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ABSTRACT 

INVESTIGATION OF THE EFFECTS OF STRUCTURAL 
CHARACTERISTICS OF OBJECT-ORIENTED SOFTWARE ON FAUL T-

PRONENESS 

Gölcük, Halit 

M. Sc., Department of Electrical and Electronics Engineering  

Supervisor: Prof Dr. Semih Bilgen 

May 2014, 99 Pages 

This study investigates the effects of structural characteristics of object-oriented 

software, which are observable at the model level of the software developed by 

means of Unified Modeling Language (UML), on software quality, assessing 

quality in terms of fault-proneness. In the scope of this thesis study, real-time 

embedded software components developed by Aselsan, a leading defense industry 

company in Turkey, were analyzed. The correlation between software metrics 

measured from the UML models of the software components and fault-proneness 

metrics of those software components were presented both graphically and 

statistically.  

Keywords: Structural software characteristics, UML metrics, Software quality, 

Fault-proneness, Empirical study. 
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ÖZ 

NESNE TABANLI YAZILIMLARIN YAPISAL ÖZELL İKLER İNİN HATA 
YATKINLI ĞI ÜZER İNE ETK İLERİNİN İNCELENMESİ 

Gölcük, Halit 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Semih Bilgen 

Mayıs 2014, 99 Sayfa 

Bu çalışma, Birleşik Modelleme Dili (UML) kullanılarak geliştirilen yazılımların 

model seviyesinde gözlenebilen bazı yapısal özelliklerinin yazılım kalitesi üzerine, 

kaliteyi yazılımın hataya yatkınlığı olarak tanımlayarak, etkilerini incelemektedir. 

Bu tez çalışması kapsamında, Türkiye’de önde gelen bir savunma sanayii kuruluşu 

olan Aselsan tarafından geliştirilen gerçek zamanlı gömülü yazılım bileşenleri 

analiz edilmiştir. Yazılım bileşenlerinin UML modellerinden ölçülen yazılım 

metrikleri ve bu bileşenlere ait hataya yatkınlık metrikleri arasındaki ilişki hem 

grafiksel hem de istatistiksel olarak ortaya konulmuştur.  

Anahtar Kelimeler: Yazılımın yapısal özellikleri, UML metrikleri, Yazılım 

kalitesi, Hata yatkınlığı, Deneysel çalışma. 
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CHAPTER 1 

INTRODUCTION 

In a broad sense, the quality of a software artifact can be assessed in three aspects. 

These are functional, structural and process aspects of quality. Functional quality is 

related to the functional requirements of software. In other words, functional quality 

describes how well software meets functional requirements. The people who mostly 

care about functional quality are the users of the software. Structural quality is 

related with the nonfunctional requirements of software. It can be evaluated by 

analyzing the inner structure of software. According to the Consortium for IT 

Software Quality (CISQ), a software component with a good structural quality 

should be reliable, efficient, secure and maintainable [1]. Developers of the 

software are mostly interested in the structural quality. The last quality aspect of 

software is process quality. Process quality is related with the concerns like budget, 

delivery time, etc. Generally, software managers and sponsors are interested in this 

quality aspect. 

In order to measure the quality of a software component, what is expected from 

software in terms of quality should be clarified. Fault tolerance of a software 

product can be a good quality indicator in terms of reliability of software. In 

literature, different types of metrics are used in order to represent the fault-

proneness of a software product. Defect count and defect density are the most used 

metrics quality metrics in terms of fault-proneness [57]. There are studies in the 

literature that relate design metrics of software artifact to fault-proneness 

empirically, and develop prediction models to predict faulty software components 

in a software system, such as [35], [36] and [40]. These studies, generally, used 

linear regression methods to build and verify the prediction model. For object-

oriented software, Chidamber and Kemerer’s metrics suit [2] is the design metric 

set in the literature most frequently used for predicting faulty classes.  
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As the usage of modeling languages in software engineering is becoming more and 

more frequent, measuring and controlling the quality of a model is becoming more 

significant. Unified Modeling Language (UML) is the most widely used modeling 

language for object-oriented software development. In the literature, there is very 

little work which investigates the applicability of UML design metrics for 

measuring and controlling fault proneness of a software product despite the 

importance of early prediction of fault proneness [41].    

In this thesis, the association between design metrics that reflect structural 

characteristics of object-oriented software and fault-proneness is investigated in the 

context of real-time embedded software development projects carried out by 

Aselsan, a leading defense industry company in Turkey. The design metrics were all 

measured from the UML models, not from source code, of the investigated software 

components. Fault-proneness metrics, which are defect count, defect density, defect 

severity and defect correction effort, were obtained from the defect tracking tool 

used in Aselsan. After the correlation between design metrics and fault-proneness of 

the software components were presented graphically and statistically, some useful 

outcomes were identified about which structural characteristic of object-oriented 

software have an impact on the quality of real-time embedded software component 

in terms of fault-proneness. 

The remaining chapters of the thesis are structured as follows:  

In Chapter 2, a literature survey is carried out about the concepts of software quality 

and the software characteristics considered in the scope of the study are reviewed.  

In Chapter 3, the study framework, consisting of the structural characteristics of the 

investigated real-time embedded software components and the fault-proneness 

measures to be focused on, is presented. Selected software components and 

software metrics for the study are described, and how the software metrics are 

measured from the software components and how the fault data of the software 

components is gathered are explained.  
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In Chapter 4, software metric and fault-proneness measurement results are given. 

Then, the association between software metrics and fault-proneness measurements 

of software components is established graphically and statistically.  

In Chapter 5, the achievements are summarized, obtained results are discussed and 

limitations of the study as well as suggestions for future work are outlined. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 INTRODUCTION 

In the present study, case studies were carried out on software projects developed 

by Software Engineering Department (YMM) of Defense System Technologies 

Group (SST) in Aselsan. In this department, fire control software projects are 

developed by modeling the software in UML and software pieces has real-time 

embedded nature. As the first step of the study, the related literature was 

investigated in order to set the background consisting of the concepts of software 

model quality, quality of real-time embedded software and to determine the 

appropriate quality metrics.   

2.2 UNIFIED MODELING LANGUAGE 

UML is a general purpose modeling language which is used for modeling object-

oriented software systems (OOSS). The standard is managed by the Object 

Management Group which is a not-for-profit computer industry specifications 

consortium [11]. UML 2.0 has thirteen types of diagrams that are used to visualize 

an OOSS. These thirteen types of diagrams can be divided into three categories; 

structure diagrams, behavior diagrams and interaction diagrams. In software 

components developed at YMM, class diagrams and state machine diagrams are 

widely used. Class diagram falls into category of structure diagrams and state 

machine diagram falls into category of behavior diagrams of UML. Class diagram 

represents the static view and state machine diagram represents the dynamic view of 

software. This study focuses on object-oriented metrics which are accessible from a 

UML model and class diagram and state chart diagram metrics because class 
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diagram and statechart diagram are used widely in software projects developed at 

YMM and also these two types of diagrams affect the performance of software 

considerably. 

2.3 SOFTWARE QUALITY MEASUREMENT 

In order to measure the quality of a software component, meaning of software 

quality should be clarified. In a broad sense, quality may be defined as satisfying 

the functional requirements [31]. It means that if a software product could not meet 

functional requirements, that software product is evaluated as software with poor 

quality. However, in the course of time, not only succeeding functional 

requirements but also performing functionalities effectively, safely and productively 

has gained importance [32]. This means that software product should meet 

nonfunctional requirements as well as functional requirements. Nonfunctional 

characteristics of a software product can be listed as reliability, performance 

efficiency, security and maintainability [1].  

Software products with different features should implement different nonfunctional 

characteristics. For example, the most important nonfunctional requirement for a 

statistical analysis system can be reliability; however, a banking system should give 

precedence security characteristic, mostly [32]. Therefore, quality requirements 

study should be carried out in order to set proper quality objectives for a software 

product. Hneif and Lee [32] conducted a study in order to improve the 

nonfunctional quality of a piece of software. Their approach was preventive which 

means that their purpose was to eliminate the defects in the development phase not 

in the verification phase. Their purpose was to prevent nonfunctional attributes 

defects by using guidelines. For selecting guidelines, they used two properties; 

selected guideline should have positive effect on the nonfunctional attribute and 

selected guidelines for a specific nonfunctional attribute should not have 

overlapping or conflicting relationship between each other [32]. Philips et al. [33] 
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conducted an empirical study in order to discover quality requirements management 

practices in Australian organizations. The study included 13 practitioners and 6 

different companies in Australia. The study showed that quality requirements 

management was the most neglected part of software projects [33].  

In order to have software of high quality, using appropriate software quality models 

meeting quality requirements is as important as defining quality requirements 

correctly. By use of software quality prediction models and quality metrics, 

empirical studies are carried out in order to validate the quality of software product 

[34]. In order to validate the quality model and quality metrics, number of errors 

detected in the software [35], [36] or maintenance cost [37] can be used. However, 

using maintenance cost for statistical validation is difficult [34]. The quality model 

that will be used can be selected using two different strategies. One of them is using 

generic quality models such as ISO/IEC 9126. However, these quality models are 

often too abstract to use [38]. The other strategy is defining your own model based 

on existing quality models. The second strategy is more appropriate for finding the 

correct quality model that meets specific quality requirements [38]. Klass et al. [38] 

developed an approach that can be used while adapting the existing quality models 

to specific quality requirements. They identified three requirements for a quality 

model adaptation approach which are correctness, appropriateness and efficiency. 

