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ABSTRACT 

 

STRUCTURAL, ELECTRONIC AND MAGNETIC PROPERTIES OF VARIOUS 

NANOSYSTEMS: MOLECULAR DYNAMICS SIMULATIONS AND DENSITY 

FUNCTIONAL THEORY CALCULATIONS 

 

 

Sholeh Alaei 

Ph.D., Department of Physics 

 Supervisor: Prof. Dr. Şakir Erkoç 

Co-Supervisor: Prof. Dr. Seifollah Jalili 

                                                                              

April 2014, 171 pages 

  

In this study, we aim to investigate the structural, magnetic and electronic properties 

of various nanosystems using molecular dynamics simulation technique and density 

functional theory calculations. In the first part, iron oxide nanostructures (nanorods, 

clusters and nanoparticles) were considered. We applied strain, at different 

temperatures, on nanorods in order to study stability of iron oxide nanorods using 

molecular dynamics simulation. Furthermore, radial distribution functions of iron 

oxide nanoparticles at different temperatures using the same mentioned method are 

calculated. Besides, the electronic and magnetic properties of (Fe2O3)n (n=2-5) clusters 

were studied using Density Functional Theory. It came out that the most stable 

structures for n=2, 3 were ferromagnetic and for n=4, 5 were antiferromagnetic. It was 

found that by increasing ‘n’ the binding energy (Eb) increased, while such an 

observation was not seen for n=4 and n=5 and the relative energy was equal in these 

cases.  An interesting result was that one of the states for n=4 (n4-1) was a half-

metallic anti ferromagnetic, which is important in spintronics applications. The last 

part of this survey was pursuing the effect of transition metal atoms (Fe-Co-Ni) 
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adsorptions on magnetic and electronic properties of graphyne nanotubes. Magnetic 

atom doped graphyne nanotubes show interesting magnetic properties.  

 

Keywords: Iron Oxide Nanorods, Iron Oxide Clusters, Graphyne Nanotubes, 

Molecular Dynamics, Density Functional Theory 
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ÖZ 

 

ÇEŞİTLİ NANOYAPILARIN YAPISAL, ELEKTRONİK VE MANYETİK 

ÖZELLİKLERİ: MOLEKÜL DİNAMİĞİ BENZETİMLERİ VE YOĞUNLUK 

FONKSİYONELİ KURAMI HESAPLARI 

 

 

Sholeh Alaei 

Doktora, Fizik Bölümü 

     Tez Yöneticisi   : Prof. Dr. Şakir Erkoç 

  Ortak Tez Yôneticisi: Prof. Dr. Seifollah Jalili 

 

Nisaan 2014, 171 sayfa 

 

 

 

Bu çalışmada muhtelif nanoyapıların yapısal, elektronik ve manyetik özellikleri 

Molekül Dinamiği benzetişim yöntemi ve Yoğunluk Fonksiyoneli Kuramı hesapları 

ile yapılmıştır. İlk önce demir oksit nanoyapıların (nanoçubuklar, topaklar ve 

nanoparçacıklar)  yapısal, manyetik ve elektronik özellikleri incelenmiştir. Demir oksit 

nanoçubukların sağlamlığını incelemek için Molekül Dinamiği kullanarak 

nanoçubuklara farklı sıcaklıklarda gerilme uygulanmıştır. Ayrıca, farklı sıcaklıklardaki 

demir oksit nanoparçacıklarının radyal dağılım fonksiyonları hesaplanmıştır. Bunun 

yanısıra, topakların (Fe2O3)n (n=2-5)  elektronik ve manyetik özellikleri yoğunluk 

fonksiyoneli kuramı kullanılarak incelenmiştir. Hesap sonuçlarına göre en dayanıklı 

yapılar n=2, 3 için ferromanyetik ve n=4, 5 için antiferromanyetiktir. Topakların 

göreceli enerjisi n=4 ve n=5 için değişmezken, 'n' arttırıldığında bağlanma enerjisinin 

(Eb) de arttığı görülmüştür. İlgi çekici bir sonuç, n=4 (n4-1) için olan durumların 

spintronik uygulamalarında önemli olabileceği yarı-metalik antiferromanyetiktir. Bu 

çalışmanın son bölümü, geçiş metal atomları (Fe-Co-Ni) ile katkılandırılmış graphyne 

nanotüplerinin manyetik ve elektronik özelliklerinin incelenmesi hakkındadır. 
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Manyetik atomlar ile katkılandırılan graphyne nanotüpler ilginç manyetik özellikler 

göstermektedir. 

 

 

 

Anahtar Kelimeler:  Demir Oksit  Nanoçubuk,  Demir Oksit  Topak, Graphyne 

Nanotüp, Molekül Dinamiği, Yoğunluk Fonksiyoneli Kuramı. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

Nanotechnology or nanoscience deals with the production, characterization, synthesis, 

exploration, utilization and application of nano-sized objects and materials based on 

them, which are characterized by at least one dimension ranging from subnanometers 

to several nanometers (1nm=10
-9

m) [1]. Nanotechnology, a broad and 

interdisciplinary field, covers the incorporation of most of the basic sciences, biology, 

physics, chemistry, material science, engineering and pharmacology. Exploring the 

nanoscale and tackling new subjects attached, propel to a further comprehension of 

materials and their uses and great potential applications, for instance, in electronics, 

nanomedicine, optics, energy storage, magnetism and material development which is 

what science and technology is in favor of [2,3]. The peculiarity of the nanoscale is 

related to being on the border of the atomic and macroscopic world. Nanostructures 

are like a bridge between atoms or molecules and infinite bulk systems.  

Furthermore, nanomaterials have received more attention with the development of 

nanotechnology during recent decades. They possess large surface area to volume 

ratio in comparison to bulk forms, and therefore nanomaterials display unrivaled and 

totally different properties compared to their bulk components. As an example, for a 

crystal structure which is stable only at high temperatures, when its size reduces to 

nanometer, it may be stable even at very lower temperatures also, or ferromagnetic 

materials may lose their ferromagnetism when their sizes diminish to nanometer. 

Conductivity of materials also changes if their size reduces into nanoscale, for instance 

a bulk which is a semiconductor converts to an insulator in nanometer range [4].   
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One type of classification of nanostructures is based on the number of dimensions in 

nanoscale range. For zero dimensional (0D) nanomaterials, which all dimensions are 

at nanoscale, an electron is confined in 3D space. Nanoparticles, nanopores, atomic 

clusters and fullerenes are examples of 0D nanostructures called quantum dots. For 

one-dimensional (1D) nanomaterials like nanowire, nanorod, nanofiber and nanotubes, 

electron confinement takes place in 2D, whereas delocalization occurs along the long 

axis of nanorod/wire/tube. These 1D nanomaterials unfold promising properties since 

are the 1D quantum wires nanoscopic in diameter but microscopic in length. The 

conduction electrons in two-dimensional (2D) nanomaterials such as nanofilms and 

nanocoatings are confined across the thickness while delocalized in the plane of the 

sheet. In addition, bulk nanomaterials, as well as materials which possess 

nanocrystalline structures or bundles of nanowires are not confined to the nanoscale in 

any of directions lie within three-dimensional (3D) nanomaterials [1,2,5]. Figures 1.1 

and 1.2 schematically show some examples of this classification of nanostructures 

[5,6].  

In this work, we study nanostructures such as nanorods, nanoparticles and clusters of 

iron oxide and graphyne nanotubes and their electronic and magnetic properties in 

various conditions.  

 

1.1. Zero-Dimensional (0D) Nanomaterials 

 

As mentioned above about the definition of 0D nanostructures, we can say that zero-

dimensional structures, with their marvelous properties, are the smallest building 

blocks of nanoscience and nanomaterials design [7]. Their small size and high surface 

to volume ratio and also quantum size effects brings forward unprecedented physical, 

structural, optical, magnetic and chemical properties. The effects of diminished size 

are characterized as two types, internal and external effects, as well as quantum and 

classical effects. The quantum size effects reveal themselves for example in the rise of 

specific low dimensional quantum states or in a blue shift of luminescence, magneto- 
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Figure 1. 1 Dimensionality classification of nanostructures. Adapted from Ref. [5]. 



4 

 

.  

 

 

Figure 1. 2 Classification of Nanomaterials (a) 0D clusters, (b) 1D nanotubes, 

filaments, and rods, (c) 2D films and layers (d) 3D polycrystals. Adapted from Ref. 

[6]. 

 

resistance and other similar properties, while the classical effects become clear in 

variation of hardness, diffusion, thermal conductivity, plasticity. In turn the internal 

effects, regardless of external perturbations, include bandgap, melting temperature, 

luminescence, chemical activity and lattice parameters, the other effects are external 

ones which occur because of interaction between physical fields and materials whose 

size has been reduced to such a scale that is comparable with the free length of 

phonons, screening length and de Broglie wavelength of electrons. Noticing these 

matters, it is obvious that studying the unusual size-dependent properties in novel 

nanostructures has attracted high interest in recent decades. Since 0D nanostructures 

play significant role in building blocks for novel nanotechnology and also from an 

application point of view, keeping control over the morphology and composition of 

these structures, realizing and discovering of their various behaviors is necessary. 

Metals, metal oxides, carbon, silicates, biomolecules and polymers are some examples 

of nanoparticles. Metallic nanoparticles, due to their significant magnetization are 

considered for use in many areas rather than metal oxides, but since they are not 

enough stable against air, they should be used in oxidized form, which reduces their 

magnetizations. Fe, Ni and Co are samples of metallic nanoparticles [5,8]. 
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1.1.1. Clusters 

 

In general, clusters are groups of molecules and atoms whose size is, on average, 

between single atoms and molecules and bulk matter. One of the classifications of 

clusters is according to their size which is upon the number of atoms and molecules 

that constitute the clusters, so clusters can be small, medium-sized and large. The 

properties of small clusters alter suddenly with the variation in their sizes and shapes. 

Size variation effect in medium-sized and large clusters is smooth and changes with 

the number of constituents. The most important issue in the study of clusters is to 

recognize how atoms gather together in order to form a cluster and how the chemical 

and physical properties of a cluster change when its structure changes. Large number 

of atoms and molecules lie on the surface of clusters, since, in comparison with bulks, 

clusters possess a very large surface to volume [9,10], which is an important factor in 

surface chemistry for defining their properties. Some of the differences between bulk 

and clusters arise from the small volume of the potential well which confines the 

electrons in the clusters. The electrons, in this case, instead of having continuous 

bands, fill discrete levels. The numbers of atoms or molecules constituting the clusters 

are of considerable importance since not only the structure but also most of properties 

of clusters like relative stability, energy level spacing, magnetism, bonding and 

binding energy acutely depend on them. As an example the larger the number of 

atomic constituents of clusters are, the larger the number of local minima of the 

potential energy surface becomes. It should be pointed out that, in addition to the 

number of atoms in clusters, the type of the atoms and their bonding are also 

important. Thus, clusters can be classified into cluster molecules, semiconductor 

clusters, ionic clusters, metal clusters and rare gas clusters. Ionic clusters possess a 

large electronegativity difference between two elements and atoms are bound with an 

ionic bond. In semiconductor clusters, the bonds are strong and covalent. Metal 

clusters are diverse, as an example, the s-block metals delocalized metallic bond while 

transition metal clusters have many covalent bonds. Cluster molecules are among the 

more stable clusters and can exist in solid, liquid and gas. Furthermore, different kinds 
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of interactions of a cluster with electron, atom or other cluster are subject matters 

which appeared theoretically and experimentally. In addition, the interaction of a 

cluster with the external field has nonlinear response and is an emerging field of 

interest.  Nanoclusters have been used in so many applications, whose number is 

swiftly increasing. Interest in using them as catalysis has developed [11] due to their 

desirable surface to volume ratio. In biological fields, they have received a lot of 

interest, for instance, gold nanocrystal molecules have been used with short segments 

of DNA for constructing a basis for finding out more about genetic sequences. 

As pointed out before, the starting step for comprehending properties of clusters is 

recognizing their structure, their size, composition and related energy at stable 

structure.  

One of the challenging subjects in nanoscience is the behavior of magnetism in the 

reduced dimension and how it approaches the bulk limit. According to the 

experimental investigations the magnetic behavior is extremely different from the 

corresponding bulk behavior and in some cases these properties are very unexpected 

and interesting. In fact, the magnetic property is exclusively sensitive to the size and 

kind of atoms and particles in a cluster. For instance, some nonmagnetic elements 

display strong magnetism in this size regime, or magnetization depends on external 

field non-monotonically. It should be mentioned that the number of atoms in clusters 

affect directly magnetic moment, i.e. as the size of cluster changes, the magnetic 

moment varies, but this variation is not smooth and results in interesting local 

structures.  Magnetism in cluster science and in confined systems is a surprising and 

developing field and includes enormous implications to the emerging novel 

technology [3,11,14].  

 

1.2. One-Dimensional (1D) Nanomaterials 

 

One dimensional nanostructures like nanowires, nanorods may be metallic, 

semiconducting or insulating with diameter less than 100 nm and different lengths. 
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They are classified as one-dimensional materials due to the fact that the length to 

diameter ratio may reach up to 1000. At this scale the quantum mechanical effects 

become important and considerable; therefore such nanostructures are also called 

quantum wires. These promising nanostructures can be produced in a large variety of 

chemical compositions. Metallic: nickel, iron, gold, silver; zinc oxide (ZnO), 

magnesium oxide (MgO), iron oxide (Fe2O3), copper oxide and other metal oxides and 

semiconducting materials. 

 

1.3. Iron Oxides 

 

Magnetic properties and the nanomaterials which possess magnetic properties have 

become the focus of novel materials science by virtue of their various technological 

applications. Iron oxide nanomaterials, in particular, find broad applications and have 

attracted attention for their extensive usage in various cases like magnetic recording 

media, optical devices, cancer treatment, gas sensors and etc. [12-15]. In particular, 

iron oxide nanoparticles have created a powerful platform in diverse aspects of 

biomedical applications like magnetic resonance imaging (MRI) and also MRI-guided 

gene delivery or controlled drug delivery, cell labeling and many other cases [16].  

Iron oxides are widespread in nature and are easily synthesized in the laboratories. Up 

to now, 16 iron oxide compounds have been discovered such as oxides, hydroxides or 

oxide-hydroxides. The most important and common ones are iron (II, III) oxide, 

magnetite (Fe3O4); iron (III) oxide (Fe2O3) and its various phases i.e. alpha phase, 

hematite (α-Fe2O3); beta phase (β- Fe2O3); gamma phase, maghemite (γ-Fe2O3).  

From the point of view of fundamental research, iron (III) oxide is a suitable 

compound in order to investigate the polymorphism, magnetic and structural phase 

transitions of nanoparticles. Furthermore, as mentioned above, from the viewpoint of 

experimental and applied studies, iron (III) oxide in all its various forms is one of the 

most generally used metal oxides with a lot of applications in many different 

environmental, industrial and biomedical fields. Since iron oxides are components of 



8 

 

several ores, they are used widely for the production of iron and steel and exist in 

some important archeological and geological earth-samples and some extraterrestrial 

materials. Iron (III) oxides components, due to their hardness and surface resistivity, 

catalytic activity, and the other properties such as magnetic, electronic and optical 

properties are used as catalysts, abrasives, gas sensors, polishing agents, pigments, 

photoanodes for photoelectrochemical cells or contrast agents in magnetic resonance 

imaging [17-22]. 

Small iron oxide particles and nanoparticles display some specific and unique 

characteristic and features which are different from well-crystallized particles. These 

iron oxide nanoparticles play an important role in the above mentioned applications 

including development of novel optical, magnetic and electronic devices,  information 

storage, bioprocessing, magnetocaloric refrigeration, color imaging, magnetic 

recording media. The advantage of using iron (III) oxide nanoparticles in various 

fields is due to their chemical stability which is in contrast to the normally used 

ultrasmall particles of pure metals. Because of interesting application of iron (III) 

oxide nanoparticles in various fields, different sizes, structures and morphologies of 

these nanoparticles have been produced by using newly developed methods like laser 

pyrolysis, oxygen-hydrogen flame pyrolysis, micro-emulsion technique, sol-gel 

method, diode sputter deposition and etc. [17]. 

Hematite, alpha phase iron oxide, α-Fe2O3, is the oldest iron oxide and the second 

most plentiful mineral in rocks and soils with a blood red color. Hematite is a valuable 

ore and an important pigment. Its structure is similar to corundum with a hexagonal 

unit cell and is sorely stable. Hematite can be also classified in the rhombohedral 

system; in this case it has two formula units per cell.  For hexagonal, the unit cell 

parameters are a= 0.5034 nm and c=1.375 nm, but in rhombohedral system, unit cell 

parameters are a=0.5427 nm and α = 55.3°. Iron (III) ions occupy two thirds of the 

sites, oxygen ions are accumulated in the [001] direction and there is a vacant site in 

(001) plane [23]. In Fig. 1.3, a segment of bulk hematite structure is shown. 

Hematite is an antiferromagnetic material. Due to the moments of two sublattices in 

the basal plane direction which do not cancel each other, there is a small magnetic 
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moment in the mentioned plane. The preparation conditions of the hematite samples 

affect their magnetic properties. A phase transition in hematite happens at 263K, 

which is called Morin transition, antiferromagnetic phase turns to a weak 

ferromagnetic phase at mentioned temperature. At low temperatures, the hematite 

spins lie in the rhombohedral [111] direction, while they lie in the basal (111) plane in 

a canted position at high temperatures. The Morin transition temperature is affected by 

the crystallite size of hematite. Polycrystalline and single hematite display Morin 

transition. This temperature decreases with reduction in particle size and when the size 

is smaller than 20nm there will be no such transition in the sample [24-28]. 

 

 

 

Figure 1. 3 A model of a part of the bulk hematite structure. Crystallographic 

directions are shown. Oxygen layers alternate with Fe layers in the [001] direction. 

Adapted from Ref. [29].  

 

Maghemite, γ-Fe2O3 is the second most polymorph of iron (III) oxide which occurs in 

nature. It has an inverse spinel with a cubic unit cell, a=8.351 Å and P4132 space 

group which is isostructural with magnetite. All of the irons in maghemite are in the 

trivalent state. In Fig. 1.4 the structure of maghemite is shown. In each unit cell of 

maghemite, there are 21 1/3 iron (III) ions and 32 O
-2

 ions, cations are in tetrahedral 

and octahedral positions, 2 1/3 of the unit cell is devoted to vacancies (□) which are in 

octahedral positions. The vacancy ordering gives rise to the superstructure form of 

synthetic maghemite which is in relation with crystallite size [30].  As a result of this 

construction the stoichiometry of maghemite is the general formula of 
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. Maghemite can have various symmetries depending on the 

degree of vacancy ordering. Completely ordered maghemite possesses a tetragonal 

symmetries, otherwise it is cubic [31, 32]. At room temperature, maghemite is 

ferrimagnetic, while if the size of particles decreases to the about 10nm then 

maghemite will display superparamagnetic property. Furthermore, it transforms to 

hematite when temperature changes in a specific range, so its thermal instability 

disables the Curie temperature, Tc, determination of magnetic transition for 

maghemite. The range of the Curie temperature is estimated to be between 820 K to 

986 K [30].  Generally, the magnetic structure of maghemite includes two sublattices 

which each of them correspond to the Fe
3+

 particles that are located on octahedral and 

tetrahedral sites. Below the temperature Tc, the spin direction within each sublattice is 

parallel, while those of two sublattices are antiparallel. The spinel structure with two 

sublattices and number of iron ions in each of sublattices and decompensation between 

them causes ferrimagnetism. Thus, maghemite is a typical representative of 

ferrimagnetic materials which give high susceptibilities to all samples that it is 

contained in. Internal structure disorder, interparticle separation, size and 

agglomeration affect the magnetic properties of maghemite [30]. The ultrasmall 

maghemite particles display supermagnetism which makes maghemite to be one of the 

most reached materials for making supermagnetism theory relaxation. 

Maghemite nanoparticles are widely used in biomedical applications like DNA 

purification, drug targeting, hyperthermia, molecular biology and magnetic resonance 

imaging and also in industrial applications like catalysis and magnetic refrigeration. 

Beta phase iron oxide, β- Fe2O3, is a body-centered cubic bixbyite structure with Ia  

space group and two nonequivalent octahedral sites of Fe (III) ions in the crystal 

lattice which is shown in Fig. 1.5. It is magnetically disordered at room temperature 

and also it is thermally metastable converting to alpha phase at above 500 °C. It can be 

obtained by thermal decomposition of iron (III) sulfate or reduction of hematite by 

carbon or also by dehydroxylation of β-FeOOH at 170°C under high vacuum. The 

temperature that beta phase presents antiferromagnetic behavior, i.e. the Neel 

temperature, is in the range 100-119 K which is observed in various researches [17]. 
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Figure 1. 4 Crystal packing in the structure of γ-Fe2O3, the view onto (100). The 

circles which are shaded represents Fe atoms and white ones represent O atoms. 

Adapted from Ref. [30]  

 

 

 

 

Figure 1. 5 Crystal packing in the structure of β-Fe2O3, the view onto (110). Fe, 

shaded circles represent Fe atoms and white ones show O atoms. Adapted from Ref. 

[23].  
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The other phase of iron oxide is epsilon iron oxide, ε- Fe2O3, which is among the rare 

compounds like beta phase. Orthorhombic ε- Fe2O3 structure with Pna21 space group 

displays many intermediate structural features between α-Fe2O3 phase and γ-Fe2O3. 

