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ABSTRACT 

RESHAPING HUMAN INTENTIONS BY AUTONOMOUS SOCIABLE 

ROBOT MOVES THROUGH INTENTION TRANSIENTS GENERATED BY 

ELASTIC NETWORKS CONSIDERING HUMAN EMOTIONS 

 

Görür, Orhan Can 

M.Sc., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Aydan M. Erkmen 

 

April 2014, 124 pages 

This thesis focuses on reshaping a previously detected human intention into a desired 

one, using contextual motions of mobile robots, which are in our applications, 

autonomous mobile 2-steps and a chair. Our system first estimates the current 

intention based on human trajectory depicted as location and detects body-mood of 

the person based on proxemics behaviors. Our previous reshaping applications have 

shown that the current human intention has to be deviated towards the new desired 

one in phases according to the readiness changes induced in the human. In our novel 

approach, Elastic network plans way points (intention transients) by searching 

trajectories in the feature space of previously learned motion trajectories each labeled 

with an intention. Our methodology aims at planning an “intention trajectory” 

(sequences of intention transients) towards the final goal. The initial way points 

possess destabilizing effects on the obstinance of the person intention making “the 

robot gain the curiosity of the person” and induces positive mood to the person 

making “the robot gain the trust of the person”. Each way point found by the elastic 
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network is executed by moves of an adequate robot (here mobile 2-steps or chair) in 

adequate directions (towards coffee table, PC, library). After each robot moves, the 

resulting human intention is estimated and compared to the desired goal in the 

intention space. Intention trajectories are planned in two modes: the “confident 

mode” and the “suspicious mode”. This thesis work introduces our novel approach of 

planning trajectories based on elastic networks following these two modes. 

Keywords: Human-Robot Interactions, Sociable Robots, Intention Reshaping, Elastic 

Networks, Emotional Body-Mood Detection, Path Planning, Intention Estimation 
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ÖZ 

ELASTİK AĞLARI KULLANARAK, İNSAN DUYGULARINA GÖRE 

ÜRETİLEN GEÇİCİ NİYET ROTALARINI İZLEYEN OTONOM SOSYAL 

ROBOTLARIN İNSAN NİYETLERİNİ ŞEKİLLENDİRMESİ 

 

Görür, Orhan Can 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği 

Tez Yöneticisi: Prof. Dr. Aydan M. Erkmen 

 

Nisan 2014, 124 sayfa 

Bu tez, önceden tespit edilen insan niyetlerini, mobil robotların çevreye duyarlı 

hareketleri ile hedeflenen niyete yönlendirme üzerine odaklanmıştır. Robotlar 

uygulamalarımızda otonom 2 basamaklı merdiven robot ile sandalye şeklinde 

robotlardır. Sistemimiz öncelikle insan rotalarına bakarak niyetlerini ve sosyal 

etkileşim uzaklıklarına bakarak (“Proksemi”) vücut ruh hallerini tahmin etmektedir. 

Önceki niyet yönlendirme çalışmalarımız bize mevcut insan niyetinin hedef niyete 

yönlendirilmesinin, kişinin istekliliğine göre fazlar halinde olması gerektiğini 

gösterdi. Bu özgün yaklaşımımızda elastic ağlar robotlar için, insanlardan öğrenilmiş 

ve her biri belirli niyetlerle etiketlenmiş rotaları kullanarak, ara noktalar (geçici 

niyetler) planlamaktadır. Bu ara noktaların her biri hedef niyete giden ara niyetler 

olarak nitelendirilir ve aslında kişiyi niyete yönlendiren rotalardır. Başlangıç ara 

noktalar insanın o anlık uğraşındaki dikkatini dağıtmak ve bu dikkati robotun üzerine 

çekebilmek niyetiyle planlanır. Yine bu noktalar insanın sosyal etkileşim alanına 

girerek kişiye pozitif ruh hali aşılamak ve robota güvenmesini sağlamak amaçlıdır. 
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Elastik ağlar tarafından planlanan her ara noktadaki rota, uygun bir robot tarafından 

uygulanır. Rotalar test ortamımızdaki niyetlere göre kahve masasına, çalışma 

masasına veya kitaplığa doğru olabilir. Her bir robot hareketinden sonra, insan niyeti 

hedeflenen niyet ile karşılaştırılır. Niyet rotaları (ara noktalar) insan ruh haline göre 

planlanmaktadır. Bunlar “rahat mod” ve “şüpheli mod”dur.  

Anahtar Kelimeler: İnsan-Robot Etkileşimleri, Sosyal Robotlar, Niyet Şekillendirme, 

Elastik Ağlar, Vücut-Ruh Hali Tespiti, Yol Planlama, Niyet Tahmin Etme 
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CHAPTERS 

CHAPTER 1 

1. INTRODUCTION 

1.1. Motivation 

Recent developments on both artificial intelligence and hardware capabilities for the 

robots resulted in greater advances in the field of Human-Robot Interaction (HRI). 

Nowadays, robots are being used in both industry and our homes as assistances to 

humans (Erden & Tomiyama, 2010). The fact that humans express their intentions 

based on the high variety of unpredictable interactions, generates requirements on 

assistant robots to understand and model these interactions towards satisfying the 

needs of their interacting human agents (Yokoyama & Omori, 2010). Robots capable 

of recognizing intentions and emotions of other agents and interacting through social 

behaviors develop the field of socially intelligent robots (Kerstin Dautenhahn & 

Billard, 1999).  

In social interactions between intelligent agents, estimating the intentions and 

emotions of one another, called social cognition (Fong, Nourbakhsh, & Dautenhahn, 

2003), is required to infer the behavior of the opponent agent which eventually 

results in inducing their own intentions onto the other by compromises or persuasion 

(Heinze, 2003; K. A. Tahboub, 2006). Inducing intentions on one other is due to 

morphing actions of one agent onto the other; we term this induction as intention 

reshaping (Durdu, Erkmen, Erkmen, & Yilmaz, 2011) based on strategic moves of an 

agent for the purpose of attaining a desired change on the other agent, relying on the 

statement that one’s intentions direct one’s future planning (Bratman, 1999). A 

pioneer study on intention reshaping in HRI field is by (Terada, Shamoto, Mei, & 

Ito, 2007) which only focuses on the behavioral changes of humans according to 

different designs and stances of the robots. However, in this study, the robots do not 



2 

behave to induce intentional changes on the humans; the work only approaches from 

the human perspective. In our laboratory’s previous study (Durdu et al., 2011), a new 

approach is introduced on intention reshaping by developing context dependent 

robots (a chair and a 2-steps robots) that induce changes on the human intentions 

according to the contextual moves of these robots that are commanded with a remote 

controller. Our novel advancement to the same topic pertains to the full-autonomy of 

the robots that plan their own trajectories through the generation of intention 

transients (way points) using elastic networks aiming to break the obstinance of the 

person and attracting human intention towards the desired one. Elastic net generates 

these way points according to the detected human-body mood and the estimated 

current intention of the person, aiming first to increase confidence of the person 

towards the robot and the environment then to impose reshaping actions. This 

approach emulates a social interaction between humans, increasing the chance of the 

robots to understand human behaviors and react proactively. 

Our main motivation on this study is to develop sociable behaviors for robots 

equipped with enhanced social cognition abilities to be applicable to real life 

scenarios. Assistant robots helping people in their daily lives in smart homes or 

industry are the ultimate aim where these robots can guide people in emergency 

situations where verbal communication is impossible by classifying them as being 

confident or suspicious and treating them accordingly. In addition, these robots can 

be used commercially, catching the attention of the people and leading them towards 

their shops. 

1.2. Problem Definition and Our Approach 

In our novel approach of intention reshaping, we develop fully autonomous robotic 

systems which are able to carry social cognitions from the on-line visual 

observations of human headings and trajectories. Our robots are able to estimate the 

current intention of the human, able to break the obstinance on his/her intention by 

detecting the emotional mood of the person according to proxemics in HRI as in 

(Christensen, Pacchierotti, & Hgskolan, 2005), and are able to decide whether the 
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person is confident enough to start an interaction. Based on these recognized 

behaviors, our robots do pro-active movements until a confident mood is detected on 

the person. This is realized by a successful induction of confident mood by 

appropriate robot moves, which brings the interaction to the final phase of intention 

reshaping. All of the paths for the robots are planned using intention transients 

generated by Elastic Networks among previously learned motion trajectories of 

human subjects each labeled with an intention. 

Towards our goal, we used an experimental room similar to the one in (Durdu, 

2012), where there are two context dependent robots being a chair and a 2-steps 

robot and the contextual objects such as: a library, a working table, a PC and a coffee 

table. The human and the robots are tracked via a ceiling camera on-line, the current 

intention and the body-mood of the person are estimated and the reshaping is 

performed with the aim of attaining a desired intention. Human subjects entering the 

room are not being told about the existence of any robots and of any interactions and 

are faced suddenly with our robots trying to reshape the estimated current intention 

of the person towards the desired one without the human being aware of this trial. 

The phases in our system are: choosing a desired intention from the feature space of 

previously learned human motion trajectories through Hidden Markov Model 

(HMM); estimation of the current intention of the person; detection of human body-

mood as confident or suspicious based on proxemics; generating transient intentions 

(“way points”) by elastic networks according to the detected human body mood. Our 

system uses Elastic networks as a search algorithm for a way point in the feature 

space of learned intention trajectories. The initial way points are generated in dense 

areas (intention areas in the feature space “familiar” to human subjects) around the 

current intention until a confident mood is induced on the human. The aim here is to 

have the robot “break the obstinance of the person” on what s/he was doing and 

“gain the curiosity and the trust of the person” relying on the psychological research 

that a confident mood results in more external-focused attention (collaborative 

person) (Fredrickson, 2003; Grol, Koster, Bruyneel, & Raedt, 2013; Sedikides, 

1992). Inducing a confident mood is realized by gently approaching the person by 

intention transients lying in his/her familiar region, making him/her feel more 
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comfortable with the robot as in the studies of (Butler & Agah, 2001; Huettenrauch, 

Eklundh, Green, & Topp, 2006; Mead & Matarić, 2011). Finally, after a successful 

mood induction, the next way point is searched around the desired intention and 

eventually converging to that desired intention. Each found way point is realized by 

an adequate robot (for example, 2-steps robot for library and chair robot for working 

table related desired intentions). After the robot moves, human intention is estimated 

and compared with the desired one. A mismatch results in resuming a new detection 

of the human body-mood and a new way point (learned trajectory) search according 

to this mood being suspicious or confident which moods are also studied in (S. Lee & 

Son, 2008). We named these moods as execution modes of our reshaping since they 

decide upon the path planning strategy. 

1.3. Contribution 

The contributions of this thesis are given as: 

� Reshaping human intentions into a desired new one by fully autonomous 

moves of sociable robots planned by elastic networks in real-time. 

� Developing robots which have social cognition abilities and proactive 

reactions in real-time scenarios according to the behaviors of interacting 

person. 

� Detecting human emotional body-moods on-line with a new approach 

utilizing proxemics behaviors. 

� Planning paths for the robots to break the obstinance of the human and gain 

his/her curiosity and make that person confident based on proxemics 

behaviors. 

� Estimating human intention on-line in a closed loop algorithm which is then 

compared to the desired intention and checked if intention reshaping is 

successful. 

� Planning paths for the robots to guide the confident person towards the 

desired intention to be reshaped into. 
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� Adaptation of Elastic Networks as generator of intention transients based on 

the currently detected emotional mood and the estimated current intention 

trajectory of the person. 

� A novel approach to traditional elastic networks using one dynamic node and 

changing effects of attractive forces at the iteration called critical iteration 

where oscillations of dynamic node settle down. 

1.4. Outline of Thesis 

This section outlines the thesis chapters and the topics to be covered. Starting with 

this chapter, we introduced the objective of the thesis with our motivation and 

contributions to the robotics field of research. 

Chapter 2 gives the related works in the literature on the focus points of this thesis, 

which are intention estimation, emotional body-mood detection, effect of positive 

mood on external-focused attention of a person, emotional mood induction on a 

person and intention reshaping. 

Chapter 3 details the methodologies in our study which are: intention estimation with 

HMM and trajectory estimation; execution mode decision according to the detected 

emotional body-moods of the person; our developed elastic networks for generation 

of intention transients and their execution through adequate robot moves. 

Chapter 4 provides the results and discussions of our work. Simulation results on the 

usage of elastic networks are detailed together with the simulated intention reshaping 

scenarios and sensitivity analysis under parameter changes. In addition, results of 

real-time experiments with two different human subjects are given with snapshots 

from the recorded videos analyzing each methodology in Chapter 3 and picturing and 

discussing the entire closed loop system. 
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Finally, in Chapter 5 we conclude our thesis with a very brief summary on what we 

aimed and what we obtained from this study. Future works that are feasible towards 

extending this work are also explained. 
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CHAPTER 2 

2.   LITERATURE SURVEY  

The milestones of this thesis work are: 1) intention and trajectory estimation; 2) 

body-mood detection of a human subject; 3) planning a feasible path for a robot 

agent to socially interact with the human; 4) reshaping his/her intention into a desired 

new one. We thus aim through these milestones to establish a natural and sociable 

interaction between human and robots by planning actions considering both the 

current intention and the mood of the human agent, just as in a human-human 

interaction. We further go beyond natural interactions towards intention engineering 

by generating intention transients from estimated current intention towards the 

ultimate goal of reshaping: the desired targeted intention. Intention estimation is a 

detection of “what the human subject intents to do now” by a facing agent, here a 

robot. The robot, after estimating current intention interacts to the human obstinance 

on that intention. Thus, readiness to intention change is based on detecting the body-

mood of the human agent which is a crucial part of the thesis work because the 

interacting agent is a robot to which we are not generally familiar in our daily lives. 

In other words, in order for the human subject complies with the robot interactions; 

the robot should gain the trust of its interacting agent, making him/her confident 

(collaborative). In this section, a literature survey of three of the milestones namely, 

the intention estimation, body-mood detection and intention reshaping are given. 

Literature survey on our path planning algorithm using elastic networks is detailed in 

the methodology Section 3.4.1. 
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2.1. Intention Estimation 

Human-Robot Interaction (HRI) is an emerging field both in industry and in our 

daily lives. Developments on both robot intelligence and hardware capabilities 

accelerated their usage as human assistants in unstructured environments such as 

helping the elderly (Dario, Guglielmelli, & Laschi, 2001; Erden & Tomiyama, 2010). 

However, designing robots in human assistance is a non-trivial problem since human 

beings cannot be satisfied due to high variability of their intentions and their 

unpredictable interactions (Koo & Kwon, 2009; Yokoyama & Omori, 2010). In order 

to have a qualified interaction between human and robot, robots should act much 

more like human beings, understanding mutual actions and reacting accordingly 

(Jenkins, Serrano, & Loper, 2007). Therefore, the design process of interacting 

robots with humans requires prediction of intention for a natural and intelligent 

cooperation with a human agent.  

From the perspective of our thesis topic, Bratman claims (Bratman, 1999) that, one’s 

intention directly affects one’s future planning. Estimating the intention of one 

another between two interacting agents eventually results either in morphing their 

actions to that of the other’s intention by compromises, or in imposing their own 

intentions onto the other by persuasion (Heinze, 2003; K. A. Tahboub, 2006). 

Therefore, in order for a robot to induce a desired change on the intention of another 

agent, which we term intention reshaping that is the main focus of this thesis (Durdu 

et al., 2011), the robot should begin to estimate the intention of that agent 

beforehand, and act accordingly. 

Researches on intention estimation have been conducted by classifying the problem 

characteristics relative to the event in question. Durdu (2012) in his work gave an 

example about estimating a probable fight between two people, in which a good 

analysis is required by observing and discriminating the actions of the people prior to 

the fight and leading to it. In other words, intention estimation problem requires first 

the characterization of all of the actions that the agent underwent prior to the event 

and their classification related to event based intentions.  
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The first requirement which is the characterization of actions yielding certain 

intentions plays a crucial part in their estimations. Social psychologists have been 

stating for many years that human behavior is goal-directed, that is one’s action 

reflects intentions (Baum, Petrie, Soules, & Weiss, 1970; Bratman, 1999; Dennett, 

1989; Lewin, 1952). Most of the actions a human realizes are designed in advance 

and executed as the plan proceeds. Moreover, some of these actions may become 

routine which is performed automatically such as driving a car (Ajzen, 1985). If one 

can become aware of the characteristics of the actions required to attain a certain 

goal, classification process will be easily handled via Machine Learning (ML). In the 

literature, action characterization based prediction of the intentions includes mimics, 

body movements, hand gestures, facial expressions (Adolphs, Tranel, Damasio, & 

Damasio, 1994; Horstmann, 2003), walking or running (Chouchourelou & Matsuka, 

2006; Roether, Omlor, Christensen, & Giese, 2009), pointing (Dittrich, Troscianko, 

Lea, & D, 1996; Manera, Schouten, Becchio, Bara, & Verfaillie, 2010; Sato, 

Yamaguchi, & Harashima, 2007) and dancing (Dittrich et al., 1996; V Sevdalis & 

Keller, 2009; Vassilis Sevdalis & Keller, 2010). In addition, conducted researches in 

psychology in the field of “self-recognition” portrays the ability of humans 

recognizing their own acts by kinematic displays of gestures (Daprati, Wriessnegger, 

& Lacquaniti, 2007), drawing (Knoblich & Prinz, 2001) and body movements 

(Cutting & Kozlowski, 1977; K. K. Lee & Xu, 2004; Meltzoff, 1995). Although, 

indicative works are on body movements, and gestures, there are also studies on 

auditory manners by listening audio outputs resulted from actions (Haggard, Clark, 

& Kalogeras, 2002; Kohler et al., 2002). Actions based on habituations in the fields 

of neuroimaging and neurophysiology, such as grasping for eating (Fogassi et al., 

2005) and drinking (de Lange, Spronk, Willems, Toni, & Bekkering, 2008) are also 

characteristic works in intention detection and estimation. To conclude, action types 

form the characteristics of intentional attitudes of human beings correlated with their 

environmental contexts. As a result, a good analysis of these characteristics including 

human orientation, positioning, posture, gestures or facial expressions together with 

their contextual information results in reasonable estimation of the human intentions. 

In our case, we utilize orientation and posture of human subjects for the purpose of 

intention estimation, which are detailed in the upcoming chapters. 
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Classification of action characteristics towards intention estimation is generally 

performed using Machine Learning (ML) techniques. Since actions of human or 

robot agents leading to intentions are sequential processes, the classical sequential 

supervised learning can be used to construct a classifier which can generate intention 

classes (Mitchell, 1997). Sequential supervised learning is closely related to time-

series analysis and sequence classification (Dietterich, 2002). A good example of 

describing the need of classification for intention estimation process can be given for 

the case of using gaze and gestures to control mouse and keyboard inputs on a PC. In 

order to understand what the person intents to do, actions such as making hand 

gestures like moving arms for keyboard inputs, gazing different directions or 

winking eyes for mouse control are generally classified (Ali, Khan, & Imran, 2007; 

Arai & Mardiyanto, 2011; Qi, Wang, & Huang, 2007; Vlasenko & Wendemuth, 

2009).  