Correctness means that adapted quality model should remain conformant to its 

structure. Appropriateness can be explained as quality model should be adapted 

considering the organizational needs and capabilities. Finally, efficiency stands for 

the level of overhead involved in the adaptation work in relation to the benefits of 

applying a proven quality model.   

2.4 ISO/IEC 9126 AND ISO/IEC 25010 

The International Organization for Standardization (ISO) and the International 

Electrotechnical Commission (IEC) has released a standard, ISO/IEC 9126, in order 
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to describe a quality model for all types of software products. ISO/IEC 9126 

consists of four parts. The first part of the standard is ISO/IEC 9126-1 which 

describes a quality model including 6 characteristics and 27 sub-characteristics [13], 

the second part of the standard is ISO/IEC 9126-2 which determines external 

quality metrics [14], the third part of the standard is ISO/IEC 9126-3 which 

determines internal quality metrics [15] and finally the fourth part of the standard is 

ISO/IEC 9126-4 which determines the quality in use metrics [16]. The standard 

aims to develop a quality model and quality metrics which are applicable to any 

type of software component. The organizations or individuals can use the quality 

model described in ISO/IEC 9126 in order to achieve the desired quality for a 

software product by adopting the quality model and quality metrics according to 

their needs. 

ISO/IEC 9126 investigates software quality in three views; namely, external, 

internal and quality in-use. According to the standard, there is a close relationship in 

these three aspects of software quality. Internal quality attributes affect external 

quality attributes and external quality attributes affect quality in-use attributes. In 

other words in-use quality of a software product depends on external quality of the 

product and external quality depends on internal quality of the product [13].  

ISO/IEC 9126 handles external and internal quality with one quality model, and 

handles in-use quality with another model. As shown in Table 1, in external and 

internal quality model, there are six characteristics and 27 sub-characteristics which 

are used to measure external and internal quality of a software product. Part 2 and 

Part 3 of the standard give some metrics in order to measure characteristics and sub-

characteristics given in Part 1 of the standard. ISO/IEC 9126-2 gives external 

metrics and ISO/IEC 9126-3 gives internal metrics. 
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Table 1 - Characteristics and Sub-characteristics in External and Internal Quality Model in ISO/IEC 9126 [13] 

Functionality Reliability Usability Efficiency Maintainability Portability 

Suitability Maturity Understandability Time Behavior Analyzability Adaptability 

Accuracy Fault Tolerance Learnability Resource Utilization Changeability Installability 

Interoperability Recoverability Operability Efficiency 
Compliance 

Stability Co-existence 

Security Reliability 
Compliance 

Attractiveness Testability Replaceability 

Functionality 
Compliance 

Usability 
Compliance 

Maintainability 
Compliance 

Portability 
Compliance 
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Quality model for quality in use identifies four characteristics; namely, 

effectiveness, productivity, safety and satisfaction [13]. Part 4 of the ISO/IEC 9126 

gives quality in use metrics in order to measure the characteristics for quality in use 

given in Part 1 of the standard [16].  

In order to achieve desired quality for a software component, it is necessary to 

perform measures from all the three views of quality (internal, external and quality 

in use) defined in ISO/IEC 9126 quality standard. It means that it is not sufficient to 

perform measures using quality in use metrics in order to meet the expectations of 

the users of the software product because in use quality of a software product is 

dependent to external quality of the product and by extension external quality is 

dependent to internal quality of the product [13].      

Although ISO/IEC 9126 quality standard is a widely accepted and referred standard 

in the literature, there are also criticisms about the standard.  

As stated earlier ISO/IEC 9126 aims to target any type of software quality needs. 

Therefore, the standard needs to be customized [17]. For example, functionality is 

the most important characteristic of your software product and you want to measure 

this characteristic using the related sub-characteristics and metrics defined in 

ISO/IEC 9126 quality model. When performing this measure how the contribution 

of sub-characteristics (security, interoperability, etc.) to the functionality 

characteristic be evaluated is unclear [17].        

Applying the defined metric measurements to the software product is difficult 

because the metric definitions are imprecise; therefore, they need to be redefined in 

some cases [18]. In [19], an empirical study was reported in which the usefulness’ 

of ISO/IEC 9126 standard was evaluated. In the experiment, 158 participants, which 

were in their final year in Computer Science and Engineering, were used. A 

Software Requirements Specification document was given to the subjects and they 

were asked to produce some design documents. Using ISO/IEC 9126 quality model, 

subjects were asked to evaluate the quality of the design artifacts [19]. As the result 



 

11 
  

of the experiment, some difficulties were observed about using ISO/IEC 9126 while 

evaluating the quality of an intermediate software product. The students in the 

experiment found it difficult to understand many terms in ISO/IEC 9126 and also 

they stated that some metric definitions were overlapping [19].  

The results of the applied metric measures are given in the scale between 0 and 1. It 

is easy to convert these results to the percentage value; however, there is not any 

evaluation which values of the applied metric results are good or bad [20]. 

The difficulties of the ISO/IEC 9126 standard may make performing quality 

measures impractical. Therefore organizations or individuals who decide to use 

ISO/IEC 9126 quality standard for evaluating the quality of a software component 

have to adopt the standard according to their needs in a proper way.     

In 2009, ISO and IEC released a new standard family, Software Product Quality 

Requirements and Evaluation (SQuaRE), which is also known as 25000 series. One 

part of 25000 series is the ISO/IEC 25010 which describes a quality model for a 

software component and it is intended that ISO/IEC 25010 will replace the existing 

ISO/IEC 9126 quality standard [21]. ISO/IEC 25010 has some improvements over 

ISO/IEC 9126; for example, ISO/IEC 25010 extends the quality concept by 

increasing the number of quality characteristics from 6 to 8. The characteristics and 

sub-characteristics proposed in ISO/IEC 25010 can be seen in Table 2. 
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Table 2 - Characteristics and Sub-characteristics in ISO/IEC 25010 [21] 

Functional 
Suitability 

Reliability Performance 
Efficiency 

Operability Security Compatibility Maintainability Transferability  

Appropriateness Availability Time-
behavior 

Appropriateness 
recognisability 

Confidentiality Replaceability Modularity Portability 

Accuracy Fault 
tolerance 

Resource-
utilization  

Learnability Integrity Co-existence Reusability Adaptability 

Compliance Recoverability Compliance Ease of use Non-repudia-
tion 

Interoperability Analyzability Installability 

Compliance Helpfulness Accountability Compliance Changeability Compliance 
Attractiveness Authenticity Modification 

stability 
Technical 
accessibility 

Compliance Testability 

Compliance Compliance 
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Although ISO/IEC 25010 has some improvements over ISO/IEC 9126, overall 

critiques about ISO/IEC 9126 are also applicable for ISO/IEC 25010 [30]. Mayr et 

al. [29] proposed a quality model for embedded systems based on ISO/IEC 25010. 

While deriving requirements for embedded system code they could not benefit from 

the standard because abstraction level of the quality characteristics described in 

ISO/IEC 25010 was high [29]. Wagner et al. [30] carried out a study in order to 

reduce the gap between high level quality models such as ISO/IEC 25010, and 

concrete quality models. They claimed that although ISO/IEC 25010 emphasized 

important concepts about software quality, the standard could not be used for real 

quality improvement purposes [30].         

2.5 REAL-TIME EMBEDDED SOFTWARE QUALITY AND UML 

QUALITY ASSESSMENT 

Real-time embedded software has wide application area with high reliability and 

security requirements. Therefore, software quality is significant in systems using 

real-time embedded software [42]. In order to provide advantages in the real-time 

software development world, improving software quality, minimizing software 

development cost and reducing software delivery time is critical because 

complexity of software products and competition in the market are increasing [39].  

Fault proneness of a real-time software product can be used as quality indicator of 

that software [40]. Kaur et al. [40] proposed that, in order to identify fault proneness 

of a software module, requirement metrics, code metrics and the combination of 

these two metrics can be used with clustering techniques. They showed the 

applicability of the proposal by using the real-time defect datasets from NASA 

software projects. In a thesis study [43], effects of reuse on the quality of real-time 

embedded software were investigated. In that study, metrics were collected from 

real projects developed in Aselsan, and defect rates of the real-time embedded 

software projects were considered as quality indicator.  
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Model driven software development is becoming more popular in software 

engineering industry with the passing years. UML is the most commonly used 

modeling language for model driven software development. YMM, too, uses UML 

while modeling and developing the software.  

