
 

 

MULTI-TARGET PARTICLE FILTER BASED TRACK BEFORE DETECT 

ALGORITHMS FOR SPAWNING TARGETS 

 

 

 

 

 

 

A THESIS SUBMITTED TO 

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 

MIDDLE EAST TECHNICAL UNIVERSITY 

 

 

 

 

 

 

 

BY 

 

 

 

MEHMET EYILI 

 

 

 

 

 

 

 

 

 

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS 

FOR 

THE DEGREE OF MASTER OF SCIENCE 

IN 

ELECTRICAL AND ELECTRONICS ENGINEERING 

 

 

 

 

 

 

 

JUNE 2014 





Approval of the thesis: 

 

MULTI-TARGET PARTICLE FILTER BASED TRACK BEFORE 

DETECT ALGORITHMS FOR SPAWNING TARGETS 

 

 

 

submitted by MEHMET EYİLİ in partial fulfillment of the requirements for the 

degree of Master of Science in Electrical and Electronics Engineering 

Department, Middle East Technical University by, 

 

 

Prof. Dr. Canan Özgen 

Dean, Graduate School of Natural and Applied Sciences 

Prof. Dr. Gönül Turhan Sayan 

Head of Department, Electrical and Electronics Engineering 

Prof. Dr. Mübeccel Demirekler 

Supervisor, Electrical and Electronics Engineering Dept., METU 

 

 

 

Examining Committee Members: 

 

Prof. Dr. Mustafa Kuzuoğlu 

Electrical and Electronics Engineering Dept., METU 

Prof. Dr. Mübeccel Demirekler 

Electrical and Electronics Engineering Dept., METU 

Prof. Dr. Seyit Sencer Koç 

Electrical and Electronics Engineering Dept., METU 

Assoc. Prof. Dr. Umut Orguner 

Electrical and Electronics Engineering Dept., METU 

Elif Yavuztürk, M.Sc. in EEE 

REHIS, ASELSAN 

 

        

Date:       

 

 



iv 

 

 

 

 

 

 

 

 

 

 

 

 

I hereby declare that all information in this document has been obtained and 

presented in accordance with academic rules and ethical conduct. I also 

declare that, as required by these rules and conduct, I have fully cited and 

referenced all material and results that are not original to this work. 

 

      Name, Last name  :          MEHMET EYİLİ 

      Signature  :   

  



 

v 

ABSTRACT 

 

 

MULTI-TARGET PARTICLE FILTER BASED TRACK BEFORE 

DETECT ALGORITHMS FOR SPAWNING TARGETS 

 

EYİLİ, Mehmet 

M. Sc., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Mübeccel DEMİREKLER 

June 2014, 153 pages 

 

In this work, a Track Before Detect (TBD) approach is proposed for tracking and 

detection of the spawning targets on the basis of raw radar measurements. The 

principle of this approach is mainly constructed by multi-model particle filter 

method. In contrast to the related works in the literature, a novel reduced order 

dynamic model is introduced and the information about bearing angle derived from 

the radar measurements is not used in this model to improve the efficiency of the 

particle filter. Moreover, a new process noise identification method [1] proposed 

for the classical target tracking is adapted to the TBD framework. The process 

noise identification is used for the state estimation of the highly maneuvering 

spawned targets in the presence of non-stationary process noise with unknown 

parameters. It is shown that this method deals with the sample impoverishment 

problem which is serious for tracking of the highly maneuvering targets by particle 

filters. Two different multi-target particle filter based TBD algorithms are 

developed. These algorithms are confirmed by simulations. Their performances are 
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analyzed on the basis of the probability of target existences and Root-Mean-Square 

(RMS) estimation accuracies.  

 

Keywords: Track Before Detect, particle filter, spawning targets, process noise 

identification 
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ÖZ 

 

 

DOĞURAN HEDEFLERİN ÇOKLU HEDEF PARÇACIK FİLTRE 

TABANLI İZLE BUL ALGORİTMASI İLE TAKİP EDİLMESİ 

 

EYİLİ, Mehmet 

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Mübeccel DEMİREKLER 

Haziran 2014, 153 sayfa 

 

Bu çalışmada, ham radar ölçümleri eşliğinde, doğuran hedeflerin izlenmesi ve 

bulunması için bir İzle Bul yaklaşımı önerilmiştir. Bu yaklaşımın prensibi, başlıca 

çoklu model parçacık filtresi yöntemi kullanılarak oluşturulmuştur. Literatürdeki 

çalışmaların aksine, parçacık filtresini daha verimli kullanabilmek için düşük 

dereceli yeni bir dinamik model sunulmuş olup, bu modelde radar ölçümlerinden 

elde edilen yanca açı bilgisi kullanılmamıştır. Bununla birlikte, klasik hedef izleme 

yöntemleri için önerilmiş işlem gürültüsü tanımlama yöntemi [1], İzle Bul 

yaklaşımına adapte edilmiştir. İşlem gürültüsü tanımlama yöntemi, bilinmeyen 

parametreli sabit olmayan işlem gürültüleri eşliğinde, yüksek manevralı doğurulan 

hedeflerin durum vektörünün kestiriminde kullanılmaktadır. Bu yöntemin, yüksek 

manevralı hedeflerin izlenmesinde parçacık filtreler için ciddi bir sorun olan örnek 

fakirleşmesi sorunuyla başa çıkabildiği gösterilmiştir. İki farklı çoklu hedef 

parçacık filtre tabanlı İzle Bul algoritması önerilmiş ve geliştirilen algoritmalar 

simülasyon sonuçlarıyla doğrulanmıştır. Algoritmaların performansları, çok düşük 

sinyal gürültü oranı (S/N) değerleri için hedef varlık/yokluk olasılıkları ve kestirim 

hataları karekök ortalamaları göz önünde bulundurularak analiz edilmiştir. 
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Anahtar Kelimeler: İzle Bul, parçacık filtresi, doğuran hedefler, işlem gürültüsü 

tanımlama  



ix 

 

 

 

 

 

 

 

 

To all my friends and my family,



 

x 

ACKNOWLEDGEMENTS 

 

 

The most enjoyable part of preparing this thesis is surely extending appreciation to 

those who helped in its completion. I wish to express my deepest gratitude to my 

supervisor Prof. Dr. Mübeccel Demirekler for her valuable guidance and support 

throughout all the thesis preparation period. 

I would like to thank Prof. Dr. Seyit Sencer Koç for his help to modelling and data 

generation used in this thesis. 

Many special thanks go to Kenan Ahıska for his valuable, continuous support and 

encouragements throughout all of the phases of my career. 

My friends Serkan Erki and Anıl Koyuncu deserve thanks for their moral support 

in many ways and making the time enjoyable. 

I am also happy to work for this thesis which gives the possibility to meet with 

beautiful people like Yalçın Demirekler who makes the time enjoyable.   

Most importantly, words can’t express my appreciation to a wonderful girl, Merve 

Bilgiç. The completion of this thesis would be impossible without her continuous 

support and love.   

Finally, special thanks go to my family, my father (Aydın Eyili), my mother 

(Hülya Eyili), my brother (Mert Eyili) and my little sister (Ceren Eyili) for their 

support and patience over the years. 

 



 

xi 

TABLE OF CONTENTS 

 

 

ABSTRACT ............................................................................................................. V 

ÖZ .......................................................................................................................... VII 

ACKNOWLEDGEMENTS .................................................................................... X 

TABLE OF CONTENTS ....................................................................................... XI 

LIST OF TABLES .............................................................................................. XVI 

LIST OF FIGURES .......................................................................................... XVII 

CHAPTERS 

 1 INTRODUCTION ................................................................................................ 1 

1.1 RADAR ............................................................................................................ 1 

1.2 TRACK BEFORE DETECT ................................................................................. 2 

1.3 HISTORICAL REVIEW OF TBD ......................................................................... 5 

1.4 THESIS MOTIVATION AND OBJECTIVE ............................................................. 6 

1.5 THESIS OUTLINE ............................................................................................. 7 

2 RADAR THEORY ................................................................................................ 9 

2.1 RADARS .......................................................................................................... 9 

2.1.1 Basics of Radars ................................................................................... 9 



xii 

2.1.2 The Radar Range Equation ................................................................ 12 

2.2 TARGET TRACKING ....................................................................................... 15 

2.2.1 Classical Target Tracking................................................................... 15 

2.2.1.1 Detection ................................................................................... 15 

2.2.1.2 Extraction ................................................................................. 16 

2.2.1.3 Data Association ....................................................................... 16 

2.2.1.4 Filtering .................................................................................... 16 

2.2.2 Track Before Detect ........................................................................... 16 

3 FILTERING ......................................................................................................... 19 

3.1 BAYESIAN ESTIMATION ................................................................................ 19 

3.1.1 Particle Filter ...................................................................................... 22 

3.1.1.1 Monte Carlo Integration ........................................................... 22 

3.1.1.2 Importance Sampling ................................................................ 23 

3.1.1.3 Sequential Importance Sampling .............................................. 24 

3.1.1.4 Degeneracy and Resampling .................................................... 27 

3.1.1.5 Sequential Importance Resampling .......................................... 29 

4 DETECTION AND TRACKING OF SPAWNING TARGETS BY USING 

PARTICLE FILTER BASED TBD APPROACH .............................................. 31 

4.1 PROBLEM STATEMENT .................................................................................. 31 

4.2 SYSTEM SETUP .............................................................................................. 32 

4.3 ALGORITHM 1 ............................................................................................... 33 



xiii 

4.3.1 Conceptual Solution of the TBD Problem in the Bayesian 

Framework .................................................................................................. 33 

4.3.2 System Dynamic Model ..................................................................... 35 

4.3.3 Measurement Model .......................................................................... 38 

4.3.4 Steps of Algorithm 1 .......................................................................... 41 

4.3.4.1 Initialization of the Particles..................................................... 41 

4.3.4.2 Predictions of the Particles ....................................................... 42 

4.3.4.3 Measurement Update of the Particles ....................................... 44 

4.3.4.4 Extraction of the Main Platform’s Power Contribution from the 

Range-Doppler Matrix ......................................................................... 45 

4.3.4.5 Normalization ........................................................................... 46 

4.3.4.6 Outputs ..................................................................................... 46 

4.3.4.7 Resampling ............................................................................... 47 

4.3.5 Algorithm 1 with Process Noise Identification .................................. 50 

4.3.5.1 Conceptual Solution of the Process Noise Identification in 

Particle Filter Framework ..................................................................... 50 

4.3.5.2 Simplification of the Proposed Method in TBD framework .... 53 

4.4 ALGORITHM 2 ............................................................................................... 57 

4.4.1 System Dynamic Model ..................................................................... 57 

4.4.2 Measurement Model .......................................................................... 58 

4.4.3 Steps of Algorithm 2 .......................................................................... 60 



xiv 

4.4.3.1 Initialization of the Particles ..................................................... 60 

4.4.3.2 Predictions of the Particles ....................................................... 61 

4.4.3.3 Measurement Update of the Particles ....................................... 62 

4.4.3.4 Outputs ..................................................................................... 63 

4.4.4 Algorithm 2 with Process Noise Identification .................................. 66 

5 RESULTS AND SIMULATIONS ...................................................................... 69 

5.1 RADAR SIMULATOR ...................................................................................... 69 

5.2 SCENARIO AND PARAMETERS ........................................................................ 69 

5.3 SIMULATION RESULTS .................................................................................. 77 

5.3.1 Simulation Results of Algorithm 1..................................................... 77 

5.3.1.1 Simulation Results for the First Scenario ................................. 77 

5.3.1.2 Simulation Results for the Second Scenario ............................ 97 

5.3.1.3 Simulation Results for the Third Scenario ............................. 101 

5.3.1.4 Simulation Results for the Fourth Scenario ............................ 108 

5.3.1.5 Summary of the Results of Algorithm 1 ................................. 110 

5.3.2 Simulation Results of Algorithm 2................................................... 111 

5.3.2.1 Simulation Results for the First Scenario ............................... 111 

5.3.2.2 Simulation Results for the Second Scenario .......................... 129 

5.3.2.3 Simulation Results for the Third Scenario ............................. 135 

5.3.2.4 Simulation Results for the Fourth Scenario ............................ 142 



xv 

5.3.2.5 Summary of the Results of Algorithm 2 ................................ 145 

5.3.3 Comparisons between Algorithms ................................................... 146 

6 CONCLUSIONS ................................................................................................ 147 

6.1 SUMMARY AND CONCLUSIONS.................................................................... 147 

6.2 FUTURE STUDIES ........................................................................................ 148 

REFERENCES ..................................................................................................... 149 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xvi 

LIST OF TABLES 

 

 

TABLES 

Table 5.1. The surveillance region for all scenarios except the fourth scenario .... 74 

Table 5.2. The surveillance region for the fourth scenario ..................................... 74 

Table 5.3. The intervals from which the process noises are drawn when using the 

process noise identification method ................................................................... 76 

Table 5.4. Target declaration times for different initial SNR values of the spawned 

target and different number of particles ........................................................... 110 

Table 5.5. Target declaration times for different initial SNR values of the spawned 

target and different number of particles ........................................................... 145 

Table 5.6. Execution times of algorithms when using the first scenario and the 

initial SNR of the spawned target is 6 dB ........................................................ 146 



 

xvii 

LIST OF FIGURES 

 

 

FIGURES 

Figure 1.1. Classical target tracking stages (adopted from [2]) ............................... 2 

Figure 1.2. Power received by the radar. In (a), it is easy to distinguish target from 

noise since target SNR is high; whereas, in (b), it is not possible to distinguish 

target from noise since target SNR is low. Note that the reflected power from 

targets is encircled by red ellipses. ...................................................................... 3 

Figure 1.3. Examples of thresholding which takes place in detection stage in 

classical target tracking. It is not possible to detect the target when the target 

SNR is low as in (b). Note that the reflected power from targets is encircled by 

red ellipses. .......................................................................................................... 3 

Figure 1.4. Data and signal processing in TBD ....................................................... 4 

Figure 2.1. Range, elevation and bearing angles in spherical coordinate system .. 10 

Figure 2.2. An illustration of range-Doppler matrix .............................................. 11 

Figure 4.1. Extraction of the main platform’s power contribution from the range-

Doppler matrix ................................................................................................... 46 

Figure 5.1. The first scenario.................................................................................. 71 

Figure 5.2. The second scenario ............................................................................. 72 



xviii 

Figure 5.3. The third scenario ................................................................................. 72 

Figure 5.4. The fourth scenario .............................................................................. 73 

Figure 5.5. Positions of the particles at different time steps .................................. 79 

Figure 5.6. The probability of existence of the main platform and its SNR value 

(First scenario, 10 dB initial SNR of the spawned target). The line at 𝑝 = 0.6 

indicates the threshold for the declaration of target existences. ........................ 80 

Figure 5.7. The probability of existence of the spawned target and its SNR value 

(First scenario, 10 dB initial SNR of the spawned target). The line at 𝑝 = 0.6 

indicates the threshold for the declaration of target existences. ........................ 81 

Figure 5.8. Range versus Doppler estimates of the main platform and its trajectory 

(First scenario, 10 dB initial SNR of the spawned target) ................................. 82 

Figure 5.9. Range versus Doppler estimates for the spawned target and its 

trajectory (First scenario, 10 dB initial SNR of the spawned target) ................. 82 

Figure 5.10. The RMS range error for the main platform (First scenario, 10 dB 

initial SNR of the spawned target) ..................................................................... 83 

Figure 5.11. The RMS range error for the main platform (First scenario, 10 dB 

initial SNR of the spawned target) ..................................................................... 83 

Figure 5.12. The RMS range error for the spawned target (First scenario, 10 dB 

initial SNR of the spawned target) ..................................................................... 84 

Figure 5.13. The RMS Doppler error for the main platform (First scenario, 10 dB 

initial SNR of the spawned target) ..................................................................... 84 

Figure 5.14. The RMS Doppler error for the spawned target (First scenario, 10 dB 

initial SNR of the spawned target) ..................................................................... 85 



xix 

Figure 5.15. 𝑁𝑒𝑓𝑓/𝑁 for the main platform (First scenario, 10 dB initial SNR of 

the spawned target). The existence of the target is indicated by ‘*’. For visual 

clarity, it is shown as a line at 𝑁𝑒𝑓𝑓/𝑁 = 90%. .............................................. 86 

Figure 5.16. 𝑁𝑒𝑓𝑓/𝑁 for the spawned target (First scenario, 10 dB initial SNR of 

the spawned target). The existence of the target is indicated by ‘*’. For visual 

clarity, it is shown as a line at 𝑁𝑒𝑓𝑓/𝑁 = 90%. .............................................. 87 

Figure 5.17. The SNR estimates for the main platform (First scenario, 10 dB initial 

SNR of the spawned target) ............................................................................... 87 

Figure 5.18. The SNR estimates for the spawned target (First scenario, 10 dB 

initial SNR of the spawned target) .................................................................... 88 

Figure 5.19. The probability of existence of the spawned target and its SNR value 

(First scenario, 8 dB initial SNR of the spawned target). The line at 𝑝 = 0.6 

indicates the threshold for the declaration of target existences. ........................ 89 

Figure 5.20. Range versus Doppler estimates for the spawned target and its 

trajectory (First scenario, 8 dB initial SNR of the spawned target) .................. 90 

Figure 5.21. The RMS range error for the spawned target (First scenario, 8 dB 

initial SNR of the spawned target) .................................................................... 90 

Figure 5.22. The RMS Doppler error for the spawned target (First scenario, 8 dB 

initial SNR of the spawned target) .................................................................... 91 

Figure 5.23. 𝑁𝑒𝑓𝑓/𝑁 for the spawned target (First scenario, 8 dB initial SNR of 

the spawned target). The existence of the target is indicated by ‘*’. For visual 

clarity, it is shown as a line at 𝑁𝑒𝑓𝑓/𝑁 = 90%. .............................................. 92 

Figure 5.24. The SNR estimates for the spawned target (First scenario, 8 dB initial 

SNR of the spawned target) ............................................................................... 92 



xx 

Figure 5.25. The probability of existence of the spawned target and its SNR value 

(First scenario, 6 dB initial SNR of the spawned target). The line at 𝑝 = 0.6 

indicates the threshold for the declaration of target existences. ........................ 93 

Figure 5.26. Range versus Doppler estimates for the spawned target and its 

trajectory (First scenario, 6 dB initial SNR of the spawned target) ................... 94 

Figure 5.27. The RMS range error for the spawned target (First scenario, 6 dB 

initial SNR of the spawned target) ..................................................................... 94 

Figure 5.28. The RMS Doppler error for the spawned target (First scenario, 6 dB 

initial SNR of the spawned target) ..................................................................... 95 

Figure 5.29. 𝑁𝑒𝑓𝑓/𝑁 for the spawned target (First scenario, 6 dB initial SNR of 

the spawned target). The existence of the target is indicated by ‘*’. For visual 

clarity, it is shown as a line at 𝑁𝑒𝑓𝑓/𝑁 = 90%. .............................................. 95 

Figure 5.30. The SNR estimates for the spawned target (First scenario, 6 dB initial 

SNR of the spawned target) ............................................................................... 96 

Figure 5.31. The probability of existence of the spawned target and its SNR value 

(First scenario, 4 dB initial SNR of the spawned target). The line at 𝑝 = 0.6 

indicates the threshold for the declaration of target existences. ........................ 97 

Figure 5.32. The probability of existence of the spawned target and its SNR value 

(Second scenario, 10 dB initial SNR of the spawned target). The line at 𝑝 = 0.6 

indicates the threshold for the declaration of target existences. ........................ 98 

Figure 5.33 Range versus Doppler estimates for the spawned target and its 

trajectory (Second scenario, 10 dB initial SNR of the spawned target) ............ 98 

Figure 5.34. The RMS range error for the spawned target (Second scenario, 10 dB 

initial SNR of the spawned target) ..................................................................... 99 



xxi 

Figure 5.35. The RMS Doppler error for the spawned target (Second scenario, 10 

dB initial SNR of the spawned target) ............................................................... 99 

Figure 5.36. 𝑁𝑒𝑓𝑓/𝑁 for the spawned target (Second scenario, 10 dB initial SNR 

of the spawned target). The existence of the target is indicated by ‘*’. For visual 

clarity, it is shown as a line at 𝑁𝑒𝑓𝑓/𝑁 = 90%. ............................................ 100 

Figure 5.37. The SNR estimates for the spawned target (Second scenario, 10 dB 

initial SNR of the spawned target) .................................................................. 101 

Figure 5.38. The probability of existence of the spawned target and its SNR value 

(Third scenario, 6 dB initial SNR of the spawned target). The line at 𝑝 = 0.6 

indicates the threshold for the declaration of target existences. ...................... 102 

Figure 5.39. Actual SNR values and the probability of existence of the spawned 

target obtained by using Algorithm 1 with process noise identification (Third 

scenario, 6 dB initial SNR of the spawned target). The line at 𝑝 = 0.6 indicates 

the threshold for the declaration of target existences. ..................................... 103 

Figure 5.40. Range versus Doppler estimates for the spawned target and its 

trajectory (Third scenario, 6 dB initial SNR of the spawned target) ............... 103 

Figure 5.41. Actual trajectory and range versus Doppler estimates for the spawned 

target obtained by using Algorithm 1 with process noise identification (Third 

scenario, 6 dB initial SNR of the spawned target) .......................................... 104 

Figure 5.42. The RMS range error for the spawned target (Third scenario, 6 dB 

initial SNR of the spawned target) .................................................................. 105 

Figure 5.43. The RMS range error for the spawned target obtained by using 

Algorithm 1 with process noise identification (Third scenario, 6 dB initial SNR 

of the spawned target) ...................................................................................... 105 



xxii 

Figure 5.44. The RMS Doppler error for the spawned target (Third scenario, 6 dB 

initial SNR of the spawned target) ................................................................... 106 

Figure 5.45. The RMS Doppler error for the spawned target obtained by using 

Algorithm 1 with process noise identification (Third scenario, 6 dB initial SNR 

of the spawned target) ...................................................................................... 106 

Figure 5.46. 𝑁𝑒𝑓𝑓/𝑁 for the spawned target (Third scenario, 6 dB initial SNR of 

the spawned target). The existence of the target is indicated by ‘*’. For visual 

clarity, it is shown as a line at 𝑁𝑒𝑓𝑓/𝑁 = 90%. ............................................ 107 

Figure 5.47. 𝑁𝑒𝑓𝑓/𝑁 for the spawned target obtained by using Algorithm 1 with 

process noise identification (Third scenario, 6 dB initial SNR of the spawned 

target). The existence of the target is indicated by ‘*’. For visual clarity, it is 

shown as a line at 𝑁𝑒𝑓𝑓/𝑁 = 90%. ............................................................... 108 

Figure 5.48. The probability of existence of the spawned target and its SNR value 

(Fourth scenario, 6 dB initial SNR of the spawned target). The line at 𝑝 = 0.6 

indicates the threshold for the declaration of target. ........................................ 109 

Figure 5.49. The mode probabilities for 500 particles (First Scenario, 10dB initial 

SNR of the spawned target). The line at 𝑝 = 0.6 indicates the threshold for the 

declaration of target existence. ........................................................................ 112 

Figure 5.50. The mode probabilities for 1k particles (First Scenario, 10dB initial 

SNR of the spawned target). The line at 𝑝 = 0.6 indicates the threshold for the 

declaration of target existence. ........................................................................ 112 

Figure 5.51. The mode probabilities for 5k particles (First Scenario, 10dB initial 

SNR of the spawned target). The line at 𝑝 = 0.6 indicates the threshold for the 

declaration of target existence. ........................................................................ 113 



xxiii 

Figure 5.52. Range versus Doppler estimates for the main platform and its 

trajectory (First Scenario, 10dB initial SNR of the spawned target) ............... 113 

Figure 5.53. Range versus Doppler estimates for the spawned target and its 

trajectory (First Scenario, 10dB initial SNR of the spawned target) ............... 114 

Figure 5.54. The RMS range error for the main platform (First Scenario, 10 dB 

initial SNR of the spawned target) .................................................................. 114 

Figure 5.55. The RMS Doppler error for the main platform (First Scenario, 10 dB 

initial SNR of the spawned target) .................................................................. 115 

Figure 5.56. The RMS range error for the spawned target (First Scenario, 10 dB 

initial SNR of the spawned target) .................................................................. 115 

Figure 5.57. The RMS Doppler error for the spawned target (First Scenario, 10 dB 

initial SNR of the spawned target) .................................................................. 116 

Figure 5.58. 𝑁𝑒𝑓𝑓/𝑁 (First Scenario, 10dB initial SNR of the weak target). The 

existence of the target is indicated by ‘*’. For visual clarity, it is shown as a line 

at 𝑁𝑒𝑓𝑓/𝑁 = 90%. ......................................................................................... 116 

Figure 5.59. The SNR estimates for the main platform (First Scenario, 10 dB initial 

SNR of the spawned target) ............................................................................. 117 

Figure 5.60. The SNR estimates for the spawned target (First Scenario, 10 dB 

initial SNR of the spawned target) .................................................................. 118 

Figure 5.61. The mode probabilities for 500 particles (First Scenario, 8dB initial 

SNR of the spawned target). The line at 𝑝 = 0.6 indicates the threshold for the 

declaration of target existence. ........................................................................ 119 



xxiv 

Figure 5.62. The mode probabilities for 1k particles (First Scenario, 8dB initial 

SNR of the spawned target). The line at 𝑝 = 0.6 indicates the threshold for the 

declaration of target existence. ........................................................................ 120 

Figure 5.63. The mode probabilities for 5k particles (First Scenario, 8dB initial 

SNR of the spawned target). The line at 𝑝 = 0.6 indicates the threshold for the 

declaration of target existence. ........................................................................ 120 

Figure 5.64. Range versus Doppler estimates for the spawned target and its 

trajectory (First Scenario, 8 dB initial SNR of the spawned target) ................ 121 

Figure 5.65. The RMS range error for the spawned target (First Scenario, 8 dB 

initial SNR of the spawned target) ................................................................... 121 

Figure 5.66. The RMS Doppler error for the spawned target (First Scenario, 8 dB 

initial SNR of the spawned target) ................................................................... 122 

Figure 5.67. 𝑁𝑒𝑓𝑓/𝑁 (First Scenario, 8 dB initial SNR of the weak target). The 

existence of the target is indicated by ‘*’. For visual clarity, it is shown as a line 

at 𝑁𝑒𝑓𝑓/𝑁 = 90%. ......................................................................................... 123 

Figure 5.68. The SNR estimates for the spawned target (First Scenario, 8 dB initial 

SNR of the spawned target) ............................................................................. 123 

Figure 5.69. The mode probabilities for 500 particles (First Scenario, 6 dB initial 

SNR of the spawned target). The line at 𝑝 = 0.6 indicates the threshold for the 

declaration of target existence. ........................................................................ 125 

Figure 5.70. The mode probabilities for 1k particles (First Scenario, 6 dB initial 

SNR of the spawned target). The line at 𝑝 = 0.6 indicates the threshold for the 

declaration of target existence. ........................................................................ 125 



xxv 

Figure 5.71. The mode probabilities for 5k particles (First Scenario, 6 dB initial 

SNR of the spawned target). The line at 𝑝 = 0.6 indicates the threshold for the 

declaration of target existence. ........................................................................ 126 

Figure 5.72. Range versus Doppler estimates for the spawned target and its 

trajectory (First Scenario, 6 dB initial SNR of the spawned target) ................ 126 

Figure 5.73. The RMS range error for the spawned target (First Scenario, 6 dB 

initial SNR of the spawned target) .................................................................. 127 

Figure 5.74. The RMS Doppler error for the spawned target (First Scenario, 6 dB 

initial SNR of the spawned target) .................................................................. 127 

Figure 5.75. 𝑁𝑒𝑓𝑓/𝑁 (First Scenario, 6 dB initial SNR of the weak target). The 

existence of the target is indicated by ‘*’. For visual clarity, it is shown as a line 

at 𝑁𝑒𝑓𝑓/𝑁 = 90%. ......................................................................................... 128 

Figure 5.76. The SNR estimates for the spawned target (First Scenario, 6 dB initial 

SNR of the spawned target) ............................................................................. 128 

Figure 5.77. The mode probabilities for 5k particles (First Scenario, 4 dB initial 

SNR of the spawned target). The line at 𝑝 = 0.6 indicates the threshold for the 

declaration of target existence. ........................................................................ 129 

Figure 5.78. The mode probabilities for 500 particles (Second Scenario, 10 dB 

initial SNR of the spawned target). The line at 𝑝 = 0.6 indicates the threshold 

for the declaration of target existence. ............................................................. 130 

Figure 5.79. The mode probabilities for 1k particles (Second Scenario, 10 dB 

initial SNR of the spawned target). The line at 𝑝 = 0.6 indicates the threshold 

for the declaration of target existence. ............................................................. 131 



xxvi 

Figure 5.80. The mode probabilities for 5k particles (Second Scenario, 10 dB 

initial SNR of the spawned target). The line at 𝑝 = 0.6 indicates the threshold 

for the declaration of target existence. ............................................................. 131 

Figure 5.81. Range versus Doppler estimates for the spawned target and its 

trajectory (Second Scenario, 10 dB initial SNR of the spawned target) ......... 132 

Figure 5.82. The RMS range error for the spawned target (Second Scenario, 10 dB 

initial SNR of the spawned target) ................................................................... 133 

Figure 5.83. The RMS Doppler error for the spawned target (Second Scenario, 10 

dB initial SNR of the spawned target) ............................................................. 133 

Figure 5.84. 𝑁𝑒𝑓𝑓/𝑁 (Second Scenario, 10 dB initial SNR of the weak target). 

