
ADVANCED MOTION COMMAND GENERATION
PARADIGMS FOR CNC SYSTEMS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ULAŞ YAMAN

IN PARTIAL FULFILMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

MECHANICAL ENGINEERING

JUNE 2014

Approval of the thesis:

ADVANCED MOTION COMMAND GENERATION

PARADIGMS FOR CNC SYSTEMS

submitted by ULAŞ YAMAN in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in Mechanical Engineering Department, Middle
East Technical University by,

Prof. Dr. Canan Özgen _________________
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Suha Oral _________________
Head of Department, Mechanical Engineering

Assoc. Prof. Dr. Melik Dölen _________________
Supervisor, Mechanical Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Tuna Balkan _________________
Mechanical Engineering Dept., METU

Assoc. Prof. Dr. Melik Dölen _________________
Mechanical Engineering Dept., METU

Assist. Prof. Dr. A. Buğra Koku _________________
Mechanical Engineering Dept., METU

Assoc. Prof. Dr. A. Özgür Yılmaz _________________
Electrical and Electronics Engineering Dept., METU

Assist. Prof. Dr. Kutluk Bilge Arıkan _________________
Mechatronics Engineering Dept., Atılım University

Date: 09.06.2014

 iv

I hereby declare that all information in this document has been obtained
and presented in accordance with academic rules and ethical conduct. I also
declare that, as require by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

Name, Last Name : Ulaş YAMAN

Signature :

 v

ABSTRACT

ADVANCED MOTION COMMAND GENERATION
PARADIGMS FOR CNC SYSTEMS

Yaman, Ulaş

Ph.D., Department of Mechanical Engineering

Supervisor: Assoc. Prof. Dr. Melik Dölen

June 2014, 203 pages

A novel motion command generation paradigm for digital motion control

systems is developed with in the scope of this dissertation. In the paradigm, the

tool trajectory is firstly defined with the developed programming language on a

host computer and then transferred to the machine with different communication

protocols. The language proposed is capable of decompressing the previously

compressed motion data via ΔY10 decompression algorithm and generating

curve offsets of the base curve in inner and outer directions. With these abilities

of the programming language and its hardware processor (VEPRO), the tool

trajectory of a machining case can be presented with a few lines of commands.

The hardware complexity of the VEPRO is low compared to the ones currently

used in computer numerical systems such as Siemens Sinumerik and Fanuc 0i.

Keywords: Command Generation, Data Compression, FPGA, Servo-motor

Drives, Computer Numerical Control, Curve Offset Generation, Morphological

Operations, Polygon Operations

 vi

ÖZ

BİLGİSAYAR DENETİMLİ SİSTEMLER İÇİN GELİŞMİŞ
HAREKET KOMUT ÜRETECİ ÖRNEKLERİ

Yaman, Ulaş

Doktora, Makina Mühendisliği Bölümü

 Tez Yöneticisi: Doç. Dr. Melik Dölen

Haziran 2014, 203 sayfa

Doktora tezi kapsamında sayısal hareket denetleyici sistemleri için yeni bir

hareket komut üreteç modeli geliştirilmiştir. Geliştirilen modelde, öncelikli

olarak komut yörüngesi önerilen programlama dili kullanılarak bilgisayar

ortamında oluşturulur. Sonrasında ise derlenen makina kodu farklı haberleşme

yöntemleri aracılığıyla komut üreteci donanımına gönderilir. Önerilen

programlama dili, ΔY10 sıkıştırma algoritması kullanılarak sıkıştırılmış olan

komut verilerini çözebilme ve verilen temel eğrileri farklı yönlerde kaydırabilme

yeteneklerine sahiptir. Program dilinin bu yetenekleri ve komut üreteç donanımı

(VEPRO) ile birlikte bir parçanın üretimi için gereken takım yolları birkaç satır

komut ile oluşturulabilmektedir. VEPRO’nun donanım karmaşıklığı kullanılan

geleneksel bilgisayarlı sayısal denetim donanımlarına (Sinumerik ve Fanuc 0i)

göre oldukça düşüktür.

Anahtar kelimeler: Komut Üretimi, Veri Sıkıştırma, Alan Programlanabilir

Kapı Dizini, Servo Motor Sürücüleri, Bilgisayarlı Sayısal Denetim, Kaydırılmış

Eğri Üretimi, Morfolojik İşlemler, Çokgen İşlemleri

 iii

Çocukların şeker de yiyebildiği bir dünyaya,

Kapıları çalan benim

kapıları birer birer.

Gözünüze görünemem

göze görünmez ölüler.

Çalıyorum kapınızı,

teyze, amca, bir imza ver.

Çocuklar öldürülmesin

şeker de yiyebilsinler.

Nazım Hikmet RAN

 iv

ACKNOWLEDGEMENTS

I am deeply grateful to my thesis supervisor Assoc. Prof. Dr. Melik Dölen for

his advice, encouragement and invaluable help all throughout the study. Without

his assists at the critical points of the thesis, it would be impossible to complete

this study. I would also like to thank Asst. Prof. Dr. A. Buğra Koku for his help

and advices especially in the first half of my doctoral study as a co-supervisor.

I would like to thank the Scientific and Technological Research Council of

Turkey (TÜBİTAK) for the scholarship with the code BİDEB 2211.

The author also would like to gratefully thank Prof. Dr. Tuna Balkan of Middle

East Technical University (METU), and Asst. Prof. Dr. Kutluk Bilge Arıkan of

Atılım University for their guidance as members of thesis progress committee;

Assoc. Prof. Dr. Ali Özgür Yılmaz of METU for his guidance in the paper of

Robotics and Computer Integrated Manufacturing Journal; and finally all staff

of the Department of Mechanical Engineering of METU for their help and

support.

I would like to show gratitude to my colleagues at the department and to my

other friends in the city for their sincere friendships during these four years.

I am deeply in debt to my parents Şahhanım and Azimet Yaman for their never-

ending love and spiritual support at critical and opportune times.

Lastly, I would like to thank my love and my wife Gizem Yaman for her

invaluable support and endless love. As the poet said that if this city is beautiful,

it is because of you.

 v

TABLE OF CONTENTS

ABSTRACT ... v

ÖZ .. vi

ACKNOWLEDGEMENTS .. iv

TABLE OF CONTENTS ... v

LIST OF TABLES ... x

LIST OF FIGURES .. xii

LIST OF SYMBOLS AND ABBREVIATIONS ... xv

CHAPTERS

1 INTRODUCTION ... 1

1.1 Motivation ... 1

1.2 Scope of the Thesis ... 2

1.3 Organization .. 3

2 LITERATURE SURVEY ... 5

2.1 Curve Offset Generation Algorithms .. 5

2.2 Command Generation for CNC Machinery .. 7

2.3 Acceleration/Deceleration Algorithms and Online Command

Generation ... 10

2.4 Data Compression Methods and Their Implementations 11

2.5 FPGA-based Command Generation Systems 12

 vi

2.6 Open Research Areas .. 14

3 CURVE OFFSET GENERATION ... 17

3.1 Introduction ... 19

3.2 Definitions ... 21

3.3 Morphological Operation on Binary Images (MOBI) 22

3.3.1 Basic Algorithm .. 23

3.3.2 Complexity Analysis ... 25

3.3.2.1 Creation of Tool Impression at each Base Point 25

3.3.2.2 Creation of Curve Offset via Contour Tracing Method 26

3.4 Morphological Operations on Boundary Sets (MOBS) 27

3.4.1 Basic Algorithm .. 27

3.4.2 Complexity Analysis ... 32

3.4.2.1 Creation of Boundary Set (CBS) ... 32

3.4.2.2 Creation of Curve Offsets (CCO) .. 33

3.5 Improved Algorithm to Implement MOBS (IMOBS) 34

3.5.1 Basic Algorithm .. 34

3.5.2 Illustration of the Method .. 36

3.5.3 Complexity Analysis ... 38

3.6 Adaptive Algorithm to Implement MOBS (AMOBS) 40

3.6.1 Basic Algorithm .. 40

3.6.2 Complexity Analysis ... 44

3.7 Polygon Operations (PO) .. 45

3.7.1 Basic Algorithm .. 45

3.7.2 Complexity Analysis ... 47

 vii

3.7.2.1 Union Operations on Polygons .. 47

3.7.2.2 Generation of Curve Offsets .. 48

3.8 Experimental Evaluation ... 48

3.9 Discussion and Conclusions ... 63

4 DIRECT COMMAND GENERATION FOR CNC MACHINERY BASED

ON DATA COMPRESSION TECHNIQUES ... 67

4.1 Introduction ... 68

4.2 Proposed Method .. 70

4.2.1 Differencing .. 70

4.2.2 Data compression/decompression via DY10 technique 74

4.2.2.1 Encoding Process ... 75

4.2.2.2 Decoding Process .. 76

4.2.3 Linear Interpolation ... 80

4.3 Compression Performance .. 81

4.4 Command Generation Performance with Variable Rate 92

4.5 Modelling of Information Source via Markov Chains 95

4.5.1 Proposed Approach ... 96

4.5.2 Performance Evaluation .. 97

4.6 Conclusion .. 102

5 ADVANCED COMMAND GENERATION VIA CONTEXTUAL

MODELING ... 105

5.1 Introduction ... 106

5.2 Primitive Approach ... 108

5.2.1 The Aim of the Method and the Test Case 108

5.2.2 Implementation Details ... 110

 viii

5.2.3 Evaluation of the Primitive Method .. 113

5.3 Proposed Approach (VEPRO) .. 114

5.4 VEPRO Commands .. 116

5.4.1 Register Sets .. 116

5.4.2 Declarations ... 118

5.4.3 Parallel Processor Commands ... 119

5.4.4 Compare, Test, and Branch Commands 119

5.4.5 Register and Memory Operations ... 121

5.4.6 Arithmetic and Logic Operations .. 121

5.4.7 Flag Operations ... 122

5.4.8 Vector Operations ... 122

5.4.9 Vector Queries ... 126

5.5 MATLAB Emulations of the VEPRO Hardware 127

5.6 Parallel Processors .. 137

5.7 Comparison with the Conventional Approach 139

5.8 Conclusion .. 150

6 FPGA IMPLEMENTATION OF COMMAND GENERATOR 151

6.1 Introduction ... 152

6.2 Proposed Technique .. 153

6.2.1 Encoding of DY10 .. 153

6.2.1.1 Relative Encoding .. 154

6.2.1.2 Compression Process ... 154

6.2.2 Decoding of DY10 .. 156

6.2.2.1 Decompression Process ... 156

 ix

6.2.2.2 Linear Interpolation ... 156

6.3 FPGA Implementation .. 157

6.3.1 Hardwired Approach ... 160

6.3.1.1 SDRAM Controller ... 160

6.3.1.2 Memory Interface .. 162

6.3.1.3 Decoding Unit ... 163

6.3.1.4 Integrator Unit ... 165

6.3.1.5 Interpolator Unit .. 166

6.3.2 Softcore Approach .. 167

6.3.2.1 Construction of the Softcore .. 167

6.3.2.2 Machine Code .. 171

6.4 Performance Evaluation of the Method .. 171

6.5 Conclusion .. 177

7 CONCLUSIONS AND FUTURE WORK .. 179

7.1 Conclusions ... 179

7.2 Future Work .. 182

REFERENCES ... 185

APPENDICES A : NIOS II C CODE .. 195

APPENDICES B : MATLAB FUNCTIONS ... 197

CURRICULUM VITAE .. 203

 x

LIST OF TABLES

TABLES

Table 3-1 MATLAB Function to Construct Boundary Data Set 31!

Table 3-2 MATLAB Functions to Create Curve Offset Data Sets 31!

Table 3-3 Important Attributes of the Methods Considered 49!

Table 3-4 Summary of the Test Cases and Selected Parameters 49!

Table 4-1 Pseudo-code for Encoding Process of DY10 Technique 78!

Table 4-2 Pseudo-code for Decoding Process of ΔY10 Technique 79!

Table 4-3 Attributes of the Test Cases Considered .. 82!

Table 4-4 Compression Ratios (%) of Various Techniques for Case 1 86!

Table 4-5 Compression Ratios (%) of Various Techniques for Case 2 87!

Table 4-6 Compression Ratios (%) of Various Techniques for Case 3 87!

Table 4-7 Overall Data Compression Performance of Various Techniques for

Three Test Cases ... 89!

Table 4-8 FPGA Resource Utilization of Different Methods 92!

Table 4-9 Compression Ratios (%) of ISMMC for Case 1 99!

Table 4-10 Compression Ratios (%) of ISMMC for Case 2 99!

Table 4-11 Compression Ratios (%) of ISMMC for Case 3 99!

Table 4-12 Compression Ratios (%) of ISMMC under Different Orders of

Markov Chain for Case 3 ... 101!

Table 4-13 Compression Ratios (%) of ISMMC under Different Orders of

Markov Chain for Case 2 ... 101!

 xi

Table 4-14 Compression Ratios (%) of ISMMC under Different Orders of

Markov Chain for Case 3 ... 101!

Table 5-1 Bytes Required to Represent the Sequences After Compressing Them

with ΔY10 ... 113!

Table 5-2 Comparison of Sizes of Sequences Under Different Approaches ... 114!

Table 5-3 Generic VEPRO Program for the Three Test Cases 130!

Table 5-4 Modifications on the Generic VEPRO Program of the Three Test

Cases ... 134!

Table 5-5 Utilization of the Parallel Processors in the Generic VEPRO Program

for the Three Test Cases ... 137!

Table 5-6 Parameters of the CNC Machining Center 141!

Table 5-7 Properties of the NC Files and the Workpieces 142!

Table 5-8 Machining Sequences of the Test Cases .. 142!

Table 5-9 Generic VEPRO Program for the Test Cases Flower and Rabbit ... 145!

Table 5-10 Data Attributes of the Test Cases Rabbit and Flower 149!

Table 6-1 Attributes of the Test Cases ... 174!

Table 6-2 FPGA Resources Used ... 175!

Table 6-3 Pseudocode for the Decompression of ΔY10 176!

 xii

LIST OF FIGURES

FIGURES

Figure 1-1 Scope of the Thesis ... 3

Figure 3-1 Geometric Parameters of Curve Offset Generation 22

Figure 3-2 Illustration of Steps of the IMOBS ... 37

Figure 3-3 Offsets of Hand (N=125) & Star (N=75) .. 41

Figure 3-4 Parameters of AMOBS ... 43

Figure 3-5 Base curves (tool trajectories) and curve offsets produced by MOBS

for two test cases .. 51

Figure 3-6 Numerical Cost Evaluation for MOBS and IMOBS 53

Figure 3-7 Comparison of IMOBS and AMOBS ... 54

Figure 3-8 Numerical Cost Evaluation of the PO Technique 55

Figure 3-9 Geometric Errors on All Curve Offsets Produced by MOBS 57

Figure 3-10 Geometric Errors on All Curve Offsets Produced by IMOBS 58

Figure 3-11 Geometric Errors on All Curve Offsets Produced by AMOBS 59

Figure 3-12 Geometric Errors on All Curve Offsets Produced by PO 60

Figure 3-13 Statistical Attributes of Geometric Errors at Different Offsetting

Distance for the Test Case Club ... 61

Figure 3-14 Statistical Attributes of Geometric Errors at Different Offsetting

Distance for the Test Case Doodle ... 62

Figure 4-2 The Effect of Order on the Range of Differentiated Sequence 74

Figure 4-3 Encoding of a Sample Sequence via ΔY10 Technique 77

 xiii

Figure 4-4 SOC Implementation of the Proposed Command Generation

Paradigm ... 80

Figure 4-5 Command Trajectories for the Studied Cases 84

Figure 4-6 Performance Indices for Various Compression Techniques for

Different Test Cases ... 90

Figure 4-7 Normalized Feedrate Profile and Portion of Trajectory being

Generated (Case 3) ... 93

Figure 4-8 Interpolated Command Sequences ... 94

Figure 4-9 Chord Errors for Test Case 3 .. 95

Figure 4-10 Information Source Modeling via Markov Chains (ISMMC) 97

Figure 5-1 Rabbit Composed of 11 Base Sets .. 109

Figure 5-2 Rabbit with Offsets ... 110

Figure 5-3 Memory Structure of the Primitive Method 112

Figure 5-4 SOC Solution of VEPRO ... 115

Figure 5-5 Rendered SolidWorks Part of the Test Case Sphere 128

Figure 5-6 Rendered SolidWorks Part of the Test Case Bottle 129

Figure 5-7 Rendered SolidWorks Part of the Test Case Handset 129

Figure 5-8 Plots of MATLAB Emulation of the Test Case Sphere 131

Figure 5-9 Plots of MATLAB Emulation of the Test Case Bottle 132

Figure 5-10 Plots of MATLAB Emulation of the Test Case Handset 133

Figure 5-11 Centered Base Curves of the Handset .. 135

Figure 5-12 Mirrored Base Curves of the Handset along Y-axis 135

Figure 5-13 Random Distribution of the Base Curves of the Handset over X-

axis .. 136

 xiv

Figure 5-14 Base Curves of the Handset Placed at Half of Their Exact

Distances ... 136

Figure 5-15 Rendered SolidWorks Part of the Test Case Flower 140

Figure 5-16 Rendered SolidWorks Part of the Test Case Rabbit 141

Figure 5-17 Manufactured Test Case Flower ... 143

Figure 5-18 Manufactured Test Case Rabbit .. 144

Figure 5-19 Plots of MATLAB Emulation of the Test Case Flower 147

Figure 5-20 Plots of MATLAB Emulation of the Test Case Rabbit 148

Figure 6-1 Encoding of a Sample Sequence via ΔY10 Technique 155

Figure 6-2 Decompression Architecture .. 158

Figure 6-3 Integrator Unit .. 159

Figure 6-4 Compressed File Format ... 161

Figure 6-5 STD of the Memory Interface ... 163

Figure 6-6 STD of the Decoding Unit .. 164

Figure 6-7 STD of the Integrator Unit .. 166

Figure 6-8 STD of the Interpolator Unit ... 167

Figure 6-9 Elements in the Softcore ... 169

Figure 6-10 Schematic Design of the Softcore Approach 170

Figure 6-11 Trajectory of the Machine Tool for the Bottle Test Case 172

Figure 6-12 X, Y, and Z Axis Trajectories of the Bottle Test Case 172

Figure 6-13 Trajectory of the Machine Tool for the Rabbit Test Case 173

Figure 6-14 X and Y Trajectories of the Rabbit Test Case 173

 xv

LIST OF SYMBOLS AND ABBREVIATIONS

SYMBOLS

B Boolean (number) set

e(j) Geometric deviation (or error)

K Number of points in P

K* Number of points in P*

M Grid size

M1, M2 Size of binary image

N Number of points around the perimeter of the tool

P Base (point) set

P* Reference set

pk The kth element (a 2D vector) of P: (xk, yk)

Q Polygon (vertex) set (or list)

Qi The ith disjoint subset associated with a curve offset

q Point on a specific curve offset

r Offsetting distance of radius

 xvi

S Binary image matrix or boundary point set

Sk (Sub)set covering boundary points around pk

S(α,β) Sub-matrix of S indexed by α , β sets

Sk,i The ith element (point) of subset Sk

T Tool matrix/set

tij Tool matrix element

u Direction vector

α(k) Index set for interfering base points at step k

χ Metric registering the change in slope of the base curve

δ Maximum distance between two consecutive points

ε Band of error tolerance for curve offset generation

ρ Pixel size

 xvii

ABBREVIATIONS

AC Arithmetic Coding

AF Amplitude Field

AH Adaptive Huffman

AMOBS Adaptive Algorithm to Implement MOBS

CAD Computer Aided Drawing

CAM Computer Aided Manufacturing

CAN Controller Area Network

CBS Creation of Boundary Set

CCO Creation of Curve Offsets

CG Command Generator

CIM Computer Integrated Manufacturing

CNC Computer Numerical Control

COG Curve Offset Generation

CPU Central Processing Unit

DLL Dynamic Link Library

DNA Deoxyribonucleic Acid

EEPROM Electrically Erasable Programmable Read-Only Memory

DDA Digital Data Analyzer

 xviii

FPGA Field Programmable Gate Array

GPC General Polygon Clipper

HC Huffman Coding

IC Initial Condition

IMOBS Improved Algorithm to Implement MOBS

ISMMC Information Source Modeling via Markov Chains

LED Light Emitting Diode

LF Length Field

LZ Lempel-Ziv

LZW Lempel-Ziv-Welch

MHC Modified Huffman Coding

MOBI Morphological Operation on Binary Images

MOBS Morphological Operations on Boundary Sets

NC Numerical Control

NURBS Non-Uniform Rational B-Spline

PO Polygon Operations

PLC Programmable Logic Controller

PLL Phase Locked Loop

RLEZ Run Length Encoding of Zeros

 xix

RPM Revolution-per-Minute

RT Real-Time

SD Secure Digital

SDRAM Synchronous Dynamic Random Access Memory

SE Structuring Element

SERCOS Serial Real-time Communication System

SF Sign Field

SOC System-on-Chip

SOPC System on a Programmable Chip

SRAM Static Random Access Memory

STD State Transition Diagram

TB Terabyte

UART Universal Asynchronous Receiver Transmitter

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

VLBN Variable-Length Binary Numbers

ZF Zero Field

 1

CHAPTER 1

INTRODUCTION

1.1 Motivation

Digital motion control systems like computer numerical units (CNC) units, motor

control modules, servo-motor drivers, and motion control cards do have

embedded command generators (CGs). The principal task of these generators is to

provide the set points of the defined trajectory to the motion controllers

periodically. The trajectory of the tool is defined according to the control

languages used in the literature. For instance, in a conventional CNC system the

defined trajectory in G codes is parsed within the CG and the set points are

generated accordingly. The CG considers various properties of the machine and

the tool while generating the motion commands according to the defined G codes.

The CG strategy as briefly described above has well-known drawbacks: i) Due to

computational complexity and time constraints in CG, complicated hardware

(with parallel processors) must oftentimes be incorporated in the motion control

system [1]; ii) Advanced RT interpolation algorithms, which generally impose

considerable burden on the processors and limit servo-update rate, must be

devised especially when the trajectory is to be represented by parametric curves

such as B-Splines and NURBS ([2]); iii) The resulting software (i.e. firmware)

development process is time-consuming and error prone; iv) Interpreted programs

which describe trajectories are not portable since each manufacturer of motion

control systems generally adapts her own control language and dialect [3].

 2

The fundamental motivation of this dissertation is to find solutions to the issue

described in the above paragraph. With the proposed CG paradigms, Kolmogorov

complexity of the conventional approaches is aimed to be diminished. For this

purpose, the high redundancy of the motion command data in

manufacturing/industrial applications is to be utilized. Consequently, the size of

raw motion data could be reduced via data compression and curve offset

generation algorithms.

To sum up, there is a potential for devising simple yet effective CGs for industrial

motion control systems by fully taking advantage of the current state-of-the-art.

1.2 Scope of the Thesis

The scope of the dissertation is illustrated in Figure 1-1. The VEPRO is the name

of the command generation paradigm, whose details are given in the fifth chapter

of the thesis. It can be also considered as the capstone of the thesis, since it

utilizes all the algorithms developed within the study. As can be observed from

the figure that there are two auxiliary fields of the VEPRO. The first one is the

field of curve offset generation algorithms and the second one is about the data

compression algorithms. Five different curve offset generation algorithms are

developed within the scope of the thesis and they are discussed in the third

chapter. On the other hand, a novel data compression algorithm, which is

specialized to compress integer encoder pulses, is proposed in the fourth chapter

and its performance is compared with the conventional compression techniques.

The last part of the thesis is related with the data compression chapter as can be

seen from the figure. In this last chapter before the conclusion, the FPGA

implementation of the proposed data compression algorithm is explained.

 3

Figure 1-1 Scope of the Thesis

1.3 Organization

The dissertation starts with the Introduction chapter. The motivation behind the

thesis is discussed and the scope of the thesis is given in this chapter. After the

introductory chapter, the thesis continues with the Literature Survey chapter. The

studies on curve offset generation algorithm, command generation methods for

CNC machinery, acceleration/deceleration algorithms, data compression methods

and their implementations, and FPGA-based command generation systems are

summarized. The chapter is concluded with discussing the open research areas.

The following chapter focuses on the developed curve offset generation

algorithms. The first four of the algorithms employ morphological operations and

the last one utilizes polygon operations to generate the curve offsets. After each

method is described, their time and memory complexities are also discussed. The

VEPRO

Curve Offset
Generation

Data
Compression

FPGA
Implementation

 4

chapter is concluded with the evaluation of the methods on the same two test

cases. Then in the fourth chapter, a direct command generation paradigm for CNC

machinery based on data compression methods is introduced. Beside the

evaluated compression algorithms, Markov chains are also utilized to model the

given trajectories. As in the previous chapter, the proposed and the conventional

compression algorithms are employed on the same test cases and their results are

compared. In Chapter 5, a different command generation paradigm is introduced.

The best curve offset generation algorithm proposed in the third chapter and the

data compression algorithm introduced in the fourth chapter are all utilized within

this novel command generation paradigm. After the commands of the paradigm

are given, it is emulated in MATLAB environment. To the end of the chapter, the

paradigm is compared with the conventional approach via employing them on the

same test cases. The last chapter before the conclusion discusses the hardware

implementation details of the command generation paradigm proposed in the

fourth chapter. The implementation is carried out in two different ways. In the

first approach, the units required to generate motion commands from the

compressed data set are designed with VHDL language and the compiled file of

the overall system is downloaded onto the FPGA development board. In the

second approach of the hardware implementation, a microprocessor is embedded

into the FPGA chip of the development board and the command generation

algorithm is processed on this microprocessor. The performances of these

approaches are also evaluated within the chapter. The dissertation is concluded by

pointing the key results of this study and discussing the possible future works

related to the thesis.

 5

CHAPTER 2

LITERATURE SURVEY

In this chapter of the thesis, the relevant literature topics are discussed in a

detailed manner and open research areas are also highlighted for possible further

study.

2.1 Curve Offset Generation Algorithms

Morphological operations are utilized in different fields of science, but there

exists rare work on curve offsets with these operations. There are studies [4] in the

literature on monitoring of the tool wear in which morphological operations are

used to filter the acquired images, but morphological operations are firstly used by

Jimeno-Morenilla et al. [5] for the computation of tool paths in manufacturing.

They defined a trajectory-based dilation operation that orients the structuring

element in any position on the boundary of the object. With the new

morphological operation the boundary of the objects could be are computed. The

major disadvantage of this operation is that it is not applicable for the objects

having holes (islands). After the successful implementation of the algorithm,

Carmona et al. [6] used the same idea in their study to compute offsets for contour

pocketing three years later. They represented the tool as a structuring element

having shapes of a circle and a rectangular. The main advantage of the algorithm

they presented is that there is no need to treat self-intersections and discontinuities

since these are not present when the proposed approach is employed.

 6

Furthermore, their offset generation algorithm is capable of dealing with the

islands by recursively calling the sub algorithms when there exists other curves

(islands) in the geometry. Later in 2011, Jimeno-Morenilla et al. [7] used similar

morphological operations to reconstruct the computer-aided drawing of an object

from point cloud obtained with the mechanical digitizers. As in the previous

studies, by the use of morphological operations they were able generate inverse

offsets without any self-intersection trouble. On the other hand, the computational

cost may be a problem when the number of points in the cloud is enormous.

Before Jimeno-Morenilla et al. [7], Yingjie et al. [8] also worked on generating

offset curves from point cloud. They also used image processing based techniques

in their study, but the approach is totally different. The cloud data is first

segmented into layers whose thicknesses are determined based on the linear

correlation of layers. Then these layers are projected on the machining plane and

their gray-scale images are formed. Finally offsets are calculated using the offset

filtering proposed by Chamberlain [9] in his Ph.D. dissertation. He developed

various algorithms (tool path computation, offset generation) based on image

processing methods for manufacturing and rapid prototyping applications.

Specific curve offset generation algorithms for NURBS curves are present in the

literature. One of the outstanding curve offset algorithms for NURBS curves is

suggested by Piegl et al. [10] in 1998. They used a different approach from

previously suggested algorithms. The earlier algorithms start the offsetting with a

few points and then add additional points till the convergence is done. On the

other hand, Piegl et al. start with using many points and then eliminate these

points according to the tolerance band they defined. When the results of the

method are investigated, it can easily be concluded that the technique does well

compared to the previous ones. One of the important properties of the algorithm is

that by changing the parameters in the formula they used the performance (speed)

of the technique increases significantly.

Polynomial approximation techniques are widely in used in curve offset methods

in the literature. These approximation methods are reviewed and compared by

Elber et al. [11]. During comparison, they counted the number of control points of

 7

the offset to comment on the efficiency of the method. The results showed that the

least square methods do well. When the polynomial based offsetting is

considered, the performance of the method proposed by Li and Hsu [12] is

outstanding. They presented a method for offsetting planar B-spline curves based

on the use of Legendre series. They first approximate the B-spline curves by

Legendre polynomials and then perform offsetting according to the offset value

and error band they defined in advance. Finally they convert the Legendre series

to B-spline curves. This method overwhelms the least square method when the

approximation accuracy is increase in terms of stability, computation time, and

the number of control points. The main disadvantage of the method is that the

processing time required for the conversion from Legendre to B-spline is very

high.

Voronoi diagram based approaches are generally used to remove the inner loops

which are difficult to identify and remove with other techniques. The structures of

these algorithms are very similar as given by Held [13]. As a first step, the

Voronoi diagram is computed. Then, all of the offset-connected subareas are

identified by applying a graph search. With this search the inner most points of

the subareas and the bottlenecks between neighbor subareas are also determined.

For each bottleneck two straight-line bisectors are inserted. Thus new Voronoi

diagrams contain only one point with maximum contour clearance which enables

construction of offset curves. Held only compared the processing time of the

method for various examples and compared with the processing time of Voronoi

diagram generation algorithms (wavefront propagation and divide-and-conquer).

It is revealed that curve offsetting algorithm does not take much time when

compared with the Voronoi diagram generation algorithms.

2.2 Command Generation for CNC Machinery

Since the introduction of the first NC machine tools, the interpolators based on

Digital Data Analyzer (DDA) technique, where a linear or circular path is

 8

generated incrementally via digital integrators, were commonly utilized due to

their ease in hardware implementation. First detailed analysis on the subject was

attributed to Danielsson [1]. In his work, non-parametric curves were generated

through the DDA technique. Since the presented algorithms were not associated

with error criteria, they yielded asymmetrical curves in symmetrical arrangements.

As the CNC technology advanced, software interpolators, which took advantage

of microprocessor technology, began to emerge [15]. Besides significant

improvements in linear and circular interpolators [16], several researchers [17]-

[19] have concentrated on the development of both RT and off-line interpolators

for basic parametric curve (parabolic, Bezier, circular arc, etc.) generation.

As modern CAD systems have progressively gained the capability to describe a

wide variety of complex shaped parts (like dies and molds) through parametric

curves or surfaces like the Bezier, B-Spline or NURBS; a number of parametric

curve interpolators, which have the potential to work directly with these geometric

entities, have been proposed by several investigators [20]. Among these

parametric curves, NURBS is one that draws considerable attention owing to the

fact that NURBS offers a universal mathematical form for representing both

analytical and free-form shapes [15]. In fact, most commercial CNC controller

manufacturers (such as Fanuc [21] and Siemens [22]) incorporate such

interpolation capabilities to their high-end CNC products. Many investigators

have proposed advanced NURBS curve interpolators to address the challenges of

NURBS interpolation including heavy computational burden and feedrate

fluctuation due to round-off/truncation errors in the interpolator [23].