2.6 SOFTWARE QUALITY METRICS      

There are many studies and derived metrics in the literature for measuring the 

quality of software source code like [2], [23] and [24]. In their seminal work, 

Chidamber and Kemerer [2] defined six object-oriented quality metrics that are 

known as CK metrics. These metrics are aimed at assessing the design of OOSS 

rather than implementation. Another important metric set is known as MOOD 

metrics [23]. These were defined to measure the use of object-oriented design 

methods such as inheritance (MIF – Method Inheritance Factor, AIF – Attribute 

Inheritance Factor), information hiding (MHF – Method Hiding Factor, AHF – 

Attribute Hiding Factor) and polymorphism (POF – Polymorphism Factor, COF – 

Coupling Factor). It is widely accepted (e.g. [23]) that metrics should be easy to 

compute, should not be tied to any particular programming language and should 

result in numbers which is independent from the system size. In another thesis study 

[44], effects of software design patterns on object-oriented software quality and 

maintainability were investigated. In that study, maintainability was accepted as an 

important quality characteristic and maintainability of the applications developed in 

Aselsan were measured using CK metrics and MOOD metrics. Lorenz and Kidd 

[24] also proposed metrics in order to measure the static characteristics of software 

design. Their metrics are divided into three categories; class size, class inheritance 

and class internal. Size oriented metrics focus on counts of attributes and operations 

in a class. Inheritance oriented metrics focus on the manner in which operations are 

reused in hierarchy class. Internal class-oriented metrics address cohesion and code-

oriented issues.  
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With the advent of model driven software development, not only measuring the 

quality of source code but also measuring the quality of models has become 

indispensable in order to develop software with adequate quality. Many 

organizations use UML models for various purposes such as implementation and 

maintenance while developing software components or systems and these models 

contain large number of defects that remain undetected [25]. Lange and Chaudron 

[26] performed two controlled experiment in order to investigate which types of 

defects in UML models remain undetected and effects of these defects. The first 

experiment was carried out with 111 students and the second experiment was 

carried out with 48 practitioners. The results showed that although some types of 

defects were determined by most subjects, undetermined defects caused 

misinterpretations among the readers. By analyzing the findings from [25] and [26], 

it can be concluded that measuring the quality of UML models is necessary.  

In [22], Lange and Chaudron proposed a quality model for UML models based 

upon the necessity of measuring the quality of UML models. They proposed that 

UML models and source code differ in the aspect of system. Abstraction level in 

models is higher than the source code of the system, which means UML models 

describe systems in a non-deterministic way. Therefore, describing the quality 

characteristics of UML models is necessary. Lange and Chaudron’s quality model 

combines the quality characteristics of the model with the quality characteristics of 

the system. 

Nugroho et al. [41] empirically showed that UML design metrics are good 

predictors considering the fault proneness of a class. Metrics used in the study were 

derived from class diagrams and sequence diagrams of a UML model. In addition to 

UML model metrics, several code metrics were also used which are coupling 

between objects (CBO) [2], McCabe’s complexity [9], and lines of code. These 

code metrics are well-known metrics that are in relation with fault-proneness of a 

class [41]. The question of which of the three fault prediction models; namely, 

UML metric model, code metric model, and UML and code metrics model, is 
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effective was answered with empirical data collected from industrial projects and 

the metric values measured. As a result, Nugroho et al.’s study showed that 

combination of UML design metrics and code metrics gives best performance for 

predicting fault proneness.       

Assessing software quality using metrics is a proven approach for improving 

software quality [27]. While calculating software metrics, values can be calculated 

manually or tools can be used. SDMetrics [28] is a tool which is used in order to 

calculate software metrics for the object-oriented design quality of software systems 

designed and implemented by UML. The tool has some metrics such as number of 

attributes in the class (NumAttr) or number of operations in the class (NumOps). 

SDMetrics also provides opportunity to define custom metrics and rules to the 

users.  

Below, the related literature is reviewed in order to determine the metrics which 

would be measured within the scope of the present study to assess structural 

characteristics of object-oriented software.  

2.6.1 CK Metrics [2] 

Names and definitions of CK Metrics [2] are summarized below: 

• Weighted Methods per Class (WMC): This metric is defined as the 

summation of complexities of the methods defined in a class. If complexities 

of all methods are considered to be unity, WMC is equal to number of 

methods in a class [2]. Another approach is to consider the complexity of a 

method as McCabe’s cyclomatic complexity [52]. 

• Depth of Inheritance Tree (DIT): It is a measure of the inheritance path from 

the node class to the root class.  

• Number of Children (NOC): It is the number of immediate child or 

subclasses derived or subordinated from a base class.  
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• Coupling between Objects (CBO): It is a measure for cohesiveness between 

classes. 

• Response for a Class (RFC): It is the number of methods which can be 

called in response to a message to a class.  

• Lack of Cohesion in Methods (LCOM): It is a measure for cohesiveness in a 

class.  

These metrics were originally devised in order to measure the quality of an object-

oriented design based on the source code. In the thesis study by B. Deniz [43], 

while collecting metrics from real projects in order to measure software quality, CK 

metric suit was used. In that study, metrics were collected from source code. 

However, there are studies, like [3], [4], [52] in the literature, which also showed 

the applicability of these metrics to UML models.  

CK metrics are accepted as good indicators of faulty classes in a software product 

[45], [46], [47]. In [45], the authors validated empirically the association between 

some of CK metrics and defects found during acceptance testing and defects found 

by customers. They used three of the six metrics of CK metric suit which are WMC, 

CBO and DIT.     

2.6.2 Class Diagram Metrics [5] 

Genero et al. [5] validated the given metric set for UML class diagrams empirically. 

It was proposed that understandability time of class diagrams is closely related with 

the maintainability of those diagrams. Metric names and definitions are given as 

follows [5]. 

• Number of Associations (NAssoc): It is the number of associations in a class 

diagram. 

• Number of Aggregation (NAgg): It is the number of aggregation 

relationships within a class in a class diagram. 
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• Number of Dependencies (NDep): It is the number of dependency 

relationship in a class diagram. 

• Number of Generalizations (NGen): It is the number of generalization 

relationships in a class diagram. 

• Number of Aggregations Hierarchies (NAggH): It is the number of 

aggregation hierarchies in a class diagram. 

• Number of Generalizations Hierarchies (NGenH): It is the number of 

generalization hierarchies in a class diagram. 

• Maximum DIT (MaxDIT): It is the maximum of the DIT values obtained for 

each class of the class diagram. 

• Maximum HAgg (MaxHAgg): It is the maximum of HAgg values obtained 

for each class of the class diagram. The HAgg value for a class within an 

aggregation hierarchy is the longest path from the class to the leaves. 

• Number of Classes (NC): It is the number of classes in a class diagram. 

• Number of Attributes (NA): It is the number of attributes of classes in a 

class diagram. 

• Number of Methods (NM): It is the number of methods of classes in a class 

diagram. 

2.6.3 Statechart Metrics [6] 

The behavior of classes of a system can be described by using statecharts. 

Therefore, complexity of statecharts contributes to the complexity of classes. In this 

way, statechart complexity is associated with fault-proneness of the class [48].   

There are several studies (e.g. [6], [7], and [8]) in the literature that proposed and 

validated some metrics for UML statecharts. These studies were carried out to 

prove the validity of statechart metrics in the view of understandability or 

maintainability.  

The metrics with their definitions can be seen in Table 3. 
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Table 3 - Statechart Diagram Structural Complexity Metrics [6] 

Metric Name Metric Definition 
Number of Entry Actions 
(NEntryA) 

It is the number of entry actions in the statechart 
diagram. 

Number of Exit Actions (NExitA) It is the number of exit actions in the statechart 
diagram. 

Number of Activities (NAc)  It is the number of do/Activities in the statechart 
diagram. 

Number of Simple States (NSS) It is the number of simple states in the statechart 
diagram. 

Number of Composite States 
(NCS) 

It is the number of composite states in the statechart 
diagram. 

Number of Guards (NG) It is the number of guard conditions in the statechart 
diagram. 

Number of Events (NE) It is the number of events in the statechart diagram. 

Number of Transitions (NT) It is the total number of transitions (common 
transitions + self-transitions + internal transitions)  

Cyclomatic Complexity (CC) McCabe’s original cyclomatic complexity metric 
[9] is adapted as |NSS-NT+2| where NSS is the 
number of simple states and NT is the number of 
transitions. 

Common transition represents the transition of which the source and target states 

are different; however, for self-transition, source and target states are same. Internal 

transition stands for the transitions that respond an event without leaving the state.  

2.6.4 Douglass Metrics [10] 

In a white paper [10], Douglass proposed a metric set to measure the complexity of 

a UML model. Some of the Douglass metrics are similar to the well-known metrics 

in the literature; however, all of the Douglass metrics are intended to use with UML 
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models. Metric sets are grouped as Model Organizational Metrics, Requirements 

Metrics, Model Architectural Structural Metrics, Model Semantic Structural Metrics 

and Model Behavioral Metrics. 

The most attractive metric in the Douglass white paper is the Douglass Cyclomatic 

Complexity (DCC) because, to the best knowledge of the author of the present 

thesis, there is no other metric which handles nesting and concurrency in a state 

machine in the literature. The metric is the modified version of McCabe’s 

Cyclomatic Complexity calculated as “Edges – Nodes + 2” [9]. The definition of 

Douglass Cyclomatic Complexity is “Edges – Nodes + 2 + Levels of Nesting + 

And-States”.  

2.7 MEASURING COMPONENT QUALITY 

Cho et al. [54] discussed the limitations of existing object-oriented software metrics 

in measuring the quality of software components and they produced two reasons 

about the inadequacy of measuring component quality of object-oriented metrics. 

These reasons were difference in measurement unit and insufficiency in 

measurement factor. These reasons came up because object-oriented metrics only 

focus on objects or classes; however, software components have inter class 

relationships.    

Vernazza et al. [55] proposed a way to use CK metrics in measuring the component 

quality, by considering software components as group of classes, by benefitting 

from the properties defined in [56]. Briand et al. [56] defined some properties that 

software measurements, like size, length, complexity, coupling and cohesion 

measurements, should satisfy. 
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2.8 FAULT-PRONENESS MEASUREMENT METHODS IN THE 

LITERATURE  

As a quality metric, different fault-proneness measurement types can be used. 