The existence of the target is indicated by ‘*’. For visual clarity, it is shown as a 

line at 𝑁𝑒𝑓𝑓/𝑁 = 90%. .................................................................................. 134 

Figure 5.85. The SNR estimates for the spawned target (Second Scenario, 10 dB 

initial SNR of the spawned target) ................................................................... 135 

Figure 5.86. The probability of existence for the spawned target and its SNR value 

(Third scenario, 6 dB initial SNR of the spawned target). The line at 𝑝 = 0.6 

indicates the threshold for the declaration of target existences. ...................... 136 

Figure 5.87. Actual SNR values and the probability of existence for the spawned 

target obtained by using Algorithm 2 with process noise identification (Third 

scenario, 6 dB initial SNR of the spawned target). The line at 𝑝 = 0.6 indicates 

the threshold for the declaration of target existences. ..................................... 137 

Figure 5.88. Range versus Doppler estimates for the spawned target and its 

trajectory (Third scenario, 6 dB initial SNR of the spawned target) ............... 138 



xxvii 

Figure 5.89. Actual trajectory and range versus Doppler estimates for the spawned 

target obtained by using Algorithm 2 with process noise identification (Third 

scenario, 6 dB initial SNR of the spawned target) .......................................... 138 

Figure 5.90. The RMS range error for the spawned target (Third scenario, 6 dB 

initial SNR of the spawned target) .................................................................. 139 

Figure 5.91. The RMS range error for the spawned target obtained by using 

Algorithm 2 with process noise identification (Third scenario, 6 dB initial SNR 

of the spawned target) ...................................................................................... 139 

Figure 5.92. The RMS Doppler error for the spawned target (Third scenario, 6 dB 

initial SNR of the spawned target) .................................................................. 140 

Figure 5.93. The RMS Doppler error for the spawned target obtained by using 

Algorithm 2 with process noise identification (Third scenario, 6 dB initial SNR 

of the spawned target) ...................................................................................... 140 

Figure 5.94. 𝑁𝑒𝑓𝑓/𝑁 for the spawned target (Third scenario, 6 dB initial SNR of 

the spawned target). The existence of the target is indicated by ‘*’. For visual 

clarity, it is shown as a line at 𝑁𝑒𝑓𝑓/𝑁 = 90%. ............................................ 141 

Figure 5.95. 𝑁𝑒𝑓𝑓/𝑁 for the spawned target obtained by using Algorithm 2 with 

process noise identification (Third scenario, 6 dB initial SNR of the spawned 

target). The existence of the target is indicated by ‘*’. For visual clarity, it is 

shown as a line at 𝑁𝑒𝑓𝑓/𝑁 = 90%. ............................................................... 142 

Figure 5.96. The mode probabilities for 500 particles (Fourth Scenario, 6 dB initial 

SNR of the spawned target). The line at 𝑝 = 0.6 indicates the threshold for the 

declaration of target existence. ........................................................................ 143 



xxviii 

Figure 5.97. The mode probabilities for 1k particles (Fourth Scenario, 6 dB initial 

SNR of the spawned target). The line at 𝑝 = 0.6 indicates the threshold for the 

declaration of target existence. ........................................................................ 144 

Figure 5.98. The mode probabilities for 5k particles (Fourth Scenario, 6 dB initial 

SNR of the spawned target). The line at 𝑝 = 0.6 indicates the threshold for the 

declaration of target existence. ........................................................................ 144 



 

1 

CHAPTER 1  

 

 

INTRODUCTION 

 

 

 

Target tracking can be defined as estimating the dynamics of the target as a 

function of time on the basis of sensor measurements like radar or camera. The 

first step of finding a solution to this problem is to find a model which fits the 

target dynamics. The model makes it possible to use statistical methods to estimate 

the states, i.e., dynamics of the target. Filtering which is the main block of these 

methods is used to extract maximum information from the noisy measurements 

and the model. The states of the target are estimated according to extracted 

information from noisy measurements in the filtering part of target tracking. 

1.1 Radar 

Radar is an acronym for RAdio Detection And Ranging. The main purpose of 

using radar is to obtain object properties like range, Doppler, bearing and elevation 

angles by using electromagnetic waves. Radar transmits energy and the transmitted 

energy reflects back from the object. It uses the energy which is reflected back 

from the object to obtain object properties. 

The usages of radars are highly diverse. They include air-traffic control, 

navigation, air-defense systems, antimissile systems and weather forecasting 

applications etc., [2]. Radars for air-defense systems which are used for providing 

measurements about kinematic properties of objects to target tracking applications 

are mentioned in this thesis. They will be explained in more detail in Chapter 2.  
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1.2 Track Before Detect 

In classical target tracking methods, raw data is initially thresholded in the 

detection phase to obtain the plots which usually contain range, Doppler, bearing 

and elevation angle measurements. Before tracking, the instantaneous threshold 

based decisions are made with respect to the reflected power measurements 

obtained from the raw data. The information from the near past is not used in these 

decisions. This means that the first step of the classical target tracking is a hard 

decision step. Based on the plots, estimating the state vector of the target that 

possibly contains the position, velocity and acceleration of the target is the main 

purpose of the tracking consisting data association and filtering stages as seen in 

Figure 1.1, see [2]. 

Detection Extraction
Data 

Association
Filtering

Raw Data Tracks

Detection Tracking

Plots

Figure 1.1. Classical target tracking stages (adopted from [2]) 

It is not possible to track weak targets with classical target tracking methods 

because of thresholding made in the detection stage. An example of thresholding is 

given in Figure 1.3. Thresholding may cause losing useful information gathered 

from measurements, i.e., returns from weak targets remain below threshold. 

TBD algorithms which use the raw non-thresholded data like reflected power 

measurements are developed for the purpose of detecting and tracking weak 

targets. An example of raw radar data is given in Figure 1.2. Detection, extraction 

and data association stages don’t take place in TBD; therefore, all information 

gathered from the raw radar data and integrated over time is used as seen in Figure 

1.4. Decisions are made at the end of the process chain.  
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                                (a)                                                             (b) 

Figure 1.2. Power received by the radar. In (a), it is easy to distinguish target from 

noise since target SNR is high; whereas, in (b), it is not possible to distinguish 

target from noise since target SNR is low. Note that the reflected power from 

targets is encircled by red ellipses. 

 

(a) (b) 

Figure 1.3. Examples of thresholding which takes place in detection stage in 

classical target tracking. It is not possible to detect the target when the target SNR 

is low as in (b). Note that the reflected power from targets is encircled by red 

ellipses. 
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Figure 1.4. Data and signal processing in TBD 

There are various approaches used to deal with TBD problem. The earliest works 

[3], [5], [6] on TBD use Hough Transformation. Hough transform assumes linear 

motion for the target and accumulates the signal for the points on the possible 

paths of this motion. In other words, its purpose is to detect lines from multiple 

scans of data in a noisy plane. One of the recent work [4] proposed Multi-

Dimensional Hough Transform to deal with TBD problem. It extended Hough 

Transform, which uses two dimensional data to detect lines, to multi-dimensional 

data. It is shown that this improves the efficiency of the Hough Transform based 

TBD. 

In [7], [8] and [9], a dynamic programming algorithm is used to deal with TBD 

problem. Its purpose is to find the most likely state sequence by determining 

locally optimal state sequences. There is a need for data storage or multiple scans 

of data for dynamic programming based TBD. 

Recent approaches on TBD use grid-based methods as in [10], [11] and [12]. 

Baum-Welch algorithm which is a fixed-grid method computes the posterior 

probability mass over fixed grid and propagates it over time. However, fixed-grid 

methods cause high computational burden since propagating the posterior 

probability mass in the places where there is negligible probability wastes much of 

the time. This problem is solved by using dynamic grid-based methods like using 

particle filters as in [11] and [12]. Particle filters use random samples to construct 

the posterior pdf. 

In this thesis, a particle filter approach is used to perform TBD. Particle filters 

represent the posterior density function by a set of random samples and their 

associated weights.  The target existence information is estimated on the basis of 
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these samples and weights. Compared to algorithms mentioned above, there is no 

need for data storage of past scans. Algorithms based on Hough transform or 

dynamic programming algorithm use discrete-valued state space; whereas, particle 

filter uses continuous-valued state space. It is also not restricted to straight-line 

trajectories like the Hough Transform. A good overview of different TBD 

algorithms is given in [8] in which several TBD algorithms mentioned above are 

compared with respect to their detection performances. 

Related to work here, on the basis of radar measurements, a particle filter based 

TBD algorithm is used for a single target case, see [11]. Boers and Driessen 

extended the single target particle filter based TBD to the multi-target particle 

filter based TBD in [12]. They proposed an algorithm for the two target case where 

one of the targets is weak and spawned from the other one which is a strong target, 

e.g. a missile fired from a helicopter. 

1.3 Historical Review of TBD 

There are different TBD approaches in literature. One of them is that TBD 

problem can be solved by binary integration which applies a threshold to each 

frame and accumulates the binary results for detection of target/s. Hough 

Transform which is already mentioned in Section 1.2 is applied to TBD for the 

first time by Smith and Winter in the late 1970s, [5], [6]. Their purpose was 

constructing two dimensional image on the basis of multiple scans of data obtained 

from a one-dimensional sensor. Then Carlson published his works about the 

Hough Transform based TBD on the basis of radar measurements in 1994, [3]. 

Multi-Dimensional Hough Transform is applied as a TBD processing in 2011, [4].   

It can be said that the first nonlinear filtering approach to TBD is developed by 

Mercier and Maybeck in 1978, [13], [14]. The method they used is based on 

constructing a nonlinear measurement function between the target state and 

stacked measurement vector which contains the image pixels. They used Extended 

Kalman Filter (EKF) by assuming that the noises are Gaussian.  
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The usage of sampling-based approximation takes place instead of analytic 

approximation in nonlinear filtering used for TBD. Barniv applied the dynamic 

programming with discrete state space to TBD in the mid-1980s, [15], [16], [17].  

Streit used Histogram Probabilistic Multi-Hypothesis Tracking (H-PMHT) for 

tackling with TBD problem in 2000 and 2002, [18], [19]. In this method, 

measurements of underlying density are quantized and the quantized raw data is 

called as histogram. H-PMHT estimates the states by linking the states of 

components in histogram over time via the dynamical model of the target and 

using Expectation-Maximization (EM).  

Bruno [10], [20] used the Baum-Welch algorithm which is already mentioned in 

Section 1.2 to deal with TBD problem in 2001 and 2004, respectively. 

Fixed-grid methods like Baum-Welch algorithm cause high computational burden. 

Therefore, particle filtering which uses dynamic grid is proposed to tackle with this 

problem. Salmond [21] and Boers [22] introduced particle filter based TBD 

algorithm in 2001. Boers and Driessen [12] extended the single target particle filter 

based TBD to multi-target particle filter based TBD in 2004. 

Most of the TBD algorithms mentioned above are batch processors; in other 

words, there is a need for data storage or multiple scans of data. However, it can be 

seen that the most recent algorithms are recursive algorithms. In this thesis, the 

focus is a particle filter based TBD algorithm which is a recursive algorithm. 

1.4 Thesis Motivation and Objective 

TBD is one of the efficient ways of tracking and detecting stealthy targets because 

of using raw data without thresholding unlike classical tracking techniques. TBD is 

more important now than at the past because of the huge development in the 

stealthy target technology as well as a huge increase of small missiles. It is a 

nonlinear and non-Gaussian tracking problem which is too difficult to be solved 

even for a single target setting. In this thesis we concentrate on a particle filter 
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based TBD for a two target setting: one of them is small compared to the other and 

is spawned from the big one. This setting is an example of moving launch 

platforms, e.g. a fighter or helicopter with the capability of firing a missile. This 

scenario is so common in practical view of defense systems. The aim of the multi-

target particle based TBD algorithm will be detecting and tracking of both of these 

targets.   

1.5 Thesis Outline 

In Chapter 2, radar theory is introduced with the classical target tracking concepts. 

Chapter 3 concentrates on particle filtering concept which is used in TBD 

approach in this thesis. 

In Chapter 4, the main problem is stated and the proposed algorithms to solve this 

problem are presented by explaining each sub-algorithm. 

Chapter 5 concentrates on the results and the simulation results of the proposed 

algorithms. The simulation results for the different scenarios are represented for 

each algorithm. 

Thesis is summarized in Chapter 6 and some future works are suggested in this 

chapter. 
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CHAPTER 2  

 

 

RADAR THEORY 

 

 

2.1 Radars 

2.1.1 Basics of Radars  

As it is mentioned in Section 1.1, Radar is an acronym for RAdio Detection And 

Ranging. Radars are used for detection of targets and obtaining detected targets’ 

kinematic properties like range, Doppler, bearing and elevation angles. In Figure 

2.1, positions of radar and target can be seen in the spherical coordinates. We 

assume a coordinate system that the radar is at the origin, the plane tangent to the 

Earth is the x-y plane and the axis orthogonal to this plane is the z axis. Range 

which is the distance between the target and the radar is defined by r; θ is the 

elevation angle and Φ is the bearing angle of the target. 

The transformation from the radar measurements to Cartesian coordinates is given 

by 

 𝑥 = 𝑟𝑐𝑜𝑠𝜃𝑐𝑜𝑠Φ,    𝑦 = 𝑟𝑐𝑜𝑠𝜃𝑠𝑖𝑛Φ,    𝑧 = 𝑟𝑠𝑖𝑛𝜃 (2.1) 

In this work, a pulse radar simulator is used to generate raw data generation. Pulse 

radars transmit electromagnetic energy (consecutive pulses) and receive the energy 

(reflected pulses) reflected back from the target or clutters which are undesired 

objects, see [33]. The time difference between the time at which the pulses 

reflected back from the target are received by radar is used for range measurement. 
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This information is enough to calculate range between the radar and the target 

since electromagnetic waves’ speed is the speed of light, 𝑐 = 3 𝑥 108𝑚/𝑠 in free 

space, and the distance that the electromagnetic waves travel is two times of the 

range between the radar and the target. Therefore, the range is, 

 
𝑟 =   

𝑐∆𝑡

2
 (2.2) 

x

y

z

r

θ

   Φ

     Target’s Position

Radar’s Position

 

Figure 2.1. Range, elevation and bearing angles in spherical coordinate system 

Target’s motion causes the Doppler shift on the frequency of the reflected energy 

according to the transmitted energy. Pulse radars use the Doppler shift (𝑓𝑑) to 

measure Doppler of the target. Therefore, Doppler is defined by, 

 
�̇� = −

𝑓𝑑𝜆

2
 (2.3) 

where λ is the wavelength of the transmitted wave. Doppler shift is positive for the 

objects getting closer to the radar which is the reason for the negative sign in (2.3). 

At the receiver part of pulse radars, first match filtering is applied to the received 

signal, see [23]. It discretizes ranges by filtering the received signal with different 
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delayed versions of transmitted pulse.  Discretized ranges are called as ‘range 

bins’. Then, Doppler processing performs discrete Fourier transform to the filtered 

received signal. At the end of Doppler processing, ‘Doppler bins’ are constructed. 

Range and Doppler bins constitute the ‘Range-Doppler Matrix’ which gives the 

information about the received energy for each range and Doppler cell. An 

illustration of Range-Doppler Matrix can be seen in Figure 2.2. 

The resolution of each cell is defined by 

 
∆𝑟 =

𝑐𝜏

2
,      ∆�̇� =

𝜆

2𝑇
 (2.4) 

where ∆𝑟 is the range resolution (m), ∆�̇� is the Doppler resolution (m/sec), 𝜏 is the 

pulse width (sec), 𝜆 is the radar wavelength (m) and 𝑇 is the pulse integration time 

(sec). As it can be seen in (2.4), the resolutions depend on some radar properties 

like 𝜏, 𝜆 and 𝑇. 

 

Figure 2.2. An illustration of range-Doppler matrix  
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2.1.2 The Radar Range Equation 

The radar range equation describes the relationship between the received energy 𝑃𝑟 

and the transmitted energy 𝑃𝑡 in terms of radar and target properties and 

environmental effects.  

The transmitted energy 𝑃𝑡 is related with the amplitude of the pulse envelope 

(denoted by 𝐴(𝑡)) of a transmitted pulse whose form is given by 

 𝑠𝑡(𝑡) = 𝐴(𝑡)𝑒
𝑗[2𝜋(𝑓𝑡)𝑡+𝜓(𝑡)] (2.5) 

where 𝑓𝑡 is the carrier frequency and 𝜓(𝑡) is the phase modulation of the 

transmitted pulse. The amplitude of the pulse envelope 𝐴(𝑡) is an ideal rectangle 

with amplitude of A and the transmitted energy 𝑃𝑡 is proportional to amplitude of 

the pulse envelope A. 

The received energy 𝑃𝑟 is related with the received echo amplitude denoted by 

𝑅(𝑡). Received echo can be written in the form of 

 𝑠𝑟(𝑡) = 𝑅(𝑡 − 𝑡0)𝑒
𝑗[2𝜋(𝑓𝑡+𝑓𝑑)(𝑡−𝑡0)+𝜑(𝑡)] + 𝜂(𝑡) (2.6) 

where 𝑓𝑑 is the Doppler shift, 𝑡0 = 2𝑟/𝑐 is the time passed between the start time 

of transmission of the pulse and the time at which radar receives the pulse, 𝜑(𝑡) is 

the phase modulation of the received echo and 𝜂(𝑡) is the noise of the receiver. 

The received echo amplitude 𝑅(𝑡 − 𝑡0) is also an ideal rectangle with amplitude of 

R since the amplitude of the pulse envelope 𝐴(𝑡) is an ideal rectangle. The 

received echo is demodulated to be used for match filtering [23] and Doppler 

processing, respectively. At the end of the demodulation process, the demodulated 

received echo is in the form of 

 𝑠𝑟(𝑡) = 𝑅𝑒𝑗[𝜑(𝑡)] + 𝜂𝑑(𝑡) (2.7) 
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The received energy 𝑃𝑟 is proportional to the received echo amplitude R. The 

power density at range 𝑟 for an isotropic antenna which transmits spherical waves 

is given by 

 
𝑃𝑜𝑤𝑒𝑟 𝑑𝑒𝑛𝑠𝑖𝑡𝑦  𝑎𝑡 𝑟𝑎𝑛𝑔𝑒 𝑟 𝑓𝑜𝑟 𝑎𝑛 𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑖𝑐 𝑎𝑛𝑡𝑒𝑛𝑛𝑎 ∝

𝑃𝑡
4𝜋𝑟2

 (2.8) 

where 𝑟 is the range between the radar and the target. A directive antenna is used 

in radars for strengthening the received power density by concentrating the 

transmitted energy at a specific direction. Therefore, there is a gain called the gain 

of transmitter antenna 𝐺𝑡 in the power density for a directive antenna over for an 

isotropic antenna. Therefore, the power density at range 𝑟 for a directive antenna is 

given by 

 
𝑃𝑜𝑤𝑒𝑟 𝑑𝑒𝑛𝑠𝑖𝑡𝑦  𝑎𝑡 𝑟𝑎𝑛𝑔𝑒 𝑟 𝑓𝑜𝑟 𝑎 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑣𝑒 𝑎𝑛𝑡𝑒𝑛𝑛𝑎 ∝

𝑃𝑡𝐺𝑡
4𝜋𝑟2

  (2.9) 

The scattering properties like shape, size and material of the target also affect the 

received power density. A parameter called ‘Radar Cross Section (RCS)’ is used to 

characterize these properties; in other words, RCS, denoted by σ, is a measure of 

energy which is scattered from target. Therefore, the reflected power density 

(𝑃𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑) near the target is given by 

 
𝑃𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑 𝑛𝑒𝑎𝑟 𝑡ℎ𝑒 𝑡𝑎𝑟𝑔𝑒𝑡 ∝

𝑃𝑡𝐺𝑡σ

4𝜋𝑟2
 (2.10) 

However, as going far from the target, the reflected power density decreases by 

1/(4𝜋𝑟2). Therefore, the received power density at radar is given by  

 
𝑃𝑟 ∝

𝑃𝑡𝐺𝑡
4𝜋𝑟2

σ

4𝜋𝑟2
𝐴𝑒 (2.11) 
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where 𝐴𝑒 is the effective area of the receiving antenna of the radar. It is a measure 

of reflected power density captured by radar antenna. The effective area of the 

receiving antenna of the radar is defined by 

 
𝐴𝑒 =

𝜆2𝐺𝑟
4𝜋

 (2.12) 

where 𝐺𝑟 is the receiver antenna gain. (2.11) is given for ideal radar operating in 

free space conditions. However, there are losses in real conditions. Total loss, 

denoted by 𝐿, is the combination of the system and the atmospheric losses. 

Therefore, the received power density can be rewritten as 

 
𝑃𝑟 =

𝑃𝑡𝐺𝑡
4𝜋𝑟2

σ

4𝜋𝑟2
𝜆2𝐺𝑟
4𝜋

1

𝐿
 (2.13) 

The received power density in (2.13) is target originated. Radars also receive some 

noise power originated from many sources like ground, sun, atmosphere and the 

receiver part of radar itself. The total received noise power 𝑃𝑛 can be written as 

 𝑃𝑛 = 𝑘𝑇0𝐵𝑛𝐹𝑛 (2.14) 

where 𝑘 is Boltzmann’s constant, 𝑇0 = 290 𝐾 is the standard temperature, 𝐵𝑛 is 

noise bandwidth of the receiver and 𝐹𝑛 is the noise figure of the receiver. 

Signal to Noise Ratio (SNR) is an important parameter for the detection part of 

tracking algorithms. It is calculated as follows 

 
𝑆𝑁𝑅 =  

𝑃𝑟
𝑃𝑛
=

𝑃𝑡𝐺𝑡𝐺𝑟𝜆
2σ

(4𝜋)3𝑟4𝑘𝑇0𝐵𝑛𝐹𝑛𝐿
 (2.15) 

The SNR value is very important for detection of targets in target tracking. As 

mentioned earlier, threshold based decisions are made with respect to the SNR 

value of targets in classical target tracking.  
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2.2 Target Tracking 

Target tracking will be described in this section by covering both classical tracking 

and TBD. 

2.2.1 Classical Target Tracking 

Classical tracking methods consist of detection, extraction, data association and 

filtering stages as mentioned earlier. In this section, these stages will be described 

in more details. 

2.2.1.1 Detection  

In classical target detection, the received power in each range-Doppler cell is 

compared to a predefined threshold. If the received power exceeds the predefined 

threshold, it is declared that there is ‘detection’ in that cell. Therefore, determining 

the target’s presence is the main purpose of this stage. However, there are two 

kinds of error encountered in this stage. One of them is ‘false alarm’. It occurs 

when the received power exceeds threshold and there is no target in the 

surveillance region. The other one is ‘miss detection’. It occurs when the received 

power does not exceed threshold and there is at least one target in the surveillance 

region. The probability of false alarm and the probability of miss detection are 

denoted by 𝑃𝐹𝐴 and 𝑃𝑀𝐷, respectively. 

 𝑃𝑀𝐷 = 1 − 𝑃𝐷 (2.16) 

where 𝑃𝐷 is the probability of detection.  

Determining the threshold is a difficult problem. The reason is that the probability 

of false alarm decreases and the probability of miss detection increases as the value 

of threshold increases; whereas, the probability of false alarm increases and the 

probability of miss detection decreases as the value of threshold decreases. 
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2.2.1.2 Extraction 

After detection, ‘extraction’ takes place. It is also called ‘clustering’. As it can be 

understood from the name of clustering, this stage makes clusters of detections 

which are close to each other since close detections most likely belong to the same 

target. The center of each cluster is assumed to be the position of the target. At the 

end of extraction, plots which are the inputs of the tracking part of the classical 

target tracking are generated. As mentioned in Section 1.2, plots include range, 

Doppler, bearing and elevation angles of the targets. 

2.2.1.3 Data Association 

As the measurements are generated in the extraction stage, they are either 

associated to the existing tracks or are used to generate new tracks so 

measurements are mainly used for track initiation or track maintenance in target 

tracking. The aim of data association stage is to determine whether a measurement 

is used for track initiation or for track maintenance and determining the track 

which it belongs to if it is used for track maintenance.  

2.2.1.4 Filtering 

The aim of the ‘filtering’ stage is to extract maximum information about the 

target’s state vector from the system models and the associated measurements. In 

filtering, dynamic states like position, velocity and acceleration of the target are 

estimated by constructing the posterior probability density function 𝑝(𝑠𝑘|𝑍𝑘) 

where 𝑠𝑘 is the target state at time 𝑘 and 𝑍𝑘 is the sequence of measurements up to 

time 𝑘. Filtering is explained in Chapter 3 in more details. 

2.2.2 Track Before Detect 

The classical target tracking methods use thresholded raw data. The probability of 

target detection and the probability of false alarm are affected by the choice of 

threshold used in the detection part. It is not a big problem to threshold raw radar 
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data for high SNR targets; whereas, it is not the same for low SNR targets because 

a low value of threshold that is necessary to detect low SNR targets causes high 

density of false alarms. The problem of high density of false alarms can be solved 

by using more complex data association algorithms. Therefore, using un-

thresholded raw data is more advantageous for low SNR targets.  

Track Before Detect (TBD) is a target tracking algorithm using un-thresholded raw 

data for simultaneous detection and tracking. It has better performance on 

detecting and tracking low SNR targets compared to the classical approach. 
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CHAPTER 3  

 

 

FILTERING 

 

 

As mentioned earlier, the main purpose of filtering is to estimate the state vector of 

the target/s based on noisy measurements which most likely contain position and 

velocity of the target/s. There are different ways of implementing filtering in target 

tracking. In this section, one of the recursive filtering method called ‘particle 

filter’ is explained in detail. 