Parallel to these efforts, there are various algorithms proposed on feedrate control

in order to increase the quality of the product. For instance Cheng et al. [24]

employed a predictor-corrector algorithm to estimate the servo command at the

next sampling time. During the prediction stage, an algorithm is used to estimate

the next command value and in the corrector phase errors due to the prediction are

eliminated. Cheng and Tsai [1] developed a new interpolator to produce servo

commands for RT control of CNC machining at variable feedrates. The main

difference of this algorithm is that acceleration/deceleration planning is performed

 9

before the interpolation takes place. In a similar study, Xu et al. [25] presented

variable interpolation schemes for planar implicit curves. They were also able to

interpolate in RT to improve machining efficiency where the feedrate set by the

operator is modified according to the geometrical state of the surface. In other

words, it is decreased when the tool is machining curved parts and increased on

planar surfaces. Another approach is proposed by Rutkowski et al. [26] in order to

guarantee the high quality of machining. They pointed out that the smoothness of

the trajectory profile is a necessity and employed a neuro-fuzzy based system to

change the feedrate online in an adaptive manner. By this approach the machining

operations become robust to changing external conditions.

Despite the considerable efforts expanded on developing various interpolation

paradigms to generate command sequences for CNC machine tools, the direct

storage of sampled trajectory data (and the corresponding methods) have been

neglected in the industry/academia due to justified reasons: i) Memory capacity

has always been the most scarce entity since the emergence the NC/CNC

technology; ii) For machining applications like turning and milling, the trajectory

must be modified dynamically due to changes in operating conditions such as

feedrate override, cutting tools being employed, tool geometry change due to

wear, etc. Fortunately, in most manufacturing machinery like abrasive water jet

cutters, and rapid prototyping machines, such changes are not usually exercised

during operations. Additionally, with the advancements in the solid-state

electronics, the scarcity of memory is no longer the case.

In fact, the efficient data storage and retrieval techniques based on data

compression have been exclusively studied in the literature [27]. However, the

earlier application of the data compression techniques to CG is due to [28] where

a RT command generator, which employs differencing and data compression, is

introduced. The command generation performance of the proposed method is

evaluated through the trajectories of a Puma 560 manipulator. A brief realization

of the generator using a Field Programmable Gate Array (FPGA) is also discussed

in their study. Likewise, [29] improves the method further by adding variable

data-rate command generation capability and implements this novel generator on

 10

a FPGA. Despite encouraging results, the command generation methodologies of

[28]-[29] are nowhere complete and require more comprehensive assessment

through real-world scenarios.

2.3 Acceleration/Deceleration Algorithms and Online Command Generation

The state of the art command generation systems consider the acceleration and

deceleration limits of the machinery along with the incoming signals from the

sensors and then generate and/or modify the defined motion commands

accordingly. There are various studies in the literature to modify the original

trajectories according to the abrupt changes in the machining conditions. For

instance, the main contribution of Kröger and Wahl’s study [30] is that the online

generated trajectories enable the systems to adapt to the unpredictable sensor

inputs by the parallel execution of the generator algorithm. The technique ensures

the safe and continuous motion of the machinery in unpredicted cases. With this

approach, the integration of the sensors to the robotics and CNC applications

becomes easier. In another study, Haschke et al. [31] developed a real-time

algorithm to update the trajectories of the robots due to the same reasons (sudden

changes in the environment). Although the computational complexity of the

method is high, they claim that real-time performance can be achieved. The main

advantage of their algorithm is that it can overcome the arbitrary initial condition

problem, which the conventional approaches cannot handle.

The study of Yong and Narayanaswami [32] concentrates on the sudden feedrate

changes due to the high number of segments defined in the conventional

machining approach via NC programming. They determine the feedrate sensitive

corners in the machining trajectories in advance and then calculate the parameters

of the acceleration and the deceleration sectors. Since they also take into

consideration the capabilities of the CNC machinery, there occurs no overcut or

undercut on the workpiece. In a recent similar study, Bianco and Ghilardelli [33]

proposed a discrete filter to smooth the rough reference commands according to

 11

the predefined requirements. The main advantage of their algorithm is that due to

the compactness and the efficiency it can be preferable for hardware

implementations.

2.4 Data Compression Methods and Their Implementations

Data compression is regarded as the crucial component in high-speed data transfer

and storage. Two types of compression exist in the literature: lossless and lossy.

In lossless data compression, data set is encoded to a smaller one that can later be

decoded back to its original state whereas in lossy compression, the original data

can only be approximated after decompression. Technical literature on data

compression (i.e. Information Theory) is too vast to cite here. Readers are

encouraged to refer to [27] (& [34]) for a general overview of this field.

Lossless data compression applications have increased over the past years due to

the need to improve the storage capacity and transfer rate for audio/visual data

[35]. There are many examples for the hardware implementations of conventional

encoding techniques in the literature. Among these techniques, Huffman [36]-

[37], Lempel-Ziv (LZ) [38]-[39], and Golomb [40] compression algorithms are

the most popular ones for hardware implementations. For instance, Rigler et al.

[36] implemented Huffman and LZ encoders on an FPGA and concluded that

augmented Huffman coding (HC) uses less hardware resources than the LZ

algorithm. On the other hand, Abd El Ghany et al. [38] also realized the LZ

encoding and decoding algorithm on FPGA. In order to increase the efficiency,

they used systolic array that resulted in a 40% decrease in the compression rate.

Since various researchers have already implemented the conventional

compression algorithms, recent studies mainly focus on implementations of

improved versions of the conventional techniques. As an example, the study by

Koch et al. [41] can be examined. They employed additional decompression

accelerators on the conventional algorithms and able to achieve comparable

compression ratios with successful software solutions along with utilizing

 12

negligible hardware resources. Rather than improving the conventional

approaches, some researches also tried to combine the techniques. In one of these

studies Lin et al. [42] proposed a hybrid compression algorithm composed of

Adaptive Huffman (AH) and LZW coding techniques. With this approach, they

achieved the compression performance of LZW coding by utilizing less hardware

resources than the case when only AH coding is implemented. In another study,

Lee and Park [43] implemented Huffman coding utilizing different parallel

shifting algorithms. In order to satisfy the bandwidth requirement of the data

acquisition system, they employed the compression algorithm to decrease the

bandwidth of the output of the calorimeter utilized in their experiments.

Among conventional data compression techniques, hardware implementations of

different algorithms for compressing specific data structures are also present in

the literature. For instance, Yongming et al. [44] have realized the Linear

Approximation Distance Threshold algorithm on FPGA to compress the

Electrocardiograph signals. Similarly, Valencia and Plaza [45] developed an

FPGA-based data compression technique based on the concept of spectral

unmixing to compress hyperspectral data. In another study related to

unconventional encoding methods, Ouyang et al. [46] combined different

compressing techniques to compress the huge DNA sequences which resulted in

an algorithm having fast generation time and high compression ratio.

The ΔY10 compression algorithm is similar to these methods in the sense that it is

specifically developed to compress integer encoder pulses. When it is employed

on image, text, sound, etc. data, it will not be successful as conventional

compression algorithms.

2.5 FPGA-based Command Generation Systems

In the last decade FPGA has become widespread in the network and embedded

control systems due to its high flexibility, reduced execution times, and relatively

low cost [47]. For instance, Kim et al. [48] utilized FPGA technology to decrease

 13

the decoding delays in the random linear network coding technique. With the

FPGA they were able to increase the speed of the operation and decrease the

power requirement. On the embedded control systems side, Cho et al. [49]

developed a multiple-axis motion control chip utilizing an FPGA. The chip is

capable of performing all the required tasks for industrial robots and automation

systems quickly and accurately. On the other hand, FPGA-based designs are not

very common in command generation parts of the control systems. One of the few

implementations was carried out by Su et al. [50] with a simple controller

integrated. They preferred to modify the digital convolution technique rather than

employing the complex polynomial technique in order to implement trapezoidal

and S-curve motion planning which resulted in an increase in the computational

complexity. The digital convolution technique was also used by Jeon and Kim

[51] for developing an FPGA-based acceleration and deceleration hardware for

CNC machine tools and robotics. Similar to the study of Su et al. [50], the

complex polynomial method is not preferred due to the computational complexity

for the generation of velocity profiles having different dynamic characteristics.

Instead of the current strategies, they proposed a new method to overcome the

computational burden. The results reveal that the unsymmetrical profiles, which

are not possible to be produced by digital convolution, can be generated by their

method. In the study of Jeon and Kim [51] the error is not compensated. On the

contrary the command generation schemes proposed in the thesis is capable of

generating motion trajectories without any faults. Beside this advantage, it also

generates the velocity and acceleration curves simultaneously provided that the

order of difference is selected as two or higher during encoding. Osornio-Rios et

al. [52] preferred to use profiles with higher degrees in order to generate

trajectories in place of digital convolution method as Su et al. [50] and Jeon and

Kim [51] employed. During the FPGA implementation, a multiplier-free recursive

algorithm is designed to reduce the complexity of the profiles. Since the

trajectories have jerk limitation with the utilization of higher degree polynomials,

the dynamics of the machinery are also advanced with the proposed algorithm.

 14

2.6 Open Research Areas

With a detailed literature survey on the related topics of the dissertation, the scope

of the thesis is determined. Since the dissertation is supposed to have certain

limits regarding the topics, some important topics are apparently left to be

discovered and studied on deeply.

Although it is mentioned that the developed command generation paradigms

should consider the acceleration/deceleration limits of the machine axes in the

fourth chapter, the paradigms proposed in the dissertation has no units to take into

consideration of such limits. The one proposed in the fourth chapter may not need

such a unit since the uncompressed command trajectory may have been generated

according to the acceleration/deceleration limits of the corresponding CNC

machinery. On the other hand, the scheme proposed in the fifth chapter do need a

unit modifying the trajectories according to the given properties of the CNC

machinery. This due to the fact that the command trajectories in this approach are

defined via the proposed commands in advance and there is not any opportunity to

consider the motion limits during the programming stage of the paradigm. To sum

up, an algorithm capable of modifying the generated trajectories according to the

specifications of the CNC machinery should be developed and embedded into the

proposed paradigms in the dissertation. The time complexity of the developed

algorithm should be linear-in-time in order not to decrease the speed of generation

in general.

Another further research area may be finding a relationship between the LZW

compression algorithm and the contextual modeling of the motion trajectories.

When the results obtained in the fourth chapter are investigated, it can be inferred

that the LZW outperforms the other compression algorithms in the third case,

where there are repetitive tool movements in all of the axes. On the contrary, it is

one of the worst compression algorithms in the cases where the tool does not

perform repetitive tasks. The algorithm behind the LZW can be investigated and a

modified version of it can be utilized to model the tool trajectories automatically.

This suggested paradigm may be more successful than the command generation

 15

techniques proposed in the dissertation in terms of the memory requirement and

Kolmogorov complexity.

 16

 17

CHAPTER 3

CURVE OFFSET GENERATION

For the purpose of generating 2D curve offsets used in 2.5D machining, five new

methods based on morphological operations on different mathematical entities are

presented in this chapter of the thesis. All of the methods, which lend themselves

for parallel processing, exploit the idea that the boundaries formed by a circular

structuring element whose center sweeps across the points on a generator/base

curve comprise the entire offsets of the progenitor. The first approach, which is a

carry-over from image processing, makes good use of morphological operations

on binary images to produce 2D offsets via contour tracing algorithms. The

second method, which is to rectify the high memory cost associated with the

former technique, utilizes morphological operations on (boundary data) sets. The

implementation of this basic technique is illustrated by two MATLAB functions

given in the chapter. Despite its simplicity, the time complexity of this paradigm

is found be high. Consequently, the third method, which is evolved from the

preceding one, reduces the time complexity significantly with the utilization of a

geometric range search method. This technique, which has a considerable margin

for improvement, is found to be suitable to be used as a part of the real-time

motion command generator for CNC applications. The fourth technique is the

adaptive version of the previous one. It does not generate local curve offset points

that are going to be eliminated due to the local problems. Unlike the previous

schemes, the final approach uses polygon operations to generate such curves. The

 18

run-time of this technique is highly governed by the complexity of the polygon

overlay algorithm selected. The chapter analyzes the complexity of each

technique. Finally, the presented methods are evaluated (in terms of run-time and

geometric accuracy) via two test cases where most CAD/CAM packages fail to

yield acceptable results.

 19

3.1 Introduction

Curve offset generation (COG) is utilized in many different engineering

applications such as computer graphics, computer numerical control (CNC),

computer aided design (CAD), computer aided manufacturing (CAM), computer

integrated manufacturing (CIM), industrial automation and robotics, die/mold

design, rapid prototyping, and more. Planar (2D) curve offsets especially play a

critical role in manufacturing such as pocket machining [53] and rapid

prototyping [54] in which the tool path is generated in 2.5D where a family of

planar curve offsets is produced at different elevations along the tool axis.

In fact, a curve offset is said to be the locus of points which are at constant

distance along the normal from a base curve (i.e. progenitor). Despite its plain

definition, the generation of (even planar) curve offsets happens to quite

challenging owing to the fact that the offsets of a rational base curve are

frequently in non-rational form. Due to its practical importance, there exist a wide

range of research efforts on the subject. Maekawa [55] groups them into five

categories: i) exact offset generation (including Pythagorian hodographs) [56]-

[57]; ii) approximation techniques [58]-[59]; iii) self-intersection

detection/elimination [60]-[61]; iv) geodesic offsetting [62]-[63]; v) others [64]-

[65]. The emerging methods based on mathematical morphology [6]-[7] can be

regarded as approximation techniques. A comprehensive literature review on this

issue can be found in [55].

It is critical to note that the motivation behind this study is to devise efficient

COG methods that could serve as an integral component of (discrete-time) motion

command generators such as the ones presented by [29] and [66] where the

tool/end-effector trajectories are essentially represented by sampled sequences of

position in temporal domain rather than the ones expressed in rational forms (i.e.

NURBS). Unfortunately, the literature review on the subject reveals the lack of

general-purpose methods (suitable for time sequences) that effectively handle the

exceptional cases arising in typical COG phase including self-intersection,

unreachable/unfeasible locations, sharp turns, isolated patches, and more (for

 20

instance, see [67]-[68]). Consequently, the main goals and eventually the

contributions of this study can be summarized as follows:

i. To present some new paradigms, which are based on morphological

operations on different mathematical objects including binary matrices,

sets, and vertex lists, for the purpose of generating 2D curve offsets. All

of the presented techniques in this chapter are inherently to deal with the

afore-mentioned exceptions and must be suitable for implementation on

parallel processors.

ii. To discuss important properties of these techniques in order to highlight

their potential for performance improvement.

iii. To illustrate the direct implementation of a COG technique (based on

morphological operations on boundary data sets) through a number of

MATLAB functions and to provide the readers with the initial tools for

further development of their own techniques.

iv. To present novel general-purpose algorithms, which has a reduced time-

and memory complexity.

The organization of this chapter is as follows: After this introduction, the basic

definitions regarding the tool trajectory (i.e. base/generator curves) are presented.

In the next section, morphological operations on binary images are discussed to

generate 2D curve offsets. Since this technique is found to be costly in terms of

memory usage, another method based on morphological operations on the

boundary data sets is introduced to circumvent that drawback. In the following

section, a new algorithm that makes good use of grid search paradigm is proposed

so as to reduce the time complexity of the latter method. Then in the upcoming

section, the adaptive version of the method employing grid search algorithm is

introduced. Following that, a different and rather unconventional approach based

on polygon operations is elaborated. All of these methods are evaluated rigorously

via two test cases in the eighth section. Consequently, some key results and

conclusions about this study are given in the final section.

 21

3.2 Definitions

In this chapter, 2D curves (employed in 2.5D machining) will be considered. Let

the basis curve of a particular (tool) trajectory be described as an ordered set of

base points (i.e. 2D vectors) on a plane:

P ={(xk , yk)∈ !
2 :∀k ∈ "

≤K} (3-1)

where |P| = K ∈ !+. Here, the shorthand notation ℕ!! refers to the set {x ∈ ℕ∗: x

≤ n}, where 0 ∉"ℕ∗. Despite the fact that the Cartesian coordinates of the tool (or

end-effector) can be conveniently represented as encoder counts (i.e. integers) in

most CNC applications, only real-valued (vector) sequences are considered to

keep the chapter of general interest. A particular point pk = (xk,yk) in this set is to

be interpreted as the desired location of the tool/end-effector at time step k. For

1<k≤K, the following condition is presumed to be satisfied:

pk −pk-1 2 ≤ δ (3-2)

where δ ∈ ℝ! [mm], which is correlated with the sampling period of the time

sequence, is a predefined upper-bound for the proximity of any two consecutive

points in the set. Since the curve offsets are visualized as a combination of arcs

around the base points as illustrated in Figure 3-1, one can simply write the

following inequality:

δ 2 ≤ 8rε (3-3)

where ε ∈ ℝ! refers to the error tolerance band [mm]; r�ℝ! is the curve offset

[mm]. Within the context of this study, the constraint in (3-2) is automatically

satisfied as the points on the trajectory are sampled at very high rates (>> 1 kHz)

for most of the applications.

 22

pk-1

pk

r

x

y

ε

Error Tolerance Band

Upper Curve Offset

pk-2

pk+1

r

Neighborhoods

δ

Figure 3-1 Geometric Parameters of Curve Offset Generation

3.3 Morphological Operation on Binary Images (MOBI)

In image processing, morphological operations like dilation and erosion are

commonly used to enlarge or reduce certain patterns in binary images. To

accomplish that, a mask or a structuring element (SE) is applied successively

throughout the contour of the selected pattern. Depending on the bit patterns in the

mask and the corresponding logical operations performed on the image, desired

end result is obtained [69].

 23

3.3.1 Basic Algorithm

The same idea could be easily extended to generate the curve offsets. To generate

the upper or lower (a.k.a. left or right) curve offset, a binary image (i.e. a matrix),

which will serve as a medium to compute/store curve offsets, is created first:

! ∈ !!!×!! where B ∈ {0, 1} refers to Boolean number set. Depending on the

range of points in P, the size of this matrix (image) can be determined as

M1 = (xmax − xmin + 2rmax) / ρ"# $% (3-4a)

M 2 = (ymax − ymin + 2rmax) / ρ"# $% (3-4b)

where . denotes ceiling function (i.e. rounding to the highest integer); ρ ∈ ℝ!

[mm] refers to the pixel size of the binary image; rmax[mm] is the largest plausible

offset distance while

xmax ! max
k

{xk}; xmin ! min
k

{xk}; ymax ! max
k

{yk}; ymin ! min
k

{yk}.

Similarly, the mask

T = [tij]∈ B
N×N (3-5)

could be envisioned as a binary matrix representing a (closed) circular

neighborhood of a SE (a.k.a. virtual tool):

 24

tij =
1, (ρi − r)2 + (ρ j − r)2 ≤ r2

0, (ρi − r)2 + (ρ j − r)2 > r2

#
$
%

&%
 (3-6)

Here, i, j ∈"≤N; N = *2r/ρ+. Provided that !≔ !!!×!! is the initial condition, the

Boolean (logical) OR operation on S for every point in P leads to overlapping

images (impressions) of the tool (or SE) along the base points:

S(α (k),β (k)) := S(α (k),β (k)) ∨T (3-7)

where S(α,β) denotes a sub-matrix of S that is formed by retaining the rows and

columns (of S) indexed by the sets α and β respectively. In (3-7), the index sets,

which are the functions of k, can be given as

α(k) = i + (xk − xmin) / ρ!" #$:∀i ∈ !≤N{ } (3-8a)

β(k) = j + (yk − ymin) / ρ!" #$:∀j ∈ !≤N{ } (3-8b)

As the next step, the curve offsets are generated with the utilization of

boundary/contour/edge tracing (or tracking) techniques that are frequently

encountered in the image processing literature [6]. If a starting point and a

direction vector are specified, a set of ordered points along the boundary is

produced by simply tracing 0 / 1 (pixel-value) transitions on the binary image

[70]. The upper- or lower curve offset is selected by simply specifying the

corresponding starting point ps(xs,ys) and direction vector (u):

 25

xs = xi ∓ ruy (3-9a)

ys = yi ± rux (3-9b)

u = pi −pi−1
pi −pi−1 2

 (3-10)

where i (1 < i ≤ K) is a user-specified index; ux, uy ∈!ℝ refer to the x- and y axis

components of the unit vector u in (3-10), respectively .Upper and lower signs in

(3-9) are used to generate upper- or lower curve offset. In this technique, an end

point also needs to be specified as well to stop the contour tracing algorithm if the

base curve is not closed. Otherwise, the technique will yield a single set

containing points associated with both curve offsets. Furthermore, the isolated

patches remaining inside the image (a.k.a. “holes”), which are the consequence of

self-intersection, must be handled separately.

3.3.2 Complexity Analysis

Cost of the method (i.e. time complexity and the memory requirements) can be

analyzed in two stages.

3.3.2.1 Creation of Tool Impression at each Base Point

Since N2 Boolean operations on S are performed for each point in P, the resulting

time complexity at this stage can be simply determined as O(N2K). The biggest

cost is actually associated with the memory requirement where a binary image (S

matrix) with a size of M1-by-M2 (pixels) needs to be created and stored. Thus, the

resulting memory cost turns out to be O(M1M2). Note that if the pixel size is

 26

selected to be inversely proportional to K in order to maintain a certain resolution,

the memory cost in a 2D curve-offset generation could easily give rise to O(K2).

In such a case, the run time would be cubically bounded as O(K3).

3.3.2.2 Creation of Curve Offset via Contour Tracing Method

Time complexity of contour tracing algorithms is generally regarded as linear (in)

time [71]. If there are M pixels on the boundary of a specific pattern, the time-

complexity becomes O(M). Similarly, since the locations of pixels on the contour

have to be stored during the processing stage, the memory requirement turns out

to be O(M) as well. Note that in the technical literature, there exist advanced

tracing algorithms (like [72]) that claim to reduce the time complexity [i.e. O(log

M)]. However, only the basic techniques will be considered in this study. While it

is very difficult to estimate M without analyzing a specific pattern; to obtain a

general idea about the cost of the technique, we shall assume that there are

*2πar/ρ+ pixels (on average) at the contour around each base point in P where the

real number a ∈ [0, 1] represents an average “contour filling” factor computed for

a given case (with P and r at hand). In that situation, M = *2πarK/ρ+ ≤ *πa NK+and

thus the time complexity and the memory cost would be both O(NK).

Since the time complexity analysis (a.k.a. “big-O” analysis) in computer science

deals with the upper-bound of an algorithm’s run time function, the dominant

costs associated with the sequential steps of an algorithm are considered. Thus,

the resulting time-complexity and the memory requirement of the afore-

mentioned algorithm (at least in its basic form) would be O(N2K) and O(M1M2)

respectively. Despite its shear simplicity, the morphological operations on binary

images to generate curve offsets appear to be too costly in terms of memory

unless the length of base curve is low to moderate.

 27

3.4 Morphological Operations on Boundary Sets (MOBS)

In spite of the fact that the morphological operations on binary images are simple,

the technique (as is) suffers from the curse of dimensionality. As a remedy for this

problem, only the relevant information describing the boundaries of a SE (as it

sweeps through the base points) can be stored.

3.4.1 Basic Algorithm

The method proposed in this section makes good use of the afore-mentioned idea.

Note that there exist a number of studies employing morphological operations on

sets to generate tool path offsets in the literature ([6] and [7]). However, the

presented algorithm in this section is topologically different than its counterparts

in terms of the positioning of the SE (w.r.t. the base curve), the representation (or

approximation) of the generator/base curve, the boundary data formation, the

detection of tool interference, and generation of tool offset curves through non-

iterative boundary data sequencing. The proposed algorithm constitutes two basic

steps:

i. Formation of boundary set: The boundary points on a circular

neighborhood (with a radius of r) around each point in the base set P are

created. Hence, a finite set S = {Sk:k∈"≤K }, which constitutes all the

feasible boundary points, are formed such that

Sk ⊂ s∈ !2 : s−pk 2
= r()∧ s−pi 2 > r(),∀i ∈ !≤K / k{ } (3-11)

ii. Creation of curve offsets: Using the nearest neighbor technique, the

elements of S, which happen to be all disjoint sets, are processed to yield I

number of (disjoint) subsets Qi that contain the points associated with the

various curve offsets:

 28

S = Qi
i=1

I

∪ (3-12)

In this technique, the boundary data set S is built in a sequential manner. A finite

structuring set T (at step k) is utilized for this purpose:

T(k) =
(x, y)∈ !2 : x = xk + rcos

2π (n−1)
N(),

y = yk + rsin
2π (n−1)
N(),∀n ∈ !≤N

%
&
'

('

)
*
'

+'
 (3-13)

where |T| = N is the number of elements in the structuring set. At this point, the

interference between the new boundaries [to be formed by T(k)] and the ones

previously created must be checked within a circular neighborhood of 2r:

α(k) = i ∈ !
≤k−1 : pi −pk 2

≤ 2r{ } (3-14)

Here, α(k) refers to a set holding the indices for interfering base points with a

particular pk. First, the set Sk is constructed using the elements of T(k) such that

Sk = s∈ T(k) : s−pα (k) 2 > r()∧ s−pk+1 2 > r(){ } (3-15)

Then, the previous boundary points enclosed by T(k) has to be removed from S.

Hence, the relevant elements of S (all finite sets) are modified as

Sα (k) := s∈ Sα (k) : s−pk 2
> r{ } (3-16)

 29

With the initial condition S := ∅, if the above-mentioned set operations are

repeated for 1 ≤ k ≤K, the set S containing all the feasible boundary points is

eventually obtained.

Finally, the boundary set S, which covers the entire curve offsets, is processed

starting from the first subset. The set construction operation to obtain Qi in (12)

can be described in twelve steps:

1. Let (the offset index) i be 1.

2. Let (the time index) k be 1. Let Q be an empty set.

3. If Sk is an empty set then go to Step 10.

4. Pick the first element of Sk as q = sk,1.

5. Determine the closest element of Skto q (i.e. the nearest neighbor of q using

Euclidian distance as the metric):

!q = min
j∈!≤ |Sk |

sk,j −q 2{ } (3-17)

6. If -q - q,-2> r then go to Step 10. Note that in that case, the remaining elem

ents of Sk are associated with the other curve offsets (upper/lower dependi

ng on the case or “child” offsets).

7. Let q be q, . Let the new subset Sk be (Sk – q).

8. Add the new point to the (curve offset) set Q: Let Q be (Q∪q).

9. If Sk is not an empty set then go to Step 5.

10. Increase k by 1. If k ≤K, then go to Step 3.

11. If Q is an empty set then end the process.

12. Let Qi be Q. Increase i by 1 and go to Step 2.

 30

To implement these operations, two MATLAB functions are developed. The first
function titled setboun is given in Table 3-1 and it simply constructs the
boundary data set as described in the text. Similarly, the chain function, which
is listed in

Table 3-2, constructs the sets associated with different curve offsets (i.e. Q).

Notice that this function has to be called successively until all elements of S are

empty which implies that all curve offsets are successfully extracted.

Note that the presented algorithm processes the elements of S (i.e. Sk) sequentially

to form curve offsets without taking into account the global distribution of the

boundary points. Often times, this approach leads to a number of segmented curve

offsets for self-intersecting base curves. As a remedy to this problem, these curve

patches, which are represented as ordered disjoint sets, can be combined through

the cross-evaluation of the proximities among the extreme elements (i.e. starting-

and end points) of different sets. It is obvious that such an effort requires 2m(m −

1) operations (e.g. the computation of Euclidian distance & a logical comparison

per each operation) where m (> I) refers to the number of curve patches extracted.

However, the resulting cost can be regarded insignificant if compared to the rest

of algorithm since m << K.

 31

Table 3-1 MATLAB Function to Construct Boundary Data Set

01: function S = setboun(x,y,r,N)

02: T0 = r*exp(1i*linspace(0,2*pi,N+1)); T0 = T0(1:N);

03: K = length(x); idx = 1:K; r2 = r*r; d2 = 4*r2;

04: S = cell(K,1); S{1} = x(1) + 1i*y(1) + T0;

05: for k = 2:K

06: alpha =fliplr(idx(((x(1:k-1)-x(k)).^2 + (y(1:k-1)-y(k)).^2)<d2));

07: Tk = x(k) + 1i*y(k) + T0;

08: if (k<K)

09: Tk = Tk(((real(Tk)-x(k+1)).^2+(imag(Tk)-y(k+1)).^2)>r2);

10: end

11: for i = 1:length(alpha)

12: Tk = Tk(((real(Tk)-x(alpha(i))).^2 +(imag(Tk)-y(alpha(i))).^2)>r2);

13: Sai = S{alpha(i)};

14: S{alpha(i)} = Sai(((real(Sai)-x(k)).^2 +(imag(Sai)-y(k)).^2)>r2);

15: end

16: S{k} = Tk;

17: end

18: end

Table 3-2 MATLAB Function to Create Curve Offset Data Sets

01: function [Q,S] = chain(S,r)

02: K = length(S); Q = [];

03: for k = 1:K

04: qmin = 0;

05: if (~isempty(S{k})&&isempty(Q)), q = S{k}(1); end

06: while(and((qmin < r),~isempty(S{k})))

07: [qmin,idx] = min(abs(S{k}-q));

08: if (qmin < r)

09: Q = [Q q]; q = S{k}(idx); S{k}(idx) = [];

10: end

11: end

12: end

13: end

 32

3.4.2 Complexity Analysis

Just like its counterpart, the cost of the algorithm can be estimated in two distinct

stages.

3.4.2.1 Creation of Boundary Set (CBS)

At the kth step, the set α(k) [see Eq. (14) and Lines 6-7 of Table 1], which indexes

the base points interfering with the creation of boundary points at the current

position k, must be constructed. Unfortunately, since this set construction requires

a search through the base points visited previously (i.e. Pk-1 ⊆ P), a query on the

set Pk-1 (|Pk-1| = k-1) can be performed in linear time [e.g. O(k-1)]. Therefore, the

cumulative run time for this portion, which is expected to be quite dominant,

becomes O(K2). To reduce the resulting complexity, one can employ an improved

search algorithm. In applied mathematics and operations research, there are vast

amount of investigations on the problem commonly referred to as range search

[73]-[74]. Time complexity of advanced (circular) range search algorithms, which

make good use of divide-and-conquer approach, is usually logarithmic in time.

When such an algorithm is employed, the overall complexity of constructing set α

can reduce down to O(K log K).

With respect to the remaining steps, the total number of operations1 at step k can

be estimated as |α(k)|(2n-1)+2N where n refers to the average/typical number of

points in the subsets Sα(k). While it is difficult to determine the cardinality of α(k)

without a specific analysis on the trajectory, one can conjecture2 that |α(k)| would

grow in proportion to K. Furthermore, if n is treated like a constant (as it depends

on neither K nor N), the corresponding complexity of this portion can be

estimated as O(K2+NK). The resulting complexity for the construction of set S

1 A typical operation here includes the computation of (the square of) the Euclidian distance between two points and comparing it to a

certain quantity like r2.
2 Analysis on experimental results for a number of cases (a total of 8) is employed as the basis of assumptions in this study.

 33

would be O(K2). Notice that the presented algorithm will have a quadratic upper

bound whereas its counterpart (MOBI) will attain a cubical upper bound in case

the resolution is to grow in proportion to the density of the points on the base

curve. Finally, the memory requirement in this method can be simply calculated

as O(NK) since sets S and T have to be stored at every step. Therefore, the

resulting memory cost turns to be much smaller in practice if compared to its

predecessor.

3.4.2.2 Creation of Curve Offsets (CCO)

To proceed with the analysis, an assumption on the cardinality of each subset Sk is

needed (with P and r at hand): Let there be n number of points at each subset (on

average) where the expectancy E{n} = 2 for a given case. When |Sk| = n, the

determination of the nearest neighbors for q (until the depleting set Sk runs out of

elements) will take n(n+1)/2 operations at time step k. When n is taken as

constant, the overall time complexity of the presented algorithm boils down to

O(K). Similarly, the memory cost for this stage is O(NK) since S is needed at

every step of the algorithm. Interestingly, both the time complexity and the

memory cost of this algorithm are comparable to those of its counterpart (e.g.

contour tracing algorithm) as described in the previous section.