Oyetoyan et al. [57] carried out a study in order to compare different defect 

measures in identifying fault-proneness software components. They analyzed four 

defect measures, namely; defect count, defect density, defect severity and defect 

correction effort in the scope of the study. Defect count refers to number of detected 

errors in a software component, defect density is the normalization of the defect 

count with respect to source lines of code (SLOC), defect severity is the importance 

or significance of the detected errors in the software, and defect correction effort is 

a measurement type for the difficulty of the correction of detected error in the 

software. In the literature, there are studies which used these different defect 

measures as a quality indicator. In [58], an oversampling method in order to 

improve fault-proneness prediction was proposed by using number of faults. 

Malaiya and Denton [59] provides a model in order to estimate and assess software 

reliability by using defect density metric. Oyetoyan et al. [57] concluded that 

although defect count and defect density measures are the mostly used defect 

measures in the literature, defect severity and defect correction effort are also 

effective in identifying critical and important software components. Also, several 

studies [61]-[63] showed that there is a connection between size and defect density; 

relatively larger components in size are tend to be lower defect densities.  
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CHAPTER 3 

THE STUDY FRAMEWORK 

Software components developed by YMM are developed according to 

organizationally accepted and published software reference architecture. In this 

way, design maturity of the software components are guaranteed to some extent. 

However, it has been observed that quality of the software components depends on 

the developer because there is limited design information for the software 

components, except the interfaces defined, in the reference software architecture. 

Therefore, it was decided that in addition to the published reference architecture, 

specifying the structural characteristics for the software components developed as 

compatible with the reference software architecture would be beneficial. The 

purpose of the present study is to assure the quality level of software components to 

be developed and reveal the quality level of software components already 

developed.  Software components developed by YMM are developed with a UML 

tool; therefore, it is important to collect software metrics from UML models. The 

results of the present study will be used to guide the software developers in order to 

develop software components with higher quality.  

In the present study, it was accepted that fault-proneness of a software component is 

a good indicator of its quality.  Some software components were chosen from real 

projects developed by YMM. Some metrics were collected from the software 

components, metrics and faults of software components were analyzed in order to 

find out which metric could be significant in evaluating fault-proneness of real-time 

software components designed with UML.  
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3.1. GENERAL INFORMATION ABOUT THE SOFTWARE DEVELOP ER 

TEAM  

Throughout the present study, we worked with a software developer team in YMM. 

The team develops software for fire control systems using C++ language. Fire 

control systems process data coming from many sensing units in order to increase 

the possibility of shooting the ammunition at the target [49].  The software 

developed by the team has real-time embedded nature. While developing software, 

the team uses a UML tool which has the capability of automatic code generation. 

The software developer team uses a reference software architecture which is called 

Weapon Systems Reference Architecture (SSRM) [49]. General information about 

the software architecture can be found in the next sub-section. 

3.1.1. Reference Software Architecture used by the Software Team 

The reference software architecture of the software team has been designed 

according to Feature-Oriented Reuse Method (FORM). FORM develops domain 

architectures and components by capturing commonalities and differences of 

applications in a domain in terms of “features” [50]. Fundamental components of 

the software architecture with their short explanations are as follows; 

• Missions carry out a specific functionality which differs with reference to 

project requirements.  

• Capabilities provide foundation for performing a specific mission; for 

example, target management, platform management. Capabilities are 

developed as reusable components. 

• Software Manager decides that which component of the software would be 

active according to user requests or current situation of the software. This 

component of the software architecture is project specific; therefore, it is not 

designed as reusable.   
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• External Interface represents user interface, command control interface, etc. 

The purpose of defining such a component in software is blocking the 

variability in the external environment from the software.     

• System Environment transfers the services of sensors and actuators to the 

software.  

• Operating Environment provides the independence of the software from the 

hardware and operating system that the software is running on.   

Data communication and control operations are separated in order to increase 

reusability and decrease maintainability effort; therefore, there are two views in the 

architecture; which are control view and data view. Flow of the data and control 

commands are also determined; pull method is used for data communication and 

push method is used for control operations.  

3.2. SOFTWARE COMPONENTS INVESTIGATED 

The software components investigated within the scope of the present study were all 

within System Environment Layer of the software architecture. The highest 

necessity to develop new software components is for the System Environment 

Layer for the software developer team, and also the highest fault count per software 

module is known to occur in System Environment Layer components. Therefore, 

collecting software components to be analyzed from System Environment Layer 

was considered reasonable and especially beneficial in the scope of the present 

work.  

There are many software components in System Environment Layer; however, 10 

components were selected from among them. The criterion in selecting software 

components was that the software components should be used in at least two 

projects which are completed and delivered to the customer. The reason for this 

criterion was that the software components should be tested adequately and 

therefore, they would be reliable components.  
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3.3. SELECTED METRICS 

In selecting the software metrics to be measured in the present study, requirements 

and priorities of YMM have been kept in consideration. In order to determine which 

metric or metric set would be used, first, literature was reviewed and a broad set of 

metrics that suit the purpose of the thesis study were presented to the software 

leaders of the development staff of the projects from which measurement would be 

obtained. With the software leaders, design metrics that reflect structural 

characteristics of software components developed by YMM are evaluated and 

selected.      

Metric selection together with justifications can be found in Table 4. “Metric 

Selection” column indicates whether concerned metric will be measured or not. “+” 

means the metric shall be measured, “-” means the metric shall not be measured. 

“Comment” column gives the reason behind the metric selection.   

Table 4 - Motivation behind Metric Selection 

Metric Set Metric 
Selection 

Metric Name Comment 

 
CK Metrics 

+ WMC (Weighted 
Methods per Class) 

CK Metrics are referred as good 
indicators in determining fault-
proneness of a class (see “CK Metrics” 
sub-section in Chapter 2); therefore, 
this metric set was completely applied 
in this thesis study. However, metric 
values were gathered from the UML 
models rather than source code. 

+ DIT (Depth of 
Inheritance) 

+ NOC (Number of 
Children) 

+ CBO (Coupling 
Between Objects) 

+ RFC (Response for a 
Class) 

+ LCOM (Lack of 
Cohesion in 
Methods) 
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Table 4 (cont’d) 

 
Class 

Diagram 
Metrics 

 
 
 
 
 
 
 

- NAssoc (Number of 
Associations) 

This metric was not measured because 
association relationship is generally 
used via ports; direct association 
relationship is not established in 
software components developed by 
YMM.   

- NAgg  (Number of 
Aggregation) 

This metric was not measured because 
aggregation relationship is not used in 
software components developed by 
YMM.   

- NAggH (Number of 
Aggregations 
Hierarchies) 

- MaxHAgg 
(Maximum HAgg) 

- NGen (Number of 
Generalizations) 

In YMM, interface inheritance is used 
rather than implementation inheritance; 
therefore, these metrics were not 
measured.  

- NGenH (Number of 
Generalizations 

Hierarchies) 
- MaxDIT (Maximum 

DIT) 
In CK Metrics, there is a metric as 
‘DIT’. Therefore, it was evaluated that 
there is no need to use this metric.  

- NDep (Number of 
Dependencies) 

This metric was not measured because 
software components developed by 
YMM depend only to the reference 
software architecture.   

+ NC (Number of 
Classes) 

We expected to establish a relationship 
between size and structural complexity 
of a software component by measuring 
this metric. 

+ NA (Number of 
Attributes) 

+ NM (Number of 
Methods) 

 
Statechart 
Metrics 

+ NEntryA (Number 
of Entry Actions) 

In this thesis study, the association 
between structural complexity of 
statechart of a class and fault-proneness 
of that class was investigated. 
Therefore all of the statechart metrics 
defined in [6] were measured. 

+ NExitA (Number of 
Exit Actions) 

+ NAc (Number of 
Activities) 

+ NSS (Number of 
Simple States) 

+ NCS (Number of 
Composite States) 
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Table 4 (cont’d) 

 + NG (Number of 
Guards) 

 

+ NE (Number of 
Events) 

+ NT (Number of 
Transitions) 

+ CC  (Cyclomatic 
Complexity) 

Douglass 
Metrics 

+ DCC (Douglass 
Cyclomatic 
Complexity) 

DCC metric accounts for nesting and 
concurrency in a state machine which 
affects the complexity of a state 
machine.  

- Other Douglass 
Metrics 

Other Douglass metrics have common 
parts with CK Metrics, Class Diagram 
Metrics and Statechart Metrics; 
therefore, picking up only DCC metric 
from among Douglass metrics was 
considered as sufficient for the present 
study.  

In addition to metrics, that reflect structural characteristics of object-oriented 

software, proposed in the literature, some metrics were considered to have 

association with complexity of a software component; thus, error-proneness of that 

software component. These metrics are related with the interface complexity of a 

software component, which are Number of Provided Interfaces (NPI), Number of 

Events in Provided Interfaces (NEPI) and Number of Operations in Provided 

Interfaces (NOPI).  

3.4 MEASUREMENT OF METRICS 

There were three possible ways for measuring metrics for the software components; 

these were: 

• Manual metric measurement, 

• Metric measurement by using a readymade metric tool, 
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• Automating metric measurement for the specific needs of the thesis study. 

Metric measurement can be carried out by examining the UML model of the 

software manually. This way of metric measurement has been skipped because 

calculating metric values manually can be time consuming for complex software 

components and it is not reliable.  

