improve the performance even
further. Even though there are couple of state-of-the-art homography [50, 51] estimation and
local neighboring methods [55-57], their comparison complexities limit their applicability on
entire archive. Therefore, instead of applying these kinds of obstructive estimations, seeking
a simpler geometric verification stage by investigating characteristic of geometric parameter
distribution of local signatures and exploring local geometric relation with compact signature

would be more truly suitable.

For all these reasons, in this study, video copy detection task is revisited by employing
content-based approach. First, local spatial and spatio-temporal features [25-29, 33] of video
are exploited. Then, in order to make efficient search, these features are represented with
guantized-based indexing signatures [45, 48, 49] and the similarity scores for all frames are
calculated using these signatures. In the final stage, geometric consistencies [48, 54] among
corresponding local signatures are investigated to enhance the accuracy by introducing

negligible amount of increase in comparison complexity and memory.
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Figure 1. Overall block diagram of the developed copy detection system for spatial domain.

1.4 Outline of Thesis

As we stated in previous sections, successful content-based copy detection should consist of
three cascaded stages namely feature extraction, indexing and geometric verification.
Therefore we have partitioned this thesis into three main chapters where each stage is

explained thoroughly.

Since the scope of the thesis bases on local features, necessary background on spatial and
spatio-temporal feature extractions are summarized in separate sections in Chapter 2. To
provide similar conditions for each feature model, each one is computed on uniformly
sampled one second interval frames. Before giving the essential information about each
feature method, the underlying procedures of interest point detection is investigated at the

beginning of each spatial and spatio-temporal sections.

The core information about three existent quantization-based indexing methods are given in
Chapter 3 from simple to complicated. Additionally, we propose unique soft-assignment
similarity score metrics for all indexing methods. Data structure which provides an effective
signature search capability and weighting scheme according to their term-frequencies are

discussed in detail in this chapter.
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Figure 2. Overall block diagram of the developed copy detection system for spatio-temporal domain.

Chapter 4 is devoted to establish fast and compact geometric verification among local
signatures. To improve the understandability of the geometric verification stage, this chapter
is divided into two sections namely geometric consistency and local geometric signature.
Even though there are several methods that aim to constitute a weak geometric consistency in
spatial domain, in the scope of the thesis, we propose a novel trajectory-based geometric
consistency for spatio-temporal signatures which gives superior performance. Additionally,
we have reintroduced the weak geometric consistency for spatial domain to gain invariance
against flip transformation. In local geometric signature section, we propose a novel local
geometric signature that simply encodes the local interest point relation in neighboring area
as a single compact binary signature. This signature helps to discard the outliers that are

obtained from content similarity search with small burden of memory and comparison.

In Chapter 5, according to obtained evaluation results on a dedicated dataset [56], positive
and negative aspects of the combination of each feature extraction, indexing and geometric
verification schemes are discussed around three essential properties which we give in
Motivation section. The overall block diagrams for spatial and spatio-temporal domains are
shown in Figure 1 and Figure 2, respectively.

Finally, in Chapter 6, the conclusion of the thesis is presented and future research direction is

discussed according to weakness of the proposed methods.
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CHAPTER 2

FEATURE EXTRACTION

In image processing fields, digital image consists of pixel numbers that correspond to integer
or floating points. Even though these pixel numbers yield discriminative information about
content of an image, most of them are redundant. Thus, it can decrease the performance of
detection/classification significantly. Similar to image, video consists of successive images
and this makes the problem even harder.

Therefore, image/video content should be represented as a set of features that can vary
according to desired application or task. In general, the assumption is that the content is
depicted by obtaining distinctive characteristic information about pixel distribution. For
example, while color, texture and gradient features give superior performance on many spatial
domain applications [25-27, 32, 39], trajectory and motion features are preferred in temporal
domain [33, 39].

Selection of feature model can be introduced according to problem specifications. The
primitive approaches in literature are based on converting full size of pixel values into lower
dimension by using dimension reduction methods [37, 38]. They use the observations that are
learned in advance to decide pixel relation is important or not. Although this scheme yields
impressive performance on character recognition [38] and face detection [37], they lack
robustness and invariance on multimedia content representation. Hence, utilization of color,

edge or texture would give more accurate results especially on that task [25-27, 39].
In literature, feature extraction methods can be distinguished into two modes according to

way of representation of multimedia content namely global [39] and local [25] extractions. In

global feature extraction, the contents of multimedia data that can be either image or video,
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are represented with a single feature vector that describe the whole data by representing its

color, edge texture or motion information.

To insert localization information into the representation for enhancing the distinctive power,
multimedia data is partitioned into sub-regions in spatial and temporal domains. Then, all

feature vectors from each region are concatenated into a single vector.

The main advantage of extracting global features is that they give instant response to
calculation and comparison stages besides fair results. Particularly on semantic scene

understanding [40], this type of features gives quite good results.

Although these features yield fair results on multimedia data, inherently, they are sensitive to
geometric transformation and occlusion clutter because of describing the data with single
feature vector. As expected, these feature vectors are partially robust in a range of distortion

and it would induce an ambiguity in comparison stage.

In the recent years, owing to their distinctive power and robustness to occlusion and geometric
transformation, local feature extraction methods [23-27] which are extracted around interest
points, have been applied on nearly all applications in computer vision task including image
retrieval [42, 49], video data mining [45], object recognition and localization [43], scene

understanding [41] and camera calibration [44].

The underlying assumption is to detect local patches on an image which are invariant to
geometric transformations and describe the content inside these patches. Similar to global

features, color, edge, texture or motion content is exploited.
Frequently, local feature extraction consists of two steps. First, interest points that are robust

to geometric transformations and thereby view point changes are determined [25]. Second,

leveraging location and scale parameters of these points, a circular region is defined around
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each point and a feature vector is computed by exploiting distinctive content information [25-
27].

Of course, local descriptors have several deficiencies that are mostly encountered on
calculation and comparison stages. Since feature extraction and signature estimation are done
in offline step of content-based video copy detection task, there is no time limitation to

construct the reference archive.

For all these reasons that we have mentioned above, local descriptor can give better
performances alongside of high computation limitations. In this work, we have utilized
several local feature extraction schemes in spatial and spatio-temporal domains. Hence, this
chapter will be partitioned into two sections and the detailed information about each type of
extractions will be presented. First, for spatial domain, an existent approach for interest point
detection will be summarized. Additionally, four local region-based visual descriptor methods
will be explained thoroughly. In second section, similar to first section, the interest point
estimation and representation will be presented for spatio-temporal domain.

2.1 Local Spatial Feature Extraction

The higher reliability score between two images is directly related with finding more true
correspondences on the images. Hence, the detection of robust interest points and describing
these region around interest points have crucial influences on true image matching. For that
purpose, to improve the clarity, we will explain interest point detection and describing the

regions in two separate sub-sections.

2.1.1 Interest Point Detection

In literature [23-25], there are several interest point detectors that follow similar assumptions.
The common assumption is that such a point should be stable to translation, scale and

orientation changes and robust enough to quality decrease. Hence, the fact is that interest

13
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Figure 3. Scale-space Hessian Matrixes. P denotes the central point and N presents the
neighbouring points around point P.

points should be located on either blobs or edge corners. This provides extra strength on view

point changes and decrease on quality.

In this work, firstly, we will utilize a state-of-the-art interest point detector which is called as
Hessian-Laplacian [23, 24]. This methodology detects interest points on blobs with a scale
parameter. Hence, in order to obtain location of interest point and characteristic scale, Hessian

matrix and Laplacian function are computed respectively.

Hessian matrix consists of second order partial derivatives that is derived from Taylor series
expansion. This matrix is frequently utilized on analysis of the local image structure. This
matrix measures the curvature at a point using neighboring intensity values. The assumption
is that the eigenvectors of matrix yield the maximum and minimum curvature directions for a
point. Additionally, the eigenvalues give the magnitude of curvatures on eigenvector’s

directions. Hessian matrix can be written as:

Lx(,y)  Ley(x,y)

Lyx(x,y) Ly (xy) €Y)

H(x,y) =
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Figure 4. Local Hessian-Laplacian interest points. Green circles defines the regions.

where Iy, Iy, I, and I,,, second order derivatives in specified directions.

Therefore, the determination of Hessian matrix would help to obtain the point with strong
spatial variations. Leveraging this property of Hessian matrix, first, a scale-space is
constructed by convolving the input image with various of Gaussian kernels G(x,y, oy)

where gy, is the variance of k level of Gaussian kernel as:

L(x,y, ak) = I(XI)’) * G(x,y, Gk) (2)

Since Hessian-Laplacian method is a blob like detector, the purpose of convolving image with
Gaussian kernels is to smooth the signal and obtain the initial candidate value of scale
parameter for this point. For each scale-space convolved images, Hessian matrix is computed
as:

Lxx (x' Y ak) ny (x, Y Gk)

HEOY 0 = | (3,00 Lyy (3,0

3)
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To detect the stable interest points, determination of Hessian matrix on single point is
compared with 3 x 3 neighborhood area in spatial (8 points) and scale points (2x9) as shown
in Figure 3. If the central point is of a greater value among neighboring points and a given
threshold, it is selected as an interest point. The reason for using a threshold is to eliminate

the points that have weak maxima.

After obtaining the location and the initial scale of the interest point, the scale value is refined
in order to assign more proper characteristic. According to author’s statement [23], Laplacian
function is more suitable to determine the characteristic scale from an image structure [23].
Hence, Laplacian function is incorporated for different size of Gaussian kernels as:

Lap(x, Y, Gk) = sz |Lxx (x, 8’z Jk) + Lyy(xl Y O-k)l (4')
Similar to interest point detection with Hessian matrix, Laplacian function is computed over

all scales. The scale which gives the maximum value among neighbors is selected as the
characteristic scale.
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2.1.2 Spatial Descriptors

With location, scale and orientation (assignment stage will be explained in descriptor
methods) of interest point, we define circular regions around that point as illustrated in Figure
4. To provide same condition on the interest points that have different scale and orientation
parameters, we utilize a transformation stage before describing the regions. The block
diagram of transformation stage is given in Figure 5. First, the region around interest point
with characteristic scale are normalized into 41 x 41 patch. Second, the region is rotated
using orientation parameter around the interest point. In final stage, visual content is exploited

over these normalized region.

In this work, for spatial domain, we have implemented four state-of-the-art visual feature
extraction methods including Scale Invariant Feature Transform (SIFT) [25], illumination
invariant color version Opponent SIFT [26], flip invariant version F-SIFT [27] and Speed-Up
Robust Feature (SURF) [28].

In the following sub-sections, we will explain the details of these spatial descriptors.

2.1.2.1 Space Invariant Feature Transform (SIFT)

The original of the descriptor [25] consists of four major stages namely scale-space extrema
detection, keypoint localization, orientation assignment and keypoint descriptor. First two
stages that are also known as Difference of Gaussian (DoG) [25] and they correspond to
interest point detection. Since, we have utilized Hessian-Laplacian for that purpose, in here,
we will not give any information about these stages. Thus, we will jump directly to orientation

assignment stage.

In orientation assignment stage, in order to preserve the robustness against orientation changes

or image rotation, an orientation parameter is calculated based on local property of interest
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point. In this method, first, inside the region of interest point, gradient magnitude m(x, y) and

gradient orientation 8 (x, y) is computed on each pixel (x, y) using pixel differences as:

m(x,y) = J(I(x +1,9) —Ix—1,y)° + ([ y +1) —I(x,y — 1)’ (5)

(6)

6(x,y) = tan™1 (I(x,y +1)—I(x,y — 1))

Ix+1y)—I(x—1,y)

Then an orientation histogram is constructed. The size of histogram is selected as 36 where
each bin covers 10 degree range of orientations. The point inside the region is added up
according to quantized orientation value with gradient magnitude. To increase the importance
of the point that are close to center of interest point, Gaussian weighting is applied over
gradient magnitudes [25].

