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ABSTRACT

COMPUTATION OF THE GREEKS IN BLACK-SCHOLES-MERTON AND
STOCHASTIC VOLATILITY MODELS USING MALLIAVIN CALCULUS

YILMAZ, Bilgi

M.S., Department of Financial Mathematics

Supervisor : Assist. Prof. Dr. Yeliz YOLCU OKUR

June 2014, 109 pages

The computation of the Greeks of options is an essential aspect of financial math-
ematics. The investors use the information gained from this aspect for hedging
purposes or to decide whether to invest in an option or not. However, computa-
tion of the Greeks is not straightforward in some cases due to technical difficulties.
For instance, the value function of some options are complicated or moreover in
some cases they might not have a closed form solution which makes the com-
putation of their Greeks cumbersome. If this is the case, the Greeks have to
be computed numerically. In this thesis, the Greeks of European call options
are computed under Black-Scholes-Merton and stochastic volatility models as-
sumptions with Malliavin calculus in particular “infinite dimensional integration
by parts formula”. Moreover, the results for Black-Scholes-Merton assumptions
Greeks are compared with finite difference and pathwise methods.

This thesis provides a contribution to computation of Greeks literature by means
of the Malliavin calculus. The advantage of the methodology followed in this
thesis is that, once the Greeks formula is obtained, it can be applied to any
options with continuous and discontinuous payoffs.

Keywords : Malliavin calculus, integration by parts formula, options, computation
of Greeks, stochastic volatility models.
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ÖZ

BLACK-SCHOLES-MERTON VE STOKASTİK VOLATİLİTE
MODELLERDE MALLİAVİN ANALİZİ KULLANILARAK GREEK’LERİN

HESAPLANMASI

YILMAZ, Bilgi

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Yeliz YOLCU OKUR

Haziran 2014, 109 sayfa

Opsiyonların parametrelerine göre hassasiyet analizi (Greeks) finansal matematiğin
temel konularından birisidir. Yatırımcılar, bu hesaplamalardan elde ettikleri bilgi-
leri, hedging ya da alım satım kararlarında kullanmaktadırlar. Ancak Greek’lerin
hesaplanması teknik zorluklardan dolayı bazı durumlarda kolay değildir. Bunun
yanı sıra, bazı opsiyonların fiyat fonksiyonları karmaşık olduğundan ya da ka-
palı çözümlerinin bulunmaması Greek’lerinin hesaplanmasını karmaşık hale ge-
tirmektedir. Bu tezde, Black-Scholes-Merton ve stokastik volatiliti modelleri
varsayımları altında Avrupa alım opsiyonlarının Greek’leri Malliavin analiz özellikle,
“sonsuz boyutlu uzayda kısmi integrasyon” kullanılarak hesaplanmıştır. Buna ek
olarak, Black-Scholes-Merton varsayımı altında hesaplanan Greekler sonlu farklar
ve pathwise yötemi ile karşılaştırılmıştır.

Bu tez, son zamanlarda Malliavin analiz alanındaki gelişmeler vasıtasıyla Greek
hesaplama literatürüne katkı sağlamaktadır. Bu yöntemin avantajı, elde edilen
Greek formüllerinin sürekli ve süreksiz ödeme fonksiyonlarının her ikisine de uygu-
lanabilmesidir.

Anahtar Kelimeler : Malliavin analiz, kısmi integrasyon formülü, Greeklerin hesabı,
stokastik volatilite modeller.
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CHAPTER 1

MOTIVATION

1.1 Introduction

The fundamental key of option pricing is to calculate the cost of replication of the
sold option. For some cases, investors can construct a static replication strategy.
The price that they need to charge for these cases is then given by the cost of
setting up the initial hedging. After it is done, since investors are hedged their
positions, they may forget their position, hence some people call this situation,
hedge and forget [35]. But, for many options there is no static replication and the
dynamic hedging strategy has to be used in order to protect from the market risk
posed by the position. The choice of a model for underlying asset process and
setting the risk neutral measure and solving mathematically gives the value of the
derivative. In some sense, for the quantitative analyst, the job finishes there, but
for the trader who has to manage the position, the real work starts after this point.
The trader has to re-hedge the position dynamically which requires knowledge of
the various hedge parameters known as sensitivities, called Greeks. This means,
the value of the option is not enough itself, also need how its value depends on
changes of the model parameters and the traded price of the underlying asset.

The growing significance of risk management issues and the development of more
complicated financial products in the market have impose the researchers to de-
velop efficient techniques for the computation of price sensitivities with respect
to its model parameters. The Greeks in finance are the partial derivatives of the
price value with respect to any parameter of the value function. These derivatives
could serve to measure the stability of the financial derivative under study (e.g.
delta is the derivative of an option price with respect to its initial price). They
may also be used to hedge a certain payoff [39]. The Greeks are useful tools in
finance which help to understand how the contingent claim reacts to a change in
the parameters of the model. The information gained from computed Greeks of
financial derivatives guide the investors in their portfolio management decisions.
However, the computation of Greeks are not always straightforward, because of
some technical difficulties. For example, the structure of the payoff function of
some contingent claims might be very complex. For this reason computing the
Greeks could be cumbersome. On the other hand, sometimes the payoff function
does not have a closed form solution and one may have to estimate the Greeks
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numerically, which could be a time consuming and disturbing workout. There
are essentially four methods used in computation of the Greeks: the finite dif-
ference, pathwise derivative estimates, the likelihood and the Malliavin calculus
method [62].

The most widely used method to compute the Greeks is the finite difference
method. This method requires to compute the contingent claim of interest at
two nearby points and approximate the differential of the payoff function at that
point. The problem of this method is, the identification of “two nearby points”
is not clear. On the other hand, pathwise derivative estimates technique and the
likelihood method also contain some drawbacks in practical issues. For instance,
the drawback of the likelihood method is the one that has to know the probability
density function of the underlying financial asset in order to compute its Greeks.
However, in many cases it is not possible to figure out the probability density
function of underlying asset at the maturity.

All methods discussed above use two approach to obtain a result for the Greeks:
computation explicitly or estimation numerically by Monte Carlo simulations.
Both approach have some difficulties. In the first place, the payoff function of
options can be complex and carrying out the differentiation can be unfavorable.
Moreover, if the option has no analytic solution and the Greeks are estimated
by numerical methods, such as finite difference methods, the estimation may be
computationally expensive and the result will be inaccurate due to estimation of
expectation and the derivative of the payoff function.

The Malliavin calculus, also known as stochastic calculus of variations or calculus
in infinite dimensions introduced by Paul Malliavin in 1976 [48], is used recently
in computation of the Greeks to avoid the drawbacks outlined above. It is first
used as a tool to prove results in calculus through the use of probabilistic theory
and it is an area of research which has been considered as highly theoretical and
technical from the mathematical point of view for many years. In recent years, it
plays a significant role in applications of mathematical and computational finance.
Due to a famous result in Malliavin calculus “infinite dimensional integration
by parts formula”, one can skip having to evaluate the derivative of the payoff
function. Instead of evaluating the derivative, just computing the expected value
of the option’s payoff multiplied with a weight, called “Malliavin weight” will
be enough to compute the Greeks. This expectation can either be computed
explicitly or estimated by using Monte Carlo simulations. Since there is no need
to estimate the derivative, each way will be less expensive than evaluating the
derivative of the payoff function and using it in computations. Moreover, all
Greeks can be expressed as the expected value of the payoff times a Malliavin
weight and these weights are independent from the payoff functions which is
a great advantage in computations. Using this independence feature, one can
construct a Monte Carlo algorithm for general options and not specifically for
each option. Therefore, the efficiency of this method increases for options which
have discontinuous payoff function. Much work concerning numerical applications
of Malliavin calculus has been carried out in the pioneering papers of Fournié et
al. ( [22], [23]).
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This thesis focus on the computation of Greeks using Malliavin calculus. The
motivation to use Malliavin calculus is that, this method is applicable to a wide
class of option prices. Moreover, it allows us to obtain tractable formulas for
Greeks which can be simulated using Monte Carlo methods as Fournié et al. [23]
showed.

The aim of this chapter is first to discuss the Monte Carlo method and its appli-
cation in option pricing. Then, the biased and unbiased estimators to determine
the sensitivity of a contingent claim to its parameters are discussed. A brief
discussion on Monte Carlo method in finance is explained. Then, the details of
the three methods, the finite difference method, pathwise derivative estimates
technique and the likelihood method are examined in a preliminary concept.

In second chapter, fundamental tools of Malliavin calculus used in computation
of the Greeks are provided. This is a powerful alternative method for several rea-
sons. In particular, since it is important in computation of Greeks, the Malliavin
derivative, Skorohod integral and integration by parts formula are presented.

In chapter three, the definitions of options and the Greeks are presented. For a
smoother reading, basic definitions of option types used in financial markets are
provided rather than giving all of the options and Greeks in detail.

In chapter four and five, the Malliavin calculus (famous integration by parts
formula) is used to compute the most commonly used Greeks in finance. To be
specifies in chapter four the Greeks of Black-Scholes-Merton model and in chapter
five the delta of stochastic volatility models is computed.

1.2 Monte Carlo Simulation

The logic of Monte Carlo simulation is to approximate an expected value E [X]
with an average of independent experiments each of them have the same distribu-
tion as X. Which is the result of strong law of large numbers theory [42]. Since,
in financial markets, one can express the price of financial derivatives or financial
quantities as expected values of the associated payoff which is usually defined as
a function of the underlying asset, this simulation can be used in computations.

In this section, the tools which are used to obtain numerical approximations of
quantities in stochastic systems are introduced. Monte Carlo method for the
expectation of a given random variable X is defined as follows,

Ê [X] =
1

N

N
∑

i=1

Xi,

where N is the the number of simulation and Xi refers to the value that X takes
in the ith simulation. The strong law of large numbers (see [20], page: 73) is a
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useful tool to obtain the result, Ê [X] −→ E [X], as the number of simulation N
increases.

Consider a random variable Y such that E [Y ] = E [X]. The simulator can

generate average values of Y to construct Ê [Y ]. Therefore, the law of large

numbers implies that Ê [Y ] = E [X] for the large N . In this case, Y is called an
unbiased estimator of X if it is possible to find an unbiased estimator Y such that
var [Y ] < var [X]. Since the variance of Ê [Y ] will be smaller than the variance

of Ê [X], Y is preferable to X and it is expected to give more accurate results
after a number of simulations.

In some cases, it may not be possible to find a better unbiased estimator Y for
the given problem. Thus, a random variable Y is thought whose expectation is
close to the expectation of X which is E [X]. In this situation, Y is called a
biased estimator and it is given with the formula [28];

Bias (Y ) = E [Y ]− E [X] . (1.1)

1.3 Biased Sensitivity Estimation Methods in Finance

Consider an option’s discounted payoff function ϕ depends on a parameter θ which
ranges over an interval of real line. Then, the price of the option as follows;

V (θ) = E [ϕ (θ)] . (1.2)

The sensitivity estimation of the price, that is obtained as in Equation (1.2), with
respect to the parameter θ is only the derivative of the price V (θ) in terms of θ.
The parameter θ could be any of the parameter that effect the price. For example,
if θ is the initial price S0 of the underlying asset, then V ′ (θ) corresponds to the
Delta of the option.

Let us consider the following example taken from [62] to understand the Monte
Carlo method clearly.

Example: Suppose that we have a bag with red and blue balls in it. Assume
there is a random variable X defined as,

X =

{

1, if red ball is drawn,

0, if red ball is drawn,

and λ ∈ R
+is defined as the ratio of red to blue balls in the bag. How the change

in E [X] is determined with the change in the parameter λ ?
The expectation of getting red is

4



E [X] =
λ

λ+ 1
;

in this case, the effect of change in λ into the E [X] from the partial derivative of
[X] with respect to λ can be found as

d

dλ
E [X] =

(λ+ 1)− λ

(λ+ 1)2
=

1

(λ+ 1)2
.

To obtain a more general formula, define Φ (λ) = E [X|λ] for some random vari-
able X that its value depends on λ. Hence the aim is to determine the value of
the partial derivative at the point λ = λ0,

Φ′ (λ0) =
d

dλ
E [X|λ0] .

1.3.1 Finite-Difference Methods

Finite difference methods are commonly used in sensitivity analysis. In these
methods; for a given function ϕ depending on a parameter θ ranging over an
interval on the real line assumed to be differentiable. For certain kinds of options
there exist exact formula but in general one must resort to numerical techniques
to approximate them. Hence, a bias occurred and the bias is the key point of this
methodology (see Equation (1.1)).

There are essentially three different finite difference methods used in computation
of Greeks and all of the finite difference methods can be derived from Taylor
expansion neighborhood of a given point. Although these approximation methods
are not very efficient, they are very popular among the practitioners because of
the fact that they are easy to implement. The details of these three methods are
given in the following subsections.

1.3.1.1 Forward-Difference Method

In the use of forward difference method, first independent replications ϕ1 (θ),
ϕ2 (θ),. . . , ϕn (θ) of the model at parameter θ and n additional replications
ϕ1 (θ + h) , ϕ2 (θ) , . . . , ϕn (θ + h) at θ + h where h is a positive constant (h > 0)
are simulated. Here, the average of each set is represented by ϕ̃n (θ) and ϕ̃n (θ + h)
respectively. Then, the forward difference estimator is given as;

∆̂F ≡ ∆̂F (n, h) =
ϕ̃n (θ + h)− ϕ̃n (θ)

h
. (1.3)
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Taking expectation of both side and using the linearity of expectation

E

[

∆̂F

]

=
1

h
(E [ϕ̃n (θ + h)]− E [ϕ̃n (θ)])

=
1

h
(V (θ + h)− V (θ)) (1.4)

is obtained. Assuming that the price function V is twice differentiable with
respect to the parameter θ, the following equation can be obtained by Taylor
expansion,

V (θ + h) = V (θ) + V ′ (θ)h+
1

2
V ′′ (θ)h2 + o

(

h2
)

. (1.5)

In this case, from Equation (1.4) the bias in the forward difference estimator is
obtained as follows;

Bias
(

∆̂F

)

= E

[

∆̂F − V ′ (θ)
]

=
1

h
(V (θ + h)− V (θ))

− 1

h

(

V (θ + h)− V (θ)− 1

2
V ′′ (θ)h2 − o

(

h2
)

)

=
1

2
V ′′ (θ)h+ o (h) . (1.6)

The advantage of this method is very simple to implement. But, there are also
several drawbacks of this method. The first one is, if h is too large, the bias
(1.6) will give significant error. On the other hand if h is too small, a rounding
error will occur. The second drawback is, discontinuous function and small h will
increase the variance.

1.3.1.2 Backward-Difference Method

In the application of this method, ϕ1 (θ) , ϕ2 (θ) , . . . , ϕn (θ) of the model at pa-
rameter θ and independent replications ϕ1 (θ − h), ϕ2 (θ − h), . . . , ϕn (θ − h) for
θ − h where h is a positive constant (h > 0) are simulated. The average of these
sets are ϕ̃n (θ) and ϕ̃n (θ − h) respectively. Like the forward difference method,
the estimator is obtained in following equation,

∆̂B = ∆̂B (n, h) =
ϕ̃n (θ)− ϕ̃n (θ − h)

h
. (1.7)
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Taking expectation of both sides,

E

[

∆̂B (n, h)
]

=
V (θ)− V (θ − h)

h
, (1.8)

is obtained. The bias of this method is

Bias
(

∆̂B

)

= Bias
(

∆̂F

)

. (1.9)

The bias of backward finite difference method (1.9) is equal to the bias of forward
difference method (1.6). Therefore, the advantage and drawbacks of forward finite
method are also valid for this method.

1.3.1.3 Central-Difference Method

The central difference method might be considered as a combination of the for-
ward and backward difference methods. In this method, estimation of the price
function V (θ) and its derivative with respect to θ are emphasized. In the forward
and backward methods to estimate V (θ) the simulation is applied at parameter
θ. Therefore, these methods requires simulation at an additional points which are
given above in terms of θ+h and θ−h where h > 0. However, as Glasserman [28]
pointed out in the central difference method estimator requires simulation at two
additional points which are θ + h and θ − h. But, this additional computational
effort is causing an increase in the convergence of the bias.

Assume that the payoff function is replicated n times for the points θ+h and θ−h
where h > 0 and the average of them are ϕ̃n (θ + h) and ϕ̃n (θ − h) respectively.
Then, the estimator of central difference method is obtained as follows;

∆̂C = ∆̂C (n, h) =
ϕ̃n (θ + h)− ϕ̃n (θ − h)

2h
. (1.10)

If the price function V is at least three times differentiable at the neighborhood
of the point θ, the followings are satisfied.

V (θ + h) = V (θ) + V ′ (θ)h+ V ′′ (θ)
h2

2
+ V ′′′ (θ)

h3

6
+ o

(

h3
)

. (1.11)

V (θ − h) = V (θ)− V ′ (θ)h+ V ′′ (θ)
h2

2
− V ′′′ (θ)

h3

6
+ o

(

h3
)

. (1.12)

Subtracting Equation (1.12) from (1.11) the following equation is reached,
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V (θ + h)− V (θ − h)

2h
= V ′ (θ) + V ′′′ (θ)

h2

6
+ o

(

h2
)

. (1.13)

By rearranging Equation (1.13) the bias obtained as,

Bias
(

∆̂C

)

=
1

6
V ′′′ (θ)h2 + o

(

h2
)

. (1.14)

It is important to emphasize that the bias obtained from central-difference method
of Equation (1.14) is smaller than the bias acquired from forward Equation (1.6)
and backward-difference methods from Equation (1.9).

The advantage of this method is reaching smaller bias in addition to easy im-
plementation as in the other finite difference methods. On the other hand, the
drawbacks of other finite difference methods are still remain for this method.

1.3.2 Finite Difference Methods in Practice

On the Choice of h: In the finite difference methods, the choice of perturbation
h (h > 0) is very important. The smaller value of perturbation leads to improve
the accuracy of the estimation. On the other hand, the effect of h on bias should
be weighted against its variance. The variance of the forward difference estimator
(1.3) is as follows,

V ar
[

∆̂F (n, h)
]

=
1

h2
V ar [ϕ̃n (θ + h)− ϕ̃n (θ)] . (1.15)

Hence, 1
h2 given in the equation plays an important role because it is possible to

have chaotic consequences of taking h very small. From Equation (1.15) we can
say the dependence between values simulated at different values of the parameter
θ affects the variance of a finite difference estimator.

Consider the pairs of (ϕ (θ) , ϕ (θ + h)) and (ϕi (θ) , ϕi (θ + h)) where i = 1, 2, · · ·
are i.i.d. Therefore,

V ar [ϕ̂n (θ + h)− ϕ̂n (θ)] =
1

n
V ar [ϕ (θ + h)− ϕ (θ)] .

The change of the variance in Equation (1.15) with respect to h is determined by
the dependence of V ar [ϕ (θ + h)− ϕ (θ)]. There are three primary cases occur
in practice, which are

V ar [ϕ (θ + h)− ϕ (θ)] =







O (1) Case (i) ,
O (h) Case (ii) ,
O (h2) Case (iii).
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Case (i) applies if ϕ (θ) and ϕ (θ + h) are simulated independently. As h goes to
0 the variance is

V ar [ϕ (θ + h)− ϕ (θ)] = V ar [ϕ (θ + h)] + V ar [ϕ (θ)]

−→ 2V ar [ϕ (θ)]

under the assumptions V ar [ϕ (θ)] is continuous for the parameter θ.

Case (ii) is a consequence of simulating ϕ (θ + h) and ϕ (θ) using the common
random numbers.

In Case (iii) ϕ (θ) and ϕ (θ + h) are continuous for not only the same numbers, but
also for all values of random numbers. Therefore, the output ϕ (·) is continuous
for the parameter θ.

1.3.3 Optimal Relation between Increment and the Replication

An increase in h rises the variance, on the other hand decreases the bias. Thus,
there should be a balance between variance and bias. Minimizing mean square
error (MSE) can be used to find the balance between them. On the other hand, a
decrease in the number of replication n, lowers the variance and it has no impact
on the bias. Therefore, it is enough to find the optimal relation between the
positive constant h and the replication number n [28].

Now consider the forward difference estimator in terms of independent simulation
at θ and θ + h. Assume that Case(i) holds and the estimator is denoted by

∆̂F,i = ∆̂F,i (n, h). Through taking square of the bias in Equation (1.6) and
adding it to Equation (1.15),

MSE
(

∆̂F,i (n, h)
)

= o
(

h2
)

+ o
(

n−1h−2
)

is obtained. The minimal conditions for convergence are h −→ 0 and nh −→ ∞.

Glasserman [28] offers strengthening the Cases (i) and (ii) to derive a more
exact result. He suggests four estimator to consider forward difference and central
difference using independent sampling for different values of θ. Then, a generic
estimator ∆̂ = ∆̂ (n, h) for these cases can be obtained;

E

[

∆̂− ϑ (θ)
]

= bhβ + o
(

hβ
)

, V ar
[

∆̂
]

=
σ2

nhη
+ o

(

h−η
)

, (1.16)

for some β > 0, η > 0, σ > 0 and some non-zero b. Forward and central difference
estimators have; β = 1, and β = 2; choosing η = 2 sharpens Case (i) and choosing
η = 1 sharpens Case (ii) in Subsection 1.3.2.
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Consider a sequence of estimators, represented by ∆̂ (n, hn), with the assumptions
of bias and variance

hn = h∗n
−γ (1.17)

for some h∗ > 0 and γ > 0.

MSE
(

∆̂
)

= b2h2β
n +

σ2

nhη
n
, (1.18)

is obtained up to terms that are higher order in hn. The value of γ which max-
imizes the MSE is γ = 1

2β+η
. Through substituting this in to (1.18) and taking

the square root the following result is achieved:

RMSE
(

∆̂
)

= O
(

n− β
2β+η

)

.

From this result,

n
2β

2β+ηMSE
(

∆̂
)

= b2h2β
∗ + σ2h−η

∗ ,

is reached and minimizing this for h∗ it yields an optimal value of

h∗ =

(

ησ2

2βb2

)
1

2β+η

.

Glasserman [28] claims that in the situation of decrease h lowers the error, the
standard call option is valid for Case (iii). On the other hand, in the situation
of increase in error as h approaches to zero, the digital option fits Case (iii).