Intention recognition with computational learning methods was studied earlier as 

plan recognition problem. In the earlier studies of this area, merging artificial 

intelligence (AI) and psychology, it was stated that in order to infer the goal of a 

human, the actions need to be structured into plans (C. Schmidt, Sridharan, & 

Goodson, 1978). In the work of Schmidt et al., the authors discussed the application 

of a psychology driven theoretical system called the Believer, which is concerned 

with single-actor sequences that reports goal-directed actions with the possibility of 

fail or succeed in achieving the goal (C. Schmidt et al., 1978). The work in 

(Wilensky, 1983) plans and understands human behaviors in common-sense problem 

solving and body language understanding based on plan recognition. Later on in 

1986, Kautz and Allen approach the problem with a new theory that recognizes a 

plan resulting from complex actions based on certain hierarchies drawn from the 

class of possible actions performed, which they called action taxonomy (Kautz & 

Allen, 1986). By this way, they can link complex sequential actions to a general plan.  

Another approach to plan recognition was made by modelling uncertainty based on 

Bayesian probability theory (Charniak & Goldman, 1993). In this work, inferences of 

an agent’s plan were realized by choosing the most likely interpretation for the set of 

observations using Bayesian updating. In another work using Bayesian networks, the 
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authors monitored pedestrians’ intention in traffic, and developed a system warning 

drivers for possible accidents (S. Schmidt & Färber, 2009). This work is an example 

of learning possible plans of humans by observing and classifying their actions from 

recorded videos of the traffic in question. 

There are also significant amount of researches carried out for structuring people 

interactions during meetings. The work (Dielmann & Renals, 2004) aims at 

segmenting meetings into actions such as, dialoging between participants, note 

taking, presenting and doing monologues using audio information gathered from the 

lapel microphones of each participant. The authors used two-level HMM, which is a 

Dynamic Bayesian Network (DBN), concatenating acoustic features. In the work of 

(Zhang, Gatica-Perez, Bengio, & McCowan, 2006), the authors studied recognition 

of sequences during meetings as in (Dielmann & Renals, 2004) but using both audio 

and visual features. They used a two-layer HMM with one layer modeling individual 

actions as in the work of Dielmann et al. (2004) and the second one, modeling people 

interactions. 

Inferring human intentions from actions using collected visual data is another field of 

intention estimation. In the study given with (T. Mori, Segawa, Shimosaka, & Sato, 

2004), the authors focus on the recognition of human actions in daily-life such as 

sitting, lying, standing etc. They model these actions using a different type of HMM 

called continuous HMM which recognizes actions from a tree representation. They 

start from the high level of the model recognizing if the person is sitting, lying or 

standing. Then, by using parent-child relation of nodes in the tree of hierarchical 

actions, next level HMM models the action according to its parent. For example, if 

the first level estimates the action as sitting, current level gives probabilities on 

whether the person is sitting on the chair or on the floor. The hierarchical 

representation of actions makes the recognition process easier and more realizable by 

simplifying estimations at low-level with decreased amount of states, and by 

classifying the actions at coarse level. The works in (Taketoshi Mori, Shimosaka, 

Harada, & Sato, 2005; Shimosaka, Mori, Harada, & Sato, 2005) are also based on the 

recognition of basic human action classes of sitting, running, walking, standing etc. 
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but the methodology differs using kernel vectors based on switching linear dynamics, 

which is a probabilistic model generally utilized on tracking and classifying complex 

motions of human skeleton. 

So far, the exemplary studies given are about estimating human intentions while 

human subjects are not interacting with an object, or are only verbally interacting 

with another human. The studies below are about estimating intention during a 

human-machine or robot interaction, which is our focus in the intention estimation 

part of this thesis. In (K. Tahboub, 2005), the author simulates a scenario with two 

robots where one robot is controlled by a human operator while the other one 

estimates operator’s intention by observing the actions of the remotely controlled  

robot. Although this work is a simulated one and does not contain a real physical 

human-robot interaction, it involves real-time intention estimation which is the case 

in most human-robot interaction scenarios. The work defines a model of intention 

recognition based on a four-level decomposition of intentional behavior as in Figure 

2.1. The levels on the left hand side in the figure are classical intentional levels 

realized by people starting from planning a desired state for intended action whereas 

the other two levels reverse engineered the first two, reaching to a recognized plan or 

intention. Modeling intention states with action scenarios are realized by using 

Dynamic Bayesian Networks. 
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Figure 2.1 Intention recognition scheme decomposed into four-level of intention-
action states (K. Tahboub, 2005) 

 
 
 

Another work directly from real life is given in (Koo & Kwon, 2009) where the aim 

is to recognize four basic human actions in the area of public services which are 

approaching, departing, bypassing and stopping. The authors prepared an 

experimental environment for human subjects to interact with a mobile robot capable 

of measuring distances within 360 degree circumference via IR-scanners. K-means 

clustering method is used to detect human subjects with Extended Kalman Filters 

measuring their velocity. For the inference of actions traditional HMM observation 

model is used. Although sensory information provides better performance in real-

time application scenarios, the work here is only able to recognize basic actions due 

to the limitations in tracking people. The authors of the work in  (Kelley et al., 2008) 

however approach the real-time intention estimation problem in HRI systems by 

using visual data gathered from cameras attached on the interacting robot. Since 

there is one camera used on the robot, it can only get position information relative to 

itself, resulting in limited action recognition such as, meeting people, following, 

passing by, picking up or dropping off an object. 

The work of (Z. Wang et al., 2013) proposes a method which models movements 

aimed at certain intentions probabilistically. The authors used Bayes’ theorem in 

their online algorithm providing real-time intention estimation. To test their system 
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performance, they create two different HRI scenarios. In the first, one robot and a 

human opponent play table-tennis which requires fast reactions. In order to generate 

these reactions on time, a decision making on the type of action (angle, speed) before 

hitting the ball should be carried out almost spontaneously. This is realized by 

estimating the target, to where the human intended to send the ball, observing his/her 

actions. The second scenario reflects the closest work to our aim of intention 

estimation, in which a humanoid robot is used to detect natural interactions of the 

human thereafter allowing the robot to react proactively. However, the estimated 

intentions are again basic actions like, jumping, crouching, kicking-high or low in a 

table-tennis game. In our study, we design a system where our robot is interacting 

with the human in their daily lives in a simple living room environment. Literature 

survey on pioneering works of intention estimation helps to clarify that, the more 

qualified and realistic the collected sensory data are, the more precise and advanced 

intention estimations can be realized. 

2.2. Emotional Body-Mood Detection with the Aim of External-Focused 

Attention 

Our ultimate goal of this project being to reshape human intention into a desired new 

one by autonomous robot moves in the cases where people are not familiar with the 

environment and where no verbal interaction occurs. The critical point in our work is 

to create the readiness of the person to any intention change. The first point to break 

obstinance in a prior intention is to catch his/her curiosity and make the person 

follow these robot moves. The question of how to break this obstinance is, to lead the 

person to more external-focused attention. This has been studied intensively in social 

researches carried for groups of human examining the relationship between human 

mood and attention in social behaviors. Works of (Cunningham, 1988a, 1988b) 

emphasize the effect of people’s positive and negative mood on sociability. In 

conducted experiments (Cunningham, 1988a), subjects are partitioned into two 

groups: subjects in one were induced with Velten Mood (positive thought 

experiment); the other subjects were received depressed mood induction. The 
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resultant experiments showed that the first group with positive mood indicated 

significantly greater amount of social behavior than the second. It is stated that, 

subjects in the depressed mood preferred thinking while sitting or napping alone 

rather than being in favor of socialization.  

Similar to the works of Cunningham (1998a,1998b), the work in (Wood, Saltzberg, 

& Goldsamt, 1990) studies the effects of the mood on self-focused attentions. In this 

work Wood et al. (1990) state that inducers for self-focused attention serve as a 

depression state is reveals a correlation with depression to be a negative mood. It was 

tested that sad mood induced self-focused attention while happy or neutral moods did 

not. The work in (Watson & Tellegen, 1985) explains the positive and negative 

moods mentioned. According to the authors of this work, positive mood states can be 

exampled as happy, cheerful, confident and relaxed whereas the negative ones are 

anger, anxiety, suspicion and sadness. In our work, we generalized and named the 

negative mood states as suspicious and positive mood states as confident.  

The work inspiring our study the most from the perspective of mood effects to 

attention, was the work in (Sedikides, 1992) which examined not only the inducers of 

self-focused attention but also the moods resulting in an external-focused attention. 

As we mentioned, our aim is to induce an external-focused attention on the human 

subject. In that study, the author aims to prove that the assumption of positive moods 

may lead to external-focused attention which is logically the exact opposite of the 

relation between negative moods and self-focused attention. Sedikides (1992) 

partitioned three groups of subjects which are to be conditioned by one of three 

moods (sad, neutral and happy). After inducing these moods on the subjects by 

asking them to recall related emotional events, the author wanted them to write a 

story either about themselves or someone else they know well. The classification was 

done according to the story clause and if it is about self, the subject is labeled as self-

focused or else external-focused. The experiments showed that comparing neutral 

and happy moods, sad mood induced a great deal of self-focused attention. In 

addition, the author demonstrated a new fact that positive mood (happy in that study) 

resulted in external-focused attention more than the other two moods. Similarly, in 
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the works (Fredrickson, 2003; Grol et al., 2013; Wadlinger & Isaacowitz, 2006), it is 

stated that positive moods or emotional states broadens perceptions of visual 

attention when compared to neutral or negative emotions.  

These findings guided us in the balance of this thesis to break the self-focused 

attention leading to obstinate intention in human subjects and direct their focus 

towards our robots which is an example of external-focused attention. If the person 

has a negative mood, named as suspicious about the robot, we first aim to induce a 

positive mood on that person, which is in our case confident mood. We claim that a 

confident person can be more externally-focused triggering curiosity about our robot 

moves. These moods of confident and suspicious are inspired from the work in (S. 

Lee & Son, 2008) where the authors simulate an emergency situation in a crowded 

scenario and create a Belief-Desired-Intention (BDI) model for humans who are 

classified according to their confidences in the environment. 

With the perspective of emotional mood detection, Cowie and Douglas-Cowie 

(1995) state that humans communicate through two channels, being explicit and 

implicit. Messages via the explicit channel are physically detectable messages such 

as; speaking, gesturing, moving, posing etc. and are largely researched under the 

topic of intention detection from actions, as discussed earlier. The implicit one is 

described by the authors as the task defining how to receive the messages transmitted 

through explicit channel (Cowie et al., 2001). In our daily interactions, we use same 

words or exhibit same actions that may mean differently according to the implicit 

emphasizes on words or emotions hidden in these actions.  Likewise, we make sense 

of actions of the other agent by detecting or predicting emotions of the speaker. Due 

to the fact that human interactions includes these implicit channels, researches in the 

field of HRI try to develop robots capable of modeling these social cognitions in 

order to generate proactive interactions with humans satisfying implicit social aims 

such as: emotions, intentions, etc. (Fong et al., 2003). Fong et al. (2003) called these 

robots “socially interactive robots” which can basically detect emotions, recognize 

models of human agents and develop social relationships. In the literature, usage of 

these robots are introduced in areas where either robots are used for persuasion, 
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changing the feelings, attitudes or behaviors of the interacting human agents (Fogg, 

1999, 2002), where either robots act as mediators teaching social interaction skills in  

autism (Werry, Dautenhahn, Ogden, & Harwin, 2001) or robots are themselves an 

avatar representing a human agent (Paulos & Canny, 1998).  

Here the question is asked on how the robots can model emotions or implicit 

messages of the human agents. Since 1872, starting with Darwin’s famous research 

(Darwin, 1872), there are a lot of researches conducted in psychology on behavioral 

expressions of emotions in humans. Apart from researches on emotions with facial 

expressions (Beaudry, Roy-Charland, Perron, Cormier, & Tapp, 2013; Keltner, 

Ekman, Gonzaga, & Beer, 1993; Reisenzein, Studtmann, & Horstmann, 2013; S. 

Wang, Liu, Lv, Lv, & Wu, 2010; Wehrle & Kaiser, 2000) and emotions with vocal 

characteristics (Banse & Scherer, 1996; Jessen & Kotz, 2011; Juslin & Laukka, 

2003; Sauter, Panattoni, & Happé, 2013; Scherer, 2003), there are also researches on 

bodily expressions of emotions which mostly interest our study pertaining to 

observing human actions with a camera in a non-verbal situations. In the work of 

(Wallbott, 1998), the question of whether body gestures, movements, postures or 

quality of movements reflect human emotions is detailed starting with the work of 

Darwin (1872) which is also concerned with emotions exhibiting bodily movements. 

Wallbott (1998) collected all of the emotion models of Darwin based on certain 

posture and movements pattern within a table such as: motionless, passive actions 

yielding the emotion of sadness; purposeless movements, clapping hands, jumping 

and dancing yield the emotion of joy; head and body held erected yielding the 

emotion of pride etc. (Walbott, 1998, pp.880). Although in the work of (Ekman & 

Friesen, 1974) it is stated that bodily-movements only give the intensity of the 

emotion and that there is not any specific body movement or gesture for an emotion, 

there are researches indicating that emotional state of a person may influence his/her 

bodily-movements (Chouchourelou & Matsuka, 2006; Hatfield, Cacioppo, & 

Rapson, 1993). 

There are few works on computational emotion modeling based on visual data, 

where most are emotion detection from facial expressions. In the work of (Breazeal, 
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2003), a humanoid robot was developed emulating a human face and having the 

capability to learn human facial emotions. This robot learning these facial emotions 

can apply these expressions while interacting with a human subject. In the 

experiments, the robot called ‘Kismet’ can adapt its facial emotional mood to the one 

of its interacting human subject. Another work detecting mood from facial 

expressions and postures is given in (Wada, Shibata, Saito, & Tanie, 2004) with a 

robot called ‘seal robot’ aiming to interact with elderly people to overcome their 

stresses and improve their feelings. Similarly, the work in (Kozima, Nakagawa, & 

Yasuda, 2005) develops a creature-like robot detecting emotions from facial 

expressions of autistic people used in therapy. Therapy through emotional moods are 

also handled in (K Dautenhahn & Werry, 2000; Mazzei et al., 2011; Robins, 

Dautenhahn, Boekhorst, & Billard, 2005; Vanderborght, Simut, & Saldien, 2012; 

Werry, Dautenhahn, & Harwin, 2001; Werry, Dautenhahn, Ogden, et al., 2001) each 

using differently shaped robots with different interaction capabilities. 

A study on emotion detection system using speech data is given in (Scheutz, 

Schermerhorn, & Kramer, 2006). The authors use speech emotion filter introduced in 

(Burkhardt & Sendlmeier, 2000) to synthesize the affective state on the speech of the 

humans. In this work, the robot is able to detect emotions of sadness, anger, fright 

and happiness from the speech of its interacting human and react accordingly by 

speaking in the tones of these given emotions. For example, if the detected tone is 

fright, the volume of the voice of the robot will be higher with theatrical pitch 

swings.  

The work in (Barakova & Lourens, 2010) models emotional movements during 

games with robot companions authors used Laban movement analysis to characterize 

human motions as emotional states. Laban movement analysis is a method to observe 

and describe human bodily movements categorized as strength, directness, speed and 

flow of motion. An example given in the study is to analyze the difference between 

punching a person and reaching a glass. Here, the strength and the speed of the 

former movement are clearly higher than the latter one. By using these categories of 

the human body, the authors are able to project body-movements of children during a 
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game with a social robot into four basic emotions which are sadness, fear, anger and 

joy. 

 
 
 

 

Figure 2.2 Spatial interaction zones in HRI through a corridor (Pacchierotti, 
Christensen, & Jensfelt, 2005) 

 
 
 

In our study, unlike most of the works using off-line body movement detection stated 

above, we are detecting on-line emotional feelings (mood in real-time) of the 

subjects about our robots from human headings (direction of motion). That is, we are 

measuring the confidence and trust of the person to our robots by using only visual 

data tracking human from a ceiling camera. Our work utilizes a psychological work 

called ‘proxemics’ studying the spatial interactions between humans (Hall, 

Birdwhistell, & Bock, 1968). Study on “proxemics” is well examined in depth within 

the perspective of HRI in the works of (Christensen et al., 2005; Pacchierotti et al., 

2005) by dividing spatial distance around the person into four categories of 

interactions which are intimate, personal, social and public as given in Figure 2.2. 

The authors examined the same spatial relation between a robot and human subjects 

in a hallway passage where an interaction is unavoidable and observed that 

proxemics is valid in HRI and robots should be aware of these relations. 

Additionally, in the work (Butler & Agah, 2001), the authors examined human 

moods when a robot is approaching a subject. In that work, it is stated that if this 

approach is slow and direct, the observed mood of the human is comfortable. 
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Similarly, in the more recent works in HRI (Huettenrauch et al., 2006; Mead & 

Matarić, 2011; Takayama & Pantofaru, 2009; Walters, Oskoei, Syrdal, & 

Dautenhahn, 2011), the authors studied proxemics behaviors by assuming that a 

human approaching a robot has to be comfortable with it.  

By putting all those studies together, we designed a novel on-line mood detection 

system inferring from studies of proxemics behaviors stating that, a person heading 

towards a robot allowing it to enter his/her intimate region is detected to be 

comfortable with the robot (we named confident). On the other hand, a person 

showing no interest in our robot even after robot moves towards him/her is detected 

to be in an uncomfortable mood (suspicious mood). According to the studies of 

relation between attention and mood, we contribute a novel conclusion that a 

confident person (positive mood) gives more attention to our robot (external-focused 

attention) making him ready for an interaction. The application of mood detection 

system and the statement of “confident person gives more attention to the robots” are 

experimented in real-time, details of which are given in Sections 3.3 and 4.1.2. 

2.3. Inducing Emotional Mood on a Human through Intention Reshaping 

As we discussed, we should detect confident or comfortable mood (in general 

positive mood) in the person to establish the readiness to reshaping his/her intention. 

Therefore our first path for the robot is planned to induce this positive mood on the 

person making him confident with our robots. After a confident mood is detected on 

the person, the next path will be to reshape the intention of the confident person into 

a desired one. 