The underlying idea of estimation of orientation in local region is based obtaining peak value
of accumulation of gradient orientations in a histogram. The peak bin corresponds to dominant
direction of local gradients. However, because of the quantization of gradient orientation and
noise of the image, selecting single dominant direction would be inaccurate. Therefore, author
emphasizes that [25] local peaks that are up to %80 of the highest peak must be considered

as orientation characteristics of interest point.

In keypoint descriptor stage, instead of utilizing grayscale intensity values directly, gradient
magnitude and orientation distribution are employed. First, in order to insert the distinctive
location information in feature vector, the region is partitioned into 4 x 4 sub-regions. Then,
from each sub-region, an orientation histogram is computed with 8 directions and weighted
with gradient magnitudes. At the end, the orientation histograms are concatenated and the

final feature vector length would be equal to 4 X 4 X 8 = 128.
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2.1.2.2 Opponent SIFT

Scale Invariant Feature Transform (SIFT) is applied on grayscale image to represent the visual
content of local region. In real-world scene, image consists of additional color channels.
However, direct use of SIFT feature on RGB (Red, Green and Blue) or YUV (luminance,
chrominance blue, chrominance red) induces an ambiguity due to the fact that changes in the
illumination greatly affect the performance of matching or object recognition for these color

spaces.

In [26], authors express a couple of illumination change conditions including light
intensity/light color changes and shifts with linear equations. Leveraging the conclusions of
these formulations, they propose a novel color space which consists of three color channels

named as Opponent Color Space.

The thought is to convert red, green and blue values into new invariant color space by
combining with each other. The combination of red, green and blue channels can be express
as:

R—G
0 V2
1 R+ G —2B
ol ?
0
3 R+G+B
V3

where intensity information is represented with O; and color information by 0; and 0,

channels.
In Opponent SIFT descriptor, orientation parameter of the region is computed on grayscale

value similar to SIFT descriptor. Differently, all opponent color channels are accepted like

grayscale and from each, 128 dimensional feature vector is computed using SIFT descriptor.
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At the end, these three channel SIFT features are concatenated as one and 3 X 128 = 384

dimensional feature vector is obtained.

2.1.2.3 Flip-Invariant SIFT (F-SIFT)

Although SIFT descriptor is invariant to scale and orientation changes, it is not invariant to
flip transformation in any axis. The source of this problem is based on that the insertion of
locality in feature representation is not robust to this type of transformation even if interest
point detectors are. In [27], a novel method is proposed that preserves the originality of SIFT
descriptor extraction including grid-based structure alongside of enrichment on flip

invariance.

The intuitive idea is to make the region invariant by transforming this patch over the direction
where the flip incident has been occurred before visual feature extraction. For that purpose,

there should be a rule that determines the flipping action should be performed or not.

Hence, authors [27] propose dominant curl computation for this problem. This computation
defines a vector operation that describes the infinitesimal rotation of a vector field. The
direction of curl corresponds to the axis of flip. In multivariate calculus, the curl of F where

F(x,y,z) is a vector field is given as:

i J k

VXF = 09 0 0 (8)
“|ox 9y oz
FF F, F

With Stokes’ theorem, this equation turns into integration of curl as:

fLER3VxF-d>: 9)
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In spatial domain, curl computation is defined in 2D discrete vector field and it is equal to
cross product of first order partial derivatives along x and y directions respectively as:

C = z \/61(;6;{)/)2 + 61(;' 12k x cos(6,(x,y)) (10)
(x,y)el Y
where
0I(x,y) =I(x-1,y)—I(x+1y) (11D
0x

a(x,y)

5 I,y —1)—I1(x,y+1) (12)
Ix,y—1) —I(x,y+1

6(x,y) = tan™1 (Ig i/ 1 }3 — Ig -I}j 1 }3) (13)
0,(x,y) = 0(x,y) —tan™! (%) (14)

C denotes the possible direction in clockwise or counter clockwise manners according to its
sign. In this work, negative sign indicates the region should be flipped. Thus, before
employing normalization onto the region according to dominant orientation as in Figure 5, for
flip detected region, region is flipped in vertical axis and later orientation normalization is
deployed. Similarly, for visual extraction, SIFT descriptor is computed over flip normalized

region and 128 dimensional feature vector is computed.
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2.1.2.4 Speed Up Robust Feature (SURF)

Speed-up robust feature (SURF) [28] propose an alternative to SIFT descriptor for object
recognition and interest point matching. The main contribution of this descriptor according to
author’s statement is that it computes local features several time faster alongside of superior

performance.

Similar to SIFT, it consists of interest point detection, orientation estimation and describing
interest point steps. For orientation assignment, Haar-wavelet responses are calculated in x
and y directions by combining integral image scheme. The dominant orientation is estimated
by calculating the sum of all haar-wavelet responses within sliding orientation window.

Similarly, the peak of orientation histogram gives the orientation characteristic of points.

For feature extraction, in order to preserve the spatial information, the region is divided into
4 X 4 sub-regions. From each sub-region, horizontal d,, and vertical d,, wavelet responses are
summed up and a vector is formed as v = (X d,, X d;,, Xldx|, X|dy|) Where |d,| and |d,|
denote the absolute value of d, and d,, respectively. Thus, the final dimension of feature

vector isequal to 4 X 4 X 4 = 64.

2.2 Local Spatio-Temporal Feature Extraction

Naturally, video consists of successive images and it contains temporal variations of frames
in addition to visual content. Hence, combination of visual content with temporal variations
would yield better distinctive representation. For example, for an object with same
background gives similar spatial features for different scenes on videos. However, unique
movements of the object in different scenes can create a discrepancy. Thus, utilizing temporal

variation alongside of visual content can improve the accuracy.
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Figure 6. Local interest points at multiple scales.

Joint usage of temporal and spatial contents of video is extensively investigated on action
recognition task [29, 35, 36]. In literature, two common approaches can be utilized for spatio-
temporal feature extraction. First approach [35, 36] is that similar to spatial interest point
detector, scale invariant regions are obtained on spatial and time domains jointly which is
known as space-time interest points. Then, inside this space-time region, content of video is
described.

Second approach is that interest points are detected on frames and tracked within specified
time interval [29]. Thus, temporal variations of trajectory points are added into feature in
addition to spatial content.

In this work, we have used trajectory-based spatio-temporal feature extraction scheme.
Similarly, this method has two steps including interest point detection and tracking in

consecutive frames and describing content of interest points.

2.2.1 Interest Point Detection and Tracking

We have utilized dense trajectory estimation method [29] to detect and track the interest
points. According to author’s statement, this representation captures the foreground motion

information with high precision.
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In the proposed methods, first, interest points are densely sampled on frames. In order to
consider the scale changes, image pyramid that consists of downsampled version of input
frame in scale, is constructed and sampling is also carried out on these images. Hence, this
sampling strategy makes sure that interest points cover all spatial positions in different scales.

Since trajectory will be estimated on these points by tracking in time, these points should be
sufficiently stable. Therefore, authors propose a filtering stage that eliminates the interest
points which are on homogeneous areas. The assumption is that [30] if eigenvalues of auto
correlation matrix of point is smaller than an adapted threshold, this point is discarded.

Empirically, authors set the threshold value as:
T = 0.001 x max(A}, A7) (15)

where A} and A7 are the eigenvalue of a point i on the image. An example for densely sampled

interest points on spatial scales are shown in Figure 6.

Before given the detail about the interest point tracking, this method tracks the interest points
on each spatial scale separately. This means that transitions between different scale points are

ignored.
In tracking stage, first, on each spatial scale, optical flow field [31] is constructed.
Additionally, in order to reduce the sensitivity of motion field, 3 x 3 median filter is applied

around all interest points.

In this work, we have used the motion content of video, static trajectory in other word the

trajectory with small variations or large displacements has been filtered out.
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2.2.2 Spatio-Temporal Descriptor

After tracking the interest points in consecutive frames successfully, spatio-temporal feature
is calculated in space-time volume whose size is equal to N X N x L where N is the spatial
window size and L is the total frame length. In order to attain structure information in both
spatial and time domain, this volume is subdivided into n, x n,, cells in spatial domain and

n; cells in time domain.

From the experimental results, we have observed that because of the decreasing the quality of
frame with Gaussian blur, interest point can vanish. Hence, the correct trajectory estimation
may not be obtained for long trajectory length L. Empirically, several parameters are selected
asN=32,L=6n,=2,n,=2andn, = 2,

In the following parts, we will explain two feature extraction methods on trajectory including
histogram of orientated gradient (HoG) [32] and motion boundary histogram [29, 33].

2.2.2.1 Histogram of Orientated Gradient (HoG)

Firstly, histogram of orientated gradient [32] is proposed for human detection. Later, this
method is applied on action recognition with spatio-temporal feature extraction [36]. These
studies validate that this representation gives superior performance results on action

recognition problem.

The idea is, similar to scale invariant feature transform (SIFT), single 8 bin gradient
orientation histogram is created by weighting with gradient magnitudes for each cell. Then,
an L, normalization is employed over this histogram. The dimension of final feature vector is

equal ton, X n, X n; X 8, inoursetup 2 X 2 X 2 X 8 = 64.
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2.2.2.2 Motion Boundary Histogram (MBH)

Authors state that, optical flow field between two consecutive frames composes of
background, foreground and even camera motion. However, in motion feature, the camera

motion including tilting, zooming etc. reduces the distinctive power of feature.

The underlying assumption [29, 33] is the typical camera motion contains local translations
in other words, motion flows in neighborhood area behave coherently. Thus, the derivation
on horizontal and vertical axis would discard the regular motion and yield the absolute motion

for that point.

First, the proposed method splits the optical flow field into horizontal and vertical
components. In 3 x 3 spatial window, the derivation are computed for each pixel and
orientation histograms are constructed on each axis. The magnitude of motion is used for
weighting these histogram. Both histograms are normalized separately. Since there are two
separate histograms with dimension of 2 x2 X 2 x 8 = 64, these two vectors are

concatenated at the end and the final dimension of feature is equal 128.
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CHAPTER 3

QUANTIZATION-BASED INDEXING

Although local descriptors induce an excellent representation for a frame thereby a video
because of their invariance against occlusion clutter and geometric transformation, adequate
number of descriptors need to be extracted from a video in order to make robust similarity
search. This amount is generally huge and it obstructs to compare these descriptors within
acceptable time range. Mapping feature into lower dimension would be an acceptable solution

to reduce the comparison complexity and memory requirement.

During mapping feature vectors into lower dimension; there will be some information loss.
Hence, for effective representation, the trade-off between comparison complexity and amount

of information loss should be adjusted well.

Simplest way to map a descriptor vector into lower dimension is multiplying by an orthogonal
projection matrix [48]. Since the projection is employed by multiplication of descriptor vector
and projection matrix; the intended vector length can be easily adjusted by matrix dimensions.
However, this assumption maps input vector directly to lower dimensional space without

explicitly investigating any prior information about components of descriptor vector.

The assumption [37, 38] is that each component of feature vector cannot comprise similar
amount of information. Hence, by the help of this assumption, dimension reduction can be
improved even further. For that purpose, a feature corpus that consists of either supervised or
unsupervised data is utilized to compute the contribution of each component. Leveraging
different priority of each component, dimension reduction would be achieved by retaining top

N most prior components with less information loss.
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Figure 7. Matching query and reference points according to their indices. (a) Bag-of-Word,
(b) Hamming Embedding, (¢) Product Quantization

The main deficiency of these types of methods is that even if seamless dimension reduction
is achieved, similarity search still takes place exhaustively. However, comparing these
features whose contents are too different from each other leads unnecessary calculation.
Another limitation is, in order to avoid curse-of-dimensionality, the feature whose dimension

is higher than 10 should not be mapped with these methods.

In the recent years, due to the effectiveness of fast search capability and ease of
implementation, quantization-based indexing procedures are frequently deployed for object
recognition [43] and large scale image search [42, 51]. The underlying assumption is that
feature vectors are represented with a set of indices by quantizing vectors in a pre-clustered
space.

