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ABSTRACT 

ADVANCED MOTION COMMAND GENERATION  
PARADIGMS FOR CNC SYSTEMS 

 

 

Yaman, Ulaş 

 

Ph.D., Department of Mechanical Engineering 

Supervisor: Assoc. Prof. Dr. Melik Dölen 

 

June 2014, 203 pages 

 

A novel motion command generation paradigm for digital motion control 

systems is developed with in the scope of this dissertation. In the paradigm, the 

tool trajectory is firstly defined with the developed programming language on a 

host computer and then transferred to the machine with different communication 

protocols. The language proposed is capable of decompressing the previously 

compressed motion data via ΔY10 decompression algorithm and generating 

curve offsets of the base curve in inner and outer directions. With these abilities 

of the programming language and its hardware processor (VEPRO), the tool 

trajectory of a machining case can be presented with a few lines of commands. 

The hardware complexity of the VEPRO is low compared to the ones currently 

used in computer numerical systems such as Siemens Sinumerik and Fanuc 0i. 

 

Keywords: Command Generation, Data Compression, FPGA, Servo-motor 

Drives, Computer Numerical Control, Curve Offset Generation, Morphological 

Operations, Polygon Operations 
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ÖZ 

BİLGİSAYAR DENETİMLİ SİSTEMLER İÇİN GELİŞMİŞ  
HAREKET KOMUT ÜRETECİ ÖRNEKLERİ 

 

 

Yaman, Ulaş 

 

Doktora, Makina Mühendisliği Bölümü 

 Tez Yöneticisi:  Doç. Dr. Melik Dölen 

 

Haziran 2014, 203 sayfa 

 

Doktora tezi kapsamında sayısal hareket denetleyici sistemleri için yeni bir 

hareket komut üreteç modeli geliştirilmiştir. Geliştirilen modelde, öncelikli 

olarak komut yörüngesi önerilen programlama dili kullanılarak bilgisayar 

ortamında oluşturulur. Sonrasında ise derlenen makina kodu farklı haberleşme 

yöntemleri aracılığıyla komut üreteci donanımına gönderilir. Önerilen 

programlama dili, ΔY10 sıkıştırma algoritması kullanılarak sıkıştırılmış olan 

komut verilerini çözebilme ve verilen temel eğrileri farklı yönlerde kaydırabilme 

yeteneklerine sahiptir. Program dilinin bu yetenekleri ve komut üreteç donanımı 

(VEPRO) ile birlikte bir parçanın üretimi için gereken takım yolları birkaç satır 

komut ile oluşturulabilmektedir. VEPRO’nun donanım karmaşıklığı kullanılan 

geleneksel bilgisayarlı sayısal denetim donanımlarına (Sinumerik ve Fanuc 0i) 

göre oldukça düşüktür.  

 

Anahtar kelimeler: Komut Üretimi, Veri Sıkıştırma, Alan Programlanabilir 

Kapı Dizini, Servo Motor Sürücüleri, Bilgisayarlı Sayısal Denetim, Kaydırılmış 

Eğri Üretimi, Morfolojik İşlemler, Çokgen İşlemleri 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Motivation 

Digital motion control systems like computer numerical units (CNC) units, motor 

control modules, servo-motor drivers, and motion control cards do have 

embedded command generators (CGs). The principal task of these generators is to 

provide the set points of the defined trajectory to the motion controllers 

periodically. The trajectory of the tool is defined according to the control 

languages used in the literature. For instance, in a conventional CNC system the 

defined trajectory in G codes is parsed within the CG and the set points are 

generated accordingly. The CG considers various properties of the machine and 

the tool while generating the motion commands according to the defined G codes. 

The CG strategy as briefly described above has well-known drawbacks: i) Due to 

computational complexity and time constraints in CG, complicated hardware 

(with parallel processors) must oftentimes be incorporated in the motion control 

system [1]; ii) Advanced RT interpolation algorithms, which generally impose 

considerable burden on the processors and limit servo-update rate, must be 

devised especially when the trajectory is to be represented by parametric curves 

such as B-Splines and NURBS ([2]); iii) The resulting software (i.e. firmware) 

development process is time-consuming and error prone; iv) Interpreted programs 

which describe trajectories are not portable since each manufacturer of motion 

control systems generally adapts her own control language and dialect [3]. 
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The fundamental motivation of this dissertation is to find solutions to the issue 

described in the above paragraph. With the proposed CG paradigms, Kolmogorov 

complexity of the conventional approaches is aimed to be diminished. For this 

purpose, the high redundancy of the motion command data in 

manufacturing/industrial applications is to be utilized. Consequently, the size of 

raw motion data could be reduced via data compression and curve offset 

generation algorithms.     

To sum up, there is a potential for devising simple yet effective CGs for industrial 

motion control systems by fully taking advantage of the current state-of-the-art.  

1.2 Scope of the Thesis 

The scope of the dissertation is illustrated in Figure 1-1. The VEPRO is the name 

of the command generation paradigm, whose details are given in the fifth chapter 

of the thesis. It can be also considered as the capstone of the thesis, since it 

utilizes all the algorithms developed within the study. As can be observed from 

the figure that there are two auxiliary fields of the VEPRO. The first one is the 

field of curve offset generation algorithms and the second one is about the data 

compression algorithms. Five different curve offset generation algorithms are 

developed within the scope of the thesis and they are discussed in the third 

chapter. On the other hand, a novel data compression algorithm, which is 

specialized to compress integer encoder pulses, is proposed in the fourth chapter 

and its performance is compared with the conventional compression techniques. 

The last part of the thesis is related with the data compression chapter as can be 

seen from the figure. In this last chapter before the conclusion, the FPGA 

implementation of the proposed data compression algorithm is explained.  
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Figure 1-1 Scope of the Thesis 

 

1.3 Organization 

The dissertation starts with the Introduction chapter. The motivation behind the 

thesis is discussed and the scope of the thesis is given in this chapter. After the 

introductory chapter, the thesis continues with the Literature Survey chapter. The 

studies on curve offset generation algorithm, command generation methods for 

CNC machinery, acceleration/deceleration algorithms, data compression methods 

and their implementations, and FPGA-based command generation systems are 

summarized. The chapter is concluded with discussing the open research areas. 

The following chapter focuses on the developed curve offset generation 

algorithms. The first four of the algorithms employ morphological operations and 

the last one utilizes polygon operations to generate the curve offsets. After each 

method is described, their time and memory complexities are also discussed. The 

VEPRO 

Curve Offset 
Generation 

Data 
Compression 

FPGA 
Implementation 
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chapter is concluded with the evaluation of the methods on the same two test 

cases. Then in the fourth chapter, a direct command generation paradigm for CNC 

machinery based on data compression methods is introduced. Beside the 

evaluated compression algorithms, Markov chains are also utilized to model the 

given trajectories. As in the previous chapter, the proposed and the conventional 

compression algorithms are employed on the same test cases and their results are 

compared. In Chapter 5, a different command generation paradigm is introduced. 

The best curve offset generation algorithm proposed in the third chapter and the 

data compression algorithm introduced in the fourth chapter are all utilized within 

this novel command generation paradigm. After the commands of the paradigm 

are given, it is emulated in MATLAB environment. To the end of the chapter, the 

paradigm is compared with the conventional approach via employing them on the 

same test cases. The last chapter before the conclusion discusses the hardware 

implementation details of the command generation paradigm proposed in the 

fourth chapter. The implementation is carried out in two different ways. In the 

first approach, the units required to generate motion commands from the 

compressed data set are designed with VHDL language and the compiled file of 

the overall system is downloaded onto the FPGA development board. In the 

second approach of the hardware implementation, a microprocessor is embedded 

into the FPGA chip of the development board and the command generation 

algorithm is processed on this microprocessor. The performances of these 

approaches are also evaluated within the chapter. The dissertation is concluded by 

pointing the key results of this study and discussing the possible future works 

related to the thesis.  
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CHAPTER 2 

 

 

LITERATURE SURVEY 

 

 

 

In this chapter of the thesis, the relevant literature topics are discussed in a 

detailed manner and open research areas are also highlighted for possible further 

study. 

2.1 Curve Offset Generation Algorithms 

Morphological operations are utilized in different fields of science, but there 

exists rare work on curve offsets with these operations. There are studies [4] in the 

literature on monitoring of the tool wear in which morphological operations are 

used to filter the acquired images, but morphological operations are firstly used by 

Jimeno-Morenilla et al. [5] for the computation of tool paths in manufacturing. 

They defined a trajectory-based dilation operation that orients the structuring 

element in any position on the boundary of the object. With the new 

morphological operation the boundary of the objects could be are computed. The 

major disadvantage of this operation is that it is not applicable for the objects 

having holes (islands). After the successful implementation of the algorithm, 

Carmona et al. [6] used the same idea in their study to compute offsets for contour 

pocketing three years later. They represented the tool as a structuring element 

having shapes of a circle and a rectangular. The main advantage of the algorithm 

they presented is that there is no need to treat self-intersections and discontinuities 

since these are not present when the proposed approach is employed. 
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Furthermore, their offset generation algorithm is capable of dealing with the 

islands by recursively calling the sub algorithms when there exists other curves 

(islands) in the geometry. Later in 2011, Jimeno-Morenilla et al. [7] used similar 

morphological operations to reconstruct the computer-aided drawing of an object 

from point cloud obtained with the mechanical digitizers. As in the previous 

studies, by the use of morphological operations they were able generate inverse 

offsets without any self-intersection trouble. On the other hand, the computational 

cost may be a problem when the number of points in the cloud is enormous. 

Before Jimeno-Morenilla et al. [7], Yingjie et al. [8] also worked on generating 

offset curves from point cloud. They also used image processing based techniques 

in their study, but the approach is totally different. The cloud data is first 

segmented into layers whose thicknesses are determined based on the linear 

correlation of layers. Then these layers are projected on the machining plane and 

their gray-scale images are formed. Finally offsets are calculated using the offset 

filtering proposed by Chamberlain [9] in his Ph.D. dissertation. He developed 

various algorithms (tool path computation, offset generation) based on image 

processing methods for manufacturing and rapid prototyping applications. 

Specific curve offset generation algorithms for NURBS curves are present in the 

literature. One of the outstanding curve offset algorithms for NURBS curves is 

suggested by Piegl et al. [10] in 1998. They used a different approach from 

previously suggested algorithms. The earlier algorithms start the offsetting with a 

few points and then add additional points till the convergence is done. On the 

other hand, Piegl et al. start with using many points and then eliminate these 

points according to the tolerance band they defined. When the results of the 

method are investigated, it can easily be concluded that the technique does well 

compared to the previous ones. One of the important properties of the algorithm is 

that by changing the parameters in the formula they used the performance (speed) 

of the technique increases significantly. 

Polynomial approximation techniques are widely in used in curve offset methods 

in the literature. These approximation methods are reviewed and compared by 

Elber et al. [11]. During comparison, they counted the number of control points of 
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the offset to comment on the efficiency of the method. The results showed that the 

least square methods do well. When the polynomial based offsetting is 

considered, the performance of the method proposed by Li and Hsu [12] is 

outstanding. They presented a method for offsetting planar B-spline curves based 

on the use of Legendre series. They first approximate the B-spline curves by 

Legendre polynomials and then perform offsetting according to the offset value 

and error band they defined in advance. Finally they convert the Legendre series 

to B-spline curves. This method overwhelms the least square method when the 

approximation accuracy is increase in terms of stability, computation time, and 

the number of control points. The main disadvantage of the method is that the 

processing time required for the conversion from Legendre to B-spline is very 

high. 

Voronoi diagram based approaches are generally used to remove the inner loops 

which are difficult to identify and remove with other techniques. The structures of 

these algorithms are very similar as given by Held [13]. As a first step, the 

Voronoi diagram is computed. Then, all of the offset-connected subareas are 

identified by applying a graph search. With this search the inner most points of 

the subareas and the bottlenecks between neighbor subareas are also determined.  

For each bottleneck two straight-line bisectors are inserted. Thus new Voronoi 

diagrams contain only one point with maximum contour clearance which enables 

construction of offset curves.  Held only compared the processing time of the 

method for various examples and compared with the processing time of Voronoi 

diagram generation algorithms (wavefront propagation and divide-and-conquer). 

It is revealed that curve offsetting algorithm does not take much time when 

compared with the Voronoi diagram generation algorithms. 

2.2 Command Generation for CNC Machinery 

Since the introduction of the first NC machine tools, the interpolators based on 

Digital Data Analyzer (DDA) technique, where a linear or circular path is 
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generated incrementally via digital integrators, were commonly utilized due to 

their ease in hardware implementation. First detailed analysis on the subject was 

attributed to Danielsson [1]. In his work, non-parametric curves were generated 

through the DDA technique. Since the presented algorithms were not associated 

with error criteria, they yielded asymmetrical curves in symmetrical arrangements. 

As the CNC technology advanced, software interpolators, which took advantage 

of microprocessor technology, began to emerge [15]. Besides significant 

improvements in linear and circular interpolators [16], several researchers [17]-

[19] have concentrated on the development of both RT and off-line interpolators 

for basic parametric curve (parabolic, Bezier, circular arc, etc.) generation.  

As modern CAD systems have progressively gained the capability to describe a 

wide variety of complex shaped parts (like dies and molds) through parametric 

curves or surfaces like the Bezier, B-Spline or NURBS; a number of parametric 

curve interpolators, which have the potential to work directly with these geometric 

entities, have been proposed by several investigators [20]. Among these 

parametric curves, NURBS is one that draws considerable attention owing to the 

fact that NURBS offers a universal mathematical form for representing both 

analytical and free-form shapes [15].  In fact, most commercial CNC controller 

manufacturers (such as Fanuc [21] and Siemens [22]) incorporate such 

interpolation capabilities to their high-end CNC products. Many investigators 

have proposed advanced NURBS curve interpolators to address the challenges of 

NURBS interpolation including heavy computational burden and feedrate 

fluctuation due to round-off/truncation errors in the interpolator [23]. 

Parallel to these efforts, there are various algorithms proposed on feedrate control 

in order to increase the quality of the product.  For instance Cheng et al. [24] 

employed a predictor-corrector algorithm to estimate the servo command at the 

next sampling time. During the prediction stage, an algorithm is used to estimate 

the next command value and in the corrector phase errors due to the prediction are 

eliminated. Cheng and Tsai [1] developed a new interpolator to produce servo 

commands for RT control of CNC machining at variable feedrates. The main 

difference of this algorithm is that acceleration/deceleration planning is performed 
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before the interpolation takes place. In a similar study, Xu et al. [25] presented 

variable interpolation schemes for planar implicit curves. They were also able to 

interpolate in RT to improve machining efficiency where the feedrate set by the 

operator is modified according to the geometrical state of the surface. In other 

words, it is decreased when the tool is machining curved parts and increased on 

planar surfaces. Another approach is proposed by Rutkowski et al. [26] in order to 

guarantee the high quality of machining. They pointed out that the smoothness of 

the trajectory profile is a necessity and employed a neuro-fuzzy based system to 

change the feedrate online in an adaptive manner. By this approach the machining 

operations become robust to changing external conditions. 

Despite the considerable efforts expanded on developing various interpolation 

paradigms to generate command sequences for CNC machine tools, the direct 

storage of sampled trajectory data (and the corresponding methods) have been 

neglected in the industry/academia due to justified reasons: i) Memory capacity 

has always been the most scarce entity since the emergence the NC/CNC 

technology; ii) For machining applications like turning and milling, the trajectory 

must be modified dynamically due to changes in operating conditions such as 

feedrate override, cutting tools being employed, tool geometry change due to 

wear, etc. Fortunately, in most manufacturing machinery like abrasive water jet 

cutters, and rapid prototyping machines, such changes are not usually exercised 

during operations. Additionally, with the advancements in the solid-state 

electronics, the scarcity of memory is no longer the case. 

In fact, the efficient data storage and retrieval techniques based on data 

compression have been exclusively studied in the literature [27]. However, the 

earlier application of the data compression techniques to CG is due to [28] where 

a RT command generator, which employs differencing and data compression, is 

introduced. The command generation performance of the proposed method is 

evaluated through the trajectories of a Puma 560 manipulator. A brief realization 

of the generator using a Field Programmable Gate Array (FPGA) is also discussed 

in their study. Likewise, [29] improves the method further by adding variable 

data-rate command generation capability and implements this novel generator on 
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a FPGA. Despite encouraging results, the command generation methodologies of 

[28]-[29] are nowhere complete and require more comprehensive assessment 

through real-world scenarios.      

2.3 Acceleration/Deceleration Algorithms and Online Command Generation 

The state of the art command generation systems consider the acceleration and 

deceleration limits of the machinery along with the incoming signals from the 

sensors and then generate and/or modify the defined motion commands 

accordingly. There are various studies in the literature to modify the original 

trajectories according to the abrupt changes in the machining conditions. For 

instance, the main contribution of Kröger and Wahl’s study [30] is that the online 

generated trajectories enable the systems to adapt to the unpredictable sensor 

inputs by the parallel execution of the generator algorithm. The technique ensures 

the safe and continuous motion of the machinery in unpredicted cases. With this 

approach, the integration of the sensors to the robotics and CNC applications 

becomes easier. In another study, Haschke et al. [31] developed a real-time 

algorithm to update the trajectories of the robots due to the same reasons (sudden 

changes in the environment). Although the computational complexity of the 

method is high, they claim that real-time performance can be achieved. The main 

advantage of their algorithm is that it can overcome the arbitrary initial condition 

problem, which the conventional approaches cannot handle.  

The study of Yong and Narayanaswami [32] concentrates on the sudden feedrate 

changes due to the high number of segments defined in the conventional 

machining approach via NC programming. They determine the feedrate sensitive 

corners in the machining trajectories in advance and then calculate the parameters 

of the acceleration and the deceleration sectors. Since they also take into 

consideration the capabilities of the CNC machinery, there occurs no overcut or 

undercut on the workpiece. In a recent similar study, Bianco and Ghilardelli [33] 

proposed a discrete filter to smooth the rough reference commands according to 
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the predefined requirements. The main advantage of their algorithm is that due to 

the compactness and the efficiency it can be preferable for hardware 

implementations.   

2.4 Data Compression Methods and Their Implementations 

Data compression is regarded as the crucial component in high-speed data transfer 

and storage. Two types of compression exist in the literature: lossless and lossy. 

In lossless data compression, data set is encoded to a smaller one that can later be 

decoded back to its original state whereas in lossy compression, the original data 

can only be approximated after decompression. Technical literature on data 

compression (i.e. Information Theory) is too vast to cite here. Readers are 

encouraged to refer to [27] (& [34]) for a general overview of this field.  

Lossless data compression applications have increased over the past years due to 

the need to improve the storage capacity and transfer rate for audio/visual data 

[35]. There are many examples for the hardware implementations of conventional 

encoding techniques in the literature. Among these techniques, Huffman [36]-

[37], Lempel-Ziv (LZ) [38]-[39], and Golomb [40] compression algorithms are 

the most popular ones for hardware implementations. For instance, Rigler et al. 

[36] implemented Huffman and LZ encoders on an FPGA and concluded that 

augmented Huffman coding (HC) uses less hardware resources than the LZ 

algorithm. On the other hand, Abd El Ghany et al. [38] also realized the LZ 

encoding and decoding algorithm on FPGA. In order to increase the efficiency, 

they used systolic array that resulted in a 40% decrease in the compression rate. 

Since various researchers have already implemented the conventional 

compression algorithms, recent studies mainly focus on implementations of 

improved versions of the conventional techniques. As an example, the study by 

Koch et al. [41] can be examined.  They employed additional decompression 

accelerators on the conventional algorithms and able to achieve comparable 

compression ratios with successful software solutions along with utilizing 
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negligible hardware resources. Rather than improving the conventional 

approaches, some researches also tried to combine the techniques. In one of these 

studies Lin et al. [42] proposed a hybrid compression algorithm composed of 

Adaptive Huffman (AH) and LZW coding techniques. With this approach, they 

achieved the compression performance of LZW coding by utilizing less hardware 

resources than the case when only AH coding is implemented. In another study, 

Lee and Park [43] implemented Huffman coding utilizing different parallel 

shifting algorithms. In order to satisfy the bandwidth requirement of the data 

acquisition system, they employed the compression algorithm to decrease the 

bandwidth of the output of the calorimeter utilized in their experiments.  

Among conventional data compression techniques, hardware implementations of 

different algorithms for compressing specific data structures are also present in 

the literature. For instance, Yongming et al. [44] have realized the Linear 

Approximation Distance Threshold algorithm on FPGA to compress the 

Electrocardiograph signals. Similarly, Valencia and Plaza [45] developed an 

FPGA-based data compression technique based on the concept of spectral 

unmixing to compress hyperspectral data. In another study related to 

unconventional encoding methods, Ouyang et al. [46] combined different 

compressing techniques to compress the huge DNA sequences which resulted in 

an algorithm having fast generation time and high compression ratio. 

The ΔY10 compression algorithm is similar to these methods in the sense that it is 

specifically developed to compress integer encoder pulses. When it is employed 

on image, text, sound, etc. data, it will not be successful as conventional 

compression algorithms. 

2.5 FPGA-based Command Generation Systems  

In the last decade FPGA has become widespread in the network and embedded 

control systems due to its high flexibility, reduced execution times, and relatively 

low cost [47]. For instance, Kim et al. [48] utilized FPGA technology to decrease 
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the decoding delays in the random linear network coding technique. With the 

FPGA they were able to increase the speed of the operation and decrease the 

power requirement. On the embedded control systems side, Cho et al. [49] 

developed a multiple-axis motion control chip utilizing an FPGA. The chip is 

capable of performing all the required tasks for industrial robots and automation 

systems quickly and accurately. On the other hand, FPGA-based designs are not 

very common in command generation parts of the control systems. One of the few 

implementations was carried out by Su et al. [50] with a simple controller 

integrated. They preferred to modify the digital convolution technique rather than 

employing the complex polynomial technique in order to implement trapezoidal 

and S-curve motion planning which resulted in an increase in the computational 

complexity. The digital convolution technique was also used by Jeon and Kim 

[51] for developing an FPGA-based acceleration and deceleration hardware for 

CNC machine tools and robotics. Similar to the study of Su et al. [50], the 

complex polynomial method is not preferred due to the computational complexity 

for the generation of velocity profiles having different dynamic characteristics. 

Instead of the current strategies, they proposed a new method to overcome the 

computational burden. The results reveal that the unsymmetrical profiles, which 

are not possible to be produced by digital convolution, can be generated by their 

method. In the study of Jeon and Kim [51] the error is not compensated. On the 

contrary the command generation schemes proposed in the thesis is capable of 

generating motion trajectories without any faults. Beside this advantage, it also 

generates the velocity and acceleration curves simultaneously provided that the 

order of difference is selected as two or higher during encoding. Osornio-Rios et 

al. [52] preferred to use profiles with higher degrees in order to generate 

trajectories in place of digital convolution method as Su et al. [50] and Jeon and 

Kim [51] employed. During the FPGA implementation, a multiplier-free recursive 

algorithm is designed to reduce the complexity of the profiles. Since the 

trajectories have jerk limitation with the utilization of higher degree polynomials, 

the dynamics of the machinery are also advanced with the proposed algorithm. 
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2.6 Open Research Areas 

With a detailed literature survey on the related topics of the dissertation, the scope 

of the thesis is determined. Since the dissertation is supposed to have certain 

limits regarding the topics, some important topics are apparently left to be 

discovered and studied on deeply.  

Although it is mentioned that the developed command generation paradigms 

should consider the acceleration/deceleration limits of the machine axes in the 

fourth chapter, the paradigms proposed in the dissertation has no units to take into 

consideration of such limits. The one proposed in the fourth chapter may not need 

such a unit since the uncompressed command trajectory may have been generated 

according to the acceleration/deceleration limits of the corresponding CNC 

machinery. On the other hand, the scheme proposed in the fifth chapter do need a 

unit modifying the trajectories according to the given properties of the CNC 

machinery. This due to the fact that the command trajectories in this approach are 

defined via the proposed commands in advance and there is not any opportunity to 

consider the motion limits during the programming stage of the paradigm. To sum 

up, an algorithm capable of modifying the generated trajectories according to the 

specifications of the CNC machinery should be developed and embedded into the 

proposed paradigms in the dissertation. The time complexity of the developed 

algorithm should be linear-in-time in order not to decrease the speed of generation 

in general. 

Another further research area may be finding a relationship between the LZW 

compression algorithm and the contextual modeling of the motion trajectories. 

When the results obtained in the fourth chapter are investigated, it can be inferred 

that the LZW outperforms the other compression algorithms in the third case, 

where there are repetitive tool movements in all of the axes. On the contrary, it is 

one of the worst compression algorithms in the cases where the tool does not 

perform repetitive tasks. The algorithm behind the LZW can be investigated and a 

modified version of it can be utilized to model the tool trajectories automatically. 

This suggested paradigm may be more successful than the command generation 
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techniques proposed in the dissertation in terms of the memory requirement and 

Kolmogorov complexity.   
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CHAPTER 3 

 

 

CURVE OFFSET GENERATION 

 

 

 

 

For the purpose of generating 2D curve offsets used in 2.5D machining, five new 

methods based on morphological operations on different mathematical entities are 

presented in this chapter of the thesis. All of the methods, which lend themselves 

for parallel processing, exploit the idea that the boundaries formed by a circular 

structuring element whose center sweeps across the points on a generator/base 

curve comprise the entire offsets of the progenitor. The first approach, which is a 

carry-over from image processing, makes good use of morphological operations 

on binary images to produce 2D offsets via contour tracing algorithms. The 

second method, which is to rectify the high memory cost associated with the 

former technique, utilizes morphological operations on (boundary data) sets. The 

implementation of this basic technique is illustrated by two MATLAB functions 

given in the chapter. Despite its simplicity, the time complexity of this paradigm 

is found be high. Consequently, the third method, which is evolved from the 

preceding one, reduces the time complexity significantly with the utilization of a 

geometric range search method. This technique, which has a considerable margin 

for improvement, is found to be suitable to be used as a part of the real-time 

motion command generator for CNC applications. The fourth technique is the 

adaptive version of the previous one. It does not generate local curve offset points 

that are going to be eliminated due to the local problems. Unlike the previous 

schemes, the final approach uses polygon operations to generate such curves. The 
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run-time of this technique is highly governed by the complexity of the polygon 

overlay algorithm selected. The chapter analyzes the complexity of each 

technique. Finally, the presented methods are evaluated (in terms of run-time and 

geometric accuracy) via two test cases where most CAD/CAM packages fail to 

yield acceptable results. 
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3.1 Introduction 

Curve offset generation (COG) is utilized in many different engineering 

applications such as computer graphics, computer numerical control (CNC), 

computer aided design (CAD), computer aided manufacturing (CAM), computer 

integrated manufacturing (CIM), industrial automation and robotics, die/mold 

design, rapid prototyping, and more. Planar (2D) curve offsets especially play a 

critical role in manufacturing such as pocket machining [53] and rapid 

prototyping [54] in which the tool path is generated in 2.5D where a family of 

planar curve offsets is produced at different elevations along the tool axis.  

In fact, a curve offset is said to be the locus of points which are at constant 

distance along the normal from a base curve (i.e. progenitor). Despite its plain 

definition, the generation of (even planar) curve offsets happens to quite 

challenging owing to the fact that the offsets of a rational base curve are 

frequently in non-rational form. Due to its practical importance, there exist a wide 

range of research efforts on the subject. Maekawa [55] groups them into five 

categories: i) exact offset generation (including Pythagorian hodographs) [56]-

[57]; ii) approximation techniques [58]-[59]; iii) self-intersection 

detection/elimination [60]-[61]; iv) geodesic offsetting [62]-[63]; v) others [64]-

[65]. The emerging methods based on mathematical morphology [6]-[7] can be 

regarded as approximation techniques. A comprehensive literature review on this 

issue can be found in [55]. 

It is critical to note that the motivation behind this study is to devise efficient 

COG methods that could serve as an integral component of (discrete-time) motion 

command generators such as the ones presented by [29] and [66] where the 

tool/end-effector trajectories are essentially represented by sampled sequences of 

position in temporal domain rather than the ones expressed in rational forms (i.e. 