The fundamental analysis on the presented algorithm reveals that the resulting

algorithm (titled MOBS) could yield a better (i.e. lower) run time complexity (e.g.

quadratic) than its predecessor (MOBI). However, its memory cost of MOBS

would be significantly less. Generally speaking, the presented method could

potentially achieve better performance while circumventing the major drawbacks

of its counterpart.

 34

3.5 Improved Algorithm to Implement MOBS (IMOBS)

Despite the fact that the memory cost of MOBS is significantly decreased as

described in the previous section, its time complexity is quadratic even with the

use of an advanced search algorithm. To develop an improved algorithm with

reduced time complexity, one must focus on the most costly component of

MOBS. Hence, relevant modifications are to be carried out on the CBS portion of

the previous algorithm whereas the second part (i.e. CCO), which is already

linear, will remain intact.

3.5.1 Basic Algorithm

The CBS of this new algorithm to be called IMOBS hereafter constitutes of two

steps:

i. Generation of local boundary points: At this stage, the local boundary

points, which are located at a specified distance (r) from a base point pk,

are computed without considering the interference with the rest of the base

points. To increase the efficiency of this step, the local boundary points are

determined by taking into the consideration the curvature of the base

curve. For this purpose, the change of slope around a base point is utilized.

If the change of slope (χ) is smaller than a predetermined threshold, the

boundary subset (with only two elements) for the base point pk is

constructed conventionally as

Sk =

(x, y)∈ !2 : x = xk ∓
ryk

pk+1 −pk 2

,

y = yk ±
rxk

pk+1 −pk 2

#

$

%
%

&

%
%

'

(

%
%

)

%
%

 (3-18)

 35

Otherwise,

Sk = s∈ T(k) : s−pk+1 2 > r()∧ s−pk-1 2 > r(){ } (3-19)

i. In this technique, the above-mentioned change is simply computed as the

cosine of the angle between two consecutive direction vectors at a

particular base point:

χ = cosΔθk = uk
+ ⋅uk

− (3-20)

where

uk
+ =

pk+1 −pk
pk+1 −pk 2

, uk
− =

pk −pk−1
pk −pk−1 2

 (3-21)

ii. Removal of invalid boundary points: At this step, the invalid elements of

the boundary set are removed. That is, the boundary points that interfere

with the base curve must be discarded from the set S by checking upon the

relevant Euclidian distances. Since this computation for each point

covered by S is extremely costly (as outlined in Section 3.4), a well-known

geometric range search algorithm (called grid search) is employed to

improve the efficiency of the process [74].

For this purpose, the base plane is divided into a grid with M2 (M∈ℤ!)

cells. The indices of the boundary points (i.e. k and the index of the point

in Sk) residing within a particular grid cell are stored in a dynamically

sized array (like MATLAB cell array). Boundary points, which are within

the square (2r×2r) neighborhood centered on a base point pk, are

 36

determined considering the grid cells enclosed within. Hence, if the

Euclidian distance between a particular boundary point (within the

neighborhood of concern) and a specific base point is found to be less than

the offset r, that boundary point is discarded from its associated subset.

Once the feasible boundary set is constructed, the curve offsets are created by re-

sequencing the elements of this set with the utilization of the CCO method

described in the previous section.

3.5.2 Illustration of the Method

The quadratic time complexity of MOBS is reduced with the improved version of

MOBS (a.k.a. IMOBS). In this technique, the main enhancement is on the

creation of boundary set part. The second part (CCO) is the same as it is

developed for MOBS. For a better description of IMOBS, it is employed on a

simple self-intersecting curve (infinity sign) and its steps are illustrated in Figure

3-2. The given self-intersecting trajectory in the first step is discretized in the

second step with 96 base points. Then in the third step, the main part of the

algorithm is employed on the discretized points to generate inner and outer curve

offsets of the given trajectory. At the start point of the trajectory, a circle is

generated according to the density of the original points on the base plane. This

circle can be viewed on the leftmost part of the third step. Then according to the

predefined angle threshold, for each original point it is determined whether to

employ the algorithm of MOBS or to generate offset points at the perpendicular

directions to the line between the two consecutive trajectory points. In the figure,

the red dots indicate that they are generated with the method of MOBS by

utilizing the neighbor points of the corresponding point as shown in (3-19). The

gray offset points on this step are the ones generated with unit normal vectors.

There are now global invalid loops (at the middle of the infinity sign) and invalid

 37

Figure 3-2 Illustration of Steps of the IMOBS

local points (at the start of the trajectory). In order to remove these points with a

low computational effort, the base plane is divided into a grid according to the

predefined dimensions in the fourth step, which is 16 by 16 for this case. The

numbers of points in each cell are illustrated in the fifth step. The invalid points

are removed according to their distances to the original trajectory points. If they

are closer than the offset distance, they are regarded as invalid and removed from

the resulting offset boundary data sets. These resulting offset points are shown in

the sixth step of the figure. After these points are generated, the consecutive ones

are connected to form curve segments by using the nearest neighbor technique.

1 2

3 4

5 6

7 8

 38

The result is presented at the seventh step. Although there should be three closed

curves, there are five different colored curve segments at this point. Thus, further

processing is necessary to get proper offset curves. In the last step of the

algorithm, these curve segments are connected to each other according to the

distances between the start and end points of them.

3.5.3 Complexity Analysis

Since the CCO phase of this new technique is same as that of MOBS, only the run

time of the first stage of the algorithm (i.e. CBS) needs to be analyzed. As a

preliminary operation, all unit direction vectors [see (3-21)] must be computed

(and stored) so as to determine the change of direction at a specific base point. It

is self-evident that the time complexity of accompanying operation grows

linearly: O(K).

At the proceeding step, the boundary points are to be assigned with the utilization

of (3-18) and (3-19). In worst case, N operations need to be carried out to create

the boundary data set for a particular base point (i.e. Sk). Hence, the time

complexity of this step would be O(NK).

Following that, the boundary points interfering with the base points are eliminated

via a geometric grid search. To accomplish that, the domain (i.e. base plane) is

divided into an M-by-M grid. Hence, a table (a.k.a. a hash table), which holds the

indices of the boundary points that reside in a specific grid-cell, is formed first.

Note that despite the fact that the probability of |Sk| being 2 is quite high3, one can

assume that the total number of points covered by S will be NK in the worst case.

Similarly, the construction of this table requires the range check (and assignment)

for every point found in S. Therefore, the time complexity of the corresponding

operation can be inferred as O(NK).

3 This is due to the fact that the registered directional change around a base point is usually quite small and that the boundary points are

likely to be computed via (3-18) rather than (3-19).

 39

Once the table has been created, one determines the boundary data points that are

contained within the square (2r×2r) neighborhood around a base point via simply

checking the grid cells located inside this region. Unfortunately, making general

assumptions on the distribution of the boundary points over the domain

(independent of the test case) is extremely difficult. Note that the straightforward

presumption that the distribution of boundary points over the domain is uniform

leads to the conclusion that the total number of test points inside a square

neighborhood grows on the order of r2K independent of the choice of M. For

every point inside the neighborhood, the Euclidian distance between a base point

and a boundary point needs to be computed and checked whether it is greater than

r or not. Since this procedure is to be repeated for every point in P, the overall

time complexity of the algorithm evidently becomes O(r2K2) ~ O(N2K2).

However, such a result appears to be inconsistent with the tests conducted in this

study.

A more viable approach is to compute the length of boundaries residing inside the

square neighborhood under the presumption that the base curve can be

approximated as a line passing through a particular base point. Consequently, the

boundary length (i.e. the total length of parallel line segments bounded by the

perimeter of the square neighborhood) ranges between 4r(2 1)− and 4r as a

function of the base line’s slope. Provided that the density of the boundary points

is in correlation with that of the base curve, the number of points in the square

neighborhood can be estimated as *4r/δ+ = *2N/π+ [see (3-2)] in the worst case.

The overall time complexity of this step (where the invalid boundary points are

eliminated) will be O(2NK/π) = O(NK). Finally, the time complexity (i.e. the

growth function) of this stage simply becomes O(max{K,NK,NK}) = O(NK)

which is more consistent with the experimental results.

With respect to the memory cost, four arrays are needed to store the base points,

unit direction vectors, boundary points, and the grid-data. The corresponding

memory costs are O(max{K, K, NK, NK}). Hence, the overall memory cost for

this stage is O(NK).

 40

3.6 Adaptive Algorithm to Implement MOBS (AMOBS)

Among the developed curve offset generation algorithms up to now, IMOBS is

the most suitable one for hardware implementation due to its linear in time

complexity. When the method is analyzed deeply, it is noted that there is no need

to generate possible boundary points that are to be eliminated in the upcoming

steps of the algorithm. Thus, a new method is developed, called Adaptive

Algorithm to Implement MOBS (AMOBS), to eliminate this disadvantage of the

IMOBS.

3.6.1 Basic Algorithm

There exist a number of potential problems in MOBS and IMOBS when the

structuring set T(k) has a fixed (constant) number of elements that are equally

distributed around a circle (with a radius r). If the base points are densely packed

while the number of elements is not specified in accordance with the distribution,

some of the elements of T(k) might be eliminated (due to the sparsity of data)

during the process of boundary set construction. As an artifact, various gaps on

the boundary data set may occur. Figure 3-3 illustrates such cases on two different

tool trajectories having diverse attributes. The trajectories in the figure represent a

hand and a star. The number of elements of T(k) in these cases is 75 and the

number of points in the base curves is 10000. As can be inferred from the figure

that there exists no offset boundaries at some specific directions of the original

trajectories. Since the number of elements in T(k) is selected to be 75 (low

compared to the number of points in the original curves), there remains no offset

points at these specific directions after the task of elimination of the invalid offset

points is accomplished.

 41

Figure 3-3 Offsets of Hand (N=125) & Star (N=75)

One obvious solution is to increase the number of elements for T(k) as follows:

N = a 2πr
δ

!

"
"

#

$
$ (3-22)

where a ∈ " is an arbitrary (user selected) constant. However, with such a choice

(where N ∝ K), the overall time complexity of the aforementioned algorithms

becomes too high O(K3) to consider the underlying methods to be practical. As a

second remedy, the probability mass function for the angles of normal (unit)

vectors at the base points can be calculated beforehand. For a given (constant) N,

the elements of T(k) can then be selected with the guidance of this function. The

number of elements of T(k) may be increased at the specific angles where the

probability of valid offset points is high. Unfortunately, such an approach would

still not guarantee the elimination of these “gaps” in cases where N was specified

too low.

 42

A more feasible approach would be to construct T(k) adaptively as a function of

the gradient vectors around a particular base point pk. That is, as illustrated in

Figure 3-4, the arcs (i.e. upper/lower curve-offset segments), centered around pk,

which do not interfere with the boundaries of the neighboring base points (pk-1,

pk+1), could be determined with the utilization of the basic trigonometric

identities. The starting and the ending angles of these segments can be expressed

as

α1
± = tan−1

yk+1 − yk
xk+1 − xk

"

#
$$

%

&
''± cos

−1
pk+1 −pk 2

2r

"

#

$
$

%

&

'
' (3-23)

α2
± = π + tan−1

yk − yk−1
xk − xk−1

"

#
$$

%

&
''∓ cos

−1
pk −pk−1 2
2r

"

#

$
$

%

&

'
' (3-24)

After these angles are determined, the elements of the tool matrix T(k) are

generated according to the following equation:

 (3-25)

The angle ! in the above equation is defined to be in the set A+ and/or A-. These

sets are expressed by the following equations:

 (3-26)

T(k) = (x, y) : x = xk + rcosα, y = yk + rsinα,α ∈ (A+∪ A−){ }

A+ = α1
+ +

δ
2r
+ χ +(i −1) :∀i ∈ !

≤n+

%
&
'

(
)
*

 43

Figure 3-4 Parameters of AMOBS

A− = α2
− +

δ
2r
+ χ −(i −1) :∀i ∈ !

≤n−

%
&
'

(
)
*

 (3-27)

χ ± =
α2

± −α1
± − δ

r

n± −1
 (3-28)

 44

In the above equations, the number of elements in the sets is limited by the

variable !. Its limit is determined by dividing the length of the arc to the specified

distance between the consecutive points in the tool matrix as given in the below

equation

n± =
r α2

± −α1
±

δ

"

#

#
#

$

%

%
%

 (3-29)

Note that when the difference between the angles of the positive or negative side

is less than ! ! and greater than zero, then a point is generated at the middle of

corresponding arc. On the other hand if the angle difference is less than zero, no

point is generated. This exception is handled with the following equation:

A± =
(α1

± +α2
±) / 2{ }, 0 ≤ ±(α2± −α1±) ≤ δ

r

∅, ±(α2
± −α1

±) < 0

$

%
&

'&
 (3-30)

The rest of the algorithm is similar to the MOBS and the IMOBS. The only

difference is that there are not any local invalid points after the generation of

offset boundary due to the adaptive behavior of the algorithm.

3.6.2 Complexity Analysis

Since the CCO phase of this technique is the same as that of the MOBS and the

IMOBS, only the run time of the first stage of the algorithm (i.e. CBS) needs to be

analyzed. For each point in the base set, four angles should be determined first

before the generation of offset boundary points. This step simply has time a

complexity of O(4K). At the preceding step, boundary points are generated

according to the length of the upper and lower arcs. Assuming that there are a

numbers of points in average on the arcs of a base point, the time complexity of

 45

this step would be O(aK). Following that, the boundary points interfering with the

base points are eliminated via a geometric grid search. In the previous chapter, it

was concluded that the time complexity of this section is assumed to be O(NK).

Finally, the time complexity (i.e. the growth function) of this stage simply

becomes O(max{4K,aK,NK}) = O(NK)

With respect to the memory cost, three arrays are needed to store the base points,

boundary points, and the grid-data. The corresponding memory costs are

O(max{K, NK, NK}), Hence, the overall memory cost for this stage is O(NK).

3.7 Polygon Operations (PO)

Polygons based techniques, in which a number of Boolean operations such as

union, intersection, and difference could be performed on two polygons (with

arbitrary shape) for various specific purposes, find extensive use in computer-

aided design [75], computer graphics [76]-[77], geodesic sciences [78]-[79], and

more. However, it is somewhat neglected in the area of curve offset generation.

3.7.1 Basic Algorithm

Polygon operations are utilized to form curve offsets in this study since there exist

various algorithms suitable for the generation of curve offsets and their software

packages are also available online. These algorithms are named as polygon

clipping/intersection [79], polygon overlay [78], Boolean operations on polygons

[77], etc.

With an efficient processing technique, the polygon operations could be a viable

alternative to generate curve offsets using a base set. To illustrate the application,

let us first describe the polygon as an ordered set of vertices listed in counter-

clockwise order:

 46

Q ={q1, q2 ,… ,qN}={(xq,1, yq,1),(xq,2 , yq,2) ,… ,(xq,N , yq,N)} (3-22)

Here, the edges , , , ,1 2 2 3 N-1 N N 1q q q q q q q qK implicitly define the boundaries (edges) of

this polygon. To produce the curve offset, two polygons are needed: the first

polygon (T) describes the contour of a virtual tool (with a radius r) which is to

travel along the base curve. The second polygon (Q) describes the boundaries

that are created dynamically by this tool T as it sweeps through the points in the

base data set P (see Section 3.2 for definitions). The union of T at every point in

P will yield the desired the result:

Q = T(k)
k=1

K

∪ (3-23)

Or, as a casual relationship,

Q(k) :=Q(k −1)∪T(k) (3-24)

where Q(k), Q(k-1) refer to the states of Q polygon set/list (in growth) at steps k

and k-1 where Q(0) := ∅. Similarly, T(k) indicates the tool polygon set (i.e.

vertex list) defined around pk and can formed using (13).

It is critical to notice that the Boolean operations defined on polygons (such as

union, intersection, difference, complement, etc.) are fundamentally different than

the oneson sets. The algorithms in the literature [77], [80] generally perform the

union of polygons in three consecutive steps: i) determination of vertices lying

inside each polygon (to be purged from both polygons); ii) calculation of

intersection points (to be added); iii) creation of vertices for the new polygon

using the information generated at former steps.

The following stage is the extraction of the desired curve offset from the polygon

Q. Once the starting- and ending points for the curve offset is specified [see (9)],

 47

one can directly identify subsequence of Q lying between these points. However,

care on the direction of the progression for the vertices must be exercised to

determine the correct order of points on the curve offset. The identified

subsequence frequently requires inversion/reversion (or “flipping over”). It is

critical to note that for self-intersecting curves, independent polygons enclosed by

Q oftentimes emerge as the union of polygons proceeds. Most algorithms handle

this instance by creating an extra polygon (a.k.a. interior polygon/”hole”)

automatically.

3.7.2 Complexity Analysis

Just like the morphological operations, the cost associated with this method can be

analyzed in two stages.

3.7.2.1 Union Operations on Polygons

The run time of the proposed method depends on the selected algorithm

performing Boolean operations on polygons. General purpose algorithms with

different complexities are available in the literature [76], [77], [78]. For instance,

Martínez et al. [78] reports the time complexity of their method as O((n+m)log

n)where n refers to the total number of edges for all the polygons involved in the

operation while m denotes the number of intersections. Assuming Q(k) constitutes

[N + 2(k-1)] edges on average while T(k) has N edges, the total number of edges

becomes n = 2(N+k–1). If the expectancy for the number of intersections (m) is 2,

the time complexity of the algorithm at step k will be O((N+k)log(2(N+k–1))).

Since polygon operations on Q are to be performed for each point in P, the upper

bound of the polygon based technique in that case could be estimated as

O(K2log(K)) provided that K>>N.

In this study, the general purpose technique presented by Murta [81] (a.k.a. GPC)

that employs the polygon clipping algorithm of Vatti [82] (in part) is preferred as

 48

this method is well-established in the literature. Furthermore, GPC intrinsically

handles the interior polygons formed as a consequence of self-intersection.

Unfortunately, since the Vatti’s algorithm is very complex, its “asymptotical”

analysis has not been performed, to this day [83]. However, considering the

numerical assessments in the literature (along with the ones conducted in this

study), one can postulate the complexity of this algorithm as O(n2) ~ O((N+k)2).

Consequently, the overall complexity of PO technique with the above-mentioned

algorithm becomes O(K(N+K)2) ~ O(K3).

With respect to the memory cost, since all polygons (Q and T) need to be stored

(independent of the polygon overlay algorithm selected), the resulting cost simply

becomes O(K+N).

3.7.2.2 Generation of Curve Offsets

Once the union operations on Q are complete, the determination of correct offset

can be done by querying the starting- and ending positions of a specific curve

offset. Assuming that the polygon Q have (2K + N) vertices on average, each

query can be performed in linear time: O(2(2K+N)). Hence, since K>>N, the

resulting time complexity would be O(K). At this step, only Q needs to be stored.

Therefore, the corresponding memory cost will be O(2K+N) ∼ O(K).

3.8 Experimental Evaluation

The COG techniques along with their implementation/complexity issues have

been elaborated in the previous sections. Hence, Table 3-3 summarizes the

important attributes of the techniques discussed in this chapter. To evaluate the

above-mentioned methods, two test cases (titled Club and Doodle) are considered

as illustrated in Figure 3-5. Geometric parameters of the trajectories associated

with two cases are given in Table 3-4. Note that the test case “Club” describes a

complex closed trajectory whose offsets are likely to self-intersect for certain

 49

offsetting distances while the one titled “Doodle”, which is adapted from Liu et al.

[84], represents a self-intersecting tool path.

Table 3-3 Important Attributes of the Methods Considered

Method Memory Cost Time Complexity

MOBI O(M1M2) O(N2K)

MOBS O(NK) O(K2)

IMOBS O(NK) O(NK)

AMOBS O(NK) O(NK)

PO O(K+N) O(K3)

Table 3-4 Summary of the Test Cases and Selected Parameters

Case Size [mm×mm] K δ [µm]

Club 100 × 100 10000 47

Doodle 100 × 60 20000 37.4

The algorithms MOBS, IMOBS, and PO are implemented and tested in MATLAB

2012b running on two different platforms: iMac (OS X 10.9) and PC (Windows

7/32 bit). However, due to high memory cost associated with MOBI, its

performance could not be evaluated experimentally. To be specific, (for a pixel

size of 1×1 µm) the memory required to store the binary images for the test cases

 50

alone are 1.82 GB (Club) and 1.23 GB (Doodle) respectively whereas the memory

available for all arrays in MATLAB (for both platforms) was limited to 1.37 GB.

With respect to the implementations, for the techniques MOBS, IMOBS and

AMOBS, the number of points on the SE is determined via N = *2πr/δ+ in order to

avoid gaps on the contour due to insufficient number of boundary points. In the

tests, the grid size for IMOBS and AMOBS is selected as 256×256 (M = 256). It

is critical to note that the evaluation of PO is carried out with the utilization of the

method of Murta [81] where the C++ source code developed to implement the

algorithm is available online. To utilize this (open-source) C++ code, it has to be

compiled to create a dynamic link library (DLL) so that corresponding functions

could be directly called from the MATLAB environment.

First of all, successive curve offsets, which are 2.5 mm apart at the left- and right-

hand side of the base curve, are generated by different methods. The results are

presented in Figure 3-5. Since the curve offsets produced by a certain technique

do not exhibit any visually discernable geometric deviations if compared to the

others (at least within the given scale), only the curves produced by the MOBS

method are presented in Figure 3-5 to avoid cluttering. It is critical to note that

some commercial CAD packages do not yield acceptable results for these two

cases. According to the experiments conducted in this chapter, SolidWorks (2010)

does not produce any inner offsets for the Club case when the offset curves

commence to self-intersect at specific distances. Similarly, for the Doodle case, it

totally fails to generate the offset curves at any distance and direction. Liu et al.

[84] reports some missing offsets in AutoCAD for the very same case.

 51

Figure 3-5 Base curves (tool trajectories) and curve offsets produced by MOBS

for two test cases

It is critical to note that as mentioned in Section 3.4, the MATLAB function

chain (used by MOBS, IMOBS, and AMOBS) generally yields segmented

curve offsets for self-intersecting cases due to sequential processing of the set

elements. For instance, 17 offsets are to be produced for the Doddle case when r =

2.5 mm while this function yields 39 segments. Consequently, these segmented

offsets are simply merged via the algorithm described in Section 3.4.

For quantitative cost analysis, the memory requirements and the execution times

of the afore-mentioned methods are recorded for the test case Doodle (with r = 1

mm) as shown in Figure 3-6, Figure 3-7 and Figure 3-8. As can be observed from

the figures, the obtained results appear to be in good agreement with the formal

analysis conducted in the previous sections despite the fact the developed

MATLAB code (employing advanced data structures), by no means, can be

regarded as high-fidelity implementations of the presented algorithms.

For quantitative cost analysis, the AMOBS is evaluated under the same conditions

with IMOBS. Figure 3-7 represents the results of time complexity analysis. As

can be inferred from the figure that the AMOBS is also linear in time like IMOBS

as expected and its slope is a bit less than the slope of IMOBS for the CBS parts

 52

of the algorithms. On the other hand, the difference between the slopes of the

CCO parts of the algorithms is high compared to the difference between the

slopes of CBS parts. Figure 3-7 also represents the memory costs of the CBS parts

of the algorithms IMOBS and AMOBS. The memory requirement of IMOBS is

seven times the requirement of AMOBS. This arises from the fact that variable

structure of the CCO part of IMOBS is the same as with the previous version of

the algorithm (MOBS). With the introduction of AMOBS, another CCO algorithm

is also developed and this new CCO now requires different type of variable

structures. In the previous versions of the CCO, for each base points (K) an array

of valid points are supplied to the CCO via cell arrays. On the other hand, in the

CCO of the AMOBS the valid boundary points are supplied to the function in an

M by M cell structure. With this approach, the size of the cell structure given to

the CCO is kept constant as opposed to the CCO of the IMOBS and MOBS.

 53

Figure 3-6 Numerical Cost Evaluation for MOBS and IMOBS

 54

Figure 3-7 Comparison of IMOBS and AMOBS

 55

Figure 3-8 Numerical Cost Evaluation of the PO Technique

Since the geometric accuracy of the curve offsets produced by different

techniques are of extreme importance for CNC machine tool applications, the

deviations of curve offsets from the ideal geometry must be rigorously assessed.

However, a reference curve (representing the ideal geometry) for each offset is

needed for this purpose. Unfortunately, a well established and general purpose

technique to generate these reference offsets (to desired accuracy) does not exist

in the current state-of-the art. Therefore, the base curve is again utilized to assess

the geometric accuracy. This time, a smooth base curve set (P*), which

constitutes greater number of points than the original (e.g. |P*| = K* > K), is

generated for each case not only to minimize the quantization effects/noise but

also to detect the tool interference (i.e. undercut/overcut on the contour) that

might arise in between two successive points of the original base set. To produce

such a reference set, the original base sequence is sampled at a higher rate (i.e. 4

times) via linear interpolation techniques. Furthermore, a third order Butterworth

filter is utilized to filter the resulting time sequence twice (i.e. forward and

 56

backward in time) to eliminate the phase distortion. The deviation from the ideal

geometry is determined via shear computation as

e(j) = min
k∈!≤K*

qi,j −pk
*

2{ }− r (3-25)

where pk
* refers to a point in P*; qi,j is the jth element of the offset curve set Qi

(j∈"≤|Qi|). Note that if e(j) < 0, the surface (at some point) is expected to be

overcut when the tool (with a radius r) is located at the tested offset point.

Similarly, e(j) ≥ 0 denotes that some excess material is to be left on the surface.

For r ∈ {-12.5, -10, -7.5, -5, -2.5, 2.5, 5, 7.5, 10, 12.5} (in mm), the geometric

deviations associated with each offset are computed and 2D-interpolated to create

a geometric error field. Figure 3-9, Figure 3-10, Figure 3-11, and Figure 3-12

illustrate these results for MOBS, IMOBS, AMOBS, and PO. As can be observed

from the contour plots, the errors, which indicate by-and-large overcuts on the

contour, generally tend to grow with the increasing radius. Similarly, the error is

on the rise where sharp changes in the slope of the base curve take place.

For quantitative comparison, the statistical attributes (minimum, maximum, mean,

and standard deviation) of these geometric errors at different offsetting distance

are shown in Figure 3-13 and Figure 3-14 for the test cases Club and Doodle.

Note that the plots of the second case (Doodle) start at -10 mm owing to the fact

that no offset points are produced when r = -12.5 mm. As can be seen from the

figures, the geometric errors (mean, min) for all techniques are well within the

accepted tolerance band of 10 µm. In general, the MOBS technique yields the

lowest errors (almost in every category) if compared to the rest due to the fact that

more densely populated boundary data set is produced in the CBS phase of

MOBS. Another conclusion can be drawn from the figure that the geometric

errors of the test case Club are usually higher than those of the other case

regardless of the algorithm. This is due to the fact that the Club curve constitutes

swifter turns than the Doodle.

 57

Figure 3-9 Geometric Errors on All Curve Offsets Produced by MOBS

 58

Figure 3-10 Geometric Errors on All Curve Offsets Produced by IMOBS

 59

Figure 3-11 Geometric Errors on All Curve Offsets Produced by AMOBS

 60

Figure 3-12 Geometric Errors on All Curve Offsets Produced by PO

 61

Figure 3-13 Statistical Attributes of Geometric Errors at Different Offsetting

Distance for the Test Case Club

 62

Figure 3-14 Statistical Attributes of Geometric Errors at Different Offsetting

Distance for the Test Case Doodle

 63

3.9 Discussion and Conclusions

In this chapter, various unconventional techniques are considered to generate

curve offsets. The algorithms, which are analyzed in terms of run-time complexity

and memory cost, are rigorously tested via two experimental cases. The key

points of the study can be summarized as follows:

• All methods presented in this chapter employ the basic idea that the

envelopes of a circular SE whose center sweeps across a generator curve

constitute all curve offsets of that progenitor. This approach implicitly

eradicates the need for iterative offset calculation at “sharp” turns on the base

curve.

• Despite its ease of implementation, the MOBI method suffers heavily from

the curse of dimensionality. For most real-world applications, the memory

requirement of this technique, which could be on the order of TB, surpasses

the resources of most computing platforms today.

• In MOBS, this memory problem is surmounted by employing the

morphological operations on the boundary data sets (rather than the binary

image itself). Even though the memory requirement for this has considerably

decreased, the upper bound of its run-time complexity is found to be

quadratic. However, the technique, which affectively handles all exceptional

cases in COG, is still viable to generate offsets for practical applications

where the size of tool trajectories is moderate.

• The performance of MOBS, to a certain extent, depends on the number of

elements (N) on the structuring set (T). Even though N can be arbitrarily

selected by the users, the CBS portion may yield unpopulated boundaries in

the domain if the density of points in the structuring set is low. To overcome

this problem, N needs to be adjusted dynamically based on the point density

in the base set.

• The time complexity problem of MOBS is further reduced by the new

technique proposed in this study. The enhanced method called IMOBS takes

a different approach to generate feasible boundary points than its predecessor

 64

and eventually employs a grid search technique to eliminate invalid boundary

points in a global sense. The technique is found to be adequate for the tool

trajectories with large number samples (>>100,000).

• The CCO portion of MOBS (and IMOBS) processes the boundary points in S

sequentially to form curve offsets. Since this approach does not take into

account the global distribution of the boundary points, some segmented curve

offsets may occur for self-intersecting base curves. As a solution, the

presented techniques combine these (isolated) curve patches through the

cross-evaluation of the proximities among the extreme elements of various

offset sets. To avoid this post-processing stage, one might consider re-

sequencing of the points in S globally with the utilization of grid search

techniques discussed in Section 3.5. However, this aspect is left open for

future studies.

• After developing different curve offset generation algorithms, it is realized

that there is no need to generate boundary points that are to be removed due

to the local boundary criteria. AMOBS is developed on this purpose. It only

generates boundary points that do not interfere with the neighbor base points.

Beside this advantage of the algorithm, it also eliminates the risk of not

generating boundary points at directions of the base curve.

• The last approach titled PO is based on Boolean operations on polygons

where they have been widely applied to various engineering fields from

computer graphics to geosciences. This study adopts this popular technique to

generate curve offsets and evaluates the applicability of the method. Despite

its high time complexity, the method has a significant potential for

improvement. Unlike MOBS, this method is not sensitive to the selection of

N (i.e. number of vertices on T) owing to the fact that apart from elimination

of vertices (i.e. boundary points), the technique automatically creates new

vertices at the intersections (of T and Q). Hence, the problem of unpopulated

boundary regions is intrinsically handled. Furthermore, if tool polygon T is

restructured to have an elliptical shape, the technique could easily

accommodate the effect of the SE sweeping through the base points.

 65

• When all the approaches discussed in the chapter are considered, AMOBS, as

is, appears to be the most viable technique for hardware implementations and

could be employed as an integral part of a discrete-time command generator

for CNC machine tools.

• Except for MOBI, the techniques yield unevenly distributed points on the

boundaries. Hence, one needs to resample spatially the extracted sequences to

obtain uniformly distributed points on the resultant curve offsets.

• The numerical complexity analysis revealed that the theoretical complexity

analyses are in agreement with the experiments. One of the most important

things about the linearity of the algorithms (IMOBS and AMOBS) is that it

tends to be quadratic when the size of the hash table is decreased. 256 by 256

is a good choice for both of the methods.

• Geometric errors of the methods are also calculated in order to compare with

performances of the other methods. It is observed that AMOBS performs

better in terms of geometric errors in both test cases. This is due to the fact

that the possible boundary points are located intentionally in this method. The

angles of the possible boundary points at each base point are different

depending on the interference with the neighbor points.