Within the scope of this thesis, we have investigated three state-of-the-art quantization-based
indexing methods from simple to complicated one, namely bag-of-word [45], hamming
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embedding [48] and product quantization [49]. Additionally, inverted index structure [45] and
weighting signatures according to their term frequencies [45] have been explained in detail.
Thus, we have divided this chapter into two main sections. In the first section, we will mention
about these three indexing methods and we will give broad explanations about each method
separately. Then, we will explain and discuss the effects of inverted index [45] and term

frequency weighting [45] on detection accuracy and speed.

3.1 Content Indexing

With the availability of large video and image collections, making effective search while
conserving effectiveness on large collections appeared as a challenging problem. According
to the recent studies [45], quantization-based indexing schemes have come into prominence
due to its scalability and robustness. Especially, the success of representing image/video with

local patches has a foremost influence on this improvement [25-28].

Literature on this approach was primarily adapted from text-domain [34]. Because of success
of this representation, the studies have been turned into visual domain and state-of-the-art
methods have been proposed that particularly aim two necessities of representation;

discriminative power and speed.

In the following sections, we will explain three existent and state-of-the-art quantization-
based indexing methods. Bag-of-word scheme [45] represents feature vector with indices by
making a quantization on a set of pre-clustered centers according to distance metric. Since
clustering scheme is an unsupervised machine learning solution [52], selection of best-fitted
cluster center size is a fundamental problem and this parameter designates the trade-off

between robustness versus discriminative power.
In hamming embedding scheme [48], location of the feature vector inside the corresponding

cluster is approximately encoded by a binary signature in addition to closest cluster center

index. In product quantization [49], in order to augment bit code per feature component during
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quantization, feature vector is uniformly partitioned into sub-vectors. Leveraging this

assumption, residual error between the vector and corresponding cluster center is encoded.

Figure 7 illustrates the feature vector matching stage by their indices between query and

reference frames for three quantization-based indexing schemes.

Although all these methods follow similar vector gquantization scheme, each one has its unique
diversity in similarity metric. To improve understandability, unique similarity metric formula
for each method is denoted as s,,04¢: (v", v9) Where v" and v4 represent reference and query

feature vectors.

3.1.1 Bag-of-Word

This phenomenon was firstly unveiled for text categorization and retrieval [34]. Mainly, it
consists of two stages that are learning list of targeted stems and altering input vector to those

stems according to similarity distances.

First, the procedure parses document into words and then these words are transformed into
meaningful stems consecutively. Second, correspondences of stems are obtained from the
learning list and document is represented with a vector where each bin is equal to

accumulation of occurrence frequency of the words that are in learning list.

Insertion of term frequency and inverted index structure [45] that we will investigate in

Section 3.2, make also tremendous improvement on detection accuracy and calculation speed.

Because of the superiority and simplicity of this method, it was explored in computer vision
field firstly by Sivic and Zisserman [45]. In the proposed method, each of the stages in text
domain associates with visual analogy. For example, instead of text stems, sparsely sampled
scale, rotation and affine invariant patches are admitted and these patches are represented with

the indices that indicates corresponding closest cluster center in pre-clustered vector space.
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In the proposed method, initially, a coherent corpus is created from logically and randomly
sampled d dimensional feature vectors V = {v;, vy, ...,vy} € RN, Then this corpus is
clustered into K non-overlapping regions € = {c;, ¢, ..., cx} € R*K and a fixed-sized
clustered vector space is obtained for future vector alteration. In vision domain, vector space

and each cluster center are named as visual codebook and visual word respectively [45].

Frequently, k-means algorithm [52, 53] is utilized for clustering stage. Briefly, this method
consists of two steps namely assignment and update and it refines cluster centers iteratively
[52, 53]. In assignment step, each visual sample in the corpus assigns to closest cluster centers.
Even though different similarity metric have different effects on sorting of cluster centers, in
general, euclidean distance metric (16) is used. In update step, means of each cluster are
updated according to these samples. These two steps are repeated until the cluster centers

converge implicitly or exceed a maximum number of iteration.

d
euclidean(vt,v?) = Z(vli —v2))2 (16)
i=1

where v1; and v?; are the i the element of vectors.

After the construction of visual codebook that holds a set of visual words, ownership of the
input feature vector is computed on these cluster centers. Theoretically, the underlying
thought of this methodology is to represent feature vector v with a corresponding closest
cluster center q.(v) in the visual codebook. In order to map the vector into indices, first,
similarity distance between the vector and all visual words need to be calculated. Then, the

closest visual word indicates the corresponding indices of the vector in this visual codebook.

Commonly, for scene understanding and object recognition tasks, bag-of-word is utilized by

computing index occurrence histogram to obtain the unique overall structures of different
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object and scene models [46, 47]. However, in content similarity search, our aim is to find
same patches under different geometric transformation and noise models on reference frame.
Hence, descriptor comparisons according to their indices equality is enough. Thus, the feature
vector mapping stage can be introduced as a discrete optimization problem with several

constraints as:

N
. . 12
arg mBm;”v‘ — CbY|| an

st. B0 = 1, [[bY[l,. = 1% = 0, i

where C is the visual word list, v! is the feature vector and b denotes the ownership of the
feature vector on visual words as one or zero. The aim is to obtain b* vector by optimizing
the distance between the vector and cluster centers. As k-means algorithm assigns the feature
vector implicitly into single index, these constraints emphasize that only one component of

b should be equal to one, while remaining is zero.

Due to the fact that distance calculations are repeated for all cluster centers, for large value of
K, huge computation time is spent on assignment of indices. Hence, iteration-based closest
cluster center estimation becomes useless. This deficiency has triggered a demand on
exploring an efficient search procedure. The recently adapted space search technique Kd-Tree
[51] appears as a suitable solution for this problem. The underlying assumption is, instead of
searching the vector within cluster centers one by one, partitioning cluster centers into sub-

tree structures would narrow the search space.

To construct the tree-based structure, cluster centers are split recursively into two nodes
leveraging two notions as inclusion of the dimension with the highest variance and the median
value along the dimension. Hence, the redundant comparisons are discarded to provide fast

search ability. Detail about this method can be found in [51].
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Since this technique represents feature space with a set of tree-based structures, there might
be error during assignment step particularly on the vectors that are close to cluster boundaries.
Therefore, this type of search space techniques is categorized as approximate nearest neighbor
method [51].

In bag-of-word method, due to the fact that each descriptor vector is represented with single
quantizer q.(v), constituting a relation among query and reference feature is merely based on

controlling equality of indices. Therefore similarity score formulation forms as:

10, if q.(v") == q.(v9)

S v’ pl) = { }
sow( ) 0.0, otherwise

(18)

Verbally, quantized indices must have same values to assert that these two descriptors are
identical. However since coverage of each cluster center is huge particularly for small K in

feature space, there may be a significant quantization error.

3.1.2 Hamming Embedding

The critical parameter of quantization-based approaches appears as K value. The reason is
that K determines the trade-off between robustness and distinctivity. Roughly, for a small
value of K, the probability of residing noisy version of descriptor in the same cell is high.
However, this generates a weakness and the descriptors, which may contain irrelevant content,
can be labeled with same indices. Conversely, when K value is high, homogeneity of cluster
content is also high and precise estimation can be made. However this time, the probability

of assigning noisy feature to same cluster is low.
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Figure 8. Red and blue dots indicates cluster center and sample points in two dimensional
feature space respectively. Hamming embedding partitions each cluster region and encodes
with a binary signature.

Based on this weakness, Jegou et al [48] propose a hovel method that combines the advantages
of coarse (lower K) and fine (higher K) quantizers. The assumption is that besides the

quantized indices q.(v), location of feature vector within the cluster center is also encoded
with a binary signature by, (v) = {b1 (v), by (v), ..., bg, (v)] where d, is the length of binary

signature.

By the help of this binary signature, each cluster is quantized once more into sub-sectors as
shown in Figure 8. Translations between these sectors are permitted with an error metric

which corresponds to hamming distance as:
dp
Hue @09 = ) [b(0") = b ()| (19)
i=1

For binary signature estimation, this method can be reserved in two stages. First, in order to
embed sub-sectors information into the visual codebook, necessarily parameters are obtained

in offline learning stage. In the second stage, binary signature is computed exploiting these

parameters for the given input vector.
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Since a binary value needs to be computed for each component of feature vector, direct use
of the vector causes unnecessary dimensional increase of signature. Hence, feature vector
should map to lower dimension by multiplying orthogonal projection matrix P firstly. The
dimension of matrix must be equal to dxd, where d is length of descriptor vector and d,, is
the dimension of intended lower space. In order to generate an orthogonal projection P matrix,
QR factorization is applied on randomly sampled matrix of Gaussian values [48]. In this work,

we set d,, as 32 for all feature vector models.

In the first stage of the method, to modify visual codebook and learn a set of parameters that
enables us to create a binary signature, a feature vector corpus is build V = {v,, v,, ..., vy} €
RN similar to codebook construction. Then, index of a vector is obtained conventionally
assigning to closest visual word q.(v) and the vector is projected onto a set of components
Z = {ch(v),l'zqc(v),z' ""ZQC(V):db} by P matrix. These quantization and projection steps
repeated for all feature vectors in the corpus. In order to use these parameters in further
calculations, these projected components are stored alongside of cluster center indices.

Since location information of the vector inside cluster is encoded by a binary string or
signature, each binary value has two options for representation. Therefore, an unique
threshold =, ;, is computed for each projected component of the cluster where ¢ = 1... K and
h = 1...d,. This threshold value corresponds to median value among all the estimated
components for cluster c in feature corpus. For future signature calculation, projection matrix

P, median values for each cluster and component 7. , are stored in addition to visual words.

In the second stage, to estimate a binary signature, first, descriptor vector is assigned to the
closest visual word g.(v). Then this vector is projected to lower dimensional space using P
matrix and a set of components Z = {z, ()1, Zg,(v) 2, > Zq,w),a, } 1S Calculated. To obtain
the binary signature bp.(v) = {b;(v),b,(v), ..., b, (v)}, each projected component is

compared with 7 ; ) , Separately as:
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L if 2q,0)i > Tq )i
b: ={ qc\v), qc\v), 20
i) 0, otherwise (20)

Besides the quantization index value of the vector, in order to measure the similarity between
two feature vectors, approximate localization information with binary signatures would be
utilized to refine the accuracy. As defined in [48], hardcoded similarity score function can be

given as:

q.(v") == q.(v)
Hp,(v",v?) < h; (21)
0.0, otherwise

sgr(",v?) = 10, i

where h; denotes the threshold which can vary in range of 0 < h; < d,,.

However, in our case, descriptor may contain noise because of re-encoding attacks.
Empirically, we observed that instead of selecting hardcoded similarity score as in (21),
weighing similarity score according to hamming distance of the binary signatures would yield
better performance. Therefore, we have reintroduced similarity score formula according to

this observation as:

1.0 — Hhe(ervq) lf qC(vr) == qc(vq)
sup (T, v9) =47 h¢ ' Hpe(v",v7) < h, (22)
0.0, otherwise

The hardcoded threshold h; is selected as 22 in this work. Briefly, the influence of weighting

scheme with hamming distance is to favor small distanced pairs with higher similarity score.

3.1.3 Product Quantization

The purpose of quantization scheme is to represent feature vector with a few parameters while

preserving high discriminative power as much as possible. Hence, reserving high bit rate for
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each component of vector is directly related with high cluster size K. Inherently, this affects
positively the success rate of retrieving. However, the increase in number of required sample
and complexity of learning induces a limitation to obtain an effective quantizer. Additionally,
as K and d denote the visual word size and the dimension of descriptor vector respectively,
K x d floating point value need to be stored for each quantizer which makes the approach

impractical for large cluster size.

Product quantization scheme can be presented as a solution to reach high cluster size without
implicitly following clustering procedure. Initially, this approach has been extensively studied
in information theory and it have been tailored by [49] into machine learning field. The
underlying assumption is that instead of employing a vector v as whole, vector is split into m
uniform sub-vectors v,, where 1 < m < M and length of each sub-vector is d* = d/m. The
quantization step is done for each sub-vector separately using m different quantizers q,,(.)

as in:

{v1, 12,0, v} 2 {1 (1), 42 (V2), -, G (Vi) } (23)

Since the aim of product quantizer is to enlarge cluster size K by combining several sub-
vector quantizers g,,(vy,), the final cluster size K explicitly is equal to (K*)™ where K* is

the cluster size for each sub-quantizer q,, (.).