NURBS). Unfortunately, the literature review on the subject reveals the lack of 

general-purpose methods (suitable for time sequences) that effectively handle the 

exceptional cases arising in typical COG phase including self-intersection, 

unreachable/unfeasible locations, sharp turns, isolated patches, and more (for 
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instance, see [67]-[68]).  Consequently, the main goals and eventually the 

contributions of this study can be summarized as follows:  

i. To present some new paradigms, which are based on morphological 

operations on different mathematical objects including binary matrices, 

sets, and vertex lists, for the purpose of generating 2D curve offsets.  All 

of the presented techniques in this chapter are inherently to deal with the 

afore-mentioned exceptions and must be suitable for implementation on 

parallel processors. 

ii. To discuss important properties of these techniques in order to highlight 

their potential for performance improvement. 

iii. To illustrate the direct implementation of a COG technique (based on 

morphological operations on boundary data sets) through a number of 

MATLAB functions and to provide the readers with the initial tools for 

further development of their own techniques.  

iv. To present novel general-purpose algorithms, which has a reduced time- 

and memory complexity.   

The organization of this chapter is as follows: After this introduction, the basic 

definitions regarding the tool trajectory (i.e. base/generator curves) are presented. 

In the next section, morphological operations on binary images are discussed to 

generate 2D curve offsets. Since this technique is found to be costly in terms of 

memory usage, another method based on morphological operations on the 

boundary data sets is introduced to circumvent that drawback. In the following 

section, a new algorithm that makes good use of grid search paradigm is proposed 

so as to reduce the time complexity of the latter method. Then in the upcoming 

section, the adaptive version of the method employing grid search algorithm is 

introduced. Following that, a different and rather unconventional approach based 

on polygon operations is elaborated. All of these methods are evaluated rigorously 

via two test cases in the eighth section. Consequently, some key results and 

conclusions about this study are given in the final section.  
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3.2 Definitions 

In this chapter, 2D curves (employed in 2.5D machining) will be considered. Let 

the basis curve of a particular (tool) trajectory be described as an ordered set of 

base points (i.e. 2D vectors) on a plane: 

P ={(xk , yk )∈ !
2 :∀k ∈ "

≤K}  (3-1) 

where |P| = K ∈ !+. Here, the shorthand notation ℕ!! refers to the set {x ∈ ℕ∗: x 

≤ n}, where 0 ∉"ℕ∗. Despite the fact that the Cartesian coordinates of the tool (or 

end-effector) can be conveniently represented as encoder counts (i.e. integers) in 

most CNC applications, only real-valued (vector) sequences are considered to 

keep the chapter of general interest.  A particular point pk = (xk,yk) in this set is to 

be interpreted as the desired location of the tool/end-effector at time step k. For 

1<k≤K, the following condition is presumed to be satisfied: 

pk −pk-1 2 ≤ δ  (3-2) 

where δ ∈ ℝ! [mm], which is correlated with the sampling period of the time 

sequence, is a predefined upper-bound for the proximity of any two consecutive 

points in the set. Since the curve offsets are visualized as a combination of arcs 

around the base points as illustrated in Figure 3-1, one can simply write the 

following inequality: 

δ 2 ≤ 8rε  (3-3) 

where ε ∈ ℝ! refers to the error tolerance band [mm]; r�ℝ! is the curve offset 

[mm]. Within the context of this study, the constraint in (3-2) is automatically 

satisfied as the points on the trajectory are sampled at very high rates (>> 1 kHz) 

for most of the applications. 
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Figure 3-1 Geometric Parameters of Curve Offset Generation 

3.3 Morphological Operation on Binary Images (MOBI) 

In image processing, morphological operations like dilation and erosion are 

commonly used to enlarge or reduce certain patterns in binary images. To 

accomplish that, a mask or a structuring element (SE) is applied successively 

throughout the contour of the selected pattern. Depending on the bit patterns in the 

mask and the corresponding logical operations performed on the image, desired 

end result is obtained [69]. 
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3.3.1 Basic Algorithm 

The same idea could be easily extended to generate the curve offsets. To generate 

the upper or lower (a.k.a. left or right) curve offset, a binary image (i.e. a matrix), 

which will serve as a medium to compute/store curve offsets, is created first: 

! ∈ !!!×!! where B ∈ {0, 1} refers to Boolean number set. Depending on the 

range of points in P, the size of this matrix (image) can be determined as 

M1 = (xmax − xmin + 2rmax ) / ρ"# $%  (3-4a) 

M 2 = (ymax − ymin + 2rmax ) / ρ"# $%  (3-4b) 

 

where .  denotes ceiling function (i.e. rounding to the highest integer); ρ ∈ ℝ! 

[mm] refers to the pixel size of the binary image; rmax[mm] is the largest plausible 

offset distance while 

xmax ! max
k

{xk};  xmin ! min
k

{xk};  ymax ! max
k

{yk};  ymin ! min
k

{yk}.   

 

Similarly, the mask 

T = [tij ]∈ B
N×N  (3-5) 

could be envisioned as a binary matrix representing a (closed) circular 

neighborhood of a SE (a.k.a. virtual tool): 
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tij =
1, (ρi − r)2 + (ρ j − r)2 ≤ r2

0, (ρi − r)2 + (ρ j − r)2 > r2

#
$
%

&%
 (3-6) 

Here, i, j ∈"≤N; N = *2r/ρ+. Provided that !≔ !!!×!! is the initial condition, the 

Boolean (logical) OR operation on S for every point in P leads to overlapping 

images (impressions) of the tool (or SE) along the base points: 

S(α (k ),β (k )) := S(α (k ),β (k )) ∨T  (3-7) 

where S(α,β) denotes a sub-matrix of S that is formed by retaining the rows and 

columns (of S) indexed by the sets α and β respectively. In (3-7), the index sets, 

which are the functions of k, can be given as 

α(k) = i + (xk − xmin ) / ρ!" #$ :∀i ∈ !≤N{ }  (3-8a) 

β(k) = j + ( yk − ymin ) / ρ!" #$ :∀j ∈ !≤N{ }  (3-8b) 

As the next step, the curve offsets are generated with the utilization of 

boundary/contour/edge tracing (or tracking) techniques that are frequently 

encountered in the image processing literature [6]. If a starting point and a 

direction vector are specified, a set of ordered points along the boundary is 

produced by simply tracing 0 / 1 (pixel-value) transitions on the binary image 

[70].  The upper- or lower curve offset is selected by simply specifying the 

corresponding starting point ps(xs,ys) and direction vector (u): 
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xs = xi ∓ ruy  (3-9a) 

ys = yi ± rux  (3-9b) 

 

u = pi −pi−1
pi −pi−1 2

 (3-10) 

where i (1 < i ≤ K) is a user-specified index; ux, uy ∈!ℝ refer to the x- and y axis 

components of the unit vector u in (3-10), respectively .Upper and lower signs in 

(3-9) are used to generate upper- or lower curve offset. In this technique, an end 

point also needs to be specified as well to stop the contour tracing algorithm if the 

base curve is not closed.  Otherwise, the technique will yield a single set 

containing points associated with both curve offsets.  Furthermore, the isolated 

patches remaining inside the image (a.k.a. “holes”), which are the consequence of 

self-intersection, must be handled separately. 

3.3.2 Complexity Analysis 

Cost of the method (i.e. time complexity and the memory requirements) can be 

analyzed in two stages. 

3.3.2.1 Creation of Tool Impression at each Base Point 

Since N2 Boolean operations on S are performed for each point in P, the resulting 

time complexity at this stage can be simply determined as O(N2K).  The biggest 

cost is actually associated with the memory requirement where a binary image (S 

matrix) with a size of M1-by-M2 (pixels) needs to be created and stored. Thus, the 

resulting memory cost turns out to be O(M1M2).  Note that if the pixel size is 
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selected to be inversely proportional to K in order to maintain a certain resolution, 

the memory cost in a 2D curve-offset generation could easily give rise to O(K2). 

In such a case, the run time would be cubically bounded as O(K3). 

3.3.2.2 Creation of Curve Offset via Contour Tracing Method 

Time complexity of contour tracing algorithms is generally regarded as linear (in) 

time [71]. If there are M pixels on the boundary of a specific pattern, the time-

complexity becomes O(M). Similarly, since the locations of pixels on the contour 

have to be stored during the processing stage, the memory requirement turns out 

to be O(M) as well. Note that in the technical literature, there exist advanced 

tracing algorithms (like [72]) that claim to reduce the time complexity [i.e. O(log 

M)]. However, only the basic techniques will be considered in this study. While it 

is very difficult to estimate M without analyzing a specific pattern; to obtain a 

general idea about the cost of the technique, we shall assume that there are 

*2πar/ρ+ pixels (on average) at the contour around each base point in P where the 

real number a ∈ [0, 1] represents an average “contour filling” factor computed for 

a given case (with P and r at hand). In that situation, M = *2πarK/ρ+ ≤ *πa NK+and 

thus the time complexity and the memory cost would be both O(NK). 

Since the time complexity analysis (a.k.a. “big-O” analysis) in computer science 

deals with the upper-bound of an algorithm’s run time function, the dominant 

costs associated with the sequential steps of an algorithm are considered. Thus, 

the resulting time-complexity and the memory requirement of the afore-

mentioned algorithm (at least in its basic form) would be O(N2K) and O(M1M2) 

respectively. Despite its shear simplicity, the morphological operations on binary 

images to generate curve offsets appear to be too costly in terms of memory 

unless the length of base curve is low to moderate. 
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3.4 Morphological Operations on Boundary Sets (MOBS) 

In spite of the fact that the morphological operations on binary images are simple, 

the technique (as is) suffers from the curse of dimensionality. As a remedy for this 

problem, only the relevant information describing the boundaries of a SE (as it 

sweeps through the base points) can be stored. 

3.4.1 Basic Algorithm 

The method proposed in this section makes good use of the afore-mentioned idea. 

Note that there exist a number of studies employing morphological operations on 

sets to generate tool path offsets in the literature ([6] and [7]). However, the 

presented algorithm in this section is topologically different than its counterparts 

in terms of the positioning of the SE (w.r.t. the base curve), the representation (or 

approximation) of the generator/base curve, the boundary data formation, the 

detection of tool interference, and generation of tool offset curves through non-

iterative boundary data sequencing. The proposed algorithm constitutes two basic 

steps: 

i. Formation of boundary set: The boundary points on a circular 

neighborhood (with a radius of r) around each point in the base set P are 

created. Hence, a finite set S = {Sk:k∈"≤K }, which constitutes all the 

feasible boundary points, are formed such that 

Sk ⊂ s∈ !2 : s−pk 2
= r( )∧ s−pi 2 > r( ),∀i ∈ !≤K / k{ }  (3-11) 

 

ii. Creation of curve offsets: Using the nearest neighbor technique, the 

elements of S, which happen to be all disjoint sets, are processed to yield I 

number of (disjoint) subsets Qi that contain the points associated with the 

various curve offsets: 
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S = Qi
i=1

I

∪  (3-12) 

 

In this technique, the boundary data set S is built in a sequential manner. A finite 

structuring set T (at step k) is utilized for this purpose: 

T(k) =
(x, y)∈ !2 : x = xk + rcos

2π (n−1)
N( ),

y = yk + rsin
2π (n−1)
N( ),∀n ∈ !≤N

%
&
'

('

)
*
'

+'
 (3-13) 

where |T| = N is the number of elements in the structuring set.  At this point, the 

interference between the new boundaries [to be formed by T(k)] and the ones 

previously created must be checked within a circular neighborhood of 2r: 

α(k) = i ∈ !
≤k−1 : pi −pk 2

≤ 2r{ }  (3-14) 

Here, α(k) refers to a set holding the indices for interfering base points with a 

particular pk. First, the set Sk is constructed using the elements of T(k) such that 

Sk = s∈ T(k) : s−pα (k) 2 > r( )∧ s−pk+1 2 > r( ){ }  (3-15) 

Then, the previous boundary points enclosed by T(k) has to be removed from S. 

Hence, the relevant elements of S (all finite sets) are modified as 

Sα (k ) := s∈ Sα (k ) : s−pk 2
> r{ }  (3-16) 
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With the initial condition S := ∅, if the above-mentioned set operations are 

repeated for 1 ≤ k ≤K, the set S containing all the feasible boundary points is 

eventually obtained. 

Finally, the boundary set S, which covers the entire curve offsets, is processed 

starting from the first subset. The set construction operation to obtain Qi in (12) 

can be described in twelve steps: 

1.  Let (the offset index) i be 1.  

2.  Let (the time index) k be 1. Let Q be an empty set.  

3.  If Sk is an empty set then go to Step 10.  

4.  Pick the first element of Sk as q = sk,1. 

5.  Determine the closest element of Skto q (i.e. the nearest neighbor of q using 

Euclidian distance as the metric): 

!q = min
j∈!≤ |Sk |

sk,j −q 2{ }  (3-17) 

 

6.   If -q - q,-2> r then go to Step 10. Note that in that case, the remaining elem

ents of Sk are associated with the other curve offsets (upper/lower dependi

ng on the case or “child” offsets).  

7.   Let q be q, . Let the new subset Sk be (Sk – q).  

8.   Add the new point to the (curve offset) set Q: Let Q be (Q∪q). 

9.   If Sk is not an empty set then go to Step 5. 

10. Increase k by 1. If k ≤K, then go to Step 3. 

11. If Q is an empty set then end the process.  

12. Let Qi be Q. Increase i by 1 and go to Step 2. 
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To implement these operations, two MATLAB functions are developed. The first 
function titled setboun is given in Table 3-1 and it simply constructs the 
boundary data set as described in the text. Similarly, the chain function, which 
is listed in  

Table 3-2, constructs the sets associated with different curve offsets (i.e. Q). 

Notice that this function has to be called successively until all elements of S are 

empty which implies that all curve offsets are successfully extracted.  

Note that the presented algorithm processes the elements of S (i.e. Sk) sequentially 

to form curve offsets without taking into account the global distribution of the 

boundary points. Often times, this approach leads to a number of segmented curve 

offsets for self-intersecting base curves. As a remedy to this problem, these curve 

patches, which are represented as ordered disjoint sets, can be combined through 

the cross-evaluation of the proximities among the extreme elements (i.e. starting- 

and end points) of different sets.  It is obvious that such an effort requires 2m(m − 

1) operations (e.g. the computation of Euclidian distance & a logical comparison 

per each operation) where m (> I) refers to the number of curve patches extracted. 

However, the resulting cost can be regarded insignificant if compared to the rest 

of algorithm since m << K.  
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Table 3-1 MATLAB Function to Construct Boundary Data Set 

01: function S = setboun(x,y,r,N) 

02:   T0 = r*exp(1i*linspace(0,2*pi,N+1)); T0 = T0(1:N); 

03:   K = length(x); idx = 1:K; r2 = r*r; d2 = 4*r2; 

04:   S = cell(K,1); S{1} = x(1) + 1i*y(1) + T0; 

05:   for k = 2:K 

06:     alpha =fliplr(idx(((x(1:k-1)-x(k)).^2 + (y(1:k-1)-y(k)).^2)<d2)); 

07:     Tk = x(k) + 1i*y(k) + T0; 

08:     if (k<K) 

09:       Tk = Tk(((real(Tk)-x(k+1)).^2+(imag(Tk)-y(k+1)).^2)>r2); 

10:     end 

11:     for i = 1:length(alpha) 

12:       Tk = Tk(((real(Tk)-x(alpha(i))).^2 +(imag(Tk)-y(alpha(i))).^2)>r2); 

13:       Sai = S{alpha(i)}; 

14:       S{alpha(i)} = Sai(((real(Sai)-x(k)).^2 +(imag(Sai)-y(k)).^2)>r2); 

15:     end 

16:     S{k} = Tk;  

17:   end 

18: end 

 
 
 

Table 3-2 MATLAB Function to Create Curve Offset Data Sets 

01: function [Q,S] = chain(S,r) 

02:   K = length(S); Q = []; 

03:   for k = 1:K 

04:     qmin = 0; 

05:     if (~isempty(S{k})&&isempty(Q)), q = S{k}(1); end 

06:     while(and((qmin < r),~isempty(S{k})))   

07:       [qmin,idx] = min(abs(S{k}-q)); 

08:       if (qmin < r) 

09:         Q = [Q q]; q = S{k}(idx); S{k}(idx) = []; 

10:       end 

11:     end 

12:   end 

13: end 
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3.4.2 Complexity Analysis 

Just like its counterpart, the cost of the algorithm can be estimated in two distinct 

stages. 

3.4.2.1 Creation of Boundary Set (CBS) 

At the kth step, the set α(k) [see Eq. (14) and Lines 6-7 of Table 1], which indexes 

the base points interfering with the creation of boundary points at the current 

position k, must be constructed. Unfortunately, since this set construction requires 

a search through the base points visited previously (i.e. Pk-1 ⊆ P), a query on the 

set   Pk-1 (|Pk-1| = k-1) can be performed in linear time [e.g. O(k-1)]. Therefore, the 

cumulative run time for this portion, which is expected to be quite dominant, 

becomes O(K2). To reduce the resulting complexity, one can employ an improved 

search algorithm. In applied mathematics and operations research, there are vast 

amount of investigations on the problem commonly referred to as range search 

[73]-[74]. Time complexity of advanced (circular) range search algorithms, which 

make good use of divide-and-conquer approach, is usually logarithmic in time. 

When such an algorithm is employed, the overall complexity of constructing set α  

can reduce down to O(K log K).  

With respect to the remaining steps, the total number of operations1 at step k can 

be estimated as |α(k)|(2n-1)+2N where n refers to the average/typical number of 

points in the subsets Sα(k). While it is difficult to determine the cardinality of α(k) 

without a specific analysis on the trajectory, one can conjecture2 that |α(k)| would 

grow in proportion to K. Furthermore, if n is treated like a constant (as it depends 

on neither K nor N), the corresponding complexity of this portion can be 

estimated as O(K2+NK). The resulting complexity for the construction of set S 

                                                
1 A typical operation here includes the computation of (the square of) the Euclidian distance between two points and comparing it to a 

certain quantity like r2.  
2  Analysis on experimental results for a number of cases (a total of 8) is employed as the basis of assumptions in this study. 
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would be O(K2). Notice that the presented algorithm will have a quadratic upper 

bound whereas its counterpart (MOBI) will attain a cubical upper bound in case 

the resolution is to grow in proportion to the density of the points on the base 

curve. Finally, the memory requirement in this method can be simply calculated 

as O(NK) since sets S and T have to be stored at every step. Therefore, the 

resulting memory cost turns to be much smaller in practice if compared to its 

predecessor. 

3.4.2.2 Creation of Curve Offsets (CCO) 

To proceed with the analysis, an assumption on the cardinality of each subset Sk is 

needed (with P and r at hand): Let there be n number of points at each subset (on 

average) where the expectancy E{n} = 2 for a given case.  When |Sk| = n, the 

determination of the nearest neighbors for q (until the depleting set Sk runs out of 

elements) will take n(n+1)/2 operations at time step k.  When n is taken as 

constant, the overall time complexity of the presented algorithm boils down to 

O(K). Similarly, the memory cost for this stage is O(NK) since S is needed at 

every step of the algorithm. Interestingly, both the time complexity and the 

memory cost of this algorithm are comparable to those of its counterpart (e.g. 

contour tracing algorithm) as described in the previous section. 

The fundamental analysis on the presented algorithm reveals that the resulting 

algorithm (titled MOBS) could yield a better (i.e. lower) run time complexity (e.g. 

quadratic) than its predecessor (MOBI). However, its memory cost of MOBS 

would be significantly less. Generally speaking, the presented method could 

potentially achieve better performance while circumventing the major drawbacks 

of its counterpart. 
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3.5 Improved Algorithm to Implement MOBS (IMOBS) 

Despite the fact that the memory cost of MOBS is significantly decreased as 

described in the previous section, its time complexity is quadratic even with the 

use of an advanced search algorithm. To develop an improved algorithm with 

reduced time complexity, one must focus on the most costly component of 

MOBS. Hence, relevant modifications are to be carried out on the CBS portion of 

the previous algorithm whereas the second part (i.e. CCO), which is already 

linear, will remain intact. 

3.5.1 Basic Algorithm 

The CBS of this new algorithm to be called IMOBS hereafter constitutes of two 

steps: 

i. Generation of local boundary points: At this stage, the local boundary 

points, which are located at a specified distance (r) from a base point pk, 

are computed without considering the interference with the rest of the base 

points. To increase the efficiency of this step, the local boundary points are 

determined by taking into the consideration the curvature of the base 

curve. For this purpose, the change of slope around a base point is utilized.  

If the change of slope (χ) is smaller than a predetermined threshold, the 

boundary subset (with only two elements) for the base point pk is 

constructed conventionally as   

Sk =

(x, y)∈ !2 : x = xk ∓
ryk

pk+1 −pk 2

,

y = yk ±
rxk

pk+1 −pk 2

#

$

%
%

&

%
%

'

(

%
%

)

%
%

 (3-18) 
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Otherwise, 

Sk = s∈ T(k) : s−pk+1 2 > r( )∧ s−pk-1 2 > r( ){ }  (3-19) 

 

i. In this technique, the above-mentioned change is simply computed as the 

cosine of the angle between two consecutive direction vectors at a 

particular base point:  

χ = cosΔθk = uk
+ ⋅uk

−  (3-20) 

 

where 

uk
+ =

pk+1 −pk
pk+1 −pk 2

, uk
− =

pk −pk−1
pk −pk−1 2

 (3-21) 

 

ii. Removal of invalid boundary points: At this step, the invalid elements of 

the boundary set are removed. That is, the boundary points that interfere 

with the base curve must be discarded from the set S by checking upon the 

relevant Euclidian distances. Since this computation for each point 

covered by S is extremely costly (as outlined in Section 3.4), a well-known 

geometric range search algorithm (called grid search) is employed to 

improve the efficiency of the process [74].  

 

For this purpose, the base plane is divided into a grid with M2 (M∈ℤ!) 

cells. The indices of the boundary points (i.e. k and the index of the point 

in Sk) residing within a particular grid cell are stored in a dynamically 

sized array (like MATLAB cell array). Boundary points, which are within 

the square (2r×2r) neighborhood centered on a base point pk, are 
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determined considering the grid cells enclosed within. Hence, if the 

Euclidian distance between a particular boundary point (within the 

neighborhood of concern) and a specific base point is found to be less than 

the offset r, that boundary point is discarded from its associated subset.     

 

Once the feasible boundary set is constructed, the curve offsets are created by re-

sequencing the elements of this set with the utilization of the CCO method 

described in the previous section. 

3.5.2 Illustration of the Method 

The quadratic time complexity of MOBS is reduced with the improved version of 

MOBS (a.k.a. IMOBS). In this technique, the main enhancement is on the 

creation of boundary set part. The second part (CCO) is the same as it is 

developed for MOBS. For a better description of IMOBS, it is employed on a 

simple self-intersecting curve (infinity sign) and its steps are illustrated in Figure 

3-2. The given self-intersecting trajectory in the first step is discretized in the 

second step with 96 base points. Then in the third step, the main part of the 

algorithm is employed on the discretized points to generate inner and outer curve 

offsets of the given trajectory. At the start point of the trajectory, a circle is 

generated according to the density of the original points on the base plane. This 

circle can be viewed on the leftmost part of the third step. Then according to the 

predefined angle threshold, for each original point it is determined whether to 

employ the algorithm of MOBS or to generate offset points at the perpendicular 

directions to the line between the two consecutive trajectory points. In the figure, 

the red dots indicate that they are generated with the method of MOBS by 

utilizing the neighbor points of the corresponding point as shown in (3-19). The 

gray offset points on this step are the ones generated with unit normal vectors. 

There are now global invalid loops (at the middle of the infinity sign) and invalid  
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Figure 3-2 Illustration of Steps of the IMOBS 

 

local points (at the start of the trajectory). In order to remove these points with a 

low computational effort, the base plane is divided into a grid according to the 

predefined dimensions in the fourth step, which is 16 by 16 for this case. The 

numbers of points in each cell are illustrated in the fifth step. The invalid points 

are removed according to their distances to the original trajectory points. If they 

are closer than the offset distance, they are regarded as invalid and removed from 

the resulting offset boundary data sets. These resulting offset points are shown in 

the sixth step of the figure. After these points are generated, the consecutive ones 

are connected to form curve segments by using the nearest neighbor technique. 

1 2
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The result is presented at the seventh step. Although there should be three closed 

curves, there are five different colored curve segments at this point. Thus, further 

processing is necessary to get proper offset curves. In the last step of the 

algorithm, these curve segments are connected to each other according to the 

distances between the start and end points of them.  

3.5.3 Complexity Analysis 

Since the CCO phase of this new technique is same as that of MOBS, only the run 

time of the first stage of the algorithm (i.e. CBS) needs to be analyzed.  As a 

preliminary operation, all unit direction vectors [see (3-21)] must be computed 

(and stored) so as to determine the change of direction at a specific base point. It 

is self-evident that the time complexity of accompanying operation grows 

linearly: O(K).  

At the proceeding step, the boundary points are to be assigned with the utilization 

of (3-18) and (3-19). In worst case, N operations need to be carried out to create 

the boundary data set for a particular base point (i.e. Sk).  Hence, the time 

complexity of this step would be O(NK).  

Following that, the boundary points interfering with the base points are eliminated 

via a geometric grid search. To accomplish that, the domain (i.e. base plane) is 

divided into an M-by-M grid. Hence, a table (a.k.a. a hash table), which holds the 

indices of the boundary points that reside in a specific grid-cell, is formed first. 

Note that despite the fact that the probability of |Sk| being 2 is quite high3, one can 

assume that the total number of points covered by S will be NK in the worst case.  

Similarly, the construction of this table requires the range check (and assignment) 

for every point found in S. Therefore, the time complexity of the corresponding 

operation can be inferred as O(NK).  

                                                
3 This is due to the fact that the registered directional change around a base point is usually quite small and that the boundary points are 

likely to be computed via (3-18) rather than (3-19).  
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Once the table has been created, one determines the boundary data points that are 

contained within the square (2r×2r) neighborhood around a base point via simply 

checking the grid cells located inside this region. Unfortunately, making general 

assumptions on the distribution of the boundary points over the domain 

(independent of the test case) is extremely difficult. Note that the straightforward 

presumption that the distribution of boundary points over the domain is uniform 

leads to the conclusion that the total number of test points inside a square 

neighborhood grows on the order of r2K independent of the choice of M. For 

every point inside the neighborhood, the Euclidian distance between a base point 

and a boundary point needs to be computed and checked whether it is greater than 

r or not. Since this procedure is to be repeated for every point in P, the overall 

time complexity of the algorithm evidently becomes O(r2K2) ~ O(N2K2). 

However, such a result appears to be inconsistent with the tests conducted in this 

study.  

A more viable approach is to compute the length of boundaries residing inside the 

square neighborhood under the presumption that the base curve can be 

approximated as a line passing through a particular base point. Consequently, the 

boundary length (i.e. the total length of parallel line segments bounded by the 

perimeter of the square neighborhood) ranges between 4r( 2 1)−  and 4r as a 

function of the base line’s slope. Provided that the density of the boundary points 

is in correlation with that of the base curve, the number of points in the square 

neighborhood can be estimated as *4r/δ+ = *2N/π+ [see (3-2)] in the worst case.  

The overall time complexity of this step (where the invalid boundary points are 

eliminated) will be O(2NK/π) = O(NK). Finally, the time complexity (i.e. the 

growth function) of this stage simply becomes O(max{K,NK,NK}) = O(NK) 

which is more consistent with the experimental results.  

With respect to the memory cost, four arrays are needed to store the base points, 

unit direction vectors, boundary points, and the grid-data. The corresponding 

memory costs are O(max{K, K, NK, NK}). Hence, the overall memory cost for 

this stage is O(NK).  
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3.6 Adaptive Algorithm to Implement MOBS (AMOBS) 

Among the developed curve offset generation algorithms up to now, IMOBS is 

the most suitable one for hardware implementation due to its linear in time 

complexity. When the method is analyzed deeply, it is noted that there is no need 

to generate possible boundary points that are to be eliminated in the upcoming 

steps of the algorithm. Thus, a new method is developed, called Adaptive 

Algorithm to Implement MOBS (AMOBS), to eliminate this disadvantage of the 

IMOBS.  