1.4 Unbiased Sensitivity Estimation Methods in Finance

In this section, unbiased estimators θ for the sensitivity of E [X] with respect
to the parameter θ is emphasized. When the unbiased estimators θ are used, a
compromise between the bias and the computation time are not encountered. In
essence, this does not mean that the number of simulations can be decreased, but
the obtained values are correct for sure.

Two approaches of unbiased Monte Carlo estimation of sensitivities, the “path-
wise derivative” and “likelihood” are discussed in this section. Since each of
these approaches are limited by the narrower scope of problems and are powerful
methods in the case of their implementations, they can be successfully addressed.
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1.4.1 Pathwise Derivative Estimates Method

Consider a collection of random variables {ϕ (θ) , θ ∈ Θ} which are defined on a
probability space (Ω,F , P ). Assume that Θ ⊆ R is an interval. For a fix w ∈ Ω
consider a mapping θ 7−→ ϕ (θ, w) as a random function on the interval Θ. Then,
ϕ′ (θ) = ϕ′ (θ, w) is the derivative of the random function with respect to the
parameter θ. In this case, it is assumed that the derivative exists on this interval.
If this holds, ϕ′ (θ) is called the pathwise derivative of ϕ with respect to θ [28].

In the discussion of the finite difference methodologies in practice, in Case (iii) in
Subsection 1.3.2 the mean square error (MSE) decreases as h increases. Therefore,
the parameter h to zero should be decreased and tried to estimate the derivative
of the option price V (θ) = E [ϕ (θ)] (where ϕ (θ) = ϕ (θ, w)) using,

ϕ
′

(θ) = lim
h→0

ϕ (θ + h)− ϕ (θ)

h
. (1.19)

This is an estimator with mean E [ϕ′ (Θ)]. It is an unbiased estimator of the
derivative of the option price V ′ (θ). Under the assumption of Leibniz rule, it can
be written as follows,

E

[

d

dθ
ϕ (θ)

]

=
d

dθ
E [ϕ (θ)] . (1.20)

There are two advantages of pathwise derivative estimates method. The first ad-
vantage of this method is is that the method does not have a problem of variance
“blow up” as the number of time steps increases, which makes it more suitable
for dealing with path-dependent options. The second advantage of this method
is the computational cost is independent of the number of first derivatives to be
calculated. It is especially useful in computation of multiple Greeks simultane-
ously.

On the other hand, there are also some drawbacks of this method. The most
crucial feature of pathwise derivative estimate method is; the payoff function has
to be differentiable. Since the payoff function is not differentiable in general,
derivative may not exist. However, there are methods used to overcome this
problem. For instance, using a continuous piecewise linear function to approxi-
mate the payoff function, called “payoff smoothing”, is one of the ways to handle
(see [37] for further details). For some cases, even the option payoff function
is differentiable, it can be difficult to calculate the derivatives of the function in
practice [37]. Another drawback since Monte Carlo estimator requires compu-
tations for each Greek, this method is computationally expensive. In addition
to these drawbacks, this method is not applicable for the barrier options and on
estimation of second order derivatives.

Despite the fact that this method is limited by the requirement of continuity
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condition in the discounted payoff as a function of the parameter for differentia-
tion [28], it gives efficient results in some cases.

1.4.2 The Likelihood Method

As Broadie and Glasserman [6] point it, the likelihood method is one of the ways to
compute the Greeks in such cases where the joint density of the random variables
are used in the problem which are explicitly known or can be approximated.
This method is proven to be highly effective to estimate the Greeks when it is
applicable. However, it is not possible to know the density in all cases. In some
cases, such as the density is not known explicitly, Kernel type approximation of
the joint density can be used in computations of sensitivity analysis.

Consider the discounted payoff ϕ = f (X, θ) where X = (X1, . . . , Xm). Here, Xi

(i = 1, 2, . . . ,m) can be different underlying asset or values of only one underlying
asset at multiple dates. Suppose that the density of X is known and represented
by g and θ which are parameters of this density. Now suppose that the density
represented with gθ. Then, the expected discounted payoff is given by,

E [ϕ] = E [f (X1, . . . , Xm)] =

∫

Rm

f (x) gθ (x)dx.

The payoff function f and the density g depends on model parameters. Fixing
the parameter θ and, if it is applicable, applying Leibniz rule one can have the
Greek as follows,

∂

∂θ
E [ϕ] =

∫

Rm

f (x)
∂

∂θ
gθ (x) dx. (1.21)

One may further, can rewrite Equation (1.21) as,

∂

∂θ
E [ϕ] =

∫

Rm

f (x)
g′θ (x)

gθ (x)
gθ (x) dx

= E

[

f (X)
g′θ (X)

gθ (X)

]

, (1.22)

under the assumption of interchangeability of differentiation and integration.

Note that E

[

f (X)
g
′

θ
(X)

gθ(X)

]

is an unbiased estimator of ∂
∂θ
E [ϕ].

The computation in Equation (1.22) can be seen as an option pricing problem

with a payoff function f (x)
g′
θ
(x)

gθ(x)
, which is the initial payoff multiplied by a weight

ω(θ) =
g′
θ
(x)

gθ(x)
.
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Having carried out the computation of the weights the Greeks will become,

Greekθ =
1

N

N
∑

i

f (x)ω (θ).

The advantage of likelihood method is, contrary to pathwise method, that it does
not require any regularity assumption on the payoff function, which means that
it can be applied to non-differentiable payoff functions, too because the derivative
of the payoff function is not needed [7].

On the other hand, there are two main drawbacks of this method: first, for some
cases the density function of the underlying asset is not known. Second, this
method leads to a Monte-Carlo estimator with variance of order N−1. Indeed,
it becomes infinity as N approaches to zero and is unsuitable for calculations
involving path-dependent options [37].

This method requires probability density function of the underlying asset which
the option is written on and interchangeability of integration and differentiation.
Fournié et al. [23] generalizes this method to path space using Malliavin calculus.

1.5 Summary

In this chapter, the finite difference, pathwise and likelihood methods are dis-
cussed in a preliminary level. It is seen that these methods cannot be used for
all type of options because of complexity of the some underlying asset pricing
model or option’s payoff functions, like stochastic volatility models and Asian
options. For example; if the option’s payoff function is differentiable, the finite
difference and pathwise method can be used in computation of Greeks. But, for
many option, the payoff functions are not differentiable. Sometimes even if it is
differentiable, differentiation of the function can be confusing. Also, the finite
difference method is highly biased and the pathwise method can not be used
in computation of second and higher order Greeks. On the other hand; if the
density of the underlying asset is known, the likelihood method can be used to
estimate both continuous and discontinuous payoff functions. However, the den-
sity function can not be determined in many cases. Further, it cannot be applied
to complex payoffs such as Asian options. For further details see [18] and [28].

Finite difference, pathwise and likelihood methods used in computation of the
Greeks are summarized in the following Table 1.1.
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Table 1.1: Summary of the Methods

Enough information.
No need any additional information from the model.

Problematic for discontinuous payoffs.

This method is very simple to implement.

Always applicable in the existence of corresponding derivative.
FDM

The choice of h is confusing.

Highly biased result.

Three source of error; the Monte Carlo, the possible discretization,
Finite difference.

Computationally expensive.

Need for additional information from the model that used.

Not applicable for discontinuous payoffs due to need of partial
derivative of the payoff function calculation.

PDEM Computationally expensive.

No problem of variance blow up as the number of time steps increases.

Independent computational cost of the number of first derivatives.

Leads to an unbiased of the Greeks.

Not applicable for second order Greeks.

Need of determination of the probability density function of the model
under consideration.

Applicable to discontinuous payoffs.
LM

Leads to an unbiased estimator of the Greeks.

Computationally effective.
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CHAPTER 2

PRELIMINARIES

2.1 Introduction

The calculus of variations for stochastic processes, called Malliavin calculus, is
introduced by Paul Malliavin in 1976 [48]. This calculus is defined on the Wiener
space. The theory of Malliavin calculus has been established to prove results on
the regularity of the density of solutions of stochastic differential equations driven
by a Brownian motion. It is a research area that has been considered highly theo-
retical and practical from the mathematical perspective for many years. However,
in recent years it has playes a major role in applications of mathematical and com-
putational finance. Since it can be easily applied to Monte- Carlo methodology,
it is also a useful tool in computation of the Greeks in finance.

While dealing with sophisticated models in option pricing with non standard and
discontinuous payoff, the classical methods like finite differences, pathwise deriva-
tive estimates, the likelihood and other numerical methods for partial differential
equations could be inefficient in solutions. Researchers use the Monte-Carlo and
quasi Monte-Carlo methods to overcome this insufficiency. The main drawback of
these two method is, in the case of a discontinuous payoff function, they have weak
convergence to the exact solution [4]. Because of this reason recently Malliavin
calculus has been used in computation of the Greeks.

In financial mathematics, the computation of Greeks with Malliavin calculus for
the Black-Scholes-Merton asset price dynamics model and application to Monte
Carlo simulation was first introduced by Fornié et. al (1999, 2001) (see [22] and
[23] for further readings). Malliavin method does not require differentiable payoff
function and no need to know the probability density function of the underlying
asset. The main tool in computation of the Greeks with this method is the inte-
gration by parts formula. Through Malliavin method all Greeks can be expressed
as the expected value of the payoff function multiplied by a weight function, so
called Malliavin weight. The main advantage of this method is; the independence
of the Malliavin weight and payoff function. Therefore, it is applicable for both
discontinuous and continuous payoffs. Using this feature, a Monte Carlo algo-
rithm for general options can be constructed at first and then, this algorithm can
be used for specific payoffs.
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As for prerequisites, the reader is expected to be familiar with some findings in
Malliavin calculus to understand this method. In this chapter, without going
into technical details, concepts and theorems used in computation of Greeks are
discussed briefly. Therefore, a basic introduction to Malliavin calculus and its
usage within the area of Monte Carlo simulations in finance are provided (see
[16], [28] and [54] for further details). Instead of giving an overview of the
theory on Malliavin calculus, the theory (without proofs) of the computation of
Greeks is emphasized. This chapter follows up on some ideas from David Nualart
(2006) [54], which contains topics about Malliavin calculus application to finance.

2.2 Wiener Space

The Malliavin calculus has been developed on the Wiener space framework. In-
deed it is an infinite dimensional differential calculus. To define this infinite
dimensional space, first consider the space of real valued continuous functions
defined on [0, T ] with value 0 at t = 0, i.e.

Ω = C0 ([0, T ]) = {wt : [0, T ] −→ R| wt is continuous, w0 = 0} .

Second, consider a probability space (Ψ,G, ν) and then, define (Bt)t∈[0,T ] which
is assumed to be a Brownian motion with respect to the probability measure ν.
Here, G is the σ-algebra generated by the Brownian motion (Bt)t∈[0,T ]. Because
of continuity of Brownian motion, it is reasonable to construct a mapping from
Ψ to Ω namely, an element X of Ψ is mapped to an element Bt (X) of Ω. This
can be viewed as

Bt : Ψ −→ Ω,

X 7−→ Bt (X) ,

where Ω is equipped with the σ-algebra F generated by the sets

{w|wt1 ∈ A1, . . . , wtn ∈ An, } ,

where, 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ T and A1, A2, . . . , An ∈ B are Borel sets in
R. Here, the Brownian motion X 7−→ Bt (X) is a measurable mapping from the
space (Ψ,G, ν) to the space (Ω,F). Hence, it can be induced to a probability
measure on (Ω,F) given by,

P (w|wt1 ∈ A1, . . . , wtn ∈ An) = ν (Bt1 ∈ A1, . . . , Btn ∈ An) . (2.1)

The probability measure (2.1) is called Wiener measure [58].
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After setting this define the coordinate mapping process, which is a connection
between Ω and the real line R,

Wt : Ω −→ R

Wt (w) = wt.

Here, the process W = (Wt)t∈[0,T ] has the same distribution under the measure

P like (Bt)t∈[0,T ] has under the measure ν [54]. Therefore, the process W =

(Wt)t∈[0,T ] is a Brownian motion in the probability space (Ω,F , P ) and this space
is called Wiener space. Note that, F is the σ-algebra generated by the Brownian
motion W = (Wt)t∈[0,T ].

With this expression the coordinate mapping on the Wiener space becomes a
Brownian motion under the Wiener measure defined in Equation (2.1). By this
fact, when it is need to study on Brownian motion, the coordinate mapping on
Wiener space can be used instead of the probability space (Ψ,G, ν) (See [30] and
[54] for further details).

2.3 The Malliavin Derivative on Wiener Space

Let us first introduce the Gaussian isonormal processes, defined by Dudeley in
[17], before beginning to explain the Malliavin derivative.

Definition 2.1. A centered Gaussian familyW = (W (h) , h ∈ H) is an isonormal
Gaussian process on the Hilbert space H if it is parametrized by the elements of
this Hilbert space, such as

E [W (g)W (h)] = 〈g, h〉H ,

where g, h ∈ H and 〈., .〉 is the inner product of the Hilbert space H.

Assume thatW = (W (h) , h ∈ H) be an isonormal Gaussian process with respect
to a separable Hilbert space H. The process W is defined on the given complete
probability space (Ω,F , P ).

Now, the derivative DF for a square integrable random variable F

F : Ω −→ R

can be discussed. Actually, in this part the derivative of the random variable F
means derivative with respect to ω ∈ Ω. The interesting point in this scheme
is, although F does not possess a continuous version, the derivative of F with
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respect to chance parameter ω exist. Hence, a notion of derivative does not have
a continuous version which is defined in a weak sense [54].

The space of all infinitely differentiable functions f : Rn −→ R is denoted by
C∞

p (Rn), with partial derivatives are bounded, that is, all of its partial derivatives
have polynomial growth.

Definition 2.2. 1. The family of smooth random variables is the set S of
random variables F : Ω −→ R such that there exist a function f in C∞

p (Rn)
and h1, h2, . . . , hn ∈ H such that

F = f (W (h1) ,W (h2) , · · · ,W (hn)) . (2.2)

2. The family P represents the set of random variables of the form (2.2) with
a polynomial function f .

3. The family Sb denotes the space of random variables of the form (2.2) where
f and all of its partial derivatives are bounded (f ∈ C∞

b (Rn)).

4. The family S0 denotes the space of random variables of the form (2.2) where
f has a compact support (f ∈ C∞

0 (Rn)).

The families given in Definition 2.2 can be associated with the following remark
(see [54], [62], and [54] for further details).

Remark 2.1. The families given in Definition 2.2 are ordered like S0 ⊂ Sb ⊂ S
and P ⊂ S. Also, the families S0 and P are dense in the space L2 (Ω,F , P ).

Brownian motion W has continuous paths, the sensitivity of F ’s with respect
to change in the paths ωt for any t can be measured. Therefore, the Malliavin
derivative DF of the random variable F ∈ S is a process and it measures the
sensitivity of F with respect to changes in ωt. Generally, it is represented as
DF = (DtF )t∈[0,T ] and the operator Dt is defined on the smooth random variable

space. Definition of the Malliavin derivative on the Wiener space (Ω,F , P ) is
characterized with following proposition without proof (see the proof in [54]).

Proposition 2.1. The derivative of a smooth random variable F ∈ S which has
a form as (2.2) is a H-valued random variable given by

DF =
n
∑

i=1

∂f

∂xi

(W (h1) , . . . ,W (hn))hi. (2.3)

Here, ∂f
∂xi

means the partial derivative with respect to ith component.

The following basic example provides an intuition to apply Proposition 2.1.

Example 2.1. Consider the simple case, f (x) = x2. In this case, F = W (h)2.
Then, the derivative of W (h)2 is,
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DW (h)2 = Df (W (h)) = 2W (h)h.

The Malliavin derivative DF can be interpreted as a directional derivative for
any h ∈ H.

Remark 2.2. Suppose that F is a smooth random variable defined by (2.2), and
DF is the Malliavin derivative, then,

〈DF, h〉H = lim
ǫ→0

1

ǫ

[

f (W (t1) + ǫ 〈t1, h〉H , . . . ,W (tn) + ǫ 〈tn, h〉H)

− f (W (t1), . . . ,W (tn))

]

.

where 〈DF, h〉H is the inner product of the Hilbert space H.

By Remark 2.2 it can be said that the scalar product 〈DF, h〉H is the Malliavin
derivative of F at ǫ = 0.

The Malliavin derivative of a random variable F ∈ S given in Proposition 2.1
satisfies two important properties; product rule and linearity just like the deriva-
tive in ordinary differential calculus. The properties are given with the following
propositions.

Proposition 2.2. Suppose that F and G are any smooth random variables. Then,
D (FG) is

D (FG) = FD (G) +GD (F ) . (2.4)

Proposition 2.3. Suppose that F and G are any smooth random variables and
a, b ∈ R. Then,

D (aF + bG) = aD (F ) + bD (G) .

The following proposition is called integration by parts formula. It is a major
tool in Malliavin calculus both application and for theoretical sides. Particularly,
it can be used to get a great advantage in computation of the Greeks.

Proposition 2.4. Suppose that F is a random variable of the form (2.2) and h
is the element of the Hilbert space H. Then, the following formula holds.

E [〈DF, h〉H ] = E [FW (h)] . (2.5)
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Proof. The random variable F is denoted by F = f (W (h1) ,W (h2) , · · · ,W (hn))
in Equation 2.2 where f ∈ C∞

p (Rn). Assume that the n-fold Wiener measure de-
noted by µn, then,

E [〈DF, h〉H ] =

∫

Rn

∂f

∂x1

(x) dµn (x)

=

∫

Rn

f (x) x1dµn (x)

= E [FW (h)] .

The detailed proof can be found in [54] on page 26.

If the integration by parts formula is applied to the product FG where F,G ∈ S
then, the following consequence is observed.

Lemma 2.5. Suppose F and G are two smooth random variables and h ∈ H.
Then,

E [G 〈DF, h〉H ] = E [−F 〈DG, h〉H ] + FGW (h) . (2.6)

As a consequence of Lemma 2.5 the following proposition is obtained.

Corollary 2.6. The Malliavin derivative operator D is closeable from the space
LP (Ω) to the space LP (Ω;H) for any p ≥ 1.

Proof. The detailed proof is given by Nualart in [54].

In Proposition 2.1, the Malliavin derivative is defined for the elements of S and
then extended to nonsmooth random variables which encountered in finance. For
this purpose, define the domain of kth order Malliavin derivative denoted by D

k,p

for any p ≥ 1 and k ≥ 1:

The iteration of the derivative operator D k times for a random variable F ∈ S
can be defined as a random variable denoted by DkF ∈ H⊗k. The following
seminorm can be defined on the family S:

‖F‖k,p =
[

E [|F |p] +
k
∑

j=1

E
[∥

∥DjF
∥

∥

p

H⊗j

]

]
1

p

. (2.7)

Then, the domain of kth order Malliavin derivative, denoted by D
k,p, is a comple-

tion of S with respect to the semi-norm defined in Equation (2.7).
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Choosing k = 1, for any p ≥ 1, the domain of the first order Malliavin derivative,
denoted by D

1,p, is in the space LP (Ω). In this case, D1,p is the closure of smooth
random variables family S with respect to the following semi-norm,

‖F‖1,p = ‖F‖Lp(Ω) + ‖DF‖Lp([0,T ]×Ω) , F ∈ Lp (Ω) .

or,

‖F‖1,p = [E [|F |p] + E [‖DF‖pH ]]
1

p

If p = 2 the space D
1,2 becomes a Hilbert space with the scalar product,

〈F,G〉1,2 = E [F,G] + E [〈DF,DG〉H ] . (2.8)

Now on, the completion of the family of smooth random variables S by D
k,p will

denoted with the norm ‖.‖k,p. Note that for a fix h ∈ H, the Malliavin derivative
of a smooth random variable F can be defined as in the following remark.

Remark 2.3. Let us take a fix element h of the Hilbert space H. Then, the
derivative operator is denoted with Dh and it is defined on the smooth random
variables in S by

DhF = 〈DF, h〉H =

∫ T

0

(DtF )htdt. (2.9)

As a matter of fact, the Malliavin derivative operator D satisfies the chain rule
property which is satisfied by the derivative operator of ordinary differential cal-
culus [54].

Proposition 2.7. Let ϕ : Rm 7−→ R be a continuously differentiable function
with polynomial growth partial derivatives. Then, for a given random vector F =
(F 1, F 2, · · · , Fm) such that each F i ∈ D

1,p for all i = 1, 2, · · · ,m for a given
p ≥ 1. Then, ϕ (F ) ∈ D

1,p and,

D (ϕ (F )) =
m
∑

i=1

∂

∂xi

ϕ (F )DF i. (2.10)

Proof. Proof can be found in [16].

It is important to emphasize that, Proposition 2.7 can be extended to the func-
tions satisfying Lipschitz continuity which will be helpful to compute the Greeks
of many options with complex payoffs (see [16] and [54]). The extension is given
with following proposition.
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Proposition 2.8. Let ϕ : Rm −→ R be a such that it satisfies the condition

|ϕ (x)− ϕ (y)| ≤ K ‖x− y‖

for any x, y ∈ R
m. Suppose that F = (F 1, F 2, . . . , Fm) is a random vector whose

components F i’s are in the space D1,p. Then, ϕ (F ) ∈ D
1,p and there exist bounded

random variables Gi for i = 1, 2, . . . ,m such that

D (ϕ (F )) =
m
∑

i=1

GiDF i. (2.11)

Proof. For the proof of this proposition [54] page: 29 is referred to the readers.

Remark 2.4. In Proposition 2.8 if the random variable is absolutely continuous
with respect to the Lebesgue measure on R

m then, Gi = ∂
∂xi

ϕ (F ). Moreover,

since the function ϕ is Lipschitz, the derivative ∂
∂xi

ϕ (x) exists for almost all
x ∈ R

m.

2.4 The Divergence Operator

The divergence operator is defined as the adjoint of the derivative operator. In
this section, the separable Hilbert space H is taken as L2 space and it is rep-
resented by H = L2 ([0, T ] ,B, µ), where µ is a σ-finite atomless measure on
the measurable space ([0, T ] ,B). The divergence operator is interpreted as a
stochastic integral which is called the Skorohod integral because it coincides to
the generalization of the Itô stochastic integral introduced for the first time by
Skorohod 1976 [66]. Throughout this study, the divergence operator is denoted
by δ (.) and operates on u = ut ∈ L2([0, T ] × Ω) for t ∈ [0, T ]. The elements
of Dom (δ), the domain of Skorohod integrable processes, are the subsets of the
space L2 ([0, T ]× Ω). The Skorohod integral of {ut} is defined as follows:

δ (u) =

∫ T

0

ut dWt.

