

INVESTIGATION OF THE EFFECTS OF STRUCTURAL CHARACTERISTICS
OF OBJECT-ORIENTED SOFTWARE ON FAULT-PRONENESS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

HAL İT GÖLCÜK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

MAY 2014

Approval of the thesis:

INVESTIGATION OF THE EFFECTS OF STRUCTURAL
CHARACTERISTICS OF OBJECT-ORIENTED SOFTWARE ON FAUL T-

PRONENESS

submitted by HAL İT GÖLCÜK in partial fulfillment of the requirement for the
degree of Master of Science in Electrical and Electronics Engineering
Department, Middle East Technical University by,

Prof. Dr. Canan Özgen _____________
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Gönül Turhan Sayan _____________
Head of Department, Electrical and Electronics Engineering

Prof. Dr. Semih Bilgen _____________
Supervisor, Electrical and Electronics Engineering Dept., METU

Examining Committee Members:

Assoc. Prof. Dr. Cüneyt F. Bazlamaçcı _____________
Electrical and Electronics Engineering Dept., METU

Prof. Dr. Semih Bilgen _____________
Electrical and Electronics Engineering Dept., METU

Prof. Dr. Ali Doğru _____________
Computer Engineering Dept., METU

Assoc. Prof. Dr. Ece Güran Schmidt _____________
Electrical and Electronics Engineering Dept., METU

Barış İyidir, M. Sc. _____________
Software Engineering Dept., Aselsan

Date: 30.05.2014

iv

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also
declare that, as required by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

Name, Last name: Halit Gölcük

Signature:

v

ABSTRACT

INVESTIGATION OF THE EFFECTS OF STRUCTURAL
CHARACTERISTICS OF OBJECT-ORIENTED SOFTWARE ON FAUL T-

PRONENESS

Gölcük, Halit

M. Sc., Department of Electrical and Electronics Engineering

Supervisor: Prof Dr. Semih Bilgen

May 2014, 99 Pages

This study investigates the effects of structural characteristics of object-oriented

software, which are observable at the model level of the software developed by

means of Unified Modeling Language (UML), on software quality, assessing

quality in terms of fault-proneness. In the scope of this thesis study, real-time

embedded software components developed by Aselsan, a leading defense industry

company in Turkey, were analyzed. The correlation between software metrics

measured from the UML models of the software components and fault-proneness

metrics of those software components were presented both graphically and

statistically.

Keywords: Structural software characteristics, UML metrics, Software quality,

Fault-proneness, Empirical study.

vi

ÖZ

NESNE TABANLI YAZILIMLARIN YAPISAL ÖZELL İKLER İNİN HATA
YATKINLI ĞI ÜZER İNE ETK İLERİNİN İNCELENMESİ

Gölcük, Halit

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Semih Bilgen

Mayıs 2014, 99 Sayfa

Bu çalışma, Birleşik Modelleme Dili (UML) kullanılarak geliştirilen yazılımların

model seviyesinde gözlenebilen bazı yapısal özelliklerinin yazılım kalitesi üzerine,

kaliteyi yazılımın hataya yatkınlığı olarak tanımlayarak, etkilerini incelemektedir.

Bu tez çalışması kapsamında, Türkiye’de önde gelen bir savunma sanayii kuruluşu

olan Aselsan tarafından geliştirilen gerçek zamanlı gömülü yazılım bileşenleri

analiz edilmiştir. Yazılım bileşenlerinin UML modellerinden ölçülen yazılım

metrikleri ve bu bileşenlere ait hataya yatkınlık metrikleri arasındaki ilişki hem

grafiksel hem de istatistiksel olarak ortaya konulmuştur.

Anahtar Kelimeler: Yazılımın yapısal özellikleri, UML metrikleri, Yazılım

kalitesi, Hata yatkınlığı, Deneysel çalışma.

vii

To my parents

viii

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to Prof. Dr. Semih Bilgen for his

guidance, advice, understanding and supervision throughout the development of this

thesis study.

I am grateful to Aselsan for the resources and facilities that I utilize for this thesis

study. I also want to thank my colleagues at Aselsan for their valuable support.

I appreciate Barış İyidir for the fruitful advices and discussions throughout the

development of this thesis study.

I am grateful to my team leader Evrim Kahraman and my colleague Sezgin Hayırlı

for their tolerance during this study.

My special thanks go to Murat Yılmaz for reviewing this thesis.

I owe Aslı Serin a debt of gratitude for her love, support and understanding

throughout this study.

Last but not the least; I would like to express my special thanks to my parents

Nermin and Recep Gölcük, and my sisters Nuriye, Raviye, Fecriye, Ayfer and

Nilüfer for their love, trust, understanding and every kind of support not only

throughout this study but also throughout my life.

ix

TABLE OF CONTENTS

ABSTRACT ... v

ÖZ ... vi

ACKNOWLEDGEMENTS .. viii

TABLE OF CONTENTS .. ix

LIST OF TABLES .. xi

LIST OF FIGURES.. xii

LIST OF ABBREVIATIONS .. xv

CHAPTERS

INTRODUCTION.. 1

LITERATURE REVIEW ... 5

2.1 INTRODUCTION.. 5

2.2 UNIFIED MODELING LANGUAGE .. 5

2.3 SOFTWARE QUALITY MEASUREMENT .. 6

2.4 ISO/IEC 9126 AND ISO/IEC 25010 ... 7

2.5 REAL-TIME EMBEDDED SOFTWARE QUALITY AND UML QUALITY
ASSESSMENT .. 13

2.6 SOFTWARE QUALITY METRICS ... 14

2.6.1 CK Metrics [2] .. 16

2.6.2 Class Diagram Metrics [5] .. 17

2.6.3 Statechart Metrics [6] .. 18

2.6.4 Douglass Metrics [10] ... 19

2.7 MEASURING COMPONENT QUALITY ... 20

THE STUDY FRAMEWORK ... 23

3.1. GENERAL INFORMATION ABOUT THE SOFTWARE DEVELOPER
TEAM .. 24

3.1.1. Reference Software Architecture used by the Software Team 24

3.2. SOFTWARE COMPONENTS INVESTIGATED 25

3.3. SELECTED METRICS .. 26

x

3.4 MEASUREMENT OF METRICS ... 28

3.5 OBTAINING FAULT STATISTICS FOR THE SOFTWARE
COMPONENTS ... 30

EXPERIMENTAL WORK .. 31

4.1 METRIC DEFINITIONS RE-VISITED .. 31

4.1.1 Number of Transitions (NT) [6] .. 31

4.1.2 Cyclomatic Complexity (CC) [6] .. 31

4.1.3 Coupling between Objects (CBO) [2] ... 32

4.1.4 Response for a Class (RFC) [2] ... 32

4.2 METRIC MEASUREMENT RESULTS ... 32

4.3 FAULT STATISTICS OF THE SOFTWARE COMPONENTS 38

4.4 CORRELATION BETWEEN SOFTWARE METRICS AND FAULT-
PRONENESS OF THE SOFTWARE COMPONENTS 40

4.4.1 Finding the Correlation between Software Metrics and Fault-Proneness
of the Software Components Graphically .. 40

4.4.2 Statistical Evaluation ... 41

4.4.2.1 Pearson’s Correlation Coefficient .. 41

4.4.2.2 Spearman’s Correlation Coefficient ... 46

DISCUSSION AND CONCLUSION .. 51

REFERENCES ... 55

APPENDIX .. 61

xi

LIST OF TABLES

TABLES

Table 1 - Characteristics and Sub-characteristics in External and Internal Quality
Model in ISO/IEC 9126 [13] .. 9
Table 2 - Characteristics and Sub-characteristics in ISO/IEC 25010 [21] 12

Table 3 - Statechart Diagram Structural Complexity Metrics [6] 19

Table 4 - Motivation behind Metric Selection ... 26

Table 5 - Metric Measurement Techniques ... 33

Table 6 - Measured metric values for first 5 components .. 35

Table 7 - Measured metric values for last 5 components ... 36

Table 8 - Metric Values for the Components ... 38

Table 9 - Fault-proneness Metrics of the Software Components 39

Table 10 - Outlier and Normality Test Results .. 42

Table 11 - Pearson’s Correlation Coefficients between the Metrics and Fault-
Proneness Measures ... 44
Table 12 - Statistically Significant Pearson’s Correlations...................................... 45

Table 13 - Spearman’s Correlation Coefficients between the Metrics and Fault-
Proneness Measures ... 47
Table 14 - Statistically Significant Spearman’s Correlations 48