3.6.1 Basic Algorithm 

There exist a number of potential problems in MOBS and IMOBS when the 

structuring set T(k) has a fixed (constant) number of elements that are equally 

distributed around a circle (with a radius r). If the base points are densely packed 

while the number of elements is not specified in accordance with the distribution, 

some of the elements of T(k) might be eliminated (due to the sparsity of data) 

during the process of boundary set construction. As an artifact, various gaps on 

the boundary data set may occur. Figure 3-3 illustrates such cases on two different 

tool trajectories having diverse attributes. The trajectories in the figure represent a 

hand and a star. The number of elements of T(k) in these cases is 75 and the 

number of points in the base curves is 10000. As can be inferred from the figure 

that there exists no offset boundaries at some specific directions of the original 

trajectories. Since the number of elements in T(k) is selected to be 75 (low 

compared to the number of points in the original curves), there remains no offset 

points at these specific directions after the task of elimination of the invalid offset 

points is accomplished. 
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Figure 3-3 Offsets of Hand (N=125) & Star (N=75)  

 

One obvious solution is to increase the number of elements for T(k) as follows: 

N = a 2πr
δ

!

"
"

#

$
$  (3-22) 

 

where a ∈ " is an arbitrary (user selected) constant. However, with such a choice 

(where N ∝ K), the overall time complexity of the aforementioned algorithms 

becomes too high O(K3) to consider the underlying methods to be practical. As a 

second remedy, the probability mass function for the angles of normal (unit) 

vectors at the base points can be calculated beforehand. For a given (constant) N, 

the elements of T(k) can then be selected with the guidance of this function. The 

number of elements of T(k) may be increased at the specific angles where the 

probability of valid offset points is high. Unfortunately, such an approach would 

still not guarantee the elimination of these “gaps” in cases where N was specified 

too low.  
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A more feasible approach would be to construct T(k) adaptively as a function of 

the gradient vectors around a particular base point pk. That is, as illustrated in 

Figure 3-4, the arcs (i.e. upper/lower curve-offset segments), centered around pk, 

which do not interfere with the boundaries of the neighboring base points (pk-1, 

pk+1), could be determined with the utilization of the basic trigonometric 

identities.  The starting and the ending angles of these segments can be expressed 

as 

α1
± = tan−1

yk+1 − yk
xk+1 − xk

"

#
$$

%

&
''± cos

−1
pk+1 −pk 2

2r

"

#

$
$

%

&

'
'  (3-23) 

 

α2
± = π + tan−1

yk − yk−1
xk − xk−1

"

#
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&
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After these angles are determined, the elements of the tool matrix T(k) are 

generated according to the following equation: 

 (3-25) 

 

The angle ! in the above equation is defined to be in the set A+ and/or A-. These 

sets are expressed by the following equations: 

 (3-26) 

 

T(k) = (x, y) : x = xk + rcosα, y = yk + rsinα,α ∈ (A+∪ A− ){ }

A+ = α1
+ +

δ
2r
+ χ +(i −1) :∀i ∈ !

≤n+

%
&
'

(
)
*
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Figure 3-4 Parameters of AMOBS 

 

A− = α2
− +

δ
2r
+ χ −(i −1) :∀i ∈ !

≤n−

%
&
'

(
)
*

 (3-27) 

 

χ ± =
α2

± −α1
± − δ

r

n± −1
 (3-28) 

 



 44 

In the above equations, the number of elements in the sets is limited by the 

variable !. Its limit is determined by dividing the length of the arc to the specified 

distance between the consecutive points in the tool matrix as given in the below 

equation 

n± =
r α2

± −α1
±

δ

"

#

#
#

$

%

%
%

 (3-29) 

 

Note that when the difference between the angles of the positive or negative side 

is less than ! ! and greater than zero, then a point is generated at the middle of 

corresponding arc. On the other hand if the angle difference is less than zero, no 

point is generated. This exception is handled with the following equation: 

A± =
(α1

± +α2
± ) / 2{ }, 0 ≤ ±(α2± −α1± ) ≤ δ

r

∅, ±(α2
± −α1

± ) < 0

$

%
&

'&
 (3-30) 

 

The rest of the algorithm is similar to the MOBS and the IMOBS. The only 

difference is that there are not any local invalid points after the generation of 

offset boundary due to the adaptive behavior of the algorithm.   

3.6.2 Complexity Analysis 

Since the CCO phase of this technique is the same as that of the MOBS and the 

IMOBS, only the run time of the first stage of the algorithm (i.e. CBS) needs to be 

analyzed.  For each point in the base set, four angles should be determined first 

before the generation of offset boundary points. This step simply has time a 

complexity of O(4K). At the preceding step, boundary points are generated 

according to the length of the upper and lower arcs. Assuming that there are a 

numbers of points in average on the arcs of a base point, the time complexity of 
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this step would be O(aK). Following that, the boundary points interfering with the 

base points are eliminated via a geometric grid search. In the previous chapter, it 

was concluded that the time complexity of this section is assumed to be O(NK). 

Finally, the time complexity (i.e. the growth function) of this stage simply 

becomes O(max{4K,aK,NK}) = O(NK) 

With respect to the memory cost, three arrays are needed to store the base points, 

boundary points, and the grid-data. The corresponding memory costs are 

O(max{K, NK, NK}), Hence, the overall memory cost for this stage is O(NK). 

3.7 Polygon Operations (PO) 

Polygons based techniques, in which a number of Boolean operations such as 

union, intersection, and difference could be performed on two polygons (with 

arbitrary shape) for various specific purposes, find extensive use in computer-

aided design [75], computer graphics [76]-[77], geodesic sciences [78]-[79], and 

more. However, it is somewhat neglected in the area of curve offset generation.  

3.7.1 Basic Algorithm 

Polygon operations are utilized to form curve offsets in this study since there exist 

various algorithms suitable for the generation of curve offsets and their software 

packages are also available online. These algorithms are named as polygon 

clipping/intersection [79], polygon overlay [78], Boolean operations on polygons 

[77], etc.  

With an efficient processing technique, the polygon operations could be a viable 

alternative to generate curve offsets using a base set. To illustrate the application, 

let us first describe the polygon as an ordered set of vertices listed in counter-

clockwise order: 
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Q ={q1, q2 ,… ,qN}={(xq,1, yq,1),(xq,2 , yq,2 ) ,… ,(xq,N , yq,N )} (3-22) 

 

Here, the edges , , , ,1 2 2 3 N-1 N N 1q q q q q q q qK  implicitly define the boundaries (edges) of 

this polygon. To produce the curve offset, two polygons are needed: the first 

polygon (T) describes the contour of a virtual tool (with a radius r) which is to 

travel along the base curve.  The second polygon (Q) describes the boundaries 

that are created dynamically by this tool T as it sweeps through the points in the 

base data set P (see Section 3.2 for definitions).  The union of T at every point in 

P will yield the desired the result: 

Q = T(k)
k=1

K

∪  (3-23) 

 

Or, as a casual relationship, 

Q(k) :=Q(k −1)∪T(k)  (3-24) 

 

where Q(k), Q(k-1) refer to the states of Q polygon set/list (in growth) at steps k 

and k-1 where Q(0) := ∅. Similarly, T(k) indicates the tool polygon set (i.e. 

vertex list) defined around pk and can formed using (13). 

It is critical to notice that the Boolean operations defined on polygons (such as 

union, intersection, difference, complement, etc.) are fundamentally different than 

the oneson sets. The algorithms in the literature [77], [80] generally perform the 

union of polygons in three consecutive steps: i) determination of vertices lying 

inside each polygon (to be purged from both polygons); ii) calculation of 

intersection points (to be added); iii) creation of vertices for the new polygon 

using the information generated at former steps.    

The following stage is the extraction of the desired curve offset from the polygon 

Q. Once the starting- and ending points for the curve offset is specified [see (9)], 
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one can directly identify subsequence of Q lying between these points. However, 

care on the direction of the progression for the vertices must be exercised to 

determine the correct order of points on the curve offset. The identified 

subsequence frequently requires inversion/reversion (or “flipping over”).  It is 

critical to note that for self-intersecting curves, independent polygons enclosed by 

Q oftentimes emerge as the union of polygons proceeds. Most algorithms handle 

this instance by creating an extra polygon (a.k.a. interior polygon/”hole”) 

automatically.  

3.7.2 Complexity Analysis 

Just like the morphological operations, the cost associated with this method can be 

analyzed in two stages. 

3.7.2.1 Union Operations on Polygons 

The run time of the proposed method depends on the selected algorithm 

performing Boolean operations on polygons. General purpose algorithms with 

different complexities are available in the literature [76], [77], [78]. For instance, 

Martínez et al. [78] reports the time complexity of their method as O((n+m)log 

n)where n refers to the total number of edges for all the polygons involved in the 

operation while m denotes the number of intersections. Assuming Q(k) constitutes 

[N + 2(k-1)] edges on average while T(k) has N edges, the total number of edges 

becomes n = 2(N+k–1). If the expectancy for the number of intersections (m) is 2, 

the time complexity of the algorithm at step k will be O((N+k)log(2(N+k–1))). 

Since polygon operations on Q are to be performed for each point in P, the upper 

bound of the polygon based technique in that case could be estimated as 

O(K2log(K)) provided that K>>N. 

In this study, the general purpose technique presented by Murta [81] (a.k.a. GPC) 

that employs the polygon clipping algorithm of Vatti [82] (in part) is preferred as 
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this method is well-established in the literature. Furthermore, GPC intrinsically 

handles the interior polygons formed as a consequence of self-intersection. 

Unfortunately, since the Vatti’s algorithm is very complex, its “asymptotical” 

analysis has not been performed, to this day [83]. However, considering the 

numerical assessments in the literature (along with the ones conducted in this 

study), one can postulate the complexity of this algorithm as O(n2) ~ O((N+k)2). 

Consequently, the overall complexity of PO technique with the above-mentioned 

algorithm becomes O(K(N+K)2) ~ O(K3). 

With respect to the memory cost, since all polygons (Q and T) need to be stored 

(independent of the polygon overlay algorithm selected), the resulting cost simply 

becomes O(K+N). 

3.7.2.2 Generation of Curve Offsets 

Once the union operations on Q are complete, the determination of correct offset 

can be done by querying the starting- and ending positions of a specific curve 

offset. Assuming that the polygon Q have (2K + N) vertices on average, each 

query can be performed in linear time: O(2(2K+N)). Hence, since K>>N, the 

resulting time complexity would be O(K). At this step, only Q needs to be stored. 

Therefore, the corresponding memory cost will be O(2K+N) ∼ O(K). 

3.8 Experimental Evaluation 

The COG techniques along with their implementation/complexity issues have 

been elaborated in the previous sections. Hence, Table 3-3 summarizes the 

important attributes of the techniques discussed in this chapter.  To evaluate the 

above-mentioned methods, two test cases (titled Club and Doodle) are considered 

as illustrated in Figure 3-5. Geometric parameters of the trajectories associated 

with two cases are given in Table 3-4. Note that the test case “Club” describes a 

complex closed trajectory whose offsets are likely to self-intersect for certain 
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offsetting distances while the one titled “Doodle”, which is adapted from Liu et al. 

[84], represents a self-intersecting tool path. 

 

 

Table 3-3 Important Attributes of the Methods Considered 

Method Memory Cost Time Complexity 

MOBI O(M1M2) O(N2K) 

MOBS O(NK) O(K2) 

IMOBS O(NK) O(NK) 

AMOBS O(NK) O(NK) 

PO O(K+N) O(K3) 

   

 

Table 3-4 Summary of the Test Cases and Selected Parameters 

Case Size [mm×mm] K δ  [µm] 

Club 100 × 100 10000 47 

Doodle 100 × 60 20000 37.4 
 

 

The algorithms MOBS, IMOBS, and PO are implemented and tested in MATLAB 

2012b running on two different platforms: iMac (OS X 10.9) and PC (Windows 

7/32 bit). However, due to high memory cost associated with MOBI, its 

performance could not be evaluated experimentally. To be specific, (for a pixel 

size of 1×1 µm) the memory required to store the binary images for the test cases 
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alone are 1.82 GB (Club) and 1.23 GB (Doodle) respectively whereas the memory 

available for all arrays in MATLAB (for both platforms) was limited to 1.37 GB.  

With respect to the implementations, for the techniques MOBS, IMOBS and 

AMOBS, the number of points on the SE is determined via N = *2πr/δ+ in order to 

avoid gaps on the contour due to insufficient number of boundary points. In the 

tests, the grid size for IMOBS and AMOBS is selected as 256×256 (M = 256).  It 

is critical to note that the evaluation of PO is carried out with the utilization of the 

method of Murta [81] where the C++ source code developed to implement the 

algorithm is available online. To utilize this (open-source) C++ code, it has to be 

compiled to create a dynamic link library (DLL) so that corresponding functions 

could be directly called from the MATLAB environment.   

First of all, successive curve offsets, which are 2.5 mm apart at the left- and right-

hand side of the base curve, are generated by different methods. The results are 

presented in Figure 3-5. Since the curve offsets produced by a certain technique 

do not exhibit any visually discernable geometric deviations if compared to the 

others (at least within the given scale), only the curves produced by the MOBS 

method are presented in Figure 3-5 to avoid cluttering. It is critical to note that 

some commercial CAD packages do not yield acceptable results for these two 

cases. According to the experiments conducted in this chapter, SolidWorks (2010) 

does not produce any inner offsets for the Club case when the offset curves 

commence to self-intersect at specific distances. Similarly, for the Doodle case, it 

totally fails to generate the offset curves at any distance and direction. Liu et al. 

[84] reports some missing offsets in AutoCAD for the very same case. 
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Figure 3-5 Base curves (tool trajectories) and curve offsets produced by MOBS 

for two test cases 

It is critical to note that as mentioned in Section 3.4, the MATLAB function 

chain (used by MOBS, IMOBS, and AMOBS) generally yields segmented 

curve offsets for self-intersecting cases due to sequential processing of the set 

elements. For instance, 17 offsets are to be produced for the Doddle case when r = 

2.5 mm while this function yields 39 segments. Consequently, these segmented 

offsets are simply merged via the algorithm described in Section 3.4. 

For quantitative cost analysis, the memory requirements and the execution times 

of the afore-mentioned methods are recorded for the test case Doodle (with r = 1 

mm) as shown in Figure 3-6, Figure 3-7 and Figure 3-8. As can be observed from 

the figures, the obtained results appear to be in good agreement with the formal 

analysis conducted in the previous sections despite the fact the developed 

MATLAB code (employing advanced data structures), by no means, can be 

regarded as high-fidelity implementations of the presented algorithms.  

For quantitative cost analysis, the AMOBS is evaluated under the same conditions 

with IMOBS. Figure 3-7 represents the results of time complexity analysis. As 

can be inferred from the figure that the AMOBS is also linear in time like IMOBS 

as expected and its slope is a bit less than the slope of IMOBS for the CBS parts 
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of the algorithms. On the other hand, the difference between the slopes of the 

CCO parts of the algorithms is high compared to the difference between the 

slopes of CBS parts. Figure 3-7 also represents the memory costs of the CBS parts 

of the algorithms IMOBS and AMOBS. The memory requirement of IMOBS is 

seven times the requirement of AMOBS. This arises from the fact that variable 

structure of the CCO part of IMOBS is the same as with the previous version of 

the algorithm (MOBS). With the introduction of AMOBS, another CCO algorithm 

is also developed and this new CCO now requires different type of variable 

structures. In the previous versions of the CCO, for each base points (K) an array 

of valid points are supplied to the CCO via cell arrays. On the other hand, in the 

CCO of the AMOBS the valid boundary points are supplied to the function in an 

M by M cell structure. With this approach, the size of the cell structure given to 

the CCO is kept constant as opposed to the CCO of the IMOBS and MOBS.   
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Figure 3-6 Numerical Cost Evaluation for MOBS and IMOBS 



 54 

 

 

 

 

Figure 3-7 Comparison of IMOBS and AMOBS 
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Figure 3-8 Numerical Cost Evaluation of the PO Technique 

 

Since the geometric accuracy of the curve offsets produced by different 

techniques are of extreme importance for CNC machine tool applications, the 

deviations of curve offsets from the ideal geometry must be rigorously assessed. 

However, a reference curve (representing the ideal geometry) for each offset is 

needed for this purpose. Unfortunately, a well established and general purpose 

technique to generate these reference offsets (to desired accuracy) does not exist 

in the current state-of-the art. Therefore, the base curve is again utilized to assess 

the geometric accuracy. This time, a smooth base curve set (P*), which 

constitutes greater number of points than the original (e.g. |P*| = K* > K), is 

generated for each case not only to minimize the quantization effects/noise but 

also to detect the tool interference (i.e. undercut/overcut on the contour) that 

might arise in between two successive points of the original base set. To produce 

such a reference set, the original base sequence is sampled at a higher rate (i.e. 4 

times) via linear interpolation techniques. Furthermore, a third order Butterworth 

filter is utilized to filter the resulting time sequence twice (i.e. forward and 
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backward in time) to eliminate the phase distortion. The deviation from the ideal 

geometry is determined via shear computation as  

e( j) = min
k∈!≤K*

qi,j −pk
*

2{ }− r  (3-25) 

 

where pk
* refers to a point in P*; qi,j is the jth element of the offset curve set Qi 

(j∈"≤|Qi|). Note that if e(j) < 0, the surface (at some point) is expected to be 

overcut when the tool (with a radius r) is located at the tested offset point. 

Similarly, e(j) ≥ 0 denotes that some excess material is to be left on the surface.  

For r ∈ {-12.5, -10, -7.5, -5, -2.5, 2.5, 5, 7.5, 10, 12.5} (in mm), the geometric 

deviations associated with each offset are computed and 2D-interpolated to create 

a geometric error field. Figure 3-9, Figure 3-10, Figure 3-11, and Figure 3-12 

illustrate these results for MOBS, IMOBS, AMOBS, and PO. As can be observed 

from the contour plots, the errors, which indicate by-and-large overcuts on the 

contour, generally tend to grow with the increasing radius. Similarly, the error is 

on the rise where sharp changes in the slope of the base curve take place. 

For quantitative comparison, the statistical attributes (minimum, maximum, mean, 

and standard deviation) of these geometric errors at different offsetting distance 

are shown in Figure 3-13 and Figure 3-14 for the test cases Club and Doodle. 

Note that the plots of the second case (Doodle) start at -10 mm owing to the fact 

that no offset points are produced when r = -12.5 mm. As can be seen from the 

figures, the geometric errors (mean, min) for all techniques are well within the 

accepted tolerance band of 10 µm.  In general, the MOBS technique yields the 

lowest errors (almost in every category) if compared to the rest due to the fact that 

more densely populated boundary data set is produced in the CBS phase of 

MOBS.  Another conclusion can be drawn from the figure that the geometric 

errors of the test case Club are usually higher than those of the other case 

regardless of the algorithm. This is due to the fact that the Club curve constitutes 

swifter turns than the Doodle.    
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Figure 3-9 Geometric Errors on All Curve Offsets Produced by MOBS 
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Figure 3-10 Geometric Errors on All Curve Offsets Produced by IMOBS 
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Figure 3-11 Geometric Errors on All Curve Offsets Produced by AMOBS 
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Figure 3-12 Geometric Errors on All Curve Offsets Produced by PO 

 



 61 

 

 

Figure 3-13 Statistical Attributes of Geometric Errors at Different Offsetting 

Distance for the Test Case Club 
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Figure 3-14 Statistical Attributes of Geometric Errors at Different Offsetting 

Distance for the Test Case Doodle 
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3.9 Discussion and Conclusions 

In this chapter, various unconventional techniques are considered to generate 

curve offsets. The algorithms, which are analyzed in terms of run-time complexity 

and memory cost, are rigorously tested via two experimental cases.  The key 

points of the study can be summarized as follows: 

• All methods presented in this chapter employ the basic idea that the 

envelopes of a circular SE whose center sweeps across a generator curve 

constitute all curve offsets of that progenitor.  This approach implicitly 

eradicates the need for iterative offset calculation at “sharp” turns on the base 

curve.   

• Despite its ease of implementation, the MOBI method suffers heavily from 

the curse of dimensionality. For most real-world applications, the memory 

requirement of this technique, which could be on the order of TB, surpasses 

the resources of most computing platforms today.  

• In MOBS, this memory problem is surmounted by employing the 

morphological operations on the boundary data sets (rather than the binary 

image itself). Even though the memory requirement for this has considerably 

decreased, the upper bound of its run-time complexity is found to be 

quadratic. However, the technique, which affectively handles all exceptional 

cases in COG, is still viable to generate offsets for practical applications 

where the size of tool trajectories is moderate.  

• The performance of MOBS, to a certain extent, depends on the number of 

elements (N) on the structuring set (T). Even though N can be arbitrarily 

selected by the users, the CBS portion may yield unpopulated boundaries in 

the domain if the density of points in the structuring set is low.  To overcome 

this problem, N needs to be adjusted dynamically based on the point density 

in the base set.  

• The time complexity problem of MOBS is further reduced by the new 

technique proposed in this study. The enhanced method called IMOBS takes 

a different approach to generate feasible boundary points than its predecessor 
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and eventually employs a grid search technique to eliminate invalid boundary 

points in a global sense. The technique is found to be adequate for the tool 

trajectories with large number samples (>>100,000).    

• The CCO portion of MOBS (and IMOBS) processes the boundary points in S 

sequentially to form curve offsets. Since this approach does not take into 

account the global distribution of the boundary points, some segmented curve 

offsets may occur for self-intersecting base curves. As a solution, the 

presented techniques combine these (isolated) curve patches through the 

cross-evaluation of the proximities among the extreme elements of various 

offset sets. To avoid this post-processing stage, one might consider re-

sequencing of the points in S globally with the utilization of grid search 

techniques discussed in Section 3.5. However, this aspect is left open for 

future studies.    

• After developing different curve offset generation algorithms, it is realized 

that there is no need to generate boundary points that are to be removed due 

to the local boundary criteria. AMOBS is developed on this purpose. It only 

generates boundary points that do not interfere with the neighbor base points. 

Beside this advantage of the algorithm, it also eliminates the risk of not 

generating boundary points at directions of the base curve. 

• The last approach titled PO is based on Boolean operations on polygons 

where they have been widely applied to various engineering fields from 

computer graphics to geosciences. This study adopts this popular technique to 

generate curve offsets and evaluates the applicability of the method. Despite 

its high time complexity, the method has a significant potential for 

improvement. Unlike MOBS, this method is not sensitive to the selection of 

N (i.e. number of vertices on T) owing to the fact that apart from elimination 

of vertices (i.e. boundary points), the technique automatically creates new 

vertices at the intersections (of T and Q). Hence, the problem of unpopulated 

boundary regions is intrinsically handled. Furthermore, if tool polygon T is 

restructured to have an elliptical shape, the technique could easily 

accommodate the effect of the SE sweeping through the base points.   
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• When all the approaches discussed in the chapter are considered, AMOBS, as 

is, appears to be the most viable technique for hardware implementations and 

could be employed as an integral part of a discrete-time command generator 

for CNC machine tools. 

• Except for MOBI, the techniques yield unevenly distributed points on the 

boundaries. Hence, one needs to resample spatially the extracted sequences to 

obtain uniformly distributed points on the resultant curve offsets.   

• The numerical complexity analysis revealed that the theoretical complexity 

analyses are in agreement with the experiments. One of the most important 

things about the linearity of the algorithms (IMOBS and AMOBS) is that it 

tends to be quadratic when the size of the hash table is decreased. 256 by 256 

is a good choice for both of the methods. 

• Geometric errors of the methods are also calculated in order to compare with 

performances of the other methods. It is observed that AMOBS performs 

better in terms of geometric errors in both test cases. This is due to the fact 

that the possible boundary points are located intentionally in this method. The 

angles of the possible boundary points at each base point are different 

depending on the interference with the neighbor points. 

• Since the algorithms behind the commercial CAD/CAM software packages 

(such as AutoCAD, CorelDRAW, PowerMILL, SolidWorks, etc.), which are 

known to deal with large generator curves effectively, are not revealed [85], 

the performances of the algorithms discussed in this chapter could not be 

compared to those of these packages in terms of run-time and memory cost 

(under same test conditions). It is important to note that most commercial 

CAD packages do fail to yield acceptable results for self-intersecting cases 

(such as Doodle). Consequently, once can postulate that if implemented in 

C++, the new technique IMOBS may achieve similar/better overall 

performance than those of the commercial software packages.   
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CHAPTER 4 

 

 

DIRECT COMMAND GENERATION FOR CNC MACHINERY BASED 

ON DATA COMPRESSION TECHNIQUES 

 

 

 

This chapter of the thesis presents a direct command generation technique for 

digital motion control systems. In this paradigm, higher-order differences of a 

given trajectory (i.e. position) are calculated and the resulting sequence is 

compacted via data compression techniques. The overall method is capable of 

generating trajectory data at variable rates in forward- and reverse directions with 

the utilization of a linear interpolator. As a part of the command generation 

scheme, the chapter also proposes a new data compression technique titled as 

ΔY10. Apart from this new method, the performances of the proposed generator 

employing different compression algorithms (such as Huffman coding, Arithmetic 

coding, LZW, and run length encoding) are also evaluated through three test 

cases. The chapter illustrates that the ΔY10 technique, which is suitable for real-

time hardware implementation, exhibits satisfactory performance in terms of data 

compaction achieved in the test cases considered.     
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4.1 Introduction 

Command generators (CGs) are indispensable components of digital motion 

control systems such as computer numerical control (CNC) units, industrial 

motion control cards, motor control modules, advanced servo-motor drivers, etc. 

Their main function is to calculate/feed the reference positions (a.k.a. “set points”) 

on a prescribed trajectory to the discrete-time axis-motion controllers at the 

beginning of each sampling (i.e. servo-update) period.  

For most production machinery such as CNC machine tools, robotic manipulators, 

coordinate measuring machines, and rapid prototyping machines, the motion of 

the end-effector/tool along with the accompanying machine functions is defined 

by control languages with different features and abstraction levels that comply 

with various standards such as ISO 6983 (EIA 274D) [86], BCL (EIA 494C) [87], 

STEP-NC (ISO 10303-238) [88], and DMIS [89]. For instance, the numerical 

control (NC) language as described by ISO 6983 (a.k.a. “G-codes”) is widely 

adapted in manufacturing industry and defines the trajectory in terms of line-, arc-

, and complex curve segments (parabola, helix, spline, etc.). In a conventional 

CNC system, the task of the CG is typically to parse a NC code employing these 

primitives as well as the complementary data on fixtures and tools. During the 

interpretation phase, the CG needs to take into account several factors such as the 

geometry of the selected tool, interference along the impending path, default 

feedrate, acceleration/deceleration limits of the machine axes, etc. Once the 

parameters of particular section on the trajectory are extracted, a real-time (RT) 

interpolator is invoked to produce feasible reference/command signals such as 

position, velocity, and/or acceleration as required by the axis controllers. 

A simple solution to the disadvantages described in the introductory chapter is to 

generate the reference positions in an offline fashion by sampling the tool 

trajectory at the servo-update rate for a given set of tools/conditions.  Once the 

resulting data are stored in the main memory of the controller unit, the tool 

reference positions could be directly retrieved by the axis controllers. This 

scheme, in turn, not only simplifies the control architecture but also increases the 
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efficiency of the CG. Despite the fact that this direct approach normally yields a 

huge amount of data to be stored, the data size becomes hardly a problem owing 

to the fact that versatile memory devices (SDRAM, SRAM, EEPROM, SD cards, 

etc) with large capacity (> 1 GB) are nowadays widely available in the market at 

low costs. Furthermore, the motion command data in manufacturing/industrial 

applications are highly redundant: i) the tool trajectory is mostly symmetrical due 

to the symmetry of the workpiece; ii) the simple offsets among the successive tool 

paths frequently appear in manufacturing (machining, cutting, grinding, welding, 

3D printing, assembly, etc) operations; iii) repetitious operations are prevalent in 

such tasks. Consequently, the size of raw data could be reduced via data 

compression techniques.     

Another critical feature of this approach is that it effectively eliminates the NC 

programs, which serve as command transmission media residing at an 

intermediate level. Hence, the directly coded (and compressed) trajectory data can 

be regarded as universal/portable and do not require any modification from one 

machine tool to another. Consequently, the same code (i.e. file) could be run on 

all equivalent CNC machine tools. Note that the closest analogy to the presented 

approach is the audio MPEG Layer 3 (MP3) encoding/decoding format. The 

coded audio file could be played on almost all playback devices produced by 

different manufacturers. However, the MP3 decoders on these devices do generate 

the digital data (in two audio channels) in the same way. 

For some CNC applications (which do not require any dynamic manipulation on 

the trajectory during operations); this approach may eliminate the need for 

preparing/interpreting NC programs which serve as intermediate command-

transmission media. Hence, the directly coded trajectory data as an entity/object 

could be regarded as portable at the controller level and may be directly utilized 

by the machines with equivalent configurations.  

