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Co-supervisor, Computer Engineering Department, METU

Examining Committee Members:

Prof. Dr. Ahmet Coşar
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ABSTRACT

AN EFFICIENT FUZZY FUSION-BASED FRAMEWORK FOR
SURVEILLANCE APPLICATIONS IN WIRELESS MULTIMEDIA SENSOR

NETWORKS

Sert, Seyyit Alper

M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Adnan Yazıcı

Co-Supervisor : Prof. Dr. Ahmet Coşar

June 2014, 86 pages

Previous advances in Information Technologies and especially in Micro Electro-Mec-
hanical Systems, have made the production and deployment of tiny, battery-powered
nodes communicating over wireless links possible. Networks comprised of such
nodes with sensing capability are called Wireless Sensor Networks. The early de-
ployment aim was to use these nodes only in a passive way for indoor applications.
These kinds of early nodes had the ability to sense scalar data such as temperature, hu-
midity, pressure and location of surrounding objects. However, recently available sen-
sor nodes have higher computation capability, higher storage space and better power
solutions with respect to their predecessors. With these developments in addition to
scalar data delivery, multimedia content has become the core focus. A wireless sensor
network with multimedia capabilities is called Wireless Multimedia Sensor Network.
There has always been a trade-off between accuracy and energy-efficiency in these
new generation networks because of their resource-constrained nature.

In this thesis we introduce a new approach to address this trade-off in Wireless Mul-
timedia Sensor Networks. Although a number of previous studies have focused on
various special topics in Wireless Multimedia Sensor Networks in detail, to the best
of our knowledge, none presents a fuzzy multi-modal data fusion system, which is
light-weight and provides a high accuracy ratio. Especially, a multi-modal data fu-
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sion system targeting surveillance applications make it inevitable to work within a
multi-level hierarchical framework. In this thesis, our primary focus is on accuracy
and efficiency by utilizing our framework. Along with the fuzzy fusion framework, a
new fuzzy clustering algorithm, namely Multi-Objective Fuzzy Clustering Algorithm
(MOFCA), is introduced and evaluated in detail as well.

Keywords: wireless multimedia sensor networks; fuzzy clustering and classification;
hierarchical data fusion; surveillance applications; evolving networks
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ÖZ

KABLOSUZ ÇOKLU-ORTAM DUYARGA AĞLARDA GÖZETLEME
UYGULAMALARI İÇİN BULANIK FÜZYON-TABANLI ETKİN ÇATI

Sert, Seyyit Alper

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Adnan Yazıcı

Ortak Tez Yöneticisi : Prof. Dr. Ahmet Coşar

Haziran 2014 , 86 sayfa

Bilgi teknolojileri ve özellikle Mikro Elektro-Mekanik Sistemlerdeki geçmiş ilerle-
meler, kablosuz bağlantılar üzerinden haberleşen küçük ve pille çalışan düğümlerin
üretim ve konuşlandırılmasını mümkün kıldı. Algılama kabiliyeti olan bu tip düğüm-
ler içeren ağlara Kablosuz Duyarga Ağlar denilmektedir. İlk konuşlandırma amacı, bu
düğümleri sadece iç ortam uygulamaları için pasif şekilde kullanmaktı. Bu tip düğüm
noktalarının ilk sürümleri sıcaklık, nem, basınç ve çevreleyen nesnelerin yerleri gibi
sayısal verileri algılama kabiliyetine sahipti. Ancak son zamanlarda görülen algılayıcı
düğümler, ilk sürümlere kıyasla, daha yüksek hesaplama kapasitesi ile depolama mik-
tarına ve daha iyi güç besleme çözümlerine sahiptir. Bu gelişmelerle birlikte, sayısal
veri iletimine ilave olarak çoklu-ortam içeriği ana odak noktası oldu. Çoklu-ortam
kabiliyetine sahip kablosuz duyarga ağlara, Kablosuz Çoklu-Ortam Duyarga Ağ de-
nilmektedir. Kaynak kısıtlılıkları nedeniyle bu yeni jenerasyon ağların doğruluk ve
enerji-etkinliği arasında her zaman bir denge var olmuştur.

Bu tezde, Kablosuz Çoklu-Ortam Duyarga Ağlardaki bu dengeye hitap eden yeni bir
yaklaşımı tanıtıyoruz. Her ne kadar birkaç geçmiş çalışma Kablosuz Çoklu-Ortam
Duyarga Ağlardaki çeşitli özel konulara detaylı olarak odaklanmış olsa da, bildiği-
miz kadarıyla, hiçbiri az-maliyetli ve yüksek doğruluk oranı sağlayan bulanık çoklu-
modalite veri füzyon sistemini sunmamaktadır. Özellikle, gözetleme uygulamalarını
hedef alan çoklu-modalite veri füzyon sistemleri hiyerarşik bir çatı içerisinde çalış-
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mayı kaçınılmaz kılmaktadır. Bu tezde ana odak noktamız, çatımızı kullanarak doğru-
luk ve etkinliğin her ikisi üzerindedir. Bulanık füzyon sistemi ile birlikte, Çok-Amaçlı
Bulanık Kümeleme Algoritması (ÇABKA) adında yeni bir bulanık kümeleme algo-
ritması da tanıtılmış ve detaylı olarak değerlendirilmiştir.

Anahtar Kelimeler: kablosuz çoklu-ortam duyarga ağlar, bulanık kümeleme ve sınıf-
landırma, hiyerarşik veri füzyonu, gözetleme uygulamaları, evrim geçiren ağlar
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CHAPTER 1

INTRODUCTION

Surveillance has always been an important task for human beings either for protecting

a precious asset or gathering information from the surrounding environment. How-

ever, things to be monitored are increasing with a huge rate due to the changing re-

quirements day by day. As a result, it becomes difficult for individuals to do this task

by some manual techniques. It is also difficult to do this job even by using computer

technologies, which are usually placed on sheltered indoor environments. To be able

to fulfill such requirements, a need for a technology that can do the required job by

providing efficient results with a high accuracy ratio even in outdoor environments

has emerged, wireless multimedia sensors.

Recent technological advances in Communication Information Systems (CIS) and

especially in MEMS (Micro Electro-Mechanical Systems) have made the produc-

tion and deployment of tiny, battery-powered nodes (units) which communicate over

wireless links possible. These nodes have several parts including a radio-transceiver,

a micro controller, an electronic circuitry for interfacing with the compounds, and

a power supply. Upon completing the successful production of the wireless nodes,

these nodes are geared with the sensors demanded by the application area. Figure

1.1[1] depicts the components of a wireless sensor node. A Wireless Sensor Net-

work (WSN) is comprised of such units at varying numbers, where each single unit

is connected to one or generally several units.

In this thesis, an efficient fuzzy fusion-based framework designed specifically for

surveillance applications in wireless multimedia sensor networks is proposed. Along

with the framework, a new fuzzy clustering algorithm which is implemented as part

1



Figure 1.1: Components of a wireless sensor node [1].

of the framework for WSN clustering is also introduced and evaluated in detail.

Performance of the introduced fuzzy clustering protocol is reasonably better than its

competitors and according to the obtained experimental results, which will be pre-

sented in Chapter 3 in detail, it is a candidate algorithm to be implemented in any

WMSN application. Proposed fuzzy fusion-based framework which implements the

introduced fuzzy clustering algorithm considers both energy and accuracy aspects

while its performance scales well. Our framework provides high classification ac-

curacy while preserving energy consumption for surveillance applications by the use

of fuzzy multi-modal data fusion architecture. Overhead caused by the use of data

fusion system is insignificant when considered together with the accuracy aspect.

In the following sections, the rapidly increasing use of WSNs and its derivative, Wire-

less Multimedia Sensor Networks (WMSNs), are discussed by presenting the usage

areas and capabilities. At the end of the chapter, the road map of this thesis and the

motivation behind it will be provided.

1.1 Wireless Sensor Networks

Actually what leverage the idea of WSNs is the production of tiny sensor nodes and

the collaborative effort among them [1]. A sensor node (unit) may be in varying

sizes. A WSN includes a large number of sensor nodes deployed either densely or

in a sparse way either inside the phenomenon or around it at some distance. The

2



deployment position of the nodes can be engineered according to the needs or can

be randomly, especially in harsh or hostile environments. An early deployment aim

was to use these sensors in a passive way for indoor applications. These kinds of

early nodes had the ability to sense scalar data such as temperature, humidity, pres-

sure, and location of surrounding objects. Initially, these nodes had little computation

capability and storage space and their only use was to transfer scalar data to the ne-

cessitated places, which are generally the base stations (sinks). For these reasons, this

kind of WSNs is mainly used for indoor applications. However, recently available

sensor nodes have higher computation capability, higher storage space, and better

power solutions with respect to their predecessors and their primary usage area has

shifted from indoor to outdoor applications. From this perspective, the main usage

area consists of military applications, environmental measurements, and chemical in-

stance processing together with disaster relief. Through the technological advances

and enforced by the user requirements, in addition to scalar data delivery, multimedia

content delivery has become the core focus, which has given birth to the WMSNs.

1.2 Wireless Multimedia Sensor Networks

Wireless Multimedia Sensor Network (WMSN), consists of different kinds of nodes

that are equipped with various types of sensing units. They measure not only scalar

data, which can be transmitted through low-bandwidth channels and in a delay-tolerant

manner, but also still images, audio and video streams, which require high-bandwidth

channels. A reference architecture of a WMSN is presented in Figure 1.2[2].

WMSNs have started to appear as a result of the combination of low-power com-

munication infrastructure with low-cost multimedia content providers such as CMOS

(Complementary Metal-Oxide Semiconductor) imaging cameras and microphones.

With the addition of these technologies, this derivative of WSNs now has the capa-

bility to store, process, correlate, and fuse multimedia content. Bearing in mind the

power that comes through the data fusion, WMSNs consist of rich application areas

such as environmental monitoring, healthcare delivery, object detection, localization,

tracking applications, industrial process controls, and surveillance applications.

3



Figure 1.2: A reference architecture of a WMSN [2]: a) Single-tier flat, homogenous

sensors, distributed processing and centralized storage b) Single-tier clustered, het-

erogeneous sensors, centralized processing and storage c) Multi-tier, heterogeneous

sensors, distributed processing and distributed storage.

1.3 Challenges in WMSN Applications and Multimedia Streaming

As always do, each gain comes with a cost enforcing the decision maker to rethink

the pros and cons of the subject in question. This is also valid for WMSNs. Ini-

tial design and process models thought for WSNs is not suitable for WMSNs due to

the characteristics of the multimedia content. For this reason network layers and the

requirements demanded for each layer has to be rethought for the WMSN context.

Hardware requirements of the multimedia nodes diverge greatly from that of a scalar

node. Constrained computation capability, storage capacity and short-endurance bat-

tery power are among the main disadvantages faced in WMSNs. In addition to hard-

ware constraints, network architecture poses great obstacles for WMSNs. Demanded

QoS (Quality of Service) levels and real-time or near real-time data transmission re-

quirements are among the prevailing obstacles that need to be addressed.

Data storage and management issues in WMSNs are other pitfalls in the area. Re-
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stricted hardware resources of sensor nodes impede most general storage manage-

ment issues to be implemented on multimedia sensor networks. For this reason, there

are two general approaches to overcome this difficulty. One of them is for the sensor

nodes to possess very little storage to be able to use the restricted energy sources ef-

ficiently and immediately transmit data to the sink and let the sink have the burden

of long term storage and sensor data processing. The other approach is to design and

implement a storage-centric sensor network as depicted in [3] in which, each sensor

node should be equipped with energy efficient and high-capacity flash storage. In

these arguments, the first one assumes (which is nearly always true) that sink may

be positioned in a better, sheltered place where there is less constraint for processing

power and storage capabilities. The second one assumes (also for some applications)

that the energy consumption for the transmission of data is more than energy con-

sumption for the storage of data. For the realization of the storage-centric networks,

active and sleep-mode energy consumption of available flash-based storage options

for sensor platforms are evaluated comprehensively to reduce the energy consump-

tion by sensor data storage and presented in [4]. Characteristics of tested devices,

flash energy consumption, sleep mode current and power-on energy consumption of

the devices are given in Table 1.1-1.3, respectively. It is probable that new studies

targeting WMSN storage issues will be hybrid approaches including the pros of each

mentioned distinct approach.

Table 1.1: Characteristics of Tested Devices [4]

Type Manufacturer Capacity Interface Page Size (Byte) Erase Block (Pages)
Serial NOR Atmel 512 KB SPI 256 1
Serial NOR ST 512 KB SPI 256 256

MMC Hitachi 32 MB SPI 512 16
NAND Flash Toshiba 16 MB 8-bit bus 512 32
NAND Flash Micron 512 MB 8-bit bus 2048 64

Table 1.2: Flash Energy Consumption (Energy per Byte (µJ)) [4]

Read Write Erase Bulk Erase Total
Atmel NOR 0.26 4.3 2.36 Not allowed 6.92
Telos NOR 0.056 0.127 N/A 0.185 0.368

Hitachi MMC 0.06 0.575 0.47 0.0033 1.108
Toshiba NAND (16MB) 0.004 0.009 N/A 0.004 0.017
Micron NAND (512MB) 0.027 0.034 N/A 0.001 0.062

Challenges in WMSN applications can be classified as being internal, external and
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Table 1.3: Sleep Mode Current and Power-on Energy Consumption [4]

Sleep Current µA Power Up µJ
Serial NOR 2 0

Hitachi MMC 84 1130
Toshiba NAND 5 0

application level challenges. Internal challenges stem from the internal structure of

the resource constrained tiny nodes. External challenges stem from the environmental

effects on the nodes and application level challenges stem from the domain-specific

usages. Resource (computation, memory and communication) restrictions, changing

topologies and cruel ecological conditions, Quality of Service (QoS) necessities, data

redundancy, erroneous packets and changing link capacity, security issues, large-scale

deployment and ad hoc topologies, and integration with IP-based and other networks

are mentioned as headlines of challenges in Industrial WSN applications in [5]. These

challenges are also valid for WMSN applications since most Industrial WSN applica-

tions include multimedia content inherently.