A tool that can be used to get metric values from a UML model came to the 

forefront while reviewing the literature in order to see whether measurement of 

metrics can be done with a readymade tool or not. This tool was SDMetrics. 

SDMetrics can be used with all UML modeling tools which has the capability of 

exporting the model to an XMI file. The tool also gives the opportunity of defining 

custom metrics (see “Metrics in the Literature” sub-section in Chapter 2). 

SDMetrics was considered to be appropriate for the needs of the thesis study; 

however, some difficulties have been encountered; 

• XMI output of the UML design tool used by the software developer team 

deviated from the standard at some points. For example, default transitions 

in the statechart were represented as states in the XMI output. Also, internal 

and external transitions in a state were not distinguished at the XMI output 

of the tool.  

• SDMetrics tool, as expected, could not measure all metrics in the scope of 

the thesis study; therefore, the ability of defining new metrics within the tool 

was attempted; however, the tool interface was not user friendly. 

The UML design tool used by the software developer team supports java plug-ins 

which can be used to extend the product capabilities. By creating java applications, 

one can modify and analyze the UML model created by the UML design tool.  

After the metric measurement options were reviewed, it was observed that most of 

the metrics could be measured by creating java plug-in applications for the specific 

needs of the thesis study and, for some metrics, readymade metric measurement 

tools could be used.  
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3.5 OBTAINING FAULT STATISTICS FOR THE SOFTWARE COM PO-

NENTS 

In Aselsan, a tool is used for the purpose of defect tracking. With this tool, every 

type of change activity associated with software development, including 

enhancement requests, defect reports, and documentation modifications can be 

managed. The defect counts regarding to the software components analyzed in the 

present study were collected by using this tool. However, defect records were not 

assigned to the software components; they were only associated with the project. 

Therefore, at this point, support was received from the software leaders of the 

projects from which measurement would be obtained, and the numbers of faults 

regarding the software components were gathered. 



 

31 
  

CHAPTER 4 

EXPERIMENTAL WORK 

In the part of the study to be presented in this chapter, metric measurements were 

correlated with fault-proneness metrics of the software components. Before carrying 

out metric measurement process, some metric definitions were needed to be 

clarified.  

4.1 METRIC DEFINITIONS RE-VISITED 

4.1.1 Number of Transitions (NT) [6] 

NT metric definition is given as total number of transitions including common 

transitions, self-transitions and internal transitions in [6]. Although Genero et al. 

[51] give the same definition for NT metric, they calculate the metric in a different 

way; that is, they exclude the internal transitions in the calculation. In the present 

study, NT metric was calculated as summation of common transitions and self-

transitions.  

4.1.2 Cyclomatic Complexity (CC) [6] 

CC metric definition is given as |NSS – NT + 2| in [6]. However, McCabe [9] gives 

the cyclomatic complexity definition as “edges – nodes + 2” for a connected graph. 

Also, Douglass [10] uses the number of states (NS) as nodes not number of simple 

states (NSS). Therefore, it was evaluated that taking CC metric definition as |NT - 

NS + 2| is more appropriate. 
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4.1.3 Coupling between Objects (CBO) [2] 

CBO metric was formed as the summation of the coupling related metrics given by 

SDMetrics tool. 

4.1.4 Response for a Class (RFC) [2] 

RFC metric was formed as the summation of the number of messages received by 

the class given by SDMetrics tool as “MsgRecv”, NEPI and NOPI.  

4.2 METRIC MEASUREMENT RESULTS 

Metric values were mostly obtained by use of java plug-in applications for the UML 

tool used by the software development team and, for some metrics, readymade 

measurement tools were used (see “Measurement of Metrics” sub-section in 

Chapter 3).  

All of the software metrics, except WMC, were collected from the UML models of 

the software components, i.e. without generating source codes of the software 

components. WMC metric could not be measured from the UML models because, 

to the best knowledge of the author of the present thesis, there is not any tool 

calculating WMC metric from UML model, and calculating this metric manually is 

very time consuming and not reliable. Therefore, a free internet search was 

conducted in order to select a tool to calculate WMC metric from the generated 

code (source code). The tool should have the feature of calculating cyclomatic 

complexity for each method of a class because while calculating WMC metric, 

methods defined at the model level were taken into consideration. So, CCM [53], 
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which is a tool analyzing cyclomatic complexity of C/C++, C#, JavaScript and 

TypeScript code, was selected.  

A tool which measures LCOM metric from source code or UML model could not 

be found. Also the metric could not be obtained from a java plug-in application. 

Therefore, LCOM metric was omitted from the evaluation.   

Metric measurement techniques are outlined in Table 5. 

Table 5 - Metric Measurement Techniques 

Metric Set Metric ID Metric Name Metric 
Measurement 

Technique 

CK Metrics M1 WMC CCM 
M2 DIT SDMetrics 
M3 NOC SDMetrics 
M4 CBO SDMetrics 
M5 RFC SDMetrics + Java 

Plug-in 
Class Diagram 

Metrics 
M6 NC Java Plug-in 
M7 NA Java Plug-in 
M8 NM Java Plug-in 

Statechart 
Metrics 

M9 NEntryA Java Plug-in 
M10 NExitA Java Plug-in 
M11 NAc Java Plug-in 
M12 NSS Java Plug-in 
M13 NCS Java Plug-in 
M14 NG Java Plug-in 
M15 NE Java Plug-in 
M16 NT Java Plug-in 
M17 CC Java Plug-in 
M18 DCC Java Plug-in 

Interface 
Metrics 

M19 NPI Java Plug-in 
M20 NEPI Java Plug-in 
M21 NOPI Java Plug-in 
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Measured metric values are listed in Tables 6 and 7. There are 10 software 

components analyzed in the scope of the study, and these components are named as 

Component_1, Component_2, etc. 
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Table 6 - Measured metric values for first 5 components 

 Component_1 Component_2 Component_3 Component_4 Component_5 
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M1 143 236 227 1 2 2 6 67 131 3 72 176 3 
M2 0 0 0 0 0 0 0 0 1 0 0 1 0 
M3 0 0 0 0 0 0 0 0 0 0 0 0 0 
M4 3 1 7 2 2 2 3 22 44 2 20 49 2 
M5 29 30 62 0 2 2 0 4 33 0 5 42 0 
M6 1 1   5 3 3 
M7 26 41 117 48 46 
M8 35 26 61 68 50 
M9 16 24 87 1 n/a n/a n/a 25 13 n/a 22 13 n/a 
M10 3 1 11 0 n/a n/a n/a 5 0 n/a 2 0 n/a 
M11 29 15 93 0 n/a n/a n/a 25 2 n/a 26 1 n/a 
M12 16 21 86 2 n/a n/a n/a 28 13 n/a 25 12 n/a 
M13 10 14 34 0 n/a n/a n/a 28 8 n/a 20 13 n/a 
M14 11 8 84 0 n/a n/a n/a 28 1 n/a 30 1 n/a 
M15 26 31 105 0 n/a n/a n/a 39 18 n/a 36 19 n/a 
M16 37 48 191 2 n/a n/a n/a 72 26 n/a 65 26 n/a 
M17 13 15 73 2 n/a n/a n/a 18 7 n/a 22 3 n/a 
M18 19 22 87 2 n/a n/a n/a 30 13 n/a 29 11 n/a 
M19 4 5 8 3 3 
M20 15 15 34 18 16 
M21 14 15 32 10 8 
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Table 7 - Measured metric values for last 5 components 

 Component_6 Component_7 Component_8 Component_9 Component_10 
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M1 180 33 48 7 1 233 55 3 3 3 117 260 
M2 0 0 0 0 0 0 0 0 0 0 0 0 
M3 0 0 0 0 0 0 0 0 0 0 0 0 
M4 7 5 4 4 4 2 4 2 2 5 1 1 
M5 44 0 20 3 0 27 16 2 2 0 26 26 
M6 5 1 4 1 1 
M7 79 21 22 12 34 
M8 76 23 25 13 20 
M9 13 7 2 n/a n/a 4 5 n/a n/a n/a 6 5 
M10 2 2 0 n/a n/a 0 2 n/a n/a n/a 0 0 
M11 34 3 4 n/a n/a 3 3 n/a n/a n/a 7 5 
M12 15 6 3 n/a n/a 10 4 n/a n/a n/a 6 4 
M13 9 1 1 n/a n/a 7 3 n/a n/a n/a 4 4 
M14 7 6 0 n/a n/a 1 2 n/a n/a n/a 1 0 
M15 19 4 3 n/a n/a 14 4 n/a n/a n/a 5 3 
M16 29 13 5 n/a n/a 21 7 n/a n/a n/a 8 6 
M17 7 8 3 n/a n/a 6 2 n/a n/a n/a 0 0 
M18 11 9 4 n/a n/a 10 5 n/a n/a n/a 3 3 
M19 7 7 4 4 6 
M20 36 6 6 11 9 
M21 31 21 14 15 17 
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Selected metrics were generally measured at the class level except Class Diagram 

Metrics and Interface Metrics as seen in Table 6 and Table 7. Therefore, it was 

required to combine CK Metrics and Statechart Metrics to measure the component 

quality (see “Measuring Component Quality” section in Chapter 2). In order to map 

CK Metrics to component metrics, the proposed method given in [55] was used. 