Consequently, there is a potential for devising simple yet effective CGs for 

industrial motion control systems by fully taking advantage of the current state-of-

the-art. Hence, the main motivation of this chapter is to look deeper into this 
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aspect that has not been fully explored in the technical literature and to develop a 

relevant CG paradigm for a wide spectrum of computer controlled machinery. 

The remainder of the chapter is structured as follows: Section 2 introduces the 

proposed command generation method. Section 3 discusses the compression 

performance of the method and compares with the commonly used compression 

algorithms. Section 4 focuses on the linear interpolator utilized in the command 

generator. Section 5 discusses the applicability of Markov Chains for modeling 

the command trajectory data and the chapter is concluded with Section 6. 

4.2 Proposed Method 

The method adopted in this chapter is a natural extension of the ones presented by 

[28]-[29]. The technique specifically relies on the lossless compression (and 

decompression) of the higher-order differenced data. Figure 4-1 illustrates the 

overall block diagram of the proposed CG scheme where the computer aided 

manufacturing (CAM) software along with a special post-processor are utilized to 

generate the commanded trajectory (i.e. position) directly. Note that for most 

CNC machine systems employing digital position sensors (such as linear/rotary 

optical position encoders); the reference trajectories, which must satisfy Cn (n ∈ 

Z+) continuity, can be conveniently represented as signed-integer (i.e. position 

encoder count) sequences. The method in this chapter is developed to exploit such 

temporal sequences to produce reference trajectories efficiently even on a control 

system with modest resources in real-time. The details of the paradigm follow. 

4.2.1 Differencing 

Since the servo-loop update rates for industrial motion controllers are 

continuously on the rise (>10 kHz), the direct storage of the lengthy command 

sequences becomes an unviable feat even with the large (>1 GB) memory devices 

(SRAM, SDRAM, EEPROM, SD Cards, etc) used in the current state-of-the-art. 
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For a five-axis CNC machine tool with a servo-update (sampling) rate of 16 kHz, 

the memory required to store a 32-bit position sequence (per hour) becomes 

16000 [samples/s] × 5 axes × 4 [bytes] × 3600 [s/hour] ÷ 10243 [bytes/GB] ≅ 1 

[GB/hour]. Furthermore, transferring such bulky sequences to the memory 

devices on the controllers (or motor drivers) through a standard serial 

communication interface (such as RS-422/485, Ethernet/UDP, CAN, SERCOS, 

etc.) could also take considerable time (minutes).  

Relative data encoding methods [27], which involve higher-order differences of 

discrete-time integer sequences, can help decrease the memory space for storage 

as the magnitudes in the differenced data set tend to drop off substantially in 

typical industrial applications.  For instance, the higher-order differences of a 

command sequence {y(k)} can be expressed as 

∇y = y k( )− y k −1( ) = (1− q−1)y(k)
∇2y =∇y k( )−∇y k −1( ) = (1− q−1)2 y(k)
!

∇n y =∇n−1y k( )−∇n−1y k −1( ) = (1− q−1)n y(k)

 (4-1) 

where k is the time index; ∇ny is the nth order difference while q-1 denotes the 

backward-time shift operator. How the range of differentiated data changes as a 

function of the order (n) certainly depends on the context of the application (i.e. 

nature of the information source). For instance, [28] investigate the effect of order 

by considering various motion command sequences for a 6 degree-of-freedom 

(DOF) robotic manipulator. As illustrated in Figure 4-2, [28] shows that the 

memory usage (i.e. magnitude/range of the differentiated data) tends to increase 

due to the fact that the sign of each data point frequently changes in an alternating 

fashion after the fourth order difference. The best solution (in terms of memory 

requirement) is usually achieved when the order is 3 or 4 for such applications. 

Once the differentiated data along with the initial values are provided; the original 

data can be conveniently extracted using a number of cascaded accumulators as 
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shown in Figure 4-1. In this scheme, lower-order differences, which are 

commonly utilized in the feedforward controllers of the advanced motion 

controller topologies [90], can be also computed as by-products. In fact, without 

the computation of the intermediate differences, the original sequence can be 

directly generated by using the following finite difference equation: 

( ) 1(1 ) ( )ny k q x k−= −  (4-2) 

where x(k) ≡ ∇ny(k). However, if zero initial conditions [i.e. y(-1) = y(-2) = ... = 

y(-n) = 0] are considered, the start-off values of x(i) for i ∈ {0, 1, ..., n-1} must be 

calculated by (4-1) accordingly. It is interesting to note that one of the most 

successful approaches in the NC technology was to generate the tool trajectory in 

an incremental fashion with the utilization of digital integrators (see [1]). Hence, 

the proposed scheme can be regarded as a revisit to this former technique.   
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Figure 4-2 The Effect of Order on the Range of Differentiated Sequence [28] 

 

4.2.2 Data compression/decompression via ΔY10 technique 

Despite the fact that differencing can reduce the size of the original command 

sequence, the processed data, which have considerably redundancy, can further be 

compacted through universal (lossless) compression algorithms such as HC [91], 

Arithmetic Coding (AC) [92], and Lempel-Ziv-Welch (LZW) [93]. As an 

alternative, a simple (variable-length) compression technique (called ΔY) is 

adapted in this chapter. This relative encoding technique, which was originally 



 75 

proposed by [28], has continued to evolve in time [29]. The one proposed in this 

chapter (called ΔY10) is an enhanced version that encodes the repeated (zero) 

patterns found in the target sequence (i.e. carries out run length encoding of 

zeros). The basic idea behind this paradigm is that when the higher-order 

differences of a reference trajectory (i.e. position sequence) is obtained; the 

(integer) values in the resulting sets do decrease considerably.  Since most motion 

control applications require constant velocity along the traced trajectory, the 

majority of the differentiated data is likely to be zero while the rest is composed 

of small integers in which the probability of occurrence is inversely correlated 

with their magnitudes. Considering that the representation of a small integer 

number would require fewer bits, the difference data would take up significantly 

less memory if compared to the original data set.   

Unlike entropy-coding based (general) compression techniques like HC, one can 

directly encode the difference data in this technique without calculating the 

probability of occurrence for the processed data and/or creating a corresponding 

dictionary (i.e. a binary tree) owing to the fact that the special requirements 

associated with the motion control applications (due to operational concerns) 

tightly dictate the statistical attributes of the data beforehand. 

4.2.2.1 Encoding Process 

The compressed code in ΔY10 technique is divided into five fields: i) Header; ii) 

Amplitude; iii) Sign; iv) Length; v) Zero. In this technique, the Amplitude Field 

(AF) encodes the absolute values of the data (i.e. unsigned integers) sequentially 

as Variable-Length Binary Numbers (VLBNs) whereas the Sign Field (SF) 

encodes sign bits of the sequence: 0 and 1 refer to positive- and negative numbers 

respectively. If the magnitude of a sample is zero, no sign bit is assigned for this 

case.  Since the resulting binary sequence in the AF constitute VLBNs in order, 

another field called Length Field (LF), which yields the bit-length of each value in 

the AF, needs to be formed to extract the data. This field simply contains 
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sequences of 1’s and 0’s in an alternating manner. The bit-length of a particular 

number in the AF can be detected by simply counting the bits in between two 

consecutive transitions (0-to-1 or 1-to-0) in the LF. Note that unlike ΔY, a fourth 

field called Zero Field (ZF) is utilized to represent the number of consecutive 

zeros (i.e. so-called natural elements in delta encoding) encountered in the series. 

That is, the number of zeros is coded as a VLBN inside this field. The bit-length 

of each VLBN in this field is simply indicated by the number of zeros appended 

to the AF. Figure 4-3 illustrates a typical encoding process. In this technique, the 

memory (M) needed to represent a zero sequence (in bits) becomes 

{ }23 log ( 1)zM ceil N= ⋅ +  
(4-3) 

where ceil{⋅} is the ceiling function and Nz (>1) denotes the number of zero 

elements in the sequence. Considering that the original ΔY technique requires 2Nz 

bits to describe the same sequence, the reduction in memory space could be quite 

significant for even small zero sequences. Lastly, the order of differencing, the 

initial conditions of the accumulators, along with the length of each individual 

field are stored as fixed length binary numbers in a special field called header. 

The pseudo-code given in Table 4-1 describes the encoding process of the 

elaborated technique. 

4.2.2.2Decoding Process 

The decoding process of ΔY10 method is even simpler than encoding. Since the 

data residing in the AF are coded as VLBNs, the length of each number must be 

decoded first by counting the bits in between two consecutive bit transitions 

encountered in the LF. After the absolute value of a particular number is obtained 

from the AF, the corresponding sign is simply fetched from the SF to produce the 

corresponding number as a signed integer. Note that if the value of a number is 
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found to be zero while its length (as indicated by the LF) is greater than 1, a 

number of consecutive zero elements are generated based on the number (of 

repetitions) decoded from the ZF. In the meantime, the Initial Conditions (ICs) are 

transferred to the accumulators so that the original sequence (i.e. position) can be 

generated by accumulating the extracted data in order. The pseudo-code shown in 

Table 4-2 elaborates this decoding process. 

 

 

 

 

Figure 4-3 Encoding of a Sample Sequence via ΔY10 Technique 
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Table 4-1 Pseudo-code for Encoding Process of DY10 Technique 

Initialize empty (binary number) strings: AF,LF,ZF,SF; Let Q := 
12; i := 1; j:=1; 

D := (N)th order diff. of array Y (signed integer); 

Calculate initial values:  

  IC[1] := Y[1]; IC[2 := Y[2]–Y[1]; …  

Find zero sequences in D and create two arrays: Z, ZI;  

/* Z is an array storing the lengths of zero sequences while 
array ZI stores starting addresses */ 

while (i ≤ length(D)) { 

  if (D[i] ≠ 0) { 

    amp := dec_to_bin(abs(D[i]));  

    AF := AF + amp; m := length(amp);   

    len := string with m number of Q; 

    if (D[i] > 0)  

       {SF := SF + 02;} 

    else 

       {SF := SF + 12;} 

  }  

  else { 

    if (i = ZI[j]) { 

      k := ceil(log(Z[j]+1)/log(2)); 

      amp := string with k number of 02; AF :=  AF + amp;  

      len := string with k number of Q; 

      ZF := ZF + dec_to_bin(k); 

      i := i + Z[j] – 1; j := j + 1;} 

    else { 

      AF := AF + 02; len := Q;} 

  } 

  i := i + 1; LF := LF + len; Q := not(Q);  

} 

Convert AF, LF, RF, SF to integer number arrays; 
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Table 4-2 Pseudo-code for Decoding Process of ΔY10 Technique 

Convert int arrays to binary number strings: AF,LF,ZF,SF; 

LF := LF + not(LF[end]); 

Initialize D and Y arrays; 

Let Q := 12; i := 0; j := 1; k := 1; cs := 1; cz := 1; 

while (j ≤ length(LF)) { 

  i := j; 

  while (LF[j] = Q) {j := j + 1;}   

  Q := not(Q); 

  seq := portion of AF string lying between i and (j-1); 

  L := j – i;  

  amp := bin_to_dec(seq);   

  if (amp > 0) { 

    if (SF[cs] = 02) {  

       D[k]:=amp;} 

    else { 

       D[k]:= -amp;} 

    cs := cs + 1;  k := k + 1;} 

  else { 

    if (i = (j-1)) { 

      D[k]:= 0; k := k + 1;} 

    else {  

      seq := portion of ZF string lying between cz and (cz+L-1); 

      len := bin_to_dec(seq); cz := cz + L; 

      for i := 1 to len { 

        D[k] := 0; k := k + 1;}     

    } 

  } 

} 

Using IC and D arrays, compute Y by successive accumulations;  
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4.2.3 Linear Interpolation 

In CNC applications, the speed (i.e. feedrate) through the course of motion is 

generally modified by external input (like feedrate override). Under some extreme 

cases (such as the control scheme of an electro-discharge machine), it might be 

desirable to reverse the direction of motion as dictated by an external device. 

Therefore, the proposed CG method is to be augmented to accommodate a 

variable feedrate input. Figure 4-4 depicts the block diagram of the proposed CG 

as a system-on-chip (SOC) application. 

 

 

 

Figure 4-4 SOC Implementation of the Proposed Command Generation Paradigm 
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With this property, the users will be able to change the rate of command 

generation in both (forward and reverse) directions. During generation phase, 

since there is a need for the intermediate command values, a linear interpolator 

should be incorporated to the design. That is, this unit is to interpolate between the 

two decoded command values based on the following expressions:   

 

ak = ak−1+ fk mod fmax( )  (4-4a) 

m :=
m −1,            ak−1 + fk < 0

m +1,     ak−1 + fk > fmax

"
#
$

%$
 (4-4b) 

uk = um−1+
um −um−1( )ak

fmax
 (4-5) 

 

where u represents the decoded commands at the interval m ∈  {0, 1, …, N}; k is 

the time index. Similarly,  fk∈ {–fmax,…-1, 0, 1, …  fmax} indicates the current value 

of the feedrate input to the system while fmax∈ Z+ denotes the maximum feedrate  

at which commands could be generated. Note that the variable (ak) in (4-5) 

essentially serves as a time scaling factor.   

4.3 Compression Performance 

To study the feasibility of the proposed CG, three sample applications are taken 

into account: 

1. Stencil cutting of a roundabout road sign via 6-DOF robotic manipulator 

(i.e. Unimation PUMA 560). 

2. Stencil cutting of a roundabout road sign via a three-axis CNC router. 

3. Finishing of a plastic injection mold for a shampoo bottle using a high 

performance CNC vertical machining center. 
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The trajectories generated for the above-mentioned applications are illustrated in 

Figure 4-5 while their important attributes are summarized in Table 4-3. As can be 

seen from the table, the differenced data set cannot be represented less than 11 

bits (or 21 bits depending on the case). Trajectories shown in Figure 4-5 are 

represented as integer number sequences in which the tool positions are 

essentially registered as encoder counts.  

 

Table 4-3 Attributes of the Test Cases Considered 

Test Case: 1 2 3 

Number of Axes 6 (revolute) 3 (prismatic) 3 (prismatic) + PLC 

Position Resolution 40000 cts/rev 1000 cts/mm 4000 cts/mm 

Samples / Axis 1575 1575 904294 

Sampling Period  [s] 0.05 0.05 0.001 

Command Duration [s] 78.75 78.75 904.294 

Range of Data [Byte] 3 4 3 (4 bytes for PLC) 

Range of Data (∇) [bit] 15 21 11 

Range of Data (∇2) [bit] 16 21 11 

Total Size of Data [kB] 27.686 18.457 11480 

 

 

For the Case 3, (apart from axis-drives), the auxiliary units of the machine (such 

as the spindle drive, the coolant control unit, the automatic tool changer, the tool 

clamp, etc.) must be commanded during the machining operation. To that end, 32-

bit data channel, which is referred to as Programmable Logic Controller (PLC) 

channel, is added as the fourth axis. In this channel, 

16-bit signed integer represents the current spindle speed with one revolution-per-

minute (rpm) increments; 
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• 8-bit unsigned integer stands for the current position of the tool magazine 

(or current tool in use);  

• 8-bit unsigned integer is allocated for various auxiliary functions such as 

coolant on/off, tool clamp on/off, etc. 

Apart from ΔY, ΔY10, HC, and AC, two popular compression techniques are also 

considered to access their performances on the test cases: 

• LZW, which is categorized as a dictionary-based compression technique, 

is implemented using the original algorithm proposed by [93]. To apply 

the technique, the differentiated data are first mapped (or re-sequenced) as 

unsigned (8-bit) integers. The encoding process simply utilizes a 16-bit 

(static) dictionary where the first 256 locations are initially occupied by 

the distinct elements of the resulting sequence. As the dictionary (table) is 

filled up with new entries, 16-bit pointers (or indices) are sent to the output 

stream to form the compressed code. Note that since the capacity of this 

16-bit dictionary has never been exhausted for all the test cases 

(especially, the Case 3), well-known paradigms to manipulate the 

dictionary dynamically (such as resetting, removal/replacement of entries, 

allocation of new resources, implementation of a cyclic buffer, etc.) are 

not taken into consideration in this study.      

• A Modified Huffman Coding (MHC) technique, which utilizes Run-

Length Encoding of Zeros (RLEZ) followed by Huffman encoding, is 

adapted owing to the fact that the probability of occurrence for zero is 

relatively high when the sampling frequency is increased. In this 

technique, the data is preprocessed to encode the number of zeros 

encountered in the sequence [27]. After computing the first-order 

probability distributions, the resulting sequence is encoded via the HC 

technique.!! 
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(a) Case 1 

  

(b) Case 2 (c) Case 3 

Figure 4-5 Command Trajectories for the Studied Cases 
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In this study, the discrete information source shown in Figure 4-1 is assumed to be 

a (memoryless) stochastic process that outputs a symbol (i.e. integer) x(k) ∈ ℵ 

based on some probability distribution at equal time intervals (T). The source 

alphabet ℵ usually shrinks to {-1, 0, 1} [count/sn] at very high sampling rates.  

Hence, the first-order probability distributions of the sequences (to be compacted) 

are utilized by the HC and AC techniques.   

Note that all compression algorithms are implemented in MATLAB 2010a where 

special toolbox functions for HC and AC are available. For the considered cases, 

Table 4-4 through Table 4-6 demonstrate the compression ratios achieved by 

these methods as a function of differencing order (n).  Note that the compression 

ratio (r) in the tables is defined as 

 

% r(n) =100 Nc (n)+ Ns (n)
N0

!

"
#

$

%
&  (4-6) 

 

where Nc is the size of compressed data [Byte]; Ns denotes the size of 

supplementary data [Byte] needed to decode the original sequence [i.e. code 

dictionary (or any relevant data to interpret compressed code), initial conditions of 

the accumulators, etc]; N0 is the size of the original command sequence (position) 

[Byte]. In other words, Nc + Ns refers to the size of the complete (minimal) data 

set to extract the initial command sequence without any loss.    
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Table 4-4  Compression Ratios (%) of Various Techniques for Case 1 

Each cell inside the 3-by-2 tables is allocated to a particular 
technique as shown on the right. 

HC AC 
LZW MHC 
ΔY ΔY10 

 

Jo
in

t A
xi

s 

 74 72 32 30 36 34 48 44 62 56 79 71 
6 79 73 39 33 71 38 51 49 62 62 75 78 
 72 72 24 25 27 28 35 35 45 45 56 56 
 59 58 23 22 32 30 44 41 58 52 73 66 

5 76 58 44 26 78 33 55 45 69 59 82 73 
 69 69 21 21 25 26 34 34 43 43 54 54 
 72 70 32 30 36 33 49 45 61 56 78 70 

4 78 71 39 36 70 39 51 49 62 62 75 77 
 72 72 25 25 27 27 35 35 45 45 56 56 
 58 56 19 18 27 25 38 35 50 45 64 57 

3 77 58 43 21 76 29 54 38 68 51 81 64 
 65 65 20 21 24 25 33 33 41 41 53 53 
 53 52 18 17 26 25 36 34 49 44 62 56 

2 73 52 43 22 77 29 54 37 67 49 80 62 
 68 68 19 20 24 24 32 32 41 41 52 52 
 53 53 19 18 26 25 37 35 48 44 62 56 

1 38 53 51 23 89 29 54 37 68 49 81 61 
 67 67 20 20 24 25 32 33 41 41 53 53 

  1 2 3 4 5 6 
  Order of Difference 
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Table 4-5  Compression Ratios (%) of Various Techniques for Case 2 

Each cell inside the 3-by-2 tables is allocated to a particular 
technique as shown on the right. 

HC AC 
LZW MHC 
ΔY ΔY10 

 
 
 
 
 
 
 
 
 
 
 
 

Table 4-6  Compression Ratios (%) of Various Techniques for Case 3 

Each cell inside the 3-by-2 tables is allocated to a particular 
technique as shown on the right. 

HC AC 
LZW MHC 
ΔY ΔY10 
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Z 20 19 7 6 9 9 10 10 14 14 14 13 
6 17 3 15 3 12 4 17 4 13 4 19 

29 28 10 8 13 11 15 13 21 19 25 23 

Y 6 4 5 2 5 3 5 2 6 4 5 3 
.6

5 

2 .4
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7 

1 .4

9 
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4 
12 5 9 1 9 2 9 2 10 3 11 4 

X 19 19 7 6 10 9 11 10 15 14 14 14 
6 18 3 14 4 12 4 16 4 14 4 19 

30 29 10 9 13 12 15 14 21 19 25 24 
  1 2 3 4 5 6 

 Order of Difference 

A
xi

s 

Z 5 2 4 1 5 2 5 3 6 3 6 4 
4 1 5 1 5 1 6 2 9 2 11 2 

16 9 12 4 15 8 18 11 21 14 24 18 

Y 10

0 

93 82 76 39 37 18 17 25 23 30 27 
11
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10

0 

97 80 35 38 75 29 68 25 44 29 
10

3 

10

3 

58 58 33 33 19 19 24 23 30 29 

X 84 79 96 87 39 37 18 17 23 22 30 28 
99 81 10

7 

94 53 38 18 19 40 24 54 30 
99 99 58 57 33 32 18 18 23 22 29 28 

 1 2 3 4 5 6 
 Order of Difference 
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As can be seen from Table 4-4, the best compression performance for the first 

case is generally achieved when n = 2 owing to the fact that the increments of 

encoder counts from one sampling step to another (i.e. angular velocity) are still 

quite high as the robot performs a jerky motion throughout this particular 

trajectory where only C0 continuity is maintained. The performances of ΔY10 & 

ΔY methods are generally better than the other methods. For n = 2, the command 

sequence can be compressed to about one-fifth of its original size. After the 

second order, there is an increasing trend in the compression ratios associated 

with almost every method due to the reasons outlined in 4.2.1.  

For the second case summarized in Table 4-5, the best compression ratios are 

usually attained at the X- and Y axes when n = 4 while n = 2 suits best for the Z 

axis.  As can be seen from Table 4-5, the AC, which is known to produce near-

optimal rates for long sequences, exhibits the best performance while HC and 

MHC happen to be the closest contenders for this case. On the other hand, the 

LZW technique yields rather poor compression ratios in the first two cases where 

the command sequences are relatively short. This is due to the fact that the 

compression for the LZW method does commence after the presentation of a few 

hundred samples to construct a representative dictionary [27].  

As for the third test case outlined in Table 4-6, the LZW clearly outperforms the 

other techniques due to the identification and efficient representation of redundant 

data (i.e. repeated patterns). AC and HC seem to achieve comparable compression 

ratios (regardless of the order and the axis of motion). For this long command 

sequence, the compression ratios of the entropy-coding based algorithms (HC, 

AC, MHC, ΔY, ΔY10) generally tend to approach to each other. Another 

conclusion to be drawn from this table is that after the second-order of difference, 

there are no remarkable changes in the compression ratios. 

MHC technique exhibits rather poor performance when dealing with short 

command sequences like the ones in Cases 1 & 2 due to the overhead costs 

imposed by the run-length encoding on fixed length data. If compared to HC 

alone, there are only minor improvements in compression performance for Case 3 
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which includes large number of natural elements. However, the method is not too 

successful since these encoded “zero” sequences (which are in large quantities) 

are apparently shorter in lengths so that the gain of RLEZ is not justified for the 

test cases considered.      

For easy comparative evaluation, the results given in Table 4-4 through Table 4-6 

are summarized in Figure 4-6. The table shows not only the average compression 

ratios for the best differencing order but also the corresponding bit rates 

(bits/sample or bps) for each case. That is, this average compression ratio is 

defined as  

 

r (c) = min
n∈{1,2,...,6}

1
Na (c)

r(a,n,c)
a=1

Na (c)

∑
#
$
%

&%

'
(
%

)%
 (4-7) 

 

where r is the compression ratio defined by (4-6); c (∈ {1, 2, 3}) is the case 

number while Na(c) refers the total number of axes associated with a particular 

case c. Similarly, Figure 4-6 illustrates the performance index of each technique 

where the index J ∈ [0, 1] is defined as ( ) 1 ( )J c r c= − . 

Table 4-7 Overall Data Compression Performance of Various Techniques for 

Three Test Cases 

Case   H(ℵ) HC AC LZW MHC DY DY10 
 % r   23.83 22.50 43.17 26.83 21.50 22.00 
1 bps 2.53 3.81 3.60 6.91 4.29 3.44 3.52 
 n 2 2 2 2 2 2 2 
 % r   13.67 12.33 33.00 16.67 18.33 16.00 
2 bps 2.30 3.28 2.96 7.92 4.00 4.40 3.84 
 n 4 4 4 4 4 4 4 
 % r   5.75 3.50 1.80 6.25 8.75 4.50 
3 bps 0.83 1.38 0.84 0.43 1.50 2.10 1.08 
 n 2 2 2 2 3 2 2 

Mean %r   14.42 12.78 25.99 16.58 16.19 14.17 
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Figure 4-6 Performance Indices for Various Compression Techniques for 

Different Test Cases 

Note that Table 4-7 also illustrates the (average) entropy rates for the differenced 

position sequences. In information technology, the entropy is employed as a 

measure for disorder/uncertainty (or average information content) associated with 

a random variable (or output of a stochastic process). The entropy (rate) of an 

information source naturally depends on its statistical properties and does impose 

a theoretical limit on achievable (lossless) compression performance (i.e. bit-

length per sample). Based on the aforementioned assumptions, the entropy rate of 

the source (in bits/sample) can be estimated as 

  

H (ℵ) = H (X ) = − p(x)log2 p(x)
x∈ℵ
∑  (4-8) 

 

where p refers to the probability mass function on X.  It is critical to notice that 

the actual entropy rates of the sources are lower than the ones estimated by (4-8) 

in Table 4-7. As can be seen from this table, for Case 3, the bit rates associated 

with the LZW method, which successfully explores the redundancy in the given 
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data, does drop below the estimated entropy (of the source) owing to the fact that 

the assumptions on the information source may not be valid. That is, the 

(stationary) information source is likely to constitute memory and may be 

statistically modelled as an ergodic Markov process. Then, the information source 

can be presumed to generate a symbol x(k) whose probability of occurrence 

depends (or is conditional) on the previous symbol x(k-1). In that case, the 

entropy rate of the source could be expressed as 

 

H (ℵ) = H (Xk | Xk−1) = − p(
xk∈ℵ
∑ xk−1,xk )log2 p(xk | xk−1)

xk−1∈ℵ
∑  (4-9) 

 

where p denotes the joint probability distribution function [34]. However, to 

implement efficient data compression, developing suitable statistical models for 

the information source is left open for future studies. 

Without the extensive experimentation and statistical analysis on the results; it is 

not possible to make definitive assessments on the “best” compression technique 

in this application domain. However, the ΔY10 method, which follows the AC 

technique in performance, yields acceptable compression ratios for all test cases 

considered.  On average, the presented technique can compact long trajectory data 

with an overall compression ratio of 4.5% (Table 4-7, Case 3).  If such a 

performance is attained, the memory for storing a typical (compacted) sequence 

that was elaborated in Section 4.2.1 turns out to be 1 [GB/hour] × 0.045 ≅ 46 

[MB/hour]. The files (with such sizes) can be easily handled and managed in the 

today’s technology and thus indicate the technical feasibility of the proposed 

method. 

Despite the fact that (just like AC, HC) the time complexity of the ΔY method(s) 

is linear (i.e. O{N}), this simple technique inherently utilizes less hardware 

resources when implemented on a FPGA-based embedded system. To give 

readers a succinct idea about the implementation issues, the Table 4-8 summarizes 
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the number of 4-input Look-up Tables (LUTs) used to realize each technique [29], 

[94] - [96]. Although the presented technique in [29] includes extra modules such 

as accumulators and communication module, the ΔY method still expends the 

least amount of LUTs if compared to the other techniques. Note that the 

development/hardware implementation of ΔY10 based CG is currently underway. 

However, the resource utilization of the ΔY10 method is expected to be somewhat 

similar to that of its predecessor. 