Multimedia streaming requires high-bandwidth channels and timeliness. There are

key challenges that have to be met for the stream coding and transport level. Key

challenges for the video coding in the sensors are the low power and computational

capabilities of the sensor nodes. Key challenges for the transport are the real-time

requirements of the bursty video traffic that needs to meet the periodic play out dead-

lines of the video frames as well as several lossy wireless hops between the source

and the sink [4].

Transmission of the multimedia stream from nodes to sink may contain static or dy-

namic holes, which are caused by the inefficient placing of the sensor nodes or the

overlapping. A place where sensor nodes cannot cover because of the inability to

deploy nodes suitably is called a static hole. Dynamic holes mean the overlapping

of the streaming data in a densely deployed sensor node environment. Efficient and

reliable transmission of the multimedia streaming data back to the base station is in-

vestigated. Two Phase geographical Greedy Forwarding (TPGF) routing algorithm

for exploring single or multiple optimized node-disjoint hole-bypassing transmission

paths are proposed and differences between TPGF and Greedy Perimeter Stateless
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Routing (GPSR) are studied and presented in [6]. Since the transmission is in streams,

this case consumes more energy when compared to scalar data transmission. The net-

work should fulfill its task in order WMSN to be beneficial to the end user. For this

reason, although the lifetime of the individual nodes looks relatively unimportant, it

is crucial actually. To succeed in WMSN applications, mentioned hindrances must be

overcome.

1.4 Road Map of This Thesis and Motivation Behind

As clearly stated in the abstract, the motivation behind this thesis is the trade-off

between energy-efficiency and accuracy. Along the literature survey, most of the

studies reviewed either focused on one or other. It’s nearly an inherent belief that if

someone gets better results for one, will have worse results for the other. In order to

fulfill the gap between the two metrics-of-interest, this thesis proposes a fuzzy fusion-

based framework. According to experimental evaluations done and obtained results,

this framework has a high accuracy ratio while preserving energy consumption for

wireless multimedia sensor networks.

This thesis begins with the essentials of WSNs and WMSNs. This part mostly ad-

dresses to an audience of novices to WSNs. Then, detailed preliminary information

about challenges in WMSN applications and multimedia streaming are given. In

Chapter 2, background of the area and related work are discussed. Starting with Sec-

tion 2.1, sensor types used in WMSN applications and especially in our framework,

of such as the Passive Infra-Red sensor (2.1.1), the seismic sensor (2.1.2), the acous-

tic sensor (2.1.3) and the camera (imaging) sensor properties (2.1.4), will be given.

Afterwards, selected sample studies concerning sensor types that are employed in

our framework are highlighted in (2.1.5). Importance of fuzzy set theory over crisp

sets for WMSNs will be detailed in Section 2.2, and thereafter in Section 2.3 data

(information) fusion usage in WSN and WMSN applications will be introduced.

This will lead us to Chapter 3 where a new fuzzy clustering algorithm, named Multi-

Objective Fuzzy Clustering Algorithm (MOFCA), is introduced and described in de-

tail. Since MOFCA is the clustering algorithm implemented in the fuzzy fusion-based
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framework which will be presented in Chapter 4, detailed analysis and experimental

evaluation of the algorithm are also done in this chapter. At the end of the chapter, a

brief summary before detailing into the framework will be provided.

Following in Chapter 4, description of the efficient fuzzy fusion-based framework

which this thesis is based upon is presented. Presented are surveillance applications,

popular scenarios used in those applications, and a number of framework components

(4.1), system modeling (4.2), fuzzy clustering (4.3), data correlation (4.4), hierarchi-

cal data fusion (4.5), experimental evaluation (4.6), and computational complexity

analysis (4.7). The discussion of all of the mentioned topics here provides the back-

ground necessary for understanding the experimental results of Chapter 4. Although

some sections of these chapters are more targeted to readers with not much back-

ground on WMSNs and multi-modal data fusion, many important details about how

they do cooperate with each other are mixed into more generic knowledge from the

reference material of this thesis. At the end of the chapter, a summary is also pro-

vided.

Finally in Chapter 5, our conclusions and possible future work are stated. This chapter

will contain a summary of important observations that were made through the thesis

preparation and experiments done. This will conclude the thesis.
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CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, sensor types used in WSN and especially in WMSN context are inves-

tigated. Detailed information about sensors used in the framework and sample studies

including these sensor types are highlighted. Thereafter, fuzzy set theory which is

crucial for sensor clustering and data fusion system is presented. Finally, preliminary

information about data fusion which will be detailed in Chapter 4 is given.

2.1 WMSN Sensor Types and Sample Studies

A sensor is a device or a converter which measures a quantity and converts it / respond

to it as generating an electrical output signal which can be read by observers or in-

struments. For high-precision measurements, it is generally calibrated against known

standards. A sensor’s sensitivity indicates how much the sensor’s output changes

when the measured quantity changes [7]. Before elaborating into WMSN sensor

types, a sample Zigbee Mote data acquisition board that can embed available sensor

types is depicted in Figure 2.1. Over these kinds of boards, it is possible to embed

different type of sensors and by this way, a wireless sensor node is constituted. There

is a wide range of available sensors that can be used in wireless platforms including

Passive Infra-Red (PIR), seismic, acoustic, pyro sensors and etc. Main classification

among sensors depends on the working principle of the sensor as being an active

or a passive device. Active sensor transducers generate electric current or voltage

directly in response to environmental stimulation. Thermocouples and piezoelectric

accelerometers can be stated as examples of this type. Passive transducers produce a
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change in some passive electrical quantity, such as capacitance, resistance, or induc-

tance as a result of stimulation. The stimulus could be physical such as a changing

pressure, temperature; could be chemical such as a particular gas concentration; could

be biological such as the presence of a biological agent; and finally, it could also be

electrical such as the strength of an electric or magnetic field or a changing conduc-

tivity [8].

Figure 2.1: A sample Zigbee Mote data acquisition board.

As described in the previous paragraph, there can be different classifications of sen-

sors and main classification depends on the working principle of the sensors. There

are a broad variety of sensors including acoustic, vibration, chemical, moisture, flow,

fluid, seismic, imaging, PIR, photon, thermal sensor classes, and so on. Since the en-

ergy consumption of the wireless nodes is crucial for the network lifetime, it will be a

good choice to employ the types of sensors that require or consume the least available

energy. In this respect, since passive sensors do not require external power source to

work, it is preferable to use them in wireless energy-constrained environments. How-

ever, this choice also depends on the application area to be modeled; because only

a subset of sensors is usable for different scenarios. In the following sub-sections,

we detail and focus our view of sensors to those that are employed in most WMSN

surveillance applications including our framework.
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2.1.1 Passive Infra-Red (PIR) Sensors

This class of sensors senses motion (movement) within its range and view by mea-

suring the disseminating radiation from the objects. They are small, inexpensive and

low-power devices. For this reason they are suitable to be employed in WSN and

WMSN applications. A sample PIR sensor is presented in Figure 2.2 [9]. They are

often referred to as PIR, "Passive Infrared", "Pyroelectric", or "IR motion" sensors.

Detection by these type of sensors takes place by capturing the broken field of a pre-

defined normal temperature.

Figure 2.2: A sample Passive Infra-Red (PIR) Sensor [9].

PIRs are basically made of a pyroelectric sensor which can detect levels of infrared

radiation. Every object emits some low level radiation, and the hotter the object is,

the higher the emitted radiation is. The detection part of the sensor is actually split

in two halves, because the thing looking to detect is the change in IR levels. The two

halves are wired up so that they cancel each other out when there is no change in the

measured IR levels. If one half measures more or less IR radiation than the other, the

output will swing high or low according to the movement direction of the object. A

sample drawing of a PIR response to a moving body is given in Figure 2.3[10].

A four-block PIR sensor diagram is depicted in Figure 2.4 [10]. The first block is for

optical focusing of the IR radiation onto the PIR sensor. For this purpose, Fresnel

lenses are preferred since they have lower thickness. The second is the sensing block.

This block contains the real instrument that measures IR radiation. The third block

is the amplifier block, which amplifies the output signal, and the last block is the
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Figure 2.3: A drawing of PIR response to a moving body [10].

comparator block that gives the output voltage of either 5V for logic one or 0V for

logic zero [10].

Figure 2.4: PIR Sensor Block Diagram [10].

Although PIR sensors are low power and low cost, pretty rugged, have a wide lens

range, and are easy to interface with, they also have some pitfall such as PIRs won’t

tell us how many objects are around, what type of object is, or how close they are to

the sensor. Also, when multiple targets enter the sensing field of a sensor from the

both halves of the detection part at the same time, the generated signals cancel each

other and there is a possibility that the detection will not occur.
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2.1.2 Seismic Sensors

The second class of sensors used in WMSN applications is seismic sensors. These

devices can sense seismic waves (vibrations) which are generated by activities on

ground and underground. Seventy percent of generated seismic vibrations are trans-

mitted by Rayleigh waves which spread on the surface of the world. In order to detect

humans and vehicles, Rayleigh waves can be very useful because of the transmission

direction [11]. Detection takes place by measuring the seismic signal. In order to

use these sensors in applications such as surveillance which necessitates discrimina-

tion between object types, there are important parameters that need to be calculated.

Among these parameters, step size and speed (or cadence), background noise, shoe

type, presence of more than one target type, and ground and especially soil conditions

are the most interesting ones. Three types of seismic sensors are used at present [12];

1) Geophones,

2) Piezoelectric acceleration sensors, and

3) Micro-mechanical silicone acceleration sensors.

Generally, the geophone sensor type is used as the seismic sensor in WSN and WMSN

applications since they are more resistant to Doppler effects generated by environ-

mental differences when compared to acoustic sensors. A geophone is a sensor type

in contact with the ground surface which transduces its movements into electrical

signals. Geophones have the ability to work in a passive way and possess higher de-

tection ranges relative to other sensors [13]. A typical geophone sensor is depicted in

Figure 2.5 [14].

In applications, generally two types of geophones are used: single-axis and three-axis

geophones. Three-axis geophones have high bearing estimation error which is a bot-

tleneck for this type. Single-axis geophones have the ability to respond to vibrations

oriented only in the same direction as a sensor axis [15]. Because of this reason,

single-axis geophones use triangulation method for path tracking applications.
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Figure 2.5: SM-24 Geophone, representative view and the unit [14].

2.1.3 Acoustic Sensors

This type of sensors are a class of Micro Electro-Mechanical Systems (MEMS) which

rely on the modulation of Surface Acoustic Waves (SAW) to sense a physical phe-

nomenon [16]. Sound waves are created by alternate compression and expansion of

material at certain frequencies. The speed of sound depends on the medium through

which the waves are traveling, and is often quoted as a fundamental property of the

material. Nearly all acoustic wave devices and sensors use a piezoelectric material to

generate the acoustic wave. SAW sensors transduces an input electrical signal into a

mechanical wave which is easily influenced by physical phenomenon. This wave is

then transduced to electrical signal again and changes in amplitude, phase, frequency

or time-delay between input and output can be measured for detection. General struc-

ture of a surface acoustic wave sensor is depicted in Figure 2.6. A wireless surface

acoustic wave sensor can be made by replacing the output Interdigitated Transducer

(IDT) and by coupling the input IDT to a Radio Frequency (RF) antenna rather than

a voltage source [17].

Typical SAW sensors operate from 25 to 500 MHz. One disadvantage of these devices

is that Rayleigh waves are surface-normal waves, as a result SAW sensors are poorly

suited for liquid sensing. When a SAW sensor is contacted by a liquid, the resulting

compressional waves cause an excessive attenuation of the surface wave. Because a

Rayleigh wave propagates along the surface of a material rather than through the bulk

of the material, the energy of the wave is maximized at the surface. SAW sensors
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Figure 2.6: General structure of a SAW sensor [17].

make use of this principle. Commercially available Hydra acoustic sensor detection

ranges by Selex ES Company are given in Figure 2.7 [18] to serve as an example of

the detection range of an acoustic sensor.

Figure 2.7: Hydra acoustic sensor detection ranges [18].

Some of the common applications of acoustic wave sensors according to [19] are:

1) Temperature Sensor (based on SAW delay line),

2) Pressure Sensor (SAW velocities as above),

3) Torque Sensor (compression & tension),

4) Mass Sensor (measuring thickness as particulate),

5) Humidity Sensor.

Other applications include measuring force, acceleration, shock, angular rate, viscos-

ity, displacement, and flow, in addition to film characterization. The sensors also have

an acoustoelectric sensitivity, allowing the detection of pH levels, ionic contaminants,

and electric fields.
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2.1.4 Camera (Imaging) Sensors

In accordance with the technological advances, cost of the visual data capture de-

vices are getting cheaper every other day. Together with the increasing usage of these

imaging devices in wireless environments, it is now possible to extract more detailed

information from the environment. However, due to the characteristics and unique

properties of the multimedia data and the resource constrained nature of WSNs, em-

ploying these imaging devices as sensors in WMSNs causes more challenges to be

faced. Traditional multimedia system approach is not valid for use in WMSNs. In this

regard, it is preferable to decide on what to transmit at the source since the process-

ing cost is negligible when compared to communication cost. This type of sensors

has the ability to capture and process streaming data (images and video). When at-

tached to a wireless node, this data can also be sent to the required places for further

analysis. In Figure 2.8, a sample deployment from the BWN research lab at Georgia

Tech [20], Stargate board with an 802.11 card and a MICAz mote interfaced with a

Logitech QuickCam Pro 4000 web cam. Cyclops [21], depicted in Figure 2.9, is a

smart vision sensor that can be controlled by a low power micro-controller host. This

picture shows Cyclops with an attached MICA2 Mote. As a result of these kinds of

implementations, wireless nodes can process the captured images or video streams.

Figure 2.8: Logitech web cam interfaced with Stargate platform [20].

CMUCam3 is among one of the most commonly used imaging sensors [22]. It is

a smart sensor having vision capabilities and used in different applications such as

surveillance to which this thesis targets. Each node deployed with an imaging sensor
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Figure 2.9: Cyclops with a miniature camera [21].

has a Field-of-View (FoV) and Depth-of-Field (DoF) values which denote the cover-

age of the sensor, as shown in Figure 2.10, in which imaging sensor can operate to

capture and process an high-precision image or video. Because of these parameters,

as opposed to seismic and acoustic sensors which have omni-directional coverage,

imaging sensors have directional coverage as it is also the case for PIR sensors.