The divergence operator is introduced in the framework of a Gaussian isonormal
process W = (W (h) , h ∈ H). Here, it is assumed that the process W is defined
on a complete Wiener space (Ω,F , P ), where F is the σ-algebra generated by W .

Remember that, the derivative operator D defined in Proposition 2.1 is a closed
and unbounded operator with values in the space L2 (Ω;H) and defined on the
set D1,2 ⊂ L2 (Ω).

Definition 2.3. The adjoint of the derivative operator D is denoted by δ. It is
an unbounded operator on L2 (Ω;H) with values in L2 (Ω) and it satisfies:
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1. The domain of δ (Dom (δ)) is denoted by the set of H valued random
variables u ∈ L2 (Ω;H) which are square integrable such that,

|E [〈DF, u〉H ]| ≤ c ‖F‖2 , (2.12)

for all F ∈ D
1,2 and some constant c which depends on u.

2. If u ∈ Domδ then δ (u) ∈ L2 (Ω) and characterized by

E [Fδ (u)] = E [〈DF, u〉H ] , (2.13)

for any F ∈ D
1,2.

Note that as in the derivative operator D, the divergence operator δ is closed and
a densely defined operator.

Proposition 2.9. Let u ∈ S, F ∈ S and h ∈ H. Then the following property is
satisfied.

Dh (δ (u)) = 〈u, h〉H + δ
(

Dhu
)

. (2.14)

Proof. Detailed proof can be found in [54], page:38.

Remark 2.5. If u ∈ D
1,2 then the derivative Du is a square integrable random

variable.

The following proposition provides a large class of H-valued random variables in
the domain of the δ for computation purposes. Proposition 2.9 can be extended
to more general sets of random variables by the help of following lemma.

Lemma 2.10. Let the random variable G is square integrable and suppose there
exist a random variable Y ∈ L2 (Ω) such that,

E [Gδ (hF )] = E [Y F ] , (2.15)

for all F ∈ D
1,2. Then G is an element of Dh,2 and DhG = Y .

Proof. For the proof [54], page:39 is referred to the reader.

Using following proposition, a scalar random variable can be factored out from
the divergence operator.

Proposition 2.11. Let the random variable F be an element of D1,2 and u ∈
Dom (δ) such that Fu ∈ L2 (Ω;F ). Then, Fu ∈ Dom (δ) and the following
equality holds:

δ (Fu) = Fδ (u)− 〈DF, u〉H . (2.16)
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Proposition 2.11 can be modified by replacing u with a deterministic function h
of Hilbert space H. In this case, it suffices to note that the random variable F is
differentiable in the direction of h.

Proposition 2.12. Let the random variable F is an element of D1,2 and h ∈ H.
Then, the product Fu in the domain of δ and the following equality holds:

δ (Fu) = FW (h)−DhF. (2.17)

Proposition 2.11 can be extended by the following proposition, which will be very
useful in computations.

Proposition 2.13. Suppose that the Hilbert space H is H = L2 ([0, T ] ,B, µ).
Consider A ∈ B and random variable F ∈ DA,2. Let u be an element of the
space L2 (Ω;H) such that u1A ∈ Dom (δ) and such that Fu1A ∈ L2 (Ω;H) for
indicator function 1A. Then, Fu1A in Dom (δ) and the following holds:

δ (Fu1A) = Fδ (u1A)−
∫

A

DtF ut µ (dt). (2.18)

The following proposition provides a useful criterion to for the existence of the
divergence operator [54].

Proposition 2.14. Consider an element u of the space L2 (Ω;H) such that there
exists a sequence un in Domδ and the sequence converges to u in L2 (Ω;H).
Suppose that there exists a random variable G ∈ L2 (Ω) such that

lim
n 7→∞

E [δ (un)F ] = E [GF ] ,

for all smooth random variables F . Then, u ∈ Dom (δ) and δ (u) = G.

2.4.1 The Skorohod Integral

In this part, consider the separable Hilbert spaceH isH = L2 ([0, T ] ,B, µ), where
µ is a σ-finite atmoless measure on the measurable space ([0, T ] ,B).

The elements of Dom (δ) are the subsets of the space L2 ([0, T ]× Ω) which are
square integrable processes. Through out this study, the divergence operator is
denoted by δ (.) and operates on the processes u = ut for t ∈ [0, T ]. This operator
is called Skorohod stochastic integral of the given process u. The integral notation
is,

δ (u) =

∫ T

0

ut δ (Wt).
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Remark 2.6. Since the Skorohod integral δ is closed, it can be deduced that
u ∈ Domδ and δ (u) is equal to the Itô integral of the process u. More generally,
any type of adapted stochastic integral with a multiparameter Gaussian white
noise W integrator can be thought as a Skorohod integral [54].

The following theorem is explaining this remark.

Theorem 2.15. Let the pair (t, w) ∈ [0, T ] × Ω and H ∈ L2 ([0, T ]× Ω) be
a process on the probability space (Ω,Ft, P ). In this setting, Ft is a σ-algebra
generated by the Brownian motion at time s ≤ t. Under these circumstances the
Skorohod integral coincides with Itô integral, that is,

δ (H) =

∫ T

0

Htδ (Wt) =

∫ T

0

HtdWt, (2.19)

for all (t, w) ∈ [0, T ]× Ω.

Proof. See [54] for further details.

The following example is mainly used in computation of Greeks.

Example 2.2. Suppose that the process ut = 1. Since any constant process is
adapted to Wt for all t,

δ (1) =

∫ T

0

1d Wt = WT −W0 = WT . (2.20)

In this example the integral is in the Itô sense.

Let the space D1,2 (L2 ([0, T ])), denoted by L
1,2, coincides with the set of processes

u ∈ L2 ([0, T ]× Ω) such that u (t) ∈ D
1,2 for almost all t ∈ [0, T ].

Proposition 2.16. Consider a process u which is an element of L
1,2 and for

almost all t the process {Dtus, 0 ≤ s ≤ T} is Skorohod integrable. In addition,

assume there is a version of the process
{

∫ T

0
DtusdWs, 0 ≤ t ≤ T

}

which is in

L2 (T × Ω). Then, δ (u) is in D
1,2 and,

Dt (δ (u)) = ut +

∫ T

0

Dtus dWs. (2.21)

Processes u, which are Skorohod integrable, can be constructed and they do not
belong to the space L1,2. In this setting one can always find a measurable version
of the process Dsut verifies
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E

[∫ T

0

∫ T

0

(Dsut)
2 µ (ds)µ (dt)

]

< ∞, (2.22)

and the L
1,2 is a Hilbert space with a norm as follows,

‖u‖21,2,L2([0,T ]) = ‖u‖2L2([0,T ]×Ω) + ‖Du‖2
L2([0,T ]2×Ω) .

Note that the space L
1,2 is isomorphic to the space L2 ([0, T ] ;D1,2) [54].

One can construct processes a process u that is Skorohod integrable and do not
in the space L

1,2. The next lemma provides a major information about how to
construct the processes of this type.

Lemma 2.17. Let A ∈ B0 = {A ∈ B : µ (A) < ∞} and let the random variable
F be square integrable and it is measurable with respect to the σ-algebra FAc. In
this case, the process F1A is Skorohod integrable and the following equation is
hold

δ (F1A) = FW (A) . (2.23)

Proposition 2.11 can be written as in the following notation by the inner product
in Hilbert space H.

Proposition 2.18. Suppose that there exists a Malliavin differentiable random
variable F and a Skorohod integrable process ut. Then,

δ (Fu) = Fδ (u)−
∫ T

0

(DtF ) utdt. (2.24)

Proof. For the proof see [62] page:19

Example 2.3. Using the previous proposition we can compute the Skorohod
integral of δ (WT ) can be computed by letting u = 1 and F = WT . Then,

δ (WT ) = WT δ (1)−
∫ T

0

1dt

= W 2
T − T.
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CHAPTER 3

OPTIONS AND THE GREEKS IN FINANCE

3.1 Introduction

Financial market instruments, which are used for investment, require a careful
risk control in order to avoid undesirable results based on the unexpected large
movements in their price and volatility. One of the most important components
such kind of issues is the risk control problem of an option contract. The quantity
that interpret risk is represented by the derivative of the option price with respect
to its parameters. In finance theory, this concept is called the sensitivity analysis
of option prices.

Estimating the price sensitivity of an underlying asset against to the change
in the parameters is an important part of the validity of an investment decision.
Particularly, in finance, certain derivatives of a contingent claim or portfolio value
with respect to underlying model parameters. Since, many of the derivatives are
denoted by Greek letters, they are called “Greeks”. These derivatives are useful
tools for investors to measure the stability of the quantities under variations of
the parameters.

This chapter consists of two main sections. In the first section, the options used
in financial markets are discussed. The main focus on the definition of them,
does not rely on the pricing methods. There are several methods for pricing such
kind of instruments in literature (for details see [14], [41], [44] and [56]). In the
second section, certain Greeks, first order and higher order Greeks are discussed.

3.2 Options

Options are the right to buy or sell risky assets at a predetermined fixed price
within a specified period. Indeed they are financial instruments which are allowed
to bet on rising or falling values of a contingent claim [32]. Options are contracts
between two parties interms of buying and selling the contingent claim at a certain
time in the future. One of the parties is the writer who fixes the indispensable
terms of an option contract and then sells the option to another party. The other
party is the holder of the option, who purchases the option from the writer [65].
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In recent years, the options have become very popular among the investors and
are traded actively on many exchange throughout the world. They are attractive
to investors because options are relatively cheaper to buy and also offer higher
net returns than the contingent claims on which they are written. They can be
used by investors to hedge against to the risks associated with sharp movements
of underlying asset price. Investors can use them to generate higher returns under
the assumptions of future market behavior and their prediction [10].

In accordance with the right, there are two types of option in financial markets
which are called “call option” and “put option” [32]. A call option gives the
holder the right to buy an underlying asset, which the option write on, by a
predetermined date for a predetermined price, and the put option contrary to call
option, gives the holder the right to sell an underlying asset by a predetermined
date for a predetermined price. The price is known and called strike or exercise
price and the date in the contract is called maturity or expiration date. For the
sake of both party to make it clear on details, the writers have to specify the
following instructions in an option contract:

• Underlying asset price,

• Exercise price,

• Time to maturity,

• Payoff function.

3.2.1 Vanilla Options

The value of a vanilla option at any particular time depends only on the cur-
rent price of a fixed underlying asset, a predetermined fixed strike price, time
to maturity and a dividend rate on the underlying asset and addition to these a
risk-free rate, the volatility of the underlying asset. Furthermore, there are no
special conditions on any of these parameters [40].

European Option

A European option written on an underlying asset is a financial security that gives
its holder the right (but it is important to emphasize that not the obligation) to
buy or sell the underlying asset at some given date and for a predetermined price.
If the holder makes this transaction, it is referred to exercising the option. Since
there is no obligation, in some conditions the holder does not exercise the option.
If the holder does not exercise the option, it is abandoned [52].

Consider a European call option with exercise price K and maturity T . Suppose
that the underlying asset price at maturity denoted with ST . Since the price
ST is unknown at time t = 0, this price ST gives an uncertainty to the model.
The exercise price K is known and there are two possibilities for ST which are,
ST > K or ST < K.
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If ST > K, the payoff of the European call option is equal to (ST−K). Otherwise,
exercising the option is not profitable. In this case there will be no transaction
thus the payoff is zero. In mathematical representation the payoff is,

payoff = max (ST −K, 0) = (ST −K)+ .

In Figure 3.1 the results for the payoff of a European call option is represented
with parameters K = 50, T = 2. ST changes from 30 to 70, the interest rate
r = 0.012 and the volatility is σ = 0.4.
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Payoff of a European Call Option

Figure 3.1: Payoff of a European Call Option

The payoff of this option will be zero in the interval (30, 50) and it is grater than
zero in the interval (50, 70).

American Option

An American option is characterized by the opportunity of early exercise at any
time during the life span of the contract. In contrast to European options which
can only be exercised at expiration, an American option can be exercised at any
time of its horizon. All other things are similar to the European options. In order
to describe an American option it is crucial to specify the premium that has to
be paid to the owner in case of early exercise.

It is important to emphasis that American vanilla options have not closed form
solutions. Due to early exerciser opportunity, the price of an American call option
is always greater than the corresponding European type of call option as long as
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it pays dividends, as it is seen in the Figure 3.2 [52]. As a matter of fact, if
the underlying asset pays no dividend an American option price will be equal to
the corresponding European call option price. Thus, in this case exercising an
American option is not preferable.

Consider an American put option with exercise price K and maturity T . Let’s
denote the underlying asset price at time 0 ≤ t ≤ T with St. Since, at time t, the
price St is not known, hence this price gives an uncertainty to the model. The
exercise price K is known so there are two possibilities for St which are, St > K
or St < K. In mathematical representation,

payoff = max (K − St, 0) = (K − St)
+ .
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Figure 3.2: Payoff of an American Put Option

In Figure 3.2 the results for a payoff of a American put option is represented
parameters with K = 50, T = 2. ST changes from 30 to 70, the interest rate
r = 0.013 and the volatility is σ = 0.4.

3.2.2 Russian Option

Russian option is a special type of American option which has lookback payoff and
undetermined maturity. It guarantees that the holder of the option receives the
historical maximum value of the underlying asset price on the path of exercising
the option. The holder can exercise it at any time. Suppose that the historical
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realized maximum of the asset price denoted with M and the asset price is St,
and these prices are taken at the same time. The option value is independent of
time because it is a perpetual option. Let V = (M,St) be the option price and S∗

t

be the optimal exercise price at which the Russian option should be exercised. At
a sufficiently low asset price, the Russian option becomes more attractive to the
holder to exercise and receive the amount M instead of hold and wait. Therefore,
the holder will keep it when S∗

t < St ≤ M and exercise when St ≤ S∗
t . The payoff

function of the Russian option upon exercising is [43]

V (S∗
t ,M) = M .

As in any American option, a Russian option value is higher than its exercise
payoff in the case of the option is alive.

3.2.3 Exotic Options

In recent years, a variety of complex options developed by financial engineers
which are jointly known as exotic options, which can be contrasted with vanilla
options. A vanilla option does not consider the past values of the underlying asset.
Therefore, the price of it depends only on the current price of the underlying
asset. On the other hand, many exotic options consider the historical prices of
the underlying asset and the price of the option today, depend on the previous
or future price path followed by the underlying asset [40].

Asian Options: Asian options are the options where the payoff depends on
the average of the underlying asset during the life of the option. In an Asian
option, the average price of the underlying asset is used as the terminal price of
the underlying asset in determining the payoff. The average can be computed
in several ways and each of them is a different type of Asian option. These
types of options are suited to hedge risk at foreign exchange markets. Kolb and
Overdahl [40] stressed that, because of the averaging effect, they are extremely
useful against price manipulations and cheaper than vanilla options.

For simple constructions, the average can be computed arithmetically over a finite
set of times. Such an example, the payoff function might be φ

(

ST/4, ST/2, S3T/4, ST

)

[62]. In this thesis the case of arithmetic Asian options is focused on. In par-
ticular we focus on the most important and most popular case of a continuous
arithmetic average price call is,

(

1

T

∫ T

0

Stdt−K

)+

.

where K is the strike price [71].

Lookback Options: Lookback options are the options whose payoff depends on
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the maximum or minimum of the underlying asset price reached during the life of
the option. The purpose of this option is to give the opportunity to the investor
for gaining the maximum payment. These kinds of options become very popular
on derivative markets, particularly in the currency options.

Mainly there are two different form of lookback options. The first form is that the
settlement price of the option chosen with perfect hindsight of the stock’s price
path during the life of the option and the fixed strike price. The second form is
the one that the strike price is chosen with perfect hindsight and the settlement
price is the price of the option at maturity [14]. By these forms one can say
there are four different lookback options:

1. Fixed strike call lookback or Max lookback: This type of lookback option
pays the difference between the strike price and the highest stock price
during the life of the option.

2. Fixed strike put lookback or Min lookback: This type of lookback option
pays the difference between the strike and the lowest stock price during the
life of the option.

3. Floating strike call lookback: This type of lookback option pays the differ-
ence between the stock price at expiration date and the lowest stock price
during the life of the option.

4. Floating strike put lookback: This type of lookback option pays the differ-
ence between the stock price at expiration date and the highest stock price
during the life of the option.

Consider a lookback option which is decided to exercised at time t with time to
maturity T . The stock price at time t is denoted by St. Then, the payoffs on the
lookback call is,

payoff = max {0, ST −min {St, St+1, . . . , ST}} .

As Kolb and Overdahl emphasized [40], a lookback call option allows to the
buyer to receive the underlying asset at its minimum price over the life of the
option.

Ladder Options: Ladder options are modeled for the investors, who want to
get baring the upside of a stock price while at the same time locking in the perfor-
mance of the stock if it ever goes above certain levels. These type of options are
particularly popular among individual investors. They are typically structured
as a capital guaranteed note with unlimited upside participation and the added
advantage that a certain performance is guaranteed once the stock goes above a
certain level [14].

A European type of ladder call option has the following payoff at maturity:
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CT = max (0, ST −K,max (0, Lk −K)) ,

where Lk is the specified kth rung in the ladder of strike prices, K is the strike
price and ST is the stock price at maturity [12].

Bermudan Option: Bermudan option is a combination of European option
and American option. These type of options can be exercised not only at the
expiration date but also exercised on certain specified dates which are occurred
between the purchase date and the expiration date.

Mathematically, the Bermudan option is a pair (U,R) where R ⊆ [0, T ] is the
region of permitted exercise dates and U = (Ut) (0 ≤ t ≤ T ) is a non-negative
adapted right continuous process with left limit (RCLL) called the payoff process.
The holder of a Bermudan option can choose a stopping time τ with values in R;
then obtain the payoff Uτ at time τ from the writer of the option [61].

Barrier Option: In recent years, options with payoff which depend on the com-
plete path taken by the underlying price to reach its exercise value are becoming
increasingly popular among the investors. The most popular of these path de-
pendent options are barrier options. There are two types of barrier options [11]:

• Knock-out option: This type of option cancels immediately when the
underlying price hits or crosses a predetermined level of price.

• Knock-in option: If the underlying price does not hit or cross the barrier,
the option does not come into existence and therefore it becomes worthless.

Since barrier option provides the investor with additional protection or leverage,
it is very popular among the individual investors. As Weert ( [14]) emphasized;
from the risk management point of view the associated risks are discontinuous
around the barrier. Thus, the Greeks become less predictable and very often
change sign around the barrier. But, it is possible to capture all these risks in
the price and also able to manage the barrier risk properly because the risks
associated with the barrier are typically of such a nature.

Digital Option: Digital option, also known binary options, is an option which
gives a fixed payout if it is below or above a certain point and does not give a
payout at all in all other cases. This option have an easy payoff comparing to the
other exotic options but still it is assumed to be in this class by some researchers
[14].

These options are an ideal trading instrument for beginners to test their skills.
At a core level, binary option trading starts with anticipating on right direction
is one of the most important skills to trading at any market.

Just like the put or call options, digital has an underlying asset, that is stock
indexes, foreign currency, and futures, strike price and an expiration date. Digital
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options cannot be exercised before the expiration date as European options. But,
they have some differences such as [53],

• They have fixed risk and fixed payoff. Thus, investors know maximum risk
and payoff before trading. This is the main advantage of digital options.

• These options have no put or call options. They have only price conditions
on the underlying asset

• They are fully collateralized, thus investor can never lose more than they
put into a trade.

• With these options investor can take long and short position with minimal
collateral. Thus, they can customize their trading strategies without having
to put up large margin requirements.

There are some drawback of trading in digital options. The obvious one is the
limited gain. Another disadvantage is, the market is not as big as European
options market. Therefore, sometimes it is difficult to find the strike prices,
expiration dates or contract.

In Figure 3.3, a digital option payoff of 0 or 1 is graphed. For further reading see
[43], [70].
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Figure 3.3: Payoff of a Digital Option
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3.3 The Greeks

Greek letters delta, gamma, theta, rho and vega (actually vega is not a Greek
letter) are used commonly by option traders. Each of them measures a unique
risk associated with the model parameters. A Greek is essentially the derivative of
a financial quantity’s discounted payoff function with respect to any parameters
associated with the problem [10]. Suppose V denotes the value of a portfolio
based on an asset St, whose volatility is represented by σ and the current spot
interest rate is r. If V = V (St, K, t, σ, r), the most commonly used Greeks in
finance are given in Table 3.1. One of the most frequently used Greek in hedging
strategy is “Delta” because it measures the sensitivity of the option value within
changes in the price of the underlying asset [1]. These derivatives are important
because they are relevant to hedging strategy. Moreover, they also give an idea,
about how rapidly the value of our portfolio is effected when there is a change in
one of the parameters.

Suppose an option with payoff H which is square integrable (EQ[H
2] < ∞). The

price of this option at time t = 0 will be

V0 = EQ[e
−

∫ T

0
rs dsH]. (3.1)

Since the value of the option at time t = 0 is equal to Equation (3.1), the derivative
of this expectation should be taken, with respect to a parameter λ which is one
of the parameter of H (S0, K, σ, t or r). Assuming that the payoff function H
can be written as a function of λ, it can be represented as H = f (λ). Then, the
derivative of H with respect to λ as follows,

∂V0

∂λ
= e−rTEQ

[

f
′

(Fλ)
∂Fλ

∂λ

]

.

As the parameter λ changes different Greeks are obtained. The name of the
Greeks are given in Table 3.1. These are the most common used Greeks but
there also some other Greeks that used rarely, called second and higher order
Greeks. In the following subsections fundamental definitions of the first order
and second order Greeks are provided.
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Table 3.1: Common Used Greeks in Finance

Name Symbol Derivative

Delta ∆ ∂V
∂S0

Gamma Γ ∂2V
∂S2

0

Rho ρ ∂V
∂r

Theta Θ ∂V
∂t

Vega ϑ ∂V
∂σ

3.3.1 First Order Greeks

Delta: Delta measures the speed of option price changes with in the change of
the underlying asset price [14]. This explanation is not unique, there are other
explanations to option’s Delta such as: mathematicians perceive an options Delta
as the first order partial derivative of the option price with respect to underlying
asset price, and economists perceive it as the sensitivity of the option price to a
change in the price of its underlying asset:

∆ =
∂V

∂S0

.

Call options have positive Delta in the interval [0, 1]. This is clearly mean that
if the stock price goes up, assuming other parameters fixed, the price of the call
option will increase.

