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ABSTRACT

INVESTIGATION OF THE EFFECTS OF STRUCTURAL
CHARACTERISTICS OF OBJECT-ORIENTED SOFTWARE ON FAUL T-
PRONENESS

Golcuk, Halit
M. Sc., Department of Electrical and Electronicgirering

Supervisor: Prof Dr. Semih Bilgen

May 2014, 99 Pages

This study investigates the effects of structuttaracteristics of object-oriented
software, which are observable at the model le¥ahe software developed by
means of Unified Modeling Language (UML), on softevaquality, assessing
quality in terms of fault-proneness. In the scopethis thesis study, real-time
embedded software components developed by Asaslading defense industry
company in Turkey, were analyzed. The correlati@wieen software metrics
measured from the UML models of the software conepts and fault-proneness
metrics of those software components were presebiti graphically and

statistically.

Keywords: Structural software characteristics, UML metri&qftware quality,

Fault-proneness, Empirical study.
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NESNE TABANLI YAZILIMLARIN YAPISAL OZELL  IKLER ININ HATA
YATKINLI GI UZERINE ETKILERININ INCELENMES|

Golcuk, Halit
Yuksek Lisans, Elektrik ve Elektronik Mihend&IBolimu
Tez Yoneticisi: Prof. Dr. Semih Bilgen

Mayis 2014, 99 Sayfa

Bu calsma, Birlesik Modelleme Dili (UML) kullanilarak geditirilen yazilimlarin
model seviyesinde gozlenebilen bazi yapisal 6zetlikin yazilim kalitesi tzerine,
kaliteyi yazilimin hataya yatkigh olarak tanimlayarak, etkilerini incelemektedir.
Bu tez camasi kapsaminda, Turkiye'de 6nde gelen bir savusemayii kurulgu
olan Aselsan tarafindan ggirilen gercek zamanli gomuli yazilim bignleri
analiz edilmgtir. Yazilim bileenlerinin UML modellerinden dl¢ilen yazilim
metrikleri ve bu bilgenlere ait hataya yatkinlik metrikleri arasinddkgki hem

grafiksel hem de istatistiksel olarak ortaya konutur.

Anahtar Kelimeler: Yazilimin yapisal 6zellikleri, UML metrikleri, Yakm

kalitesi, Hata yatkingi, Deneysel cagma.
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CHAPTER 1

INTRODUCTION

In a broad sense, the quality of a software attifan be assessed in three aspects.
These are functional, structural and process aspéauality. Functional quality is
related to the functional requirements of softwémenther words, functional quality
describes how well software meets functional resuents. The people who mostly
care about functional quality are the users of shtware. Structural quality is
related with the nonfunctional requirements of wafe. It can be evaluated by
analyzing the inner structure of software. Accogdito the Consortium for IT
Software Quality (CISQ), a software component wathgood structural quality
should be reliable, efficient, secure and maintamal]. Developers of the
software are mostly interested in the structuralipy The last quality aspect of
software is process quality. Process quality iategl with the concerns like budget,
delivery time, etc. Generally, software manageis sponsors are interested in this

quality aspect.

In order to measure the quality of a software comepd, what is expected from
software in terms of quality should be clarifiedauR tolerance of a software
product can be a good quality indicator in termsrelfability of software. In
literature, different types of metrics are usedoirder to represent the fault-
proneness of a software product. Defect count afielcti density are the most used
metrics quality metrics in terms of fault-proneng¢sg]. There are studies in the
literature that relate design metrics of softwargifect to fault-proneness
empirically, and develop prediction models to pcedaulty software components
in a software system, such as [35], [36] and [40jese studies, generally, used
linear regression methods to build and verify tmedgction model. For object-
oriented software, Chidamber and Kemerer's mesigs [2] is the design metric
set in the literature most frequently used for potaag faulty classes.



As the usage of modeling languages in softwarenemging is becoming more and
more frequent, measuring and controlling the qualfta model is becoming more
significant. Unified Modeling Language (UML) is tmeost widely used modeling
language for object-oriented software developmbnthe literature, there is very
little work which investigates the applicability dJML design metrics for

measuring and controlling fault proneness of awak product despite the

importance of early prediction of fault proneness]|

In this thesis, the association between design icsetthat reflect structural
characteristics of object-oriented software andtfaroneness is investigated in the
context of real-time embedded software developnm@wajects carried out by
Aselsan, a leading defense industry company in&wurkhe design metrics were all
measured from the UML models, not from source cofléhe investigated software
components. Fault-proneness metrics, which arectieteint, defect density, defect
severity and defect correction effort, were obtdifimm the defect tracking tool
used in Aselsan. After the correlation betweengtesietrics and fault-proneness of
the software components were presented graphiaalllystatistically, some useful
outcomes were identified about which structuralrabgeristic of object-oriented
software have an impact on the quality of real-tengbedded software component

in terms of fault-proneness.
The remaining chapters of the thesis are structasddllows:

In Chapter 2, a literature survey is carried owulthe concepts of software quality
and the software characteristics considered istbee of the study are reviewed.

In Chapter 3, the study framework, consisting @f structural characteristics of the
investigated real-time embedded software componants the fault-proneness
measures to be focused on, is presented. Seledfbddtare components and
software metrics for the study are described, amg the software metrics are
measured from the software components and howatk flata of the software

components is gathered are explained.



In Chapter 4, software metric and fault-pronenesasurement results are given.
Then, the association between software metricsfamtproneness measurements

of software components is established graphicalty statistically.

In Chapter 5, the achievements are summarizedinaotaesults are discussed and

limitations of the study as well as suggestiondditure work are outlined.






CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

In the present study, case studies were carriedsoftware projects developed
by Software Engineering Department (YMM) of DeferSgstem Technologies
Group (SST) in Aselsan. In this department, firetoal software projects are
developed by modeling the software in UML and safwvpieces has real-time
embedded nature. As the first step of the study thlated literature was
investigated in order to set the background cangjstf the concepts of software
model quality, quality of real-time embedded sofvaand to determine the

appropriate quality metrics.

2.2 UNIFIED MODELING LANGUAGE

UML is a general purpose modeling language whichsisd for modeling object-
oriented software systems (OOSS). The standard asaged by the Object
Management Group which is a not-for-profit compubedustry specifications
consortium [11]. UML 2.0 has thirteen types of dags that are used to visualize
an OOSS. These thirteen types of diagrams can\beedi into three categories;
structure diagrams, behavior diagrams and intemactiiagrams. In software
components developed at YMM, class diagrams ane stachine diagrams are
widely used. Class diagram falls into category wlicdure diagrams and state
machine diagram falls into category of behaviogdaans of UML. Class diagram
represents the static view and state machine dragepresents the dynamic view of
software. This study focuses on object-orientedriogetvhich are accessible from a

UML model and class diagram and state chart diagnaetrics because class



diagram and statechart diagram are used widelyfinvare projects developed at
YMM and also these two types of diagrams affect peeformance of software

considerably.

2.3 SOFTWARE QUALITY MEASUREMENT

In order to measure the quality of a software comepd, meaning of software
quality should be clarified. In a broad sense, ipahay be defined as satisfying
the functional requirements [31]. It means that goftware product could not meet
functional requirements, that software productvaleated as software with poor
quality. However, in the course of time, not onlyceseeding functional

requirements but also performing functionalitiefeetively, safely and productively

has gained importance [32]. This means that sofiwaroduct should meet
nonfunctional requirements as well as functionajureements. Nonfunctional

characteristics of a software product can be lishsdreliability, performance

efficiency, security and maintainability [1].

Software products with different features shoulgliement different nonfunctional
characteristics. For example, the most importamifurectional requirement for a
statistical analysis system can be reliability; boer, a banking system should give
precedence security characteristic, mostly [32]er&fore, quality requirements
study should be carried out in order to set prapslity objectives for a software
product. Hneif and Lee [32] conducted a study irdeor to improve the
nonfunctional quality of a piece of software. Thapproach was preventive which
means that their purpose was to eliminate the teefadhe development phase not
in the verification phase. Their purpose was tov@né nonfunctional attributes
defects by using guidelines. For selecting guidsljnthey used two properties;
selected guideline should have positive effect lwa nonfunctional attribute and
selected guidelines for a specific nonfunctionatri@ite should not have
overlapping or conflicting relationship between leather [32]. Philips et al. [33]



conducted an empirical study in order to discouality requirements management
practices in Australian organizations. The studgiuded 13 practitioners and 6
different companies in Australia. The study showhdt quality requirements

management was the most neglected part of soffevajects [33].