This structure is isomorphous with GaFeO3 and AlFeO3. Three nonequivalent anion 

and also four cation positions exist in this structure. It has been reported that ε- Fe2O3 

transforms to α-Fe2O3 under heating at 500-750°C which depends on the preparation 

method. Besides, at temperature 210°C, i.e. Curie temperature, ferrimagnetic 

properties have been investigated [33-35]. 

Magnetite, Fe3O4, is one of the most common iron oxide materials with inverse spinel 

structure with 32 O
2-

 ions in the face centered cubic unit cell. Its structure is 

completely different from other iron oxides. Two kinds of iron ions divalent Fe
2+

 and 

trivalent Fe
3+

, exist in its formula. The positions of these cations is different, eight 

tetrahedral sites are distributed between Fe
2+ 

and Fe
3+

 ions, the trivalent ions are 

located both  in tetrahedral and octahedral positions .  

Magnetite shows high magnetization and is a ferrimagnet. Below the Curie 

temperature (850 K), in the tetrahedral and octahedral positions, the magnetic 

moments are antiparallel so the material will display ferrimagnetic properties. Around 

125 K, its electrical conductivity reduces and there is a semiconductor-insulator phase 

transition in magnetite. When the orientation of electrons changes to one direction in 

magnetite, it will behave like a metal, while the electrons aligned in the opposite 

direction it will behave like an insulator. This property of magnetite is the half-

metallicity behavior and due to this property this material is very useful for tunneling 

magnetoresistance devices [31]. 

 

1.4. Magnetic Properties 

 

Novel breakthroughs in materials mostly play a great role on the progress of 

technology and as a result can even influence economies and societies (e.g. the Bronze 

to Iron Age). Considering the effect of size of materials on their properties, we 
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conclude that novel nanostructure materials have provided hope for the detection of 

new phenomena and effects in order to developing novel nanotechnology which have 

gained great attention and relevance due to great variety of feasible and real 

applications in multidisciplinary fields like industry, medicine, pharmacy, physics, 

chemistry and many other fields. Recent improvements in magnetic materials have 

revolutionized the technology. Magnetic iron oxide nanoparticles have attracted great 

attention and gained acceptance in various fields of application of nanomaterials by 

virtue of their particular properties specifically magnetic properties.  

Magnetic properties of nanomaterials and nanoparticles are characterized by many 

factors like magnetic moment of the electrons, permeability and magnetic 

susceptibility for solids and nanomaterials, and for nanoparticles, chemical 

composition, the particle size and shape, the type of the crystal lattice, the morphology 

and different interactions of particles. Any changes in each of these parameters, shape, 

structure, size and composition, will affect the magnetic properties [36, 37].  

Magnetic properties of the materials are determined by the magnetic moments of each 

of electrons. Orbital and spin motions of each electron influence the macroscopic 

magnetic properties of materials. Orbital motion or orbital angular momenta is 

described by the electron spin that is originated along the orbit around the atoms 

nucleus. Spin moment is defined with the electron spin around its axis [38]. In Fig. 1.6 

and 1.7 orbital and spin magnetic moments are presented.  

 

 
 

Figure 1. 6 An orbiting electron which is equivalent to magnetic dipole moment. 

Adapted from Ref. [39].  
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Figure 1. 7 Spin magnetic moment precesses about an external magnetic field around z 

and has a value μz along z. Adapted from Ref. [39].  

 

When a material is placed in a magnetic field of strength , the intensity of 

magnetization  is related to  by the magnetic susceptibility κ of the material, 

 

                                                      (1.1) 

 

The magnetization  is defined as the magnetic moment of the sample per unit 

volume  

                                                       (1.2) 

 

 is a property of the material, and depends on the individual magnetic moments of 

the constituent ions, atoms, or molecules, and on how these dipole moments interact 

with each other. 

The density or flux of the lines of force in a material placed in a magnetic field is 

named the magnetic induction, , which are related together as follows, 

 

                                                   (1.3) 
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where μ is the magnetic permeability, and is defined as the tendency of the magnetic 

force lines to pass through a medium relative to their tendency to pass thorough a 

vacuum. Magnetic permeability is defined as, 

 

μ = μ0(1+κ)                                                (1.4) 

 

where μ0 is the vacuum permeability. The parameter μ is important for recognizing 

paramagnetic and diamagnetic materials from each other.  

The magnetic moment, m, is a parameter that quantifies the magnetic properties of a 

material but it is not measured directly and can be obtained from the measured molar 

susceptibility as the following relation, 

 

                                                  (1.5) 

 

where K is the Boltzmann constant and N is the Avogadro number. The Bohr 

magneton is the fundamental magnetic moment and is defined as,  

 

 Am
2 

                                (1.6) 

 

where  is mass of electron and e is electron charge. Considering the Bohr 

magneton, the expression (1.5) will reduce to  

 

                                             (1.7) 

 

The magnetic moment usually is expressed in Bohr magnetons. The interaction 

between orbital moment and the spin moment of electrons, μs, generates the magnetic 

moment. However the contribution of the orbital moment is very small in comparison 

with spin moment.  The magnitude of overall spin moment is defined by considering 

the number of unpaired electrons of each atom, 
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                                                     (1.8) 

 

where  is the sum of the spin quantum numbers, which is equal to the  for each of 

electrons and  is gyromagnetic ratio, for example  =2 for free electron [30, 39,40]. 

Magnetic materials have magnetic moments which are represented by the electric 

dipoles. As seen in Fig. 1.8, magnetic dipole moments are shown as an arrow, which 

can be thought of as a magnet with north and south poles. Those domains that have 

different directions are separated by domains walls. Magnetic orientation of each 

domain is different. Summation of all domain vectors will determine the magnitude of 

magnetization, for instance, in non-magnetic materials this summation is zero [41]. 

In the presence of an external field, all the atomic dipoles align themselves with the 

applied external field. The magnetization will not reduce to zero, when the magnetic 

field is eliminated or reduces to zero; this means the material is magnetized. In fact 

ferromagnets and ferrimagnets keep displaying interesting behavior when the 

magnetic field is reduced to zero and then reversed in direction. The graph of B or M 

versus H which is traced out is called hysteresis loop.  Schematic hysteresis loop of a 

ferromagnetic material is displayed in Fig. 1.9. As seen in this figure the maximum 

possible magnetization of a ferromagnetic material is obtained at saturation point (Bs). 

All of the magnetic dipoles are aligned in the same direction of external field at the 

saturation point [40]. Two important points are seen in the hysteresis loop (Fig. 1.10), 

coercivity and retentivity. The first one is the point of the reverse field which is 

needed for lowering the induction to zero, and the second one is the measure of the 

residual flux density which is corresponds to the saturation induction of a magnetic 

material, in fact, this point displays the material’s ability to retain some amount of 

residual magnetic field when the magnetizing force is removed after saturation. 
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Figure 1. 8 Representation of magnetic dipoles, before and after applying external 

magnetic field. Adapted from Ref. [41].  

 

 

 

 

 

Figure 1. 9 A typical hysteresis loop for a ferro-or ferrimagnet. Adapted from Ref. 

[40]. 
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Figure 1. 10 Coercivity and retentivity points of a typical hysteresis loop. Adapted 

from Ref. [40]. 

 

 

1.4.1. Classification of Magnetic Materials 

 

1.4.1.1. Diamagnetism  

 

As mentioned above, the electron spin and orbital angular momentum are two 

contributions of atoms magnetic moments. The other factor that affects magnetic 

moment of atoms is the change in orbital motion of electrons under an external 

magnetic field. Any change in orbital motion when an external field applied is known 

as diamagnetic effect, and it happens in all atoms, even in those atoms with filled 

electron shells. Since diamagnetism is a weak phenomenon so only those atoms that 

have no net magnetic moment are classified as diamagnetic. In other materials the 

diamagnetism is dominated by much stronger interactions like paramagnetism or 

ferromagnetism. Diamagnetic materials do not have a stable magnetic moment, thus 

they do not have wide range applications like other magnetic materials. Magnetic 

susceptibility of diamagnetic material is negative and that is, the magnetization 



19 

 

decreases as the magnetic field is increased. The diamagnetic susceptibility is given by 

the following relation, 

 

                                            (1.9) 

 

This relation is dimensionless and there is no explicit temperature dependence. In eq. 

(1.9), N is the number of atoms per unit volume, Z is the atomic number, c is the speed 

of light,  is the mass of electron and r is orbital radius [40]. The magnitude of 

diamagnetism susceptibility is very small; about 10
-6

 per unit volume. A recent 

application of diamagnetism is the magnetic-field-induced alignment of liquid 

crystals. If a strong magnetic field is applied, alignment of liquid crystals can be 

induced in which the diamagnetic susceptibility is anisotropic. Inasmuch as a 

diamagnetic material tries to exclude magnetic flux, the liquid crystal will tune itself 

such that the axis that possesses most negative diamagnetic susceptibility will be 

perpendicular to the magnetic field. The diamagnetic susceptibility is adjustable in 

liquid crystals by controlling the amount of macroscopic alignment [40, 42, 43]. Some 

examples of diamagnetic materials are organic materials e.g. many polymers, some 

ionic solids like alkalihalides, some metals such as Cu and Ag, and materials with 

closed shells atoms. Superconductors are among perfect diamagnetic materials with 

χ=-1 [39]. Iron oxides illustrate additional types of magnetism. When a diamagnetic 

material is placed in an external magnetic field, the applied field and the 

magnetization vector in the material will be in opposite directions, in fact the 

diamagnetic material tries to expel the applied magnetic field from material; this will 

interpret the cause of negative value of susceptibility. When the external applied 

magnetic field is nonuniform, the magnetization of the material will be in the opposite 

direction of B then the material experiences a net force toward smaller fields as it is 

shown in Fig. 1.11. This cause the diamagnetic material stays away from a permanent 

magnet. 
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1.4.1.2. Paramagnetism  

 

Paramagnetism occurs in materials which possess net magnetic moment, i.e. magnetic 

moment of ionic, atomic and molecular species are not zero. These magnetic moments 

are coupled to each other weakly and thus the thermal energy makes casual alignment 

of the magnetic moments. In other words, in paramagnetic materials, each atom 

possesses a permanent dipole moment by virtue of incomplete cancellation of spin of 

 

 

 

Figure 1. 11 A diamagnetic material which is placed in a nonuniform magnetic field. 

Adapted from Ref. [39]. 

 

electrons or orbital magnetic moments, but these magnetic moments are random. Thus 

application of a magnetic field causes the moments to align parallel to the field since 

the atomic dipoles are free to rotate, but only a small fraction of moments are diverted 

into the field direction, so paramagnetism occurs when they preferably align in the 

presence of an external field, this is displayed in Fig. 1.12b . The magnetic 

susceptibility is small and positive between 10
-3

 to 10
-5

, furthermore; its value depends 

on temperature. Its behavior is explained by Curie- Weiss law, 

 

                                                              (1.10) 
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where TC is Curie temperature , CM is Curie constant and T is temperature. According 

to relation (1.10), temperature increases as  decreases. The reason for this decrease 

is in the opposition of stronger thermal vibrations to the increment of alignment of 

magnetic moments when temperature rises. 

Since both diamagnetic and paramagnetic materials, only in the presence of an 

external field, expose magnetization; so they are assumed to be nonmagnetic. The flux 

density  within both of them is approximately identical as it would be in a vacuum. 

In figure 1.12 (a) and 1.12 (b), a comparison of diamagnetic and paramagnetic 

materials in the external magnetic field are presented [41]. 

 

1.4.1.3 Ferromagnetism 

 

Ferromagnetic materials such as transition metals cobalt, iron and nickel possess large 

and permanent magnetization even in the absence of an external magnetic field. 

Electron spin and orbital moments, both contribute to this behavior, i.e., the parallel 

alignment of electron spins and uncancelled electron spins and small contribution of 

orbital magnetic moment are responsible for this property. Even in the absence of 

external field, coupling interactions produce net spin magnetic moments of neighbor 

atoms to align with each other in a ferromagnetic materials, it is illustrated in Fig. 1.13 

schematically. The source of these forces is not entirely known, but it is predicted to 

happen because of the electronic structure of metals. The regions in the crystal which 

these mutual spin alignments exist are called domains. These kind of materials possess 

overall net magnetic moment, positive and large susceptibility (10
-2

 to 10
6
) and also 

large magnetic permeability. Increasing temperature will reduce the ordered 

arrangment of spins. This is due to thermal fluctuations of the singular magnetic 

moments. Temperature increasing also decreases susceptibility. This temperature 

dependence does not obey the Curie- Weiss law. 
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Figure 1. 12 (a) The atomic dipole configuration for a diamagnetic material in the 

presence and absence of an external magnetic field. Without an external field there is 

no dipoles, but with a magnetic field, dipoles are induced that are aligned in the 

opposite direction to the external field. (b) Atomic dipole configuration of a 

paramagnetic material in the presence and absence of an external magnetic field. 

Adapted from Ref. [41]. 

 

 

As mentioned before, there is a transition temperature termed the Curie temperature 

(TC) which is specific for ferromagnetic and ferrimagnetic materials [30,41,44]. Below 

this temperature material is ferromagnetic, above that it will behave like paramagnetic 

materials (See Fig 1.14). In a ferromagnetic material, when all the magnetic dipoles 

are mutually aligned with the applied external field, the maximum magnetization or 

saturation magnetization, Ms, occurs. The corresponding flux density is called 

saturation flux density Bs. Both   Product of number of atoms and the net magnetic 

moment of each of atoms will produce the saturation magnetization. 
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Figure 1. 13 Schematic illustration of mutual alignment of atomic dipoles in a 

ferromagnetic material. Adapted from Ref. [41].  

 

 

 

 

Figure 1. 14 Curie-Weiss Law for ferromagnetism. Adapted from Ref. [44]. 

 
 

The graph of B versus H, or hysteresis loop for ferri and ferromagnetic materials have 

been shown in Fig. 1.9 schematically.  

 

 

1.4.1.4 Antiferromagnetism 

 

The phenomenon of magnetic moment coupling between neighbor atoms in 

antiparallel alignment or electron spins of equal magnetic moments alignment in an 
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antiparallel (opposite) direction in a material is termed antiferromagnetism. These 

materials can be thought as containing two identical and interpenetrating sublattices of 

magnetic ions, as shown in Fig. 1.15.  

 

 

 

 

 

Figure 1. 15 Ordering of magnetic ions in an antiferromagnetic lattice. Adapted from 

Ref. [41]. 

 

 

Below the specific temperature called the Neel temperature, one set of magnetic ions 

is spontaneously magnetized while the other set is magnetized in the opposite 

direction but the same amount. As a consequence, antiferromagnetic materials have no 

net spontaneous magnetization and in the presence of external field, their answer is 

similar to paramagnetic materials at a fixed temperature. Such materials have positive 

permeability and small positive susceptibility which is temperature dependence above 

the Neel temperature, i.e. enhancing temperature will result in rise in susceptibility, 

since the antiparallel ordering is disrupted, while below the Neel temperature it 

reduces when temperature decreases as it is displayed in Fig. 1.16 [30,40]. Above the 

Neel temperature the antiferromagnetic material changes to paramagnetic material.  
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1.4.1.5. Ferrimagnetism 

 

Ferrimagnetic materials exhibit permanent magnetization which from macroscopic 

view, the materials are similar to ferromagnets below the Curie temperature, the only 

difference lies in the origin of the net magnetic moments. But in Fig. 1.17, the form of 

typical ferrimagnetic magnetization curve is completely different from the 

ferromagnetic curve. 

 

 

 

 

 

Figure 1. 16 Typical temperature dependence of susceptibility in an antiferromagnet. 

Adapted from Ref. [40]. 

 

In addition, these materials just like antiferromagnetic ones include some 

interpenetrating sublattices, within which, the spin alignments are antiparallel. As it is 

illustrated in Fig. 1.18, the values of spin moments are not equal so these kinds of 

materials possess a net magnetic moment even in the absence of external magnetic 

field. As it is clear in Fig 1.18, spin directions of A atoms are the same, but spin of B 

atoms are aligned in opposite direction. Since the magnetic moments A atoms are 

greater than B ones, so the net magnetic moment is nonzero. Ferrimagnetic materials 

like ceramics are typically nonconducting, so they are among good candidates for 
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high-frequency electronics applications. Cubic ferrites display ferrimagnetism. These 

materials are indicated by the chemical formula MFe2O4, M implies any metallic 

element. The prototype ferrite is Fe3O4. There is a net spin magnetic moment for both 

Fe
2+

 and Fe
3+ 

ions, and the O
2- 

ions are neutral magnetically.  Between Fe atoms, there 

are antiparallel spin coupling interactions which is identical to antiferromagnetism. 

However, the net ferrimagnetic moment occurs from the incomplete cancellation of 

spin moments.  

 

 

 

 

Figure 1. 17 Comparison of magnetization and inverse susceptibility in typical ferri- 

and ferromagnets. Adapted from Ref. [40]. 

 

 

1.4.2. Magnetic Behavior of Iron Oxides 

 

In a solid, the interaction between iron atoms cause parallel or antiparallel spins 

alignments. In iron oxides each iron atom is surrounded by O
2-

 ions, thus the exchange 

happens via the intervening ligand, i.e. there will be interactions between unpaired 

electrons in the eg orbitals of Fe
3+

 ions and electrons in the p orbital of O
2-

 ions. In this 

situation coupling of electrons of cation and ligand will occur since they are close 

enough together, thus a chain coupling effect in the crystal is accomplished. 
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Figure 1. 18 Magnetic ordering in the ferromagnetic crystal. The A atoms possess 

aligned spins in on direction, and the spins of B atoms are aligned in opposite 

direction. Since the magnetic moment of A and B atoms are not equal so the net 

magnetization, M, is not zero in the crystal. Adapted from Ref. [39].  

 

 

The exchange constants depend on the Fe-O bond length and bond angles. In Table 

1.1 the different types of exchange reactions in iron oxides and dependence of their 

interactions on the bond length and bond angles are compared. For instance, for Fe2+, 

when the bond angles are 120-180, the exchange interactions are strong [45].  

 

 

Table 1.1 Exchange interactions in iron oxides. Adapted from Ref. [45]. 

 

Ion pair 

Fe-O-Fe bond 

angle 
 

 Type of interaction                                 

 

Fe
3+ 

- Fe
3+

 

            

             90°                                                         

           120° 

 

 

Weak antiferromagnetic 

Strong antiferromagnetic 

  

Fe
2+

 - Fe
2+

            90° 

       120-180° 

 Weak antiferromagnetic 

Strong antiferromagnetic 

  

      

 

 

Following the scenario of ferrites, we consider cubic ferrites whose crystal structure is 

inverse spinel.  There are two types of positions for iron cations. For one type, the 
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coordination number is 4 in tetrahedral coordination and each of iron ions is 

surrounded by four oxygen neighbors. The coordination number is 6 for other iron 

cation which is placed at octahedral coordination. In this structure half of the Fe
3+

 ions 

are placed in octahedral and half of the others in tetrahedral positions, while all Fe
2+

 

ions are situated in octahedral positions. The arrangement of the spin moments of iron 

ions is very important; the Fe
3+

 ions in the octahedral positions are aligned parallel to 

each other, provided they are aligned in antiparallel directions for the tetrahedral 

positions. In the Fig 1.19 and Table 1.2 the various configuration of spin moments of 

iron cations are shown [30, 41, 46]. 

 

 

 

 

 

Figure 1. 19 Schematic diagram of the spin magnetic moments configuration for Fe
2+

 

and Fe
3+

 ions in Fe3O4. Adapted from Ref. [46].  

 

 

The spin moments of all Fe
3+

 ions cancel each other, so they will have no contribution 

to the net magnetization in the solid. The summation of the parallel moments of Fe
2+

 

ions which are aligned in the same direction will not be zero, as a result the total 

moment of Fe
2+

 ions have main contribution in net magnetization of solid.  
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Table 1.2 The distribution of spin magnetic moments for Fe
2+

 and Fe
3+

 ions in a unit 

cell Fe3O4. Adapted from Ref. [41]. 

 

 
 

 

1.5. Graphyne  

 

The atoms of the chemical element carbon can be bonded together many different 

ways. These different ways of bonding of atoms are known as allotropes of this 

element. Diamond, graphite, graphene and graphyne are examples of carbon 

allotropes. 

They all have very different chemical and physical properties. Among all carbon 

allotropes, only two exist freely in nature: diamond and graphite. The others are non-

natural and they have been predicted or have been already synthesized in the 

laboratory [47]. 

Figure 1.20 (a) and (b) show a schematic view of carbon atom and the energy bands of 

its atomic orbitals [48]. The "2s" and "2p" orbitals have very similar energies, -19.20 

eV and -11.79 eV. This allows electrons from different carbon atoms to overlap and 

pair with each other to form hybridized atomic orbitals, for example, sp, sp
2
 and sp

3
 

hybrid orbitals like graphynes (GYs) and Graphdiynes (GDYs).  

Graphyne is a two dimensional allotrope of carbon predicted by Baughman in 1987 

[49]. It is a one atom thick layer of carbon network and it has mixed hybridization, i.e. 
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it has carbon atoms only in sp and sp
2
 hybridization state. The sp hybrid orbital is a 

mixture of one "2s" and one "2p" orbitals and in sp
2
 hybridization the 2s orbital is 

mixed with only two of the three available 2p orbitals. Graphyne has a structure 

similar to the graphene but instead of only sp
2
 there are also sp carbon atoms.   

As it is clear in Fig 1.21, the hexagonal rings in graphyne which are formed by sp
2
 

hybridized carbon atoms are spliced by acetylenic linkages  instead of 

some  bonds, encompassing pores that are larger than densely packed 

honeycomb lattice in graphene [50,51]. 