• Since the algorithms behind the commercial CAD/CAM software packages

(such as AutoCAD, CorelDRAW, PowerMILL, SolidWorks, etc.), which are

known to deal with large generator curves effectively, are not revealed [85],

the performances of the algorithms discussed in this chapter could not be

compared to those of these packages in terms of run-time and memory cost

(under same test conditions). It is important to note that most commercial

CAD packages do fail to yield acceptable results for self-intersecting cases

(such as Doodle). Consequently, once can postulate that if implemented in

C++, the new technique IMOBS may achieve similar/better overall

performance than those of the commercial software packages.

 66

 67

CHAPTER 4

DIRECT COMMAND GENERATION FOR CNC MACHINERY BASED

ON DATA COMPRESSION TECHNIQUES

This chapter of the thesis presents a direct command generation technique for

digital motion control systems. In this paradigm, higher-order differences of a

given trajectory (i.e. position) are calculated and the resulting sequence is

compacted via data compression techniques. The overall method is capable of

generating trajectory data at variable rates in forward- and reverse directions with

the utilization of a linear interpolator. As a part of the command generation

scheme, the chapter also proposes a new data compression technique titled as

ΔY10. Apart from this new method, the performances of the proposed generator

employing different compression algorithms (such as Huffman coding, Arithmetic

coding, LZW, and run length encoding) are also evaluated through three test

cases. The chapter illustrates that the ΔY10 technique, which is suitable for real-

time hardware implementation, exhibits satisfactory performance in terms of data

compaction achieved in the test cases considered.

 68

4.1 Introduction

Command generators (CGs) are indispensable components of digital motion

control systems such as computer numerical control (CNC) units, industrial

motion control cards, motor control modules, advanced servo-motor drivers, etc.

Their main function is to calculate/feed the reference positions (a.k.a. “set points”)

on a prescribed trajectory to the discrete-time axis-motion controllers at the

beginning of each sampling (i.e. servo-update) period.

For most production machinery such as CNC machine tools, robotic manipulators,

coordinate measuring machines, and rapid prototyping machines, the motion of

the end-effector/tool along with the accompanying machine functions is defined

by control languages with different features and abstraction levels that comply

with various standards such as ISO 6983 (EIA 274D) [86], BCL (EIA 494C) [87],

STEP-NC (ISO 10303-238) [88], and DMIS [89]. For instance, the numerical

control (NC) language as described by ISO 6983 (a.k.a. “G-codes”) is widely

adapted in manufacturing industry and defines the trajectory in terms of line-, arc-

, and complex curve segments (parabola, helix, spline, etc.). In a conventional

CNC system, the task of the CG is typically to parse a NC code employing these

primitives as well as the complementary data on fixtures and tools. During the

interpretation phase, the CG needs to take into account several factors such as the

geometry of the selected tool, interference along the impending path, default

feedrate, acceleration/deceleration limits of the machine axes, etc. Once the

parameters of particular section on the trajectory are extracted, a real-time (RT)

interpolator is invoked to produce feasible reference/command signals such as

position, velocity, and/or acceleration as required by the axis controllers.

A simple solution to the disadvantages described in the introductory chapter is to

generate the reference positions in an offline fashion by sampling the tool

trajectory at the servo-update rate for a given set of tools/conditions. Once the

resulting data are stored in the main memory of the controller unit, the tool

reference positions could be directly retrieved by the axis controllers. This

scheme, in turn, not only simplifies the control architecture but also increases the

 69

efficiency of the CG. Despite the fact that this direct approach normally yields a

huge amount of data to be stored, the data size becomes hardly a problem owing

to the fact that versatile memory devices (SDRAM, SRAM, EEPROM, SD cards,

etc) with large capacity (> 1 GB) are nowadays widely available in the market at

low costs. Furthermore, the motion command data in manufacturing/industrial

applications are highly redundant: i) the tool trajectory is mostly symmetrical due

to the symmetry of the workpiece; ii) the simple offsets among the successive tool

paths frequently appear in manufacturing (machining, cutting, grinding, welding,

3D printing, assembly, etc) operations; iii) repetitious operations are prevalent in

such tasks. Consequently, the size of raw data could be reduced via data

compression techniques.

Another critical feature of this approach is that it effectively eliminates the NC

programs, which serve as command transmission media residing at an

intermediate level. Hence, the directly coded (and compressed) trajectory data can

be regarded as universal/portable and do not require any modification from one

machine tool to another. Consequently, the same code (i.e. file) could be run on

all equivalent CNC machine tools. Note that the closest analogy to the presented

approach is the audio MPEG Layer 3 (MP3) encoding/decoding format. The

coded audio file could be played on almost all playback devices produced by

different manufacturers. However, the MP3 decoders on these devices do generate

the digital data (in two audio channels) in the same way.

For some CNC applications (which do not require any dynamic manipulation on

the trajectory during operations); this approach may eliminate the need for

preparing/interpreting NC programs which serve as intermediate command-

transmission media. Hence, the directly coded trajectory data as an entity/object

could be regarded as portable at the controller level and may be directly utilized

by the machines with equivalent configurations.

Consequently, there is a potential for devising simple yet effective CGs for

industrial motion control systems by fully taking advantage of the current state-of-

the-art. Hence, the main motivation of this chapter is to look deeper into this

 70

aspect that has not been fully explored in the technical literature and to develop a

relevant CG paradigm for a wide spectrum of computer controlled machinery.

The remainder of the chapter is structured as follows: Section 2 introduces the

proposed command generation method. Section 3 discusses the compression

performance of the method and compares with the commonly used compression

algorithms. Section 4 focuses on the linear interpolator utilized in the command

generator. Section 5 discusses the applicability of Markov Chains for modeling

the command trajectory data and the chapter is concluded with Section 6.

4.2 Proposed Method

The method adopted in this chapter is a natural extension of the ones presented by

[28]-[29]. The technique specifically relies on the lossless compression (and

decompression) of the higher-order differenced data. Figure 4-1 illustrates the

overall block diagram of the proposed CG scheme where the computer aided

manufacturing (CAM) software along with a special post-processor are utilized to

generate the commanded trajectory (i.e. position) directly. Note that for most

CNC machine systems employing digital position sensors (such as linear/rotary

optical position encoders); the reference trajectories, which must satisfy Cn (n ∈

Z+) continuity, can be conveniently represented as signed-integer (i.e. position

encoder count) sequences. The method in this chapter is developed to exploit such

temporal sequences to produce reference trajectories efficiently even on a control

system with modest resources in real-time. The details of the paradigm follow.

4.2.1 Differencing

Since the servo-loop update rates for industrial motion controllers are

continuously on the rise (>10 kHz), the direct storage of the lengthy command

sequences becomes an unviable feat even with the large (>1 GB) memory devices

(SRAM, SDRAM, EEPROM, SD Cards, etc) used in the current state-of-the-art.

 71

For a five-axis CNC machine tool with a servo-update (sampling) rate of 16 kHz,

the memory required to store a 32-bit position sequence (per hour) becomes

16000 [samples/s] × 5 axes × 4 [bytes] × 3600 [s/hour] ÷ 10243 [bytes/GB] ≅ 1

[GB/hour]. Furthermore, transferring such bulky sequences to the memory

devices on the controllers (or motor drivers) through a standard serial

communication interface (such as RS-422/485, Ethernet/UDP, CAN, SERCOS,

etc.) could also take considerable time (minutes).

Relative data encoding methods [27], which involve higher-order differences of

discrete-time integer sequences, can help decrease the memory space for storage

as the magnitudes in the differenced data set tend to drop off substantially in

typical industrial applications. For instance, the higher-order differences of a

command sequence {y(k)} can be expressed as

∇y = y k()− y k −1() = (1− q−1)y(k)
∇2y =∇y k()−∇y k −1() = (1− q−1)2 y(k)
!

∇n y =∇n−1y k()−∇n−1y k −1() = (1− q−1)n y(k)

 (4-1)

where k is the time index; ∇ny is the nth order difference while q-1 denotes the

backward-time shift operator. How the range of differentiated data changes as a

function of the order (n) certainly depends on the context of the application (i.e.

nature of the information source). For instance, [28] investigate the effect of order

by considering various motion command sequences for a 6 degree-of-freedom

(DOF) robotic manipulator. As illustrated in Figure 4-2, [28] shows that the

memory usage (i.e. magnitude/range of the differentiated data) tends to increase

due to the fact that the sign of each data point frequently changes in an alternating

fashion after the fourth order difference. The best solution (in terms of memory

requirement) is usually achieved when the order is 3 or 4 for such applications.

Once the differentiated data along with the initial values are provided; the original

data can be conveniently extracted using a number of cascaded accumulators as

 72

shown in Figure 4-1. In this scheme, lower-order differences, which are

commonly utilized in the feedforward controllers of the advanced motion

controller topologies [90], can be also computed as by-products. In fact, without

the computation of the intermediate differences, the original sequence can be

directly generated by using the following finite difference equation:

() 1(1) ()ny k q x k−= − (4-2)

where x(k) ≡ ∇ny(k). However, if zero initial conditions [i.e. y(-1) = y(-2) = ... =

y(-n) = 0] are considered, the start-off values of x(i) for i ∈ {0, 1, ..., n-1} must be

calculated by (4-1) accordingly. It is interesting to note that one of the most

successful approaches in the NC technology was to generate the tool trajectory in

an incremental fashion with the utilization of digital integrators (see [1]). Hence,

the proposed scheme can be regarded as a revisit to this former technique.

 73

Fi
gu

re
 4

-1
 S

im
pl

ifi
ed

 B
lo

ck
 D

ia
gr

am
 fo

r t
he

 C
om

m
an

d
G

en
er

at
io

n
Sc

he
m

e

 74

Figure 4-2 The Effect of Order on the Range of Differentiated Sequence [28]

4.2.2 Data compression/decompression via ΔY10 technique

Despite the fact that differencing can reduce the size of the original command

sequence, the processed data, which have considerably redundancy, can further be

compacted through universal (lossless) compression algorithms such as HC [91],

Arithmetic Coding (AC) [92], and Lempel-Ziv-Welch (LZW) [93]. As an

alternative, a simple (variable-length) compression technique (called ΔY) is

adapted in this chapter. This relative encoding technique, which was originally

 75

proposed by [28], has continued to evolve in time [29]. The one proposed in this

chapter (called ΔY10) is an enhanced version that encodes the repeated (zero)

patterns found in the target sequence (i.e. carries out run length encoding of

zeros). The basic idea behind this paradigm is that when the higher-order

differences of a reference trajectory (i.e. position sequence) is obtained; the

(integer) values in the resulting sets do decrease considerably. Since most motion

control applications require constant velocity along the traced trajectory, the

majority of the differentiated data is likely to be zero while the rest is composed

of small integers in which the probability of occurrence is inversely correlated

with their magnitudes. Considering that the representation of a small integer

number would require fewer bits, the difference data would take up significantly

less memory if compared to the original data set.

Unlike entropy-coding based (general) compression techniques like HC, one can

directly encode the difference data in this technique without calculating the

probability of occurrence for the processed data and/or creating a corresponding

dictionary (i.e. a binary tree) owing to the fact that the special requirements

associated with the motion control applications (due to operational concerns)

tightly dictate the statistical attributes of the data beforehand.

4.2.2.1 Encoding Process

The compressed code in ΔY10 technique is divided into five fields: i) Header; ii)

Amplitude; iii) Sign; iv) Length; v) Zero. In this technique, the Amplitude Field

(AF) encodes the absolute values of the data (i.e. unsigned integers) sequentially

as Variable-Length Binary Numbers (VLBNs) whereas the Sign Field (SF)

encodes sign bits of the sequence: 0 and 1 refer to positive- and negative numbers

respectively. If the magnitude of a sample is zero, no sign bit is assigned for this

case. Since the resulting binary sequence in the AF constitute VLBNs in order,

another field called Length Field (LF), which yields the bit-length of each value in

the AF, needs to be formed to extract the data. This field simply contains

 76

sequences of 1’s and 0’s in an alternating manner. The bit-length of a particular

number in the AF can be detected by simply counting the bits in between two

consecutive transitions (0-to-1 or 1-to-0) in the LF. Note that unlike ΔY, a fourth

field called Zero Field (ZF) is utilized to represent the number of consecutive

zeros (i.e. so-called natural elements in delta encoding) encountered in the series.

That is, the number of zeros is coded as a VLBN inside this field. The bit-length

of each VLBN in this field is simply indicated by the number of zeros appended

to the AF. Figure 4-3 illustrates a typical encoding process. In this technique, the

memory (M) needed to represent a zero sequence (in bits) becomes

{ }23 log (1)zM ceil N= ⋅ +
(4-3)

where ceil{⋅} is the ceiling function and Nz (>1) denotes the number of zero

elements in the sequence. Considering that the original ΔY technique requires 2Nz

bits to describe the same sequence, the reduction in memory space could be quite

significant for even small zero sequences. Lastly, the order of differencing, the

initial conditions of the accumulators, along with the length of each individual

field are stored as fixed length binary numbers in a special field called header.

The pseudo-code given in Table 4-1 describes the encoding process of the

elaborated technique.

4.2.2.2Decoding Process

The decoding process of ΔY10 method is even simpler than encoding. Since the

data residing in the AF are coded as VLBNs, the length of each number must be

decoded first by counting the bits in between two consecutive bit transitions

encountered in the LF. After the absolute value of a particular number is obtained

from the AF, the corresponding sign is simply fetched from the SF to produce the

corresponding number as a signed integer. Note that if the value of a number is

 77

found to be zero while its length (as indicated by the LF) is greater than 1, a

number of consecutive zero elements are generated based on the number (of

repetitions) decoded from the ZF. In the meantime, the Initial Conditions (ICs) are

transferred to the accumulators so that the original sequence (i.e. position) can be

generated by accumulating the extracted data in order. The pseudo-code shown in

Table 4-2 elaborates this decoding process.

Figure 4-3 Encoding of a Sample Sequence via ΔY10 Technique

 78

Table 4-1 Pseudo-code for Encoding Process of DY10 Technique

Initialize empty (binary number) strings: AF,LF,ZF,SF; Let Q :=
12; i := 1; j:=1;

D := (N)th order diff. of array Y (signed integer);

Calculate initial values:

 IC[1] := Y[1]; IC[2 := Y[2]–Y[1]; …

Find zero sequences in D and create two arrays: Z, ZI;

/* Z is an array storing the lengths of zero sequences while
array ZI stores starting addresses */

while (i ≤ length(D)) {

 if (D[i] ≠ 0) {

 amp := dec_to_bin(abs(D[i]));

 AF := AF + amp; m := length(amp);

 len := string with m number of Q;

 if (D[i] > 0)

 {SF := SF + 02;}

 else

 {SF := SF + 12;}

 }

 else {

 if (i = ZI[j]) {

 k := ceil(log(Z[j]+1)/log(2));

 amp := string with k number of 02; AF := AF + amp;

 len := string with k number of Q;

 ZF := ZF + dec_to_bin(k);

 i := i + Z[j] – 1; j := j + 1;}

 else {

 AF := AF + 02; len := Q;}

 }

 i := i + 1; LF := LF + len; Q := not(Q);

}

Convert AF, LF, RF, SF to integer number arrays;

 79

Table 4-2 Pseudo-code for Decoding Process of ΔY10 Technique

Convert int arrays to binary number strings: AF,LF,ZF,SF;

LF := LF + not(LF[end]);

Initialize D and Y arrays;

Let Q := 12; i := 0; j := 1; k := 1; cs := 1; cz := 1;

while (j ≤ length(LF)) {

 i := j;

 while (LF[j] = Q) {j := j + 1;}

 Q := not(Q);

 seq := portion of AF string lying between i and (j-1);

 L := j – i;

 amp := bin_to_dec(seq);

 if (amp > 0) {

 if (SF[cs] = 02) {

 D[k]:=amp;}

 else {

 D[k]:= -amp;}

 cs := cs + 1; k := k + 1;}

 else {

 if (i = (j-1)) {

 D[k]:= 0; k := k + 1;}

 else {

 seq := portion of ZF string lying between cz and (cz+L-1);

 len := bin_to_dec(seq); cz := cz + L;

 for i := 1 to len {

 D[k] := 0; k := k + 1;}

 }

 }

}

Using IC and D arrays, compute Y by successive accumulations;

 80

4.2.3 Linear Interpolation

In CNC applications, the speed (i.e. feedrate) through the course of motion is

generally modified by external input (like feedrate override). Under some extreme

cases (such as the control scheme of an electro-discharge machine), it might be

desirable to reverse the direction of motion as dictated by an external device.

Therefore, the proposed CG method is to be augmented to accommodate a

variable feedrate input. Figure 4-4 depicts the block diagram of the proposed CG

as a system-on-chip (SOC) application.

Figure 4-4 SOC Implementation of the Proposed Command Generation Paradigm

 81

With this property, the users will be able to change the rate of command

generation in both (forward and reverse) directions. During generation phase,

since there is a need for the intermediate command values, a linear interpolator

should be incorporated to the design. That is, this unit is to interpolate between the

two decoded command values based on the following expressions:

ak = ak−1+ fk mod fmax() (4-4a)

m :=
m −1, ak−1 + fk < 0

m +1, ak−1 + fk > fmax

"
#
$

%$
 (4-4b)

uk = um−1+
um −um−1()ak

fmax
 (4-5)

where u represents the decoded commands at the interval m ∈ {0, 1, …, N}; k is

the time index. Similarly, fk∈ {–fmax,…-1, 0, 1, … fmax} indicates the current value

of the feedrate input to the system while fmax∈ Z+ denotes the maximum feedrate

at which commands could be generated. Note that the variable (ak) in (4-5)

essentially serves as a time scaling factor.

4.3 Compression Performance

To study the feasibility of the proposed CG, three sample applications are taken

into account:

1. Stencil cutting of a roundabout road sign via 6-DOF robotic manipulator

(i.e. Unimation PUMA 560).

2. Stencil cutting of a roundabout road sign via a three-axis CNC router.

3. Finishing of a plastic injection mold for a shampoo bottle using a high

performance CNC vertical machining center.

 82

The trajectories generated for the above-mentioned applications are illustrated in

Figure 4-5 while their important attributes are summarized in Table 4-3. As can be

seen from the table, the differenced data set cannot be represented less than 11

bits (or 21 bits depending on the case). Trajectories shown in Figure 4-5 are

represented as integer number sequences in which the tool positions are

essentially registered as encoder counts.

Table 4-3 Attributes of the Test Cases Considered

Test Case: 1 2 3

Number of Axes 6 (revolute) 3 (prismatic) 3 (prismatic) + PLC

Position Resolution 40000 cts/rev 1000 cts/mm 4000 cts/mm

Samples / Axis 1575 1575 904294

Sampling Period [s] 0.05 0.05 0.001

Command Duration [s] 78.75 78.75 904.294

Range of Data [Byte] 3 4 3 (4 bytes for PLC)

Range of Data (∇) [bit] 15 21 11

Range of Data (∇2) [bit] 16 21 11

Total Size of Data [kB] 27.686 18.457 11480

For the Case 3, (apart from axis-drives), the auxiliary units of the machine (such

as the spindle drive, the coolant control unit, the automatic tool changer, the tool

clamp, etc.) must be commanded during the machining operation. To that end, 32-

bit data channel, which is referred to as Programmable Logic Controller (PLC)

channel, is added as the fourth axis. In this channel,

16-bit signed integer represents the current spindle speed with one revolution-per-

minute (rpm) increments;

 83

• 8-bit unsigned integer stands for the current position of the tool magazine

(or current tool in use);

• 8-bit unsigned integer is allocated for various auxiliary functions such as

coolant on/off, tool clamp on/off, etc.

Apart from ΔY, ΔY10, HC, and AC, two popular compression techniques are also

considered to access their performances on the test cases:

• LZW, which is categorized as a dictionary-based compression technique,

is implemented using the original algorithm proposed by [93]. To apply

the technique, the differentiated data are first mapped (or re-sequenced) as

unsigned (8-bit) integers. The encoding process simply utilizes a 16-bit

(static) dictionary where the first 256 locations are initially occupied by

the distinct elements of the resulting sequence. As the dictionary (table) is

filled up with new entries, 16-bit pointers (or indices) are sent to the output

stream to form the compressed code. Note that since the capacity of this

16-bit dictionary has never been exhausted for all the test cases

(especially, the Case 3), well-known paradigms to manipulate the

dictionary dynamically (such as resetting, removal/replacement of entries,

allocation of new resources, implementation of a cyclic buffer, etc.) are

not taken into consideration in this study.

• A Modified Huffman Coding (MHC) technique, which utilizes Run-

Length Encoding of Zeros (RLEZ) followed by Huffman encoding, is

adapted owing to the fact that the probability of occurrence for zero is

relatively high when the sampling frequency is increased. In this

technique, the data is preprocessed to encode the number of zeros

encountered in the sequence [27]. After computing the first-order

probability distributions, the resulting sequence is encoded via the HC

technique.!!

 84

(a) Case 1

(b) Case 2 (c) Case 3

Figure 4-5 Command Trajectories for the Studied Cases

 85

In this study, the discrete information source shown in Figure 4-1 is assumed to be

a (memoryless) stochastic process that outputs a symbol (i.e. integer) x(k) ∈ ℵ

based on some probability distribution at equal time intervals (T). The source

alphabet ℵ usually shrinks to {-1, 0, 1} [count/sn] at very high sampling rates.

Hence, the first-order probability distributions of the sequences (to be compacted)

are utilized by the HC and AC techniques.

Note that all compression algorithms are implemented in MATLAB 2010a where

special toolbox functions for HC and AC are available. For the considered cases,

Table 4-4 through Table 4-6 demonstrate the compression ratios achieved by

these methods as a function of differencing order (n). Note that the compression

ratio (r) in the tables is defined as

% r(n) =100 Nc (n)+ Ns (n)
N0

!

"
#

$

%
& (4-6)

where Nc is the size of compressed data [Byte]; Ns denotes the size of

supplementary data [Byte] needed to decode the original sequence [i.e. code

dictionary (or any relevant data to interpret compressed code), initial conditions of

the accumulators, etc]; N0 is the size of the original command sequence (position)

[Byte]. In other words, Nc + Ns refers to the size of the complete (minimal) data

set to extract the initial command sequence without any loss.

 86

Table 4-4 Compression Ratios (%) of Various Techniques for Case 1

Each cell inside the 3-by-2 tables is allocated to a particular
technique as shown on the right.

HC AC
LZW MHC
ΔY ΔY10

Jo
in

t A
xi

s

 74 72 32 30 36 34 48 44 62 56 79 71
6 79 73 39 33 71 38 51 49 62 62 75 78
 72 72 24 25 27 28 35 35 45 45 56 56
 59 58 23 22 32 30 44 41 58 52 73 66

5 76 58 44 26 78 33 55 45 69 59 82 73
 69 69 21 21 25 26 34 34 43 43 54 54
 72 70 32 30 36 33 49 45 61 56 78 70

4 78 71 39 36 70 39 51 49 62 62 75 77
 72 72 25 25 27 27 35 35 45 45 56 56
 58 56 19 18 27 25 38 35 50 45 64 57

3 77 58 43 21 76 29 54 38 68 51 81 64
 65 65 20 21 24 25 33 33 41 41 53 53
 53 52 18 17 26 25 36 34 49 44 62 56

2 73 52 43 22 77 29 54 37 67 49 80 62
 68 68 19 20 24 24 32 32 41 41 52 52
 53 53 19 18 26 25 37 35 48 44 62 56

1 38 53 51 23 89 29 54 37 68 49 81 61
 67 67 20 20 24 25 32 33 41 41 53 53

 1 2 3 4 5 6
 Order of Difference

 87

Table 4-5 Compression Ratios (%) of Various Techniques for Case 2

Each cell inside the 3-by-2 tables is allocated to a particular
technique as shown on the right.

HC AC
LZW MHC
ΔY ΔY10

Table 4-6 Compression Ratios (%) of Various Techniques for Case 3

Each cell inside the 3-by-2 tables is allocated to a particular
technique as shown on the right.

HC AC
LZW MHC
ΔY ΔY10

A
xi

s

PL
C

4 .0
01

4 .0
02

4 .0
03

4 .0
03

4 .0
04

4 .0
05

.0
9

.0
00

7

.0
9

.0
00

9

.0
9

.0
01

.0
9

.0
02

.0
9

.0
02

.0
9

.0
02

6 .0
01

6 .0
02

6 .0
02

6 .0
03

6 .0
03

6 .0
04

Z 20 19 7 6 9 9 10 10 14 14 14 13
6 17 3 15 3 12 4 17 4 13 4 19

29 28 10 8 13 11 15 13 21 19 25 23

Y 6 4 5 2 5 3 5 2 6 4 5 3
.6

5

2 .4

5

3 .4

7

1 .4

9

4 .5

2

2 .5

5

4
12 5 9 1 9 2 9 2 10 3 11 4

X 19 19 7 6 10 9 11 10 15 14 14 14
6 18 3 14 4 12 4 16 4 14 4 19

30 29 10 9 13 12 15 14 21 19 25 24
 1 2 3 4 5 6

 Order of Difference

A
xi

s

Z 5 2 4 1 5 2 5 3 6 3 6 4
4 1 5 1 5 1 6 2 9 2 11 2

16 9 12 4 15 8 18 11 21 14 24 18

Y 10

0

93 82 76 39 37 18 17 25 23 30 27
11

2

10

0

97 80 35 38 75 29 68 25 44 29
10

3

10

3

58 58 33 33 19 19 24 23 30 29

X 84 79 96 87 39 37 18 17 23 22 30 28
99 81 10

7

94 53 38 18 19 40 24 54 30
99 99 58 57 33 32 18 18 23 22 29 28

 1 2 3 4 5 6
 Order of Difference

 88

As can be seen from Table 4-4, the best compression performance for the first

case is generally achieved when n = 2 owing to the fact that the increments of

encoder counts from one sampling step to another (i.e. angular velocity) are still

quite high as the robot performs a jerky motion throughout this particular

trajectory where only C0 continuity is maintained. The performances of ΔY10 &

ΔY methods are generally better than the other methods. For n = 2, the command

sequence can be compressed to about one-fifth of its original size. After the

second order, there is an increasing trend in the compression ratios associated

with almost every method due to the reasons outlined in 4.2.1.

For the second case summarized in Table 4-5, the best compression ratios are

usually attained at the X- and Y axes when n = 4 while n = 2 suits best for the Z

axis. As can be seen from Table 4-5, the AC, which is known to produce near-

optimal rates for long sequences, exhibits the best performance while HC and

MHC happen to be the closest contenders for this case. On the other hand, the

LZW technique yields rather poor compression ratios in the first two cases where

the command sequences are relatively short. This is due to the fact that the

compression for the LZW method does commence after the presentation of a few

hundred samples to construct a representative dictionary [27].

As for the third test case outlined in Table 4-6, the LZW clearly outperforms the

other techniques due to the identification and efficient representation of redundant

data (i.e. repeated patterns). AC and HC seem to achieve comparable compression

ratios (regardless of the order and the axis of motion). For this long command

sequence, the compression ratios of the entropy-coding based algorithms (HC,

AC, MHC, ΔY, ΔY10) generally tend to approach to each other. Another

conclusion to be drawn from this table is that after the second-order of difference,

there are no remarkable changes in the compression ratios.

MHC technique exhibits rather poor performance when dealing with short

command sequences like the ones in Cases 1 & 2 due to the overhead costs

imposed by the run-length encoding on fixed length data. If compared to HC

alone, there are only minor improvements in compression performance for Case 3

 89

which includes large number of natural elements. However, the method is not too

successful since these encoded “zero” sequences (which are in large quantities)

are apparently shorter in lengths so that the gain of RLEZ is not justified for the

test cases considered.

For easy comparative evaluation, the results given in Table 4-4 through Table 4-6

are summarized in Figure 4-6. The table shows not only the average compression

ratios for the best differencing order but also the corresponding bit rates

(bits/sample or bps) for each case. That is, this average compression ratio is

defined as

r (c) = min
n∈{1,2,...,6}

1
Na (c)

r(a,n,c)
a=1

Na (c)

∑
#
$
%

&%

'
(
%

)%
 (4-7)

where r is the compression ratio defined by (4-6); c (∈ {1, 2, 3}) is the case

number while Na(c) refers the total number of axes associated with a particular

case c. Similarly, Figure 4-6 illustrates the performance index of each technique

where the index J ∈ [0, 1] is defined as () 1 ()J c r c= − .

Table 4-7 Overall Data Compression Performance of Various Techniques for

Three Test Cases

Case H(ℵ) HC AC LZW MHC DY DY10
 % r 23.83 22.50 43.17 26.83 21.50 22.00
1 bps 2.53 3.81 3.60 6.91 4.29 3.44 3.52
 n 2 2 2 2 2 2 2
 % r 13.67 12.33 33.00 16.67 18.33 16.00
2 bps 2.30 3.28 2.96 7.92 4.00 4.40 3.84
 n 4 4 4 4 4 4 4
 % r 5.75 3.50 1.80 6.25 8.75 4.50
3 bps 0.83 1.38 0.84 0.43 1.50 2.10 1.08
 n 2 2 2 2 3 2 2

Mean %r 14.42 12.78 25.99 16.58 16.19 14.17

 90

Figure 4-6 Performance Indices for Various Compression Techniques for

Different Test Cases

Note that Table 4-7 also illustrates the (average) entropy rates for the differenced

position sequences. In information technology, the entropy is employed as a

measure for disorder/uncertainty (or average information content) associated with

a random variable (or output of a stochastic process). The entropy (rate) of an

information source naturally depends on its statistical properties and does impose

a theoretical limit on achievable (lossless) compression performance (i.e. bit-

length per sample). Based on the aforementioned assumptions, the entropy rate of

the source (in bits/sample) can be estimated as

H (ℵ) = H (X) = − p(x)log2 p(x)
x∈ℵ
∑ (4-8)

where p refers to the probability mass function on X. It is critical to notice that

the actual entropy rates of the sources are lower than the ones estimated by (4-8)

in Table 4-7. As can be seen from this table, for Case 3, the bit rates associated

with the LZW method, which successfully explores the redundancy in the given

 91

data, does drop below the estimated entropy (of the source) owing to the fact that

the assumptions on the information source may not be valid. That is, the

(stationary) information source is likely to constitute memory and may be

statistically modelled as an ergodic Markov process. Then, the information source

can be presumed to generate a symbol x(k) whose probability of occurrence

depends (or is conditional) on the previous symbol x(k-1). In that case, the

entropy rate of the source could be expressed as

H (ℵ) = H (Xk | Xk−1) = − p(
xk∈ℵ
∑ xk−1,xk)log2 p(xk | xk−1)

xk−1∈ℵ
∑ (4-9)

where p denotes the joint probability distribution function [34]. However, to

implement efficient data compression, developing suitable statistical models for

the information source is left open for future studies.

Without the extensive experimentation and statistical analysis on the results; it is

not possible to make definitive assessments on the “best” compression technique

in this application domain. However, the ΔY10 method, which follows the AC

technique in performance, yields acceptable compression ratios for all test cases

considered. On average, the presented technique can compact long trajectory data

with an overall compression ratio of 4.5% (Table 4-7, Case 3). If such a

performance is attained, the memory for storing a typical (compacted) sequence

that was elaborated in Section 4.2.1 turns out to be 1 [GB/hour] × 0.045 ≅ 46

[MB/hour]. The files (with such sizes) can be easily handled and managed in the

today’s technology and thus indicate the technical feasibility of the proposed

method.

Despite the fact that (just like AC, HC) the time complexity of the ΔY method(s)

is linear (i.e. O{N}), this simple technique inherently utilizes less hardware

resources when implemented on a FPGA-based embedded system. To give

readers a succinct idea about the implementation issues, the Table 4-8 summarizes

 92

the number of 4-input Look-up Tables (LUTs) used to realize each technique [29],

[94] - [96]. Although the presented technique in [29] includes extra modules such

as accumulators and communication module, the ΔY method still expends the

least amount of LUTs if compared to the other techniques. Note that the

development/hardware implementation of ΔY10 based CG is currently underway.