xii

LIST OF FIGURES

FIGURES

Figure 1 - Correlation between Defect Count and M1 ... 61

Figure 2 - Correlation between Defect Count and M4 ... 62

Figure 3 - Correlation between Defect Count and M5 ... 62

Figure 4 - Correlation between Defect Count and M6 ... 63

Figure 5 - Correlation between Defect Count and M7 ... 63

Figure 6 - Correlation between Defect Count and M8 ... 64

Figure 7 - Correlation between Defect Count and M9 ... 64

Figure 8 - Correlation between Defect Count and M10 ... 65

Figure 9 - Correlation between Defect Count and M11 ... 65

Figure 10 - Correlation between Defect Count and M12 ... 66

Figure 11 - Correlation between Defect Count and M13 ... 66

Figure 12 - Correlation between Defect Count and M14 ... 67

Figure 13 - Correlation between Defect Count and M15 ... 67

Figure 14 - Correlation between Defect Count and M16 ... 68

Figure 15 - Correlation between Defect Count and M17 ... 68

Figure 16 - Correlation between Defect Count and M18 ... 69

Figure 17 - Correlation between Defect Count and M19 ... 69

Figure 18 - Correlation between Defect Count and M20 ... 70

Figure 19 - Correlation between Defect Count and M21 ... 70

Figure 20 - Correlation between Defect Density and M1 .. 71

Figure 21- Correlation between Defect Density and M4 ... 71

Figure 22 - Correlation between Defect Density and M5 .. 72

Figure 23 - Correlation between Defect Density and M6 .. 72

Figure 24 - Correlation between Defect Density and M7 .. 73

Figure 25 - Correlation between Defect Density and M8 .. 73

Figure 26 - Correlation between Defect Density and M9 .. 74

Figure 27 - Correlation between Defect Density and M10 74

Figure 28 - Correlation between Defect Density and M11 75

Figure 29 - Correlation between Defect Density and M12 75

Figure 30 - Correlation between Defect Density and M13 76

Figure 31 - Correlation between Defect Density and M14 76

Figure 32 - Correlation between Defect Density and M15 77

Figure 33 - Correlation between Defect Density and M16 77

Figure 34 - Correlation between Defect Density and M17 78

xiii

Figure 35 - Correlation between Defect Density and M18 78

Figure 36 - Correlation between Defect Density and M19 79

Figure 37 - Correlation between Defect Density and M20 79

Figure 38 - Correlation between Defect Density and M21 80

Figure 39 - Correlation between Defect Severity and M1 80

Figure 40 - Correlation between Defect Severity and M4 81

Figure 41 - Correlation between Defect Severity and M5 81

Figure 42 - Correlation between Defect Severity and M6 82

Figure 43 - Correlation between Defect Severity and M7 82

Figure 44 - Correlation between Defect Severity and M8 83

Figure 45 - Correlation between Defect Severity and M9 83

Figure 46 - Correlation between Defect Severity and M10 84

Figure 47 - Correlation between Defect Severity and M11 84

Figure 48 - Correlation between Defect Severity and M12 85

Figure 49 - Correlation between Defect Severity and M13 85

Figure 50 - Correlation between Defect Severity and M14 86

Figure 51 - Correlation between Defect Severity and M15 86

Figure 52 - Correlation between Defect Severity and M16 87

Figure 53 - Correlation between Defect Severity and M17 87

Figure 54 - Correlation between Defect Severity and M18 88

Figure 55 - Correlation between Defect Severity and M19 88

Figure 56 - Correlation between Defect Severity and M20 89

Figure 57 - Correlation between Defect Severity and M21 89

Figure 58 - Correlation between Defect Correction Effort and M1 90

Figure 59 - Correlation between Defect Correction Effort and M4 90

Figure 60 - Correlation between Defect Correction Effort and M5 91

Figure 61 - Correlation between Defect Correction Effort and M6 91

Figure 62 - Correlation between Defect Correction Effort and M7 92

Figure 63 - Correlation between Defect Correction Effort and M8 92

Figure 64 - Correlation between Defect Correction Effort and M9 93

Figure 65 - Correlation between Defect Correction Effort and M10 93

Figure 66 - Correlation between Defect Correction Effort and M11 94

Figure 67 - Correlation between Defect Correction Effort and M12 94

Figure 68 - Correlation between Defect Correction Effort and M13 95

Figure 69 - Correlation between Defect Correction Effort and M14 95

Figure 70 - Correlation between Defect Correction Effort and M15 96

Figure 71 - Correlation between Defect Correction Effort and M16 96

Figure 72 - Correlation between Defect Correction Effort and M17 97

Figure 73 - Correlation between Defect Correction Effort and M18 97

xiv

Figure 74 - Correlation between Defect Correction Effort and M19 98

Figure 75 - Correlation between Defect Correction Effort and M20 98

Figure 76 - Correlation between Defect Correction Effort and M21 99

xv

LIST OF ABBREVIATIONS

AHF Attribute Hiding Factor
AIF Attribute Inheritance Factor
CBO Coupling Between Objects
CC Cyclomatic Complexity
CISQ Consortium for IT Software Quality
CK Chidamber and Kemerer
COF Coupling Factor
DCC Douglass Cyclomatic Complexity
DIT Depth of Inheritance Tree
ISO International Organization for Standardization
IEC International Electrotechnical Commission
KLOC Thousands of Lines of Code
LCOM Lack of Cohesion in Methods
MaxDIT Maximum DIT
MaxHAgg Maximum HAgg
MHF Method Hiding Factor
MIF Method Inheritance Factor
n/a Not Applicable
NA Number of Attributes
NAc Number of Activities
NAgg Number of Aggregation
NAggH Number of Aggregations Hierarchies
NAssoc Number of Associations
NC Number of Classes
NCS Number of Composite States
NDep Number of Dependencies
NE Number of Events
NEntryA Number of Entry Actions
NExitA Number of Exit Actions
NEPI Number of Events in Provided Interfaces
NG Number of Guards
NGen Number of Generalizations
NGenH Number of Generalizations Hierarchies
NM Number of Methods
NOC Number of Children
NOPI Number of Operations in Provided Interfaces
NPI Number of Provided Interfaces
NSS Number of Simple States
NT Number of Transitions
OOSS Object-Oriented Software Systems
POF Polymorphism Factor

xvi

RFC Response for a Class
SLOC Source Lines of Code
SQuaRE Software Product Quality Requirements and Evaluation
SST ASELSAN Defense System Technologies (Tr. Savunma

Sistem Teknolojileri)
UML Unified Modeling Language
WMC Weighted Methods per Class
YMM ASELSAN Software Engineering Department (Tr. Yazılım “
 Mühendisliği Müdürlüğü)

1

CHAPTER 1

INTRODUCTION

In a broad sense, the quality of a software artifact can be assessed in three aspects.

These are functional, structural and process aspects of quality. Functional quality is

related to the functional requirements of software. In other words, functional quality

describes how well software meets functional requirements. The people who mostly

care about functional quality are the users of the software. Structural quality is

related with the nonfunctional requirements of software. It can be evaluated by

analyzing the inner structure of software. According to the Consortium for IT

Software Quality (CISQ), a software component with a good structural quality

should be reliable, efficient, secure and maintainable [1]. Developers of the

software are mostly interested in the structural quality. The last quality aspect of

software is process quality. Process quality is related with the concerns like budget,

delivery time, etc. Generally, software managers and sponsors are interested in this

quality aspect.

In order to measure the quality of a software component, what is expected from

software in terms of quality should be clarified. Fault tolerance of a software

product can be a good quality indicator in terms of reliability of software. In

literature, different types of metrics are used in order to represent the fault-

proneness of a software product. Defect count and defect density are the most used

metrics quality metrics in terms of fault-proneness [57]. There are studies in the

literature that relate design metrics of software artifact to fault-proneness

empirically, and develop prediction models to predict faulty software components

in a software system, such as [35], [36] and [40]. These studies, generally, used

linear regression methods to build and verify the prediction model. For object-

oriented software, Chidamber and Kemerer’s metrics suit [2] is the design metric

set in the literature most frequently used for predicting faulty classes.

2

As the usage of modeling languages in software engineering is becoming more and

more frequent, measuring and controlling the quality of a model is becoming more

significant. Unified Modeling Language (UML) is the most widely used modeling

language for object-oriented software development. In the literature, there is very

little work which investigates the applicability of UML design metrics for

measuring and controlling fault proneness of a software product despite the

importance of early prediction of fault proneness [41].

In this thesis, the association between design metrics that reflect structural

characteristics of object-oriented software and fault-proneness is investigated in the

context of real-time embedded software development projects carried out by

Aselsan, a leading defense industry company in Turkey. The design metrics were all

measured from the UML models, not from source code, of the investigated software

components. Fault-proneness metrics, which are defect count, defect density, defect

severity and defect correction effort, were obtained from the defect tracking tool

used in Aselsan. After the correlation between design metrics and fault-proneness of

the software components were presented graphically and statistically, some useful

outcomes were identified about which structural characteristic of object-oriented

software have an impact on the quality of real-time embedded software component

in terms of fault-proneness.

The remaining chapters of the thesis are structured as follows:

In Chapter 2, a literature survey is carried out about the concepts of software quality

and the software characteristics considered in the scope of the study are reviewed.

In Chapter 3, the study framework, consisting of the structural characteristics of the

investigated real-time embedded software components and the fault-proneness

measures to be focused on, is presented. Selected software components and

software metrics for the study are described, and how the software metrics are

measured from the software components and how the fault data of the software

components is gathered are explained.

3

In Chapter 4, software metric and fault-proneness measurement results are given.

Then, the association between software metrics and fault-proneness measurements

of software components is established graphically and statistically.

In Chapter 5, the achievements are summarized, obtained results are discussed and

limitations of the study as well as suggestions for future work are outlined.

4

5

CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

In the present study, case studies were carried out on software projects developed

by Software Engineering Department (YMM) of Defense System Technologies

Group (SST) in Aselsan. In this department, fire control software projects are

developed by modeling the software in UML and software pieces has real-time

embedded nature. As the first step of the study, the related literature was

investigated in order to set the background consisting of the concepts of software

model quality, quality of real-time embedded software and to determine the

appropriate quality metrics.

2.2 UNIFIED MODELING LANGUAGE

UML is a general purpose modeling language which is used for modeling object-

oriented software systems (OOSS). The standard is managed by the Object

Management Group which is a not-for-profit computer industry specifications

consortium [11]. UML 2.0 has thirteen types of diagrams that are used to visualize

an OOSS. These thirteen types of diagrams can be divided into three categories;

structure diagrams, behavior diagrams and interaction diagrams. In software

components developed at YMM, class diagrams and state machine diagrams are

widely used. Class diagram falls into category of structure diagrams and state

machine diagram falls into category of behavior diagrams of UML. Class diagram

represents the static view and state machine diagram represents the dynamic view of

software. This study focuses on object-oriented metrics which are accessible from a

UML model and class diagram and state chart diagram metrics because class

6

diagram and statechart diagram are used widely in software projects developed at

YMM and also these two types of diagrams affect the performance of software

considerably.

2.3 SOFTWARE QUALITY MEASUREMENT

In order to measure the quality of a software component, meaning of software

quality should be clarified. In a broad sense, quality may be defined as satisfying

the functional requirements [31]. It means that if a software product could not meet

functional requirements, that software product is evaluated as software with poor

quality. However, in the course of time, not only succeeding functional

requirements but also performing functionalities effectively, safely and productively

has gained importance [32]. This means that software product should meet

nonfunctional requirements as well as functional requirements. Nonfunctional

characteristics of a software product can be listed as reliability, performance

efficiency, security and maintainability [1].

Software products with different features should implement different nonfunctional

characteristics. For example, the most important nonfunctional requirement for a

statistical analysis system can be reliability; however, a banking system should give

precedence security characteristic, mostly [32]. Therefore, quality requirements

study should be carried out in order to set proper quality objectives for a software

product. Hneif and Lee [32] conducted a study in order to improve the

nonfunctional quality of a piece of software. Their approach was preventive which

means that their purpose was to eliminate the defects in the development phase not

in the verification phase. Their purpose was to prevent nonfunctional attributes

defects by using guidelines. For selecting guidelines, they used two properties;

selected guideline should have positive effect on the nonfunctional attribute and

selected guidelines for a specific nonfunctional attribute should not have

overlapping or conflicting relationship between each other [32]. Philips et al. [33]

7

conducted an empirical study in order to discover quality requirements management

practices in Australian organizations. The study included 13 practitioners and 6

different companies in Australia. The study showed that quality requirements

management was the most neglected part of software projects [33].

In order to have software of high quality, using appropriate software quality models

meeting quality requirements is as important as defining quality requirements

correctly. By use of software quality prediction models and quality metrics,

empirical studies are carried out in order to validate the quality of software product

[34]. In order to validate the quality model and quality metrics, number of errors

detected in the software [35], [36] or maintenance cost [37] can be used. However,

using maintenance cost for statistical validation is difficult [34]. The quality model

that will be used can be selected using two different strategies. One of them is using

generic quality models such as ISO/IEC 9126. However, these quality models are

often too abstract to use [38]. The other strategy is defining your own model based

on existing quality models. The second strategy is more appropriate for finding the

correct quality model that meets specific quality requirements [38]. Klass et al. [38]

developed an approach that can be used while adapting the existing quality models

to specific quality requirements. They identified three requirements for a quality

model adaptation approach which are correctness, appropriateness and efficiency.

Correctness means that adapted quality model should remain conformant to its

structure. Appropriateness can be explained as quality model should be adapted

considering the organizational needs and capabilities. Finally, efficiency stands for

the level of overhead involved in the adaptation work in relation to the benefits of

applying a proven quality model.

2.4 ISO/IEC 9126 AND ISO/IEC 25010

The International Organization for Standardization (ISO) and the International

Electrotechnical Commission (IEC) has released a standard, ISO/IEC 9126, in order

8

to describe a quality model for all types of software products. ISO/IEC 9126

consists of four parts. The first part of the standard is ISO/IEC 9126-1 which

describes a quality model including 6 characteristics and 27 sub-characteristics [13],

the second part of the standard is ISO/IEC 9126-2 which determines external

quality metrics [14], the third part of the standard is ISO/IEC 9126-3 which

determines internal quality metrics [15] and finally the fourth part of the standard is

ISO/IEC 9126-4 which determines the quality in use metrics [16]. The standard

aims to develop a quality model and quality metrics which are applicable to any

type of software component. The organizations or individuals can use the quality

model described in ISO/IEC 9126 in order to achieve the desired quality for a

software product by adopting the quality model and quality metrics according to

their needs.

ISO/IEC 9126 investigates software quality in three views; namely, external,

internal and quality in-use. According to the standard, there is a close relationship in

these three aspects of software quality. Internal quality attributes affect external

quality attributes and external quality attributes affect quality in-use attributes. In

other words in-use quality of a software product depends on external quality of the

product and external quality depends on internal quality of the product [13].

ISO/IEC 9126 handles external and internal quality with one quality model, and

handles in-use quality with another model. As shown in Table 1, in external and

internal quality model, there are six characteristics and 27 sub-characteristics which

are used to measure external and internal quality of a software product. Part 2 and

Part 3 of the standard give some metrics in order to measure characteristics and sub-

characteristics given in Part 1 of the standard. ISO/IEC 9126-2 gives external

metrics and ISO/IEC 9126-3 gives internal metrics.