3.1 Bayesian Estimation 

As mentioned earlier, the aim of filtering is to extract maximum information about 

the target’s state vector from the system models and noisy measurements. System 

model consists of system dynamic model and measurement model.  

System dynamic model describes the motion of the target in the state space. It is 

basically shown in discrete state space as follows. 

 𝑠𝑘+1 = 𝑓𝑘(𝑠𝑘 , 𝑣𝑘),       𝑘 ∈  ℕ (3.1) 

where 𝑠𝑘 is the state vector of the target, 𝑓𝑘 is the function of system dynamics, 

and 𝑣𝑘 is the process noise at time step 𝑘. The reason to add process noise term in 

target dynamics is to model the unexpected motion of the target. 

The other model called the measurement model, describes the behavior of the 

sensor measurements. The discrete time measurement model is basically given by 
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 𝑧𝑘 = ℎ𝑘(𝑠𝑘 , 𝑤𝑘),       𝑘 ∈  ℕ (3.2) 

where ℎ𝑘 is the measurement function and 𝑤𝑘 is the measurement noise at time 

step 𝑘. Measurement noise term models sensor errors in the measurements. Note 

that the process noise 𝑣𝑘 and measurement noise 𝑤𝑘 are assumed to be white 

Gaussian in this work. 

Bayesian estimation mainly contains two stages: prediction and update. At the end 

of these stages, it is expected to obtain the posterior probability density function 

𝑝(𝑠𝑘+1|𝑍𝑘+1) where 𝑍𝑘+1 is the set of measurements up to time step 𝑘 + 1.  

The prediction part computes the prediction probability density function 

𝑝(𝑠𝑘+1|𝑍𝑘); in other words, the prediction of the state vector at time step 𝑘 + 1 is 

made by using the measurements up to time step 𝑘. The prediction probability 

density function 𝑝(𝑠𝑘+1|𝑍𝑘) is represented as in (3.3). 

 
𝑝(𝑠𝑘+1|𝑍𝑘) = ∫𝑝(𝑠𝑘+1|𝑠𝑘, 𝑍𝑘)𝑝(𝑠𝑘| 𝑍𝑘)𝑑𝑠𝑘 (3.3) 

It can be rewritten as follows. 

 
𝑝(𝑠𝑘+1|𝑍𝑘) = ∫𝑝(𝑠𝑘+1|𝑠𝑘)𝑝(𝑠𝑘| 𝑍𝑘)𝑑𝑠𝑘 (3.4) 

since 𝑝(𝑠𝑘+1|𝑠𝑘, 𝑍𝑘) = 𝑝(𝑠𝑘+1|𝑠𝑘) as seen in (3.1). The posterior pdf 𝑝(𝑠𝑘|𝑍𝑘) at 

time step 𝑘 is assumed to be available and 𝑝(𝑠𝑘+1|𝑠𝑘) is defined by system 

dynamics model defined in (3.1). 

The update part of the Bayesian estimation involves the update of the prediction 

pdf by using the latest measurement. The prediction pdf which is broadened by 

process noise is tightened in the update part by using the knowledge extracted from 

the latest measurement. The posterior pdf 𝑝(𝑠𝑘+1|𝑍𝑘+1) is calculated as follows in 

the update stage. 
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 𝑝(𝑠𝑘+1|𝑍𝑘+1) = 𝑝(𝑠𝑘+1|𝑧𝑘+1, 𝑍𝑘) 

         =
𝑝(𝑧𝑘+1|𝑠𝑘+1, 𝑍𝑘)𝑝(𝑠𝑘+1|𝑍𝑘)

𝑝(𝑧𝑘+1|𝑍𝑘)
 

                           =
𝑝(𝑧𝑘+1|𝑠𝑘+1)𝑝(𝑠𝑘+1|𝑍𝑘)

𝑝(𝑧𝑘+1|𝑍𝑘)
 

   (3.5) 

where  

 
𝑝(𝑧𝑘+1|𝑍𝑘) = ∫𝑝(𝑧𝑘+1| 𝑠𝑘+1) 𝑝(𝑠𝑘+1|𝑍𝑘)𝑑𝑠𝑘+1 (3.6) 

The prediction pdf 𝑝(𝑠𝑘+1|𝑍𝑘) is defined in the prediction stage and 𝑝(𝑧𝑘+1|𝑠𝑘+1) 

can be calculated by using sensor measurement model defined in (3.2). Therefore, 

the posterior probability density function at time step 𝑘 + 1,  𝑝(𝑠𝑘+1|𝑍𝑘+1) can be 

obtained at the end of update part in Bayesian estimation. 

There are different methods to implement recursive Bayesian estimation; namely, 

Kalman filter, extended Kalman filter [24], unscented Kalman filter [25], particle 

filter etc. The preference among these methods is done according to the properties 

of the system. For instance, Kalman filter can be applied to linear and Gaussian 

systems. However, the system, in most of the applications, is nonlinear and non-

Gaussian. Extended Kalman filter, unscented Kalman filter and particle filter are 

used for these type of systems. Extended Kalman filter applies linearization to 

nonlinear functions 𝑓𝑘 and ℎ𝑘 defined in (3.1) and (3.2) to make the system be 

appropriate for applying Kalman filter; whereas, unscented Kalman filter uses 

approximation of the posterior pdf 𝑝(𝑠𝑘+1|𝑍𝑘+1) by a Gaussian density which is 

defined by a set of sample points chosen deterministically. In this thesis, particle 

filtering which represents the posterior density function by a set of random 

samples and their associated weights is used. 
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3.1.1 Particle Filter 

Particle filtering is developed for the state vector estimation in nonlinear and non-

Gaussian systems. As mentioned earlier, it represents the posterior pdf by a set of 

random samples and their associated weights. In the remaining parts of this chapter 

we will give a basic information on particle filtering which explains the tools used 

during filtering, filtering steps, some discussion on the performance of the 

algorithms and the precautions taken to avoid some potential problems. 

3.1.1.1 Monte Carlo Integration 

It is not easy to take integrals in (3.4) and (4.22) for nonlinear and non-Gaussian 

systems. Therefore, the particle filter uses ‘Monte Carlo Integration’ technique to 

approximate these integrals. Monte Carlo integration [26] can be applied to 

integrals in the form of 

 𝐼 = ∫ 𝑓(𝑠)𝜋(𝑠)𝑑𝑠,       𝑠 ∈  ℝ𝑛 (3.7) 

where  

 ∫𝜋(𝑠)𝑑𝑠 = 1 ,        𝜋(𝑠) > 0         ∀𝑠 (3.8) 

Monte Carlo integration is based on an assumption that the integral in (3.7) can be 

rewritten as follows by drawing 𝑁 samples {𝑠𝑖; 𝑖 = 1, … . , 𝑁} from 𝜋(𝑠), see [27]. 

 

𝐼 =
1

𝑁
∑𝑓(𝑠𝑖)

𝑁

𝑖=1

 (3.9) 

𝜋(𝑠) refers to the posterior pdf 𝑝(𝑠𝑘|𝑍𝑘) in Bayesian solution. In general, it may 

not be possible to draw samples from this distribution since it is not available. 

Therefore, ‘importance sampling’ is introduced for the solution of this problem. 
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3.1.1.2 Importance Sampling 

As mentioned earlier, Monte Carlo integration cannot be applied effectively since 

the posterior pdf is generally not available. If an ‘importance function’ from which 

it is possible to draw samples effectively is introduced and these samples are 

weighted correctly, it is possible to apply Monte Carlo integration. 

The integral in (3.7) can be rewritten as follows 

 
𝐼 = ∫𝑓(𝑠)

𝜋(𝑠)

𝑞(𝑠)
𝑞(𝑠)𝑑𝑠 (3.10) 

where 𝑞(𝑠) is the importance function. By drawing the samples from the 

importance function 𝑞(𝑠), the integral in (4.22) can be rewritten as follows. 

 

𝐼 =
1

𝑁
∑𝑓(𝑠𝑖
𝑁

𝑖=1

)�̃�(𝑠𝑖) (3.11) 

where 

 
�̃�(𝑠𝑖) =

𝜋(𝑠𝑖)

𝑞(𝑠𝑖)
 (3.12) 

�̃�(𝑠𝑖) is the weight of the 𝑖th drawn sample. The weights of the samples are 

normalized as follows. 

 

𝐼 =

1
𝑁
∑ 𝑓(𝑠𝑖)�̃�(𝑠𝑖)𝑁
𝑖=1

1
𝑁
∑ �̃�(𝑠𝑗)𝑁
𝑗=1

=∑𝑓(

𝑁

𝑖=1

𝑠𝑖)𝑤(𝑠𝑖) (3.13) 

where 

 
𝑤(𝑠𝑖) =

�̃�(𝑠𝑖)

∑ �̃�(𝑠𝑗)𝑁
𝑗=1

 (3.14) 
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3.1.1.3 Sequential Importance Sampling 

Importance sampling is a conceptual solution to the target tracking problem in 

Bayesian framework. Recursive importance sampling and correct weighting of the 

samples are the most important steps in this type of recursive state estimation. 

Note that we denote all states up to time step 𝑘 {𝑠𝑗 , 𝑗 = 0, . . . , 𝑘} as 𝑆𝑘. Assume that 

the joint posterior density at time step 𝑘, 𝑝(𝑆𝑘|𝑍𝑘), is approximated as follows, see 

[28]. 

 

𝑝(𝑆𝑘|𝑍𝑘) =∑𝑤𝑘
𝑖𝛿(𝑆𝑘 − 𝑆𝑘

𝑖 )

𝑁

𝑖=1

 (3.15) 

where 𝑤𝑘
𝑖  is the normalized weight of the state sequence 𝑆𝑘

𝑖 . Let us denote the 

importance function from which the samples 𝑆𝑘
𝑖  are drawn as 𝑞(𝑆𝑘|𝑍𝑘). Then, the 

importance weights can be defined as follows. 

 
�̃�𝑘
𝑖 ∝ 

𝑝(𝑆𝑘
𝑖 |𝑍𝑘)

𝑞(𝑆𝑘
𝑖 |𝑍𝑘)

 (3.16) 

If the importance function can be represented as in (4.22), 

 𝑞(𝑆𝑘|𝑍𝑘) = 𝑞(𝑠𝑘|𝑆𝑘−1, 𝑍𝑘)𝑞(𝑆𝑘−1|𝑍𝑘−1) (3.17) 

then the samples of states up to time step 𝑘, 𝑆𝑘
𝑖  ~ 𝑞(𝑆𝑘|𝑍𝑘), can be obtained by 

adding the new sample 𝑠𝑘
𝑖  ~ 𝑞(𝑠𝑘|𝑆𝑘−1, 𝑍𝑘)  to the samples of the set of states up 

to time step 𝑘 − 1, 𝑆𝑘−1
𝑖  ~ 𝑞(𝑆𝑘−1|𝑍𝑘−1).  

The joint posterior density 𝑝(𝑆𝑘|𝑍𝑘) can be obtained as follows. 
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𝑝(𝑆𝑘|𝑍𝑘) =

𝑝(𝑧𝑘|𝑆𝑘, 𝑍𝑘−1)𝑝(𝑆𝑘|𝑍𝑘−1)

𝑝(𝑧𝑘|𝑍𝑘−1)
 

       =
𝑝(𝑧𝑘|𝑆𝑘, 𝑍𝑘−1)𝑝(𝑠𝑘|𝑆𝑘−1, 𝑍𝑘−1)𝑝(𝑆𝑘−1|𝑍𝑘−1)

𝑝(𝑧𝑘|𝑍𝑘−1)
 

                  =
𝑝(𝑧𝑘|𝑠𝑘)𝑝(𝑠𝑘|𝑠𝑘−1)

𝑝(𝑧𝑘|𝑍𝑘−1)
𝑝(𝑆𝑘−1|𝑍𝑘−1) 

                  ∝ 𝑝(𝑧𝑘|𝑠𝑘)𝑝(𝑠𝑘|𝑠𝑘−1)𝑝(𝑆𝑘−1|𝑍𝑘−1) 

(3.18) 

The importance weights can be obtained recursively by substituting (3.17) and 

(4.22) into (3.16) as follows. 

 
�̃�𝑘
𝑖 ∝  

𝑝(𝑧𝑘|𝑠𝑘
𝑖 )𝑝(𝑠𝑘

𝑖 |𝑠𝑘−1
𝑖 )𝑝(𝑆𝑘−1

𝑖 |𝑍𝑘−1)

𝑞(𝑠𝑘
𝑖 |𝑆𝑘−1

𝑖 , 𝑍𝑘)𝑞(𝑆𝑘−1
𝑖 |𝑍𝑘−1)

 

      = 𝑤𝑘−1
𝑖

𝑝(𝑧𝑘|𝑠𝑘
𝑖 )𝑝(𝑠𝑘

𝑖 |𝑠𝑘−1
𝑖 )

𝑞(𝑠𝑘
𝑖 |𝑆𝑘−1

𝑖 , 𝑍𝑘)
 

(3.19) 

If the importance function is selected in the form of  

 𝑞(𝑠𝑘|𝑆𝑘−1, 𝑍𝑘) = 𝑞(𝑠𝑘|𝑠𝑘−1,𝑧𝑘) (3.20) 

then the posterior pdf 𝑝(𝑠𝑘|𝑍𝑘) can be calculated with no need to store the samples 

of sets of states up to time step 𝑘 − 1, {𝑆𝑘−1
𝑖 }

𝑖=1

𝑁
, and the measurements up to time 

𝑘 − 1, 𝑍𝑘−1. In this case, the importance weights can be recalculated as in (4.22). 

 
�̃�𝑘
𝑖 = 𝑤𝑘−1

𝑖
𝑝(𝑧𝑘|𝑠𝑘

𝑖 )𝑝(𝑠𝑘
𝑖 |𝑠𝑘−1

𝑖 )

𝑞(𝑠𝑘
𝑖 |𝑠𝑘−1

𝑖 , 𝑧𝑘)
 (3.21) 

Therefore, the posterior pdf 𝑝(𝑠𝑘|𝑍𝑘) can be expressed as follows. 
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𝑝(𝑠𝑘|𝑍𝑘) ≈∑𝑤𝑘
𝑖𝛿(𝑠𝑘 − 𝑠𝑘

𝑖 )

𝑁

𝑖=1

 (3.22) 

This computation shows that the posterior pdf can be represented by a set of 

random samples and their associated weights.  Recursive estimations can be made 

on the basis of these samples and weights as recursive measurements are received. 

Moreover, as 𝑁 → ∞, the approximation in (4.22) approaches to the true posterior 

pdf, see [29]. 

The particle filtering is developed based on Sequential Importance Sampling (SIS) 

whose pseudocode is given in Pseudocode 1. The choice of the importance 

function is very important for the performance of a particle filter. The ideal 

importance function is the posterior pdf 𝑝(𝑠𝑘|𝑍𝑘). However, it is not possible to 

draw samples from the posterior pdf in most of the time. Therefore, it is aimed to 

select an importance function which is similar to the posterior density 𝑝(𝑠𝑘|𝑍𝑘). 

Pseudocode 1 Sequential Importance Sampling 

 

[{𝑠𝑘
𝑖 , 𝑤𝑘

𝑖 }
𝑖=1

𝑁
] = SIS [{𝑠𝑘−1

𝑖 , 𝑤𝑘−1
𝑖 }

𝑖=1

𝑁
, 𝑧𝑘] 

 FOR 𝑖 = 1 ∶ 𝑁 

- Draw samples 𝑠𝑘
𝑖  ~ 𝑞(𝑠𝑘

𝑖 |𝑠𝑘−1
𝑖 , 𝑧𝑘)  

- Assign weights to the samples as follows 

�̃�𝑘
𝑖 = 𝑤𝑘−1

𝑖
𝑝(𝑧𝑘|𝑠𝑘

𝑖 )𝑝(𝑠𝑘
𝑖 |𝑠𝑘−1

𝑖 )

𝑞(𝑠𝑘
𝑖 |𝑠𝑘−1

𝑖 , 𝑧𝑘)
 

 END FOR 

 FOR 𝑖 = 1 ∶ 𝑁 

- Normalize the importance weights as follows 
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                                𝑤𝑘
𝑖 =

�̃�𝑘
𝑖

∑ �̃�𝑘
𝑖𝑁

𝑖=1

 

 END FOR 

 

3.1.1.4 Degeneracy and Resampling 

The weights of particles are obtained by recursive application of the importance 

weight update in SIS particle filter. That causes a dramatic increase in the variance 

of the importance weights, [28]. After a few number of recursive time steps, there 

remain a few particles whose weights are not negligible. This is an unavoidable 

problem, called ‘degeneracy’ in SIS particle filter, [27]. 

The severity of the degeneracy problem can be measured by effective number of 

particles which is denoted as 𝑁𝑒𝑓𝑓. Effective number of particles can be 

approximately calculated as follows, see [30]. 

 
𝑁𝑒𝑓𝑓 ≅

1

∑ (𝑤𝑘
𝑖 )2𝑁

𝑖=1

 (3.23) 

The less effective number of particles, the more severe the degeneracy problem is. 

The solution of this problem is resampling.  

The purpose of the resampling method is eliminating the particles with low 

weights and generating copies of particles with high weights. At the end of 

resampling, all particles have the same weight which is equal to 1 𝑁⁄ . In other 

words, a new set of particles {𝑠𝑘
𝑖∗} 𝑖=1

𝑁  with uniform weights are obtained from the 

set of particles {𝑠𝑘
𝑖 } 𝑖=1

𝑁  with weights 𝑤𝑘
𝑖  by resampling 𝑁 times from the posterior 

pdf 𝑝(𝑠𝑘|𝑍𝑘) which is represented in (4.22). 

 

𝑝(𝑠𝑘|𝑍𝑘) ≈∑𝑤𝑘
𝑖𝛿(𝑠𝑘 − 𝑠𝑘

𝑖 )

𝑁

𝑖=1

 (3.24) 
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There are different methods available for resampling like stratified and residual 

resampling, [31]. The pseudocode of the systematic resampling algorithm used in 

this thesis is given in Pseudocode 2. 

Pseudocode 2 Resampling 

 

[{𝑠𝑘
𝑗∗
, 𝑤𝑘

𝑗∗
, 𝑖𝑗}

𝑗=1

𝑁
] = Resample [{𝑠𝑘

𝑖 , 𝑤𝑘
𝑖 }
𝑖=1

𝑁
] 

 Initialize the cumulative sum of importance weights: 𝑐𝑠𝑤1 = 𝑤𝑘
1 

 FOR 𝑖 = 2 ∶ 𝑁 

- Calculate the cumulative sum of importance weights: 

                              𝑐𝑠𝑤𝑖 = 𝑐𝑠𝑤𝑖−1 + 𝑤𝑘
𝑖  

 END FOR 

 Start at the initial cumulative sum of importance weights: 𝑖 = 1  

 Determine the starting point: 𝑎1 ~ 𝒰[0, 𝑁
−1]  

 FOR 𝑗 = 1 ∶ 𝑁 

- Determine the place of the random variable 𝑎𝑗 on the cumulative 

sum of importance weights: 𝑎𝑗 = 𝑎1 + 𝑁
−1(𝑗 − 1) 

- WHILE 𝑎𝑗 > 𝑐𝑠𝑤𝑖 

 𝑖 = 𝑖 + 1 

- END WHILE 

- Determine the new sample: 𝑠𝑘
𝑗∗
= 𝑠𝑘

𝑖  

- Assign the weight of the new sample: 𝑤𝑘
𝑗∗
= 𝑁−1 

- Store the parent sample of the new sample: 𝑖𝑗 = 𝑖 

 END FOR 
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3.1.1.5 Sequential Importance Resampling 

SIS algorithm forms the basis of the Sequential Importance Resampling (SIR) 

which applies resampling algorithm at every time step. In this thesis, the 

transitional prior, 𝑝(𝑠𝑘|𝑠𝑘−1
𝑖 ), is used as the importance density. The advantage of 

selecting the transitional prior as importance density is that it is easy to draw 

samples from it and compute the weights of these samples by substituting the 

transitional prior in (3.21). The weights of the samples can be computed as 

follows. 

 �̃�𝑘
𝑖 ∝ 𝑤𝑘−1

𝑖 𝑝(𝑧𝑘|𝑠𝑘
𝑖 ) (3.25) 

The normalized weights, 𝑤𝑘−1
𝑖 , in (4.22) can be omitted since SIR algorithm 

applies resampling at every time step and all samples have the same weight which 

equals to 1 𝑁⁄ . Therefore, the weights of the samples can be rewritten as follows. 

 �̃�𝑘
𝑖 ∝  𝑝(𝑧𝑘|𝑠𝑘

𝑖 ) (3.26) 

The transitional prior pdf does not contain any knowledge of the measurement 𝑧𝑘. 

Therefore, SIR algorithm which uses the transitional prior as importance density 

may be inefficient when the target maneuvers, [27]. 

The pseudocode of the SIR algorithm is given in Pseudocode 3. SIR algorithm 

forms the basis of the TBD algorithm used in this thesis. 
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Pseudocode 3 SIR Algorithm 

 

[{𝑠𝑘
𝑖 }
𝑖=1

𝑁
] = SIR [{𝑠𝑘−1

𝑖 }
𝑖=1

𝑁
, 𝑧𝑘] 

 FOR 𝑖 = 1 ∶ 𝑁 

- Draw the particle: 𝑠𝑘
𝑖  ~ 𝑝(𝑠𝑘|𝑠𝑘−1

𝑖 ) 

- Compute the weight of the particle: �̃�𝑘
𝑖 =  𝑝(𝑧𝑘|𝑠𝑘

𝑖 ) 

 END FOR 

 FOR 𝑖 = 1 ∶ 𝑁 

- Normalize the weights:  

𝑤𝑘
𝑖 =

�̃�𝑘
𝑖

∑ �̃�𝑘
𝑖𝑁

𝑖=1

 

 END FOR 

 Resample by using Pseudocode 2 
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CHAPTER 4  

 

 

DETECTION AND TRACKING OF SPAWNING TARGETS BY 

USING PARTICLE FILTER BASED TBD APPROACH 

 

 

4.1 Problem Statement 

In this work, a particle filter based TBD algorithm is proposed for the two target 

case where one of the targets is weak and spawned from the main platform which 

is a strong target, e.g. a missile fired from a fighter airplane. This is an important 

scenario for defense systems. Moreover, it is a difficult problem since the reflected 

power from the main platform is so strong that makes the detection of the weak 

target so complicated.  

TBD applications given in the literature use the constant velocity model, see [11], 

[12]. The measurement used in this study and the relevant work in the literature is 

the range-Doppler matrix. Without elevation and bearing angles, this model 

becomes unobservable. Since the aim is to get the existence of the spawned target, 

we have introduced a novel reduced order model for a nearly constant velocity 

motion of the target to improve the efficiency of the particle filter. Furthermore, in 

contrast to the related works in literature like [2] and [12], bearing angle between 

the radar and the target is also not included in the measurement space for the same 

purpose. 

The spawned targets are possibly highly maneuvering, i.e. missiles.  The sample 

impoverishment problem becomes serious in the case of highly maneuvering 



32 

targets. In this thesis, a new process noise identification method [1] proposed for 

the classical target tracking methods is adapted to the TBD framework to deal with 

the sample impoverishment problem. Furthermore, in some studies, target SNR is 

assumed to be constant and known as in [12], [22] and [32]. Our study is not 

restricted to the case of constant and known SNR as in [11]. In addition to this, 

SNR values of targets are also estimated in this study. 

In this thesis, two different particle filter based TBD algorithms are developed. 

The algorithms mentioned above are explained in details in the following sections. 

4.2 System Setup 

A general nonlinear discrete time dynamic system can be represented as in (3.1) 

and (3.2). For our problem, although this general representation is valid, the 

knowledge of the target existence should be included. The target existences are 

modelled as a ‘mode’ variable which is denoted by 𝑚𝑘.  

The effects of the modes in system behavior are added to (3.1) and (3.2) as 

follows. 

 𝑠𝑘+1 = 𝑓𝑘(𝑠𝑘,𝑚𝑘, 𝑣𝑘) (4.1) 

   

 𝑧𝑘 = ℎ𝑘(𝑠𝑘, 𝑚𝑘, 𝑤𝑘) (4.2) 

The transitions between the modes are modelled by the Markov transition matrix, 

Π, which is composed of the transitional probabilities, π𝑖𝑗, defined as in (4.3). 

 π𝑖𝑗 ≜ 𝑃{𝑚𝑘 = 𝑗|𝑚𝑘−1 = 𝑖} (4.3) 

where 

 π𝑖𝑗 ≥ 0    and    ∑ π𝑖𝑗𝑗 = 1 (4.4) 
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The systems represented by (4.1), (4.2) and (4.3) are called as jump Markov 

systems and this type of systems are used in this thesis.  

4.3 Algorithm 1  

As mentioned earlier, the aim of both of the algorithms proposed in this study is to 

track and detect the main target and the spawned one. The main difference 

between the two proposed algorithms is the system dynamic model and the 

measurement model they use.  The main principle of Algorithm 1 is to track the 

main platform and the spawned target separately by using a single target system 

model. It achieves this by modifying the raw radar data according to the 

information gathered from the near past. This algorithm is explained in detail in 

the following sections.  

4.3.1 Conceptual Solution of the TBD Problem in the Bayesian Framework 

Algorithm 1 is for tracking of a single target. For this algorithm, the mode variable, 

𝑚𝑘, represents the two hypotheses: 

 𝑚𝑘 = 0: There is no target present. 

 𝑚𝑘 = 1: There is one target present. 

The transition from the absence of the target to the presence of the target is called 

‘birth of the target’ and its probability is denoted by 𝑃𝑏. The transition from the 

presence of the target to the absence of the target is called ‘death of the target’ and 

its probability is denoted as 𝑃𝑑. Then, the Markov transition matrix can be written 

as follows. 

 
Π = (

1 − 𝑃𝑏 𝑃𝑏
𝑃𝑑 1 − 𝑃𝑑

) (4.5) 

TBD problem can be solved in the Bayesian framework, see [27]. As mentioned 

before, Bayesian approach mainly contains two stages: prediction and update. The 
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aim is to construct the joint posterior pdf at time step 𝑘, 𝑝(𝑠𝑘, 𝑚𝑘|𝑍𝑘) by using the 

joint posterior pdf at time step 𝑘 − 1, 𝑝(𝑠𝑘−1, 𝑚𝑘−1|𝑍𝑘−1), when the measurement 

𝑧𝑘 is available. 

Given that the measurements up to time step 𝑘, 𝑍𝑘, the probability of the target 

existence denoted by 𝑃𝑘 can be represented as follows. 

 𝑃𝑘 = P{𝑚𝑘 = 1|𝑍𝑘} (4.6) 

It can be derived from the joint posterior 𝑝(𝑠𝑘, 𝑚𝑘 = 1|𝑍𝑘) by marginalization.  

 
𝑃𝑘 = ∫𝑝(𝑠𝑘,𝑚𝑘 = 1|𝑍𝑘)𝑑𝑠𝑘 (4.7) 

The joint posterior pdf, 𝑝(𝑠𝑘,𝑚𝑘 = 1|𝑍𝑘), is obtained in the update part of the 

Bayesian solution as in (4.22). 