2.3.1. Inducing Emotional Mood on a Human 

For the purpose of inducing confident mood (positive mood in general), our robots 

should socially interact with the person in a trustful and comforting manner. In the 

literature, there are a few works covering the related topic. In the work of (Suzuki, 
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Camurri, Ferrentino, & Hashimoto, 1998), the authors clearly showed the effect of 

approaching a person on the induced emotional state. The factors affecting the 

emotional states are the velocity of the robot, the distance between the robot and the 

human and the gestures of the robot. The most influential work on our study is given 

in (Butler & Agah, 2001). In this study, the authors examined human-robot 

interactions with different robot behavior patterns such as: the robot approaches the 

person and trans-passes the person. They analyzed the level of human mood (in this 

case mood is measured as the level of comfort) during the interaction experiments 

based on the speed, the distance and the design of the robot where the experimenters 

were not informed about the robots. According to the survey results from the human 

subjects in the case where the robot approaches them, a slow and direct approach 

resulted in more comfortable and attention taking, which is exactly what we desired. 

In addition, parallel results were found in more recent studies (Huettenrauch et al., 

2006; Mead & Matarić, 2011; Takayama & Pantofaru, 2009). However, none of 

these works approached the problem from the robot’s perspective, that is, they only 

considered psychological changes of the human subjects towards different robot 

moves. After examining the results of these studies, in our novel approach, we plan 

paths for the robots according to the currently detected human intention. Robots’ 

following these paths slowly is expected to increase confidence of the human 

subjects and gain their curiosity afterwards.  

2.3.2. Intention Reshaping 

Intention reshaping, being the final stage of our study, aims to change the current 

human intention into a desired new intention.  

In the literature, some exemplary works are introduced in psychology mainly 

examining the effects of intention change on behavioral change (Webb & Sheeran, 

2006) and intentional change in children under the effect of what adults do 

(Carpenter, Call, & Tomasello, 2005; Meltzoff, 1995). In the field of HRI, these 

behavioral or intentional changes are examined according to the different types of 

robotic interactions with human subjects. The study in (E. Wang, Lignos, Vatsal, & 
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Scassellati, 2006) surveyed the subjects intentional behaviors in accordance with the 

variations of head movements of a humanoid robot such as: motionless, human face 

tracking smoothly, tracking fast and turning away from the human face. The survey 

results showed that the subjects stated different perceptions and behaviors for these 

head motions. That is, changing the head movements induced notable changes in 

intentional behavior of humans. 

The works in (Terada & Ito, 2010; Terada et al., 2007) studied how the intention 

attribution is affected by different artifacts (non-humanoid robots). In this study, the 

authors used chair and cube as robots and observed the attributed intentions of 

human subjects to the movements of these robots. The results showed that, the 

human subjects attributed different intentions to these reactive movements depending 

on the shape of the artifact, and the perceived goal of the artifacts by the subjects. 

Similarly, the work in (Parlangeli, Guidi, & Caratozzolo, 2013) concluded that, the 

attribution of mental states or intentions to the mechanical structures or artifacts is 

affected by personal and contextual differences in human-robot interactions. 

Intention reshaping idea was first introduced in our previous work in (Durdu et al., 

2011). In this study, the aim was to observe the intentional changes on the human 

subjects after the pro-active and contextual robot movements of non-humanoid 

robots (robot-like chair and 2-steps). Comparatively using HMM and Observable 

Operator Model (OOM), estimated intentions before and after the robot movements 

showed intentional changes in the human subjects in real-scenarios. For example, a 

human preparing coffee in the experimental room, is distracted by the movement of 

2-steps robot in front of the library, and changed his/her intention to take a book 

from a library. This is a clear example of intention attribution to the 2-steps artifact 

robot that reshapes accordingly the intention. However, in this work the robots are 

commanded from outside with a joystick and intention estimation and intention 

comparison were realized off-line, that is after the videos were recorded. 

Our main contribution in this study is creating a closed loop system which reshapes 

previously recognized human intention into a desired one by fully autonomous 
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sociable robot moves planned by generating intention transients through Elastic 

Networks in real-time experiments. Literature survey on elastic networks for path 

planning is given in Section 3.4.1. In our novel approach, we first detect body-mood 

of the human subject by observing his/her heading whether it is towards the robot or 

not. Any failure yields to suspicious mood, planning a path headed towards the 

location of the estimated current intention location by HMM at this phase of the 

experiment. Here another novelty is to gain the curiosity of the human by breaking 

his/her intentional obstinance. The subject is expected to approach our robot upon the 

detection of confident mood in the person, making him/her ready to start an 

interaction and accept intentional changes. Chapter 3 gives detailed methodology of 

our approach and the results of the entire close loop system in on-line experiments 

are given in Section 4.1.2.  
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CHAPTER 3 

3. METHODOLOGY 

Our system for reshaping a current intention into a desired one by robot triggered 

interactions is illustrated as a block diagram in Figure 3.1. As seen in the figure, the 

ultimate goal is to generate a path, or a trajectory, for the robot to follow until the 

person realizes the desired intention, given to the algorithm beforehand. Each 

trajectory is generated from a feature space learned by previously recognized 

intention trajectories of humans in training sessions. These trajectories designate 

suitable robot moves in adequate directions and each one is designated by the 

intention they are driven with. These intentions are transient ones, called a way point 

towards the desired intention. Transient intentions are planned through way points 

calculated using Elastic Networks in two modes: “confident” and “suspicious”. These 

modes are depicting currently detected body-moods of human subjects. The reason 

of the introduction of these modes can be explained as such: we should note that, our 

first aim is to attract the attention of human subjects by our robots. We try to gain 

their curiosity and make them confident with the environment by suitable robot 

moves. The research works in the literature revealing that a person in a confident 

mood elicits more external-focused attention than a suspicious one (Cunningham, 

1988a, 1988b; Sedikides, 1992; Wood et al., 1990) directly support our attempt to 

break any obstinance with a current intention. Our robots manage to achieve the aim 

of making the human confident by getting close to the subjects while mimicking their 

previously observed actions (Kerstin Dautenhahn, 1999). That way, the human 

subject can carry out more external-focused attention (Sedikides, 1992) and be 

curious about the robot.  

We gave the name of “execution modes” to the detected two different body-moods of 

the person. According to these modes, elastic network works with different 
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parameters to generate way points. If the person is in suspicious mood, firstly the 

robot should break the obstinance of the person on what he is intending to do and 

gain his curiosity to create a readiness to intentional change. On the other hand, if the 

person is confident, it means the robot successfully caught the attention of the person 

on itself; hence, elastic networks easily generates for a way point (transient intention) 

starting from the current intention towards the desired intention. The mechanism 

behind body-mood detection is based on the reactions of the human subject to the 

robots which is further detailed in the upcoming sections. 

This chapter begins by introducing our experimental setup. We then provide the 

human/robot detecting and tracking approaches explained through demonstrative 

examples. After that, we proceed by detailing the generation of intention space called 

feature space by learning intentional actions of human subjects in training trials with 

the same experimental set up. Intention estimation and body-mood detection are 

explained next in sections 3.2 and 3.3. 

Transient intentions are generated based on the estimated current intention, observed 

previous intention before the current one and detected body-moods using Elastic 

Networks. We first overview the classical methodology and then explain our adapted 

elastic nets to generate transient intentions (way points) within the intention space 

(feature space). 
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Figure 3.1 Flow chart of the proposed methodology 
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3.1. Intention Space (Feature Space) Extraction 

3.1.1. Experimental Setup 

In order to realize and test our progress we prepared an experimental room and used 

two robots adapting the idea from the previous work of (Durdu, Erkmen, Erkmen, & 

Yilmaz, 2012). The room is equipped with a coffee table, a working table with a PC 

and a library. In addition, to interact with our human subjects we have two contextual 

mobile robots which are a mobile 2-steps and a mobile chair both autonomous. All of 

the objects that a person entering the room can interact are shown in Figure 3.2(a). 

For the sake of proving the intention reshaping concept, we purposefully installed 

minimal amount of objects that demonstrates distinct independent intentions. All of 

the possible actions that a human subject can undergo in the room are listed in Table 

3.1 against the intention they can carry. 

 
 
 

Table 3.1 List of observable actions and their labeled intentions in our application 

# Observable Actions Labeled Intention Short Versions 
A1 Discovering the environment Discovering Discovering 
A2 Going to the Coffee Table Drinking Coffee Coffee 
A3 Going to the Library Getting book from Library Library 
A4 Going to the Work Table Sitting on the Table Table 
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Figure 3.2 (a) Objects in the experimental room seen from the ceiling camera; (b) 2-
steps robot; (c) Chair robot. 

 
 
 

The robots, 2-steps and chair in Figure 3.2(b) and (c) respectively, can do planar 

motions on two wheels each driven by 12V DC motors. These motors are controlled 

by PIC 16F84 microprocessor upon the received control signals from a PC through 

RF. Robots have a load capacity for mobility which is 10 kg. Detailed technical 

specifications on the hardware of the robots can be found in (Durdu, 2012).  

A camera placed at the center of the ceiling of the room tracks human and robots and 

their trajectories. Region of interest (ROI) of the camera is 240x320 with a frame rate 

of 15 fps (frame per seconds) for the training experiments. Here, we should note that 

we had two phases in our experiments and the frame rate mentioned was for the 

training part. The real-time tests in intention reshaping phase has a frame rate of 8 

fps approximately (detailed in Section 4.1.1). Every human and robot actions either 

learned to generate the intention space or used to reshape a current intention is based 

on the tracking of human and robots. Tracked trajectories of human define their 

carrying intention. Detecting and tracking of human and robot that lie at the heart of 
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our system are detailed in section 3.1.2. Tracking is also used to estimate the current 

intention (section 3.2) and the heading and localization are used for determining the 

body-mood of the person (section 3.3), both estimated after processing the received 

frames from the camera. The main computer plans transient intentions using elastic 

networks and sends appropriate directional commands according to these transients 

to the robots via radio signals in order to realize adequate trajectories. 

3.1.2.  Human/Robot Detection, Localization and Tracking 

As mentioned in section 3.1.1, there are three mobile objects to be detected, 

identified and tracked, which are a human subject, chair robot and 2-steps robot. In 

each frame as a feature vector, the locations of all of these three objects are to be 

determined. Feature extraction is one the most crucial component of our study. A 

false localization of human subject might have led to a false estimation of intention 

resulting in irrelevant path planning for the robots. Therefore, in this section we give 

brief analysis of the parts through the feature extraction given in Figure 3.3 including 

problems encountered and some tricks to overcome these problems. 
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Figure 3.3 Block diagram for feature extraction system 

 
 
 

3.1.2.1. Object Detection and Localization 

Image processing steps starts with background subtraction which is the major 

component of computer vision systems utilized for detecting moving objects using a 

stationary camera.  A stationary background is subtracted to detect moving pixels by 

taking the difference between an input image, being current frame gathered from the 

camera, and a background image. Then, by thresholding the difference, pixels 

corresponding to moving objects in the scene are located.  
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Since the illumination in the environment can change between frames, defining a 

stationary background is not a trivial task in image processing. In the literature, it is 

usually preferred to use a method modeling distribution of intensity value of each 

pixel. In this study, we used a Gaussian Mixture Model on the first few frames to 

estimate a mean for the background pixel values as in (Stauffer & Grimson, 1999). 

For the image thresholding, we used the most common method called Otsu’s 

Thresholding Method. It is basically an auto-thresholding method performing 

clustering-based image thresholding. Using these well-known segmentation methods 

mentioned, subtracted background can be seen in Figure 3.4(c) with the original 

image (Figure 3.4(b)) and the stationary background image (Figure 3.4(a)) from our 

applications. 

 
 
 

 

Figure 3.4 (a) Modeled background; (b) An input image; (c) Foreground masked 
view of the image in part (b). 



33 

After segmentation, we utilize a famous morphological operation called “Closing” 

(Soille, 2003). The aim is to fill holes between object pixels that are close to each 

other. That way, blobs are created for each object in the scene. As the structural 

element we use a rectangle with sizes 7x1 pixels. An exemplary image before and 

after “closing” operation is given in Figure 3.4(c) and (d). After “closing”, holes on 

surface the object images in the foreground masked view are filled, which is a 

necessary step to define a blob around the objects. Furthermore, the resultant image 

after “closing” is scanned with blob analysis algorithm adapted from (Chen, Lin, & 

Chen, 2007). The obtained blobs are analyzed with respect to statistical values which 

are: a bounding box around these blobs, centroids of these boxes, label matrices and 

total amount of blobs in the image. Exemplary blobs detected are demonstrated in 

Figure 3.5(a). The green rectangle bounding box indicates a blob belonging to the 2-

steps robot (originally seen in Figure 3.4(b)) and the blue rectangle is for human 

sitting on the chair robot.  

 
 
 

 

Figure 3.5 (a) Snapshot was taken right after blob analysis. The blob detected around 
the 2-steps robot is a green rectangle which considers each step of the 2-steps robot 
as a different object; (b) After the “merging” algorithm, 2-steps robot could be fully 
detected as one object. 
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After the blob analysis algorithm extracted the centroid and bounding box 

coordinates of the blobs in the image, we used “merging” method to merge the blobs 

belonging to the same target. As demonstrated in Figure 3.5(a), each step of the 2-

steps robot is detected separately because of the dark region separating steps as seen 

in an original view in Figure 3.4(b). Merging algorithm takes the rectangle 

coordinates of the bounding boxes of all blobs detected and measures the distances 

between each. If the distance between two blobs is smaller than a threshold and this 

value stills the same for the consequent frames, they are considered to be the same 

target a merged to be one blob (see Figure 3.5(b)).  

During the applications we encountered many problems on detection due to 

luminance, angle of the camera, shadows of the objects. To overcome, we apply 

parameter changes while testing the performance of the system. Although detection 

and localization is not the main focus of this thesis, we provide solutions offered to 

each problem briefly: 

� Merging of the blobs belonging to different objects: When two objects, 

especially human with robots, got close enough to each other, they were 

claimed to be one blob detected by the merging algorithm causing loss of 

actual locations of both agents. As for the problem, we adjusted the box 

merging threshold according to our experimental room. 

� Misdetections: In some experiments, misdetections occur especially on the 

coffee table as seen in the right bottom corner in Figure 3.6(b). This is due to 

the fact that while human subjects were preparing coffee, they misplaced the 

coffee machine, coffee cup, sugar can or even hit the coffee table which is 

light enough to move. Since these materials are considered to be background 

at the beginning, these misplacements cause ghost formations big enough to 

be detected as a blob. Increasing the minimum area for a bounding box of the 

blob detected seems to be a good solution; however, this time we wouldn’t be 

able to detect even real objects of our concern. For example, each steps of the 

2-steps robot are sometimes detected as separate blobs at first (see Figure 

3.6(b)). Then they are merged as mentioned. Any further increase in the limit 
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caused ignoring of these two steps. Instead, we developed a new algorithm at 

the end of the blob merging algorithm which was the last step of our 

detection process. This algorithm takes all of the detected blobs in the image 

(along with the coffee table misplacements), calculates the areas of their 

bounding boxes and outputs the biggest three blobs. As seen in Figure 3.6(b), 

we have three moving objects to be detected and they cover by far the biggest 

three areas comparing the misdetection of the coffee table. 

� Shadows of the human subjects: When human subjects are in certain 

locations, their shadows become separated from the background and fall on to 

robots due to the non-homogenous lighting in the room (See Figure 3.6(b)). 

As demonstrated in Figure 3.6(b), the biggest problem caused by this is to 

merge the two blobs: human subject together with the shadow and robot, 

although the human and robot are far away. In these situations, they are 

claimed to be one blob and one centroid calculated for both of the objects. 

That causes incorrect positioning for them. Instead of detecting one blob and 

ending up with a wrong data, we preferred no detection at all and preserved 

the previous locations of the bounding box of two objects detected correctly 

right before shadow merging problem. We managed to achieve this by 

decreasing the maximum blob area to be detected in the blob analysis 

algorithm. 
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Figure 3.6 (a) Original image with origin of the pixel coordinate system being at the 
top left corner; (b) Foreground masked view with the mentioned problems of: 
shadow causing false merge of blobs, misdetection on the coffee table, separated two 
blobs belonging to the same object, 2-steps robot. 

 
 
 

Along with the problems mentioned, there were still some bottlenecks in the 

detection. The most important one is that we couldn’t do anything when the objects 

actually overlapped as seen in Figure 3.8(b). For those kind of cases happened a lot 

during the experiments, we ignore the merged blobs as we did in shadow problem 

and preserve the previous bounding boxes of the overlapped objects as demonstrated 

in Figure 3.8(b). We set a maximum area limit for the bounding boxes such that, 

ignoring merged blobs of two different objects continues until a near full overlapping 

achieved (e.g. the person almost sits on the chair robot or the person almost climbs to 

2-steps robot) as in Figure 3.8(d). In this figure, detected area of two merging objects 

got below the maximum blob area limit and a bounding box is assigned. However, 

there are two problems to be solved, what the label of this merged blob is (is it 

assigned to the robot, to human or both) and what happened the location data 

between Figure 3.8(b) and Figure 3.8(d). These problems are covered by tracking 

detailed in the next section. 
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Color Identification: As stated in Figure 3.3, we have color identification for the last 

step of the detection and localization process. To identify the object detected as a 

blob with a bounding box, we check the RGB color values of each centroid pixel of 

the bounding boxes. This step is also necessary to track each object separately. To 

start with, Figure 3.6(a) clearly indicates that we have different colored robots in the 

scene. The methodology is to check the color value of the pixel on the centroid 

coordinates outputted from detection algorithm. Input and output centroid values of 

the color identification algorithm can be seen in Figure 3.7(a) and (b) respectively. In 

part (a), a random labeling with bounding boxes around the blobs is seen. On the 

other hand, in part (b), each object was labeled and localized correctly where green 

bounding box and initial ‘S’ for 2-steps robot, blue box and initial ‘C’ for chair robot 

and always red colored box with initial ‘H’ for human subject.  

As for the color identification process, the only critical point was the choice of the 

colors of the robots. We decided on two of the main colors in image processing, 

namely green and blue (two of RGB) for the robots. In other words, chosen colors 

and their default RGB values are highly separated from each other. After labeling 

two robots, the remained last centroid was claimed to be belong to the human 

subject. That way, human subject labeling is made independent from the colors s/he 

wears (colors except the green and blue tones are preferred). However, even if the 

human subject wears green or blue, once a correct labeling was achieved, separate 

target tracking algorithms of each object ignores false labeling occur during the 

system works. 
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Figure 3.7 (a) Random labeling after detection algorithm before color identification 
with foreground masked view; (b) Corrected labeling can be seen from the initials of 
the objects at the top-left corner of the bounding boxes of the blobs. ‘H’ stands for 
human and always in color red whereas ‘S’ for 2-steps robot with green color and ‘C’ 
for chair robot with blue color. 

 
 
 

3.1.2.2. Object Tracking 

For the last but the most important part of our feature extraction system, we used 

tracking algorithm. A tracking algorithm is needed as the most crucial part of a 

localization problem. We implemented three separate tracking algorithms with three 

different tracking thresholds for three different moving objects detected and labeled 

in Section 3.1.2.1. As in conventional tracking systems, Kalman filter was used for 

its proper performance on estimating past, present and future states by using series of 

measurements containing noise and other nonlinearities (Welch & Bishop, 1995).  