9

Table 1 - Characteristics and Sub-characteristics in External and Internal Quality Model in ISO/IEC 9126 [13]

Functionality Reliability Usability Efficiency Maintainability Portability

Suitability Maturity Understandability Time Behavior Analyzability Adaptability

Accuracy Fault Tolerance Learnability Resource Utilization Changeability Installability

Interoperability Recoverability Operability Efficiency
Compliance

Stability Co-existence

Security Reliability
Compliance

Attractiveness Testability Replaceability

Functionality
Compliance

Usability
Compliance

Maintainability
Compliance

Portability
Compliance

10

Quality model for quality in use identifies four characteristics; namely,

effectiveness, productivity, safety and satisfaction [13]. Part 4 of the ISO/IEC 9126

gives quality in use metrics in order to measure the characteristics for quality in use

given in Part 1 of the standard [16].

In order to achieve desired quality for a software component, it is necessary to

perform measures from all the three views of quality (internal, external and quality

in use) defined in ISO/IEC 9126 quality standard. It means that it is not sufficient to

perform measures using quality in use metrics in order to meet the expectations of

the users of the software product because in use quality of a software product is

dependent to external quality of the product and by extension external quality is

dependent to internal quality of the product [13].

Although ISO/IEC 9126 quality standard is a widely accepted and referred standard

in the literature, there are also criticisms about the standard.

As stated earlier ISO/IEC 9126 aims to target any type of software quality needs.

Therefore, the standard needs to be customized [17]. For example, functionality is

the most important characteristic of your software product and you want to measure

this characteristic using the related sub-characteristics and metrics defined in

ISO/IEC 9126 quality model. When performing this measure how the contribution

of sub-characteristics (security, interoperability, etc.) to the functionality

characteristic be evaluated is unclear [17].

Applying the defined metric measurements to the software product is difficult

because the metric definitions are imprecise; therefore, they need to be redefined in

some cases [18]. In [19], an empirical study was reported in which the usefulness’

of ISO/IEC 9126 standard was evaluated. In the experiment, 158 participants, which

were in their final year in Computer Science and Engineering, were used. A

Software Requirements Specification document was given to the subjects and they

were asked to produce some design documents. Using ISO/IEC 9126 quality model,

subjects were asked to evaluate the quality of the design artifacts [19]. As the result

11

of the experiment, some difficulties were observed about using ISO/IEC 9126 while

evaluating the quality of an intermediate software product. The students in the

experiment found it difficult to understand many terms in ISO/IEC 9126 and also

they stated that some metric definitions were overlapping [19].

The results of the applied metric measures are given in the scale between 0 and 1. It

is easy to convert these results to the percentage value; however, there is not any

evaluation which values of the applied metric results are good or bad [20].

The difficulties of the ISO/IEC 9126 standard may make performing quality

measures impractical. Therefore organizations or individuals who decide to use

ISO/IEC 9126 quality standard for evaluating the quality of a software component

have to adopt the standard according to their needs in a proper way.

In 2009, ISO and IEC released a new standard family, Software Product Quality

Requirements and Evaluation (SQuaRE), which is also known as 25000 series. One

part of 25000 series is the ISO/IEC 25010 which describes a quality model for a

software component and it is intended that ISO/IEC 25010 will replace the existing

ISO/IEC 9126 quality standard [21]. ISO/IEC 25010 has some improvements over

ISO/IEC 9126; for example, ISO/IEC 25010 extends the quality concept by

increasing the number of quality characteristics from 6 to 8. The characteristics and

sub-characteristics proposed in ISO/IEC 25010 can be seen in Table 2.

12

Table 2 - Characteristics and Sub-characteristics in ISO/IEC 25010 [21]

Functional
Suitability

Reliability Performance
Efficiency

Operability Security Compatibility Maintainability Transferability

Appropriateness Availability Time-
behavior

Appropriateness
recognisability

Confidentiality Replaceability Modularity Portability

Accuracy Fault
tolerance

Resource-
utilization

Learnability Integrity Co-existence Reusability Adaptability

Compliance Recoverability Compliance Ease of use Non-repudia-
tion

Interoperability Analyzability Installability

Compliance Helpfulness Accountability Compliance Changeability Compliance
Attractiveness Authenticity Modification

stability
Technical
accessibility

Compliance Testability

Compliance Compliance

13

Although ISO/IEC 25010 has some improvements over ISO/IEC 9126, overall

critiques about ISO/IEC 9126 are also applicable for ISO/IEC 25010 [30]. Mayr et

al. [29] proposed a quality model for embedded systems based on ISO/IEC 25010.

While deriving requirements for embedded system code they could not benefit from

the standard because abstraction level of the quality characteristics described in

ISO/IEC 25010 was high [29]. Wagner et al. [30] carried out a study in order to

reduce the gap between high level quality models such as ISO/IEC 25010, and

concrete quality models. They claimed that although ISO/IEC 25010 emphasized

important concepts about software quality, the standard could not be used for real

quality improvement purposes [30].

2.5 REAL-TIME EMBEDDED SOFTWARE QUALITY AND UML

QUALITY ASSESSMENT

Real-time embedded software has wide application area with high reliability and

security requirements. Therefore, software quality is significant in systems using

real-time embedded software [42]. In order to provide advantages in the real-time

software development world, improving software quality, minimizing software

development cost and reducing software delivery time is critical because

complexity of software products and competition in the market are increasing [39].

Fault proneness of a real-time software product can be used as quality indicator of

that software [40]. Kaur et al. [40] proposed that, in order to identify fault proneness

of a software module, requirement metrics, code metrics and the combination of

these two metrics can be used with clustering techniques. They showed the

applicability of the proposal by using the real-time defect datasets from NASA

software projects. In a thesis study [43], effects of reuse on the quality of real-time

embedded software were investigated. In that study, metrics were collected from

real projects developed in Aselsan, and defect rates of the real-time embedded

software projects were considered as quality indicator.

14

Model driven software development is becoming more popular in software

engineering industry with the passing years. UML is the most commonly used

modeling language for model driven software development. YMM, too, uses UML

while modeling and developing the software.

2.6 SOFTWARE QUALITY METRICS

There are many studies and derived metrics in the literature for measuring the

quality of software source code like [2], [23] and [24]. In their seminal work,

Chidamber and Kemerer [2] defined six object-oriented quality metrics that are

known as CK metrics. These metrics are aimed at assessing the design of OOSS

rather than implementation. Another important metric set is known as MOOD

metrics [23]. These were defined to measure the use of object-oriented design

methods such as inheritance (MIF – Method Inheritance Factor, AIF – Attribute

Inheritance Factor), information hiding (MHF – Method Hiding Factor, AHF –

Attribute Hiding Factor) and polymorphism (POF – Polymorphism Factor, COF –

Coupling Factor). It is widely accepted (e.g. [23]) that metrics should be easy to

compute, should not be tied to any particular programming language and should

result in numbers which is independent from the system size. In another thesis study

[44], effects of software design patterns on object-oriented software quality and

maintainability were investigated. In that study, maintainability was accepted as an

important quality characteristic and maintainability of the applications developed in

Aselsan were measured using CK metrics and MOOD metrics. Lorenz and Kidd

[24] also proposed metrics in order to measure the static characteristics of software

design. Their metrics are divided into three categories; class size, class inheritance

and class internal. Size oriented metrics focus on counts of attributes and operations

in a class. Inheritance oriented metrics focus on the manner in which operations are

reused in hierarchy class. Internal class-oriented metrics address cohesion and code-

oriented issues.

15

With the advent of model driven software development, not only measuring the

quality of source code but also measuring the quality of models has become

indispensable in order to develop software with adequate quality. Many

organizations use UML models for various purposes such as implementation and

maintenance while developing software components or systems and these models

contain large number of defects that remain undetected [25]. Lange and Chaudron

[26] performed two controlled experiment in order to investigate which types of

defects in UML models remain undetected and effects of these defects. The first

experiment was carried out with 111 students and the second experiment was

carried out with 48 practitioners. The results showed that although some types of

defects were determined by most subjects, undetermined defects caused

misinterpretations among the readers. By analyzing the findings from [25] and [26],

it can be concluded that measuring the quality of UML models is necessary.

In [22], Lange and Chaudron proposed a quality model for UML models based

upon the necessity of measuring the quality of UML models. They proposed that

UML models and source code differ in the aspect of system. Abstraction level in

models is higher than the source code of the system, which means UML models

describe systems in a non-deterministic way. Therefore, describing the quality

characteristics of UML models is necessary. Lange and Chaudron’s quality model

combines the quality characteristics of the model with the quality characteristics of

the system.

Nugroho et al. [41] empirically showed that UML design metrics are good

predictors considering the fault proneness of a class. Metrics used in the study were

derived from class diagrams and sequence diagrams of a UML model. In addition to

UML model metrics, several code metrics were also used which are coupling

between objects (CBO) [2], McCabe’s complexity [9], and lines of code. These

code metrics are well-known metrics that are in relation with fault-proneness of a

class [41]. The question of which of the three fault prediction models; namely,

UML metric model, code metric model, and UML and code metrics model, is

16

effective was answered with empirical data collected from industrial projects and

the metric values measured. As a result, Nugroho et al.’s study showed that

combination of UML design metrics and code metrics gives best performance for

predicting fault proneness.

Assessing software quality using metrics is a proven approach for improving

software quality [27]. While calculating software metrics, values can be calculated

manually or tools can be used. SDMetrics [28] is a tool which is used in order to

calculate software metrics for the object-oriented design quality of software systems

designed and implemented by UML. The tool has some metrics such as number of

attributes in the class (NumAttr) or number of operations in the class (NumOps).

SDMetrics also provides opportunity to define custom metrics and rules to the

users.

Below, the related literature is reviewed in order to determine the metrics which

would be measured within the scope of the present study to assess structural

characteristics of object-oriented software.

2.6.1 CK Metrics [2]

Names and definitions of CK Metrics [2] are summarized below:

• Weighted Methods per Class (WMC): This metric is defined as the

summation of complexities of the methods defined in a class. If complexities

of all methods are considered to be unity, WMC is equal to number of

methods in a class [2]. Another approach is to consider the complexity of a

method as McCabe’s cyclomatic complexity [52].

• Depth of Inheritance Tree (DIT): It is a measure of the inheritance path from

the node class to the root class.

• Number of Children (NOC): It is the number of immediate child or

subclasses derived or subordinated from a base class.

17

• Coupling between Objects (CBO): It is a measure for cohesiveness between

classes.

• Response for a Class (RFC): It is the number of methods which can be

called in response to a message to a class.

• Lack of Cohesion in Methods (LCOM): It is a measure for cohesiveness in a

class.

These metrics were originally devised in order to measure the quality of an object-

oriented design based on the source code. In the thesis study by B. Deniz [43],

while collecting metrics from real projects in order to measure software quality, CK

metric suit was used. In that study, metrics were collected from source code.

However, there are studies, like [3], [4], [52] in the literature, which also showed

the applicability of these metrics to UML models.

CK metrics are accepted as good indicators of faulty classes in a software product

[45], [46], [47]. In [45], the authors validated empirically the association between

some of CK metrics and defects found during acceptance testing and defects found

by customers. They used three of the six metrics of CK metric suit which are WMC,

CBO and DIT.

2.6.2 Class Diagram Metrics [5]

Genero et al. [5] validated the given metric set for UML class diagrams empirically.

It was proposed that understandability time of class diagrams is closely related with

the maintainability of those diagrams. Metric names and definitions are given as

follows [5].

• Number of Associations (NAssoc): It is the number of associations in a class

diagram.

• Number of Aggregation (NAgg): It is the number of aggregation

relationships within a class in a class diagram.

18

• Number of Dependencies (NDep): It is the number of dependency

relationship in a class diagram.

• Number of Generalizations (NGen): It is the number of generalization

relationships in a class diagram.

• Number of Aggregations Hierarchies (NAggH): It is the number of

aggregation hierarchies in a class diagram.

• Number of Generalizations Hierarchies (NGenH): It is the number of

generalization hierarchies in a class diagram.

• Maximum DIT (MaxDIT): It is the maximum of the DIT values obtained for

each class of the class diagram.

• Maximum HAgg (MaxHAgg): It is the maximum of HAgg values obtained

for each class of the class diagram. The HAgg value for a class within an

aggregation hierarchy is the longest path from the class to the leaves.

• Number of Classes (NC): It is the number of classes in a class diagram.

• Number of Attributes (NA): It is the number of attributes of classes in a

class diagram.

• Number of Methods (NM): It is the number of methods of classes in a class

diagram.