In order to have software of high quality, usingegpriate software quality models
meeting quality requirements is as important asndef quality requirements
correctly. By use of software quality prediction adets and quality metrics,
empirical studies are carried out in order to \atidthe quality of software product
[34]. In order to validate the quality model andality metrics, number of errors
detected in the software [35], [36] or maintenaoest [37] can be used. However,
using maintenance cost for statistical validatiwlifficult [34]. The quality model
that will be used can be selected using two diffestrategies. One of them is using
generic quality models such as ISO/IEC 9126. Howeteese quality models are
often too abstract to use [38]. The other straiegdefining your own model based
on existing quality models. The second strategyaese appropriate for finding the
correct quality model that meets specific qualéguirements [38]. Klass et al. [38]
developed an approach that can be used while adaibie existing quality models
to specific quality requirements. They identifiddee requirements for a quality
model adaptation approach which are correctnegspppateness and efficiency.
Correctness means that adapted quality model shaudin conformant to its
structure. Appropriateness can be explained asitguabdel should be adapted
considering the organizational needs and capaslifrinally, efficiency stands for
the level of overhead involved in the adaptatiorrknia relation to the benefits of

applying a proven quality model.

2.4 ISO/IEC 9126 AND ISO/IEC 25010

The International Organization for Standardizatid8O) and the International
Electrotechnical Commission (IEC) has releasecadstrd, ISO/IEC 9126, in order



to describe a quality model for all types of softavaroducts. ISO/IEC 9126
consists of four parts. The first part of the stddis ISO/IEC 9126-1 which
describes a quality model including 6 charactexsséind 27 sub-characteristics [13],
the second part of the standard is ISO/IEC 9126kichv determines external
quality metrics [14], the third part of the stamdlas ISO/IEC 9126-3 which
determines internal quality metrics [15] and figalhe fourth part of the standard is
ISO/IEC 9126-4 which determines the quality in wsetrics [16]. The standard
aims to develop a quality model and quality metidsch are applicable to any
type of software component. The organizations dividuals can use the quality
model described in ISO/IEC 9126 in order to achiéve desired quality for a
software product by adopting the quality model gu@lity metrics according to

their needs.

ISO/IEC 9126 investigates software quality in thrdews; namely, external,
internal and quality in-use. According to the stamll there is a close relationship in
these three aspects of software quality. Internallity attributes affect external
quality attributes and external quality attributdfect quality in-use attributes. In
other words in-use quality of a software produgqtetels on external quality of the

product and external quality depends on internalityof the product [13].

ISO/IEC 9126 handles external and internal qualitth one quality model, and
handles in-use quality with another model. As showiTable 1, in external and
internal quality model, there are six charactarssaind 27 sub-characteristics which
are used to measure external and internal qudlity smftware product. Part 2 and
Part 3 of the standard give some metrics in omlend¢asure characteristics and sub-
characteristics given in Part 1 of the standard/ISC 9126-2 gives external
metrics and ISO/IEC 9126-3 gives internal metrics.



Table 1 - Characteristics and Sub-characteristi&iernal and Internal Quality Model in ISO/IEC281[13]

Functionality Reliability Usability Efficiency Maintainability Portability

Suitability Maturity Understandability Time Behavio Analyzability Adaptability

Accuracy Fault Tolerance Learnability Resourceikition | Changeability Installability

Interoperability Recoverability Operability Efficiey Stability Co-existence

Compliance

Security Reliability Attractiveness Testability Replaceability
Compliance

Functionality Usability Maintainability Portability

Compliance Compliance Compliance Compliance




Quality model for quality in use identifies four aacteristics; namely,
effectiveness, productivity, safety and satisfac{ib3]. Part 4 of the ISO/IEC 9126
gives quality in use metrics in order to measueedharacteristics for quality in use

given in Part 1 of the standard [16].

In order to achieve desired quality for a softwacemponent, it is necessary to
perform measures from all the three views of qudlitternal, external and quality

in use) defined in ISO/IEC 9126 quality standatanéans that it is not sufficient to
perform measures using quality in use metrics @depto meet the expectations of
the users of the software product because in uabtyjof a software product is

dependent to external quality of the product andekiension external quality is

dependent to internal quality of the product [13].

Although ISO/IEC 9126 quality standard is a widabcepted and referred standard

in the literature, there are also criticisms alibatstandard.

As stated earlier ISO/IEC 9126 aims to target aype tof software quality needs.
Therefore, the standard needs to be customized [Fbflexample, functionality is
the most important characteristic of your softmareduct and you want to measure
this characteristic using the related sub-charesties and metrics defined in
ISO/IEC 9126 quality model. When performing thisaseare how the contribution
of sub-characteristics (security, interoperabilitgtc.) to the functionality

characteristic be evaluated is unclear [17].

Applying the defined metric measurements to theawsoe product is difficult

because the metric definitions are imprecise; tbezethey need to be redefined in
some cases [18]. In [19], an empirical study wamred in which the usefulness’
of ISO/IEC 9126 standard was evaluated. In the mx@gat, 158 participants, which
were in their final year in Computer Science andjigeering, were used. A
Software Requirements Specification document wasrgto the subjects and they
were asked to produce some design documents. IBSOEEC 9126 quality model,

subjects were asked to evaluate the quality ofidsgn artifacts [19]. As the result
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of the experiment, some difficulties were obserabdut using ISO/IEC 9126 while
evaluating the quality of an intermediate softwareduct. The students in the
experiment found it difficult to understand manyns in ISO/IEC 9126 and also

they stated that some metric definitions were @pgying [19].

The results of the applied metric measures arengivéhe scale between 0 and 1. It
IS easy to convert these results to the percentalye; however, there is not any
evaluation which values of the applied metric rssafe good or bad [20].

The difficulties of the ISO/IEC 9126 standard mayk@ performing quality
measures impractical. Therefore organizations dividuals who decide to use
ISO/IEC 9126 quality standard for evaluating thelgy of a software component

have to adopt the standard according to their nisegroper way.

In 2009, ISO and IEC released a new standard farSibjtware Product Quality
Requirements and Evaluation (SQuaRE), which is lat&avn as 25000 series. One
part of 25000 series is the ISO/IEC 25010 whichcdees a quality model for a
software component and it is intended that ISO/E5010 will replace the existing
ISO/IEC 9126 quality standard [21]. ISO/IEC 250X lsome improvements over
ISO/IEC 9126; for example, ISO/IEC 25010 extends tjuality concept by
increasing the number of quality characteristicsrfi6 to 8. The characteristics and
sub-characteristics proposed in ISO/IEC 25010 easeen in Table 2.
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Table 2 - Characteristics and Sub-characterigti¢SO/IEC 25010 [21]

Functional Reliability Performance | Operability Security Compatibility | Maintainability | Transferability
Suitability Efficiency
Appropriateness Availability Time- Appropriateness Confidentiality | Replaceability| Modularity Portalbyli
behavior recognisability
Accuracy Fault Resource- Learnability Integrity Co-existence Reusability Adability
tolerance utilization
Compliance Recoverability Compliance Ease of use n-iépudia- | Interoperability| Analyzability Installability
tion
Compliance Helpfulness Accountability Compliance aBGheability Compliance
Attractiveness Authenticity Modification
stability
Technical Compliance Testability
accessibility
Compliance Compliance




Although ISO/IEC 25010 has some improvements oB0D/IEC 9126, overall
critiques about ISO/IEC 9126 are also applicabtel$®/IEC 25010 [30]. Mayr et
al. [29] proposed a quality model for embeddedesyst based on ISO/IEC 25010.
While deriving requirements for embedded systenmedbdy could not benefit from
the standard because abstraction level of the tguetharacteristics described in
ISO/IEC 25010 was high [29]. Wagner et al. [30]rigat out a study in order to
reduce the gap between high level quality modeth sas ISO/IEC 25010, and
concrete quality models. They claimed that althol§®/IEC 25010 emphasized
important concepts about software quality, the ddash could not be used for real
quality improvement purposes [30].

2.5 REAL-TIME EMBEDDED SOFTWARE QUALITY AND UML
QUALITY ASSESSMENT

Real-time embedded software has wide applicatie@a avith high reliability and

security requirements. Therefore, software quastgignificant in systems using
real-time embedded software [42]. In order to pdevadvantages in the real-time
software development world, improving software gyalminimizing software

development cost and reducing software deliveryetins critical because
complexity of software products and competitiorthe market are increasing [39].
Fault proneness of a real-time software producthmnsed as quality indicator of
that software [40]. Kaur et al. [40] proposed thatrder to identify fault proneness
of a software module, requirement metrics, coderin®eand the combination of
these two metrics can be used with clustering teci®s. They showed the
applicability of the proposal by using the realdirdefect datasets from NASA
software projects. In a thesis study [43], effaxftseuse on the quality of real-time
embedded software were investigated. In that stowstrics were collected from
real projects developed in Aselsan, and defectsrafethe real-time embedded

software projects were considered as quality iridica
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Model driven software development is becoming m@@pular in software
engineering industry with the passing years. UMLthe most commonly used
modeling language for model driven software develept. YMM, too, uses UML

while modeling and developing the software.