 

 

Table 4-8 FPGA Resource Utilization of Different Methods 

Method HC [94] AC [95] LZW [96] ΔY [29] 
No. of  LUTs 3007 2714 1114 1105 

 

 

4.4 Command Generation Performance with Variable Rate 

As mentioned in Section 4.2, the proposed method, which incorporates a linear 

interpolator at its output stage, is capable of producing command sequences at 

variable rates as set by an external source. Hence, the performance of the method 

(utilizing ΔY10 as the data compression algorithm) on the third test case 

(discussed in previous section) is assessed for a normalized feedrate profile as 

shown in Figure 4-7. Note that the profile is formed such that all commands are 

first generated in the forward direction and then in the reverse direction with 

continuously changing scale factor.  
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Figure 4-7 Normalized Feedrate Profile and Portion of Trajectory being 

Generated (Case 3) 
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Figure 4-8 illustrates the generated commands along the X, Y, and Z axes. Despite 

the fact that the linear interpolation yields acceptable results in between closely-

spaced samples of time, the proposed interpolation scheme is known to create a 

significant representation error on the commanded trajectory known as chord 

error. Figure 4-9 demonstrates this error which is mainly caused by the data 

aliasing at the inflection points of the trajectory. Even though that magnitude of 

error is less than 15 encoder counts (0.4 microns) in all axes, a dynamic feedrate 

scheduling algorithm, which is the subject of an ongoing research, could be 

incorporated to the method to reduce (if not to eliminate) this error. 

 

 

Figure 4-8 Interpolated Command Sequences 
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Figure 4-9 Chord Errors for Test Case 3 

4.5 Modelling of Information Source via Markov Chains 

In this section of the chapter, a different compression scheme is employed on the 

motion command trajectories composed of encoder counts. In this scheme, the 

higher order differences of motion commands are grouped with a predefined 

number of elements and then their occurrence probabilities are determined. As in 

most of the compression algorithms (HC, AC, MHC), the groups that have high 

probabilities are represented with less number of bits than the ones with low 

probabilities. A dictionary is also required to recover the command trajectory 

from the compressed dataset.  

In the following subsection, the method is described in a detailed manner over a 

sample command trajectory. Then in the upcoming subsection, the method is 

employed on the same test cases utilized in this chapter of the dissertation and its 

performance is compared with the previously discussed algorithms. The effect of 

number of elements in the groups is also evaluated for the three test cases. Finally 
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the section is concluded with some remarks on the advantages and the 

disadvantages of the proposed scheme. 

4.5.1 Proposed Approach 

The idea of grouping different motion command values is similar to the 

construction of Markov matrices. In this scheme, the unique motion commands 

can be regarded as states of the Markov model. The probabilities of the groups are 

the state transition probabilities in the Markov model. If the number of elements 

in the group is selected as two, then the first order Markov chain model is to be 

constructed. As the number of elements in the groups is increased, the order of the 

Markov chain also increases. After the Markov chain is constructed, then the 

transitions with higher probabilities are represented with few bits. 

The method is employed on the first 2000 commands of the x-axis of the Case 3 

and is illustrated in Figure 4-10. As in the previous approaches, the higher order 

differences (3rd for this case) of the given original motion command sequences are 

computed firstly. It is clearly seen that the magnitude of the commands do 

decrease tremendously. The initial values are stored to recover the original 

sequence after the compressed data is decompressed. By determining the unique 

commands and their number of occurrences in the differenced trajectory the first 

order Markov chain model is constructed. If each row of the constructed blue 

matrix is divided into the number of occurrences of the unique commands, one 

can get the Markov matrix. In the next step, a dictionary is formed to code the 

differenced motion command sequence. Since the number of elements in the 

group is determined to be two, groups whose probabilities are higher than zero are 

assigned to VLBNs. In these assignments, the same decimal values are assigned to 

different groups to improve the compression efficiency of the method. Since the 

lengths of the VLBNs corresponding to the same decimal value are different, 

there occurs no problem for the decompression stage. The compressed code 

constitutes of two fields. The couple field is the one where the VLBNs of the 
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groups of differenced motion commands reside. The second field is the same as 

the LF utilized in ΔY10 compression algorithm. The alternating manner of the LF 

helps the processor decode the Couple Field (CF) in a proper way. Given the 

compressed code and the corresponding dictionary, the differenced motion 

commands can be generated. After the utilization of integrators, the original 

command sequence is generated. 

 

Original Sequence:

Higher Order Difference:

[-70000; .... -69668; -69336; ... -37613]

[0; ... 1; -2; 0; -1; 2; 1; 1; 3; ... -2]
Initial Values: [-70000; 0; 0]

Unique 
Commands Frequencies

-332      2
-2     45
-1     35
0   1823
1     56
2     34
332       2

0 0 0 1 0 0 1 /2
0 0 0 0 27 17 0 /45
0 0 9 9 0 17 0 /35
1 0 8 1795 18 0 1 /1823
0 29 0 16 11 0 0 /56
0 16 18 0 0 0 0 /34
1 0 0 1 0 0 0 /2

-332
-2
-1
0
1
2

332

-332  -2   -1    0    1    2   332

Coupled Commands:
VLBNs:

[0;0], [1;-2], [-2;1], ... , [332;-332], [332;0]
  0       1      00             0011      0100

Dictionary

Length Field:
Couple Field: 000100010011100100010100001001101000100001101010

010110101101000110110100111001011001100110101101

Compressed Code  

Figure 4-10 Information Source Modeling via Markov Chains (ISMMC) 

 

4.5.2 Performance Evaluation 

The three sample applications described in the Section 4.3 are used to determine 

the performance of the method proposed in this section. The compression ratios 
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are calculated using (4-6). The supplementary data in the equation constitutes of 

the initial values and the dictionary formed according to the frequencies of the 

groups. The results are summarized in Table 4-9 through Table 4-11 according to 

the order of difference. The color scale of the cells in the table represents the 

relative performance of the corresponding order of difference for the axis residing 

in that row. If a cell is dark, it means that its compression ratio is worse than the 

ones lighter than the cell.  

When the first test case (Table 4-9) is considered, it is seen that the best 

performances are achieved for the second order of difference (except for the 6th 

joint axis) as in the other compression schemes. For each of the joint axis, its 

performance is better than LZW and comparable with the other methods. 

Although the worst compression ratios are obtained for the first order of 

difference in four of the joint axes, the compression performance tends to 

decrease as the order of difference increases in general.  

Considering the second test case (Table 4-10), the effect of the order of difference 

is the same as it is in the other compression methods. It is only better than LZW 

for the y-axis and better than ΔY for the z-axis. It is difficult to mention about the 

trend of the compression performance for this test case. It behaves differently for 

each axis.  

For the last test case (Table 4-11), the effect of order of difference is again the 

same comparing with the previously discussed compression algorithms. The 

compression ratio remains constant for the PLC part of the original data, since 

there are few different values and taking higher order of difference makes no 

improvement.  
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Table 4-9 Compression Ratios (%) of ISMMC for Case 1 

Jo
in

t A
xi

s 

6 111.2 36.5 35.3 51.2 71.9 96.6 
5 97.6 28.2 33.1 49.4 69.8 94.3 
4 114.2 37.2 34.9 50.9 73.4 96.5 
3 81.2 24.0 29.5 45.0 64.7 85.2 
2 79.9 23.5 28.9 44.5 65.4 86.7 
1 90.2 24.6 29.2 44.9 65.3 88.0 

  1 2 3 4 5 6 
  Order of Difference 

 

 

Table 4-10  Compression Ratios (%) of ISMMC for Case 2 

A
xi

s Z 5.3 5.1 5.5 6.1 6.6 7.4 
Y 112.6 111.0 77.1 30.9 35.3 54.3 
X 111.8 110.2 75.8 29.4 34.6 55.3 

  1 2 3 4 5 6 
  Order of Difference 

 

 

Table 4-11 Compression Ratios (%) of ISMMC for Case 3 

A
xi

s PL
C

 

3.1 3.1 3.1 3.1 3.1 3.1 

Z 14.5 6.3 7.7 9.2 10.6 12.0 

Y 5.0 4.6 4.7 4.8 4.8 4.9 

X 14.9 6.4 7.9 9.4 10.9 12.3 

  1 2 3 4 5 6 
 Order of Difference 
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The performance of this method can be further increased via increasing the 

number of elements in the group. In the previous analysis, there were two 

elements in the groups corresponding to a first order Markov chain. The same 

three test cases are further analyzed for different orders of Markov chains and 

presented in Table 4-12 through Table 4-14. In these analyses, the order of 

differences are selected according to the best performances of the axes and kept 

constant for the same row.  

When the first case is considered, it can be inferred from the table that the effect 

of the order of Markov chains is not linear. It tends to increase the compression 

ratio for the lower orders, but after 4th or 5th orders it decreases the compression 

ratio of the proposed method. The best compression performances are obtained for 

the first order model in general. 

The trend in the second test case is similar to the first case, since they are 

corresponding to the same motion trajectory and their sampling frequencies are 

the same. The main difference is that the best ratios are achieved for the 8th order 

of Markov chains and it tends to decrease as the order is increased. 

The performance behavior of the method on the third case is totally different from 

the other two test cases. As can be seen from Table 4-14 that the compression 

ratios continuously tend to decrease as the order of Markov chains are increased 

regardless of the axis. This is due to the high sampling frequency (1 kHz) of the 

test case. The first two test cases were sampled at 20 Hz, which is very low when 

compared to 1 kHz. The performance of the method for this case is not better than 

the LZW method even for the 8th order of Markov chain, but with further increase 

in the order one may get similar results to LZW compression scheme.  
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Table 4-12 Compression Ratios (%) of ISMMC under Different Orders of 

Markov Chain for Case 3 

Jo
in

t A
xi

s 
6 35.3 37.9 42.9 46.5 44.6 41.6 37.6 33.7 
5 28.2 34.4 39.4 43.0 42.2 39.6 36.6 32.3 
4 37.2 41.4 44.8 48.8 44.1 41.6 36.5 32.5 
3 24.0 29.1 35.9 40.3 40.7 39.0 35.4 33.1 
2 23.5 29.1 36.1 41.1 40.9 39.5 36.8 32.5 
1 24.6 30.7 39.1 42.9 43.2 39.5 36.4 32.3 

  1 2 3 4 5 6 7 8 
  Order of Markov Chain 

 

 

Table 4-13 Compression Ratios (%) of ISMMC under Different Orders of 

Markov Chain for Case 2 

 

 

 

 

Table 4-14 Compression Ratios (%) of ISMMC under Different Orders of 

Markov Chain for Case 3 

A
xi

s PL
C

 

3.1 2.1 1.6 1.3 1.0 0.9 0.8 0.7 

Z 6.3 5.2 4.6 4.3 4.0 3.8 3.6 3.5 

Y 4.6 3.1 2.4 1.9 1.6 1.4 1.3 1.2 

X 6.4 5.3 4.7 4.4 4.1 3.9 3.7 3.6 

  1 2 3 4 5 6 7 8 
 Order of Markov Chain 

A
xi

s Z 5.1 3.9 3.6 3.6 3.0 3.3 3.5 2.8 
Y 30.9 39.5 43.6 42.2 38.8 34.1 29.3 26.6 
X 29.4 39.2 44.2 42.5 37.0 32.8 29.3 26.4 

  1 2 3 4 5 6 7 8 
  Order of Markov Chain 
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4.6 Conclusion 

In this chapter, a direct command generation method based on differencing and 

data compression is introduced. Key points and contributions of the chapter can 

be summarized as follows: 

• The lossless ΔY10 compression algorithm is specifically tailored for 

digital motion control applications where the command trajectories have 

distinct features: i) Since digital motion sensors (e.g. optical position 

encoders) are commonly utilized in CNC technology; the command 

sequences, which must be compatible with digital sensor readings, can be 

represented as integer series; ii) In most CNC machine tool applications, a 

constant speed along the traversed trajectory should be maintained to 

obtain the desired surface finish; iii) Certain restrictions on the 

acceleration (and jerk) profiles are imposed to avoid not only the 

saturation of servo-motor drivers but also the structural excitation of 

machine; iv) The tool trajectory is generally symmetrical; v) Due to nature 

of machining operations, repeated patterns in the sequence frequently 

emerge. Not surprisingly, this task-specific paradigm, which fully takes 

advantage of these special attributes, usually yields satisfactory 

compression performance on short command sequences if compared to the 

other (general purpose) techniques (HC, AC, LZW) frequently used in the 

technical literature. For long (stationary) sequences, the compression 

performance is comparable to the AC technique which is optimal in the 

sense that the rate achieved is close to the source entropy.     

• The performance evaluation conducted in this chapter has revealed that a 

command trajectory for a CNC machine tool application may in some 

cases be compacted with a compression ratio as small as 4.5%. In that 

case, if the uncompressed data requires a gigabyte, the size of a 

compressed command trajectory would be less than a hundred MB. Hence, 

such command sequences can be easily stored in the (state-of-the-art) 

memory devices embedded inside the controller units. Furthermore, the 
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files could be easily handled and transferred to the devices within short 

time intervals using standard serial data-communication protocols like RS-

485 where a maximum data transmission rate of 10 Mb/s is attainable.  

• The compression performance of the presented method could be improved 

provided that better statistical models for the information source are 

utilized. 

• Since the proposed CG technique extracts the original command sequences 

using a number of cascaded accumulators, lower-order differences (i.e. 

velocity-, acceleration-, jerk estimates), which are commonly utilized in 

the feedforward controllers of the advanced motion controller topologies 

(see [90]), are computed as by-products in this scheme. 

• Since on most production machinery, the machine operator may modify 

the tool speed along the traversed trajectory (a.k.a. feedrate) on the fly; the 

proposed method incorporates a linear interpolator to generate the 

command signals at variable feedrates employing the original data. 

• The introduced method lends itself to robust/reliable hardware 

implementation (a.k.a. system-on-a-chip). For instance, [28] and [29] 

realize a command generator (which makes good use of an earlier version 

of the ΔY algorithm) using an Altera Cyclone II (EP2C20F484C7) FPGA.  

Hence, the CG as a module can be incorporated in cost-effective and high-

performance motion control systems developed for advanced electrical 

machinery, printing/textile equipment, robotic manipulators (for arc 

welding, painting, assembly, material handling) and manufacturing 

machines such as abrasive water jet cutters, laser beam machining centers, 

plasma cutters, rapid prototyping machines, wire EDM, etc.  

• For CNC machining applications like turning and milling, the conditions 

changes may occur during the operation (e.g. deployment of different set 

of tools, tool geometry changes due to wear, etc.). In that case, the original 

(“pre-generated”) data may no longer be valid and thus the new trajectory 

data, which essentially comprise the offsets of the initial tool path, must be 

regenerated off-line using a CAM software package. For the time-being, 
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this issue appears to be a limiting factor of the proposed method. On the 

other hand, efficient offset generation algorithms (such as the one 

presented by [97]) along with a metadata for tool geometry can be 

incorporated in the proposed paradigm as a natural extension. However, 

this prospect is to be explored in future studies.  
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CHAPTER 5 

 

 

ADVANCED COMMAND GENERATION VIA CONTEXTUAL 

MODELING 

 

 

 

An advanced command generation paradigm depending on contextual modeling is 

proposed in this chapter of the thesis. The paradigm incorporating vector 

operations of the given base curves is capable of generating different machining 

trajectories by simply modifying the inputs of the written program. In this 

paradigm, the machining trajectories are first defined with the proposed 

commands of the paradigm. After the compilation of the program, the generated 

machine code is transferred onto the hardware of the paradigm installed on the 

corresponding CNC machinery. Then the trajectories are generated by processing 

the program on the hardware. The developed motion command generation method 

is employed on different test cases and their results are presented in this chapter. 
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5.1 Introduction 

CAD software platforms are continuously improving and evolving. With the new 

updates, various features are being included into the software. Thus, designing 

complex parts are becoming easier each day. On the other hand, it becomes 

difficult or sometimes impossible to write NC programs for the production of such 

complex parts manually. In these situations, CAM software is employed to 

generate conventional NC programs automatically according to the provided 

machine and tool specifications. These generated NC programs are usually very 

long and difficult to follow and modify manually. When the workpieces produced 

via CNC machinery are evaluated, it can be observed that most of them have 

symmetries (reflectional, rotational and translational), curve offsets, biased 

offsets, repetitive structures, etc. in general. Machining trajectories may be 

programmed utilizing these properties of the workpieces such that the machining 

program is now much smaller in size than the one formed with the conventional 

approach. In the recent study of Yaman and Dolen [66], they compressed the raw 

motion trajectories via their compression algorithm and achieved high 

compression ratios although they have not considered the above-mentioned 

properties of the workpieces directly. In order to further improve the compression 

performance and propose an alternative paradigm, a contextual modeling based 

command generation paradigm is proposed in this chapter of the thesis. The 

proposed paradigm makes use of the physical properties of the parts to be 

manufactured. The trajectories are defined by vectors and these vectors are later 

processed on the hardware of the machinery. Due to the utilization of the vectors, 

the paradigm is named as Vector Processor (VEPRO). As in the conventional 

approach, the motion trajectory is defined manually by writing the VEPRO 

program using the provided commands of the VEPRO. After it is compiled on the 

host PC, the output of the compilation (a.k.a. machine code) is transferred to the 

VEPRO hardware through different kinds of communication for processing. Then 

the hardware generates the motion commands with the help of its auxiliary units 

on the CNC machinery.  With this proposed approach, the required time for 
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developing manual manufacturing programs is now reduced and the user is able to 

write the program on his/her own resulting in an increase in the quality of the 

program.  

Cutter offset compensation can also be handled in the VEPRO paradigm without 

regenerating the tool trajectories. The user can modify the offset tables according 

to the wears on the tools. There is no need to deal with the special cutter offset 

compensation commands (such as G41 and G42 in NC programming). Another 

main advantage of the paradigm is that one can produce different workpieces with 

the same VEPRO program by just simply changing the base curves, offset table, 

etc. stored in the memory of the VEPRO hardware. These advantages of the 

VEPRO are illustrated in the following subsections of the chapter. 

The proposed paradigm can be compared with the conventional approach in terms 

of Kolmogorov complexities [100]. The comparison should be made from 

designing the machining trajectory stage to the generation of the tool paths (Inputs 

and outputs of the paradigms are the same). Both paradigms can be divided into 

two main parts. In the first part of these methods, motion trajectories are defined 

according to the requirements of the CNC hardware. The complexities of the first 

parts can be considered as the same since the tasks done in this stage are alike. On 

the other, complexities do differ for the second part in which the hardware is 

generating the motion trajectories for CNC controllers. In the conventional 

approach, there exists an industrial computer responsible for the generation of 

motion commands utilizing the NC program installed. Considering the proposed 

paradigm, an average FPGA chip (Altera Cyclone V) is enough to embed the 

VEPRO circuitry having multiple kernels [98]. Thus, it can be concluded that 

Kolmogorov complexity of the conventional approach is higher than VEPRO. 

The remainder of the chapter is formed as follows. The next section, the ancestor 

of the proposed paradigm is summarized and in the third section the novel 

command generation method is explained. Then in the fourth section, the 

commands necessary to describe the tool trajectories for the VEPRO are provided. 
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After discussing the performance of the VEPRO in the upcoming three sections 

through different test cases, the chapter is concluded with the last section. 

5.2 Primitive Approach 

In this section of the chapter, the basics of the primitive version of the advanced 

command generation paradigm proposed in this chapter are presented and it is 

evaluated by employing it onto a test case. The method itself is not finalized yet, 

but when the primitive evaluations are considered, it can be stated that the 

command sequences can be compressed to about one-thousandth of their original 

sizes by this approach.  

5.2.1 The Aim of the Method and the Test Case 

It is easier to explain the algorithm with a test case. A drawing of a Rabbit (Figure 

5-1) is chosen as the test case. It is used in the study of Zhiwei et al. [85] and has 

11 base sets, each of them are illustrated with a different color in the figure. The 

red one is the outer set of the rabbit. The remaining ones are called the “islands” 

in cases where they should not to be machined.  

The original of the case was in millimeters. It is further processed to represent it 

with encoder counts. In this case, 1 µm corresponds to 1 count. This form of the 

test case and its offsets are shown in Figure 5-2. These offsets can be utilized to 

produce male of female versions of the Rabbit via 2.5D pocketing operations. The 

offsets are 1000 counts (1 mm) apart from each other. It is also shifted in x-y 

plane to make sure that the all trajectory has positive components.  

The proposed command generation paradigm only needs the base sets of the case, 

which are required to generate offsets having different offset radii. Since the main 

goal of this approach is to represent the raw discrete trajectories with minimum 

required memory, the base sets are compressed with ΔY10 compression 
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algorithm, which is suitable for discrete trajectories composed of encoder pulses. 

After the base sets are compressed in the encoding stage of the command 

generation paradigm, the necessary part for the curve offset generation is formed 

by using a simple symbolic language. Thus, there is no need to compress the 

offsets of the base sets. The latest curve offset generation algorithm discussed in 

Chapter 3 can be utilized to generate them from the base sets. With this overall 

approach, the original sequence can be compressed to about one-thousandth of it.  

In the next subsection, the details of this paradigm are elaborated and a primitive 

memory structure is proposed. 

 

 

 

Figure 5-1 Rabbit Composed of 11 Base Sets 
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Figure 5-2 Rabbit with Offsets 

5.2.2 Implementation Details 

In order to use the memory efficiently and realize the command generation system 

easily, the compressed code is structured as shown in Figure 5-3 for a generic 

command sequence. The first four words and the next coupled words for each 

base set can be regarded as the header for this memory block. The initial 4 bits of 

the first word indicate the order of finite difference (where a maximum of 15th 

order for the differences can be represented) for the segments of the trajectory 

where any curve offsets are not to be generated. The rest of the first word (28 bits) 

are reserved for expressing the length of the command sequence. The second 

word of the header is used to specify the number of words reserved for the 

magnitude field, which indirectly determines the starting address of the sign field. 

The fourth word of the header gives the starting address of the zero field. In the 

remaining part of the header, there are coupled words for the description of the 
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curve offset generation. The first word in these couples gives the starting address 

of the corresponding compressed base set. The first two bits of the second word in 

the coupled set describe the type of the offsets. These bits are interpreted as 

follows: 

• 00: Outer Offsets, 

• 01: Inner and Outer Offsets, 

• 11: Inner Offsets. 

The next six bits are reserved for the number of offsets to be generated for the 

given offset radius. With the six bits, 26 = 64 offsets can be generated in the 

maximum case. The last twenty-four bits (224 = 16777216) in the second word of 

the couple represents the radius of the offsets in counts. After the header part, the 

first memory block corresponds to the compressed sequence for the segments 

where any curve offsets are not to be generated. Then comes the memory blocks 

for the compressed base sets. The structure of these memory sets is given in 

Figure 6-4. 
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Figure 5-3 Memory Structure of the Primitive Method 

During the decompression of the motion commands, the header of the overall 

memory is processed first. Then the commands are decompressed starting from 

the block for the non-offsetted trajectory. The ΔY10 compression algorithm is 

modified such that when there is a zero sequence of length two, there exists an 

offset sequence and decompression should continue by processing the coupled 

words for the base set and generate the defined curve offsets. When the generation 

of the corresponding offsets is finished, the decompression moves back to the 

non-offsetted part. This loop resumes until the non-offsetted part is finished. 



 113 

5.2.3 Evaluation of the Primitive Method 

The proposed command generation paradigm is elaborated by employing it onto 

the described test case in the previous subsections. As stated in these sections, the 

test case has 11 different base sets. In order to see the effect of curve offset 

generation algorithm on the memory size, the sets shown in Figure 5-1 are 

compressed with ΔY10 algorithm and the results are shown in Table 5-1. Each 

element in x and y axes can be represented by 3 and 2 bytes, respectively, when 

the range of the points are considered. Since there are 14111 points in the Rabbit 

case, the size of the x and y axes are 42333 and 28222, respectively. In the second 

part of the evaluation, the generated offsets are compressed with the same 

algorithm. The results are summarized in Table 5-2. The sizes of the original 

sequences are also given in the table. As can be inferred from the table that by just 

using the base sets of the case, one can achieve 0.3 % compression ratio that is too 

low when compared to the ratio of the case with compressed offsets. 

Table 5-1 Bytes Required to Represent the Sequences After Compressing Them 

with ΔY10 

Part X Y 

0 2296 2404 
1 319 312 
2 301 304 
3 292 289 
4 300 332 
5 300 332 
6 295 300 
7 417 550 
8 294 291 
9 292 288 

10 563 568 
Sum 5669 5970 

Original 42333 28222 
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Table 5-2 Comparison of Sizes of Sequences Under Different Approaches 

 

X Y 

Size Ratio Size Ratio 

Compressed Base Sets 5669 0.0031 5970 0.0049 

Compressed Offsets 345052 0.1884 317135 0.22597 

Original 1831398 1220932 

 

 

In this section of the chapter, the idea of combining curve offset generation 

algorithms with data compression methods is proposed as a new command 

generation paradigm. After describing the test case suitable for the proposed 

scheme, the implementation details on the memory are discussed. The 

implementation of the paradigm is further improved and tested in the following 

sections.  

5.3 Proposed Approach (VEPRO) 

VEPRO is a motion command generator designed specifically for CNC 

machinery. It is established after trying to implement the command generation 

method proposed in the previous section. VEPRO can be regarded as the 

advanced version of that method. 

As illustrated in Figure 5-4, the system-on-a-chip (SOC) solution employs a 

multi-kernel processor architecture that is equipped with specialized peripheral 

units. In this architecture, the memory management unit (MMU) plays a key role 

as it manages all the system registers (namely, C, R, S) shared by all kernels. The 

machine code (compilation of the user written program) and the related data are 

transferred to the memory chips available on the hardware over a serial 

communication protocol.  
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Figure 5-4 SOC Solution of VEPRO 

On the other hand, each kernel does have its own set of local dynamic matrix 

registers C(0) & C(1) which are exclusively used as temporary data storage. 

Similarly, all kernels are to invoke functions (subroutines) defined globally.  The 

timing events along with the synchronization among the kernel are performed by 

the task management unit (TMU). To avoid collision, only main kernel (Kernel 0) 

is allowed to interact with data-rate control unit (DCU), which outputs the motion 

command data at the specified rate set by the external logic. The PLC functions of 

the CNC machinery are handled by the communication between DCU and the 

auxiliary control unit.  

The main advantage of this SOC is that it is very simple and can be realized by a 

low-cost FPGA having limited resources. The current hardware processing NC 

programs is comprised of computers having at least 1 GB of RAM. With the 

proposed command generation paradigm, the procedure is simplified and its 

hardware complexity is decreased. 
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5.4 VEPRO Commands 

The language of the proposed motion command generation paradigm is 

categorized into eighth sub categories and for each of them the relevant 

commands and their explanations are provided in upcoming subsections. 

5.4.1 Register Sets 

There are four types of registers used in the VEPRO language. The first one is the 

dynamic registers represented with the letter C. They are mainly utilized to store 

base curves and the results of vector operations. The second type is the ones used 

for general purposes. This is represented with the letter R. The next one is the 

simplest register kind of all. It is stored in the last element of R and used for flags. 

The last register is reserved for PLC functions of the CNC machinery. The details 

of these registers are discussed below. 

Register (C). It is named as dynamic matrix registers. There are 1024 dynamic 

elements in the register. The first element of this register is reserved for the 

intermediate results of vector operations such as the output of the curve offset 

generation algorithm. The rest of the elements can be utilized to store the base 

curves of the trajectory. 

Register (R). It is named as general purpose registers. There are also 1024 

elements in the register. The first element of the register is reserved for the 

intermediate arithmetic results. The rest are used for various purposes such as 

loop numbers, current and previous axis positions, offset values, etc. 

Register (S). It is a read-only register and called as status register. The last 

element of the general purpose registers (R) is reserved for this register. The 

current length of the register is 8 bits, but it can be increased according to the 

needs new vector operations. The defined status registers are as follows. 

• EF: Error 
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• LT: Less than (N) 

• ZF: Zero (Z) 

• GT: Greater than 

• OF: Overflow (V) 

• UF: Underflow (U) 

• LI: Linear interpolation mode 

• OE: Output enable 

 

Register (P). It is named as PLC register. PLC functions of the CNC machinery 

are controlled via this register. It is designed to be 32-bit currently.  The least 

significant 24 bits are used for setting the spindle speed. When it is needed to stop 

the spindle, the speed should simply be set to zero. The next two bits are utilized 

for the direction of the rotation and for enabling coolant. The following six bits 

are reserved for the definition of the tools to be used in the machining. If there are 

more PLC functions in the machinery, the word size of this register should be 

increased. The usage of this register is illustrated below. 