Additionally, the complexity of learning and assignment of product quantizer are decreased
tom x K™ x (d/m) = K¥/™ x d whereas original K-means algorithm complexity is equal
toK xd.

To conduct this method on large scale visual search, similar to hamming embedding, a small
code for each feature vector is inserted in addition to the quantized vector index. This code
encodes the residual error between the vector and corresponding cluster center (24) with
product quantizer. Thus, this technique improves the accuracy more precisely than utilizing

purely vector index itself.
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r() =v-q.) (24)

This method also needs a pre-configuration step to obtain necessary parameters. First, a
corpus of residual error is constructed from randomly sampled image feature vectors. Then,
owing to the underlying assumption of product quantization, each residual vector is split into
m uniform sub-vectors and these sub-vectors are clustered with k-means algorithm separately
into K™ cluster centers. This clustering step is repeated for all m partitions. To facilitate the
future calculations, a look-up table which stores the distance and order relations of cluster
centers with each other is generated for each partition.

In assignment stage, first, in order to obtain the small code, residual error r(v) is computed
with (24) and it is quantized with product quantizer q,(r(v)) into m distinct partitions
qm (r(vy,)) where m = 1 ... M. Thus, by the help of this method, the vector is represented

approximately as:

U= QC(U) - Qp(v - QC(U)) (25)

In this method, to calculate the soft-assignment of similarity score of two signatures, we apply
two constraints that should be ensured implicitly, otherwise it will be accepted as zero. First,
the quantized indices of two vector should be identical similar to bag-of-word method.
Secondly, unlike [49], we utilize a soft similarity score. Our metric uses the order of the
guantization query sub-residue qm(r(vqm)) in nearest neighbors of the quantized reference
qm(r(vrm)). We take into account nearest neighbors up to 7,,, neighbor which is empirically

determined. By using this order relation, we define the similarity score of the method as:

Z 1.0 — P om CGCED) TGCE), (26)
1sm=M pq
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where NN, (.) gives the order of g, (r(v9,,)) in nearest neighbors of g, (r(v",,,)) for m*"
sub-residue vector. In this work, K* and 7,,, are selected as 256 and 50 respectively. In order
to provide similar condition for all feature extraction methods whose vector dimension is

different, m is determined according to feature vector size.

3.2 Inverted Index Structure and Term Frequency Weighting

The similarity search of the feature vectors on two images should take place exhaustively.
However, comparing the feature vectors whose quantization indices are different generates a
redundancy. For example, as K and L denotes the total number of local descriptors on
reference and query frames, at least K x L comparison should be made in order to find true

correspondences. However, for large dataset, this becomes nearly impossible.

By the influence of quantization-based indexing methods, each feature vector is represented
with an index. Therefore, comparing only the descriptors whose indices are same would

facilitate the efficiency of retrieval.

This thought is very common in database systems and text-based search engines in order to
accelerate the response to user. Thus, each element of reference archive is stored in a data

structure entry according to its index value that can be either words or numbers.

Similar structure can be utilized on visual domain leveraging quantization-based indexing
scheme [45]. The underlying assumption is that each descriptor can be stored in a data

structure according to its visual word id that are obtained by quantization-based methods.
Hence, in this structure, the total entry number is equal to visual word size. Also, due to the

fact that increment of K extends the possibility of assigning descriptors on different entries,

the comparison speed would be accelerated.
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To improve the accuracy of detection, weighting indices has positive influence on accuracy.
In text domain [34], rare words would contain more distinctive information rather than
frequent ones, the underlying assumption is that stop words which are frequently occurred in

text like ‘the’ or ‘a/an’, should be discarded or weighted according to their importance.

This weighting scheme combines two statistical intuitions including term frequency and
inverted index frequency [34, 45]. Term frequency and inverted index frequency weight the

word according to its occurrence in a particular image and in a database respectively as:

N
= X log — 27
n og (27)

where n. 4 is the number of occurrences of word c in document d, ng is the total number of
words in document d, n. is the number of occurrence of word ¢ in whole database and N is

the total number of document in dataset.
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CHAPTER 4

GEOMETRIC VERIFICATION

The main deficiency of deploying quantization-based indexing methods on local descriptor
is, in ranking stage, geometric consistency that exists among local patches is discarded.
Hence, that causes an ambiguity in matching stage and decreases the accuracy of detection
drastically. This information is frequently reintroduced by adding a re-ranking stage that
computes the geometric transformation between matched correspondences in reference and
query points. Additionally, encoding local relation of spatial patches has a positive influence

on mitigating this ambiguity.

Generally, in order to constitute a geometric consistency on entire frame, 2D homography
[50] or its iterative versions [51] are utilized. The assumption is that Hough estimates a
transformation with four degree of freedom and each pair of matches generates a set of
parameters. Later the set of matches from largest bins are used to estimate a finer 2D

transformation.

Despite faster hardware and code optimization, homography estimation cannot apply on more

than a small set of top results in the initial ranking stage due to its computation cost.

Local geometric relation [56] is exploited with the spatial relation of interest points by
frequently leveraging co-occurrences of visual words in neighborhood area. However,
complex comparison scheme on neighboring words induces a deceleration on calculation

speed with boosting memory usage.
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(b)

Figure 9. Elimination of outliers by constituting a geometric consistency. (a) Bag-of-Word,
(b) Bag-of-Word with Weak Geometric Consistency.

Due to the requirement of high computational power and memory, these two approaches are
not appropriate particularly considering immense data size on this task. Hence, convenient
geometric verification stage should be as simple as possible to be applicable to the entire

archive.

For all these reasons, we have devoted this chapter to investigate geometric verification
techniques. Hence, this chapter is partitioned into two sections to discuss weak geometric
consistency among corresponding pairs on the frames and fast and compact local geometric
relation signature thoroughly. First, we will explain how to construct the approximate
geometric transformation between the matched points for both spatial and spatio-temporal
feature models in detail. Also we will derive all necessary mathematical formulations to

improve the intelligibility.

Second, a novel geometric relation signature that is invariant to scale and orientation changes
will be proposed. The underlying thought of this method is to encode the spatial relation of
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interest points by merely checking existence or non-existence of the visual word in
neighborhood area. Hence, this geometric relation enables us to compute a geometric
signature which consists of a set of binary values. Thereby, it allows rapid bit comparisons
besides providing essential information about local geometry of interest points.

4.1 Weak Geometric Consistency

In order to constitute a geometric consistency among matched correspondences in reference
and query points, several spatial and/or temporal geometric characteristics can be utilized.
These parameters can be scale, orientation and spatial coordinates of interest points. This
refinement stage is frequently reintroduced at the end of the process as a filtering stage to
eliminate mismatches (outliers) that are obtained from initial content signature matching as

shown in Figure 9.

In literature, although state-of-the-art 2D homography approach is mostly preferred method
to estimate true geometric transformation, it consumes huge computation power particularly
on obtaining perfect geometry according to larger bin characteristic. Thus, this high
computational cost limits the suitability of this method for large dataset.

Based on the limitation of homography estimation, proposed geometric consistency stage
should be simple to carry out to entire archive while conserving high effectiveness and

robustness.

In [48], authors investigate an approximate geometric consistency among matched points
without explicitly verifying exact geometric transformation. Hence, these methods sacrifice

the quality of estimation to extend the scope of influence.
This method [48] which pioneers this type of manner, obtains approximate geometric

characteristic by purely exploiting orientation and scale changes. Simple assumption is that

when an image undergoes rotation and scale changes, due to the fact that local descriptors are
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also invariant, all the interest points on an image are substantially affected same amount.
Hence, geometric consistency can be constituted by seeking a global characteristic
distribution on scale and orientation changes.

Theoretically, to minimize the space of interest for both orientation 6" and scale s”

parameters, first these parameters are quantized into gy and ggr which denote the uniform

guantizer in orientation (28) and the logarithmic quantizer in scale (29) respectively.
qor = 07 /qSstep (28)
qsr =logy s” (29)
Where gss¢p, is the uniform quantization parameter. In this work, we set it as 8.

These procedures are repeated on query points gga and ggq as well. Then, in order to obtain
the approximate geometric transformation for all correspondences on query and reference

frames, distribution of orientation (30) and scale (31) differences are computed. At the end,

two individual distribution histograms referring to h* and h? are constructed for scale and

orientation.

6 = qor — qou (30)

%]

=(qsm — g5 (31D

The purpose of utilizing two separate distribution histogram is to minimize the cost of
memory allocation. According to author’s statements, these two histograms appear as
marginal probabilities of 2D histogram and this assumption is as precise as full 2D histogram.
In this method, the final similarity score of two frames is equal to minimum value of two

histogram’s maximums as:
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Swge = min (max(hg),max( h§)> (32)

Under this motivation, we have reserved this section into two parts to investigate geometric
consistency for spatial and spatio-temporal signatures separately. In these parts, instead of
scale and orientation changes, we will exploit translation characteristic of points. For spatio-
temporal signatures, a novel method is proposed by adding temporal behaviors of trajectories

in addition to spatial properties.

4.1.1 Spatial Geometric Consistency

Even though true local descriptor matching is achieved seamlessly, there would be outliers
that reduce the accuracy of detection. Hence, utilization of geometric consistency by

computing approximate transformation would eliminate incorrect matches.

In spatial domain, the formulation of spatial transformation among two matched points r and
q (reference and query points respectively) depends on scale factor s, orientation parameter

6, 2D spatial positions of (x”,y"), (x%,y?) and translation characteristic [t,, t,] as:

x1 _ cosf —sinb [xr] [tx]
[}’q] - [sinG cos@ ] % y" + ty (33)

Although the proposed method in [54] constitutes simple but convenient geometric
consistency by merely exploiting scale and orientation parameters, this type of approaches
still has a space for further improvements due to the fact that scale and orientation

characteristics are not discriminative enough.

In [54], authors propose an enhancement for approximate spatial consistency including
translation information. The idea is, since translation characteristic still considers the scale
and the orientation characteristics as in (33), inclusion of translation distribution provides

extra geometric clue.
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First, similar to previous method, scale s™ and orientation 8" parameters of reference
descriptor are quantized into ggr (28) and g (29) (qea and qgq for query descriptor.).

Differently, (34) is employed to model the scale changes due to the logarithmic operation.
§ = 20 —459) (34)

Then, scale and orientation changes in (34) and (30) equations are combined with (33) and

spatial transformation formulation is reintroduced as:

fq] < [cosé —siné] [Xr]
gl =8 X 2z 7l x 35
[}’q sin@ cos@ y" (35

where ¥ and ¥7 are approximate corresponding locations of spatial transformations of x”
and y™ coordinates according to characteristic changes in scale § and orientation 8. For query

point q, the translation difference £ is calculated as:

E= G —x1)? + (57 — y7)2 (36)

Then, the translation differences for all matched descriptors are computed and a translation
histogram k! is constructed. This histogram holds the distribution of scores according to
corresponding translation characteristic of matched pairs. At the end, an aggregation is
expected on a single bin of the distribution histogram for duplicate images. To enhance the
robustness, authors propose a smoothing operation by averaging two neighborhood bins of

peak p as;
iz ||

Tpeak = [Pp] + [Apea| + [hp—a| =2 x === (37)

where m is the number of histogram bins and p + 1 and p — 1 are the neighboring points.
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Since rotation of frame is not commonly encountered in copy detection, in order to accelerate
the calculation speed, we replace investigating distribution of orientation characteristic with
a simpler constraint. According to this constraint, uniformly quantized orientations for both
query gga and reference gqr descriptors should be identical to continue for further voting
scheme. Although this constraint causes a quantization error, it accelerates comparison stage
by immediately discarding the points that do not satisfy.