According to the method, in order to map WMC, NOC and RFC to component 

level, they should be summed up; in order to map DIT to component level, it should 

be taken maximum of DIT of individual classes inside the component; and in order 

to map CBO metric to component level, number of external classes coupled to the 

classes inside the component should be considered. For the Statechart Metrics, the 

same idea was used by accepting Statechart Metrics as complexity and size metrics. 

So, Statechart Metrics of individual classes were summed up in order to map these 

metrics to component metrics.  

After CK Metrics were mapped to component metrics, metric measurements 

became as in Table 8.   
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Table 8 - Metric Values for the Components 
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M1 143 236 238 201 251 269 233 64 117 260 
M2 0 0 0 1 1 0 0 0 0 0 
M3 0 0 0 0 0 0 0 0 0 0 
M4 12 12 15 12 12 17 16 10 10 16 
M5 29 30 66 37 47 67 27 20 26 26 
M6 1 1 5 3 3 5 1 4 1 1 
M7 26 41 117 48 46 79 21 22 12 34 
M8 35 26 61 68 50 76 23 25 13 20 
M9 16 24 88 38 35 22 4 5 6 5 
M10 3 1 11 5 2 4 0 2 0 0 
M11 29 15 93 27 27 41 3 3 7 5 
M12 16 21 88 41 37 24 10 4 6 4 
M13 10 14 34 36 33 11 7 3 4 4 
M14 11 8 84 29 31 13 1 2 1 0 
M15 26 31 105 57 55 26 14 4 5 3 
M16 37 48 193 98 91 47 21 7 8 6 
M17 13 15 75 25 25 18 6 2 0 0 
M18 19 22 89 43 40 24 10 5 3 3 
M19 4 5 8 3 3 7 7 4 4 9 
M20 15 15 34 18 16 36 6 6 11 9 
M21 14 15 32 10 8 31 21 14 15 17 

4.3 FAULT STATISTICS OF THE SOFTWARE COMPONENTS 

Errors associated with the software components were obtained with the help of 

software leaders of the projects from which measurement would be obtained (see 

“Obtaining Fault Statistics for the Software Components” section in Chapter 3). 

Approximately 2500 defects, which are all removed defects, were analyzed with the 

software leaders and it was determined that 183 of 2500 defects concerned the 

investigated software components. Fault-proneness metrics of the software 

components are given for each component in Table 9.  
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Table 9 - Fault-proneness Metrics of the Software Components 

 Defect Count Defect Density Defect 
Severity 

Defect 
Correction 

Effort 
Component_1 5 0,794 14 7 
Component_2 24 3,701 76 88 
Component_3 64 2,678 232 206 
Component_4 26 1,819 79 63 
Component_5 11 0,766 34 17 
Component_6 17 1,502 58 33 
Component_7 15 3,95 55 22 
Component_8 0 0 0 0 
Component_9 2 0,53 7 1 
Component_10 20 5,249 58 45 

Four different fault-proneness measurement types were used as suggested by related 

literature (see “Fault-Proneness Measurement Methods in the Literature” section in 

Chapter 2). These measures, which are defect count, defect density, defect severity 

and defect correction effort, were obtained from the software defect tracking tool 

used in Aselsan. Defect count is simply the error count associated with the software 

component. Defect density is the error count for every thousands of lines of source 

code (KLOC) of the software component which means that defect density is equal 

to “defect count / KLOC”. Every error recorded by the defect tracking tool is 

evaluated in terms of severity by the test engineer who detected the related error. 

Test engineer evaluates the severity of error in five degree. Defect severity was 

obtained by making use of this data, 5 point was given to the most severe error and 

1 point is given to the least severe error. In this way, defect severity was obtained as 

the summation of this scaled data. After test engineer recorded an error using the 

defect tracking tool, software developer fixes the error and enters how many hours 

spent in order to fix the error. As defect correction effort, this measurement was 

used.  
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4.4 CORRELATION BETWEEN SOFTWARE METRICS AND FAULT-

PRONENESS OF THE SOFTWARE COMPONENTS   

Before trying to correlate the calculated metric values with fault-proneness of the 

software components, when we looked over the metric values from Table 8, it could 

be seen that M2 (DIT, CK Metrics) and M3 (NOC, CK Metrics) metric 

measurements were not meaningful. Only Component_4 and Component_5 have a 

measurement as “1” and all other software components have “0” measurement for 

M2, and all of the measurements are “0” for M3. This means that inheritance 

property of object-oriented programming is not widely used in YMM. Therefore, 

the association between DIT and NOC metrics of CK Metrics and the fault-

proneness of software components could not be determined in the scope of this 

thesis study; hence, M2 and M3 metrics were left out of the scope of the study.   

4.4.1 Finding the Correlation between Software Metrics and Fault-Proneness 

of the Software Components Graphically 

First, the association between calculated software metrics and fault-proneness of the 

software components was presented graphically. All the graphs showing the 

correlation between design metrics and fault-proneness metrics are presented in the 

Appendix section. 

The numbered points in the graphs, which are in the Appendix section, represent the 

software components; for example, 1 represents the Component_1, 2 represents the 

Component_2, etc. 

Figures 1 through 19 show the association between defect count and respective 

calculated metrics.  As seen from the figures, all of the software metrics have 

positive relationship with the defect count, as expected. This means that structural 

characteristics represented by the design metrics in the scope of the study are 

closely related with number of errors detected in software. 
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Figures 20 through 38 show the association between defect density and respective 

calculated metrics. Metrics other than M1, M4, M7, M19 and M21 have negative 

correlation or do not have strong positive correlation with defect density of the 

software components. Indeed, as in the case for defect count, positive association 

between metrics and defect density was expected. The reason behind the situation 

might be that software components, which are in the scope of the study, have 

different source lines of code varying between 3771 (Component_9) and 23893 

(Component_3). Larger software components tend to have lower defect densities as 

suggested in [62]-[64]. Therefore, it can be concluded that using defect density as a 

quality metric is convenient for software components which have close number of 

source lines of code.     

Figures 39 through 57 show the association between defect severity and respective 

calculated metrics. As is seen from the figures, all of the software metrics have 

positive correlation with the defect severity, as expected. This means that structural 

characteristics represented by the design metrics in the scope of the present study 

cause more severe errors in software.  

Figures 58 through 76 show the association between Defect Correction Effort and 

respective calculated metrics. As is seen from the figures, all of the software metrics 

have positive correlation with the defect correction effort, as expected. This means 

that structural characteristics represented by the design metrics in the scope of the 

present study result in raise in defect correction effort of software components. 

4.4.2 Statistical Evaluation 

4.4.2.1 Pearson’s Correlation Coefficient 

In order to correlate software metrics with the fault-proneness of the software 

components, first, it was decided to use Pearson’s correlation coefficient [60] 
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because it was expected that a linear correlation between the metrics and fault-

proneness of the components exists.  

Pearson’s correlation coefficient, which is represented as r, measures the linear 

relationship between two continuous variables. The coefficient also shows the 

direction of relationship; the values between 0 and +1 represent positive association 

and the values between 0 and -1 represent negative association. 

The data collected should not have significant outliers and should be distributed 

normally in order to use Pearson’s correlation coefficient. Therefore; first, outlier 

and normality tests were applied to the collected data. Kolmogorov-Smirnov test 

[60] was applied as normality test. The results of outlier and normality tests are 

presented in Table 10. 

Table 10 - Outlier and Normality Test Results 

 Outliers Normality 
Defect Count Component_3 Normal 

Defect Density No outlier Normal 
Defect Severity Component_3 Non-normal 

Defect Correction Effort Component_3 Normal 

As seen from Table 10, only defect density data was appropriate for Pearson’s 

correlation coefficient analysis. When Component_3 was excluded from the 

analysis, there were no outliers and all the measures had normal distribution; 

however, it was decided to hold Component_3 inside the analysis because 

Component_3, with its design metrics and fault-proneness metrics values, was 

significant for the analysis. Therefore, it was decided to continue to the analyses 

with Pearson’s correlation coefficient although defect count, defect severity and 

defect correction effort measures had an outlier and defect severity had non-normal 

distribution. Also, some studies claim that Pearson’s correlation coefficient is 

somewhat robust to deviations from normality [61]. Besides, when the analysis 
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were carried out by excluding Component_3, statistical significance of the results, 

in other words p value, was below the 95% confidence level for most of the design 

metrics. 