Spindle Speed (24 bits):   20000 rpm: 0000000001001110001000002 

Spindle Rotation (1 bit):  1 (CW) / 0 (CCW) 
Coolant On/Off (1 bit):  1 (On) / 0 (Off) 
Tool (6 bits):   Tool #5: 0001012 

 

0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 1 0 0 0 0 0 
 

These register adjustments are transferred to the VEPRO via PLC command. For 

the illustrated example one should use PLC (385895968).  
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5.4.2 Declarations 

Declarations in the language are mainly used to label some command lines in the 

program and assign some parameters of the written program for the specified 

command trajectory. There are ten different types of declarations presently. These 

declarations are briefly explained below. 

Declaration (label EQU address). It is used to assign labels to the specified 

memory locations. 

Declaration (label BGN #). It is used to assign label to the beginning of the 

thread #. 

Declaration (END #). It is used to define the end of the thread #. 

Declaration (label DEF R(i)). It is used to assign a label to the specified element 

(i) of the general purpose register (R). 

Declaration (DIM #). It is used to set the number of axis to #.  

Declaration (DIO #). It is used to set the number of digital Input/Output channels 

to #. 

Declaration (FPL #). It is used to set the location of the fixed-point numbers to #. 

It should be between 0 and 8×(Word Length − 1). 

Declaration (NCR #). It is used to set the number of curve registers to #. 

Depending on the application, one may need more than one register for the base 

sets or for the results of vector operations. 

Declaration (SIL #). It is used to set the maximum step size to # in linear 

interpolation (in counts).  

Declaration (WOR #). It is used to set the word length to #. 
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5.4.3 Parallel Processor Commands 

As discussed in the previous section, there are parallel processors embedded into 

the VEPRO. For the proper operation of these processors, additional commands 

are necessary. Two of the commands are used to enable and disable the regarding 

kernels and the other two are utilized for the synchronization of the auxiliary 

kernels with the master kernel. These commands are described below. 

Start Processors STA (#): This command is used to enable the execution of the 

parallel processors. Bits of the specified # indicates the id number of the 

processors to be enabled. For instance, STA 15 (= 00011112) denotes that the 

kernels 1 to 4 will be started. 

Terminate Processors TER (#): It is used to terminate the execution of the 

threads whose id numbers are specified by #. 

Wait Processors WAI (#): The master kernel awaits the timing event for the 

multiple threads whose id numbers are specified by #. 

Trigger Processors TIC: The auxiliary kernels send acknowledgement signals to 

the master kernel indicating that they have completed the assigned tasks to them 

by the master kernel. After the master kernel receives these trigger signals, it 

continues to its proper operations. 

5.4.4 Compare, Test, and Branch Commands 

These commands are mainly used to implement the loops in the algorithms. They 

are utilized to compare some values and take action according to the result of the 

comparisons. These commands are briefly explained below. 

Compare CMP(R(j), R(i).#): The result of the difference between the two inputs 

of the command is written on the read-only status register (S).  

Bit Assign BIT(R(i).#): The specified bit of R(i) is assigned to ZF bit of the status 

register (S). The bit number should be between 0 and 8×(Word Length − 1). 
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Branch Equal BEQ(label): The algorithm branches to the given label if ZF bit of 

the status register (S) is equal to 1. 

Branch Not Equal BNE(label): The algorithm branches to the given label if ZF 

bit of the status register (S) is equal to 0. 

Branch Greater Than BGT(label): The algorithm branches to the given label if 

GT bit of the status register (S) is equal to 1. 

Branch Greater Than or Equal BGE(label): The algorithm branches to the 

given label if ZF bit of the status register (S) is equal to 1 or GT bit is equal to 1. 

Branch Less Than BLT(label): The algorithm branches to the given label if LT 

bit of the status register (S) is equal to 1. 

Branch Less Than or Equal BLE(label): The algorithm branches to the given 

label if ZF bit of the status register (S) is equal to 1 or LT bit is equal to 1. 

Branch Overflow BOF(label): The algorithm branches to the given label if OF 

bit of the status register (S) is equal to 1. 

Branch Underflow BUF(label): The algorithm branches to the given label if UF 

bit of the status register (S) is equal to 1. 

Branch Error BER(label): The algorithm branches to the given label if EF bit of 

the status register (S) is equal to 1. 

Jump JMP(label): The algorithm jumps to the specified label with this command. 

Jump Subroutine JSR(label): The algorithm jumps to the subroutine’s starting 

address. 

Return Subroutine RTS: The algorithm returns from the subroutine to the main 

program when this command is processed. 

End Program END: The program terminates with this command.  
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5.4.5 Register and Memory Operations 

There are only two commands for this category, but if there is a necessity of new 

commands it can be added. The first one is used for moving the data stored in 

some part of the memory to the given variable and the second one is utilized to 

empty the registers. These two commands are given below. 

Move MOV(R(j), R(i)/@MEM/#): The operation is used to move the information 

residing in the register R(i) or in the specified memory location MEM or the 

specified bit of R(i) to the register R(j).  

Clear CLC(R(i)): The given register to the command is assigned to zero. 

5.4.6 Arithmetic and Logic Operations 

There exist simple mathematical operations in this category. The commands are 

used only with the general purpose registers (R). The abbreviations and 

explanations of these commands are discussed below. 

Addition ADD(R(j), R(i)/@MEM/#): In this simple operation, the value residing 

in the register R(i) or in the specified memory location MEM or the specified bit 

of R(i) is summed with R(j) and assigned to R(j). 

Multiplication MUL(R(j), R(i)/@MEM/#): In this simple operation, the value 

residing in the register R(i) or in the specified memory location MEM or the 

specified bit of R(i) is multiplied with R(j) and assigned to R(j). 

Sign SGN(R(i)): The only one that uses the flags is this operation. It checks the 

sign of the given input and then raises the LT flag if it is negative and raises ZF 

flag if the input is equal to zero. 

Negate NEG(R(i)): In this operation, the given input is multiplied with -1 and the 

result is assigned to R(i). 
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Absolute ABS(R(i)): In this operation, the absolute value of the given input is 

assigned to R(i). 

Decrease DEC(R(i)): The given input is decreased by one and assigned to the 

same register. 

Decrease INC(R(i)): The given input is increased by one and assigned to the 

same register. 

5.4.7 Flag Operations 

Flag operations are the simplest and the most important commands of the 

VEPRO. Thus, they should be handled carefully. For these purpose, five different 

commands are proposed for the flag operations. If necessary, they may be 

increased in the future editions of the VEPRO. These operations are provided 

below. 

Flag SLI. By this command, the linear interpolation flag (LI) is raised. 

Flag CLI. The linear interpolation flag (LI) is lowered when this command is 

processes in the program. 

Flag CEF. The command simply clears the error flag (EF = 0). 

Flag SOE. The motion commands are generated if the output flag (OE) is enabled 

with this command. 

Flag COE. The motion commands are suppressed if the output flag (OE) is 

disabled with this command.  

5.4.8 Vector Operations 

These vector operations presented below are the heart of the VEPRO command 

generation system. The first seven of the commands (MOV) are used to move the 

motion data residing in the given register to the other registers. CLR command 
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simply clears the given curve register and REV is used to reverse/flip the 

registers. The OUT command has two different versions as can be seen below. 

The first one simply interpolates the given data and assigns them to the temporary 

register, which is C(0). The other version of the OUT command is used when 

there is a need to perform interpolation in the third axis. For instance, if the curve 

offset generation operation needs to be done in three axis, this command is 

utilized to perform further operation to update the result of curve offset generation 

for three axis representation. The DDY command is used to decompress the 

motion data if ΔY compression algorithm is utilized in advance. In order to 

generate curve offsets of a given base curve, GCO command is used. According 

to the sign of the value, it can generate inner (negative) or outer (positive) offsets 

of the given curve segments. It is also capable of handling cases where there 

exists islands and self-intersecting lines. The upcoming commands GPC and GPB 

are responsible for the generation of equidistant points on a circle or on a base 

curve, respectively. HTM command transforms the base curve residing in the 

curve register C(3) and assigns the result to the same curve. The transformation is 

done according to the given angles and displacements. PLC command, as the 

name implies, modifies the PLC register of the VEPRO. When there is a need to 

raise a custom flag, EVE command is employed. It takes action before the 

commands are generated with OUT command. The last three of the commands are 

simple connection, addition and multiplication operations defined for curve 

segments. 

Move MOV(C(j.nj), @MEM.start.end): Data residing between the given start and 

end addresses of the memory is assigned to C(j.nj) with this vector operation.  

Here ni represents the ni’th axis of the curve register. 

Move MOV(C(j.nj), C(i.ni).start.end): Specified segment of C(i.ni) is transferred 

to C(j.nj). If start address is higher than the end address, the vector is reversed 

firstly and then moved to C(j.nj). From now on the shaded portions of the 

commands refer to the optional parameters. When start and end addresses are not 

provided, all elements of the register will be moved. 
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Move MOV(R(j), C(i.ni).index): One of the elements of C(i.ni) numbered as 

index is assigned to the register R(j). 

Move MOV(R(j), C(j.nj).start.end): The specified portion of C(j.nj) is assigned to 

R(j). In this command, the start and end addresses refers to the bit addresses. For 

example, MOV (R(0), C(0).145.153) means that R(0)<0:7> := C(0.1)[4]<17:24> 

(It is assumed that the word length is 4 bytes). 

Move MOV(C(j.nj).start.end, R(i)): This command is the reverse of the previous 

vector operation. Here, R(i) is stored to the specified region the curve register 

C(j.nj). For example, MOV (C(0).145.153, R(0)) means that C(0.1)[4]<17:24>  := 

R(0)<0:7>. 

Move MOV(C(j.nj).index, R(i)): R(i) is assigned to the specified index of C(j.nj). 

If the axis of the register is not defined, it is taken as 1. 

Move MOV(C(j.nj), bit.address, 0/1): In this vector operation, 0 or 1 is assigned 

to the stated bit of the curve register C(j.nj). For instance, MOV (C(0), 1781,1) 

means that C(0.1)[55]<21> := 1 (The word length is again assumed to be 4 bytes). 

Clear CLC(C(j.nj)): C(j.nj) is emptied. 

Reverse REV(C(i.ni).start.end): C(i.ni) is reversed/flipped and assigned to C(0.ni). 

This operation can also be accomplished via MOV command by using a bigger 

number in the start address. This command is added to increase the readability of 

the VEPRO programs 

Output OUT(C(i).start.end): Motion command data in C(i) is linearly 

interpolated and assigned to the curve register C(0). 

Output OUT(C(i).start.end, C(j)): The third axis of C(i) is linearly interpolated 

according to the uncommon axis of C(j) and the results of the interpolation is 

written to the curve register C(0). 

Decompress ΔY DDY(C(i.ni), @MEM.start.end): The data at MEM[start.end] 

are decompressed using ΔY and assigned to C(i.ni) by this vector operation.  
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Generate Curve Offsets GCO(C(i).start.end, offset): This command computes 

2D offset of C(i)[start.end] and assigns it to C(0): if offset > 0, the outer offset is 

generated. If there are multiple offset curves, the overflow flag is set; C(1) holds 

the starting addresses associated with the offset curves stored in C(0). 

Generate Points on a Circle GPC(C(j), radius, number, angle): The command 

generates a “number” of equidistant points on a circle (in XY plane) with 

specified “radius” (counts) beginning from a certain “angle” (degree) and assigns 

the result to C(j). 

Generate Points on a Base Curve GPB(C(j), C(i), number, start): The command 

generates a “number” of equidistant points on a base curve stored in C(i) 

beginning from a specified starting position (in counts) and assigns the result to 

C(j). 

Homogeneous Transformation Matrix HTM(C(j), C(i).n): In this vector 

operation, homogeneous transformation (HT) of C(j) is accomplished via the 

elements of C(i.n) and the result is stored in the curve register C(0). The required 

angles and displacements are provided in C(i).n. The transformation is only 

defined for 3D dynamic matrices whose any two vectors [i.e. C(j.1), C(j.2), 

C(j.3)] must be (at least) non-empty. Three different operations can be completed 

according to the types of the given inputs. 

• If the dimension of C(j) is 2, 2D HT is performed where the undefined (or 

absent) axis assumed to be a zero vector. Here, C(i.n)[1] is the offset of the 

first axis; C(i.n)[2] is the offset of the proceeding axis; C(i.n)[3] is the 

angle (fixed-point representation in degrees) defined around the remaining 

axis. 

• If the dimension of C(j) is 3 (then the length of C(i.n) must be 6 for this 

case), 3D HT is performed. Here, C(i.n)[1:3] refers the offsets for each 

axis while C(i.n)[4:6] denotes the corresponding Euler angles. 
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• If the dimension of C(j) is 3 but the length of C(i.n) is 3 then 2D HT is 

performed in XY plane. Here, C(i.n)[1:2] are the offsets of the X and Y 

axes; C(i.n)[3] is the angle defined around the Z-axis. 

Programmable Logic Controller PLC(R(j)): The PLC register described in the 

first subsection is adjusted with this command. The modifications are processed 

just before the generation of motion commands. 

Concatenate CON(C(j.nj), C(i.ni)): The command concatenates C(j.nj) and C(i.ni) 

and assigns the new curve register to C(0). 

Addition ADD(C(i.ni), bias): The bias is added to C(i.ni) (signed integer 

operation) and the result is assigned to the curve register C(0. ni). 

Multiplication MUL(C(i.ni), scale): C(i.ni) is multiplied with the scale (fixed-

point operation) and the result is assigned to curve register C(0. ni). 

5.4.9 Vector Queries 

The last category of the VEPRO is the vector queries. There are three of them as 

explained below. These commands are utilized to gather some specific 

information (length, dimension, and axis configuration) of a curve segment and 

assign them to the register R(0). 

Length Query QLC(C(i)): The length of the input curve register is assigned to 

first element of the general purpose register (R(0)) with this query command. 

Dimension Query QDC(C(i)): In this query operation, the number of axis whose 

command trajectories are residing in the register is assigned to the intermediate 

result register (R(0)). 

Axis Configuration Query QAC(C(i)): When the axis configuration of a curve 

register is required, this command is used. The result will again be written to R(0) 

in terms of 3 bits (XYZ). For instance, if the value in R(0) = 5 = 1012, then we can 

say that X and Z axes are present in the curve register. There is no data available 

for Y-axis. 
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5.5 MATLAB Emulations of the VEPRO Hardware 

In this section of the chapter, a generic VEPRO program is developed for the 

finishing operations of the plastic injection molds of 

• Hemisphere 

• Shampoo bottle 

• Handset  

Rendered SolidWorks parts of these cases are provided from Figure 5-5 to Figure 

5-7. The radius of the hemisphere is 50!!! and the number of base curves is 

determined to be 100 for the finishing operation (having 1!!! offsets along the 

Y-axis). The shampoo bottle provided in Figure 5-6 is 100!!! in height and the 

radius of the main part is 20!!!. As in the case of the hemisphere, 100 base 

curves are generated in VEPRO. The third test case is totally different from the 

first two ones. Its maximum dimensions are 86!!!×!240!!!×!36!! and there 

are 50 different base curves. 

By only changing the offset table and the base curves, different machining 

operations are obtained with the same VEPRO program. For the cases of the 

Bottle and the Hemisphere, there is no need to redefine the base curves. Each 

segment of these two test cases can be generated from a semi-circle. On the other 

hand, all of the segments of the Handset are different from each other due to the 

complexity of the Handset. Thus, they should be stored in the appropriate memory 

field and be fed to the VEPRO program when necessary. The offset table of this 

case simply consists of zeros indicating that the original base curves are to be 

utilized. The VEPRO program capable of generating motion trajectories for the 

three cases is provided in Table 5-3. According to the written program, the base 

curves are assigned to the appropriate curve register from the specified memory 

locations. For the third test case, an appropriate memory index table should be 

embedded into the VEPRO program. 
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These test cases are emulated in MATLAB environment by writing the 

corresponding MATLAB functions of the utilized VEPRO commands. The results 

of these emulations are represented from Figure 5-8 to Figure 5-10. Top, isometric 

and front views of the test cases are presented in these figures. The lines in red 

color represent the motions where machining is done and the blue lines are for the 

fast movements of the machine tool. In each fast movement, the tool first goes up 

to the defined Z-axis absolute position and then moves to the final X and Y points 

via linear interpolation. Different Z-axis absolute positions are used in the test 

cases. As can be observed from the VEPRO program and the output figures that 

the tool moves to the next curve segment from the nearest side after the generation 

of one curve segment is completed. This task is accomplished in the VEPRO 

program by flipping the base curve via MOV command. 

 

 

 

Figure 5-5 Rendered SolidWorks Part of the Test Case Sphere 
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Figure 5-6 Rendered SolidWorks Part of the Test Case Bottle 

 

Figure 5-7 Rendered SolidWorks Part of the Test Case Handset 
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Table 5-3 Generic VEPRO Program for the Three Test Cases 

; VEPRO program for the “Bottle”,“Sphere”, and “Handset” cases 
; 
  DIM 3 ; 3-axis (X,Y,Z)  
  WOR 4 ; use 4-byte word (32-bit) 
  FPL 0 ; no fixed-point multiplication 
  NCR 3 ; 3 dynamic arrays including C(0) are needed!  
; 
; Define addresses in memory 
; 
X0  EQU 0x0 ; initial x location (1 word) 
Y0  EQU 0x4 ; initial y location (1 word) 
Z0  EQU 0x8 ; initial z location (1 word) 
DeltaY  EQU 0xC ; increment in Y (1 word) 
Rtab  EQU 0x10 ; starting address of offset table (50 words) 
Bcur  EQU 0xD8 ; starting address of base curve (2*1000 words) 
; 
; Assign labels to registers (or constants)  
; 
X  DEF R(1) ; position register for axis-1: X  
Y  DEF R(2) ; position register for axis-2: Y 
Z  DEF R(3) ; position register for axis-3: Z 
i   DEF R(4) ; R(4) is to be used for indexing 
r  DEF R(5) ; R(5) stores the temporary offset value  
Zup  DEF R(6) ; Absolute z position of the tool in fast movements 
; 
; Program starts here 
; 
  ORG 0x2018 ; starting address(following 2054*4 words of data) 
  SLI  ; set linear interpolation mode 
  SOE  ; enable output 
  CLR  ; clear all curve registers  
  MOV Zup,5 ; Zup is assigned to be 5 mm. 
  MOV X,X0 ; load initial tool locations to pos. registers 
  MOV Y,Y0 
  MOV Z,Z0 
  MOV C(1.1),Rtab,0,199 ; load offset values to C(1) (1D) 
  MOV C(2.1),Bcur,0,3999 ; X-axis components of base curve 
  MOV C(2.3),Bcur,4000,7999 ; Z-axis components of base curve 

MOV i,0   ; initial index value (“for loop”) 
Loop:  MOV r,C(1.1),i  ; r := C(1.1)[i] 
  GCO C(2),r   ; generate 2D offsets of C(2) with r  
  OUT C(0)   ; output C(0) holding the offset 

 MOV C(2),C(2),3999,0 ; make sure to flip C(2) for the next 
iteration 
  ADD Y,DeltaY  ; Y coordinate increases by DeltaY 
  INC i   ; increase loop index i 
  CMP i,100   ; if i is not equal to 50,  
  BNE Loop   ; then continue with the loop (100 
iterations!) 
  CLR C(0)   ; clear C(0) 
  MOV X,X0   ; load the initial pos. to the 
resisters  
  MOV Y,Y0 
  MOV Z,Z0 
  OUT C(0)   ; perform linear int. to the initial 
position 

  END 
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Figure 5-8 Plots of MATLAB Emulation of the Test Case Sphere 
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Figure 5-9 Plots of MATLAB Emulation of the Test Case Bottle 
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Figure 5-10 Plots of MATLAB Emulation of the Test Case Handset 
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In order present the capabilities of the VEPRO paradigm, simple modifications 

are employed on the third test case (Handset). The average x-axis values of each 

base curve of the handset are stored into the MX array and the original base curves 

are shifted such that they are now centered along y-axis. If one needs to generate 

the original trajectories of the finishing operation, the corresponding element in 

the MX array and the x-axis values of the modified base curves should be summed 

before the generating the commands. The modifications of the VEPRO program 

are provided in Table 5-6. The first command is used to get the MX array from the 

memory and the second command is placed in the loop for the summation of the 

x-axis. 

Table 5-4 Modifications on the Generic VEPRO Program of the Three Test Cases 

  MOV MX,Bcur,8000,8049 ; MX is formed  

  …. ……………..   

  ADD C(2.1),MX(i)  ; X coordinate of base curves updated 

 

 

With the adjustments in the MX array, different command trajectories can be 

obtained. When all of the elements in this array are zero, the trajectory in Figure 

5-11 is obtained. In this configuration, the base curves are centered along the y-

axis. If one wants to obtain a mirrored image of the original trajectory, the initially 

obtained MX array should simply be multiplied by −1. The result of this 

configuration is presented in Figure 5-12. In another application, the elements of 

the MX array are generated randomly (from 0 to 100) in MATLAB and the result 

is shown in Figure 5-13. In the last configuration of the MX array approach, the 

initially obtained MX array is multiplied by 0.5 and presented in Figure 5-14. The 

same approach may be employed on the other axes and different configurations 

can be obtained by simply modifying the initially given VEPRO program.  
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Figure 5-11 Centered Base Curves of the Handset 

 

Figure 5-12 Mirrored Base Curves of the Handset along Y-axis 
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Figure 5-13 Random Distribution of the Base Curves of the Handset over X-axis 

 

Figure 5-14 Base Curves of the Handset Placed at Half of Their Exact Distances 
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5.6 Parallel Processors 

As described in the third section of this chapter, there are multiple kernels 

available on the VEPRO hardware. Four commands are introduced to utilize these 

kernels efficiently in the upcoming section.  

As an example, the generic VEPRO program written for the discussed test cases is 

modified to use four auxiliary kernels available on the hardware. The new 

program is provided in Table 5-5. In this application, the tasks of curve offset 

generation are distributed over the auxiliary kernels via using appropriate loop 

indexes and offset radii. The internal VEPRO programs of the kernels are 

provided at the end of the table. As can be observed from the table that the tasks 

accomplished in the kernels are similar. After the kernels are enabled with the 

STA command of the VEPRO, the tasks assigned to the kernels are processed and 

the results are conveyed to the master kernel with an acknowledgement signal 

(TIC).  

 

Table 5-5 Utilization of the Parallel Processors in the Generic VEPRO Program 

for the Three Test Cases 

; VEPRO program for the “Bottle”,“Sphere”, and “Handset” cases 
; 
  DIM 3 ; 3-axis (X,Y,Z)  
  WOR 4 ; use 4-byte word (32-bit) 
  FPL 0 ; no fixed-point multiplication 
  NCR 3 ; 3 dynamic arrays including C(0) are needed!  
; 
; Define addresses in memory 
; 
X0  EQU 0x0 ; initial x location (1 word) 
Y0  EQU 0x4 ; initial y location (1 word) 
Z0  EQU 0x8 ; initial z location (1 word) 
DeltaY  EQU 0xC ; increment in Y (1 word) 
Rtab  EQU 0x10 ; starting address of offset table (50 words) 
Bcur  EQU 0xD8 ; starting address of base curve (2*1000 words) 
; 
; Assign labels to registers (or constants)  
; 
X  DEF R(1) ; position register for axis-1: X  
Y  DEF R(2) ; position register for axis-2: Y 
Z  DEF R(3) ; position register for axis-3: Z 
i   DEF R(4) ; R(4) is to be used for indexing 
r  DEF R(5) ; R(5) stores the temporary offset value  
Zup  DEF R(6) ; Absolute z position of the tool in fast movements 
; 
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Table 5-5 (continued) 

; Program starts here 
; 
  ORG 0x2018 ; starting address(following 2054*4 words of data) 
  SLI  ; set linear interpolation mode 
  SOE  ; enable output 
  CLR  ; clear all curve registers  
  MOV Zup,5 ; Zup is assigned to be 5 mm. 
  MOV X,X0 ; load initial tool locations to pos. registers 
  MOV Y,Y0 
  MOV Z,Z0 
  MOV C(1.1),Rtab,0,199 ; load offset values to C(1) (1D) 
  MOV C(2.1),Bcur,0,3999 ; X-axis components of base curve 
  MOV C(2.3),Bcur,4000,7999 ; Z-axis components of base curve 
  MOV i,5   ; initial index value (“for loop”)  
  STA b0001111  ; start the auxiliary kernels 
Loop:  MOV r,C(1.1),i-4  ; r := C(1.1)[i-4] 
  GCO C(2),r   ; generate 2D offsets of C(2) with r  
  WAI    ; wait for the other kernels 
  OUT C(0)   ; output C(0) holding the offset 
  OUT K1.C(0)   ; output C(0) of the first kernel 
  OUT K2.C(0)   ; output C(0) of the second kernel 
  OUT K3.C(0)   ; output C(0) of the third kernel 
  OUT K4.C(0)   ; output C(0) of the fourth kernel 

 MOV C(2),C(2),3999,0 ; make sure to flip C(2)  
  ADD Y,DeltaY*5  ; Y coordinate increases by DeltaY*5 
  ADD i,5   ; increase loop index i by 5 
  CMP i,105   ; if i is not equal to 105,  
  BNE Loop   ; loop continues 
  CLR C(0)   ; clear C(0) 
  MOV X,X0   ; load the initial position  
  MOV Y,Y0 
  MOV Z,Z0 
  OUT C(0)   ; perform linear interpolation 
  END  
   
  BGN 1 
  MOV C(2),C(2),3999,0 ; make sure to flip C(2) 
  ADD Y,DeltaY*1  ; Y coordinate increases by DeltaY*1 

  MOV r,C(1.1),i-3  ; r := C(1.1)[i-3] 
  GCO C(2),r   ; generate offsets of C(2) with r  
  TIC 1   ; send the acknowledgement signal 
  END 1 
  

  BGN 2 
  ADD Y,DeltaY*2  ; Y coordinate increases by DeltaY*2 

  MOV r,C(1.1),i-2  ; r := C(1.1)[i-2] 
  GCO C(2),r   ; generate offsets of C(2) with r  
  TIC 2   ; send the acknowledgement signal  
  END 2 
 

  BGN 3 
  MOV C(2),C(2),3999,0 ; make sure to flip C(2) 
  ADD Y,DeltaY*3  ; Y coordinate increases by DeltaY*3 

  MOV r,C(1.1),i-1  ; r := C(1.1)[i-1] 
  GCO C(2),r   ; generate offsets of C(2) with r  
  TIC 3   ; send the acknowledgement signal  
  END 3 
 

  BGN 4 
  ADD Y,DeltaY*4  ; Y coordinate increases by DeltaY*4 

  MOV r,C(1.1),i  ; r := C(1.1)[i] 
  GCO C(2),r   ; generate offsets of C(2) with r  
  TIC 4   ; send the acknowledgement  
  END 4 
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5.7 Comparison with the Conventional Approach 

In this section of the chapter, another application area of the VEPRO is evaluated. 

2.5D pocketing operations are employed on two different test cases (Flower and 

Rabbit, which are modified version of test cases presented in [99]) via writing an 

appropriate VEPRO program. 

Rendered SolidWorks parts of these two cases are shown in Figure 5-15 and 

Figure 5-16. The flower and rabbit figures of [99] are modified such that they now 

fit into 200!!!×!300!!. The SolidWorks parts of the test cases are formed 

from the discrete points of the figures. Due to the memory problems, the number 

sof points in Flower and Rabbit are limited to 44022 and 33011, respectively. The 

depth of the pocketing operation is 3.5!!! in each of the cases.   

As opposed to the previous section, these cases are realized with a CNC 

machining center available at the machine shop of the department. The parameters 

of the machine are given in Table 5-6. The CNC machining center has 3 axes and 

the resolution of the encoders for each axis is 10000!!"#$%/!"#. The CNC 

controller of the machine is Sinumerik 802D. Thus, the written NC programs 

should be compatible with Sinumerik. Due to the complexities of the test cases, it 

is difficult to write NC programs manually. Instead, a freeware CAM software 

(HSM Express) is utilized to generate required NC programs for the pocketing 

operations. The properties of the obtained NC files and the workpieces are 

summarized in Table 5-7. As can be inferred from the first row of the table, the 

generated NC files are very long (117123 lines for the Rabbit and 191626 lines for 

the Flower). The reason of these lengthy files is that in automatic generation the 

points on the figures are simply connected with the NC commands G1, G2, and 

G3. The numbers of these commands are also provided in the table. Three 

different sizes of milling tools are used in both of the cases. While pocketing is 

done in two levels for the Rabbit, it is completed in three levels for the Flower 

case. The sequences of the machining levels and the accompanying tools are 

given in Table 5-8. The Rabbit is manufactured in 4 sequences, but it took 6 
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sequences for the Flower to be produced from Aluminum 7075. Due to the 

additional sequences, the manufacturing of the Flower took 100 minutes longer 

than the Rabbit. During the manufacturing of the test cases, Boron Oil & Water is 

used as the coolant.  