Figure 2.10: FoV (β) and DoF (d) parameters of an imaging sensor.

If the WMSN is deployed specifically for a surveillance application and is comprised

of multimedia nodes which consist of camera sensors, area-of-interest (AOI) may

have overlapped regions and holes (blind regions) as depicted in Figure 2.11 due to

the node positioning and orientation. An overlapped region is an area which can be

covered by more than one imaging sensor. A hole, or a blind region in this context,

is an area which is not covered by any of the imaging sensors. In the figure, orange-

colored areas are covered by more than one imaging sensor, white-colored areas are
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covered by only one sensor and black-colored areas denote the blind regions.

Figure 2.11: Coverage of the AOI according to imaging sensors.

2.1.5 Selected Sample Studies Concerning Sensor Types

In this subsection, selected sample studies dealing with sensor types used in WSN

and WMSN applications are presented. These studies are generally single-modality

researches. Studies consisting multi-modal information are presented in Section 2.3.

In the context of PIR sensors; design and implementation of a wireless node includ-

ing PIR sensors, called WiPIR, is given in [23]. This study explains how PIR sensors

can be used for wireless sensor networks targeting surveillance systems, traffic con-

trol, and people or object tracking applications. In [24], PIR sensors are used for

activity recognition with the aim of creating expert building systems that are capable

of recognizing day-to-day activities of their inhabitants. By this way, authors think

that this will enhance security by mining/flagging the outlier patterns in data. They

also think that since these sensors only detect heat sources, they preserve much of

the privacy of the occupants. This case is an example usage of PIR sensors for in-

door environments. Surveillance tracking system using PIR motion sensors in WSN

is studied in [25]. Here, authors first analyze the performance and the applicability

of PIR sensors for security systems and then propose a region-based human track-

ing algorithm. According to [10], when PIR sensor circuitry is modified and analog

signal is extracted and sampled instead of standard logical output, it is possible to

develop human, pet and flame detection methods to be implemented on these new
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generation PIR sensors. Author describes the possible pros of the new sensing ca-

pabilities and implement a human motion event detection mechanism with lowered

false alarm rates (FARs) through the use of these developed PIR sensors. The design

of a sensor network platform for reliably detecting and classifying, and quickly re-

porting, rare, random, and ephemeral events in a large-scale and long-lived manner

is studied in [26]. Here, together with other sensor types, authors design a PIR sen-

sor for low-power continuous operation and include asynchronous processor wake-up

circuitry.

In the context of seismic sensors; a data-driven personnel detection scheme using seis-

mic sensors has been presented in [27]. According to the analysis done on the seismic

data, authors stated that the seismic data shows the presence of non-linearity, which

means that its current value cannot be determined by using past values. Moreover, as

opposed to Wavelet and Fourier based techniques, which assume source linearity and

stationality, Empirical Mode Decomposition (EMD) algorithm has been proposed to

overcome the pitfalls of the aforementioned techniques. Other techniques that have

been implemented to detect footsteps using seismic/acoustic sensors have been pre-

sented in the same study in a concise way. Seismic sensors developed by the company

General Sensing Systems for footstep detection and other security applications have

been tested and obtained results have been presented in [28]. Since seismic data can

be storage intensive when sampled at high data rates, USB device usage as a storage

medium in a WSN consisting of seismic sensors which monitor glaciers was imple-

mented as part of the project in [29]. Comparison of geophones and accelerometers

using laboratory and field data in the context of seismic sensing has been presented

in [30]. According to the study done, if the sensor coupling is equivalent, the data

quality is also equivalent.

In the context of acoustic sensors; by using a beam former, Multiple Signal Classifi-

cation (MUSIC) algorithm has been proposed to classify multiple acoustic signals in

[31] but this method needed high CPU cost, and thus proved to be inefficient for WSN

applications. In another research, by applying the approximate maximum likelihood

(AML) method to synchronized audio channels of each acoustic array for estimating

the direction-of-arrival (DOA) of vocalizations, the location of the phenomenon is

estimated in [32] by applying least square (LS) methods to DOA bearing crossings
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of multiple acoustic arrays to detect woodpecker locations. Unmanned Air Vehicle

(UAV) usage as information-seeking data mule for the localization with sparse acous-

tic sensor network has been studied in [33] but since there is no direct connection

among sensor nodes, we do not consider this study for our wireless multimedia sensor

network applications. However, presented results are promising to be implemented

in WMSN context. In the context of camera (imaging) sensors; design of a mote

for distributed image sensing applications in wireless sensor networks was studied

in [34]. In the study, requirements of an image sensor mote and currently available

platforms are reviewed and presented extensively. As depicted in [35-37], image sen-

sors have been considered in the past as data sources for surveillance and security

applications. However, in these and most of the studies, wireless network only act as

a medium which transfers the raw data (stream) to the base station (sink). Thereafter,

in-network processing solutions have started to appear. These solutions were highly

complex to embed in wireless nodes. As a solution to one of the known object lo-

calization problem, lightweight object localization with a single camera in wireless

multimedia sensor networks was presented in [38]. According to the obtained ex-

perimental results, authors achieved promising accuracy without introducing a major

energy consumption. Efficient and accurate object classification from video frames in

WMSNs has been studied in [39]. Here authors describe the efficiency of the method

considering the extracted effective features and accuracy by using a genetic algorithm

whose memory requirements is minimal.

2.2 Fuzzy Set Theory

Fuzzy sets are sets whose elements have degrees of membership to the sets. In clas-

sical set theory, the membership of elements in a set is assessed in binary terms, an

element either belongs or does not belong to the set. By contrast, fuzzy set theory per-

mits the gradual assessment of the membership of elements in a set; this is described

with the aid of a membership function valued in the real unit interval [0, 1]. Fuzzy

sets generalize classical sets, since the indicator functions of classical sets are special

cases of the membership functions of fuzzy sets [40]. In fuzzy set theory, classical

sets are usually called crisp sets. The fuzzy set theory can be used in a wide range
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of domains such as wireless sensor networks in which information is incomplete,

imprecise, or vague.

Mathematical definition of the Fuzzy Set is given below in Eq. 2.1. In the equation, x

denotes an element of the fuzzy set and µ(x) is the membership degree of the element

to the set.

Ā = {x, µ(x) | x ∈ X} (2.1)

As stated in [41], major goals of fuzzy sets are modeling of uncertainty, relaxation

(generalization of dual logic), compactification (reducing the complexity of data to

some degree), and meaning preserving reasoning by using linguistic approximation.

In researches concerning WSNs and especially WMSNs, fuzzy set theory is often ap-

plied in classification, clustering, and data fusion related studies mostly by employing

linguistic approximation. Those applications concerning the usage of this theory will

be referred in the related chapters and sections of the thesis in detail.

2.3 Data (Information) Fusion

Data fusion is a technology used for the integration of multiple data, knowledge, or

information representing the same entity into a coherent, accurate, useful state, so that

this fused data is used to make better decisions or representations about the entity. It is

an attractive technique since it helps us better understand the nature of the entity that

we cannot do so by using any of the information source alone. The term "information

fusion" is taken as a synonym for data fusion, or sometimes refer to the fusion of

processed form of data.

Data Fusion is probably the most studied topic lately in the WSN and WMSN re-

searches, since the data collection (gathering/aggregation) is the primary reason of

these networks and the resource-constrained nature is the primary pressure over them.

There are different definitions of data fusion but here we adapt the definition in [42].

With the use of fusion techniques, volume of data that needs to be transmitted and

energy consumption because of this transmission can be reduced significantly. More-
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over, this also extends network lifetime since the number of alive nodes will be more

when compared to fusion-less aggregation techniques. Aggregation tree related algo-

rithms and relevant processing methods in the context of data fusion are presented in

[43]. One classification about data fusion is about the time when the data fused: early

or late fusion. In early fusion, gathered data is fused as early as possible and then

algorithms are applied to fused data to make a decision about the detection. How-

ever, in late fusion, first algorithms are separately applied to each data to decide what

the detection is, and then the results are fused. So, early fusion is sometimes called

the value fusion and late fusion is sometimes referred to as decision fusion. Detailed

classification of aggregation techniques and information fusion for WSNs are pre-

sented in [44] and [45], respectively. Figure 2.12 presents and describes the flow of

generic data fusion process. In the figure, red colored processes (fuzzification and

defuzzification) may occur or not according to the chosen fusion methodology.

Figure 2.12: Flow of generic data fusion process.

Activity and event recognition, object localization and classification, moving target

detection are among the prevailing application areas of data fusion. Bayesian data fu-

sion for distributed target detection is studied in [46]. Here, authors describe a fusion

center (FC) and sensor local decisions are fused at the FC. Cluster based data fusion,

in which nodes form clusters and each cluster consists of a cluster head (CH) and sev-

eral member nodes, is among the important data fusion methodologies [47]. Accord-

ing to [48], data fusion is effective in achieving stringent performance requirements

such as short detection delay and low false/nuisance alarm rates (F/NAR), especially

in the scenarios with low signal-to-noise ratios (SNRs) for real time detections. Since

WMSN environment used for surveillance applications necessitates real time detec-

tion, it is obvious to use a fusion architecture for the aforementioned reasons.
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CHAPTER 3

MOFCA: MULTI-OBJECTIVE FUZZY CLUSTERING

ALGORITHM FOR WIRELESS SENSOR NETWORKS

Clustering is a useful method which can group sets of similar objects in a multidi-

mensional space into so-called clusters. The objects that are member of a cluster are

more similar to each other rather than to the objects in other clusters. The graphical

representation of clustering is depicted in Figure 3.1, where part (a) shows the input

objects to be clustered and part (b) presents the four discovered and output clusters

as circles. The objects that are not assigned to any cluster are not more similar to any

object in one cluster then in another cluster.

Figure 3.1: Graphical representation of clustering.

As seen from Figure 3.1, clustering greatly helps in binding together the objects of

similar behavior. Actually, main idea behind clustering is that if a rule is valid for an

object in one cluster it is also possible that the same rule is applicable to other objects

in the same cluster since other objects in the same cluster are similar to it. In the

following section, clustering phenomenon is introduced from the WSN perspective.
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3.1 Introduction to Clustering Phenomenon in WSNs

Clustering is used as a means of efficient data gathering technique in terms of energy

consumption in WSN context. In wireless networks, nodes (units) are geared with

batteries which are not rechargeable in most of the cases. Recently, energy schemes

of these nodes have gained much interest among researchers. This topic has been

studied for many years, and [50] and [51] are among the recent studies and lately

the trend is towards energy-harvesting nodes [52]. However, readily available com-

mercial off-the-shelf (COTS) units may not use this technology and the deployed

area may not allow the use of such available energy-harvesting methods. Because of

all these reasons, decreasing energy consumption through energy-efficiency has been

still one of the major goals [53]. In this respect, designing energy-efficient algorithms

is crucial to extend the lifetime of sensor nodes.

In the WSN, sensor units can be grouped into small partitions which are called clus-

ters. In each cluster, there is a cluster-head (CH), also sometimes called as the leader,

which coordinates data gathering from the member units and transmission of the

collected data to the sink. CH selection can be done in a centralized or distributed

manner. Clustering in WSN assures stringent performance requirements even though

when there are a large number of units [54] and [55]. It also improves the scalability

of WSNs [56]. In addition to scalability of the network, route set up localization,

communication bandwidth conservation by decreasing the relayed packets, reducing

the rate of energy consumption and stabilization of the network topology are pros of

clustering [57].

Since efficient CH selection can reduce energy consumption, the selection mecha-

nisms have been studied thoroughly in the literature. Most of the available approaches

utilize a two-step process, in the first step they select CHs with more remaining en-

ergy, and then in the second step they make a rotation among the member nodes

to balance energy consumption. This case shows that these selection approaches take

only the energy of the nodes into account, not the location and the density of the nodes

yet. As a result of not considering the location of the deployed nodes, the hotspots

problem arises in multi-hop WSNs. This problem is known as the early dying of the

CHs that are close to the sink or over critical paths because of the heavy inter-cluster
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traffic relay. In an effort to overcome this problem, the unequal(uneven) clustering ap-

proach, which creates variable size of clusters based on the distance between CHs and

the sink, has emerged. By utilizing such an unequal clustering methodology, clusters

that are close to the sink are created in smaller sizes (service areas) when compared

to the clusters that are further. In addition to the hotspots problem, the deployment

locations of the nodes may change by redefined requirements or environmental ef-

fects. This type of networks is called evolving networks since they evolve over time.

In this type of networks, initial distribution may look like a uniform one, however the

final scene may resemble a non-uniformly distributed computing devices. As a result

of this situation, the energy hole problem arises. This problem is known as the early

dying of some close nodes around WSN which prevents data gathering. This variabil-

ity in the node locations affects the density of the nodes over time. There are studies

trying to address the energy hole problem by employing a non-uniform node distribu-

tion. However, most of the proposed clustering approaches do not take this situation

into account either by the node-staticity assumptions or by uniform distribution of

the nodes at the first phase. This distribution is especially crucial in heterogeneous

WSNs when compared to their homogeneous counterparts since different sensing in-

struments have different ranges in which they can operate.

In this chapter, a Multi-Objective Fuzzy Clustering Algorithm (MOFCA) is intro-

duced with the aim of prolonging the lifetime of WSNs and fulfilling the shortcom-

ings of aforementioned approaches. MOFCA selects the final CHs via energy-based

competition among the chosen tentative CHs which are initially determined by a prob-

abilistic model. MOFCA is a distributed competitive protocol which focuses on as-

signing appropriate ranges to tentative CHs. Our proposed algorithm, MOFCA, uti-

lizes three parameters; namely remaining energy, distance to the sink, and density of

the nodes. Furthermore, in order to overcome the uncertainties inherent in the WSN

environment, a fuzzy logic approach is utilized. To evaluate the performance of our

approach, it is compared with the existing equal and unequal clustering mechanisms

such as LEACH, CHEF, EEUC and EAUCF. A number of experiments are performed

under predefined four scenarios. Obtained results show that MOFCA is a promising

fuzzy clustering algorithm and performs better than all of the compared algorithms in

the most of the scenarios. Because of these reasons, we employ MOFCA in our fuzzy
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fusion-based framework which will be presented in the next chapter.