2.6.3 Statechart Metrics [6]

The behavior of classes of a system can be described by using statecharts.

Therefore, complexity of statecharts contributes to the complexity of classes. In this

way, statechart complexity is associated with fault-proneness of the class [48].

There are several studies (e.g. [6], [7], and [8]) in the literature that proposed and

validated some metrics for UML statecharts. These studies were carried out to

prove the validity of statechart metrics in the view of understandability or

maintainability.

The metrics with their definitions can be seen in Table 3.

19

Table 3 - Statechart Diagram Structural Complexity Metrics [6]

Metric Name Metric Definition
Number of Entry Actions
(NEntryA)

It is the number of entry actions in the statechart
diagram.

Number of Exit Actions (NExitA) It is the number of exit actions in the statechart
diagram.

Number of Activities (NAc) It is the number of do/Activities in the statechart
diagram.

Number of Simple States (NSS) It is the number of simple states in the statechart
diagram.

Number of Composite States
(NCS)

It is the number of composite states in the statechart
diagram.

Number of Guards (NG) It is the number of guard conditions in the statechart
diagram.

Number of Events (NE) It is the number of events in the statechart diagram.

Number of Transitions (NT) It is the total number of transitions (common
transitions + self-transitions + internal transitions)

Cyclomatic Complexity (CC) McCabe’s original cyclomatic complexity metric
[9] is adapted as |NSS-NT+2| where NSS is the
number of simple states and NT is the number of
transitions.

Common transition represents the transition of which the source and target states

are different; however, for self-transition, source and target states are same. Internal

transition stands for the transitions that respond an event without leaving the state.

2.6.4 Douglass Metrics [10]

In a white paper [10], Douglass proposed a metric set to measure the complexity of

a UML model. Some of the Douglass metrics are similar to the well-known metrics

in the literature; however, all of the Douglass metrics are intended to use with UML

20

models. Metric sets are grouped as Model Organizational Metrics, Requirements

Metrics, Model Architectural Structural Metrics, Model Semantic Structural Metrics

and Model Behavioral Metrics.

The most attractive metric in the Douglass white paper is the Douglass Cyclomatic

Complexity (DCC) because, to the best knowledge of the author of the present

thesis, there is no other metric which handles nesting and concurrency in a state

machine in the literature. The metric is the modified version of McCabe’s

Cyclomatic Complexity calculated as “Edges – Nodes + 2” [9]. The definition of

Douglass Cyclomatic Complexity is “Edges – Nodes + 2 + Levels of Nesting +

And-States”.

2.7 MEASURING COMPONENT QUALITY

Cho et al. [54] discussed the limitations of existing object-oriented software metrics

in measuring the quality of software components and they produced two reasons

about the inadequacy of measuring component quality of object-oriented metrics.

These reasons were difference in measurement unit and insufficiency in

measurement factor. These reasons came up because object-oriented metrics only

focus on objects or classes; however, software components have inter class

relationships.

Vernazza et al. [55] proposed a way to use CK metrics in measuring the component

quality, by considering software components as group of classes, by benefitting

from the properties defined in [56]. Briand et al. [56] defined some properties that

software measurements, like size, length, complexity, coupling and cohesion

measurements, should satisfy.

21

2.8 FAULT-PRONENESS MEASUREMENT METHODS IN THE

LITERATURE

As a quality metric, different fault-proneness measurement types can be used.

Oyetoyan et al. [57] carried out a study in order to compare different defect

measures in identifying fault-proneness software components. They analyzed four

defect measures, namely; defect count, defect density, defect severity and defect

correction effort in the scope of the study. Defect count refers to number of detected

errors in a software component, defect density is the normalization of the defect

count with respect to source lines of code (SLOC), defect severity is the importance

or significance of the detected errors in the software, and defect correction effort is

a measurement type for the difficulty of the correction of detected error in the

software. In the literature, there are studies which used these different defect

measures as a quality indicator. In [58], an oversampling method in order to

improve fault-proneness prediction was proposed by using number of faults.

Malaiya and Denton [59] provides a model in order to estimate and assess software

reliability by using defect density metric. Oyetoyan et al. [57] concluded that

although defect count and defect density measures are the mostly used defect

measures in the literature, defect severity and defect correction effort are also

effective in identifying critical and important software components. Also, several

studies [61]-[63] showed that there is a connection between size and defect density;

relatively larger components in size are tend to be lower defect densities.

22

23

CHAPTER 3

THE STUDY FRAMEWORK

Software components developed by YMM are developed according to

organizationally accepted and published software reference architecture. In this

way, design maturity of the software components are guaranteed to some extent.

However, it has been observed that quality of the software components depends on

the developer because there is limited design information for the software

components, except the interfaces defined, in the reference software architecture.

Therefore, it was decided that in addition to the published reference architecture,

specifying the structural characteristics for the software components developed as

compatible with the reference software architecture would be beneficial. The

purpose of the present study is to assure the quality level of software components to

be developed and reveal the quality level of software components already

developed. Software components developed by YMM are developed with a UML

tool; therefore, it is important to collect software metrics from UML models. The

results of the present study will be used to guide the software developers in order to

develop software components with higher quality.

In the present study, it was accepted that fault-proneness of a software component is

a good indicator of its quality. Some software components were chosen from real

projects developed by YMM. Some metrics were collected from the software

components, metrics and faults of software components were analyzed in order to

find out which metric could be significant in evaluating fault-proneness of real-time

software components designed with UML.

24

3.1. GENERAL INFORMATION ABOUT THE SOFTWARE DEVELOP ER

TEAM

Throughout the present study, we worked with a software developer team in YMM.

The team develops software for fire control systems using C++ language. Fire

control systems process data coming from many sensing units in order to increase

the possibility of shooting the ammunition at the target [49]. The software

developed by the team has real-time embedded nature. While developing software,

the team uses a UML tool which has the capability of automatic code generation.

The software developer team uses a reference software architecture which is called

Weapon Systems Reference Architecture (SSRM) [49]. General information about

the software architecture can be found in the next sub-section.

3.1.1. Reference Software Architecture used by the Software Team

The reference software architecture of the software team has been designed

according to Feature-Oriented Reuse Method (FORM). FORM develops domain

architectures and components by capturing commonalities and differences of

applications in a domain in terms of “features” [50]. Fundamental components of

the software architecture with their short explanations are as follows;

• Missions carry out a specific functionality which differs with reference to

project requirements.

• Capabilities provide foundation for performing a specific mission; for

example, target management, platform management. Capabilities are

developed as reusable components.

• Software Manager decides that which component of the software would be

active according to user requests or current situation of the software. This

component of the software architecture is project specific; therefore, it is not

designed as reusable.

25

• External Interface represents user interface, command control interface, etc.

The purpose of defining such a component in software is blocking the

variability in the external environment from the software.

• System Environment transfers the services of sensors and actuators to the

software.

• Operating Environment provides the independence of the software from the

hardware and operating system that the software is running on.

Data communication and control operations are separated in order to increase

reusability and decrease maintainability effort; therefore, there are two views in the

architecture; which are control view and data view. Flow of the data and control

commands are also determined; pull method is used for data communication and

push method is used for control operations.

3.2. SOFTWARE COMPONENTS INVESTIGATED

The software components investigated within the scope of the present study were all

within System Environment Layer of the software architecture. The highest

necessity to develop new software components is for the System Environment

Layer for the software developer team, and also the highest fault count per software

module is known to occur in System Environment Layer components. Therefore,

collecting software components to be analyzed from System Environment Layer

was considered reasonable and especially beneficial in the scope of the present

work.

There are many software components in System Environment Layer; however, 10

components were selected from among them. The criterion in selecting software

components was that the software components should be used in at least two

projects which are completed and delivered to the customer. The reason for this

criterion was that the software components should be tested adequately and

therefore, they would be reliable components.

26

3.3. SELECTED METRICS

In selecting the software metrics to be measured in the present study, requirements

and priorities of YMM have been kept in consideration. In order to determine which

metric or metric set would be used, first, literature was reviewed and a broad set of

metrics that suit the purpose of the thesis study were presented to the software

leaders of the development staff of the projects from which measurement would be

obtained. With the software leaders, design metrics that reflect structural

characteristics of software components developed by YMM are evaluated and

selected.

Metric selection together with justifications can be found in Table 4. “Metric

Selection” column indicates whether concerned metric will be measured or not. “+”

means the metric shall be measured, “-” means the metric shall not be measured.

“Comment” column gives the reason behind the metric selection.

Table 4 - Motivation behind Metric Selection

Metric Set Metric
Selection

Metric Name Comment

CK Metrics

+ WMC (Weighted
Methods per Class)

CK Metrics are referred as good
indicators in determining fault-
proneness of a class (see “CK Metrics”
sub-section in Chapter 2); therefore,
this metric set was completely applied
in this thesis study. However, metric
values were gathered from the UML
models rather than source code.

+ DIT (Depth of
Inheritance)

+ NOC (Number of
Children)

+ CBO (Coupling
Between Objects)

+ RFC (Response for a
Class)

+ LCOM (Lack of
Cohesion in
Methods)

27

Table 4 (cont’d)

Class

Diagram
Metrics

- NAssoc (Number of
Associations)

This metric was not measured because
association relationship is generally
used via ports; direct association
relationship is not established in
software components developed by
YMM.

- NAgg (Number of
Aggregation)

This metric was not measured because
aggregation relationship is not used in
software components developed by
YMM.

- NAggH (Number of
Aggregations
Hierarchies)

- MaxHAgg
(Maximum HAgg)

- NGen (Number of
Generalizations)

In YMM, interface inheritance is used
rather than implementation inheritance;
therefore, these metrics were not
measured.

- NGenH (Number of
Generalizations

Hierarchies)
- MaxDIT (Maximum

DIT)
In CK Metrics, there is a metric as
‘DIT’. Therefore, it was evaluated that
there is no need to use this metric.

- NDep (Number of
Dependencies)

This metric was not measured because
software components developed by
YMM depend only to the reference
software architecture.

+ NC (Number of
Classes)

We expected to establish a relationship
between size and structural complexity
of a software component by measuring
this metric.

+ NA (Number of
Attributes)

+ NM (Number of
Methods)

Statechart
Metrics

+ NEntryA (Number
of Entry Actions)

In this thesis study, the association
between structural complexity of
statechart of a class and fault-proneness
of that class was investigated.
Therefore all of the statechart metrics
defined in [6] were measured.

+ NExitA (Number of
Exit Actions)

+ NAc (Number of
Activities)

+ NSS (Number of
Simple States)

+ NCS (Number of
Composite States)

28

Table 4 (cont’d)

 + NG (Number of
Guards)

+ NE (Number of
Events)

+ NT (Number of
Transitions)

+ CC (Cyclomatic
Complexity)

Douglass
Metrics

+ DCC (Douglass
Cyclomatic
Complexity)

DCC metric accounts for nesting and
concurrency in a state machine which
affects the complexity of a state
machine.

- Other Douglass
Metrics

Other Douglass metrics have common
parts with CK Metrics, Class Diagram
Metrics and Statechart Metrics;
therefore, picking up only DCC metric
from among Douglass metrics was
considered as sufficient for the present
study.

In addition to metrics, that reflect structural characteristics of object-oriented

software, proposed in the literature, some metrics were considered to have

association with complexity of a software component; thus, error-proneness of that

software component. These metrics are related with the interface complexity of a

software component, which are Number of Provided Interfaces (NPI), Number of

Events in Provided Interfaces (NEPI) and Number of Operations in Provided

Interfaces (NOPI).

3.4 MEASUREMENT OF METRICS

There were three possible ways for measuring metrics for the software components;

these were:

• Manual metric measurement,

• Metric measurement by using a readymade metric tool,

29

• Automating metric measurement for the specific needs of the thesis study.

Metric measurement can be carried out by examining the UML model of the

software manually. This way of metric measurement has been skipped because

calculating metric values manually can be time consuming for complex software

components and it is not reliable.

A tool that can be used to get metric values from a UML model came to the

forefront while reviewing the literature in order to see whether measurement of

metrics can be done with a readymade tool or not. This tool was SDMetrics.

