
A DIGITALLY PROGRAMMABLE APPLICATION SPECIFIC INTEGRATED
CIRCUIT FOR DRIVE AND DATA ACQUISITION OF IMAGING SENSORS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

NUSRET BAYHAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

FEBRUARY 2014

Approval of the thesis:

A DIGITALLY PROGRAMMABLE APPLICATION SPECIFIC INTEGRATED
CIRCUIT FOR DRIVE AND DATA ACQUISITION OF IMAGING SENSORS

submitted by NUSRET BAYHAN in partial fulfillment of the requirements for the de-
gree of Master of Science in Electrical and Electronics Engineering Department,
Middle East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Gönül Turhan Sayan
Head of Department, Electrical and Electronics Engineering

Prof. Dr. Tayfun Akın
Supervisor, Electrical and Electronics Eng. Dept., METU

Dr. Selim Eminoğlu
Co-supervisor, Mikro-Tasarım San. ve Tic. Ltd. Şti.

Examining Committee Members:

Assoc. Prof. Dr. Haluk Külah
Electrical and Electronics Eng. Dept., METU

Prof. Dr. Tayfun Akın
Electrical and Electronics Eng. Dept., METU

Dr. Selim Eminoğlu
Mikro-Tasarım San. ve Tic. Ltd. Şti.

Assoc. Prof. Dr. Cüneyt Bazlamaçcı
Electrical and Electronics Eng. Dept., METU

Dr. Enis Ungan
Karel Elektronik San. Tic. A. Ş.

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: NUSRET BAYHAN

Signature :

iv

ABSTRACT

A DIGITALLY PROGRAMMABLE APPLICATION SPECIFIC INTEGRATED
CIRCUIT FOR DRIVE AND DATA ACQUISITION OF IMAGING SENSORS

Bayhan, Nusret

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Tayfun Akın

Co-Supervisor : Dr. Selim Eminoğlu

February 2014, 77 pages

This thesis explains the implementation of a digital programmable Application Spe-
cific Integrated Circuit (ASIC) designed for imaging applications. The primary func-
tion of this ASIC is to drive imaging sensors and to do basic processing on the digital
video data coming from the sensors.

The ASIC is designed to handle the communication between the imaging sensor and
the system. Using command based high-level instructions, this two-way communica-
tion is simplified. The ASIC can also be used to store and update the sensor memory
content using this communication interface.

The ASIC has a built in data path that can process the digital sensor data in real
time while the sensor is being operated. This data path is capable of performing both
arithmetic and encoding operations on the sensor data. The arithmetic operations are
handled by an integrated arithmetic unit placed on the data path. This unit can be used
to correct and enhance the sensor data at the pixel level using a reduced set of special
commands and instructions. The ASIC also has a built in 8bit/10bit data encoder at
the end of its data path, which is integrated to support high speed serial data interfaces
by providing a DC-balanced digital output data.

v

The ASIC has an integrated programmable timing generator designed to generate the
necessary timing signals for the imaging sensors and their peripherals. This module
can be programmed to generate periodic timing signals at the period of line or frame
times of the imaging sensor.

The logic implemented in the ASIC is simulated, synthesized, placed and routed
in sequence using automated digital design tools using Hardware Description Lan-
guage (HDL) design capture. Since IC implementation is typically expensive, the de-
signed logic is first implemented and verified at FPGA level to assure its functionality.
The results of both implementations show that IC implementation is advantageous in
terms of power and area for a given speed at the expense of its cost.

Keywords: ASIC, Application Specific Integrated Circuit, Image Sensors, Data Ac-
quisition, Hardware Description Language

vi

ÖZ

GÖRÜNTÜLEME SENSÖRLERİNİ SÜRME VE SENSÖRLERDEN VERİ ALMA
İÇİN UYGULAMAYA ÖZEL SAYISAL PROGRAMLANABİLİR TÜMDEVRE

Bayhan, Nusret

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Tayfun Akın

Ortak Tez Yöneticisi : Dr. Selim Eminoğlu

Şubat 2014 , 77 sayfa

Bu tezde, görüntüleme uygulamalarında kullanılmak üzere tasarlanan, sayısal ve prog-
ramlanabilir bir uygulamaya özel tümdevre anlatılmaktadır. Bu tümdevrenin başlıca
kullanım alanı görüntüleme sensörlerini sürmek ve sensör video çıkışları üzerinde
basit işlemler yapabilmektir.