 
𝑝(𝑠𝑘, 𝑚𝑘 = 1|𝑍𝑘) =

𝑝(𝑧𝑘|𝑠𝑘,𝑚𝑘 = 1)𝑝(𝑠𝑘, 𝑚𝑘 = 1|𝑍𝑘−1)

𝑝(𝑧𝑘|𝑍𝑘−1)
 (4.8) 

where 𝑝(𝑧𝑘|𝑍𝑘−1) is a normalizing factor and 𝑝(𝑧𝑘|𝑠𝑘, 𝑚𝑘 = 1) is the likelihood 

function which can be obtained from the measurement model. The prediction 

density, 𝑝(𝑠𝑘, 𝑚𝑘 = 1|𝑍𝑘−1), can be obtained as follows. 

𝑝(𝑠𝑘, 𝑚𝑘 = 1|𝑍𝑘−1) 

= ∫𝑝(𝑠𝑘, 𝑚𝑘 = 1|𝑠𝑘−1, 𝑚𝑘−1 = 1, 𝑍𝑘−1)𝑝(𝑠𝑘−1, 𝑚𝑘−1 = 1|𝑍𝑘−1)𝑑𝑠𝑘−1 +  

 
 ∫ 𝑝(𝑠𝑘, 𝑚𝑘 = 1|𝑠𝑘−1, 𝑚𝑘−1 = 0, 𝑍𝑘−1)𝑝( 𝑠𝑘−1, 𝑚𝑘−1 = 0|𝑍𝑘−1)𝑑𝑠𝑘−1 (4.9) 

where 
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𝑝(𝑠𝑘, 𝑚𝑘 = 1|𝑠𝑘−1, 𝑚𝑘−1 = 1, 𝑍𝑘−1) 

        = 𝑝(𝑠𝑘|𝑠𝑘−1,𝑚𝑘 = 1,𝑚𝑘−1 = 1)P{𝑚𝑘 = 1|𝑚𝑘−1 = 1} 

  = 𝑝(𝑠𝑘|𝑠𝑘−1, 𝑚𝑘 = 1,𝑚𝑘−1 = 1)(1 − 𝑃𝑑) (4.10) 

and  

𝑝(𝑠𝑘, 𝑚𝑘 = 1|𝑠𝑘−1, 𝑚𝑘−1 = 0, 𝑍𝑘−1) 

 = 𝑝(𝑠𝑘|𝑠𝑘−1, 𝑚𝑘 = 1,𝑚𝑘−1 = 0)P{𝑚𝑘 = 1|𝑚𝑘−1 = 0} = 𝑝𝑏(𝑠𝑘)𝑃𝑏 (4.11) 

The probability density 𝑝(𝑠𝑘|𝑠𝑘−1, 𝑚𝑘 = 1,𝑚𝑘−1 = 1) which is given in (4.10) 

can be obtained from the system dynamic model given in (4.1). 𝑝𝑏(𝑠𝑘) is the target 

birth density which is assumed to be known and explained in the following 

sections. 

This conceptual solution given above is implemented in Algorithm 1. 

4.3.2 System Dynamic Model 

As mentioned earlier, the system dynamic model is in the form of   

 𝑠𝑘+1 = 𝑓𝑘(𝑠𝑘,𝑚𝑘, 𝑣𝑘) (4.12) 

where 𝑚𝑘 ∈ {0, 1}. ‘0’ denotes that there is no target present and ‘1’ denotes that 

there is one target present. Therefore, (4.12) can rewritten as in (4.13). 

 
𝑠𝑘+1 = {

𝑓𝑘(𝑠𝑘, 𝑣𝑘),        𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑜𝑛𝑒 𝑡𝑎𝑟𝑔𝑒𝑡 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 (𝑚𝑘 = 1)

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑,     𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑡𝑎𝑟𝑔𝑒𝑡 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 (𝑚𝑘 = 0)  
 (4.13) 

The targets are assumed to move with a constant velocity in many applications 

given in the literature. The state space used for the constant velocity model 

contains the positions and velocities in Cartesian coordinates in literature as in 

(4.14). 
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 𝑠𝑘 = [𝑥𝑘  𝑣𝑒𝑙𝑘
𝑥  𝑦𝑘  𝑣𝑒𝑙𝑘

𝑦
  𝑧𝑘  𝑣𝑒𝑙𝑘

𝑧  𝐼𝑘]
𝑇 (4.14) 

where 𝑥𝑘, 𝑦𝑘, 𝑧𝑘 are the positions, 𝑣𝑒𝑙𝑘
𝑥, 𝑣𝑒𝑙𝑘

𝑦
, 𝑣𝑒𝑙𝑘

𝑧 are the velocities and 𝐼𝑘 is the 

SNR value of the target. The state of target SNR, 𝐼𝑘, is augmented to the state 

vector since the SNR values of the targets are intended to be estimated.  

As mentioned earlier, the raw radar data contains the power measurements for each 

range-Doppler cell. The constant velocity model together with constant target SNR 

is a linear state space model but the measurements are nonlinear. Due to the 

nonlinear nature of the measurements, most of the applications given in the 

literature, use particle filtering. Particle filtering with a state space of dimension 7 

usually gives unsatisfactory results. This problem is not stated in the dim target 

tracking literature that uses particle filtering. We have observed that this is due to 

the unobservability of the states, i.e., the measurements and the state model 

defined above is not an observable pair. So we decided to use a novel model with 

less number of states which are observable except the state of 𝑢𝑘 which is defined 

in (4.16). The state vector in this model is shown in (4.15). 

 𝑠𝑘 = [𝑟𝑘  𝑑𝑘  𝑢𝑘  𝐼𝑘]
𝑇 (4.15) 

where 𝑟𝑘 and 𝑑𝑘 is the range and the Doppler of the target, respectively. 𝑢𝑘 is 

defined as follows. 

 𝑢𝑘 = (𝑣𝑒𝑙𝑘
𝑥)2 + (𝑣𝑒𝑙𝑘

𝑦
)2 + (𝑣𝑒𝑙𝑘

𝑧)2 (4.16) 

Note that the range and the Doppler of the target are defined in terms of the 

positions and the velocities in Cartesian coordinates as in (4.17) and (4.18), 

respectively. 

 
𝑟𝑘 = √𝑥𝑘

2 + 𝑦𝑘
2 + 𝑧𝑘

2 (4.17) 
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𝑑𝑘 =

1

√𝑥𝑘
2 + 𝑦𝑘

2 + 𝑧𝑘
2
(𝑥𝑘𝑣𝑒𝑙𝑘

𝑥 + 𝑦𝑘𝑣𝑒𝑙𝑘
𝑦
+ 𝑧𝑘𝑣𝑒𝑙𝑘

𝑧) (4.18) 

The time update of the range is done according to the (4.19). 

    𝑟𝑘+1 = √𝑥𝑘+1
2 + 𝑦𝑘+1

2 + 𝑧𝑘+1
2  

             = √(𝑥𝑘 + T𝑣𝑒𝑙𝑘
𝑥)2 + (𝑦𝑘 + T𝑣𝑒𝑙𝑘

𝑦
)
2
+ (𝑧𝑘 + T𝑣𝑒𝑙𝑘

𝑧)2   

             = √𝑥𝑘
2 + 𝑦𝑘

2 + 𝑧𝑘
2 + 2T(𝑥𝑘𝑣𝑒𝑙𝑘

𝑥 + 𝑦𝑘𝑣𝑒𝑙𝑘
𝑦
+ 𝑧𝑘𝑣𝑒𝑙𝑘

𝑧) + T2𝑢𝑘 

 
        = √𝑟𝑘

2 + 2T𝑟𝑘𝑑𝑘 + T2𝑢𝑘 (4.19) 

where T is the update time. The time update of the Doppler is done according to 

(4.20). 

    𝑑𝑘+1 =
1

𝑟𝑘+1
(𝑥𝑘+1𝑣𝑒𝑙𝑘+1

𝑥 + 𝑦𝑘+1𝑣𝑒𝑙𝑘+1
𝑦

+ 𝑧𝑘+1𝑣𝑒𝑙𝑘+1
𝑧 ) 

              =
1

𝑟𝑘+1
((𝑥𝑘 + T𝑣𝑒𝑙𝑘

𝑥)𝑣𝑒𝑙𝑘
𝑥 + (𝑦𝑘 + T𝑣𝑒𝑙𝑘

𝑦
)𝑣𝑒𝑙𝑘

𝑦
+ (𝑧𝑘 + T𝑣𝑒𝑙𝑘

𝑧)𝑣𝑒𝑙𝑘
𝑧) 

 
  =

1

𝑟𝑘+1
(𝑟𝑘𝑑𝑘 + T𝑢𝑘)     (4.20) 

where 𝑟𝑘+1 = √𝑟𝑘
2 + 2T𝑟𝑘𝑑𝑘 + T2𝑢𝑘. The time update of 𝑢𝑘 is done according to 

(4.21). 

        𝑢𝑘+1 = (𝑣𝑒𝑙𝑘+1
𝑥 )2 + (𝑣𝑒𝑙𝑘+1

𝑦
)2 + (𝑣𝑒𝑙𝑘+1

𝑧 )2 

                    = (𝑣𝑒𝑙𝑘
𝑥)2 + (𝑣𝑒𝑙𝑘

𝑦
)2 + (𝑣𝑒𝑙𝑘

𝑧)2 = 𝑢𝑘 (4.21) 
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Furthermore, it is assumed that 𝐼𝑘+1 = 𝐼𝑘 since the target SNR can change in 

negligible amount in small time intervals. 

In conclusion, the system dynamic model is represented as follows. 

 

𝑠𝑘+1 = [

𝑟𝑘+1
𝑑𝑘+1
𝑢𝑘+1
𝐼𝑘+1

] =

[
 
 
 
 
 √𝑟𝑘

2 + 2T𝑟𝑘𝑑𝑘 + T2𝑢𝑘

(𝑟𝑘𝑑𝑘 + T𝑢𝑘)/(√𝑟𝑘
2 + 2T𝑟𝑘𝑑𝑘 + T2𝑢𝑘)

𝑢𝑘
𝐼𝑘 ]

 
 
 
 
 

+

[
 
 
 
 
𝑣𝑘
𝑟

𝑣𝑘
𝑑

𝑣𝑘
𝑢

𝑣𝑘
𝐼 ]
 
 
 
 

 (4.22) 

where 𝑣𝑘
𝑟, 𝑣𝑘

𝑑, 𝑣𝑘
𝑢 and 𝑣𝑘

𝐼  are process noises which are assumed to be white 

Gaussian. 

4.3.3 Measurement Model 

As mentioned earlier, radar provides a measurement, 𝑧𝑘, which contains 𝑁𝑟𝑁𝑑 

power measurements 𝑧𝑘
𝑎𝑗

, where 𝑁𝑟 is the number of range cells, 𝑁𝑑 is the number 

of Doppler cells and 𝑧𝑘
𝑎𝑗

 is the power measurement at the (𝑎, 𝑗)𝑡ℎ range-Doppler 

cell at time step 𝑘. The power measurements 𝑧𝑘
𝑎𝑗

 is defined as follows, see [23]. 

 𝑧𝑘
𝑎𝑗
= |𝑧𝐴,𝑘

𝑎𝑗
|2 (4.23) 

where 𝑧𝐴,𝑘
𝑎𝑗

 is the complex amplitude data of the received target signal at the 

(𝑎, 𝑗)𝑡ℎ range-Doppler cell and can be written as follows. 

 𝑧𝐴,𝑘 = �̃�𝑘ℎ𝐴,𝑘(𝑠𝑘) + 𝑛𝑘 (4.24) 

where 

 �̃�𝑘 = 𝐴𝑘𝑒
𝑖𝜑𝑘,       𝜑𝑘 ∈ (0,2𝜋) (4.25) 
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�̃�𝑘 is the complex amplitude of the signal that the target reflects, 𝑛𝑘 is the complex 

Gaussian noise and ℎ𝐴,𝑘(𝑠𝑘) is the reflection form defined for each range-Doppler 

cell as follows. 

 
ℎ𝐴,𝑘
𝑎𝑗
(𝑠𝑘) = 𝑒

−
(𝑟𝑎−𝑟𝑘)

2

2𝑅
𝐿𝑟 − 

(𝑑𝑗−𝑑𝑘)
2

2𝐷
𝐿𝑑 (4.26) 

In this representation, 𝑅 and 𝐷 are constants which are related to the size of a 

range-Doppler cell and 𝐿𝑟, 𝐿𝑑 are the constants of losses. 𝑟𝑎 and 𝑑𝑗 are the range 

and Doppler values of the (𝑎, 𝑗)𝑡ℎ cell, respectively. 

As mentioned above, 𝑛𝑘 is complex Gaussian noise and it can be written as 

follows. 

 𝑛𝑘 = 𝑛𝐼,𝑘 + 𝑖𝑛𝑄,𝑘 (4.27) 

where 𝑛𝐼𝑘 and 𝑛𝑄𝑘 are in-phase and quadrature-phase components of 𝑛𝑘. They are 

zero mean white Gaussian noises with variance 𝜎𝑛
2.  

(4.23) can be rewritten by substituting (4.24) and (4.27) as follows. 

 𝑧𝑘
𝑎𝑗
= |�̃�𝑘ℎ𝐴,𝑘

𝑎𝑗 (𝑠𝑘) + 𝑛𝐼,𝑘 + 𝑖𝑛𝑄,𝑘|
2 (4.28) 

It is assumed that these power measurements conditioned on the state vector, 𝑠𝑘, 

are exponentially distributed, see [33].  

 
𝑝(𝑧𝑘

𝑎𝑗|𝑠𝑘, 𝑚𝑘)  ≅  {
𝑝𝑆+𝑁(𝑧𝑘

𝑎𝑗|𝑠𝑘)      ,   𝑚𝑘 = 1 

𝑝𝑁(𝑧𝑘
𝑎𝑗
)                ,   𝑚𝑘 = 0

 (4.29) 

where  

 

𝑝𝑆+𝑁(𝑧𝑘
𝑎𝑗|𝑠𝑘) =

1


𝑡

𝑎𝑗
 𝑒
− 

1


𝑡
𝑎𝑗 𝑧𝑘

𝑎𝑗

 (4.30) 
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and 

 

𝑝𝑁(𝑧𝑘
𝑎𝑗
) =

1


𝑣
𝑎𝑗
 𝑒
− 

1

𝑣
𝑎𝑗 𝑧𝑘

𝑎𝑗

 (4.31) 

𝑝𝑆+𝑁(𝑧𝑘
𝑎𝑗|𝑠𝑘) is the pdf of target plus noise power conditioned on the state vector; 

whereas, 𝑝𝑁(𝑧𝑘
𝑎𝑗
) is the pdf of the power measurement when there is only 

measurement noise in the (𝑎, 𝑗)𝑡ℎ range-Doppler cell. Note that 
𝑡
𝑎𝑗  is the expected 

power of (𝑎, 𝑗)𝑡ℎ range-Doppler cell when there is a target; whereas, 
𝑣
𝑎𝑗  is the 

expected power when there is no target present. They can be represented as in 

(4.32) and (4.33).  

  
𝑡
𝑎𝑗 = 𝐸[(𝑧𝑘

𝑎𝑗
|𝑠𝑘, 𝑚𝑘 = 1)] 

         = 𝐸 [|𝐴𝑘𝑒
𝑖𝜑𝑘ℎ𝐴,𝑘

𝑎𝑗 (𝑠𝑘) + 𝑛𝐼,𝑘 + 𝑖𝑛𝑄,𝑘|
2
] 

         = 𝐸 [(𝐴𝑘ℎ𝐴,𝑘
𝑎𝑗 (𝑠𝑘) 𝑐𝑜𝑠(𝜑𝑘) + 𝑛𝐼,𝑘)

2
+ (𝐴𝑘ℎ𝐴,𝑘

𝑎𝑗 (𝑠𝑘) 𝑠𝑖𝑛(𝜑𝑘) + 𝑛𝑄,𝑘)
2
] 

         = 𝐴𝑘
2 (ℎ𝐴,𝑘

𝑎𝑗 (𝑠𝑘))
2

+ 2𝜎𝑛
2 

  = 𝑃𝑘ℎ𝑃,𝑘
𝑎𝑗 (𝑠𝑘) + 2𝜎𝑛

2 (4.32) 

  
𝑣
𝑎𝑗 = 𝐸[(𝑧𝑘

𝑎𝑗
|𝑠𝑘, 𝑚𝑘 = 0)] 

      = 𝐸 [|𝑛𝐼,𝑘 + 𝑖𝑛𝑄,𝑘|
2
] = 𝐸 [(𝑛𝐼,𝑘)

2
+ (𝑛𝑄,𝑘)

2
] = 2𝜎𝑛

2       (4.33) 

𝑃𝑘 refers to the target power. Target power generally affects more than one range-

Doppler cell in the range-Doppler matrix. The power contribution of the target in 

each range-Doppler cell is taken into account by ℎ𝑃𝑘
𝑎𝑗 (𝑠𝑘) which can be written as 

follows.  
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                                              ℎ𝑃,𝑘
𝑎𝑗 (𝑠𝑘)  = (ℎ𝐴,𝑘

𝑎𝑗 (𝑠𝑘))
2

 

 
            = 𝑒−

(𝑟𝑎−𝑟𝑘)
2

𝑅
𝐿𝑟 – 

(𝑑𝑗−𝑑𝑘)
2

𝐷
𝐿𝑑 

(4.34) 

As seen in (4.35), the likelihood function 𝑝(𝑧𝑘|𝑠𝑘, 𝑚𝑘) can be written as the 

product of the density functions of each range-Doppler cell, 𝑝(𝑧𝑘
𝑎𝑗|𝑠𝑘 ,𝑚𝑘), since 

the received power in each range-Doppler cell is conditionally independent from 

each other.  

                             𝑝(𝑧𝑘|𝑠𝑘, 𝑚𝑘) =∏𝑝(𝑧𝑘
𝑎𝑗|𝑠𝑘,𝑚𝑘)

𝑎𝑗

 

 

                 =

{
 
 

 
 ∏𝑝𝑆+𝑁(𝑧𝑘

𝑎𝑗|𝑠𝑘) 

𝑎𝑗

          ,   𝑚𝑘 = 1 

∏𝑝𝑁(𝑧𝑘
𝑎𝑗
)

𝑎𝑗

                     ,   𝑚𝑘 = 0
 (4.35) 

A target only contributes to the cells in its vicinity. Let us denote the group of cells 

which are affected by target as ℙ. (4.35) can be rewritten as follows. 

 

𝑝(𝑧𝑘|𝑠𝑘, 𝑚𝑘) ≅

{
 
 

 
 ∏ 𝑝𝑆+𝑁(𝑧𝑘

𝑎𝑗|𝑠𝑘) ∏ 𝑝𝑁(𝑧𝑘
𝑎𝑗
)

𝑎𝑗∉ℙ𝑎𝑗∈ℙ

   ,   𝑚𝑘 = 1 

∏𝑝𝑁(𝑧𝑘
𝑎𝑗
)

𝑎𝑗

                                       ,   𝑚𝑘 = 0
 (4.36) 

4.3.4 Steps of Algorithm 1 

4.3.4.1 Initialization of the Particles 

The particle filter is initialized by drawing the set of samples {𝑠0
𝑖 ,𝑚0

𝑖 } according to 

initial state and mode variable distributions as follows. 

 𝑠0
𝑖  ~ 𝑝(𝑠0), 𝑚0

𝑖  ~ 𝑝(𝑚0) (4.37) 



42 

Different initial state and mode variable distributions are used in the initialization 

part of the particle filters, [11], [27]. If there isn’t any information about the initial 

distributions, then the initial mode variables, 𝑚0
𝑖 , which are binary variables can be 

drawn from the uniform density. For each particle whose mode variable is 𝑚0
𝑖 = 1, 

the state vector of the particle 𝑠0
𝑖   can be drawn from the uniform distribution over 

the surveillance region. For each particle whose mode variable is 𝑚0
𝑖 = 0, the state 

vector is undefined as mentioned earlier. For our problem, Algorithm 1 initializes 

two particle filters for the two targets: main platform and the spawned one.  

4.3.4.2 Predictions of the Particles 

After the initialization of the particles, the first step is to determine the transitions 

of the mode variables according to the Markov transition matrix by using 

Pseudocode 4.  

Pseudocode 4 Mode Variable Transitions 

 

[{𝑚𝑘
𝑖 }
𝑖=1

𝑁
] = Transitions of Mode Variables [{𝑚𝑘−1

𝑖 }
𝑖=1

𝑁
, Π] 

 FOR 𝑖 = 1 ∶ 2 

- 𝑎𝑖(0) = 0 

- FOR 𝑗 =  1 ∶ 2 

 𝑎𝑖(𝑗) = 𝑎𝑖(𝑗 − 1) + 𝜋𝑖𝑗 

-  END FOR  

 END FOR 

 FOR 𝑑 = 1 ∶ 𝑁 

- Draw: 𝑢𝑑 ~ 𝑈[0, 1] 

- Assign: 𝑖 = 𝑚𝑘−1
𝑑  and 𝑣 = 1 
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- WHILE ( 𝑎𝑖(𝑣) < 𝑢𝑑 ) 

 𝑣 = 𝑣 + 1 

- END WHILE 

- Assign: 𝑚𝑘
𝑑 = 𝑣 

 END FOR 

Predictions of the particles are done according to the mode variable transitions. 

There are two different groups of particles which differ from each other according 

to the way of prediction done: existing particles and newborn particles.   

a) Newborn Particles: The particles whose transitions of modes are from 

𝑚𝑘−1
𝑖 = 0 to 𝑚𝑘

𝑖 = 1 are called the ‘newborn particles’. In this thesis, the 

range, 𝑟𝑘
𝑖 , and the Doppler, 𝑑𝑘

𝑖 , are drawn from the uniform density over those 

regions of the range-Doppler matrix for which 𝑧𝑘
𝑎𝑗
> 𝛾, where 𝛾 is a 

predefined threshold. The state of target SNR, 𝐼𝑘
𝑖 , is chosen as the power (SNR 

value) of the cell which corresponds to the selected range and Doppler values. 

The value of the threshold is very important since the choice of the threshold 

value affects the performance of the particle filter. It should not be very low 

since the low value causes most of the particles to be in the places where there 

isn’t any target and it should not be very high since this causes an increase in 

the probability of losing the meaningful information. The state of 𝑢𝑘
𝑖  is also 

drawn from the uniform density, 𝑈[𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥], where 𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥 are the 

suitably chosen minimum and maximum values of the target state 𝑢𝑘, 

respectively.  

Any a priori information about the states of the target can also be used for 

drawing the newborn particles. 
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b) Existing Particles: The particles whose mode variable transitions are from 

𝑚𝑘−1
𝑖 = 1 to 𝑚𝑘

𝑖 = 1 are called the ‘existing particles’. The transitional prior, 

𝑝(𝑠𝑘
𝑖 |𝑠𝑘−1

𝑖 ), is used for the existing particles although it is not the optimal one.  

 𝑠𝑘
𝑖  ~ 𝑝(𝑠𝑘|𝑠𝑘−1

𝑖 ) (4.38) 

The transitional prior can be obtained from the system dynamic model 

represented in (4.22). 

Note that the target state vector is undefined for the particles whose mode variable 

is 𝑚𝑘
𝑖 = 0. 

4.3.4.3 Measurement Update of the Particles 

In the measurement update part of particle filters, the importance weights of the 

particles are updated. As mentioned earlier, if the transitional prior density, 

𝑝(𝑠𝑘|𝑠𝑘−1
𝑖 ), is selected as the importance density, then the unnormalized 

importance weights of the particles are computed as follows. 

 �̃�𝑘
𝑖 ∝ 𝑤𝑘−1

𝑖 𝑝(𝑧𝑘|𝑠𝑘
𝑖 , 𝑚𝑘

𝑖 ) (4.39) 

The normalized weights, 𝑤𝑘−1
𝑖 , can be omitted since resampling is applied at the 

end of each time step. As mentioned earlier, all normalized weights of the particles 

have the same weight which is equal to 1 𝑁⁄  at the end of resampling.  Therefore, 

(4.39) can be rewritten as follows. 

 �̃�𝑘
𝑖 ∝ 𝑝(𝑧𝑘|𝑠𝑘

𝑖 , 𝑚𝑘
𝑖 ) (4.40) 

𝑝(𝑧𝑘|𝑠𝑘
𝑖 , 𝑚𝑘

𝑖 ) is derived in (4.36) which can be divided by ∏ 𝑝𝑁(𝑧𝑘
𝑎𝑗
)𝑎𝑗  since the 

proportionality of the importance weights is actually important in the measurement 

update. Therefore, (4.36) can be rewritten as follows. 
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𝑝(𝑧𝑘|𝑠𝑘
𝑖 , 𝑚𝑘

𝑖 ) ≅ {
∏ 𝑙(𝑧𝑘

𝑎𝑗
|𝑠𝑘
𝑖 ) 

𝑎𝑗∈ℙ

   ,   𝑚𝑘
𝑖 = 1 

1                          ,   𝑚𝑘
𝑖 = 0

 (4.41) 

where 

 
𝑙(𝑧𝑘

𝑎𝑗
|𝑠𝑘
𝑖 ) =

𝑝𝑆+𝑁(𝑧𝑘
𝑎𝑗
|𝑠𝑘
𝑖 )

𝑝𝑁(𝑧𝑘
𝑎𝑗
)

 (4.42) 

In conclusion, the unnormalized weights of the particles are calculated according 

to (4.41). 

4.3.4.4 Extraction of the Main Platform’s Power Contribution from the 

Range-Doppler Matrix 

In order to prevent gathering of the weak target’s particles in the vicinity of the 

main platform, the main platform’s power contribution is extracted from the range-

Doppler matrix. After that, this modified measurement is used for the measurement 

update of the particles which belong to the weak target. The expected mean of the 

state vector estimation at time step 𝑘 given the state vector estimation at time step 

𝑘 − 1, denoted as 𝐸[𝑠𝑘
𝑒𝑠𝑡|𝑠𝑘−1

𝑒𝑠𝑡 ], is firstly calculated in order to determine the 

expected place of the main platform in the range-Doppler matrix. However, this 

may not be the exact place of the main platform due to the possible maneuvers or 

bad estimations at time step 𝑘 − 1, 𝑠𝑘−1
𝑒𝑠𝑡 . Therefore, the SNR values close to the 

value of 𝐸[𝐼𝑘
𝑒𝑠𝑡|𝐼𝑘−1

𝑒𝑠𝑡 ] are searched in the vicinity of the values of 𝐸[𝑟𝑘
𝑒𝑠𝑡|𝑟𝑘−1

𝑒𝑠𝑡 ] and 

𝐸[𝑑𝑘
𝑒𝑠𝑡|𝑑𝑘−1

𝑒𝑠𝑡 ] in the range-Doppler matrix to find the exact place of the main 

platform. After it is found, the powers of the group of cells which are probably 

affected from the main platform are replaced by noise power as shown in Figure 

4.1. 
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Figure 4.1. Extraction of the main platform’s power contribution from the range-

Doppler matrix 

4.3.4.5 Normalization 

The weights are normalized to approximate the true posterior pdf as follows. 

 
𝑤𝑘
𝑖 =

�̃�𝑘
𝑖

∑ �̃�𝑘
𝑖𝑁

𝑖=1

 (4.43) 

Therefore, the posterior pdf, 𝑝(𝑠𝑘|𝑍𝑘), can be expressed as follows. 

 

𝑝(𝑠𝑘|𝑍𝑘) ≈∑𝑤𝑘
𝑖𝛿(𝑠𝑘 − 𝑠𝑘

𝑖 )

𝑁

𝑖=1

 (4.44) 

Note that the normalization of the weights is also done separately for each target. 