SDMetrics can be used with all UML modeling tools which has the capability of

exporting the model to an XMI file. The tool also gives the opportunity of defining

custom metrics (see “Metrics in the Literature” sub-section in Chapter 2).

SDMetrics was considered to be appropriate for the needs of the thesis study;

however, some difficulties have been encountered;

• XMI output of the UML design tool used by the software developer team

deviated from the standard at some points. For example, default transitions

in the statechart were represented as states in the XMI output. Also, internal

and external transitions in a state were not distinguished at the XMI output

of the tool.

• SDMetrics tool, as expected, could not measure all metrics in the scope of

the thesis study; therefore, the ability of defining new metrics within the tool

was attempted; however, the tool interface was not user friendly.

The UML design tool used by the software developer team supports java plug-ins

which can be used to extend the product capabilities. By creating java applications,

one can modify and analyze the UML model created by the UML design tool.

After the metric measurement options were reviewed, it was observed that most of

the metrics could be measured by creating java plug-in applications for the specific

needs of the thesis study and, for some metrics, readymade metric measurement

tools could be used.

30

3.5 OBTAINING FAULT STATISTICS FOR THE SOFTWARE COM PO-

NENTS

In Aselsan, a tool is used for the purpose of defect tracking. With this tool, every

type of change activity associated with software development, including

enhancement requests, defect reports, and documentation modifications can be

managed. The defect counts regarding to the software components analyzed in the

present study were collected by using this tool. However, defect records were not

assigned to the software components; they were only associated with the project.

Therefore, at this point, support was received from the software leaders of the

projects from which measurement would be obtained, and the numbers of faults

regarding the software components were gathered.

31

CHAPTER 4

EXPERIMENTAL WORK

In the part of the study to be presented in this chapter, metric measurements were

correlated with fault-proneness metrics of the software components. Before carrying

out metric measurement process, some metric definitions were needed to be

clarified.

4.1 METRIC DEFINITIONS RE-VISITED

4.1.1 Number of Transitions (NT) [6]

NT metric definition is given as total number of transitions including common

transitions, self-transitions and internal transitions in [6]. Although Genero et al.

[51] give the same definition for NT metric, they calculate the metric in a different

way; that is, they exclude the internal transitions in the calculation. In the present

study, NT metric was calculated as summation of common transitions and self-

transitions.

4.1.2 Cyclomatic Complexity (CC) [6]

CC metric definition is given as |NSS – NT + 2| in [6]. However, McCabe [9] gives

the cyclomatic complexity definition as “edges – nodes + 2” for a connected graph.

Also, Douglass [10] uses the number of states (NS) as nodes not number of simple

states (NSS). Therefore, it was evaluated that taking CC metric definition as |NT -

NS + 2| is more appropriate.

32

4.1.3 Coupling between Objects (CBO) [2]

CBO metric was formed as the summation of the coupling related metrics given by

SDMetrics tool.

4.1.4 Response for a Class (RFC) [2]

RFC metric was formed as the summation of the number of messages received by

the class given by SDMetrics tool as “MsgRecv”, NEPI and NOPI.

4.2 METRIC MEASUREMENT RESULTS

Metric values were mostly obtained by use of java plug-in applications for the UML

tool used by the software development team and, for some metrics, readymade

measurement tools were used (see “Measurement of Metrics” sub-section in

Chapter 3).

All of the software metrics, except WMC, were collected from the UML models of

the software components, i.e. without generating source codes of the software

components. WMC metric could not be measured from the UML models because,

to the best knowledge of the author of the present thesis, there is not any tool

calculating WMC metric from UML model, and calculating this metric manually is

very time consuming and not reliable. Therefore, a free internet search was

conducted in order to select a tool to calculate WMC metric from the generated

code (source code). The tool should have the feature of calculating cyclomatic

complexity for each method of a class because while calculating WMC metric,

methods defined at the model level were taken into consideration. So, CCM [53],

33

which is a tool analyzing cyclomatic complexity of C/C++, C#, JavaScript and

TypeScript code, was selected.

A tool which measures LCOM metric from source code or UML model could not

be found. Also the metric could not be obtained from a java plug-in application.

Therefore, LCOM metric was omitted from the evaluation.

Metric measurement techniques are outlined in Table 5.

Table 5 - Metric Measurement Techniques

Metric Set Metric ID Metric Name Metric
Measurement

Technique

CK Metrics M1 WMC CCM
M2 DIT SDMetrics
M3 NOC SDMetrics
M4 CBO SDMetrics
M5 RFC SDMetrics + Java

Plug-in
Class Diagram

Metrics
M6 NC Java Plug-in
M7 NA Java Plug-in
M8 NM Java Plug-in

Statechart
Metrics

M9 NEntryA Java Plug-in
M10 NExitA Java Plug-in
M11 NAc Java Plug-in
M12 NSS Java Plug-in
M13 NCS Java Plug-in
M14 NG Java Plug-in
M15 NE Java Plug-in
M16 NT Java Plug-in
M17 CC Java Plug-in
M18 DCC Java Plug-in

Interface
Metrics

M19 NPI Java Plug-in
M20 NEPI Java Plug-in
M21 NOPI Java Plug-in

34

Measured metric values are listed in Tables 6 and 7. There are 10 software

components analyzed in the scope of the study, and these components are named as

Component_1, Component_2, etc.

35

Table 6 - Measured metric values for first 5 components

 Component_1 Component_2 Component_3 Component_4 Component_5

C
la

ss
_1

C
la

ss
_1

C
la

ss
_1

C
la

ss
_2

C
la

ss
_3

C
la

ss
_4

C
la

ss
_5

C
la

ss
_1

C
la

ss
_2

C
la

ss
_3

C
la

ss
_1

C
la

ss
_2

C
la

ss
_3

M1 143 236 227 1 2 2 6 67 131 3 72 176 3
M2 0 0 0 0 0 0 0 0 1 0 0 1 0
M3 0 0 0 0 0 0 0 0 0 0 0 0 0
M4 3 1 7 2 2 2 3 22 44 2 20 49 2
M5 29 30 62 0 2 2 0 4 33 0 5 42 0
M6 1 1 5 3 3
M7 26 41 117 48 46
M8 35 26 61 68 50
M9 16 24 87 1 n/a n/a n/a 25 13 n/a 22 13 n/a
M10 3 1 11 0 n/a n/a n/a 5 0 n/a 2 0 n/a
M11 29 15 93 0 n/a n/a n/a 25 2 n/a 26 1 n/a
M12 16 21 86 2 n/a n/a n/a 28 13 n/a 25 12 n/a
M13 10 14 34 0 n/a n/a n/a 28 8 n/a 20 13 n/a
M14 11 8 84 0 n/a n/a n/a 28 1 n/a 30 1 n/a
M15 26 31 105 0 n/a n/a n/a 39 18 n/a 36 19 n/a
M16 37 48 191 2 n/a n/a n/a 72 26 n/a 65 26 n/a
M17 13 15 73 2 n/a n/a n/a 18 7 n/a 22 3 n/a
M18 19 22 87 2 n/a n/a n/a 30 13 n/a 29 11 n/a
M19 4 5 8 3 3
M20 15 15 34 18 16
M21 14 15 32 10 8

36

Table 7 - Measured metric values for last 5 components

 Component_6 Component_7 Component_8 Component_9 Component_10

C
la

ss
_1

C
la

ss
_2

C
la

ss
_3

C
la

ss
_4

C
la

ss
_5

C
la

ss
_1

C
la

ss
_1

C
la

ss
_2

C
la

ss
_3

C
la

ss
_4

C
la

ss
_1

C
la

ss
_1

M1 180 33 48 7 1 233 55 3 3 3 117 260
M2 0 0 0 0 0 0 0 0 0 0 0 0
M3 0 0 0 0 0 0 0 0 0 0 0 0
M4 7 5 4 4 4 2 4 2 2 5 1 1
M5 44 0 20 3 0 27 16 2 2 0 26 26
M6 5 1 4 1 1
M7 79 21 22 12 34
M8 76 23 25 13 20
M9 13 7 2 n/a n/a 4 5 n/a n/a n/a 6 5
M10 2 2 0 n/a n/a 0 2 n/a n/a n/a 0 0
M11 34 3 4 n/a n/a 3 3 n/a n/a n/a 7 5
M12 15 6 3 n/a n/a 10 4 n/a n/a n/a 6 4
M13 9 1 1 n/a n/a 7 3 n/a n/a n/a 4 4
M14 7 6 0 n/a n/a 1 2 n/a n/a n/a 1 0
M15 19 4 3 n/a n/a 14 4 n/a n/a n/a 5 3
M16 29 13 5 n/a n/a 21 7 n/a n/a n/a 8 6
M17 7 8 3 n/a n/a 6 2 n/a n/a n/a 0 0
M18 11 9 4 n/a n/a 10 5 n/a n/a n/a 3 3
M19 7 7 4 4 6
M20 36 6 6 11 9
M21 31 21 14 15 17

37

Selected metrics were generally measured at the class level except Class Diagram

Metrics and Interface Metrics as seen in Table 6 and Table 7. Therefore, it was

required to combine CK Metrics and Statechart Metrics to measure the component

quality (see “Measuring Component Quality” section in Chapter 2). In order to map

CK Metrics to component metrics, the proposed method given in [55] was used.

According to the method, in order to map WMC, NOC and RFC to component

level, they should be summed up; in order to map DIT to component level, it should

be taken maximum of DIT of individual classes inside the component; and in order

to map CBO metric to component level, number of external classes coupled to the

classes inside the component should be considered. For the Statechart Metrics, the

same idea was used by accepting Statechart Metrics as complexity and size metrics.

So, Statechart Metrics of individual classes were summed up in order to map these

metrics to component metrics.

After CK Metrics were mapped to component metrics, metric measurements

became as in Table 8.

38

Table 8 - Metric Values for the Components

C

om
po

ne
nt

_1

C
om

po
ne

nt
_2

C
om

po
ne

nt
_3

C
om

po
ne

nt
_4

C
om

po
ne

nt
_5

C
om

po
ne

nt
_6

C
om

po
ne

nt
_7

C
om

po
ne

nt
_8

C
om

po
ne

nt
_9

C
om

po
ne

nt
_1

0

M1 143 236 238 201 251 269 233 64 117 260
M2 0 0 0 1 1 0 0 0 0 0
M3 0 0 0 0 0 0 0 0 0 0
M4 12 12 15 12 12 17 16 10 10 16
M5 29 30 66 37 47 67 27 20 26 26
M6 1 1 5 3 3 5 1 4 1 1
M7 26 41 117 48 46 79 21 22 12 34
M8 35 26 61 68 50 76 23 25 13 20
M9 16 24 88 38 35 22 4 5 6 5
M10 3 1 11 5 2 4 0 2 0 0
M11 29 15 93 27 27 41 3 3 7 5
M12 16 21 88 41 37 24 10 4 6 4
M13 10 14 34 36 33 11 7 3 4 4
M14 11 8 84 29 31 13 1 2 1 0
M15 26 31 105 57 55 26 14 4 5 3
M16 37 48 193 98 91 47 21 7 8 6
M17 13 15 75 25 25 18 6 2 0 0
M18 19 22 89 43 40 24 10 5 3 3
M19 4 5 8 3 3 7 7 4 4 9
M20 15 15 34 18 16 36 6 6 11 9
M21 14 15 32 10 8 31 21 14 15 17

4.3 FAULT STATISTICS OF THE SOFTWARE COMPONENTS

Errors associated with the software components were obtained with the help of

software leaders of the projects from which measurement would be obtained (see

“Obtaining Fault Statistics for the Software Components” section in Chapter 3).

Approximately 2500 defects, which are all removed defects, were analyzed with the

software leaders and it was determined that 183 of 2500 defects concerned the

investigated software components. Fault-proneness metrics of the software

components are given for each component in Table 9.