Whereas these carbon (sp+sp
2
) sheets possess high level π-conjunctions and acetylenic 

bonds which associated with sp-hybridized atoms, represent some uncommon 

electronic properties, high temperature stability, nonlinear optical susceptibility, 

conductivity and mechanical properties similar to graphite. Duo to these peculiar 

properties, these kinds of materials are considered as promising materials for 

utilization in next generation of nanoelectronics, energy storage applications, and 

hydrogen storage. Hence, tuning of these materials is of great importance for future 

applications. There are many different types of graphyne. For example, the graphyne 

allotropes α , β and γ graphynes, have the same hexagonal symmetry as graphene. As a 

consequence they have very similar electronic and vibrational properties to graphene. 

Figure 1.21 shows a schematic presentation of the structure of graphyne, α- graphyne, 

β- graphyne and γ-graphyne. On the same figure one can see that the hexagonal carbon 

rings in graphyne are joined by the so called acetylenic linkage. Experimentally 

graphyne sheets have not been synthesized yet, but the other family member, 

graphdiyne, with diacetylenic linkages between hexagons has been synthesized on 

copper surface [47,53].  

 

This thesis is divided into five chapters. In the second chapter, the theoretical methods, 

Molecular dynamics and density functional theories, which are used in the 

investigations of the studied systems, have been explained. In the third chapter, the 

results of the molecular dynamics simulation for the studies systems (iron oxide 

nanorod and nanoparticles) will be presented. In the chapter four, the results of 
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applying density functional theory for the iron oxide clusters and Graphyne nanotubes 

will be given. And the last chapter presents a brief conclusion and summary of all 

mentioned results. 

 

 

 

 

Figure 1.20 Schematic diagram of Carbon (a), Carbon energy levels (b). Adapted from 

Ref. [48] 
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 (a)                                                            (b) 

    

(c)                                                                  (d) 

 

Figure 1.21 Schematic presentations of graphyne (a) α-graphyne (b), β-graphyne (c) 

and   γ-graphyne (d). Adapted from Ref. [49,52] 
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CHAPTER 2 

 

THEORETICAL METHODS 

 

 

 

2.1. Molecular Dynamics Method 

 

Molecular Dynamics (MD) simulation method is designed to explain atomic motions 

as a function of time. The goal of MD simulation is to predict the macroscopic 

behavior of the system under study which is consequence of microscopic interactions. 

Hence, a molecular dynamic simulation can be employed for assessing material 

behavior which occurs at lower length scales that cannot be extrapolated from 

experimental data. 

Molecular dynamics method takes Newton’s equations of motion as a basis for the 

atoms which interact by applying forces on each other. Based on the interaction model 

and with the help of these fundamental laws, the MD simulation determines the atoms 

trajectories, i.e. computes future positions of atoms or molecules of studied system; in 

a simple term, MD is a method of particle tracking. Besides, the forces which act on 

atoms and also energies of particles in the system will be specified [54-56].  In MD 

simulation the system is propagated through the phase space. 

Accordingly, a molecular dynamics simulation comprises the following parts: at first, 

one should find a model which explains the interaction of the particles or atoms 

constituting the system. This interaction is determined by the interatomic potential 

energy functions (PEFs). Using the suitable interatomic potential, appropriate initial 

and boundary conditions, the numerical integration of the atoms equation of motion, 

i.e. Newton’s equations is performed. In MD simulations, the approach for solving the 

Newton’s equations of motion is equivalent to that of the macroworld, using the 
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calculated forces, we can find acceleration. The last step is extracting proper and good 

results from the raw atomic trajectory information. 

 

2.1.1. Canonical Ensemble  

 

Considering a simulated system which includes large number (10
2
 - 10

8
) of atoms, we 

see that so many microstates which correspond to the each of macrostates exist.  

However, for predicting macroscopic quantities and observables and also noticing the 

degrees of freedom of each single atom, it is needed to solve several differential 

equations which are time-consuming and long calculations. For easing this 

complexity, ensemble theory is applied. The collection of all microstates which define 

and replicate the characteristic of the whole system called an ensemble. Using 

ensembles, we can reduce the information which is needed to describe the system and 

finding an observable by applying some restrictions on the observables of the system 

under study.   

For running the dynamics simulation in the system, a statistical ensemble should be 

selected. Generally, there are three main ensembles: 

 Microcanonical ensemble (NVE); which number of atoms, volume and energy 

are constant.  

 Canonical ensemble (NVT); which describes a system with constant number of 

atoms and constant volume and temperature.  

 Grand canonical ensemble (μVT); which the number of atoms in the system is 

not fixed, energy and number of particles can exchange which results in fixed 

chemical potential and temperature.  

In this study for investigating the stability of nanorods at different temperatures, the 

system has been kept at thermal equilibrium with the surroundings. Number of atoms 

N of the system are isolated from the surroundings i.e. are constant. They are 

contained at constant volume V and interact with each other through the potential 

energy function (PEF) or U. The canonical ensemble (NVT) satisfies these conditions 
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and we apply it in our simulation. A typical MD simulation on the basis of NVT 

ensemble consists of the following steps:  initialization that is obtaining the initial 

coordinates, , and initial velocities, , using Maxwell-Boltzmann distribution. 

Besides, in this step, all simulation parameters such as cut-off distance, potential 

function parameters, time-step and equilibration steps are set. In equilibration and 

production steps, which are essentially the same, except that, in production step, 

properties of concern are found. The forces are calculated using potential energy 

function, then solving MD equations of motions, the time evolution of coordinates, 

velocities and kinetic energies are obtained. All procedures of calculation are repeated 

till the MD steps are expired. Reliability of simulation results depends on the accuracy 

of potential energy function which can be precisely obtained from calculations which 

are based on quantum mechanics. Suppose the potential energy function for N number 

of atoms is written as 

 

                                                                                            (2.1) 

 

The energy of specific phase space state of a system is described through the 

Hamiltonian   

 

                              (2.2) 

 

where the first term on the right hand side is the kinetic energy and the second term is 

potential energy which is related to the interaction between particles. The phase space 

state is the spatial orientation of the molecules ( ) and the momentum ( ). Owing 

to the constraint on the internal potential and temperature, the phase space is not 

completely independent. Using statistical mechanics during MD simulation will 

establish the possibility of formulation of the solutions of differential equations of 

motions and so finding the macroscopic and microscopic properties. The forces which 

act on atoms are calculated as follows: 
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              i=1,2, …, N                       (2.3) 

 

where  and  are the mass, position and force vector of atom i, respectively. This 

classical form of the motion equation is a true approximation of the Schrödinger 

equation in the case that the atoms are not too small and the temperature of system is 

comparable with the gap of quantum energy levels associated with the dynamics. In 

fact, two approximations govern the classical motion equations for describing the 

atoms. The first one is Born-Oppenheimer approximation [57] which is based on the 

postulate that the electronic state couples to nuclei motion adiabatically. The second 

approximation is that the motion of nucleus is far removed from the Heisenberg 

uncertainty lower bound: . If we consider the kinetic energy as 

 and , where  defines characteristic vibrational frequency, we get 

. This relation in solids means that the temperature should be remarkably 

greater than the Debye temperature. Actually for crystalline solids, results of MD 

simulation for heat capacities show large deviations from experimental data. For 

correcting this error, various schemes have been proposed like the Wigner-Kirkwood 

[58] expansion or path integral molecular dynamics [59]. The key and crucial point in 

MD simulation is evaluating the right-hand side of equation 2.3, which consumes most 

of the computational time in simulation process. For instance, there are special 

algorithms for Coulomb interactions in order to break them into two contributions 

which both of them can be computed in separate ways efficiently: a smooth, field-like 

interaction and short-ranged interactions such as Lennard-Jones potential [60]. 

In this study, for solving the equation 2.2 which is a system of 3N coupled second-

order differential equations, first we have to discretize the time, i.e. we specify  at 

a series of time instances . Commonly, the time axis is discretized uniformly, 

, where  called as time step. Various simulation algorithms are used for 

integrating the equation of motion and finding the  , for  i=1,2,…[61], and force 

for which both of them are the most time-consuming steps in MD simulation. 
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Numerical methods for numerical integration of equation of motion are categorized 

into two groups: Verlet Type Algorithms which consists of the Verlet Algorithm, 

Velocity Verlet Algorithm and Leap-Frog Algorithm. The second group is Predictor 

Corrector Algorithms (Nordsieck-Gear Algorithm). Verlet method [62] is among the 

important numerical algorithms which were produced for MD simulation.  

 

2.1.2. Verlet Algorithm 

 

Verlet algorithm allows for a relatively larger time step and uses a smaller number of 

arrays. This method can be directly used to solve any form of equation of motions 

numerically. The Verlet algorithm starts by approximating  as 

 

                                 (2.4) 

Thus 

 

                        (2.5) 

 

                  (2.6) 

 

If we know  and , we can find . That is to say, if we have 

information about the values of  and , we can solve the equation for all 

 for n=2,3,4,…. Although this is enough for computing the whole trajectory of 

the atoms, it does not determine the velocities of the atoms which are demanded for 

calculating various physical quantities as a function of time. For computing the 

velocities, we use 

 

                                   (2.7) 
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These velocities will give the kinetic energies of each of atoms which adjust the 

temperature of the heat bath [62-64].  

In this study the simple scaling thermostat [65] has been used in the MD simulations 

to control the temperature of the system studied. Using the total energy conservation 

of a dimer 

 

                                                      (2.8) 

 

and rewriting this equality as the following, 

 

                                                  (2.9) 

 

And considering  as  and  as ,  can be find as, 

 

                                                     (2.10) 

 

Actually, in practice molecular dynamics time step DT, is commonly defined as 

 [65]. 

 

 

2.1.3. Periodic Boundary Condition (PBC) 

 

Molecular dynamics simulation occurs in a simulation box. The size of the simulation 

box is defined by boundary conditions. There are two main types of boundary 

conditions, isolated boundary condition (IBC) and periodic boundary condition (PBC). 

The first one is suitable for studying clusters and molecules and the second one is 

suited for studying bulk solids and liquids. In some systems like slab or wire 
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configurations both of them together can be used. In isolated boundary condition, the 

system which includes N particles is surrounded by vacuum, i.e. the particles in the 

systems interact among themselves. They have no interaction with the outside except 

they may respond to some well-defined external forcing. Periodic boundary condition, 

the one which we have applied in our study, is one of the most common boundary 

conditions that is used because it demonstrates an infinite number of atoms performing 

the simulation in a single unit cell. Introducing periodic boundary condition is 

essential in order to use comparatively a few numbers of molecules to simulate 

properties of bulk. If not, molecules which are on the surface experience different 

forces from molecules in the bulk. Periodic boundary condition is applicable along 

one, two and three directions of the simulation cell. Boundary conditions may be fixed 

or free ones. Applying periodic boundary conditions will eliminate the edge effect due 

to actual physical walls. In periodic boundary condition the simulation box is repeated 

throughout the space to form an infinite lattice. According to the minimum image 

convention as the molecule abandons the central box, one of its images enters to the 

box through the opposite face [55, 66,67].      

 

2.1.4. Property Calculation 

 

Statistical averages over raw trajectories yield various physical properties which are 

nearly divided into four groups: 

1. Structural characterization, such as dynamic structure factor, radial distribution 

function and etc. 

2. Equation of state, like phase diagrams, free-energy functions and static response 

functions such as thermal expansion coefficient, etc. 

3. Transport which includes thermal conductivity, viscosity, diffusivity, correlation 

functions and etc. 

4. Non-equilibrium response, the examples which are related to this property include 

pattern formation, plastic deformation and etc. 
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Figure 2. 1 Two dimensional periodic boundary condition. Adapted from Ref. [64]. 

                                                                                                               

In this simulation each of atoms are assigned randomly with an initial velocity, while 

the velocities of all atoms pursue Boltzmann’s distribution. For various simulations, 

the temperature and total energy converged to their preset values. The procedure and 

the bath (energy, particle bath and temperature) for controlling the thermodynamics 

physical quantities is called thermostat. The most common thermostat scheme is called 

the Nosé -Hoover thermostat [68].  

 

2.2. Density Functional Theory 

 

2.2.1. Born-Oppenheimer approximation 

 

The common Schrödinger wave equation is only usable for the simple systems. In 

practice, for understanding various properties of materials, investigating and obtaining 
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an insight into properties of systems of interacting electrons and atomic nuclei, atoms, 

molecules and solid matter is needed. Due to the strong interaction of the electrons and 

nuclei of materials which compose a strong interacting many-body system and 

contrary to the immaculate  appearance of the Schrödinger wave equation of N 

electrons, since, in this case, it depends on the 3N coordinates, so solving it, directly, 

for the system of interest is acutely impractical. The time independent Schrödinger 

equation is defined by  

 

               (2.11) 

 

where , and  are the Hamiltonian energy operator, wave function and energy of 

a system with N electrons and M nuclei, respectively. ’s and ’s represent the 

coordinates of nuclei and electrons. The many-body Hamiltonian can be written as 

 

                                                         (2.12) 

where the indices i and I denote the electrons and nuclei. The first and second terms 

represent the electronic and ionic kinetic energy operators and the last term is the 

potential energy term which is describes as follows 

 

                      (2.13) 

 

where the first term is the Coulomb potential  from electron-electron interaction, the 

second term is potential energy from electron and nucleus interaction and the last one 

represents the nucleus-nucleus interaction. The solutions for the mentioned equation 

i.e. calculating the eigenfunctions and eigenvalues of this complex Hamiltonian is only 

possible after applying some approximations. Electrons are tiny masses, and thus there 

is a considerable mass difference between a nucleus and an electron. Using this fact, 
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Born and Oppenheimer [69] simplified the Schrödinger equation, supposing that 

electrons are moving in a field of the fixed nuclei. Therefore, the time scales of the 

electronic motions and nuclear motions differ from each other. Employing Born- 

Oppenheimer approximation and applying the atomic unit conventions (

, the Hamiltonian can be written in a more simple form as 

 

                            (2.14) 

 

The first and second terms constitute one-electron operator and the third one is two-

electron operator, 

 

 

 

                              (2.15) 

 

Due to the assumption of fixed nuclei, kinetic energy of the nuclei vanishes. Besides, 

since the nuclei stay constant, so the term which is related to the repulsive interactions 

among them disappears. The resulting Hamiltonian is called electronic Hamiltonian. 

As regards the simplification of Hamiltonian, the electronic time-independent 

Schrödinger equation results in:  

  

                         (2.16) 
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2.2.2. Hartree -Fock (HF) Approximation  

 

The most challenging problem in electronic structure theory is searching for an 

approximate solution for equation (2.15). One such solution is suggested by the 

Hartree method [70]. According to this method, in order to bring the equation down to 

a tractable level, we assume that the N-electron system, which each of them do occupy 

N orbitals, becomes such a system of truly noninteracting electrons where each 

individual electron is moving in a mean field of the rest. As a result of this variational 

approach, one can assume that the wave function of the n-electron system can be 

approximated as the product of the individual orbitals ( : 

 

                        (2.17) 

 

Besides the important role of this method for all first-principles methods, it has some 

shortcomings. It does not pursue fundamental principles of quantum mechanics: the 

Pauli’s exclusion principle and antisymmetry property, Furthermore, Hartree method 

ignores exchange and correlation effects. This method has been enhanced to higher 

perfection by Fock [71], which satisfies both the Pauli’s exclusion principle and 

antisymmetry condition [72]. To simplify the upcoming math, we will change our 

notation for orbitals, from a spatial orbital, , to a generalized one,  which 

includes both spatial orbital and either α or β spin function. 

According to Hartree-Fock (HF) approximation, the wave function of N-electron is 

approximated as a combination of independent one-electron wave functions in the 

form of Slater determinant 

 

                  (2.18) 
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Using the Slater determinant and calculating expectation value of Hamiltonian, the 

energy value of N-electron system is given by 

      

 (2.19) 

 

For finding the best set of orthogonal   orbitals which minimize the ground state 

energy , we apply variational porinciple.  

 

                    (2.20) 

 

We  assumed that the orbitals are orthonormal, However,  it is necessary to ensure that 

if they will remain orthonormal under this variational procedure. In this regard, we 

need to minimize the Hartree-Fock energy expression with respect to changes in one-

body  and two-body terms using Lagrange multipliers method as follows; 

 

                (2.21) 

    

Through this minimization condition and doing some calculations, we finally arrive at 

the Hartree-Fock equations describing the orbitals: 

 

 

          =                                                                                                (2.22)                       

 

The second term in the above equation which is called Coulomb operator expresses 

the Coulomb interaction between two charge distributions, 
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                           (2.23) 

 

The last term in the left-hand side of equation (2.22) does not have a simple classical 

analog. It is the result of the antisymmetry requirement of the N-electron wave 

function. It looks like the Coulomb term, besides that it exchanges spin orbitals  and  

, therefore it is labeled as the exchange term which can be written as the exchange 

operator as follows: 

 

              (2.24) 

 

Using these Coulomb and exchange operators, Hartree-Fock equations significantly 

become more compact; 

 

                             (2.25) 

Now, we can define the Fock-operator as, 

 

                                     (2.26) 

 

and finally, the Hartree-Fock equations will be 

 

                                            (2.27) 

 

Substituting Lagrange multipliers definition in equation (2.17) 

 

                                                  (2.28) 

We will achieve  

                                                  (2.29) 



46 

 

Considering the above mentioned equations, it is more obvious that the Hartree-Fock 

equations are eigenvalue equations. Although, this method simplified the Schrödinger 

equation since these equations are integro-differential, coupled and also non-linear 

ones, still finding a direct solution is impossible. In this regard, for solving the 

Hartree-Fock equation, resorting to a self-consistent method is needed. 

 

2.2.3. Density Functional Theory Principals 

 

Various kinds of methods have been assigned to tackle the obstacles of solving the 

electronic many-body system equations. A breakthrough was accomplished when 

Hohenberg and Kohn [73] offered two theorems including electron density and energy 

functionals. Kohn and Sham [74] augmented these theorems by developing an 

extraordinary scheme named density functional theory (DFT). The idea behind the 

DFT is to replacing the many-body wave function by electron density. Indeed, the 

original basis of DFT can be traced back to the late of 1920s [75]. Thomas and Fermi 

provided a functional theory to explain the uniform electron gas. They constructed an 

energy functional which used the electron density as the variable and could simplify 

the equation decreasing it from 3N dimensions to 3 dimensions. But since they had 

neglected the exchange and correlation between electrons, their result was not precise 

enough. Even after, Dirac [76] extended this model by adding the electron exchange 

energy, the electron correlation effect was totally disregarded. Although, these 

approximations had some deficiencies but it inaugurated a crucial platform for the 

later development of DFT.  

 

2.2.3.1. Hohenberg-Kohn Theorem 

 

Electronic densit performs a definite role in electronic calculations. Nevertheless, it 

wasn’t verified till, in 1964, Hohenberg and Kohn proved it presenting two theorems 

and finally gave sound foundation for the determination of electron density as the 

major player in DFT. These theorems therefore fulfilled the links between 
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Hamiltonian, wave function, external energy and electron density. The first theorem 

states that the ground-state electron density  solely determines the external 

potential . Suppose the ground state of two N-electron systems which are 

defined by two different external potentials  and , so two different 

Hamiltonians correspond to different externals potentials, 

 

            (2.30) 

where 

                                           ;                         

                            

Different Hamiltonians vary only when their external potentials are different so the 

related Schrödinger equations of mentioned Hamiltonians will be: 

 

                                                                     (2.31) 

          

 

If these two different external potentials produce the same ground-state electron 

density, 

           (2.32) 

 

Now the energy will be: 

 

                                                

                                               

                                                                        (2.33) 

 

Likewise it can be illustrated that 

 

                                                                        (2.34) 
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If we sum the above inequalities  

 

                                                                                                  (2.35) 

 

which this is a contraction. Therefore, it is obvious that our assumption about 

considering an identical density for two various external potentials is incorrect. The 

conclusion is as clear as this: a given electron density corresponds to only one external 

potential and since the external potential is defined, so the only insight of the 

electronic density at a certain external potential will determine the Hamiltonian, total 

energy and thus the ground-state wave function. This conclusion is the base of DFT 

calculations. Inasmuch as the electron density  determines the energy, so the 

ground state energy can be written as a functional form of density as follows: 

 

 

                (2.36) 

 

where T is kinetic energy,   is  the Coulomb potential from electron interactions 

and  is the potential of external field which is generated by the nuclei 

 

                                                 (2.37) 

 

In equation (2.36), the term  is famous for 

Hohenberg-Kohn functional and it doesn’t have any dependency on external potential, 

i.e.  is a universal functional of . Even though, the ground state energy 

is estimated through   and the many-body wave function might be determined, the 

ultimate equation still includes an unknown ,  is needed to be 

found in order to make DFT practical.  

Considering the mentioned term, the energy functional will be defined as, 
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                                                                      (2.38) 

 

The Hohenberg-Kohn’s second theorem, using variational principal, recognized a way 

to figure out the upper-bound of the ground state energy of a system. At a given 

 , if the energy of system is minimized as much as it is possible with modifying 

electron density, then the minimum of energy well will be reached. The electron 

density which minimizes the energy of system is ground-state electron density. 

As mentioned above, howbeit the Hohenberg-Kohn theorems presented the electron 

density as the basic quantity which defines the electronic structure and could simplify 

the many-body problem, but they only give the proof to the existence of a universal 

density functional and do not present any clues in order to construct it. 