To start with, a feasibility check to ensure the correctness of color identification is 

handled by a comparison algorithm beforehand. That is, we compare detected 

locations of each object with their previous locations to check if the new labeling is 

feasible relying on the maximum travel distance can each object realize between two 
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consecutive frames. For the purpose, we calculated a target tracking threshold value 

for each object by taking their maximum speed into account.  That is, we assume that 

a human can move 20 pixels whereas a robot can shift 10 pixels between consecutive 

frames. If the feasibility check of color labeling fails for an object, previous 

coordinates of this object are forwarded to Kalman filter.  

Kalman filter takes the locations of the bounding boxes of each object detected in the 

previous frames, measures the effect of noise and predicts the locations of these 

boxes in the current frame. This is called state estimation of a dynamic system and it 

is the first mode of our Kalman filter algorithm. As for the second mode, within the 

same sampling time, Kalman filter enhances its current state estimation by using the 

predicted state and the detected current state. In our applications, these states are the 

coordinate values of left-hand corner of the bounding boxes surrounding each object. 

For the final application of the filter, it reduces the effect of noise in the detected 

coordinates (Welch & Bishop, 1995). 

We use separate tracking algorithms for each object. The point of this usage is not to 

lose any location information of the objects especially when the two of them overlap 

as in the given scenario with Figure 3.8. In this figure, the left hand side of each part 

is a snapshot of the intensity image of that frame before color identification and 

tracking algorithms, whereas the right-hand side is the resultant snapshot of all 

processes mentioned throughout Section 3.1.2. If a merging occurs due to an overlap 

situation, our detection algorithms do not assign a blob around this overlapped 

image. However, as soon as the overlapped region gets lower than the maximum 

blob area limit, it is detected as a blob shown with yellow bounding box in the 

snapshots on the left-hand of Figure 3.8(c) and (d). Then, the color identification 

algorithm labels this blob with human, since the human is mobile during an 

interaction with a robot. As will be detailed in Section 3.5, during an interaction (as 

the human sits on the chair or climbs onto the 2-steps robot), the robots are not 

allowed to move due to safety reasons. Therefore, overlapping situations are 

considered to be interaction moments and robots actually stand still until the human 

finishes the interaction.  
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In Figure 3.8(a), blobs of the chair robot and the human subject started merging and 

Figure 3.8(b) shows the prevention of the blob detection of these merged objects. In 

the part (b), intensity image shows the ignored blob (there is no bounding box) where 

the colored image (after tracking algorithm) still preserves the last locations of both 

the human and the chair. As the human keeps approaching to the chair, merged blob 

area decreases below the maximum blob area limit resulting the detection of the blob 

again as seen in the intensity image of Figure 3.8(c). The colored image of this figure 

shows that, the detected blob is labeled as human because the bounding box of the 

human started moving towards newly detected box estimating the path the human 

covered between the last detection in Figure 3.8(b) and Figure 3.8(c). Figure 3.8(d) 

and Figure 3.8(e) show the full settlement of the bounding box of the human subject 

based on the tracking algorithm. Estimated path by the Kalman filter is given in 

Figure 3.8(f) with indicated starting and finishing points. This is a satisfactory 

performance for our localization process. 

After detection, localization and tracking, a  matrix holding centroid pixel 

coordinates of the bounding boxes of each object is resulted in each frame, as 

demonstrated in the equation (3.1). The initials ‘C, S, H’ are for the chair robot, 2-

steps robot and the human respectively. Feature descriptors of our system utilize 

these coordinates which are to be used in Hidden Markov Model for learning and 

estimation (Section 3.2), execution mode decision (Section 3.3) and Elastic networks 

(Section 3.4). 

                                              (3.1) 
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Figure 3.8 (a)-(e) Exemplary demonstration of overlapping of the two of the objects. 
In each part, a snapshot from video frame is given with an intensity image before the 
color identification and tracking algorithm (left-hand side), and a colored image after 
all processes (right-hand side) for a comparative analysis; (f) Estimated path between 
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part (a) and part (e) of the Kalman filter is drawn indicating the performance of our 
tracking algorithm. 

3.1.3. Generating the Intention Feature Space (Training Experiments) 

The aim of the training experiments is to collect training data to construct intention 

space (feature space). This feature space is used for learning process to construct 

estimation model with Hidden Markov Models (HMM) and elastic networks detailed 

in the upcoming sections. Experiments were conducted with 6 human subjects in the 

experimental room with the same setup explained in the Section 3.1.1. A ceiling 

camera with the resolution of 240x320 tracked the humans with 15 fps and recorded 

human actions in the room. To construct the estimation model in the learning phase 

detailed in Section 3.2.1, intention feature space should include intention trajectories 

for all of four intentions given in Table 3.1. To record as much trajectories as we can 

for all intentions, there were some milestones about the content of the experiments 

stated as follows: 

� First of all, we should note that, our final testing experiments require that the 

people are not told about any objects and the robots in the room in order to 

test our trust and curiosity gaining performance. Therefore, we started 

training experiments with uninformed humans about the context of the room 

including the robots, to have a consistent intention model with the final 

experiments. That way we could collect trajectories with completely natural 

behaviors. 

� During the experiments we noticed that if all of the human subjects were 

uninformed about the context of the room, all we could observe from the 

actions was discovering the room. However, to construct the database for all 

of the intentions, we needed the people to realize other three intentions 

mentioned in Table 3.1, as well. For that purpose, we had only 3 human 

subjects uninformed, while remaining three were told about the robots and 

that they should pay attention to robot moves. By paying attention, we could 

manipulate the actions of the subjects to collect more data for the other 
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intentions. For example, moving chair reminded these three informed subjects 

to sit on the table and work with PC giving us a trajectory realizing the 

intention of ‘sitting on the table’. 

� Moreover, to utilize Hidden Markov Model, there should be transitions 

between the intentions observed (detailed in Section 3.2.1). To have the 

transitions, we told all of six human subjects that they were expected to return 

the objects they took, back to their original places. For example, as soon as a 

person quits reading a book while sitting on the table, s/he should return it 

back to the library giving us a transition from ‘sitting on the table’ to 

‘getting/dropping a book from the library’. 

With the aforementioned rules about the experiments, all of the human subjects spent 

5 minutes of time in the experimental room and their actions were recorded. 

Exemplary tracking information from recorded actions is illustrated in Figure 3.9(b) 

with its originally captured last frame given in Figure 3.9(a). 

 
 
 

 

Figure 3.9 (a) Original image captured at the last frame of a tracking sample; (b) An 
exemplary tracked trajectory with 7 seconds long shown on a grid map which has its 
last frame shown in (a). This trajectory is an intention feature descriptor labeled with 
‘discovering’ intention. Labeling is done by the experimenter based on his 
observations; (c) Grid numbered view of the trajectory in part (b). 
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As for our intention feature space, it consists of feature descriptors with tracked 

trajectories each labeled with an intention as in the example trajectory labeled with 

‘discovering’ intention given in Figure 3.9. It should be noted that, labeling is 

realized by the experimenter himself based on his observations, meaning that a 

trajectory ended up with which intention. After recording trajectories containing 

pixel coordinates of each location of the person, there are three requirements for our 

intention feature space for the future applications and the solutions applied to them: 

1. As will be detailed in Section 3.2.1, HMM requires a finite number of 

emissions (outputs) in order to have realistic probability functions for states. 

Therefore, we needed to divide the map into grids, in our applications being 

48 grids with the same size. Each pixel values are also recorded with the 

number of the grid they fall into as illustrated in Figure 3.9(c). 

2. Intention feature space should consist of feature vectors having trajectories 

with equal length. The reason is that, since Elastic networks have a search 

space with nodes having same dimensions, intention feature descriptors, 

which are nodes of elastic nets, should have same dimensions. Experiments 

showed that the average time for a human subject to realize an intention was 

7 seconds in our room. As a result, we fitted all of the intention feature 

descriptors (recorded trajectories with a labeled intention) to 7 seconds being 

105 frames (7 secs x 15 fps). Normally, HMM doesn’t have to have equally 

length features for training; however, for Elastic networks this adjustment is 

need to be handled. 

3. Since HMM is a method calculating conditional probabilities of an intention 

occurring on a certain grid given that the previous intention, in order to 

calculate output (grid) probabilities consistently, there should be same 

amount of feature vectors labeled for each intention. After the experiments, 

we could extract 25 different ‘drinking coffee’ trajectories as the limiter. 

Therefore, 25 trajectories were assigned for all of four intentions. 
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After these requirements satisfied, total amount of 100 discrete intention feature 

vectors (trajectories each labeled with an intention) are extracted from the videos 

each having  frames with human pixel coordinates  and grid 

numbers for each frame. Each feature descriptor is in the size of  with the 

row matrix:  and column matrix: . 

3.2. Intention Estimation and Real-Time Prediction of Human Trajectories 

Intention estimation is realized based on the idea that human direction of motion 

(heading) reflect an intention (Clarke et al., 2005)(Bratman, 1999). That is to say, 

that humans plan their actions according to their set intentions. We, thus, monitor 

actions of the human agents with the context of a scenario defined by a room 

equipped with limited number of realizable intentions given in Table 3.1 . These 

actions are recorded according to the exhibited context dependent final intention as 

feature vectors of our system (see Section 3.1.3). For the machine learning, we utilize 

these feature vectors in the intention estimation approach based on Hidden Markov 

Models (HMM) as in PhD thesis work of Durdu (Durdu, 2012). 

Intention estimation is required in our system because we are comparing the current 

intention estimated with the desired one if we could change successfully. Moreover, 

for the search space of our Elastic Networks algorithm, we introduce feature vectors, 

which are the trajectories of the person leading to a certain intention given in Section 

3.1.3, as nodes of the network. Therefore, the input to elastic network should be a 

“trajectory” of the current intention (see Sections 3.4.4 and 3.4.5). In other words, 

after estimating current intention, we predict the trajectory of the human which will 

lead to that intention details of which are given in Section 3.2.2. For the intention 

estimation, we constructed a model characterizing intention actions of Table 3.1  as a 

set of sequences of emissions using HMM. The model thus finds the most probable 

set of state (intention) transitions corresponding to a certain observed action. Since 
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we have hidden states being intentions and observable actions being sequences of 

locations, HMM suits well to our system. 

3.2.1. Hidden Markov Model for Estimation 

In order to estimate the intentions, there should be constructed a model, which is 

called the learning process of a stochastic system. Hidden Markov Model provides a 

general framework for sequential decision making in situations where states are 

hidden and actions (observations) are stochastic. In this model, there are finite set of 

states which are linked to finite number of outputs with probability distribution 

functions (Rabiner, 1989).  Formal definition of a HMM is given as: 

                                                 (3.2) 

There are  hidden states expressed with alphabet set , and  observations with the 

set : 

                              (3.3) 

Transition array  supplies the probability of state  following state  and defined as: 

                  (3.4) 

Observation array  holds the probability of observing output  at the state  defined 

as: 

                (3.5) 

For the last component,  is prior information defining a probability array of the state 

 being the initial state: 

                      (3.6) 
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The learning task in HMM is to find: Given emission (output) sequences and a model 

find the most probable set of state transitions results in that output and compute the 

emission probabilities. As for the testing task(finding the most likely states), it can be 

declared as: Given an emission sequence and a model (emission and transition 

probabilities calculated in learning session) find the most probable set of state 

transitions results in that output. These tasks have been studied well and solved using 

dynamic programming techniques. For the learning task, Baum-Welch algorithm was 

introduced finding the  parameters which are state transition, observation 

and initialization arrays of the model by Baum et al in 1970 (Baum et al., 1970). For 

the latter task, testing, Viterbi in 1967 introduced Viterbi algorithm calculating the 

most likely states (Viterbi, 1967). 

As for the learning process with HMM, all database of extracted feature descriptors 

in Section 3.1.3, which are trajectories of humans labeled with an intention, are used 

to construct the model. These feature descriptors train our HMM that is subsequently 

used to estimate current intention when viewing a certain human heading adapted 

from (Durdu, 2012). In its traditional usage of HMMs, there are two sub-models to 

be well defined beforehand: state transition model and observation (emission) model 

(Yamato, Ohya, & Ishii, 1992). Our HMM uses four possible intentions given in 

Table 3.1 as being states in the transition model to calculate state transition matrix 

while the grid information is utilized in observation model to calculate emission 

matrix. 

3.2.1.1. Generating Emission and Transition Matrices (Baum-Welch 

Algorithm) 

This part is the training part of HMM that is, given a set of sequences; estimate the 

parameters of the model. Baum-Welch Algorithm, which is actually an Expectation-

Maximization algorithm, is used to calculate the maximum likelihood of the model 

parameters from emissions and states (Dempster, Laird, & Rubin, 1977). For the 

purpose of estimating state transition and emission probabilities of our HMM, all of 
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the trajectories were examined. As mentioned in Section 3.1.3, to have consistent 

state (intention) probabilities for each grid location in our ROI, equal amount of 

trained trajectories should be used for each intention. In our application, 25 

trajectories from each intention, meaning that total amount of 100 trajectories (with 

105x100=10500 grid information (observations), see Section 3.1.3) were loaded to 

the Baum-Welch algorithm and recursive calculations were handled until a 

convergence to the model parameters was satisfied adapted from (Dempster et al., 

1977). 

Calculated model parameters being transition probabilities and emission probabilities 

are shown in Figure 3.10 and Figure 3.11 recursively. In Figure 3.10, all of the 

emission probabilities of each intention are demonstrated with bar graphics. In the 

graphics, each bar represents the probability of observing the related intention in the 

related grid number. It should be reminded that our ROI in the scene is divided into 

48 equally sized grids (see Section 3.1.3). As for the analysis of emission 

probabilities, we can deduce that ‘discovering the environment’ the first intention 

spreads nearly homogenously to the grids as demonstrated in Figure 3.10(a). On the 

other hand, the other intentions heavily occur at their located places. For example, by 

looking at Figure 3.10(b), (c) and (d) respectively, it is clear that experimenters drink 

coffee near the grid numbers of 39, 40, and 47, whereas they take book from 17, 18 

and they sit near 5, 6, 13, and 14.  All of these deductions from the graphics can be 

compared with the original image in Figure 3.9(b). As for the last words on emission 

probabilities, the model satisfies the common probability rule that all of the grid 

probabilities of each intention sum up to 1. 

Transition probabilities are given in Figure 3.11 with bar graphics. The horizontal 

axis states the four intentions with numbers (explained on the figure) whereas the 

vertical one indicates the probabilities of transitions from each numbered intention to 

its different-colored bar represented intention. If we look at the highest bars for each 

intention, it is clear that experimenters generally leaned to go on with what they were 

doing, that means breaking the obstinance of the experimenters on what they are 

doing is very hard. In addition, experimenters generally passed to the intention of 
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‘discovering the environment’, after they had finished their previous intention. This 

explains that, since the experimenters were not familiar with the environment and 

suspicious about it, they usually do not plan what to do next after they finished what 

they were doing. In other words, they observe the environment first, and then plan 

what to do next. Moreover, the common probability rule was also satisfied here that, 

all of the transition probabilities of each intention summed up to 1. Finally, the last 

parameter being the probability of initializations of the states given with Eq.(3.6) was 

not given as a graph because all of the experimenters started to discover the 

environment first, resulting in the probability of this intention being ‘1’ and others 

are ‘0’.  

In conclusion, with the analysis and the calculations made on the graphs given, we 

can deduce that our model is a workable and feasible model to be used in the 

estimation of intention, which is our ultimate goal for this section. 
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Figure 3.10 Emission probabilities of each intention, each bar in the graphics refers 
to probability of observing the related intention in the related grid. 
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Figure 3.11 Transition probabilities of each intention, each bar in the graphic refers 
to the probability of transition from the intention stated with the number below the 
bar in the horizontal axis, to the intention stated with the color of the bar. 

 
 
 

3.2.1.2. Finding the Most Likely States, Estimating the Intention (Viterbi 

Algorithm) 

After estimating the model parameters of our system, the final part being intention 

estimation takes place. It is actually the estimation of the most likely state and 

explained in the literature as; given a sequence of observations and a model, 

including emission, transition and initialization probabilities stated in the previous 

section, calculate the most probable sequence of states using Viterbi algorithm (R 

Durbin, 1998). 

The most important tip to notice using Viterbi algorithm is that, changing the length 

of the sequences given to the Viterbi algorithm to estimate the most likely states 

results in different estimations. The reason is that, maximum likelihood calculations 

are handled by not only utilizing both emission but also transition probabilities 

between states. Therefore, according to the previous consecutive locations before the 
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last location (emission) in a given sequence, found most likely state for the last 

emission may vary. As a result, the longer the sequence given to the algorithm, the 

more reliable estimations we get. 

In our application, close loop algorithm being reshaping intention into a desired one 

by autonomous robot moves in human-in the-loop experiments starts here. Path 

planning is done according to the currently estimated intention in real-time 

experiments. Therefore, we had to consider the real-time performance of our system 

before estimating intention. At real time due to the CPU performance limitations and 

many computational costs in the algorithm, video frame can be maximum 8fps while 

the constructed intention feature space with training experiments was 15 fps. This 

doesn’t affect our HMM parameters since they are related with the probabilities of 

observations and state transitions which are independent of the frame rate. However, 

there should be modifications on the intention feature space and its descriptors, all of 

which were constructed with 15 fps, because they are going to be used by trajectory 

estimation and path planning in real-time experiments with 8fps. This modification 

being the reduction of lengths of trajectories in the feature space is detailed in the 

Section 3.2.2.1. We decided to estimate the intention by looking at the grid 

observations of the human subject of the last 3 seconds with 24 sequences 

(estimation will be in real-time,  sequences of observed grids) 

recalling our claim that a person realizes an intention in about 7 seconds. Viterbi 

algorithm takes these 24 up-to-date grid sequences observed at all iterations and 

gives 4 different probabilities belonging to four different intentions for each 

sequence. Finally, we declared the state which has the biggest probability among 

four of the last sequence, as the current intention estimated of the human subject. We 

demonstrate the estimated intentions on the top-left corner of the image frame as 

seen in Figure 3.12. In the figure, emission and transition matrices constructed are 

also shown. More results on this topic can be found in results section (Section 4.1.2). 

As for the last words in intention estimation, recalling flow chart of the system in 

Figure 3.1, the estimated intention is compared with the final desired intention. If 

they are equal, the system terminates here claiming success; on the other hand, real-
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time trajectory estimation takes place before moving on to the execution mode as 

detailed in the proceeding sections. 