2.6 SOFTWARE QUALITY METRICS

There are many studies and derived metrics in iteealure for measuring the
quality of software source code like [2], [23] af##]. In their seminal work,
Chidamber and Kemerer [2] defined six object-oeentuality metrics that are
known as CK metrics. These metrics are aimed asasyy the design of OOSS
rather than implementation. Another important neeset is known as MOOD
metrics [23]. These were defined to measure the aisebject-oriented design
methods such as inheritance (MIF — Method InhecgaRactor, AIF — Attribute
Inheritance Factor), information hiding (MHF — Meth Hiding Factor, AHF —
Attribute Hiding Factor) and polymorphism (POF —yPaorphism Factor, COF —
Coupling Factor). It is widely accepted (e.g. [28jat metrics should be easy to
compute, should not be tied to any particular progning language and should
result in numbers which is independent from theesyssize. In another thesis study
[44], effects of software design patterns on ob@einted software quality and
maintainability were investigated. In that studyaintainability was accepted as an
important quality characteristic and maintainapibf the applications developed in
Aselsan were measured using CK metrics and MOODieeet_orenz and Kidd
[24] also proposed metrics in order to measurestagc characteristics of software
design. Their metrics are divided into three catiego class size, class inheritance
and class internal. Size oriented metrics focusamts of attributes and operations
in a class. Inheritance oriented metrics focush@nmhanner in which operations are
reused in hierarchy class. Internal class-orientettics address cohesion and code-

oriented issues.
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With the advent of model driven software developtme&ot only measuring the
quality of source code but also measuring the tjuaf models has become
indispensable in order to develop software with qadée quality. Many
organizations use UML models for various purposgshsas implementation and
maintenance while developing software componentsystems and these models
contain large number of defects that remain untedef25]. Lange and Chaudron
[26] performed two controlled experiment in orderihvestigate which types of
defects in UML models remain undetected and effetthese defects. The first
experiment was carried out with 111 students ared dbcond experiment was
carried out with 48 practitioners. The results sadvhat although some types of
defects were determined by most subjects, undeatednidefects caused
misinterpretations among the readers. By analytiedindings from [25] and [26],

it can be concluded that measuring the quality iLUnodels is necessary.

In [22], Lange and Chaudron proposed a quality rhéole UML models based

upon the necessity of measuring the quality of UMbdels. They proposed that
UML models and source code differ in the aspecsystem. Abstraction level in
models is higher than the source code of the systdnth means UML models
describe systems in a non-deterministic way. Tloeeefdescribing the quality
characteristics of UML models is necessary. Lang @haudron’s quality model
combines the quality characteristics of the modéh whe quality characteristics of

the system.

Nugroho et al. [41] empirically showed that UML ags metrics are good
predictors considering the fault proneness of asclMetrics used in the study were
derived from class diagrams and sequence diagram&ML model. In addition to
UML model metrics, several code metrics were alseduwhich are coupling
between objects (CBO) [2], McCabe’s complexity [@hd lines of code. These
code metrics are well-known metrics that are imtreh with fault-proneness of a
class [41]. The question of which of the three tfqurediction models; namely,
UML metric model, code metric model, and UML anddeometrics model, is
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effective was answered with empirical data collédi®m industrial projects and
the metric values measured. As a result, Nugroh@lé&t study showed that
combination of UML design metrics and code metgoges best performance for

predicting fault proneness.

Assessing software quality using metrics is a pnoapproach for improving

software quality [27]. While calculating softwareetrics, values can be calculated
manually or tools can be used. SDMetrics [28] i®@ which is used in order to

calculate software metrics for the object-orierdedign quality of software systems
designed and implemented by UML. The tool has sormatics such as number of
attributes in the class (NumaAttr) or number of @tens in the class (NumOps).
SDMetrics also provides opportunity to define cuostaetrics and rules to the

users.

Below, the related literature is reviewed in orderdetermine the metrics which
would be measured within the scope of the prestmdysto assess structural

characteristics of object-oriented software.

2.6.1 CK Metrics [2]

Names and definitions of CK Metrics [2] are summedi below:

* Weighted Methods per Class (WMC): This metric isfirel as the
summation of complexities of the methods defined atass. If complexities
of all methods are considered to be unity, WMC dsia@ to number of
methods in a class [2]. Another approach is to idenghe complexity of a
method as McCabe’s cyclomatic complexity [52].

» Depth of Inheritance Tree (DIT): It is a measureéhaf inheritance path from
the node class to the root class.

* Number of Children (NOC): It is the number of imned child or

subclasses derived or subordinated from a baseg. clas
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* Coupling between Objects (CBO): It is a measurectiftesiveness between
classes.

* Response for a Class (RFC): It is the number ofhod which can be
called in response to a message to a class.

» Lack of Cohesion in Methods (LCOM): It is a measimecohesiveness in a

class.

These metrics were originally devised in order ®asure the quality of an object-
oriented design based on the source code. In #mstistudy by B. Deniz [43],
while collecting metrics from real projects in orde measure software quality, CK
metric suit was used. In that study, metrics wenlected from source code.
However, there are studies, like [3], [4], [52]te literature, which also showed
the applicability of these metrics to UML models.

CK metrics are accepted as good indicators of yaulfisses in a software product
[45], [46], [47]. In [45], the authors validated pmcally the association between
some of CK metrics and defects found during aceegtdesting and defects found
by customers. They used three of the six metri€Skometric suit which are WMC,
CBO and DIT.

2.6.2 Class Diagram Metrics [5]

Genero et al. [5] validated the given metric setUdlL class diagrams empirically.
It was proposed that understandability time ofldisgrams is closely related with
the maintainability of those diagrams. Metric nana@sl definitions are given as
follows [5].

* Number of Associations (NAssoc): It is the numbieassociations in a class
diagram.
« Number of Aggregation (NAgg): It is the number ofygeegation

relationships within a class in a class diagram.
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* Number of Dependencies (NDep): It is the number defpendency
relationship in a class diagram.

* Number of Generalizations (NGen): It is the numioérgeneralization
relationships in a class diagram.

* Number of Aggregations Hierarchies (NAggH): It iket number of
aggregation hierarchies in a class diagram.

* Number of Generalizations Hierarchies (NGenH): dt the number of
generalization hierarchies in a class diagram.

*  Maximum DIT (MaxDIT): It is the maximum of the DNalues obtained for
each class of the class diagram.

*  Maximum HAgg (MaxHAgQ): It is the maximum of HAggles obtained
for each class of the class diagram. The HAgg vedue class within an
aggregation hierarchy is the longest path froncthss to the leaves.

* Number of Classes (NC): It is the number of classesclass diagram.

* Number of Attributes (NA): It is the number of #tutes of classes in a
class diagram.

* Number of Methods (NM): It is the number of methad<lasses in a class

diagram.

2.6.3 Statechart Metrics [6]

The behavior of classes of a system can be dedcriye using statecharts.
Therefore, complexity of statecharts contributetheocomplexity of classes. In this

way, statechart complexity is associated with fpoiineness of the class [48].

There are several studies (e.g. [6], [7], and {8])he literature that proposed and
validated some metrics for UML statecharts. Theseliss were carried out to
prove the validity of statechart metrics in the wief understandability or

maintainability.

The metrics with their definitions can be seen &bl€ 3.
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Table 3 - Statechart Diagram Structural Compleldstrics [6]

Metric Name

Metric Definition

Number of Entry Actions
(NEntryA)

It is the number of entry actions in the statechart
diagram.

Number of Exit Actions (NEXxitA)

It is the number ekit actions in the statechart
diagram.

Number of Activities (NAc)

It is the number of dativities in the statechart
diagram.

Number of Simple States (NSS)

It is the numbelirapke states in the statechart
diagram.

Number of Composite States
(NCS)

It is the number of composite states in the stach
diagram.

Number of Guards (NG)

It is the number of guarddibons in the statechaft
diagram.

Number of Events (NE)

It is the number of eventthm statechart diagram|

Number of Transitions (NT)

It is the total numbétransitions (common
transitions + self-transitions + internal transitg)

Cyclomatic Complexity (CC)

McCabe’s original cyclatit complexity metric
[9] is adapted as [NSS-NT+2| where NSS is the
number of simple states and NT is the number o
transitions.

Common transition represents the transition of Wwiitee source and target states

are different; however, for self-transition, souasel target states are same. Internal

transition stands for the transitions that respam@vent without leaving the state.