 

2.2.3.2 The Kohn-Sham Approach       

 

In 1965, Walter Kohn and Lu J Sham [74] proposed a method which was a vital step 

for making Hohenberg-Kohn theorems practical for real calculations of electronic 

structure. In this regard, they proposed to substitute the original interacting many-body 

problem with an auxiliary system of non-interacting particles which each of them 

experience the external potential energy function . The potential   is 

functional of density and satisfies the ground-state electron density  , 

i.e. the ground state density of this auxiliary system is the same as the ground state 

density of the original one. For this N-particle fictitious system, the ground state 

charge density is specified as a sum over single-particle orbitals (the KS orbitals), 

 

                                 (2.39) 

 

where the index  runs over the single-particle states and  is an eigenfunction of 

the one-electron Kohn-Sham Hamiltonian ,  
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                        (2.40) 

 

In order to find the energy functional for this system we have to find the true kinetic 

energy, so we define the term  as, 

    

                                              (2.41) 

 

which is the difference between the true kinetic energy of the real system and the 

fictitious non-interacting electrons system. The kinetic energy term lacks the 

correlation which is related to the fact that there is no precise electron-electron 

interaction for the systems of non-interacting electrons. Similar to this way, the change 

for the electron-electron repulsion energy  can be defined as, 

 

                         (2.42) 

 

which according to Kohn-Sham statement in their paper [67], the  vanishes for 

the non-interacting fictitious system. In the above equation, the second term represents 

the classic Coulomb repulsion among electrons. Hereupon, rewriting equation (2.38), 

the energy functional can be expressed as, 

 

    (2.43) 

 

The first three terms simply can be found if one knows the electron density. The 

functionals  and  together define exchange-correlation (xc) energy 

functional.  

 

                                      (2.44) 
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Exchange-correlation energy is small and contains the information which is accounts 

for the Pauli principle, the dynamical correlations due to the Coulomb repulsion, and 

also is related to the contributions of corrections to the both the kinetic energy of 

independent electrons and self-interaction which is caused by the Coulomb potential. 

This energy is very complicated and its exact form in unknown. The most challenging 

issue in the Kohn-Sham approach is finding the expression of the exchange-correlation 

potential.   

Applying definition of kinetic energy functional and exchange-correlation energy, the 

energy functional of the reference system can be written as, 

  

     (2.45) 

 

Using Hohenberg-Kohn variational principle, we can minimize the energy functional 

 in equation (2.45) by varying the electron density constraint to   , so 

the ground state energy will be found. Equivalently, we can vary Kohn-Sham orbitals 

 instead of varying electron density. Hence, the Schrödinger-like equation will 

be, 

[             (2.46) 

 

The above equation is known as Kohn-Sham equation [74]. The exchange-correlation 

potential  is constructed as the functional derivative of the exchange-correlation 

energy:      

                                        (2.47) 

 

The effective potential  is defined as, 

 

                                                          (2.48) 
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As a result, the KS equation can be written as, 

 

                (2.49) 

 

The Kohn-Sham (KS) equations are highly non-linear, pseudo-eigenvalue equations 

and have a specific characteristic duo to the dependency of  on the charge density 

which is the unknown parameter. These equations can be solved by iterative 

calculations forming a self-consistent cycle, i.e. one should make an initial guess for 

the charge density, then using this density, finds effective potential and finally 

calculates the KS orbitals which are the fed back into Hamiltonian. These iterative 

calculations will continue up to self-consistency is achieved.  

 

2.2.3.3. The Local Density Approximation (LDA) 

 

Finding exact solutions for the KS equations and many-body problem depends on 

finding the explicit expression for exchange-correlation energy functional. Though, in 

the lack of this case, one has to approximate the exchange-correlation energy, so will 

be able to solve KS equations (2.49) to within accuracy of the initial guess. Various 

kind of approximate functionals have been proposed for exchange and correlation 

energy. 

One of the common approximations is the local density approximation (LDA) which 

assumes that the functional can be approximated by a function of local density , 

i.e. the energy density that a homogenous electron gas may have at every point in the 

space and may change from point to point.  

If  varies slowly with r, the exchange-correlation energy is given by 

 

                                   (2.50) 

 is the exchange plus correlation energy per electron of a homogeneous 

electron gas with density . Therefore in this approximation the exchange-correlation 
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energy and potential are substituted by the corresponding expressions for the 

homogeneous electron gas, which has a uniform density in its ground state. Within this 

approach, the exchange-correlation potential is defined as the functional derivative of  

 as,  

                      (2.51) 

 

The exchange part of energy of the homogenous electron gas can be calculated 

analytically, using Dirac/Slater Exchange energy of electron gas [77], 

 

                                   (2.52) 

 

                                                                    (2.53) 

 

And the exchange potential is given as, 

 

                                        (2.54) 

 

As mentioned before, exchange emerges from the Pauli principle and is precisely 

determined from the HF theory [71], Provided that the source of correlations is the 

motion of electrons, which is not independent and this term can be found for some 

limiting cases using the numerical results of Quantum Monte Carlo (QMC) [78] 

calculations for the homogenous electron gas. Some of the commonly used LDA 

functionals are Perdew-Zunger [79], Vosko-Wilk-Nusair [80] and M. Teter-Pade [81]. 

The Perdew-Zunger is one of the most parameterized approximations which was 

obtained by fitting the QMC results of Ceperley and Alder [78] and is given by: 

 

 

                                                   (2.55) 
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               (2.56) 

 

       (2.57)  

where the parameter  is the radius of sphere which contains the 

electrons.  

LDA was applied for different kinds of systems and worked well for the systems 

which density is quite smooth such as simple and bulk metals. Furthermore, one of the 

surprising cases is good results of LDA even in inhomogeneous cases like covalently 

bonded materials, atoms and transition metals. Also it has been used widely for 

estimating structural and vibrational properties. There are some drawbacks in LDA 

functionals and it may not be suitable enough for describing some systems or 

reproducing binding energies, band gaps and band lengths. Besides it is weak in 

describing transition metals or strongly correlated systems, such as transition metal 

oxides. 

 

2.2.3.4. Generalized Gradient Approximation (GGA) 

      

Charge density of real systems varies from point to point since these systems are 

normally not homogeneous. In this regard, LDA results, for the real systems, deviate 

from the real value significantly. In order to emend this deviation and procreate more 

accurate exchange-correlation functionals, the gradient of the charge density can be 

used. Concerning this matter and for generating more accurate exchange-correlation 

functionals, generalized gradient approximation (GGA) captures both the local and 

semi-local information, i.e. the charge density and its gradient at a certain point. So, 

GGA should bring better results forward with the general formula which uses density 

gradient as an extra variable: 

 

                               (2.58) 
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Several GGA’s have been suggested during years, the most popular functionals which 

is used for exchange part of exchange-correlation functional  are Perdew-Wang 

1991 functional (PW91) [82] and Becke’s 1988 exchange functional [83]. Duo to 

reasonable accuracy of PW91, it is applicable for a wide range of materials. Using the 

homogenous electron gas data, it is based on the restrictions of exchange-correlation 

holes and known physics. For the correlation part widely used functionals are Becke 

correlation functional, the Lee-Yang-Parr correlation functional (LYP) [84], Perdew-

Zunger (PZ81) [79] and so on. Any kind of proposed exchange and correlation 

functionals can be merged together. Mixing different weights of exchange and 

correlation functionals begets the hybrid functionals such as B3LYP [85], the most 

popular hybrid functional in molecular chemistry. This is a three-parameter functional 

which is fitted to ionization potentials, atomization energies and etc. The B3LYP is 

able to explain systems with long-range interaction or with rapid variations in electron 

density and is appropriate for calculating bond energies, band gaps and chemical 

transition-state barriers. 
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CHAPTER 3 

 

SYSTEMS STUDIED 

 

 

In this chapter, structural, magnetic and electronic properties of various studied 

systems using two different methods, molecular dynamics and density functional 

theory are presented. In the first part, structural properties and also stability of iron 

oxide nanorods are analyzed using molecular dynamics simulation technique. Iron 

oxide nanorods are relaxed at 1 K° and 300 K° temperatures under the period 

boundary conditions. Then, in order to study the stability of these nanorods, 5% (slow 

strain mode) of constant strain has been applied to the simulated nanorods at 1 K and 

300 K temperatures. In the second part, following the same method, structural 

properties and radial distribution function (RDF) of iron oxide nanoparticles at various 

temperatures (1K- 900K) have been investigated. In the last two parts, we shall discuss 

the structure, electronic and magnetic properties of iron oxide clusters, (Fe2O3)n (n=1, 

.., 5). To investigate this, we have used the density functional approach. All related 

results will outline in the following part. Furthermore, Graphyne 1D nanostructures 

and their properties, due to their outstanding applications, are of great importance, 

which have been discussed in this chapter. 

 

3.1. Structural Properties of β-Fe2O3 Nanorods Under Strain:  Molecular 

Dynamics Simulations 

 

3.1.1. Introduction 

 

The mechanical, electrical and magnetic properties of one- Dimensional (1D) 

nanostructures, due to their peculiar structure, morphology and their potential 
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applications in technology, science and development of nanodevices, have been 

researched intensively within years. Generally, 1D nanostructures comprise nanorods, 

nanowires, nanotubes, nanobelts and quantum wires etc. which are greatly different 

from their corresponding bulk materials because of the large surface-to-volume ratio, 

that may result in displaying some applications premier to their bulk counterparts 

[86,87]. It is accepted that 1D nanostructures play significant role as building blocks 

and interconnect units in constructing the electronic, electromechanical, 

optoelectronic, and complex nanodevices in a controlled way. Furthermore, some 

prosperous applications of these products have been observed in biomedicine, 

biological sensors and magnetic data storage [88-90]. Considering some applications 

of 1D nanoscale products as basic structure for future nanotechnology, we conclude 

that comprehending their various properties in various conditions is required.  

Among the 1D nanostructures, nanorods (NRs) received notable attention since their 

potential application as building blocks for microelectromechanical systems (MEMS), 

display technologies, cancer therapy, waveguides, lasers and etc. have been proved. 

Semiconductor based NRs like ZnO ones, are utilizable in light emitting devices and 

in the fabrication of nanoscale transistors. ZnO NRs are used in nanoresonators in 

field effect transistors for detecting biological and chemical species [91-93]. 

Furthermore, metallic nanorods which are basic element for many nanostructures, 

have exposed their unique properties and promising applications in the fields of super-

long waveguiding  [94], biosensing [95]  and many other fields [96-98]. Apart from 

the mentioned properties and various applications of 1D nanomaterials, numerous 

researches have been dedicated to the magnetic properties of these nanostructures due 

to their high potential for a wide-range of applications in the fields of spintronics 

devices, data recording devices and optoelectronics [99, 100]. Iron oxide nanoparticles 

can be a good example, since they have been so widely used in many fields in 

biomedical application [101,102], electrochromic devices [103], ferrofluids, catalysis 

and etc. [104]. Iron oxide nanorods, specifically, drew intense interest owing to their 

unique structural one-dimensionality and the magnetic properties which are controlled 

generally by surface effects and partly by particle-support interactions [105]. Applying 
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these NRs into the design of nanodevices and using them in nanotechnology, as 

aforesaid, demands a complete understanding and evaluation of their properties, 

structures and behaviors under different conditions like their response to the effect of 

thermal gradients, strain or compression. Taking all these into consideration, a 

profound characteristic for almost all applications of magnetic nanoparticles, no matter 

what their structures are, is stability, which we will expose it for discussion during this 

study. 

As mentioned before, iron oxides exist in various structures; there are sixteen known 

iron oxides and oxyhydroxides [106]. The most common crystalline phases which they 

exhibit are α-Fe2O3 called hematite which is antiferromagnetic, the cubic spinel γ-

Fe2O3 (maghemite) is ferromagnetic, Fe3O4 (magnetite), Fe1-xO (wustite), β-Fe2O3 and 

ε-Fe2O3 phases [101,107]. The two latter have cubic bixbyite and orthorhombic 

structure, respectively and β-Fe2O3 is paramagnetic. Due to numerous appealing 

structural, magnetic and electronic structural properties, iron oxide, Fe2O3, 

nanoparticles, are of peculiar importance.  

Iron oxide nanoparticles (NPs) especially magnetic nanoparticles are used in a number 

of applications. As the magnetic properties of this class of NPs are size dependent and 

temperature, narrow particle size distributions are critical for an understanding of their 

magnetic behavior and interactions specifically in biological systems.  

This study, in the first following part, attempts to address the effect of uniaxial strain 

on the structural properties and stability of β-Fe2O3 nanorods under various 

temperatures and atomic potentials using molecular dynamics (MD) simulation. 

 

3.1.2. Modeling and Simulation 

 

We generate [0 0 1]-oriented β-Fe2O3 nanorod from bulk of β-Fe2O3. The lattice 

constant of cubic unit cell of β-Fe2O3 is  [108], which the nanorods are 

constructed by repeating this unit cell along [0 0 1] direction three times. Periodic 

boundary condition is applied in the stretching direction .i.e. Z direction or [0 0 1] 

http://en.wikipedia.org/wiki/Oxide
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direction, while x and y-axes are left free. Figure 3.1 presents the related cubic unit 

cell. 

 

Figure 3. 1 The unit cell of β-Fe2O3. Atoms in gray are oxygens (O) and in black are 

irons (Fe). 

 

MD simulations have been performed, while the interatomic forces were modeled 

using two different potential energy functions, PEF1 [109] and PEF2 [110], which will 

be explained in details in the following.  

The first potential energy function, PEF1, which has been employed for simulating 

iron oxide nanorods, is a self-consistent pairwise interatomic potential which is 

developed applying empirical fitting on structural parameters and elastic constants of 

binary oxides using free energy minimization at  P=1 atm and T=300K [109].  

The analytical form of this potential energy function is composed of three terms as 

follows: 

 

           (3.1) 
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where the first term is a) long-range Coulomb potential, the parameter ‘r’ represents 

the distance between atoms i and j, b) the second term is a short-range Morse function 

and , c) the third term is related to repulsive force between any two atoms. The Morse 

potential function which is an exact solution for Schrödinger equation; represents the 

motions of the nuclei in a diatomic molecule [111] or in other words it is frequently 

used in modeling bonded interactions in covalent systems in which the Coulomb term 

is subtracted [109] and explains energy bond stretching or compression. Three 

parameters are needed for calculating this potential. In this term,  or is well 

depth (defined relative to the dissociated atoms) or defines the bond dissociation 

energy,  is a function of the slope of the potential energy well (the smaller  is, the 

larger the well), and the physical meaning of  is the equilibrium bond distance. By 

subtracting the zero point energy E (0) from the depth of the well, the dissociation 

energy of the bond is assessed. Parameter, a, is calculated using this relation, 

 

                                                    (3.2) 

 

 where μ  is the reduced mass and  is related to the bond stretching frequency by, 

 

                                                       (3.3) 

 

where  is the force constant of the band which can be detected by Taylor expansion 

of the Morse potential around  to the second derivative of the potential energy 

function. In Figure 3.2, for more understanding, the comparison between the Morse 

potential (blue) and harmonic oscillator potential (green) is presented.  
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Figure 3. 2  Comparison between Morse potential and Harmonic oscillator potential. 

 is the dissociation energy, which is slightly different from the well depth . 

Adapted from Ref. [112]. 

 

 

As it is clear in Fig. 3.2, as the energy comes close to the dissociation energy, the 

Morse potential level spacing decreases, in contrast to the harmonic oscillator 

potential, which the space between energy levels are nearly identical. Most bands 

digress very little in length from their equilibrium values, thus for modeling bond 

stretching energy, the harmonic oscillator has been used. 

The potential parameters of PEF1 which is related to β-Fe2O3 are listed in Table 3.1.  

As mentioned, all potentials have been derived using the relaxed fitting combined with 

Gibbs free energy minimization at T =300 K and P =1 atm [109]. 
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Table 3. 1 The potential parameters used for PEF1. Adapted from Ref. [109]. 
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The second potential energy function, PEF2, which all calculations were based upon; 

is combination of Lennard-Jones [113] and Coulomb potentials. Both of them are used 

for representing the two-body interactions [25]: 

 

                           (3.4) 

 

The first term is Lennard-Jones potential which is a physical model for approximating 

two-body interactions, i.e. the interaction between a pair of neutral atoms or 

molecules. This potential is shown schematically in Fig. 3.3. In the above relation, ‘r’ 

is the distance between atoms i and j,  is the depth (i.e. the minimum) of 

potential well and  ‘ ’ is the finite distance at which the inter-particle potential is zero 

and can be written as .                                                                                                                                                                                                                                 
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Figure 3. 3 Schematic representation of Lennard–Jones potential function. This graph 

shows regions of attraction and repulsion. Atoms try to minimize their potential 

energy are sitting at the bottom of the potential curve. When the atomic separations are 

to the left of the minimum the atoms repel, otherwise they attract one another. 

Adapted from Ref. [114].             

                          

The  describes repulsion due to overlapping of electron orbitals which is related 

to Pauli exclusion at short ranges. The  term describes attraction at long ranges and 

can be derived classically noticing how two spheres which are charged, induce dipole-

dipole interactions into each other.  As it is seen in Fig. 3.3 when the atoms are further 

apart, the attractive force is overcoming; however, the repulsive force becomes 

dominant when they get too close. 

The second term in relation (3.4) is related to Coulomb potential,  represents the 

charge on ion i.  Related parameters of PEF2 for β-Fe2O3 are presented in Table 3.2. 
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Table 3. 2 The potential parameters used for PEF2 [110]. 

 

 

In this study we desire to observe the dependence of the physical and structural 

properties of β-Fe2O3 nanorods on these two employed potential energy functions 

(PEFs) and also to explore the temperature gradient and stretch effect on the stability 

of nanorods. In this regards, the equation of motions of atoms are solved by 

considering Verlet algorithm under microcanonical ensemble. The temperature of the 

systems is preserved constant at a given temperature with direct rescaling of velocities. 

The MD one time step is taken to be 10
-15 

s. Starting up at very low temperature, 1K, 

we let the initial model of nanorod under study is relaxed until a thermal equilibrium is 

established. Then, the temperature is increased to 300K and relaxation has been 

reached again. Using a MD code which is developed by our group that considers two 

mentioned PEFs, MD simulations have been performed at two temperatures 1K and 

300K. For reaching to thermal equilibrium, under different conditions, the total 

number of time-steps varies between 300,000 to 2,000,000 steps. When the total 

energy of the system reaches to a smooth region for a significantly long time, the 

system is assumed to be at equilibrium. 

After relaxing the system at both temperatures and each of PEFs, in order to 

investigate the structural and strain behavior of nanorods, we start stretching nanorods 

uniaxially. The stretching of nanorods is done along the [001] direction, i.e. the z- 

coordinates of each of the atoms is multiplied by a factor 1.05, which gives rise to a 

nanorod stretched by 5% along the z-direction. In Fig. 3.4, the initial and final length 

    Pair            q  (|e|)  (eV)  (Å)     

Fe-Fe          +1.5      
3105546.1  1.7     

O-O          -1.0     
31.6841 10  3.6     

Fe-O           _ 3106181.1  2.65     
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of the stretched β-Fe2O3 nanorod for one step of strain application is shown. The 

percentage change, , in the length of the nanorod is defined as, 

 

                                              (3.5) 

 

where Li is the length of the nanorod at the i
th

 stretching step and L0 is the initial 

length of nanorod. The notation is self-explanatory. 

 

 

 

                    

L0 

 Li 

 

Figure 3. 4 Illustration of the strain application 

 

In every step, after stretching, we let the system reach equilibrium again. This process 

(stretch-and-relax) has been followed till the system considered distorts. Distortion is 

explained as a deviation from the initial model like separation of atoms or geometrical 

deviation which alters the entire structure. Here, in our case, having strained and 

stretched in several steps, the nanorod is broken, i.e. the distance between any atoms 

in the breaking region transgresses a predetermined value. This value is 2.5 Å in the 
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present study. The total number of stretch-and-relax cycles before nanorod is broken is 

perceived to depend on both the PEFs and temperature. 

 

3.1.3. Results and Discussion 

 

Every Fe2O3 nanorod includes 240 atoms totally that 96 of which are Fe and 144 are O 

atoms. The structures of the β-Fe2O3 nanorods after energetic relaxation and strain 

application which have been simulated with two different PEFs and at 1K and 300K 

are presented separately in Figures 3.5 to 3.8, respectively. Each number at the right 

hand side of nanorods indicates the corresponding strain step. At first, the β-Fe2O3 

nanorod which is simulated with PEF1 at 1K has been studied. During the simulation, 

in order to investigate the influence of the strain along the [001] direction; different 

snapshots of nanorods have been taken which are all presented in Fig. 3.5.  

Within the first four pictures, the nanorod appears to preserve its overall structure 

under strain and seems still intact, whereas the side view at step 5 demonstrates that 

the effect of the applied strain seems to be somehow noticeable and nanorod begins to 

lose its symmetric structure. As the strain application furthers, the bonds between 

nanorods atoms start to outspread, so that as it is obvious in Fig. 3.5, two breaking 

parts are seen in picture 7 and the structure changes continue till picture 12, in this 

step, the whole nanorod has been totally torn off into three different pieces. The non-

smooth deformation of the β-Fe2O3 nanorods, which has occurred in an irregular 

manner is the most considerable finding in this structure under PEF1 and at T=1K. As 

the nanorod is being stretched, its shape has been distorted significantly, and having 

been broken the three fragments are not a well-formed nanorod anymore. 