The investors purchase the option in case of making profit by an increase in the
underlying asset price St. However, there is also a risk that the owner of the
option can face if the price of underlying asset goes down. Using the positive
correlation between the call option and the underlying asset St, it is possible to
hedge against the risk by shorting the underlying asset [26].

Vega: Even if there is no change in futures or asset price risk or in time risk,
an option price can be affected by changes in implied volatility. This change is
formally referred to as Kappa or Vega. An option’s Vega measures the speed of
option price changes with in the change of its underlying asset volatility. In other
words, mathematically, it is the first order derivative of option price with respect
to volatility of its underlying asset:

ν =
∂V

∂σ
.
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Since the underlying asset volatility is essential in option trading strategies, the
option’s Vega is very crucial. The options can not exist without volatility, on
the other hand they cannot negotiate smoothly in the market if there is too
much volatility. If enough volatility does not exist in the market, the price of
the underlying assets can remain relatively stable, therefore there is no need for
options to be written on these assets.

The Vega is completely different from the other Greeks of the option because it is
a partial derivative with respect to a parameter, rather than a variable. When we
come to find numerical solutions, this makes it harder. In real world, volatility of
an underlying asset is not known with certainty and it is very difficult to measure
at any time and harder to predict it’s future value [69].

If Vega is high in absolute term, the options value is very sensitive against to a
small change in volatility. On contrary, if it is low in absolute term, a change in
volatility have little impact on the value of the option.

Theta: Theta of an option measures the sensitivity of an option price with
respect to change in time to maturity which is called the time decay of an option.
It is known that the value of a European type option at exercising date depends
on the relative price level of the underlying asset and the exercise price of the
option. At the expiration date, the value of an option is called the intrinsic value.
At exercise date, time to maturity will be zero or another word there will be no
time value of money. Hence, the intrinsic value is only one part of an option’s
value. Otherwise, an option with positive time to maturity will have a value
which is changing with time, and this part of value is called the time value of
an option. Since, there is always a possibility of the underlying assets price to
change when there is still remaining time to the expiration, options have time
values. Mathematically this Greek is

Θ =
∂V

∂t
.

The Theta is always positive because of higher possibility for the prices of the
underlying assets to change as long as there is still time before expiration.

This risk is obvious since, all else being equal, an option contract with fewer days
remaining worth less than an equivalent one with more days to expiration. The
option will add value for the extra days. Thus, option values tend to decline as
expiration date approaches, and decline more rapidly the closer the expiration
date is [2].

Rho: Rho of an option measures option value sensitivity against to changes in
interest rates. The interest rate level reflects the opportunity cost of holding
options. The Rho of a call option written on an ordinary stock should be positive
because higher interest rate cause to decline in the present value of the strike
price, which in turn increases the value of the call option [46].
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ρ =
∂V

∂r
.

Commonly in practice, time dependent interest rate r(t) is used. Hence, the Rho
is the sensitivity against the level of the rates under the assumption of a parallel
shift in rates at all times [69].

It also worth to not that, since interest rates rarely move so dramatically over
six month period, a change in the risk free rate is not affect the option prices as
much as other risks [2].

3.3.2 Second and Higher Order Greeks

The Greeks discussed so far are not the only sensitivities in finance. Investors can
imagine many other sensitivities for their investment analysis. In this section, the
second and higher order Greeks are presented.

Gamma: Delta of an option is not constant, but changes as the underlying asset
price changes, and makes the option in, at or out of the money. The change in
an option’s Delta as the underlying asset price moves up or down is measured
with Gamma. Since it measures the option’s Delta sensitivity it is a second order
sensitivity. This Greek is the second partial derivative of the asset with respect
to underlying asset price:

Γ =
∂2V

∂S2
0

.

Since the Gamma is the sensitivity of the Delta against a change in the underlying
asset price, it is a measure of how much and how often a position has to be
rehedged in order to continue a Delta-neutral position [69]. Gamma of an option
can be negative as well as positive. Such as, a long call and long put both have a
positive Gamma. On the other hand, a short call and short put have a negative
Gamma. If Gamma is small, the change in the Delta will be slow. However,
if Gamma is large in absolute term, the sensitivity of the Delta with respect to
underlying asset is high.

The Gamma also plays an important role when there is a gap between the mar-
ket’s view of volatility and the actual volatility of the underlying asset. In the
case of high cost the investor wants to reduce the disclosure of the model error
and try to minimize the need of rebalance of the portfolio. Since the Gamma is
a measure of sensitivity of the hedge ratio Delta to the change in the underlying
asset, the hedging requirement can be decreased by a Gamma-neutral strategy.

Speed: Speed measures how fast the Gamma of an option changes against in
the change of underlying asset price. Hence, it is sometimes called as “Gamma of
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Gamma” In the economic environment, it is the sensitivity of the Gamma with
respect to underlying asset price:

speed =
∂3V

∂S3
0

.

The Gamma is used to estimate how much investors will have to rehedge if the
stock price moves. If the stock price changes by 1 unit, the Delta changes in
accordance to the Gamma. But this change is only an approximation. The Delta
may change more or less than the change, especially if the stock price moves by
a larger amount, or the option price is close to the strike at expiration [69].

Charm: Charm or Delta decay is the second derivative of the value of an option
with respect to initial price of the underlying asset and time. It measures the
instantaneous rate of change at which the Delta of a derivative asset changes
with its time to maturity. Hence, it is the derivative of Theta with respect to
underlying asset price:

Charm =
∂∆

∂t
=

∂2V

∂S0∂t
.

Charm can be one of the important Greeks when an investor want to make a
Delta hedging position over a week.

Color: Color is called Gamma decay and it measures the speed of change of
Gamma of an option over time to maturity. Color is used by the investors who
use Gamma hedging strategy. It helps the investors to maintain their Gamma
hedging positions and to see their hedging effectiveness:

color =
∂Γ

∂t
=

∂3V

∂S2
0∂t

.

This Greek provides information on the Gamma of an option as time passed. As
the time approaches to expiration, Color becomes more volatile.

Vomma (Volga): Vomma is the second partial derivative of the option value
with respect to volatility and measures the change in the Vega as volatility change.
It is used to determine how closely an option will track the market:

V omma =
∂ν

∂σ
=

∂2V

∂σ2
.

Vanna: Vega of an option is not change only within the change of volatility,
it also changes with the underlying asset price. Vanna measures the changes in
Vega of an option as the underlying asset price changes. This Greek is the second
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derivative of the option value with respect to volatility and initial price of the
underlying asset:

V anna =
∂2V

∂σ∂S0

=
∂ν

∂S0

.

Veta: The change in Vega of an option with the change in time is measured
with Veta. This Greek is the second derivative of the option value with respect
to volatility and time:

V eta =
∂2V

∂σ∂t
=

∂ν

∂t
.

Vera: The change in the Vega with respect to interest rate is measured with
Vera and this Greek is the first derivative of Vega of an option with respect to r:

V era =
∂V

∂σ∂r
=

∂ν

∂r
.
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CHAPTER 4

COMPUTATION OF THE GREEKS IN
BLACK-SCHOLES-MERTON MODEL USING

MALLIAVIN CALCULUS

4.1 Introduction

The option pricing model first presented to literature by Black and Scholes (1973)
and further extended by Merton (1973) is a landmark in financial application
and theory. Despite the further development of the theory of option pricing, for
a European option pricing the original Black-Scholes formula remains the most
successful and widely used application [31]. This model is particularly useful as
it relates to the distribution of returns for cash transverse of option prices and
successful in explaining option prices.

Modeling the underlying asset price with a geometric Brownian motion provides
a useful approximation to stock prices accepted by practitioners for short and
medium time to maturity. The Black-Scholes-Merton approach is still popular
among practitioners to approximate option prices and its basic idea to derive
option prices can be applied to more general option price models [24].

Although the Black-Scholes-Merton’s restrictive assumptions and the improve-
ments to the model available today, it remains an important reference to option
pricing and the cornerstone of the financial modeling [49].

In this chapter first, the Black-Sholes-Merton model assumptions and its basics
are introduced. Then, the Greeks are computed using Malliavin calculus (Inte-
gration by parts formula) in Black-Scholes-Merton environment. Moreover, the
results are compared with the numerical Greeks and the estimation results of
finite difference and pathwise derivative method.

Black-Scholes-Merton Assumptions

1. Markovian property: The dynamics of the underlying asset is characterized
by a random component whose increments are independent and identically
distributed. Indeed, this mean that the increase in the relative returns are
not effected by the previous return values.
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2. Frictionless Market: There are no transaction costs, no cost of adjustment,
no stamp tax, or exchange controls. This assumption implies that the in-
vestor can buy and sell in large quantities to adjust the Delta. The existence
of the transaction costs would necessarily change the argument for a hedg-
ing policy of an isolated operator, but it would not effect the fair value of
the underlying asset.

3. Constant Volatility: According to the model, the daily variations are drawn
from the same distribution and that the variance is known. It leads to a
constant correlation between different assets.

4. Geometric Brownian Motion: To derive an exact option pricing model, it is
assumed that stock prices follow a diffusion process or a geometric random
walk. It implies that the dynamics of underlying asset is geometric that the
expected variance of the logarithms of the returns remains constant [55].

5. Constant Drift: In trader’s side, the structure of the forwards slope is con-
stant.

6. The underlying asset price follows the log-normal random walk. This as-
sumption implies that a smaller probability of significant deviations from
the mean than is generally the case in practice. This is reflected in how fat
or thin the “tails” of the bell-shaped probability curve are and affects the
pricing of deep in-the-money and deep out-of-the-money options [68].

7. The risk-free interest rate r and the underlying asset volatility σ assumed to
be constant over the life of the option. However, in practice, the volatility
of the underlying asset and interest rates are not constant throughout the
life of the option.

8. The underlying asset pays no dividends during the life of the option.

9. The short selling is allowed and the assets are divisible.

10. There are no riskless arbitrage opportunities in the market. Arbitrage
means; making money out of nothing with no risk. There might be short
time periods which includes arbitrage opportunities in financial markets.
But, these opportunities tend to disappear quickly. It is because market
participants observes the mismatch asset price, then the demand for the
cheaper asset increase and the supply of the expensive asset decrease. This
process drives the price to the no-arbitrage level [13].

4.2 Description of the Black-Scholes-Merton Model

The Chicago Board of Options Exchange started the trading of options in ex-
changes, in early 1973. In the same year, Fischer Black and Myron Scholes
(1973) and Robert C. Merton (1973) derived the most widely used pricing model
for underlying asset. Therefore, it is known as the Black-Scholes-Merton or Black-
Scholes formula in finance.
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The Behavior of the Prices

Consider a continuous time economy with a trading range [0, T ], where T is the
time to maturity and T > 0. Assume that trading can be take place continuously
in [0, T ].

Let (Ω,F , P ) be a probability space, and (Wt)0≤t≤T be a a Brownian motion de-
fined on this space. Here, P is an objective probability measure. The information
in the economy is represented by a filtration (Ft)0≤t≤T = σ (Ws, 0 ≤ s ≤ t) which
is an icreasing family of σ-algebras such that FT = F . The filtration is assumed
that right continuous and F0 contains all the null sets [49].

Lamberton [45] emphasis that the model proposed by Black and Scholes to de-
scribe the price behavior is a continuous time model with a risky asset and a
riskless asset. Assume that the behavior of riskless asset S0

t is given by,

dS0
t = rS0

t dt, (4.1)

where r represent the risk-free rate and a non-negative constant number. Suppose
that S0

0 = 1. Hence, S0
t = ert for all t ≥ 0. A model for the stock price, the

basis of the classic Black-Scholes-Merton approach called geometric Brownian
motion. In this model, suppose that the underlying asset, is a stock and it pays
no dividends, is modeled with a stochastic process St, depending on time is a
solution of the following stochastic differential Equation 4.2,

dSt

St

= µdt+ σdWt, (4.2)

with an initial underlying asset price S0 ∈ R. Here, it is assumed that the drift
term µ is the expected return of the underlying asset, σ is the volatility of the
returns on this asset and W is a standard Brownian motion. In the investment
decision both parameters µ and σ are important factors and they are dependent
on each other. As the the expected return µ of the underlying asset increases, the
volatility σ is increases too. The model is satisfied on the interval [0, T ] where T
stands for the time to maturity of the option.

Proposition 4.1. The stochastic differential Equation (4.2) has a closed form
solution,

St = S0 exp

{(

µ− σ2

2

)

t+ σWt

}

, (4.3)

where S0 is the spot price observed at time t = 0 and the process St satisfies the
properties; continuity, independent increments and stationary increments [45].

Proof. Applying Itô lemma for the function f (x) = log (x) to Equation (4.2).
The first partial derivative of this function is f ′ (x) = 1

x
and the second partial
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derivative of this function is f ′′ (x) = − 1
x2 . Substituting the function and the

derivatives in to the Itô lemma the following is obtained,

log (St) = log (S0) +

∫ t

0

1

St

dSt −
1

2

∫ t

0

2

S2
t

d 〈S, S〉t . (4.4)

Substituting Equation (4.2) and d 〈S, S〉t = S2
t σ

2dt into Equation (4.4),

log

(

St

S0

)

=

∫ t

0

1

Ss

[µ Ssds+ σ Ss dWs] ds−
1

2

∫ t

0

1

S2
s

S2
s σ2 ds

=

∫ t

0

σdWs +

∫ t

0

(

µ− 1

2
σ2

)

ds

=

{

σWt +

(

µ− 1

2
σ2

)

t

}

. (4.5)

is obtained. By rearranging Equation (4.5) the stock price is obtained as follows,

St = S0 exp

{(

µ− σ2

2

)

t+ σWt

}

. (4.6)

4.3 Pricing European Type Options under Black-Scholes-Merton Model

In the Black-Scholes-Merton model it is assumed that the market is arbitrage
free. Hence, the pricing of an option has to be done under a risk neutral proba-
bility measure. Before giving a risk neutral probability measure, let us define the
equivalent probability measure.

Definition 4.1. Let (Ω,A, P ) be a probability space. Consider a probability
measure on Ω,A which is continuous with respect to the measure P if

∀A ∈ A , P (A) = 0 ⇒ Q (A) = 0.

The probability measures P and Q are equivalent if each of them are continuous
with respect to each other.

The following theorem is useful to show the measure Q is continuous or not with
respect to the measure P .

Theorem 4.2. A probability measure Q is continuous with respect to the measure
P if and only if there exist a random variable Z ∈ (Ω,A) which is non-negative
and satisfy,

∀A ∈ A, Q (A) =

∫

A

Z (ω) dP (ω),
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where the random variable Z is denoted by dQ/dP .

The Brownian motion under the risk neutral probability Q can be found with the
Girsanov theorem. This theorem is as follows,

Theorem 4.3. Consider a filtered probability space such as
(

Ω,F , (Ft)0≤t≤T , P
)

.
(Bt)0≤t≤T is a Ft-standard Brownian motion and (θt)0≤t≤T is a square integrable
adapted process. The process,

Lt = exp

(

−
∫ t

0

θsdBs −
1

2

∫ t

0

θ2sds

)

,

is a martingale. Then, the process Wt = Bt+
∫ t

0
θs ds is a Brownian motion under

the measure Q.

Using the new Brownian motion under the risk neutral probability Q obtained
from Theorem 4.3, the stochastic differential equation of the stock price can be
rearrange. By doing this, a new stochastic differential equation is obtained as
follows with initial price S0,

dSt = rStdt+ σStdWt.

In this case, the solution of this equation is under risk neutral probability measure
and it corresponds to,

St = S0 exp

{(

r − σ2

2

)

t+ σWt

}

. (4.7)

At time t the stock price at maturity (ST ) is not known. Therefore, the option
price is not known as well. Then, the price of the option Vt is nothing but the
discounted expected value of the option’s payoff function. By this feature, the
arbitrage free price of the option at any time t ∈ [0, T ] is defined as follows with
the following theorem.

Theorem 4.4. In the famous Black-Scholes-Merton model, any option defined by
a non-negative, FT measurable random variable H, where H is square integrable
(EQ [H2] < ∞) under the probability measure Q, which is equivalent to probability
measure P , price of the option at time t is given by,

Vt = EQ

[

e−r(T−t)H|Ft

]

. (4.8)
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4.4 Computation of the Greeks under Black-Scholes-Merton Model

In the Theorem 4.4, suppose that t = 0. Then, the price of this option at time
zero (t = 0) becomes [54],

V0 = EQ

[

e−rTH
]

. (4.9)

Here, we want to compute the derivative of the expectation at (4.9), with respect
to a parameter λ which is one of the parameter of the option payoff formula
H that is S0, r, σ or T . Assume that the payoff function H is written as a
given differentiable function of λ, which is represented by H = f (Fλ). Then the
derivative of H with respect to λ will be as below,

∂V0

∂λ
= e−rT

EQ

[

f ′ (Fλ)
∂Fλ

∂λ

]

. (4.10)

In particular for a European call option the function f becomes f (ST ) = (ST − 0)+,
where F = ST and λ is one of the parameters of the stock price which are, S0, r,
σ and T .

The methods, finite difference, pathwise derivative estimate and likelihood that
used in computation of Greeks are discussed in Chapter 1. In this chapter, the
Greeks are computed with using the Malliavin calculus. The necessary properties
used in computations are given in Chapter 2.

Proposition 4.5. Suppose that F , G are two random variables and F ∈ D
1,2.

Consider an H valued random variable u and DuF = 〈DF, u〉 6= 0 a.s. and also
Gu (DuF )−1 ∈ Dom (δ). Then, one can said that any continuously differentiable
function f with bounded derivative have the following;

EQ [f ′ (F )G]) = EQ [f (F )H (F,G)] , (4.11)

where

H (F,G) = δ
(

Gu (DuF )−1) .

Proof. By Remark 2.3 and Proposition 2.7,

Duf (F ) = 〈Df (F ) , u〉H
= 〈f ′ (F )DF, u〉H
= f ′ (F ) 〈DF, u〉H .
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Since it is assumed that 〈DF, u〉 6= 0, one can write;

f ′ (F ) = 〈Df (F ) , u〉H (〈DF, u〉H)
−1 . (4.12)

Now multiplying both side of Equation (4.12) with G,

f ′ (F )G = 〈Df (F ) , u〉H G (〈DF, u〉H)
−1 (4.13)

is reached. Taking the expectation of both sides under the risk neutral probability
measure,

EQ [f ′ (F )G] = EQ

[

〈Df (F ) , u〉H G (〈DF, u〉H)
−1]

= EQ

[〈

Df (F ) , Gu (〈DF, u〉H)
−1〉

H

]

= EQ

[〈

Df (F ) , Gu (DuF )−1〉

H

]

= EQ

[

f (F ) δ
(

Gu (DuF )−1)] .

Proposition 4.5 given above is called integration by parts formula. As it is seen in
this proposition the aim of integration by parts formula is to convert the derivative
of f ′ into its antiderivative f . Moreover, one can extend this proposition to
Lipschitz functions.

Corollary 4.6. If F,G ∈ D
1,2, f is smooth function, DvF is differentiable with

respect to v for all v ∈ [0, T ] and
∫ T

0

(

∂
∂v
DW

v F
)

dv 6= 0. Then,

EQ [f ′ (F )G] = EQ

[

f (F ) δ

(

2G ∂
∂s
DsF

(DTF )2 − (D0F )2

)]

. (4.14)

Proof. See the proof in [62] page : 22.

Lemma 4.7. Let St be given as in Equation (4.7). Then,

DtSτ = σSτDtWτ = σSτ1t<τ . (4.15)

Moreover for τ = T ,

DuST =

∫ T

0

DtSTdt = σTST . (4.16)
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Proof.

DtSτ = Dt

(

S0 exp

{(

µ− σ2

2

)

τ + σWτ

})

= S0 exp

{(

r − σ2

2

)

τ

}

Dt (exp {σWτ})

= S0 exp

{(

r − σ2

2

)

τ

}

exp {σWτ}Dt

∫ τ

0

σdWu

= σSτ1t<τ . (4.17)

To prove Equation (4.16) use Equation (4.15) with choosing τ = T . Then,

DtST = σST1t<T . (4.18)

Integrating both side of Equation (4.18) following is obtain,

∫ T

0

DtSTdt =

∫ T

0

σST1t<Tdt

= σSTT. (4.19)

Using Equation (4.19),

ST =
1

σT

∫ T

0

DtSTdt, (4.20)

is obtained. Note that, Equality (4.20) above will be used in the computations
of the Greeks.

4.4.1 Computation of the Greeks of European Type Options

Computation of Delta:

Proposition 4.8. Consider a European type option with payoff function f and
its underlying asset is following a geometric Brownian motion (Wt)t∈[0,T ] with
constant risk-free rate r, time to maturity T , volatility σ and initial price S0.
Let the payoff function f of the option is continuously differentiable and given as
f : R −→ R. Then the Delta is given by,

∆ =
e−rT

σS0T
EQ [f (ST )WT ] . (4.21)
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Proof. In Equation (4.7) if t = T the price of underlying asset at maturity ST is
obtained as follows,

ST = S0 exp

{(

r − σ2

2

)

T + σWT

}

.

Then the partial derivative of ST with respect to S0 is,

∂ST

∂S0

= exp

{(

µ− σ2

2

)

T + σWT

}

=
1

S0

S0 exp

{(

µ− σ2

2

)

T + σWT

}

=
1

S0

ST . (4.22)

The Delta of the option is,

∆ =
∂V0

∂S0

= EQ

[

e−rTf ′ (ST )
∂ST

∂S0

]

= EQ

[

e−rTf (ST )
1

S0

ST

]

=
e−rT

S0

E [f ′ (ST )ST ] . (4.23)

Apply Proposition 4.5 to Equation (4.23) for u = 1, F = ST and G = ST , then

∆ =
e−rT

S0

EQ

[

f ′ (ST )
1

σT

∫ T

0

DtSTdt

]

=
e−rT

σS0T
EQ

[∫ T

0

Dt (f (ST )) dt

]

=
e−rT

σS0T
EQ [f (ST ) δ (1)]

=
e−rT

σS0T
EQ [f (ST )WT ] ,

is reached. Here,
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H (F,G) = δ

(

ST

(∫ T

0

DtSTdt

)−1
)

= δ

(

1

σT

)

=
1

σT
δ (1) .

Using the feature,

δ (1) =

∫ T

0

dWt = WT ,

the following result is obtained,

H (F,G) =
WT

σT
.