2.6.4 Douglass Metrics [10]

In a white paper [10], Douglass proposed a megids measure the complexity of

a UML model. Some of the Douglass metrics are simd the well-known metrics

in the literature; however, all of the Douglass mestare intended to use with UML

19



models. Metric sets are grouped as Model OrgawizakiMetrics, Requirements
Metrics, Model Architectural Structural Metrics, Blel Semantic Structural Metrics

and Model Behavioral Metrics.

The most attractive metric in the Douglass whitpgpas the Douglass Cyclomatic
Complexity (DCC) because, to the best knowledgehef author of the present
thesis, there is no other metric which handlesimgsind concurrency in a state
machine in the literature. The metric is the madifiversion of McCabe’s
Cyclomatic Complexity calculated as “Edges — Node®’ [9]. The definition of
Douglass Cyclomatic Complexity is “Edges — Node2 + Levels of Nesting +
And-States”.

2.7 MEASURING COMPONENT QUALITY

Cho et al. [54] discussed the limitations of exigtobject-oriented software metrics
in measuring the quality of software components @&y produced two reasons
about the inadequacy of measuring component qualitybject-oriented metrics.
These reasons were difference in measurement umit iasufficiency in

measurement factor. These reasons came up bedajest-aiented metrics only
focus on objects or classes; however, software oomems have inter class

relationships.

Vernazza et al. [55] proposed a way to use CK wgetn measuring the component
quality, by considering software components as groti classes, by benefitting
from the properties defined in [56]. Briand et [&6] defined some properties that
software measurements, like size, length, complextbupling and cohesion

measurements, should satisfy.
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2.8 FAULT-PRONENESS MEASUREMENT METHODS IN THE
LITERATURE

As a quality metric, different fault-proneness meament types can be used.
Oyetoyan et al. [57] carried out a study in ordercbmpare different defect
measures in identifying fault-proneness softwammonents. They analyzed four
defect measures, namely; defect count, defect tyerdsfect severity and defect
correction effort in the scope of the study. Defamint refers to number of detected
errors in a software component, defect densityhés ormalization of the defect
count with respect to source lines of code (SLQ@EJect severity is the importance
or significance of the detected errors in the safey and defect correction effort is
a measurement type for the difficulty of the cotiet of detected error in the
software. In the literature, there are studies Wwhised these different defect
measures as a quality indicator. In [58], an ovemag method in order to
improve fault-proneness prediction was proposedubing number of faults.
Malaiya and Denton [59] provides a model in ordeestimate and assess software
reliability by using defect density metric. Oyetaya&t al. [57] concluded that
although defect count and defect density measurestree mostly used defect
measures in the literature, defect severity ancaleforrection effort are also
effective in identifying critical and important $afire components. Also, several
studies [61]-[63] showed that there is a connedtietween size and defect density;

relatively larger components in size are tend t¢oleer defect densities.
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CHAPTER 3

THE STUDY FRAMEWORK

Software components developed by YMM are developgcktording to
organizationally accepted and published softwafere@ace architecture. In this
way, design maturity of the software componentsquaranteed to some extent.
However, it has been observed that quality of tifensre components depends on
the developer because there is limited design nmétion for the software
components, except the interfaces defined, in éfierence software architecture.
Therefore, it was decided that in addition to thublghed reference architecture,
specifying the structural characteristics for tlétwgare components developed as
compatible with the reference software architectweuld be beneficial. The
purpose of the present study is to assure thetguediel of software components to
be developed and reveal the quality level of saftfw@&omponents already
developed. Software components developed by YMdldaveloped with a UML
tool; therefore, it is important to collect softwametrics from UML models. The
results of the present study will be used to gtidesoftware developers in order to

develop software components with higher quality.

In the present study, it was accepted that fadbv@ness of a software component is
a good indicator of its quality. Some software poments were chosen from real
projects developed by YMM. Some metrics were ctdlécfrom the software
components, metrics and faults of software compsneere analyzed in order to
find out which metric could be significant in evatung fault-proneness of real-time

software components designed with UML.
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3.1. GENERAL INFORMATION ABOUT THE SOFTWARE DEVELOP ER
TEAM

Throughout the present study, we worked with avsnie developer team in YMM.
The team develops software for fire control systamsg C++ language. Fire
control systems process data coming from many sgnsiits in order to increase
the possibility of shooting the ammunition at therget [49]. The software
developed by the team has real-time embedded naithide developing software,
the team uses a UML tool which has the capabilitpudomatic code generation.
The software developer team uses a reference seftavahitecture which is called
Weapon Systems Reference Architecture (SSRM) [@8heral information about

the software architecture can be found in the saktsection.

3.1.1. Reference Software Architecture used by tHeoftware Team

The reference software architecture of the softwi@m has been designed
according to Feature-Oriented Reuse Method (FORNDRM develops domain
architectures and components by capturing commagliand differences of
applications in a domain in terms of “features” J[5SBundamental components of

the software architecture with their short explaoret are as follows;

» Missions carry out a specific functionality whickffers with reference to
project requirements.

» Capabilities provide foundation for performing aesfic mission; for
example, target management, platform managemenpalldies are
developed as reusable components.

» Software Manager decides that which component efstiftware would be

active according to user requests or current stoaif the software. This
component of the software architecture is projpetsic; therefore, it is not

designed as reusable.
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» External Interface represents user interface, caminecantrol interface, etc.

The purpose of defining such a component in softwiar blocking the
variability in the external environment from thdtsa@re.

« System Environment transfers the services of senmod actuators to the

software.

» Operating Environment provides the independenddetoftware from the

hardware and operating system that the softwanaising on.

Data communication and control operations are sépadrin order to increase
reusability and decrease maintainability efforgrdfore, there are two views in the
architecture; which are control view and data viéhow of the data and control
commands are also determined; pull method is usedidta communication and

push method is used for control operations.

3.2. SOFTWARE COMPONENTS INVESTIGATED

The software components investigated within thepea the present study were all
within System Environment Layer of the software haterture. The highest
necessity to develop new software components istifer System Environment
Layer for the software developer team, and alsdiipeest fault count per software
module is known to occur in System Environment lkay@mponents. Therefore,
collecting software components to be analyzed f@ystem Environment Layer
was considered reasonable and especially benefititthe scope of the present

work.

There are many software components in System Emwient Layer; however, 10
components were selected from among them. Therioritén selecting software
components was that the software components shoelldised in at least two
projects which are completed and delivered to th&amer. The reason for this
criterion was that the software components shouwtd tésted adequately and

therefore, they would be reliable components.
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3.3. SELECTED METRICS

In selecting the software metrics to be measurdtiarpresent study, requirements
and priorities of YMM have been kept in consideratiln order to determine which
metric or metric set would be used, first, literatwas reviewed and a broad set of
metrics that suit the purpose of the thesis stuéyewpresented to the software
leaders of the development staff of the projeaisfiwhich measurement would be
obtained. With the software leaders, design metticat reflect structural
characteristics of software components developedY®M are evaluated and

selected.

Metric selection together with justifications cae found in Table 4. “Metric
Selection” column indicates whether concerned metiil be measured or not. “+”
means the metric shall be measured, “-” means thigicrshall not be measured.

“Comment” column gives the reason behind the msglection.

Table 4 - Motivation behind Metric Selection

Metric Set Metric Metric Name Comment
Selection
+ WMC (Weighted | CK Metrics are referred as good
CK Metrics Methods per Class) indicators in determining fault-
+ DIT (Depth of proneness of a class (see “CK Metricp”
Inheritance) sub-section in Chapter 2); therefore,
+ NOC (Number of | this metric set was completely appliedl
Children) in this thesis study. However, metric
+ CBO (Coupling | values were gathered from the UML
Between Objects) | models rather than source code.
+ RFC (Response for ja
Class)
+ LCOM (Lack of
Cohesion in
Methods)
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Table 4 (cont’'d)

NAssoc (Number of| This metric was not measured becauge
Class Associations) association relationship is generally
Diagram used via ports; direct association
Metrics relationship is not established in
software components developed by
YMM.
NAgg (Number of | This metric was not measured becaupe
Aggregation) aggregation relationship is not used if
NAggH (Number of | software components developed by
Aggregations YMM.
Hierarchies)
MaxHAgg
(Maximum HAgQ)
NGen (Number of | In YMM, interface inheritance is used
Generalizations) | rather than implementation inheritande;
NGenH (Number of| therefore, these metrics were not
Generalizations | measured.
Hierarchies)
MaxDIT (Maximum | In CK Metrics, there is a metric as
DIT) ‘DIT’. Therefore, it was evaluated tha
there is no need to use this metric.
NDep (Number of | This metric was not measured becaufe
Dependencies) | software components developed by
YMM depend only to the reference
software architecture.
NC (Number of | We expected to establish a relationstip
Classes) between size and structural complexify
NA (Number of | of a software component by measurifg
Attributes) this metric.
NM (Number of
Methods)
NEntryA (Number | In this thesis study, the association
Statechart of Entry Actions) | between structural complexity of
Metrics NEXxitA (Number of | statechart of a class and fault-pronengess

Exit Actions)

NAc (Number of
Activities)

NSS (Number of
Simple States)

NCS (Number of

Composite States)

of that class was investigated.
Therefore all of the statechart metrics
defined in [6] were measured.
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Table 4 (cont’'d)

+ NG (Number of
Guards)
+ NE (Number of
Events)
+ NT (Number of
Transitions)
+ CC (Cyclomatic
Complexity)
Douglass + DCC (Douglass | DCC metric accounts for nesting and
Metrics Cyclomatic concurrency in a state machine which
Complexity) affects the complexity of a state

machine.