The results for Pearson’s correlation coefficient are outlined in Table 11. 
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Table 11 - Pearson’s Correlation Coefficients between the Metrics and Fault-
Proneness Measures 

 Defect Count Defect Density Defect Severity Defect 
Correction 

Effort 
M1 0,530 

p = 0,115 
0,656 

p = 0,040 
0,497 

p = 0,144 
0,426 

p = 0,220 
M4 0,453 

p = 0,189 
0,650 

p = 0,042 
0,449 

p = 0,193 
0,327 

p = 0,357 
M5 0,638 

p = 0,047 
-0,58 

p = 0,873 
0,653 

p = 0,040 
0,579 

p = 0,079 
M6 0,431 

p = 0,214 
-0,358 

p = 0,309 
0,456 

p = 0,185 
0,409 

p = 0,241 
M7 0,863 

p = 0,001 
0,119 

p = 0,744 
0,871 

p = 0,001 
0,834 

p = 0,003 
M8 0,483 

p = 0,157 
-0,193 

p = 0,594 
0,472 

p = 0,168 
0,402 

p = 0,250 
M9 0,882 

p = 0,001 
0,003 

p = 0,993 
0,889 

p = 0,001 
0,882 

p = 0,001 
M10 0,808 

p = 0,005 
-0,126 

p = 0,729 
0,824 

p = 0,003 
0,801 

p = 0,005 
M11 0,825 

p = 0,003 
-0,056 

p = 0,877 
0,845 

p = 0,002 
0,814 

p = 0,004 
M12 0,878 

p = 0,001 
0,005 

p = 0,990 
0,887 

p = 0,001 
0,862 

p = 0,001 
M13 0,620 

p = 0,056 
-0,089 

p = 0,807 
0,599 

p = 0,067 
0,575 

p = 0,082 
M14 0,857 

p = 0,002 
-0,035 

p = 0,924 
0,871 

p = 0,001 
0,846 

p = 0,002 
M15 0,833 

p = 0,003 
-0,018 

p = 0,960 
0,837 

p = 0,003 
0,817 

p = 0,004 
M16 0,857 

p = 0,002 
-0,006 

p = 0,986 
0,862 

p = 0,001 
0,839 

p = 0,002 
M17 0,888 

p = 0,001 
0,018 

p = 0,960 
0,904 

p = 0,000 
0,882 

p = 0,001 
M18 0,861 

p = 0,001 
-0,012 

p = 0,974 
0,869 

p = 0,001 
0,845 

p = 0,002 
M19 0,597 

p = 0,068 
0,558 

p = 0,094 
0,629 

p = 0,051 
0,555 

p = 0,096 
M20 0,635 

p = 0,049 
-0,086 

p = 0,814 
0,644 

p = 0,044 
0,605 

p = 0,064 
M21 0,586 

p = 0,075 
0,252 

p = 0,482 
0,626 

p = 0,053 
0,554 

p = 0,096 
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The correlation between the two variables is statistically significant if the p value is 

below 0.05 (p < 0.05). Table 12 summarizes the metrics which have statistically 

significant correlations with the fault-proneness measures of the software 

components with the strength of the correlation as low correlation, medium 

correlation and high correlation. Although there is no general rule about the 

classification of the strength of the correlation coefficient, Cohen [60] suggests that 

if the absolute value of correlation coefficient is between 0.1 and 0.3, the strength of 

the association is low, if the absolute value of correlation coefficient is between 0.3 

and 0.5, the strength of the association is medium, and if the absolute value of 

correlation coefficient is greater than 0.5, the strength of the association is high. 

Table 12 - Statistically Significant Pearson’s Correlations 

 High Correlation Medium Correlation Low Correlation 
Defect Count M5, M7, M9, M10, 

M11, M12, M14, 
M15, M16, M17, 

M18, M20 

- - 

Defect Density M1, M4 - - 
Defect Severity M5, M7, M9, M10, 

M11, M12, M14, 
M15, M16, M17, 

M18, M20 

- - 

Defect Correction 
Effort 

M7, M9, M10, M11, 
M12, M14, M15, 
M16, M17, M18 

- - 

Statistically significant associations between the metrics and fault-proneness of the 

software components all display high correlations (|r| > 0.5) as seen from Table 12. 

Metrics which are correlated with defect count and defect severity of the software 

components are all the same, and, for defect correction effort, only two of them (M5 

and M20) are not statistically significant. It seems that M1 and M4 affect the defect 

density of a software component although they do not have statistically significant 

correlations with other fault-proneness measures; namely, defect count, defect 
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severity, and defect correction effort. The results of Pearson’s correlation 

coefficient are actually consistent with the graphical display of the associations 

between the metrics and fault-proneness of the software components; the only 

difference with finding Pearson’s correlation coefficient is that statistically 

significant correlations have been pointed out and the associations have been 

indicated numerically.  

4.4.2.2 Spearman’s Correlation Coefficient 

As defect count, defect severity and defect correction effort measures had an outlier 

and defect severity had non-normal distribution, the metrics and fault-proneness 

measures were also investigated with Spearman’s correlation coefficient [60], 

which is a non-parametric test as well, because Spearman’s correlation coefficient 

does not require that the data do not have outliers or the data should be normally 

distributed. As in the case for Pearson’s correlation coefficient, each of the metrics 

was correlated separately to the fault-proneness measures of the software 

components. The results for Spearman’s correlation coefficient are outlined in 

Table 13. 

 

 

 

 

 

 



 

47 
  

Table 13 - Spearman’s Correlation Coefficients between the Metrics and Fault-
Proneness Measures 

 Defect Count Defect Density Defect Severity Defect 
Correction 

Effort 
M1 0,552 

p = 0,098 
0,539 

p = 0,108 
0,559 

p = 0,093 
0,576 

p = 0,082 
M4 0,529 

p = 0,116 
0,717 

p = 0,019 
0,540 

p = 0,107 
0,529 

p = 0,116 
M5 0,596 

p = 0,069 
0,140 

p = 0,700 
0,643 

p = 0,045 
0,584 

p = 0,077 
M6 0,221 

p = 0,539 
-0,299 

p = 0,401 
0,264 

p = 0,460 
0,176 

p = 0,627 
M7 0,745 

p = 0,013 
0,224 

p = 0,533 
0,772 

p = 0,009 
0,721 

p = 0,019 
M8 0,479 

p = 0,162 
-0,055 

p = 0,881 
0,529 

p = 0,116 
0,430 

p = 0,214 
M9 0,614 

p = 0,059 
-0,049 

p = 0,894 
0,637 

p = 0,048 
0,590 

p = 0,073 
M10 0,431 

p = 0,214 
-0,178 

p = 0,622 
0,469 

p = 0,171 
0,369 

p = 0,294 
M11 0,463 

p = 0,177 
-0,049 

p = 0,894 
0,502 

p = 0,140 
0,445 

p = 0,197 
M12 0,650 

p = 0,042 
0,085 

p = 0,815 
0,686 

p = 0,029 
0,614 

p = 0,059 
M13 0,729 

p = 0,017 
0,213 

p = 0,555 
0,753 

p = 0,012 
0,693 

p = 0,026 
M14 0,413 

p = 0,235 
-0,207 

p = 0,567 
0,451 

p = 0,191 
0,377 

p = 0,283 
M15 0,620 

p = 0,056 
0,061 

p = 0,868 
0,649 

p = 0,042 
0,596 

p = 0,069 
M16 0,636 

p = 0,048 
0,067 

p = 0,855 
0,669 

p = 0,035 
0,612 

p = 0,060 
M17 0,604 

p = 0,065 
0,049 

p = 0,894 
0,639 

p = 0,047 
0,573 

p = 0,083 
M18 0,632 

p = 0,050 
0,067 

p = 0,854 
0,668 

p = 0,035 
0,596 

p = 0,069 
M19 0,389 

p = 0,267 
0,568 

p = 0,087 
0,399 

p = 0,253 
0,445 

p = 0,198 
M20 0,561 

p = 0,092 
-0,018 

p = 0,960 
0,606 

p = 0,064 
0,530 

p = 0,115 
M21 0,384 

p = 0,273 
0,512 

p = 0,130 
0,398 

p = 0,255 
0,427 

p = 0,219 
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As in the case for Pearson’s correlation coefficient, the correlation between the two 

variables is statistically significant if the p value is below 0.05 (p < 0.05). Table 14 

summarizes the metrics which have statistically significant correlations with the 

fault-proneness measures of the software components with the strength of the 

correlation as low correlation, medium correlation and high correlation. 

Table 14 - Statistically Significant Spearman’s Correlations 

 High Correlation Medium Correlation Low Correlation 
Defect Count M7, M12, M13, 

M16, M18 
- - 

Defect Density M4 - - 
Defect Severity M5, M7, M9, M12, 

M13, M15, M16, 
M17, M18 

- - 

Defect Correction 
Effort 

M7, M13  - - 

Fewer metrics were correlated with fault-proneness measures of the software 

components by use of Spearman’s correlation coefficient when compared with 

Pearson’s correlation coefficient; however, the results were similar. For example; 

the metrics M5, M7, M9, M12, M15, M16, M17 and M18 were correlated strongly 

with defect severity of the software components according to both methods. 

Two types of correlation coefficient were used in order to identify the association 

between design metrics and fault-proneness metrics. The first one is Pearson’s 

correlation coefficient which measures the linear relationship between two 

variables, and the second one is Spearman’s correlation coefficient which measures 

the monotonic relationship between two variables. As seen from Table 10, defect 

count, defect severity and defect correction effort metric measurements had an 

outlier and defect severity had non-normal distribution; this situation reduces the 

reliability to the results of Pearson’s correlation coefficient. Also, monotonic 

relation, measured by Spearman’s correlation coefficient, involves linear relation, 
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measured by Pearson’s correlation coefficient. Therefore, it can be concluded that 

results achieved with Spearman’s correlation coefficient are more reliable. 
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CHAPTER 5 

DISCUSSION AND CONCLUSION 

There are many studies in the literature which investigate the effects of structural 

characteristics of object-oriented software on software quality by use of metrics. A 

considerable part of these studies take fault tolerance of software as the quality 

indicator while collecting software design metrics from the source code of the 

software. These studies have verified a strong correlation between software design 

metrics and fault-proneness of software. However, rarity of the studies on the 

correlation of software metrics collected from UML models with fault-proneness 

has constituted the basic motivation of the present study. 