39

Table 9 - Fault-proneness Metrics of the Software Components

 Defect Count Defect Density Defect
Severity

Defect
Correction

Effort
Component_1 5 0,794 14 7
Component_2 24 3,701 76 88
Component_3 64 2,678 232 206
Component_4 26 1,819 79 63
Component_5 11 0,766 34 17
Component_6 17 1,502 58 33
Component_7 15 3,95 55 22
Component_8 0 0 0 0
Component_9 2 0,53 7 1
Component_10 20 5,249 58 45

Four different fault-proneness measurement types were used as suggested by related

literature (see “Fault-Proneness Measurement Methods in the Literature” section in

Chapter 2). These measures, which are defect count, defect density, defect severity

and defect correction effort, were obtained from the software defect tracking tool

used in Aselsan. Defect count is simply the error count associated with the software

component. Defect density is the error count for every thousands of lines of source

code (KLOC) of the software component which means that defect density is equal

to “defect count / KLOC”. Every error recorded by the defect tracking tool is

evaluated in terms of severity by the test engineer who detected the related error.

Test engineer evaluates the severity of error in five degree. Defect severity was

obtained by making use of this data, 5 point was given to the most severe error and

1 point is given to the least severe error. In this way, defect severity was obtained as

the summation of this scaled data. After test engineer recorded an error using the

defect tracking tool, software developer fixes the error and enters how many hours

spent in order to fix the error. As defect correction effort, this measurement was

used.

40

4.4 CORRELATION BETWEEN SOFTWARE METRICS AND FAULT-

PRONENESS OF THE SOFTWARE COMPONENTS

Before trying to correlate the calculated metric values with fault-proneness of the

software components, when we looked over the metric values from Table 8, it could

be seen that M2 (DIT, CK Metrics) and M3 (NOC, CK Metrics) metric

measurements were not meaningful. Only Component_4 and Component_5 have a

measurement as “1” and all other software components have “0” measurement for

M2, and all of the measurements are “0” for M3. This means that inheritance

property of object-oriented programming is not widely used in YMM. Therefore,

the association between DIT and NOC metrics of CK Metrics and the fault-

proneness of software components could not be determined in the scope of this

thesis study; hence, M2 and M3 metrics were left out of the scope of the study.

4.4.1 Finding the Correlation between Software Metrics and Fault-Proneness

of the Software Components Graphically

First, the association between calculated software metrics and fault-proneness of the

software components was presented graphically. All the graphs showing the

correlation between design metrics and fault-proneness metrics are presented in the

Appendix section.

The numbered points in the graphs, which are in the Appendix section, represent the

software components; for example, 1 represents the Component_1, 2 represents the

Component_2, etc.

Figures 1 through 19 show the association between defect count and respective

calculated metrics. As seen from the figures, all of the software metrics have

positive relationship with the defect count, as expected. This means that structural

characteristics represented by the design metrics in the scope of the study are

closely related with number of errors detected in software.

41

Figures 20 through 38 show the association between defect density and respective

calculated metrics. Metrics other than M1, M4, M7, M19 and M21 have negative

correlation or do not have strong positive correlation with defect density of the

software components. Indeed, as in the case for defect count, positive association

between metrics and defect density was expected. The reason behind the situation

might be that software components, which are in the scope of the study, have

different source lines of code varying between 3771 (Component_9) and 23893

(Component_3). Larger software components tend to have lower defect densities as

suggested in [62]-[64]. Therefore, it can be concluded that using defect density as a

quality metric is convenient for software components which have close number of

source lines of code.

Figures 39 through 57 show the association between defect severity and respective

calculated metrics. As is seen from the figures, all of the software metrics have

positive correlation with the defect severity, as expected. This means that structural

characteristics represented by the design metrics in the scope of the present study

cause more severe errors in software.

Figures 58 through 76 show the association between Defect Correction Effort and

respective calculated metrics. As is seen from the figures, all of the software metrics

have positive correlation with the defect correction effort, as expected. This means

that structural characteristics represented by the design metrics in the scope of the

present study result in raise in defect correction effort of software components.

4.4.2 Statistical Evaluation

4.4.2.1 Pearson’s Correlation Coefficient

In order to correlate software metrics with the fault-proneness of the software

components, first, it was decided to use Pearson’s correlation coefficient [60]

42

because it was expected that a linear correlation between the metrics and fault-

proneness of the components exists.

Pearson’s correlation coefficient, which is represented as r, measures the linear

relationship between two continuous variables. The coefficient also shows the

direction of relationship; the values between 0 and +1 represent positive association

and the values between 0 and -1 represent negative association.

The data collected should not have significant outliers and should be distributed

normally in order to use Pearson’s correlation coefficient. Therefore; first, outlier

and normality tests were applied to the collected data. Kolmogorov-Smirnov test

[60] was applied as normality test. The results of outlier and normality tests are

presented in Table 10.

Table 10 - Outlier and Normality Test Results

 Outliers Normality
Defect Count Component_3 Normal

Defect Density No outlier Normal
Defect Severity Component_3 Non-normal

Defect Correction Effort Component_3 Normal

As seen from Table 10, only defect density data was appropriate for Pearson’s

correlation coefficient analysis. When Component_3 was excluded from the

analysis, there were no outliers and all the measures had normal distribution;

however, it was decided to hold Component_3 inside the analysis because

Component_3, with its design metrics and fault-proneness metrics values, was

significant for the analysis. Therefore, it was decided to continue to the analyses

with Pearson’s correlation coefficient although defect count, defect severity and

defect correction effort measures had an outlier and defect severity had non-normal

distribution. Also, some studies claim that Pearson’s correlation coefficient is

somewhat robust to deviations from normality [61]. Besides, when the analysis

43

were carried out by excluding Component_3, statistical significance of the results,

in other words p value, was below the 95% confidence level for most of the design

metrics.

The results for Pearson’s correlation coefficient are outlined in Table 11.

44

Table 11 - Pearson’s Correlation Coefficients between the Metrics and Fault-
Proneness Measures

 Defect Count Defect Density Defect Severity Defect
Correction

Effort
M1 0,530

p = 0,115
0,656

p = 0,040
0,497

p = 0,144
0,426

p = 0,220
M4 0,453

p = 0,189
0,650

p = 0,042
0,449

p = 0,193
0,327

p = 0,357
M5 0,638

p = 0,047
-0,58

p = 0,873
0,653

p = 0,040
0,579

p = 0,079
M6 0,431

p = 0,214
-0,358

p = 0,309
0,456

p = 0,185
0,409

p = 0,241
M7 0,863

p = 0,001
0,119

p = 0,744
0,871

p = 0,001
0,834

p = 0,003
M8 0,483

p = 0,157
-0,193

p = 0,594
0,472

p = 0,168
0,402

p = 0,250
M9 0,882

p = 0,001
0,003

p = 0,993
0,889

p = 0,001
0,882

p = 0,001
M10 0,808

p = 0,005
-0,126

p = 0,729
0,824

p = 0,003
0,801

p = 0,005
M11 0,825

p = 0,003
-0,056

p = 0,877
0,845

p = 0,002
0,814

p = 0,004
M12 0,878

p = 0,001
0,005

p = 0,990
0,887

p = 0,001
0,862

p = 0,001
M13 0,620

p = 0,056
-0,089

p = 0,807
0,599

p = 0,067
0,575

p = 0,082
M14 0,857

p = 0,002
-0,035

p = 0,924
0,871

p = 0,001
0,846

p = 0,002
M15 0,833

p = 0,003
-0,018

p = 0,960
0,837

p = 0,003
0,817

p = 0,004
M16 0,857

p = 0,002
-0,006

p = 0,986
0,862

p = 0,001
0,839

p = 0,002
M17 0,888

p = 0,001
0,018

p = 0,960
0,904

p = 0,000
0,882

p = 0,001
M18 0,861

p = 0,001
-0,012

p = 0,974
0,869

p = 0,001
0,845

p = 0,002
M19 0,597

p = 0,068
0,558

p = 0,094
0,629

p = 0,051
0,555

p = 0,096
M20 0,635

p = 0,049
-0,086

p = 0,814
0,644

p = 0,044
0,605

p = 0,064
M21 0,586

p = 0,075
0,252

p = 0,482
0,626

p = 0,053
0,554

p = 0,096

45

The correlation between the two variables is statistically significant if the p value is

below 0.05 (p < 0.05). Table 12 summarizes the metrics which have statistically

significant correlations with the fault-proneness measures of the software

components with the strength of the correlation as low correlation, medium

correlation and high correlation. Although there is no general rule about the

classification of the strength of the correlation coefficient, Cohen [60] suggests that

if the absolute value of correlation coefficient is between 0.1 and 0.3, the strength of

the association is low, if the absolute value of correlation coefficient is between 0.3

and 0.5, the strength of the association is medium, and if the absolute value of

correlation coefficient is greater than 0.5, the strength of the association is high.

Table 12 - Statistically Significant Pearson’s Correlations

 High Correlation Medium Correlation Low Correlation
Defect Count M5, M7, M9, M10,

M11, M12, M14,
M15, M16, M17,

M18, M20

- -

Defect Density M1, M4 - -
Defect Severity M5, M7, M9, M10,

M11, M12, M14,
M15, M16, M17,

M18, M20

- -

Defect Correction
Effort

M7, M9, M10, M11,
M12, M14, M15,
M16, M17, M18

- -

Statistically significant associations between the metrics and fault-proneness of the

software components all display high correlations (|r| > 0.5) as seen from Table 12.

Metrics which are correlated with defect count and defect severity of the software

components are all the same, and, for defect correction effort, only two of them (M5

and M20) are not statistically significant. It seems that M1 and M4 affect the defect

density of a software component although they do not have statistically significant

correlations with other fault-proneness measures; namely, defect count, defect

46

severity, and defect correction effort. The results of Pearson’s correlation

coefficient are actually consistent with the graphical display of the associations

between the metrics and fault-proneness of the software components; the only

difference with finding Pearson’s correlation coefficient is that statistically

significant correlations have been pointed out and the associations have been

indicated numerically.

4.4.2.2 Spearman’s Correlation Coefficient

As defect count, defect severity and defect correction effort measures had an outlier

and defect severity had non-normal distribution, the metrics and fault-proneness

measures were also investigated with Spearman’s correlation coefficient [60],

which is a non-parametric test as well, because Spearman’s correlation coefficient

does not require that the data do not have outliers or the data should be normally

distributed. As in the case for Pearson’s correlation coefficient, each of the metrics

was correlated separately to the fault-proneness measures of the software

components. The results for Spearman’s correlation coefficient are outlined in

Table 13.

47

Table 13 - Spearman’s Correlation Coefficients between the Metrics and Fault-
Proneness Measures

 Defect Count Defect Density Defect Severity Defect
Correction

Effort
M1 0,552

p = 0,098
0,539

p = 0,108
0,559

p = 0,093
0,576

p = 0,082
M4 0,529

p = 0,116
0,717

p = 0,019
0,540

p = 0,107
0,529

p = 0,116
M5 0,596

p = 0,069
0,140

p = 0,700
0,643

p = 0,045
0,584

p = 0,077
M6 0,221

p = 0,539
-0,299

p = 0,401
0,264

p = 0,460
0,176

p = 0,627
M7 0,745

p = 0,013
0,224

p = 0,533
0,772

p = 0,009
0,721

p = 0,019
M8 0,479

p = 0,162
-0,055

p = 0,881
0,529

p = 0,116
0,430

p = 0,214
M9 0,614

p = 0,059
-0,049

p = 0,894
0,637

p = 0,048
0,590

p = 0,073
M10 0,431

p = 0,214
-0,178

p = 0,622
0,469

p = 0,171
0,369

p = 0,294
M11 0,463

p = 0,177
-0,049

p = 0,894
0,502

p = 0,140
0,445

p = 0,197
M12 0,650

p = 0,042
0,085

p = 0,815
0,686

p = 0,029
0,614

p = 0,059
M13 0,729

p = 0,017
0,213

p = 0,555
0,753

p = 0,012
0,693

p = 0,026
M14 0,413

p = 0,235
-0,207

p = 0,567
0,451

p = 0,191
0,377

p = 0,283
M15 0,620

p = 0,056
0,061

p = 0,868
0,649

p = 0,042
0,596

p = 0,069
M16 0,636

p = 0,048
0,067

p = 0,855
0,669

p = 0,035
0,612

p = 0,060
M17 0,604

p = 0,065
0,049

p = 0,894
0,639

p = 0,047
0,573

p = 0,083
M18 0,632

p = 0,050
0,067

p = 0,854
0,668

p = 0,035
0,596

p = 0,069
M19 0,389

p = 0,267
0,568

p = 0,087
0,399

p = 0,253
0,445

p = 0,198
M20 0,561

p = 0,092
-0,018

p = 0,960
0,606

p = 0,064
0,530

p = 0,115
M21 0,384

p = 0,273
0,512

p = 0,130
0,398

p = 0,255
0,427

p = 0,219

48

As in the case for Pearson’s correlation coefficient, the correlation between the two

variables is statistically significant if the p value is below 0.05 (p < 0.05). Table 14

summarizes the metrics which have statistically significant correlations with the

fault-proneness measures of the software components with the strength of the

correlation as low correlation, medium correlation and high correlation.