Other Douglass
Metrics

Other Douglass metrics have commog
parts with CK Metrics, Class Diagrani
Metrics and Statechart Metrics;
therefore, picking up only DCC metrig
from among Douglass metrics was
considered as sufficient for the prese
study.

In addition to metrics,

that reflect structural @eristics of object-oriented

software, proposed in the literature, some metmeze considered to have

association with complexity of a software componémiis, error-proneness of that

software component. These metrics are related thehinterface complexity of a

software component, which are Number of Providadrfaces (NPI), Number of

Events in Provided Interfaces (NEPI) and NumberQgferations in Provided

Interfaces (NOPI).

3.4 MEASUREMENT OF METRICS

There were three possible ways for measuring nsefvicthe software components;

these were:

« Manual metric measurement,

* Metric measurement by using a readymade metri¢ tool
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* Automating metric measurement for the specific sedhe thesis study.

Metric measurement can be carried out by examitiheg UML model of the
software manually. This way of metric measuremesd been skipped because
calculating metric values manually can be time oomag for complex software

components and it is not reliable.

A tool that can be used to get metric values frordML model came to the
forefront while reviewing the literature in ordey see whether measurement of
metrics can be done with a readymade tool or nbis Tool was SDMetrics.
SDMetrics can be used with all UML modeling toolkigh has the capability of
exporting the model to an XMl file. The tool alsiwvep the opportunity of defining
custom metrics (see “Metrics in the Literature” sdetion in Chapter 2).
SDMetrics was considered to be appropriate for ribeds of the thesis study;

however, some difficulties have been encountered;

e XMl output of the UML design tool used by the sofivw developer team
deviated from the standard at some points. For plgndefault transitions
in the statechart were represented as states XNheutput. Also, internal
and external transitions in a state were not djsished at the XMI output
of the tool.

* SDMetrics tool, as expected, could not measurenatfrics in the scope of
the thesis study; therefore, the ability of defgnmew metrics within the tool

was attempted; however, the tool interface wasuset friendly.

The UML design tool used by the software develdpam supports java plug-ins
which can be used to extend the product capabiliBg creating java applications,
one can modify and analyze the UML model createthbyJML design tool.

After the metric measurement options were revievtedtas observed that most of
the metrics could be measured by creating java-piwpplications for the specific
needs of the thesis study and, for some metrieglyraade metric measurement

tools could be used.
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3.5 OBTAINING FAULT STATISTICS FOR THE SOFTWARE COM PO-
NENTS

In Aselsan, a tool is used for the purpose of deiecking. With this tool, every
type of change activity associated with softwarevetigpment, including
enhancement requests, defect reports, and documentaodifications can be
managed. The defect counts regarding to the sadteamponents analyzed in the
present study were collected by using this toolweher, defect records were not
assigned to the software components; they were asgpciated with the project.
Therefore, at this point, support was received fribi@ software leaders of the
projects from which measurement would be obtairsd] the numbers of faults

regarding the software components were gathered.
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CHAPTER 4

EXPERIMENTAL WORK

In the part of the study to be presented in theptér, metric measurements were
correlated with fault-proneness metrics of thewgafe components. Before carrying
out metric measurement process, some metric defisitwere needed to be

clarified.

4.1 METRIC DEFINITIONS RE-VISITED

4.1.1 Number of Transitions (NT) [6]

NT metric definition is given as total number oérsitions including common
transitions, self-transitions and internal tramsif in [6]. Although Genero et al.
[51] give the same definition for NT metric, theglaulate the metric in a different
way; that is, they exclude the internal transitiamghe calculation. In the present
study, NT metric was calculated as summation of mmom transitions and self-

transitions.

4.1.2 Cyclomatic Complexity (CC) [6]

CC metric definition is given as [NSS — NT + 2[6h However, McCabe [9] gives
the cyclomatic complexity definition as “edges -das + 2” for a connected graph.
Also, Douglass [10] uses the number of states @S)odes not number of simple
states (NSS). Therefore, it was evaluated thahtpKiC metric definition as |[NT -

NS + 2| is more appropriate.
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4.1.3 Coupling between Objects (CBO) [2]

CBO metric was formed as the summation of the ¢ogpklated metrics given by
SDMetrics tool.

4.1.4 Response for a Class (RFC) [2]

RFC metric was formed as the summation of the nurabenessages received by
the class given by SDMetrics tool as “MsgRecv”, NBRd NOPI.

4.2 METRIC MEASUREMENT RESULTS

Metric values were mostly obtained by use of jalen applications for the UML
tool used by the software development team andséone metrics, readymade
measurement tools were used (see “Measurement afichle sub-section in
Chapter 3).

All of the software metrics, except WMC, were cotkd from the UML models of
the software components, i.e. without generatingrs® codes of the software
components. WMC metric could not be measured freenUML models because,
to the best knowledge of the author of the preskesis, there is not any tool
calculating WMC metric from UML model, and calcuheg this metric manually is
very time consuming and not reliable. Thereforefree internet search was
conducted in order to select a tool to calculate @/Metric from the generated
code (source code). The tool should have the feabfircalculating cyclomatic
complexity for each method of a class because wtaleulating WMC metric,

methods defined at the model level were taken aatasideration. So, CCM [53],
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which is a tool analyzing cyclomatic complexity 6/C++, C#, JavaScript and

TypeScript code, was selected.

A tool which measures LCOM metric from source codeJML model could not
be found. Also the metric could not be obtainednfra java plug-in application.

Therefore, LCOM metric was omitted from the evaluat

Metric measurement techniques are outlined in Table

Table 5 - Metric Measurement Techniques

Metric Set Metric ID Metric Name Metric
Measurement
Technique
CK Metrics M1 WMC CCM
M2 DIT SDMetrics
M3 NOC SDMetrics
M4 CBO SDMetrics
M5 RFC SDMetrics + Java
Plug-in
Class Diagram M6 NC Java Plug-in
Metrics M7 NA Java Plug-in
M8 NM Java Plug-in
Statechart M9 NEnNtryA Java Plug-in
Metrics M10 NEXitA Java Plug-in
M11 NAc Java Plug-in
M12 NSS Java Plug-in
M13 NCS Java Plug-in
M14 NG Java Plug-in
M15 NE Java Plug-in
M16 NT Java Plug-in
M17 CcC Java Plug-in
M18 DCC Java Plug-in
Interface M19 NPI Java Plug-in
Metrics M20 NEPI Java Plug-in
M21 NOPI Java Plug-in
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Measured metric values are listed in Tables 6 andliere are 10 software
components analyzed in the scope of the studyilasE components are named as

Component_1, Component_2, etc.
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Table 6 - Measured metric values for first 5 congrua

ge

Component_1 Component_2 Component_3 Component_4 Component_5

— — — (q\] (40} < L0 — (q\] o™ — (qV} o™

N N I N N o o o N o I o o

ks ks | 8| 8| 8| 3| 8| 3| 8| 8| 8| 8

(@) (@) (@) (@) (@) (@) (@) (@] (@) (@] (@) (@] (@]
M1 143 236 227 1 2 2 6 67 131 7P 176 i
M2 0 0 0 0 0 0 0 0 1 0 0 1 0
M3 0 0 0 0 0 0 0 0 0 0 0 0 0
M4 3 1 7 2 2 2 3 22 44 2 20 49 2
M5 29 30 62 0 2 2 0 4 33 0 5 42 a
M6 1 1 5 3 3
M7 26 41 117 48 46
M8 35 26 61 68 50
M9 16 24 87 1 n/a n/a 25 13 a 22 13 | IE]
M10 3 1 11 0 n/a| nla 5 0 a 2 0 nfa
M11 29 15 93 0 n/a n/a 25 2 nfa 26 1 if/a
M12 16 21 86 2 n/a n/a 29 13 nia 25 12 h/a
M13 10 14 34 0 n/a n/a | 29 8 nfa 20 18 /a
M14 11 8 84 0 n/a n/a 28 1 A 30 ] /a
M15 26 31 105 0 n/a| n/a L 39 1§ nja 36 19 p/a
M16 37 48 191 2 nlfa] n/a 72 26 nfla 65 26 h/a
M17 13 15 73 2 n/a n/a | 18 7 nfa 22 3 if/a
M18 19 22 87 2 n/a n/a 1 3( 13 nja 29 11 /a
M19 4 5 8 3 3
M20 15 15 34 18 16
M21 14 15 32 10 8
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Table 7 - Measured metric values for last 5 comptme