The remainder of this chapter is organized as follows: in Section 3.2 background and

related work about our algorithm with some domain information are presented. Then,

our proposed clustering algorithm MOFCA is introduced and discussed in Section

3.3 and 3.4 in detail. Thereafter, our contributions are explored by evaluating the

proposed algorithm and presenting the obtained performance results in Section 3.5.

Finally, in Section 3.6, our conclusions and a brief summary are given.

3.2 Background and Related Work

Data gathering process deals with efficient data aggregation from deployed nodes.

Clustering approaches in this sense provide energy-efficient infrastructure for the de-

manded task. The need for clustering emerges from the known requirements such

as decreasing the number and size of data packets to be transmitted and providing

efficient delivery mechanisms to these routed packets. This topic is even more crucial

when considering the application types which include more multimedia streaming

data every other day.

In the literature, there are various proposed clustering protocols for wireless networks.

In the following paragraphs, key and discriminating features of the widespread clus-

tering algorithms are stated. In order to help specify the key features of our proposed

algorithm, it is useful to conceive what other available proposed algorithms do for

clustering.

Low Energy Adaptive Clustering Hierarchy (LEACH) is a distributed protocol which

promotes local decisions to select CHs [58]. It selects CHs based on probability

model and then rotates CHs. This model is employed in order to balance energy

consumption of the nodes throughout the network lifetime; otherwise selected CHs

would consume more energy when compared to member nodes. In LEACH, CHs

perform data compression before transmitting data to the sink. However, LEACH is

not an efficient algorithm in terms of the network lifetime since it does not consider

the distribution of sensor nodes and the remaining energy on each node.
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Hybrid Energy-Efficient Distributed (HEED) algorithm is designed for multi-hop net-

works and node-equality is the primary assumption [59]. Two-phase parameter check

is done to select CHs. In the first phase, remaining energy of a node is used for the

probabilistic selection of the CHs. If a tie occurs in the first phase, second-phase

parameters such as node degree, distance to neighbors, and intra-cluster energy con-

sumption are applied to break the tie in the selection process.

Initialization of newly deployed sensor networks is studied in [60]. Here, the authors

argue that good clustering can be computed efficiently even for the restricted network

model and propose a probabilistic CH election algorithm. In their approach, the prob-

ability of each node being elected as a CH depends on the node connectivity (degree)

and the main idea behind is that the nodes compete to become dominators. For this

reason, algorithm tries to find a dominating set of nodes which are good candidates

to be CHs.

Energy Efficient Clustering Scheme (EECS) is introduced for periodical data gath-

ering applications in WSNs [61]. It is a LEACH-like protocol such that it utilizes

node residual energy in the selection of constant number of CHs, however, in the

cluster formation phase load is balanced among CHs. It is a distributed algorithm and

the experimental results show that it performs nearly 35% more energy-efficient than

LEACH.

Because of the uncertainties occurring in the WSN nature, increasing number of clus-

tering algorithms [62], [63], and [67] make use of fuzzy logic to overcome the arising

problems. For this reason, they are known as fuzzy clustering approaches. In these

approaches, fuzzy logic is mostly employed to get a better combination of the ap-

plicable input parameters to obtain an optimal output, which is CH election in this

context. In the fuzzy approach pursued by [62], the CH election occurs by consider-

ing three fuzzy descriptors in the sink which denotes this algorithm as a centralized

one. Here; node centrality, node concentration, and residual energy of each node are

the fuzzy input parameters.

Cluster Head Election using Fuzzy logic (CHEF) [63] is a similar approach to the

proposed method in [62], but here CH election occurs in a distributed manner which

does not necessitate the central control of the sink. Moreover, there is one less fuzzy
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descriptor. Residual energy of each node and local distance are the fuzzy input pa-

rameters of this algorithm.

Equal clustering approaches like the aforementioned ones suffer from the hot- spots

problem in multi-hop WSNs. This situation is explained as the more energy consump-

tion of the nodes that are close to the sink when compared to the further ones because

of heavy relay traffic [53]. To overcome this problem, unequal (uneven) clustering

approach has emerged. Main idea behind this methodology is to adjust the cluster

sizes with respect to the distance between the CH and the sink. As a result, it is pos-

sible to distribute the energy consumption over the network by changing the effect of

inter-cluster and intra-cluster work of the CHs according to their distances to the sink.

Energy-Efficient Unequal Clustering (EEUC) is a competitive uneven distributed clus-

tering protocol. In the protocol, each node has a preassigned competitive radius and

CHs are elected by local competition [64]. Competition radius decreases as the nodes

approach the sink. In addition to being an uneven clustering protocol, this method is

also a probabilistic approach since for every clustering round, a node probabilistically

chooses to attend or not to the CH election competition. The term round points out

the time interval between two successive clustering process.

Multi-objective solutions are introduced to the clustering phenomenon and Multi-

Objective Particle Swarm Optimization (MOPSO) algorithm is among them. In the

algorithm both number of clusters in an ad hoc network and energy consumption are

tried to be optimized [65]. There are three parameters employed by this algorithm.

These are the degree of the nodes, battery power consumption of mobile nodes and

transmission power.

Density-Based Clustering Protocol (DBCP) is an improvement over LEACH on the

basis of nodes’ connectivity [66]. A metric of nodes’ relative density is introduced for

CH selection. By considering the alive neighbor nodes in certain round, the algorithm

promotes that nodes in a dense area have larger probability to become a CH.

Energy-Aware Unequal Clustering with Fuzzy (EAUCF) algorithm is introduced to

address the hotspots problem and extends the lifetime of WSNs. This algorithm uti-

lizes randomized periodical rotation together with fuzzy logic, however, does not
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follow a pure probabilistic approach to elect final CHs and considers only the station-

ary nodes [67]. Fuzzy descriptors employed in the EAUCF are residual energy and

distance to the sink of the tentative CHs.

Density-based Energy-efficient Clustering Algorithm (DECA) defines the density of

each node and regards it as a crucial metric together with nodes’ remaining energy

[68]. These two metrics are employed to select CHs in the algorithm.

3.3 System Model

Before detailing into the proposed algorithm, properties of the system model that are

used for experimental evaluation are given. Our assumptions for the system model

are as follows:

• All units are identical.

• Units are deployed either manually in order to form a non-uniform distribution

or randomly.

• The base station (sink) can be anywhere in the Area-of-Interest (AOI - bound-

aries of the WSN). It does not need to be located away from the AOI. However,

it could also be out of the AOI.

• All units do not have to be stationary after the deployment phase. However,

mobility meant here does not include the forceful change of the initial place-

ment by remote control. It includes only the change in places which is caused

by terrestrial movements such as erosion or displacement resulted by external

objects. With the inclusion of this assumption, evolving networks are also tar-

geted.

• Since mobility is assumed to be generated by external sources, it does not cause

units to consume energy.

• When the units are deployed, they have the same energy level, and this battery-

power is initially one (1) joule (j).
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• Units are able to adjust transmission power with respect to the distance of the

receiving units.

• Distance calculation between nodes is done considering the received signal

level.

Representation of the energy dissipation model is as employed in [58]. Depleted

energy measurement in transmitting or receiving l bit over a distance of d is done

as in Eq. 3.1 and Eq. 3.2, respectively. Eelec = 50nJ/bit, ε f s = 10pJ/bit/m2 , εmp =

0.0010pJ/bit/m4 and d0 = 20 m. Eelec is the consumed energy per bit in the transmitter

and receiver electronic circuitry and εmp is the energy disseminated per bit in the RF

amplifier.

ET X(l, d) =


lEelec + lε f sd2, d < d0

lEelec + lεmpd4, d ≥ d0

(3.1)

ERX(l) = ERX−elec(l) = lEelec (3.2)

3.4 Algorithm Essentials

MOFCA is designed by considering two important factors: firstly it should be energy

efficient in all employable scenarios and secondly lightweight enough to be imple-

mented on real sensor hardware boards. It is a distributed unequal fuzzy clustering

algorithm which makes use of local decisions for the determination of node com-

petition radius and electing tentative and final CHs. There is no need for a central

decision node (generally the sink) for the election process. Motivation behind the

algorithm is to overcome the hotspots and evolving network situation occurring in

WSNs while still achieving efficient results for the stationary distribution case. That

is why, this algorithm is called a multi-objective solution for clustering problems.

MOFCA considers three parameters, namely distance to the sink, node remaining en-

ergy, and the density of the node with the aim of estimating the competition radius for

tentative CHs. In addition to these parameters, MOFCA also employs fuzzy logic in

calculating competition radius. With the use of fuzzy input and output variables, un-

30



certainties inherent in the WSN nature are handled in an effective manner. MOFCA

is based upon a probabilistic model which is used for the election of tentative CHs

and utilizes randomized periodical rotation. Our approach is multi-objective, since it

reaches an efficient solution to the clustering phenomenon considering both the sta-

tionary and evolving networks. MOFCA employs remaining energy, distance to the

sink, and density of the nodes, nearly all parameters considered so far, together with

fuzzy logic in estimating competition radius. The flow of messages in MOFCA pro-

tocol together with the pseudo-code is explained in Algorithm 1. Compi , Ei , and

S i represent the competition radius, remaining energy and state of a particular sensor

node i respectively.

Each unit generates a random number (µ in Algorithm 1) between the unit interval

[0,1] in every round. If the generated number for a particular unit is not equal to or

greater than the predefined threshold (Th), which depicts the ratio of the aspired ten-

tative CHs, then that unit (i) becomes a tentative CH. Since MOFCA uses remaining

energy, distance to the base station, and density parameters to calculate competition

radius, this value changes dynamically in MOFCA. It is wise to adjust the compe-

tition radius of a CH while these input parameters are changing. If this radius does

not change according to the values of the input variables, the unit’s energy depletes

rapidly. To get rid of this situation, MOFCA adjust the competition radius of each

tentative CH accordingly. In order to handle uncertainty, computation of the radius

is done by using predefined fuzzy rules. This process is depicted as line 8 in Algo-

rithm 1. The fuzzy rules are given in Table 3.1. To be able to evaluate the rules, the

Mamdani Controller [41] is employed as a fuzzy inference procedure and the Center

of Gravity (CoG), also called the Center of Area (CoA), method is employed for the

defuzzification process of the competition radius.
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Algorithm 1: MOFCA Protocol
Input: A Non-Clustered WSN

Output: A Clustered WSN

1 Th← Threshold value for becoming a tentative CH

2 S i ← CLUSTERMEMBER

3 clusterMembers← NULL

4 myCH← This (self)

5 becomeTentativeCH← TRUE

6 if (µ <Th) then

7 By using three fuzzy input variables, generate crisp Compi

8 Disseminate CandidateMessage (Id, Compi, Ei, di)

9 On receiving CandidateMessage from node j

10 if (Ei <E j) then

11 becomeTentativeCH← FALSE

12 Disseminate CeaseElectionMessage(Id)

13 else if ((Ei = E j) and (di ≤ d j)) then

14 becomeTentativeCH← FALSE

15 Disseminate CeaseElectionMessage(Id)

16 if (becomeTentativeCH = TRUE) then

17 Disseminate CHMessage(Id)

18 S i ← CLUSTERHEAD

19 On receiving JoinCHMessage(Id) from node j

20 clusterMembers← ADD( j)

21 EXIT

22 else

23 On receiving all CHMessages

24 myCH← the nearest CH

25 Send JoinCHMessage(Id) to the nearest CH

26 EXIT
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Table 3.1: Fuzzy Rules in MOFCA Protocol

Distance to
Base Station

Remaining
Energy

Calculated
Density

Competition
Radius

Close Low Dense 12XS
Close Low Normal 11XS
Close Low Sparse 10XS
Close Medium Dense 9XS
Close Medium Normal 8XS
Close Medium Sparse 7XS
Close High Dense 6XS
Close High Normal 5XS
Close High Sparse 4XS

Medium Low Dense 3XS
Medium Low Normal 2XS
Medium Low Sparse XS (Extra S)
Medium Medium Sparse Small (S)
Medium Medium Normal Medium (M)
Medium Medium Dense Large (L)
Medium High Sparse XL (Extra L)
Medium High Normal 2XL
Medium High Dense 3XL

Far Low Sparse 4XL
Far Low Normal 5XL
Far Low Dense 6XL
Far Medium Sparse 7XL
Far Medium Normal 8XL
Far Medium Dense 9XL
Far High Sparse 10XL
Far High Normal 11XL
Far High Dense 12XL

In the defuzzification, the fuzzy controller first calculates the area under the member-

ship functions and within the range of the output variable, and then uses the Eq. 3.3

to calculate the geometric center of this area, where CoA is the center of area, x is the

value of the linguistic variable, and xmin and xmax represent the range of the linguistic

variable.

CoA =

∫ xmax

xmin

f (x) ∗ xdx∫ xmax

xmin

f (x)dx
(3.3)
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Three fuzzy input variables (descriptors) are used for calculating the CH competition

radius. The first one is the distance to the sink. The fuzzy set defining this descriptor

is depicted in Figure 3.2. The linguistic variables of this set are close, medium and far.

A trapezoidal membership function is selected for close and far. However, triangular

membership function is selected for medium.

Figure 3.2: Fuzzy set defining the fuzzy input descriptor Distance to the Sink.

The remaining energy of the tentative CH is the second fuzzy descriptor. The fuzzy

set defining this descriptor is given in Figure 3.3. This fuzzy set has Low, medium

and high linguistic variables. A trapezoidal membership function is selected for low

and high, whereas a triangular function is selected for medium.

The third fuzzy input descriptor is density of the tentative CH. The fuzzy set defining

this descriptor is illustrated in Figure 3.4. Sparse, normal and dense are the linguistic

variables of this fuzzy set. Sparse and dense linguistic variables have a trapezoidal

membership function while normal has a triangular membership function.