With this constraint, orientation difference in (33) will be equal to zero. Hence, orientation

matrix turns into identity matrix. The formula simplify as:
x4 Lo [x"
55 -+<[;]

Empirically, in order to improve accuracy and efficiency of geometric consistency, we have
replaced couple of procedures that are proposed in [54]. Differently, we have reintroduced the
calculation of translation difference for point g with Manhattan distance (39) instead of L,

norm to accelerate the calculation speed.
E=x? =%+ |y? -y (39)

Additionally, we have opted to establish a 2D distribution histogram hf instead of two
separate 1D histograms which enables us to investigate scale and translation changes at the

same time. That is we treat these two distributions as a joint probability density.

Thirdly, although joint usage of scale and orientation changes in 2D histogram yields better
results, it boosts memory allocation and impedes the calculation that is spent on estimating
the peak value of the histogram. Hence, we have mitigated this deficiency by utilizing an

uniform quantizer for translation difference g, which helps to reduce the space of interest as:

47



qt = f/qtstep (40)

where qt,, is the quantization parameter. In this work, itis selected as 20. We have observed
that averaging peak bin with neighboring ones induces a decrease on accuracy in our
assumption due to utilizing a quantizer in advance. Hence, final similarity score is equal to

the maximum value of 2D histogram as:
Stwge = max(hf) (41)

Weak geometric consistency with scale and orientation differences is invariant to flip
transformation. However, exploiting translation difference is not invariant to this type of
transformation and it can induce an increase miss rate. Hence, proposed method should be

aware of this kind of attack to increase the success rate.

In our case, due to the hardness of distinguishing flipped image from original one, frequently
mirror attacks have been introduced on vertical axis. Thus, this transformation ruins the

geometry of points that is proposed on (39) and the consistency becomes useless.

For that purpose, geometric consistency should be customized for this problem completely.
Flipping image vertically, x coordinate of the interest point is deformed as width — x where
width is the width of the frame. If we place this coordinate of interest points in (38), it will

be equal to:

width — x4 L [xT
[ 4 ] T [yr] (42)

Similarly, the translation difference for point q is formed as:
t=|x1+8§xx" —width| + |y? —§ x y"| (43)
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Since width is constant, it can be discarded from the formulation (43). Final translation

difference can be found as:
t=|x9+5xXx"|+|y? -5 xy"| (44)

Since there is no prior information about query frame is whether flipped or not, proposed
method should handle both cases successfully. Therefore, due to the disjoint relation, we have
utilized two different 2D distribution histograms for original h+f and flip version h_teven it

causes an increase on complexity.

The idea is that if two images are similar whether one of them is flipped or not, one of them
would have a salient bin which yields the geometric characteristic of two images. Hence, even
though two histograms are combined together, while scores in one histogram are scattered
onto different bins, scores in other histogram aggregate on single bin for duplicate frames is

expected. Therefore we have formed final geometric consistency score as:

Stwge = Max (h+f, h_f) (45)

4.1.2 Novel Trajectory-Based Geometric Consistency

Since spatio-temporal signatures are computed on consecutive frames, they have unique
geometric characteristics different from spatial domain. The spatial variations of interest
points in time can be employed as a geometric clue to constitute a consistency among

correspondence.

Spatio-temporal signature k in time sequence t; has a set of spatial information including

scale s and spatial positions (xkti’ykt-) for tracked points. Even if spatial information of

these points can be utilized for each frame separately, it boosts the computation complexity.
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Thus, these coordinates and variations in time should be modeled as a single compact feature,
in order to establish a geometric consistency more effectively.

Hence, each trajectory is represented with four parameters as spatial means p,, w, and
variances oy, oy, of x and y where , = %Z%ﬂxi and o, = %Zfﬂ(xi — 1,)? in addition to

scale parameter which is constant during signature extraction. In here, L is the length of

trajectory in time and similarly, u, and o, are computed for y axis.

By the help of these geometric parameters, we propose a novel geometric consistency method
for spatio-temporal domain that consists of two steps. In the first step, spatial variances are
considered. The underlying assumption is that if two corresponding pairs are identical, then
their spatial variances should be roughly proportional with scale as given below (46).

|G,Zy—§xa§y| < T4 (46)
where
§=V2x(s7—-s") (47)

Similar to spatial geometric consistency method, to reduce complexity, Manhattan distance is
used to estimate the scatter between spatial variances of query and reference points. Therefore,
a;{y and a;{y denote the summation of spatial variances on x and y axis for query and
reference points as in equations (48) and (49) respectively. Additionally, s? and s™ show the
scale levels of query and reference points and § indicates the scale level difference that is
weighted with downsampling step parameter (In this work, it is selected as v/2). Since some
error might be occurred during the quantization of parameters, variance difference should be
within a margin of misalignment 7, which is set as 3.

J,zy =o] + cr;f (48)
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Oxy = 0y 0y (49)

In the second stage, similar to spatial domain, the geometric transformation can be written as

(50) by replacing single frame coordinate points with spatial means of trajectory in (33).

[u,‘i] . ufc] N [Ex] (50)

u myl Lty

where ! and uf, are the spatial means of trajectory on x and y axis for query point (u%, u;
resp. for reference point), t, and ¢, are the translation on x and y axis respectively. Since
orientations of spatio-temporal signatures are accepted as zero, orientation matrix will be
equal to identity matrix. Thus, translation difference of query and reference descriptors is
obtained as;

tu = |.uz,y —§X .u;,y| (51)

Similarly, Manhattan distance is utilized and y,‘i,y and s, are the summation of the spatial

means of trajectory on x and y axis for query point and reference points in equations (52) and

(53) respectively.
My = My + 15 (52)
Hxy = Hx + Iy (53)
In order to treat scale and translation changes as a joint probability, similar to the previous
spatial domain, 2D histogram ht is constructed. Translation characteristic is also quantized

into an index by the uniform quantizer , whose step size is set as 20 to reduce the search space.

For final similarity score maximum of 2D histogram can be accepted as:
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Stwge = max(h?) (54)

4.2 Novel Local Geometric Relation Signature

The geometric relation of interest points can be encoded with a signature like exploiting
content of video. Hence, besides leveraging geometric consistency on entire frame, it can

provide extra geometric clue about local behavior of interest points.

However, effective representation should assure two crucial requirements namely robustness

and simplicity for large dataset.

We propose geometric signature that encodes geometric relation with a binary signature by
merely checking existence or non-existence of interest points in neighborhood area of the
central point. Due the fact that this area is contructed by leveraging scale and orientation
property of central point, inherently, this representation is invariant several geometric

transformations.

In literature, there are several methods that aim to extract geometric signatures exploiting
interest point-based relation. Although these methods yields fair results on several visual

image search datasets, they cannot supply these two requirements completely.

In [55], relations on local regions are imposed by graph-based representation for visible range
satellite image categorization task. Due to sensitivity of interest points to illumination changes
and lack of invariance against scale clutter, different connections might be obtained when
image undergoes these kinds of geometric transformations. In another work [56], image is
firstly partitioned into regular grid in spatial domain and geometric signatures are extracted
combining visual word id with distribution of descriptors on these grids. Similar to previous

method, these signatures lack scale invariance.
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(b)

Figure 10. Computation of visual group binary signature. (a) Red line indicates the dominant
angle and green dots denote the neighboring interest points. (b) The region is transformed
according to its dominant angle.

In the source of the inspiration of our method [57], first, a circular region is defined around a
central point and a geometric signature is encoded incorporating coordinate of neighboring
visual words with their indices. In this case, the similarity of two signatures is directly
proportional with true matching of neighboring visual words on coherent patches. However,
for greater number of interest points in neighborhood area, computation complexity is
multiplied alongside of memory. Thus, these representations are not applicable on this task.

The contribution of our proposed geometric signature is that instead of applying a complex
voting scheme as in [57], the similarity score of two signatures is easily calculated with

bitwise comparisons with a small burden of complexity.

In the proposed method, first, similar to [57], a circular region is defined around a master
point that is explicitly the central interest point k exploiting its scale and orientation geometric
characteristics. That makes this representation invariant to scale and orientation changes
under the assumption that interest point detector is not affected from these transformations.

Thus, for duplicate images, each one would contain identical geometric signatures.

Then, this circular region is partitioned into a set of patches G*. To extract a visual group

binary signature b

vg» from each patch Gi’fj wherei =1...Ns, and j = 1... Ns_are the number
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of partitions in angular and scale domains respectively, a binary value is computed according
to whether it contains any interest point or not. Then these binary values are concatenated in
clock-wise manner from center to outer patches (55) as shown in Figure 10. The final length

of the signature is equal to N, X Ns_. In this work, empirically, we set N5, and Ns_as 8 and

4 respectively.
bly = {bp(GI1), - bp (G, s} (55)
where b, (.) is the visual group binary function as:

. . . , . k

b, (le _ {1 if any interest pOlT.lt existin G;; (56)

j
0 otherwise

The similarity score of two visual group binary signatures k and [ (57) depends on summation

of AND operation of same patches and a normalization parameter Ny, o;m-

> by(6l) xby(6l) 7)

1<j<Ng,

Svg (bgg’ b,l,g) =

where N, Whose value is equal to maximum of number of filled patches in G* and G' as:

Nporm = max| arg Z G |,arg Z G! (58)

bpg==1 byg==1

In order to solve the lack of invariance of visual group binary signature against vertical
flipping, for flip-detected descriptor, binary values are concatenated in counter clock-wise

manner.
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As expected, by adding this compact signature, local scale and orientation invariant relation
is easily constituted and this scheme eliminates the outliers that might be obtained in content
matching. However, for more accurate results, geometric consistency that explore the overall
geometry of matches should be deployed besides this signature.
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CHAPTER 5

EXPERIMENTAL WORK

In this chapter, we will analyze the performances of previously explained methods. The
positive and negative aspects of each method will be investigated around three essential
criteria for succeeding copy detection including high success rate, low computational
complexity and low memory usage. For that purpose, TRECVID 2009 content-based video
copy detection dataset [58] is selected for performance evaluation.

In the following sections, first, the details of dataset and evaluation metrics will be explained.
Then, ranking stage for complete system and the performance scores for all methods will be

presented using three evaluation metrics.

5.1 Dataset and Performance Metrics

We have utilized TRECVID 2009 content-based video copy detection dataset [58] in our
experiments. The dataset consists of 400 hours reference videos and 1407 query videos. The
length of each query video varies from 3 seconds to 3 minutes. 937 of query video are copied
from this reference archive. In the dataset [58], in order to generate a query video, particular

destructive operations are performed over some part of reference video as given below;

e Picture-in-picture (T2): Places spatially scaled reference video over another unrelated

video.

e Insertion of pattern (T3): Inserts a pattern, text or banner.
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(c)

Figure 11. Sample video frames from TRECVID 2009 dataset. (a) picture-in-picture (T2), (b) re-encoding
(T4), (c) contrast changes (T6), (d) cropping, insertion of pattern and text (T8)

e Strong re-encoding (T4): Applies strong compression.
o Change of gamma (T5): Changes gamma parameter with different configurations.

e Decrease in quality (T6): Introduces combinations of blurring, frame dropping,

gamma, contrast and white noise.

e Post Processing (T8): Introduces combinations of cropping, shifting, contrast

changing, vertical flipping, insertion of pattern and picture-in-picture.

e Combination of 5 attacks (T10): Has randomly selected transformation from T2-T8.

Typical examples of several attack models are shown in Figure 11. Remaining of query videos

is transformed from different video databases.
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In pattern recognition and information retrieval, there are famous performance metrics that
measure the accuracy of test in different aspects. Hence, in evaluation section, the

performance scores will be presented in recall, precision and f1-score metrics.

Since recall measures the fraction of relevant documents that are successfully retrieved (59),
the accuracy of each method will be computed using this metric for query videos that are

copied from the reference archive.

[{relevant document}| N |{retrieved document}|
recall = (59)
[{relevant document}|

Additionally, the false alarm performance will be investigated with precision metric on the
remaining query video. Precision metric corresponds to the fraction of retrieved document

that are relevant (60).