Component 6

Component 7

Component 8

Component 9

Component 10

— (q\] o™ < L0 — — (q\] o™ < — —

%l %l %I %I %l %l %I %l %I %I %I %I

] ] © © ] ] © ] © © © o

(@) (@) (@] (@] (@) (@) (@] (@) (@] (@] (@] (@]
M1 180 33 48 7 1 233 55 3 3 3 117 260
M2 0 0 0 0 0 0 0 0 0 0 0 0
M3 0 0 0 0 0 0 0 0 0 0 0 0
M4 7 5 4 4 4 2 4 2 2 5 1 1
M5 44 0 20 3 0 27 16 2 2 0 26 26
M6 5 1 4 1 1
M7 79 21 22 12 34
M8 76 23 25 13 20
M9 13 7 2 n/a| n/a 4 5 n/a n/a nia 6 5
M10 2 2 0 n/a n/a 0 2 n‘a n/a nfa 0 0
M11 34 3 4 nfa| nla 3 3 nfa.- n/a nfa 7 5
M12 15 6 3 n/a| nl/a 10 4 nfa n/a nfa 6 4
M13 9 1 1 n/a n/a 7 3 n‘a n/a nfa 4 4
M14 7 6 0 n/a n/a 1 2 n‘a n/a nfa 1 0
M15 19 4 3 n/a| nl/a 14 4 n‘a n/a n{a 5 3
M16 29 13 5 n/al| nla 21 7 n‘fa nfa nla 8 6
M17 7 8 3 n/a| nla 6 2 n‘a n/la nfa 0 0
M18 11 9 4 n/a| nla 10 5 na  n/a  nfa 3 3
M19 7 7 4 4 6
M20 36 6 6 11 9
M21 31 21 14 15 17




Selected metrics were generally measured at thss tdwel except Class Diagram
Metrics and Interface Metrics as seen in Table & &able 7. Therefore, it was
required to combine CK Metrics and Statechart Msttd measure the component
guality (see “Measuring Component Quality” sectiorChapter 2). In order to map
CK Metrics to component metrics, the proposed neethwen in [55] was used.
According to the method, in order to map WMC, NO@ &RFC to component
level, they should be summed up; in order to map t©lcomponent level, it should
be taken maximum of DIT of individual classes imstie component; and in order
to map CBO metric to component level, number oemdl classes coupled to the
classes inside the component should be considEmedhe Statechart Metrics, the
same idea was used by accepting Statechart Magicemplexity and size metrics.
So, Statechart Metrics of individual classes wemaraed up in order to map these

metrics to component metrics.

After CK Metrics were mapped to component metriogtric measurements
became as in Table 8.
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Table 8 - Metric Values for the Components

7 N “ M ) € ™ N S

= = = 2 = 2 = 2 = -

2 2 2 2 2 2 2 2 2 3

S S S S S S S S S S

£ £ £ £ £ £ £ £ £ =

o o o o o o o o o o

o o o O o O o O o S
M1 143 | 236 | 238| 201] 251 269 23 6 11 250
M2 0 0 0 1 1 0 0 0 0 0
M3 0 0 0 0 0 0 0 0 0 0
M4 12 12 15 12 12 17 16 10 10 14
M5 29 30 66 37 47 67 27 20 26 24
M6 1 1 5 3 3 5 1 4 1 1
M7 26 41 | 117 | 48 46 79 21 22) 12 34
M8 35 26 61 68 50 76 23 25 13 2(
M9 16 24 88 38 35 22 4 5 6 5
M10 3 1 11 5 2 4 0 2 0 0
M1l | 29 15 93 27 27 41 3 3 7 5
M12 16 21 88 41 37 24 10 4 6 4
M13 | 10 14 34 36 33 11 7 3 4 4
M14 | 11 8 84 29 31 13 1 2 1 0
M15 | 26 31 | 105| 57 55 26 14 4 5 3
M16 | 37 48 | 193 | 98 91 47 21 7 8 6
M17 13 15 75 25 25 18 6 2 0 0
M18 | 19 22 89 43 40 24 10 5 3 3
M19 4 5 8 3 3 7 7 4 4 9
M20 | 15 15 34 18 16 36 6 6 11 9
M21 14 15 32 10 8 31 21 14 15 17

4.3 FAULT STATISTICS OF THE SOFTWARE COMPONENTS

Errors associated with the software components wbétained with the help of

software leaders of the projects from which measerd would be obtained (see

“Obtaining Fault Statistics for the Software Comeots” section in Chapter 3).

Approximately 2500 defects, which are all removetedts, were analyzed with the

software leaders and it was determined that 1825800 defects concerned the

investigated software components.

Fault-pronenesgtrice of the software

components are given for each component in Table 9.
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Table 9 - Fault-proneness Metrics of the Softwamenonents

Defect Count | Defect Density Defect Defect
Severity Correction
Effort
Component 1 5 0,794 14 7
Component_2 24 3,701 76 88
Component_3 64 2,678 232 206
Component_4 26 1,819 79 63
Component_5 11 0,766 34 17
Component 6 17 1,502 58 33
Component_7 15 3,95 55 22
Component_8 0 0 0 0
Component_9 2 0,53 7 1
Component_10 20 5,249 58 45

Four different fault-proneness measurement types weed as suggested by related
literature (see “Fault-Proneness Measurement Mstiothe Literature” section in
Chapter 2). These measures, which are defect cdefct density, defect severity
and defect correction effort, were obtained frora sioftware defect tracking tool
used in Aselsan. Defect count is simply the eroamt associated with the software
component. Defect density is the error count fargthousands of lines of source
code (KLOC) of the software component which medwrad tlefect density is equal
to “defect count / KLOC”. Every error recorded byetdefect tracking tool is
evaluated in terms of severity by the test enginvees detected the related error.
Test engineer evaluates the severity of error ve flegree. Defect severity was
obtained by making use of this data, 5 point wagsmito the most severe error and
1 point is given to the least severe error. In Wy, defect severity was obtained as
the summation of this scaled data. After test esmjimecorded an error using the
defect tracking tool, software developer fixes éner and enters how many hours
spent in order to fix the error. As defect correatieffort, this measurement was
used.
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4.4 CORRELATION BETWEEN SOFTWARE METRICS AND FAULT-
PRONENESS OF THE SOFTWARE COMPONENTS

Before trying to correlate the calculated metrituea with fault-proneness of the
software components, when we looked over the me#iices from Table 8, it could
be seen that M2 (DIT, CK Metrics) and M3 (NOC, CKetcs) metric
measurements were not meaningful. Only ComponeandiComponent 5 have a
measurement as “1” and all other software compankave “0” measurement for
M2, and all of the measurements are “0” for M3. sTlnmeans that inheritance
property of object-oriented programming is not Wydesed in YMM. Therefore,
the association between DIT and NOC metrics of Cktrids and the fault-
proneness of software components could not be rdeted in the scope of this

thesis study; hence, M2 and M3 metrics were leftodthe scope of the study.

4.4.1 Finding the Correlation between Software Meics and Fault-Proneness
of the Software Components Graphically

First, the association between calculated softwastics and fault-proneness of the
software components was presented graphically. tAdl graphs showing the
correlation between design metrics and fault-presemmetrics are presented in the

Appendix section.

The numbered points in the graphs, which are irAfhgendix section, represent the
software components; for example, 1 represent€treponent_1, 2 represents the

Component_2, etc.

Figures 1 through 19 show the association betwesact count and respective
calculated metrics. As seen from the figures,oélthe software metrics have
positive relationship with the defect count, aseetpd. This means that structural
characteristics represented by the design metnicthe scope of the study are

closely related with number of errors detectedoitveare.
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Figures 20 through 38 show the association betwieéect density and respective
calculated metrics. Metrics other than M1, M4, M¥19 and M21 have negative
correlation or do not have strong positive corretatwith defect density of the
software components. Indeed, as in the case factebunt, positive association
between metrics and defect density was expecteel.r@&son behind the situation
might be that software components, which are in sbepe of the study, have
different source lines of code varying between 3{Cbmponent_9) and 23893
(Component_3). Larger software components tenchte fower defect densities as
suggested in [62]-[64]. Therefore, it can be codellithat using defect density as a
guality metric is convenient for software compomsewhich have close number of

source lines of code.