In addition to other two fuzzy input variables which try to reach an energy-efficient so-

lution, this variable adds robustness against changes in unit locations. This is achieved

through tuning the competition radius according to the calculated density. This fuzzy

variable helps tentative CHs which have higher unit density to compete for a larger

radius. However, this is only true if we consider the distance to base station fuzzy

variable having the values of medium or far. For the close value of this fuzzy vari-
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Figure 3.3: Fuzzy set defining the fuzzy input descriptor Remaining Energy.

Figure 3.4: Fuzzy set defining the fuzzy input descriptor Density.

able, higher density means a smaller competition radius in order to decrease the ser-

vice area of a CH. As a result of this tuning, clusters are formed more efficiently

and the hotspots problem is alleviated. Moreover, for possible high-density areas in

a non-uniformly deployed WSNs, it has an advantage that more units can become

members of the elected nearest CHs and transmit to shorter distances. However, the

vice-versa is also possible for some deliberately formed WSNs and, for this situation

it exacerbates the efficiency metrics. By stating deliberately formed WSN, we imply

the cases where most of the units are deployed around the corners of the quadratic

shape of the AOI, the base station is nearly at the center of the AOI, and there are
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some high-energy units that are close to the base station and have low calculated unit

densities in their competition ranges according to the units that are placed around

corners. For this situation, MOFCA, by considering all fuzzy input variables, may

elect a non-optimal CH and assign units to further tentative CHs. Although, this situ-

ation is tried to be addressed in fuzzy rules depicted in Table 3.1, experimental results

are corroborating this condition. As a result of this situation, more energy might be

consumed. However, this case is most probably not to be seen in any WSN that are

not formed to exploit the effects of this situation. Densities of the tentative CHs (di)

are calculated as in Eq. 3.4. A wireless unit knows the number of active units in its

radius. However, for the calculation of node density parameter, a node needs to know

the number of all active units in network (denominator in Eq. 3.4). Since the number

of all active units may change at each round and it is not possible for a node to know

its value, this value is broadcast to the WSN by the sink at the start of each round.

Density fuzzy input variable in MOFCA is not employed as it is in DBCP. Higher

node density in MOFCA means a bigger or smaller competition radius when electing

tentative CHs while higher node density in DBCP means a greater probability for a

node to become a CH.

di =
Number o f Alive Nodes in Radius

Number o f All Alive Nodes in Network
(3.4)

The competition radius of the tentative CH is the only fuzzy output descriptor. Fuzzy

set defining this fuzzy output descriptor is given in Figure 3.5. There are 27 linguistic

variables which are very 12XS (extra small), 11XS, ... ,XS, small, medium, large, XL,

... , 11XL, and 12XL (extra large). 12XS and 12XL have a trapezoidal membership

function. Triangular membership functions are employed for the remaining linguistic

variables. The function in Figure 3.5 is not a symmetric triangular function as in

previous figures. This is because the function in Figure 3.5 provides better results

when employed in the simulation of scenarios. The fuzzy set for this output variable

can also be tuned according to a specific scenario; however, we employ the same

fuzzy set in all scenarios. If a particular tentative CH is located at the maximum

distance to the base station (fuzzy input variable Distance to Base Station has the

value of far), it has a full battery (fuzzy input variable Remaining Energy has the value

of high), and calculated density in its region is high (fuzzy input variable Calculated
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Density has the value of dense), then it has the maximum competition radius (fuzzy

output variable Competition Radius has the value of 12XL). On the contrary, if the

remaining energy of a particular CH is near empty (fuzzy input variable Remaining

Energy has the value of low), it is a close node to the sink (fuzzy input variable

Distance to Base Station has the value of close), and calculated density in its region

is high (fuzzy input variable Calculated Density has the value of dense) then it has

the minimum competition radius (fuzzy output variable Competition Radius has the

value of 12XS). These extreme cases are colored in red in Table 3.1. The remaining

possibilities fall between these boundaries.

Figure 3.5: Fuzzy set defining the fuzzy output variable Competition Radius.

The maximum competition radius does not change for a particular WSN because ei-

ther units are stationary in WSNs or the borders of the AOI are always known. The

value of this parameter is advertised to the whole network by the sink. For these rea-

sons, all units know this value beforehand. Relative competition radius of each unit

can be calculated by using this parameter. The maximum distance to the sink does not

change either, since the units are assumed to be stationary or only mobile in the AOI.

Relative position of each unit to the sink can be determined by taking the maximum

distance to the sink into consideration in the WSN.

Following the determination of the the competition radius of each tentative CH, the

competition commences. Each tentative CH disseminates CandidateCH message to

compete with other tentative CHs. This message is transmitted to the tentative CHs

which are inside the maximum CH competition radius. It includes node information

(Id), competition radius (Compi) , remaining energy level (Ei), and density (di) of the
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generating node. Remaining energy is the first key parameter in CH competition. If

a tentative CH receives a CandidateCH message from another tentative CH which is

in its competition range and the remaining energy of the generating node is greater

than the remaining energy of the receiving node, then the receiving node cease the

competition and disseminates a CeaseElection message. If a tie occurs in the remain-

ing energy levels of the competing nodes, it is broken through the consideration of

the calculated densities. If a particular tentative CH has the highest remaining energy

level among the tentative CH which it receives a CandidateCH message from, or if it

has the highest degree alive node density in its radius among equal-energy tentative

CHs, then it becomes a CH.

Figure 3.6: A WSN clustered by using our proposed MOFCA protocol.

With this competition, it is assured that no other CH co-exists in the competition

radius of a particular CH and hereby, energy consumption over network is balanced.

After election is completed, each sensor node not elected as one of the final CHs

joins to the closest CH, as in most proposed clustering schemes. Figure 3.6 illustrates
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a part of the WSN which is clustered by using the proposed MOFCA algorithm. A

total number of 200 wireless nodes are deployed to the AOI in this instance. The size

of the AOI is 200m x 200m. The base station (sink) is colored in solid black with

a larger size when compared to ordinary nodes, each CH is colored in solid red, and

cluster member nodes are not filled with color. Node types are pointed out and service

area (size/range) of the formed clusters are depicted in grey circles in the figure.

3.5 Experimental Evaluation

The obtained results of the simulations to analyze MOFCA are presented in this sec-

tion. To assess the performance of the proposed algorithm, we compare it with the

existing algorithms, namely LEACH, CHEF, EEUC, and EAUCF, in four different

predefined scenarios in which there are two different cases with respect to the imple-

mented routing protocol. These cases are the same for all scenarios which are direct

transmission to the sink or multi-hop routing. Location of the sink has two varieties

in the scenarios: either in AOI or out of the AOI. Node distribution is done either

near-uniformly or non-uniformly by random or manual placement. By stating man-

ual placement, we mean that nodes are distributed randomly into the selected areas

which are chosen to form a non-uniform distribution type. Thus, we refrain from a

setup which might provide an optimal scene for one algorithm but not for another.

Total number of eight different set ups are tested. Scenarios detailed in the follow-

ing subsections are chosen in an effort to test the impacts of node distribution type,

routing protocol, and the location of the sink over protocols’ energy-efficiency.

3.5.1 Experimental Setup and Performance Metrics

In all of the scenarios, CHs formed by LEACH algorithm forwards the gathered data

to the base station via direct routing protocol and the desired ratio of CHs for this

algorithm is set to 10%. Other algorithms employ either direct or multi-hop routing

protocol depending on the selected case of the scenario. The α value of CHEF is set

to 2.5 as in [63]. The optimal threshold value is calculated by using the equations in

[63] and set as approximately 0.3 for 100 units and 0.21 for 200 units. For the EEUC
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[61] and EAUCF [67] algorithms, threshold and coefficient values are set as defined

in the original studies. For MOFCA, this value is set as 0.3. Outline of the predefined

scenarios is as follows:

• In scenario 1, the sink is out of the AOI and units are deployed randomly to

form a near-uniform distribution.

• In scenario 2, the sink is at the center of the AOI and units are deployed ran-

domly to form a near-uniform distribution.

• In scenario 3, the sink is out of the AOI and units are deployed manually to

form a non-uniform distribution.

• In scenario 4, the sink is at the center of the AOI and units are deployed manu-

ally to form a non-uniform distribution.

In depicted scenarios, CHs are elected and clusters are formed at each round. Then

each CLUSTERMEMBER unit sends 4000-bit data to its CLUSTERHEAD. Each

elected CH accumulates the received data with a defined ratio before transmitting to

the base station. This accumulation ratio is set to 10% as employed in [63] and [67].

The size of data for a CH after accumulation is calculated by using Eq. 3.5 and Eq.

3.6. Here, S comp depicts the value of compressed data, S rec denotes the size of the

received data from each CLUSTERMEMBER node, Racc denotes the accumulation

ratio, and N denotes the number of the cluster member nodes except CLUSTER-

HEAD in a particular formed cluster. Total of S comp and S rec denotes the size of the

accumulated data, S acc .

S comp = (S rec × Racc × N) (3.5)

S acc = (S rec + S comp) (3.6)

In order to test the effectiveness of our proposed algorithm, a set of experiments are

conducted by using a WSN simulator[67]. This simulator is developed using the C#

language and Microsoft .Net Framework 4.0, and is able to simulate the selected pro-

tocols in the same setup. However, simulations can also be done by using MATLAB

40



R2012b or MASON simulation libraries. The network is deployed on a 200m x 200m

AOI and nodes deployed either to the selected to test the effectiveness, xi and yi co-

ordinates manually or randomly. The initial energy of each node is modeled as 1

joule (j). All experiments are conducted on an eight-core Intel Xeon processor server

running the Windows Server 2012 operating system. Every scenario is simulated

100 times to obtain more reliable and stable results and the average of the results are

presented in the following subsection.

Metrics considered commonly to analyze the lifetime of the WSNs and efficiency of

protocols are the First Node Dies (FND), the Half of the Nodes Alive (HNA), and

the Last Node Dies (LND). According to these metrics [69], FND depicts a roughly

calculated value for the round in which the first node (unit) of the network dies. This

metric is useful for sparsely deployed WSNs and for the cases where the dying of

a single node is crucial. However, for other cases, the dying of a single node is not

so important. The WSN can still do its predefined duty without that first node being

alive. Because there are so many cases that are not in the scope of the FND, the

HNA metric is proposed to denote a roughly calculated value for the round in which

half of the nodes die. This metric is especially useful when considering the coverage

aspect of the AOIs by WSNs. The LND metric is also proposed to depict a roughly

calculated value for the whole lifetime of the WSN. However, we follow the approach

as stated in [67] such that most WSNs will be useless in most cases after half of the

nodes die and employ the FND, HNA, and Total Remaining Energy (TRE) metrics to

assess the performance of the compared protocols.

3.5.2 Performance Results

In the following four subsections, performance of MOFCA is evaluated according to

the predefined scenarios. Obtained experimental results show that MOFCA outper-

forms the existing algorithms in the same set up in terms of efficiency metrics, which

are FND, HNA, and TRE used for estimating the lifetime of the WSNs and efficiency

of protocols. Evaluation of compared algorithms are done at the end of each scenario.
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3.5.2.1 Scenario 1

In this scenario, the sink is out of the AOI and the nodes are deployed randomly to

form a near-uniform distribution. The main idea behind choosing this scenario is to

exploit the effects of the location of the sink and transmission type over near-uniform

stationary distribution type among algorithms. A representative snapshot of the AOI

in Scenario 1 is depicted in Figure 3.7.

Figure 3.7: A representative snapshot of the AOI in Scenario 1.

CHs formed by the LEACH algorithm forwards the accumulated data to the base

station with direct transmission in both cases. Other compared algorithms implement

direct transmission in the first case, and the EEUC multi-hop routing protocol as

depicted in [64] in the second case. Configuration applied in this scenario is depicted

in Table 3.2.

Table 3.2: Configuration for Scenario 1.

Parameter Value
AOI (Network Boundaries) 200m x 200m
Location of the sink (250,250)
Number of deployed units 100
Data packet size 4000 bits
εmp 0.0010pJ/bit/m4

Eelec 50nJ/bit
Aggregation ratio 10%
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The experimental results of different cases are given in Table 3.3 and Table 3.4, re-

spectively. The maximum competition radius for the EEUC, EAUCF and MOFCA

algorithms in direct routing case are set as 80, 105 and 100m, respectively.

Table 3.3: Experimental Results of Scenario 1 (Direct Routing Case).

Algorithm FND HNA TRE(j)
LEACH 108 201 16.27
CHEF 75 209 17.54
EEUC 106 230 19.24

EAUCF 110 253 21.49
MOFCA 117 271 26.08

Figure 3.8: Dispersion of the active (alive) units with respect to the rounds (Scenario

1 direct routing case).

As can be seen from Table 3.3, our proposed MOFCA algorithm outperforms all other

algorithms when considering all metrics. In this scenario, TRE is measured at round

200. Performance of CHEF is the worst when considering the FND metric; however,

it performs better than LEACH if we consider the HNA metric. Dispersion of the

active (alive) units with respect to the rounds for the first case is depicted in Figure

3.8. As can be seen from the figure, the starting point for the death of the deployed

nodes in MOFCA occurs after all compared algorithms. Performances of LEACH and

EEUC look like similar initially, however when considering the HNA metric, EEUC

performs better than LEACH and CHEF both. Also the performance of EAUCF is

close to MOFCA, and they pursue a parallel energy consumption phase; however,

after the half of the node dies, EAUCF depletes TRE faster than MOFCA till nearly
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the last nodes. In this case, MOFCA performs 8% better than LEACH, 36% better

than CHEF, 10% better than EEUC, and 6% better than EAUCF when considering

the FND metric.

Table 3.4 depicts the multi-hop routing case for Scenario 1. The maximum compe-

tition radius for the EEUC, EAUCF and MOFCA algorithms in this case are set as

55, 60 and 70m, respectively. Our proposed MOFCA algorithm performs better than

all compared algorithms when considering the FND, HNA, and TRE metrics. For the

multi-hop routing case, performance of CHEF is similar to the first case. It is outper-

formed by all algorithms considering the FND metric. However, it performs better

than LEACH considering the HNA metric. Dispersion of the active (alive) units with

respect to the rounds for this case is depicted in Figure 3.9.