[{relevant document}| N |{retrieved document}|

recision = 60
14 (

|[{retrieved document}|

In literature, the evaluation results are generally presented in NDCR [58] and f1-score metric
for content-based video copy detection. Therefore, in order to compare the performance score
of our developed system with competitors, we will give fl-score in addition to recall and
precision scores. Briefly, f1-score considers the precision and recall scores jointly as given

below:

precision X recall
flscore = 2 X

61
precision + recall (61)

5.2 Evaluation

In the previous chapters, we have summarized and proposed several algorithms for feature

extraction, indexing and geometric verification stages. In this section, we will investigate
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three essential criteria (that we gave at the beginning of this chapter) for each combination of
these techniques, in order to obtain the most feasible system. Hence, first, we will propose
overall structures of the developed system for both spatial and spatio-temporal signatures.
Then, the details of each combination of feature extraction, quantization-based indexing, and
geometric verification techniques will be described. At the end, the experimental results and

observation will be presented according to results.

5.2.1 Ranking

In ranking stage, query video is searched in reference archive leveraging their coherent
content characteristics. Thus, according to the similarity scores, an observation can be made

whether the query video is copied from reference archive or not.

In the developed system, inverted index structure has been appended on each combination by
default, because of the effectiveness and fast comparison capability. Empirically, we have
observed that weighting content signature according to their term-frequencies would make
significant improvements on detection accuracy. Thus, again by default, term-frequency
weighting have been also inserted.

In order to index the large reference video archive in inverted indexing structure effectively,

for each entry per descriptor following parameters are stored as given below:
e the video identifier video,q,
o the frame identifier frame;q,

e the additional indexing code ( by, if indexing method is hamming embedding or b,

if indexing method is product quantization otherwise it is empty )

o the tf-idf weight of reference descriptor w4,
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To handle sufficient numbers of descriptors, all descriptors have been computed on one
second interval frames to provide similar conditions for each local descriptor model.
Therefore the similarity score between query and reference video is computed one-by-one
frame comparisons. The aim is that if these two videos are duplicate, then there would be an
accumulation on a bin of score vector that indicates the temporal alignment of query and
reference video in time. Therefore following procedure is introduced to estimate the similarity

score;

¢ Initiate a score vector whose size is equal to reference video duration. (Since we have

sampled video in one second intervals)

e For each query frame, compute similarity score SCty,¢; ON each reference frame which
corresponds to frame correlation in time domain and add this score to ¢; — ¢; bin of
score vector where t; is the time instance of reference frame and ¢; is the time instance

of query frame.

e Maximum value of score vector is equal to the final similarity score and this bin yields

temporal location of the match.

For single query video, these steps are repeated for all reference video and these scores are
sorted in descending order. At the end, the detection rule is applied to first and second results
which emphasizes that the score of the first result should be at least twice of the second result

in order to accept the first result as a copy.

Spatial and spatio-temporal signatures have diversity on similarity score measurement and
parameter dependence. Hence, we have distinguished these two schemes for similarity

comparisons to improve the understandability.

Spatial Feature; As we mentioned in Chapter 2, four visual descriptor methods have been
utilized in the scope of this thesis including SIFT, Opponent SIFT, Flip-SIFT and SURF on

sparsely sampled Hessian-Laplace interest points. Since all these descriptors are scale and
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orientation invariant, each descriptor has own scale and orientation parameters alongside of
spatial coordinates. Additionally, a visual group binary signature is encoded to improve the
matching accuracy. Thus, for each entry per descriptor, extra parameters are inserted as;

e the visual group binary signature b,,g,

o the uniformly quantized orientation qg,
o the logarithmically quantized scale g,

o the coordinate of interest point in spatial domain (x, y),

In this scheme, the similarity score between two frames depends on similarity of visual
indexing soqe; (W™, v5™), similarity of geometric signature s, (b, "™, by “™), term
frequency of reference descriptor wys;qf'*™ and geometric consistency post-processing

filtering as shown in Figure 1.

Therefore, we have combined the visual indexing (bag-of-word (BoW), hamming embedding
(HE), product quantization (PQ)), geometric signature (visual group binary signature (VGBS))
and geometric consistency (weak geometric consistency with scale difference (SWGC) and
weak geometric consistency with translation difference (TWGC)) methods with each feature

model to investigate the effects on performance.

Spatio-Temporal Feature; For this descriptor type, we have mentioned three descriptor
models that exploit visual or temporal content of consecutive frames including HoG and
MBH. Additionally, these descriptors are sampled from dense trajectories. Similar to spatial
descriptor, there are several parameters that are specific for this feature model. Thus, these

parameters are inserted on each entry as;
o the uniformly quantized scale qq,

o the means of coordinates of trajectory points (Mx, yy),

o the variances of coordinates of trajectory points (ax, cry),
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Since the geometric signature is not encoded in this domain, the similarity score depends on
similarity of visual indexing s,,oqe; (5™, v5™), term frequency of reference descriptor
wtfl-dfti'm and geometric consistency filtering post-processing stage. Therefore we will
examine the effects of combination of all indexing methods and feature extraction with spatio-
temporal geometric consistency (STWGC) as expressed in Figure 2.

5.2.2 Experiments

In this section, we will discuss the evaluation results on different combination of feature
extraction, indexing and geometric verification schemes in terms of recall, precision and f1-

scores in addition to memory usage and comparison time.

For that purpose, recall, precision and fl1-scores are presented in Table 3-20. These scores are
obtained for top retrieved reference video. From the results, for both spatial and spatio-
temporal descriptors, hamming embedding and product quantization schemes yield
overwhelmingly better results over classical bag-of-word representation. The main reason is

that these methods take in-class location of the vector into account with an additional code.

Second observation is that employing soft similarity score assignment on hamming
embedding and product quantization contribute the detection accuracy. Especially, these
assumption improve the performance on the attacks that deform the vector structure like re-
encoding and white noise. Hence, we can say that distinctive characteristic of video copy
detection from duplicate video search is that it should be robust against large variation within

cluster owing to possibility of dealing with noisy version of features.

Another observation is that, despite opponent SIFT descriptor proves that it is more
discriminative over classical SIFT and SURF descriptors in many computer vision tasks [26],
it fails and gives worse results on this domain. The underlying reason is that in quantization

stage, the descriptors with different length are mapped into same cluster center size and bit
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rate per component of vector becomes higher for the descriptor whose feature size is smaller.
Thus, particularly for this task, extending the representation dimension is not a good solution

even if discriminative power of descriptor is increased.

Owing to invariance against scale, orientation and flip, Flip Invariant SIFT (F-SIFT) gives the
best overall performance for all recall, precision and f1 score metrics. However, one important
observation can be made with SIFT descriptor. The performance on re-encoding attacks is
decreased in F-SIFT descriptor compared to SIFT descriptor. The possible reason is that curl
computation which determines the local region must be flipped or not mislead on re-encoding

attacks.

Representing video purely with the spatio-temporal signatures that are not static gives worse
performance over spatial signatures. The core reason is for some case, the background can
have distinctive information. Therefore, joint usage of spatio and spatio-temporal signatures
would yield better performance besides increasing computational complexity.

The main observation on spatio-temporal signature is that exploiting motion content of local
regions particularly fails on re-encoding attacks owing to smoothing and windowing (during

re-encoding) deformations deform optical flow field.

The filtering stage by utilizing geometric consistency among local signatures for both spatial
and spatio-temporal improves the performance significantly. Especially, leveraging
translation difference in consistency outperforms scale difference. Additionally, for spatio-
temporal domain, insertion of spatial variation constraint filters out outliers at the beginning

of stage.

To illustrate the recall performance on overall top 10 score, we give Figures 12-17. From the
figures, our developed system reaches to 0.8888 recall accuracy in top 10 results with the
combination of flip invariant SIFT, hamming embedding and geometric consistency with

translation difference.
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Table 1. Comparison time for spatial descriptor models.

Feature Model

BoW+SWGC BoW+TWGC HE+SWGC HE+TWGC

+VGBS +VGBS +VGBS +VGRS PQ*SWGC PQ+TWGC

+VGBS

BoW+SWGC  BoW+TWGC HE+SWGC HE+TWGC PQ+SWGC BoW+TW!(

+VGBS

Spatial

0.04 sn 0.1sn 0.06 sn 0.12sn 0.05 sn 0.11sn 0.07 sn 0.13 sn 0.07 sn 0.12 sn

0.09 sn

0.14 sn

Table 2. Comparison time for spatio-temporal descriptor models.

Feature Model
eature Mode BoW  BoW+STWGC  HE HE+STWGC PQ PQ+STWGC

Spatio-Temporal 0.01sn 0.05 sn 0.02 sn 0.07 sn 0.03 sn 0.09 sn

Due to the fact that each visual descriptor model follows the similar procedure on feature
extraction and quantization-based indexing, the memory requirement would not alter
according to descriptor model (Similarly, for spatio-temporal descriptors). According to
memory usage, the developed system can work seamlessly on a laptop without causing any
trouble.

Even though signature comparison depends on the distribution of visual codeword which is
related to the discriminative power of descriptor, mainly, this amount is negligible. Thus,
similar to memory usage, estimation of comparison time on indexing and geometric
verification stages makes more sense. In Table 1 and Table 2, for both spatial and spatio-
temporal descriptors, comparison time is given in second for comparing 1 second query video

with 100 hours of reference database.

From the comparison time results, if we accept bag-of-word representation as a baseline,
hamming embedding and product quantization schemes increase the comparison time owing
to counting in-class locality information. Adding geometric consistency for each feature
domain also causes an increase. Particularly, geometric consistency with translation (TWGC)

boosts the time compare to geometric consistency with scale (SWGC).
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Interestingly, combination of visual group binary signature and geometric consistency with
scale difference yields compatible performance results over more complex method like

geometric consistency with translation with smaller comparison time.
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Table 3. Recall scores for SIFT descriptor.

Baseline

T2 T3 T4 T5 T6 T8 T10 Overall
BoW+SWGC 0.4328 0.7686 0.6044 0.8283 0.8955 0.3283 0.3582 0.6023
BoW+TWGC 0.6343 0.8955 0.8208 0.9104 0.9701 0.4179 0.4925 0.7345