3.2.2. Real-Time Human Trajectory Prediction 

As mentioned before, our intention feature space consists of trajectories labeled with 

an intention. This map of intentions is actually our search space in which we are 

going to generate trajectories for our robots to follow by using elastic network 

methodology. As it is detailed in Section 3.4.5, our elastic network needs currently 

estimated intention of the human to generate a way point close to it. However, it is 

obvious that intention estimated (one of four intentions in Table 3.1) is meaningless 

for elastic network model utilizing trajectories in the intention feature space. In 

addition, elastic network’s way point generation is in real-time in our application. 

For the purpose, we predict a trajectory for the current intention of the human subject 

among the intention feature descriptors in real-time. Therefore, before the 

explanation of trajectory estimation, real-time adaptation of intention feature space is 

detailed. 

3.2.2.1. Real-Time Adaptation of Intention Feature Space 

As it is first stated in Section 3.2.1.2, our close loop algorithm is a human-in-the-loop 

algorithm in real-time.  Processing video frames and having a search algorithm 

running in the background at the same time allocate great amount of CPU memory 

leading to a slowdown in PC performance. Although we were able to record videos 

with 15fps for training part of the project, due to CPU performance it decreased to 

8fps at maximum in real-time analysis. This reduction in the frame rate doesn’t affect 

any of the previous steps, none of them frame dependent; however, it affects 

trajectory prediction and path planning algorithm, both of which is in real-time, 

because of the different sizes of the currently predicted trajectory of the human 

recorded with 8 fps and intention feature space constructed with 15 fps used as a 

search map. Therefore, all of the constructed feature descriptors labeled with 
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intentions each having 105 locations (7sec x 15fps) should be scaled to 56 locations 

(7sec x 8fps). We could not record these feature descriptors in real-time at the 

training experimenters because in real-time recording a video while processing each 

frame is impossible due to the limited cache memory. Therefore, we recorded 

training videos first then process it with image processing tools. In conclusion, by 

shrinking each feature descriptor of the intention space to 56 sequences of location, 

we adapted the feature space to real-time conditions. 

3.2.2.2. Predicting the Current Trajectory 

Predicting the current trajectory means finding the most possible trajectory that the 

human subject may follow. The reason why we did not predict the trajectory at the 

beginning instead of estimating intention is that, trajectory prediction with a lot of 

possibilities is not feasible in our small experimental room. We are trying to estimate 

the trajectory by observing the first 3 seconds of the human action which afterwards 

may proceed to many different trajectories in the room where all four intention 

locations are very close to each other also. In other words, a lot of different 

trajectories leading towards different intention locations have the same initial 

trajectories. By estimating intention beforehand, we decrease the search space to only 

trajectories ending up in the estimated intention because of the fact that all of the 

trajectories are labeled with one of four intentions. In fact, there are 100 different 

trajectories in our search space and estimating intention beforehand decreases this 

number to 25 possibilities (recalling that there are 25 trajectories for each intention). 

In addition, intention was going to be estimated anyway in order to check if we could 

reshape intention of the person into what we desired. Therefore, it is a good enough 

solution for us to utilize intention information and then do the trajectory prediction. 

Trajectory prediction comes right after intention estimation and it is realized by 

comparing the track of the person with all of 25 trajectories in the estimated intention 

space. In comparison, the last 24 sequences (last 3 seconds in real-time, see Section 

3.2.1.2) are used as the recent track information of the human subject. The aim is to 

estimate the entire trajectory (7seconds long) by looking at these recent 24 
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sequences. For the purpose, we use a shift comparator which first calculates 

distances between the first 24 location of trajectories in the current intention space 

and recent 24 sequences of human location. After the closest one found, the most 

recent 24 sequences is updated with the new frame and is compared with the 

previously found closest trajectory’s location sequences between 2nd and 25th, 

omitting the first one. This is for checking if the person is still on the estimated route. 

The algorithm does this shifting comparison for 4 consecutive frames as long as the 

distance of the closest trajectory to the recent 24 sequence decreases or stays the 

same. If it does not, the algorithm searches for a new prediction. Either way, an 

independent counter counts and after 28 sequences (3.5 seconds) passed, lastly 

labeled closest trajectory is delivered to the elastic network model as the current 

trajectory. An exemplary result of trajectory prediction is shown in Figure 3.12. 

Yellow trajectory shows the previous trajectory that the person actually followed 

within last 7 seconds while the red one belongs to currently predicted one selected 

from the feature space of the intention ‘discovering’, which is the currently estimated 

intention written on the top-left corner. Finally, previous and current trajectories 

stated are passed to our elastic network model. More results on this method are given 

in results section (Section 4.1.2). 
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Figure 3.12 Demonstration of current intention trajectory prediction. Previous 
trajectory is the observed trajectory of the human recorded in the last 7 seconds 
where the currently estimated trajectory is the one human subject is expected to 
follow next. This trajectory is chosen among the trajectory space of the intention of 
‘discovering’ which is the currently estimated intention written on the top-left corner 
of the snapshot. 

 
 
 

3.3. Execution Mode: Human Body-Mood Detection 

Execution modes: confident and suspicious, yield different strategies in planning way 

points for the robots to follow. These modes are depicting currently detected body-

moods of human subjects which states the emotional aspect of a person effecting 

his/her decision making in an unknown environment (S. Lee & Son, 2008). 

Naturally, a robot should catch the curiosity of the human if we want to reshape the 

human intentions by autonomous moves of robots. Therefore, the robot firstly aims 

to win this curiosity and make the human confident with the environment, based on 

the research that a person in a confident mood elicits more external-focused attention 

than a suspicious one (Fredrickson, 2003; Grol et al., 2013; Sedikides, 1992; 

Wadlinger & Isaacowitz, 2006). Briefly, before reshaping the intention to a desired 

one, we aimed to make the human confident with the robot and trust it. Robots will 
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not be focused on the ultimate desired intention until the body mood of the person is 

detected to be confident. As for this part of the project, we can say that detection of 

the body-mood is a decision making process for the robots to act or plan their paths 

accordingly. 

In this section, the methodology behind the body-mood detection is given. By 

looking at the works of Huettenrauch et al. (2006), Christensen et al. (2005), Butler 

et al. (2001) and Mead et al. (2011) examining spatial relation between a robot and a 

human subject, we made an inference that if a person heads towards a robot allowing 

it to enter his/her intimate region (which is closer than 30cm), that means s/he feels 

comfortable putting him/her in a confident mood and ready to start an interaction. On 

the contrary, staying or moving away from the robot reveals suspicion or unconcern 

of the person. These ideas are the milestones for our approach on body-mood 

detection. Basically, we are tracking the heading of the human body, whether the 

person moves through the robot or not. Since we are observing the reaction of the 

person against the robot moves, the detection of the body-mood takes place right 

after each robot move assuming suspicious mode at the very beginning of each 

experiment. After the robot makes its move, we compare the location of the human 

before and after the movement. If the direction of motion towards the robot and the 

person is close enough to the robot, we state the person is confident. As a result, we 

claim that the person can give more external-focused attention to our robot as 

Sedikides (1992) stated making our execution mode of path planning to switching to 

confident mood after which we plan a path for the robot aimed at reshaping the 

intention of the person to the desired one. On the other hand, if the heading is not 

concerning the robot, suspicious mode starts, where the aim is making the mood of 

the person confident and gaining the human curiosity by roaming around the current 

intention of the person regardless of how far they are from the desired intention.  

The detection of the heading of human subjects is realized by geometrical 

approaches on the 2-D image coordinate plane with the coordinates of the human just 

before the robot moves, after the robot moves and the robot itself in the last frame 

(see Figure 3.13). In the figure, all of the coordinates mentioned is shown. Actual 
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heading is the direction of motion of the human between before and after the robot 

moves whereas ideal heading is the heading leading to an interaction between human 

and robot switching the human body-mood to confident. However, of course the 

ideal heading couldn’t be achieved in a coordinate system. In addition, human may 

approach to the robot from different sides of the robot. Therefore, we defined an 

error margin called angle of curiosity stating the curiosity of the person in the robot. 

If the distance (proxemics distance on Figure 3.13) between the last locations of the 

human and the robot is below 75 pixels (close enough to interact within a second) 

and if the human displaced more than 10 pixels (standing still not yields confidence), 

a comparison of this angle with a threshold of 45 degrees decides the mood of the 

person. Below the threshold yields the mood is confident whereas above means 

suspicious. Calculation of this angle is realized by the conventional law of cosines. 

Calling actual heading as a, ideal heading as i, and the distance between the last 

human and robot locations as d, angle of curiosity is calculated as follows: 

                            (3.7) 
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Figure 3.13 Geometrical approach of deciding human-body mood. The line 
connecting the location of the robot and of the human before robot moves is the ideal 
heading whereas the other line between human locations before and after robot 
moves is actual heading. Angle of curiosity is the angle between these two lines 
stating the error from the ideal heading leading to confident mood for the person. 

 
 
 

 

Figure 3.14 Examples of different execution modes. (a) Human subject approached 
robot with about 35 degrees of angle of curiosity leading to confident mode; (b) 
Human subject stood still not caring about 2-steps robot move switching the 
execution mode to suspicious mode. 
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There are two examples from actual scenarios given in Figure 3.14. The former one 

is claiming that the person is confident and the execution mode is confident mode 

while the latter clearly reveals the unconcern of the person for the robot declared as 

suspicious while he was sitting without caring the movement of it. In the scenario 

given in Figure 3.14(a), the robot will be realizing the desired intention of ‘sitting on 

the table’; on the other hand, in Figure 3.14(b), the robot will be still trying to gain 

the curiosity of the person making him confident. Different strategies in path 

planning according to these two modes are realized by changing one parameter in 

Elastic networks described in the Section 3.4.5. More results on this topology within 

the real-time scenarios are given in results section (Section 4.1.2). 

3.4. Generating Intention Transients Using Elastic Networks 

The conceptual novelty in our work is the planning of intention trajectories towards 

the desired intention consisting of way points in intention feature space created in 

Section 3.1.3 with two different modes: confident and suspicious. The former mode 

is adopted when the human keeps following the direction of the interacting robot.  In 

this mode, robots directly generate a way point (trajectory) passing near the current 

intention of the person pointing out the desired intention. However, in the latter 

mode, the robot cannot quite destabilize the obstinance in the current intention of the 

human and cannot capture his/her curiosity. In this mode, since the human is 

unconcerned about the robot and has suspicions, establishing an interaction between 

human and the robot is very difficult as clearly mentioned in(Christensen et al., 

2005). Therefore, our robots managed to achieve the aim of making the human 

confident and easily interact with themselves by slowly getting close to the human 

subjects as stated in (Suzuki et al., 1998) while mimicking one of their previous 

actions observed (Kerstin Dautenhahn, 1999). That way, the human subject can carry 

out more external-focused attention, be curious about the robot and ready to start an 

interaction (Sedikides, 1992). For the purpose, the way point is generated around the 

current intention regardless of how far we are from the desired intention. 

Additionally, the found way point is in the dense areas of intentions observed in the 
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feature space (intentions that are previously realized by the experimenters), which 

are familiar to the person. Basically, we can state that the ultimate goal in suspicious 

mode is to destabilize the obstinance and gain the curiosity of the person switching 

the mood of the person and the execution mode to confident mode. Each way point 

found by the elastic network is executed by moves of an adequate robot (2-steps or 

chair robot) in adequate directions stated by the trajectory in the way point.  

These requirements of planning way points as transient intentions through the desired 

intention in the intention feature space are realized by adapting the elastic networks 

of Durbin and Willshaw introduced in 1987 (Richard Durbin & Willshaw, 1987). In 

this section, a detailed literature review on elastic networks, advantages of using 

elastic networks, adaptation of our intention feature space to elastic network and 

utilization of it are given with an example explaining our methodology. 

3.4.1. Literature Review on Elastic Networks 

3.4.1.1. Elastic Networks in Macromolecules 

Elastic networks were first studied as Gaussian Network Models (GNM) or Normal 

Model Analysis to understand and characterize the mechanical aspects and long-term 

dynamics of biological macromolecules simulate chemical interactions between 

atoms by Tirion in 1996 (Tirion, 1996) one year later in amino-acid level by Bahar et 

al. (Bahar & Rader, 2005) and Haliloglu et al. (Haliloglu, Bahar, & Erman, 1997). 

The method proceeds from complex semi-empirical potentials characterizing the 

covalent and non-covalent interactions between atoms. In this study, atom 

interactions were represented as a mass and spring elastic network.  Figure 3.15(a) 

explains the elastic networks structure in GNM where every node (atom) is 

connected to its spatial neighbors by uniform springs (interactions).  
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Figure 3.15 (a) Elastic Network model with schematic representation. Every node is 
connected to its spatial neighbors by uniform springs.  being a distance vector 
between nodes i and j (Chennubhotla, Rader, Yang, & Bahar, 2005); (b) Solid circles 
being nuclei, electronic charge distributions overlap as atoms approach representing 
repulsive interaction (Kittel & McEuen, 1996); (c) Representation of the atoms as 
oscillators in Van der Waals-London interaction modeling (Kittel & McEuen, 1996). 

 
 
 

In chemistry to investigate the crystal structures, inert gases are mainly used since 

they form the simplest crystals. There are two major interactions between inert gases 

constructing these crystal structures or bindings. These are repulsive interaction and 

Van der Waals-London interaction. The former interaction is explained as such; 

when the atoms brought together, their charge distributions gradually overlap, results 

in changing the electrostatic energy of the system. At sufficiently close separations 

the overlap energy will be repulsive due to the fact that two electrons cannot have all 

their quantum numbers equal as demonstrated in Figure 3.15(b). The latter one 

describes the interaction when the separation between atoms is large. Referring to the 

Figure 3.15(c), at a separation R large in comparison with the radii of the atoms, the 

interaction due to the charge distribution on the atoms (covalent or non-covalent) 

will be zero. However, this time their nucleuses will carry an attractive force between 

them. Nucleuses induce dipole moments in each other, and the induced moments 

cause an attractive interaction between the atoms. An analogy can be formed as such; 
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if we consider the two atoms as two identical linear harmonic oscillators as in the 

figure, it is clear that when their opposite charges are aligned horizontally, there will 

be a coulomb interaction energy of these two oscillators (Kittel & McEuen, 1996). 

Energy equations happened due to repulsive and Van-der Waals attractive 

interactions are given respectively as follows: 

                                            (3.8) 

In 1924, these two energy equations were first introduced together as a mathematical 

model that approximates the interaction between a pair of neutral atoms or molecules 

by Jones (Jones, 1924). The formulation called Lennard-Jones potential is given as: 

In the equation, ε is the depth of the potential well, and  is the finite distance at 

which inter-particle potential is zero (a property that changes from the type of 

atoms). R is the distance between two atoms. In the later studies, since the first term 

has no theoretical justification as the second one, repulsive energy equation was 

approximated by an exponential function given as: 

where,  is used to indicate the maximum range of the repulsive interaction takes 

place. In Figure 3.16, the total potential energy between two atoms and its change 

according to the distance between them can be seen clearly. The minimum occurs at 

the state of equilibrium. After , as the atoms keeps getting close to each other, the 

curve will be very steeply increasing meaning the repulsive force, the first term, will 

be very high. Finally, the resultant force applied on an atom can be calculated 

as .  
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Figure 3.16 The characteristics of the Lennard-Jones potential which also describes 
the interaction between the nodes in an elastic network model (Kittel & McEuen, 
1996). 

 
 
 

3.4.1.2. Elastic Network in Control Applications 

As detailed, elastic network methodology has two kinds of interactions, each takes 

effect at different ranges. In addition, these interactions are defined such that, 

resulting forces are integrable. That means, there will be an energy minimization 

model in which system will try to find the point where the derivative of energy 

function will be zero, or the forces will added up to zero where the system will be at 

equilibrium. Moreover, these energy minimization models seek for the energy 

equation to be optimum. All of these specialties make the Elastic Networks a 

preferable method which can be used in the control world optimization problems. 

Although there are not many applications using this method in optimization systems, 

Durbin and Willshaw in 1987 approached the “Travelling Salesman Problem (TSP)” 

using the elastic nets, which was a pioneer work in the control area being our main 

inspiration sources (Richard Durbin & Willshaw, 1987). Later on in 1989, Durbin 

analyzed the formulation and the methodology they created by doing sensitivity 

analysis on each parameter introduced in the energy function of their elastic network 



65 

(Richard Durbin, Szeliski, & Yuille, 1989). In these studies, an elastic network 

model used for the establishment of topographically ordered projections in the brain 

(Wurtz & Albano, 1980) was utilized in TSP, a classical combinatorial optimization 

problem. The problem can be defined as, given the positions of N cities, they may be 

lie in a plane, find the shortest closed tour in which each city is visited once. Durbin 

and Willshaw created an algorithm in which the procedure was the successive 

recalculation of the positions of dynamic points (moving atoms) describing a closed 

contour encircling cities (steady atoms) in the plane. This contour being initially a 

small circle is gradually elongated non-uniformly to fit elastically around cities by 

tracking the minimization of the energy equation. In Figure 3.17, this circle, called as 

rubber band, can be seen clearly from (a) to (f) while it elongates and captures all of 

the cities. The two forces of this energy equation are defined as a force attracting 

dynamic points towards cities (steady points) while the second one is between 

dynamic points holding them together. More to speak on these forces, the former 

force aims to find all of the cities whereas the latter one is for the shortest path 

requirement, keeping the neighboring dynamic points together to minimize the total 

path length. Initially, all cities have nearly equal influence on each dynamic point. As 

the iterations proceed and the rubber band elongates, the influence of the city on a 

dynamic point closest to it gets much bigger than those of other cities while the 

attraction between the dynamic nodes weakens. This change of specificity guides 

each dynamic node to the closest city while the first force still favors the shortest 

contour perimeter. The gradual increase of specificity is obtained by the gradual 

decrease both in the distance where the second force becomes dominant and on the 

effect of the first force. This change in the balance of the forces is controlled by a 

length parameter called “K” that eventually tends towards zero. This reduction is 

equivalent to lowering the temperature in optimal simulated annealing method 

(Kirkpatrick, Jr, & Vecchi, 1983). 
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Figure 3.17 An exemplary progress of the elastic network mathematical model 
solving a TSP problem. Initially a rubber band circle is defined at the mass center of 
the cities. With the forces applied on the dynamic points forming the rubber band, 
the band elongates through the cities starting from part (a) to covering all of the cities 
in part (f). 

 
 
 

Simulated annealing analogy with thermodynamics simulates cooling the metals. 

Temperature is lowered slowly allowing thermal equilibrium to be attained at each 

stage. At high temperatures, thermal mobility is high but as T goes down it is lost 

and molecules tend to line themselves up in a rigid structure. This rigid state is a state 

of minimum energy. As long as T is decreased slowly, the nature is almost certain to 

find it itself. Durbin and Willshaw introduced the parameter K as an analogy to the 

parameter T of the simulated annealing method(Richard Durbin & Willshaw, 1987). 