Table 3.4: Experimental Results of Scenario 1 (Multi-Hop Routing Case).

Algorithm FND HNA TRE(j)
LEACH 101 203 16.38
CHEF 77 221 35.13
EEUC 104 259 35.1

EAUCF 109 271 41.21
MOFCA 126 284 43.67

Figure 3.9: Dispersion of the active (alive) units with respect to the rounds (Scenario

1 multi-hop routing case).

As can be seen from the figure, death of nodes for MOFCA starts after all compared

algorithms in this case, too. CHEF pursues a static decrease in TRE after the death

of the first node differing from its performance in the first case. Other algorithms per-
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form nearly the same when their performances are compared with their performances

in the first case. In this case, MOFCA performs nearly 20% better than LEACH, 39%

better than CHEF, 18% better than EEUC, and 14% better than EAUCF when con-

sidering FND and performs nearly 29% better than LEACH, 23% better than CHEF,

9% better than EEUC, and 5% better than EAUCF for the HNA metric.

3.5.2.2 Scenario 2

The sink is at the center of the AOI and the nodes are deployed randomly to form

a near-uniform distribution in this scenario. As in scenario 1, the main idea behind

choosing this scenario is to exploit the effects of the location of the sink and trans-

mission type over near-uniform stationary distribution type among algorithms. A

snapshot of the AOI in Scenario 2 is depicted in Figure 3.10.

Figure 3.10: A representative snapshot of the AOI in Scenario 2.

CHs formed by the LEACH algorithm forwards the accumulated data to the base

station with direct transmission in both cases. Other compared algorithms implement

direct transmission in the first case, and the EEUC multi-hop routing protocol in the

second case. Configuration applied in this scenario is depicted in Table 3.5.

The experimental results of different cases of this scenario are given in Table 3.6 and

Table 3.7, respectively. The maximum competition radius for the EEUC, EAUCF and
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Table 3.5: Configuration for Scenario 2.

Parameter Value
AOI (Network Boundaries) 200m x 200m
Location of the sink (100,100)
Number of deployed units 100
Data packet size 4000 bits
εmp 0.0010pJ/bit/m4

Eelec 50nJ/bit
Aggregation ratio 10%

MOFCA algorithms in the direct routing case are set as 30, 60, and 65 m, respectively.

TRE is measured at round 500 in the first case and at round 700 in the second case.

Table 3.6: Experimental Results of Scenario 2 (Direct Routing Case).

Algorithm FND HNA TRE(j)
LEACH 357 628 24.28
CHEF 440 773 37.48
EEUC 421 768 37.74

EAUCF 473 802 39.96
MOFCA 490 819 41.42

Figure 3.11: Dispersion of the active (alive) units with respect to the rounds (Scenario

2 direct routing case).

As can be seen from the Table 3.6, our proposed MOFCA algorithm outperforms all

other algorithms when considering all metrics. Here, performance of the LEACH

algorithm is the poorest most probably because it purely follows a probabilistic ap-

proach without considering the remaining energy levels of the nodes when selecting
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final CHs. CHEF outperforms LEACH and EEUC when considering the FND and

HNA metrics, which is different from results of the first case of Scenario 1. By look-

ing at this result, we may state that the location of the sink has a great impact over the

performance of CHEF since this is true for both cases of this scenario.

Table 3.7: Experimental Results of Scenario 2 (Multi-Hop Routing Case).

Algorithm FND HNA TRE(j)
LEACH 360 624 8.53
CHEF 441 777 19.17
EEUC 424 769 20.14

EAUCF 487 816 20.82
MOFCA 479 837 20.94

Figure 3.12: Dispersion of the active (alive) units with respect to the rounds (Scenario

2 multi-hop routing case).

Dispersions of the active (alive) units with respect to the rounds for both cases of this

scenario are depicted in Figure 3.11 and Figure 3.12, respectively. Table 3.7 depicts

the multi-hop routing case for Scenario 2. The maximum competition radius for the

EEUC, EAUCF and MOFCA algorithms in the direct routing case are set as 30, 60,

and 45 m, respectively. Although our proposed MOFCA algorithm performs better

than all compared algorithms when considering the HNA metric, EAUCF performs

better than MOFCA, which is an interesting result. After mining the results of this

case, we come up with a situation that MOFCA creates less number of clusters ini-

tially than EAUCF does, because of the competition radius adjustment according to

the values of the input variables which causes it to consume more energy initially.

However, after some of the nodes die and the density of each node changes accord-

ingly, MOFCA enters a more stable state, catches up EAUCF, and performs better
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than all of the other algorithms for the HNA and TRE metrics. The performance of

LEACH is the worst in both cases. By looking at the decrease in number of alive

sensors in the algorithms, it is correct to state that algorithms except LEACH pursue

more or less similar executions. In this case, as stated, EAUCF performs 2% better

than MOFCA for the FND metric, but MOFCA performs 25% better than LEACH,

8% better than CHEF and 11% better than EEUC for the same metric. Moreover,

MOFCA performs better than all compared algorithms when considering the HNA

and TRE metrics. Between MOFCA and its closest rival EAUCF, there is a 3% dif-

ference in HNA metric, as can be seen from Table 3.7.

3.5.2.3 Scenario 3

In this scenario, the sink is out of the AOI again, as in Scenario 1. However, the nodes

are deployed manually to form a non-uniform distribution type. A representative

snapshot of the AOI in Scenario 3 is depicted in Figure 3.13.

Figure 3.13: A representative snapshot of the AOI in Scenario 3.

Configuration of this scenario is the same as Scenario 1, so it will not be given here

again. Main differences between Scenario 1 and Scenario 3 are the deployment and

distribution types of nodes. Moreover, at each round location of the nodes are changed

+/- 5m in x and y coordinates in order to simulate an evolving non-uniformly dis-

tributed network. The experimental results of different cases of this scenario are given
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in Table 3.8 and Table 3.9, respectively.

Table 3.8: Experimental Results of Scenario 3 (Direct Routing Case).

Algorithm FND HNA TRE(j)
LEACH 91 189 20.74
CHEF 76 159 15.90
EEUC 129 251 36.17

EAUCF 136 259 36.51
MOFCA 154 273 37.56

Figure 3.14: Dispersion of the active (alive) units with respect to the rounds (Scenario

3 direct routing case).

As can be seen from the Table 3.8, our proposed MOFCA outperforms all other al-

gorithms when considering the FND, HNA, and TRE metrics. For the direct rout-

ing case, TRE is measured at round 150. Here, the performance of CHEF is again

the poorest. Performances of EEUC and EAUCF are similar but EAUCF performs

slightly better than EEUC. However, MOFCA outperforms all in an observable ra-

tio as can be seen from the FND and HNA metric results. The proposed MOFCA

protocol performs 41% better than LEACH, 51% better than CHEF, 19% better than

EEUC, and 12% better than EAUCF for the FND metric. For the HNA metric, it is

still the best performing algorithm on this set up; however, difference among MOFCA

and compared algorithms decrease since the active units in MOFCA dies sharply

faster than other algorithms after some round because it moves away from creating

the necessitated number of clusters. Table 3.9 depicts the multi-hop routing case for

Scenario 3. TRE is measured at round 100 for the multi-hop routing case. Proposed

MOFCA protocol performs nearly 3% better than LEACH, 73% better than CHEF,
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7% better than EEUC, and 8% better than EAUCF for the FND metric. It also per-

forms better than compared algorithms for the HNA and TRE metrics.

According to the results of the both cases CHEF is the most sensitive algorithm to

the transmission type. All algorithms except LEACH suffer in a great deal from the

multi-hop transmission type considering the FND metric. However, if we consider

the HNA metric, they are not affected from the transmission type as much as CHEF.

Dispersions of the active (alive) units with respect to the rounds for both cases of this

scenario are depicted in Figure 3.14 and Figure 3.15, respectively.

Table 3.9: Experimental Results of Scenario 3 (Multi-Hop Routing Case).

Algorithm FND HNA TRE(j)
LEACH 88 189 43.50
CHEF 25 206 58.32
EEUC 84 254 67.47

EAUCF 83 261 68.50
MOFCA 90 268 70.34

Figure 3.15: Dispersion of the active (alive) units with respect to the rounds (Scenario

3 multi-hop routing case).

As can be seen from the figures Figure 3.14 and Figure 3.15 both, if the sink is out

of AOI, equal clustering algorithms suffer from this situation drastically. However,

unequal clustering handles this situation in a much more effective manner.
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3.5.2.4 Scenario 4

The base station is at the center of AOI and the nodes are deployed manually to

form a non-uniform evolving distribution in this scenario. The main idea behind

choosing this scenario is to exploit the effects of the location of the sink and non-

uniform evolving distribution type together with transmission type over compared

clustering algorithms. A representative snapshot of the AOI in Scenario 4 is depicted

in Figure 3.16.

Figure 3.16: A representative snapshot of the AOI in Scenario 4.

Configuration of this scenario is the same as Scenario 2, so it will not be given here

again. The difference between Scenario 2 and Scenario 4 are the deployment and

distribution types of nodes. Moreover, at each round location of the nodes are changed

+/- 5m in x and y coordinates in order to simulate an evolving network like in previous

scenario.

Simulation results for different cases of this scenario are given in Table 3.10 and Table

3.11, respectively. As can be seen from the Table 3.10, proposed MOFCA protocol

performs nearly 57% efficient than LEACH, 29% efficient than CHEF, 10% efficient

than EEUC, and 8% efficient than EAUCF for the FND metric. TRE is measure at

round 500 in both cases of this scenario. For the HNA and TRE metric, efficiency is

still preserved in the direct routing case.
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Table 3.11 depicts the multi-hop routing case for Scenario 4. In this case, MOFCA

protocol performs nearly 53% efficient than LEACH, 22% efficient than CHEF, 10%

efficient than EEUC, and 8% efficient than EAUCF for the FND metric. For the HNA

and TRE metrics, efficiency is preserved like in the previous case. Dispersions of

the active (alive) units with respect to the rounds for both cases of this scenario are

depicted in Figure 3.17 and Figure 3.18, respectively.

Table 3.10: Experimental Results of Scenario 4 (Direct Routing Case).

Algorithm FND HNA TRE(j)
LEACH 217 599 18.93
CHEF 361 719 26.38
EEUC 453 835 38.18

EAUCF 464 837 38.85
MOFCA 502 873 38.91

Figure 3.17: Dispersion of the active (alive) units with respect to the rounds (Scenario

4 direct routing case).

As in scenario 2, in Scenario 4 the location of the sink has also a great impact over

the performance of CHEF for evolving network types. According to the experimen-

tal evaluations done among algorithms and obtained results, the MOFCA protocol

outperforms all algorithms in all predefined scenarios except Scenario 2 multi-hop

routing case which shows that this protocol is both energy-efficient and also robust

against changes in the location of the nodes, which occur in evolving networks. In

Scenario 2, multi-hop routing case, although the first node dies earlier than EAUCF,

MOFCA performs better than EAUCF when HNA and TRE metrics are considered.
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Table 3.11: Experimental Results of Scenario 4 (Multi-Hop Routing Case).

Algorithm FND HNA TRE(j)
LEACH 220 599 19.24
CHEF 362 722 26.05
EEUC 418 806 38.43

EAUCF 426 822 38.67
MOFCA 461 847 39.83

Figure 3.18: Dispersion of the active (alive) units with respect to the rounds (Scenario

4 multi-hop routing case).

3.6 Summary

If the obtained result sets of the predefined scenarios are analyzed and cross-compari-

sons are made, it can be concluded that the location of the sink has the uttermost

impact on the CHEF protocol. So CHEF can be considered as a location-dependent

algorithm of the sink. When the sink resides out of the AOI, it causes nodes to con-

sume more energy because of transmission to longer distances. However, the increase

in consumption for LEACH is affected less. The other algorithms are affected more or

less the same way. When the impact of distribution type and stationary/evolving net-

works over protocols are to be investigated, it is realized that performance of EEUC

gets closer to the performances of EAUCF and MOFCA under non-uniform evolv-

ing distribution type. Although EAUCF perform better than MOFCA for the FND

metric under stationary near-uniform distribution type, it is not valid for the non-

uniform evolving distribution type. If we compare the impact of direct transmission

with EEUC multi-hop routing over protocols, it does not promote any bad perform-
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ing algorithm to a better place or the vice-versa, which means that it has ignorable

distinctive value.

In this chapter, we propose a multi-objective fuzzy clustering algorithm (MOFCA)

which is not only energy-efficient but also distribution-independent for WSNs. Our

proposed MOFCA algorithm considers remaining energy levels, distance to the sink,

and density parameters in calculation of the cluster head competition radius while

making use of fuzzy logic for overcoming the uncertainties occurring in the WSN

nature. According to the evaluations done, it is an energy-efficient algorithm while its

performance scales well.
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CHAPTER 4

AN EFFICIENT FUZZY FUSION-BASED FRAMEWORK FOR

SURVEILLANCE APPLICATIONS

This chapter is the core part of this thesis, because here we focus on a new approach

for addressing the trade-off between accuracy and energy-efficiency of Wireless Mul-

timedia Sensor Networks. Although a number of previous studies have focused on

various special topics in Wireless Multimedia Sensor Networks in detail, to the best

of our knowledge, none presents a fuzzy multi-modal data fusion system, which is

light-weight and provides a high accuracy ratio. Especially, multi-modal data fusion

targeting surveillance applications makes it inevitable to work within a multi-level

hierarchical framework. In this chapter, we primarily focus on accuracy and effi-

ciency by utilizing such a framework. In order to evaluate the performance of the

proposed framework, a set of experiments is conducted and obtained results are pre-

sented. Comparison of the framework is done with the most employed setup. This

setup, which we call the baseline, implements the same procedures till the data pre-

processing step of our framework. However, from then on, it greatly diverges from

the flow of our framework. Flowcharts of our proposed framework and the baseline

are depicted in Figure 4.1 and Figure 4.2, respectively. In Figure 4.1 and Figure 4.2

both, node deployment, data correlation, data preprocessing steps occur in the same

way. For this reason, they do not have any distinctive value and are not included

in the efficiency comparison. However, clustering, data fusion, classification, and

transmission steps occur in a different way and included in the evaluation.
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Figure 4.1: Flowchart of our proposed framework.