In order to delve more into the effect of the temperature on the stability of the β-Fe2O3 

nanorods under strain, an equivalent simulation with PEF1 at the room temperature, 

T=300K, has also been conducted. The results seem to be somewhat different from the 

same structure at 1K. Figure 3.6 displays the snapshots of the β-Fe2O3 nanorod taken 

at the same time like those of Fig 3.5. At this temperature, the nanorod keeps its shape  
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Figure 3. 5 The β-Fe2O3 nanorod under strain with PEF1 at 1 K. Each of pictures are 

sideviews of nanorods at the represented strain step number. 

 

stand still within the first four pictures, i.e. there is no remarkable transformation till 

the step 4. The loss of well-formedness shape of the nanorod is obvious in picture 5 

with only one breaking region but later on it behaves as though it would be broken 

into three different pieces. However, it has been separated into just two fairly equal-

sized pieces at the end. All this has been presented in pictures 11 and 12 in Fig.3.6. 

What is once more noticeable is the little resemblance of the final fragments in 
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comparison with the unstretched nanorod form. Furthermore, according to the Fig. 3.6, 

the diameter of the nanorod starts up to decrease in the midpoint at step 5, where the 

elongation also displays its effect on the nanorod. This reduction in the thickness of 

nanorod or in the diameter of the subject material which is caused by the irrelevant 

localization of the tensile stress in a particular region is called necking point [115]. 

This reduction in the diameter and constituting necking points continues till the end of 

steps but the only difference is that in each of steps 5, 11 and 12 there is only one 

necking point, while in steps 6 to 10, two necking points have been appeared near the 

both ends of the nanorods not at midpoint. By comparing Figures 3.5 and 3.6, it is 

clear that at T=1K the nanorod seems to be more rigid; firstly it seems that it would be 

separated into three pieces with two breaking regions and finally this happens (Fig. 

3.5). Nevertheless, at 300K, the nanorod pretends to be irresolute about its 

fragmentation due to the non-fixed number and places of breaking areas ( see Fig.3. 

6). It could be tentatively said that the nanorod as a whole changes its form in an 

irregular manner. This relatively alternation demonstrates that temperature 

augmentation possess considerable role for this model. All these changes should be 

inevitable because of the increased temperature that has reduced the rigidity of the 

nanorod to a fairly great extent by giving kinetic energy to the atoms of the nanorod. 

In other words, temperature has made the nanorod to gain more flexibility. Obviously, 

temperature plays a paramount role on the stability and stretching characteristics of the 

β-Fe2O3 nanorods. It has been noted that it takes the same amount of time for the 

nanorod to break totally at temperatures of 1K and 300K; however, the end results are 

not identical.  

Having presented the results of simulations conducted with PEF1, it is time to 

consider the changes with PEF2. In the second part of our study of β-Fe2O3 nanorods, 

both the initially purposed geometry that is figured out to be stable at lower 

temperatures, and the relaxed geometries at two temperatures 1K and 300K are studied 

for comparison stability of nanorods and making decision whether the structure is 

viable or not, or how much is the stability of the structure. A series of pictures 

displaying the simulation results of the same structure which have been performed at  
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Figure 3. 6 The β-Fe2O3 nanorod under strain with PEF1 at 300 K. 

 

1K are presented in Fig. 3.7. Studying these results shown in Fig. 3.7, the first matter 

which is noticeable is that the fragmentation mechanism with PEF2 looks like wholly 

different from that of PEF1 in Figure 3.5. After stretching, there seems to be some 

atomic ring-chain structures in the breaking areas of the nanorod in Fig. 3.7, while the 

corresponding feature in Fig. 3.5 is with only some atomic chains and formation of 

necking point in breaking area. Other differences between Figures 3.5 and 3.7 are also 
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substantive: the nanorod under strain is broken after 12 times units with PEF1, 

although it is in one piece with just a rather distorted shape, but it is distorted within 

16 times units with PEF2 in Fig. 3.7. When we consider the simulation results of PEF1 

at 1K and PEF2 at the same temperature in Fig. 3.5 and Fig. 3.7 altogether, we 

encounter with almost different pattern of deformation of nanorods. It is clear from 

these figures that although minor changes occur in the nanorod structure right after the 

strain application, but at the 7
th

 time unit with PEF2, the nanorod starts to deform but 

before that it keeps its overall shape; however, the nanorod tends to distort at the 5
th

 

time unit with PEF1. It is clear that there is a relationship between MD simulations 

and the kind of PEF utilized, i.e. the outcomes of MD simulations are related to the 

type of PEF being used, as might be predicted. Each PEF displays the β-Fe2O3 

nanorod under strain is in its own unique manner; that is, various PEFs would yield 

different properties for the very similar material. More comparison of Figures 3.5 and 

3.7 would indicate the starting point of the structure deformation at the 5
th

 time unit 

utilizing PEF1, while the nanorod remains intact till the 6
th

 time unit and after that the 

first deformation starts at the 7
th

 time unit with PEF2. All in all, β-Fe2O3 nanorod 

found to be more stable against stretching using PEF2 rather than PEF1. 

Following this scenario and for more comprehension on the relation between the PEFs 

and temperature effect on the stability of β-Fe2O3 nanorods, again the MD simulation 

has been conducted for these nanorods under strain at 300K with PEF2, which the 

related results are presented in Fig. 3.8. This Figure includes 21 snapshots in whole 

that 12(16) of which have been taken at the same time as that of Figures 3.5 and 3.6 

(Fig. 3.7). Our simulation results revealed that, this time there is an earlier time for 

structure deformation at about the 3
rd

 time unit. Unlike the previous cases, the 

deformation process takes place more slowly; diameter of nanorod begins to reduce in 

the midpoint at step 7 and continues to step 9, then the diameter reduction point moves 

to the left and right end.  
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Figure 3. 7 The β-Fe2O3 nanorod under strain with PEF2 at 1 K. 
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Nanorod keeps its structure without completely fragmentation, finally the breaking 

occurs at the middle point of nanorod and the full distortion happens at the 21
st
 time 

unit, the time that nanorod broken into two different pieces with different sizes. 

Considering Figures 3.7 and 3.8, it becomes indicative that the fragmentation process 

of the β-Fe2O3 nanorod is more demanding at 300K than at 1K with PEF2. The more 

of the kinetic energy just because of the higher temperature has led to the more 

flexibility of the nanorod. Unpredictably, the breaking areas are not static during the 

stretching process. This becomes more obvious when comparing pictures 20 and 21 of 

Fig. 3.8: they are actually really anomalous. As it is seen, the simulation of the same 

structure carried out at the room temperature exhibit somewhat different consequences 

as seen from Fig. 3.8. Consequently, the most important point is that the nanorod at 

1K seems to be more rigid rather than at 300K. Putting away the longer process of 

deformation, all the characteristics gained with PEF2 are nearly the same as those 

obtained with PEF1 tackled above. In general, the comparison of the obtained 

outcomes from different PEFs leads to the conclusion that the β-Fe2O3 nanorod 

simulated with PEF2 indicates more stability at 300K.  

Figure 3.9 shows the strain (  versus strain-energy ( ) curves which presents the 

energetic behavior of the β-Fe2O3 nanorod under strain with two different types of 

PEFs and two temperatures 1K and 300K. As mentioned before, the strain is defined 

as difference in length in percentage, namely ( . In our study, the amount of 

potential energy stand in atoms which is needed for atoms rearrangements undergoing 

a known strain magnitude might be defined as strain- energy  which is yielded due 

to the moment of atoms prior to complete breaking. In other words, it is defined as the 

difference between the total potential energy of the systems, , which is under strain, 

in the i
th

 time-step, and the energy  before the implementing strain: , 

where  0,1,2,3,…..strain. More importantly, the general norm seen in these curves 

sounds meaningful, as it is expected, the more the degree of strain, the more the strain-

energy , would be. As it is obvious in Fig. 3.9 ,  the proportion of 

increase in , to strain is roughly linear. Howbeit, the constants for PEF1 and PEF2 
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are not identical, they seem nearly the same, specially graphs which are related to 

PEF1 at 1K and 300K, it is hold true for PEF2 also.  

 

 

 

 

 

 

 

 

Figure 3. 8 The β-Fe2O3 nanorod under strain with PEF2 at 300 K. 
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Figure 3.8 (continued) 
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Figure 3.8 (continued) 
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Figure 3.8 (continued) 

 

From the Fig. 3.9, we see that the for the values of , with the PEF1, the 

strain-energy  curves at 300K and also with PEF2 at 1K are negative; however, it is 

almost zero for PEF1 at 1K. 

Contrary to these three foresaid cases, the trend is somewhat different for PEF2 at 

300K. In general, we may note that at the outset of MD simulation, this nanorod was 

not in a perfect relaxed state, it might say that opposite to the externally applied strain, 

the nanorod was “pre-compressed” in the [001] direction and also in two other 

directions. The most helpful result gained here is that at first, when the strain is 

applied in the [001] direction, the nanorod comes to its unstressed state, which causes 
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the relevant strain-energy decreases to negative values, just after this step, the actual 

stretching begins. For clarifying the cause of this special characteristic and behavior of 

nanorod , in studied conditions, we might declare that it is related to the fact that the 

simulated β-Fe2O3 nanorods have been created from repeating a unit cell along the 

[001] direction three times and this unit cell was cut out of  the iron oxide bulk. In 

ordinary condition, a unit cell in bulk matter is in its naturally stressed or compressed 

state.  As we have done in this study, whenever we employ a unit cell in order to make 

a 1D nanorod, it is not astonishing that the so-obtained nanorod to be primarily in a 

pre-compressed state.  Hence, at the inception of a simulation, the first reaction of the 

nanorod may be undergoing relaxation. However, all these are pure conjectures. 

Although all these are mere surmises, they plausibly account for the nearly intact 

nanorods seen at the initial stages of simulations, depicted in Figures 2-5. 

 
 

 

Figure 3. 9 (Color online) Strain L%  versus strain-energy eVin,sE  curves. 
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3.2. Structural Properties and Radial Distribution Function of Iron Oxide 

Spherical Nanoparticles Using Molecular Dynamics Simulation 

 

3.2.1. Introduction 

 

In the second part of this research study, we have carried out molecular dynamics 

simulation studies of spherical nanoparticles. Different sizes of nanoparticles have 

been simulated in order to substantiate better understanding of structural properties of 

these nanoparticles at different temperatures. Radial distribution functions are perhaps 

the most common tool to analyze the structure of any condensed phase. In this regard, 

Radial (atomic) distribution [116-119] function which is an important structural 

characteristic for a system of particles like molecules, atoms, colloids and etc. have 

been developed for all samples, temperature has been increased step by step and  

radial atomic distribution function for spheres within 3, 4, 5 and 6 Å radius of 

nanoparticles have been studied. 

 

3.2.2. Methods of Simulation  

 

As mentioned, specifying the initial positions of configuration of atoms is the first step 

for treating the system with molecular dynamics method. The mentioned unit cell in 

the first part of this chapter is used for generating iron oxide spherical nanoparticles. A 

FORTRAN script has been used for generating and optimizing spherical nanoparticles.  

Radius of nanoparticles, thus the number of atoms constituent each of spherical 

nanoparticles varied. Four different spherical nanoparticles with radius 3, 4, 5 and 6  

were optimized.  

The first empirical many-body potential energy function (PEF1) which we have used 

in part 3.1 is used in the molecular dynamic simulation of iron oxide spherical 

nanoparticles. Using PEF1, the motion equations using the Verlet algorithm and 

canonical ensemble NVT are solved. The temperature scaling is considered at every 
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MD step, the particle initial velocities are defined from Maxwell distribution and 

every time step is supposed to be 10
-15

 s. The iron oxide nanoparticles simulation with 

specific radius started at low temperature, 1K, and by a predetermined step size 100 K, 

the temperature enhanced till the nanoparticle started to deform. Deformation 

condition is defined as the collapse of the initial structure, or breaking of atoms. At 

every temperature rise, the system is relaxed and molecular dynamic simulation runs 

of various steps till system reaches to equilibrium.  

Considering a homogeneous distribution of the atoms/molecules in space, 

the RDF represents the probability to find an atom in a shell dr at the distance r of 

another atom chosen as a reference point [116-119], as it is shown in Fig. 3.10 

schematically. 

 

 

Figure 3. 10  Space discretization for the evaluation of the radial distribution function 

(RDF). 

 

In the construction of the radial distribution function for our samples, we developed 

spherical nanoparticles of Fe2O3 bulk for four nanoparticle models with various 

radiuses.  

After this initialization stage of modeling spherical nanoparticles, we calculated the 

center of mass (CM) of each sphere. Then we transferred the origin to the CM, and in 
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the next step we found the distances of each of atoms with respect to the new 

generated origin.  Comparing these results, we sorted these values in descending order 

to determining the first nearest neighbor, the second nearest neighbors and so on and 

made a radial density profile of the two constituent atoms as a function of distance 

from the center of mass of the particles. This process is followed by applying Gaussian 

broadening on the sorted distances. Now the radial distribution function profiles are 

ready for spherical nanoparticles within 3, 4, 5 and 6 Å radiuses. 

This radial distribution function can be used to verify the structure evolution of Fe2O3 

spherical nanoparticles during the temperature augmentation process. In this regard, 

we increased temperature step by step and studied the graphs of atomic radial 

distribution versus radius of nanoparticles. Since each Fe2O3 nanoparticle consists of 

two kinds of atoms oxygen and iron, in each case, there are three radial distribution 

functions in this system, for iron atoms, oxygen atoms and for whole nanoparticle, 

which turn out to have almost different character.  

 

3.2.3 Results and Discussion 

 

The initial structure and the relaxed ones of various spherical nanoparticles at various 

temperatures and also the related RDFs are displayed in the Figs 3.11- 3.15. As it is 

clear in Fig. 3.11, the nanoparticle with radius equal to 3 Å consists of 11 atoms in 

total, with 6 oxygen atoms and 5 iron atoms.  The initial temperature is 1K and the 

radial (atomic) distribution function graphs for Fe, O atoms and also both of them is 

presented. As mentioned before, radial (atomic) distribution function provides 

distribution pattern of particles or atoms in Fe-O system. 
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Figure 3. 11 Relaxed structure of spherical nanoparticle with r= 3 Å at T=1K and 

radial (atomic) distribution function (RDF). Black and red lines are related to 

distribution function of Fe and O atoms, and the green line displays distribution 

pattern of all atoms.   

 

For studying the heat treatment of nanoparticles and effect of temperature on the 

distribution of atoms temperature is increased from 1K to 900K by 100K interval. 

Figures 3.12 (a) – (g) illustrated the relaxed structures of nanoparticles with radius 3 Å 

and related radial distribution functions at 100 K, 200 K, 300K, 400K, 500K, 600K 

and 900 K. 

As it is seen in Figs 3.11 and 3.12, at r= 3 Å , iron oxide spherical nanoparticles keeps 

its cage structure up to 400K, its bonds begin to break at 500 K, but after this step 

again, in 600 K and 900 K, it seems that nanoparticle tries to not lose its initial 

structure completely. The atomic distribution graphs for Fe and O atoms, separately; 

are also presented in Figs 3-10 and 3-11 for r= 3 Å at different temperatures. From 

these graphs, we comprehend that particles slowly move to farther distances from CM, 
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(a)    

 (b)  

 

Figure 3. 12 (a) – (g) Relaxed structures of spherical nanoparticle with r= 3 Å, at 

temperatures 100 K to 900 K, and the related radial (atomic) distribution functions 

(RDF). 

 



84 

 

(c)  

(d)  

 

(e)   

Figure 3.12 (continued) 
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(f) 

 

(g)   

 

Figure 3.12 (continued) 

 

and nanoparticle deformation gradually happens during temperature augmentation. At 

T=500 K and T= 600 K in the total curves (the green ones), instead of one peak, two 

peaks at different position are observed which illustrates that Fe and O atoms 

distribute in two different shells with respect to CM.  

In Fig. 3.13, effect of temperature on the nanoparticles with r= 4 Å and radial or 

atomic distribution functions are presented. There is no significant deformation in this 
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nanoparticle and the structure is stable up to elevated temperature. Radial distribution 

functions for all simulation steps during temperature increment are similar. 

 

 

 (a)     

 

 

(b)   

  

Figure 3. 13 Relaxed structures of spherical nanoparticle with radius 4 Å at 

temperature 1K to 900 K with interval 100 K. 
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(c)   

(d)  

(e)   

 

Figure 3.13 (continued) 
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(f) 

(g)  

  

        (h) 

Figure 3.13 (continued) 
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The starting structure and the relaxed structures at various temperatures for the 

nanoparticles with r= 5 Å are displayed in Fig. 3.14. Structure and shape of this 

spherical nanoparticle transforms smoothly proportional to the gradient in the 

temperature. The nanoparticle keeps its initial form till 300 K.  However, the structure 

of the nanoparticle starts to deviate from its well-arranged composition as the 

temperature increment steps progress.  

(a)  

  

(b)  

 

Figure 3. 14  Relaxed structures of spherical nanoparticle with radius 5 Å at 

temperature 1K to 900 K with interval 100 K. 
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(c)   

  

(d) 

  

(e)  

Figure 3.14 (continued) 
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(f)   

 

 

 

(g)   

 

 

Figure 3.14 (continued) 
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(h)

 

 

Figure 3.14 (continued) 

 

It seems that nanoparticle at r= 5 Å is less resistive to heat treatment, sphere-like 

evolution occur at high temperatures and its shape changes to rod-like. The influence 

of temperature augmentation is seen to be significant on RDF for r= 5 Å, since it is 

seen two peaks in the total curve, which is related to shell construction. In T= 900K, 

the spherical structure disappeared completely and nanoparticle has converted to 

nanorod. In Fig. 3.15, calculation results for r= 6 Å are presented. 
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(a) 

 

 

  (b)  

 

 

Figure 3. 15  Relaxed structures of spherical nanoparticle with radius 6 Å at 

temperature 1K to 900 K with interval 100 K. 
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(c) 

  

(d) 

  

(e) 

Figure 3.15 (continued) 
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(f) 

(g)   

(h)    

Figure 3.15 (continued) 
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According to Fig. 3.15, which show temperature effect on the structure evolution of 

nanoparticle with r= 6 Å, the results and behavior of nanoparticle seems to be similar 

to behavior of nanoparticle with r= 4 Å. 

In summary, the following conclusions are drawn from this investigation. The 

oscillations in RDF graph provide a measure of the extent of spatial ordering of the 

atoms. In a disordered region, where there are no spatial correlations between atoms, 

RDF approaches the average density of the atoms for large r. However at each of 

temperatures and for all spheres, RDF of Fe atoms < RDF of O atoms, i.e. Fe atoms 

placed in inner shells near to CM.   

As the particle size increases, the peaks corresponding to deformation part becomes 

broader, indicating that the larger particles take a longer time to deform. The study 

demonstrates that deformation in nanoparticles is not very rapid and nearly most of 

them withhold their original shape and structure. 

 

3.3. Study of Electronic and Magnetic Properties of (Fe2O3)n Clusters: Using 

Density Functional Theory 

 

3.3.1. Introduction 

 

Considering aforesaid reasons, structural, magnetic, electrical, chemical and optical 

properties of nanoparticles are effected by shape and size factors. Since the geometry 

has significant effect on the various properties of a system, so understanding the 

relationship between the clusters and their properties is necessary. Generally cluster 

properties as a function of size do not follow simple scaling laws.  Thinking over these 

aspects, many theoretical and experimental studies have been held during past decades 

in order to obtain a general understanding of how the properties depend on size, 

structure and composition of clusters. These small clusters are candidates for 

producing novel materials for technological applications such as optical storage 

devices, optical sensors, tele-communications magnetic storage and etc. [120-122]. 
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Clusters are in the group of best candidates for realizing highly functional materials 

which cannot be attained even by present day technologies [123]. In this work, this 

special issue is being addressed and contains theoretical study of the iron oxide 

clusters which covers the determination of the structure of clusters and their electronic 

and magnetic properties. 

Iron oxide clusters are one of the most debated atomic clusters which have attracted 

much interest due to their peculiar characteristics, diverse chemical and physical 

behaviors and also its close relevance with environmental corrosion and oxygen 

transport in biological system. Furthermore, in bulk phase, iron oxide compounds 

possess interesting magnetic properties. For instance FeO with rock salt structure 

shows antiferromagnetic ordering at low temperatures [124], Fe2O3 (hematite) with 

corundum structure is an antiferromagnetic material, while Fe3O4 (magnetite) has 

spinel structure and shows ferrimagnetic behavior [125]. The other theoretical concern 

relates to the evolution of physical, magnetic and electrical properties as material turns 

from bulk to cluster. Iron oxide clusters, similar to bulks, in different conditions show 

magnetic properties. Thus due to their significant potential applications, for example, 

in biomedicine, drug delivery, spintronics of semiconductors, high density magnetic 

moment storage and cancer therapy by hyperthermia [126-129], the interest on this 

peculiar magnetic property has been considerably enhanced.  

Over the past decades, various theoretical and experimental works have been carried 

out in order to investigate the above-mentioned properties. In experiment, iron clusters 

were studied by photoelectron spectroscopy [130-133], infrared spectroscopy [134-

136], Mössbauer spectroscopy [137] and different mass spectrometry based methods 

[127-139].  Most of the experimental and the theoretical calculations which are based 

on density functional theory and ab initio methods were concentrated on the small 

clusters.  

In a theoretical study by Gutsev et al [140], electronic properties and structures of the 

ground and some excited states of the multi-oxide mono-iron clusters, i.e. FeOn and 

FeOn
 
clusters (n = 1 4), have been investigated within the density functional theory 

(DFT) formalism. Besides mentioned properties, electron affinities, vibrations and 
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thermo-dynamic stabilities have been studied in this survey. Due to their results, 

during increasing n, the spin multiplicity of the ground-state of iron oxide clusters 

decreases, i.e. ground states of FeO  and FeO2  are quartets, while ground states of 

FeO3
–
 and FeO4  are doublets. Various isomers with different spin and spatial 

symmetries belong to these anions [141]. Some theoretical findings which have been 

done by Jones et al. proved the existence of single hollow rings structures for 

equiatomic FenOn (n=2-5) clusters against bulk FeO with the compact NaCl structure. 