The images of the produced parts are provided in Figure 5-17 and Figure 5-18. 

The scratches of the tools can clearly be seen on the machined surfaces. The two 

test cases are machined on the same aluminum block. Since the size of the Flower 

is smaller than the Rabbit, there is extra space left on the Flower side of the 

aluminum. 

 

 

Figure 5-15 Rendered SolidWorks Part of the Test Case Flower 
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Figure 5-16 Rendered SolidWorks Part of the Test Case Rabbit 

Table 5-6 Parameters of the CNC Machining Center 

Parameter Symbol Unit x-axis y-axis z-axis 
Mass m kg 130 331.97 260 

Dry friction force Ff N 200 200 200 
Moment of inertia J kgm2 7.9941×10-3 16.4838×10-3 19.7446×10-3 
Dry friction torque Tf N 1.1 1.5 2.1 

Viscous friction 
coefficient b Nms/rad 0.0005 0.0005 0.0005 

Equivalent moment 
of inertia 

Jeq kgm2 0.00834 0.01737 0.02044 

Equivalent dry 
friction 

Tf,eq Nm 1.435 1.835 2.435 

Ball screw lead hs m 0.010 0.010 0.010 
Ball screw efficiency ηs - 0.95 0.95 0.95 

Rated torque Tr Nm 12 22 30 
Rated speed ωr rad/s 209.44 209.44 209.44 
Rated power Pr W 2,094.4 3,769.9 4,398.2 

Torque-speed slope mT Nms/rad -0.00955 -0.01910 -0.04297 
Encoder resolution - pulses/rev 10,000 10,000 10,000 
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Table 5-7 Properties of the NC Files and the Workpieces 

Property Rabbit Flower 

# of Command Lines 117123 191626 

# of G0 Commands 125 324 

# of G1 Commands 15472 32382 

# of G2 Commands 16958 33976 

# of G3 Commands 3338 3102 

# of Tool Changes 3 5 

Duration of Machining 320’ 420’ 

Tool Diameters (mm) 2, 4, 6 2, 4, 6 

Coolant 
Boron Oil (10%) & 

Water (90%) 
Boron Oil (10%) & 

Water (90%) 

Feedrate (mm/min) 350 350 

Spindle (rpm) 2000 2000 

Axial Depth (mm) 3.5 3.5 

Levels of Pocketing (mm) 2.5 and 3.5 1, 2, 2.5, and 3.5 

Material Aluminum 7075 Aluminum 7075 

Workpiece Size (mm) 300 × 200 × 20 300 × 200 × 20 

Feature Size (mm) 244.1 × 187.2 189.4 × 182.1 

Number of Points in Base Curve 33011 44022 

NC File Size (MB) 2.53 4.15 

Zipped File Size (MB) 0.6 0.64 

 

 

Table 5-8 Machining Sequences of the Test Cases 

Sequence Rabbit Flower 

1 φ6 & Z2.5 φ6 & Z2 

2 φ4 & Z2.5 φ4 & Z2 

3 φ2 & Z2.5 φ2 & Z1 

4 φ2 & Z3.5 φ2 & Z2.5 

5 - φ4 & Z3.5 

6 - φ2 & Z3.5 
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Figure 5-17 Manufactured Test Case Flower 
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Figure 5-18 Manufactured Test Case Rabbit 
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After the manufacturing of the test cases, a generic VEPRO program is written for 

the comparison purposes with the conventional approach. The program is 

provided in Table 5-9. The main difference of this program from the previous one 

is that it utilizes GCO command of the VEPRO to generate curve offsets of the 

base curves for pocketing operations. By only changing the base curves, offset 

tables, number of sequences, and the height of the levels one can obtain 

trajectories for 2.5D pocketing operations. The written VEPRO program is also 

emulated in MATLAB and the results of these emulations are given in Figure 

5-19 and Figure 5-20. As in the previous section, the red lines represents 

machining and the blue lines represents fast movements of the tools utilized. The 

properties of the generated tool trajectories are summarized in Table 5-10. As 

opposed to the previous section, the number of points on the base curves are 

increased in this section for a better quality of the curve offsets.  

 

Table 5-9 Generic VEPRO Program for the Test Cases Flower and Rabbit 

; 
; VEPRO program for the “Rabbit” and “Flower” cases 
; 
  DIM 3 ; 3-axis (X,Y,Z)  
  WOR 4 ; use 4-byte word (32-bit) 
  FPL 0 ; no fixed-point multiplication 
  NCR 3 ; 3 dynamic arrays including C(0) are needed!  
; 
; Define addresses in memory 
; 
X0  EQU 0x0 ; initial x location (1 word) 
Y0  EQU 0x4 ; initial y location (1 word) 
Z0  EQU 0x8 ; initial z location (1 word) 
Rtab  EQU 0x9 ; starting address of offset table (32/40 words) 
Levels  EQU 0xA9 ; starting address of levels table (2/4 words) 
OffsetIndex EQU 0xB9 ; starting address of offset index table (2/4 words) 
Bcur  EQU 0xC9 ; starting address of base curve (2*220022 words) 
; 
; Assign labels to registers (or constants)  
; 
X  DEF R(1) ; position register for axis-1: X  
Y  DEF R(2) ; position register for axis-2: Y 
Z  DEF R(3) ; position register for axis-3: Z 
i   DEF R(4) ; R(4) is to be used for indexing 
r  DEF R(5) ; R(5) stores the temporary offset value 
j   DEF R(6) ; R(6) is to be used for indexing 
k   DEF R(7) ; R(7) is to be used for indexing  
Zup  DEF R(8) ; Absolute z position of the tool in fast movements 
NumLevels DEF R(9) ; Number of levels in the machining 
; 
; Program starts here 
; 
  ORG 0x0001ADC69 ; starting address 
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Table 5-9 (continued) 

  SLI   ; set linear interpolation mode 
  SOE     ; enable output 
  CLR     ; clear all curve registers  

MOV i,0    ; initial index value 
MOV j,0    ; initial index value   

  MOV Zup,5    ; Zup is assigned to be 5 mm.  
  MOV X,X0    ; load initial tool locations  
  MOV Y,Y0    ; to position registers 
  MOV C(1.1),Rtab,0,159  ; load offsets to C(1) (1D) 
  MOV C(2.1),Bcur,0, 880088  ; define X of base curve 
  MOV C(2.2),Bcur,880089,1760176 ; define Y of base curve  
  MOV C(3.1), Levels,0,15  ; load levels to C(3) (1D)  
  MOV C(4.1), OffsetIndex,0,15 ; load indexes to C(4) (1D)  
  MOV Z,C(3.1),j   ; Initial level  
Loop:  MOV r,C(1.1),i   ; r := C(1.1)[i] 
  GCO C(2),r ; generate 2D curve offset of C(2) with r  
  OUT C(0) ; output C(0) that holds the current curve offset 
  INC i  ; increase loop index i 
  CMP i,C(4.1),j ; if i not equal to next level starting index  
  BNE Loop  ; then continue with the loop                
  INC j  ; increase loop index j 
               MOV Z,C(3.1),j ; Level changes  

CLR ZF  ; Clear the flag ZF  
  CMP j,NumLevels ; if j is not equal to Numlevels, 
               BNE Loop  ; then continue with the loop 
  CLR C(0)  ; clear C(0) 
  MOV X,X0  ; load the initial pos. to the resisters  
  MOV Y,Y0 
  MOV Z,Z0 
  OUT C(0)  ; perform linear int. to the initial position 
  END 

  



 147 

 

 

 

 

Figure 5-19 Plots of MATLAB Emulation of the Test Case Flower 
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Figure 5-20 Plots of MATLAB Emulation of the Test Case Rabbit 
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Table 5-10 Data Attributes of the Test Cases Rabbit and Flower 

Description Rabbit Flower 

Number of Commands in Base Curve 220,011 220,022 

Size of Original Base Curve (Bytes) 1,320,066 1,320,132 

Size of Compressed (ΔY10) Base Curve (Bytes) 133,433 128,762 

Number of Commands in Tool Trajectory 3,907,907 4,789,165 

Size of Original Tool Trajectory (Bytes) 31,263,256 38,313,320 

Size of Compressed (ΔY10) Tool Trajectory (Bytes) 3,852,223 3,680,187 

 

 

It can be inferred from Table 5-10 that by compressing the base curves via ΔY10 

compression algorithm and then utilizing the VEPRO commands do outperform 

the conventional approach in terms of memory.  The original tool trajectories can 

be represented with 1% of the initial memory sizes with the VEPRO. For instance, 

for the test case Rabbit the compression ratio is calculated as 

! = 133,433
31,263,256 = 0.4% (5-1) 

 

When this low compression ratio and the primitive hardware to employ VEPRO 

are considered together, one can conclude that Kolmogorov complexity of the 

conventional approach is higher than the proposed paradigm.  
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5.8 Conclusion 

A novel motion command generation paradigm is proposed in the chapter. As in 

the conventional approach, the motion trajectory is defined manually by writing 

the VEPRO program using the given commands of VEPRO language. After it is 

compiled on the host PC, the output of the compilation (a.k.a. machine code) is 

transferred to the VEPRO hardware through different kinds of communication for 

processing. Then the hardware generates the motion command with the help of its 

auxiliary units on the hardware.  

The chapter starts with the review of the primitive version of this command 

generation paradigm. Then the VEPRO is introduced by describing the hardware 

layout of a possible SOC implementation. In the fourth section of the chapter, the 

commands of the VEPRO language are presented along with their explanations. 

Different types of test cases are evaluated in the fifth and sixth sections. When the 

results of MATLAB emulation of these cases are considered, it can be noted that 

with the same program one can machine different shapes by just changing the 

offset tables and base curve sets. 

Apart from the given test cases in the previous sections of the chapter, VEPRO 

can also be utilized to generate various machining trajectories for different types 

of CNC machinery and robotics applications. The proposed paradigm is still under 

development. According to the new application fields, different types of 

commands can be embedded into the VEPRO in the near future. 
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CHAPTER 6 

 

 

FPGA IMPLEMENTATION OF COMMAND GENERATOR 

 

 

 

This chapter of the thesis focuses on the implementation of a novel motion 

command generator for servo-motor drives using FPGAs. The underlying method, 

which incorporates a new data compression algorithm (ΔY10), is capable of 

generating trajectory data at variable rates in forward and reverse directions. In 

this paradigm, higher-order differences of a given trajectory (i.e. position) are first 

computed and the resulting data are compacted via the proposed compression 

technique. After the compressed data is transferred onto the memory chip of the 

FPGA development board, the generation of the commands is carried out 

according to the feedrate (i.e. the speed along the trajectory) arranged by the 

external logic dynamically. The FPGA implementation is realized in two different 

approaches (hardwired and softcore). Then the performance of this system is 

evaluated in terms of the hardware resources used in different aspects by 

employing it on two different test cases. 
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6.1 Introduction 

The current state of the art motion drive systems utilize on-board controllers with 

digital signal processors and micro-controllers to control the position and the 

velocity of the servo-motors. They are also used to regulate precisely the phase 

currents of the motors to control the electromagnetic torque.  Despite these 

capabilities, in most of the multi-axis motion control applications, a central 

motion control unit is utilized commonly to generate velocity and/or position 

trajectories. The generated motion signals are then conveyed to each motor driver 

over a serial communication protocol. As an alternative to this conventional 

approach, a direct command generation system with variable feedrate for servo 

motor drives is aimed in the study. The proposed architecture can also be utilized 

to generate commands for machines having more than one axis. In these cases, an 

additional unit embedded into the hardware is necessary to synchronize the single 

axis motion command generators. The proposed novel approach produces the 

commands directly in the drive system from the encoded (with ΔY10 encoding 

method) data set. There is no need for the data transfer from the central control 

unit of the overall system. This proposed scheme is implemented on an FPGA 

development board within the scope of the study. With the proposed hardware 

implementation, the novel command generation paradigm can easily be realized as 

an embedded part of the motor drive systems.  

When the related literature discussed in Chapter 2 is considered, it can be 

concluded that there are studies on the FPGA implementations of the data 

compression algorithms and digital control of CNC based applications, but there 

are not any studies on the command generation for CNC machinery and robotics 

utilizing FPGA and compressed motion data. The main contribution of the chapter 

is that it improves the command generation scheme proposed by Yaman and 

Dolen [66] and realizes the method on an FPGA development board by employing 

it on some test cases. 
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The rest of the chapter is organized as follows: Next section discusses the details 

of the novel command generation method, and the following section presents the 

hardware architecture of FPGA implementation of the method. After the test cases 

are described and the performance of the method is evaluated in the fourth 

section, the chapter is concluded with the closure section. 

6.2 Proposed Technique 

The system basically depends on the compression of differentiated motion 

command data. Computer aided manufacturing or robotics software generates the 

motion command trajectory data according to the predefined sampling frequency. 

After the higher order differences of the trajectory are taken, the differentiated 

sequence is compressed with the proposed compression method. The transferred 

data is decoded on the command generator and conveyed to the motion control 

system. With the proposed scheme, the utilization of an intermediate 

programming file (such as NC files) describing the path of the tool is eliminated. 

The motion controller directly uses the output of the decoder embedded on the 

controller board as the reference trajectory generator. Although the details of the 

command generation paradigm are discussed in Chapter 4, the summary of the 

method is provided in the following parts for the integrity of this chapter. 

6.2.1 Encoding of ΔY10 

The encoding part of the scheme is composed of relative encoding and 

compression processes. The details of these steps are discussed in the following 

subsections. 
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6.2.1.1 Relative Encoding 

In relative encoding, the higher order differences of sequences of the trajectories 

are computed. This approach decreases the memory requirement of the original 

trajectory sequence since the magnitudes of the values do decrease extensively. 

The order of decrease in the memory cost depends on the type of the application. 

Considerable decrease in the memory is mostly achieved when the order is 3 or 4 

for CNC machining applications, but when the sampling frequency is about 1 kHz 

or higher the best order of difference may be 2 [66]. The decoding can easily be 

completed, provided that the initial values are given, by the utilization of certain 

number of accumulators. Due to the employment of relative encoding, the decoder 

is capable of generating position, velocity and acceleration trajectories at the same 

time. This is one of the main advantages of the proposed scheme. 

6.2.1.2 Compression Process 

The developed command generation encoding technique ΔY10 is employed on a 

simple test case in order to describe the phases of the compression part of it 

clearly. This is illustrated in Figure 6-1. In the first phase of the command 

generation encoding method, higher order differences of the command sequence 

are taken. When the example in the figure is considered, after the first order of 

difference, the magnitude of the command values do decrease considerably. At 

this stage, the first initial value should be stored to recover the original command 

sequence. Since the higher order difference of this example is determined to be 

two, one more discrete differentiation is carried out on the resulting sequence. The 

second initial value is also stored. After the relative encoding part is completed, 

the construction of the AF is started. In the first stage of this construction, the 

commands in the sequence are eliminated from their signs. Then in the second 

stage, the commands are represented as Variable Length Binary Numbers. If there 

are any zero sequences in the first stage, their binary representations are modified 
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in the third stage by new zero sequences having lengths equal to the lengths of the 

original zero sequences in binary form. In order to recover the magnitudes of the 

differentiated commands, another field called LF is constructed. It simply 

constitutes of sequences of ones and zeros. The length of these sequences 

determines the length of the commands in the AF. The third field of the encoding 

method stores the signs of the differentiated commands. 1 is used for negative 

values and 0 is reserved for positive ones. No bits are used for zero values. The 

last field of the compression part is the ZF. Here, the lengths of the sequences are 

stored. Their lengths are determined from the corresponding part of the LF. After 

the construction of the fields is done, the resulting codes (initial values and fields) 

are coupled with necessary descriptions (header) and stored into the memory.   

 

 

 

Figure 6-1 Encoding of a Sample Sequence via ΔY10 Technique 
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6.2.2 Decoding of ΔY10  

The decoding part of the command generation scheme has also two main steps: 

decompression and linear interpolation. 

6.2.2.1 Decompression Process 

The decompression procedure of the proposed command generation method is 

easier than its encoding process. It starts with determining the length of each 

command from the LF by counting the bits in between the successive bit 

transitions. By knowing the length of the commands, the absolute values of them 

are obtained from the AF. The signs of these commands are fetched from the SF 

in order to obtain the signed integer versions of commands. During decoding if it 

is found that the magnitude of the command is zero and its length is greater than 

one, then it is concluded that there is a sequence of zero. The number of zeros in 

this sequence is determined from the ZF. During the decompression of the 

differentiated data, initial conditions are conveyed to the accumulators from the 

memory. Finally, the original commands are generated by the last accumulator 

used in the system. 

6.2.2.2 Linear Interpolation 

In manufacturing operations with CNC machinery, the operator usually modifies 

the speed (i.e. feedrate) of tool motion on the workpiece with an external input in 

order to increase the quality of the product and to eliminate the risks of crack 

formation on the tool. During the manufacturing processes it may be required to 

modify the feedrate dynamically through the course of motion by an external 

input (like feedrate override). Furthermore, under some extreme cases (such as the 

control scheme of an electro-discharge machine), it is desirable to reverse the 

direction of motion as dictated by an auxiliary input (e.g. electrode gap voltage). 
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A variable feedrate input available in forward and reverse directions is integrated 

into the proposed CG paradigm in order to overcome the aforementioned 

disadvantages in the manufacturing operations. With the modified feedrate of 

command generation, extra command values other than the ones in the original 

sequence should be generated. For this purpose, a linear interpolation is carried 

out after the decompression of the original values. This is accomplished by the 

Interpolator Unit in the hardware design. It simply interpolates between the two 

decoded command values and interpolates according to the current value of the 

feedrate input. 

6.3 FPGA Implementation 

Altera FPGA DE1 Development Board is utilized in the study in order to 

implement the proposed command generation scheme. There are different kinds 

of memory devices (SRAM, SDRAM, SD Card, Flash) on the board. Among 

these chips SDRAM is selected due to its ease of control and memory capacity (8 

MB). Two different approaches are used to implement the command generator. In 

the first approach, the command generation method is directly written in VHSIC 

Hardware Description Language (VHDL) and it is called as hardwired approach. 

A softcore processor IP (NIOS II) serving as an embedded microcontroller is 

utilized in the second approach and named as the softcore approach.  

The hardware architecture of the proposed command generation scheme for the 

hardwired approach is given in Figure 6-2. It is an improved and more stable 

architecture of the one proposed by Yaman et al. [29] for a different compression 

algorithm. There are eight different modules, a bus line and inputs in the 

architecture. All of the inputs (Start/Pause, Reset, Clock, Speed, Direction) are 

connected to the bus line. Except the Clock input, the rest are supplied to the 

system from the buttons and switches located on the FPGA development board. 

The Clock input is directly connected to the system from the software. The Speed 
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input (7 bit) is simulated with seven switches forming an unsigned integer. All of 

the data lines are 32 bit and the address line is 13 bit. 

 

 

Figure 6-2 Decompression Architecture 

On the upper part of the bus line, blocks necessary for the memory operations are 

located. Phase Locked Loop (PLL) block generates necessary timing signals for 

the SDRAM Controller and has no other tasks. SDRAM is only connected to the 

SDRAM Controller. Thus, it is the only block that can read and write to SDRAM. 

The modules to the below of the bus line communicates with the SDRAM 

Controller through Memory Interface. The Decoding Unit is the core of the 

architecture. It gets the required data from the Memory Interface and conveys the 

decoded commands to Integrator Units. There are n number of Integrator Units in 

the design. According to the order of the difference defined in the header part of 

the compressed file, the Decoding Unit selects the starting integrator via a 

demultiplexer and conveys the decoded differentiated commands to this 

integrator. Initial conditions for each integrator unit are transferred to them at the 

start of the system from the Memory Interface. The circuit schematics of an 
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Integrator Unit is illustrated in Figure 6-3. There are two adder block and a 

register storing the latest command value. If it is not the first Integrator Unit in the 

system, the differentiated command is not supplied to the circuit. Integrated 

commands coming from the previous unit is only fed to the corresponding unit. 

After the integration is done with n number of units, the Interpolator Unit transfers 

the commands to the UART Module for monitoring. When a controller is present 

in the system, the Interpolator Unit should also send the trajectory commands to 

the controller.  

  

 

Figure 6-3 Integrator Unit 

To decrease the complexity of the coding in VHDL, the schematic design 

property of Quartus II 11.1 Web Edition is employed. The hardware architecture 

(Figure 6-2) given is constructed within the software. The following sections 

elaborate the design of the units by explaining the State Transition Diagrams 

(STDs) utilized in each unit.  
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6.3.1 Hardwired Approach 

In this approach of the FPGA implementation of the command generation scheme, 

the hardware architecture illustrated in Figure 6-2 is implemented via designing 

the state diagrams of each module in Altera Quartus software. The details of each 

module are described in the following subsections.  

6.3.1.1 SDRAM Controller 

SDRAM Controller in the architecture is used to read and write to SDRAM 

located on the board over the Memory Interface in order not to deal with the 

details of the reading and writing procedures. The Memory Interface sends the 

related address information of the data required and the controller conveys the 

data to the Memory Interface. The controller utilized in the implementation is 

developed by Altera. The two outputs of the controller are connected to the 

Memory Interface to receive the specified words and the rest of the outputs are 

attached to the SDRAM chip on the board. 

In order to use the memory efficiently, the compressed code is structured as 

shown in Figure 6-4 for a generic command sequence. The first three words of the 

compressed data can be regarded as the header. Initial 4 bits of the first word 

indicate the order of finite difference (where a maximum of 15th order for the 

differences can be represented). The rest of the first word (28 bits) is reserved for 

expressing the length of the command sequence. The second word of the header is 

used to specify the number of words reserved for the AF and LF, which indirectly 

determines the starting address of the SF. Finally, the last word of the header 

gives the starting address of the ZF. After the header part, the initial values section 

is located. They are stored in the form of signed binary integers. The number of 

initial values necessary for integration is set by the order of finite difference 

which is represented with the first 4 bits of the data. After the information about 
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Compressed 
Data

001100....000000
000000....001010
000000....111110
111111....000111
000000....101100
000000....101011

111111....101100
101010....100101

111100....110010
000001....100101

001001....111111

{
Order of 

Difference }
Length of the 

Command 
Sequence

{Number of 
Amplitude & 
Length Field 

Words } Initial 
Values

101010....001010{Length
Field

{Sign 
Field

}Amplitude 
Field

32 Bits

} Address of 
Zero Field

101010....100101

111100....110010} Zero 
Field

 

Figure 6-4 Compressed File Format 

the compressed data and initial values are given, the LF is then stored in the 

proceeding words. Since the length of the header part and the number of initial 

values are known, the starting address of the LF is easily determined during 

decoding. Note that the amplitude and sign fields are located after the LF. The 

starting addresses of these two fields are calculated via the number of amplitude 

and length field words stored in the second word of the header. The last section of 

the compressed file consists of ZF words, whose starting address is provided in 

the third word of the header. With the described data format, the compressed 

sequences are generated without any error. 
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6.3.1.2 Memory Interface 

The second module to be introduced is the memory interface. Its main task is to 

establish and maintain the communication between the SDRAM on the 

development board and the other modules present in the structure. The STD 

developed for memory interface is given in Figure 6-5. There are 6 states in the 

diagram. The first state is the Idle state. After it is initiated with the Start or Reset 

inputs, the flow is switched to the next state that is Send Header & Initial 

Conditions. In this state, the header is fetched from the memory and sent to the 

decoding unit. After the header is sent, Send Amplitude and Length Words state is 

activated by setting the data_need signal to “01”. In the first operation of this 

state, first two words of the amplitude and length fields are sent to the decoding 

unit directly (Afterwards only one word of the fields are transferred). Then the 

operation of the memory interface is controlled by the decoding unit. It sends 

required signals to the memory interface and fetches words from different fields 

of the compressed code. At this stage of operation, the state continuously changes 

between three states Send Amplitude and Length Words, Send Sign Word, and 

Send Zero Word according to the coming signal (data_need) from the decoding 

unit. When the decoding operation is completed, the final state Done is activated. 
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Figure 6-5 STD of the Memory Interface 

6.3.1.3 Decoding Unit 

This unit can be regarded as the core of the hardware architecture, because ΔY10 

decompression algorithm is employed here. There are only two modules (Memory 

Interface and the first Integrator Unit) communicating with the Decoding Unit. Of 

these two units, only the Memory Interface gives inputs to the unit. After a 

differentiated command is decoded in the unit, it is fed to the first integrator in 

signed integer format along with an acknowledgement clock. STD of the 

Decoding Unit is given in Figure 6-6. There are fifteen different states in the 

diagram. Decompression starts with the reset input and firstly the header 

information is fetched from the SDRAM via Memory Interface. Afterwards, the 

necessary information for decoding is acquired by processing the header words. 

Later in the third state of the STD, initial amplitude and length words are fetched 

from SDRAM. The next state is the Decode Length Word state in which the 

length word is analyzed with bit operations and the length of the command is 

determined. Then amplitude of the command is determined in the Decode 

Amplitude Word state. When a command has components in two different words, 

the Detect Pair state is activated by setting the signal pair_flag to “1”. Another  
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Figure 6-6 STD of the Decoding Unit 

state connected to the Decode Length Word state is the Direction Change state. If 

the user changes the direction of the decoding, necessary modifications on the 

variables and the signals are done in this state. When there is a lack of data during 

decoding, the finite-state machine moves on to Fetch Amplitude and Length 

Words state to obtain the required data. After the amplitude of the command is 
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determined, it moves to Determine Sign state where the sign of the state is 

assigned. If there is a need for new sign word, the machine moves to Fetch Sign 

Word state. During the determination of the amplitude, if it is turned out that the 

amplitude is zero and the length is greater than one, it means that there exists a 

sequence of zeros. This is decoded in Decode Zero Word state. This state is in 

communication with two other states related to the zero field decoding. When the 

data in the zero field lies in two different words, then the Detect Zero Pair state is 

activated. If there is a lack of zero word, the flow continues to Fetch Zero Word 

state in order to receive the new zero word from the memory interface. After the 

command is generated in the related states, the machine goes back to the Decode 

Length Word state and continues decoding. When the decoding operation of all 

commands is accomplished, the last state Done is activated. 

6.3.1.4 Integrator Unit 

The circuit schematic of the Integrator Unit is supplied in Figure 6-3, but this 

circuit is not capable of handling the reverse directions. Therefore, a simple STD 

(Figure 6-7) is developed to generate commands in both directions. There are five 

states in the diagram. As in the other diagrams, the first state is the Idle state. 

After the Idle state is initiated, initial conditions are generated in the next state. 

Then in the third state, commands are generated according to the incoming 

decoded data from the decoding unit at the rising edge of data_clk signal. If the 

direction of the command generation is changed, the state Direction Change 

performs necessary tasks and continues its operation. When all the commands 

available in the memory are generated, the last state Done is activated. 
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Figure 6-7 STD of the Integrator Unit 

6.3.1.5 Interpolator Unit 

The interpolator unit performs necessary computations in order to interpolate 

between the consecutive commands according to the input (speed) given by the 

user. The STD of the interpolator unit is formed with seven states as can be seen 

in Figure 6-8.  The first and the last states are the same with the previous STDs. 

After the command is supplied to the Get Data state, there are two possible next 

states which are Interpolate and Generate Original Commands. If the user does 

not change the speed of command generation (Speed is at its maximum level), 

original commands are generated according to the frequency specified at the 

encoding stage. When an interpolation is necessary, the Interpolate state is 

activated. Direction change is detected in this state and necessary computations 

are carried out in the state Direction Change. When the user wants the system to 

generate constant commands for a period of time (Speed is set to its minimum), 

the related state performs the task. As usual when the command generation is 

completed, the last state becomes active. 
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Figure 6-8 STD of the Interpolator Unit 

6.3.2 Softcore Approach 

In the second approach of the FPGA implementations, rather than building the 

integrated circuit for the command generation scheme a softcore processor is 

utilized to generate the commands. For the construction of the processor, the 

System on a Programmable Chip (SOPC) Builder tool of Quartus is used. After 

the system is designed, the program required to run the command generation 

algorithm is written in NIOS II Embedded Development Environment in C 

language and then downloaded onto the FPGA development board for operation. 

The details of this implementation approach are given in the following 

subsections. 