They keep K parameter or temperature high in the beginning, resulting in the energy 

landscape being smooth and showing only coarse features (see Figure 3.18). By this 

way, the system moves into a globally low energy region bypassing local minima. 

When the gain is increased, it reveals all the details in the energy surface allowing to 

find a specific local minimum. To conclude, since this methodology offers a good 

solution to combinatorial optimization problems, it is commonly used in the 

literature (Geng, Chen, Yang, Shi, & Zhao, 2011; Nahar, Sahni, & Shragowitz, 

1986). 
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Figure 3.18 Energy landscapes for high and low K parameters. When K is high, the 
surface is smooth and the system can move toward globally better solutions whereas 
lowering K reveals all the details along with the local minima in the energy surface 
(Shams, 1996). 

 
 
 

After explaining the K parameter effect, we will give details on the formulations of 

the mathematical model that Durbin and Willshaw used because in our applications, 

we modified these formulations as for the solution of our problem. Their rule for the 

change in the coordinates of dynamic nodes (force function in conventional elastic 

nets) was given as: 

                   (3.11) 

where α and β are for the relative strengths of the force of cities and the force 

between the dynamic nodes.  is the city location and  is the location of a dynamic 

node. Coefficient  gives the influence of city i on the dynamic point j, which can 

be stated as the strength of the connection between them and it is formulated as: 

                            (3.12) 

This coefficient is a normalization of the force of the cities, so that the total influence 

of each city is equal. This force equation is integrable; therefore, an energy equation 

of the system can be introduced as: 

                 (3.13) 
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It is clear that, the first term of the energy equation is the repulsive interaction 

defined in Eq. 3.10 with a minus sign making it act like an attractive force. The 

second term is surely an attractive interaction. Since the repulsive effect among the 

molecules occurs when the atoms are very close to each other (ρ in Eq 3.10), the 

authors wisely used the repulsive formula to define the interaction between the cities 

and the points. The K parameter states the maximum distance between a city and a 

point to initiate a force (much stronger) between them. 

Another application of elastic networks other than TSP was introduced by Shams in 

1996 as a solution for the problem of localizing multiple targets(Shams, 1996). In 

this study, in order to solve the problem of localizing the position of multiple targets 

as they travel inside a surveillance area based on the bearing angle of info received 

by an array of S sensors, the author suggested a mathematical model similar to the 

one Durbin and Willshaw introduced. It is again a combinatorial optimization 

problem where the total amount of target is not known and there might be ghost 

formations according to the false sensor readings or multi-targets introduced at the 

same time (one sensor received signal from one of the target, while the other sensor 

gets from another target at the same time. If these signals intersect, a ghost formation 

occurs). The optimality occurs when all the targets are correctly labeled by selecting 

intersection points of different types (different intersection combinations from 

different sensors) which form a small cluster in space. In the system, nodes are the 

intersection points and a bistate neuron is introduced if an intersection point is 

associated with a certain target or not. Since there are lots of targets, there are also 

different groups of dynamic points (in this problem three point in each group formed 

a rubber triangle as given in Figure 3.19) associated with each target. These 

triangular rubber bands are attracted by the intersection points. As one triangle gets 

close to an intersection, the specificity of this point on this triangle increases by using 

temperature constant in simulated annealing method, resulting in the encircling of it. 

It is clear that the idea and the mathematical model is the same as of Durbin and 

Willshaw while the application scenario differs. 
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Figure 3.19 Three sensors and three targets are shown where targets are depicted by 
large asterisks and intersection points between pairs of bearing angles are depicted 
by textured circles with each texture represent different type of intersection. Three 
triangular elastic modules are introduced where each vertex associated with only one 
of the intersection types. The arrows show the direction of the dynamic elastic 
module nodes. 

 
 
 

In the control field, the usage of elastic network is not very common. Although the 

method can be used in many different combinatorial optimization problems, in the 

literature, the only different examples are given above (even Shams (1996) uses the 

same formulation as the first approach of Durbin and Willshaw (1987)). The other 

studies as in (Boeres, de Carvalho, & Barbosa, 1992; Geng et al., 2011; Vakhutinsky 

& Golden, 1994) cover mainly different sensitivity analysis of the formulation and its 

parameters of the elastic network method again in the travelling salesman problem of 

Durbin and Willshaw (1987). Our approach on the elastic network is the same as the 

one of these researches. We have, as well, utilized this common model on our 

scenario with different structures of dynamic nodes, steady nodes and rubber line 

instead of rubber band, details of which are given in the proceeding sections. 
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3.4.2. Advantages of Elastic Networks 

Significant advantages encouraged us to adapt this method to our application. Since 

neurons are sparsely connected in elastic nets, so that each neuron is connected to 

only two neighboring neurons, this method can scale well to overall increasing 

number of neurons. In addition, the K parameter makes the system move towards 

global minimum of energy (equilibrium point); therefore, the system avoids getting 

trapped by possible local minima. Indeed, since the system progress is biased on 

gradual increase of specificity, the global minimum of the energy function is 

guaranteed to be the optimum solution. These advantages are demonstrated on TSP 

(Richard Durbin & Willshaw, 1987) and a comparative analysis between elastic 

networks and Hopfield’s neural network (Hopfield & Tank, 1985) is conducted (Roy, 

Sarma, Soumyadip, & Maity, 2013). The performance of elastic net is remarkable 

compared to Hopfield net which generated shortest contour perimeters 19% longer 

than those of elastic net. In addition, Shams in (Shams, 1996) tried to merge the 

energy minimization ability of Hopfield net and simulated annealing method on a 

combinatorial optimization problem as in elastic nets of Durbin (Richard Durbin & 

Willshaw, 1987); however, the system falls short of finding good solutions even with 

relatively small number of neurons. 

In addition, our problem of intention reshaping is a framework on a dynamic map 

where there may be nodes newly introduced (newly detected intentions) on the map 

during the system works. Therefore, a classical search algorithm method as A* 

algorithm by Hart, Nilsson and Raphael (Hart, Nilsson, & Raphael, 1968), which 

takes the node map as a tree and search for the optimum node according to a cost 

function, will not be suitable for our purpose. Since all of the nodes are connected to 

each other as parents and their children, the tree structure will not be updated. As a 

result, an introduction of a new node to the system will not be recognized by the 

algorithm. 

In our problem, since we are creating a trajectory of intentions consisting of way 

points both, connected to other way points (candidate intermediate intentions), as 
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well as the current and previous intentions in a space with large number of training 

intentions (neurons or nodes), elastic neural network provides a suitable framework 

to our applications. The details of our approach on elastic networks are given in the 

proceeding sections. 

3.4.3. Statement of Purpose 

As discussed in the previous sections, we are generating way points consisting of 

trajectories for the robots to follow. This generation is handled in two different 

modes of execution: confident and suspicious. Each mode requires different path 

planning as; the former one aims to generate a way point consisting of a trajectory 

directed towards the desired goal whereas the way point found in the latter one 

should be close to the current intention of the human subject in the dense area of 

observed intentions (familiar places to the person). From now on, we will analyze 

these requirements of two modes with the perspective of elastic networks.  

Our elastic network tries to generate a way point in the previously constructed 

intention search space in Section 3.1.3. Before the system starts, a desired intention 

trajectory to be reshaped into is selected from this map of trajectories (called as 

nodes in elastic nets). In iterations, estimated current intention and previous intention 

of the person are labeled on the map. According to the execution mode, decided upon 

the estimated body-mood of the human subject, elastic network algorithm is started 

to generate a way point (a trajectory node) for the robot to follow. In the confident 

mode, found way point should be close to the desired intention which is a trivial 

problem. On the other hand, in suspicious mode, our aim is to generate a way point in 

the closest and most frequently sampled areas of the intention nodes around the 

currently detected intention node of the human which results in the main difficulty to 

be solved in our project. This area of most frequently sampled intention nodes 

consists of previously observed intentions from the training experiments. In other 

words, we are trying to guide the person through these familiar and close areas to the 

current location of the person to be able gain curiosity and trust. 
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Before we explain the created map, our approach and the formulations for the path 

planning with elastic networks, we should link our intention topology to elastic 

network search map and create an elastic network model. For this purpose, the next 

section explains necessary adaptations on the mechanisms discussed in the intention 

estimation in Section 3.1. 

3.4.4. Adaptation of Intention Feature Space to the Elastic Network Model 

In order to link our intention topology with elastic networks, we need to detail the 

adaptation of our intention feature space to elastic network search space. As it is 

detailed in the literature search of elastic nets (Section 3.4.1), elastic network model 

is applicable on topographical maps and simulates physically realizable forces 

causing displacements on nodes in 2-D maps. Therefore, our search map (intention 

feature space) should consist of intention feature trajectories as 2-D nodes. In our 

approach, we introduce trajectories used in training intentions as nodes creating the 

search space of elastic nets. To have our dynamic node successfully converging to a 

steady node (feature vectors) under the effects of these forces of elastic nets, 

resulting in the foundation of a way trajectory point, we needed to reduce our multi-

dimensional learned feature trajectories into 2-D by averaging with a weight vector. 

For the purpose, each feature descriptors in size  is multiplied by constructed 

weight vector in size , with N being the frame length a human subject is 

observed. It is better to recall that sequence length of trajectories, N, equals to 56 

sequences (7seconds x 8fps for real-time). Resulting matrix after multiplication is in 

size and depicted as a 2-D node in our Elastic network system. We should 

clarify that each reduced node also keeps its original trajectory information because 

the chosen way point among them will be the trajectory to be followed by the robots.  
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Figure 3.20 Weight vector with horizontal axis being video frame number and 
vertical axis is for weight amount. Averaging a trajectory of 56 sequences of 
locations with this weight vector over weights locations of the trajectory at the 
starting and finishing frames. 

 
 
 

The key point on weight vector is, it puts bigger weights on starting and finishing 

frames of the trajectories (see Figure 3.20). Since our main aim was to plan 

trajectories for the robots starting around the current intention to gain curiosity and 

pointing out the desired one especially in suspicious mode, starting and finishing 

locations of the trajectories are crucial for the system. In addition, finishing locations 

of the trajectories are pointing out the places where its labeled intention takes place. 

Therefore, we emphasize the locations at the starting and finishing frames in the 

trajectories. In other words, averaging a trajectory of 56 sequences of locations with 

the weight vector given in Figure 3.20 increases the emphasis on the locations of the 

trajectory at the starting and finishing frames. An exemplary formation is illustrated 

in Figure 3.21 where a trajectory with 56 sequences of location leading to an 

intention of ‘drinking coffee’ given in part (a) is reduced to a two dimensional node 

circulated  in the whole reduced map of 100 intention trajectories in part (b). In the 

figure, it is clear that exemplary intention trajectory was close to the coffee table 

because of over weighted finishing locations and not far away from starting locations 
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due to considerably big weights in starting locations. Finally, a deduction can be 

made from Figure 3.21(b) that, nodes close to the objects such as; coffee, table or 

library belong to the trajectories labeled with related intentions. 

 
 
 

 

Figure 3.21 (a) An exemplary trajectory leading to the intention of ‘drinking coffee’ 
with starting and finishing locations are mentioned; (b) All of 100 trajectories after 
multiplied by the weight vector in Figure 3.20 are demonstrated as elastic network 
nodes in 2-D. Circulated node belongs to the trajectory in part (a). It is clear that this 
node is close to the end locations of the trajectory not far away from starting. 

 
 
 



75 

3.4.5. Our Approach on Elastic Networks 

To better understand the method of planning way points and elastic network model 

created with nodes and forces, we are going to explain the formulations on 

exemplary drawings given in Figure 3.22. Starting with the introduction of nodes, 

current intention, previous intention and desired intention are the special nodes of the 

model whereas the other nodes are the trained set of intention trajectories, all of 

which are illustrated in Figure 3.22(a). Current intention is the estimated trajectory 

found in the Section 3.2.2.2 and previous intention is the trajectory observed starting 

from the first move of the robot and lasts 7seconds. We should note that, 7 seconds 

or 56 sequences with 8fps is crucial for the length of this trajectory because before 

the trajectory is introduced in the elastic networks search map, it is going to be 

averaged with the weight vector in Figure 3.20 having the size of [56x1]. Right after 

7seconds passed, current intention and trajectory estimation starts again. Current 

trajectory is selected from the pool of trained intention trajectories; however, 

previous trajectory is the actual trajectory of the person followed between two 

successive current trajectory estimations. Therefore, previous trajectory is always a 

newly added node to the map at iterations. Finally, desired intention in the figure is 

the final intention aimed for the human to realize after reshaping actions. This 

intention is chosen by the user and it is a point directly showing the location of the 

desired intention decided. For example, if the desired intention is selected to be 

‘drinking coffee’, desired intention node becomes the location of the coffee table. 

In our mathematical model approach, we have a training set of intention trajectories 

in feature space is a set of n nodes  and one dynamic point y. At 

iterations, the current and the previous intention of the person and the desired 

intention are eliminated from the set of nodes X, and labeled separately as ,   

and  according to iteration k. At the beginning of the algorithm, the dynamic 

point is introduced as the middle point on a rubber line connecting nodes  

and  as shown in Figure 3.22(a). Then, this rubber 1ine is stretched toward the 

next way point to be found by minimizing the energy function defined as: 
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      (3.14) 

where K is the length parameter that eventually tends to zero as in temperature 

constant in simulated annealing method (Richard Durbin & Willshaw, 1987; Geng et 

al., 2011; Kirkpatrick et al., 1983). The terms in Eq.(3.14) can be defined as such: the 

first one is an attraction of the dynamic point on the rubber line to the nodes in set X 

and to (with  to be stated later) while the second one is an attraction 

of the dynamic point to the current and previous nodes favoring the next way point to 

be found around the current intention. Exponential term in Eq.(3.14) states the 

influence of each node in set X, and K parameter in that term measures the maximum 

distance from a node to the dynamic node in order to create a strong attraction 

between them. 

The attraction of the dynamic node to the final one is calculated separately in the 

additive term  as: 

                                (3.15) 

where  is first initialized as: 

                                       (3.16) 

but decreases in each iteration according to a predefined rate, as K in Eq.(3.14). Here 

 is the coordinates of the desired intention as mentioned previously. Initially, 

the exponential term in Eq.(3.15) acts as a constant and bigger than that of other ’s 

in Eq.(3.14); however, as  decreases stepwise in iterations, this term 

decreases. This separate calculation enables initially the orientation of the dynamic 

node to be directed towards the desired goal. However, depending on the execution 

mode detected, if the person is suspicious, this effect is gradually but sharply 

decreased due to a bigger reduction ratio for  than that of K when tending to 

zero, resulting in the influence of other nodes taking over. On the other hand, if we 
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are in confident mode, this reduction ratio is set the same as of K, satisfying the 

biggest attraction is always towards the desired node and resulting in the dynamic 

node to approach or even end up on the desired one. 

Since all other nodes are static except the dynamic one, the energy equation in 

Eq.(3.14) becomes the work done by the dynamic point. It is known that, negative 

work gives the kinetic energy in the mass and spring systems; therefore, minus the 

derivative of Eq.(3.14) multiplied by K (  is multiplied by ), which is 

, gives us the position change in the dynamic point at iterations as: 

 

      (3.17) 

where the multiplication of K is for attractions that gradually vanish resulting in the 

stable convergence of dynamic node. 

Each static node is applying a force; therefore, the superposition of these forces gives 

a strong attraction of the dynamic point towards dense areas (where a large number 

of nodes exist) directed to the desired node as illustrated in Figure 3.22(b) with bold 

red arrows. By looking at the figure it should be noted that, since our main goal is to 

direct the dynamic node towards the desired for either of the execution modes, only 

the attractive forces of static nodes on the dynamic one in the direction of the desired 

one are taken into account ignoring the others. Moreover, the attraction of the 

dynamic point by nodes  and  (yellow arrows in Figure 3.22(b)) favors the 

closest dense areas around the current intention. At the beginning of the process, 

these two forces of static nodes and current and previous nodes at opposite directions 

make the dynamic point oscillate between the current intention and the dense area of 

the nodes. In the limit where K tends to zero, the second attraction gradually loses its 

effect while the first exponential term in Eq.(3.17) has an increased specificity by y 

tending towards the closest node at these dense areas, thus lowering  for low 
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K. At a critical iteration, which is the iteration that we contributed, the second force 

term, holding the dynamic point near the current node, becomes negligibly small 

allowing the dynamic node to end up on the closest node. Characteristics of the 

oscillations until the critical iteration are demonstrated and discussed in the results 

Section 4.2.1. 

In conclusion, any change according to Eq.(3.17) in y, which is the dynamic point, 

results in a reduction of energy reaching the global minimum. In the limit where K 

tends to zero, in order to keep energy bounded on the global minimum, there must be 

as well a term  tends to zero. Assuming that we are in suspicious mode, as 

illustrated in Figure 3.22(c), that node will be the next chosen way point of our 

concern which guarantees to be the closest node in the densest region of intentions 

(the region intentionally more familiar to the person) around the current one directed 

towards the desired node and called intermediate next intention in the intention 

trajectory. As for the confident mode, next chosen node is the desired final intention 

directly as demonstrated in Figure 3.22(d). Finally, found way node containing is 

transferred to our robots to be followed which is discussed in the next section being 

our final step of the methodology. More examples on the generation of way points 

for both modes are given in Section 4.2.3 with simulations and in 4.1.2 with real-

time experimental applications. 
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Figure 3.22 (a) Initialization of the path planning is shown. x and y are pixel 
coordinates. All nodes are intention trajectories reduced in dimension with weight 
vector in Figure 3.20; (b) Attraction demonstration. The bold red arrows are the 
attractive forces exerted by the nodes (which are in set X of Eq. (4)) together with 

on the dynamic node. The yellow arrows show the attraction applied by 
previous and the current node; (c) Way point is found in the dense area in suspicious 
mode after that oscillations induced by the two forces in Eq.(3.17) vanish; (d) In 
confident mode, next generated way point is the desired intention node directly.  

 
 
 

3.5. Autonomous Robot Moves 

Found way point is actually a learned trajectory in the feature space of intention 

trajectories. This trajectory has 56 sequences each of which contains a pixel 
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coordinate on the image frame (recall that every node in the search map are learned 

trajectories projected to 2-D by averaging in Section 3.4.4). This information is 

transferred to our robots and they follow each location consecutively, ending up 

realizing the way trajectory found. An exemplary way point drawn on the image is 

demonstrated in Figure 3.23 with a green path. As soon as it is found, according to 

the current location of the robot, directive commands are transmitted via radio 

signals to make the robot move to the start location of the path and follow the rest. 