Computation of Gamma:

Proposition 4.9. Consider a European type option with payoff function f and
its underlying asset is following a geometric Brownian motion (Wt)t∈[0,T ] with
constant risk-free rate r, time to maturity T , volatility σ and initial price S0.
Let the payoff function f of the option is continuously differentiable and given as
f : R −→ R. Then the Gamma of this option is,

Γ =
e−rT

σS2
0T

EQ

[

f (ST )

(

W 2
T

σT
− 1

σ
−WT

)]

. (4.24)

Proof. The Gamma is the second derivative of the option’s value with respect to
the underlying asset price. Hence, the calculations are slightly different from the
calculations for delta. Indeed, it requires to perform integration by parts twice.
Since f is continuously differentiable, the second partial derivative of the payoff
function with respect to initial price S0 is,
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Γ =
∂2

∂S2
0

V0 =
∂

∂S0

∆

=
∂

∂S0

(

e−rT

σS0T
EQ [f (ST )WT ]

)

= − e−rT

σS2
0T

EQ [f (ST )WT ] +
e−rT

σS2
0T

EQ [f ′ (ST )STWT ] .

Then from Equation (4.20) the following is obtained,

Γ = − e−rT

σS2
0T

EQ [f (ST )WT ] +
e−rT

σS2
0T

EQ

[

f ′ (ST )
1

σT

∫ T

0

DtSTdtWT

]

= − e−rT

σS2
0T

EQ [f (ST )WT ] +
e−rT

σS2
0T

EQ

[∫ T

0

Dt (f (ST ))
1

σT
WTdt

]

= − e−rT

σS2
0T

EQ [f (ST )WT ] +
e−rT

σS2
0T

EQ

[

f (ST )
1

σT
δ (WT )

]

. (4.25)

First compute the Skorohod integral ofWT . Using Proposition 2.18 it is computed
as,

δ (WT ) =

∫ T

0

WTdWt −
∫ T

0

DtWTdt

= WT

∫ T

0

dWt −
∫ T

0

dt

= W 2
T − T. (4.26)

Substituting Equation (4.26) into Equation (4.25) and using the linearity of the
expectation,

Γ =
e−rT

σS2
0T

EQ

[

f (ST )

(

W 2
T

σT
− 1

σ
−WT

)]

is reached.

Computation of Vega:

Proposition 4.10. Consider a European type option with payoff function f and
its underlying asset is following a geometric Brownian motion (Wt)t∈[0,T ] with
constant risk-free rate r, time to maturity T , volatility σ and initial price S0.
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Let the payoff function f of the option is continuously differentiable and given as
f : R −→ R. Then the Vega of this option’s value is,

ϑ = e−rT
EQ

[

f (ST )

(

W 2
T

σT
− 1

σ
−WT

)]

. (4.27)

Proof. From Equation (4.20) ST is,

ST = S0exp

{(

r − σ2

2

)

T + σWT

}

Then the partial derivative of ST with respect to volatility σ is

∂ST

∂σ
= S0 (WT − σT ) exp

{(

r − σ2

2

)

T + σWT

}

= ST (WT − σT ) . (4.28)

Vega of an option is the first order partial derivative of the option with respect
to volatility σ. Using the definition of Vega and Equation 4.28 Vega is obtained
as;

ϑ =
∂

∂σ
EQ

[

e−rTf (ST )
]

= EQ

[

e−rTf ′ (ST )
∂ST

∂σ

]

= e−rT
EQ [f ′STST (WT − σT )] . (4.29)

Substituting Equation (4.20) into Equation 4.29 the Vega equation becomes,

ϑ = e−rt
EQ

[

f ′ (ST )
1

σT

∫ T

0

DtSTdt (WT − σT )

]

=
e−rT

σT
EQ

[∫ T

0

f ′ (ST )DtST (WT − σT ) dt

]

=
e−rT

σT
EQ

[∫ T

0

Dt (f (ST )) (WT − σT ) dt

]

=
e−rT

σT
EQ [f (ST ) δ (WT − σT )] . (4.30)
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By Equation (2.13) in Definition 2.3, Equation (4.30) is obtained for ∀F ∈ D
1,2.

The remaining part is to calculate the Skorohod integral of (WT − σT ). Using
the linearity property of Skorohod integral one can obtain;

δ (WT − σT ) = δ (WT )− σTδ (1) , (4.31)

where

δ (WT ) = WT

∫ T

0

dWt −
∫ T

0

dt = W 2
T − T, (4.32)

and

δ (1) =

∫ T

0

dWt = WT . (4.33)

Substituting Equation (4.31) into Equation (4.30) the following is obtained,

ϑ =
e−rT

σT
EQ

[

f (ST )
(

W 2
T − T − σTWT

)]

(4.34)

Rearranging Equation (4.34) the result;

ϑ = e−rT
EQ

[

φ (ST )

(

W 2
T

σT
− 1

σ
−WT

)]

,

is obtained. Moreover, one can write the Vega of an option as a function of Γ,
initial stock price S0, volatility σ and maturity T as,

ϑ = ΓσS2
0T.

Computation of Rho:

Proposition 4.11. Consider a European type option with payoff function f and
its underlying asset is following a geometric Brownian motion (Wt)t∈[0,T ] with a
constant risk-free rate r, time to maturity T , volatility σ and initial price S0.
Let the payoff function f of the option is continuously differentiable and given as
f : R −→ R. Then the Rho of this option is,

ρ = Te−rT
EQ

[

f (ST )

(

WT

σT
− 1

)]

. (4.35)
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Proof. The value of option is given as,

V0 = e−rT
EQ [f (ST )] , (4.36)

where the stock price ST is given as,

ST = S0exp

{(

r − σ2

2

)

T + σWT

}

(4.37)

The first order partial derivative of ST with respect to r is,

∂ST

∂r
= TS0 exp

{(

r − σ2

2

)

T + σWT

}

= TST . (4.38)

Rho is the partial derivative of the value of the option at the given time with
respect to interest rate r. Thus,

ρ =
∂V0

∂r

= −Te−rT
EQ [f(ST ] + e−rT

EQ

[

∂

∂r
f (ST )

]

= −Te−rT
EQ [f(ST ] + e−rT

EQ

[

f ′ (ST )
∂

∂r
ST

]

. (4.39)

Substituting Equation (4.38) in to Equation (4.39)

ρ = −TV0 + e−rT
EQ [f ′ (ST ) (TST )]

= −TV0 + Te−rT
EQ [f ′ (ST )ST ]

= −Te−rT
EQ [f(ST ] +

T

σT
e−rT

EQ [f (ST )WT ]

= Te−rT
EQ

[

f (ST )

(

WT

σT
− 1

)]

(4.40)

is obtained. Moreover, by e−rT
EQ [f ′ (ST )ST ] which is computed in Delta com-

putation,

∆ =
e−rT

S0

EQ [f ′ (ST )ST ] (4.41)
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is obtained. From Equation (4.41),

e−rTEQ [f ′ (ST )ST ] = ∆S0 (4.42)

can be written. Substituting Equation (4.42) into Equation (4.40)

ρ = −TV0 + TS0∆,

is reached.

4.4.2 Computation of the Greeks of Asian Options

In this subsection, the Greeks of Asian options with fixed strike price are com-
puted. The payoff function of these options is given with a general formula as
follows,

Payoff = f

(

1

T

∫ T

0

Stdt

)

, (4.43)

where the function f is a deterministic function and the underlying asset {St, 0 ≤ t ≤ T}
is given with Equation (4.7). For example, the European call option payoff func-
tion with a strike price K is denoted by,

Payoff = f

(

1

T

∫ T

0

Stdt

)

= max

(

1

T

∫ T

0

Stdt−K, 0

)

.

Using the same feature in previous subsection 4.4 by Equation (4.9) the Asian
options value at time t = 0 can be defined as follows,

V0 = EQ

[

e−rTf

(

1

T

∫ T

0

Stdt

)]

. (4.44)

The Greeks of these type options can be computed, as Vanilla option’s Greeks,
from Equation (4.44).

Computation of Delta :

Proposition 4.12. Consider an Asian type option with payoff function f and
its underlying asset is following a geometric Brownian motion (Wt)t∈[0,T ] with a
constant risk-free rate r, time to maturity T , volatility σ and initial price S0.
Let the payoff function f of the option is continuously differentiable and given as
f : R −→ R. Then the Delta of Asian option is given by,
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∆ =
2e−rT

σ2S0

EQ

[

f

(

1

T

∫ T

0

Stdt

)

(

ST − S0
∫ T

0
Stdt

−
(

r − σ2

2

)

)]

. (4.45)

Proof. The Delta is the first partial derivative of the option price with respect
to initial price S0 at time t = 0. Therefore, the partial derivative, of an Asian
option value, Equation 4.44 with respect to S0 is

∆ =
∂

∂S0

EQ

[

e−rTf

(

1

T

∫ T

0

Stdt

)]

= e−rT
EQ

[

f ′
(

1

T

∫ T

0

Stdt

)

1

T

∫ T

0

∂St

∂S0

dt

]

. (4.46)

In the right hand side of the previous Equation (4.46) the derivative of St is
occurred. Therefore, let us compute the partial derivative of St with respect to
S0 independently. Doing this, we have

∂St

∂S0

=
∂

∂S0

S0 exp

((

r − σ2

2

)

t+ σWt

)

=
1

S0

S0 exp

((

r − σ2

2

)

t+ σWt

)

=
1

S0

St. (4.47)

Substituting Equation (4.47) into Equation 4.45 the following is obtained,

∆ = e−rT
EQ

[

f ′
(

1

T

∫ T

0

Stdt

)

1

T

∫ T

0

St

S0

dt

]

=
e−rT

S0

EQ

[

f ′
(

1

T

∫ T

0

Stdt

)

1

T

∫ T

0

Stdt

]

. (4.48)

Applying Proposition 4.5 with F = 1
T

∫ T

0
Sudu, G = 1

T

∫ T

0
Sudu and u = St the

following is obtained,
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∆ =
e−rt

S0

EQ



f

(

1

T

∫ T

0

Stdt

)

δ





1
T

∫ T

0
SτdτSt

∫ T

0
Du
(

1
T

∫ T

0
Sτdτ

)









=
e−rT

S0

EQ



f

(

1

T

∫ T

0

Stdt

)

δ





1
T

∫ T

0
SτdτSt

∫ T

0
Dt

(

1
T

∫ T

0
Sτdτ

)

Stdt







 , (4.49)

where,

Dt

(

1

T

∫ T

0

Sτdτ

)

=
σ

T

∫ T

t

Sτdτ . (4.50)

Then using Equation (4.50) and fundamental theorem of calculus it becomes

∫ T

0

Dt

(

1

T

∫ T

0

Sτdτ

)

Stdt =
σ

T

∫ T

0

(∫ T

t

Sτdτ

)

Stdt

=
σ

T

∫ T

0

Sτ

(∫ τ

0

Stdt

)

dτ

=
σ

T

∫ T

0

1

2
d

(∫ τ

0

Stdt

)2

=
σ

2T

(∫ T

0

Stdt

)2

. (4.51)

Substituting Equation 4.51 into Equation (4.49) the following is obtained,

∆ =
e−rT

S0

EQ






f

(

1

T

∫ T

0

Stdt

)

δ







∫ T

0
SτdτSt

σ
2

(

∫ T

0
Sτdτ

)2













=
e−rT

S0

EQ

[

f

(

1

T

∫ T

0

Stdt

)

2

σ
δ

(

St
∫ T

0
Sτdτ

)]

. (4.52)

In Equation (4.52) a Skorohod integral is show up. First compute the Skrohod
integral on the right hand side. By using Propositions 2.18 and 2.7, the compu-
tation is obtained as follows;
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δ

(

1
∫ T

0
Sτdτ

St

)

=
1

∫ T

0
Sτdτ

∫ T

0

StdWt −
∫ T

0

Dt

(

1
∫ T

0
Sτdτ

)

Stdt

=

∫ T

0
StdWt

∫ T

0
Sτdτ

−
∫ T

0

−σ
∫ T

t
Sτdτ

(

∫ T

0
Sτdτ

)2Stdt

=

∫ T

0
StdWt

∫ T

0
Sτdτ

+ σ

∫ T

0

∫ T

t
Sτdτ

(

∫ T

0
Sτdτ

)2Stdt. (4.53)

In Equation (4.53) the second part of right hand side can be computed indepen-
dently. The computation is as follows;

∫ T

0

∫ T

t
Sτdτ

(

∫ T

0
Sτdτ

)2Stdt =
1

∫ T

0
Sτdτ

∫ T

0

(∫ T

t

Sτdτ

)

Stdt

=







1
(

∫ T

0
Sτdτ

)2







1

2

(∫ T

0

Stdt

)2

=
1

2
. (4.54)

Then substituting Equation (4.54) into Equation (4.53) it becomes,

δ

(

1
∫ T

0
Sτdτ

St

)

=

∫ T

0
StdWt

∫ T

0
Sτdτ

+
σ

2
. (4.55)

Substituting Equation (4.55) into Equation (4.52) the following result is obtained
for the Delta,

∆ =
e−rT

S0

EQ

[

f

(

1

T

∫ T

0

Stdt

)

(

2
∫ T

0
StdWt

σ
∫ T

0
Stdt

+ 1

)]

. (4.56)

On the other hand, by Itô lemma one can write the following,

St − S0 =

∫ t

0

rSτdτ +

∫ t

0

σSτdWτ . (4.57)
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If both sides of Equation (4.57) divided by σ
∫ T

0
Sτdτ , the following is obtained,

St − S0

σ
∫ T

0
Sτdτ

=

∫ T

0
SτdWτ

∫ T

0
Sτdτ

+
r

σ
. (4.58)

By rearranging Equation (4.58),

∫ T

0
SτdWτ

∫ T

0
Sτdτ

=
ST − S0

σ
∫ T

0
Sτdτ

− r

σ
. (4.59)

is obtained. Now it is clearly seen that by substituting Equation (4.59) into
Equation (4.56), it becomes as follows,

∆ =
e−rT

S0

EQ

[

f

(

1

T

∫ T

0

Stdt

)

(

2 (ST − S0)

σ2
∫ T

0
Stdt

− 2r

σ2
+ 1

)]

=
2e−rT

σ2S0

EQ

[

f

(

1

T

∫ T

0

Stdt

)

(

ST − S0
∫ T

0
Stdt

−
(

r − σ2

2

)

)]

.

Computation of Gamma:

Proposition 4.13. Consider an Asian type option with payoff function f and
its underlying asset is following a geometric Brownian motion (Wt)t∈[0,T ] with a
constant risk-free rate r, time to maturity T , volatility σ and initial price S0.
Let the payoff function f of the option is continuously differentiable and given as

f : R −→ R. For the sake of simplicity let us define S̄T = 1
T

∫ T

0
Stdt. Then, the

Gamma of Asian option is given by,

Γ =
4e−rT

σ3S2
0

EQ

[

f
(

S̄T

)

(

(ST − S0)
2 − (ST − S0) rS̄T

σS̄T
2 − σS0

S̄T

)]

− 2r

σ2S0

∆. (4.60)

Proof. Since the function f is continuously differentiable, the Gamma can be
computed. Using the definition of Gamma the following, namely by differentiating
the value of the option two times,
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Γ =
∂2

∂S2
0

EQ

[

e−rTf
(

S̄T

)]

= e−rT
EQ

[

∂2

∂S2
0

f
(

S̄T

)

]

= e−rT
EQ

[

f ′′ (S̄T

) ∂2

∂S2
0

S̄T

]

=
e−rT

S2
0

EQ

[

f ′′ (S̄T

)

S̄T
2
]

=
e−rT

S2
0

EQ

[

f ′ (S̄T

)

δ (u)
]

, (4.61)

where us is specified by Proposition 4.5 with F = S̄T and G = S̄T
2
as,

us =
2S̄T

∂
∂s
DsS̄T

(

DT S̄T

)2 −
(

D0S̄T

)2 .

First compute ∂
∂s
DsS̄T , DT S̄T and DW

0 S̄T .

∂

∂s
DsS̄T =

∂

∂s
σ

∫ T

s

Sτdτ = −σ
∂

∂s

∫ s

T

Sτdτ = −σSs. (4.62)

Using the fact that DsS̄T = σ
∫ T

s
Stdt,

DT S̄T = σ

∫ T

T

Stdt = 0, (4.63)

D0S̄T = σ

∫ T

0

Stdt = σS̄T , (4.64)

are obtained. Then, substituting Equations (4.63) and (4.64) into Equation 4.61
the following is obtained,

Γ =
e−rT

S2
0

E

[

f
′ (

S̄T

)

δ

(

−2S̄2
TσS.

−
(

σS̄T

)2

)]

=
2e−rT

σS2
0

E
[

f ′ (S̄T

)

δ (S.)
]

. (4.65)

Note that the solution of ST is obtained from the Itô lemma. Using this lemma
one can compute δ (S.) as follows,
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dSt =

(

r − 1

2
σ2

)

Stdt+ σStdWt +
1

2
σ2Stdt

= rStdt+ σStdWt, (4.66)

writing Equation (4.66) in integration form,

∫ T

0

dSt =

∫ T

0

rStdt+

∫ T

0

σStdWt,

ST − S0 = r

∫ T

0

Stdt+ σ

∫ T

0

StdWt (4.67)

is obtained. By rearranging Equation (4.67),

∫ T

0

StdWt =
1

σ

(

ST − S0 − r

∫ T

0

Stdt

)

(4.68)

is reached. On the other hand, by the definition of Skorohod integral it can be
said,

δ (S.) =

∫ T

0

StdWt =
1

σ

(

ST − S0 − r

∫ T

0

Stdt

)

. (4.69)

Substituting Equation (4.69) into Equation (4.65) and using the linearity of ex-
pectation the following is obtained,

Γ =
2e−rT

σ2S2
0

(

EQ

[

f
′ (

S̄T

)

(ST − S0)
]

− EQ

[

f
′

(ST )
(

rS̄T

)

])

. (4.70)

Using the ∆ = erT

S0
EQ

[

f
′
(

S̄T

) (

rS̄T

)]

of Asian option one can say,

EQ

[

f
′ (

S̄T

) (

rS̄T

)

]

=
S0r

e−rT
∆. (4.71)

If the integration by parts formula applied to the first term of the right hand side
of Equation (4.70),

61



EQ

[

f
′ (

S̄T

)

(ST − S0)
]

= EQ

[

f
(

S̄T

)

δ

(

2 (ST − S0) (−σS.)

−
(

σS̄T

)2

)]

=
2

σ
E

[

Φ
(

S̄T

)

δ

(

(ST − S0)S.

S̄T
2

)]

(4.72)

is obtained. The Skorohod integral in this final expression is computed as follows;

δ

(

(ST − S0)S.

S̄T
2

)

=
ST − S0

S̄2
T

δ (S.)−
∫ T

0

StDt

(

ST − S0

S̄T
2

)

dt. (4.73)

Now computing the Malliavin derivative in the integral,

Dt

(

(ST − S0)S.

S̄T
2

)

=
S̄T

2
Dt (ST − S0)− (ST − S0)

(

2S̄T

)

DtS̄T

S̄T
4 .

Note that The Malliavin operator is linear. Using this fact,

DW
t (ST − S0) = DtST −DtS0 = σST1t<T − 0

and

Dt

(

ST − S0

S̄t
2

)

=
S̄T

2
(σST1t<T − 0)− 2 (ST − S0) S̄Tσ

∫ T

t
Sτdτ

S̄T
2

= σ
ST

S̄T
21t<T − 2σ

(ST − S0)

S̄T
3

∫ T

t

Sτdτ

is obtained. Plugging this result into the integral in Equation (4.73),

∫ T

0

StDt

(

ST−S0

S̄T
2

)

st = σ

∫ T

0

St

(

ST

S̄T
21t<T

)

dt− 2σ

∫ T

0

St

(

ST − S0

S̄t
3

∫ T

t

Sτdτ

)

dt

=
σST

S̄T

− σ (ST − S0)

S̄T

=
σS0

S̄T

(4.74)
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is obtained. Note that
∫ T

0
St

(

∫ T

t
Sτdτ

)

dt is computed in the previous section

while computing the ∆ of Asian option. Now one can conclude that,

EQ

[

f
′ (

S̄T

)

(ST − S0)
]

=
2

σ
EQ

[

f
(

S̄T

)

(

(ST − S0)

σS̄T
2

(

ST − S0 − rS̄T

)

− σS0

S̄T

)]

.

By substituting Equations (4.71) and (4.4.2) into Equation (4.70),

Γ =
2e−rT

σ2S2
0

(

2

σ
EQ

[

f
(

S̄T

)

(

(ST − S0)

S̄T
2

(

ST − S0 − rS̄T

)

− σS0

S̄T

)]

− rS0

e−rT
∆

)

=
4e−rT

σ3S2
0

EQ

[

f
(

S̄T

)

(

(ST − S0)
2 − (ST − S0) rS̄T

σS̄2
T

− σS0

S̄T

)]

− 2r

σ2S0

∆

is obtained.