4.3.4.6 Outputs 

The probabilities of the targets’ existences and the estimations of the state vectors 

are outputs of Algorithm 1. Outputs can be obtained in two ways: before 

resampling and after resampling. In this thesis, it is preferred to compute them 

before resampling since resampling causes information loss and this leads to 

decrease in accuracy, [25]. 
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Target detection is performed by using the probability of target existence, 𝑃𝑘, 

which is represented in (4.45). 

 

𝑃𝑘 =∑𝑚𝑘
𝑖𝑤𝑘

𝑖

𝑁

𝑖=1

 (4.45) 

The declaration of the target existence is made if 𝑃𝑘 > 𝜆𝑇𝐸, where 𝜆𝑇𝐸 is a 

predefined threshold value. 

The Minimum Mean Square Error (MMSE) estimate of a state vector, denoted as 

𝑠𝑘|𝑘
𝑀𝑀𝑆𝐸 , is represented as follows. 

 
𝑠𝑘|𝑘
𝑀𝑀𝑆𝐸 ≜ 𝐸[𝑠𝑘|𝑍𝑘] = ∫ 𝑠𝑘 𝑝(𝑠𝑘|𝑍𝑘)𝑑𝑠𝑘 (4.46) 

In this work, (4.46) can be rewritten as follows. 

 
𝑠𝑘|𝑘
𝑀𝑀𝑆𝐸 =

∑ 𝑠𝑘
𝑖𝑚𝑘

𝑖𝑁
𝑖=1 𝑤𝑘

𝑖

∑ 𝑚𝑘
𝑖𝑁

𝑖=1 𝑤𝑘
𝑖

 (4.47) 

Note that the probability of the target existence and the MMSE estimate of the 

state vector are computed separately for each target. 

4.3.4.7 Resampling 

Resampling is explained in details and the pseudocode of the resampling algorithm 

is given in Chapter 3. 

Note that resampling is performed separately for each target’s particles. 

The pseudocode of the Algorithm 1 is given in Pseudocode 5. Note that (1) is used 

for the main platform and (2) is used for the weak target in Pseudocode 5. 
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Pseudocode 5 Algorithm 1 

 

[{𝑠𝑘
𝑖(1)
}
𝑖=1

𝑁

, {𝑠𝑘
𝑖(2)
}
𝑖=1

𝑁

, 𝑠𝑘|𝑘
𝑀𝑀𝑆𝐸(1)

, 𝑠𝑘|𝑘
𝑀𝑀𝑆𝐸(2)

, 𝑃𝑘
(1)
, 𝑃𝑘

(2)
] 

= TBD [{𝑠𝑘−1
𝑖(1)
}
𝑖=1

𝑁

, {𝑠𝑘−1
𝑖(2)
}
𝑖=1

𝑁

, 𝑧𝑘] 

 Mode variable transitions for each target using Pseudocode 4. 

[{𝑚𝑘
𝑖(1)
}
𝑖=1

𝑁

] = Transitions of Mode Variables [{𝑚𝑘−1
𝑖(1)

}
𝑖=1

𝑁

, Π] 

[{𝑚𝑘
𝑖(2)
}
𝑖=1

𝑁

] = Transitions of Mode Variables [{𝑚𝑘−1
𝑖(2)

}
𝑖=1

𝑁

, Π] 

 FOR 𝑖 = 1 ∶ 𝑁 

- IF newborn particle 

 Draw 𝑠𝑘
𝑖(1)

 as mentioned in Section 4.3.4.2 

- ELSE IF existing particle 

 Draw 𝑠𝑘
𝑖(1)
~ 𝑝(𝑠𝑘

(1)
|𝑠𝑘−1
𝑖(1)
) 

- END IF 

- Compute the importance weights �̃�𝑘
𝑖(1)

 using (4.41) 

 END FOR 

 Extract the main platform’s power contribution from the range-Doppler 

matrix 

 FOR 𝑖 = 1 ∶ 𝑁 

- IF newborn particle 

 Draw 𝑠𝑘
𝑖(2)

 as mentioned in Section 4.3.4.2 

- ELSE IF existing particle 
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 Draw 𝑠𝑘
𝑖(2)
~ 𝑝(𝑠𝑘

(2)
|𝑠𝑘−1
𝑖(2)
) 

- END IF 

- Compute the importance weights �̃�𝑘
𝑖(2)

 using (4.41) 

 END FOR 

 FOR 𝑖 = 1 ∶ 𝑁 

- Normalize the weights 

𝑤𝑘
𝑖(1)

=
�̃�𝑘
𝑖(1)

∑ �̃�𝑘
𝑖(1)𝑁

𝑖=1

 

𝑤𝑘
𝑖(2)

=
�̃�𝑘
𝑖(2)

∑ �̃�𝑘
𝑖(2)𝑁

𝑖=1

 

 END FOR 

 Compute the outputs: 

𝑃𝑘
(1)
=∑𝑚𝑘

𝑖(1)
𝑤𝑘
𝑖(1)

𝑁

𝑖=1

 

𝑠𝑘|𝑘
𝑀𝑀𝑆𝐸(1)

=
∑ 𝑠𝑘

𝑖(1)
𝑚𝑘
𝑖(1)𝑁

𝑖=1 𝑤𝑘
𝑖(1)

∑ 𝑚𝑘
𝑖(1)𝑁

𝑖=1 𝑤𝑘
𝑖(1)

 

𝑃𝑘
(2)
=∑𝑚𝑘

𝑖(2)
𝑤𝑘
𝑖(2)

𝑁

𝑖=1

 

𝑠𝑘|𝑘
𝑀𝑀𝑆𝐸(2)

=
∑ 𝑠𝑘

𝑖(2)
𝑚𝑘
𝑖(2)𝑁

𝑖=1 𝑤𝑘
𝑖(2)

∑ 𝑚𝑘
𝑖(2)𝑁

𝑖=1 𝑤𝑘
𝑖(2)

 

 

 Resample the particles separately for each target by using Pseudocode 2  

 Declare the targets’ existences if: 

𝑃𝑘
(1) > 𝜆𝑇𝐸 

𝑃𝑘
(2) > 𝜆𝑇𝐸 
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4.3.5 Algorithm 1 with Process Noise Identification 

In this thesis, we focused on the case of the spawning targets, e.g. a missile fired 

from a fighter airplane. In real world, the spawned targets like missiles can highly 

maneuver throughout all periods of their motions, see [40]. In the particle filter 

framework, multiple dynamic model and the probability matrix constructed 

according to probabilities of the transitions between these models are able to 

handle this situation. However, the proposed process noise identification based 

method adopts one simple dynamic model during whole tracking process and does 

not need to know the possible multiple models and transition probabilities. 

Furthermore, for tracking of highly maneuvering targets like missiles by particle 

filters, the sample impoverishment is a very serious problem. In order to solve this 

problem, a new process noise identification method [1] is proposed for the 

classical target tracking. This method is adapted to the TBD framework in this 

study. The process noise identification is used for the state estimation of highly 

maneuvering spawned targets in the presence of non-stationary process noise with 

unknown parameters. In literature, there are different noise parameter estimation 

methods for particle filters. Most of them rely on the state augmentation technique, 

see [34] and [35]. Since the particle filters suffer from the increase in the state 

dimension, such approaches are difficult to apply to the systems with high 

dimensional state vector. In some methods, marginalization idea is performed with 

the assumption of a suitable prior distributions for the unknown noise parameters 

in particle filters, see [36] and [37]. However, such approaches are focused on the 

systems with slowly varying noise parameters which is not the case in this work. 

Therefore, the process noise identification approach proposed in [1] is used in this 

work.  

4.3.5.1 Conceptual Solution of the Process Noise Identification in Particle 

Filter Framework 

In the proposed method, a dynamic system is considered to be adapted to model 

the process noise. In this system, the noise vector, 𝑣𝑘−1, is the state vector of this 
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system. The main purpose is to construct the posterior pdf of the process noise, 

𝑝(𝑣𝑘−1|𝑍𝑘), which is represented in (4.48). 

 𝑝(𝑣𝑘−1|𝑍𝑘) = 𝛶𝑝(𝑧𝑘|𝑣𝑘−1)𝑝(𝑣𝑘−1|𝑍𝑘−1) (4.48) 

where  

 
𝛶 =

1

𝑝(𝑧𝑘|𝑍𝑘−1)
 (4.49) 

𝑝(𝑧𝑘|𝑍𝑘−1) is a normalizing constant. 𝑣𝑘−1 is independent from the previous 

measurements, 𝑍𝑘−1, since there is no information about it. Therefore, (4.48) can 

be rewritten as follows. 

 𝑝(𝑣𝑘−1|𝑍𝑘) = 𝛶𝑝(𝑧𝑘|𝑣𝑘−1)𝑝(𝑣𝑘−1) (4.50) 

The process noise, 𝑣𝑘−1, is assumed to be uniformly distributed in the interval of 

[−𝑑, 𝑑] where 𝑑 is the known process noise bound. Therefore, as seen in (4.51), 

the distribution of the process noise, 𝑝(𝑣𝑘−1), can be represented by 𝐻 particles 

which are drawn from 𝑈[−𝑑, 𝑑] where 𝑈 denotes the uniform distribution. 

 

𝑝(𝑣𝑘−1) ≅
1

𝐻
∑𝛿(𝑣𝑘−1 −

𝐻

𝑗=1

𝑣𝑘−1
𝑗
) (4.51) 

(4.50) can be rewritten by substituting (4.51) as follows. 

 

𝑝(𝑣𝑘−1|𝑍𝑘) =
𝛶

𝐻
∑𝑝(𝑧𝑘|𝑣𝑘−1

𝑗
)𝛿(𝑣𝑘−1 −

𝐻

𝑗=1

𝑣𝑘−1
𝑗
) (4.52) 

Let’s denote 𝑝(𝑧𝑘|𝑣𝑘−1
𝑗
) as 𝜀𝑘

𝑗
 for simplification. It corresponds to the weight of 

the 𝑗th process noise particle, 𝑣𝑘−1
𝑗

. The process noise particles are then resampled 

to eliminate the noise particles with low weights and generating copies of noise 
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particles with high weights. At the end of resampling, all noise particles have the 

same weight which is equal to 1/𝐻.  

The weights of the particles, 𝜀𝑘
𝑗
, can be obtained by expanding the likelihood 

function, 𝑝(𝑧𝑘|𝑣𝑘−1
𝑗
), based on the resampled state particles at time step 𝑘 − 1, 

𝑠𝑘−1
𝑖 . 

 

𝑝(𝑧𝑘|𝑣𝑘−1
𝑗
) =∑𝑝(𝑧𝑘|𝑠𝑘−1

𝑖 , 𝑣𝑘−1
𝑗
)𝑝(𝑠𝑘−1

𝑖 |𝑣𝑘−1
𝑗
)

𝐻

𝑖=1

 (4.53) 

where 𝑝(𝑠𝑘−1
𝑖 |𝑣𝑘−1

𝑗
) = 𝑝(𝑠𝑘−1

𝑖 ) since 𝑠𝑘−1
𝑖  and 𝑣𝑘−1

𝑗
 are independent. 

Furthermore, 𝑝(𝑠𝑘−1
𝑖 ) = 1/𝐻 because of the fact that all resampled particles have 

the same weight. (4.53) can be rewritten as follows. 

 

𝑝(𝑧𝑘|𝑣𝑘−1
𝑗
) =∑𝑝(𝑧𝑘|𝑠𝑘−1

𝑖 , 𝑣𝑘−1
𝑗
)
1

𝐻

𝐻

𝑖=1

 (4.54) 

Let’s define the intermediate particles denoted by 𝜇𝑘
𝑖,𝑗

 in order to calculate 

𝑝(𝑧𝑘|𝑠𝑘−1
𝑖 , 𝑣𝑘−1

𝑗
). 

 𝜇𝑘
𝑖,𝑗
= 𝑓(𝑠𝑘−1

𝑖 , 𝑣𝑘−1
𝑗
) (4.55) 

Based on the intermediate particles, 𝜇𝑘
𝑖,𝑗

, 𝑝(𝑧𝑘|𝑠𝑘−1
𝑖 , 𝑣𝑘−1

𝑗
) can be represented as in 

(4.56). 

 

𝑝(𝑧𝑘|𝑠𝑘−1
𝑖 , 𝑣𝑘−1

𝑗
) = ∑∑[𝑝(𝑧𝑘|𝜇𝑘

𝑝,𝑞 , 𝑠𝑘−1
𝑖 , 𝑣𝑘−1

𝑗
)𝑝(𝜇𝑘

𝑝,𝑞|𝑠𝑘−1
𝑖 , 𝑣𝑘−1

𝑗
))]

𝐻

𝑞=1

𝐻

𝑝=1

 (4.56) 

Since 𝑠𝑘−1
𝑖  and 𝑣𝑘−1

𝑗
 are known, 𝜇𝑘

𝑝,𝑞
 is obtained as follows. 

 
𝑝(𝜇𝑘

𝑝,𝑞|𝑠𝑘−1
𝑖 , 𝑣𝑘−1

𝑗
) = {

1, 𝑓𝑜𝑟 𝑝 = 𝑖 𝑎𝑛𝑑 𝑞 = 𝑗
0, 𝑓𝑜𝑟 𝑝 ≠ 𝑖 𝑜𝑟 𝑞 ≠ 𝑗

 (4.57) 



53 

Therefore, (4.54) can be rewritten by substituting (4.56) and (4.57) as follows. 

 

𝑝(𝑧𝑘|𝑣𝑘−1
𝑗
) =∑𝑝(𝑧𝑘|𝜇𝑘

𝑖,𝑗
)
1

𝐻

𝐻

𝑖=1

 (4.58) 

where 𝑝(𝑧𝑘|𝑠𝑘−1
𝑖 , 𝑣𝑘−1

𝑗
) = 𝑝(𝑧𝑘|𝜇𝑘

𝑖,𝑗
). 

After assigning the weights of the process noise particles and resampling these 

particles based on their weights, the procedures of the standard particle filter 

without process noise identification are then followed by obtaining the predicted 

particles {𝑠𝑘
𝑖 , 𝑖 = 1,… ,𝐻} based on the resampled process noise samples 

{𝑣𝑘−1
𝑖 , 𝑖 = 1, … , 𝐻} using the dynamic model represented in (4.1). 

4.3.5.2 Simplification of the Proposed Method in TBD framework 

In the proposed method, there is much more computational burden compared to a 

standard particle filter with 𝐻 particles since 𝐻 𝑥 𝐻 intermediate particles are 

evaluated via (4.55) at each time step. It is observed that the particles belonged to 

the spawned target, {𝑠𝑘−1
𝑖(2)
, 𝑖 = 1,… ,𝐻} , gather around the state estimates of the 

spawned target when the existence of the spawned target is declared, e.g. 𝑃𝑘−1
(2)

>

𝜆𝑇𝐸. They focus in a very small area. Therefore, the particles {𝑠𝑘−1
𝑖 , 𝑖 = 1,… ,𝐻} 

represented in (4.55) are replaced by the state estimate of the spawned target at 

time step 𝑘 − 1, 𝑠𝑘−1
𝑒𝑠𝑡(2)

, when 𝑃𝑘−1
(2)

> 𝜆𝑇𝐸. Therefore, the intermediate particles 

are then evaluated as follows. 

 𝜇𝑘
𝑞
= 𝑓(𝑠𝑘−1

𝑒𝑠𝑡(2)
, 𝑣𝑘−1
𝑞
)    𝑖𝑓  𝑃𝑘−1

(2)
> 𝜆𝑇𝐸 (4.59) 

The likelihood function represented in (4.58) can be rewritten as follows. 

 

𝑝(𝑧𝑘|𝑣𝑘−1
𝑗
) = ∑𝑝(𝑧𝑘|𝜇𝑘

𝑞)𝑝(𝜇𝑘
𝑞|𝑣𝑘−1

𝑗
)

𝐻

𝑞=1

 (4.60) 
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Therefore, when 𝑃𝑘−1
(2)

> 𝜆𝑇𝐸, the simplification method mentioned above gives the 

possibility of getting rid of the computational burden generated from the 

intermediate particles represented in (4.55). 

Note that when 𝑃𝑘−1
(2)

< 𝜆𝑇𝐸, the procedures of the standard particle filter without 

process noise identification are then followed since the process noise identification 

without simplification increases the computational burden too much. Furthermore, 

the process noise identification method uses only the existing particles whose 

mode transitions of the mode variables are from 𝑚𝑘−1
𝑖(2)

= 1 to 𝑚𝑘
𝑖(2)

= 1. The 

newborn particles can’t be used with the process noise identification since the 

dynamic model is not used when drawing these particles. 

The pseudocode of the Algorithm 1 with process noise identification is given in 

Pseudocode 6. 

Pseudocode 6 Algorithm 1 with Process Noise Identification 

 

[{𝑠𝑘
𝑖(1)
}
𝑖=1

𝑁

, {𝑠𝑘
𝑖(2)
}
𝑖=1

𝑁

, 𝑠𝑘|𝑘
𝑀𝑀𝑆𝐸(1)

, 𝑠𝑘|𝑘
𝑀𝑀𝑆𝐸(2)

, 𝑃𝑘
(1)
, 𝑃𝑘

(2)
] 

= TBD [{𝑠𝑘−1
𝑖(1)
}
𝑖=1

𝑁

, {𝑠𝑘−1
𝑖(2)
}
𝑖=1

𝑁

, 𝑧𝑘] 

 Mode variable transitions for each target using Pseudocode 4 

[{𝑚𝑘
𝑖(1)
}
𝑖=1

𝑁

] = Transitions of Mode Variables [{𝑚𝑘−1
𝑖(1)

}
𝑖=1

𝑁

, Π] 

[{𝑚𝑘
𝑖(2)
}
𝑖=1

𝑁

] = Transitions of Mode Variables [{𝑚𝑘−1
𝑖(2)

}
𝑖=1

𝑁

, Π] 

 IF 𝑃𝑘−1
(2)

> 𝜆𝑇𝐸 

- Determine 𝐻 which is the number of the particles whose mode 

transitions are from 𝑚𝑘−1
𝑖(2)

= 1 to 𝑚𝑘
𝑖(2)

= 1. 

- Draw the process noise particles {𝑣𝑘−1
𝑗
, 𝑗 = 1,… ,𝐻} from the 
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uniform distribution, 𝑈[−𝑑, 𝑑]. 

- Determine the intermediate particles, 𝜇𝑘
𝑞
, by using (4.59). 

- Compute the weights of the process noise particles, {𝜀𝑘
𝑗
, 𝑗 =

1, … , 𝐻}, by using (4.62). 

- Resample the process noise particles by using Pseudocode 2. 

 END IF 

 FOR 𝑖 = 1 ∶ 𝑁 

- IF newborn particle 

 Draw 𝑠𝑘
𝑖(1)

 as mentioned in Section 4.3.4.2 

- ELSE IF existing particle 

 Draw 𝑠𝑘
𝑖(1)
~ 𝑝(𝑠𝑘

(1)
|𝑠𝑘−1
𝑖(1)
)  

- END IF 

- Compute the importance weights �̃�𝑘
𝑖(1)

 using (4.41) 

 END FOR 

 Extract the main platform’s power contribution from the range-Doppler 

matrix 

 FOR 𝑖 = 1 ∶ 𝑁 

- IF newborn particle 

 Draw 𝑠𝑘
𝑖(2)

 as mentioned in Section 4.3.4.2 

- ELSE IF existing particle 

 IF 𝑃𝑘−1
(2)

> 𝜆𝑇𝐸 

 Draw 𝑠𝑘
𝑖(2)
~ 𝑝(𝑠𝑘

(2)
|𝑠𝑘−1
𝑖(2)
), but use the resampled 

process noises {𝑣𝑘−1
𝑖 , 𝑖 = 1,… ,𝐻} rather than 
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[𝑣𝑘
𝑟 𝑣𝑘 

𝑑  𝑣𝑘
𝑢 𝑣𝑘

𝐼 ]T when drawing 𝑠𝑘
𝑖(2)

. 

 ELSE IF 𝑃𝑘−1
(2)

< 𝜆𝑇𝐸 

 Draw 𝑠𝑘
𝑖(2)
~ 𝑝(𝑠𝑘

(2)
|𝑠𝑘−1
𝑖(2)
) 

 END IF 

- END IF 

- Compute the importance weights �̃�𝑘
𝑖(2)

 using (4.41) 

 END FOR 

 FOR 𝑖 = 1 ∶ 𝑁 

- Normalize the weights 

𝑤𝑘
𝑖(1)

=
�̃�𝑘
𝑖(1)

∑ �̃�𝑘
𝑖(1)𝑁

𝑖=1

 

𝑤𝑘
𝑖(2)

=
�̃�𝑘
𝑖(2)

∑ �̃�𝑘
𝑖(2)𝑁

𝑖=1

 

 END FOR 

 Compute the outputs: 

𝑃𝑘
(1)
=∑𝑚𝑘

𝑖(1)
𝑤𝑘
𝑖(1)

𝑁

𝑖=1

 

𝑠𝑘|𝑘
𝑀𝑀𝑆𝐸(1)

=
∑ 𝑠𝑘

𝑖(1)
𝑚𝑘
𝑖(1)𝑁

𝑖=1 𝑤𝑘
𝑖(1)

∑ 𝑚𝑘
𝑖(1)𝑁

𝑖=1 𝑤𝑘
𝑖(1)

 

𝑃𝑘
(2)
=∑𝑚𝑘

𝑖(2)
𝑤𝑘
𝑖(2)

𝑁

𝑖=1

 

𝑠𝑘|𝑘
𝑀𝑀𝑆𝐸(2)

=
∑ 𝑠𝑘

𝑖(2)
𝑚𝑘
𝑖(2)𝑁

𝑖=1 𝑤𝑘
𝑖(2)

∑ 𝑚𝑘
𝑖(2)𝑁

𝑖=1 𝑤𝑘
𝑖(2)

 

 

 Resample the particles separately for each target by using Pseudocode 2  
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 Declare the targets’ existences if: 

𝑃𝑘
(1) > 𝜆𝑇𝐸 

𝑃𝑘
(2) > 𝜆𝑇𝐸 

 

4.4 Algorithm 2 

The main differences between Algorithm 1 and Algorithm 2 are the hypotheses 

which the mode variable contains, the system dynamic and the measurement 

models. The TBD approach of Algorithm 2 is based on the work in [12]. In 

contrast to that work, Algorithm 2 uses a novel reduced order system dynamic 

model. Furthermore, it is not restricted to the case of constant and known SNR as 

in [12], e.g. target SNR values are also estimated. In addition to these 

modifications, the process noise identification approach used in Algorithm 1 is 

also used in this algorithm. 

This algorithm is explained in detail in the following sections. 

4.4.1 System Dynamic Model 

In this algorithm, the system dynamic model given in (4.1) is used with the state 

vector which is composed of the state vectors of both targets as represented in 

(4.62). 

 
𝑠𝑘 = (

𝑠𝑘
(1)

𝑠𝑘
(2)
) (4.61) 

The mode variable, 𝑚𝑘, represents the number of targets in the surveillance region: 

 𝑚𝑘 = 0: There is no target present. 

 𝑚𝑘 = 1: There is one target present. 

 𝑚𝑘 = 2: There are two targets present. 
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The transition matrix, Π, becomes in the form of 

 
Π = (

𝜋00 𝜋01 𝜋02
𝜋10 𝜋11 𝜋12
𝜋20 𝜋21 𝜋22

) (4.62) 

Note that 𝑠𝑘
(1) = 𝑠𝑘

(2)
 when the mode variable is 𝑚𝑘 = 1, since in this way, the 

state vector of the weak target is initially the same as the state vector of the main 

platform when the weak target is spawned from the main platform. For the sake of 

completeness, the state vector is undefined when the mode variable is 𝑚𝑘 = 0. 

4.4.2 Measurement Model 

A slightly modified version of the measurement model of Algorithm 1 is used in 

this algorithm. 

The complex amplitude data, 𝑧𝐴,𝑘, represented in (4.24) is modified for the case of 

two targets as follows. 

 𝑧𝐴,𝑘 = �̃�𝑘
(1)
ℎ𝐴,𝑘
(1)(𝑠𝑘) + �̃�𝑘

(2)
ℎ𝐴,𝑘
(2)(𝑠𝑘) + 𝑛𝑘 (4.63) 

The power measurements per cell, 𝑧𝑘
𝑖𝑗

, can then be written as follows. 

 𝑧𝑘
𝑎𝑗
= |𝑧𝐴,𝑘

𝑎𝑗
|2 = |�̃�𝑘

(1)
ℎ𝐴,𝑘
𝑎𝑗(1)(𝑠𝑘) + �̃�𝑘

(2)
ℎ𝐴,𝑘
𝑎𝑗(2)(𝑠𝑘) + 𝑛𝐼,𝑘 + 𝑖𝑛𝑄,𝑘|

2 (4.64) 

As mentioned earlier, it is assumed that these power measurements conditioned on 

the state vector are exponentially distributed. 

 

𝑝(𝑧𝑘
𝑎𝑗|𝑠𝑘,𝑚𝑘)  ≅  {

𝑝𝑁(𝑧𝑘
𝑎𝑗
)                     ,   𝑚𝑘 = 0

𝑝𝑆+𝑁
(1)

(𝑧𝑘
𝑎𝑗|𝑠𝑘)          ,   𝑚𝑘 = 1

𝑝𝑆+𝑁
(2)

(𝑧𝑘
𝑎𝑗|𝑠𝑘)          ,   𝑚𝑘 = 2

 (4.65) 

where  
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𝑝𝑆+𝑁
(2)

(𝑧𝑘
𝑎𝑗|𝑠𝑘) =

1


𝑡

𝑎𝑗∗
 𝑒
− 

1


𝑡
𝑎𝑗∗ 𝑧𝑘

𝑎𝑗

 (4.66) 

and 

  
𝑡
𝑎𝑗∗ = 𝐸[𝑧𝑘

𝑎𝑗
|𝑠𝑘, 𝑚𝑘 = 2] 

          = 𝐸 [|𝐴𝑘
(1)
𝑒𝑖𝜑𝑘ℎ𝐴,𝑘

𝑎𝑗(1)(𝑠𝑘) + 𝐴𝑘
(2)
𝑒𝑖𝜑𝑘ℎ𝐴,𝑘

𝑎𝑗(2)(𝑠𝑘) + 𝑛𝐼,𝑘 + 𝑖𝑛𝑄,𝑘|
2

] 

           = 𝐸[(𝐴𝑘
(1)ℎ𝐴,𝑘

𝑎𝑗(1)(𝑠𝑘) cos(𝜑𝑘) + 𝐴𝑘
(2)ℎ𝐴,𝑘

𝑎𝑗(2)(𝑠𝑘) cos(𝜑𝑘) + 𝑛𝐼,𝑘)
2

+ 

              (𝐴𝑘
(1)ℎ𝐴,𝑘

𝑎𝑗(1)(𝑠𝑘) sin(𝜑𝑘) + 𝐴𝑘
(2)ℎ𝐴,𝑘

𝑎𝑗(2)(𝑠𝑘) sin(𝜑𝑘) + 𝑛𝑄,𝑘)
2

] 

           = 𝐴𝑘
(1) (ℎ𝐴,𝑘

𝑎𝑗(1)(𝑠𝑘))
2

+ 𝐴𝑘
(2) (ℎ𝐴,𝑘

𝑎𝑗(2)(𝑠𝑘))
2

+ 2𝜎𝑛
2 

    = 𝑃𝑘
(1)ℎ𝑃,𝑘

𝑎𝑗(1)(𝑠𝑘) + 𝑃𝑘
(2)ℎ𝑃,𝑘

𝑎𝑗(2)(𝑠𝑘) + 2𝜎𝑛
2 (4.67) 

As mentioned earlier, 𝑝𝑁(𝑧𝑘
𝑎𝑗
) and 𝑝𝑆+𝑁

(1)
(𝑧𝑘
𝑎𝑗|𝑠𝑘) are represented as in (4.68) and 

(4.69), respectively. 