However, the resource utilization of the ΔY10 method is expected to be somewhat

similar to that of its predecessor.

Table 4-8 FPGA Resource Utilization of Different Methods

Method HC [94] AC [95] LZW [96] ΔY [29]
No. of LUTs 3007 2714 1114 1105

4.4 Command Generation Performance with Variable Rate

As mentioned in Section 4.2, the proposed method, which incorporates a linear

interpolator at its output stage, is capable of producing command sequences at

variable rates as set by an external source. Hence, the performance of the method

(utilizing ΔY10 as the data compression algorithm) on the third test case

(discussed in previous section) is assessed for a normalized feedrate profile as

shown in Figure 4-7. Note that the profile is formed such that all commands are

first generated in the forward direction and then in the reverse direction with

continuously changing scale factor.

 93

Figure 4-7 Normalized Feedrate Profile and Portion of Trajectory being

Generated (Case 3)

 94

Figure 4-8 illustrates the generated commands along the X, Y, and Z axes. Despite

the fact that the linear interpolation yields acceptable results in between closely-

spaced samples of time, the proposed interpolation scheme is known to create a

significant representation error on the commanded trajectory known as chord

error. Figure 4-9 demonstrates this error which is mainly caused by the data

aliasing at the inflection points of the trajectory. Even though that magnitude of

error is less than 15 encoder counts (0.4 microns) in all axes, a dynamic feedrate

scheduling algorithm, which is the subject of an ongoing research, could be

incorporated to the method to reduce (if not to eliminate) this error.

Figure 4-8 Interpolated Command Sequences

 95

Figure 4-9 Chord Errors for Test Case 3

4.5 Modelling of Information Source via Markov Chains

In this section of the chapter, a different compression scheme is employed on the

motion command trajectories composed of encoder counts. In this scheme, the

higher order differences of motion commands are grouped with a predefined

number of elements and then their occurrence probabilities are determined. As in

most of the compression algorithms (HC, AC, MHC), the groups that have high

probabilities are represented with less number of bits than the ones with low

probabilities. A dictionary is also required to recover the command trajectory

from the compressed dataset.

In the following subsection, the method is described in a detailed manner over a

sample command trajectory. Then in the upcoming subsection, the method is

employed on the same test cases utilized in this chapter of the dissertation and its

performance is compared with the previously discussed algorithms. The effect of

number of elements in the groups is also evaluated for the three test cases. Finally

 96

the section is concluded with some remarks on the advantages and the

disadvantages of the proposed scheme.

4.5.1 Proposed Approach

The idea of grouping different motion command values is similar to the

construction of Markov matrices. In this scheme, the unique motion commands

can be regarded as states of the Markov model. The probabilities of the groups are

the state transition probabilities in the Markov model. If the number of elements

in the group is selected as two, then the first order Markov chain model is to be

constructed. As the number of elements in the groups is increased, the order of the

Markov chain also increases. After the Markov chain is constructed, then the

transitions with higher probabilities are represented with few bits.

The method is employed on the first 2000 commands of the x-axis of the Case 3

and is illustrated in Figure 4-10. As in the previous approaches, the higher order

differences (3rd for this case) of the given original motion command sequences are

computed firstly. It is clearly seen that the magnitude of the commands do

decrease tremendously. The initial values are stored to recover the original

sequence after the compressed data is decompressed. By determining the unique

commands and their number of occurrences in the differenced trajectory the first

order Markov chain model is constructed. If each row of the constructed blue

matrix is divided into the number of occurrences of the unique commands, one

can get the Markov matrix. In the next step, a dictionary is formed to code the

differenced motion command sequence. Since the number of elements in the

group is determined to be two, groups whose probabilities are higher than zero are

assigned to VLBNs. In these assignments, the same decimal values are assigned to

different groups to improve the compression efficiency of the method. Since the

lengths of the VLBNs corresponding to the same decimal value are different,

there occurs no problem for the decompression stage. The compressed code

constitutes of two fields. The couple field is the one where the VLBNs of the

 97

groups of differenced motion commands reside. The second field is the same as

the LF utilized in ΔY10 compression algorithm. The alternating manner of the LF

helps the processor decode the Couple Field (CF) in a proper way. Given the

compressed code and the corresponding dictionary, the differenced motion

commands can be generated. After the utilization of integrators, the original

command sequence is generated.

Original Sequence:

Higher Order Difference:

[-70000; -69668; -69336; ... -37613]

[0; ... 1; -2; 0; -1; 2; 1; 1; 3; ... -2]
Initial Values: [-70000; 0; 0]

Unique
Commands Frequencies

-332 2
-2 45
-1 35
0 1823
1 56
2 34
332 2

0 0 0 1 0 0 1 /2
0 0 0 0 27 17 0 /45
0 0 9 9 0 17 0 /35
1 0 8 1795 18 0 1 /1823
0 29 0 16 11 0 0 /56
0 16 18 0 0 0 0 /34
1 0 0 1 0 0 0 /2

-332
-2
-1
0
1
2

332

-332 -2 -1 0 1 2 332

Coupled Commands:
VLBNs:

[0;0], [1;-2], [-2;1], ... , [332;-332], [332;0]
 0 1 00 0011 0100

Dictionary

Length Field:
Couple Field: 000100010011100100010100001001101000100001101010

010110101101000110110100111001011001100110101101

Compressed Code

Figure 4-10 Information Source Modeling via Markov Chains (ISMMC)

4.5.2 Performance Evaluation

The three sample applications described in the Section 4.3 are used to determine

the performance of the method proposed in this section. The compression ratios

 98

are calculated using (4-6). The supplementary data in the equation constitutes of

the initial values and the dictionary formed according to the frequencies of the

groups. The results are summarized in Table 4-9 through Table 4-11 according to

the order of difference. The color scale of the cells in the table represents the

relative performance of the corresponding order of difference for the axis residing

in that row. If a cell is dark, it means that its compression ratio is worse than the

ones lighter than the cell.

When the first test case (Table 4-9) is considered, it is seen that the best

performances are achieved for the second order of difference (except for the 6th

joint axis) as in the other compression schemes. For each of the joint axis, its

performance is better than LZW and comparable with the other methods.

Although the worst compression ratios are obtained for the first order of

difference in four of the joint axes, the compression performance tends to

decrease as the order of difference increases in general.

Considering the second test case (Table 4-10), the effect of the order of difference

is the same as it is in the other compression methods. It is only better than LZW

for the y-axis and better than ΔY for the z-axis. It is difficult to mention about the

trend of the compression performance for this test case. It behaves differently for

each axis.

For the last test case (Table 4-11), the effect of order of difference is again the

same comparing with the previously discussed compression algorithms. The

compression ratio remains constant for the PLC part of the original data, since

there are few different values and taking higher order of difference makes no

improvement.

 99

Table 4-9 Compression Ratios (%) of ISMMC for Case 1

Jo
in

t A
xi

s

6 111.2 36.5 35.3 51.2 71.9 96.6
5 97.6 28.2 33.1 49.4 69.8 94.3
4 114.2 37.2 34.9 50.9 73.4 96.5
3 81.2 24.0 29.5 45.0 64.7 85.2
2 79.9 23.5 28.9 44.5 65.4 86.7
1 90.2 24.6 29.2 44.9 65.3 88.0

 1 2 3 4 5 6
 Order of Difference

Table 4-10 Compression Ratios (%) of ISMMC for Case 2

A
xi

s Z 5.3 5.1 5.5 6.1 6.6 7.4
Y 112.6 111.0 77.1 30.9 35.3 54.3
X 111.8 110.2 75.8 29.4 34.6 55.3

 1 2 3 4 5 6
 Order of Difference

Table 4-11 Compression Ratios (%) of ISMMC for Case 3

A
xi

s PL
C

3.1 3.1 3.1 3.1 3.1 3.1

Z 14.5 6.3 7.7 9.2 10.6 12.0

Y 5.0 4.6 4.7 4.8 4.8 4.9

X 14.9 6.4 7.9 9.4 10.9 12.3

 1 2 3 4 5 6
 Order of Difference

 100

The performance of this method can be further increased via increasing the

number of elements in the group. In the previous analysis, there were two

elements in the groups corresponding to a first order Markov chain. The same

three test cases are further analyzed for different orders of Markov chains and

presented in Table 4-12 through Table 4-14. In these analyses, the order of

differences are selected according to the best performances of the axes and kept

constant for the same row.

When the first case is considered, it can be inferred from the table that the effect

of the order of Markov chains is not linear. It tends to increase the compression

ratio for the lower orders, but after 4th or 5th orders it decreases the compression

ratio of the proposed method. The best compression performances are obtained for

the first order model in general.

The trend in the second test case is similar to the first case, since they are

corresponding to the same motion trajectory and their sampling frequencies are

the same. The main difference is that the best ratios are achieved for the 8th order

of Markov chains and it tends to decrease as the order is increased.

The performance behavior of the method on the third case is totally different from

the other two test cases. As can be seen from Table 4-14 that the compression

ratios continuously tend to decrease as the order of Markov chains are increased

regardless of the axis. This is due to the high sampling frequency (1 kHz) of the

test case. The first two test cases were sampled at 20 Hz, which is very low when

compared to 1 kHz. The performance of the method for this case is not better than

the LZW method even for the 8th order of Markov chain, but with further increase

in the order one may get similar results to LZW compression scheme.

 101

Table 4-12 Compression Ratios (%) of ISMMC under Different Orders of

Markov Chain for Case 3

Jo
in

t A
xi

s
6 35.3 37.9 42.9 46.5 44.6 41.6 37.6 33.7
5 28.2 34.4 39.4 43.0 42.2 39.6 36.6 32.3
4 37.2 41.4 44.8 48.8 44.1 41.6 36.5 32.5
3 24.0 29.1 35.9 40.3 40.7 39.0 35.4 33.1
2 23.5 29.1 36.1 41.1 40.9 39.5 36.8 32.5
1 24.6 30.7 39.1 42.9 43.2 39.5 36.4 32.3

 1 2 3 4 5 6 7 8
 Order of Markov Chain

Table 4-13 Compression Ratios (%) of ISMMC under Different Orders of

Markov Chain for Case 2

Table 4-14 Compression Ratios (%) of ISMMC under Different Orders of

Markov Chain for Case 3

A
xi

s PL
C

3.1 2.1 1.6 1.3 1.0 0.9 0.8 0.7

Z 6.3 5.2 4.6 4.3 4.0 3.8 3.6 3.5

Y 4.6 3.1 2.4 1.9 1.6 1.4 1.3 1.2

X 6.4 5.3 4.7 4.4 4.1 3.9 3.7 3.6

 1 2 3 4 5 6 7 8
 Order of Markov Chain

A
xi

s Z 5.1 3.9 3.6 3.6 3.0 3.3 3.5 2.8
Y 30.9 39.5 43.6 42.2 38.8 34.1 29.3 26.6
X 29.4 39.2 44.2 42.5 37.0 32.8 29.3 26.4

 1 2 3 4 5 6 7 8
 Order of Markov Chain

 102

4.6 Conclusion

In this chapter, a direct command generation method based on differencing and

data compression is introduced. Key points and contributions of the chapter can

be summarized as follows:

• The lossless ΔY10 compression algorithm is specifically tailored for

digital motion control applications where the command trajectories have

distinct features: i) Since digital motion sensors (e.g. optical position

encoders) are commonly utilized in CNC technology; the command

sequences, which must be compatible with digital sensor readings, can be

represented as integer series; ii) In most CNC machine tool applications, a

constant speed along the traversed trajectory should be maintained to

obtain the desired surface finish; iii) Certain restrictions on the

acceleration (and jerk) profiles are imposed to avoid not only the

saturation of servo-motor drivers but also the structural excitation of

machine; iv) The tool trajectory is generally symmetrical; v) Due to nature

of machining operations, repeated patterns in the sequence frequently

emerge. Not surprisingly, this task-specific paradigm, which fully takes

advantage of these special attributes, usually yields satisfactory

compression performance on short command sequences if compared to the

other (general purpose) techniques (HC, AC, LZW) frequently used in the

technical literature. For long (stationary) sequences, the compression

performance is comparable to the AC technique which is optimal in the

sense that the rate achieved is close to the source entropy.

• The performance evaluation conducted in this chapter has revealed that a

command trajectory for a CNC machine tool application may in some

cases be compacted with a compression ratio as small as 4.5%. In that

case, if the uncompressed data requires a gigabyte, the size of a

compressed command trajectory would be less than a hundred MB. Hence,

such command sequences can be easily stored in the (state-of-the-art)

memory devices embedded inside the controller units. Furthermore, the

 103

files could be easily handled and transferred to the devices within short

time intervals using standard serial data-communication protocols like RS-

485 where a maximum data transmission rate of 10 Mb/s is attainable.

• The compression performance of the presented method could be improved

provided that better statistical models for the information source are

utilized.

• Since the proposed CG technique extracts the original command sequences

using a number of cascaded accumulators, lower-order differences (i.e.

velocity-, acceleration-, jerk estimates), which are commonly utilized in

the feedforward controllers of the advanced motion controller topologies

(see [90]), are computed as by-products in this scheme.

• Since on most production machinery, the machine operator may modify

the tool speed along the traversed trajectory (a.k.a. feedrate) on the fly; the

proposed method incorporates a linear interpolator to generate the

command signals at variable feedrates employing the original data.

• The introduced method lends itself to robust/reliable hardware

implementation (a.k.a. system-on-a-chip). For instance, [28] and [29]

realize a command generator (which makes good use of an earlier version

of the ΔY algorithm) using an Altera Cyclone II (EP2C20F484C7) FPGA.

Hence, the CG as a module can be incorporated in cost-effective and high-

performance motion control systems developed for advanced electrical

machinery, printing/textile equipment, robotic manipulators (for arc

welding, painting, assembly, material handling) and manufacturing

machines such as abrasive water jet cutters, laser beam machining centers,

plasma cutters, rapid prototyping machines, wire EDM, etc.

• For CNC machining applications like turning and milling, the conditions

changes may occur during the operation (e.g. deployment of different set

of tools, tool geometry changes due to wear, etc.). In that case, the original

(“pre-generated”) data may no longer be valid and thus the new trajectory

data, which essentially comprise the offsets of the initial tool path, must be

regenerated off-line using a CAM software package. For the time-being,

 104

this issue appears to be a limiting factor of the proposed method. On the

other hand, efficient offset generation algorithms (such as the one

presented by [97]) along with a metadata for tool geometry can be

incorporated in the proposed paradigm as a natural extension. However,

this prospect is to be explored in future studies.

 105

CHAPTER 5

ADVANCED COMMAND GENERATION VIA CONTEXTUAL

MODELING

An advanced command generation paradigm depending on contextual modeling is

proposed in this chapter of the thesis. The paradigm incorporating vector

operations of the given base curves is capable of generating different machining

trajectories by simply modifying the inputs of the written program. In this

paradigm, the machining trajectories are first defined with the proposed

commands of the paradigm. After the compilation of the program, the generated

machine code is transferred onto the hardware of the paradigm installed on the

corresponding CNC machinery. Then the trajectories are generated by processing

the program on the hardware. The developed motion command generation method

is employed on different test cases and their results are presented in this chapter.

 106

5.1 Introduction

CAD software platforms are continuously improving and evolving. With the new

updates, various features are being included into the software. Thus, designing

complex parts are becoming easier each day. On the other hand, it becomes

difficult or sometimes impossible to write NC programs for the production of such

complex parts manually. In these situations, CAM software is employed to

generate conventional NC programs automatically according to the provided

machine and tool specifications. These generated NC programs are usually very

long and difficult to follow and modify manually. When the workpieces produced

via CNC machinery are evaluated, it can be observed that most of them have

symmetries (reflectional, rotational and translational), curve offsets, biased

offsets, repetitive structures, etc. in general. Machining trajectories may be

programmed utilizing these properties of the workpieces such that the machining

program is now much smaller in size than the one formed with the conventional

approach. In the recent study of Yaman and Dolen [66], they compressed the raw

motion trajectories via their compression algorithm and achieved high

compression ratios although they have not considered the above-mentioned

properties of the workpieces directly. In order to further improve the compression

performance and propose an alternative paradigm, a contextual modeling based

command generation paradigm is proposed in this chapter of the thesis. The

proposed paradigm makes use of the physical properties of the parts to be

manufactured. The trajectories are defined by vectors and these vectors are later

processed on the hardware of the machinery. Due to the utilization of the vectors,

the paradigm is named as Vector Processor (VEPRO). As in the conventional

approach, the motion trajectory is defined manually by writing the VEPRO

program using the provided commands of the VEPRO. After it is compiled on the

host PC, the output of the compilation (a.k.a. machine code) is transferred to the

VEPRO hardware through different kinds of communication for processing. Then

the hardware generates the motion commands with the help of its auxiliary units

on the CNC machinery. With this proposed approach, the required time for

 107

developing manual manufacturing programs is now reduced and the user is able to

write the program on his/her own resulting in an increase in the quality of the

program.

Cutter offset compensation can also be handled in the VEPRO paradigm without

regenerating the tool trajectories. The user can modify the offset tables according

to the wears on the tools. There is no need to deal with the special cutter offset

compensation commands (such as G41 and G42 in NC programming). Another

main advantage of the paradigm is that one can produce different workpieces with

the same VEPRO program by just simply changing the base curves, offset table,

etc. stored in the memory of the VEPRO hardware. These advantages of the

VEPRO are illustrated in the following subsections of the chapter.

The proposed paradigm can be compared with the conventional approach in terms

of Kolmogorov complexities [100]. The comparison should be made from

designing the machining trajectory stage to the generation of the tool paths (Inputs

and outputs of the paradigms are the same). Both paradigms can be divided into

two main parts. In the first part of these methods, motion trajectories are defined

according to the requirements of the CNC hardware. The complexities of the first

parts can be considered as the same since the tasks done in this stage are alike. On

the other, complexities do differ for the second part in which the hardware is

generating the motion trajectories for CNC controllers. In the conventional

approach, there exists an industrial computer responsible for the generation of

motion commands utilizing the NC program installed. Considering the proposed

paradigm, an average FPGA chip (Altera Cyclone V) is enough to embed the

VEPRO circuitry having multiple kernels [98]. Thus, it can be concluded that

Kolmogorov complexity of the conventional approach is higher than VEPRO.

The remainder of the chapter is formed as follows. The next section, the ancestor

of the proposed paradigm is summarized and in the third section the novel

command generation method is explained. Then in the fourth section, the

commands necessary to describe the tool trajectories for the VEPRO are provided.

 108

After discussing the performance of the VEPRO in the upcoming three sections

through different test cases, the chapter is concluded with the last section.

5.2 Primitive Approach

In this section of the chapter, the basics of the primitive version of the advanced

command generation paradigm proposed in this chapter are presented and it is

evaluated by employing it onto a test case. The method itself is not finalized yet,

but when the primitive evaluations are considered, it can be stated that the

command sequences can be compressed to about one-thousandth of their original

sizes by this approach.

5.2.1 The Aim of the Method and the Test Case

It is easier to explain the algorithm with a test case. A drawing of a Rabbit (Figure

5-1) is chosen as the test case. It is used in the study of Zhiwei et al. [85] and has

11 base sets, each of them are illustrated with a different color in the figure. The

red one is the outer set of the rabbit. The remaining ones are called the “islands”

in cases where they should not to be machined.

The original of the case was in millimeters. It is further processed to represent it

with encoder counts. In this case, 1 µm corresponds to 1 count. This form of the

test case and its offsets are shown in Figure 5-2. These offsets can be utilized to

produce male of female versions of the Rabbit via 2.5D pocketing operations. The

offsets are 1000 counts (1 mm) apart from each other. It is also shifted in x-y

plane to make sure that the all trajectory has positive components.

The proposed command generation paradigm only needs the base sets of the case,

which are required to generate offsets having different offset radii. Since the main

goal of this approach is to represent the raw discrete trajectories with minimum

required memory, the base sets are compressed with ΔY10 compression

 109

algorithm, which is suitable for discrete trajectories composed of encoder pulses.

After the base sets are compressed in the encoding stage of the command

generation paradigm, the necessary part for the curve offset generation is formed

by using a simple symbolic language. Thus, there is no need to compress the

offsets of the base sets. The latest curve offset generation algorithm discussed in

Chapter 3 can be utilized to generate them from the base sets. With this overall

approach, the original sequence can be compressed to about one-thousandth of it.

In the next subsection, the details of this paradigm are elaborated and a primitive

memory structure is proposed.

Figure 5-1 Rabbit Composed of 11 Base Sets

 110

Figure 5-2 Rabbit with Offsets

5.2.2 Implementation Details

In order to use the memory efficiently and realize the command generation system

easily, the compressed code is structured as shown in Figure 5-3 for a generic

command sequence. The first four words and the next coupled words for each

base set can be regarded as the header for this memory block. The initial 4 bits of

the first word indicate the order of finite difference (where a maximum of 15th

order for the differences can be represented) for the segments of the trajectory

where any curve offsets are not to be generated. The rest of the first word (28 bits)

are reserved for expressing the length of the command sequence. The second

word of the header is used to specify the number of words reserved for the

magnitude field, which indirectly determines the starting address of the sign field.

The fourth word of the header gives the starting address of the zero field. In the

remaining part of the header, there are coupled words for the description of the

 111

curve offset generation. The first word in these couples gives the starting address

of the corresponding compressed base set. The first two bits of the second word in

the coupled set describe the type of the offsets. These bits are interpreted as

follows:

• 00: Outer Offsets,

• 01: Inner and Outer Offsets,

• 11: Inner Offsets.

The next six bits are reserved for the number of offsets to be generated for the

given offset radius. With the six bits, 26 = 64 offsets can be generated in the

maximum case. The last twenty-four bits (224 = 16777216) in the second word of

the couple represents the radius of the offsets in counts. After the header part, the

first memory block corresponds to the compressed sequence for the segments

where any curve offsets are not to be generated. Then comes the memory blocks

for the compressed base sets. The structure of these memory sets is given in

Figure 6-4.

 112

Figure 5-3 Memory Structure of the Primitive Method

During the decompression of the motion commands, the header of the overall

memory is processed first. Then the commands are decompressed starting from

the block for the non-offsetted trajectory. The ΔY10 compression algorithm is

modified such that when there is a zero sequence of length two, there exists an

offset sequence and decompression should continue by processing the coupled

words for the base set and generate the defined curve offsets. When the generation

of the corresponding offsets is finished, the decompression moves back to the

non-offsetted part. This loop resumes until the non-offsetted part is finished.

 113

5.2.3 Evaluation of the Primitive Method

The proposed command generation paradigm is elaborated by employing it onto

the described test case in the previous subsections. As stated in these sections, the

test case has 11 different base sets. In order to see the effect of curve offset

generation algorithm on the memory size, the sets shown in Figure 5-1 are

compressed with ΔY10 algorithm and the results are shown in Table 5-1. Each

element in x and y axes can be represented by 3 and 2 bytes, respectively, when

the range of the points are considered. Since there are 14111 points in the Rabbit

case, the size of the x and y axes are 42333 and 28222, respectively. In the second

part of the evaluation, the generated offsets are compressed with the same

algorithm. The results are summarized in Table 5-2. The sizes of the original

sequences are also given in the table. As can be inferred from the table that by just

using the base sets of the case, one can achieve 0.3 % compression ratio that is too

low when compared to the ratio of the case with compressed offsets.

Table 5-1 Bytes Required to Represent the Sequences After Compressing Them

with ΔY10

Part X Y

0 2296 2404
1 319 312
2 301 304
3 292 289
4 300 332
5 300 332
6 295 300
7 417 550
8 294 291
9 292 288

10 563 568
Sum 5669 5970

Original 42333 28222

 114

Table 5-2 Comparison of Sizes of Sequences Under Different Approaches

X Y

Size Ratio Size Ratio

Compressed Base Sets 5669 0.0031 5970 0.0049

Compressed Offsets 345052 0.1884 317135 0.22597

Original 1831398 1220932

In this section of the chapter, the idea of combining curve offset generation

algorithms with data compression methods is proposed as a new command

generation paradigm. After describing the test case suitable for the proposed

scheme, the implementation details on the memory are discussed. The

implementation of the paradigm is further improved and tested in the following

sections.

5.3 Proposed Approach (VEPRO)

VEPRO is a motion command generator designed specifically for CNC

machinery. It is established after trying to implement the command generation

method proposed in the previous section. VEPRO can be regarded as the

advanced version of that method.

As illustrated in Figure 5-4, the system-on-a-chip (SOC) solution employs a

multi-kernel processor architecture that is equipped with specialized peripheral

units. In this architecture, the memory management unit (MMU) plays a key role

as it manages all the system registers (namely, C, R, S) shared by all kernels. The

machine code (compilation of the user written program) and the related data are

transferred to the memory chips available on the hardware over a serial

communication protocol.

 115

Figure 5-4 SOC Solution of VEPRO

On the other hand, each kernel does have its own set of local dynamic matrix

registers C(0) & C(1) which are exclusively used as temporary data storage.

Similarly, all kernels are to invoke functions (subroutines) defined globally. The

timing events along with the synchronization among the kernel are performed by

the task management unit (TMU). To avoid collision, only main kernel (Kernel 0)

is allowed to interact with data-rate control unit (DCU), which outputs the motion

command data at the specified rate set by the external logic. The PLC functions of

the CNC machinery are handled by the communication between DCU and the

auxiliary control unit.

The main advantage of this SOC is that it is very simple and can be realized by a

low-cost FPGA having limited resources. The current hardware processing NC

programs is comprised of computers having at least 1 GB of RAM. With the

proposed command generation paradigm, the procedure is simplified and its

hardware complexity is decreased.

 116

5.4 VEPRO Commands

The language of the proposed motion command generation paradigm is

categorized into eighth sub categories and for each of them the relevant

commands and their explanations are provided in upcoming subsections.

5.4.1 Register Sets

There are four types of registers used in the VEPRO language. The first one is the

dynamic registers represented with the letter C. They are mainly utilized to store

base curves and the results of vector operations. The second type is the ones used

for general purposes. This is represented with the letter R. The next one is the

simplest register kind of all. It is stored in the last element of R and used for flags.

The last register is reserved for PLC functions of the CNC machinery. The details

of these registers are discussed below.

Register (C). It is named as dynamic matrix registers. There are 1024 dynamic

elements in the register. The first element of this register is reserved for the

intermediate results of vector operations such as the output of the curve offset

generation algorithm. The rest of the elements can be utilized to store the base

curves of the trajectory.

Register (R). It is named as general purpose registers. There are also 1024

elements in the register. The first element of the register is reserved for the

intermediate arithmetic results. The rest are used for various purposes such as

loop numbers, current and previous axis positions, offset values, etc.

Register (S). It is a read-only register and called as status register. The last

element of the general purpose registers (R) is reserved for this register. The

current length of the register is 8 bits, but it can be increased according to the

needs new vector operations. The defined status registers are as follows.

• EF: Error

 117

• LT: Less than (N)

• ZF: Zero (Z)

• GT: Greater than

• OF: Overflow (V)

• UF: Underflow (U)

• LI: Linear interpolation mode

• OE: Output enable

Register (P). It is named as PLC register. PLC functions of the CNC machinery

are controlled via this register. It is designed to be 32-bit currently. The least

significant 24 bits are used for setting the spindle speed. When it is needed to stop

the spindle, the speed should simply be set to zero. The next two bits are utilized

for the direction of the rotation and for enabling coolant. The following six bits

are reserved for the definition of the tools to be used in the machining. If there are

more PLC functions in the machinery, the word size of this register should be

increased. The usage of this register is illustrated below.

Spindle Speed (24 bits): 20000 rpm: 0000000001001110001000002

Spindle Rotation (1 bit): 1 (CW) / 0 (CCW)
Coolant On/Off (1 bit): 1 (On) / 0 (Off)
Tool (6 bits): Tool #5: 0001012

0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 1 0 0 0 0 0

These register adjustments are transferred to the VEPRO via PLC command. For

the illustrated example one should use PLC (385895968).

 118

5.4.2 Declarations

Declarations in the language are mainly used to label some command lines in the

program and assign some parameters of the written program for the specified

command trajectory. There are ten different types of declarations presently. These

declarations are briefly explained below.

Declaration (label EQU address). It is used to assign labels to the specified

memory locations.

Declaration (label BGN #). It is used to assign label to the beginning of the

thread #.

Declaration (END #). It is used to define the end of the thread #.

Declaration (label DEF R(i)). It is used to assign a label to the specified element

(i) of the general purpose register (R).

Declaration (DIM #). It is used to set the number of axis to #.

Declaration (DIO #). It is used to set the number of digital Input/Output channels

to #.

Declaration (FPL #). It is used to set the location of the fixed-point numbers to #.

It should be between 0 and 8×(Word Length − 1).

Declaration (NCR #). It is used to set the number of curve registers to #.

Depending on the application, one may need more than one register for the base

sets or for the results of vector operations.

Declaration (SIL #). It is used to set the maximum step size to # in linear

interpolation (in counts).

Declaration (WOR #). It is used to set the word length to #.

 119

5.4.3 Parallel Processor Commands

As discussed in the previous section, there are parallel processors embedded into

the VEPRO. For the proper operation of these processors, additional commands

are necessary. Two of the commands are used to enable and disable the regarding

kernels and the other two are utilized for the synchronization of the auxiliary

kernels with the master kernel. These commands are described below.

Start Processors STA (#): This command is used to enable the execution of the

parallel processors. Bits of the specified # indicates the id number of the

processors to be enabled. For instance, STA 15 (= 00011112) denotes that the

kernels 1 to 4 will be started.

Terminate Processors TER (#): It is used to terminate the execution of the

threads whose id numbers are specified by #.

Wait Processors WAI (#): The master kernel awaits the timing event for the

multiple threads whose id numbers are specified by #.

Trigger Processors TIC: The auxiliary kernels send acknowledgement signals to

the master kernel indicating that they have completed the assigned tasks to them

by the master kernel. After the master kernel receives these trigger signals, it

continues to its proper operations.

5.4.4 Compare, Test, and Branch Commands

These commands are mainly used to implement the loops in the algorithms. They

are utilized to compare some values and take action according to the result of the

comparisons. These commands are briefly explained below.

Compare CMP(R(j), R(i).#): The result of the difference between the two inputs

of the command is written on the read-only status register (S).

Bit Assign BIT(R(i).#): The specified bit of R(i) is assigned to ZF bit of the status

register (S). The bit number should be between 0 and 8×(Word Length − 1).

 120

Branch Equal BEQ(label): The algorithm branches to the given label if ZF bit of

the status register (S) is equal to 1.

Branch Not Equal BNE(label): The algorithm branches to the given label if ZF

bit of the status register (S) is equal to 0.

Branch Greater Than BGT(label): The algorithm branches to the given label if

GT bit of the status register (S) is equal to 1.

Branch Greater Than or Equal BGE(label): The algorithm branches to the

given label if ZF bit of the status register (S) is equal to 1 or GT bit is equal to 1.

Branch Less Than BLT(label): The algorithm branches to the given label if LT

bit of the status register (S) is equal to 1.

Branch Less Than or Equal BLE(label): The algorithm branches to the given

label if ZF bit of the status register (S) is equal to 1 or LT bit is equal to 1.

Branch Overflow BOF(label): The algorithm branches to the given label if OF

bit of the status register (S) is equal to 1.

Branch Underflow BUF(label): The algorithm branches to the given label if UF

bit of the status register (S) is equal to 1.

Branch Error BER(label): The algorithm branches to the given label if EF bit of

the status register (S) is equal to 1.

Jump JMP(label): The algorithm jumps to the specified label with this command.