Previous advances in Information Technologies (IT) and especially in MEMS (Mi-

cro Electro-Mechanical Systems), have made the production and deployment of tiny,

battery-powered nodes communicating over wireless links possible. As stated shortly

in the first chapter, networks comprised of such nodes with sensing capability are

called Wireless Sensor Networks (WSN). An early deployment aim was to use these

sensors in a passive way for indoor applications. These kinds of early nodes had

the ability to sense scalar data such as temperature, humidity, pressure and location

of surrounding objects. Initially, these nodes had little computation capability and

storage space and their only use was to transfer scalar data to the sink.

However, recently available sensor nodes have higher computation capability, higher

storage space and better power solutions with respect to their predecessors and their

primary usage area shifts from indoor to outdoor applications. With these develop-

56



Figure 4.2: Flowchart of the baseline.

ments, in addition to scalar data delivery, multimedia content delivery has become

the core focus. A wireless sensor network with multimedia capabilities, as often

called Wireless Multimedia Sensor Network (WMSN), consists of different kinds of

nodes that are equipped with various types of sensing units. They measure not only

scalar data, which can be transmitted through low-bandwidth channels and in a delay-

tolerant manner, but also still images, audio and video streams, which require high-

bandwidth channels. Reference architecture of a WMSN is presented as Figure 1.2

[2] in the first chapter of this thesis. Our architecture for the data fusion framework is

similar to the multi-tier (hierarchical) architecture which includes heterogeneous sen-

sors and implements distributed processing. However, our system is adapted for the

surveillance applications domain specifically. Proposed WMSN architecture for the

data fusion framework is presented in Figure 4.3. In the figure, three popular sample
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scenarios for surveillance applications, namely area surveillance, path/trail surveil-

lance and border/perimeter surveillance, are depicted. These scenarios are chosen in

an effort to cover most of the implementation areas.

Figure 4.3: Proposed WMSN architecture for the data fusion framework. a) Area

Surveillance b) Path/Trail Surveillance c) Border/Perimeter Surveillance.

4.1 Surveillance Applications and Framework Essentials

Surveillance applications probably are among the most implemented usage areas of

WMSNs. Although it looks as if it is one of the military application types at first

glance, more and more civilian implementations that consist of applications such as

fire detection and city planning systems emerge every other day. In our thesis, we

have chosen the area and border/perimeter surveillance applications as depicted in

Figure 4.3 (a) and (c) to be modeled using our framework. In the AOI, we aim to

detect objects and classify them as being human, animal, vehicle, or noise. In doing

this, we make use of nodes which include PIR, seismic, acoustic, and camera sensors,

about which we have provided the principles and selected sample studies in the sec-

ond chapter of this thesis. These sensors could be placed on the same node, as well as

on different nodes. The optimal subset of sensors to be employed for any specific ap-

plication in any WMSN architecture, deployment algorithms, routing techniques, and
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security issues are beyond the scope of this thesis. We assume that all available sensor

types (PIR, acoustic, seismic and camera) are present on any node. However, camera

sensor placement could also be on a dedicated node assigned for this purpose. Our

primary aim in this study is to achieve high classification accuracy while maintaining

low energy consumption.

In order to be efficient in overall manner, each implemented step of the framework

must also be efficient in its sole aspect. In the following sections, details about each

implemented step of the framework are presented. Data preprocessing, data fusion,

object classification, and transmission steps are highlighted all together in the Hierar-

chical Data Fusion section (4.5).

4.2 System Modeling and Network Deployment

Sensor node deployment has attracted much attention since it is directly connected

with network coverage and lifetime. There has been extensive research about au-

tonomous deployment schemes. Main idea behind these research is to provide multi-

objective optimizations dealing with energy-efficiency, connectivity and quality of

monitoring. System characteristics and assumptions made in the previous chapter for

the fuzzy clustering algorithm are also valid for our framework. However, here more

detailed view of a single wireless node and network deployment scheme is going to

be provided.

WMSN deployment can be thought as being more complex when compared to WSN

deployment, since most WMSNs consist of heterogeneous nodes with different ca-

pabilities. What makes the deployment a harder process is the difference in sensing,

computation and communication capabilities of the nodes. So, in fact WSN deploy-

ment can also be a very tricky process when the nodes to be deployed differ on a large

scale. However, in addition to this difficulty, there is also a gain in deploying het-

erogeneous nodes. Varying sensing ranges, computation and communication abilities

make heterogeneous networks a precious tool for surveillance applications. An AOI

of a single wireless node including various sensor types is depicted in Figure 4.4.

The network is manually deployed to the area so as to maximize the sensing coverage
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Figure 4.4: An AOI of a single wireless node including various sensor types.

in our framework. As stated in chapter 2, PIR and camera sensors have FoV (Field

of View) and DoF (Depth of Field) values and they have a directed sensing range.

However, as depicted in Figure 4.4, seismic and acoustic sensors have an omnidirec-

tional isotropic range. We model the N-node network as an N-vertex undirected graph

denoted by G, where V and E are its vertices (nodes) and edges (paths) as presented

in Eq. 4.1 and Eq. 4.2, respectively. According to the positions of the nodes, 2D

node deployment location (network topology) matrix is constituted by xi and yi val-

ues of the nodes as depicted in Table 4.1. Although we deploy nodes manually into

the AOI because of its easiness in experiments, researchers considering the energy-

efficient deployment scenario may follow the DEED (Distributed Energy-Efficient

self-Deployment) algorithm as described in [70].

Table 4.1: 2D Node Deployment Locations (Network Topology).

N_Num 1 2 ... N
Coor. X (xi) x1 x2 ... xN

Coor. Y (yi) y1 y2 ... xN

G = (V, E) (4.1)

V = {1...N} (4.2)
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4.3 Fuzzy Clustering

After nodes are deployed to the AOI, then the cluster formation process begins. In-

appropriate CH choice can drastically increase the energy consumption and decrease

the network lifetime. Because of this reason, it is crucial to choose the CHs and form

clusters in an efficient way. In the light of recent advances and evaluations made

on the energy consumption of the available algorithms, in our framework, we imple-

ment our proposed MOFCA (Multi-Objective Fuzzy Clustering Algorithm) protocol

as the clustering algorithm, which is described and evaluated in detail in the previous

chapter. For the baseline, implemented clustering protocol is LEACH. Since both the

MOFCA and the LEACH protocols are explained and evaluated thoroughly at chap-

ter 3, it should be clear that MOFCA handles the hotspots and energy hole problems

more efficiently then LEACH considering the uniformly and non-uniformly deployed

stationary and evolving networks in the same scenarios. For this reason, details of the

algorithms are not going to be revisited here.

4.4 Data Correlation

Upon completing the network deployment and cluster formation steps, a crucial task

in data fusion architecture must take place, namely clock synchronization of the de-

ployed nodes. In sensing applications, time is a very important feature since AOI

evolves over time. However, it is more critical when considering power management,

transmission scheduling and data fusion applications in WMSNs. Data fusion de-

pends on the spatial and temporal aspects of the sensor readings. In order to fuse

sensor readings, correlated input items (signals/features) must first be identified, and

this correlation must be made based on the capture time stamp or spatial aspects

of the reading. Correlation based on the capture time stamp is among the possible

choices. In addition to capture time stamp; space, time interval and spatio-temporal

correlations are other leading approaches to provide a common frame to all nodes.

In the literature, there are plenty of timing mechanisms proposed for WSNs. GPS

(Global Positioning System) unit which has a PpS (Pulse per Second) output usage

is one of the implemented synchronization mechanism as described in [33]. Detailed
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information about clock synchronization and use of signal processing techniques for

accurate timing can be found in [71]. Pros and cons of each applicable method for

time synchronization and detailed discussion about why WSNs necessitate special

timing mechanisms can be found in [72]. However, in our study, we exploit virtual

time stamps for both methodologies (our framework and the baseline) as described in

[73] together with spatial information because of their ease-of-use and effectiveness

in experiments.

4.5 Hierarchical Data Fusion

In the literature, there are abundant studies about how to fuse data. Some of them tried

to be as accurate as possible, while others tried to save on energy consumption. There

has always been a trade-off between energy-efficiency and accuracy. Bearing in mind

this trade-off, we try to be as accurate as possible and maintain energy-efficiency in

developing this framework. Both accuracy and efficiency come from our hierarchical

usage of resources in good combination in WMSN.

According to [74], total energy consumption E can be modeled by Eq. 4.3, where

ET X, ERX, and ECF are total transmission cost, total reception cost and cost of hierar-

chical data fusion, respectively. ECF consists of cost of data fusion and cost of object

classification. With the aim of decreasing all of the above mentioned costs, we ini-

tially keep all the camera sensors and transmitters of nodes in sleep mode. They are

treated as higher cost and power assets and are only made use of when a predefined

threshold is exceeded after the initial level fusion in our proposed framework. By

this way, ET X, ERX, and ECF all decrease. We will explain this saving in detail in the

evaluation section.

E = ET X + ERX + ECF (4.3)

The period of data sensing is called the collection (sensing) round t, and in our frame-

work, as opposed to most of the studies, each node senses its range initially with its

three sensors of available four. Moreover in our approach, again as opposed to most
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research, there is only one case, where second level asset (camera sensor) classified

the detected object also as object-of-interest, which necessitates a transmission to CH

and then to the sink for reactive measures to be taken. Until this time, radio trans-

mitters in nodes except for CHs are also in sleep mode to reduce power consumption.

By this way, we make use of the available resources in an hierarchical manner con-

sidering their energy consumption levels; because of which we call our methodology

Hierarchical Data Fusion. In this subsection, we focus on all remaining steps of the

flowchart of the framework, namely data preprocessing, data fusion, object classifi-

cation, and data transmission.

Since our framework is designed specifically for surveillance applications, we classify

detections to four main classes: human, animal, vehicle and no detection (noise, i.e.

for discarding unnecessary and unreliable detections. In the experiments, we assume

that the target (object) is in the range of all available sensors and human and animal

objects do not exist together in the AOI.

Before the beginning of the detection process, background noise of each sensor in

the AOI when there is no activity is measured and class signatures for interested

targets are created for seismic and acoustic sensors. In preparing class signatures,

initially we tried to fuzzy classify all detected signals, however we were not able to

map input signals to fuzzy input and output variables as in [75]. Thereafter, we have

made use of acoustic and seismic data properties for the initial level classification as

described in [76] and [77], respectively. For the acoustic detection, acoustic signal is

analyzed to determine the presence of a target by using Binary Fuzzy Classification

(BFC) as described in [78]. Here, in what we differ lies in the target types and class

label generation instead of evidences as the result of classification. In the first step of

acoustic classification, after background noise is subtracted from the detected signal,

a binary hypothesis test is made to classify the detection as noise or a real signature.

If a signature is encountered, then in second level BFC, detection is either classified as

group-one vehicle class, or group-two human-animal class. If the result of the second

level BFC is group-two, then a third level BFC is done to assess whether detection

belongs to human class or animal class. Each BFC is a Type-1 fuzzy logic rule based

classifier. More detailed information about the methodology followed can be found

in [78]. For the seismic detection, initially detected signal is segmented into 0.75
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second windows and for each window a set of features which forms the feature-vector

are extracted. A total number of 60 features are defined by using spectral technique

(Fourier transform), statistical techniques (mean and variance) and entropy of the

signal as described in [77]. By employing a supervised learning (since the source

of the seismic signal is known), 20% of the feature-vector and the class labels are

used for training the classifier. The rest of the feature-vector is utilized for detection

of the class label of seismic activity. Finally, a simple decision-maker algorithm

is implemented to enhance the probability of detection and reduce False/Nuisance

Alarm Rate (F/NAR) as defined in [77]. Decision maker returns with the classification

of the detected signal with the highest confidence result. The class signatures of

human and animal are very close to each other, however class signature of vehicle is

distinctly apart from both of them [79]. Since sensed time-series contain the signal

itself and noise, it is intuitively probable that nodes closer to the target will provide

better classification results as a result of high SNRs (Signal-to-Noise Ratio).For the

passive infrared detection, PIR data is used as either 1 (presence of a target) or 0

(absence of a target). At the end, output for level-1 (initial level) fusion is generated.

Defined threshold for the output of initial level fusion is the result of an object jointly

classified as an object-of-interest.

If the initial level classification result is human/vehicle, then a trigger is sent to the

camera sensor on the node to activate it; if not we simply discard the result. By

this way, a higher cost asset is activated only needed and upper level decision can be

made. For the second level classification, the camera sensor first detects the object.

Then, two features from video frames, namely Shape-Ratio and Speed, are extracted

by using MBR (Minimum Bounding Rectangle) of the detected object. Because our

problem definition and our goals here are the same, in this second level classifica-

tion, we follow the approach depicted in [39]. This approach is also suitable for our

purpose since we manually deploy the network and know the coordinates of camera

sensors for speed calculation. However, we differ in the action taken after classifica-

tion. If the detected object is not classified as human or vehicle we do not activate

the transmitter to send the result to the sink, rather, as we did in the first level classi-

fication, we discard the result. However, if vice-versa, we wake up the transmitter to

send the result to the CH and to the sink by using two bits, which denote the class of
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object, for some reactive measure such as generating an alarm for human intervention

to be taken. In this way, we not only classify objects with high accuracy, but also save

on total energy consumption (E).

4.6 Experimental Evaluation

In this section, the obtained results of the simulations that are performed to evaluate

our fuzzy fusion-based framework are presented.

4.6.1 Experimental Setup and Performance Metrics

To evaluate the accuracy and energy-efficiency side of our proposed framework, we

compare it with the setup where sleep-and-wake up protocols are implemented in the

same way for all sensors except camera sensors, however clustering methodology is

chosen as LEACH which is the most representative clustering algorithm as depicted

in [47]. All detections from any sensor modality from detecting node are sent to the

CHs first and then CHs relay the acquired data to the base station for data fusion and

object classification (decision making). As stated, we call this setup the baseline in

order to compare our proposed framework with. In our framework, the detections are

sent to the sink if and only if the detected object is classified as target.