 

𝑝𝑆+𝑁
(1)

(𝑧𝑘
𝑎𝑗|𝑠𝑘) =

1


𝑡

𝑎𝑗
 𝑒
− 

1


𝑡
𝑎𝑗 𝑧𝑘

𝑎𝑗

 (4.68) 

   

 

𝑝𝑁(𝑧𝑘
𝑎𝑗
) =

1


𝑣
𝑎𝑗
 𝑒
− 

1


𝑣
𝑎𝑗 𝑧𝑘

𝑎𝑗

 (4.69) 

where 

 
𝑡
𝑎𝑗 = 𝑃𝑘ℎ𝑃,𝑘

𝑎𝑗 (𝑠𝑘) + 2𝜎𝑛
2 (4.70) 
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and  

 
𝑣
𝑎𝑗 = 2𝜎𝑛

2 (4.71) 

As mentioned earlier, the likelihood function, 𝑝(𝑧𝑘|𝑠𝑘, 𝑚𝑘), can be written as the 

product of the density functions of each range-Doppler cell, 𝑝(𝑧𝑘
𝑎𝑗|𝑠𝑘,𝑚𝑘), since 

the received power in each range-Doppler cell is independent from each other. 

 

𝑝(𝑧𝑘|𝑠𝑘, 𝑚𝑘) =

{
 
 
 

 
 
 ∏𝑝𝑁(𝑧𝑘

𝑎𝑗
)

𝑎𝑗

                         ,   𝑚𝑘 = 0

∏𝑝𝑆+𝑁
(1)(𝑧𝑘

𝑎𝑗|𝑠𝑘) 

𝑎𝑗

         ,   𝑚𝑘 = 1 

∏𝑝𝑆+𝑁
(2)(𝑧𝑘

𝑎𝑗|𝑠𝑘) 

𝑎𝑗

        ,   𝑚𝑘 = 2

 (4.72) 

Targets only contribute to the cells in their vicinity. Let us denote the group of 

cells which are affected by targets as ℙ. (4.72) can then be rewritten as follows. 

 

𝑝(𝑧𝑘|𝑠𝑘, 𝑚𝑘) =

{
 
 
 

 
 
 ∏𝑝𝑁(𝑧𝑘

𝑎𝑗
)

𝑎𝑗

                                                  ,   𝑚𝑘 = 0

∏ 𝑝𝑆+𝑁
(1)(𝑧𝑘

𝑎𝑗|𝑠𝑘)∏ 𝑝𝑁(𝑧𝑘
𝑎𝑗
)

𝑎𝑗∉ℙ

 

𝑎𝑗∈ℙ

         ,   𝑚𝑘 = 1 

∏ 𝑝𝑆+𝑁
(2)(𝑧𝑘

𝑎𝑗|𝑠𝑘)∏ 𝑝𝑁(𝑧𝑘
𝑎𝑗
)

𝑎𝑗∉ℙ

 

𝑎𝑗∈ℙ

         ,   𝑚𝑘 = 2

 (4.73) 

4.4.3 Steps of Algorithm 2 

4.4.3.1 Initialization of the Particles 

Initialization of the particles is made according to the same principals mentioned in 

the first algorithm. At first, initial mode variables, 𝑚0
𝑖 , where 𝑚𝑘 ∈ {0, 1, 2}, are 

drawn uniformly. After drawing the initial mode variables, initial state vectors of 

the particles are drawn according to the initial mode variables: 
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 For each particle whose mode variable is 𝑚0
𝑖 = 0, the state vector is 

undefined. 

 For each particle whose mode variable is 𝑚0
𝑖 = 1, the state vector is 𝑠0

𝑖 =

[𝑠0
𝑖(1)
 𝑠0
𝑖(2)
]T such that 𝑠0

𝑖(1)
 is drawn from the uniform distribution over the 

surveillance region and 𝑠0
𝑖(2)

= 𝑠0
𝑖(1)

.  

 For each particle whose mode variable is 𝑚0
𝑖 = 2, the state vector is 𝑠0

𝑖 =

[𝑠0
𝑖(1)
 𝑠0
𝑖(2)
]T such that 𝑠0

𝑖(1)
 and 𝑠0

𝑖(2)
 are drawn from the uniform 

distribution over the surveillance region. 

4.4.3.2 Predictions of the Particles 

After the initialization of the particles, the first step is to determine the transitions 

of the mode variables according to the Markov transition matrix by using 

Pseudocode 8. Predictions of the particles are made according to these mode 

variable transitions. There are five different cases: 

 The transition from 𝒎𝒌−𝟏
𝒊 = 𝟎 to 𝒎𝒌

𝒊 = 𝟏: In this case, 𝑠𝑘
𝑖(1)

 is drawn as 

a newborn particle and 𝑠𝑘
𝑖(2)

= 𝑠𝑘
𝑖(1)

. 

 The transition from 𝒎𝒌−𝟏
𝒊 = 𝟏 to 𝒎𝒌

𝒊 = 𝟏: In this case, 𝑠𝑘
𝑖(1)

 is drawn as 

an existing particle and 𝑠𝑘
𝑖(2)

= 𝑠𝑘
𝑖(1)

. 

 The transition from 𝒎𝒌−𝟏
𝒊 = 𝟏 to 𝒎𝒌

𝒊 = 𝟐: In this case, 𝑠𝑘
𝑖(1)

 is drawn as 

an existing particle and 𝑠𝑘
𝑖(2)

 is drawn as a newborn particle. 

 The transition from 𝒎𝒌−𝟏
𝒊 = 𝟐 to 𝒎𝒌

𝒊 = 𝟏: In this case, 𝑠𝑘
𝑖(1)

 is drawn as 

an existing particle and 𝑠𝑘
𝑖(2)

= 𝑠𝑘
𝑖(1)

. 

 The transition from 𝒎𝒌−𝟏
𝒊 = 𝟐 to 𝒎𝒌

𝒊 = 𝟐: In this case, 𝑠𝑘
𝑖(1)

 and 𝑠𝑘
𝑖(2)

 are 

drawn as existing particles. 

Note that the transition from 𝑚𝑘−1
𝑖 = 0 to 𝑚𝑘

𝑖 = 2 is not included in the list above 

since there is no direct transition from the case of no target present to two target 
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present in the scenarios used in this thesis. However, this is not crucial for the 

proposed algorithms. 

4.4.3.3 Measurement Update of the Particles 

As mentioned earlier, the importance weights of the particles are updated in the 

measurement update stage of the particle filter as in (4.40). 

𝑝(𝑧𝑘|𝑠𝑘
𝑖 , 𝑚𝑘

𝑖 ) is derived in (4.73) which can be divided by ∏ 𝑝𝑁(𝑧𝑘
𝑎𝑗
)𝑎𝑗  since the 

proportionality of the importance weights is actually important in the measurement 

update. Therefore, (4.73) can be rewritten as follows. 

 

𝑝(𝑧𝑘|𝑠𝑘
𝑖 , 𝑚𝑘

𝑖 ) ≅  

{
 
 

 
 
1                                    ,   𝑚𝑘 = 0

∏ 𝑙(1)(𝑧𝑘
𝑎𝑗
|𝑠𝑘
𝑖 ) 

𝑎𝑗∈ℙ

         ,   𝑚𝑘 = 1 

∏ 𝑙(2)(𝑧𝑘
𝑎𝑗
|𝑠𝑘
𝑖 ) 

𝑎𝑗∈ℙ

        ,   𝑚𝑘 = 2

 (4.74) 

where  

 
𝑙(1)(𝑧𝑘

𝑎𝑗
|𝑠𝑘
𝑖 ) =

𝑝𝑆+𝑁
(1)(𝑧𝑘

𝑎𝑗|𝑠𝑘)

𝑝𝑁(𝑧𝑘
𝑎𝑗
)

  (4.75) 

and 

 
𝑙(2)(𝑧𝑘

𝑎𝑗
|𝑠𝑘
𝑖 ) =

𝑝𝑆+𝑁
(2)(𝑧𝑘

𝑎𝑗|𝑠𝑘)

𝑝𝑁(𝑧𝑘
𝑎𝑗
)

 (4.76) 

The weights are then normalized to approximate the true posterior pdf as in (4.43). 
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4.4.3.4  Outputs 

In this algorithm, it is also preferred to compute the outputs before resampling. The 

outputs of Algorithm 2 are the probabilities of the targets’ existences and the 

estimations of the state vector. 

Target detections are performed by using the probabilities of targets’ existences, 

denoted by 𝑃𝑘
(1)

 and 𝑃𝑘
(2)

, respectively. 𝑃𝑘
(1)

 is equal to the sum of the weights of 

the particles whose mode variable is 𝑚𝑘
𝑖 = 1. 

 𝑃𝑘
(1)
=∑ 𝑤𝑘

𝑖

𝑖 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑚𝑘
𝑖 =1

 (4.77) 

𝑃𝑘
(2)

 is equal to the sum of the weights of the particles whose mode variable is 

𝑚𝑘
𝑖 = 2 as follows. 

 𝑃𝑘
(2)
=∑ 𝑤𝑘

𝑖

𝑖 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑚𝑘
𝑖 =2

 (4.78) 

The declarations of the target existences are made if the probabilities of the target 

existences are higher than a predefined threshold value, 𝜆𝑇𝐸. 

The MMSE estimate of the state vector is represented as follows. 

 𝑠𝑘|𝑘
𝑀𝑀𝑆𝐸 = [𝑠𝑘|𝑘

𝑀𝑀𝑆𝐸(1) 𝑠𝑘|𝑘
𝑀𝑀𝑆𝐸(2)]T (4.79) 

where  

 

𝑠𝑘|𝑘
𝑀𝑀𝑆𝐸(1)

=
∑ 𝑠𝑘

𝑖(1)
𝑤𝑘
𝑖

𝑖 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑚𝑘
𝑖 =1 𝑜𝑟 2

∑ 𝑤𝑘
𝑖

𝑖 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑚𝑘
𝑖 =1 𝑜𝑟 2

 (4.80) 

and 
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𝑠𝑘|𝑘
𝑀𝑀𝑆𝐸(2)

=
∑ 𝑠𝑘

𝑖(2)
𝑤𝑘
𝑖

𝑖 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑚𝑘
𝑖 =2

∑ 𝑤𝑘
𝑖

𝑖 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑚𝑘
𝑖 =2

 (4.81) 

After computing the outputs, particles are resampled as explained in Section 

4.3.4.7.  

The pseudocode of Algorithm 2 is given in Pseudocode 7. 

Pseudocode 7 Algorithm 2 

 

[{𝑠𝑘
𝑖 }
𝑖=1

𝑁
, 𝑠𝑘|𝑘
𝑀𝑀𝑆𝐸(1)

, 𝑠𝑘|𝑘
𝑀𝑀𝑆𝐸(2)

, 𝑃𝑘
(1)
, 𝑃𝑘

(2)
] = TBD [{𝑠𝑘−1

𝑖 }
𝑖=1

𝑁
, 𝑧𝑘] 

 Mode variable transitions for each target using Pseudocode 4 

[{𝑚𝑘
𝑖 }
𝑖=1

𝑁
] = Transitions of Mode Variables [{𝑚𝑘−1

𝑖 }
𝑖=1

𝑁
, Π] 

 FOR 𝑖 = 1 ∶ 𝑁 

- IF 𝑚𝑘−1
𝑖 = 0 to 𝑚𝑘

𝑖 = 1:  

 Draw 𝑠𝑘
𝑖(1)

 as a newborn particle and assign 𝑠𝑘
𝑖(2)

= 𝑠𝑘
𝑖(1)

 

- ELSE IF 𝑚𝑘−1
𝑖 = 1  to 𝑚𝑘

𝑖 = 1:  

 Draw 𝑠𝑘
𝑖(1)

 as an existing particle and assign 𝑠𝑘
𝑖(2)

= 𝑠𝑘
𝑖(1)

 

- ELSE IF 𝑚𝑘−1
𝑖 = 1  to 𝑚𝑘

𝑖 = 2:  

 Draw 𝑠𝑘
𝑖(1)

 as an existing particle and 𝑠𝑘
𝑖(2)

 as a newborn 

particle 

- ELSE IF 𝑚𝑘−1
𝑖 = 2  to 𝑚𝑘

𝑖 = 1:  

 Draw 𝑠𝑘
𝑖(1)

 as an existing particle and assign 𝑠𝑘
𝑖(2)

= 𝑠𝑘
𝑖(1)

 

- ELSE IF 𝑚𝑘−1
𝑖 = 2  to 𝑚𝑘

𝑖 = 2:  
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 Draw 𝑠𝑘
𝑖(1)

 and  𝑠𝑘
𝑖(2)

 as existing particles 

- END IF 

- Compute the importance weights �̃�𝑘
𝑖  by using (4.74) 

 END FOR 

 FOR 𝑖 = 1 ∶ 𝑁 

- Normalize the weights 

𝑤𝑘
𝑖 =

�̃�𝑘
𝑖

∑ �̃�𝑘
𝑖𝑁

𝑖=1

 

 END FOR 

 Compute the outputs 

𝑃𝑘
(1) =∑ 𝑤𝑘

𝑖

𝑖 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑚𝑘
𝑖 =1 𝑜𝑟 2

 

𝑠𝑘|𝑘
𝑀𝑀𝑆𝐸(1) =

∑ 𝑠𝑘
𝑖(1)𝑤𝑘

𝑖
𝑖 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑚𝑘

𝑖 =1 𝑜𝑟 2

∑ 𝑤𝑘
𝑖

𝑖 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑚𝑘
𝑖 =1 𝑜𝑟 2

 

𝑃𝑘
(2) =∑ 𝑤𝑘

𝑖

𝑖 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑚𝑘
𝑖 =2

 

𝑠𝑘|𝑘
𝑀𝑀𝑆𝐸(2) =

∑ 𝑠𝑘
𝑖(2)𝑤𝑘

𝑖
𝑖 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑚𝑘

𝑖 =2

∑ 𝑤𝑘
𝑖

𝑖 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑚𝑘
𝑖 =2

 

 Resample the particles using Pseudocode 2 

 Declare targets’ existences if: 

𝑃𝑘
(1) > 𝜆𝑇𝐸 

𝑃𝑘
(2) > 𝜆𝑇𝐸 
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4.4.4 Algorithm 2 with Process Noise Identification 

The process noise identification approach used in Algorithm 2 is the same as the 

approach used in Algorithm 1. However, there are some slight differences in the 

implementation of the algorithms.  

As mentioned earlier, the main purpose of the process noise identification is to 

track and detect the highly maneuvering spawned target. In Algorithm 1, each 

target has its own particles so that the process noise identification method can only 

be applied for the spawned target. However, it is not the case for the Algorithm 2 

since the state vector used in the system dynamic model is composed of the state 

vectors of both targets, i.e. 𝑠𝑘
𝑖 = [𝑠𝑘

𝑖(1)
 𝑠𝑘
𝑖(2)
]𝑇. Therefore, we have to apply the 

process noise identification approach for both targets so that the method uses only 

the existing particles whose transitions of the mode variables are from 𝑚𝑘−1
𝑖 = 2 

to 𝑚𝑘
𝑖 = 2. Furthermore, in order to be able to apply the simplification mentioned 

in Section 4.3.5.2, the probability of the two targets’ presence must be 𝑃𝑘−1
(2)

> 𝜆𝑇𝐸.  

The pseudocode of Algorithm 2 with process noise identification is given in 

Pseudocode 8. 

Pseudocode 8 Algorithm 2 with Process Noise Identification 

 

[{𝑠𝑘
𝑖 }
𝑖=1

𝑁
, 𝑠𝑘|𝑘
𝑀𝑀𝑆𝐸(1)

, 𝑠𝑘|𝑘
𝑀𝑀𝑆𝐸(2)

, 𝑃𝑘
(1)
, 𝑃𝑘

(2)
] = TBD [{𝑠𝑘−1

𝑖 }
𝑖=1

𝑁
, 𝑧𝑘] 

 Mode variable transitions for each target using Pseudocode 4 

[{𝑚𝑘
𝑖 }
𝑖=1

𝑁
] = Transitions of Mode Variables [{𝑚𝑘−1

𝑖 }
𝑖=1

𝑁
, Π] 

 IF 𝑃𝑘−1
(2)

> 𝜆𝑇𝐸 

- Determine 𝐻 which corresponds to the number of the particles 

whose mode variable transitions are from 𝑚𝑘−1
𝑖 = 2 to 𝑚𝑘

𝑖 = 2. 
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- Draw the process noise particles {𝑣𝑘−1
𝑗
, 𝑗 = 1,… ,𝐻} from the 

uniform distribution, 𝑈[−𝑑, 𝑑]. 

- Determine the intermediate particles: 𝜇𝑘
𝑞 = 𝑓(𝑠𝑘−1

𝑒𝑠𝑡 , 𝑣𝑘−1
𝑞 ) 

- Compute the weights of the process noise particles, {𝜀𝑘
𝑗
, 𝑗 =

1, … , 𝐻}, by using (4.62). 

- Resample the process noise particles by using Pseudocode 2. 

 END IF 

 FOR 𝑖 = 1 ∶ 𝑁 

- IF 𝑚𝑘−1
𝑖 = 0 to 𝑚𝑘

𝑖 = 1:  

 Draw 𝑠𝑘
𝑖(1)

 as a newborn particle and assign 𝑠𝑘
𝑖(2)

= 𝑠𝑘
𝑖(1)

 

- ELSE IF 𝑚𝑘−1
𝑖 = 1  to 𝑚𝑘

𝑖 = 1:  

 Draw 𝑠𝑘
𝑖(1)

 as an existing particle and assign 𝑠𝑘
𝑖(2)

= 𝑠𝑘
𝑖(1)

 

- ELSE IF 𝑚𝑘−1
𝑖 = 1  to 𝑚𝑘

𝑖 = 2:  

 Draw 𝑠𝑘
𝑖(1)

 as an existing particle and 𝑠𝑘
𝑖(2)

 as a newborn 

particle 

- ELSE IF 𝑚𝑘−1
𝑖 = 2  to 𝑚𝑘

𝑖 = 1:  

 Draw 𝑠𝑘
𝑖(1)

 as an existing particle and assign 𝑠𝑘
𝑖(2)

= 𝑠𝑘
𝑖(1)

 

- ELSE IF 𝑚𝑘−1
𝑖 = 2  to 𝑚𝑘

𝑖 = 2:  

 IF 𝑃𝑘−1
(2)

> 𝜆𝑇𝐸 

 Draw 𝑠𝑘
𝑖(1)

 and 𝑠𝑘
𝑖(2)

 as existing particles, but use the 

resampled process noises {𝑣𝑘−1
𝑖 , 𝑖 = 1,… ,𝐻} rather 

than [𝑣𝑘
𝑟(1)

 𝑣𝑘 
𝑑(1)

 𝑣𝑘
𝑢(1)

 𝑣𝑘
𝐼(1)
 𝑣𝑘
𝑟(2)

 𝑣𝑘 
𝑑(2)

 𝑣𝑘
𝑢(2)

 𝑣𝑘
𝐼(2)
]T 

when drawing 𝑠𝑘
𝑖 . 
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 ELSE IF 𝑃𝑘−1
(2)

< 𝜆𝑇𝐸 

 Draw 𝑠𝑘
𝑖(1)

 and 𝑠𝑘
𝑖(2)

 as existing particles. 

 END IF 

- END IF 

- Compute the importance weights �̃�𝑘
𝑖   by using (4.74) 

 END FOR 

 FOR 𝑖 = 1 ∶ 𝑁 

- Normalize the weights 

𝑤𝑘
𝑖 =

�̃�𝑘
𝑖

∑ �̃�𝑘
𝑖𝑁

𝑖=1

 

 END FOR 

 Compute the outputs: 

𝑃𝑘
(1) =∑ 𝑤𝑘

𝑖

𝑖 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑚𝑘
𝑖 =1 𝑜𝑟 2

 

𝑠𝑘|𝑘
𝑀𝑀𝑆𝐸(1) =

∑ 𝑠𝑘
𝑖(1)𝑤𝑘

𝑖
𝑖 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑚𝑘

𝑖 =1 𝑜𝑟 2

∑ 𝑤𝑘
𝑖

𝑖 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑚𝑘
𝑖 =1 𝑜𝑟 2

 

𝑃𝑘
(2) =∑ 𝑤𝑘

𝑖

𝑖 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑚𝑘
𝑖 =2

 

𝑠𝑘|𝑘
𝑀𝑀𝑆𝐸(2) =

∑ 𝑠𝑘
𝑖(2)𝑤𝑘

𝑖
𝑖 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑚𝑘

𝑖 =2

∑ 𝑤𝑘
𝑖

𝑖 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑚𝑘
𝑖 =2

 

 

 Resample the particles by using Pseudocode 2  

 Declare the targets’ existences if: 

𝑃𝑘
(1) > 𝜆𝑇𝐸 

𝑃𝑘
(2) > 𝜆𝑇𝐸 
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CHAPTER 5  

 

 

RESULTS AND SIMULATIONS 

 

 

5.1 Radar Simulator 

A MATLAB based radar simulator developed in [38] is used for raw data 

generation. It generates a range-Doppler matrix based on the radar, targets and the 

environment related parameters for each run. The simulator given in [38] is 

modified to generate range-Doppler matrices for given targets’ trajectories in a 

given time period. Different scenarios such as different number of targets, different 

SNR values of targets and different clutter spaces can be generated by changing 

the parameters. Moreover, the radar simulator [38] has a capability of generating 

target reflections according to different Swerling models [39]. Swerling-0 and 

Swerling-1 types of targets are used in the radar simulator to evaluate the 

algorithms used in this thesis. 

5.2 Scenario and Parameters 

In this section, scenarios used to evaluate the performances of the proposed TBD 

algorithms are explained in detail. There are four different scenarios. First scenario 

is used for the confirmation of the algorithms. In the second scenario, the spawned 

target maneuvers at some time intervals. This scenario is used for the analysis of 

the algorithms’ performances for maneuvering targets. In the third scenario, the 

spawned target maneuvers so highly that the limit of the algorithms’ performances 

is reached. By using this scenario, it is shown that the process noise identification 
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method increases the performances of the algorithms. In all scenarios except the 

fourth scenario, Swerling-1 type of targets are used. In the fourth scenario, 

Swerling-0 type of targets which move very slowly are used in order to see the 

detection times independently from the changes in the SNR values of the targets. 

Moreover, weak clutters are used in all of these scenarios. 

 First Scenario: The first scenario begins with no target in the surveillance 

region. The main platform appears at time 𝑡 = 6 𝑠 with the position of 

24 𝑘𝑚 from the radar and goes towards the radar with the constant velocity 

of 200 𝑚𝑠−1. At time 𝑡 = 21 𝑠, the weak target is spawned from the main 

platform and goes towards the radar. Initially, it moves with a constant 

acceleration of 40 𝑚𝑠−2 in the first three time steps. At time 𝑡 = 24 𝑠, it 

starts to move with a constant velocity of  320 𝑚𝑠−1. The targets continue 

their motions until the scenario ends at time 𝑡 = 40 𝑠. Figure 5.1 shows the 

trajectories of the targets in the first scenario. Note that the radar is at the 

origin (0, 0, 0). 

 Second Scenario: The only difference between the first scenario and the 

second scenario is that the spawned target maneuvers with +3𝑔 between 

𝑡 = 28 𝑠 and 𝑡 = 32 𝑠, -3𝑔 between 𝑡 = 33 𝑠 and 𝑡 = 37 𝑠. After the 

spawned target maneuvers, it continues to move with constant velocity. 

Figure 5.2 shows the trajectories of the targets in the second scenario. 

 Third Scenario: The main platform appears at time 𝑡 = 6 𝑠 with the 

position of 24.0674 𝑘𝑚 from the radar. At time 𝑡 = 16 𝑠, the weak target 

is spawned from the main platform and goes towards the radar. Initially, it 

moves with a constant acceleration of 40 𝑚𝑠−2 in the first three time steps. 

At time 𝑡 = 19 𝑠, it starts to move with a constant velocity of  320 𝑚𝑠−1. 

The spawned target maneuvers with −7𝑔 between 𝑡 = 28 𝑠 and 𝑡 = 32 𝑠, 

+7𝑔 between 𝑡 = 33 𝑠 and 𝑡 = 37 𝑠. The targets continue their motions 

until the scenario ends at time 𝑡 = 40 𝑠. Figure 5.3 shows the trajectories 

of the targets in the third scenario. 
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 Fourth Scenario: The fourth scenario is almost same as the first scenario. 

One of the difference between them is that Swerling-0 type of targets are 

used in the fourth scenario in order to see the detection times independently 

from the fluctuations in the SNR values of targets. The other difference is 

that the targets move very slowly in the fourth scenario. The main platform 

goes towards the radar with the constant velocity of 10 𝑚𝑠−1. At time 𝑡 =

21 𝑠, the weak target is spawned from the main platform and goes towards 

the radar. Initially, it moves with a constant acceleration of 10 𝑚𝑠−2 in the 

first three time steps. At time 𝑡 = 24 𝑠, it starts to move with a constant 

velocity of  40 𝑚𝑠−1. In all scenarios except the fourth scenario, since the 

targets go towards the radar with high velocities, the mean SNR values of 

targets increase significantly. As we want to see the detection times 

independently from the increase in the mean SNR values of the targets, the 

targets move with very low velocities; so that, the mean SNR values 

increase very slightly during the fourth scenario. Figure 5.4 shows the 

trajectories of the targets in the fourth scenario. 

 

Figure 5.1. The first scenario 
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Figure 5.2. The second scenario 

 

Figure 5.3. The third scenario 
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Figure 5.4. The fourth scenario 

The measurement space is constructed by the range interval of [0, 28.4] 𝑘𝑚 and 

the Doppler interval of [0, 570] 𝑚𝑠−1. It is divided into 𝑁𝑟x𝑁𝑑 cells, where 𝑁𝑟 =

1420 and 𝑁𝑑 = 57. The constants related to the size of range and Doppler cells, 𝑅 

and 𝐷, are equal to 20 𝑚 and 10 𝑚𝑠−1, respectively. The constant of losses are 

𝐿𝑟 = 0.23 and 𝐿𝑑 = 0.2. 

As mentioned earlier, the expected intervals of the target states on the targets’ 

appearance constitute the surveillance region of the targets as given in Table 5.1 

and Table 5.2. Table 5.1 is given for all scenarios except the fourth scenario; 

whereas, Table 5.2 is given for the fourth scenario. 

Note that (1) refers to the states which belong to the main platform; whereas, (2) 

refers to the states which belong to the spawned target. Initially, particles are 

uniformly drawn from the surveillance region given in Table 5.1. 
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Table 5.1. The surveillance region for all scenarios except the fourth scenario 

Parameter Min Value Max Value Unit 

Range(1) 14500 24500 m 

Doppler(1) 150 250 m/s 

u(1) 22500 62500 m2/s2 

Intensity(1) 12 30 dB 

Range(2) 14500 24500 m 

Doppler(2) 150 380 m/s 

u(2) 22500 144400 m2/s2 

Intensity(2) 3 15 dB 

 

Table 5.2. The surveillance region for the fourth scenario 

Parameter Min Value Max Value Unit 

Range(1) 23000 24500 m 

Doppler(1) 0 20 m/s 

u(1) 0 400 m2/s2 

Intensity(1) 12 30 dB 

Range(2) 23000 24500 m 

Doppler(2) 0 50 m/s 

u(2) 0 2500 m2/s2 

Intensity(2) 3 15 dB 

The transition probability matrix is given as follows for Algorithm 1.  