Jump Subroutine JSR(label): The algorithm jumps to the subroutine’s starting

address.

Return Subroutine RTS: The algorithm returns from the subroutine to the main

program when this command is processed.

End Program END: The program terminates with this command.

 121

5.4.5 Register and Memory Operations

There are only two commands for this category, but if there is a necessity of new

commands it can be added. The first one is used for moving the data stored in

some part of the memory to the given variable and the second one is utilized to

empty the registers. These two commands are given below.

Move MOV(R(j), R(i)/@MEM/#): The operation is used to move the information

residing in the register R(i) or in the specified memory location MEM or the

specified bit of R(i) to the register R(j).

Clear CLC(R(i)): The given register to the command is assigned to zero.

5.4.6 Arithmetic and Logic Operations

There exist simple mathematical operations in this category. The commands are

used only with the general purpose registers (R). The abbreviations and

explanations of these commands are discussed below.

Addition ADD(R(j), R(i)/@MEM/#): In this simple operation, the value residing

in the register R(i) or in the specified memory location MEM or the specified bit

of R(i) is summed with R(j) and assigned to R(j).

Multiplication MUL(R(j), R(i)/@MEM/#): In this simple operation, the value

residing in the register R(i) or in the specified memory location MEM or the

specified bit of R(i) is multiplied with R(j) and assigned to R(j).

Sign SGN(R(i)): The only one that uses the flags is this operation. It checks the

sign of the given input and then raises the LT flag if it is negative and raises ZF

flag if the input is equal to zero.

Negate NEG(R(i)): In this operation, the given input is multiplied with -1 and the

result is assigned to R(i).

 122

Absolute ABS(R(i)): In this operation, the absolute value of the given input is

assigned to R(i).

Decrease DEC(R(i)): The given input is decreased by one and assigned to the

same register.

Decrease INC(R(i)): The given input is increased by one and assigned to the

same register.

5.4.7 Flag Operations

Flag operations are the simplest and the most important commands of the

VEPRO. Thus, they should be handled carefully. For these purpose, five different

commands are proposed for the flag operations. If necessary, they may be

increased in the future editions of the VEPRO. These operations are provided

below.

Flag SLI. By this command, the linear interpolation flag (LI) is raised.

Flag CLI. The linear interpolation flag (LI) is lowered when this command is

processes in the program.

Flag CEF. The command simply clears the error flag (EF = 0).

Flag SOE. The motion commands are generated if the output flag (OE) is enabled

with this command.

Flag COE. The motion commands are suppressed if the output flag (OE) is

disabled with this command.

5.4.8 Vector Operations

These vector operations presented below are the heart of the VEPRO command

generation system. The first seven of the commands (MOV) are used to move the

motion data residing in the given register to the other registers. CLR command

 123

simply clears the given curve register and REV is used to reverse/flip the

registers. The OUT command has two different versions as can be seen below.

The first one simply interpolates the given data and assigns them to the temporary

register, which is C(0). The other version of the OUT command is used when

there is a need to perform interpolation in the third axis. For instance, if the curve

offset generation operation needs to be done in three axis, this command is

utilized to perform further operation to update the result of curve offset generation

for three axis representation. The DDY command is used to decompress the

motion data if ΔY compression algorithm is utilized in advance. In order to

generate curve offsets of a given base curve, GCO command is used. According

to the sign of the value, it can generate inner (negative) or outer (positive) offsets

of the given curve segments. It is also capable of handling cases where there

exists islands and self-intersecting lines. The upcoming commands GPC and GPB

are responsible for the generation of equidistant points on a circle or on a base

curve, respectively. HTM command transforms the base curve residing in the

curve register C(3) and assigns the result to the same curve. The transformation is

done according to the given angles and displacements. PLC command, as the

name implies, modifies the PLC register of the VEPRO. When there is a need to

raise a custom flag, EVE command is employed. It takes action before the

commands are generated with OUT command. The last three of the commands are

simple connection, addition and multiplication operations defined for curve

segments.

Move MOV(C(j.nj), @MEM.start.end): Data residing between the given start and

end addresses of the memory is assigned to C(j.nj) with this vector operation.

Here ni represents the ni’th axis of the curve register.

Move MOV(C(j.nj), C(i.ni).start.end): Specified segment of C(i.ni) is transferred

to C(j.nj). If start address is higher than the end address, the vector is reversed

firstly and then moved to C(j.nj). From now on the shaded portions of the

commands refer to the optional parameters. When start and end addresses are not

provided, all elements of the register will be moved.

 124

Move MOV(R(j), C(i.ni).index): One of the elements of C(i.ni) numbered as

index is assigned to the register R(j).

Move MOV(R(j), C(j.nj).start.end): The specified portion of C(j.nj) is assigned to

R(j). In this command, the start and end addresses refers to the bit addresses. For

example, MOV (R(0), C(0).145.153) means that R(0)<0:7> := C(0.1)[4]<17:24>

(It is assumed that the word length is 4 bytes).

Move MOV(C(j.nj).start.end, R(i)): This command is the reverse of the previous

vector operation. Here, R(i) is stored to the specified region the curve register

C(j.nj). For example, MOV (C(0).145.153, R(0)) means that C(0.1)[4]<17:24> :=

R(0)<0:7>.

Move MOV(C(j.nj).index, R(i)): R(i) is assigned to the specified index of C(j.nj).

If the axis of the register is not defined, it is taken as 1.

Move MOV(C(j.nj), bit.address, 0/1): In this vector operation, 0 or 1 is assigned

to the stated bit of the curve register C(j.nj). For instance, MOV (C(0), 1781,1)

means that C(0.1)[55]<21> := 1 (The word length is again assumed to be 4 bytes).

Clear CLC(C(j.nj)): C(j.nj) is emptied.

Reverse REV(C(i.ni).start.end): C(i.ni) is reversed/flipped and assigned to C(0.ni).

This operation can also be accomplished via MOV command by using a bigger

number in the start address. This command is added to increase the readability of

the VEPRO programs

Output OUT(C(i).start.end): Motion command data in C(i) is linearly

interpolated and assigned to the curve register C(0).

Output OUT(C(i).start.end, C(j)): The third axis of C(i) is linearly interpolated

according to the uncommon axis of C(j) and the results of the interpolation is

written to the curve register C(0).

Decompress ΔY DDY(C(i.ni), @MEM.start.end): The data at MEM[start.end]

are decompressed using ΔY and assigned to C(i.ni) by this vector operation.

 125

Generate Curve Offsets GCO(C(i).start.end, offset): This command computes

2D offset of C(i)[start.end] and assigns it to C(0): if offset > 0, the outer offset is

generated. If there are multiple offset curves, the overflow flag is set; C(1) holds

the starting addresses associated with the offset curves stored in C(0).

Generate Points on a Circle GPC(C(j), radius, number, angle): The command

generates a “number” of equidistant points on a circle (in XY plane) with

specified “radius” (counts) beginning from a certain “angle” (degree) and assigns

the result to C(j).

Generate Points on a Base Curve GPB(C(j), C(i), number, start): The command

generates a “number” of equidistant points on a base curve stored in C(i)

beginning from a specified starting position (in counts) and assigns the result to

C(j).

Homogeneous Transformation Matrix HTM(C(j), C(i).n): In this vector

operation, homogeneous transformation (HT) of C(j) is accomplished via the

elements of C(i.n) and the result is stored in the curve register C(0). The required

angles and displacements are provided in C(i).n. The transformation is only

defined for 3D dynamic matrices whose any two vectors [i.e. C(j.1), C(j.2),

C(j.3)] must be (at least) non-empty. Three different operations can be completed

according to the types of the given inputs.

• If the dimension of C(j) is 2, 2D HT is performed where the undefined (or

absent) axis assumed to be a zero vector. Here, C(i.n)[1] is the offset of the

first axis; C(i.n)[2] is the offset of the proceeding axis; C(i.n)[3] is the

angle (fixed-point representation in degrees) defined around the remaining

axis.

• If the dimension of C(j) is 3 (then the length of C(i.n) must be 6 for this

case), 3D HT is performed. Here, C(i.n)[1:3] refers the offsets for each

axis while C(i.n)[4:6] denotes the corresponding Euler angles.

 126

• If the dimension of C(j) is 3 but the length of C(i.n) is 3 then 2D HT is

performed in XY plane. Here, C(i.n)[1:2] are the offsets of the X and Y

axes; C(i.n)[3] is the angle defined around the Z-axis.

Programmable Logic Controller PLC(R(j)): The PLC register described in the

first subsection is adjusted with this command. The modifications are processed

just before the generation of motion commands.

Concatenate CON(C(j.nj), C(i.ni)): The command concatenates C(j.nj) and C(i.ni)

and assigns the new curve register to C(0).

Addition ADD(C(i.ni), bias): The bias is added to C(i.ni) (signed integer

operation) and the result is assigned to the curve register C(0. ni).

Multiplication MUL(C(i.ni), scale): C(i.ni) is multiplied with the scale (fixed-

point operation) and the result is assigned to curve register C(0. ni).

5.4.9 Vector Queries

The last category of the VEPRO is the vector queries. There are three of them as

explained below. These commands are utilized to gather some specific

information (length, dimension, and axis configuration) of a curve segment and

assign them to the register R(0).

Length Query QLC(C(i)): The length of the input curve register is assigned to

first element of the general purpose register (R(0)) with this query command.

Dimension Query QDC(C(i)): In this query operation, the number of axis whose

command trajectories are residing in the register is assigned to the intermediate

result register (R(0)).

Axis Configuration Query QAC(C(i)): When the axis configuration of a curve

register is required, this command is used. The result will again be written to R(0)

in terms of 3 bits (XYZ). For instance, if the value in R(0) = 5 = 1012, then we can

say that X and Z axes are present in the curve register. There is no data available

for Y-axis.

 127

5.5 MATLAB Emulations of the VEPRO Hardware

In this section of the chapter, a generic VEPRO program is developed for the

finishing operations of the plastic injection molds of

• Hemisphere

• Shampoo bottle

• Handset

Rendered SolidWorks parts of these cases are provided from Figure 5-5 to Figure

5-7. The radius of the hemisphere is 50!!! and the number of base curves is

determined to be 100 for the finishing operation (having 1!!! offsets along the

Y-axis). The shampoo bottle provided in Figure 5-6 is 100!!! in height and the

radius of the main part is 20!!!. As in the case of the hemisphere, 100 base

curves are generated in VEPRO. The third test case is totally different from the

first two ones. Its maximum dimensions are 86!!!×!240!!!×!36!! and there

are 50 different base curves.

By only changing the offset table and the base curves, different machining

operations are obtained with the same VEPRO program. For the cases of the

Bottle and the Hemisphere, there is no need to redefine the base curves. Each

segment of these two test cases can be generated from a semi-circle. On the other

hand, all of the segments of the Handset are different from each other due to the

complexity of the Handset. Thus, they should be stored in the appropriate memory

field and be fed to the VEPRO program when necessary. The offset table of this

case simply consists of zeros indicating that the original base curves are to be

utilized. The VEPRO program capable of generating motion trajectories for the

three cases is provided in Table 5-3. According to the written program, the base

curves are assigned to the appropriate curve register from the specified memory

locations. For the third test case, an appropriate memory index table should be

embedded into the VEPRO program.

 128

These test cases are emulated in MATLAB environment by writing the

corresponding MATLAB functions of the utilized VEPRO commands. The results

of these emulations are represented from Figure 5-8 to Figure 5-10. Top, isometric

and front views of the test cases are presented in these figures. The lines in red

color represent the motions where machining is done and the blue lines are for the

fast movements of the machine tool. In each fast movement, the tool first goes up

to the defined Z-axis absolute position and then moves to the final X and Y points

via linear interpolation. Different Z-axis absolute positions are used in the test

cases. As can be observed from the VEPRO program and the output figures that

the tool moves to the next curve segment from the nearest side after the generation

of one curve segment is completed. This task is accomplished in the VEPRO

program by flipping the base curve via MOV command.

Figure 5-5 Rendered SolidWorks Part of the Test Case Sphere

 129

Figure 5-6 Rendered SolidWorks Part of the Test Case Bottle

Figure 5-7 Rendered SolidWorks Part of the Test Case Handset

 130

Table 5-3 Generic VEPRO Program for the Three Test Cases

; VEPRO program for the “Bottle”,“Sphere”, and “Handset” cases
;
 DIM 3 ; 3-axis (X,Y,Z)
 WOR 4 ; use 4-byte word (32-bit)
 FPL 0 ; no fixed-point multiplication
 NCR 3 ; 3 dynamic arrays including C(0) are needed!
;
; Define addresses in memory
;
X0 EQU 0x0 ; initial x location (1 word)
Y0 EQU 0x4 ; initial y location (1 word)
Z0 EQU 0x8 ; initial z location (1 word)
DeltaY EQU 0xC ; increment in Y (1 word)
Rtab EQU 0x10 ; starting address of offset table (50 words)
Bcur EQU 0xD8 ; starting address of base curve (2*1000 words)
;
; Assign labels to registers (or constants)
;
X DEF R(1) ; position register for axis-1: X
Y DEF R(2) ; position register for axis-2: Y
Z DEF R(3) ; position register for axis-3: Z
i DEF R(4) ; R(4) is to be used for indexing
r DEF R(5) ; R(5) stores the temporary offset value
Zup DEF R(6) ; Absolute z position of the tool in fast movements
;
; Program starts here
;
 ORG 0x2018 ; starting address(following 2054*4 words of data)
 SLI ; set linear interpolation mode
 SOE ; enable output
 CLR ; clear all curve registers
 MOV Zup,5 ; Zup is assigned to be 5 mm.
 MOV X,X0 ; load initial tool locations to pos. registers
 MOV Y,Y0
 MOV Z,Z0
 MOV C(1.1),Rtab,0,199 ; load offset values to C(1) (1D)
 MOV C(2.1),Bcur,0,3999 ; X-axis components of base curve
 MOV C(2.3),Bcur,4000,7999 ; Z-axis components of base curve

MOV i,0 ; initial index value (“for loop”)
Loop: MOV r,C(1.1),i ; r := C(1.1)[i]
 GCO C(2),r ; generate 2D offsets of C(2) with r
 OUT C(0) ; output C(0) holding the offset

 MOV C(2),C(2),3999,0 ; make sure to flip C(2) for the next
iteration
 ADD Y,DeltaY ; Y coordinate increases by DeltaY
 INC i ; increase loop index i
 CMP i,100 ; if i is not equal to 50,
 BNE Loop ; then continue with the loop (100
iterations!)
 CLR C(0) ; clear C(0)
 MOV X,X0 ; load the initial pos. to the
resisters
 MOV Y,Y0
 MOV Z,Z0
 OUT C(0) ; perform linear int. to the initial
position

 END

 131

Figure 5-8 Plots of MATLAB Emulation of the Test Case Sphere

 132

Figure 5-9 Plots of MATLAB Emulation of the Test Case Bottle

 133

Figure 5-10 Plots of MATLAB Emulation of the Test Case Handset

 134

In order present the capabilities of the VEPRO paradigm, simple modifications

are employed on the third test case (Handset). The average x-axis values of each

base curve of the handset are stored into the MX array and the original base curves

are shifted such that they are now centered along y-axis. If one needs to generate

the original trajectories of the finishing operation, the corresponding element in

the MX array and the x-axis values of the modified base curves should be summed

before the generating the commands. The modifications of the VEPRO program

are provided in Table 5-6. The first command is used to get the MX array from the

memory and the second command is placed in the loop for the summation of the

x-axis.

Table 5-4 Modifications on the Generic VEPRO Program of the Three Test Cases

 MOV MX,Bcur,8000,8049 ; MX is formed

 …. ……………..

 ADD C(2.1),MX(i) ; X coordinate of base curves updated

With the adjustments in the MX array, different command trajectories can be

obtained. When all of the elements in this array are zero, the trajectory in Figure

5-11 is obtained. In this configuration, the base curves are centered along the y-

axis. If one wants to obtain a mirrored image of the original trajectory, the initially

obtained MX array should simply be multiplied by −1. The result of this

configuration is presented in Figure 5-12. In another application, the elements of

the MX array are generated randomly (from 0 to 100) in MATLAB and the result

is shown in Figure 5-13. In the last configuration of the MX array approach, the

initially obtained MX array is multiplied by 0.5 and presented in Figure 5-14. The

same approach may be employed on the other axes and different configurations

can be obtained by simply modifying the initially given VEPRO program.

 135

Figure 5-11 Centered Base Curves of the Handset

Figure 5-12 Mirrored Base Curves of the Handset along Y-axis

 136

Figure 5-13 Random Distribution of the Base Curves of the Handset over X-axis

Figure 5-14 Base Curves of the Handset Placed at Half of Their Exact Distances

 137

5.6 Parallel Processors

As described in the third section of this chapter, there are multiple kernels

available on the VEPRO hardware. Four commands are introduced to utilize these

kernels efficiently in the upcoming section.

As an example, the generic VEPRO program written for the discussed test cases is

modified to use four auxiliary kernels available on the hardware. The new

program is provided in Table 5-5. In this application, the tasks of curve offset

generation are distributed over the auxiliary kernels via using appropriate loop

indexes and offset radii. The internal VEPRO programs of the kernels are

provided at the end of the table. As can be observed from the table that the tasks

accomplished in the kernels are similar. After the kernels are enabled with the

STA command of the VEPRO, the tasks assigned to the kernels are processed and

the results are conveyed to the master kernel with an acknowledgement signal

(TIC).

Table 5-5 Utilization of the Parallel Processors in the Generic VEPRO Program

for the Three Test Cases

; VEPRO program for the “Bottle”,“Sphere”, and “Handset” cases
;
 DIM 3 ; 3-axis (X,Y,Z)
 WOR 4 ; use 4-byte word (32-bit)
 FPL 0 ; no fixed-point multiplication
 NCR 3 ; 3 dynamic arrays including C(0) are needed!
;
; Define addresses in memory
;
X0 EQU 0x0 ; initial x location (1 word)
Y0 EQU 0x4 ; initial y location (1 word)
Z0 EQU 0x8 ; initial z location (1 word)
DeltaY EQU 0xC ; increment in Y (1 word)
Rtab EQU 0x10 ; starting address of offset table (50 words)
Bcur EQU 0xD8 ; starting address of base curve (2*1000 words)
;
; Assign labels to registers (or constants)
;
X DEF R(1) ; position register for axis-1: X
Y DEF R(2) ; position register for axis-2: Y
Z DEF R(3) ; position register for axis-3: Z
i DEF R(4) ; R(4) is to be used for indexing
r DEF R(5) ; R(5) stores the temporary offset value
Zup DEF R(6) ; Absolute z position of the tool in fast movements
;

 138

Table 5-5 (continued)

; Program starts here
;
 ORG 0x2018 ; starting address(following 2054*4 words of data)
 SLI ; set linear interpolation mode
 SOE ; enable output
 CLR ; clear all curve registers
 MOV Zup,5 ; Zup is assigned to be 5 mm.
 MOV X,X0 ; load initial tool locations to pos. registers
 MOV Y,Y0
 MOV Z,Z0
 MOV C(1.1),Rtab,0,199 ; load offset values to C(1) (1D)
 MOV C(2.1),Bcur,0,3999 ; X-axis components of base curve
 MOV C(2.3),Bcur,4000,7999 ; Z-axis components of base curve
 MOV i,5 ; initial index value (“for loop”)
 STA b0001111 ; start the auxiliary kernels
Loop: MOV r,C(1.1),i-4 ; r := C(1.1)[i-4]
 GCO C(2),r ; generate 2D offsets of C(2) with r
 WAI ; wait for the other kernels
 OUT C(0) ; output C(0) holding the offset
 OUT K1.C(0) ; output C(0) of the first kernel
 OUT K2.C(0) ; output C(0) of the second kernel
 OUT K3.C(0) ; output C(0) of the third kernel
 OUT K4.C(0) ; output C(0) of the fourth kernel

 MOV C(2),C(2),3999,0 ; make sure to flip C(2)
 ADD Y,DeltaY*5 ; Y coordinate increases by DeltaY*5
 ADD i,5 ; increase loop index i by 5
 CMP i,105 ; if i is not equal to 105,
 BNE Loop ; loop continues
 CLR C(0) ; clear C(0)
 MOV X,X0 ; load the initial position
 MOV Y,Y0
 MOV Z,Z0
 OUT C(0) ; perform linear interpolation
 END

 BGN 1
 MOV C(2),C(2),3999,0 ; make sure to flip C(2)
 ADD Y,DeltaY*1 ; Y coordinate increases by DeltaY*1

 MOV r,C(1.1),i-3 ; r := C(1.1)[i-3]
 GCO C(2),r ; generate offsets of C(2) with r
 TIC 1 ; send the acknowledgement signal
 END 1

 BGN 2
 ADD Y,DeltaY*2 ; Y coordinate increases by DeltaY*2

 MOV r,C(1.1),i-2 ; r := C(1.1)[i-2]
 GCO C(2),r ; generate offsets of C(2) with r
 TIC 2 ; send the acknowledgement signal
 END 2

 BGN 3
 MOV C(2),C(2),3999,0 ; make sure to flip C(2)
 ADD Y,DeltaY*3 ; Y coordinate increases by DeltaY*3

 MOV r,C(1.1),i-1 ; r := C(1.1)[i-1]
 GCO C(2),r ; generate offsets of C(2) with r
 TIC 3 ; send the acknowledgement signal
 END 3

 BGN 4
 ADD Y,DeltaY*4 ; Y coordinate increases by DeltaY*4

 MOV r,C(1.1),i ; r := C(1.1)[i]
 GCO C(2),r ; generate offsets of C(2) with r
 TIC 4 ; send the acknowledgement
 END 4

 139

5.7 Comparison with the Conventional Approach

In this section of the chapter, another application area of the VEPRO is evaluated.

2.5D pocketing operations are employed on two different test cases (Flower and

Rabbit, which are modified version of test cases presented in [99]) via writing an

appropriate VEPRO program.

Rendered SolidWorks parts of these two cases are shown in Figure 5-15 and

Figure 5-16. The flower and rabbit figures of [99] are modified such that they now

fit into 200!!!×!300!!. The SolidWorks parts of the test cases are formed

from the discrete points of the figures. Due to the memory problems, the number

sof points in Flower and Rabbit are limited to 44022 and 33011, respectively. The

depth of the pocketing operation is 3.5!!! in each of the cases.

As opposed to the previous section, these cases are realized with a CNC

machining center available at the machine shop of the department. The parameters

of the machine are given in Table 5-6. The CNC machining center has 3 axes and

the resolution of the encoders for each axis is 10000!!"#$%/!"#. The CNC

controller of the machine is Sinumerik 802D. Thus, the written NC programs

should be compatible with Sinumerik. Due to the complexities of the test cases, it

is difficult to write NC programs manually. Instead, a freeware CAM software

(HSM Express) is utilized to generate required NC programs for the pocketing

operations. The properties of the obtained NC files and the workpieces are

summarized in Table 5-7. As can be inferred from the first row of the table, the

generated NC files are very long (117123 lines for the Rabbit and 191626 lines for

the Flower). The reason of these lengthy files is that in automatic generation the

points on the figures are simply connected with the NC commands G1, G2, and

G3. The numbers of these commands are also provided in the table. Three

different sizes of milling tools are used in both of the cases. While pocketing is

done in two levels for the Rabbit, it is completed in three levels for the Flower

case. The sequences of the machining levels and the accompanying tools are

given in Table 5-8. The Rabbit is manufactured in 4 sequences, but it took 6

 140

sequences for the Flower to be produced from Aluminum 7075. Due to the

additional sequences, the manufacturing of the Flower took 100 minutes longer

than the Rabbit. During the manufacturing of the test cases, Boron Oil & Water is

used as the coolant.

The images of the produced parts are provided in Figure 5-17 and Figure 5-18.

The scratches of the tools can clearly be seen on the machined surfaces. The two

test cases are machined on the same aluminum block. Since the size of the Flower

is smaller than the Rabbit, there is extra space left on the Flower side of the

aluminum.

Figure 5-15 Rendered SolidWorks Part of the Test Case Flower

 141

Figure 5-16 Rendered SolidWorks Part of the Test Case Rabbit

Table 5-6 Parameters of the CNC Machining Center

Parameter Symbol Unit x-axis y-axis z-axis
Mass m kg 130 331.97 260

Dry friction force Ff N 200 200 200
Moment of inertia J kgm2 7.9941×10-3 16.4838×10-3 19.7446×10-3
Dry friction torque Tf N 1.1 1.5 2.1

Viscous friction
coefficient b Nms/rad 0.0005 0.0005 0.0005

Equivalent moment
of inertia

Jeq kgm2 0.00834 0.01737 0.02044

Equivalent dry
friction

Tf,eq Nm 1.435 1.835 2.435

Ball screw lead hs m 0.010 0.010 0.010
Ball screw efficiency ηs - 0.95 0.95 0.95

Rated torque Tr Nm 12 22 30
Rated speed ωr rad/s 209.44 209.44 209.44
Rated power Pr W 2,094.4 3,769.9 4,398.2

Torque-speed slope mT Nms/rad -0.00955 -0.01910 -0.04297
Encoder resolution - pulses/rev 10,000 10,000 10,000

 142

Table 5-7 Properties of the NC Files and the Workpieces

Property Rabbit Flower

of Command Lines 117123 191626

of G0 Commands 125 324

of G1 Commands 15472 32382

of G2 Commands 16958 33976

of G3 Commands 3338 3102

of Tool Changes 3 5

Duration of Machining 320’ 420’

Tool Diameters (mm) 2, 4, 6 2, 4, 6

Coolant
Boron Oil (10%) &

Water (90%)
Boron Oil (10%) &

Water (90%)

Feedrate (mm/min) 350 350

Spindle (rpm) 2000 2000

Axial Depth (mm) 3.5 3.5

Levels of Pocketing (mm) 2.5 and 3.5 1, 2, 2.5, and 3.5

Material Aluminum 7075 Aluminum 7075

Workpiece Size (mm) 300 × 200 × 20 300 × 200 × 20

Feature Size (mm) 244.1 × 187.2 189.4 × 182.1

Number of Points in Base Curve 33011 44022

NC File Size (MB) 2.53 4.15

Zipped File Size (MB) 0.6 0.64

Table 5-8 Machining Sequences of the Test Cases

Sequence Rabbit Flower

1 φ6 & Z2.5 φ6 & Z2

2 φ4 & Z2.5 φ4 & Z2

3 φ2 & Z2.5 φ2 & Z1

4 φ2 & Z3.5 φ2 & Z2.5

5 - φ4 & Z3.5

6 - φ2 & Z3.5

 143

Figure 5-17 Manufactured Test Case Flower

 144

Figure 5-18 Manufactured Test Case Rabbit

 145

After the manufacturing of the test cases, a generic VEPRO program is written for

the comparison purposes with the conventional approach. The program is

provided in Table 5-9. The main difference of this program from the previous one

is that it utilizes GCO command of the VEPRO to generate curve offsets of the

base curves for pocketing operations. By only changing the base curves, offset

tables, number of sequences, and the height of the levels one can obtain

trajectories for 2.5D pocketing operations. The written VEPRO program is also

emulated in MATLAB and the results of these emulations are given in Figure

5-19 and Figure 5-20. As in the previous section, the red lines represents

machining and the blue lines represents fast movements of the tools utilized. The

properties of the generated tool trajectories are summarized in Table 5-10. As

opposed to the previous section, the number of points on the base curves are

increased in this section for a better quality of the curve offsets.

Table 5-9 Generic VEPRO Program for the Test Cases Flower and Rabbit

;
; VEPRO program for the “Rabbit” and “Flower” cases
;
 DIM 3 ; 3-axis (X,Y,Z)
 WOR 4 ; use 4-byte word (32-bit)
 FPL 0 ; no fixed-point multiplication
 NCR 3 ; 3 dynamic arrays including C(0) are needed!
;
; Define addresses in memory
;
X0 EQU 0x0 ; initial x location (1 word)
Y0 EQU 0x4 ; initial y location (1 word)
Z0 EQU 0x8 ; initial z location (1 word)
Rtab EQU 0x9 ; starting address of offset table (32/40 words)
Levels EQU 0xA9 ; starting address of levels table (2/4 words)
OffsetIndex EQU 0xB9 ; starting address of offset index table (2/4 words)
Bcur EQU 0xC9 ; starting address of base curve (2*220022 words)
;
; Assign labels to registers (or constants)
;
X DEF R(1) ; position register for axis-1: X
Y DEF R(2) ; position register for axis-2: Y
Z DEF R(3) ; position register for axis-3: Z
i DEF R(4) ; R(4) is to be used for indexing
r DEF R(5) ; R(5) stores the temporary offset value
j DEF R(6) ; R(6) is to be used for indexing
k DEF R(7) ; R(7) is to be used for indexing
Zup DEF R(8) ; Absolute z position of the tool in fast movements
NumLevels DEF R(9) ; Number of levels in the machining
;
; Program starts here
;
 ORG 0x0001ADC69 ; starting address

 146

Table 5-9 (continued)

 SLI ; set linear interpolation mode
 SOE ; enable output
 CLR ; clear all curve registers

MOV i,0 ; initial index value
MOV j,0 ; initial index value

 MOV Zup,5 ; Zup is assigned to be 5 mm.
 MOV X,X0 ; load initial tool locations
 MOV Y,Y0 ; to position registers
 MOV C(1.1),Rtab,0,159 ; load offsets to C(1) (1D)
 MOV C(2.1),Bcur,0, 880088 ; define X of base curve
 MOV C(2.2),Bcur,880089,1760176 ; define Y of base curve
 MOV C(3.1), Levels,0,15 ; load levels to C(3) (1D)
 MOV C(4.1), OffsetIndex,0,15 ; load indexes to C(4) (1D)
 MOV Z,C(3.1),j ; Initial level
Loop: MOV r,C(1.1),i ; r := C(1.1)[i]
 GCO C(2),r ; generate 2D curve offset of C(2) with r
 OUT C(0) ; output C(0) that holds the current curve offset
 INC i ; increase loop index i
 CMP i,C(4.1),j ; if i not equal to next level starting index
 BNE Loop ; then continue with the loop
 INC j ; increase loop index j
 MOV Z,C(3.1),j ; Level changes

CLR ZF ; Clear the flag ZF
 CMP j,NumLevels ; if j is not equal to Numlevels,
 BNE Loop ; then continue with the loop
 CLR C(0) ; clear C(0)
 MOV X,X0 ; load the initial pos. to the resisters
 MOV Y,Y0
 MOV Z,Z0
 OUT C(0) ; perform linear int. to the initial position
 END

 147

Figure 5-19 Plots of MATLAB Emulation of the Test Case Flower

 148

Figure 5-20 Plots of MATLAB Emulation of the Test Case Rabbit

 149

Table 5-10 Data Attributes of the Test Cases Rabbit and Flower

Description Rabbit Flower

Number of Commands in Base Curve 220,011 220,022

Size of Original Base Curve (Bytes) 1,320,066 1,320,132

Size of Compressed (ΔY10) Base Curve (Bytes) 133,433 128,762

Number of Commands in Tool Trajectory 3,907,907 4,789,165

Size of Original Tool Trajectory (Bytes) 31,263,256 38,313,320

Size of Compressed (ΔY10) Tool Trajectory (Bytes) 3,852,223 3,680,187

It can be inferred from Table 5-10 that by compressing the base curves via ΔY10

compression algorithm and then utilizing the VEPRO commands do outperform

the conventional approach in terms of memory. The original tool trajectories can

be represented with 1% of the initial memory sizes with the VEPRO. For instance,

for the test case Rabbit the compression ratio is calculated as

! = 133,433
31,263,256 = 0.4% (5-1)

When this low compression ratio and the primitive hardware to employ VEPRO

are considered together, one can conclude that Kolmogorov complexity of the

conventional approach is higher than the proposed paradigm.