Computation of Vega:

Proposition 4.14. Consider an Asian type option with payoff function f and
its underlying asset is following a geometric Brownian motion (Wt)t∈[0,T ] with a
constant risk-free rate r, time to maturity T , volatility σ and initial price S0.
Let the payoff function f of the option is continuously differentiable and given as
f : R −→ R. Then, the Vega of Asian option is given by,

ϑ = e−rT
EQ

[

f

(

1

T

∫ T

0

Stdt

)

×
(

∫ T

0

∫ T

0
StWtdtdWt

σ
∫ T

0
tStdt

+

∫ T

0
t2Stdt

∫ T

0
StWtdt

(

∫ T

0
tStdt

)2 −WT

)]

.(4.75)

Proof. Using the definition of Vega;

ϑ =
∂

∂σ
EQ

[

e−rTf

(

1

T

∫ T

0

Stdt

)]

= e−rT
EQ

[

f ′
(

1

T

∫ T

0

Stdt

)

1

T

∫ T

0

∂

∂σ
Stdt

]

(4.76)

can be found. Note that St is given above with Equation (4.3). Using that
equation the partial derivative of the stock price with respect to the volatility σ
at time t, can be computed as follows,
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∂

∂σ
St = (−σt+Wt)S0 exp

((

r − σ2

2

)

t+ σWt

)

= (Wt − σt)St. (4.77)

Substituting Equation (4.77) into Equation (4.76),

ϑ = e−rT
EQ

[

f
′

(

1

T

∫ T

0

Stdt

)(

1

T

∫ T

0

(Wt − σt)Stdt

)]

(4.78)

is obtained. Applying Proposition 4.5 to Equation (4.78) with F = 1
T

∫ T

0
Stdt,

G = 1
T

∫ T

0
(Wt − σt)Stdt and u = 1, the following is obtained,

ϑ = e−rT
EQ

[

f

(

1

T

∫ T

0

Stdt

)

H

(

1

T

∫ T

0

Stdt,
1

T

∫ T

0

(Wt − σt)Stdt

)]

, (4.79)

where,

H

(

1

T

∫ T

0

Stdt,
1

T

∫ T

0

(Wt − σt)Stdt

)

= δ





1
T

∫ T

0
(Wt − σt)Stdt

∫ T

0
Dt

(

1
T

∫ T

0
Sτdτ

)

dt



 . (4.80)

Now compute the Malliavin derivative of 1
T

∫ T

0
Sτdtτ . It can be compute with the

help of Lemma 4.7 (using Equation (4.15)) as follows,

Dt

(

1

T

∫ T

0

Sτdtτ

)

=
σ

T

∫ T

t

Sτdτ . (4.81)

Then, using Equation (4.81) the following can be written as;

∫ T

0

Dt

(

1

T

∫ T

0

Sτdtτ

)

dt =

∫ T

0

(

σ

T

∫ T

t

Sτdτ

)

dt

=
σ

T

∫ T

0

Sτ

(∫ τ

0

dt

)

dτ

=
σ

T

∫ T

0

τSτdτ . (4.82)
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By substituting Equation 4.82 into Equation 4.80 and using the linearity of Sko-
rohod integral,

H

(

1

T

∫ T

0

Stdt,
1

T

∫ T

0

(Wt − σt)Stdt

)

= δ





1
T

(

∫ T

0
StWtdt− σ

∫ T

0
tStdt

)

σ
T

∫ T

0
tStdt





= δ

(

∫ T

0
StWtdt

σ
∫ T

0
tStdt

− 1

)

(4.83)

is obtained. Now plugging the function H, which is computed as in Equation
(4.83), into Equation (4.79)

ϑ = e−rT
EQ

[

f

(

1

T

∫ T

0

Stdt

)

δ

(

∫ T

0
StWtdt

σ
∫ T

0
tStdt

− 1

)]

(4.84)

is obtained. By the linearity of Skorohod integral,

δ

(

∫ T

0
StWtdt

σ
∫ T

0
tStdt

− 1

)

= δ

(

∫ T

0
StWtdt

σ
∫ T

0
tStdt

)

− δ (1) (4.85)

can be written. Then, applying Proposition 2.18 to Equation (4.85) with F =
1

σ
∫ T

0
tStdt

and u =
∫ T

0
StWtdt and also using Equation (4.33) one can obtain the

following,

δ

(

∫ T

0
StWtdt

σ
∫ T

0
tStdt

)

− δ (1) =

∫ T

0

(

∫ T

0
StWtdt

)

dWτ

σ
∫ T

0
tStdt

−
∫ T

0

(

DW
t

(

1

σ
∫ T

0
τSτdτ

)

∫ T

0

StWtdt

)

dt

− WT . (4.86)

Then, by the help of Proposition 2.7 with choosing Φ (x) = 1
x
and F = σ

∫ T

0
τSτdτ ,

Dt

(

1

σ
∫ T

0
τSτdτ

)

= − 1
(

σ
∫ T

0
τSτdτ

)2Dt

(

σ

∫ T

0

τSτdτ

)

(4.87)

is reached. By substituting Equation (4.87) into previous Equation (4.86),
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δ

(

∫ T

0
StWtdt

σ
∫ T

0
tStdt

)

− δ (1) =

∫ T

0

(

∫ T

0
StWtdt

)

dWτ

σ
∫ T

0
tStdt

+

∫ T

0
DW

t

(

σ
∫ T

0
τSτdτ

)(

∫ T

0
StWtdt

)

dt
(

σ
∫ T

0
tStdt

)2 −WT

=

∫ T

0

(

∫ T

0
StWtdt

)

dWτ

σ
∫ T

0
tStdt

+
σ2
∫ T

0
t2Stdt

∫ T

0
StWtdt

σ2
(

∫ T

0
tStdt

)2

− WT

=

∫ T

0

(

∫ T

0
StWtdt

)

dWτ

σ
∫ T

0
tStdt

+

∫ T

0
t2Stdt

∫ T

0
StWtdt

(

∫ T

0
tStdt

)2

− WT (4.88)

is obtained. Here, it is better to remember the following equation,

Dt

(

σ

∫ T

0

τSτdτ

)

= σ2

∫ T

0

τSτ

∫ τ

0

dtdτ = σ2

∫ T

0

τ 2Sτdτ .

Therefore, the Vega of an Asian option is obtained as following,

ϑ = e−rT
EQ

[

f

(

1

T

∫ T

0

Stdt

)

×
(

∫ T

0

∫ T

0
StWtdtdWt

σ
∫ T

0
tStdt

+

∫ T

0
t2Stdt

∫ T

0
StWtdt

(

∫ T

0
tStdt

)2 −WT

)]

.

4.5 Numerical Investigation and Efficiency

In Section 4.4, the Greeks for European type options are computed with Malli-
avin calculus method, in particular integration by parts formula. In this section,
the Greeks obtained in the previous section are estimated with Monte Carlo
Simulation. Moreover, the estimation results of Malliavin Greeks and the ana-
lytical value of the Greeks of a European call option are compared. Then, the
estimation results are compared with the other techniques, finite difference and
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pathwise methods, we described in Chapter 1. Therefore, in this section, first the
analytical values of the Greeks of a European call option are computed from close
from solution. Then, without no computation details, for finite difference method
and pathwise method Monte Carlo method applied to estimate the Greeks. And
finally, the estimation results of the Greeks are compared on figures.

For the estimation of the Greeks [62] (a case study together with codes) is referred
to reader.

4.5.1 Analytical Value of the Greeks

Consider a European call option which has a payoff function defined as

φ (ST ) = max (ST −K, 0) = (ST −K)+ .

The analytic solution for the Value V0 of Black-Sholes-Merton equation is given
as as a function of maturity T , underlying asset price S0, strike price K, risk free
interest rate r, and volatility σ [62] as follows,

V0 = S0N (d1)− e−rTKN (d2) , (4.89)

whereN (x) =
∫ x

−∞ exp (−z2/2)
√
2πdz stands for the cumulative density function

of a normalized Gaussian distribution and ;

d1 =
log (S0/K) +

(

r + σ2

2

)

T

σ
√
T

,

d2 =
log (S0/K) +

(

r − σ2

2

)

T

σ
√
T

= d1 − σ
√
T

Analytical Delta:

Proposition 4.15. Suppose that the the price is given as in Equation (4.89).
Then analytical delta of a European call option is,

∆ = N (d1) . (4.90)

Proof. Delta is the first derivative of discounted asset price with respect to S0.
Now differentiating the price function with respect to initial underlying asset
price S0 Delta found as follows;
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∆ =
∂

∂S0

V0

=
∂

∂S0

(

S0N (d1)− e−rTKN (d2)
)

=
∂

∂S0

(

S0N (d1)− e−rTKN
(

d1 − σ
√
T
))

= N (d1) + S0
∂

∂S0

N (d1)−
∂

∂S0

(

e−rTKN
(

d1 − σ
√
T
))

= N (d1) + S0N
′

(d1)
∂

∂S0

d1 − e−rTKN ′
(

d1 − σ
√
T
) ∂

∂S0

(

d1 − σ
√
T
)

.

It is sure that N ′ is a density of a normalized Gaussian processes. Therefore,

N ′
(

d1 − σ
√
T
)

=
1

2π
exp





−
(

d21 − 2d1σ
√
T + σ2T

)

2





=
1

2π
exp

(−d21
2

)

exp

(

d1σ
√
T − σ2T

2

)

= N ′

(d1) exp





log (S0/K) +
(

r + σ2

2

)

T

σ
√
T

σ
√
T − σ2T

2





=
erTS

K
N ′

(d1) .

Thus, the analytical delta becomes,

∆ = N (d1) + SN ′

(d1)− e−rTK

(

erTS

K
N ′

(d1)

)

∂

∂S0

(

d1 − σ
√
T
)

= N (d1) + SN ′ ∂

∂S0

(

d1 − d1 + σ
√
T
)

= N (d1) .

Analytical Gamma:

Proposition 4.16. Suppose that the the price is given as in Equation (4.89).
Then analytical gamma of a European call option is,

Γ =
1

S0σ
√
T
N ′

(d1) . (4.91)
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Proof. Using the definition of Gamma we and Delta one can find,

Γ =
∂2

∂S2
0

V0

=
∂

∂S0

∆

=
∂

∂S0

N (d1)

= N ′

(d1)
∂

∂S0

(d1)

= N ′

(d1)
∂

∂S0





log (S0/K) +
(

r + σ2

2

)

T

σ
√
T





=
1

S0σ
√
T
N ′

(d1) .

Analytical Vega:

Proposition 4.17. Suppose that the the price is given as in Equation (4.89).
Then analytical Vega of a European call option is,

ϑ = S0N
′

(d1)
√
T . (4.92)

Proof. By the definition of Vega, one can find it as follows;

ϑ =
∂

∂σ
V0

=
∂

∂σ

(

S0N (d1)− e−rTKN (d2)
)

= S0N
′

(d1)
∂

∂σ
(d1)−

∂

∂σ

(

e−rTKN
(

d1 − σ
√
T
))

= S0N
′

(d1)
∂

∂σ
(d1)− e−rTN ′

(

d1 − σ
√
T
) ∂

∂σ

(

d1 − σ
√
T
)

= S0N
′

(d1)
∂

∂σ
(d1)− e−rT S0e

rT

K
N ′

(d1)

(

∂

∂σ
d1 −

∂

∂σ
σ
√
T

)

= S0N
′

(d1)
√
T .
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Analytical Rho:

Proposition 4.18. Suppose that the the price is given as in Equation (4.89).
Then analytical Rho of a European call option is,

ρ = KTN (d2) . (4.93)

Proof. By the definition of Rho, one can find it as follows;

ρ =
∂

∂r
V0

=
∂

∂r
∂σ
(

S0N (d1)− e−rTKN (d2)
)

= S0N
′

(d1)
∂

∂r
d1 −

∂

∂r

(

e−rTKN
(

d1 − σ
√
T
))

= S0N
′

(d1)
∂

∂r
d1 +KTe−rTN (d2)− e−rTN ′

(

d1 − σ
√
T
) ∂

∂r

(

d1 − σ
√
T
)

= KTe−rTN (d2) .

4.5.2 Comparison of Malliavin and Analytical Greeks

In computations the parameters are chosen as; S0 = 100, r = 0.05, σ = 0.1,
T = 1, K = 105 and NumSimulations = 20000 to simulate the Greeks and plot
to show how quickly the Malliavin estimators converges to the analytical values
as the number of simulations increases. The figures that obtained for the Greeks
are given as follows.

Figure 4.1 represents the Malliavin and numerical Delta as a function of sim-
ulation number. The purpose of this figure is to demonstrate the convergence
behavior of the Delta of a European call option computed with Malliavin cal-
culus to the numerical Delta of this option. In this figure, the result indicates
the Delta estimated with Malliavin calculus method converge to the numerical
Delta. Also, it is worth to emphasized that as the number of simulation increases,
the estimated delta with Mallavin calculus gives better result. According to this
result, the Malliavin calculus provides an efficient method to estimate the Delta
of a European type option.

One of the key advantages of Malliavin calculus method in estimation of Delta is
the accuricy of the estimation is increasing as the number of simulation increase.
Thus, Figure 4.1 is helpful because it shows, how many times the simulation has
to be done to obtain a close estimation to real Delta.
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Figure 4.1: Monte-Carlo Estimation of Delta for European Call Option Using
Malliavin Method

Figure 4.2 represents the Malliavin and numerical Gamma as a function of sim-
ulation number. The purpose of this figure is to demonstrate the convergence
behavior of the Gamma of a European call option computed with Malliavin cal-
culus to the numerical Gamma of this option. The result indicates the Malliavin
Gamma is converge to the numerical Gamma. Also, it is worth to emphasized
that as the number of simulation increases Malliavin Gamma gives better result.
According to this result, the Malliavin calculus provide us an efficient method to
estimate the Delta of a European option.

As in the Delta of the option, the key feature in estimation of Gamma with
Malliavin calculus method is the accuricy of the estimation is increasing as the
number of simulation increase. Thus, Figure 4.2 is helpful to analyze the number
of necessary simulation because it shows, how many simulation has to be done to
obtain a close estimation to real Gamma.
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Figure 4.2: Monte-Carlo estimation of Gamma of European Call Option Using
Malliavin Method

Figure 4.3 represent the Malliavin and numerical Vega as a function of simulation
number. The purpose of this figure is to demonstrate the convergence behavior
of the Vega of a European call option computed with Malliavin calculus to the
numerical Vega of this option. In this figure, one can see from the result that the
Vega estimated with Malliavin calculus method converge to the numerical Vega.

The benefit of Figure 4.3 is one can observe the necessary simulation number
to have an accurate estimation result with Malliavin Calculus method. This is
because as the number of simulation increases Malliavin Vega gives better result.
According to this result, the Malliavin calculus provide us an efficient method
to estimate the Vega of a European call option. Hence, Figure 4.3 is helpful to
researchers because it shows, how many times the simulation has to be done to
obtain a good estimation to real Vega.
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Figure 4.3: Monte-Carlo Estimation of Vega of European Call Option Using
Malliavin Method

Figure 4.4 represent the Malliavin and numerical Rho as a function of simulation
number. The purpose of this figure is to demonstrate the convergence behavior
of the Rho of a European call option computed with Malliavin calculus to the
numerical Rho of this option. The result indicates the Malliavin Rho is converge
to the numerical Rho. Also, it is worth to emphasized that as the number of
simulation increases Malliavin Rho gives better result. According to this result,
the Malliavin calculus provide us an efficient method to estimate the Rho of a
European option.

As in previous figures, Figure 4.4 shows the convergence speed of the Malliavin
Rho to real Rho of the option. From this figure, one can observe the necessary
simulation number to have an accurate estimation result with Malliavin Calculus
method to have a nice estimation result for Rho of a European call option.
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Figure 4.4: Monte-Carlo Estimation of Rho of European Call Option Using Malli-
avin Method

4.5.3 Comparison of the Estimation Methods

The convergence behavior of Malliavin calculus is examined in Subsection 4.5.2.
From those figures, about convergent property, one can see this method is a
good estimator. But, there is no clue yet which method is better. Thus, in
this section, a numerical experiment presented in order to compare the Malliavin
approach to the finite difference and pathwise method. The Likelihood method
is avoided because it coincides to Malliavin method for the Greeks of a European
call option. The comparisons are illustrated by the following figures for each
Greek independently.

Comparison of Delta Estimators:

Now here, the formulas obtained for the Delta in this chapter and given in motiva-
tion for a European call option discussed. The fact that there are three different
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formula for Delta may seem confusing at first. However, these three formulas
of Delta are different and thus the simulation results of them will lead different
estimations. These features can be observed in Figure 4.5 where the outcome
showed by the Monte-Carlo simulations using these estimators. In this figure the
Delta estimations results with analytical Delta compared. For this figure; stock
price S0 = 100, strike price K = 100, interest rate r = 0.05, volatility σ = 0.1,
and number of simulations 1000 are chosen.

In Figure 4.5 the colors red, green and blue represents finite difference estimation,
pathwise estimation and Malliavin estimation methods results respectively. As it
is seen in this figure, the finite difference method is the worst estimator of these
three method because it is not converging to analytical value of Delta as good as
others. The other two methods, pathwise and Malliavin estimation methods are
converge to analytical value almost with same speed.

A crucial observation in this case is that, the pathwise method is computationally
less expensive then other methods if it is possible to break it down to evaluating
a payoff function. However, to this end an exact solution of the underlying
asset price processes is needed. Otherwise, the dynamics of the sensitivity under
consideration have to simulated and this will make the method computationally
expensive. Finally, the Malliavin calculus method can be applied to any kind of
payoff functions and no need to know the probability density as in the likelihood
method.

Figure 4.5: Comparison of Finite Difference, Pathwise and Malliavin Methods
with Analytic Delta

In Figure 4.6 the values of Deltas obtained by Monte Carlo simulation with the
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choice of strike price K = 55, initial stock price S0 = 57, risk free interest rate
r = 0.05, volatility σ = 0.1 and time to maturity T = 1. The corresponding
95%confidence intervals to the number of replications used by the Monte Carlo
simulations are shown on the vertical line segments. Such a graph illustrates the
convergence of the estimated Deltas to the real Delta of a European call option
represented by the horizontal line. This figure supported the comments on the
Figure 4.5.

As it is seen by the Figure 4.6 the confidence interval of Malliavin Delta is less
then the other and the estimated values are more consistent. Hence, one can say
this method gives more accurate result then other two methods.
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Figure 4.6: Confidence Intervals of Delta Estimators

Comparison of Gamma Estimators:

In Figure 4.7 the Gamma estimations results with analytical Gamma of European
call option compared. This figure shows three simulated European call option
Gamma. Since there are three different formula for the Gamma of a European
option in hand, three different estimation result is obtained from the simulation.
To obtain this figure; stock price S0 = 100, strike price K = 100, interest rate
r = 0.05, volatility σ = 0.1, and number of simulations 1000 are chosen.

In Figure 4.7 the colors red, green and blue represents finite difference estima-
tion, pathwise estimation and Malliavin estimation methods results respectively.
The estimation results shows that, since pathwise method is not applicable to
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second order Greeks, Malliavin calculus method versus finite different method.
Therefore, Malliavin calculus method is the best among the three method in
computation of the Gamma of a European call option.

Figure 4.7: Comparison of Finite Difference, Pathwise and Malliavin Methods
with Analytic Gamma

In Figure 4.8 the values of Gammas obtained by Monte Carlo simulation with
the choice of strike price K = 55, initial stock price S0 = 57, risk free interest
rate r = 0.05, volatility σ = 0.1 and time to maturity T = 1. The corresponding
95%confidence intervals to the number of replications used by the Monte Carlo
simulations are shown on the vertical line segments. Such a graph illustrates the
convergence of the estimated Gammas to the real Gamma of a European call
option represented by the horizontal line. Since the pathwise metthod gives no
result the confidence interval of this method is skipped. The Figure supported
the comments on the Figure 4.7.

By looking Figure 4.8 one can say, Malliavin method is more consistent than
finite difference method because it has a less confidence interval.
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Figure 4.8: Confidence Intervals of Gamma Estimators

Comparison of Vega Estimators:

In Figure 4.9 the Vega estimations results with analytical Vega of a European
call option compared. In simulations the paramaters are chosen as, stock price
S0 = 100, strike price K = 100, interest rate r = 0.05, volatility σ = 0.1, and
number of simulations 1000.

In Figure 4.9, the colors red, green and blue represents finite difference estimation,
pathwise estimation and Malliavin estimation methods results respectively. In
this figure the pathwise method gives better result than both finite difference and
Malliavin method. Thus, one can come up with the idea that for the Vega of
a European call option finite difference estimation method is the worst of these
three method. It is also clearly seen the estimation of Vega with Malliavin calculus
method is getting better as the number of simulation increasing. Since Malliavin
calculus method can be used for both both continuous and discontinuous payoffs,
it can be claimed that Mallavin calculus method is a good method in computation
of Vega of a European call option.
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Figure 4.9: Comparison of Finite Difference, Pathwise and Malliavin Methods
with Analytic Vega

In Figure 4.10 the values of Vegas obtained by Monte Carlo simulation with the
choice of strike price K = 55, initial stock price S0 = 57, risk free interest rate
r = 0.05, volatility σ = 0.1 and time to maturity T = 1. The corresponding
95% confidence intervals to the number of replications used by the Monte Carlo
simulations are shown on the vertical line segments. Such a graph illustrates the
convergence of the estimated Vegas to the real Vega of a European call option
represented by the horizontal line. The Figure supported the comments on the
Figure 4.9. The Estimation result of Malliavin Vega’s confidence intervals are
smaller than other two method. Hence the result of this method is more consistent
than other methods.
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Figure 4.10: Confidence Intervals of Vega Estimators

4.6 Summary

In this section first the Black-Scholes-Merton model [5] introduced to readers.
Then, the Greeks of European call options are computed with Malliavin calculus
method. In addition to the computation, the results are compared with other
methods—finite difference, pathwise, likelihood methods—given in Chapter 1.
These four method of the estimation of Greeks have their own advantages and
disadvantages in practical applications. Although it seems plausible to decide
on the choice of pathwise method for European options and estimate the Greeks
with it, however, the key point on the choice lies in the independence property of
Malliavin weight. Since, the Malliavin weight and the payoff function of option
are independent, Malliavin calculus method can be applied to both continuous
and discontinuous type of payoff. Further details on Malliavin calculus as well as
computation of Greeks, see [16], [51], [54], [62].
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CHAPTER 5

COMPUTATION OF THE DELTA IN STOCHASTIC
VOLATILITY MODELS USING MALLIAVIN

CALCULUS

5.1 Introduction

The most widely used model, for stock prices in financial markets is Black-Scholes-
Merton model. This model based on the assumption of geometric Brownian
motion dynamics and constant volatility. However, while computing the implied
volatilities for the given model, it is observed that the implied volatilities are
not constant for different strikes and maturities of the options and indeed they
tend to be shaped like a smile. Over the past three decades, researchers seek to
find some extensions of the Black-Scholes-Merton model which will explain this
empirical feature [57].

Different approaches applied to obtain new models for stock returns. One of the
most popular approach is to consider the volatility as a stochastic process. These
new models are called stochastic volatility models and they have fit the implied
skew in the market [8]. However, for some of the models the closed form solution
for the price process can not be obtained. Hence, for these cases the numerical
methods are needed to handle this problem.

Merton [50], suggested that the volatility can be explained by a deterministic
function of time. This approach explains the different implied volatility levels
for different times of maturity, but it still does not explain the smile shape for
different strike prices. Derman and Kani [15], Dupire [19] and Rubinstein
[60] offer the idea that time and volatility coefficients are both dependent. This
deterministic volatility approach on the model yields a complete market model.
This model fits the local volatiliy surface, but it is not enough to explain the
volatility smile which does not vanish as time passes and also it can not be used
to price exotic options.