For cases greater than n=5, clusters congregate to form more complex and new kinds 

of nanostructures [142]. Some specific studies have been performed in order to 

calculate vibrational and magnetic properties of magic clusters like Fe13O8 [143]. 

According to the results of all-electron density-functional-based calculations, one of 

the possible and stable structures for this cluster is the one by a central Fe atom and a 

distance of Fe-O relative to the central atom of 3.31 Å which is a ferromagnetic state 

with a total moment of 32  per cluster. Other several metastable ferro- and 

ferrimagnetic states with different total moments per cluster have been detected. In 

addition to mentioned above, Shiroishi et al. had studied some structural and magnetic 

properties of iron oxide clusters, FenOm (n = 1−5) [144] and anion iron oxides 

[145,146] using first-principles calculations based on the density functional theory. 

They confirmed both the structures which have been suggested by Wang et al. [131] 

and also found that AFM Fe alignment increases as number of oxygen atoms grows at 

m=n for n=2,3, and 4. Furthermore, applying the same mentioned method and all-

electron numerical basis sets, 40 stable isomers of FenOm
+
 (n + m = 5) clusters have 

been found through optimization calculations and frequency analysis by B.-F. Xu et al 

[147]. Various quantities including the energy gaps between HOMO and LUMO, the 

binding energies and the magnetic moments of the stable isomers have been 

calculated. Results revealed the total magnetic moments of the isomers highly depend 

on the magnetic moments of Fe atoms and the arrangement of the magnetic moments 

of the atoms. In order to have contribution for theoretical perception of iron-oxide 

formation, López and co-workers [148] survey have been done for studying structural 

and electronic properties of some iron oxide clusters with various sizes between 33 
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and 113 atoms and two different space groups including the cubic  and 

monoclinic  symmetries, using GGA+U approximation. The low-temperature 

monoclinic phase of   symmetry seemed more stable than the others since its 

ground-state cohesive energy was smaller. These results have disclosed that 

inclination for keeping primary configuration increases for the larger clusters and also 

the primary optimizing phase of clusters has an important role in determining their 

electronic properties. Besides Radial and angular distribution functions unfolded that 

crystalline structures would tend to form cagelike structures after relaxation. By the 

way, during the production procedure, creating the clusters which are of close to one 

to one stoichiometry with proper amount of oxygen is possible too. Krisztián 

Palotásand and his co-workers performed spin-polarized density functional theory 

simulation within GGA and GGA+U approximation on different structures of 

nanometer-sized iron oxide atomic clusters with various stoichiometries. Total 

energies of structures and some collinear magnetic configurations were compared 

together and the results demonstrated that the structures with low symmetries and the 

ones which possess ferrimagnetic properties with low magnetic moment are 

energetically more desired in comparison to high symmetry structures. These 

researchers studied larger clusters like Fe25O30 and Fe33O32 and proposed cagelike 

geometry and rocksalt type structure for each of them, respectively. These calculations 

were based on GGA and GGA+U methods and considering the results for geometrical 

relaxations and physical properties, it was seen that remarkable difference occurs by 

switching from GGA to GGA+U. These results provide the evidence of sensitivity of 

the structure of transition metal oxide clusters to the exchange correlation energy 

functional used in the various methods [149]. One of the studies by Sheng-Gui He and 

co-workers [150] has been performed on cage and non-cage clusters of (Fe2O3)n [n = 

2 6, 10] using DFT calculations in order to compare bonding, stability and vibrational 

frequencies of miscellaneous kinds of structures.  

Some other calculation on small iron oxide clusters [151] like, Fe2O, Fe2O2, Fe2O3 and 

Fe3O4 displayed that the properties of iron oxide clusters strongly appertain to the 

valence states of iron. In bulk and clusters of iron oxide Fe2O3, iron atoms are in the 
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+3 valence state, these clusters with this feature and the stoichiometry of (Fe2O3)n , 

possess exclusive properties. Regarding these results, in general, it is concluded that 

doing experimental and theoretical study on the iron oxide (Fe2O3)n clusters is 

interesting and important. 

Along the same line, using density functional theory, we shall investigate stable 

structures, electronic properties and the most outstanding characteristic feature, 

magnetic properties, of (Fe2O3)n (n = 2 5) clusters with cage structure. As well as, we 

are interested in exploring the consequence of size evolution on the magnetic 

properties of the systems considered. 

 

3.3.2. Computational Methods 

 

Our calculations start with the structures for the cage clusters of (F2O3)n, with n = 2–5, 

which were adopted from the work of Sheng-Gui He and co-workers [150] and using 

Gaussview and Hyperchem softwares, also considering related symmetries, the 

mentioned cage structures were simulated . At the beginning, for each size of clusters, 

several initial geometrical structures have been considered and each cluster was 

optimized utilizing spin-unpolarized calculations. Each (Fe2O3)n cluster was placed in 

a cubic supercell configuration with a side length of 13.5 Å for n = 1–3 and 16 Å for 

n=4,5 and enough vacuum space with duplications to avoid interactions between the 

cluster and its periodic images. Spin-polarized DFT calculations were performed using 

a plane-wave basis set implemented in the QUANTUM ESPRESSO package [152]. 

Exchange and correlation (XC) effects are treated within the local-density 

approximation (LDA) and core electrons are behaved explicitly by using Vanderbilt 

ultrasoft pseudopotentials [153] as supplied with the Perdew-Zunger (PZ) functional 

[154].  The KS wave functions expanded in a plane-wave basis set with a kinetic 

energy cutoff of 380 eV. Different values for the k-point sampling were tested and 

finally a grid of   Monkhorst-Pack [155] k-points were used for the 

calculation of energy and density of states, while the structural relaxations were 
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performed using the gamma point only. Brillouin zone integration was performed by 

using the Gaussian smearing method with a width of 0.05 eV. To get the ground state 

magnetic moment, we have explicitly considered all possible spin configurations states 

(SCS’s) for each cluster then these structures were relaxed and followed by the 

calculations of electronic and magnetic properties.  

The total and absolute magnetizations which are achieved using scf calculations are 

defined as the integral of the magnetization in the cell and the integral of the absolute 

value of the magnetization in the cell, respectively:  

 

                                                    (3.6) 

 

                                                    (3.7) 

 

where  and  are the atomic magnetic moments of atoms with a up and a 

down spin, respectively. 

The relative stability of clusters was examined by calculating their (normalized) 

binding energies using the following equation:  

 

                                                                                (3.8) 

 

where En and E1 are the energies of the (Fe2O3)n cluster and a single Fe2O3 molecule, 

respectively [156]. 

 

3.3.3. Results and Discussion 

 

Relaxed structure for the rhombohedral unit cell of bulk hematite is displayed in Fig 

3.16.  
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3.3.3.1. Fe2O3 Molecule (n = 1)  

 

Figure 3.17 represents the optimized structure for an isolated Fe2O3 molecule, with C2v 

point group and the kite like shape. This structure, with two oxygen atoms at bridge 

sites and one oxygen at edge, has been obtained as the most stable structure for neutral 

Fe2O3 [157], as well as the charged forms, Fe2O3
+
 [144] and Fe2O3

–
 [147]. The 

calculated net magnetic moment for this molecule is 0.7 µ
B
 and the two Fe atoms have  

 

 

 

 

 

 

 

Figure 3. 16 Relaxed structure of the rhombohedral unit cell of hematite. Blue (Gray) 

color represents iron atoms and red (dark gray) represents oxygen atoms. We will 

follow the same convention throughout. 
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Figure 3. 17 Relaxed structure for the (Fe2O3)n=1 cluster. The arrows show the spin 

polarization of Fe atoms.  

 

opposite spin polarizations, in agreement with previous results [147,157]. The 

magnetization on O atoms does not appear in the figure due to their small values. 

Cheng and Li obtained similar ground state geometry for Al2O3 molecule [158]. 

 

3.3.3.2 (Fe2O3)n=2 Cluster  

 

The initial structure for Fe4O6 is shown in Fig. 3.18(a). The Fe-O bond length in the 

initial tetrahedral structure with Td point group is 1.89989 Å [150,156,157], the O–Fe–

O and the Fe–O–Fe bond angles are 112.071º and 103.981º, respectively. The almost 

tetrahedral optimized structure of Fe4O6 cluster obtained in this study is represented in 

Fig. 3.18(b), the average Fe–O bond length is calculated as 1.69642 ± 0.00019 Å. In 

this structure, each O atom bonds with two Fe atoms and each Fe atom bonds with 

three O atoms, the calculated average bond angle for O-Fe-O is 116.075 ± 0.008º and 

for the bonds of oxygen atom with iron atoms, Fe–O–Fe, the average bond angle is 

93.690 ± 0.014º.  
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          (a) (b) 

 

Figure 3. 18 Initial structure for (Fe2O3)n=2 cluster (a) and optimized structure for 

(Fe2O3)n=2 (b). 

 

It is clear that the optimization results are in accordance with previous studies 

[150,157]. For the relaxed structure, several spin configuration states were examined 

using different number of distinct Fe atom types with different starting magnetization 

values. Three distinct stable low-energy spin configuration states were found, for 

which the properties are given in Table 3.3. Furthermore, the values of atomic 

magnetic moments for Fe atoms of these three SCS’s are shown in Figure 3.19, 

positive and negative numbers indicate spin-up and spin-down atoms, respectively. 

Considering atomic magnetic moments of Fe atoms (polarization values) in Table 3.5 

and the optimized structures in Fig. 3.19, we will discern total and absolute magnetic 

moments, consequently the magnetic properties of these iron oxide clusters will be 

found (the magnetic moments for oxygen atoms are negligible and therefore are not 

shown). As complementary to our calculations for the sake of magnetic properties, 

Table 3.6 indicates some further properties obtained for three low-energy SCS’s. The 

most stable spin configuration states, as well as their corresponding binding and the 
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Table 3. 3 Spin states obtained for Fe4O6 cluster (Refer to Fig. 3.18 for atom 

numbering). Atomic magnetic moments are represented in Bohr mag/cell [156]. 

 

SCS   

µatomic 

Fe7 Fe8 Fe9 Fe10 

n2-1   -1.60 1.15 1.15 1.15 

n2-2   1.26 0.22 0.33 0.09 

n2-3   -1.15 1.15 -1.15 1.15 

 

relative energies, bond length, total and absolute magnetic moments are given in Table 

3.4. As it is seen, the most stable SCS (n2-1 state) with C3v point group has a 

ferrimagnetic arrangement of iron magnetic moments: three up, one down, which the 

total computed magnetic moment is 2.00 μB (Bohr magnetons) per cell, and the 

absolute is 5.53 μB per cell. The second SCS (n2-2) which has all four iron atoms 

lying in a majority spin and is relatively 0.055 eV higher in energy, is a ferromagnetic 

state with a point group closer to C3v (smaller standard deviation in bond lengths), but 

shorter Fe–O bonds. These two SCS’s have been also obtained in previous 

calculations [156,159].  

The good agreement between the calculated magnetic moments, geometries and 

magnetic properties with other theoretical and experimental data [150,159] proves the 

reliability of our theoretical approach. In this regard, we have used it further for extra 

insight into the magnetic and electronic properties of these systems. There is a third 

SCS (n2-3) has a perfect tetrahedral geometry and a zero total magnetic moment so 

anti-ferromagnetic spin ordering. As it is seen in Fig. 3.19(c), in this structure, two Fe 

atoms have positive and two have negative magnetic moments with equal values. In 

this present case, this tetrahedral kind of structure lies 0.084 eV higher. 
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Figure 3. 19  The values of atomic magnetic moments for Fe atoms of three low- 

energy spin configuration states [156]. 

 

All these structures have same atomic arrangements but different spin configuration 

states, which is consequently the reason for their difference in magnetic moments and 

magnetic properties. 

Inasmuch as, the binding energies for three SCS’s of Fe4O6 are all negative, indicate 

that they are stable structures. The trend in Eb values is similar to that of the relative 
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energies (Erel values). All bonds are longer than the bonds in spin-unpolarized relaxed 

structure shown in Figure 3.18b, but n2-1 and n2-3 have higher Fe O bonds lengths. 

Meanwhile, it is relevant to get more insight into clusters and their properties, 

particularly the electronic structure and discuss them by calculating electron density of 

states (DOS). In this regard, density of states (DOS) plots for three SCS’s of (Fe2O3)2 

are shown in Figure 3.20. As shown in this figure, energy is plotted in the range of -2 

eV to 2 eV, since the magnetic properties are determined near the highest occupied 

level in DOS distribution, thus our concentration is in the vicinity of highest occupied 

level in DOS distribution and we set it as zero, i.e. we must first subtract the value of 

highest occupied level energy from all energy values in dos file, which is produced by 

the program, in order to set the zero of energy at the highest occupied level. As seen 

from Fig. 3.20, in some values of energy the density of state in majority-spin channel 

is different from the values in minority- spin channel. Hence, the n2-1 state shows a 

semiconductor behavior with a small gap of 0.2 eV in the majority-spin channel. The 

highest occupied level is mainly contributed by spin-up electrons. In the n2-2 state, the 

feature worth addressing is the crossing of the DOS at the highest occupied level, i.e. 

it shows a metallic behavior in spin-up direction whereas there is gap of ~1 eV for 

other population (spin-down direction) which makes it behaves as semiconductor. 

 

Table 3. 4  Properties of three low-energy spin configuration states obtained for the 

Fe4O6 cluster [156]. 

 

SCS Erel (eV) Eb (eV) dFe O (Å) µtot µabs 

n2-1 0.000 3.71 1.706 ± 0.010 2.00 5.53 

n2-2 0.055 3.68 1.698 ± 0.005 2.00 2.21 

n2-3 0.084 3.67 1.706 ± 0.001 0.00 5.03 

 

 

In conclusion, the n2-2 state is a half-metal. The n2-3 state is a semi-metal, with a 

negligible density of states at the highest occupied level, as yet there are two sharp 
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peaks just below and above it. The relative magnitude and disposition of the peaks are 

quite similar and simply are mirror images of one another [156]. 

 

3.3.3.3. (Fe2O3)n=3 Cluster  

 

Figure 3.21 (a) shows the initial relaxed structure of Fe6O9 with D3h symmetry. As it 

could be seen in this figure, there are two types of oxygen atoms in Fe6O9 cluster:  

oxygen atoms contributing in six-membered rings are labeled by Or , in the following 

figure oxygen atoms  from O1 to O6, and oxygen atoms bridging between two 6-rings 

Ob , the atoms which are tagged  as O7, O8, O9 in Figure 3.21. The Fe–O bond lengths 

in the optimized structure for these two types of oxygens (Or and Ob) are 1.691 and 

1.688 Å, respectively.  

Turning to the question of energetic stability, we followed the same route for finding 

stable low-energy spin configuration states, thus we recognized three distinct SCS’s. 

The computed atomic magnetic moments of each of iron atoms for only two states are 

depicted in Table 3.7 and shown in Figure 3.22. In the n3-1 state, the atomic magnetic 

moments of the Fe10, Fe11, Fe13 and Fe14 are positive and the same, while for the 

Fe12 and Fe15, which have equal µatomic, are negative. These configuration results in 

an overall non-zero net magnetic moment. The complementary results are presented in 

Table 3.8 Comparing total and absolute magnetic moments, we deduce that the most 

stable state, n3-1 state is ferromagnetic, in which two Fe atoms have negative and four 

have positive magnetic moments. The total and absolute magnetic moments are 2.00 

and 7.76 μB per cell.  The iron atoms in the second stable state for Fe6O9 cluster, n3-2 

state, still possess identical magnetic moments for the Fe10, Fe11, Fe13 and Fe14 but 

inverse spin alignment. The spins on the Fe12 and Fe15 are equal but antiparallel. 

These outcomes insinuate that n3-2 state is an anti-ferromagnetic spin ordering, in 

which three atoms are spin-up and three are spin-down and thus the total magnetic 
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Figure 3. 20 Density of states (DOS) for n2-1 (a), n2-2 (b), and n2-3 (c) Fe4O6 

clusters. Upper and lower panels are for spin-up and spin-down states, respectively. 

Zero energy indicates the position of the highest occupied level [156]. 
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            (a)                                                                       (b)   

 

Figure 3. 21 a) Relaxed structures for the (Fe2O3)n clusters with n = 3. b) optimized 

structure, for each type of the optimized bond lengths (Fe Or and Fe Ob), one number 

is shown. 

 

 

Table 3. 5 Stable spin configuration states and atomic magnetic moments of each Fe 

atoms for Fe6O9 cluster, atom numbering is shown in Fig. 3.21 [156].  

 

SCS   

                                   µatomic 

Fe10          Fe11 Fe12    Fe13       Fe14       Fe15 

 

n3-1 

   

1.11 

 

1.11 

 

-1.27        

    

    1.11         1.11         -1.27 

n3-2   -0.90 0.90 -1.87   -0.90          0.90         1.87 
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Figure 3. 22 The values of atomic magnetic moments for Fe atoms of the first two 

low- energy spin configuration states of Fe6O9 cluster. 

 

 

Table 3. 6 Properties of three low-energy stable spin configuration states obtained for 

the Fe6O9 cluster [149]. 

 

SCS Erel (eV) Eb (eV) 

dFe O (Å) 

µtot µabs Fe Or Fe Ob 

n3-1 0.000 4.44 1.695 ± 0.007 1.702 ± 0.005 2.00 7.76 

n3-2 0.263 4.36 1.698 ± 0.019 1.697 ± 0.007 0.00 8.09 

n3-3 0.332 4.33 1.689 ± 0.000 1.683 ± 0.000 0.00 0.00 
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moment is zero. The third state of Fe6O9 is the nonmagnetic state n3-3, the total and 

absolute magnetic moments both are zero. For the n3-1 state, we found less symmetric 

than the spin-unpolarized relaxed structure, with a point group near to C2v and 

elongated bonds. This configuration is energetically more favorable than the others. 

We observe that the bonds of iron atoms with oxygen atoms in rings, Fe–Or , with 

bond length 1.695±0.007 Å  are shorter than Fe–Ob bonds with bond length 1.702 ± 

0.005 Å. The second stable state for Fe6O9, n3-2 state, has a less negative binding 

energy and lie 0.263 eV higher in total energy in comparison with the n3-1 state. In 

this optimal structure, Fe–Or and Fe–Ob bonds are equal. The third state of Fe6O9 

cluster, the nonmagnetic state n3-3, with D3h point group and the bond lengths very 

similar to the initial structure of Figure 3.21 (b) is found to have relative and binding 

energy 0.332 eV and -4.33 eV, respectively.   

We give the total density of states (DOS) of the Fe6O9 cluster in Fig. 3.23. As can be 

seen from this figure, because of the spin-up peak below and a spin-down peak above 

the highest occupied level, the n3-1 is a semi-metal. It is visually obvious that, in the 

n3-2 state, the observed band gap is 0.2 eV. Furthermore, duo to the similarity 

between spin-up and spin down in DOS, this state is a semiconductor. The DOS plot 

for n3-3 in Figure 3c indicates that it is a semi-metal. 
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Figure 3. 23 Density of states (DOS) for n3-1 (a), n3-2 (b), and n3-3 (c) Fe6O9 

clusters. Upper and lower panels are for spin-up and spin-down states, respectively.  

 

3.3.3.4. (Fe2O3)n = 4 and (Fe2O3)n = 5 Clusters 

 

As we observed during this study, the atomic magnetic moments of Fe and O atoms 

and their alignments in the cluster are responsible for the various total moments. The 

structures of clusters affect the magnetic moment of atoms, so they can either weaken 
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or strengthen each other and display different magnetic properties. Observing these 

points, we pursue our studying for recognizing properties of larger iron oxide clusters  

i.e. Fe8O12 and Fe10O15. In Fig. 3.24 the optimized structures for these two clusters are 

shown. The Fe8O12 cluster found to have octahedral symmetry (Oh point group) with 

average Fe-O bond length of 1.682 Å which is identical for all Fe-O bonds. We give 

three proposed low energy spin configuration models for Fe8O12 cluster, which two of 

them are shown in Fig 3.25, the values on each of spheres relates to the atomic 

magnetic moments of iron atoms. We noticed that Fe atoms play main role on the total 

magnetic moment in previous clusters, and as expected in the following ones either. 

Summarized properties of three magnetic SCS’s for Fe8O12 cluster are provided in 

Table 3.9 The spin arrangement of iron atoms shown in the Fig. 3.25 makes the state 

(n4-1) lower in total energy and contrasting zero net magnetic moment, µtot, and 

absolute magnetic moment, µabs, of 14.34 μB in this state, we conclude that (n4-1) state 

is an anti-ferromagnetic state, with the longest Fe–O bonds [156]. The n4-2 state is 

0.133 eV higher in energy than n4-1, with two atoms having negative magnetic 

moments. Furthermore, like the state n4-1, one may also note that the µtot of 2.00 μB, 

in table 4.4, is remarkably smaller than µabs of 11.74 μB. Nevertheless, due to non-zero 

total magnetic moment in this spin configuration, this state exhibits ferrimagnetic 

property. The third magnetic moments configuration (n4-3) which have also been 

tested, led to approximately same total and absolute magnetic moments, thus Fe8O12 in 

the third state (n4-3) is ferromagnetic with atomic magnetic moment of 1.41 µ
B
 for all 

Fe atoms. It has an ordered Oh point group and all its Fe–O bond lengths are equal.  