 150

5.8 Conclusion

A novel motion command generation paradigm is proposed in the chapter. As in

the conventional approach, the motion trajectory is defined manually by writing

the VEPRO program using the given commands of VEPRO language. After it is

compiled on the host PC, the output of the compilation (a.k.a. machine code) is

transferred to the VEPRO hardware through different kinds of communication for

processing. Then the hardware generates the motion command with the help of its

auxiliary units on the hardware.

The chapter starts with the review of the primitive version of this command

generation paradigm. Then the VEPRO is introduced by describing the hardware

layout of a possible SOC implementation. In the fourth section of the chapter, the

commands of the VEPRO language are presented along with their explanations.

Different types of test cases are evaluated in the fifth and sixth sections. When the

results of MATLAB emulation of these cases are considered, it can be noted that

with the same program one can machine different shapes by just changing the

offset tables and base curve sets.

Apart from the given test cases in the previous sections of the chapter, VEPRO

can also be utilized to generate various machining trajectories for different types

of CNC machinery and robotics applications. The proposed paradigm is still under

development. According to the new application fields, different types of

commands can be embedded into the VEPRO in the near future.

 151

CHAPTER 6

FPGA IMPLEMENTATION OF COMMAND GENERATOR

This chapter of the thesis focuses on the implementation of a novel motion

command generator for servo-motor drives using FPGAs. The underlying method,

which incorporates a new data compression algorithm (ΔY10), is capable of

generating trajectory data at variable rates in forward and reverse directions. In

this paradigm, higher-order differences of a given trajectory (i.e. position) are first

computed and the resulting data are compacted via the proposed compression

technique. After the compressed data is transferred onto the memory chip of the

FPGA development board, the generation of the commands is carried out

according to the feedrate (i.e. the speed along the trajectory) arranged by the

external logic dynamically. The FPGA implementation is realized in two different

approaches (hardwired and softcore). Then the performance of this system is

evaluated in terms of the hardware resources used in different aspects by

employing it on two different test cases.

 152

6.1 Introduction

The current state of the art motion drive systems utilize on-board controllers with

digital signal processors and micro-controllers to control the position and the

velocity of the servo-motors. They are also used to regulate precisely the phase

currents of the motors to control the electromagnetic torque. Despite these

capabilities, in most of the multi-axis motion control applications, a central

motion control unit is utilized commonly to generate velocity and/or position

trajectories. The generated motion signals are then conveyed to each motor driver

over a serial communication protocol. As an alternative to this conventional

approach, a direct command generation system with variable feedrate for servo

motor drives is aimed in the study. The proposed architecture can also be utilized

to generate commands for machines having more than one axis. In these cases, an

additional unit embedded into the hardware is necessary to synchronize the single

axis motion command generators. The proposed novel approach produces the

commands directly in the drive system from the encoded (with ΔY10 encoding

method) data set. There is no need for the data transfer from the central control

unit of the overall system. This proposed scheme is implemented on an FPGA

development board within the scope of the study. With the proposed hardware

implementation, the novel command generation paradigm can easily be realized as

an embedded part of the motor drive systems.

When the related literature discussed in Chapter 2 is considered, it can be

concluded that there are studies on the FPGA implementations of the data

compression algorithms and digital control of CNC based applications, but there

are not any studies on the command generation for CNC machinery and robotics

utilizing FPGA and compressed motion data. The main contribution of the chapter

is that it improves the command generation scheme proposed by Yaman and

Dolen [66] and realizes the method on an FPGA development board by employing

it on some test cases.

 153

The rest of the chapter is organized as follows: Next section discusses the details

of the novel command generation method, and the following section presents the

hardware architecture of FPGA implementation of the method. After the test cases

are described and the performance of the method is evaluated in the fourth

section, the chapter is concluded with the closure section.

6.2 Proposed Technique

The system basically depends on the compression of differentiated motion

command data. Computer aided manufacturing or robotics software generates the

motion command trajectory data according to the predefined sampling frequency.

After the higher order differences of the trajectory are taken, the differentiated

sequence is compressed with the proposed compression method. The transferred

data is decoded on the command generator and conveyed to the motion control

system. With the proposed scheme, the utilization of an intermediate

programming file (such as NC files) describing the path of the tool is eliminated.

The motion controller directly uses the output of the decoder embedded on the

controller board as the reference trajectory generator. Although the details of the

command generation paradigm are discussed in Chapter 4, the summary of the

method is provided in the following parts for the integrity of this chapter.

6.2.1 Encoding of ΔY10

The encoding part of the scheme is composed of relative encoding and

compression processes. The details of these steps are discussed in the following

subsections.

 154

6.2.1.1 Relative Encoding

In relative encoding, the higher order differences of sequences of the trajectories

are computed. This approach decreases the memory requirement of the original

trajectory sequence since the magnitudes of the values do decrease extensively.

The order of decrease in the memory cost depends on the type of the application.

Considerable decrease in the memory is mostly achieved when the order is 3 or 4

for CNC machining applications, but when the sampling frequency is about 1 kHz

or higher the best order of difference may be 2 [66]. The decoding can easily be

completed, provided that the initial values are given, by the utilization of certain

number of accumulators. Due to the employment of relative encoding, the decoder

is capable of generating position, velocity and acceleration trajectories at the same

time. This is one of the main advantages of the proposed scheme.

6.2.1.2 Compression Process

The developed command generation encoding technique ΔY10 is employed on a

simple test case in order to describe the phases of the compression part of it

clearly. This is illustrated in Figure 6-1. In the first phase of the command

generation encoding method, higher order differences of the command sequence

are taken. When the example in the figure is considered, after the first order of

difference, the magnitude of the command values do decrease considerably. At

this stage, the first initial value should be stored to recover the original command

sequence. Since the higher order difference of this example is determined to be

two, one more discrete differentiation is carried out on the resulting sequence. The

second initial value is also stored. After the relative encoding part is completed,

the construction of the AF is started. In the first stage of this construction, the

commands in the sequence are eliminated from their signs. Then in the second

stage, the commands are represented as Variable Length Binary Numbers. If there

are any zero sequences in the first stage, their binary representations are modified

 155

in the third stage by new zero sequences having lengths equal to the lengths of the

original zero sequences in binary form. In order to recover the magnitudes of the

differentiated commands, another field called LF is constructed. It simply

constitutes of sequences of ones and zeros. The length of these sequences

determines the length of the commands in the AF. The third field of the encoding

method stores the signs of the differentiated commands. 1 is used for negative

values and 0 is reserved for positive ones. No bits are used for zero values. The

last field of the compression part is the ZF. Here, the lengths of the sequences are

stored. Their lengths are determined from the corresponding part of the LF. After

the construction of the fields is done, the resulting codes (initial values and fields)

are coupled with necessary descriptions (header) and stored into the memory.

Figure 6-1 Encoding of a Sample Sequence via ΔY10 Technique

 156

6.2.2 Decoding of ΔY10

The decoding part of the command generation scheme has also two main steps:

decompression and linear interpolation.

6.2.2.1 Decompression Process

The decompression procedure of the proposed command generation method is

easier than its encoding process. It starts with determining the length of each

command from the LF by counting the bits in between the successive bit

transitions. By knowing the length of the commands, the absolute values of them

are obtained from the AF. The signs of these commands are fetched from the SF

in order to obtain the signed integer versions of commands. During decoding if it

is found that the magnitude of the command is zero and its length is greater than

one, then it is concluded that there is a sequence of zero. The number of zeros in

this sequence is determined from the ZF. During the decompression of the

differentiated data, initial conditions are conveyed to the accumulators from the

memory. Finally, the original commands are generated by the last accumulator

used in the system.

6.2.2.2 Linear Interpolation

In manufacturing operations with CNC machinery, the operator usually modifies

the speed (i.e. feedrate) of tool motion on the workpiece with an external input in

order to increase the quality of the product and to eliminate the risks of crack

formation on the tool. During the manufacturing processes it may be required to

modify the feedrate dynamically through the course of motion by an external

input (like feedrate override). Furthermore, under some extreme cases (such as the

control scheme of an electro-discharge machine), it is desirable to reverse the

direction of motion as dictated by an auxiliary input (e.g. electrode gap voltage).

 157

A variable feedrate input available in forward and reverse directions is integrated

into the proposed CG paradigm in order to overcome the aforementioned

disadvantages in the manufacturing operations. With the modified feedrate of

command generation, extra command values other than the ones in the original

sequence should be generated. For this purpose, a linear interpolation is carried

out after the decompression of the original values. This is accomplished by the

Interpolator Unit in the hardware design. It simply interpolates between the two

decoded command values and interpolates according to the current value of the

feedrate input.

6.3 FPGA Implementation

Altera FPGA DE1 Development Board is utilized in the study in order to

implement the proposed command generation scheme. There are different kinds

of memory devices (SRAM, SDRAM, SD Card, Flash) on the board. Among

these chips SDRAM is selected due to its ease of control and memory capacity (8

MB). Two different approaches are used to implement the command generator. In

the first approach, the command generation method is directly written in VHSIC

Hardware Description Language (VHDL) and it is called as hardwired approach.

A softcore processor IP (NIOS II) serving as an embedded microcontroller is

utilized in the second approach and named as the softcore approach.

The hardware architecture of the proposed command generation scheme for the

hardwired approach is given in Figure 6-2. It is an improved and more stable

architecture of the one proposed by Yaman et al. [29] for a different compression

algorithm. There are eight different modules, a bus line and inputs in the

architecture. All of the inputs (Start/Pause, Reset, Clock, Speed, Direction) are

connected to the bus line. Except the Clock input, the rest are supplied to the

system from the buttons and switches located on the FPGA development board.

The Clock input is directly connected to the system from the software. The Speed

 158

input (7 bit) is simulated with seven switches forming an unsigned integer. All of

the data lines are 32 bit and the address line is 13 bit.

Figure 6-2 Decompression Architecture

On the upper part of the bus line, blocks necessary for the memory operations are

located. Phase Locked Loop (PLL) block generates necessary timing signals for

the SDRAM Controller and has no other tasks. SDRAM is only connected to the

SDRAM Controller. Thus, it is the only block that can read and write to SDRAM.

The modules to the below of the bus line communicates with the SDRAM

Controller through Memory Interface. The Decoding Unit is the core of the

architecture. It gets the required data from the Memory Interface and conveys the

decoded commands to Integrator Units. There are n number of Integrator Units in

the design. According to the order of the difference defined in the header part of

the compressed file, the Decoding Unit selects the starting integrator via a

demultiplexer and conveys the decoded differentiated commands to this

integrator. Initial conditions for each integrator unit are transferred to them at the

start of the system from the Memory Interface. The circuit schematics of an

 159

Integrator Unit is illustrated in Figure 6-3. There are two adder block and a

register storing the latest command value. If it is not the first Integrator Unit in the

system, the differentiated command is not supplied to the circuit. Integrated

commands coming from the previous unit is only fed to the corresponding unit.

After the integration is done with n number of units, the Interpolator Unit transfers

the commands to the UART Module for monitoring. When a controller is present

in the system, the Interpolator Unit should also send the trajectory commands to

the controller.

Figure 6-3 Integrator Unit

To decrease the complexity of the coding in VHDL, the schematic design

property of Quartus II 11.1 Web Edition is employed. The hardware architecture

(Figure 6-2) given is constructed within the software. The following sections

elaborate the design of the units by explaining the State Transition Diagrams

(STDs) utilized in each unit.

 160

6.3.1 Hardwired Approach

In this approach of the FPGA implementation of the command generation scheme,

the hardware architecture illustrated in Figure 6-2 is implemented via designing

the state diagrams of each module in Altera Quartus software. The details of each

module are described in the following subsections.

6.3.1.1 SDRAM Controller

SDRAM Controller in the architecture is used to read and write to SDRAM

located on the board over the Memory Interface in order not to deal with the

details of the reading and writing procedures. The Memory Interface sends the

related address information of the data required and the controller conveys the

data to the Memory Interface. The controller utilized in the implementation is

developed by Altera. The two outputs of the controller are connected to the

Memory Interface to receive the specified words and the rest of the outputs are

attached to the SDRAM chip on the board.

In order to use the memory efficiently, the compressed code is structured as

shown in Figure 6-4 for a generic command sequence. The first three words of the

compressed data can be regarded as the header. Initial 4 bits of the first word

indicate the order of finite difference (where a maximum of 15th order for the

differences can be represented). The rest of the first word (28 bits) is reserved for

expressing the length of the command sequence. The second word of the header is

used to specify the number of words reserved for the AF and LF, which indirectly

determines the starting address of the SF. Finally, the last word of the header

gives the starting address of the ZF. After the header part, the initial values section

is located. They are stored in the form of signed binary integers. The number of

initial values necessary for integration is set by the order of finite difference

which is represented with the first 4 bits of the data. After the information about

 161

Compressed
Data

001100....000000
000000....001010
000000....111110
111111....000111
000000....101100
000000....101011

111111....101100
101010....100101

111100....110010
000001....100101

001001....111111

{
Order of

Difference }
Length of the

Command
Sequence

{Number of
Amplitude &
Length Field

Words } Initial
Values

101010....001010{Length
Field

{Sign
Field

}Amplitude
Field

32 Bits

} Address of
Zero Field

101010....100101

111100....110010} Zero
Field

Figure 6-4 Compressed File Format

the compressed data and initial values are given, the LF is then stored in the

proceeding words. Since the length of the header part and the number of initial

values are known, the starting address of the LF is easily determined during

decoding. Note that the amplitude and sign fields are located after the LF. The

starting addresses of these two fields are calculated via the number of amplitude

and length field words stored in the second word of the header. The last section of

the compressed file consists of ZF words, whose starting address is provided in

the third word of the header. With the described data format, the compressed

sequences are generated without any error.

 162

6.3.1.2 Memory Interface

The second module to be introduced is the memory interface. Its main task is to

establish and maintain the communication between the SDRAM on the

development board and the other modules present in the structure. The STD

developed for memory interface is given in Figure 6-5. There are 6 states in the

diagram. The first state is the Idle state. After it is initiated with the Start or Reset

inputs, the flow is switched to the next state that is Send Header & Initial

Conditions. In this state, the header is fetched from the memory and sent to the

decoding unit. After the header is sent, Send Amplitude and Length Words state is

activated by setting the data_need signal to “01”. In the first operation of this

state, first two words of the amplitude and length fields are sent to the decoding

unit directly (Afterwards only one word of the fields are transferred). Then the

operation of the memory interface is controlled by the decoding unit. It sends

required signals to the memory interface and fetches words from different fields

of the compressed code. At this stage of operation, the state continuously changes

between three states Send Amplitude and Length Words, Send Sign Word, and

Send Zero Word according to the coming signal (data_need) from the decoding

unit. When the decoding operation is completed, the final state Done is activated.

 163

Figure 6-5 STD of the Memory Interface

6.3.1.3 Decoding Unit

This unit can be regarded as the core of the hardware architecture, because ΔY10

decompression algorithm is employed here. There are only two modules (Memory

Interface and the first Integrator Unit) communicating with the Decoding Unit. Of

these two units, only the Memory Interface gives inputs to the unit. After a

differentiated command is decoded in the unit, it is fed to the first integrator in

signed integer format along with an acknowledgement clock. STD of the

Decoding Unit is given in Figure 6-6. There are fifteen different states in the

diagram. Decompression starts with the reset input and firstly the header

information is fetched from the SDRAM via Memory Interface. Afterwards, the

necessary information for decoding is acquired by processing the header words.

Later in the third state of the STD, initial amplitude and length words are fetched

from SDRAM. The next state is the Decode Length Word state in which the

length word is analyzed with bit operations and the length of the command is

determined. Then amplitude of the command is determined in the Decode

Amplitude Word state. When a command has components in two different words,

the Detect Pair state is activated by setting the signal pair_flag to “1”. Another

 164

Figure 6-6 STD of the Decoding Unit

state connected to the Decode Length Word state is the Direction Change state. If

the user changes the direction of the decoding, necessary modifications on the

variables and the signals are done in this state. When there is a lack of data during

decoding, the finite-state machine moves on to Fetch Amplitude and Length

Words state to obtain the required data. After the amplitude of the command is

 165

determined, it moves to Determine Sign state where the sign of the state is

assigned. If there is a need for new sign word, the machine moves to Fetch Sign

Word state. During the determination of the amplitude, if it is turned out that the

amplitude is zero and the length is greater than one, it means that there exists a

sequence of zeros. This is decoded in Decode Zero Word state. This state is in

communication with two other states related to the zero field decoding. When the

data in the zero field lies in two different words, then the Detect Zero Pair state is

activated. If there is a lack of zero word, the flow continues to Fetch Zero Word

state in order to receive the new zero word from the memory interface. After the

command is generated in the related states, the machine goes back to the Decode

Length Word state and continues decoding. When the decoding operation of all

commands is accomplished, the last state Done is activated.

6.3.1.4 Integrator Unit

The circuit schematic of the Integrator Unit is supplied in Figure 6-3, but this

circuit is not capable of handling the reverse directions. Therefore, a simple STD

(Figure 6-7) is developed to generate commands in both directions. There are five

states in the diagram. As in the other diagrams, the first state is the Idle state.

After the Idle state is initiated, initial conditions are generated in the next state.

Then in the third state, commands are generated according to the incoming

decoded data from the decoding unit at the rising edge of data_clk signal. If the

direction of the command generation is changed, the state Direction Change

performs necessary tasks and continues its operation. When all the commands

available in the memory are generated, the last state Done is activated.

 166

Figure 6-7 STD of the Integrator Unit

6.3.1.5 Interpolator Unit

The interpolator unit performs necessary computations in order to interpolate

between the consecutive commands according to the input (speed) given by the

user. The STD of the interpolator unit is formed with seven states as can be seen

in Figure 6-8. The first and the last states are the same with the previous STDs.

After the command is supplied to the Get Data state, there are two possible next

states which are Interpolate and Generate Original Commands. If the user does

not change the speed of command generation (Speed is at its maximum level),

original commands are generated according to the frequency specified at the

encoding stage. When an interpolation is necessary, the Interpolate state is

activated. Direction change is detected in this state and necessary computations

are carried out in the state Direction Change. When the user wants the system to

generate constant commands for a period of time (Speed is set to its minimum),

the related state performs the task. As usual when the command generation is

completed, the last state becomes active.

 167

Figure 6-8 STD of the Interpolator Unit

6.3.2 Softcore Approach

In the second approach of the FPGA implementations, rather than building the

integrated circuit for the command generation scheme a softcore processor is

utilized to generate the commands. For the construction of the processor, the

System on a Programmable Chip (SOPC) Builder tool of Quartus is used. After

the system is designed, the program required to run the command generation

algorithm is written in NIOS II Embedded Development Environment in C

language and then downloaded onto the FPGA development board for operation.

The details of this implementation approach are given in the following

subsections.

6.3.2.1 Construction of the Softcore

The softcore processor and its peripheral units are designed via SOPC Builder. As

shown in Figure 6-9, there are ten different modules in the design. The first

 168

module is the Central Processing Unit (CPU) of the design. The most primitive

core of NIOS II is selected as the CPU which utilizes about 600 to 700 logic

elements of the FPGA chip. The second module is the communication module.

The compiled algorithm is transferred to the core through this module that

employs serial communication. The third one is the on-chip memory module. Its

data width is selected as 32 and total memory size is fixed to 36000 bytes. The

preceding module flash controller is added in order to read and write onto the

flash memory. The fifth module is utilized to output some of the signals for

debugging purposes. Currently there are 8 outputs and they are connected to the

LEDs on the FPGA development board. The next module is the controller for the

SDRAM. The compressed motion command data are stored into the SDRAM and

read via this module in the design. The following module is auxiliary module for

the SDRAM controller. It generates necessary clock signals for the controller like

PLL module in the hardwired approach. The System ID Peripheral is used to

assign a unique ID when the system is generated. The next module Interval Timer

is included in the design in order to measure the average command generation

time. The last one helps the core get inputs from the user. These inputs are the

speed (feedrate) and the direction of the generation along with the Start/Pause

switch. After the core is designed, as in the hardwired approach the schematic

property of Quartus is used to connect the inputs and outputs to the core (Figure

6-10).

 169

Fi
gu

re
 6

-9
 E

le
m

en
ts

 in
 th

e
So

ftc
or

e

 170

Fi
gu

re
 6

-1
0

Sc
he

m
at

ic
 D

es
ig

n
of

 th
e

So
ftc

or
e

A
pp

ro
ac

h

 171

6.3.2.2 Machine Code

In the second part of the softcore approach, the command generation algorithm is

written in C programming language and the resulting are cross-compiled to run on

the designed softcore processor deployed on the FPGA. The written program is

provided in APPENDICES A. After the necessary libraries are included and some

definitions are written, the main function of the program begins. Before decoding

the compressed motion data, the required field are obtained from the SDRAM and

written into the related variables. The start and end addresses of these fields

should carefully be obtained. Otherwise, unrelated commands may be generated

from the system. After obtaining the fields, the decompression is done and the

commands are printed on the console along with the time elapsed.

6.4 Performance Evaluation of the Method

The implementation of the proposed command generation paradigm described in

the previous sections is carried out on two different test cases:

• Finishing of a plastic injection mold for a shampoo bottle using a high

performance CNC vertical machining center.

• Stencil cutting of a Rabbit [99] via a CNC router.

The command generator is realized utilizing Altera Cyclone II FPGA DE1

Development Board. The trajectories generated for the above-mentioned

applications are illustrated from Figure 6-11 to Figure 6-14 and important

properties of these test cases are summarized in Table 6-1. It can be inferred from

this table that the differenced data set cannot be represented less than 2 bytes

regardless of the cases. The Bottle test case has a higher position resolution than

the Rabbit test case. Therefore, the differenced data set of the Bottle has much

more zero sequences in the compressed form. This results in a decrease in the

 172

Figure 6-11 Trajectory of the Machine Tool for the Bottle Test Case

Figure 6-12 X, Y, and Z Axis Trajectories of the Bottle Test Case

 173

Figure 6-13 Trajectory of the Machine Tool for the Rabbit Test Case

Figure 6-14 X and Y Trajectories of the Rabbit Test Case

 174

Table 6-1 Attributes of the Test Cases

Case Bottle Rabbit
Number of Axes 3 2

Position Resolution [counts/mm] 10000 1000
Samples / Axis 926642 14120

Sampling Period [s] 0.001 0.001
Command Duration [s] 926.642 14.120
Range of Data [Byte] 3 3

Range of Data (∇) [Byte] 2 2
Range of Data (∇2) [Byte] 2 3

Total Size of Data [kB] 8145 83
Average Compression Ratio [%] 0.18 17.17

Average Generation Time / Command [ms] 0.29 0.52
Average Generation Time / Command (NIOS II) [ms] 32 48

average generation time for the original commands since the generation of zero

sequences takes less time when compared to the generation of regular points.

Furthermore, due to the same reasons the average compression ratio for the Bottle

is too low.

The comparison of the generated commands and the original trajectory are not

given in this chapter since there is no difference between them. The designed

command generator produces the original commands without any error. On the

other hand, the effect of the speed on the generated commands is further

elaborated in the study of Yaman and Dolen [66]. Due to the interpolation, there

may be representation errors less than 20 encoder counts.

Table 6-2 shows the utilization of FPGA resources in terms of numbers and

percentages (with respect to Altera Cyclone II 2C20 FPGA Chip) for different

number of axis applications. In the last application of the FPGA implementations,

the command generation algorithm is written in C programming language and the

resulting are cross-compiled to run on a softcore processor (NIOS II) deployed on

the FPGA. Then the resulted code is downloaded to the designed processor. The

 175

pseudocode of the decompression algorithm is provided in Table 6-3. Given the

compressed motion command data and the direction, the algorithm generates the

differenced motion trajectory. After the integration is accomplished in an

upcoming unit, the original trajectory is generated via interpolating according to

the speed of generation.

Table 6-2 FPGA Resources Used

Resources X X & Y X, Y & Z NIOS II (X)
Total Logic
Elements

6144
(33%)

10984
(59%)

15267
(82%)

2433
(13%)

Total Combinational
Functions

5684
(30%)

10989
(58%)

16294
(86%)

2225
(12%)

Dedicated Logic
Registers

2134
(11%)

3881
(20%)

5626
(29%)

1463
(8%)

Embedded
Multipliers

4
(8%)

8
(16%)

12
(24%) 0

Total
Pins

85
(27%) 131 (42%) 157

(50%)
85

(27%)
Total
PLLs

1
(25%)

1
(25%)

1
(25%)

1
(25%)

It can be inferred from Table 6-2 that as the number of axis included increases, the

resources reserved for the implementation also increase. Since only one PLL is

used for the SDRAM on the development board, its percentage remains the same.

This is due to the fact that the pins connected to SDRAM are independent of the

number of axis. There exists only one Memory Interface in each design. When the

overall percentage of the resources utilized is considered, even a low-end FPGA

chip is adequate to implement the proposed command generation paradigm. On

 176

Table 6-3 Pseudocode for the Decompression of ΔY10

Inputs: Compressed Motion Command Data, Its Statistical Attributes and
Direction
Outputs: Original Motion Commands
Let Φ denote the number of bits in the length field
i ← 0, counter ← 0, amplitude ← 0, signbit ← 0
while i ≤ Φ do
 if the consecutive bits in the length field are different then
 assign the length of the command to counter
 determine amplitude of the command
 if (amplitude == 0) and (counter > 1) then
 generate zero sequence
 end
 if amplitude ≠ 0 then
 fetch signbit
 if signbit = 0
 output amplitude
 else
 output −amplitude
 end if
 end
 else
 counter + +
 end if
 if direction == 0
 i + +
 else
 i − −
 end if
 counter ← 0, amplitude ← 0
end while

the other hand, the softcore approach utilizes less FPGA resources compared to

the hardwired approach. It also does not employ any embedded multipliers in the

implementation. Provided that the on board memory chips are used for the

memory of the softcore, the hardware resources will remain constant when the

number of axis is increased. Although it seems that the softcore approach has a

solid advantage on the hardwired approach in terms of the resources, it is about

 177

100 times slower than the hardwired implementation as seen in Table 6-1. This is

the main disadvantage of the softcore processors provided by the FPGA vendors

as Lysecky and Vahid [101] stated in their study. They proposed a hybrid

approach to overcome the disadvantages of the softcores by transforming some of

the critical regions to hardwired circuitry.

6.5 Conclusion

A motion command generation system capable of generating commands at

variable feedrates for motion control systems is implemented on an FPGA

development board via two different approaches and tested on two different test

cases having different attributes. With the designed hardware, the trajectories for

any robotics or CNC application can be generated directly without using any

intermediate programming files provided that the encoded data is transferred to

the memory of the hardware.

The encoding scheme of the realized command generation paradigm has two main

phases. In the first phase, higher order differences of the original command

sequence are calculated. Then in the second phase the differenced data sequence is

compressed with ΔY10 compression algorithm. Afterwards the compressed

commands are decoded and the commands are generated via interpolation

according to the current value of the feedrate and fed to the motion control

system. The main points and contributions of the chapter can be summarized as

follows:

• The employed compression algorithm is developed to compress the integer

command sequences. A detailed analysis on the performance of ΔY10

compression algorithm can be viewed in the study of Yaman and Dolen

[66]. Along with its compression performance, it is also decoded faster

than the conventional methods such as Huffman, LZW and Arithmetic

Coding. This is due to the fact that the compression scheme does not

 178

employ any dictionary and it is not necessary to scan all the compressed

data to generate the motion commands.

• The developed FPGA design is independent of the trajectories. Provided

that the number of integrator units in the hardware design is equal to the

order of difference in the encoding session, the user only needs to store the

compressed data to SDRAM and then start the system. If there is one less

integrator unit on the hardware, then instead of position commands

velocity profile is generated.

• Since the design utilizes successive number of integrators, the velocity and

acceleration commands may also be generated along with position

commands. These higher order trajectories may be further used in

advanced motion controller topologies.

• After the hardware implementation of this novel command generation

paradigm is realized, it may be integrated to the motion control units of

printer equipments, textile machinery, industrial robots and different kinds

of manufacturing machines.

• Although two different approaches are utilized to implement the command

generator, the hardwired approach is elaborated in a detailed manner in the

chapter since the command generation speed is becoming more important

with the improvements in the manufacturing and robotics industries.

• In future studies, it is planned to integrate a curve offset generation

algorithm to the current command generation paradigm and realize it with

a more powerful FPGA chip. Thus, the motion trajectories of pocketing

operations and 3D printers can be generated more efficiently.

 179

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

In this dissertation, various command generation paradigms for different CNC and

robotics applications are proposed along with the necessary algorithms to generate

trajectories. The thesis starts with discussing the motivation behind the study.

After sufficient reasons are stated in the first chapter, the literature behind the

fields of command generation is reviewed in the following chapter. Before the

introduction of the proposed paradigms, the third chapter focuses on one of the

mostly used aspects of the command generation systems, which is curve offset

generation. In this chapter, different algorithms are proposed and evaluated in

terms of their time and memory complexities. The first variations of the command

generation paradigms proposed in the fourth chapter do not utilize the curve offset

generation methods. They do employ various data compression algorithms to

decrease the memory requirements of the tool trajectories. The compressed

motion data are then decoded on the machine side and fed to the motion control

units of the CNC machinery. Another command generation paradigm is proposed

in the preceding chapter. The paradigm takes advantages of the symmetric

properties of the machining parts and utilized the curve offset generation

algorithms presented in the third chapter. With the paradigm, the tool trajectories

are defined by the given commands of the method on a program. The compiled

program is then installed on the hardware and the commands are generated within

the machine. A sample hardware implementation of the command generation

 180

paradigm proposed in the fourth chapter is explained in the upcoming chapter.

The finite state machines utilized in the FPGA implementation are explained and

the utilized hardware resources are discussed in the chapter. The main

contributions of the studies discussed in the chapter can be summarized as

follows.

In the first section of the second chapter, curve offset generation algorithms are

classified into four different fields based on image processing (morphological

operations), NURBS, polynomial approximations, and Voronoi diagrams. The

ones proposed in this dissertation do depend on the morphological operations. The

memory requirement problem of these techniques is surmounted by utilizing only

the relevant data. Then in the second section, the state of the art command

generation systems for CNC machinery are discussed. The hardware

implementations of various compression algorithms are evaluated in the following

section. The command generation paradigm proposed in the fourth chapter of the

thesis do also utilize a novel compression algorithm and its sample FPGA

implementation is evaluated in the sixth chapter. Before speculating on the

possible further research fields, command generation systems based on FPGA are

evaluated.

The third chapter of the dissertation focuses on the curve offset generation

methods. Five different methods are proposed in the chapter. Four of these

methods are using morphological operations to obtain the offsets of the given

trajectories while the last one utilizes polygon operations in the computations. The

first four methods are firmly linked to each other. The primitive one (MOBI) is

employed on the binary images. Thus, it requires more memory than its evolved

versions. The ones (MOBS, IMOBS, and AMOBS) proposed after the MOBI do

not use binary images, rather they work with the boundary sets of the curves. With

the utilization of the boundary data set, the memory requirement problem of the

MOBI is solved, but the time complexity of the MOBS is still quadratic. Then

with the introduction of IMOBS, the time complexity of the method is reduced to

linear-in-time. This is accomplished by employing a grid search algorithm on the

MOBS. The last method (AMOBS) based on morphological operations further

 181

improves the performance of IMOBS by not generating the possible boundary

points that are to be eliminated in the future steps of the algorithm. Due to the

linear-in-time properties of the last two methods, they can be utilized in the

hardware implementation of the command generation paradigm proposed in the

fifth chapter of the thesis.