Here keeping final location constant (the last sequence in the way trajectory being 

56th location), starting point of the trajectory is taken as the closest point on the 

trajectory to the person. The reason is that, since it is suspicious mode (as stated on 

the top-right corner of the figure); our purpose is to gain the curiosity of the person 

by getting close to him/her. In addition, the rest of the trajectory points, far away 

from the human subject would take the attention of the person to the places out of 

concern. In this example, desired intention is ‘getting a book from the library’ and 

the robot was trying to put the system into confident mode. Therefore, having 2-steps 

robot to go to the initial locations (near coffee table in the figure) drives the attention 

of the person to these places. 
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Figure 3.23 Green trajectory shows the way point found by elastic networks. This is 
the whole trajectory belongs to the way point found with elastic nets. However, start 
and finish locations that robot will follow are mentioned on the figure. Keeping the 
finish location constant (the last one in the trajectory sequence), starting point is 
taken as the closest point to the person for the purpose of gaining the curiosity. The 
rest of the trajectory is useless for our purpose. 

 
 
 

Only one robot will realize the found way trajectory at a time. Therefore, in iterations 

we need to choose which robot to move. First of all, it is clear that our robots are 

contextual, meaning that they are one of the objects belong to the room context. Each 

robot can be used by the human subjects according to their intentions. As a result, we 

are using contextually the most appropriate robot according to the desired intention 

decided beforehand. For example, if we desired the intention of ‘sitting on the table’, 

from the beginning of the project until we claim success, the chair robot realizes all 

of the trajectories found by the elastic networks, gradually leading the person to the 

table and make him sit on the chair. For ‘drinking coffee’ intention, we also use the 

chair robot because it is more appropriate for the purpose than the 2-steps robot. May 

be the person wants to sit while preparing the coffee. If desired goal is chosen to be 

the library, it is obvious that the 2-steps robot takes the job and follows the path. As 

for the last remaining intention, ‘discovering the environment’, which is the easiest 
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intention to be reshaped into. This time, the closest robot to the starting point of the 

path realizes this trajectory. 

As for the last two rules on robot moves, we should mention that, the next intention 

recognition (and trajectory recognition if the desired intention is not achieved, see 

Figure 3.1) is conducted after robots finish their movements. In addition, if the 

person interacts with the robot, the algorithm makes sure that this robot does not 

move at all until the interaction is ended. What we mean by interaction is a full 

interaction involving the person sits on the chair robot or climbs on the stairs robot 

(2-steps). The system understands this interaction if detected two centroids belonging 

to the person and the robot get nearly on top of each other. This rule is to ensure the 

safety of our experimenters 
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CHAPTER 4 

4. RESULTS AND DISCUSSIONS 

In this chapter, we firstly discuss results obtained from real-time experiments 

demonstrating the performance of the whole close loop intention reshaping system. 

We then conduct a detailed sensitivity of our system generating intention transients 

depending upon parameter changes. 

4.1. Intention Reshaping Experiments in Real-Time Scenarios 

In this section, we aimed to create robot actions analogous to a hungry pet desiring 

food from its owner. Experiments showed that our robots first try to gain the 

curiosity of the person by continuously getting closer to him/her, until the person’s 

attention is caught and he confidently approaches the robot. Then robots reshape his 

current intention into the desired intention while continuously triggering the attention 

of the person by their moves. Any attention lost results again in trying to catch the 

attention of the person by the robot. Resultant performances of the system with 

snapshots from the experiments are discussed for several scenarios after giving brief 

information on real-time experiments. 

4.1.1. Information on Real-Time Experiments and Recorded Videos 

The same experimental room mentioned in Section 3.1.1 was also used in these 

experiments. Our aim was to test the close loop system we created on human subjects 

in real-time. Below are our milestones each measured and tested in these 

experiments: 
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� Estimating current intention of the person at all iterations, and comparing it 

with the desired one to claim success after a successful reshaping action 

� Estimating the current trajectory of the person 

� Detection of the body-mood of the person 

� Planning a trajectory according (generating a transient intention) to current 

and previous trajectories, current body-mood of the person and the desired 

intention. 

In order to check the consistency of the way point (transient intention) whether it is 

related with the current intention and body-mood of the person, we printed out all of 

these mentioned steps above on the recorded video during real-time experiments. As 

seen in the snapshots given in Figure 4.2, each corner has each up-to-date 

information being current estimation, execution mode (body-mood) and success 

status of the system. In addition, during the experiments, we popped up resultant 

elastic network map at iterations with current, previous, desired and generated way 

point are highlighted similar to the simulations given in Section 4.2.  

For the scenario, we assigned some rules suiting the conceptuality of the project and 

exhibiting the performance of our system the best. These rules and their reasons are 

given below: 

� Our experimenters shouldn’t be informed about the project or context of the 

room beforehand. The reason is that, we need the experimenters initially to be 

suspicious about the room and the robots, so that we could make them 

confident, which is our first purpose in the project. In other words, we 

expected our human subjects to exhibit natural emotions so that our concept 

of reshaping intention reflects more realistic results. 

� We should decide a desired intention among four possible intentions in the 

room, ‘discovering the environment’, ‘drinking coffee’, ‘taking a book from 

library’ and ‘sitting on the table’. Nodes of elastic nets are the learned 

intention features trained in Section 3.1.3 and adapted to elastic nets in 3.4.4. 
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Among 100 trained intention features only the ones belonging to the desired 

intention and the intention of ‘discovering the environment’ are included in 

the elastic search map (total amount of 50 intention trajectories). Nodes of 

‘discovering’ intention are taken into account in order to break the obstinance 

of the person making him/her have more externally-focused attention. On the 

other hand, nodes of the desired one are included for reshaping. The 

generation of remaining intention nodes belonging to the other two intentions 

may lead the robot guiding the person to wrong directions, therefore; they are 

excluded. 

� All of the experimenters must stay within the black lines surrounding the 

room, which describes the ROI of the camera. 

� Experimenters were informed not to move the coffee table and the desk 

suited in the room. Since they are detected as background information, any 

displacement on their places could result in the detection of them as moving 

objects (ghost formation) as detailed in Section 3.1.2.  

Real-time performance of the main PC used in the experiments allowed us a frame 

rate of 8fps at maximum. However, this frame rate was enough for us to observe our 

challenges, system responses to these difficulties and enough to print the outcomes of 

the algorithms during video processing. 

The timeline of our implementation for real-time experiments is given in the flow of 

a chart in Figure 4.1. A software interrupt was developed estimating the current 

intention of the person by using the last 24 sequences of location information at each 

frame. After the estimation, a comparison between the current and the desired 

intention is carried out. If a mismatch is detected, the interrupt returns a null value 

and the processing of that frame continues. However, if these intentions are equal to 

each other, the system claims ‘Success’ returning to ‘Start’ state, skipping any other 

algorithms by restarting the frame counter. After ‘Success’, the system is not 

terminated because we wanted to show how stubborn our robots are on their 

missions: even if the person realizes the desired intention and then acts with another 

intention, the suitable robot again tries to reshape the current new intention back into 
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the desired one. As the mismatch between the current and the desired intention 

continues, the algorithm starts with collecting location information from the human 

subject for 7 seconds. After the first 56 sequences are recorded and the trajectory 

formed is labeled as previous intention, the sequence counter is reset to re-start 

collecting data. This time, after 24 sequences of tracking the human subject, formed 

trajectory is saved and the current trajectory estimation is realized using these 24 

sequences. Then, our shift comparator for current trajectory prediction starts 

working, and the best match at the 30th sequence is labeled as current trajectory (see 

Section 3.2.2.2). In the same iteration, body-mood detection of the human subject 

decides upon the execution mode. It was detailed in Section 3.3 that, execution mode 

is determined by how much the person gets close to the robot. Finally, elastic 

network algorithm takes necessary inputs shown in the figure and generates a way 

point (transient intention). Right after the generation of the transients, that takes 

approximately around 2 seconds, our system generates the solved elastic map on the 

PC screen. After a way point is found, the most suitable robot, which we call target 

robot, (see Section 3.5) starts realizing this trajectory, re-starting the algorithms. 
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4.1.2. Results and Discussions 

In Figure 4.2, we gave sequential snapshots belonging to an experiment with a 

stubborn and initially highly suspicious person are provided in order to picture our 

system performance in both execution modes. In addition, we demonstrate in the 

same figure our results on intention and trajectory estimations, body-mood detection 

(execution mode) and the generation of transient intentions (way points) according to 

these execution modes. In each snapshot, the top-left corner depicts the estimated 

current intention of the person printed with their abbreviations given in Table 3.1 , 

whereas the top-right corner indicates the detected body-mood. Moreover, red 

trajectory drawn on the snapshots indicates the currently estimated trajectory that we 

expect human subject to follow, while the yellow trajectory is the previously 

observed trajectory that human subject actually did followed and the green trajectory 

is the found way point by our elastic network model. If a way point is newly 

generated in one of the figures, we give its elastic map at the right-hand side of the 

related snapshot. Finally, we need to mention that in this example all of the way 

points found were realized by the chair robot since the desired intention being ‘sitting 

on the table’ is related to this robot (see Section 3.5). Necessary explanations about 

the snapshots taken from certain phases of the experiment are given in the legend of 

the figure. 

Starting with Figure 4.2(a), the system detected that the current intention of the 

person is ‘coffee (drinking coffee)’ which can be seen from the snapshot that the 

person is actually preparing a coffee. Since he wasn’t interested in the robot at all, 

the system detected body-mood of the person to be suspicious and a way point was 

generated accordingly, which is demonstrated on the elastic map given in the same 

part. The starting location of the found trajectory’s being near the person indicates 

that the system aimed to break the obstinance of him on coffee. From the aspect of 

elastic network model, since the nodes on the map are the trajectories weighted 

average emphasizing ending and beginning locations (ending points more weighted), 

a node between two intentions is likely to be a trajectory starting from one through 
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another (see details in Section 3.4.4). Since we excluded intention nodes labeled with 

intentions other than the desired one and ‘discovering’, found way point between the 

location of coffee and the desired one is a trajectory starting from the coffee table 

towards the desk. In part (a), the snapshot was taken just before the way point 

(trajectory) found was realized by the chair robot. In the next frame, the robot starts 

to move and a new loop was initiated (see Figure 4.1). In Figure 4.2(b), we jumped 

to the end of the loop where a new way trajectory was found. Blue trajectory in the 

snapshot illustrates the approximate path robot had followed between the frames in 

part (a) and part (b). It is clear that, the person grabbed his cup of coffee and stepped 

away from the robot suspiciously, where this mood is correctly detected again by the 

system shown on the top-right corner of this snapshot. In addition, the current 

intention of the person estimated correctly as ‘discovering the environment’. Since 

the robot could not gain the curiosity of the person still, a new way point found 

shown by green trajectory close to the current trajectory of the person predicted (red 

trajectory) regardless of how far it was to the desired intention location. 

In Figure 4.2(c), we aimed to demonstrate our current trajectory estimation 

performance. This frame was taken right after the robot started to move to realize the 

newly found trajectory in part (b). By comparing two snapshots in part (b) and part 

(c), the person actually followed our estimated trajectory with red color in part (b). 

Predicting the current trajectory correct increases the chance of the robot to approach 

the person correctly because each way point in suspicious mode is found close to the 

predicted current trajectories. Indeed, a successful approach to the person was 

realized as given in Figure 4.2(d). By comparing the locations of the human subject 

in part (c) and part (d), we can see that the person stepped back anxiously due to 

approaching robot towards him. This is actually the first interaction of the robot and 

the person in this experiment and again he was not comfortable with the robot which 

was also successfully detected by the system (printed suspicious mode on top-left 

corner). 

Since the person kept his distance between him and the robot, again a new way point 

found in Figure 4.2(e) right after a current trajectory predicted. According to the 
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generated way point, the aim is still gaining the curiosity as in Figure 4.2(a) with the 

starting point being close to the person and finishing point showing the desired 

location. The next part being Figure 4.2(f) is given in order to reveal another correct 

prediction of the current trajectory which is drawn with red color in part (e). Frame 

in part (f) was taken while the algorithm still collects location data to construct 

previous trajectory node while the robot had already started to move (between 0-56 

frames in Figure 4.1). Since current intention estimation is being realized at each 

frame (at all iterations), the system found out that current intention changed to 

‘Library’; however, a new trajectory prediction was not handled yet in part (f). In the 

snapshot at the left-hand side of Figure 4.2(g), a new current trajectory was predicted 

according to the current intention being ‘Library’. At the same time, the robot was 

still realizing the previous trajectory found in part (e); however, the person did not 

care about the robot again. Therefore, a new way point was found in suspicious 

mode. Since our experimenter was very stubborn on his intentions, two more trials 

passed trying to climb the 2-steps robot while the chair was still trying for his 

attention.  

Finally, in the snapshot given at the right-hand side of part (g), chair robot followed a 

trajectory close to the person. Realizing this trajectory resulted in the person closely 

examining the robot, this time not anxiously. As seen at the top-right corner of this 

snapshot, our system was successfully detected this interest and his approaching the 

chair robot claiming for confident mood for the emotional body-mood of the person. 

As it was stated for the elastic network model, once the execution mode switched to 

confident mode, our model does not decrease initially high attraction of the desired 

node (  in Section 3.4.5) and expects its dynamic node to end up on the 

desired one, which is the case given with the elastic net map in Figure 4.2(h). The 

way point found was shown on the snapshot with green trajectory which is a 

constantly located in front of the working table, directly showing the intention of 

‘sitting on the table’. This snapshot was taken right after the robot started to move. 

While it was moving, our experimenter was still examining the robot and observing 

its actions just like we expected. This is actually a proof for our idea that, once we 

gain the curiosity, the person becomes interested in the robot and starts to observe its 
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actions as in the case on this snapshot in part (h). Another breaking point on this part 

is that, continuous intention estimator had already estimated that the person was 

going to the table (see top-left corner on the snapshot) changing the status of the 

system to ‘Success’. As it was stated in Figure 4.1, as long as the system keeps 

claiming ‘Success’, observation of previous trajectory, estimation of current 

trajectory, and planning of a way point are bypassed by the algorithm. At the 

snapshots in part (i), chair robot finished its trajectory and the person sat on it. From 

now on, system only estimates the current intention of the person and compares it 

with the desired one. If a mismatch occurs (in this example, if the person stands up 

moves away from the table), the algorithm again tries to reshape the intention of the 

person into the desired one (‘sitting on the table’) stubbornly. 
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Figure 4.2 Starting from (a) to (i) important moments are demonstrated with sequent 
snapshots. Desired intention was ‘sitting on the table’. Reactions of the person and 
appropriate robot moves are explained for both two execution modes on each part 
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Figure 4.2 Continued 
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Figure 4.2 Continued. 
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In another example given with Figure 4.3, we tried to test our system with two serial 

desired intentions. For the purpose, we created a scenario in which the first desired 

intention was ‘getting a book from the library’, as soon as the person realizes it 

switching to the second one being ‘sitting on the table’. In Figure 4.3(a), ‘table’ 

intention was estimated on the person and a trajectory was found for the 2-steps 

robot (it is now the target robot since the desired intention is related with the library) 

detecting that the person is suspicious. In that experiment, the experimenter was 

more confident with our robots comparing the experimenter given in Figure 4.3; 

therefore, after 2-steps robot realized its trajectory, he started to examine the robot 

curiously, making the execution mode confident as shown in part (b). If a confident 

mood detected on the person, elastic network model directly generates the way point 

on the desired intention node as shown in the elastic network map figure in part (b). 

The trajectory that 2-steps robot should follow were drawn on the snapshot with 

green color. 

As seen in the next snapshot at the left-hand side in part (c) of Figure 4.3, 

experimenter followed the robot as we expected and started to climb on it to reach 

the library at the top. Since the system was able to estimate current intention to be 

‘getting book from the library’, status had turned to ‘Success’, claiming the success 

of the first state of this scenario. Then, the system switches to next desired intention 

being ‘sitting on the table’. The right-hand sided snapshot of the same part shows 

that the status changed to ‘Fail’ again since now the current intention was not equal 

to the new desired intention. Therefore, a new trajectory was found as given in the 

elastic map and it was followed by the chair robot this time. The reason was 

mentioned in Section 3.5 that, the intention of ‘sitting on the table’ is related with the 

chair robot. Finally, in the left-hand sided snapshot of the last part (d), we directly 

gave the moment, when the person approached to the chair robot confidently, 

skipping two other trials in between. The algorithm was able to detect this mood of 

the person, switching to confident mode, where elastic net model directly found the 

desired node. As a result, we were able to make the person realize both two desired 

intentions sequentially (see ‘Success’ status on the right-handed snapshot in part (d)), 

and made him read the book he took from the library on the work table. 



96 

These two experiments, with an obstinate and initially highly suspicious person and 

less suspicious person comparing with the first one, showed the accuracy of our 

methodology realizing all of our system requirements and expectations mentioned 

previously. We successfully made the experimenters confident with our robots, made 

them approach to the robots confidently (gaining their trusts), by exhaustively 

following found way points from the intention feature space, which has previously 

learned trajectories of human subjects gathered from training experiments. Then, for 

the second phase, we were able to reshape their intentions into what we desired again 

by following a learned trajectory leading to that desired intention, proving and 

finalizing our concept of thesis work. 
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Figure 4.3 In this experiment, we assigned two sequential desired intentions ‘getting 
book from the library’ and ‘sitting on the table’. After the person realized the first 
desired intention related with the library, ‘sitting on the table’ becomes the new one. 
Reactions of the person and details are drawn and explained on each part. 
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Figure 4.3 Continued 

 
 
 

4.2. Analysis of Elastic Network Performance Dependency to Parameter 

Changes: Sensitivity Analysis of Generation of Intention Transients 

In elastic network model proposed in (Richard Durbin & Willshaw, 1987), the 

authors tested system performance according to parameters of the force equation 

given with Eq.(3.11) and Eq.(3.12), which are , with 100 nodes on a map 

of unit square. The authors stated that parameters change depending on the size of 

the map constructed due to the fact that the energy function is calculated according to 

the distances between nodes (see Section 3.4.5). For comparative purposes, we also 

conduct a sensitivity analysis on these parameters within the context of new intention 

generation for sequential reshaping. We also analyzed the energy of the system to 

check whether the optimality is ensured by our modification of elastic networks and 

lastly we conduct tests to analyze the performance of the system towards satisfying 

requirements for path planning once an intention transient is optimally generated. 
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4.2.1. Sensitivity Analyses 

We began our tests by using the same parameters of Durbin et al. (Richard Durbin & 

Willshaw, 1987) where  is 0,2,  has the value of 1,  is initially 0,1, and the 

reduction ratio of  is 1% in every 10 iterations, with the total amount of 7000 

iterations (reduced to 2500 after energy function analysis, detailed in Section 4.2.2) 

in our force equation with randomly but homogenously placed 100 nodes. We use 

100 nodes because our intention feature space has 100 intention features 

(trajectories) as trained in Section 3.1.3 and scaled to 2-D for elastic nets in Section 

3.4.4. We use random nodes only for testing purposes to create an elastic net model 

generic to any node distributions. Elastic network map has the size of [8x6] 

decreased proportional to our actual ROI of the camera deployed in the experimental 

room being [320x240] in order to decrease computational cost and increase CPU 

performance. An exemplary view of the map of the elastic net is given in Figure 4.4. 