Figures 39 through 57 show the association betwleéect severity and respective
calculated metrics. As is seen from the figureb,olthe software metrics have

positive correlation with the defect severity, apected. This means that structural
characteristics represented by the design metni¢tea scope of the present study

cause more severe errors in software.

Figures 58 through 76 show the association betvizadact Correction Effort and
respective calculated metrics. As is seen fronfithees, all of the software metrics
have positive correlation with the defect correctedfort, as expected. This means
that structural characteristics represented byddsgn metrics in the scope of the
present study result in raise in defect correctiffart of software components.

4 4.2 Statistical Evaluation

4.4.2.1 Pearson’s Correlation Coefficient

In order to correlate software metrics with the ltfguoneness of the software
components, first, it was decided to use Pearsoariselation coefficient [60]
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because it was expected that a linear correlatetwden the metrics and fault-

proneness of the components exists.

Pearson’s correlation coefficient, which is repréed as r, measures the linear
relationship between two continuous variables. TEhefficient also shows the
direction of relationship; the values between 0 ahdepresent positive association

and the values between 0 and -1 represent negetsoeiation.

The data collected should not have significantiergland should be distributed
normally in order to use Pearson’s correlation ftaeht. Therefore; first, outlier

and normality tests were applied to the collectathdKolmogorov-Smirnov test
[60] was applied as normality test. The resultsooflier and normality tests are

presented in Table 10.

Table 10 - Outlier and Normality Test Results

Outliers Normality
Defect Count Component_3 Normal
Defect Density No outlier Normal
Defect Severity Component_3 Non-normal
Defect Correction Effort Component_3 Normal

As seen from Table 10, only defect density data e@sropriate for Pearson’s
correlation coefficient analysis. When Componentwds excluded from the
analysis, there were no outliers and all the messirad normal distribution;
however, it was decided to hold Component 3 inside analysis because
Component_3, with its design metrics and fault-praess metrics values, was
significant for the analysis. Therefore, it wasided to continue to the analyses
with Pearson’s correlation coefficient although es¢fcount, defect severity and
defect correction effort measures had an outlier defect severity had non-normal
distribution. Also, some studies claim that Peassarorrelation coefficient is

somewhat robust to deviations from normality [6BEsides, when the analysis
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were carried out by excluding Component_3, stafistsignificance of the results,

in other words p value, was below the 95% configeiegel for most of the design
metrics.

The results for Pearson’s correlation coefficiamt @utlined in Table 11.
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Table 11 - Pearson’s Correlation Coefficients betwihe Metrics and Fault-

Proneness Measures

Defect Count | Defect Density | Defect Severity Defect
Correction

Effort

M1 0,530 0,656 0,497 0,426
p=0,115 p = 0,040 p=0,144 p =0,220

M4 0,453 0,650 0,449 0,327
p=0,189 p =0,042 p=0,193 p = 0,357

M5 0,638 -0,58 0,653 0,579
p = 0,047 p=0,873 p = 0,040 p = 0,079

M6 0,431 -0,358 0,456 0,409
p=0,214 p = 0,309 p=0,185 p=0,241

M7 0,863 0,119 0,871 0,834
p = 0,001 p=0,744 p = 0,001 p = 0,003

M8 0,483 -0,193 0,472 0,402
p =0,157 p =0,594 p=0,168 p = 0,250

M9 0,882 0,003 0,889 0,882
p = 0,001 p =0,993 p = 0,001 p = 0,001

M10 0,808 -0,126 0,824 0,801
p = 0,005 p=0,729 p = 0,003 p = 0,005

M11 0,825 -0,056 0,845 0,814
p = 0,003 p =0,877 p = 0,002 p = 0,004

M12 0,878 0,005 0,887 0,862
p = 0,001 p = 0,990 p =0,001 p = 0,001

M13 0,620 -0,089 0,599 0,575
p = 0,056 p = 0,807 p = 0,067 p = 0,082

M14 0,857 -0,035 0,871 0,846
p = 0,002 p=0,924 p =0,001 p = 0,002

M15 0,833 -0,018 0,837 0,817
p = 0,003 p = 0,960 p = 0,003 p = 0,004

M16 0,857 -0,006 0,862 0,839
p = 0,002 p = 0,986 p = 0,001 p = 0,002

M17 0,888 0,018 0,904 0,882
p = 0,001 p = 0,960 p = 0,000 p = 0,001

M18 0,861 -0,012 0,869 0,845
p =0,001 p=0,974 p = 0,001 p = 0,002

M19 0,597 0,558 0,629 0,555
p = 0,068 p = 0,094 p = 0,051 p = 0,096

M20 0,635 -0,086 0,644 0,605
p = 0,049 p=0,814 p =0,044 p = 0,064

M21 0,586 0,252 0,626 0,554
p =0,075 p =0,482 p = 0,053 p = 0,096
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The correlation between the two variables is steéiBy significant if the p value is
below 0.05 (p < 0.05). Table 12 summarizes the iosetvhich have statistically
significant correlations with the fault-pronenesseasures of the software
components with the strength of the correlationl@s correlation, medium
correlation and high correlation. Although there ne general rule about the
classification of the strength of the correlatimefficient, Cohen [60] suggests that
if the absolute value of correlation coefficienbetween 0.1 and 0.3, the strength of
the association is low, if the absolute value af@ation coefficient is between 0.3
and 0.5, the strength of the association is mediamd, if the absolute value of
correlation coefficient is greater than 0.5, thrersgjth of the association is high.

Table 12 - Statistically Significant Pearson’s @tations

High Correlation | Medium Correlation | Low Correlation

Defect Count M5, M7, M9, M10, - -

M11, M12, M14,

M15, M16, M17,
M18, M20

Defect Density M1, M4 - -

Defect Severity M5, M7, M9, M10, - -

M11, M12, M14,

M15, M16, M17,
M18, M20

Defect Correction | M7, M9, M10, M11, - -
Effort M12, M14, M15,
M16, M17, M18

Statistically significant associations between riinetrics and fault-proneness of the
software components all display high correlatigns< 0.5) as seen from Table 12.
Metrics which are correlated with defect count aeflect severity of the software
components are all the same, and, for defect dovreeffort, only two of them (M5
and M20) are not statistically significant. It seethat M1 and M4 affect the defect
density of a software component although they dohawe statistically significant

correlations with other fault-proneness measuresnaty, defect count, defect
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severity, and defect correction effort. The result Pearson’s correlation
coefficient are actually consistent with the grajhidisplay of the associations
between the metrics and fault-proneness of thewaoét components; the only
difference with finding Pearson’s correlation comént is that statistically
significant correlations have been pointed out dimel associations have been

indicated numerically.

4.4.2.2 Spearman’s Correlation Coefficient

As defect count, defect severity and defect coiwaaffort measures had an outlier
and defect severity had non-normal distributiore thetrics and fault-proneness
measures were also investigated with Spearman’selaton coefficient [60],
which is a non-parametric test as well, becausex®pan’s correlation coefficient
does not require that the data do not have outtiethe data should be normally
distributed. As in the case for Pearson’s corretatioefficient, each of the metrics
was correlated separately to the fault-pronenesssunes of the software
components. The results for Spearman’s correlatioefficient are outlined in
Table 13.
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Table 13 - Spearman’s Correlation Coefficients leetvthe Metrics and Fault-
Proneness Measures