 
Π = (

1 − 𝑃𝑏 𝑃𝑏
𝑃𝑑 1 − 𝑃𝑑

) (5.1) 
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where 𝑃𝑏 = 0.05 and 𝑃𝑑 = 0.05. It is same for both targets. Since there are three 

hypotheses that mode variable contains, the transition probability matrix is a 3𝑥3 

matrix for Algorithm 2 as follows. 

 
Π = (

0.9 0.1 0
0.1 0.8 0.1
0 0.1 0.9

) (5.2) 

As it can be seen in (5.2), the spawned target can’t appear before the main platform 

appears in the surveillance region. In addition to this, the main platform can’t 

disappear before the weak target disappears in the surveillance region. However, 

this condition is not necessary for Algorithm 2.  

The predefined threshold for the target existences is 𝜆𝑇𝐸 = 0.6 and the sampling 

time is T = 1 𝑠 for both algorithms. As mentioned earlier, the process noise 

represented in (4.22) is assumed to be white Gaussian. In all scenarios except the 

fourth scenario, the process noise for the main platform is selected as follows. 

 

𝑣𝑘
(1)
~ 𝑁

(

 
 
 
(

0
0
0
0

) ,

(

 
 

(5/3)2 0 0 0

0 (10/3)2 0 0

0 0 (3264/3)2 0

0 0 0 (5/3)2)

 
 

)

 
 
 

 (5.3) 

In the fourth scenario, the process noise for the main platform is selected as in 

(5.4). 

 

𝑣𝑘
(1)
~ 𝑁

(

 
 
 
(

0
0
0
0

) ,

(

 
 

(1/3)2 0 0 0

0 (2/3)2 0 0

0 0 (44/3)2 0

0 0 0 (1.5/3)2)

 
 

)

 
 
 

 (5.4) 

In all scenarios except the fourth scenario, the process noise for the spawned target 

is selected as follows. 
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𝑣𝑘
(2)
~ 𝑁

(

 
 
 
(

0
0
0
0

) ,

(

 
 

(22/3)2 0 0 0

0 (44/3)2 0 0

0 0 (25000/3)2 0

0 0 0 (4/3)2)

 
 

)

 
 
 

 (5.5) 

In the fourth scenario, the process noise for the spawned target is selected as in 

(5.6). 

 

𝑣𝑘
(2)
~ 𝑁

(

 
 
 
(

0
0
0
0

) ,

(

 
 

(6/3)
2

0 0 0

0 (12/3)2 0 0

0 0 (700/3)2 0

0 0 0 (1/3)2)

 
 

)

 
 
 

 (5.6) 

As mentioned earlier, the process noise particles are drawn from the uniform 

distribution of 𝑈[−𝑑, 𝑑] when using the process noise identification method. Table 

5.3 shows the intervals which the process noises are drawn from.  

Table 5.3. The intervals from which the process noises are drawn when using the 

process noise identification method 

Parameter Min Value Max Value Unit 

𝑣𝑘
𝑟(1) 

-20 20 m 

𝑣𝑘
𝑑(1) 

-10 10 m/s 

𝑣𝑘
𝑢(1) 

-5000 5000 m2/s2 

𝑣𝑘
𝐼(1) 

-1.5 1.5 dB 

𝑣𝑘
𝑟(2) 

-90 90 m 

𝑣𝑘
𝑑(2) 

-65 65 m/s 

𝑣𝑘
𝑢(2) 

-20000 20000 m2/s2 

𝑣𝑘
𝐼(2) 

-1.5 1.5 dB 
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5.3 Simulation Results  

The scenarios mentioned in Section 5.2 are used to confirm the algorithms and 

analyze their performances. In these scenarios, SNR values of each target fluctuate 

around the mean SNR according to the Swerling-1 model. Note that the mean SNR 

increases in time since targets get closer to the radar regardless of SNR 

fluctuations originated from the Swerling-1 model. 

5.3.1 Simulation Results of Algorithm 1 

5.3.1.1 Simulation Results for the First Scenario 

The performance of Algorithm 1 is analyzed for different initial SNR values of the 

spawned target as 10 dB, 8 dB, 6 dB, 4 dB. In all simulations, the initial SNR of 

the main platform is 18 dB. 

Note that 35 Monte Carlo simulations are performed to obtain each result given 

below. 

5.3.1.1.1 Initial SNR of the Spawned Target: 10 dB  

The analysis of the performance of Algorithm 1 is started with the 10dB initial 

SNR of the spawned target.  

Figure 5.5 shows the positions of the particles at time 𝑡 = 4, 16, 22, 23, 25 and 

32 𝑠. 

The particles of the main platform are indicated by blue dots and yellow ‘o’ 

indicates the actual position of the main platform when the main platform is 

present. The particles of the weak target are indicated by cyan dots. Blue ‘*’ 

indicates the actual position of the weak target when the weak target is present. As 

it can be seen in Figure 5.5, the particles gather around the targets after a finite 

number of time steps following the target appearance in the surveillance region. 
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This is what we expected for the successful detection and tracking in the particle 

filter based algorithms. 

For the sake of clarity, we want to mention again that the main platform appears at 

time 𝑡 = 6 𝑠; whereas, the spawned target appears at time 𝑡 = 21 𝑠 in the 

surveillance region. 

The probability of existence of the main platform is shown in Figure 5.6. The left 

axis of Figure 5.6 shows the probability of existence of the main platform for 

different number of particles; whereas, the right axis is for the SNR of the main 

platform. The SNR of the main platform is represented by black ‘*’. 

As it can be seen in Figure 5.6, the main platform is detected almost immediately 

as it appears in the surveillance region, e.g. there is a rapid increase of the 

probability of existence after the appearance of the main platform because of its 

high SNR value (18 dB). Furthermore, all selected numbers of particles give the 

same result that indicates that the number of particles can be reduced further below 

500. 
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                          a) 𝑡 = 4 𝑠                                                b) 𝑡 = 16 𝑠 

 

                           c) 𝑡 = 22 𝑠                                             d) 𝑡 = 23 𝑠 

 

                        c) 𝑡 = 25 𝑠                                                 d) 𝑡 = 32 𝑠 

Figure 5.5. Positions of the particles at different time steps 
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Figure 5.6. The probability of existence of the main platform and its SNR value 

(First scenario, 10 dB initial SNR of the spawned target). The line at 𝑝 = 0.6 

indicates the threshold for the declaration of target existences. 

Figure 5.7 plays the same role as Figure 5.6 for the spawned target. On the left 

axis, it shows the probability of existence of the spawned target for different 

number of particles; whereas, on the right axis, the SNR of the spawned target is 

shown. The SNR value is represented by black ‘*’. As it can be seen in Figure 5.7, 

the existence of the weak target is declared in 2 seconds for 5k particles, 3 seconds 

for 1k particles and 4 seconds for 500 particles after its appearance. Therefore, it 

can be concluded that in the transient part about the declaration of the target 

existence, the detection performance of Algorithm 1 increases with the increase in 

the number of particles. 

Figure 5.8 and Figure 5.9 show the range versus Doppler estimates together with 

the actual positions of the main platform and the spawned target, respectively. As 

it can be seen in Figure 5.7 and Figure 5.9 especially for 500 particles, the more 

accurate estimates are made after the detection of the spawned target. Furthermore, 

as it can be seen in Figure 5.8 and Figure 5.9, there is an estimation error which 

behaves like an offset after the target is detected. This is actually a resolution based 
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estimation error. The algorithms can’t realize any difference between the true 

range-Doppler value and the estimated range-Doppler value due to resolution of 

the range-Doppler cells.  

The RMS range errors for the main platform and the spawned target are given in 

Figure 5.10 and Figure 5.12, respectively. 

 

Figure 5.7. The probability of existence of the spawned target and its SNR value 

(First scenario, 10 dB initial SNR of the spawned target). The line at 𝑝 = 0.6 

indicates the threshold for the declaration of target existences. 
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Figure 5.8. Range versus Doppler estimates of the main platform and its trajectory 

(First scenario, 10 dB initial SNR of the spawned target) 

 

Figure 5.9. Range versus Doppler estimates for the spawned target and its 

trajectory (First scenario, 10 dB initial SNR of the spawned target) 
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Figure 5.10. The RMS range error for the main platform (First scenario, 10 dB 

initial SNR of the spawned target) 

In figure below, Figure 5.10 is zoomed in to display the small errors in steady 

state. 

 

Figure 5.11. The RMS range error for the main platform (First scenario, 10 dB 

initial SNR of the spawned target) 
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Figure 5.12. The RMS range error for the spawned target (First scenario, 10 dB 

initial SNR of the spawned target) 

The RMS Doppler errors for the main platform and the spawned target are given in 

Figure 5.13 and Figure 5.14, respectively. 

 

Figure 5.13. The RMS Doppler error for the main platform (First scenario, 10 dB 

initial SNR of the spawned target) 
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Figure 5.14. The RMS Doppler error for the spawned target (First scenario, 10 dB 

initial SNR of the spawned target) 

As it can be seen in Figure 5.14, the RMS Doppler error for the spawned target 

initially increases since the spawned target starts its motion with constant 

acceleration. However, it decreases after the spawned target begins to move with 

constant velocity which is consistent with the dynamic model used in this thesis. 

The effective number of particles gives an idea about the performance of the 

particle filters. The performance of the particle filters increase with the increase in 

the effective number of particles.  The ratio 𝑁𝑒𝑓𝑓 𝑁⁄  for the main platform and the 

spawned target can be seen in Figure 5.15 and Figure 5.16, respectively. Note that 

𝑁𝑒𝑓𝑓 is the effective number of particles and 𝑁 is the number of particles. 

As it can be seen in Figure 5.15 and Figure 5.16, the ratio 𝑁𝑒𝑓𝑓 𝑁⁄  is relatively 

high before the targets appear in the surveillance region since the mode variables 

of almost all of the particles equal to 0 and the unnormalized weights of these 

particles equal to 1 according to (4.41). Furthermore, there is a rapid decrease in 

the effective number of particles in a finite number of time steps after the 

appearance of the targets in the surveillance region. This is because as the targets 
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appear in the surveillance region, some newborn particles appear around the 

targets and there is a big difference between the weights of these newborn particles 

and the particles whose mode variable is 𝑚𝑘
𝑖 = 0.  

After the existence of the spawned target is declared, the ratio of the effective 

number of particles for the spawned target becomes around 12% which is low. The 

process noise for the spawned target, 𝑞𝑘
𝑟(2)

, 𝑞𝑘
𝑑(2)

 and 𝑞𝑘
𝑢(2)

, have high variances 

since the spawned target moves with constant acceleration at first three time steps 

although the constant velocity model is used as system dynamic model. Therefore, 

the existing particles for the spawned target spread so much that most of the 

particles situate in the positions where the spawned target doesn’t exist. This 

increases the differences in the weights of the existing particles so that the 

effective number of particles decreases.   

 

Figure 5.15. 𝑁𝑒𝑓𝑓 𝑁⁄  for the main platform (First scenario, 10 dB initial SNR of 

the spawned target). The existence of the target is indicated by ‘*’. For visual 

clarity, it is shown as a line at 𝑁𝑒𝑓𝑓 𝑁⁄ = 90%. 
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Figure 5.16. 𝑁𝑒𝑓𝑓 𝑁⁄  for the spawned target (First scenario, 10 dB initial SNR of 

the spawned target). The existence of the target is indicated by ‘*’. For visual 

clarity, it is shown as a line at 𝑁𝑒𝑓𝑓 𝑁⁄ = 90%. 

As mentioned earlier, the algorithms proposed in this thesis are able to estimate the 

SNR values of the targets. The SNR estimates for the main platform and the 

spawned target with the actual SNR values of the targets can be seen in Figure 

5.17 and Figure 5.18, respectively. 

 

Figure 5.17. The SNR estimates for the main platform (First scenario, 10 dB initial 

SNR of the spawned target) 
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Figure 5.18. The SNR estimates for the spawned target (First scenario, 10 dB 

initial SNR of the spawned target) 

5.3.1.1.2 Initial SNR of the Spawned Target: 8 dB  

The initial SNR of the spawned target is decreased to the value of 8dB to 

determine the minimum SNR value of the weak target at which Algorithm 1 is 

successful at the detection and the tracking of both targets. The results about the 

main platform aren’t shown in this section again since the decreasing SNR of the 

spawned target doesn’t affect the performance of tracking and detection of the 

main platform. Note that 35 Monte Carlo simulations are performed to obtain each 

result given below. 

On the left axis, Figure 5.19 shows the probability of the spawned target’s 

existence for different number of particles; whereas, on the right axis, the SNR of 

the spawned target is represented by black ‘*’. The delay in detection of the 

spawned target increases compared to the case of 10 dB initial target SNR as it is 

expected. As it can be seen in Figure 5.19, the existence of the spawned target is 
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declared in 5 seconds for 500, 1k and 5k particles. At this time, the target SNR is 

at most slightly above 9 dB which is lower compared to the first experiment. 

Figure 5.20 shows the range versus Doppler estimates and the actual positions of 

the spawned target. 

The RMS range and Doppler errors for the spawned target are given in Figure 5.21 

and Figure 5.22, respectively. 

 

Figure 5.19. The probability of existence of the spawned target and its SNR value 

(First scenario, 8 dB initial SNR of the spawned target). The line at 𝑝 = 0.6 

indicates the threshold for the declaration of target existences. 
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Figure 5.20. Range versus Doppler estimates for the spawned target and its 

trajectory (First scenario, 8 dB initial SNR of the spawned target) 

 

Figure 5.21. The RMS range error for the spawned target (First scenario, 8 dB 

initial SNR of the spawned target) 
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Figure 5.22. The RMS Doppler error for the spawned target (First scenario, 8 dB 

initial SNR of the spawned target) 

As it can be seen in figures above, in the transient part, the accuracies of the range 

and Doppler estimates for the spawned target decrease; whereas, the RMS errors 

for the spawned target increase compared to the case of initial 10 dB SNR of the 

spawned target.  

The ratio 𝑁𝑒𝑓𝑓 𝑁⁄  for the spawned target can be seen in Figure 5.23. 
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Figure 5.23. 𝑁𝑒𝑓𝑓 𝑁⁄  for the spawned target (First scenario, 8 dB initial SNR of the 

spawned target). The existence of the target is indicated by ‘*’. For visual clarity, it 

is shown as a line at 𝑁𝑒𝑓𝑓 𝑁⁄ = 90%. 

The SNR estimates for the spawned target and its actual SNR values can be seen in 

Figure 5.24. 

 

Figure 5.24. The SNR estimates for the spawned target (First scenario, 8 dB initial 

SNR of the spawned target) 
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5.3.1.1.3 Initial SNR of the Spawned Target: 6 dB 

The initial SNR of the spawned target is decreased to the value of 6dB to 

determine the minimum SNR value of the weak target at which Algorithm 1 is 

successful at detection and tracking of both targets. Note that 35 Monte Carlo 

simulations are performed to obtain each result given below. 

Figure 5.25 shows the probability of the spawned target’s existence for different 

number of particles. As it can be seen in Figure 5.25, the existence of the spawned 

target is declared in 10 seconds for 500 particles, 9 seconds for 1k and 5k particles. 

The maximum SNR value is around 8 dB. 

 

Figure 5.25. The probability of existence of the spawned target and its SNR value 

(First scenario, 6 dB initial SNR of the spawned target). The line at 𝑝 = 0.6 

indicates the threshold for the declaration of target existences. 

Figure 5.26 shows the range versus Doppler estimates and the actual positions of 

the spawned target. 
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The RMS range and Doppler errors for the spawned target are given in Figure 5.27 

and Figure 5.28, respectively. 

The ratio 𝑁𝑒𝑓𝑓 𝑁⁄  for the spawned target can be seen in Figure 5.29. Furthermore, 

the SNR estimates for the spawned target and its actual SNR values can be seen in 

Figure 5.30. 

 

Figure 5.26. Range versus Doppler estimates for the spawned target and its 

trajectory (First scenario, 6 dB initial SNR of the spawned target) 

 

Figure 5.27. The RMS range error for the spawned target (First scenario, 6 dB 

initial SNR of the spawned target) 
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Figure 5.28. The RMS Doppler error for the spawned target (First scenario, 6 dB 

initial SNR of the spawned target) 

 

Figure 5.29. 𝑁𝑒𝑓𝑓 𝑁⁄  for the spawned target (First scenario, 6 dB initial SNR of the 

spawned target). The existence of the target is indicated by ‘*’. For visual clarity, it 

is shown as a line at 𝑁𝑒𝑓𝑓 𝑁⁄ = 90%. 
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Figure 5.30. The SNR estimates for the spawned target (First scenario, 6 dB initial 

SNR of the spawned target) 

5.3.1.1.4 Initial SNR of the Spawned Target: 4 dB 

The initial SNR of the spawned target is again decreased to the value of 4dB to 

determine the minimum SNR value of the spawned target at which Algorithm 1 is 

successful at detection and tracking of both targets. As it can be seen in Figure 

5.31, Algorithm 1 is not successful at detecting the spawned target with 4dB initial 

SNR. Note that the SNR value never exceeds 7.5 dB during the scenario. 
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Figure 5.31. The probability of existence of the spawned target and its SNR value 

(First scenario, 4 dB initial SNR of the spawned target). The line at 𝑝 = 0.6 

indicates the threshold for the declaration of target existences. 

5.3.1.2 Simulation Results for the Second Scenario 

The second scenario is for the spawned target that makes some maneuvers. The 

spawned target maneuvers with +3𝑔 between 𝑡 = 28 𝑠 and 𝑡 = 32 𝑠, -3𝑔 between 

𝑡 = 33 𝑠 and 𝑡 = 37 𝑠 in the second scenario. The trajectories of the targets are 

shown in Figure 5.2. Furthermore, the initial SNR of the spawned target is 10 dB 

and 35 Monte Carlo simulations are performed to obtain all of the results given 

below. 

Figure 5.32 shows the probability of the spawned target’s existence for different 

number of particles. As seen in Figure 5.32 , there is no change in the probability 

of existence during the maneuvers of the spawned target. This means that 

Algorithm 1 can deal with the maneuvers of the spawned target.  
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Figure 5.32. The probability of existence of the spawned target and its SNR value 

(Second scenario, 10 dB initial SNR of the spawned target). The line at 𝑝 = 0.6 

indicates the threshold for the declaration of target existences. 

Figure 5.33 shows the range versus Doppler estimates and the actual positions of 

the spawned target. 

 

Figure 5.33 Range versus Doppler estimates for the spawned target and its 

trajectory (Second scenario, 10 dB initial SNR of the spawned target) 
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The RMS range and Doppler errors for the spawned target are given in Figure 5.34 

and Figure 5.35, respectively. 

 

Figure 5.34. The RMS range error for the spawned target (Second scenario, 10 dB 

initial SNR of the spawned target) 

 

Figure 5.35. The RMS Doppler error for the spawned target (Second scenario, 10 

dB initial SNR of the spawned target) 
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As seen in Figure 5.33, Figure 5.34 and Figure 5.35, the accuracies of the estimates 

don’t decrease with the maneuvers of the spawned target.  

 

Figure 5.36. 𝑁𝑒𝑓𝑓 𝑁⁄  for the spawned target (Second scenario, 10 dB initial SNR 

of the spawned target). The existence of the target is indicated by ‘*’. For visual 

clarity, it is shown as a line at 𝑁𝑒𝑓𝑓 𝑁⁄ = 90%. 

Figure 5.36 shows the ratio 𝑁𝑒𝑓𝑓 𝑁⁄  for the spawned target. As it can be seen in 

Figure 5.36, the effective number of particles decreases between 𝑡 = 30 𝑠 and 𝑡 =

35 𝑠. This means that the sample impoverishment problem becomes serious at 

time steps when the spawned target maneuvers although the detection performance 

and the accuracies of the estimates don’t decrease.  

Figure 5.37 shows that the SNR estimates for the spawned target and its actual 

SNR values. It can be seen that the accuracies of the SNR estimates also don’t 

decrease with the maneuvers of the spawned target. 
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Figure 5.37. The SNR estimates for the spawned target (Second scenario, 10 dB 

initial SNR of the spawned target) 

5.3.1.3 Simulation Results for the Third Scenario 

In the third scenario, we want to simulate a highly maneuvering spawned target 

since the spawned targets are usually highly maneuvering targets in the real world. 

In this scenario, the spawned target maneuvers so highly that the limit of the 

algorithms’ performances is reached. We want to show that the process noise 

identification method gives a chance to track and detect a highly maneuvering 

target by not suffering from the sample impoverishment problem by using this 

scenario.  

Note that 35 Monte Carlo simulations are performed to obtain each result given 

below. 

Figure 5.3 shows the trajectories of the targets in the third scenario. Note that the 

spawned target maneuvers with −7𝑔 between 𝑡 = 28 𝑠 and 𝑡 = 32 𝑠, +7𝑔 

between 𝑡 = 33 𝑠 and 𝑡 = 37 𝑠 in this scenario.  



102 

Figure 5.38 shows the probability of the spawned target’s existences obtained by 

using 10k particles in Algorithm 1. As seen in Figure 5.38, there is an obvious 

decrease in the probability of the spawned target’s existence between 𝑡 = 29 𝑠 and 

𝑡 = 37 𝑠 because of the high maneuvers. In fact, Algorithm 1 can’t detect the 

spawned target between 𝑡 = 32 𝑠 and 𝑡 = 36 𝑠.  

The same scenario is run with process noise identification added to Algorithm 1. 

The results obtained are shown in Figure 5.39. Figure indicates that no decrease in 

the probability of target existence during the maneuvers of the spawned target. 

Therefore, it can be said that the proposed process noise identification method can 

deal with the problem mentioned above.  

 

Figure 5.38. The probability of existence of the spawned target and its SNR value 

(Third scenario, 6 dB initial SNR of the spawned target). The line at 𝑝 = 0.6 

indicates the threshold for the declaration of target existences. 
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Figure 5.39. Actual SNR values and the probability of existence of the spawned 

target obtained by using Algorithm 1 with process noise identification (Third 

scenario, 6 dB initial SNR of the spawned target). The line at 𝑝 = 0.6 indicates the 

threshold for the declaration of target existences. 

 

Figure 5.40. Range versus Doppler estimates for the spawned target and its 

trajectory (Third scenario, 6 dB initial SNR of the spawned target) 
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Figure 5.41. Actual trajectory and range versus Doppler estimates for the spawned 

target obtained by using Algorithm 1 with process noise identification (Third 

scenario, 6 dB initial SNR of the spawned target) 

Figure 5.40 and Figure 5.41 show the range versus Doppler estimates for the 

spawned target obtained by using Algorithm 1 and Algorithm 1 with process noise 

identification, respectively. It is obvious that the proposed process noise 

identification method increases the tracking performance of Algorithm 1.  

Figure 5.42 and Figure 5.43 show the RMS range errors for the spawned target 

obtained by using Algorithm 1 and Algorithm 1 with process noise identification, 

respectively. 
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Figure 5.42. The RMS range error for the spawned target (Third scenario, 6 dB 

initial SNR of the spawned target) 

 

Figure 5.43. The RMS range error for the spawned target obtained by using 

Algorithm 1 with process noise identification (Third scenario, 6 dB initial SNR of 

the spawned target) 
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Figure 5.44 and Figure 5.45 show the RMS Doppler errors for the spawned target 

obtained by using Algorithm 1 and Algorithm 1 with process noise identification, 

respectively. 

 

Figure 5.44. The RMS Doppler error for the spawned target (Third scenario, 6 dB 

initial SNR of the spawned target) 

 

Figure 5.45. The RMS Doppler error for the spawned target obtained by using 

Algorithm 1 with process noise identification (Third scenario, 6 dB initial SNR of 

the spawned target) 
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As seen in figures above, the RMS errors increase with the maneuvers of the 

spawned target in Algorithm 1; whereas, they don’t increase in Algorithm 1 with 

process noise identification. 

Figure 5.46 and Figure 5.47 show the ratio 𝑁𝑒𝑓𝑓 𝑁⁄  for the spawned target 

obtained by using Algorithm 1 and Algorithm 1 with process noise identification, 

respectively. 

 

Figure 5.46. 𝑁𝑒𝑓𝑓 𝑁⁄  for the spawned target (Third scenario, 6 dB initial SNR of 

the spawned target). The existence of the target is indicated by ‘*’. For visual 

clarity, it is shown as a line at 𝑁𝑒𝑓𝑓 𝑁⁄ = 90%. 

As mentioned earlier, when the existence of the spawned target is declared, the 

ratio of the effective number of particles for the spawned target is around 12% 

which can be said to be low. The reason is that the process noises for the spawned 

target, 𝑞𝑘
𝑟(2)

, 𝑞𝑘
𝑑(2)

 and 𝑞𝑘
𝑢(2)

, have high variances since the spawned target moves 

with constant acceleration at first three time steps although the constant velocity 

model is used as system dynamic model. As seen in Figure 5.47, it is shown that 

the sample impoverishment problem is solved by the process noise identification 
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method. Note that the increase in the ratio of 𝑁𝑒𝑓𝑓 𝑁⁄  seen in Figure 5.46 between 

𝑡 = 30 𝑠 and 𝑡 = 35 𝑠 occurs because the existing particles die and the particles 

whose mode variable is 𝑚𝑘
𝑖 = 0 multiply. Since all of the particles whose mode 

variable is 𝑚𝑘
𝑖 = 0 have the same weight which is equal to 1, the effective number 

of particles increases according to (3.23) although the tracking and detection 

performance of Algorithm 1 decrease. 

 

Figure 5.47. 𝑁𝑒𝑓𝑓 𝑁⁄  for the spawned target obtained by using Algorithm 1 with 

process noise identification (Third scenario, 6 dB initial SNR of the spawned 

target). The existence of the target is indicated by ‘*’. For visual clarity, it is 

shown as a line at 𝑁𝑒𝑓𝑓 𝑁⁄ = 90%. 

5.3.1.4 Simulation Results for the Fourth Scenario 

As mentioned earlier, in the fourth scenario, Swerling-0 type of targets which 

move very slowly are used in order to see the detection times independently from 

the changes in the SNR values of the targets. The mean SNR values change very 

slightly during the fourth scenario since the targets move with very low velocities. 

Furthermore, there is no target SNR fluctuations since Swerling-0 type of targets 
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are used in this scenario. Initial SNR of the spawned target is 6 dB and the SNR 

value never exceeds 6.4 dB during the scenario.  

Note that 35 Monte Carlo simulations are performed to obtain each result given 

below. 

Figure 5.48 shows the probability of the spawned target’s existence for different 

number of particles. As it can be seen in the figure, the existence of the spawned 

target is declared in 8 seconds for 5k particles, 9 seconds for 500 and 1k particles. 

As mentioned in Section 5.3.1.1.3, in the first scenario in which Swerling-1 type of 

targets are used and the initial SNR of the spawned target is 6 dB, the existence of 

the spawned target is declared in 10 seconds for 500 particles, 9 seconds for 1k and 

5k particles. In the fourth scenario, the detection times decrease for 500 and 5k 

particles compared to the first scenario. The reason is that there is no target SNR 

fluctuations since Swerling-0 type of targets are used in the fourth scenario. 