Then researchers came up the idea that a stochastic process can be used to
model the volatility structure. The study of Heston [31], Hull and White [34] and
Stein & Stein [67] lead to the development of stochastic volatility models. The
models they have introduced are multi-factor models.
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Gatheral [27] implies that the stochastic volatility models are useful because
they explain the reason of different strike prices and maturities have different
Black-Scholes-Merton implied volatilities, called, “the volatility smile”, in a self-
consistent way. Moreover, unlike the other models, stochastic volatility models
can fit the smile. Stochastic volatility models assume realistic dynamics for the
underlying asset.

Once a closed form solution is obtained, it is easy to compute the Greeks. How-
ever, because of complex payoffs it might not be possible to obtain a closed
form solution for all type of options (see [59]). Therefore, most researchers have
demonstrated that the model they proposed are efficient for pricing purposes, but
only a few paper, has interested in the subject of computing sensitivities. The
studies Benhamou (2000) [4] and Mhlanga (2011) [51] are pioneering studies on
computation of Greeks under the stochastic volatility models.

This chapter consists of two main parts. In the first part we reviewed the general
ideas about stochastic volatility models will be reviewed and some of the special
stochastic volatility models will be introduced. In the second part firstly the
Delta for a general stochastic volatility model is computed and then the Delta of
Stein & Stein and Heston models are obtained by using the general Delta formula.

5.2 Stochastic Volatility Models

The volatility is not traded in the market. Thus, it can not be observed directly
from the market. However, from empirical studies of the stock price, the stock
price return dS/S can be derived, and from this return the volatility can be
estimated. This observation shows that, the volatility seems to be low for several
days, then high for a period and so on. Therefore, one can say the process behaves
like a mean-reverting process.

The pioneering studies about the stochastic volatility models are the works of Hull
and White and Scott (see [33], [64]). These studies are too complicated and at
that time there was no analytical solution for them. Later on as studies goes on
in this research area, a variety of studies have been done and different models are
developed. The first study that provides semi analytical solution was first done
by Stein & Stein [67]. However, there are two crucial drawbacks of this model; it
is not flexible enough to represent observable market prices and allows volatility
become negative which is an undesirable matter. In 1993, Heston [31] proposed
the first stochastic volatility model that allows practitioners to have reasonable
amount of calibration freedom. Moreover, this well-known model permits semi
analytical solutions (see [59]). Later on, various other stochastic volatility models
have been developed by researchers [36]. In this section some of the stochastic
volatility models are introduced to the readers.
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5.2.1 Generalized Stochastic Volatility Model

There are several stochastic volatility models which are widely used in financial
market modeling. In this thesis, a general stochastic volatility model is considered
for computation purposes as in the following definition.

Definition 5.1. Suppose that
(

Ω,F ,Ft∈[0,T ], Q
)

is the filtered probability space
where (Ft)t∈[0,T ] is the filtration generated by two independent Brownian mo-

tions (Wt)t∈[0,T ] and (W 1
t )t∈[0,T ]. The stock prices are denoted by (St)t∈[0,T ] as in

the celebrated Black-Scholes-Merton model. Then, the dynamics of the general
stochastic volatility model under the risk-neutral measure is,

dSt

St

= rtdt+ σ (t, Vt) dWt, (5.1)

dVt = u (t, Vt) dt+ v (t, Vt) dZt, (5.2)

where

dZt =
[

ρ dWt +
√

1− ρ2 dW 1
t

]

,

〈dWt, dZt〉 = ρ dt,

for t ∈ [0, T ] and initial values S0 and V0. In this stochastic differential equation
system, u (t, Vt) and v (t, Vt) are deterministic functions in C2 ([0, T ]× R), which
satisfy certain conditions to have unique solution. Moreover,

• ρ stands for the correlation between standard Brownian motions (Wt)t∈[0,T ]

and (Zt)t∈[0,T ].

• rt is the risk free interest rate,

• σ (t, Vt) is the volatility.

Since u (t, Vt) and v (t, Vt) are not specified in the stochastic process system given
in the Definition 5.1, the system is a general model and the specific stochastic
models can be drawn from this model by determining the functions σ, u and v.

The two Brownian motions (Wt)t∈[0,T ] and (Zt)t∈[0,T ] are independent if ρ = 0. If
ρ = 1 the Brownian motions are perfectly correlated. But these are the particular
cases. In many cases, ρ is a positive or negative number within range −1 ≤ ρ ≤ 1.

In the Black-Scholes-Merton model, there is only one source of randomness, which
is the change in stock price but in stochastic volatility models, one more source
of randomness is presented, which is the change in volatility.

5.2.2 Hull and White Model

Hull and White 1987 [33] considered a stock with a price St which has an in-
stantaneous variance Vt = σ2, which assumed to have the following stochastic
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processes for a security price and its volatility of return,

dSt

St

= φ (St, σ, t) dt+
√

VtdWt, (5.3)

dVt = µ (σ, t)Vtdt+ ξ (σ, t)VtdZt, (5.4)

(5.5)

where

dZt =
[

ρdWt +
√

1− ρ2dW 1
t

]

,

〈dWt, dZt〉 = ρdt,

for t ∈ [0, T ]. The Brownian motion processes W and Z have a correlation and
this correlation is denoted by ρ. In terms of the general SV model given by
Equations (5.1) and (5.2) we have

σ (t, Vt) =
√

Vt, (5.6)

u (t, Vt) = µ (σ, t)Vt, (5.7)

v (t, Vt) = ξ (σ, t)Vt. (5.8)

5.2.3 Stein and Stein Model

Stein & Stein’s (1991) [67] study is one of the first article which provides semi
analytical solutions. This model is capable of handling a nonzero mean reversion
parameter δ, given the empirical evidence that volatility is strongly mean revert-
ing. However, their model does not provide enough flexibility to represent the
available market prices. The other important fact about this model is it allows
the volatility to become negative which is an undesirable feature. The stochastic
differential equation system of this model is as follows,

dSt

St

= rdt+ Vt dWt, (5.9)

dVt = γ (Θ− Vt) dt+ κ dZt, (5.10)

where

dZt =
[

ρ dWt +
√

1− ρ2 dW 1
t

]

,

〈dWt, dZt〉 = ρ dt,

for t ∈ [0, T ].

In this system, S and V denote the stock price and volatility process with initial
values S0 and V0 respectively. Further, r, γ, Θ and κ are fixed constants and
Wt and W 1

t are two independent Brownian motion processes. This model can be
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obtained from the general stochastic volatility model given by Equations (5.1)
and (5.2) with the choices,

σ (t, Vt) = Vt, (5.11)

u (t, Vt) = κ (Θ− Vt) , (5.12)

v (t, Vt) = κ. (5.13)

This model is an arithmetic Ornstein-Uhlenbeck process, with a tendency to
revert back to a long run average of Θ [67].

5.2.4 Heston Model

The Black-Scholes Merton model (1973) [5] shows that the average return for cash
does not affect the prices of options at all, while the variance has a significant
effect [31]. The Heston model [31] yield a closed form solution and this model is
better to explain the correlation between the asset price and the asset volatility.
Heston [31] suggested that a diffusion process for the stock price is same as
the Black-Scholes-Merton, except that the volatility is allowed to be change in
time. Thus, this model is a generalization of the Black-Scholes-Merton model
for time-varying volatility. Moreover, the Heston model is a superior choice to
the Black-Scholes-Merton model due to the fact that it has a stochastic volatility
dynamics.

The Heston model is popular among academicians and practitioners today. It is
attractive, because it provides a natural extension beyond geometric Brownian
motion as a description of asset price dynamics, modeling volatility of underlying
asset return as a positive, mean reverting, stochastic process and the powerful
duality of its tractability and robustness relative to other stochastic volatility
models.

This model is proposed as a pair of stochastic differential equations as follows;

dSt

St

= rdt+
√

VtdWt, (5.14)

dVt = κ (Θ− Vt) dt+ ǫ
√

VtdZt, (5.15)

where

dZt =
[

ρdWt +
√

1− ρ2dW 1
t

]

,

〈dWt, dZt〉 = ρdt.

In this system, r denotes the risk free interest rate, κ is the mean-reversion rate,
Θ reflects the long-term average variance and ǫ is the volatility of variance.

Further more, this model can be obtained from the general stochastic volatility
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model given in Definition 5.1 under the following conditions.

σ (t, Vt) =
√

Vt, (5.16)

u (t, Vt) = κ (Θ− Vt) , (5.17)

v (t, Vt) = ǫ
√

Vt. (5.18)

5.2.5 Schöbel and Zhu Model

Schöbel and Zhu [63] considered that the volatility follows an Ornstein-Uhlenbeck
processes. They described the model as Stein and Stein [67] and it is given as
following,

dSt =

(

r − 1

2
V (t)2

)

dt+ V (t) dWt, (5.19)

dV (t) = κ (Θ− V (t)) dt+ σdZt, (5.20)

where

dZt =
[

ρdWt +
√

1− ρ2dW 1
t

]

,

〈dWt, dZt〉 = ρdt.

In this model the Brownian motion processes Wt and Zt are correlated and the
correlation between these processes is represented by ρ.

This model can be obtained from the general stochastic volatility model given in
Definition 5.1 under the choice of

σ (t, Vt) = Vt, (5.21)

u (t, Vt) = κ (Θ− V (t)) , (5.22)

v (t, Vt) = σ. (5.23)

5.2.6 Bates Model

Bates model [3] is a combination of two model which are Heston model and
Merton model and the SDE system of this model is given as following,

dSt

St

= (r − δ) dt+
√

VtdWt + dNt, (5.24)

dVt = −κ (Vt −Θ) dt+ σ
√

VtdZt, (5.25)

where r is the interest rate, δ is the dividend paid by the underlying asset, V is
the value of value of spot volatility, Θ is the long run volatility, σ is the volatility
of volatility and Wt, Zt are two correlated processes and the correlation between
them is ρ. In this model Nt is a compound Poisson process.
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It is important to emphasize that in this model the stock prices are modeled
with an additional jump process, that makes the model as a flexible and robust
alternative model.

Bates model can be derived from the general stochastic volatility model given in
Definition 5.1 with the choice of

σ (t, Vt) =
√

Vt, (5.26)

u (t, Vt) = −κ (Vt −Θ) , (5.27)

v (t, Vt) = σ
√

Vt (5.28)

and a compound Poisson process Nt .

5.3 Computation of the Delta in Stochastic Volatility Models

Most researchers have demonstrated that the model they proposed are efficient for
pricing purposes, but only a few paper, has interested in the subject of computing
sensitivities. Thus, there is not much study has been worked on computing
sensitivities with respect to the parameters of the volatility models. This is very
surprising given the importance of Greeks for hedging and risk-management.

In general, while computing the sensitivities of an option price, one differentiates
the underlying asset and, by doing so, one is differentiating the approximation.
This provides to researchers the advantage that differentiating the approximation
price is usually much easier, particularly for the Heston model. If one has a
different approximation to the process, the derivative of this approximation will
also be different. Therefore, numerical computations can give different results for
the Greeks even if they have similar effects on pricing [9].

The abstract framework of this study is quite similar to the one developed in
[21], but in this thesis some modifications introduced in order to take into account
stochastic volatility models such as Heston stochastic volatility and Stein & Stein
models. In this thesis a general stochastic volatility model is considered and the
Delta of this general formula is obtained. Then as an example, by the generalized
Delta, derived by using Malliavin calculus to the general formula, the Heston and
Stein & Stein models Delta is presented.

The stock price process St given in Equation (5.1) can be solved and the solution
is given with the following proposition.

Proposition 5.1. Let the stock price process be given as in Definition 5.1. Then,
the stock price process St has a solution as,

ST = S0 exp

{∫ T

0

σ (t, Vt) dWt +

∫ T

0

(

rt −
1

2
σ2 (t, Vt)

)

dt

}

. (5.29)

87



Proof. The proof of this proposition can be done by applying Itô lemma with
f (x) = ln x. The first and second order partial derivatives of function f (x) = lnx
are f

′

= 1
x
and f

′′

= −1
x2 respectively. Using these equalities the following is

obtained,

ln ST = ln S0 +

∫ T

0

1

St

dSt −
1

2

∫ T

0

1

S2
t

d 〈S, S〉t . (5.30)

It is known that dSt = Strtdt+ Stσ (t, Vt) dWt and the quadratic variation of the
process is d 〈S, S〉t = S2

t σ
2 (t, Vt) dt. Substituting them into Equation (5.30),

ln

(

ST

S0

)

=

∫ T

0

1

St

[rtdt+ σ (t, Vt) dWt]−
1

2

∫ T

0

1

S2
t

S2
t σ

2 (t, Vt) dt

=

∫ T

0

σ (t, Vt) dWt +

∫ T

0

(

rt −
1

2
σ2 (t, Vt)

)

dt

is found. Then using exponential function,

ST = S0 exp

{∫ T

0

σ (t, Vt) dWt +

∫ T

0

(

rt −
1

2
σ2 (t, Vt)

)

dt

}

.

The integration by parts formula given in Proposition 2.4 is the most important
formula that is used to compute the Greeks with Malliavin calculus. In this
chapter, to make computations more clear, a generalized version of the integration
by parts formula, given in the following Proposition 5.2.

Proposition 5.2. Suppose I is an open interval of R. Consider the fami-
lies of random variables

(

F ζ
)

ζ∈I and
(

Hζ
)

ζ∈I . These families are continuously

differentiable in Dom (δ) with respect to the parameter ζ ∈ I. Assume that
(ut)t∈[0,T ] ∈ D

1,2 satisfying

DuF ζ 6= 0 a.s. on
{

∂ζF
ζ 6= 0

}

, ζ ∈ I.

Furthermore assume that
uHζ∂ζF

ζ

DuF ζ is continuous with respect to ζ in Dom (δ).
Then we have

∂

∂ζ
EQ

[

Hζf
(

F ζ
)]

= EQ

[

f
(

F ζ
)

(

Hζ∂ζF
ζ

DuF ζ
δ (u)−Du

(

Hζ∂ζF
ζ

DuF ζ

)

+ ∂ζH
ζ

)]

for any function f such that f
(

F ζ
)

∈ L2 (Ω), ζ ∈ I.
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Proof. Using the chain rule and the linearity property of expectation to E
[

f
(

F ζ
)

Hζ
]

,

∂

∂ζ
EQ

[

f
(

F ζ
)

Hζ
]

= EQ

[((

∂

∂ζ
f
(

F ζ
)

)

Hζ

)

+ f
(

F ζ
) ∂

∂ζ
Hζ

]

= EQ

[

f
′ (

F ζ
)

Hζ ∂

∂ζ
F ζ + f

(

F ζ
) ∂

∂ζ
Hζ

]

= EQ

[

f
′ (

F ζ
)

Hζ ∂

∂ζ
F ζ

]

+ EQ

[

f
(

F ζ
) ∂

∂ζ
Hζ

]

.(5.31)

is obtained. For the sake of simplicity, first compute the right hand side. Applying
the integration by parts formula Proposition 2.4 to achieve what is desired, it is
also necessary to use Remark 2.3 and Proposition 2.11. Now using them,

EQ

[

f
′ (

F ζ
)

Hζ ∂

∂ζ
F ζ

]

= EQ

[

f
(

F ζ
)

δ

(

Hζ ∂
∂ζ
F ζu.

∫ T

0
uvDvF ζdv

)]

= EQ

[

f
(

F ζ
)

δ

(

Hζ ∂
∂ζ
F ζu.

DuF ζ

)]

= EQ

[

f
(

F ζ
)

(

Hζ ∂
∂ζ
F ζ

DuF ζ
δ (u.)−

∫ T

0

(

Dv

Hζ ∂
∂ζ
F ζ

DuF ζ

)

uvdv

)]

= EQ

[

f
(

F ζ
)

(

Hζ ∂
∂ζ
F ζ

DuF ζ
δ (u.)−Du

(

Hζ ∂
∂ζ
F ζ

DuF ζ

))]

(5.32)

is obtained. Then, substituting Equation (5.32) into Equation (5.31), get

∂

∂ζ
EQ

[

Hζf
(

F ζ
)]

= EQ

[

f
(

F ζ
)

(

Hζ∂ζF
ζ

DW
u F ζ

δW (u)−DW
u

(

Hζ∂ζF
ζ

DW
u F ζ

)

+ ∂ζH
ζ

)]

.

In this section, a general formula for the delta of a European type options whose
underlying asset follows the stochastic volatility dynamics given by Equations
(5.1) and (5.2) is obtained. But for computation purposes it is assumed that that
St ∈ D

2,2 and Vt ∈ D
2,2 for t ∈ [0, T ].

Before beginning the computations, define the following function G(t, T ) for t ∈
[0, T ], which plays a key role in further computations of Delta.

Definition 5.2. For the general stochastic volatility model, define

G (t, T ) = σ (t, Vt) +

∫ T

t

∂σ

∂y
(s, Vs)DtVsdWs

−
∫ T

t

∂σ

∂y
(s, Vs)DtVsσ (s, Vs) ds, (5.33)

where ∂
∂y

denotes the first order partial derivative of the function σ (s, Vs) with

respect to second component throughout this thesis and Vt, σ(t, Vt), t ∈ [0, T ] are
defined in Definition 5.1.
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Remark 5.1. Note that the general stochastic volatility model given by Equations
(5.1) and (5.2) is represented by two independent Brownian motions, namely W
and W 1. Since, in this study it is interested in the derivative of the stock price
dynamics with respect to chance parameter ω and its dynamic is generated by the
Brownian motion W , in the computations, focused on the Malliavin derivative of
random variables in the Wiener space generated by the paths ofW (t, ω), t ∈ [0, T ]
and ω ∈ Ω.

The function G(t, T ), t ∈ [0, T ] given in Definition 5.2 has several useful properties
which are summarized as in the following proposition.

Proposition 5.3. Let the dynamics of {St}0≤t≤T be given by Equations (5.1) and
(5.2). Then, the following equalities hold for s ≤ t ≤ v ≤ T .

DtST = STG (t, T ) (5.34)

DuST := 〈DST , u〉L2([0,T ]) = ST

∫ T

0

utG (t, T ) dt (5.35)

DuDuST = ST

(∫ T

0

utG (t, T ) dt

)2

+ ST

∫ T

0

∫ T

s

usutDsG (t, T ) dtds, (5.36)

DsG (t, T ) =
∂σ

∂y
(t, Vt)DsVt +

∫ T

t

(

∂σ

∂y
(v, Vv)

)2

DtVvDsVvdv

+

∫ T

t

DsVvDtVv

(

∂2σ

∂y2
(v, Vv) (dWv − σ (v, Vv) dv)

)

+

∫ T

t

∂σ

∂y
(v, Vv)DsDtVv (dWv − σ (v, Vv) dv) , (5.37)

Where the function G (t, T ) is defined in Definition 5.2 and ∂2

∂y2
is the second order

partial derivative of the function σ (v, Vv) with respect to the second component.

Proof. Using the dynamics of the stock price Equation (5.29) given in Remark 5.1,
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first compute the Malliavin derivative of stock price at maturity,

DtST = Dt

(

S0 exp

(∫ T

0

σ (s, Vs) dWs +

∫ T

0

(

rs −
σ2 (s, Vs)

2

)

ds

))

= S0 exp

{∫ T

0

σ (s, Vs) dWs +

∫ T

0

(

rs −
σ2 (s, Vs)

2

)

ds

}

×Dt

(∫ T

0

σ (s, Vs) dWs +

∫ T

0

(

rs −
σ2 (s, Vs)

2

)

ds

)

= ST

(∫ T

t

∂σ

∂y
(s, Vs) DtVsdWs + σ (t, Vt)−

∫ T

t

σ (s, Vs)
∂σ

∂y
(s, Vs) ds

)

= ST

(

σ (t, Vt) +

∫ T

t

∂σ

∂y
(s, Vs)DtVs [dWs − σ (s, Vs) ds]

)

= STG (t, T ) .

The directional derivative of ST can be computed by using Remark 2.3 as follows,

DuST = 〈D·ST , u〉L2([0,T ]) =

∫ T

0

ut Dt ST dt = ST

∫ T

0

ut G (t, T ) dt.

Applying Proposition 2.2 to Equation (5.35), the second Malliavin derivative is
obtained as,

DuDuST = Du

(

ST

∫ T

0

ut G (t, T ) dt

)

= (DuST )

(∫ T

0

utG (t, T ) dt

)

+ STD
u

(∫ T

0

ut G (t, T ) dt

)

= ST

(∫ T

0

utG (t, T ) dt

)(∫ T

0

utG (t, T ) dt

)

+ ST

∫ T

0

us Ds

(∫ T

0

ut G (t, T ) dt

)

ds

= ST

[

(∫ T

0

ut G (t, T ) dt

)2

+

∫ T

0

∫ T

s

us ut DsG (t, T ) dt ds

]

.
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Now DsG(t, T ) can be computed for 0 ≤ s ≤ t ≤ v ≤ T as follows

DsG (t, T ) = Ds

[

σ (t, Vt) +

∫ T

t

∂σ

∂y
(v, Vv) DtVv [dWv − σ (v, Vv) dv]

]

=
∂σ

∂y
(t, Vt) DsVt +

∫ T

t

Ds

(

∂σ

∂y
(v, Vv) DtVv

)

dWv

−
∫ T

t

Ds

(

∂σ

∂y
(v, Vv) DtVvσ (v, Vv)

)

dv

=
∂σ

∂y
(t, Vt) DsVt

+

∫ T

t

DsVvDtVv

[

∂2σ

∂y2
(v, Vv) (dWv − σ (v, Vv) dv)

]

+

∫ T

t

∂σ

∂y
(v, Vv) DsDtVv (dWv − σ (v, Vv) dv)

+

∫ T

t

∂σ

∂y
(v, Vv) DtVv

∂σ

∂y
(v, Vv) DsVvdv,

where DtVv can be computed explicitly for 0 ≤ t ≤ v ≤ T as

DtVv = Dt

(

V0 +

∫ v

0

u (s, Vs) ds+

∫ v

0

ρv (s, Vs) dWs +

∫ v

0

√

1− ρ2v (s, Vs) dW
1
s

)

=

∫ v

t

Dtu (s, Vs) ds+Dt

∫ v

0

ρv (s, Vs) dWs +Dt

∫ v

0

√

1− ρ2v (s, Vs) dW
1
s

=

∫ v

t

Dtu (s, Vs) ds+

∫ v

t

ρDtv (s, Vs) dWs + ρv (t, Vt)

=

∫ v

t

∂u

∂y
(s, Vs) DtVsds+

∫ v

t

ρ
∂v

∂y
(s, Vs) DtVsdWs + ρv (y, Vt)

=

∫ v

t

DtVs

[

∂u

∂y
(s, Vs) ds+ ρ

∂v

∂y
(s, Vs) dWs

]

+ ρv (t, Vt) .