6.3.2.1 Construction of the Softcore 

The softcore processor and its peripheral units are designed via SOPC Builder. As 

shown in Figure 6-9, there are ten different modules in the design. The first 
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module is the Central Processing Unit (CPU) of the design. The most primitive 

core of NIOS II is selected as the CPU which utilizes about 600 to 700 logic 

elements of the FPGA chip. The second module is the communication module. 

The compiled algorithm is transferred to the core through this module that 

employs serial communication. The third one is the on-chip memory module. Its 

data width is selected as 32 and total memory size is fixed to 36000 bytes. The 

preceding module flash controller is added in order to read and write onto the 

flash memory. The fifth module is utilized to output some of the signals for 

debugging purposes. Currently there are 8 outputs and they are connected to the 

LEDs on the FPGA development board. The next module is the controller for the 

SDRAM. The compressed motion command data are stored into the SDRAM and 

read via this module in the design. The following module is auxiliary module for 

the SDRAM controller. It generates necessary clock signals for the controller like 

PLL module in the hardwired approach. The System ID Peripheral is used to 

assign a unique ID when the system is generated. The next module Interval Timer 

is included in the design in order to measure the average command generation 

time. The last one helps the core get inputs from the user. These inputs are the 

speed (feedrate) and the direction of the generation along with the Start/Pause 

switch. After the core is designed, as in the hardwired approach the schematic 

property of Quartus is used to connect the inputs and outputs to the core (Figure 

6-10). 
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6.3.2.2 Machine Code 

In the second part of the softcore approach, the command generation algorithm is 

written in C programming language and the resulting are cross-compiled to run on 

the designed softcore processor deployed on the FPGA. The written program is 

provided in APPENDICES A. After the necessary libraries are included and some 

definitions are written, the main function of the program begins. Before decoding 

the compressed motion data, the required field are obtained from the SDRAM and 

written into the related variables. The start and end addresses of these fields 

should carefully be obtained. Otherwise, unrelated commands may be generated 

from the system. After obtaining the fields, the decompression is done and the 

commands are printed on the console along with the time elapsed. 

6.4 Performance Evaluation of the Method 

The implementation of the proposed command generation paradigm described in 

the previous sections is carried out on two different test cases: 

• Finishing of a plastic injection mold for a shampoo bottle using a high 

performance CNC vertical machining center. 

• Stencil cutting of a Rabbit [99] via a CNC router.  

The command generator is realized utilizing Altera Cyclone II FPGA DE1 

Development Board. The trajectories generated for the above-mentioned 

applications are illustrated from Figure 6-11 to Figure 6-14 and important 

properties of these test cases are summarized in Table 6-1. It can be inferred from 

this table that the differenced data set cannot be represented less than 2 bytes 

regardless of the cases. The Bottle test case has a higher position resolution than 

the Rabbit test case. Therefore, the differenced data set of the Bottle has much 

more zero sequences in the compressed form. This results in a decrease in the  
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Figure 6-11 Trajectory of the Machine Tool for the Bottle Test Case  

 

Figure 6-12 X, Y, and Z Axis Trajectories of the Bottle Test Case 
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Figure 6-13 Trajectory of the Machine Tool for the Rabbit Test Case 

 

Figure 6-14 X and Y Trajectories of the Rabbit Test Case 
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Table 6-1 Attributes of the Test Cases 

Case Bottle Rabbit 
Number of Axes 3 2 

Position Resolution [counts/mm] 10000  1000 
Samples / Axis 926642 14120 

Sampling Period [s] 0.001 0.001 
Command Duration [s] 926.642 14.120 
Range of Data [Byte] 3  3 

Range of Data (∇) [Byte] 2 2 
Range of Data (∇2) [Byte] 2 3 

Total Size of Data [kB] 8145 83 
Average Compression Ratio [%] 0.18 17.17 

Average Generation Time / Command [ms] 0.29 0.52 
Average Generation Time / Command (NIOS II) [ms] 32 48 

 

average generation time for the original commands since the generation of zero 

sequences takes less time when compared to the generation of regular points. 

Furthermore, due to the same reasons the average compression ratio for the Bottle 

is too low.  

The comparison of the generated commands and the original trajectory are not 

given in this chapter since there is no difference between them. The designed 

command generator produces the original commands without any error. On the 

other hand, the effect of the speed on the generated commands is further 

elaborated in the study of Yaman and Dolen [66]. Due to the interpolation, there 

may be representation errors less than 20 encoder counts. 

Table 6-2 shows the utilization of FPGA resources in terms of numbers and 

percentages (with respect to Altera Cyclone II 2C20 FPGA Chip) for different 

number of axis applications. In the last application of the FPGA implementations, 

the command generation algorithm is written in C programming language and the 

resulting are cross-compiled to run on a softcore processor (NIOS II) deployed on 

the FPGA. Then the resulted code is downloaded to the designed processor. The 
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pseudocode of the decompression algorithm is provided in Table 6-3. Given the 

compressed motion command data and the direction, the algorithm generates the 

differenced motion trajectory. After the integration is accomplished in an 

upcoming unit, the original trajectory is generated via interpolating according to 

the speed of generation. 

 

 

Table 6-2 FPGA Resources Used 

Resources X X & Y X, Y & Z NIOS II  (X) 
Total Logic  
Elements 

6144 
(33%) 

10984 
(59%) 

15267 
(82%) 

2433  
(13%) 

Total Combinational 
Functions 

5684 
(30%) 

10989 
(58%) 

16294 
(86%) 

2225  
(12%) 

Dedicated Logic 
Registers 

2134 
(11%) 

3881 
(20%) 

5626 
(29%) 

1463  
(8%) 

Embedded  
Multipliers 

4  
(8%) 

8  
(16%) 

12  
(24%) 0 

Total  
Pins 

85 
(27%) 131 (42%) 157 

(50%) 
85  

(27%) 
Total  
PLLs 

1  
(25%) 

1  
(25%) 

1  
(25%) 

1  
(25%) 

 
 

 

 

It can be inferred from Table 6-2 that as the number of axis included increases, the 

resources reserved for the implementation also increase. Since only one PLL is 

used for the SDRAM on the development board, its percentage remains the same. 

This is due to the fact that the pins connected to SDRAM are independent of the 

number of axis. There exists only one Memory Interface in each design. When the 

overall percentage of the resources utilized is considered, even a low-end FPGA 

chip is adequate to implement the proposed command generation paradigm. On  
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Table 6-3 Pseudocode for the Decompression of ΔY10 

Inputs: Compressed Motion Command Data, Its Statistical Attributes and 
Direction 
Outputs: Original Motion Commands 
Let Φ denote the number of bits in the length field 
i ← 0, counter ← 0, amplitude ← 0, signbit ← 0 
while i ≤ Φ do 
 if the consecutive bits in the length field are different then 
  assign the length of the command to counter 
  determine amplitude of the command 
  if (amplitude == 0) and (counter > 1) then 
   generate zero sequence 
  end 
  if amplitude  ≠ 0 then 
   fetch signbit 
   if signbit = 0 
    output amplitude 
   else 
    output  −amplitude 
   end if 
  end 
 else 
  counter + + 
 end if 
 if direction == 0 
  i + + 
 else 
  i − − 
 end if 
 counter ← 0, amplitude ← 0 
end while 

 

 

the other hand, the softcore approach utilizes less FPGA resources compared to 

the hardwired approach. It also does not employ any embedded multipliers in the 

implementation. Provided that the on board memory chips are used for the 

memory of the softcore, the hardware resources will remain constant when the 

number of axis is increased. Although it seems that the softcore approach has a 

solid advantage on the hardwired approach in terms of the resources, it is about 
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100 times slower than the hardwired implementation as seen in Table 6-1. This is 

the main disadvantage of the softcore processors provided by the FPGA vendors 

as Lysecky and Vahid [101] stated in their study. They proposed a hybrid 

approach to overcome the disadvantages of the softcores by transforming some of 

the critical regions to hardwired circuitry. 

6.5 Conclusion 

A motion command generation system capable of generating commands at 

variable feedrates for motion control systems is implemented on an FPGA 

development board via two different approaches and tested on two different test 

cases having different attributes. With the designed hardware, the trajectories for 

any robotics or CNC application can be generated directly without using any 

intermediate programming files provided that the encoded data is transferred to 

the memory of the hardware. 

The encoding scheme of the realized command generation paradigm has two main 

phases. In the first phase, higher order differences of the original command 

sequence are calculated. Then in the second phase the differenced data sequence is 

compressed with ΔY10 compression algorithm. Afterwards the compressed 

commands are decoded and the commands are generated via interpolation 

according to the current value of the feedrate and fed to the motion control 

system. The main points and contributions of the chapter can be summarized as 

follows: 

• The employed compression algorithm is developed to compress the integer 

command sequences. A detailed analysis on the performance of ΔY10 

compression algorithm can be viewed in the study of Yaman and Dolen 

[66]. Along with its compression performance, it is also decoded faster 

than the conventional methods such as Huffman, LZW and Arithmetic 

Coding. This is due to the fact that the compression scheme does not 
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employ any dictionary and it is not necessary to scan all the compressed 

data to generate the motion commands. 

• The developed FPGA design is independent of the trajectories. Provided 

that the number of integrator units in the hardware design is equal to the 

order of difference in the encoding session, the user only needs to store the 

compressed data to SDRAM and then start the system. If there is one less 

integrator unit on the hardware, then instead of position commands 

velocity profile is generated.  

• Since the design utilizes successive number of integrators, the velocity and 

acceleration commands may also be generated along with position 

commands. These higher order trajectories may be further used in 

advanced motion controller topologies.  

• After the hardware implementation of this novel command generation 

paradigm is realized, it may be integrated to the motion control units of 

printer equipments, textile machinery, industrial robots and different kinds 

of manufacturing machines. 

• Although two different approaches are utilized to implement the command 

generator, the hardwired approach is elaborated in a detailed manner in the 

chapter since the command generation speed is becoming more important 

with the improvements in the manufacturing and robotics industries. 

• In future studies, it is planned to integrate a curve offset generation 

algorithm to the current command generation paradigm and realize it with 

a more powerful FPGA chip. Thus, the motion trajectories of pocketing 

operations and 3D printers can be generated more efficiently. 
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CHAPTER 7 

 

 

CONCLUSIONS AND FUTURE WORK 

 

 

7.1 Conclusions 

In this dissertation, various command generation paradigms for different CNC and 

robotics applications are proposed along with the necessary algorithms to generate 

trajectories. The thesis starts with discussing the motivation behind the study. 

After sufficient reasons are stated in the first chapter, the literature behind the 

fields of command generation is reviewed in the following chapter. Before the 

introduction of the proposed paradigms, the third chapter focuses on one of the 

mostly used aspects of the command generation systems, which is curve offset 

generation. In this chapter, different algorithms are proposed and evaluated in 

terms of their time and memory complexities. The first variations of the command 

generation paradigms proposed in the fourth chapter do not utilize the curve offset 

generation methods.  They do employ various data compression algorithms to 

decrease the memory requirements of the tool trajectories. The compressed 

motion data are then decoded on the machine side and fed to the motion control 

units of the CNC machinery. Another command generation paradigm is proposed 

in the preceding chapter. The paradigm takes advantages of the symmetric 

properties of the machining parts and utilized the curve offset generation 

algorithms presented in the third chapter. With the paradigm, the tool trajectories 

are defined by the given commands of the method on a program. The compiled 

program is then installed on the hardware and the commands are generated within 

the machine. A sample hardware implementation of the command generation 
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paradigm proposed in the fourth chapter is explained in the upcoming chapter. 

The finite state machines utilized in the FPGA implementation are explained and 

the utilized hardware resources are discussed in the chapter. The main 

contributions of the studies discussed in the chapter can be summarized as 

follows.  

In the first section of the second chapter, curve offset generation algorithms are 

classified into four different fields based on image processing (morphological 

operations), NURBS, polynomial approximations, and Voronoi diagrams. The 

ones proposed in this dissertation do depend on the morphological operations. The 

memory requirement problem of these techniques is surmounted by utilizing only 

the relevant data. Then in the second section, the state of the art command 

generation systems for CNC machinery are discussed. The hardware 

implementations of various compression algorithms are evaluated in the following 

section. The command generation paradigm proposed in the fourth chapter of the 

thesis do also utilize a novel compression algorithm and its sample FPGA 

implementation is evaluated in the sixth chapter. Before speculating on the 

possible further research fields, command generation systems based on FPGA are 

evaluated.  

The third chapter of the dissertation focuses on the curve offset generation 

methods. Five different methods are proposed in the chapter. Four of these 

methods are using morphological operations to obtain the offsets of the given 

trajectories while the last one utilizes polygon operations in the computations. The 

first four methods are firmly linked to each other. The primitive one (MOBI) is 

employed on the binary images. Thus, it requires more memory than its evolved 

versions. The ones (MOBS, IMOBS, and AMOBS) proposed after the MOBI do 

not use binary images, rather they work with the boundary sets of the curves. With 

the utilization of the boundary data set, the memory requirement problem of the 

MOBI is solved, but the time complexity of the MOBS is still quadratic. Then 

with the introduction of IMOBS, the time complexity of the method is reduced to 

linear-in-time. This is accomplished by employing a grid search algorithm on the 

MOBS. The last method (AMOBS) based on morphological operations further 
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improves the performance of IMOBS by not generating the possible boundary 

points that are to be eliminated in the future steps of the algorithm. Due to the 

linear-in-time properties of the last two methods, they can be utilized in the 

hardware implementation of the command generation paradigm proposed in the 

fifth chapter of the thesis.  

The first type of the command generation paradigms is proposed in the fourth 

chapter. The paradigms depend on compressing the original trajectories via 

various compression approaches in advance and generating them on the embedded 

hardware of the CNC machinery. Before compressing the trajectories, their higher 

order differences are taken in order to decrease the range of the original 

commands. This differencing process results in the generation of acceleration, 

velocity and position trajectories at the same time provided that the order of 

difference is at least two. The proposed paradigms are evaluated according to the 

compression performances on different test cases. The proposed compression 

algorithm ΔY10 does better than the other conventional compression methods in 

general. This command generation paradigm is also realized on an FPGA 

development board and its details are explained in the sixth chapter.  

The second type of the command generation paradigm depends on the contextual 

modeling of the tool trajectories. The paradigm, named as VEPRO, utilizes the 

developed algorithms (curve offset generation and data compression) in the 

previous two chapters. Thus, it can be considered as the most advanced command 

generation paradigm of the thesis. In the VEPRO, the command trajectories of the 

tools or the machining heads are defined via the proposed commands. One of the 

main advantages of the written VEPRO programs is that by only changing the 

given base curves and the offset tables one may obtain totally different 

trajectories. For instance, in the fifth chapter three different trajectories are 

generated with only one VEPRO program. Furthermore, with the addition of few 

VEPRO commands the mirror image of the trajectories may be obtained as 

discussed in the chapter. When ΔY10 compression algorithm is also used to 

compress the base curves of the trajectories, original trajectories of 2.5D 

pocketing operations can be compressed to 0.4 %. If the compression algorithms 
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are not utilized, then the compression ratio becomes 4.2 % for the same test case. 

Thus, for higher compression rates it is better to compress base curve before 

loading them onto the memory of the VEPRO hardware.  

The last chapter before the conclusion discusses the details of the sample 

hardware implementation of the paradigm proposed in the fourth chapter of the 

dissertation. With the proposed hardware architecture, any trajectories of robotics 

or CNC applications can be generated without the need of an intermediate 

programming file. The developed FPGA structure is independent of the 

trajectories. If the necessary information is supplied in the header part of the 

compressed data set, the trajectories can be generated without any error. One of 

the main advantages of the implementation and the paradigm is that since there 

are at least two integrator units in the design, the velocity and the acceleration 

trajectories can also be transferred to the control units along with the position 

sequences. Although the implementation is carried out in two different ways 

(hardwired and softcore approaches), it is suggested to use hardwired approach 

due to its faster command generation capability.  

To summarize, the developed command generation paradigms in the dissertation 

can be embedded into the control units of the robotics and CNC applications in 

order to make use of their advantages over the conventional systems. 

7.2 Future Work 

Addition to the studies completed within the scope of the dissertation, there are 

still some major points that can further be investigated. These topics can be 

categorized as the improvement of the CCO part of the curve offset generation 

algorithms, realization of the command generation paradigm (based on ΔY10) on 

a motion simulator, developing post processors for CAM software aimed to 

generated VEPRO programs, hardware implementation, the test of the VEPRO on 

a real test case, and generation of 3D offsets.  



 183 

The current CCO algorithms of the curve offset generation algorithms (MOBS, 

IMOBS, and AMOBS) do employ the nearest neighbor technique to connect the 

offset boundaries without considering the overall distributions of the points. This 

approach results in a number of segmented curve offsets. With a better approach, 

these problems of the current CCO can be eliminated.  

Another future study can be the realization of the command generation paradigm 

based on the ΔY10 compression algorithm. For this approach, a motion simulator 

is planned to be used, but any CNC machinery or robotics application can also be 

utilized. When the realization of the paradigm is accomplished, the disadvantages 

and the deficiencies of the paradigm will undoubtedly be observed.  

The VEPRO programs can be generated within the CAD and/or CAM software in 

order to decrease the time spent for developing the programs and decrease the 

possible errors in the programs. This can be accomplished by writing post 

processors for the corresponding software. After the user defines the details of the 

machining operations, the developed post processor generates the VEPRO 

program.  

One of the obvious future studies can be the hardware implementation of the 

VEPRO command generation paradigm since it is not studied within the scope of 

the dissertation as opposed to the paradigm based on ΔY10 compression 

algorithm. The implementation of the VEPRO will be obviously more difficult 

than the implementation of the ΔY10 since the written and compiled VEPRO 

programs are to be processed on this hardware. After the hardware is realized, the 

system is planned to be tested on a desktop CNC milling machine. Beside 

classical machining operations, 3D printing operations can also be tested by 

simply changing the tool with an extruder.  

The curve offset generation algorithms developed in the dissertation are only 

applicable for 2D trajectories. On the other hand, 3D offsets are necessary for 

different kinds of CNC and robotics operations. For the VEPRO to be valid in 

these areas, an algorithm generating 3D offsets should be included into the 
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context of VEPRO. It should have linear time and memory complexities as in the 

2D algorithms.  
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APPENDICES A : NIOS II C CODE 

 

 

#include <stdio.h> 
#include <stdlib.h> 
#include "system.h" 
#include "altera_avalon_pio_regs.h" 
#include "sys/alt_timestamp.h" 
#include "alt_types.h" 
 
#define uint8 unsigned char 
#define uint16 unsigned short 
#define uint32 unsigned long 
#define int8 char 
#define int16 short 
#define int32 long 
 
int main() 
{ 
        alt_timestamp_start(); 
 alt_u32 time1,time2; 
 uint8 sign_ = 0; uint8 amp_ = 0; uint8 term_ = 0; uint8 zero_ = 0; uint32 
comlength; 
       int n; n = IORD_32DIRECT(0x02000000,0) >> 28; 
       comlength = 61440 & IORD_32DIRECT(0x02000000,0); 
 uint32 original[comlength]; 
 float original_we[comlength]; 
 int32 l1 = comlength - n;       //Length of the Sign Field 
 int32 l2 = IORD_32DIRECT(0x02000000,1)*4; //Length of Amplitude Field  
 int32 count = 0;                //Counts the length of the amplitude value. 
 int32 is = 0; int32 i1 = 0; int32 iz = 0; int32 j = 0; int k = 0; int32 k1 
= 0; 
 int32 kz = 0; int32 kzz = 0; int32 m1 = 0; int32 r = 0; int32 rs = 0; int32 
r1 = 0; 
 int32 rz = 0; int32 l = 0; int32 zeroSeq = 0; int32 s = 0; 
 const int 
twos[16]={1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768}; 
 uint8 term[1000]; uint8 amp[1000]; uint8 sign[1000]; uint8 zero[100]; 
 
 int i; int i_start; int i_end; 
       i_start = (n+3)*6;  i_end = i_start + IORD_32DIRECT(0x02000000, 1); 
 for (i=i_start; i<i_end; i++) { term[i-i_start] = 
IORD_8DIRECT(0x02000000,i);} 
       i_start = i_end + 2;  i_end = i_start + IORD_32DIRECT(0x02000000, 1); 
 for (i=i_start; i<i_end; i++) {amp[i-i_start] = 
IORD_8DIRECT(0x02000000,i);} 
       i_start = i_end + 2;  i_end = 4*IORD_32DIRECT(0x02000000, 2)-1; 
 for (i=i_start; i<i_end; i++) {sign[i-i_start] = 
IORD_8DIRECT(0x02000000,i);} 
       i_start = i_end + 2;  i_end = i_start + 100; 
 for (i=i_start; i<i_end; i++) {zero[i-i_start] = 
IORD_8DIRECT(0x02000000,i);} 
 i = 0; 
       time1 = alt_timestamp();   //Time measurement starts 
 while (k < l2) {     //Loop until all bits of length field are processed 
  i = k/8; r = k%8; k1 = k; i1 = i; r1 = r;   //Cursor position is 
determined 
  if (k == (l2-1)) {  //The last bit is processed 
   if ((((term[i]<<r)&128)==128)) {term[i]=term[i] & (254<<(7-
(r+1)));} 
   if ((((term[i]<<r) & 128)==0)) {term[i]=term[i] | (1<<(7-
(r+1)));} 
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  } 
  term_ = term[i] << r;   //Shifted length field byte 
  if ((term_ & 128) == 128) {m1 = 0; count ++;} 
  else {m1 = 128; count ++;} 
  if (((r != 7) & (((term_ 
<<1)&128)==m1))|((r==7)&((term[i+1]&128)==m1))) { 
   for (j=0; j<count; j++) {     
     // Amplitude Field 
    amp_ = amp[i1] << r1; 
    if ((amp_ &  128) == 128) { original[l] += twos[j];} 
    k1--; i1 = k1 / 8; r1 = k1 % 8; 
   } 
   if ((count > 1) & (original[l] == 0)) {   
    // Zero Field 
    kz = kz + count - 1; kzz = kz; iz = kzz / 8; rz = 
kzz % 8; 
    for (j=0; j<count; j++) { 
     zero_ = zero[iz] << rz; 
     if ((zero_ &  128) == 128) { zeroSeq += 
twos[j];} 
     kzz--; iz = kzz / 8; rz = kzz % 8; 
    } 
    for (j=0; j<zeroSeq; j++) { original[l] = 0; l++;} 
    zeroSeq = 0; kz++; 
   } 
   else {l++;} 
   count = 0; 
   if (original[l-1] != 0) {     
        // Sign Field 
    is = s / 8; rs = s % 8; 
    sign_ = sign[is] << rs; 
    if ((sign_ & 128) == 0) { } 
    else { original[l-1]= - original[l-1] ;} 
    s++; 
   } 
  } 
  k++; 
 } 
        time2 = alt_timestamp();   //Time measurement ends 
 //Prints the decoded commands on the console of the NIOS software 
 for (k=0; k<l1; k++) { 
  printf("%ld\n",original[k]); 
 } 
       //Prints the elapsed time 
        printf ("Time elapsed = %u ticks\n", (unsigned int) (time2 - time1)); 
        printf ("Number of ticks per second = %u\n", (unsigned 
int)alt_timestamp_freq()); 
 
  return 0; 
} 
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APPENDICES B : MATLAB FUNCTIONS 

 

 

 

FUNCTIONS INPUTS OUTPUTS EXPLANATIONS 

cogen • Binary image 

• Offset radius 

• Offsetted 

boundary 
Generates curve 

offset for binary 

images 

curoff • Boundary set 

• Offset radius 

• Number points in the 

structuring element 

• Set of offsetted 

curve segments 

• Number points 

in the structuring 

element 

Employs CBS part 

of MOBS curve 

offset generation 

algorithm 

curoff2Dot • Boundary set 

• Offset radius 

• Number points in the 

structuring element 

• Set of offsetted 

curve segments 

• Number points 

in the structuring 

element 

• Minimums and 

maximums of X 

and Y 

coordinates 

 

 

  

Employs CBS part 

of IMOBS curve 

offset generation 

algorithm 
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amobs • Boundary set 

• Offset radius 

• Set of offsetted 

curve segments 

• Minimums and 

maximums of X 

and Y 

coordinates 

Employs CBS part 

of AMOBS curve 

offset generation 

algorithm 

chain • Offsetted curve 

segments 

• Offset radius 

• Connected 

segments 

• Unconnected 

segments 

Employs CCO part 

of MOBS, IMOBS, 

and AMOBS curve 

offset generation 

algorithms 

unify • Curve segments 

• Offset radius 

• Connected 

offsets 
Reconnects the 

curve outputted with 

chain function 

squash • Offsetted curve 

segments 

• Squashed set of 

curves 

• Indexes of 

removed curves  

Removed the empty 

cells from the given 

cell vector 

qhash • Offsetted curve 

segments 

• Size of hash table 

• Minimums and 

maximums of X and Y 

coordinates 

• Distribution of 

points in the 

hash table 

• Various 

properties of the 

hash table 

 

Distributes the 

points in the 

offsetted curve 

segments to the cells 

in the hash table 

according to the 

coordinates of the 

points 
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discard • Boundary set 

• Offset radius 

• Hash table 

• Properties of the hash 

table 

• New hash table 

without invalid 

points 

Removes the global 

invalid loops present 

in the layout 

gcurve • Boundary set 

• Regions 

• Number of points 

• Resampled 

boundary set 
Resamples the given 

curves at a higher 

rate using low pass 

interpolation 

offsetError • Reference curve 

• Offsetted curve 

• Error at each 

offsetted point 
Calculates the error 

of the offset points 

for temperature plots 

dacomp • Vector 

• Order of difference 

• Compressed 

code 

• Dictionary 

• Ratio 

Takes the higher 

order difference of 

the vector and then 

compresses the 

vector with 

Arithmetic 

compression 

algorithm 

dhcomp • Vector 

• Order of difference 

• Compressed 

code 

• Dictionary 

• Ratio 

Takes the higher 

order difference of 

the vector and then 

compresses the 

vector with Huffman 

compression 

algorithm 
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rlez_dhcomp • Vector 

• Order of difference 

• Compressed 

code 

• Dictionary 

• Content of zero 

table 

• Ratio 

Takes the higher 

order difference of 

the vector and then 

compresses the 

vector with Huffman 

compression 

algorithm after 

employing RLEZ on 

the differenced data 

lzwmain • Vector 

• Order of difference 

• Compressed 

code 

• Dictionary 

• Ratio 

Takes the higher 

order difference of 

the vector and then 

compresses the 

vector with LZW 

compression 

algorithm 

dycomp2 • Vector 

• Order of difference 

• Compressed data 

structure 
Takes the higher 

order difference of 

the vector and then 

compresses the 

vector with symbol 

DY09 compression 

algorithm 
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dydcomp2 • Compressed data 

structure 

• Decompressed 

differentiated 

vector 

• Original vector 

Decompresses the 

given data according 

the DY09 

compression 

algorithm and then 

accumulates to get 

the original vector 

dycomp3 • Vector 

• Order of difference 

• Compressed data 

structure 
Takes the higher 

order difference of 

the vector and then 

compresses the 

vector with symbol 

DY10 compression 

algorithm 

dydcomp3 • Compressed data 

structure 

• Decompressed 

differentiated 

vector 

• Original vector 

Decompresses the 

given data according 

the DY10 

compression 

algorithm and then 

accumulates to get 

the original vector 

dymem • Vector 

• Order of difference 

• Required 

memories 
Computes the 

memory needed to 

compress a 

given time sequence 

using DY09 & 

DY10 techniques 



 202 

higherorderentr • Vector 

• Order of difference 

• Number of commands 

in a set 

• Sets of 

commands 

• Frequencies of 

the sets 

• Compressed data 

• Dictionary 

• Ratio 

Takes the higher 

order difference of 

the vector, combines 

the commands and 

compresses the 

resulting data 

according to the 

Markov probability 

matrix 

rentropy • Vector 

• Order of difference 

• Entropy 

• Matrix for 

occurrence 

frequencies 

• Resequenced 

vector 

Takes the higher 

order difference of 

the vector and 

computes the 

entropy 

vsint • Vector 

• Feedrate vector 

• Interpolated 

position 

sequence 

• Modified 

feedrate scale 

vector 

Performs linear 

interpolation on a 

given trajectory 

GCO •  •  Employs AMOBS 

curve offset 

generation algorithm 

for VEPRO 

command generation 

paradigm 
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