 

Figure 5.48. The probability of existence of the spawned target and its SNR value 

(Fourth scenario, 6 dB initial SNR of the spawned target). The line at 𝑝 = 0.6 

indicates the threshold for the declaration of target. 
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It can be concluded from the results given above that Algorithm 1 is successful at 

detection and tracking of the spawned targets with SNR values as low as 6 dB. 

5.3.1.5 Summary of the Results of Algorithm 1 

The detection and tracking performance of Algorithm 1 is analyzed for different 

scenarios. As mentioned earlier, Swerling-1 model is used in all scenarios. The 

target declaration times for different initial target SNR and different number of 

particles are shown for the spawned target in Table 5.4. The SNR value of the 

spawned target at the declaration of its existence is also shown in parenthesis. 

Table 5.4. Target declaration times for different initial SNR values of the spawned 

target and different number of particles 

  10 dB 8 dB 6 dB 

500 Particles 4 sec (at 11.5 dB) 5 sec (at 9.35 dB) 10 sec (at 7.08 dB) 

1k Particles 3 sec (at 10.5 dB) 5 sec (at 9.35 dB) 9 sec (at 7.91 dB) 

5k Particles 2 sec (at 10.2 dB) 5 sec (at 9.35 dB) 9 sec (at 7.91 dB) 

It is shown that Algorithm 1 is successful at target detection for initial target SNR 

as low as 6dB. In Table 5.4, it can be seen that the target declaration times increase 

as the target SNR decreases; whereas, increasing number of particles reduces the 

target declaration times as expected.  

The performance of Algorithm 1 is analyzed on the maneuvering targets by using 

the second and third scenarios. As the results of the second scenario shows that 

Algorithm 1 is successful at detection and tracking of a maneuvering target with 

+3𝑔 maneuver. Furthermore, it is shown that the proposed process noise 

identification method is very successful for maneuvering targets. It increases the 

performance of Algorithm 1 considerably and enables it to track and detect a 

highly maneuvering target without suffering the sample impoverishment problem. 
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5.3.2 Simulation Results of Algorithm 2 

5.3.2.1 Simulation Results for the First Scenario 

The performance of the Algorithm 2 is analyzed for different initial SNR values of 

the spawned target as 10 dB, 8 dB, 6 dB, 4 dB. In all simulations, the initial SNR 

of the main platform is 18 dB. 

Note that 35 Monte Carlo simulations are performed to obtain all of the results 

given below. 

5.3.2.1.1 Initial SNR of the Spawned Target: 10 dB 

The analysis of the performance of Algorithm 2 is started with the 10dB initial 

SNR of the spawned target.  

Figure 5.49, Figure 5.50 and Figure 5.51 show the mode probabilities for 500, 1k 

and 5k particles, respectively. The main platform is detected at the moment that it 

appears in the surveillance region, e.g. there is a rapid increase of the probability of 

one target present after the appearance of the main platform because of its high 

SNR value (18 dB). The existence of the spawned target is also declared in 3 

seconds for 500 particles and 1 second for 1k and 5k particles as seen in the figures 

below. 

Figure 5.52 and Figure 5.53 show the range versus Doppler estimates for the main 

platform and the spawned target, respectively. The accuracies of the estimates for 

the main platform slightly decrease when the spawned target appears in the 

surveillance region since some newborn particles belonged to the main platform 

appears in the vicinity of the spawned target. As seen in Figure 5.52, the estimates 

between the 𝑟𝑎𝑛𝑔𝑒 = 20 𝑘𝑚 and 𝑟𝑎𝑛𝑔𝑒 = 21 𝑘𝑚 are the examples of this. 

The RMS range and Doppler errors for the main platform are given in Figure 5.54 

and Figure 5.55, respectively.  
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Figure 5.49. The mode probabilities for 500 particles (First Scenario, 10dB initial 

SNR of the spawned target). The line at 𝑝 = 0.6 indicates the threshold for the 

declaration of target existence.   

 

Figure 5.50. The mode probabilities for 1k particles (First Scenario, 10dB initial 

SNR of the spawned target). The line at 𝑝 = 0.6 indicates the threshold for the 

declaration of target existence.   
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Figure 5.51. The mode probabilities for 5k particles (First Scenario, 10dB initial 

SNR of the spawned target). The line at 𝑝 = 0.6 indicates the threshold for the 

declaration of target existence.   

 

Figure 5.52. Range versus Doppler estimates for the main platform and its 

trajectory (First Scenario, 10dB initial SNR of the spawned target) 
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Figure 5.53. Range versus Doppler estimates for the spawned target and its 

trajectory (First Scenario, 10dB initial SNR of the spawned target) 

 

Figure 5.54. The RMS range error for the main platform (First Scenario, 10 dB 

initial SNR of the spawned target) 
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Figure 5.55. The RMS Doppler error for the main platform (First Scenario, 10 dB 

initial SNR of the spawned target) 

The RMS range and Doppler errors for the spawned target are given in Figure 5.56 

and Figure 5.57, respectively.  

 

Figure 5.56. The RMS range error for the spawned target (First Scenario, 10 dB 

initial SNR of the spawned target) 
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Figure 5.57. The RMS Doppler error for the spawned target (First Scenario, 10 dB 

initial SNR of the spawned target) 

The ratio of 𝑁𝑒𝑓𝑓 𝑁⁄  can be seen in Figure 5.58.  

 

Figure 5.58. 𝑁𝑒𝑓𝑓 𝑁⁄  (First Scenario, 10dB initial SNR of the weak target). The 

existence of the target is indicated by ‘*’. For visual clarity, it is shown as a line at 

𝑁𝑒𝑓𝑓 𝑁⁄ = 90%. 
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After the existence of the spawned target is declared, the ratio of the effective 

number of particles is around 7% which can be said to be very low. This value is 

lower than the value obtained in Algorithm 1 since the number of states in the state 

vector increases to eight from four in Algorithm 2. 

As mentioned earlier, Algorithm 2 is able to estimate the SNR values of the 

targets. The SNR estimates for the main platform and the spawned target with the 

actual SNR values of the targets can be seen in Figure 5.59 and Figure 5.60, 

respectively. 

 

Figure 5.59. The SNR estimates for the main platform (First Scenario, 10 dB initial 

SNR of the spawned target) 

As seen in Figure 5.59, there is no SNR estimate at some time steps. This is 

because there is not any particles whose mode variables are 𝑚𝑘
𝑖 = 1 at that time 

steps. Furthermore, there are also not any SNR estimates at some time steps in 

Figure 5.60. For this case, the reason is that there are no particles whose mode 

variables are 𝑚𝑘
𝑖 = 2 at that time steps. 
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Figure 5.60. The SNR estimates for the spawned target (First Scenario, 10 dB 

initial SNR of the spawned target) 

5.3.2.1.2 Initial SNR of the Spawned Target: 8 dB 

The initial SNR of the spawned target is decreased to the value of 8dB to 

determine the minimum SNR value of the weak target at which Algorithm 2 is 

successful at detection and tracking of both targets. The results about the main 

platform aren’t shown in this section again since it is observed that decreasing 

SNR of the spawned target doesn’t affect the performance of tracking and 

detection of the main platform. Note that 35 Monte Carlo simulations are 

performed to obtain each result given below. 

Figure 5.61, Figure 5.62 and Figure 5.63 show the mode probabilities for 500, 1k 

and 5k particles, respectively. The detection times for the spawned target increases 

compared to the case of 10 dB initial target SNR as it is expected. As it can be seen 

in figures below, the existence of the spawned target is declared in 5 seconds for 

500, 4 seconds for 1k and 5k particles after the appearance of the spawned target. 
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Figure 5.64 shows the range versus Doppler estimates and the actual positions of 

the spawned target. 

The RMS range and Doppler errors for the spawned target are given in Figure 5.65 

and Figure 5.66, respectively. 

 

Figure 5.61. The mode probabilities for 500 particles (First Scenario, 8dB initial 

SNR of the spawned target). The line at 𝑝 = 0.6 indicates the threshold for the 

declaration of target existence.   
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Figure 5.62. The mode probabilities for 1k particles (First Scenario, 8dB initial 

SNR of the spawned target). The line at 𝑝 = 0.6 indicates the threshold for the 

declaration of target existence.   

 

Figure 5.63. The mode probabilities for 5k particles (First Scenario, 8dB initial 

SNR of the spawned target). The line at 𝑝 = 0.6 indicates the threshold for the 

declaration of target existence.   
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Figure 5.64. Range versus Doppler estimates for the spawned target and its 

trajectory (First Scenario, 8 dB initial SNR of the spawned target) 

 

Figure 5.65. The RMS range error for the spawned target (First Scenario, 8 dB 

initial SNR of the spawned target) 
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Figure 5.66. The RMS Doppler error for the spawned target (First Scenario, 8 dB 

initial SNR of the spawned target) 

As it can be seen in figures above, in the transient part, the accuracies of the range 

and Doppler estimates for the spawned target decrease; whereas, the RMS errors 

for the spawned target increase compared to the case of initial 10 dB SNR of the 

spawned target.  

The ratio 𝑁𝑒𝑓𝑓 𝑁⁄  for the spawned target can be seen in Figure 5.67. 
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Figure 5.67. 𝑁𝑒𝑓𝑓 𝑁⁄  (First Scenario, 8 dB initial SNR of the weak target). The 

existence of the target is indicated by ‘*’. For visual clarity, it is shown as a line at 

𝑁𝑒𝑓𝑓 𝑁⁄ = 90%. 

The SNR estimates for the spawned target and its actual SNR values can be seen in 

Figure 5.68. 

 

Figure 5.68. The SNR estimates for the spawned target (First Scenario, 8 dB initial 

SNR of the spawned target) 
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5.3.2.1.3 Initial SNR of the Spawned Target: 6 dB 

The initial SNR of the spawned target is again decreased to the value of 6dB to 

determine the minimum SNR value of the weak target at which Algorithm 2 is 

successful at detection and tracking of both targets. 

Note that 35 Monte Carlo simulations are performed to obtain each result given 

below. 

Figure 5.69, Figure 5.70 and Figure 5.71 show the mode probabilities for 500, 1k 

and 5k particles, respectively. As it can be seen these figures, the existence of the 

spawned target is declared in 9 seconds for 500 and 1k particles, 8 seconds for 5k 

particles. 

Figure 5.72 shows the range versus Doppler estimates and the actual positions of 

the spawned target. 

The RMS range and Doppler errors for the spawned target are given in Figure 5.73 

and Figure 5.74, respectively. 

The ratio 𝑁𝑒𝑓𝑓 𝑁⁄  for the spawned target can be seen in Figure 5.75. Furthermore, 

the SNR estimates for the spawned target and its actual SNR values can be seen in 

Figure 5.76. 
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Figure 5.69. The mode probabilities for 500 particles (First Scenario, 6 dB initial 

SNR of the spawned target). The line at 𝑝 = 0.6 indicates the threshold for the 

declaration of target existence.   

 

Figure 5.70. The mode probabilities for 1k particles (First Scenario, 6 dB initial 

SNR of the spawned target). The line at 𝑝 = 0.6 indicates the threshold for the 

declaration of target existence.   
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Figure 5.71. The mode probabilities for 5k particles (First Scenario, 6 dB initial 

SNR of the spawned target). The line at 𝑝 = 0.6 indicates the threshold for the 

declaration of target existence.   

 

Figure 5.72. Range versus Doppler estimates for the spawned target and its 

trajectory (First Scenario, 6 dB initial SNR of the spawned target) 
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Figure 5.73. The RMS range error for the spawned target (First Scenario, 6 dB 

initial SNR of the spawned target) 

 

Figure 5.74. The RMS Doppler error for the spawned target (First Scenario, 6 dB 

initial SNR of the spawned target) 
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Figure 5.75. 𝑁𝑒𝑓𝑓 𝑁⁄  (First Scenario, 6 dB initial SNR of the weak target). The 

existence of the target is indicated by ‘*’. For visual clarity, it is shown as a line at 

𝑁𝑒𝑓𝑓 𝑁⁄ = 90%. 

 

Figure 5.76. The SNR estimates for the spawned target (First Scenario, 6 dB initial 

SNR of the spawned target) 
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5.3.2.1.4 Initial SNR of the Spawned Target: 4 dB 

The initial SNR of the spawned target is again decreased to the value of 4dB to 

determine the minimum SNR value of the spawned target at which Algorithm 2 is 

successful at detection and tracking of both targets. As it can be seen in Figure 

5.77, Algorithm 2 is not successful at detecting the spawned target with 4dB initial 

SNR.  

Note that 35 Monte Carlo simulations are performed to obtain each result given 

below. 

 

Figure 5.77. The mode probabilities for 5k particles (First Scenario, 4 dB initial 

SNR of the spawned target). The line at 𝑝 = 0.6 indicates the threshold for the 

declaration of target existence.   

5.3.2.2 Simulation Results for the Second Scenario 

As mentioned earlier, the second scenario is used to analyze the performance of 

the algorithms for the maneuvering targets. The spawned target maneuvers with 

+3𝑔 between 𝑡 = 28 𝑠 and 𝑡 = 32 𝑠, -3𝑔 between 𝑡 = 33 𝑠 and 𝑡 = 37 𝑠 in the 

second scenario. The trajectories of the targets are shown in Figure 5.2. 
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Note that 35 Monte Carlo simulations are performed to obtain each result given 

below. 

Figure 5.78, Figure 5.79 and Figure 5.80 show the mode probabilities for 500, 1k 

and 5k particles, respectively. As seen in figures below, there is no change in the 

probability of existence during the maneuvers of the spawned target. This means 

that Algorithm 2 can deal with the maneuvers of the spawned target. 

 

Figure 5.78. The mode probabilities for 500 particles (Second Scenario, 10 dB 

initial SNR of the spawned target). The line at 𝑝 = 0.6 indicates the threshold for 

the declaration of target existence.   
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Figure 5.79. The mode probabilities for 1k particles (Second Scenario, 10 dB 

initial SNR of the spawned target). The line at 𝑝 = 0.6 indicates the threshold for 

the declaration of target existence.   

 

Figure 5.80. The mode probabilities for 5k particles (Second Scenario, 10 dB 

initial SNR of the spawned target). The line at 𝑝 = 0.6 indicates the threshold for 

the declaration of target existence.   
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Figure 5.81 shows the range versus Doppler estimates and the actual positions of 

the spawned target. 

 

Figure 5.81. Range versus Doppler estimates for the spawned target and its 

trajectory (Second Scenario, 10 dB initial SNR of the spawned target) 

The RMS range and Doppler errors for the spawned target are given in Figure 5.82 

and Figure 5.83, respectively. As seen in figures below, the accuracies of the 

estimates don’t decrease with the maneuvers of the spawned target.  
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Figure 5.82. The RMS range error for the spawned target (Second Scenario, 10 dB 

initial SNR of the spawned target) 

 

Figure 5.83. The RMS Doppler error for the spawned target (Second Scenario, 10 

dB initial SNR of the spawned target) 
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Figure 5.84 shows the ratio of 𝑁𝑒𝑓𝑓 𝑁⁄  for the spawned target. As it can be seen in 

Figure 5.84, the ratio of 𝑁𝑒𝑓𝑓 𝑁⁄  decreases to as low as % 3 between 𝑡 = 30 𝑠 and 

𝑡 = 35 𝑠. This means that the sample impoverishment problem becomes so serious 

at time steps when the spawned target maneuvers although the detection 

performance and the accuracies of the estimates don’t decrease.  

 

Figure 5.84. 𝑁𝑒𝑓𝑓 𝑁⁄  (Second Scenario, 10 dB initial SNR of the weak target). The 

existence of the target is indicated by ‘*’. For visual clarity, it is shown as a line at 

𝑁𝑒𝑓𝑓 𝑁⁄ = 90%. 

Figure 5.85 shows that the SNR estimates for the spawned target and its actual 

SNR values. It can be seen that the accuracies of the SNR estimates also don’t 

decrease with the maneuvers of the spawned target. 
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Figure 5.85. The SNR estimates for the spawned target (Second Scenario, 10 dB 

initial SNR of the spawned target) 

5.3.2.3 Simulation Results for the Third Scenario 

As mentioned earlier, we want to simulate a highly maneuvering spawned target in 

the third scenario since the spawned targets may have high maneuvers. Figure 5.3 

shows the trajectories of the targets. Note that the spawned target maneuvers with 

−7𝑔 between 𝑡 = 28 𝑠 and 𝑡 = 32 𝑠, +7𝑔 between 𝑡 = 33 𝑠 and 𝑡 = 37 𝑠 in this 

scenario.  

Note that 35 Monte Carlo simulations are performed to obtain each result given 

below. 

Figure 5.86 shows the probability of the spawned target’s existences obtained by 

using 10k particles in Algorithm 2. As seen in Figure 5.86, there is an obvious 

decrease in the probability of the spawned target’s existence between 𝑡 = 29 𝑠 and 

𝑡 = 38 𝑠 because of the high maneuvers. In fact, Algorithm 2 can’t detect the 

spawned target between 𝑡 = 32 𝑠 and 𝑡 = 35 𝑠. Figure 5.87 shows the probability 

of the spawned target’s existence obtained by using Algorithm 2 with process 
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noise identification. As seen in Figure 5.87, there is no decrease in the probability 

of target existence during the maneuvers of the spawned target. Therefore, it can 

be said that the proposed process noise identification method can deal with the 

problem mentioned above as it is the same for Algorithm 1. 

 

Figure 5.86. The probability of existence for the spawned target and its SNR value 

(Third scenario, 6 dB initial SNR of the spawned target). The line at 𝑝 = 0.6 

indicates the threshold for the declaration of target existences. 
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Figure 5.87. Actual SNR values and the probability of existence for the spawned 

target obtained by using Algorithm 2 with process noise identification (Third 

scenario, 6 dB initial SNR of the spawned target). The line at 𝑝 = 0.6 indicates the 

threshold for the declaration of target existences. 

Figure 5.88 and Figure 5.89 show the range versus Doppler estimates for the 

spawned target obtained by using Algorithm 2 and Algorithm 2 with process noise 

identification, respectively. It is obvious that the proposed process noise 

identification method increases the tracking performance of Algorithm 2 as it is the 

same for Algorithm 1.  



138 

 

Figure 5.88. Range versus Doppler estimates for the spawned target and its 

trajectory (Third scenario, 6 dB initial SNR of the spawned target) 

 

Figure 5.89. Actual trajectory and range versus Doppler estimates for the spawned 

target obtained by using Algorithm 2 with process noise identification (Third 

scenario, 6 dB initial SNR of the spawned target) 

Figure 5.90 and Figure 5.91 show the RMS range errors for the spawned target 

obtained by using Algorithm 2 and Algorithm 2 with process noise identification, 

respectively. 
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Figure 5.90. The RMS range error for the spawned target (Third scenario, 6 dB 

initial SNR of the spawned target) 

 

Figure 5.91. The RMS range error for the spawned target obtained by using 

Algorithm 2 with process noise identification (Third scenario, 6 dB initial SNR of 

the spawned target) 
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Figure 5.92 and Figure 5.93 show the RMS Doppler errors for the spawned target 

obtained by using Algorithm 2 and Algorithm 2 with process noise identification, 

respectively. 

 

Figure 5.92. The RMS Doppler error for the spawned target (Third scenario, 6 dB 

initial SNR of the spawned target) 

 

Figure 5.93. The RMS Doppler error for the spawned target obtained by using 

Algorithm 2 with process noise identification (Third scenario, 6 dB initial SNR of 

the spawned target) 
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As seen in figures above, the RMS errors increase with the maneuvers of the 

spawned target in Algorithm 2; whereas, they don’t increase in Algorithm 1 with 

process noise identification. 

Figure 5.94 and Figure 5.95 show the ratio of 𝑁𝑒𝑓𝑓 𝑁⁄  for the spawned target 

obtained by using Algorithm 2 and Algorithm 2 with process noise identification, 

respectively. 

 

Figure 5.94. 𝑁𝑒𝑓𝑓 𝑁⁄  for the spawned target (Third scenario, 6 dB initial SNR of 

the spawned target). The existence of the target is indicated by ‘*’. For visual 

clarity, it is shown as a line at 𝑁𝑒𝑓𝑓 𝑁⁄ = 90%. 

Figure 5.94 shows that the sample impoverishment problem is so serious for 

Algorithm 2. However, the sample impoverishment problem is solved by the 

process noise identification method as seen in Figure 5.95. 
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Figure 5.95. 𝑁𝑒𝑓𝑓 𝑁⁄  for the spawned target obtained by using Algorithm 2 with 

process noise identification (Third scenario, 6 dB initial SNR of the spawned 

target). The existence of the target is indicated by ‘*’. For visual clarity, it is 

shown as a line at 𝑁𝑒𝑓𝑓 𝑁⁄ = 90%. 

5.3.2.4 Simulation Results for the Fourth Scenario 

As mentioned earlier, in the fourth scenario, Swerling-0 type of targets which 

move very slowly are used in order to see the detection times independently from 

the changes in the SNR values of the targets. The mean SNR values change very 

slightly during the fourth scenario since the targets move with very low velocities. 

Furthermore, there is no target SNR fluctuations since Swerling-0 type of targets 

are used in this scenario. Initial SNR of the spawned target is 6 dB and the SNR 

value never exceeds 6.4 dB during the scenario.  

Note that 35 Monte Carlo simulations are performed to obtain each result given 

below. 
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Figure 5.96, Figure 5.97 and Figure 5.98 show the probability of the spawned 

target’s existence for different number of particles. As it can be seen in the figures, 

the existence of the spawned target is declared in 9 seconds for 500 particles, 8 

seconds for 1k and 5k particles. As mentioned in Section 5.3.2.1.3, in the first 

scenario in which Swerling-1 type of targets are used and the initial SNR of the 

spawned target is 6 dB, the existence of the spawned target is declared in 9 

seconds for 500 particles and 1k particles, 8 seconds for 5k particles. In the fourth 

scenario, the detection time decreases for 1k particles compared to the first 

scenario. The reason is that there is no target SNR fluctuations since Swerling-0 

type of targets are used in the fourth scenario. 

 

Figure 5.96. The mode probabilities for 500 particles (Fourth Scenario, 6 dB initial 

SNR of the spawned target). The line at 𝑝 = 0.6 indicates the threshold for the 

declaration of target existence.   
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Figure 5.97. The mode probabilities for 1k particles (Fourth Scenario, 6 dB initial 

SNR of the spawned target). The line at 𝑝 = 0.6 indicates the threshold for the 

declaration of target existence.   

 

Figure 5.98. The mode probabilities for 5k particles (Fourth Scenario, 6 dB initial 

SNR of the spawned target). The line at 𝑝 = 0.6 indicates the threshold for the 

declaration of target existence.   
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It can be concluded from the results given above that Algorithm 2 is successful at 

detection and tracking of the spawned targets with SNR values as low as 6 dB. 

5.3.2.5 Summary of the Results of Algorithm 2 

The detection and tracking performance of Algorithm 2 is analyzed for different 

scenarios. The target declaration times for different initial target SNR and different 

number of particles are shown for the spawned target in Table 5.5. The SNR value 

of the spawned target at the declaration of its existence is also shown in 

parenthesis. 

Table 5.5. Target declaration times for different initial SNR values of the spawned 

target and different number of particles 

  10 dB 8 dB 6 dB 

500 Particles 3 sec (at 10.5 dB) 5 sec (at 9.35 dB) 9 sec (at 7.91 dB) 

1k Particles 1 sec (at 10 dB) 4 sec (at 8.51 dB) 9 sec (at 7.91 dB) 

5k Particles 1 sec (at 10 dB) 4 sec (at 8.51 dB) 8 sec (at 7.41 dB) 

It is shown that Algorithm 2 is successful at target detection for initial target SNR 

as low as 6dB. In Table 5.5, it can be seen that the target declaration times increase 

as the target SNR decreases; whereas, increasing number of particles reduces the 

target declaration times as expected.  

The performance of Algorithm 2 is also analyzed on the maneuvering targets by 

using the second and third scenarios. As shown by using the second scenario, 

Algorithm 2 is successful at detection and tracking of a maneuvering target with 

+3𝑔. Furthermore, it is shown that the proposed process noise identification 

method is very successful at increasing the performance of Algorithm 2. It enables 

Algorithm 2 to track and detect a highly maneuvering target without suffering the 

sample impoverishment problem. 
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5.3.3 Comparisons between Algorithms 

Algorithm 2 can be said to be more successful than Algorithm 1 at detection of the 

spawned target according to the declaration times in Table 5.4 and Table 5.5. 

However, Algorithm 2 suffers from the sample impoverishment problem more 

than Algorithm 1 when the existence of the spawned target is declared as seen in 

figures which represent the ratio of 𝑁𝑒𝑓𝑓 𝑁⁄  in the previous sections.  

As mentioned earlier, the proposed process noise identification method provides 

significant increase in the tracking and detection performance of both algorithms. 

The sample impoverishment problem in both algorithms is solved by using this 

method. Furthermore, it gives a chance to track a highly maneuvering target 

efficiently. 

The execution times of the proposed algorithms are given in Table 5.6. The 

execution time is the average CPU time needed to execute all time steps in 

MATLAB 7.13 on a 2.4 GHz Intel Core i7 operating under Windows 8. They are 

determined by using the first scenario in which the initial SNR of the spawned 

target is 6 dB. As it can be seen in Table 5.6, the execution time of Algorithm 1 is 

slightly less than the execution time of Algorithm 2 although Algorithm 2 has a 

better detection performance than Algorithm 1. Moreover, the addition of the 

property of process noise identification brings with more computational load as 

expected.  

Table 5.6. Execution times of algorithms when using the first scenario and the 

initial SNR of the spawned target is 6 dB 

  

Algorithm 1 

Algorithm 1 with 

Process Noise 

Identification 

Algorithm 2 

Algorithm 2 with 

Process Noise 

Identification 

Execution 

Time 
27.3921 sec 32.556 sec 28.9640 sec 34.1680 sec 
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CHAPTER 6  

 

 

CONCLUSIONS 

 

 

6.1 Summary and Conclusions 

In this thesis, particle filters are proposed to develop TBD approaches. Two 

particle filter based TBD algorithms are proposed to solve the problem of detection 

and tracking of the spawning targets. 

In contrast to the works in literature, a novel reduced order dynamic model is 

introduced to improve the efficiency of the particle filter. Furthermore, the goal is 

also to estimate the SNR of the targets. It is also shown that it can be achieved by 

modifying the state model by adding the target SNR as a state. The algorithms 

proposed in this work can deal with the target SNR fluctuations according to 

Swerling-1 model; whereas, in most of the related works in literature, target SNR 

is assumed to be known. 

It is shown that both of the algorithms can deal with the scenario of the 

maneuvering targets. Moreover, a new process noise identification method [1] 

proposed for the classical target tracking methods is adapted to the TBD 

framework in order to deal with the maneuvering target problem. It also has a 

positive effect on the reduction of the sample impoverishment problem which is 

serious for tracking of the highly maneuvering targets by particle filters. It is 

shown that the proposed process noise identification method provides significant 

increase in the tracking and detection performance of both algorithms. 

The contributions of this thesis can be summarized as follows. 
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- A new reduced order state space model makes the particle filter 

applications more efficient. 

- An adaptation of a new process noise covariance matrix estimation 

method to the TBD algorithm. 

6.2 Future Studies 

Some suggested topics for future studies are given as follows. 

a) An improvement can be done for the scenario in which the maximum 

number of possible targets is unknown and more than two. 

b) An improvement can be done for the extended main platforms. 

c) Particle filters with different proposal densities can be used in the TBD 

approaches. 
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