The first type of the command generation paradigms is proposed in the fourth

chapter. The paradigms depend on compressing the original trajectories via

various compression approaches in advance and generating them on the embedded

hardware of the CNC machinery. Before compressing the trajectories, their higher

order differences are taken in order to decrease the range of the original

commands. This differencing process results in the generation of acceleration,

velocity and position trajectories at the same time provided that the order of

difference is at least two. The proposed paradigms are evaluated according to the

compression performances on different test cases. The proposed compression

algorithm ΔY10 does better than the other conventional compression methods in

general. This command generation paradigm is also realized on an FPGA

development board and its details are explained in the sixth chapter.

The second type of the command generation paradigm depends on the contextual

modeling of the tool trajectories. The paradigm, named as VEPRO, utilizes the

developed algorithms (curve offset generation and data compression) in the

previous two chapters. Thus, it can be considered as the most advanced command

generation paradigm of the thesis. In the VEPRO, the command trajectories of the

tools or the machining heads are defined via the proposed commands. One of the

main advantages of the written VEPRO programs is that by only changing the

given base curves and the offset tables one may obtain totally different

trajectories. For instance, in the fifth chapter three different trajectories are

generated with only one VEPRO program. Furthermore, with the addition of few

VEPRO commands the mirror image of the trajectories may be obtained as

discussed in the chapter. When ΔY10 compression algorithm is also used to

compress the base curves of the trajectories, original trajectories of 2.5D

pocketing operations can be compressed to 0.4 %. If the compression algorithms

 182

are not utilized, then the compression ratio becomes 4.2 % for the same test case.

Thus, for higher compression rates it is better to compress base curve before

loading them onto the memory of the VEPRO hardware.

The last chapter before the conclusion discusses the details of the sample

hardware implementation of the paradigm proposed in the fourth chapter of the

dissertation. With the proposed hardware architecture, any trajectories of robotics

or CNC applications can be generated without the need of an intermediate

programming file. The developed FPGA structure is independent of the

trajectories. If the necessary information is supplied in the header part of the

compressed data set, the trajectories can be generated without any error. One of

the main advantages of the implementation and the paradigm is that since there

are at least two integrator units in the design, the velocity and the acceleration

trajectories can also be transferred to the control units along with the position

sequences. Although the implementation is carried out in two different ways

(hardwired and softcore approaches), it is suggested to use hardwired approach

due to its faster command generation capability.

To summarize, the developed command generation paradigms in the dissertation

can be embedded into the control units of the robotics and CNC applications in

order to make use of their advantages over the conventional systems.

7.2 Future Work

Addition to the studies completed within the scope of the dissertation, there are

still some major points that can further be investigated. These topics can be

categorized as the improvement of the CCO part of the curve offset generation

algorithms, realization of the command generation paradigm (based on ΔY10) on

a motion simulator, developing post processors for CAM software aimed to

generated VEPRO programs, hardware implementation, the test of the VEPRO on

a real test case, and generation of 3D offsets.

 183

The current CCO algorithms of the curve offset generation algorithms (MOBS,

IMOBS, and AMOBS) do employ the nearest neighbor technique to connect the

offset boundaries without considering the overall distributions of the points. This

approach results in a number of segmented curve offsets. With a better approach,

these problems of the current CCO can be eliminated.

Another future study can be the realization of the command generation paradigm

based on the ΔY10 compression algorithm. For this approach, a motion simulator

is planned to be used, but any CNC machinery or robotics application can also be

utilized. When the realization of the paradigm is accomplished, the disadvantages

and the deficiencies of the paradigm will undoubtedly be observed.

The VEPRO programs can be generated within the CAD and/or CAM software in

order to decrease the time spent for developing the programs and decrease the

possible errors in the programs. This can be accomplished by writing post

processors for the corresponding software. After the user defines the details of the

machining operations, the developed post processor generates the VEPRO

program.

One of the obvious future studies can be the hardware implementation of the

VEPRO command generation paradigm since it is not studied within the scope of

the dissertation as opposed to the paradigm based on ΔY10 compression

algorithm. The implementation of the VEPRO will be obviously more difficult

than the implementation of the ΔY10 since the written and compiled VEPRO

programs are to be processed on this hardware. After the hardware is realized, the

system is planned to be tested on a desktop CNC milling machine. Beside

classical machining operations, 3D printing operations can also be tested by

simply changing the tool with an extruder.

The curve offset generation algorithms developed in the dissertation are only

applicable for 2D trajectories. On the other hand, 3D offsets are necessary for

different kinds of CNC and robotics operations. For the VEPRO to be valid in

these areas, an algorithm generating 3D offsets should be included into the

 184

context of VEPRO. It should have linear time and memory complexities as in the

2D algorithms.

 185

REFERENCES

[1] Cheng CW, Tsai MC, Cheng MY. Real-time variable feedrate parametric

interpolator for CNC machining. 15th IFAC World Congress 2002.

[2] Piegl L, Tiller W.The NURBS Book. Second ed.. Springer New York; 1997.

[3] Kramer, TR. Evaluating manufacturing machine control language standards:

an implementer's view.Proceedings of the 2007 Workshop on Performance

Metrics for Intelligent Systems. 2007;267-274.

[4] Shahabi HH, and Ratnam MM. On-line monitoring of tool wear in turning

operation in the presence of tool misalignment. The International Journal of

Advanced Manufacturing Technology 2007;38:718-727.

[5] Jimeno AM, Macía F, and García-Chamizo J. Trajectory-Based

Morphological Operators: A Morphological Model for Tool Path

Computation. Proceedings of the International Conference on Algorithmic

Mathematics and Computer Science 2004.

[6] Molina-Carmona R, Jimeno-Morenilla AM, and Rizo R. Morphological

offset computing for contour pocketing. Journal of Manufacturing Science

and Engineering 2007;129:400–406.

[7] Jimeno-Morenilla A, Lopez V, Espi R, and Cuenca S. A morphological-based

method for inverse offset generation. An application for surface

reconstruction using mechanical digitizers. The International Journal of

Manufacturing Technology 2011;54:1067-1076.

[8] Yingjie Z, and Liling G. Image-Based Approach to Generation of Offset

Curves from Point Cloud. IEEE 3rd International Conference on

Bioinformatics and Biomedical Engineering 2009.

 186

[9] Chamberlain PB. Discrete Algorithms for Machining and Rapid Prototyping

Based on Image Processing, Ph.D. Dissertation, University of Utah, Salt Lake

City, UT, 2004.

[10] Piegl LA, and Tiller W. Computing offsets of NURBS curves and surfaces.

Computer-Aided Design 1999; 31:147-156.

[11] Elber G, Kwon LI, and Kim MS. Comparing offset curve approximation

methods. Computer Graphics and Applications 1997;17:62-71.

[12] Li YM, and Hsu VY. Curve offsetting based on Legendre series. Computer

Aided Geometric Design 1998;15:711-720.

[13] Held M. Voronoi diagrams and offset curves of curvilinear polygons.

Computer-Aided Design 1998;30:287-300.

[14] Danielsson PE. Converting a curve to right angled increments. Nord. Tidsk.

Infomationsbehandling (BIT) 1963;3: 213-221.

[15] Koren Y. Interpolator for a computer numerical control system. IEEE Trans.

on Computers 1970;C-19:32-37.

[16] Liang H, Hong H, Svoboda J. A combined 3D linear and circular

interpolation technique for multi-axis CNC machining. J. Manuf. Sci. Eng

2002;124:305-312.

[17] Vickers GW, Bradley C. Curved surface machining through circular arc

interpolation.Comput. lndust. 1992;19:329-337.

[18] Huang JT, Yang DCH. A generalized interpolator for command generation of

parametric curves in computer controlled machine.ASME Flexible

Automation1992;1: 393-399.

[19] Shpitalni M, Koren Y,Lo CC. Real time Curve Interpolators. Computer-

Aided Design1994;832–838.

[20] Yang DCH, Kong T.Parametric interpolator versus linear interpolator for

precision CNC machining.Computer-Aided Design 1994:225–234.

[21] GE Fanuc Automation. Operator’s Manual Series 16i/160i/18i/180i 2002.

[22] Siemens AG. Operator’s Manual Sinumerik 840D/840Di/810D 2002.

 187

[23] Heng M, Erkorkmaz K, Design of a NURBS interpolator with minimal feed

fluctuation and continuous feed modulation capability. International Journal

of Machine Tools and Manufacture 2010;50:281–293.

[24] Cheng CW, Tsai MC, Maciejowski J. Feedrate control for non-uniform

rational B-spline motion command generation. Proceedings of the Institution

of Mechanical Engineers, Part B: Journal of Engineering Manufacture

2006;220:1855-1861.

[25] Xu HY, Tam HY, Zhou Z, Tse PW. Variable feedrate CNC interpolation for

planar implicit curves. Advanced Manufacturing Technology 2001;18:794 –

800.

[26] Rutkowski L, Przybyl A, Cpalka K. Novel Online Speed Profile Generation

for Industrial Machine Tool Based on Flexible Neuro-Fuzzy Approximation.

IEEE Transactions on Industrial Electronics 2012;59(2): 1238−1247.

[27] Salomon D, Motta G. Handbook of Data Compression. Fifth ed.. Springer-

Verlag; 2010.

[28] Yaman U,Mutlu BR, Dolen M, Koku AB. Direct command generation

methods for servo-motor drives.Proc. of the 12th International Conference on

Electrical Machines and Systems 2009.

[29] Yaman U, Dolen M, Koku AB. A novel command generation method with

variable feedrate utilizing FGPA for motor drives.Proc. of the 8th IEEE

Workshop on Intelligent Solutions in Embedded Systems 2010:67-72.

[30] Kroger T, Wahl FM. Online trajectory generation: Basic concepts for

instantaneous reactions to unforeseen events. IEEE Transactions on Robotics

2010;26(1):94-111.

[31] Haschke R, Weitnauer E, Ritter H. On-line planning of time-optimal, jerk-

limited trajectories. IEEE/RSJ International Conference on Intelligent Robots

and Systems 2008:3248-3253.

[32] Yong T, Narayanaswami R. A parametric interpolator with confined chord

errors, acceleration and deceleration for NC machining. Computer-Aided

Design 2003;35(13):1249-1259.

 188

[33] Guarino Lo Bianco C, Ghilardelli F. A Discrete-Time Filter for the

Generation of Signals with Asymmetric and Variable Bounds on Velocity,

Acceleration, and Jerk. IEEE Transactions on Industrial Electronics

2013;61(8):4115:4125.

[34] Cover TM, Thomas JA. Elements of Information Theory, Second ed., John

Wiley & Sons, Inc. 2006.

[35] Dickson K. Cisco IOS Data Compression. Cisco Syst. San Jose; 2000.

[36] Rigler S, Bishop W, Kennings A. FPGA-Based lossless data compression

using Huffman and LZ77 algorithms. Canadian Conf. on Electrical and

Computer Engineering 2007;1235-1238.

[37] De Araujo TMU, Pinto ER, De Lima JAG, Batista LV. An FPGA

implementation of a microprogrammable controller to perform lossless data

compression based on the Huffman algorithm. 13th IBERCHIP Workshop

2007.

[38] Abd El Ghany MA, Salama AE, Khalil AH. Design and implementation of

FPGA-based systolic array for LZ data compression. IEEE Int. Symposium

on Circuits and Systems 2007;3691-3695.

[39] Cui W. New LZW data compression algorithm and its FPGA implementation.

Picture Coding Symposium 2007.

[40] H’ng GH, Salleh MFM, Halim ZA. Golomb coding implementation in FPGA.

Elektrika Journal of Electrical Engineering 2008:36-40.

[41] Koch D, Beckhoff C, Teich J. Hardware decompression techniques for

FPGA-based embedded systems. ACM Transactions on Reconfigurable

Technology and Systems 2009;2(2): 1−23.

[42] Lin MB, Lee JF, Jan GE. A Lossless Data Compression and Decompression

Algorithm and Its Hardware Architecture. IEEE Transactions on Very Large

Scale Integration (VLSI) Systems 2006;14(9): 925−936.

[43] Lee T, Park J. Design and implementation of static Huffman encoding

hardware using a parallel shifting algorithm. IEEE Transactions on Nuclear

Science 2004;51(5): 2073−2080.

 189

[44] Yongming Y, Jungang L, Jianmin W. LADT arithmetic improved and

hardware implemented for FPGA - Based ECG data compression.

Proceedings of 2nd IEEE Conference on Industrial Electronics and

Applications 2007; 2230-2234.

[45] Valencia D, Plaza A. FPGA-Based hyperspectral data compression using

spectral unmixing and the pixel purity index algorithm. Computational

Science 2006;881- 891.

[46] Ouyang J, Feng P, Kang J. Fast Compression of Huge DNA Sequence Data.

In: 5th International Conference on BioMedical Engineering and Informatics,

2012:885−888.

[47] Monmasson E, Cirstea MN. FPGA Design Methodology for Industrial

Control Systems — A Review. IEEE Transactions on Industrial Electronics

2007; 54(4): 1824−1842.

[48] Kim S, Jeong WS, Ro WW, Gaudiot JL. Design and evaluation of random

linear network coding Accelerators on FPGAs. ACM Transactions on

Embedded Computing Systems (TECS) 2013;13(1): 13.

[49] Cho JU, Le QN, Jeon JW. An FPGA-Based Multiple-Axis Motion Control

Chip. IEEE Transactions on Industrial Electronics 2009;56(3): 856−870.

[50] Su KH, Hu CK, Cheng MY. Design and Implementation of an FPGA-based

Motion Command Generation Chip. In: IEEE International Conference on

Systems, Man and Cybernetics, 2006:5030−5035.

[51] Jeon JW, Kim YK. FPGA based acceleration and deceleration circuit for

industrial robots and CNC machine tools. Mechatronics 2002;12: 635−642.

[52] Osornio-Rios RA, Romero-Troncoso RJ, Herrera-Ruiz G, Castañeda-Miranda

R. FPGA implementation of higher degree polynomial acceleration profiles

for peak jerk reduction in servomotors. Robotics and Computer-Integrated

Manufacturing 2009; 25(2): 379−392.

[53] Kim HC, and Yang MY. An optimum 2.5 D contour parallel tool path.

International Journal of Precision Engineering and Manufacturing 2006;8:16-

20.

 190

[54] Kulkarni P, Marsan A, and Dutta D. A review of process planning techniques

in layered manufacturing. Rapid Prototyping Journal 2000;6:18-35.

[55] Maekawa T. An overview of offset curves and surfaces. Computer-Aided

Design 1999;31:165-173

[56] Farouki RT, and Shah S. Real-time interpolators for Pythagorean-hodograph

curves. Computer Aided Geometric Design 1996;13:583-600.

[57] Pottmann H. Rational curves and surfaces with rational offsets.Computer

Aided Geometric Design 1995;12:175-192.

[58] Elber G, and Cohen E. Error bounded variable distance offset operator for

free form curves and surfaces. International Journal of Computational

Geometry and Applications 1991;1:67-78.

[59] Lee IK, Kim MS, and Elber G. Planar curve offset based on circle

approximation. Computer Aided Design 1996;28:617-630.

[60] Maekawa T, and Patrikalakis NM. Computation of singularities and

intersections of offsets of planar curves. Computer Aided Geometric Design

1993;10:407-429.

[61] Maekawa T. Self-intersections of offsets of quadratic surfaces: Part II,

implicit surfaces. Engineering with Computers 1998;14:14-22.

[62] Patrikalakis NM, and Bardis L. Offsets of curves on rational B-spline

surfaces. Engineering with Computers 1989;5:39-46.

[63] Rausch T, Wolter FE, and Sniehotta O. Computation of medial curves

onsurfaces. The Mathematics of Surfaces 1997;7:43-68.

[64] Pottmann H. General offset surfaces. Neural, Parallel and Scientific

Computations 1997;5:55-80.

[65] Brechner EL. General tool offset curves and surfaces. Geometry processing

for design and manufacturing 1992:101-21.

[66] Yaman U, and Dolen M. Direct command generation for CNC machinery

based on data compression techniques. Robotics and Computer-Integrated

Manufacturing 2013;29:344-356.

 191

[67] Kim HC. Tool path generation for contour parallel milling with incomplete

mesh model. The International Journal of Advanced Manufacturing

Technology 2010;48:443-454.

[68] Sun Y, Ren F, Zhu X, and Guo D. Contour-parallel offset machining for

trimmed surfaces based on conformal mapping with free boundary. The

International Journal of Advanced Manufacturing Technology 2012;60:261-

271.

[69] Serra J. Image Analysis and Mathematical Morphology 1982. Academic

Press, London.

[70] Chia TL, Wang KB, Chen LR, and Chen Z. A parallel algorithm for

generating chain code of objects in binary images. Information Sciences

2003;149:219-234.

[71] Chang F, Chen CJ, and Lu CJ. A linear-time component-labeling algorithm

using contour tracing technique. Computer Vision and Image Understanding

2004;93:206-220.

[72] Meer P, Sher CA, and Rosenfeld A. The chain pyramid: hierarchical contour

processing. IEEE Transactions on Pattern Analysis and Machine Intelligence

1990;12:363-376.

[73] Matoušek J. Geometric range searching. ACM Computing Surveys

1994;26:422-461.

[74] Agarwal PK, and Erickson J. Geometric range searching and its relatives.

Contemporary Mathematics 2009;223:1-56.

[75] Liang YD, and Barsky BA. An analysis and algorithm for polygon clipping.

Communications of the ACM 1983;26:868-877.

[76] Rivero M, and Feito FR. Boolean operations on general planar polygons.

Computers & Graphics 2000;24:881-896.

[77] Peng Y, Yong JH, Dong WM, Zhang H, and Sun JG. A new algorithm for

Boolean operations on general polygons. Computers & Graphics 2005;29:57-

70.

 192

[78] Martínez JG, Rueda AJ, and Feito FR. A new algorithm for computing

Boolean operations on polygons. Computers & Geosciences 2009;35:1177-

1185.

[79] Liu YK, Wang XQ, Bao SZ, Gomboši M, and Žalik B. An algorithm for

polygon clipping, and for determining polygon intersections and unions.

Computers & Geosciences 2007;33:589-598.

[80] Greiner G, and Hormann K. Efficient clipping of arbitrary polygons. ACM

Transactions on Graphics 1998;17:71-83.

[81] Murta A (2012) GPC – General Polygon Clipper Library.

http://www.cs.man.ac.uk/~toby/gpc/. Accessed 20 July 2013.

[82] Vatti BR. A generic solution to polygon clipping. Communications of the

ACM 1992;35:56-63.

[83] Bulbul R, and Frank AU. Intersection of Non-convex Polygons using the

Alternate Hierarchical Decomposition. Geospatial Thinking 2010:1-23,

Spinger-Verlag, Berlin.

[84] Liu XZ, Yong JH, Zheng GQ, and Sun JG. An offset algorithm for polyline

curves. Computers in Industry 2007;58:240-254.

[85] Zhiwei L, JianzhongF, Yong H, and Wenfeng G. A robust 2D point-

sequence curve offset algorithm with multiple islands for contour-parallel

tool path. Computer Aided Design 2013;45:657-670.

[86] Electronic Industries Association. EIA Standard EIA-274-D Interchangeable

Variable Block Data Format for Positioning, Contouring, and

Contouring/Positioning Numerically Controlled Machines. EIA 1979.

[87] Numerical Control BCL Standards Association. NCBSA Standard Proposal

for EIA 494 C, Basic Control Language (BCL) An ASCII Data Exchange

Specification for Computer Numerical Control Manufacturing. Numerical

Control BCL Standards Association 1996.

[88] ISO 10303-238. Industrial automation systems and integration - Product data

representation and exchange - Part 238: Application protocol: Application

 193

interpreted model for computerized numerical controllers. Geneva:

International Organization for Standardization 2007.

[89] International Consortium for Advanced Manufacturing. Dimensional

Measuring Interface Standard Part I, Revision 05.0.2004.

[90] Lorenz RD. Robotics and Automation Applications of Drives and Converters.

Proceedings of the IEEE 2002;89:6:951-962.

[91] Huffman D. A method for the construction of minimum redundancy

codes.Proc. of the IRE 1952;1098–1101.

[92] Moffat A, Radford N, Witten IH. Arithmetic coding revisited. ACM

Transactions on Information Systems 1998;16:3:256–294.

[93] Welch TA. A technique for high-performance data compression.IEEE

Computer 1984;17:6:8–19.

[94] Jamro MWE, K Wiatr. FPGA implementation of the dynamic Huffman

encoder. Proceedings of IFAC Workshop on Programmable Devices and

Embedded Systems 2006.

[95] Adluri R, Babu SG, Daniel P. FPGA Implementation of Multi-alphabet

Arithmetic Coding Using Rotating Intervals. IJCA Special Issue on

Electronics, Information and Communication Engineering ICEICE(2) 2011:

10-14.

[96] Naqvi S, Naqvi R, Riaz R, Siddiqui F. Optimized RTL design and

implementation of LZW algorithm for high bandwidth applications. Przegląd

Elektrotechniczny (Electrical Review) 2011: 279-285.

[97] Omirou SL. A locus tracing algorithm for cutter offsetting in CNC

machining. Robotics and Computer-Integrated Manufacturing 2004;20:49-55.

[98] NIOS II Performance Benchmarks, Altera Co., 2013.

[99] Lin Z, Jianzhong F, Yong H, Wenfeng G. A robust 2D point-sequence curve

offset algorithm with multiple islands for contour-parallel tool path.

Computer-Aided Design 2013;45: 657-670.

[100] Kolmogorov AN. Three approaches to the quantitative definition of

information. Problems of information transmission 1965;1(1):1-7.

 194

[101] Lysecky R, Vahid F. Design and implementation of a MicroBlaze-based

warp processor. ACM Transactions on Embedded Computing Systems

(TECS) 2009;8(3): 22.

 195

APPENDICES A : NIOS II C CODE

#include <stdio.h>
#include <stdlib.h>
#include "system.h"
#include "altera_avalon_pio_regs.h"
#include "sys/alt_timestamp.h"
#include "alt_types.h"

#define uint8 unsigned char
#define uint16 unsigned short
#define uint32 unsigned long
#define int8 char
#define int16 short
#define int32 long

int main()
{
 alt_timestamp_start();
 alt_u32 time1,time2;
 uint8 sign_ = 0; uint8 amp_ = 0; uint8 term_ = 0; uint8 zero_ = 0; uint32
comlength;
 int n; n = IORD_32DIRECT(0x02000000,0) >> 28;
 comlength = 61440 & IORD_32DIRECT(0x02000000,0);
 uint32 original[comlength];
 float original_we[comlength];
 int32 l1 = comlength - n; //Length of the Sign Field
 int32 l2 = IORD_32DIRECT(0x02000000,1)*4; //Length of Amplitude Field
 int32 count = 0; //Counts the length of the amplitude value.
 int32 is = 0; int32 i1 = 0; int32 iz = 0; int32 j = 0; int k = 0; int32 k1
= 0;
 int32 kz = 0; int32 kzz = 0; int32 m1 = 0; int32 r = 0; int32 rs = 0; int32
r1 = 0;
 int32 rz = 0; int32 l = 0; int32 zeroSeq = 0; int32 s = 0;
 const int
twos[16]={1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768};
 uint8 term[1000]; uint8 amp[1000]; uint8 sign[1000]; uint8 zero[100];

 int i; int i_start; int i_end;
 i_start = (n+3)*6; i_end = i_start + IORD_32DIRECT(0x02000000, 1);
 for (i=i_start; i<i_end; i++) { term[i-i_start] =
IORD_8DIRECT(0x02000000,i);}
 i_start = i_end + 2; i_end = i_start + IORD_32DIRECT(0x02000000, 1);
 for (i=i_start; i<i_end; i++) {amp[i-i_start] =
IORD_8DIRECT(0x02000000,i);}
 i_start = i_end + 2; i_end = 4*IORD_32DIRECT(0x02000000, 2)-1;
 for (i=i_start; i<i_end; i++) {sign[i-i_start] =
IORD_8DIRECT(0x02000000,i);}
 i_start = i_end + 2; i_end = i_start + 100;
 for (i=i_start; i<i_end; i++) {zero[i-i_start] =
IORD_8DIRECT(0x02000000,i);}
 i = 0;
 time1 = alt_timestamp(); //Time measurement starts
 while (k < l2) { //Loop until all bits of length field are processed
 i = k/8; r = k%8; k1 = k; i1 = i; r1 = r; //Cursor position is
determined
 if (k == (l2-1)) { //The last bit is processed
 if ((((term[i]<<r)&128)==128)) {term[i]=term[i] & (254<<(7-
(r+1)));}
 if ((((term[i]<<r) & 128)==0)) {term[i]=term[i] | (1<<(7-
(r+1)));}

 196

 }
 term_ = term[i] << r; //Shifted length field byte
 if ((term_ & 128) == 128) {m1 = 0; count ++;}
 else {m1 = 128; count ++;}
 if (((r != 7) & (((term_
<<1)&128)==m1))|((r==7)&((term[i+1]&128)==m1))) {
 for (j=0; j<count; j++) {
 // Amplitude Field
 amp_ = amp[i1] << r1;
 if ((amp_ & 128) == 128) { original[l] += twos[j];}
 k1--; i1 = k1 / 8; r1 = k1 % 8;
 }
 if ((count > 1) & (original[l] == 0)) {
 // Zero Field
 kz = kz + count - 1; kzz = kz; iz = kzz / 8; rz =
kzz % 8;
 for (j=0; j<count; j++) {
 zero_ = zero[iz] << rz;
 if ((zero_ & 128) == 128) { zeroSeq +=
twos[j];}
 kzz--; iz = kzz / 8; rz = kzz % 8;
 }
 for (j=0; j<zeroSeq; j++) { original[l] = 0; l++;}
 zeroSeq = 0; kz++;
 }
 else {l++;}
 count = 0;
 if (original[l-1] != 0) {
 // Sign Field
 is = s / 8; rs = s % 8;
 sign_ = sign[is] << rs;
 if ((sign_ & 128) == 0) { }
 else { original[l-1]= - original[l-1] ;}
 s++;
 }
 }
 k++;
 }
 time2 = alt_timestamp(); //Time measurement ends
 //Prints the decoded commands on the console of the NIOS software
 for (k=0; k<l1; k++) {
 printf("%ld\n",original[k]);
 }
 //Prints the elapsed time
 printf ("Time elapsed = %u ticks\n", (unsigned int) (time2 - time1));
 printf ("Number of ticks per second = %u\n", (unsigned
int)alt_timestamp_freq());

 return 0;
}

 197

APPENDICES B : MATLAB FUNCTIONS

FUNCTIONS INPUTS OUTPUTS EXPLANATIONS

cogen • Binary image

• Offset radius

• Offsetted

boundary
Generates curve

offset for binary

images

curoff • Boundary set

• Offset radius

• Number points in the

structuring element

• Set of offsetted

curve segments

• Number points

in the structuring

element

Employs CBS part

of MOBS curve

offset generation

algorithm

curoff2Dot • Boundary set

• Offset radius

• Number points in the

structuring element

• Set of offsetted

curve segments

• Number points

in the structuring

element

• Minimums and

maximums of X

and Y

coordinates

Employs CBS part

of IMOBS curve

offset generation

algorithm

 198

amobs • Boundary set

• Offset radius

• Set of offsetted

curve segments

• Minimums and

maximums of X

and Y

coordinates

Employs CBS part

of AMOBS curve

offset generation

algorithm

chain • Offsetted curve

segments

• Offset radius

• Connected

segments

• Unconnected

segments

Employs CCO part

of MOBS, IMOBS,

and AMOBS curve

offset generation

algorithms

unify • Curve segments

• Offset radius

• Connected

offsets
Reconnects the

curve outputted with

chain function

squash • Offsetted curve

segments

• Squashed set of

curves

• Indexes of

removed curves

Removed the empty

cells from the given

cell vector

qhash • Offsetted curve

segments

• Size of hash table

• Minimums and

maximums of X and Y

coordinates

• Distribution of

points in the

hash table

• Various

properties of the

hash table

Distributes the

points in the

offsetted curve

segments to the cells

in the hash table

according to the

coordinates of the

points

 199

discard • Boundary set

• Offset radius

• Hash table

• Properties of the hash

table

• New hash table

without invalid

points

Removes the global

invalid loops present

in the layout

gcurve • Boundary set

• Regions

• Number of points

• Resampled

boundary set
Resamples the given

curves at a higher

rate using low pass

interpolation

offsetError • Reference curve

• Offsetted curve

• Error at each

offsetted point
Calculates the error

of the offset points

for temperature plots

dacomp • Vector

• Order of difference

• Compressed

code

• Dictionary

• Ratio

Takes the higher

order difference of

the vector and then

compresses the

vector with

Arithmetic

compression

algorithm

dhcomp • Vector

• Order of difference

• Compressed

code

• Dictionary

• Ratio

Takes the higher

order difference of

the vector and then

compresses the

vector with Huffman

compression

algorithm

 200

rlez_dhcomp • Vector

• Order of difference

• Compressed

code

• Dictionary

• Content of zero

table

• Ratio

Takes the higher

order difference of

the vector and then

compresses the

vector with Huffman

compression

algorithm after

employing RLEZ on

the differenced data

lzwmain • Vector

• Order of difference

• Compressed

code

• Dictionary

• Ratio

Takes the higher

order difference of

the vector and then

compresses the

vector with LZW

compression

algorithm

dycomp2 • Vector

• Order of difference

• Compressed data

structure
Takes the higher

order difference of

the vector and then

compresses the

vector with symbol

DY09 compression

algorithm

 201

dydcomp2 • Compressed data

structure

• Decompressed

differentiated

vector

• Original vector

Decompresses the

given data according

the DY09

compression

algorithm and then

accumulates to get

the original vector

dycomp3 • Vector

• Order of difference

• Compressed data

structure
Takes the higher

order difference of

the vector and then

compresses the

vector with symbol

DY10 compression

algorithm

dydcomp3 • Compressed data

structure

• Decompressed

differentiated

vector

• Original vector

Decompresses the

given data according

the DY10

compression

algorithm and then

accumulates to get

the original vector

dymem • Vector

• Order of difference

• Required

memories
Computes the

memory needed to

compress a

given time sequence

using DY09 &

DY10 techniques

 202

higherorderentr • Vector

• Order of difference

• Number of commands

in a set

• Sets of

commands

• Frequencies of

the sets

• Compressed data

• Dictionary

• Ratio

Takes the higher

order difference of

the vector, combines

the commands and

compresses the

resulting data

according to the

Markov probability

matrix

rentropy • Vector

• Order of difference

• Entropy

• Matrix for

occurrence

frequencies

• Resequenced

vector

Takes the higher

order difference of

the vector and

computes the

entropy

vsint • Vector

• Feedrate vector

• Interpolated

position

sequence

• Modified

feedrate scale

vector

Performs linear

interpolation on a

given trajectory

GCO • • Employs AMOBS

curve offset

generation algorithm

for VEPRO

command generation

paradigm

 203

CURRICULUM VITAE

PERSONAL INFORMATION
Surname, Name: Yaman, Ulas
Nationality: Turkish (TC)

Date and Place of Birth: June 15, 1984, Ankara
Marital Status: Married

Phone:+90 312 210 7240
E-mail Address: ulsymn@gmail.com

EDUCATION
Degree Institution Year of Graduation
MS METU Mechanical Engineering 2010

Minor METU Mechatronics 2007
BS METU Mechanical Engineering 2007

High School Ayrancı Anatolian High School 2002

WORK EXPERIENCE
Year Place Enrollment
2007-Present METU Mechanical Engineering Research Assistant

FOREIGN LANGUAGES
Fluent English, Elementary German

SELECTED PUBLICATIONS
Dolen M, and Yaman U. New morphological methods to generate two-
dimensional curve offsets. The International Journal of Advanced Manufacturing
Technology 2014;71(9-12):1687-1700.
Yaman U, and Dolen M. Direct command generation for CNC machinery based
on data compression techniques. Robotics and Computer-Integrated
Manufacturing 2013;29(2):344-356.