As it is mentioned earlier, to hit the magnetic properties for these clusters, we have 

studied all possible spin configurations for Fe10O15 cluster. In Fig 3.24 (b), the 

optimized structure of Fe10O15 is depictured. Two magnetic states have been found for 

this cluster, one of these optimized structures is shown in Fig 3.26 Calculated relative 

energies, binding energies and magnetic moments are given in Table 3.10 [156]. 
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 (a) 

                

                          

                                           (b) 

 

Figure 3. 24 Optimized structures for the (Fe2O3)n clusters with n = 4 (a) and n=5 (b). 

For each type of the optimized bond lengths (Fe Or and Fe Ob), one number is 

shown. 
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Figure 3. 25 The values of atomic magnetic moments for Fe atoms of the first low- 

energy spin configuration states of Fe8O12 cluster. 
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Table 3. 7  Properties of three low-energy stable spin configuration states obtained for 

the Fe8O12 cluster. 

 

SCS Erel (eV) Eb (eV) dFe O (Å) µtot µabs 

 

n4-1 

 

0.000 

 

4.72 

 

1.703 ± 0.035 

 

0.00 

 

14.34 

n4-2 0.133 4.68 1.697 ± 0.028 2.00 11.74 

n4-3 0.234 4.66 1.698 ± 0.000 12.00 12.26 

 

 

 

 

                            

 

Figure 3. 26 The values of atomic magnetic moments for Fe atoms of the two low- 

energy spin configuration states of Fe10O15 cluster. 

 

 

The lower energy state (n5-1) is anti-ferromagnetic and the higher energy state (n5-2) 

is nonmagnetic. These properties arise for the following reasons. As it is seen in the 
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Fig 3.26, the majority and minority spins summation which constructs the total 

magnetic moment is zero, while the absolute magnetic moment is 10.96 μB. These 

types of spin configurations give rise to anti-ferromagnetic property of this cluster in 

the (n5-1) state. Table 3.10 shows an overall decrease in magnetic moments in (n5-2) 

state which we educe that this state exhibits no magnetic sign. Both of these two states 

have D5h point group, but it should be pointed out that bond lengths are larger than the 

spin-unpolarized relaxed structure of Figure 3.24 (b). The overall look of these results 

anticipates the trend that: binding energy grows monotonically with increasing the 

cluster size, the highest value is thus found for Fe10O15 cluster [156]. 

 

Table 3. 8 Properties of three low-energy stable spin configuration states obtained for 

the Fe10O15 cluster. 

 

SCS Erel (eV) Eb (eV) 

dFe O (Å) 

µtot µabs Fe Or Fe Ob 

 

n5-1 

 

0.000 

 

4.71 

 

1.672 ± 0.000 

 

1.685 ± 0.013 

 

0.00 

 

10.96 

n5-2 0.096 4.69 1.680 ± 0.000 1.691 ± 0.006 0.00          0.00 

 

 

In Fig 3.27 and Fig. 3.28, we present the DOS for majority and minority spin 

generated from the Fe8O12 and Fe10O15 cluster calculations. As it is clear in Fig 

3.27(a), howbeit state n4-1 has a net zero magnetization, the DOS plots for the 

majority and minority spins are different. In this figure for spin-up DOS, we 

comprehend that it behaves like semiconductor, whiles spin-down DOS has a nonzero 

value at the highest occupied level, so in this case it is metal, whereupon, it is a half-

metallic antiferromagnet [40], which make the Fe8O12 cluster in state (n4-1) as a 

leading material for spintronics applications [161]. 
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Generally half-metallic antiferromagnets differ from common antiferromagnets. They 

are the proper subset of stoichiometric half metals which the integer moment per cell 

is zero. These materials were foretoken to represent an anomalous form of magnetism. 

[161,163].  

It should be mentioned that according to the Coey et al. [164] classification of half-

metallic ferromagnets, there are four types of half-metals, our case is the type-IB half-

metals, which is semiconducting with respect to majority spin and metallic with 

respect to the minority spins.  

As it is considered in Fig. 3.27 (b) and (c), the n4-2 and n4-3 states are both half-

metals. In Fig. 3.28 we present the DOS both two spin configuration states which have 

been found for Fe10O15 cluster [156].  

The DOS for majority-spin states are shown in the upper panel and the minority-spin 

ones are located in lower panels. Regarding these graphs, the outcome is that both of 

these structures are semiconductors, with have the same spin-up and spin-down DOS 

plots [156]. 
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Figure 3. 27 Density of states (DOS) for n4-1 (a), n4-2 (b), and n4-3 (c) Fe8O12 

clusters. Upper and lower panels are for spin-up and spin-down states, respectively. 
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Figure 3. 28 Density of states (DOS) for n5-1 (a) and n5-2 (b) Fe10O15 clusters. Upper 

and lower panels are for spin-up and spin-down states, respectively.  
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3.4. Study of the Influence of Transition Metal Atoms on Electronic and 

Magnetic Properties of Graphyne Nanotubes Using Density Functional Theory 

 

3.4.1. Introduction 

                                        

As mentioned in the first chapter, since graphyne nanostructures are applicable in 

novel technology in various forms, thus many studies and researches have been done 

for recognizing their properties. Ivanovskii has reviewed the theoretical and 

experimental studies on graphyne in various zero-to three-dimensional nanostructures 

[52], since these compounds have many potential applications in lithium batteries 

[165,166], electronic devices and Hydrogen storage media [167] and as a membrane in 

gas separation [168,169]. They can also be doped in polymeric materials or 

composites for use in solar cells [170]. Narita, et al. [51] have studied the electronic 

and structural properties of graphyne compounds using the linear combination of 

atomic orbitals (LCAO) in LDA approximation. According to their results graphyne is 

a semiconducting material with a direct band gap of 0.52 eV at the M point. 

By the way, theoretical studies indicate that in comparison between graphyne and 

graphdiyne, the former is more favorable because of its stability and expected to be 

produced experimentally in future. Remarkable attempts have been allocated to the 

electronic structure and other properties of graphyne [47, 53, 171-176]. Tongay and 

co-workers [177], using first-principle plane wave calculation, have proposed different 

stable periodic structures which contain carbon atomic chains in 1D, 2D and 3D.  The 

more cognizance of stability of graphyne under various conditions is a challenging 

issue in order to synthesize it experimentally and produce related nanodevices. One of 

the surveys, on the basis of first-principle method, has been performed for studying the 

stability and structural transformation of 2D α-graphynes at different sizes [178]. 

According to another theoretical report [179] based on first-principles method, in 

comparison between graphyne and graphene, the latter is more stable, since its binding 

energy is 0.56 eV higher per atom. Consequently, it is still debatable that how long 

graphyne can exist at high temperatures and in what condition it turns into graphene. 
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For auspicating lifetime or stability of nanodevices particularly graphene-based 

devices, Lin and his teammates has proposed a statistic model based on  ab- initio 

calculations [180-181], using this model,  Yi-Guo Xu and et al. tried to foretell the 

change rate of  stability of α-, β- and 6,6,12-graphyne with the temperature variation. 

Their research showed that free-standing single layers of these kinds of graphynes and 

graphdiyne are stable in the range of room temperature to 1000K, but the conversion 

from graphyne to graphene happen when the temperature is about 2000K and more 

[182]. Zhou and et al. [172] have analyzed the electronic structure and bonding of 

graphyne and its boron nitride analog using density functional theory for the purpose 

of better understanding of brand-new carbon-based structures. They found that 

modifying the length of carbon chain and size of hexagonal ring; can modulate the 

direct bandgap of both of these structures, which is useful for energy band 

engineering.  

As discussed before, during recent years, graphyne, owing to its electronic 

applications, has been contemplated as competitor of graphene. Since, in contrast to 

graphene, most of fields like electronic and optical properties or magneto-transport of 

graphyne are not completely detected yet, Zhe Liu and et al. using a π-electronic tight-

binding method, have proposed an effective model which is in good agreement with 

DFT results for the valence and conduction bands and some features of α-,β-,γ- and 

(6,6,12) graphyne [183]. 

In order to find out more about the electronic properties, other theoretical studies have 

been done on graphyne families. Malko et al. [171] have noticed Dirac cones exist  in 

two-dimensional α-graphyne and other graphyne sheets  and proved that these cones 

are not unique characteristic of  graphene and these Dirac-cone like features are not 

limited to honeycomb structure or hexagonal symmetry  and may be seen in other two-

dimensional structures either.  

Furthermore, several tight-binding and DFT studies have been employed for 

investigating the electronic and mechanical properties of graphyne-based nanotubes 

(GNTs) for various forms of graphyne [174-176]. Colucia and his co-workers have 

generated GNTs from graphite-based nanotubes and using tight-binding calculations, 
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predicted the electromechanical reaction of these semiconducting nanotubes to charge 

injection. According to their research, the bandgap of GNTs does not depend on the 

diameter and chirality of nanotubes and are the same for all possible geometries. 

Tuning pristine graphyne structure is of great importance in order to modifying its 

intrinsic properties recently. Studying the adsorption of 3d atoms on graphyne  and 

graphdiyne sheets showed that not only are the electronic properties affected, but also 

the magnetization of these sheets are increased under this circumstance, as an 

example, Fe-graphyne behaved as a magnetic metal [184]. The reason of this 

alteration in magnetic property originates from the charge transfer between graphyne 

and graphdiyne sheets and transition metal atoms. These properties are important for 

spintronics applications. 

In another similar research, this group applied density functional plus Hubbard 

approach and have developed a model for disclosing some principles for Half-

Metallicity in transition metal doped conjugated carbon based materials, especially for 

graphyne systems. Results revealed that some transition metals like Fe and Cr, in 

doping procedure, show Half-Metallicity but Ni and Mn do not. The energy of gaps 

and Half-Metallicity are controllable by tuning the valence electron numbers [185]. 

Moreover, functionalization of graphyne is a way to modify its structural and 

electronic properties. Fluorination of graphyne is an example of this method in order 

to make necessary changes in graphyne, in this method, the hybridization state of 

atoms changes to sp
3
. As a result this process will open band gap in the band structure 

[186]. Hydrogen adsorption is another effectual way for functionalization graphyne 

which can alter the electronic properties of carbon nanostructures. In this regard, Jie 

Tan et al. using fist-principle calculations studied hydrogenated graphyne and proved 

that with hydrogen coverage the band gap of 2D hydrocarbon materials will be 

tunable, as in this case the band gap of hydrocarbon material when all the carbon 

atoms has been hydrogenated, was increased from 1.01 eV to 4.43 eV [187]. 

One of the roads still is not known completely in the material science of carbon 

compounds and graphyne is recognizing their electronic properties modification when 

they interact with transition metal (TM) atoms [188]. The interaction of these 
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compounds with transition metals is important because TM atoms are generally used 

as catalyst in their preparation. Besides, these atoms can be used to tune the bandgap 

of carbon nanotubes (CNTs) [189,190] which may open novel routs for designing new 

nanodevices or spintronic devices [191,192]. Some DFT calculations illustrated that 

transition metals alter the electronic properties of graphdiyne and graphyne sheets and 

generate various magnetic states such as spin-select half-semiconductors or half-metals. 

This variation arises from the charge transfer between the transition metal atoms and 

carbon atoms of the sheet [184]. 

In this thesis, we are interested in the γ- graphyne (simply called ‘graphyne’ hereafter) 

since it is the lowest energy member of the graphyne family and it has the biggest 

potential to be synthesized in the future. We perform calculations based on density 

functional theory (DFT) to study the nature of sp and sp
2
 bonding and the band 

structure of graphyne. Particularly we are interested in how the metal atoms (Fe, Co, 

Ni), named also as transition metal (TM) atoms, interact with the graphyne nanotubes 

and modify their energy band structure [193]. This causes altering of their electronic 

properties. The interaction of metal atoms with the graphyne carbon atoms is also 

important because TM atoms are usually used as catalyst in their preparation. 

Comparison of the results to that obtained for TM interaction with graphyne sheets 

[26] helps us to understand the effect of curvature (or σ-π hybridization) on the 

electronic and magnetic properties of graphyne compounds. 

 

3.4.2. Method of Calculation  

 

A sheet of graphyne can be rolled to form graphyne based nanotubes (GNT). 

Depending upon the axis of rolling, the nanotubes can be arm-chair, zig-zag or chiral. 

The structure of a nanotube can be specified by a vector, (n,m), which defines how the 

graphyne sheet is rolled up. The vector is defined as  .For example, 

the vector for zigzag nanotubes is represented by (n,n) and the chiral ones by (n,0), see 

Fig. 3.29. When the orbitals overlap along an axis between the atoms (internuclear 
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axis), they form a σ-bond. In this type of bonding the electron density is highest in the 

space between the atoms. For p orbitals, sideways overlapping is also possible. This 

results in the formation of π-bonds [194]. Atomic orbitals combine and form extended 

band structures. The energy gap between the highest occupied and the lowest 

unoccupied atomic state is called a band gap. As a result of electron excitation, the 

bands can broaden and start overlapping each other. This is the reason for example 

how insulator can become semiconductor.  

 

 
 

 

 

Figure 3. 29 The γ-graphyne sheet unit cell (dashed hexagon) and some chiral vectors. 

Adapted from Refs. [17] and [36].  

 

The unit cell of the graphyne sheet which is found in our work is displayed in Fig. 

3.30 along with its base vectors.  

These vectors are defined as  and , with a = 6.86 Å 

[195]. A unit cell of this nanotube has 48 carbon atoms and its radius and height are 

7.6 and 6.86 Å, respectively. 
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Figure 3. 30  A  supercell of graphyne sheet (adsorption sites which are shown in 

this figure will be explained in the text). 

 

 

The lengths of different carbon-carbon bonds have been taken from the work of 

Narita, et al. [51].  

In this study, we have used four GNTs to study the effects of diameter and chirality on 

the interaction with TM atoms. These are (2,2), (3,0), (3,3), and (5,0) tubes. Table 3.9 

compares some properties of these four nanotubes. The nanotubes were placed in a 

tetragonal supercell of , with parameters given in Table 3.9, to 

simulate an infinitely long 1D periodic system. For example, the (2, 2) graphyne 

nanotube, shown in Figure 3.31, was placed in a tetragonal supercell of 

. The empty spaces along the x and y directions were included to avoid 

interactions in the xy plane.  

Calculations have been done applying spin-polarized DFT method and using plane-

waves [153] which implemented in Quantum Espresso package [152]. The interaction 

between the ionic cores and valance electrons are explained with ultra-soft                                                                                       
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pseudopotentials. The generalized gradient approximation (GGA) with Perdew-Burke-

Ernzerhof (PBE) functional [196] was employed using a plane-wave cutoff of 300 eV.  

 

 

 

 

Figure 3. 31 Schematic presentations of (2, 2) graphyne nanotube. 

 

 

The structure of each of the nanotubes was first optimized and then, one TM atom (Fe, 

Co, Ni) was placed on the external surface of the nanotube. As it is shown in Figure 

3.30, eight different adsorption sites were used for each TM atom. These are atop (a1, 

a2), bridge (b1, b1a, b2, b3), and hollow (h1, h2) sites. In atop positions, each of TM 

atoms is located over one of the atoms of nanotube. For the case a1, the TM atom is 

placed over the carbon atom with sp
2
 hybridization and for a2, it is over the carbon 

with sp hybridization. As it is clear in Fig. 3.30, b1, b2 and b3 are bridge positions i.e. 

each of TM atoms is situated over one of the bonds of nanotube. This bridge bonding 

for b1 is a kind of C(sp
2
)-C(sp

2
), for b2 and b3 are C(sp

2
)-C(sp) and C(sp)-C(sp) 

bonds, respectively. The position b1a is a C(sp
2
)-C(sp

2
) bonding which is parallel to 

the nanotube axis ( ‘a’ is the axial indicator). The h1 and h2 are hollow positions. In 

these cases the TM atom is located over one of the rings of nanotube. For h1, this ring 

is composed of C-C≡C-C bonds and for h2 is a six-member benzene ring. 
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As can be seen, all nonequivalent positions have been considered to insert TM atoms. 

In each of these eight cases, the metal atom in the primitive structure (before 

relaxation) is placed at a distance of approximately 1.8 Å from adjacent carbon atoms. 

The metal-adsorbed nanotubes were fully relaxed using the convergence threshold of 

0.01 meV in energy and 0.012 eV/Å in force. The Brillouin zone was sampled using a 

 Monkhorst-Pack [155] grid of k-points for the calculation of energy and 

other properties. 

 

 

Table 3. 9 Properties of four studied graphyne nanotubes (GNTs) 

 

GNT no. of 

atoms 

acs (Å) csc (Å) diameter (Å) 

 

 (2,2) 

 

  48 

 

20 

 

6.86                 

 

7.6 

 (3,0)   72 20 11.88 6.6 

 (3,3)   72 25 6.86 11.4 

 (5,0)   120 25 11.88 10.9 

 

 

 

To evaluate one of the favorable quantities of adsorption configuration, the binding 

energy is defined as   

 

                                      (3.9) 

                                        

where  denotes the spin-polarized total energy of fully optimized TM-

adsorbed nanotube, E(GNT)  is energy of pure nanotube, and E(TM) is spin-polarized total 
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energy of an isolated TM atom. All three terms were evaluated using a same supercell. 

A negative value for  shows an exothermic adsorption.  

 

3.4.3. Results and Discussion 

 

3.4.3.1. (2,2) GNT 

 

Several researches have been done and reported about the structure and properties of 

pure graphyne which are of the important references for our calculations [50,171,173].  

As mentioned before, in present work, three TMs (Co, Fe and Ni) are selected to 

adsorb on GNTs.  All parameters have been fixed and during the self-consistency 

process, the system was let to be relaxed. It should be pointed out that optimization 

results of GNTs with metal atoms adsorbed on different sites showed that some of 

these sites are not stable. In Table 3.12 the structures obtained for three TM and eight 

adsorption sites on the surface of a (2,2) GNT, binding energies, total magnetic 

moments and bond lengths are displayed. As seen in this table, metal atoms on atop 

sites (a1, a2) are not stable and a metal atom initially on a1 or a2 sites moves to b2 or 

b3 sites, respectively, i.e. the atop configuration prefer bridge positions.  For Fe 

metals, the b1 site is not stable and shifts to h2, while for Ni, b3 complex changes to 

h1. 

Furthermore, all binding energies are negative, which indicate that the interaction 

between transition metal atoms with graphyne nanotube is favorable. The binding 

energy of Ni@ (2,2) and Co@ (2,2)  are 4.93 eV and 4.83 eV, respectively, which is 

related to strong interaction between the Ni and Co with C atoms in nanotube, i.e. Ni 

and Co bind to GNT with more negative binding energies than Fe. As it is seen in this 

table, the most binding energies belong to the h1 adsorption sites (Figure 3.32), which  
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 (a) 

 

 

 

                                                                              (b) 

 

Figure 3. 32 a) optimized transition metal-nanotube complex with the metal adsorbed 

on h1 site b) Co atom adsorbed on nanotube which has moved to h1 site from its 

original (values are Co-C bond lengths in Angstrom). Blue and gray balls represent the 

TM and carbon atoms, respectively [192]. 
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 Table 3. 10 Summary of results for transition metal adsorption on a (2, 2) GNTs 

[193].  

 

TM initial site final site Eb (eV) µ (µ
B
) TM–C distance (Å)

a 

Fe      

 a1 b2 –0.95 4.00 2.1 (2) 

 a2 b3 –1.32 4.00 2.0 (2) 

 b1 h2 –1.56 2.00 2.1 (2), 2.2 (4) 

 b1a b1a –1.06 3.81 2.1 (2) 

 b2 b2 –1.10 4.05 2.1 (2) 

 b3 b3 –1.32 3.98 2.0 (2) 

 h1 h1 –4.58 2.06 2.0 (6) 

 h2 h2 –1.56 2.00 2.1 (2), 2.2 (4) 

Co      

 a1 b2 –1.54 1.37 1.9 (2) 

 a2 b3 –1.71 1.16 1.9 (2) 

 b1 b1 –1.93 1.00 1.9, 2.1 

 b1a b1a –1.93 1.00 1.9 (2) 

 b2 b2 –1.54 1.37 1.9 (2) 

 b3 b3 –1.71 1.14 1.9 (2) 

 h1 h1 –4.83 1.00 1.9 (2), 2.0 (4) 

 h2 h2 –1.75 1.20 2.0 (2), 2.2 (4) 

Ni      

 a1 b2 –1.74 0.00 1.9 (2) 

 a2 b3 –1.87 0.04 1.9 (2) 

 b1 b1 –1.88 0.03 1.9, 2.2 

 b1a b1a –1.87 0.03 1.9 (2) 

 b2 b2 –1.74 0.07 1.9 (2) 

 b3 h1 –4.93 0.00 1.9 (2), 2.0 (4) 

 h1 h1 –4.93 0.01 1.9 (2), 2.0 (4) 

 h2 h2 –1.75 0.03 2.0 (2), 2.2 (4) 

a 
number of bonds of each length are given in parentheses. 
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is in agreement with calculations for Ca adsorption on a (4,2) GNT [187] and 

graphyne sheets [197]. The TM-C bond lengths for all cases are approximately 

similar.  

In addition to the mentioned quantities, in the Table 3.10, the total magnetic moments 

of all complexes have been also compared. According to these results, the average 

magnetic moments of Ni complexes are zero, so these metals are non-magnetic. The 

other remarkable matter is that the Fe and Co metals possess non-zero magnetic 

moments and display magnetic complexes, the magnetic moments of Fe complexes 

are almost twice more than the Co ones. 
 