Defect Count | Defect Density | Defect Severity Defect
Correction

Effort

M1 0,552 0,539 0,559 0,576
p = 0,098 p =0,108 p = 0,093 p = 0,082

M4 0,529 0,717 0,540 0,529
p=0,116 p=0,019 p =0,107 p=0,116

M5 0,596 0,140 0,643 0,584
p = 0,069 p =0,700 p = 0,045 p =0,077

M6 0,221 -0,299 0,264 0,176
p = 0,539 p =0,401 p = 0,460 p =0,627

M7 0,745 0,224 0,772 0,721
p =0,013 p =0,533 p = 0,009 p =0,019

M8 0,479 -0,055 0,529 0,430
p=0,162 p =0,881 p=0,116 p=0,214

M9 0,614 -0,049 0,637 0,590
p = 0,059 p =0,894 p = 0,048 p =0,073

M10 0,431 -0,178 0,469 0,369
p=0,214 p =0,622 p=0,171 p=0,294

M1l 0,463 -0,049 0,502 0,445
p=0,177 p = 0,894 p =0,140 p=0,197

M12 0,650 0,085 0,686 0,614
p = 0,042 p =0,815 p = 0,029 p = 0,059

M13 0,729 0,213 0,753 0,693
p=0,017 p = 0,555 p=0,012 p =0,026

M14 0,413 -0,207 0,451 0,377
p =0,235 p = 0,567 p=0,191 p = 0,283

M15 0,620 0,061 0,649 0,596
p = 0,056 p = 0,868 p = 0,042 p = 0,069

M16 0,636 0,067 0,669 0,612
p = 0,048 p = 0,855 p = 0,035 p = 0,060

M17 0,604 0,049 0,639 0,573
p = 0,065 p =0,894 p = 0,047 p = 0,083

M18 0,632 0,067 0,668 0,596
p = 0,050 p =0,854 p = 0,035 p = 0,069

M19 0,389 0,568 0,399 0,445
p = 0,267 p = 0,087 p = 0,253 p =0,198

M20 0,561 -0,018 0,606 0,530
p = 0,092 p = 0,960 p = 0,064 p=0,115

M21 0,384 0,512 0,398 0,427
p=0,273 p=0,130 p = 0,255 p=0,219
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As in the case for Pearson’s correlation coeffigiéme correlation between the two
variables is statistically significant if the p ualis below 0.05 (p < 0.05). Table 14
summarizes the metrics which have statisticallynificant correlations with the
fault-proneness measures of the software componasitks the strength of the

correlation as low correlation, medium correlatéord high correlation.

Table 14 - Statistically Significant Spearman’s i@tations

High Correlation Medium Correlation Low Correlation
Defect Count M7, M12, M13, - -
M16, M18
Defect Density M4 - -
Defect Severity M5, M7, M9, M12, - -
M13, M15, M16,
M17, M18
Defect Correction M7, M13 - -
Effort

Fewer metrics were correlated with fault-pronenessasures of the software
components by use of Spearman’s correlation caoefficiwhen compared with
Pearson’s correlation coefficient; however, theultsswere similar. For example;
the metrics M5, M7, M9, M12, M15, M16, M17 and Mlre correlated strongly

with defect severity of the software componentoatiog to both methods.

Two types of correlation coefficient were used mley to identify the association
between design metrics and fault-proneness meffibs. first one is Pearson’s
correlation coefficient which measures the linealattonship between two

variables, and the second one is Spearman’s ctoreleoefficient which measures
the monotonic relationship between two variables.s&en from Table 10, defect
count, defect severity and defect correction effodtric measurements had an
outlier and defect severity had non-normal distrdny this situation reduces the
reliability to the results of Pearson’s correlationefficient. Also, monotonic

relation, measured by Spearman’s correlation agefft, involves linear relation,
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measured by Pearson’s correlation coefficient. @loee, it can be concluded that

results achieved with Spearman’s correlation coieffit are more reliable.

49



50



CHAPTER 5

DISCUSSION AND CONCLUSION

There are many studies in the literature which stigate the effects of structural
characteristics of object-oriented software onvgaiffe quality by use of metrics. A
considerable part of these studies take fault doleg of software as the quality
indicator while collecting software design metritem the source code of the
software. These studies have verified a strongetairon between software design
metrics and fault-proneness of software. Howevarityr of the studies on the
correlation of software metrics collected from UMtodels with fault-proneness
has constituted the basic motivation of the prestrdy.

In the present study, we aimed to prove the assogisbetween structural
characteristics of object-oriented software meabimeterms of UML metrics and
software quality empirically by considering fauliepeness as quality indicator of
software. For this purpose, we worked in Aselsadeading defense industry
company in Turkey. The software design metrics godlity metrics were all

collected from real-time embedded software compt:neeveloped by YMM.

10 software components were investigated in thepesaaf the study. Software
components used within at least two projects welected; therefore, it was aimed
that software components were tested adequately theg were reliable
components. Software design metrics were collefrtad the UML models of the
software components. Software metrics to be medswere selected after the
related literature was reviewed. In addition totwafe metrics in the literature,
three new metrics, NPI, NOPI and NEPI were propasedterface metrics. Most
of the metric measurements were carried out by toectehg java plug-in
applications for the UML design tool used by YMMndaready-made metric

measurement tools were used for other metrics. ddiect data of the software
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components were gathered from software defect itrygclool used by YMM. As
fault-proneness measurement, four different typesmeasurement were used,;
namely, defect count, defect density, defect sgvand defect correction effort; so,

the extent of the analyses had been broadeneds tf fault-proneness.

Two methods were used in presenting the associdigiween software design
metrics and fault-proneness; namely, graphical statistical analyses. Before the
analysis, it was expected that all of the desigtriocseshave positive correlation with
the fault-proneness measures. For the cases aefgct, defect severity and defect
correction effort, design metrics showed positivesaiation with the fault-

proneness, as expected, at the end of the grapdmedyses. However, when we
looked the results for defect density, importantt g the design metrics had
negative correlation or did not have strong positoorrelation with the fault-

proneness. The reason behind this was interpret@tieafact that larger software

components tend to have lower defect densitiesggested in [62]-[64].

As statistical analyses, Pearson’s and Spearmani®lation coefficients were
computed in order to assess the association betaelented design metrics and
fault-proneness of software. Expecting linear datren between the design metrics
and defect measures, Pearson’s correlation caafticivas used, first. Although
some defect data has outlier and non-normal digtab, it was continued with
Pearson’s correlation coefficient because it wasdeel to hold the outlier data in
the analyses and some studies in the literatuiemeththat Pearson’s correlation
coefficient is somewhat robust to non-normality][6Ihe results of the analyses
were similar to graphical analyses. 12 of the 1%iglte metrics presented
statistically significant correlations with the faproneness of software in the cases
of defect count and defect severity, and 10 oflfhelesign metrics showed similar
results for defect correction effort. As for theaghical analyses, defect density
results were weaker, in other words, the assodatias meaningful for only 2 of

the design metrics. For Spearman’s correlationfooeft, although fewer metrics
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were able to be associated with defect measurdbheokoftware components as

compared to Pearson’s correlation coefficient,rédseilts were similar.

The benefits of the study for Aselsan are twofdide design metrics which were
shown to be correlated with fault-proneness ofveafé can be used to predict
faulty software components. Thus, more testingreffan be spent, labor for peer
review and design review can be increased andcstatile analyses may be
attributed higher importance for the software congds to be considered as error-
prone, thereby improving quality achieved at rededéne. Also, structural
characteristics that were shown to affect faultRereess can be controlled via
metric measurements in the development phase équuhpose of eliminating errors
before they come up.

Limitations of the present study include the faattonly a limited number of
components, all developed in the same organizdtiomia has been investigated.
Also, software components analyzed in the scopgbeopresent study were all real-
time embedded software components. These situateasisct generalizability of
our results severely. Software from other domaimfindely deserves to be

subjected to similar studies.

It would also be beneficial to carry out similaudies by extending the data set
used. In other words, a higher number of softwaraponents should be analyzed.
So, the effects of the structural characteristicsbpect-oriented software would be
presented more explicitly. Moreover, it would besgible to achieve threshold
values of the design metrics for software companenth high quality in terms of

fault-proneness.

Consequently, in this study, the association batwamme design metrics collected
from UML models and fault-proneness of software waaslyzed using real life
project data in the context of real-time embeddeftwsre. Prior studies in the
literature demonstrated the importance of code dasetrics in identifying the

fault-prone software components. However, the ditee lacks researches which
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studying on fault-proneness of software by use ®fiLUmetrics. Especially,

rareness of the studies attracts attention fosthi@chart metrics; only a few studies
analyzed the effect of statechart structural charetics on the understandability,
modifiability and maintainability [6], [7], [8]. Tdhe best knowledge of the author
of the present thesis, there is no other study himvestigates the effects of

statechart structural characteristics on the fardtieness of software.
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APPENDIX

GRAPHS SHOWING THE CORRELATION BETWEEN DESIGN
METRICS AND FAULT-PRONENESS METRICS
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Figure 67 - Correlation between Defect CorrectidiofEand M12
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Figure 68 - Correlation between Defect CorrectifiofEand M13
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Figure 69 - Correlation between Defect CorrectifiofEand M14
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Figure 70 - Correlation between Defect CorrectidiofEand M15
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Figure 71 - Correlation between Defect CorrectidiofEand M16

96



250+

200+

150+

100+

DefectCorrectionEffort

50+

80

Figure 72 - Correlation between Defect CorrectifiofEand M17
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Figure 73 - Correlation between Defect CorrectifiofEand M18
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Figure 74 - Correlation between Defect CorrectidiofEand M19
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Figure 75 - Correlation between Defect Correctidiiofeand M20
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Figure 76 - Correlation between Defect CorrectifiofEand M21
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