BoW+SWGC+VGBS 0.5074 0.8805 0.7238 0.9029 0.9626 0.3507 0.4179 0.6780

BoW+TWGC+VGBS 0.6044 0.9179 0.8283 0.9328 0.9776 0.4402 0.4925 0.7420

HE+SWGC 0.6417 0.8955 0.7611 0.9179 0.9701 0.3880 0.4701 0.7206
HE+TWGC 0.7313 0.9402 0.8731 0.9626 1.0 0.5 0.5522 0.7942
HE+SWGC+VGBS 0.6865 0.9328 0.8358 0.9477 0.9925 0.4402 0.5223 0.7654
HE+TWGC+VGBS 0.7462 0.9701 0.8955 0.9552 1.0 0.4850 0.5522 0.8006
PQ+SWGC 0.6641 0.9253 0.8059 0.9104 0.9701 0.4029 0.4104 0.7270
PQ+TWGC 0.7164 0.9402 0.8656 0.9402 0.9850 0.4626 0.5074 0.7739
PQ+SWGC+VGBS 0.6865 0.9328 0.8507 0.9402 0.9850 0.4326 0.4626 0.7558
PQ+TWGC+VGBS 0.6865 0.9701 0.9029 0.9477 0.9850 0.4626 0.5298 0.7858
Table 4. Precision scores for SIFT descriptor.
Baseline
T2 T3 T4 T5 T6 T8 T10 Overall
BoW+SWGC 1.0 1.0 0.9878 0.9910 0.9917 1.0 1.0 0.9947
BoW+TWGC 1.0 1.0 0.9909 0.9918 0.9923 1.0 1.0 0.9956
BoW+SWGC+VGBS 1.0 1.0 0.9897 0.9918 0.9923 1.0 1.0 0.9953
BoW+TWGC+VGBS 1.0 1.0 0.9910 0.9920 0.9924 1.0 1.0 0.9957
HE+SWGC 1.0 1.0 0.9902 0.9919 0.9923 1.0 1.0 0.9955
HE+TWGC 1.0 1.0 0.9915 0.9923 0.9925 1.0 1.0 0.9959
HE+SWGC+VGBS 1.0 1.0 0.9911 0.9921 0.9925 1.0 1.0 0.9958
HE+TWGC+VGBS 1.0 1.0 0.9917 0.9922 0.9925 1.0 1.0 0.9960
PQ+SWGC 1.0 1.0 0.9908 0.9918 0.9923 1.0 1.0 0.9956
PQ+TWGC 1.0 1.0 0.9914 0.9921 0.9924 1.0 1.0 0.9958
PQ+SWGC+VGBS 1.0 1.0 0.9913 0.9921 0.9924 1.0 1.0 0.9957
PQ+TWGC+VGBS 1.0 1.0 0.9918 0.9921 0.9924 1.0 1.0 0.9959
Table 5. F1 scores for SIFT descriptor.
Baseline
T2 T3 T4 T5 T6 T8 T10 Overall
BoW+SWGC 0.6041 0.8691 0.75 0.9024 0.9411 0.4943 0.5274 0.7503
BoW+TWGC 0.7762 0.9448 0.8979 0.9494 0.9811 0.5894 0.6666 0.8453
BoW+SWGC+VGBS 0.6732 0.9365 0.8362 0.9453 0.9772 0.5193 0.5894 0.8065
BoW+TWGC+VGBS 0.7534 0.9571 0.9024 0.9615 0.9849 0.6113 0.6666 0.8503
HE+SWGC 0.7818 0.9448 0.8607 0.9534 0.9811 0.5591 0.6395 0.8361
HE+TWGC 0.8448 0.9692 0.9285 0.9772 0.9962 0.6666 0.7115 0.8837
HE+SWGC+VGBS 0.8141 0.9652 0.9068 0.9694 0.9924 0.6113 0.6862 0.8655
HE+TWGC+VGBS 0.8547 0.9848 0.9411 0.9733 0.9962 0.6532 0.7115 0.8877
PQ+SWGC 0.7982 0.9612 0.8888 0.9494 0.9811 0.5744 0.5820 0.8404
PQ+TWGC 0.8347 0.9692 0.9243 0.9655 0.9887 0.6326 0.6732 0.8710
PQ+SWGC+VGBS 0.8141 0.9652 0.9156 0.9655 0.9887 0.6041 0.6326 0.8593
PQ+TWGC+VGBS 0.8141 0.9848 0.9453 0.9694 0.9887 0.6326 0.6926 0.8770
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Table 6. Recall scores for Opponent SIFT descriptor.

Baseline
2 T3 T4 T5 T6 T8 T10 Overall
BoW+SWGC 0.3582 0.7164 0.4328 0.7164 0.8432 0.2761 0.2388 0.5117
BoW+TWGC 0.5820 0.8432 0.7611 0.8731 0.9552 0.4104 0.4552 0.6972
BoW+SWGC+VGBS 0.5 0.8059 0.6194 0.8059 0.9104 0.3656 0.4104 0.6311
BoW+TWGC+VGBS  0.5895 0.8805 0.7910 0.9104 0.9626 0.4253 0.4776 0.7196
HE+SWGC 0.5820 0.8059 0.5820 0.8208 0.9104 0.3656 0.3955 0.6375
HE+TWGC 0.6940 0.8880 0.8283 0.8955 0.9925 0.4477 0.5223 0.7526
HE+SWGC+VGBS 0.6641 0.8731 0.7611 0.8507 0.9701 0.3731 0.5074 0.7142
HE+TWGC+VGBS 0.6940 0.8955 0.8358 0.9029 0.9925 0.4552 0.5223 0.7569
PQ+SWGC 0.5895 0.8134 0.5 0.7985 0.8955 0.3731 0.3358 0.6151
PQ+TWGC 0.6641 0.8656 0.7238 0.8731 0.9626 0.4253 0.4552 0.7100
PQ+SWGC+VGBS 0.6567 0.8731 0.6492 0.8432 0.9402 0.4402 0.4328 0.6908
PQ+TWGC+VGBS 0.6641 0.8880 0.7388 0.8582 0.9626 0.4402 0.4701 0.7174

Table 7. Precision scores for Opponent SIFT descriptor.

Baseline
T2 T3 T4 T5 T6 T8 T10 Overall
BoW+SWGC 1.0 1.0 0.9830 0.9896 0.9912 1.0 1.0 0.9937
BoW+TWGC 1.0 1.0 0.9902 0.9915 0.9922 1.0 1.0 0.9954
BoW+SWGC+VGBS 1.0 1.0 0.9880 0.9908 0.9918 1.0 1.0 0.9949
BoW+TWGC+VGBS 1.0 1.0 0.9906 0.9918 0.9923 1.0 1.0 0.9955
HE+SWGC 1.0 1.0 0.9873 0.9909 0.9918 1.0 1.0 0.9950
HE+TWGC 1.0 1.0 0.9910 0.9917 0.9925 1.0 1.0 0.9957
HE+SWGC+VGBS 1.0 1.0 0.9902 0.9913 0.9923 1.0 1.0 0.9962
HE+TWGC+VGBS 1.0 1.0 0.9911 0.9918 0.9925 1.0 1.0 0.9964
PQ+SWGC 1.0 1.0 0.9852 0.9907 0.9917 1.0 1.0 0.9948
PQ+TWGC 1.0 1.0 0.9897 0.9915 0.9923 1.0 1.0 0.9955
PQ+SWGC+VGBS 1.0 1.0 0.9886 0.9912 0.9921 1.0 1.0 0.9953
PQ+TWGC+VGBS 1.0 1.0 0.99 0.9913 0.9923 1.0 1.0 0.9955

Table 8. F1 scores for Opponent SIFT descriptor.

Baseline
T2 T3 T4 T5 T6 T8 T10 Overall
BoW+SWGC 0.5274 0.8347 0.6010 0.8311 0.9112 0.4327 0.3854 0.6755
BoW+TWGC 0.7358 0.9149 0.8607 0.9285 0.9733 0.5820 0.6256 0.8200
BoW+SWGC+VGBS  0.6666 0.8925 0.7614 0.8888 0.9494 0.5355 0.5820 0.7723
BoW+TWGC+VGBS 0.7417 0.9365 0.8796 0.9494 0.9772 0.5968 0.6464 0.8353
HE+SWGC 0.7358 0.8925 0.7323 0.8979 0.9494 0.5355 0.5668 0.7771
HE+TWGC 0.8193 0.9407 0.9024 0.9411 0.9925 0.6185 0.6862 0.8573
HE+SWGC+VGBS 0.7982 0.9322 0.8607 0.9156 0.9811 0.5434 0.6732 0.8320
HE+TWGC+VGBS 0.8193 0.9449 0.9068 0.9453 0.9925 0.6256 0.6862 0.8603
PQ+SWGC 0.7417 0.8971 0.6633 0.8842 0.9411 0.5434 0.5027 0.7602
PQ+TWGC 0.7920 0.928 0.8362 0.9285 0.9772 0.5968 0.6256 0.8288
PQ+SWGC+VGBS 0.7927 0.9322 0.7837 0.9112 0.9655 0.6113 0.6041 0.8156
PQ+TWGC+VGBS 0.7982 0.9407 0.8461 0.92 0.9772 0.6113 0.6395 0.8339
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Table 9. Recall scores for F-SIFT descriptor.

Baseiine T2 3 T4 T5 6 T8 T10 Overall
BoW+SWGC 0.4029 0.7761 0.5373 0.8208 0.8731 0.4552 0.3731 0.6055
BoW+TWGC 0.6044 0.8955 0.7910 0.9253 0.9701 0.7248 0.6119 0.7889

BoW+SWGC+VGBS ~ 0.4850 0.8805 0.6940 0.8731 0.9477 0.5298 0.4925 0.7004
BoW+TWGC+VGBS  0.6044 0.9253 0.7985 0.9402 0.9776 0.7248 0.6194 0.7985
HE+SWGC 0.5970 0.8880 0.7238 0.9029 0.9552 0.5970 0.5597 0.7462
HE+TWGC 0.7313 0.9328 0.8582 0.9552 0.9850 0.8059 0.6791 0.8496
HE+SWGC+VGBS 0.6791 0.9402 0.8059 0.9477 0.9850 0.7014 0.6343 0.8134
HE+TWGC+VGBS 0.7313 0.9552 0.8432 0.9552 0.9850 0.8059 0.6865 0.8516
PQ+SWGC 0.6417 0.9104 0.7388 0.9029 0.9477 0.5820 0.5149 0.7484
PQ+TWGC 0.6940 0.9328 0.8432 0.9477 0.9776 0.7611 0.6492 0.8294
PQ+SWGC+VGBS 0.6791 0.9253 0.7910 0.9253 0.9701 0.6343 0.5671 0.7846
PQ+TWGC+VGBS 0.7014 0.9328 0.8358 0.9552 0.9776 0.7761 0.6492 0.8326
Table 10. Precision scores for F-SIFT descriptor.
Baseline
T2 T3 T4 T5 6 T8 T10 Overall
BoW+SWGC 1.0 1.0 0.9863 0.9909 0.9915 1.0 1.0 0.9947
BoW+TWGC 1.0 1.0 0.9906 0.992 0.9923 1.0 1.0 0.9959
BoW+SWGC+VGBS 1.0 1.0 0.9893 0.9915 0.9921 1.0 1.0 0.9954
BoW+TWGC+VGBS 1.0 1.0 0.9907 0.9921 0.9924 1.0 1.0 0.9959
HE+SWGC 1.0 1.0 0.9897 0.9918 0.9922 1.0 1.0 0.9957
HE+TWGC 1.0 1.0 0.9913 0.9922 0.9924 1.0 1.0 0.9962
HE+SWGC+VGBS 1.0 1.0 0.9908 0.9921 0.9924 1.0 1.0 0.9960
HE+TWGC+VGBS 1.0 1.0 0.9912 0.9922 0.9924 1.0 1.0 0.9962
PQ+SWGC 1.0 1.0 0.99 0.9918 0.9921 1.0 1.0 0.9957
PQ+TWGC 1.0 1.0 0.9912 0.9921 0.9924 1.0 1.0 0.9961
PQ+SWGC+VGBS 1.0 1.0 0.9906 0.992 0.9923 1.0 1.0 0.9959
PQ+TWGC+VGBS 1.0 1.0 0.9911 0.9922 0.9924 1.0 1.0 0.9961
Table 11. F1 scores for F-SIFT descriptor.
Baseline
T2 T3 T4 5 6 T8 T10 Overall
BoW+SWGC 0.5744 0.8739 0.6956 0.8979 0.9285 0.6256 0.5434 0.7581
BoW+TWGC 0.7534 0.9444 0.8796 0.9575 0.9811 0.8398 0.7592 0.8804
BoW+SWGC+VGBS ~ 0.6532 0.9365 0.8157 0.9285 0.9694 0.6926 0.66 0.8222
BoW+TWGC+VGBS  0.7534 0.9612 0.8842 0.9655 0.9849 0.8404 0.7649 0.8833
HE+SWGC 0.7476 0.9407 0.8362 0.9453 0.9733 0.7476 0.7177 0.8531
HE+TWGC 0.8448 0.9652 0.92 0.9733 0.9887 0.8925 0.8088 0.9171
HE+SWGC+VGBS 0.8088 0.9692 0.8888 0.9694 0.9887 0.8245 0.7762 0.8955
HE+TWGC+VGBS 0.8448 0.9770 0.9112 0.9733 0.9887 0.8925 0.8141 0.9182
PQ+SWGC 0.7818 0.9531 0.8461 0.9453 0.9694 0.7358 0.6798 0.8545
PQ+TWGC 0.8193 0.9652 0.9112 0.9694 0.9849 0.8644 0.7873 0.9051
PQ+SWGC+VGBS 0.8088 0.9612 0.8796 0.9575 0.9811 0.7762 0.7238 0.8777
PQ+TWGC+VGBS 0.8245 0.9652 0.9068 0.9733 0.9849 0.8739 0.7872 0.9070
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Table 12. Recall scores for SURF descriptor.