 

3.4.3.2. (3,0) GNT 

 

As part of our ongoing study of the effect of transition metals adsorption on graphyne 

nanotubes, we have applied three metals (Fe, Co and Ni) on (3,0) GNT. The 

corresponding optimized binding energies, stable sites and magnetic moments of these 

configurations are listed in Table 3.11.   For iron atoms, our calculations display that 

the most favorable adsorption site is hollow site, h1. The three atoms on atop site a1 

and bridge site b1 and b2 are not stable and move to the h1 site, while the atom on a2 

site changes to b3 site. For all cases, it seems that most of the atoms on atop and 

bridge positions are not stable and change their position to hollow site, which yields 

the most binding energy. This route is repeated similarly for Co and Ni atoms 

adsorptions on (3,0) GNT either, i.e. in this case, also, the a1 and a2 sites change their 

positions to h1 and b3 sites, which lie in higher energies than the others. Generally in a 

(3,0) nanotube four stable sites are h1,b3, h2 and b1a. The strongest binding occur 

when TM atoms are located at the hollow and bridges sites. The system has magnetic 

moments of 2 µ
B
 and 4 µ

B
 for Fe complexes and 1 µ

B
 for Co complexes, but still Ni 

complexes are non-magnetic [193].  
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3.4.3.3. (3,3) and (5,0) GNTs 

 

As mentioned above, the Fe, Co and Ni atoms are initially placed on eight different 

sites of the relaxed graphyne nanotubes. The adsorbed structures are optimized and the 

corresponding results are presented in Table 3.12 and Table 3.13. Our calculations 

show that for (3,3) and (5,0) GNTs, like to two aforesaid nanotubes, the most 

interesting site is h1with average binding energy of almost 5.00 eV. For example in 

the case of a (5,0) tube, virtually all structures relax to a h1. One subtle point which is 

considerable is that the binding energies for Ni complexes are very different for all 

sites from the similar ones in (2,2) and (3,0) nanotubes. In these two nanotubes, (3,3) 

and (5,0) cases, the Ni atoms bind strongly to GNTs in comparison with other 

nanotubes.  About the magnetic moments, the same behavior has been followed; Fe 

complexes own the most magnetic moments. In the second tier, Co complexes exist 

and finally Ni complexes which are non-magnetic. The net magnetic moment for 

Fe@(3,3) nanotube at b3 site is 4 µ
B
 which is large, thus this Fe-doped nanotube can 

be proposed as nanomagnet. Our calculations are in good agreement with other studies 

for carbon nanotubes [193, 197,199]. 

 

3.4.3.4. Magnetic and Electronic Properties 

 

To shed more light on structure and magnetic properties of these TM-doped GNTs, we 

have studied the adsorption of a metal atom on h1 site with more details. The 

outcomes are presented in Table 3.14.  In accord with previous results [32,34], the 

absolute value of the binding energy obtained from spin-polarized calculations (Eb
p
) is 

smaller than the value corresponding to spin-unpolarized calculations (Eb
u
). As cited 

before, in all cases, the TM atom remains in the plane of the acetylenic ring and makes 

bonds with six nearest neighbor carbon atoms (Figure 3.32a), with bond lengths less 

than 2 Å.  
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Table 3. 11  Summary of results for transition metal adsorption on (3,0) graphyne 

nanotube. 

 

 

 

 

 

 

TM initial site final site Eb (eV) µ (µ
B
) TM–C distance (Å)

 

Fe      

 a1 h1 –4.60 2.00 2.0 (6) 

 a2 b3 –1.86 2.00 1.9 (2) 

 b1 h1 –4.60 2.00 2.0 (6) 

 b1a b1a –1.24 4.00 2.0 (2) 

 b2 h1 –4.60 2.00 2.0 (6) 

 b3 b3 –1.86 2.00 1.9 (2) 

 h1 h1 –4.60 2.00 2.0 (6) 

 h2 h2 –1.76 2.00 2.1 (4), 2.3 (2) 

Co      

 a1 h1 –4.83 1.00 1.9 (2), 2.0(4) 

 a2 b3 –2.12 1.00 1.9 (2) 

 b1 a1 –1.90 1.00 1.9, 2.0(2) 

 b1a b1a –1.53 1.00 1.9 (2) 

 b2  -     -   -    - 

 b3 b3 –2.05 1.00 1.8 (2) 

 h1 h1 –4.83 1.00 1.9 (2), 2.0 (4) 

 h2 h2 –1.90 1.00 2.0 (4), 2.1 (2) 

Ni      

 a1 h1 –4.78 0.46 2.0 (6) 

 a2 b3 –2.49 0.03 1.8 (2) 

 b1 h2d –2.13 0.56 1.9, 2.0(2) 

 b1a b1a –1.99 0.02 1.9 (2) 

 b2 h1 –4.78 0.46 2.0(6) 

 b3 b3 –2.49 0.03 1.8 (2) 

 h1 h1 –5.05 0.00 2.0 (6) 

 h2 h2 –2.08 0.04 2.1 (4), 2.3 (2) 
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Table 3. 12 Results for transition metal adsorption on (3,3) graphyne nanotube. 

 

 

 

 

 

 

 

 

TM initial site final site Eb (eV) µ (µ
B
) TM–C distance (Å)

a 

Fe      

 a1  -     -   -      - 

 a2 b3 –1.57 4.00 2.0 (2) 

 b1 h1 –4.54 2.00 2.0 (6) 

 b1a  -     -    -     - 

 b2 b3 –1.57 4.00 2.0 (2) 

 b3 b3      -    -     - 

 h1 h1 –4.54 2.00 2.0 (6) 

 h2 h2 –1.85 2.00 2.1 (6) 

Co      

 a1 b2 –1.37 1.37 1.9 (2) 

 a2 b3 –1.55 1.00 1.8 , 2.0 

 b1 h1 –4.71 1.00 1.9(4), 2.0(2) 

 b1a b1a –1.69 1.00 1.9 (2) 

 b2 h1 –4.71 1.00 1.9 (4), 2.0(2) 

 b3  -     -   -     - 

 h1 h1 –4.72 1.00 1.9 (4), 2.0 (2) 

 h2 h2 –1.69 1.05 2.0 (2), 2.1 (4) 

Ni      

 a1 h1 –5.15 0.00 1.9 (2), 2.0(4) 

 a2 b3 –1.99 0.52 1.9 (2) 

 b1 h1 –5.15 0.00 1.9 (2), 2.0(4) 

 b1a h1 –5.14 0.00 1.9 (2), 2.0(4) 

 b2 h1 –5.15 0.00 1.9 (2), 2.0(4) 

 b3 b3 –2.13 -0.06 1.9 (2) 

 h1 h1 –5.15 0.00 1.9 (2), 2.0 (4) 

 h2 h2 –2.05 0.00 2.0 (2), 2.1 (4) 
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Table 3. 13 Results for transition metal adsorption on (5,0) graphyne nanotube. 

TM initial site final site Eb (eV) µ (µ
B
) TM–C distance (Å)

a 

Fe      

 a1  -      -   -     - 

 a2  -      -   -     - 

 b1  -      -   -     - 

 b1a  -      -   -     - 

 b2  -      -   -     - 

 b3 b3 –2.04 2.02 1.9 (2) 

 h1 h1 –4.88 2.00 2.0 (6) 

 h2 h2 –2.16 2.00 2.1 (4), 2.2 (2) 

Co      

 a1 h2 –1.98 1.00 2.1 (4), 2.2(2) 

 a2 b3 –2.07 1.50 1.9 (2) 

 b1 h2 –1.98 1.00 2.1(4), 2.2 (2) 

 b1a  -      -   -      - 

 b2 h1 –4.99 1.00 1.9 (2), 2.0(4) 

 b3 b3 –2.02 1.32 1.8 (2) 

 h1 h1 –4.99 1.00 1.9 (2), 2.0 (4) 

 h2 h2 –1.98 1.00 2.1 (4), 2.2 (2) 

Ni      

 a1 h1 –5.34 0.00 1.9 (4), 2.0(2) 

 a2  -      - 0.00      - 

 b1 h1 –5.33 0.00 1.9( 4), 2.0(2) 

 b1a h1 –5.34 0.00 1.9 (3), 2.0(3) 

 b2 h1 –5.34 0.00 1.9 (3), 2.0(3) 

 b3 b3 –2.48 -0.02 1.8 (2) 

 h1 h1 –5.34 0.00 1.9 (4), 2.0 (2) 

 h2 h2 –2.23 0.00 2.1 (4), 2.2 (2) 
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Table 3. 14 Properties of graphyne nanotubes with a transition metal (TM) atom 

adsorbed on the h1 site. Eb
p
 and Eb

u
 are binding energies obtained from spin-polarized 

and spin-unpolarized calculations, respectively. dTM-GNT is the average distance of the 

transition metal from six neighboring carbon atoms, µB is the net magnetic moment of 

the system and C is the charge transferred from the metal to nanotubes. 

 

system 

(TM@GNT) 

Eb
p
 (eV) Eb

u
 (eV) dTM-GNT (Å) µB C (e) 

Fe@(2,2) –4.58 –6.30 1.99 2.06 0.80 

Co@(2,2) –4.83 –5.82 1.95 1.00 0.77 

Ni@(2,2) –4.93 –5.22 1.96 0.01 0.95 

Fe@(3,0) –4.60 –6.50 1.98 2.00 0.81 

Co@(3,0) –4.83 –5.91 1.95 1.00 0.80 

Ni@(3,0) –5.05 –5.26 1.96 0.00 0.96 

Fe@(3,3) –4.54 –6.33 1.98 2.00 0.88 

Co@(3,3) –4.72 –5.89 1.95 1.00 0.80 

Ni@(3,3) –5.15 –5.34 1.96 0.00 0.95 

Fe@(5,0) –4.88 –6.43 1.97 2.00 0.82 

Co@(5,0) –4.99 –5.96 1.95 1.00 0.82 

Ni@(5,0) –5.34 –5.39 1.96 0.00 0.98 
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In comparison with carbon nanotubes [33], the larger binding energies and shorter 

bond lengths shows that binding in TM-GNT complexes is stronger than TM-CNTs. 

As stated above, for Co and Fe metals, the TM-GNT systems are magnetic, while Ni 

complexes are non-magnetic though. These values agree well with the observations 

for graphene sheets [182] and carbon nanotubes [189]. The total magnetic moment 

over the metal atomic basins is close to the value of the net magnetic moment of the 

system, because the major contribution in spin-polarization is related to the transition 

metal, as it is shown in spin-density isosurfaces in Fig. 3.33. These graphs which are 

for Fe and Co on a (2,2) GNT demonstrate that the positive polarization is contributed 

significantly from the TM atom and the neighboring carbon atoms show smaller, 

negative spin-polarization. 

 

 

 

                          
 

                                    (a)                                                                           (b) 
 

 

Figure 3. 33 Spin-density isosurfaces for Fe (a) and Co (b) adsorbed (2,2) GNTs. Blue 

(dark) and yellow (light) regions correspond to positive and negative polarization, 

respectively. The isodensity value is 0.002 µB/Bohr
3
. 
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Pristine graphyne nanotubes are non-magnetic, this changes in the magnetic moment 

of the systems is related to TM atoms and comes from these atoms. Compared to the 

values of 4 (3) for an isolated Fe (Co) atom, the magnetic moment of the systems is 

reduced due to the formation of TM-C bonds. This reduction is derived from charge 

transfer from metal to nanotube. Table 3. 14 shows that Ni complexes have the most 

negative binding energies and largest values of the transferred charge. In order to 

precise electronic properties, electronic band structures for bare and TM-adsorbed 

GNTs are shown in Figures 3.34 –3.37. For bare nanotubes, the calculations show that 

all of them are direct band-gap semiconductors. The (2,2) GNT (Figure 3.34a) has a 

band gap of 0.6 eV at the Z point. The band gap at the Γ point is larger (~1.0 eV).  
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(a)        (b)            (c)     (d)           (e)    (f) 

Figure 3. 34 Electronic band structures for a bare (2,2) graphyne nanotube (a) and 

TM-adsorbed (2,2) nanotubes (b-f). Parts (b) to (f) are for TM = Fe (spin-up), Fe 

(spin-down), Co(spin-up), Co(spin-down), and Ni, respectively. The dashed line at 

zero energy indicates the position of the highest occupied level. 
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For the pristine (3,0) nanotube (Figure 3.35a), the gap increases to 1.2 eV at the Γ 

point. Both (3,3) and (5,0) GNTs have a band gap value of 0.7 eV at the Γ point. The 

shape of the bands in the bottom of the conduction band for the bare (5,0) GNT is in 

agreement with previous calculations [36].  There is no DFT data about the electronic 

band structure of GNTs, but tight binding calculations show that the band gap of 

GNTs is independent of their diameter and chirality [36]. Our results show that for 

(3,3) and (5,0) nanotubes which have similar diameters (Table 3.11), the band gaps are 

equal, i.e., for a fixed diameter, the band gap is independent of chirality. However, we 

cannot completely justify the independence of band gap from the tube’s diameter, 

since the (3,0) tube violates this rule. If we consider the band gap at the Γ point, we 

can say that with increasing diameter, the band gap decreases.  

Upon TM adsorption, the highest occupied level shifts up to the conduction band and 

new states are formed in the band gap, which originate from the adsorbed metal atom. 

For Fe and Co, the band structures are spin-polarized, but the Ni-GNT complexes are 

nonmagnetic, with no spin-splitting in bands. For the Fe-(2,2) GNT complex, two new 

states are appeared in the minority spin channel, above and below the highest occupied 

level, which have a small overlap (Figure 3.34c). Therefore, the spin-down channel is 

a semimetal. The bottom of the conduction band in the majority spin-channel, which is 

derived from the conduction band of the bare tube, crosses the highest occupied level 

and also overlaps with higher bands (Figure 3.34b), which characterizes a metal. So 

this system is a metal in spin-up and a semi-metal in spin-down channel. With an 

adsorbed Co atom, the (2,2) nanotubes becomes a half-semiconductor, with a gap of 

0.5 eV in the majority and 0.4 eV in the minority spin channel (Figures 3.34 d,e). Both 

of them have direct band gaps at the Z point. An empty and two filled bands are 

formed in spin-down channel. The Ni adatom narrows the band gap of the bare tube 

and the corresponding complex is a semiconductor with a direct band gap of 0.5 eV at 

the Z point. The observations here are in general agreement with the results for a 

graphyne sheet [183]. 

For the (3,0) GNT, Both Fe-GNT and Co-GNT systems are half-semiconductors, with 

band gaps larger than those for a (2,2) GNT. The newly-formed filled state in the 
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minority spin channel of Fe (Figure 3.35c) is close to the highest occupied level, but 

does not cross it, so, in contrast to the (2,2) tube, the system is not metallic. The band 

gap is 1.1 eV in spin-up and 0.75 eV in spin-down states, both at the Γ point. In the 

case of Co, new bands are formed both in majority and minority spin channels 

(Figures 3.35 d,e). The spin-up channel has an indirect band gap of 1.0 eV, while the 

spin-down bands show a direct band gap of 0.45 eV at the M point. Similar to the (2,2) 

tube with a Ni atom, the band gap of a (3,3) nanotube reduces to ~0.85 eV when a Ni 

atom adsorbs. The Ni-(3,0) GNT system has a direct band gap of ~0.85 eV at the Γ 

point. 

The results for (3,3) and (5,0) nanotubes (Figures 3.36 and 3.37) are similar to the 

(2,2) and (3,0) tubes, respectively, but the band gaps are generally smaller in these 

larger-diameter tubes. An exception is for the Fe adsorption on a (3,3) GNT, in which 

the system is still a semimetal in the minority spin channel, but it is a semiconductor 

in the majority spin direction. Therefore, Fe-(3,3) GNT system can be viewed as a 

half-semimetallic system.  
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Figure 3. 35 Electronic band structures for a bare (3,0) graphyne nanotube (a) and 

TM-adsorbed (3,0) nanotubes (b-f). Parts (b) to (f) are for TM = Fe (spin-up), Fe(spin-

down), Co(spin-up), Co(spin-down), and Ni, respectively. The dashed line at zero 

energy indicates the position of the highest occupied level. 
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Figure 3. 36 Electronic band structures for a bare (3,3) graphyne nanotube (a) and 

TM-adsorbed (3,3) nanotubes (b-f). Parts (b) to (f) are for TM = Fe (spin-up), Fe 

(spin-down), Co(spin-up), Co(spin-down), and Ni, respectively. The dashed line at 

zero energy indicates the position of the highest occupied level. 
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Figure 3. 37 Electronic band structures for a bare (5,0) graphyne nanotube (a) and 

TM-adsorbed (5,0) nanotubes (b-f). Parts (b) to (f) are for TM = Fe (spin-up), Fe 

(spin-down), Co(spin-up), Co(spin-down), and Ni, respectively. The dashed line at 

zero energy indicates the position of the highest occupied level. 
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CHAPTER 4 

 

CONCLUSIONS 

 

 

During this study, several achievements were made. Generally, we have concentrated 

mainly on the calculation of structural, electronic and magnetic properties of various 

nanostructures. We focused on iron oxide nanostructures and also Graphyne 

nanotubes. 

In the chapter 1 we have introduced the physics of 0D and 1D nanostructures and 

characteristic of iron oxides, Fe2O3 and its various polymorphs and their magnetic 

properties and also Graphyne. We have discussed their importance from both the 

scientific and technological point of view. 

In the chapter 2 we have discussed our molecular dynamics method, what we have 

implemented later for iron oxide nanorods and spherical nanoparticles. We have also 

discussed the basic ideas of density functional theory, which is the method to study 

iron oxide clusters and graphyne nanotubes. 

In the first part of chapter 3 we have implemented the molecular dynamics on the iron 

oxide nanorods and spherical nanoparticles. In particular, the structure and stability of 

beta-iron oxide nanorods at temperatures 1K and 300K have been studied by using 

molecular dynamic technique. The structural properties and radial distribution 

functions of spherical nanoparticles studied at temperature range from 1K to 900K by 

100K intervals using the same method. 

Furthermore, we performed our other calculations using the DFT method. We figured 

out that DFT is successful to investigate such systems, as clusters (iron oxide clusters) 

and graphyne nanotubes.   

Within this method, in the third part of chapter 3 we systematically investigated the 

structural, electronic and magnetic properties of (Fe2O3) n clusters (n = 1-5). The 
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results for small clusters showed good agreement with other calculations. We 

observed an interesting result for the Fe4O12 cluster of iron oxide, in the first spin 

configuration state. It was that these states for n = 4 (n4-1) was a half-metallic 

antiferromagnet, which is important in spintronics applications. The most of the 

considered clusters were semi-metal or half-metal due to presence of Fe atoms. 

In the last part of chapter 3 we have also discussed the effect of transition metal 

adsorption on electronic and magnetic properties in graphyne nanotubes. We tried four 

different sizes of graphyne nanotubes and various possible adsorption configurations 

and their effect on the electronic band structure of graphyne nanotubes. The results 

showed that adsorption sites and nanotube sizes are key factors and playing important 

roles on electronic and magnetic properties of graphyne nanotubes. 

The continuing development of material science and nanostructure technologies make 

evident the need for detailed theoretical understanding of these systems. Several 

theoretical approximations have been developed to study their basic properties.  In this 

regard, trends in structure, electronic and magnetic properties, investigated in this 

thesis, and also for optical properties may be studied as change of number of atoms in 

the clusters, nanotubes and nanoparticles at different temperatures or using various 

cases of adsorption and doping metals  

The iron oxide nanotubes could be one of the interesting projects because of their high 

ratio of surface area to volume. Various reactions or defects can be applied on these 

nanotubes in order to control their stability or properties for industrial application. On 

the other hand, magnetic nanotubes might be an amazing subject to study. 

Properties of iron oxide clusters with many atoms for instance more than a hundred 

atoms, which are less studied compared to the small clusters may be investigated since 

that can be more easily found in real life and laboratories. Similar to nanotubes several 

reactions and defects can be carried out on the iron oxide clusters, especially with 

larger clusters. The features of magnetic clusters like iron oxide clusters or clusters 

which include other metals in their structure offer wide range applications in medical 

and technical areas. These materials are appropriate candidates for the cancer therapy, 

pharmaceutical industry as transporters for accommodating small molecules in the 
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body and also are useful in Magnetic Drug Targeting. The wide range of applications 

and unending possibilities of these materials display the need for a wide range and 

readily available materials, and prove the importance of finding thermodynamically 

stable iron oxide clusters with a very high magnetic moment.  

Using DFT, it has been shown that transition metals, Fe and Co are good candidates to 

be adsorbed to increase the magnetization of graphyne nanotube. For future purposes 

to evaluate the candidacy of non-transition metals or another element/material 

adsorption or substitution, it would be a good idea to test their effect on electronic and 

magnetic properties. Certainly, due to importance of carbon-based materials in modern 

technology, future studies are necessary in understanding and investigating various 

and key properties of graphyne and graphdiyne derivatives in various dimensions 

(nanotubes, nanoflakes, nanoribbons, 0D nanocones, 3D nanotube networks, etc.), also 

detecting and developing novel preparation routes of these materials. 

Simulating and applying electronic transport in nanoscale devices is one of the 

appealing subjects in researches in recent years. Studying the electronic transport in 

different molecular devices, including atomic wires or organic molecules sandwiched 

between various metal surfaces is of importance for new technology especially in the 

limit of miniaturization.  The materials and nanotubes that we studied in this thesis, 

may be used as electrodes or linkers or electron transports in molecular electronic 

devices using DFT method.  
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