In order to test the effectiveness of the proposed framework, a set of experiments are

conducted by using MATLAB R2012b simulation libraries. As clearly described in

previous sections, the object that needs to be classified is assumed to be in the range

of all available sensors on the node and collaboration between nodes is not considered

in this thesis. The initial energy of each node is modeled as 1 j. Depleted energy is

measured according to Eq. 3.1 and Eq. 3.2. The communication range of each node is

modeled as 60m and each node has the same type of transceiver unit. All experiments

are conducted on an eight-core Intel Xeon processor rack server running the Windows

Server 2012 operating system.
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4.6.2 Performance Results

In our thesis, we have chosen the area (Scenario 1) and border/perimeter (Scenario

2) surveillance applications to be modeled, because we are not able to simulate more

than one sink at the same time in our experiments.

After clusters are formed for compared methodologies in both application types, data

correlation takes place. Thereafter, hierarchical data fusion is explored by testing

the proposed framework for 642 instances which consisted of all four classes. In the

proposed framework, there is no need to send a data packet to the sink when there is

no object-of-interest in detections. Radio energy dissipation model is as employed in

the previous chapter. Since there is no aggregation tree or no incremental fusion event

when traversing the network over CHs, ECF is only consumed at the detecting node

in our framework. However, it is intuitively probable that cost of fusion is higher

when the process takes place at the base station if it is located at a place where there

are constraints on available resources, such as battery power. ERX is consumed at the

CH receiving the event and CHs that relay the result towards the sink. ET X is also

decreased by either discarding the uninteresting result (no target) or transmitting the

result in two bits. By this way, total energy consumption E decreases when all its

constituents decrease.

4.6.2.1 Scenario 1

For the Area Surveillance application, 2D node locations and clusters formed by the

results of application of LEACH and MOFCA algorithms on the same set up are

presented in Figure 4.5 and 4.6, respectively. The network is deployed on a 300m x

300m AOI and nodes manually deployed to the selected xi , yi coordinates. In the

figures, CHs are marked with red dots (points), formed near cluster boundaries are

depicted as black circles or lines, and the base station (sink) is located at (3, 11) and

marked as bigger yellow dot (point) with label “1”. In this application type, the EEUC

multi-hop routing protocol as depicted in [64] is employed for data transmission.

According to the experiments, level-1 and level-2 classification results obtained using

our fusion-based framework for the area surveillance application are presented in
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Figure 4.5: 2D node placement and clusters formed by the results of application of

LEACH.

Table 4.2. (C0: Human class, C1: Animal class, C2: Vehicle class, C3: Noise class).

Classes in rows denote the actual object classes and classes in columns denote the

classification results. As can be seen from the table, our proposed framework has

95.4% classification accuracy for the Human class, 95.5% accuracy for the Animal

class, 95.2% accuracy for the Vehicle class, and 100% accuracy for the Noise class.

Average accuracy of our proposed framework is 95.6%. Moreover, in second level

classification, misclassified 7 animals and 12 vehicles are classified correctly and do

not require transmission for alerting the base station, this is where the efficiency part

of the framework is exploited.

Object classification results of the baseline for the area surveillance application are

depicted in Table 4.3. As can be seen from the table, the baseline has 96.4% classi-

fication accuracy for the Human class, 98.7% accuracy for the Animal class, 94.4%

accuracy for the Vehicle class, and 94.5% accuracy for the Noise class. Average ac-

curacy of the baseline is 96.2%. Although it looks as if the baseline performs better

considering accuracy ratios when compared to our proposed framework, it will be
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Figure 4.6: 2D node deployment and clusters formed by the results of application of

MOFCA.

Table 4.2: Level-1 and Level-2 Classification Results Obtained using Our Framework
for The Area Surveillance Application.

Level-1 (Initial Level) Level-2 (Higher Level)

C0 C1 C2 C3 C0 C1 C2 C3
C0 187 4 0 5 187 7 0 N/A
C1 7 149 0 0 N/A N/A N/A N/A
C2 0 0 253 0 0 12 241 N/A
C3 0 0 0 37 N/A N/A N/A N/A

much clearer after we present the efficiency comparison of them both for the area

surveillance application.

Pros and cons of data fusion usage in the framework can be measured by evaluating

the obtained experimental results. By this way, it is possible to present how much ac-

curacy fusion process adds to the fusion-less state, and how much overhead it brings

along. Accuracy add-on provided through data fusion for the area surveillance appli-

cation is depicted in Table 4.4 while its overhead is presented in Figure 4.7.
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Table 4.3: Object Classification Results of The Baseline for The Area Surveillance
Application.

C0 C1 C2 C3

C0 189 5 2 0
C1 2 154 0 0
C2 0 14 239 0
C3 0 2 0 35

Table 4.4: Accuracy Add-on Provided Through the Use of Data Fusion for The Area
Surveillance Application.

Number of Instances Fusion-Based Accuracy Ratios Fusion-less Accuracy Ratios

100 96.2% 79.7%
200 94.9% 77.4%
400 95.1% 73.8%
642 95.6% 71.6%

Figure 4.7: Overhead of data fusion with respect to the number of instances for the

area surveillance application.

Total energy consumption of the compared methodologies with respect to the number

of instances for the area surveillance application is presented in Figure 4.8. As can

be seen from the figure, our proposed framework outperforms the baseline in terms

of energy-consumption. Moreover, in-node hierarchical data fusion system performs

24.4% energy-efficient than the data fusion system that is occurring at the sink. Al-

though efficiency comparison of the classification cost between compared methodolo-
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Figure 4.8: Total energy consumption of the compared methodologies with respect to

the number of instances for the area surveillance application.

gies can be made, it has no distinctive value as such of the transmission cost. Since we

relay the classification result of the object only when the object is a target class, we

refrain from much of the transmission cost when compared with the baseline. That is

why, our framework performs better as the number of instances grow.

4.6.2.2 Scenario 2

For the Border/Perimeter Surveillance application, the network is also deployed on a

300m x 300m AOI and nodes manually deployed to the selected xi , yi coordinates so

as to form a non-uniform distribution, which is the case for border/perimeter surveil-

lance applications. This is achieved through deploying the nodes to an outer strip of

the whole AOI. In our simulations, the length of this strip is modeled as 50m, and

the sink and the protected asset are located at the same place (150, 150) with marked

as bigger yellow dot (point). 2D Node deployment locations for border/perimeter

surveillance application are depicted in Figure 4.9. In this application type, direct

routing protocol is employed for data transmission.

Level-1 and level-2 classification results obtained using our fusion-based framework

for the simulation of the border/perimeter surveillance application are presented in

Table 4.5. As can be seen from this table, our proposed framework has 92.3% clas-

sification accuracy for the Human class, 96.1% accuracy for the Animal class, 96%
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Figure 4.9: 2D Node deployment locations for border/perimeter surveillance applica-

tion.

accuracy for the Vehicle class, and 100% accuracy for the Noise class. Average ac-

curacy of our proposed framework is 96.04%. In second level classification in this

application type, misclassified 6 animals and 10 vehicles are classified correctly and

do not require transmission for alerting the base station.

Table 4.5: Level-1 and Level-2 Classification Results Obtained using Our Framework
for The Border/Perimeter Surveillance Application.

Level-1 (Initial Level) Level-2 (Higher Level)

C0 C1 C2 C3 C0 C1 C2 C3
C0 181 9 0 6 181 6 0 N/A
C1 6 150 0 0 N/A N/A N/A N/A
C2 0 0 253 0 0 10 243 N/A
C3 0 0 0 37 N/A N/A N/A N/A

Object classification results of the baseline for the border/perimeter surveillance ap-

plication are depicted in Table 4.6. As can be seen from the table, the baseline has

97.4% classification accuracy for the Human class, 98.7% accuracy for the Animal
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class, 95.2% accuracy for the Vehicle class, and 97.3% accuracy for the Noise class.

Average accuracy of the baseline is 97.2%. However, after we evaluate the efficiency

of both methodologies for border/perimeter surveillance application, we come across

a similar situation which is presented for the area surveillance application.

Table 4.6: Object Classification Results of The Baseline for The Border/Perimeter
Surveillance Application.

C0 C1 C2 C3

C0 191 4 1 0
C1 2 154 0 0
C2 0 12 241 0
C3 0 1 0 36

Accuracy add-on provided through the use of data fusion for the border/perimeter

surveillance application is depicted in Table 4.7. The overhead of data fusion is the

same as the area surveillance application since the number of instances and the num-

ber of available sensors do not change. For this reason, it is not presented again.

Table 4.7: Accuracy Add-on Provided Through the Use of Data Fusion for The Bor-
der/Perimeter Surveillance Application.

Number of Instances Fusion-Based Accuracy Ratios Fusion-less Accuracy Ratios

100 94.5% 81.1%
200 93.9% 80.4%
400 93.7% 78.2%
642 96.04% 74.3%

Total energy consumption of the compared methodologies with respect to the number

of instances for the border/perimeter surveillance application is presented in Figure

4.10. As can be seen from the figure, our proposed framework performs better than

the baseline in terms of energy-consumption. As in the Scenario 1, our proposed

algorithm MOFCA forms clusters more efficiently, which is showed in the previous

chapter for non-uniformly distributed networks, and we refrain from transmission

cost by applying our proposed hierarchical data fusion system in this scenario too.

For this reason, obtained results of this scenario are complying with our expectations.
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Figure 4.10: Total energy consumption of the compared methodologies with respect

to the number of instances for the border/perimeter surveillance application.

4.7 Computational Complexity Analysis

Computational complexity of the framework consists of clustering, hierarchical data

fusion and transmission processes. Lets assume that a total number of (n) nodes

resides in the AOI.

The node clustering process requires comparing the residual energy levels of each

node (i) with the remaining nodes (n − 1) that are in its competition range for the

election of a CH. Considering the non-uniform node distribution type, all available

nodes might be in this range. For this reason, in the worst case, (n2 − n) number of

comparisons are done to elect CHs, which is O(n2).

If each of this (n) node has (k) scalar (seismic,acoustic, and PIR) sensors, these scalar

sensors can detect (t) objects. A total number of (k ∗ t ∗ n) detections can occur and

be fused. Since the fusion process occurs in each node and a simple decision maker

algorithm is employed for this process, its computational complexity is O(1). As a

result, complexity of the initial level classification is O(k ∗ t ∗ n). After the fusion

process, all detections could be classified as object-of-interest which necessitates a

2nd-Level classification in the worst case. Here, we employ the method described in

[38], which requires calculating the similarity between the detection and each of the

prototype objects in the classifier model for each feature. Considering that preferred
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features are one-dimensional, performing an Euclidian-distance calculation in order

to find the similarities requires a constant time, which is O(1). Thus, assuming that

(p) and (r) denote the feature count and the total number of prototypes respectively,

the second level classification process is performed in O(pr). Note that (p) is 2, (r) is

4 in our case. Hence, we can reduce the complexity to O(r). Since O(r) is consumed

for each detection, computational complexity of the classification process is O(r ∗

O(k ∗ t ∗ n)), which is O(n). Moreover, this is also the computational complexity of

the transmission process since in the worst case, all classification results may require

a transmission to the sink.

For the computational complexity of the overall framework, we simply add the com-

putational complexity of each constituent, finally which denotes O(n2).

4.8 Summary

In this chapter, we design and present an efficient framework of a multi-modal data fu-

sion architecture specifically targeting surveillance applications by using higher cost

assets in a hierarchical and corroborative way. The proposed framework considers

both energy and accuracy aspects while its performance scales well.

Evaluations done on the accuracy and efficiency aspects clearly present that our pro-

posed fusion-based framework pursues an energy-efficient operation while preserving

classification accuracy. Although we have no chance to simulate the path/trail surveil-

lance application in our thesis, we believe that if simulations are to be done for that

case, results will be more or less the same, since it is intuitively probable that our

framework should form clusters more efficient than the baseline and refrain from the

transmission cost as in the previous scenarios.

Although the simulation results are promising, we believe that the accuracy of the

framework would suffer because of the assumptions made (e.g., animals & humans

not being present together at the AOI). For this reason, some further study should be

done for real-world usability of this framework.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this thesis, an efficient fuzzy fusion-based framework which is designed specif-

ically for surveillance applications in wireless multimedia sensor networks is pre-

sented. Along with the framework, a new fuzzy clustering algorithm is also intro-

duced to be implemented in such a framework.

Performance of proposed MOFCA is reasonably better than the compared algorithms

and it is a candidate algorithm to be implemented in any WSN application. As stated

in the system model, MOFCA protocol includes stationary or mobile nodes. How-

ever, this mobility is simulated by the change of location of the nodes without causing

energy consumption and we neglected the LND metric, which is usually not consid-

ered as important as the other parameters considered here. We believe that mobile

sensor nodes should be considered as future work. For WSNs that are deployed

dense-enough to provide high-availability to any sensor node, the other compared

algorithms may be employed interchangeably on behalf of MOFCA.

The proposed fuzzy fusion-based framework considers both energy and accuracy as-

pects while its performance scales well. The framework provides energy-efficient

operation while preserving high classification accuracy for surveillance applications

by the use of fuzzy multi-modal data fusion architecture. Overhead caused by the use

of data fusion system is insignificant if the accuracy aspect is considered. We simu-

late two popular scenarios out of available three in this thesis, since we are not able to

simulate more than one sink at the same time in our simulations. Obtained simulation

results for both scenarios show that our framework pursues a stable operation. It is

intuitively probable that the framework will provide more or less similar results for
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the remaining scenario by forming clusters in an efficient manner and refraining from

the transmission cost as in simulated scenarios.

Although the simulation results for the framework are promising, we believe that the

accuracy of the framework would suffer because of the assumptions made. Simula-

tion of the remaining scenario which requires the implementation of two sinks being

present at the same time in the AOI can be a future study. Realization of this frame-

work on real sensor hardware technologies and consideration of collaboration among

neighboring nodes are among possible future studies.
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APPENDICES

.1 Comparison of the flowchart of our framework with the baseline.

Figure .1: The part on the left depicts our framework, and the part on the right depicts

the baseline.
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.2 Hierarchical data fusion process.

Figure .2: A representative view of the hierarchical data fusion process.
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