Table 14 - Statistically Significant Spearman’s Correlations

 High Correlation Medium Correlation Low Correlation
Defect Count M7, M12, M13,

M16, M18
- -

Defect Density M4 - -
Defect Severity M5, M7, M9, M12,

M13, M15, M16,
M17, M18

- -

Defect Correction
Effort

M7, M13 - -

Fewer metrics were correlated with fault-proneness measures of the software

components by use of Spearman’s correlation coefficient when compared with

Pearson’s correlation coefficient; however, the results were similar. For example;

the metrics M5, M7, M9, M12, M15, M16, M17 and M18 were correlated strongly

with defect severity of the software components according to both methods.

Two types of correlation coefficient were used in order to identify the association

between design metrics and fault-proneness metrics. The first one is Pearson’s

correlation coefficient which measures the linear relationship between two

variables, and the second one is Spearman’s correlation coefficient which measures

the monotonic relationship between two variables. As seen from Table 10, defect

count, defect severity and defect correction effort metric measurements had an

outlier and defect severity had non-normal distribution; this situation reduces the

reliability to the results of Pearson’s correlation coefficient. Also, monotonic

relation, measured by Spearman’s correlation coefficient, involves linear relation,

49

measured by Pearson’s correlation coefficient. Therefore, it can be concluded that

results achieved with Spearman’s correlation coefficient are more reliable.

50

51

CHAPTER 5

DISCUSSION AND CONCLUSION

There are many studies in the literature which investigate the effects of structural

characteristics of object-oriented software on software quality by use of metrics. A

considerable part of these studies take fault tolerance of software as the quality

indicator while collecting software design metrics from the source code of the

software. These studies have verified a strong correlation between software design

metrics and fault-proneness of software. However, rarity of the studies on the

correlation of software metrics collected from UML models with fault-proneness

has constituted the basic motivation of the present study.

In the present study, we aimed to prove the association between structural

characteristics of object-oriented software measured in terms of UML metrics and

software quality empirically by considering fault-proneness as quality indicator of

software. For this purpose, we worked in Aselsan, a leading defense industry

company in Turkey. The software design metrics and quality metrics were all

collected from real-time embedded software components developed by YMM.

10 software components were investigated in the scope of the study. Software

components used within at least two projects were selected; therefore, it was aimed

that software components were tested adequately and they were reliable

components. Software design metrics were collected from the UML models of the

software components. Software metrics to be measured were selected after the

related literature was reviewed. In addition to software metrics in the literature,

three new metrics, NPI, NOPI and NEPI were proposed as interface metrics. Most

of the metric measurements were carried out by constructing java plug-in

applications for the UML design tool used by YMM, and ready-made metric

measurement tools were used for other metrics. The defect data of the software

52

components were gathered from software defect tracking tool used by YMM. As

fault-proneness measurement, four different types of measurement were used;

namely, defect count, defect density, defect severity and defect correction effort; so,

the extent of the analyses had been broadened in terms of fault-proneness.

Two methods were used in presenting the association between software design

metrics and fault-proneness; namely, graphical and statistical analyses. Before the

analysis, it was expected that all of the design metrics have positive correlation with

the fault-proneness measures. For the cases defect count, defect severity and defect

correction effort, design metrics showed positive association with the fault-

proneness, as expected, at the end of the graphical analyses. However, when we

looked the results for defect density, important part of the design metrics had

negative correlation or did not have strong positive correlation with the fault-

proneness. The reason behind this was interpreted as the fact that larger software

components tend to have lower defect densities as suggested in [62]-[64].

As statistical analyses, Pearson’s and Spearman’s correlation coefficients were

computed in order to assess the association between selected design metrics and

fault-proneness of software. Expecting linear correlation between the design metrics

and defect measures, Pearson’s correlation coefficient was used, first. Although

some defect data has outlier and non-normal distribution, it was continued with

Pearson’s correlation coefficient because it was decided to hold the outlier data in

the analyses and some studies in the literature claimed that Pearson’s correlation

coefficient is somewhat robust to non-normality [61]. The results of the analyses

were similar to graphical analyses. 12 of the 19 design metrics presented

statistically significant correlations with the fault-proneness of software in the cases

of defect count and defect severity, and 10 of the 19 design metrics showed similar

results for defect correction effort. As for the graphical analyses, defect density

results were weaker, in other words, the association was meaningful for only 2 of

the design metrics. For Spearman’s correlation coefficient, although fewer metrics

53

were able to be associated with defect measures of the software components as

compared to Pearson’s correlation coefficient, the results were similar.

The benefits of the study for Aselsan are twofold: The design metrics which were

shown to be correlated with fault-proneness of software can be used to predict

faulty software components. Thus, more testing effort can be spent, labor for peer

review and design review can be increased and static code analyses may be

attributed higher importance for the software components to be considered as error-

prone, thereby improving quality achieved at release time. Also, structural

characteristics that were shown to affect fault-proneness can be controlled via

metric measurements in the development phase for the purpose of eliminating errors

before they come up.

Limitations of the present study include the fact that only a limited number of

components, all developed in the same organizational unit has been investigated.

Also, software components analyzed in the scope of the present study were all real-

time embedded software components. These situations restrict generalizability of

our results severely. Software from other domains definitely deserves to be

subjected to similar studies.

It would also be beneficial to carry out similar studies by extending the data set

used. In other words, a higher number of software components should be analyzed.

So, the effects of the structural characteristics of object-oriented software would be

presented more explicitly. Moreover, it would be possible to achieve threshold

values of the design metrics for software components with high quality in terms of

fault-proneness.

Consequently, in this study, the association between some design metrics collected

from UML models and fault-proneness of software was analyzed using real life

project data in the context of real-time embedded software. Prior studies in the

literature demonstrated the importance of code based metrics in identifying the

fault-prone software components. However, the literature lacks researches which

54

studying on fault-proneness of software by use of UML metrics. Especially,

rareness of the studies attracts attention for the statechart metrics; only a few studies

analyzed the effect of statechart structural characteristics on the understandability,

modifiability and maintainability [6], [7], [8]. To the best knowledge of the author

of the present thesis, there is no other study which investigates the effects of

statechart structural characteristics on the fault-proneness of software.

55

REFERENCES

[1] B. Curtis. (2012, December 4) Non-functional Requirements Be Here [Online].
Available: http://www.it-cisq.org/non-functional-requirements-be-here, Access
date: 12/11/2012

[2] S. R. Chidamber and C. F. Kemerer, "A metrics suite for object oriented
design," Software Engineering, IEEE Transactions on, vol. 20, pp. 476-493, 1994.

[3] T. H. A. Soliman, A. El-Swesy and S. H. Ahmed, "Utilizing CK metrics suite to
UML models: A case study of microarray MIDAS software," in Informatics and
Systems (INFOS), 2010 the 7th International Conference on, 2010, pp. 1-6.

[4] N. Debnath, D. Riesco, G. Montejano, R. Uzal, L. Baigorria, A. Dasso and A.
Funes, "A technique based on the OMG metamodel and OCL for the definition of
object-oriented metrics applied to UML models," in Computer Systems and
Applications, 2005. the 3rd ACS/IEEE International Conference on, 2005, pp. 118.

[5] M. Genero, M. Piattini and C. Calero, "Empirical validation of class diagram
metrics," in Empirical Software Engineering, 2002. Proceedings. 2002
International Symposium n, 2002, pp. 195-203.

[6] J. A. Cruz-Lemus, A. Maes, M. Genero, G. Poels and M. Piattini, "The impact
of structural complexity on the understandability of UML statechart diagrams," Inf.
Sci., vol. 180, pp. 2209-2220, 2010.

[7] J. A. Cruz-Lemus, M. Genero, S. Morasca and M. Piattini, "Using practitioners
for assessing the understandability of UML statechart diagrams with composite
states," in Advances in Conceptual Modeling–Foundations and
ApplicationsAnonymous Springer, 2007, pp. 213-222.

[8] J. A. Cruz-Lemus, M. Genero, M. E. Manso, S. Morasca and M. Piattini,
"Assessing the understandability of UML statechart diagrams with composite
states—A family of empirical studies," Empirical Software Engineering, vol. 14,
pp. 685-719, 2009.

[9] T. J. McCabe, "A complexity measure," Software Engineering, IEEE
Transactions on, pp. 308-320, 1976.

[10] B. P. Douglass, “Computing model complexity”, White paper, I-Logix, 2004.

[11] Object Management Group, Inc. (2013), Object Management Group - UML.
Available: http://www.uml.org, Access Date: 23/02/2013

56

[12] H. Jung, S. Kim and C. Chung, "Measuring software product quality: A survey
of ISO/IEC 9126," IEEE Software, vol. 21, pp. 88-92, 2004.

[13] ISO/IEC 9126 – Software and System Engineering – Product quality – Part 1:
Quality model. 1999-2002

[14] ISO/IEC 9126 – Software and System Engineering – Product quality – Part 2:
External Quality Metrics. 1999-2002

[15] ISO/IEC 9126 – Software and System Engineering – Product quality – Part 3:
Internal Quality Metrics. 1999-2002

[16] ISO/IEC 9126 – Software and System Engineering – Product quality – Part 4:
Quality in Use Metrics. 1999-2002

[17] B. Behkamal, M. Kahani and M. K. Akbari, "Customizing ISO 9126 quality
model for evaluation of B2B applications," Information and Software Technology,
vol. 51, pp. 599-609, 2009.

[18] J. Boegh, "Certifying software component attributes," IEEE Software, vol. 23,
pp. 74-81, 2006.

[19] H. Al-Kilidar, K. Cox and B. Kitchenham, "The use and usefulness of the
ISO/IEC 9126 quality standard," in Empirical Software Engineering, 2005. 2005
International Symposium on, 2005, pp. 7 pp.

[20] A. Abran, R. E. Al-Qutaish and J. J. Cuadrado-Gallego, "Analysis of the ISO
9126 on software product quality evaluation from the metrology and ISO 15939
perspectives." WSEAS Transactions on Computers, vol. 5, pp. 2778-2786, 2006.

[21] ISO/IEC FCD 25010 Software engineering -- Software product Quality
Requirements and Evaluation (SQuaRE) -- Quality model and guide, 2009.

[22] C. F. Lange and M. R. Chaudron, "Managing model quality in UML-based
software development," in Software Technology and Engineering Practice, 2005.
13th IEEE International Workshop on, 2005, pp. 7-16.

[23] F. Brito e Abreu, “The MOOD Metrics Set,” Proc. ECOOP’95 Workshop on
Metrics, 1995.

[24] M. Lorenz and J. Kidd, "Object-Oriented Software Metrics," Ed.Prentice-Hall,
Englewood Cliffs, New Jersey, 1994.

[25] C. Lange and M. Chaudron, "An empirical assessment of completeness in
UML designs," 2004.

57

[26] C. F. Lange and M. R. Chaudron, "Effects of defects in UML models: An
experimental investigation," in Proceedings of the 28th International Conference on
Software Engineering, 2006, pp. 401-411.

[27] S. N. Bhatti, "Why quality?: ISO 9126 software quality metrics (Functionality)
support by UML suite," ACM SIGSOFT Software Engineering Notes, vol. 30, pp. 1-
5, 2005.