In addition, as a reminder, we give our energy (Eq. (4.1)) and force (change rule of 

the position of dynamic node with Eq. (4.2)) functions of elastic nets below: 

 

(4.1) 

 

          (4.2) 

where initially  being the distance between desired and 

dynamic node at the initialization (see Section 3.4.5). As for the introduction of our 

simulated maps, Figure 4.4 gives the state trajectory of the dynamic node as the 

elastic net solves for a way point (transient intention) in the intention space. We 

should note that, all of the exemplary simulations given in this section were executed 
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in suspicious mode. That is, reduction ratio for  in Eq. (4.1) and Eq. (4.2) in 

such a mode is 0,5 which is five times bigger than the one of , decreasing the effect 

of desired node sharply as iteration advances. That way, the dynamic node is not 

strongly pulled by the desired node and ends up on a closer node to the current 

intention node as seen in Figure 4.4(b) (see more details for the way point generation 

in suspicious and confident mode in Section 3.4.5). For the other mode, confident 

mode, the reduction ratio of  is 0,1 which is the same as for K while the other 

parameters are kept constant. This time the attraction of the desired node, which is 

initially the biggest, remains stronger than the other nodes resulting in the dynamic 

node ends up on the desired intention node (see Section 3.4.5). Illustrations of these 

scenarios for both modes are given in performance analysis in this section. Blue 

diamond shapes represent the intentions that occurred in one of our experiments 

where the dotted circle, which is inflated in the right corner of Figure 4.4(b), includes 

the previous and the current intention along with the dynamic node. In addition, the 

desired final intention is highlighted with green diamond shape. In each of the 

snapshots given in Figure 4.4 and in other simulations included in this section, the 

trajectory of the dynamic node searching for the way point (an intention transient) is 

represented by a series of black dots. Oscillations in the iterative solutions yield 

branching of the trajectory. As the iterations advances, the spacing between black 

dots diminishes showing the occurrence of convergence and the trajectory becomes a 

bolder black colored line. The final solution is the way point represented by a large 

purple square. The critical iteration that was introduced in Section 3.4.5 is given 

explicitly in the inflated region in Figure 4.4(b). This is the iteration when the 

oscillations of the dynamic node end having this node to converge to the closed 

intention node in the intention space. In other words, this iteration occurs when the 

value of K parameter becomes small enough that the second force becomes 

negligibly small comparing with the first one in Eq. (4.2) which results in the first 

force taking effect. Moreover, since the force applied by a node increases as dynamic 

node approaches to it (increase in specificity), dynamic node ends up on the closest 

one eventually. It should be noted that, critical iteration depends on the distance 

between the nodes and the dynamic one in the intention map; therefore, it changes 



101 

depending on the scenario or the distribution of the dynamic nodes and the location 

of current, previous and desired nodes. 

Comparative analysis of the effects of the  and parameters: These parameters 

are for the relative strengths of the two forces introduced in Section 3.4.5 with Eq. 

(3.17). The first parameter , strengthens the first force which the steady nodes apply 

on the dynamic point whereas  is for the second force of current and previous nodes 

on dynamic point. The first force pulls the dynamic point towards the candidate way 

points on the dense areas with desired node over weighted, while the second one 

favors the closest nodes by pulling this dynamic point back to its initial location 

between the current and previous nodes. 

The response of our model in suspicious mode with the parameter values given at the 

beginning of this section ( , ,  is initially 0,1, the reduction ratio of  

is 1%,  is initially the distance between the location of desired node and the 

dynamic node with the reduction ratio of 5% (suspicious mode)) is demonstrated in 

Figure 4.4(a). This figure demonstrates that, the force applied by the steady nodes 

(the first force of Eq. (4.2)) is not big enough to break strong attraction between 

dynamic node and the current and previous nodes. Therefore, the dynamic node 

could not reach further locations on the map. This yields the coverage of a small area 

encircled in the figure. The black dots in the scanned area are showing the previous 

locations of the dynamic node which gets bigger as the iteration proceeds. In order to 

break stronger effect of the forces of current and previous nodes, we need to increase 

the  value. Interchanging the values of these parameters, by having  

and , we can then make the dynamic node move to further locations covering 

larger area and converges to a node which is shown in Figure 4.4(b). It is important 

to note that, when the critical iteration is reached or when K parameter is lowered 

enough, the force of static nodes in first term in Eq. (4.2) takes effect, the oscillations 

ends and therefore the dynamic node is dragged towards the closest node on the map 

grid. Therefore, our aim must be to make the dynamic node move towards further 

locations increasing the coverage area of oscillations prior to convergence.  
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Figure 4.4 Analysis on  parameters. (a) System response with 
and  with initial K is 0,1 with the reduction ratio of 1% and initial  

is the distance between the desired and the dynamic nodes with the reduction ratio of 
5%. Scanned area represents the locations dynamic node was able to reach. It is clear 
that forces of current and previous nodes are strong enough to pull dynamic node 
back to its initial location; (b) System response with and . Steady 
nodes were strong enough to pull the dynamic node towards dense areas, having it 
ending up on the closest node in the closest dense area as K value decreases. These 
parameter values fully satisfied our requirements. 

 
 
 

As for the analysis of the  parameter, any further increase on its value (Figure 

4.4(b)) results in the dynamic node to be strongly pulled back to its initial location 

without possible enlargement of the convergence area. If we increased both 

parameters for testing purposes within the range of 1 to 2, we had a dynamic node 

oscillating out of our map, exceeding its size. We conclude that, any further increase 

of the values given in Figure 4.4(b) has the dynamic node exceeds the map or 

decreasing these values makes the dynamic node to be pulled strongly back to its 

initial location. 

Analysis of the effects from changes of the parameter: This parameter is the most 

crucial part of the created elastic network model. The decision of the initial value of 

K should be made according to the map. As clearly stated in the formulations, K 



103 

parameter both sets the effect of the second force and the maximum distance between 

a steady and dynamic node. The amount of change in the initial value of K decides 

the oscillation range of the dynamic node. If we have a bigger value for K parameter, 

the response of the system (the forces) is much stronger as in Figure 4.5(b). 

However, since we are lowering K as the iteration advances, these higher force 

values will gradually be lighter and again the dynamic node will end up oscillating in 

an intensive region. At a critical value of K, when the critical iteration is reached, 

again the system drags the dynamic node towards the closest node. Briefly, we may 

increase the K parameter to a value which is low enough to see its critical value. A 

comparative example with K = 0.1 and K = 0.5 is demonstrated in Figure 4.5 with the 

same  parameters on the same map as in Figure 4.4(b). The higher the K 

value, the stronger are the forces applied on the dynamic node causing further 

oscillations of this node. As K value decreases, the oscillations taper off to settle 

within a closer and the mostly visited region of the initial location of the dynamic 

node. In the inflated region at the bottom-right corner of Figure 4.5(b), it is shown 

that the critical iteration of K parameter can be reached before the iteration ends. As 

stated in Section 3.4.5, once the critical value can be reached in the generation 

process, the second force term in Eq.(4.2) pulling the dynamic node towards its 

initial location becomes negligibly small resulting in the dynamic node ending up on 

the same steady node as in Figure 4.4(b).  
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Figure 4.5 (a) Keeping all of the parameters except K the same as in Figure 4.4(b), 
the system response with the initial K being 0,1; (b) The response of the system when 
K=0,5. Dynamic node oscillates exceeding the size of the map due to the strong 
forces initially applied with higher K value. As the iteration advances, K value 
decreases settling down the system response and resulting in the dynamic node to 
oscillate within closer intensive regions to its initial location. In the inflated region at 
the bottom-right corner, it is shown that the critical iteration of K parameter could be 
reached before iteration ends. As a result, dynamic node ended up on the same steady 
node as in Figure 4.4(b). 

 
 
 

By looking at Eq.(4.2), K value decides how big the forces will be and how far the 

oscillations of the dynamic node occur away from the initial location (detailed in 

Section 3.4.5). As for the lower limit of the K parameter, we should have it big 

enough to make dynamic node oscillate under the effect of stronger forces (as seen in 

Eq.(4.2), both force terms are proportional to K value) reaching to further locations 

from its initial location. For the reduction ratio of K, the upper limit should be small 

enough not to have the second force in Eq.(4.2) vanish before that the dynamic node 

finds the dense convergence. That is to say, if the K parameter reaches the critical 

point fast, whenever the dynamic node is still far from the current and previous 

nodes, the dynamic node approaches a steady node far away from the current 

intention. However, we want the dynamic node to approach a node closer to the 

current intention node in suspicious mode. On the other hand, the lower limit of the 
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reduction ratio should be big enough to satisfy the critical value for K, that is, K 

should lowered down to its critical value before iteration ends (critical iteration). 

4.2.2. Energy Analyses of the Elastic Network Model 

Energy function of our system in Eq.(4.1) is the work done by the system. The spring 

forces applied to the dynamic node by all other nodes do a negative work on it. That 

is, increase in the forces results in a work which decreases the speed of the dynamic 

node, meaning that kinetic energy of it decreases. Therefore, it is clear that the 

energy equation calculated belongs to work of the system done on the dynamic node 

and negative of this work gives kinetic energy of our node. We used this kinetic 

energy in optimality analysis of our system, or to check if we could reach the global 

minimum which is the optimal solution as explained in Section 3.4.2. Kinetic energy 

of dynamic node in the scenario given with Figure 4.4(b) is demonstrated in Figure 

4.6(a). The oscillations occurred at the first iterations, which is inflated at the top-

right corner of Figure 4.6(a), are due to the higher K values resulting in stronger 

spring forces holding the dynamic node (second force term in Eq.(4.2)). In other 

words, while the springs between the dynamic and steady nodes are pulling the node 

(first force of Eq.(4.2)), the other springs of the steady current and steady previous 

nodes holding the dynamic one are stretched (see details in Section 3.4.5). At one 

point, this stretch becomes so high that the dynamic node will be pulled back 

strongly towards its original locations this time increasing the forces of steady nodes. 

These oscillations get smaller as the spring forces decrease with decreasing of K. 

However, they exist until the critical value of the K parameter is reached, which is 

shown on Figure 4.6(a), making the second spring force negligibly small. An 

example to better understand the analogy between oscillations and K parameter is 

given in Figure 4.6(b) where K remained constant. An analogy can be made between 

this response of the system in part (b) and an inverted pendulum in a frictionless 

environment. Both of the systems don’t have any external force or effect which 

makes the moving node settle down eventually. 
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Figure 4.6 (a) Kinetic energy of the dynamic node in the scenario given in Figure 
4.4(b) vs. iteration count is demonstrated. Oscillations were high at the beginning of 
the system due to higher K value resulting in stronger spring forces on the dynamic 
node. As the iteration advances, system moves towards the global minimum where 
the energy of the dynamic node becomes nearly zero; (b) An exemplary system 
response to constant K parameter is given. This condition resulted in constant 
oscillations. Since there is no external effect (friction) in the system, dynamic node 
behaves like an inverted pendulum in a frictionless environment.  

 
 
 

After the critical iteration is reached, energy of the dynamic node converges to zero. 

By looking at Figure 4.6(a), it is clear that global minimum of the function happened 

between counts 2000 and 2500, then the system settled down, energy of the node 

became nearly zero meaning that dynamic node converged to its found closest node 

in Figure 4.4(b). An inference can be made that, in our applications 2500 iteration 

will be enough to reach the global minimum. More iteration will result in 

unnecessary computation and time delay on the system. To conclude, we verified 

that any change according to Eq.(4.2) in y, which is the dynamic point, results in a 

reduction of kinetic energy of the dynamic node reaching the global minimum with 

the help of decreasing K parameter as in simulated annealing method (see the details 

in Section 3.4.1.2 and Section 3.4.5).  
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4.2.3. Performance Analyses 

Our performance norm was the ability to generate a way point closer to the current 

intention in the dense area of intentions in suspicious mode. To evaluate this 

performance of the system, we made comparative analysis on a scenario, by 

changing location of the nodes and re-initiating the system. To start with, in Figure 

4.7(a) and (b) represents two different scenarios having current, previous, desired 

and all other nodes at the same locations, except one steady one. In Figure 4.7(a), 

found way point can be clearly seen with the nodes placed. We claimed that this way 

point should be the closest point to the current and previous node in a dense area of 

intentions. To test the related performance, we represented a case, where just after 

way point is found in Figure 4.7(a) in a prior trial, the human without being 

influenced by any robot move, location of a node (node in red circle) in the intention 

map has changed due to a wrong estimation of this intention node (as represented by 

dragging the node to the location a red arrow points out in Figure 4.7(a)). The elastic 

net reinitiating its iteration, replacing the dynamic point to its initial location shown 

in Figure 4.7(a), re-plans a trajectory for the dynamic node as in Figure 4.7(b) and 

the new way point was found to be near the red circle, which highlights the newly 

dragged node. It is clear that, this time a highly dense area of nodes is formed very 

close to the current node in Figure 4.7(b) and our elastic network was able to find the 

closest node within this area. This is proving the methodology of way points for our 

robots to gain curiosity by generating a way point being both close to the current 

intention of the person and in a familiar place to the human subject where human 

trajectories are observed more densely.  

As for another illustrative example in Figure 4.8, we used the same initialization of 

the map given in Figure 4.7(a). This time, Figure 4.8(a) demonstrates two very close 

new intentions of the human generated (case of confusion in estimation or human 

hesitation) before the robot moves executing the way point found in previous 

iterations. Again assuming that we are in suspicious mode, elastic net recalculates a 

new way point by first putting the initial dynamic point back to its original location 

in the middle of current and previous intention nodes in Figure 4.8(b). In part (b) of 
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the figure, the newly generated dynamic point trajectory with newly added intentions 

circled in red demonstrates a lot of oscillations (clouds of black dots) that converge 

into a branching and ends at critical iteration. This convergence ended near a new 

way point (purple square) close to newly added intentions which formed a much 

denser area than the one in Figure 4.8(a). 

 
 
 

 

Figure 4.7 Way point planning performance of our system. (a) This is the first 
performance with the nodes replaced as shown; (b) The second performance is 
realized on the same map but dragging one node in (a) to the location highlighted 
with a red circle. Now the way point found is in the newly created dense area close to 
the current intention. 
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Figure 4.8 (a) With the same map given in Figure 4.7(a), the same solution was 
found; (b) The new system performance is given in response to the introduction of 
two new nodes in the map given in (a). It is clear that, there was created a new denser 
area by the introduction of these nodes and our system was able to locate a new node 
within this denser area. 

 
 
 

For the last but not the least important performance of our system, we checked if the 

system is in confident mode, whether we can locate the desired intention and/or roam 

around it. For the purpose, we again used the same scenario, that is, the same 

replacements of all nodes introduced in Figure 4.7(a). However, this time the aim 

was to get close to the desired node since we had already gained the curiosity of the 

person. As clearly shown in Figure 4.9, a reinitiated elastic net with dynamic node 

replaced to its initial location directly got close to the desired node and found a node 

very close to the desired one in this case. It is clear that, a node that close to the 

desired one is actually a trajectory nearly same as the one of desired node (see 

Section 3.4.4). Therefore, if one of our robots realizes this trajectory, the robot will 

end up on the location of desired intention as we expected. 
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Figure 4.9 The same scenario given in Figure 4.7(a) is realized assuming that the 
system is in confident mode. As it is expected, our elastic net model found the 
desired node. Then, our robot will realize this trajectory guiding the person to the 
location of the desired intention. 

 
 
 

If we are to discuss these resultant simulations of our elastic network model created, 

we conclude that this method is very suitable for our purpose of motion planning to 

the robots making the human change his/her intention to a desired one. We are trying 

to reshape intentions of the people with not just random movements towards the 

desired intention, but we first check if the person is suspicious or confident with our 

robots, then plan trajectories either aiming to gain the curiosity or directly showing 

the desired intention location. Especially in suspicious mode, there are smooth 

transitions towards the desired intention which elastic network model fitted very 

well. More examples with real-time scenarios are given in the next section where the 

benefits of elastic networks discussed. 
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CHAPTER 5 

5. CONCLUSION AND FUTURE WORKS 

In this novel study, we designed a robotic system which can socially interact with 

people and reshape previously recognized intentions by autonomous robot moves in 

real-time scenarios. Robot motions are planned by generating intention transients 

through Elastic Networks according to the different moods of the person. In other 

words, as long as human body-mood is detected to be suspicious, our contextual 

robots (a chair robot and a 2-steps robot) plan their own trajectories aiming to break 

the obstinance of the person on what s/he was doing and to gain the curiosity and the 

trust of the person relying on proxemics behaviors. After a successful switching to 

confident mood, the people begin to easily focus on the robot moves this time 

directly showing the readiness to accept new intention reshaped into. These 

reshaping moves are planned by intention trajectories formed by sequences of 

intention transients generated by Elastic Networks using previously learnt trajectories 

of the human subjects. Experimental results with humans given in Chapter 4 showed 

the success of our methodology in real-time. It was proved that, inducing positive 

emotional mood to a person increases the comfort of the person to interact with our 

robots in an unfamiliar environment, resulting in the chance of making the person 

follow the lead of the robot. 

This ability of social cognition and interaction makes the system usable as a human 

assistant in industry or even in our daily lives. For example, in emergency situations 

where people need guidance, our system can classify humans as confident and 

suspicious and lead them to safer places. In addition, our sociable robots can have 

commercial usage catching the attention of the humans and guiding them towards 

intended shops. Furthermore, the system can be used as assistants for the people in 

need for help (elderly people, people with Alzheimer’s etc.) understanding their 
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needs and guiding them accordingly. Similarly, the system can be an educator for 

children or a therapy robot for people with autism, with its ability of estimating and 

inducing intentions and emotions. Finally, in our daily lives within the concept of 

smart home, our robots can be used as a service robot without requiring any manual 

input from its human companion by recognizing their needs and serving 

autonomously. 

Satisfying the possible usages mentioned above, we are planning in the future to 

enhance our experimental room setup to include more variations on intentions. 

Therefore, we are going to adapt the system for more complex environments 

equipped with advanced manipulators having higher sensing capabilities and reaction 

speeds (as in the case of smart homes). In addition, our system only covers the cases 

for neutral body-mood of humans. If we can extend the work to detect neutral or 

aggressive body-mood of the people, it can be used as a detector of criminal or foul-

minded people, and can even manipulate their deviant intentions thereafter. Finally, 

our system focuses on non-verbal interactions, which limits its possible usage and 

interaction capabilities. In the future, we are planning to add speech cognition to our 

system increasing its social ability and making it more like a human-being. 
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