The following Lemma 5.4 and Proposition 5.5 give the general formula of Delta
for stochastic volatility models.

Lemma 5.4. Let the dynamics of the stock price process {St}t∈[0,T ] be given by

Equations (5.1) and (5.2). The first variation Yt :=
∂

∂V0
Vt of Vt is given as

Yt = exp

(

∫ t

0

u
′

(s, Vs)−
(

v
′

(s, Vs)
)2

2
ds

)

× exp

(∫ t

0

v
′

(s, Vs)
[

ρ dWs +
√

1− ρ2 dW 1
s

]

)

,

for all t ∈ [0, T ].
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For s ≤ t, the Malliavin derivative of the stochastic volatility process Vt at time
s is given by

DsVt =
Yt ρ v (s, Vs) exp

(

1
2

∫ t

s
(1− ρ2)

(

v
′

(r, Vr)
)2

dr
)

Ys exp
(

∫ t

s

√

1− ρ2 v′ (r, Vr) dW 1
r

) .

Proof. The first variation process of Vt is defined by the following equations sys-
tem:

dYt = u
′

(t, Vt)Ytdt+ v
′

(t, Vt)YtρdWt + v
′

(t, Vt)
√

1− ρ2YtdW
1
t ,

Y0 = 1.

By Itô’s formula,

Yt = exp

(

∫ t

0

u
′

(s, Vs)−
(

v
′

(s, Vs)
)2

2
ds+

∫ t

0

v
′

(s, Vs)
(

ρdWs +
√

1− ρ2dW 1
s

)

)

,

is obtained for all t ∈ [0, T ]. Now, the following process can be defined

Zt := DsVt =

∫ t

s

u
′

(r, Vr)DsVr dr + ρ

∫ t

s

v
′

(r, Vr)DsVr dWr + ρ v (s, Vs) ,

which can be expressed more formally by the following system of equations

dZt = u
′

(t, Vt)Ztdt+ ρ v
′

(t, Vt)ZtdWt,

Zs = ρ v (s, Vs) ,

for t ≥ s. The solution of the above system is given as

Zt = ρ v (s, Vs) exp

(

∫ t

s

{

u′ (r, Vr)−
(

ρ v
′

(r, Vr)
)2

2

}

dr +

∫ t

s

v
′

(r, Vr) ρ dWr

)

and finally the following equality obtained for the Malliavin derivative of Vt as-
suming the general stochastic volatility model

DsVt = ρ v (s, Vs)
Yt

Ys

exp

(∫ t

s

1− ρ2

2

(

v
′

(r, Vr)
)2

dr −
∫ t

s

v
′

(r, Vr)
√

1− ρ2dW 1
r

)

.

Proposition 5.5. Let ζ = S0 in Proposition 5.2. Then, F S0 := ST ∈ Dom (δ),

HS0 := exp
(

−
∫ T

0
rt dt

)

∈ Dom (δ), (ut)t∈[0,T ] ∈ D
1,2 and

DuST 6= 0 a.s. on {∂S0
ST 6= 0} .
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Further, assume that ∂S0
= ∂

∂S0
and

uHS0∂S0
ST

DuST
be continuous with respect to S0 in

Dom(δ). Then, the Delta within the general stochastic volatility model defined in
Equations (5.1) and (5.2) is given as follows

∆ =
e−

∫ T

0
rtdt

S0

× E






f (ST )







δ (u.)
∫ T

0
G (t, T ) dt

−
∫ T

0

∫ T

s
usutDsG (t, T ) dtds

(

∫ T

0
utG (t, T ) dt

)2












,

(5.38)
where G(t, T ) is defined in Definition 5.2.

Proof. In order to compute the delta under a specified stochastic volatility model,
the Malliavin derivative of G(t, T ) is necessary, and choose a Skorohod integrable
process ut in an appropriate way to obtain useful results. In fact, the choice ut = 1
for t ∈ [0, T ] allows to prove the desired result. Start the proof by applying the
result of Proposition 5.2 with ζ = S0 and F ζ = ST .

In the Proposition 5.2 HS0 can be thought as a discount factor. Since we define
it as an independent process of S0, the partial derivative

∂HS0

∂S0

= 0.

The partial derivative of ST with respect to S0 is as follows;

∂ST

∂S0

= exp

(∫ T

0

σ (t, Vt) dWt +

∫ T

0

(

rt −
1

2
σ2 (t, Vt)

)

dt

)

=
ST

S0

.

By these features, the following is obtained,

∆ = EQ

[

f (ST )

(

∂S0
ST

DuST

δ (u.)−Du

(

∂S0
ST

DuST

))]

, (5.39)

where ∂S0
= ∂

∂S0
. A direct computation yields

∆ = E

[

f (ST )

(

1
S0
ST

DuST

δ (u.)−Du

(

1
S0
ST

DuST

))]

=
e−

∫ T

0
rtdt

S0

EQ

[

f (ST )

(

ST

DuST

δ (u.)−Du

(

ST

DuST

))]

=
e−

∫ T

0
rtdt

S0

EQ

[

f (ST )

(

ST

DuST

δ (u.)−
(

1

DuST

DuST − ST
DuDuST

(DuST )
2

))]

.

(5.40)

94



Now substituting Equations (5.35) and (5.36) into Equation (5.40),

∆ =
e−

∫ T

0
rtdt

S0

EQ

[

f (ST )

(

1
∫ T

0
ut G (t, T ) dt

δ (u.)

)]

− e−
∫ T

0
rtdt

S0

EQ






f (ST )






1−

ST

(

∫ T

0
ut G (t, T ) dt

)2

ST

(

∫ T

0
ut G (t, T ) dt

)2













− e−
∫ T

0
rtdt

S0

EQ






f (ST ) ()

ST

∫ T

0

∫ T

s
us ut DsG (t, T ) dtds

ST

(

∫ T

0
ut G (t, T ) dt

)2







is obtained which leads to the required result for the delta under the general
stochastic volatility model:

∆ =
e−

∫ T

0
rtdt

S0

EQ






f (ST )







1
∫ T

0
ut G (t, T ) dt

δ (u.)−
∫ T

0

∫ T

s
usutDsG (t, T ) dtds

(

∫ T

0
ut G (t, T ) dt

)2












.

Remark 5.2. According to Proposition 5.5, the computation of the Delta results
in the computation of the expectation of the payoff function multiplied by the
term

∆MW :=







δ (u.)
∫ T

0
G (t, T ) dt

−
∫ T

0

∫ T

s
us ut DsG (t, T )dtds

(

∫ T

0
ut G (t, T ) dt

)2






, (5.41)

which is the Malliavin weight of the Delta of a European option under the general
stochastic volatility model.

5.4 Applications

Having the general formula for the Delta at hand, one can drive the formula
of Delta for particular stochastic volatility models. In this section, the Propo-
sition 5.5 is applied to particular cases, Stein & Stein and Heston models and
obtained the Deltas of these two models.

5.4.1 Stein and Stein Model

In this section the main result applied to compute the delta of a European op-
tion under the Stein & Stein model. The model assumes an Ornstein-Uhlenbeck
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process for the volatility dynamics and is defined by the following system of equa-
tions

dSt

St

= rdt+ VtdWt, (5.42)

dVt = γ (Θ− Vt) dt+ κdZt, (5.43)

where

dZt =
[

ρdWt +
√

1− ρ2dW 1
t

]

,

〈dWt, dZt〉 = ρdt,

for t ∈ [0, T ]. Here, St and Vt denote the stock price and volatility process with
initial values S0 and V0. Further, r, γ, Θ and κ are fixed constants and Wt and
W 1

t are two independent Wiener processes. In terms of the general SV model
given by Equations (5.1) and (5.2) we have

σ (t, Vt) = Vt, (5.44)

u (t, Vt) = κ (Θ− Vt) , (5.45)

v (t, Vt) = κ. (5.46)

Proposition 5.6. Let u = 1 and the interest rate rt is constant in Proposition
5.5. Then, the Delta of Stein & Stein model is,

∆ =
e−rT

S0

EQ

[

f (ST )







WT
∫ T

0
G (t, T ) dt

−
∫ T

0

∫ T

s
DsG(t, T )dtds

(

∫ T

0
G (t, T ) dt

)2







]

.

Proof. By Lemma 5.4 the first variation Yt of Vt can be compute as follow,

Yt = exp

(

−
∫ t

0

γds

)

= exp (−γt) , ∀t ∈ [0, T ] ,

and by using the relation between the first variation and the Malliavin derivative
of Vt,

DsVt = κρ exp (−γ (t− s))

is computed for s ≤ t ≤ T . Next, the function G(t, T ) is computed as;

G (t, T ) = Vt +

∫ T

t

DtVudWu −
∫ T

t

(DtVu)Vudu

= Vt +

∫ T

t

κρ exp (−γ (u− t)) dWu −
∫ T

t

κρ exp (−γ (u− t))Vudu

= Vt + κρeγt
(∫ T

t

exp (−γu) dWu −
∫ T

t

exp (−γu)Vudu

)

, (5.47)
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and compute the Malliavin derivative of G(t, T ) using Equation (5.37) as

DsG(t, T ) = DsVt −
∫ T

t

(

∂σ (u, Vu)

∂y

)2

DtVuDsVudu

= κρe−γ(t−s)

(

1 +
κρ
(

1 + e−2Tγ
)

2γ

)

. (5.48)

As a consequence of Proposition 5.6, the Malliavin weight of Delta of a European
type option under the Stein & Stein model can be given as in the following remark.

Remark 5.3. Let the Delta of a European type of option has a Delta has an
expression as in the Proposition 5.6. Then The Malliavin weight is

∆MW =







WT
∫ T

0
G (t, T ) dt

−
∫ T

0

∫ T

s
DsG(t, T )dtds

(

∫ T

0
G (t, T ) dt

)2






,

or more explicitly,

∆H
MW =

(

WT
∫ T

0

(

Vt + κρeγt
(

∫ T

t
e−γu (dWu − Vudu)

))

dt

−
∫ T

0

∫ T

s
DsG(t, T )dtds

(

∫ T

0

(

Vt + κρeγt
(

∫ T

t
e−γu (dWu − Vudu)

))

dt
)2

)

. (5.49)

In [67], it is assumed that ρ = 0. This assumption simplifies the calculations and
the result is given by the following corollary.

Corollary 5.7. Under the assumption that Wt and Zt are two independent Brow-
nian motion processes, the delta of a European option under the Stein & Stein
model is given by

∆ =
e−rT

S0

E

[

f (ST )

(

WT
∫ T

0
Vtdt

)]

. (5.50)

5.4.2 Heston Model

In this section, the delta of a European option under the Heston model computed
by using Proposition 5.5. Heston stochastic volatility model is a special case of
the general stochastic volatility model given in Equations (5.1) and (5.2) with
the choice of functions as:

σ (t, Vt) =
√

Vt, (5.51)

u (t, Vt) = κ (Θ− Vt) , (5.52)

v (t, Vt) = ǫ
√

Vt. (5.53)
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Formally, Heston model is given as follows:

dSt

St

= rdt+
√

VtdWt, (5.54)

dVt = κ (Θ− Vt) dt+ ǫ
√

VtdZt, (5.55)

where

dZt =
[

ρdWt +
√

1− ρ2dW 1
t

]

,

〈dWt, dZt〉 = ρdt.

Further, r denotes the risk free rate, κ is the mean-reversion rate, Θ reflects the
long-term average variance and ǫ is the volatility of variance. As we know the
explicit expressions of the functions v(t, Yt), u(t, Yt) and σ(t, Yt), we can compute
the function G(t, T ) defined in Definition 5.2 with Equation (5.33) and then
apply Proposition 5.3 to compute the Delta within Heston model. Substituting
Equations (5.51), (5.52) and (5.53) into Equation (5.33),

G (t, T ) =
√

Vt +

∫ T

t

1

2
√
Vv

DtVvdWv −
1

2

∫ T

t

DtVvdv. (5.56)

is obtained. By employing Itô’s Lemma, a solution to Equation (5.54) is obtained
as

ST = S0 exp

{∫ T

0

√

Vt dWt +

∫ T

0

(

r − 1

2
Vt

)

dt

}

. (5.57)

Having G(t, T ) and ST at hand, one can apply Proposition 5.3 and state the
result as in the following proposition.

Proposition 5.8. Let the dynamics of {St}0≤t≤T be given by Equations (5.54)
and (5.55). Let G(t, T ) be defined in Equation (5.56) and let ut = 1 for all
t ∈ [0, T ]. Moreover, suppose that the riskless interest rate is constant. Then, for
s ≤ t ≤ v ≤ T

∆ =
e−rT

S0

E






f (ST )







WT
∫ T

0
G (t, T ) dt

−
∫ T

0

∫ T

s
DsG (t, T ) dtds

(

∫ T

0
G (t, T ) dt

)2












,
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where

DsG (t, T ) =
1

2
√
Vt

DsVt −
1

4

∫ T

t

1

Vv

DtVvDsVv dv

+
1

2

∫ T

t

(

1√
Vv

Ds (DtVv)−
1

2Vv

√
Vv

DsVvDtVv

)

dWv

− 1

2

∫ T

t

(

Ds (DtVv)−
1

2Vv

DsVvDtVv

)

dv,

=
1

2
√
Vt

DsVt +

∫ T

t

1

2
√
Vt

[

Ds (DtVv)−
1

2Vt

DsVvDtVv

]

dWv

− 1

2

∫ T

t

Ds (DtVv) dv,

DtVv = ρ ǫ
√

Vt exp

(

ρ ǫ

2

(∫ v

t

1√
Vs

dWs −
ρ ǫ

4

∫ v

t

1

Vs

ds

)

− κ (v − t)

)

,

Ds (DtVv) =
DtVvDsVt

2Vt

+
ρ ǫ

2
DtVv

(

ρ ǫ

4

∫ v

t

1

V 2
u

DsVu du+
1√
Vs

− 1

2

∫ v

t

1

Vu

√
Vu

dWu

)

.

As an immediate result of the Proposition 5.8 the following remark is obtained for
the Malliavin weight of a European option under the Heston stochastic volatility
model.

Remark 5.4. The Malliavin weight of a European option under the assumption
of the stock price is a Heston process is

∆MW =







WT
∫ T

0
G (t, T ) dt

−
∫ T

0

∫ T

s
DsG (t, T ) dtds

(

∫ T

0
G (t, T ) dt

)2






(5.58)

or a more appropriate way,

∆H
MW = ∆H

1 −∆H
2 ,

where

∆H
1 =

WT
∫ T

0

(√
Vt +

∫ T

t
1

2
√
Vv
DtVvdWv − 1

2

∫ T

t
DtVvdv

)

dt
,

∆H
2 =

∫ T

0

∫ T

s

(

DsVt

2
√
Vt

+
∫ T

t
1

2
√
Vt

[

Ds (DtVv)− DsVvDtVv

2Vt

]

dWv −
∫ T

t
Ds(DtVv) dv

2

)

dtds
(

∫ T

0

(√
Vt +

∫ T

t
1

2
√
Vv
DtVvdWv − 1

2

∫ T

t
DtVvdv

)

dt
)2 ,
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CHAPTER 6

CONCLUSION AND OUTLOOK

It is very important for the traders to understand how option prices behave
within the change in the parameters of the model. If the option has a closed form
solution for pricing, the Greeks can be computed analytically. However, driving
a close form pricing formula is not possible for all cases, but still the traders need
a thorough knowledge of how option values react in response to changes in model
parameters during the life of the option. Because, the Greeks provide necessary
information to manage the risks of options and portfolios.

There are two approaches in computation of the Greeks: if an analytic solution
is available for option pricing, they can be computed explicitly by differentiat-
ing the solution directly. However, due to complicated rules of some dynamic
systems, analytical solutions can be found rarely. In this case, a numerical ap-
proximation can be performed by simulating the evolution of the system in a
computer programmed with the governing laws. But, these two approaches are
not perfect indeed. In the first place, the payoff function can be complex and
carrying out the differentiation can be unfavorable. Moreover, if the option has
no analytic solution and the Greeks are estimated by numerical methods, such
as “finite difference, pathwise derivative estimation and likelihood methods”, the
estimation may be computationally expensive and the results will be inaccurate
due to estimation error of expectation and the derivative of the payoff function.

This is why the Malliavin calculus become popular in computation of Greeks in re-
cent years. In this method, due to a famous result known as “infinite dimensional
integration by parts formula”, one can skip having to evaluate the derivative of
the payoff function. Instead of evaluating the derivative, computing the expected
value of the option’s payoff multiplied with a weight, called “Malliavin weight” is
enough. This expectation can either be computed explicitly or estimated by using
Monte Carlo simulations. Since there is no need to estimate the derivative, each
way will be less expensive than evaluating the payoff function and assign this for
computing the partial derivatives. Further more, with this method, all Greeks
can be written as an expected value of the payoff times a unique weight and these
weights are independent from the payoff function which is a great advantage in
computations. Due to this independence feature of payoff function and Malliavin
weight, once a Monte Carlo algorithm constructed for general options, it can be
used for all type of payoff functions. Hence, the method efficiency is increased
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for options that have a discontinuous payoff function.

If the option has smooth payoff functions such as European type options, the
Malliavin calculus give comparable results to finite difference, pathwise derivative
and the likelihood method (the comparisons are presented in Chapter 4). For
example, if the density of the underlying asset is known, both the Malliavin
calculus and the likelihood method give the same weight function [39]. Thus,
the Malliavin calculus method can be thought as an extended version of the
likelihood method. The most valuable advantage of the Malliavin calculus method
is that, it is applicable to both complicated continuous and discontinuous payoff
functions. This method also can be used when dealing with underlying assets
whose density is not known explicitly, such as Asian type options [23] and the
results are presented in Chapter 4.

The numerical tests in Chapter 4 indicate promising convergence results for Euro-
pean type of options when the number of simulations increases, so the algorithm
of the Malliavin calculus seems to be applicable in computation of Greek prob-
lems. Moreover, by the comparison results it is seen that, this method has a
faster convergence Monte-Carlo simulations for the Greeks.

The Malliavin calculus can also be applied to the options which are written on
assets that follows stochastic volatility processes and the results are presented in
Chapter 5. Theoretically, the results are promising but they did not prove to
yield any satisfactory results to practitioners because practitioners concern with
numerical aspects. The implementation to stochastic volatility models underline
the fact that the computation algorithm is hard to deal because of the double
integrals inherent within the Greek (Delta) formula. However, it is believed
that once the algorithm is finished, it most certainly would have enabled the
practitioners to obtain more stable and more accurate Delta results. Indeed, the
results presented for Black-Scholes- Merton assumption seem to be reasonably in
line with actual results when the number of simulation is relatively high, but this
will mechanically increase the computation time because of the double integrals.

Note that in this thesis, the interest rate assumed to be constant but it might
not be constant. Hence, the famous Black-Scholes-Merton model and stochas-
tic volatility models are extended by assuming the interest rate is a deterministic
function or a stochastic process. An extended version of the Black-Scholes-Merton
and stochastic volatility models which allows for the rate being a stochastic pro-
cess can be found in [25], [29], [38], [47].

If the interest rate assumed to be a deterministic function, the only change on
computations of the Greeks will be the discount factor. If the function is nu-
merically integrable, the discount factor can be computed easily. However, every
function appears in practice are not necessarily has to be integrable analytically.
In this case, some approximation methods are used in computations. Basic nu-
merical methods for these kind of integrals are midpoint and triangle rules. Both
of them use the definition of Riemann integral. For the given deterministic inter-
est rate rt on the interval [0, T ],
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∫ T

0

rtd s =
N−1
∑

i=0

∫ ti+1

ti

r (s) d s. (6.1)

Applying midpoint and triangle rule methods to Equation (6.1), the integral can
be computed approximately as follows,

∫ T

0

rtds ≈
N−1
∑

i=0

rti (ti+1 − ti) (triangle rule)

≈
N−1
∑

i=0

r( ti+ti+1

2

) (ti+1 − ti) (midpoint rule).

On the other hand, if the interest rate assumed to be a stochastic process, the
computation of the Greeks become more technical. Consider Heston-Hull-White
model [38] which replace the constant interest rate in Heston model by Hull-
White short term stochastic interest rate model. The model represented by the
following stochastic differential equations:

dSt

St

= (rt) dt+
√

VtdW
1
t (6.2)

dVt = κ (Θ− Vt) dt+ ǫ
√

VtdW
2
t (6.3)

drt = λ (Θr (t)− rt) dt+ ζdW 3
t (6.4)

〈

dW i, dW j
〉

= ρijdt, i, j = 1, 2, 3, (6.5)

with initial prices S0, V0 and r0. Note that in this system; κ is the mean-reversion
rate, θ reflects the long-term average variance, ǫ is the volatility of variance, λ
is the mean reversion speed and determines the speed of diverging from θ, the
function θr (t) is used to recover the initial term structure of interest rates at
time and ζ > 0 is the volatility parameter. In this stochastic differential equation
system; Equation (6.2) describes the evolution of the price of an underlying asset,
the volatility is given with

√
Vt where Vt evolves as a Cox-Ingersoll-Ross mean

reverting process determined by Equation (6.3), which is the dynamic from the
Heston stochastic volatility model, and the short rate r (t) is given by a mean re-
verting Ornstein Uhlenbeck process given by Equation (6.4) with time dependent
but deterministic mean reversion level Θr (t) which is known as the Hull-White
model. The correlation between Brownian motions W 1, W 2 and W 3 are given
with ρi,j , i, j = 1, 2, 3. Note that the computation of Greeks under this model
assumptions is a difficult issue. Even a formula can be found for a Greek of this
model, the simulation will require a significant additional amount of time for a
result because of the simulating effort to evaluate the volatility and interest rate
at each time step.
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There are many possible extensions and applications of this thesis, especially to
more complicated models than the Black-Scholes-Merton. One extension of re-
search is to extend the results in Chapter 5 to other Geeks and build efficient
algorithms for these Greeks. Indeed, deriving formulas for the Greeks of stochas-
tic volatility models and writing algorithms will be an interesting enlargement.
Another interesting future work is to compute the Greeks under the assumption
of deterministic and/or stochastic interest rate rather than being constant, which
will increase the computational complexity of the Greeks.
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