[28] J. Wüst. The software design metrics tool for the UML, version 2.3. Available:
http://www.sdmetrics.com, Access Date: 15.03.2013

[29] A. Mayr, R. Plosch, M. Klas, C. Lampasona and M. Saft, "A comprehensive
code-based quality model for embedded systems: Systematic development and
validation by industrial projects," in Software Reliability Engineering (ISSRE), 2012
IEEE 23rd International Symposium on, 2012, pp. 281-290.

[30] S. Wagner, K. Lochmann, L. Heinemann, M. Kläs, A. Trendowicz, R. Plösch,
A. Seidl, A. Goeb and J. Streit, "The quamoco product quality modelling and
assessment approach," in Proceedings of the 2012 International Conference on
Software Engineering, 2012, pp. 1133-1142.

[31] S. H. Kan, Metrics and Models in Software Quality Engineering. Addison-
Wesley Longman Publishing Co., Inc., 2002.

[32] M. Hneif and S. P. Lee, "Using Guidelines to Improve Quality in Software
Nonfunctional Attributes," Software, IEEE, vol. 28, pp. 72-77, 2011.

[33] L. B. Phillips, A. Aurum and R. B. Svensson, "Managing software quality
requirements," in Software Engineering and Advanced Applications (SEAA), 2012
38th EUROMICRO Conference on, 2012, pp. 349-356.

[34] R. Lincke, T. Gutzmann and W. Löwe, "Software quality prediction models
compared," in Quality Software (QSIC), 2010 10th International Conference on,
2010, pp. 82-91.

[35] T. Gyimothy, R. Ferenc and I. Siket, "Empirical validation of object-oriented
metrics on open source software for fault prediction," Software Engineering, IEEE
Transactions on, vol. 31, pp. 897-910, 2005.

[36] P. Yu, T. Systa and H. Muller, "Predicting fault-proneness using OO metrics.
an industrial case study," in Software Maintenance and Reengineering, 2002.
Proceedings. Sixth European Conference on, 2002, pp. 99-107.

[37] L. C. Briand, C. Bunse and J. W. Daly, "A controlled experiment for
evaluating quality guidelines on the maintainability of object-oriented designs,"
Software Engineering, IEEE Transactions on, vol. 27, pp. 513-530, 2001.

58

[38] M. Klas, C. Lampasona and J. Munch, "Adapting software quality models:
Practical challenges, approach, and first empirical results," in Software Engineering
and Advanced Applications (SEAA), 2011 37th EUROMICRO Conference on, 2011,
pp. 341-348.

[39] L. Wang, "Component-based performance-sensitive real-time embedded
software," Aerospace and Electronic Systems Magazine, IEEE, vol. 23, pp. 28-34,
2008.

[40] A. Kaur, P. S. Sandhu and A. S. Bra, "Early software fault prediction using real
time defect data," in Machine Vision, 2009. ICMV'09. Second International
Conference on, 2009, pp. 242-245.

[41] A. Nugroho, M. R. Chaudron and E. Arisholm, "Assessing uml design metrics
for predicting fault-prone classes in a java system," in Mining Software Repositories
(MSR), 2010 7th IEEE Working Conference on, 2010, pp. 21-30.

[42] B. Zhang and X. Shen, "The effectiveness of real-time embedded software
testing," in Reliability, Maintainability and Safety (ICRMS), 2011 9th International
Conference on, 2011, pp. 661-664.

[43] B. Deniz, “Investigation of the effects of reuse on software quality in an
industrial setting”, M.S. thesis, Dept. Elect. & Electron. Eng., METU, Ankara,
Turkey, 2013.

[44] T. Turk, “The effects of software design patterns on object-oriented software
quality and maintainability”, M. S. thesis, Dept. Elect. & Electron. Eng., METU,
Ankara, Turkey, 2009.

[45] R. Subramanyam and M. S. Krishnan, "Empirical analysis of ck metrics for
object-oriented design complexity: Implications for software defects," Software
Engineering, IEEE Transactions on, vol. 29, pp. 297-310, 2003.

[46] S. Srivastava and R. Kumar, "Indirect method to measure software quality
using CK-OO suite," in Intelligent Systems and Signal Processing (ISSP), 2013
International Conference on, 2013, pp. 47-51.

[47] R. Selvarani, T. G. Nair and V. K. Prasad, "Estimation of defect proneness
using design complexity measurements in object-oriented software," in 2009
International Conference on Signal Processing Systems, 2009, pp. 766-770.

[48] S. Wagner and J. Jürjens, "Model-based identification of fault-prone
components," in Dependable Computing-EDCC 5Anonymous Springer, 2005, pp.
435-452.

[49] E. Kahraman, T. İpek, B. İyidir, C. F. Bazlamaçcı, and S. Bilgen, “Bileşen
Tabanlı Yazılım Ürün Hattı Geliştirmeye Yönelik Alan Mühendisliği Çalışmaları”,

59

in 4. ULUSAL YAZILIM MÜHENDİSLİĞİ SEMPOZYUMU - UYMS'09, Ankara,
2009, pp. 283-287.

[50] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin and M. Huh, "FORM: A feature-
oriented reuse method with domain-; specific reference architectures," Annals of
Software Engineering, vol. 5, pp. 143-168, 1998.

[51] M. Genero, M. Piattini and C. Calero, Metrics for Software Conceptual
Models. Imperial College Press London, 2005.

[52] J. A. McQuillan and J. F. Power, "On the application of software metrics to
UML models," in Models in Software EngineeringAnonymous Springer, 2007, pp.
217-226.

[53] J. Blunck. Cyclomatic Complexity Calculater. Available:
http://www.blunck.info/ccm.html, Access Date: 26/11/2013

[54] E. S. Cho, M. S. Kim and S. D. Kim, "Component metrics to measure
component quality," in Software Engineering Conference, 2001. APSEC 2001.
Eighth Asia-Pacific, 2001, pp. 419-426.

[55] T. Vernazza, G. Granatella, G. Succi, L. Benedicenti and M. Mintchev,
"Defining metrics for software components," in Proceedings of. World Multi-
Conference on Systematics, Cybernetics and Informatics, 2000, pp. 16-23.

[56] L. C. Briand, S. Morasca and V. R. Basili, "Property-based software
engineering measurement," Software Engineering, IEEE Transactions on, vol. 22,
pp. 68-86, 1996.

[57] T. D. Oyetoyan, R. Conradi and D. S. Cruzes, "A comparison of different
defect measures to identify defect-prone components," in Software Measurement
and the 2013 Eighth International Conference on Software Process and Product
Measurement (IWSM-MENSURA), 2013 Joint Conference of the 23rd International
Workshop on, 2013, pp. 181-190.

[58] L. Li and H. Leung, "Using the number of faults to improve fault-proneness
prediction of the probability models," in Computer Science and Information
Engineering, 2009 WRI World Congress on, 2009, pp. 722-726.

[59] Y. K. Malaiya and J. Denton, "Estimating the number of residual defects [in
software]," in High-Assurance Systems Engineering Symposium, 1998.
Proceedings. Third IEEE International, 1998, pp. 98-105.

[60] J. Cohen, Statistical Power Analysis for the Behavioral Sciences (Rev.
Lawrence Erlbaum Associates, Inc, 1977.

60

[61] C. J. Kowalski, "On the effects of non-normality on the distribution of the
sample product-moment correlation coefficient," Applied Statistics, pp. 1-12, 1972.

[62] T. J. Ostrand and E. J. Weyuker, "The distribution of faults in a large industrial
software system," in ACM SIGSOFT Software Engineering Notes, 2002, pp. 55-64.

[63] L. Hatton, "Reexamining the fault density-component size connection," IEEE
Software, vol. 14, pp. 89-97, 1997.

[64] K. Moller and D. J. Paulish, "An empirical investigation of software fault
distribution," in Software Metrics Symposium, 1993. Proceedings., First
International, 1993, pp. 82-90.

61

APPENDIX

GRAPHS SHOWING THE CORRELATION BETWEEN DESIGN

METRICS AND FAULT-PRONENESS METRICS

Figure 1 - Correlation between Defect Count and M1

62

Figure 2 - Correlation between Defect Count and M4

Figure 3 - Correlation between Defect Count and M5

63

Figure 4 - Correlation between Defect Count and M6

Figure 5 - Correlation between Defect Count and M7

64

Figure 6 - Correlation between Defect Count and M8

Figure 7 - Correlation between Defect Count and M9

65

Figure 8 - Correlation between Defect Count and M10

Figure 9 - Correlation between Defect Count and M11

66

Figure 10 - Correlation between Defect Count and M12

Figure 11 - Correlation between Defect Count and M13

67

Figure 12 - Correlation between Defect Count and M14

Figure 13 - Correlation between Defect Count and M15

68

Figure 14 - Correlation between Defect Count and M16

Figure 15 - Correlation between Defect Count and M17

69

Figure 16 - Correlation between Defect Count and M18

Figure 17 - Correlation between Defect Count and M19

70

Figure 18 - Correlation between Defect Count and M20

Figure 19 - Correlation between Defect Count and M21

71

Figure 20 - Correlation between Defect Density and M1

Figure 21- Correlation between Defect Density and M4

72

Figure 22 - Correlation between Defect Density and M5

Figure 23 - Correlation between Defect Density and M6

73

Figure 24 - Correlation between Defect Density and M7

Figure 25 - Correlation between Defect Density and M8

74

Figure 26 - Correlation between Defect Density and M9

Figure 27 - Correlation between Defect Density and M10

75

Figure 28 - Correlation between Defect Density and M11

Figure 29 - Correlation between Defect Density and M12

76

Figure 30 - Correlation between Defect Density and M13

Figure 31 - Correlation between Defect Density and M14

77

Figure 32 - Correlation between Defect Density and M15

Figure 33 - Correlation between Defect Density and M16

78

Figure 34 - Correlation between Defect Density and M17

Figure 35 - Correlation between Defect Density and M18

79

Figure 36 - Correlation between Defect Density and M19

Figure 37 - Correlation between Defect Density and M20

80

Figure 38 - Correlation between Defect Density and M21

Figure 39 - Correlation between Defect Severity and M1

81

Figure 40 - Correlation between Defect Severity and M4

Figure 41 - Correlation between Defect Severity and M5

82

Figure 42 - Correlation between Defect Severity and M6

Figure 43 - Correlation between Defect Severity and M7

83

Figure 44 - Correlation between Defect Severity and M8

Figure 45 - Correlation between Defect Severity and M9

84

Figure 46 - Correlation between Defect Severity and M10

Figure 47 - Correlation between Defect Severity and M11

85

Figure 48 - Correlation between Defect Severity and M12

Figure 49 - Correlation between Defect Severity and M13

86

Figure 50 - Correlation between Defect Severity and M14

Figure 51 - Correlation between Defect Severity and M15

87

Figure 52 - Correlation between Defect Severity and M16

Figure 53 - Correlation between Defect Severity and M17

88

Figure 54 - Correlation between Defect Severity and M18

Figure 55 - Correlation between Defect Severity and M19

89

Figure 56 - Correlation between Defect Severity and M20

Figure 57 - Correlation between Defect Severity and M21

90

Figure 58 - Correlation between Defect Correction Effort and M1

Figure 59 - Correlation between Defect Correction Effort and M4

91

Figure 60 - Correlation between Defect Correction Effort and M5

Figure 61 - Correlation between Defect Correction Effort and M6

92

Figure 62 - Correlation between Defect Correction Effort and M7

Figure 63 - Correlation between Defect Correction Effort and M8

93

Figure 64 - Correlation between Defect Correction Effort and M9

Figure 65 - Correlation between Defect Correction Effort and M10

94

Figure 66 - Correlation between Defect Correction Effort and M11

Figure 67 - Correlation between Defect Correction Effort and M12

95

Figure 68 - Correlation between Defect Correction Effort and M13

Figure 69 - Correlation between Defect Correction Effort and M14

96

Figure 70 - Correlation between Defect Correction Effort and M15

Figure 71 - Correlation between Defect Correction Effort and M16

97

Figure 72 - Correlation between Defect Correction Effort and M17

Figure 73 - Correlation between Defect Correction Effort and M18

98

Figure 74 - Correlation between Defect Correction Effort and M19

Figure 75 - Correlation between Defect Correction Effort and M20

99

Figure 76 - Correlation between Defect Correction Effort and M21