In the present study, we aimed to prove the association between structural 

characteristics of object-oriented software measured in terms of UML metrics and 

software quality empirically by considering fault-proneness as quality indicator of 

software. For this purpose, we worked in Aselsan, a leading defense industry 

company in Turkey. The software design metrics and quality metrics were all 

collected from real-time embedded software components developed by YMM.  

10 software components were investigated in the scope of the study. Software 

components used within at least two projects were selected; therefore, it was aimed 

that software components were tested adequately and they were reliable 

components. Software design metrics were collected from the UML models of the 

software components. Software metrics to be measured were selected after the 

related literature was reviewed. In addition to software metrics in the literature, 

three new metrics, NPI, NOPI and NEPI were proposed as interface metrics. Most 

of the metric measurements were carried out by constructing java plug-in 

applications for the UML design tool used by YMM, and ready-made metric 

measurement tools were used for other metrics. The defect data of the software 
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components were gathered from software defect tracking tool used by YMM. As 

fault-proneness measurement, four different types of measurement were used; 

namely, defect count, defect density, defect severity and defect correction effort; so, 

the extent of the analyses had been broadened in terms of fault-proneness.   

Two methods were used in presenting the association between software design 

metrics and fault-proneness; namely, graphical and statistical analyses. Before the 

analysis, it was expected that all of the design metrics have positive correlation with 

the fault-proneness measures. For the cases defect count, defect severity and defect 

correction effort, design metrics showed positive association with the fault-

proneness, as expected, at the end of the graphical analyses. However, when we 

looked the results for defect density, important part of the design metrics had 

negative correlation or did not have strong positive correlation with the fault-

proneness. The reason behind this was interpreted as the fact that larger software 

components tend to have lower defect densities as suggested in [62]-[64].  

As statistical analyses, Pearson’s and Spearman’s correlation coefficients were 

computed in order to assess the association between selected design metrics and 

fault-proneness of software. Expecting linear correlation between the design metrics 

and defect measures, Pearson’s correlation coefficient was used, first. Although 

some defect data has outlier and non-normal distribution, it was continued with 

Pearson’s correlation coefficient because it was decided to hold the outlier data in 

the analyses and some studies in the literature claimed that Pearson’s correlation 

coefficient is somewhat robust to non-normality [61]. The results of the analyses 

were similar to graphical analyses. 12 of the 19 design metrics presented 

statistically significant correlations with the fault-proneness of software in the cases 

of defect count and defect severity, and 10 of the 19 design metrics showed similar 

results for defect correction effort. As for the graphical analyses, defect density 

results were weaker, in other words, the association was meaningful for only 2 of 

the design metrics. For Spearman’s correlation coefficient, although fewer metrics 
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were able to be associated with defect measures of the software components as 

compared to Pearson’s correlation coefficient, the results were similar. 

The benefits of the study for Aselsan are twofold: The design metrics which were 

shown to be correlated with fault-proneness of software can be used to predict 

faulty software components. Thus, more testing effort can be spent, labor for peer 

review and design review can be increased and static code analyses may be 

attributed higher importance for the software components to be considered as error-

prone, thereby improving quality achieved at release time. Also, structural 

characteristics that were shown to affect fault-proneness can be controlled via 

metric measurements in the development phase for the purpose of eliminating errors 

before they come up. 

Limitations of the present study include the fact that only a limited number of 

components, all developed in the same organizational unit has been investigated. 

Also, software components analyzed in the scope of the present study were all real-

time embedded software components. These situations restrict generalizability of 

our results severely. Software from other domains definitely deserves to be 

subjected to similar studies.   

It would also be beneficial to carry out similar studies by extending the data set 

used. In other words, a higher number of software components should be analyzed. 

So, the effects of the structural characteristics of object-oriented software would be 

presented more explicitly. Moreover, it would be possible to achieve threshold 

values of the design metrics for software components with high quality in terms of 

fault-proneness.  

Consequently, in this study, the association between some design metrics collected 

from UML models and fault-proneness of software was analyzed using real life 

project data in the context of real-time embedded software. Prior studies in the 

literature demonstrated the importance of code based metrics in identifying the 

fault-prone software components. However, the literature lacks researches which 
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studying on fault-proneness of software by use of UML metrics. Especially, 

rareness of the studies attracts attention for the statechart metrics; only a few studies 

analyzed the effect of statechart structural characteristics on the understandability, 

modifiability and maintainability [6], [7], [8]. To the best knowledge of the author 

of the present thesis, there is no other study which investigates the effects of 

statechart structural characteristics on the fault-proneness of software. 
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APPENDIX 

GRAPHS SHOWING THE CORRELATION BETWEEN DESIGN 

METRICS AND FAULT-PRONENESS METRICS 

 

Figure 1 - Correlation between Defect Count and M1 
 



 

62 
  

 

Figure 2 - Correlation between Defect Count and M4 

 
Figure 3 - Correlation between Defect Count and M5 
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Figure 4 - Correlation between Defect Count and M6 

 

Figure 5 - Correlation between Defect Count and M7 
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Figure 6 - Correlation between Defect Count and M8 

 

Figure 7 - Correlation between Defect Count and M9 
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Figure 8 - Correlation between Defect Count and M10 

 

Figure 9 - Correlation between Defect Count and M11 
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Figure 10 - Correlation between Defect Count and M12 

 

Figure 11 - Correlation between Defect Count and M13 
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Figure 12 - Correlation between Defect Count and M14 

 

Figure 13 - Correlation between Defect Count and M15 
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Figure 14 - Correlation between Defect Count and M16 

 

Figure 15 - Correlation between Defect Count and M17 
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Figure 16 - Correlation between Defect Count and M18 

 

Figure 17 - Correlation between Defect Count and M19 
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Figure 18 - Correlation between Defect Count and M20 

 

Figure 19 - Correlation between Defect Count and M21 
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Figure 20 - Correlation between Defect Density and M1 

 

Figure 21- Correlation between Defect Density and M4 
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Figure 22 - Correlation between Defect Density and M5 

 

Figure 23 - Correlation between Defect Density and M6 



 

73 
  

 

Figure 24 - Correlation between Defect Density and M7 

 

Figure 25 - Correlation between Defect Density and M8 
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Figure 26 - Correlation between Defect Density and M9 

 

Figure 27 - Correlation between Defect Density and M10 
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Figure 28 - Correlation between Defect Density and M11 

 

Figure 29 - Correlation between Defect Density and M12 
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Figure 30 - Correlation between Defect Density and M13 

 

Figure 31 - Correlation between Defect Density and M14 
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Figure 32 - Correlation between Defect Density and M15 

 

Figure 33 - Correlation between Defect Density and M16 
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Figure 34 - Correlation between Defect Density and M17 

 

Figure 35 - Correlation between Defect Density and M18 
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Figure 36 - Correlation between Defect Density and M19 

 

Figure 37 - Correlation between Defect Density and M20 
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Figure 38 - Correlation between Defect Density and M21 

 

Figure 39 - Correlation between Defect Severity and M1 
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Figure 40 - Correlation between Defect Severity and M4 

 

Figure 41 - Correlation between Defect Severity and M5 



 

82 
  

 

Figure 42 - Correlation between Defect Severity and M6 

 

Figure 43 - Correlation between Defect Severity and M7 
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Figure 44 - Correlation between Defect Severity and M8 

 

Figure 45 - Correlation between Defect Severity and M9 
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Figure 46 - Correlation between Defect Severity and M10 

 

Figure 47 - Correlation between Defect Severity and M11 
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Figure 48 - Correlation between Defect Severity and M12 

 

Figure 49 - Correlation between Defect Severity and M13 
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Figure 50 - Correlation between Defect Severity and M14 

 

Figure 51 - Correlation between Defect Severity and M15 
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Figure 52 - Correlation between Defect Severity and M16 

 

Figure 53 - Correlation between Defect Severity and M17 
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Figure 54 - Correlation between Defect Severity and M18 

 

Figure 55 - Correlation between Defect Severity and M19 
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Figure 56 - Correlation between Defect Severity and M20 

 

Figure 57 - Correlation between Defect Severity and M21 
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Figure 58 - Correlation between Defect Correction Effort and M1 

 

Figure 59 - Correlation between Defect Correction Effort and M4 
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Figure 60 - Correlation between Defect Correction Effort and M5 

 

Figure 61 - Correlation between Defect Correction Effort and M6 
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Figure 62 - Correlation between Defect Correction Effort and M7 

 

Figure 63 - Correlation between Defect Correction Effort and M8 
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Figure 64 - Correlation between Defect Correction Effort and M9 

 

Figure 65 - Correlation between Defect Correction Effort and M10 
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Figure 66 - Correlation between Defect Correction Effort and M11 

 

Figure 67 - Correlation between Defect Correction Effort and M12 
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Figure 68 - Correlation between Defect Correction Effort and M13 

 

Figure 69 - Correlation between Defect Correction Effort and M14 
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Figure 70 - Correlation between Defect Correction Effort and M15 

 

Figure 71 - Correlation between Defect Correction Effort and M16 
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Figure 72 - Correlation between Defect Correction Effort and M17 

 

Figure 73 - Correlation between Defect Correction Effort and M18 
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Figure 74 - Correlation between Defect Correction Effort and M19 

 

Figure 75 - Correlation between Defect Correction Effort and M20 
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Figure 76 - Correlation between Defect Correction Effort and M21 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