Bassiine T2 T3 T4 T5 T6 T8 10 Overall
BoW+SWGC 0.5 0.8358 0.6044 0.8432 0.9253 0.3507 0.3283 0.6268
BoW+TWGC 0.5970 0.9029 0.8134 0.9253 0.9626 0.4179 0.4552 0.7249

BoW+SWGC+VGBS  0.5746 0.9104 0.7089 0.8955 0.9626 0.3880 0.4328 0.6961
BoW+TWGC+VGBS ~ 0.5895 0.9104 0.8283 0.9328 0.9701 0.4626 0.4701 0.7377
HE+SWGC 0.6865 0.9104 0.7761 0.9253 0.9626 0.4104 0.4552 0.7324
HE+TWGC 0.7164 0.9402 0.8731 0.9552 0.9850 0.4925 0.5 0.7803
HE+SWGC+VGBS 0.7238 0.9552 0.7910 0.9522 0.9776 0.4552 0.4776 0.7622
HE+TWGC+VGBS 0.6940 0.9402 0.8507 0.9328 0.9850 0.4477 0.5074 0.7654
PQ+SWGC 0.5476 0.8656 0.6268 0.8432 0.9477 0.3731 0.3805 0.6545
PQ+TWGC 0.6044 0.9029 0.8208 0.9477 0.9626 0.4477 0.4626 0.7356
PQ+SWGC+VGBS 0.5746 0.9104 0.7089 0.9253 0.9552 0.4179 0.4104 0.7004
PQ+TWGC+VGBS 0.5970 0.9253 0.8358 0.9402 0.9850 0.4477 0.4701 0.7430

Table 13. Precision scores for SURF descriptor.
Baseline

T2 T3 T4 5 T6 T8 T10 Overall

BoW+SWGC 1.0 1.0 0.9878 0.9912 0.992 1.0 1.0 0.9949
BoW+TWGC 1.0 1.0 0.9909 0.992 0.9923 1.0 1.0 0.9956
BoW+SWGC+VGBS 1.0 1.0 0.9895 0.9917 0.9923 1.0 1.0 0.9954
BoW+TWGC+VGBS 1.0 1.0 0.9910 0.9920 0.9923 1.0 1.0 0.9956
HE+SWGC 1.0 1.0 0.9904 0.992 0.9923 1.0 1.0 0.9956
HE+TWGC 1.0 1.0 0.9915 0.9922 0.9924 1.0 1.0 0.9959
HE+SWGC+VGBS 1.0 1.0 0.9906 0.9922 0.9924 1.0 1.0 0.9958
HE+TWGC+VGBS 1.0 1.0 0.9913 0.9920 0.9924 1.0 1.0 0.9958
PQ+SWGC 1.0 1.0 0.9882 0.9921 0.9921 1.0 1.0 0.9951
PQ+TWGC 1.0 1.0 0.9909 0.9921 0.9923 1.0 1.0 0.9956
PQ+SWGC+VGBS 1.0 1.0 0.9895 0.992 0.9922 1.0 1.0 0.9954
PQ+TWGC+VGBS 1.0 1.0 0.9911 0.9921 0.9924 1.0 1.0 0.9957

Table 14. F1 scores for SURF descriptor.
Baseline

T2 T3 T4 5 T6 T8 T10 Overall

BoW+SWGC 0.6666 0.9105 0.75 0.9912 0.9575 0.5193 0.4943 0.7691
BoW+TWGC 0.7476 0.9490 0.8934 0.9575 0.9772 0.5894 0.6256 0.8389
BoW+SWGC+VGBS ~ 0.7298 0.9531 0.8260 0.9411 0.9772 0.5591 0.6041 0.8193
BoW+TWGC+VGBS 07417 0.9531 0.9024 0.9615 0.9811 0.6326 0.6395 0.8475
HE+SWGC 0.8141 0.9531 0.8702 0.9575 0.9772 0.5820 0.6256 0.8439
HE+TWGC 0.8347 0.9692 0.9285 0.9733 0.9887 0.66 0.6666 0.8750
HE+SWGC+VGBS 0.8398 0.9770 0.8796 0.9733 0.9849 0.6256 0.6464 0.8635
HE+TWGC+VGBS 0.8193 0.9692 0.9156 0.9615 0.9887 0.6185 0.6732 0.8655
PQ+SWGC 0.7053 0.928 0.7612 0.9112 0.9694 0.5434 0.5513 0.7897
PQ+TWGC 0.7534 0.9490 0.8979 0.9694 0.9772 0.6185 0.6326 0.8461
PQ+SWGC+VGBS 0.7298 0.9531 0.8260 0.9575 0.9733 0.5894 0.5820 0.8222
PQ+TWGC+VGBS 0.7476 0.9612 0.9068 0.9655 0.9887 0.6185 0.6395 0.8510
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Table 15. Recall scores for HoG trajectory descriptor.

Bacelne T2 T3 T4 T5 T6 T8 T10 Overall
Bow 0.1641 0.6194 0.3432 0.5671 0.3134 0.2238 0.1716 0.3432
BoW+STWGC 0.3208 0.8134 0.5895 0.7910 0.7014 0.3432 0.3283 0.5554
HE 0.2313 0.7164 0.4253 0.7089 0.4776 0.3358 0.2388 0.4476
HE+STWGC 0.3208 0.8507 0.6268 0.8358 0.7910 0.3805 0.3880 0.5991
PQ 0.2463 0.7164 0.4020 0.6940 0.4253 0.3432 0.2164 0.4349
PQ+STWGC 0.3359 0.8657 0.6119 0.8507 0.7761 0.3881 0.3880 0.6023
Table 16. Precision scores for HoG trajectory descriptor.
i
e T2 T3 T4 T5 6 T8 T10 Overall
BowW 1.0 0.9880 1.0 0.9870 1.0 0.9677 1.0 0.9907
BoW+STWGC 1.0 0.9909 1.0 0.9906 1.0 0.9787 1.0 0.9942
HE 1.0 0.9896 1.0 0.9895 1.0 0.9782 1.0 0.9929
HE+STWGC 1.0 0.9913 1.0 0.9915 1.0 0.9807 1.0 0.9946
PQ 1.0 0.9869 1.0 0.9864 1.0 0.9787 1.0 0.9939
PQ+STWGC 1.0 0.9915 1.0 0.9913 1.0 0.9811 1.0 0.9948
Table 17. F1 scores for HoG trajectory descriptor.
Baseline T2 T3 T4 T5 T6 T8 T10 Overall
BoW 0.2820 0.7614 0.5111 0.7203 0.4772 0.3636 0.2929 0.5098
BoW+STWGC 0.4858 0.8934 0.7417 0.8796 0.8245 0.5082 0.4943 0.7127
HE 0.3757 0.8311 0.5968 0.8260 0.6464 0.5 0.3855 0.6171
HE+STWGC 0.4858 0.9156 0.7706 0.9068 0.8833 0.5483 0.5591 0.7478
PQ 0.3952 0.8311 0.5744 0.8157 0.5968 0.5082 0.3558 0.6050
PQ+STWGC 0.5028 0.9243 0.7592 0.9156 0.8739 0.5561 0.5591 0.7503

71



Table 18. Recall scores for MBH trajectory descriptor.

Baseli
aseline T2 T3 T4 T5 T6 T8 10 Overall
BoW 0.044 0.3507 0 0.3134 0.1716 0.0970 0.0522 0.1471

BoW+STWGC 0.1492 0.5820 0.0671 0.5970 0.5447 0.2089 0.1268 0.3251

HE 0.1044 0.4104 0 0.3880 0.2388 0.1492 0.1044 0.1993
HE+STWGC 0.1417 0.6044 0.0895 0.6343 0.6119 0.2313 0.1641 0.3539
PQ 0.1119 0.3955 0 0.3955 0.2239 0.1492 0.1119 0.1982
PQ+STWGC 0.1343 0.5970 0.0895 0.6418 0.5970 0.2238 0.1716 0.3507

Table 19. Precision scores for MBH trajectory descriptor.
Baseline

T2 T3 T4 5 T6 T8 T10 Overall

BowW 1.0 0.9791 nan 0.9767 1.0 0.9285 1.0 0.9787
BoW+STWGC 1.0 0.9873 1.0 0.9876 1.0 0.9655 1.0 0.9902
HE 1.0 0.9821 nan 0.9811 1.0 0.9523 1.0 0.9842
HE+STWGC 1.0 0.9878 1.0 0.9883 1.0 0.9687 1.0 0.9910
PQ 1.0 0.9815 nan 0.9515 1.0 0.9524 1.0 0.9841
PQ+STWGC 1.0 0.9877 1.0 0.9885 1.0 0.9677 1.0 0.9919

Table 20. F1 scores for MBH trajectory descriptor.
Baseline

T2 T3 T4 5 T6 T8 T10 Overall

BoW 0.0857 0.5164 nan 0.4745 0.2929 0.1756 0.0992 0.2557
BoW+STWGC 0.2597 0.7323 0.1258 0.7441 0.7053 0.3435 0.2251 0.4895
HE 0.1891 0.5789 nan 0.5561 0.3855 0.2580 0.1891 0.3315
HE+STWGC 0.2483 0.75 0.1643 0.7727 0.7592 0.3734 0.2820 0.5216
PQ 0.2013 0.5638 nan 0.5587 0.3658 0.2580 0.2013 0.3299
PQ+STWGC 0.2367 0.7441 0.1643 0.7782 0.7476 0.3636 0.2929 0.5182
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—=HE+TWGC+VGBS —+=PQ+TWGC

~o-PQ+TWGC+VGBS

Figure 12. Top 10 recall scores for SIFT descriptor.
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Figure 13. Top 10 recall scores for Opponent SIFT descriptor.
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Figure 15. Top 10 recall scores for SURF descriptor.
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Figure 16. Top 10 recall scores for HoG trajectory descriptor.
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Figure 17. Top 10 recall scores for MBH trajectory descriptor.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusions

In this thesis, we propose an overall content-based copy detection system. It has three main
stages namely feature extraction, quantization-based indexing and geometric verification. The
performance of developed system is assessed by recall, precision and f1-score performance
metrics besides memory and comparison time. From the results, combination of flip invariant
version of scale invariant feature transform (F-SIFT), hamming embedding, geometric
consistency with translation difference and visual group binary signature yield most feasible

performance.

Within the scope of this thesis, we have developed several novel solutions on content-based
copy detection. In feature extraction stage, we have primarily deployed dense trajectory

feature models on this task which is initially proposed for action recognition.

We have observed that hardcoded similarity comparison reduces the performance on copy
detection. Thus, we have utilized soft assignment score metrics for hamming and product

guantization-based content indexing schemes.

In order to constitute local geometric relation on local features, we have proposed a novel
signature that is compact and effective at the same time. The result shows that encoding
neighboring relation with a binary signature gives overwhelmingly good performances

besides ease of applicability on large datasets.

In geometric consistency stage, leveraging similar idea of weak geometric consistency in

spatial domain, we have proposed a novel spatio-temporal weak geometric consistency stage.
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This method exploits the feature characteristics of spatio-temporal signatures in spatial and

time domain simultaneously.

Additionally, in order to make the geometric consistency stage invariant to flip
transformation, we have reintroduced a unified method that incorporates the original and

flipped versions.

From the results, different from object recognition, increasing the distinctive power of
descriptor by extending the length of the feature vector does not affect the accuracy of
detection positively. The main reason is that since we utilize a quantization-based indexing
procedure on feature vector, the number of bit per component of vector would be decreased
for longer representation. Hence, the amendment with preserving the length of the vector like

flip invariant version is more suitable on this task.

Also spatial descriptors outperform spatio-temporal descriptors. The main reason is that
unlike action recognition, the static trajectories would give distinctive information. However,

exploiting motion content becomes useless for this assumption.

6.2 Future Work

In the future, we will continue to investigate spatio-temporal features on this task. We believe
that combining spatial content with time variations can have more distinctive information than

pure spatial signature.
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