Tezde tasarlanan tümdevre, görüntüleme sensörü ve sistem arasındaki haberleşmeyi
kontrol edebilmektedir. Tasarımda gelişmiş komutlar kullanılarak, çift yönlü olan bu
haberleşme basitleştirilmiştir. Bunun yanında, görüntüleme sensörünün hafıza içeriği
de tasarlanan tümdevre üzerinde tutulabilir ve bu hafıza kolay bir şekilde programla-
nabilir.

Tümdevre, görüntüleme sensörü çıkışlarını gerçek zamanlı işleme kabililiyetine sahip
olan bir veri yolu da içermektedir. Bu veri yolu, sensör verileri üzerinde aritmetik ve
kodlama işlemleri uygulayabilir. Aritmetik işlemleri, veri yolunda yer alan aritmetik
birim uygulamaktadır. Bu birim, tasarlanan özel bir komut seti yardımıyla, sensörden
gelen veriler üzerinde piksel aşamasında düzeltme ve iyileştirme uygulayabilir. Arit-
metik birimin çıkışına ise yüksek hızlı seri arayüzleri destekleyebilmek amacıyla bir
8bit/10bit kodlayıcı yerleştirilmiştir.

vii

Bu birimlere ek olarak tümdevrede, sensörler ve çevresel birimler için kullanılmak
üzere tasarlanmış olan bir zamanlama üreteci bulunur. Bu ünite, gerekli olması ha-
linde kullanılabilecek periyodik zamanlama sinyallerini üretebilir.

Tezde tasarlanan tümdevre, Verilog Donanım Tanımlama Dili (DTD) kullanılarak,
otomatik sayısal entegre devre tasarım yazılımları ile simülasyonlarla doğrulanmış,
sentezlenmiş, yerleşimi ve bağlantıları yapılmıştır. Entegre devre üretimi pahalı ol-
duğu için, tasarlanan tümdevre öncelikle FPGA üzerinde fonksiyonel açıdan doğru-
lanmıştır. Son olarak ise entegre devre ve FPGA üzerinde yapılan tasarımlar karşı-
laştırılmıştır. Sonuçta, pahalı olmasına rağmen, belirlenen bir çalışma hızında entegre
tasarımının güç tüketimi ve alan açısından daha avantajlı olduğu görülmüştür.

Anahtar Kelimeler: ASIC, Uygulamaya Özel Tümdevre, Görüntüleme Sensörleri,

Veri Alma, Donanım Tanımlama Dili

viii

To my family

ix

ACKNOWLEDGMENTS

I would like to express my gratitude towards my advisor Prof. Dr. Tayfun Akın for

his supervision and guidance throughout this study. I would like to thank Dr. Selim

Eminoğlu for his endless support and trust through my graduate life.

I would like to thank Siner Gökhan Yılmaz for his technical support in software and

Cem Yalçın for being such a patient model in front of the camera. I also would

like to add my other colleagues at Mikro-Tasarım, Osman Samet İncedere, Mehmet

Ali Gülden, Suhip Tuncer Soyer, Murat Işıkhan, Serhat Koçak, Mithat Cem Boreyda

Üstündağ, Özge Turan, Burak Baycan and Mehmet Akdemir, to this list. In addition,

I would like to thank Mehmet Ufuk Büyükşahin for his helps and supports throughout

this study. I would not be able to finish this thesis without their invaluable friendship

and support.

I would like to express my gratitude towards to TÜBİTAK for their support of my

M.Sc. study with their scholarship.

Last but not least, I would like to give my special thanks to my mother, my father and

my sister for their endless trust, encouragement and patience in every moment of my

life. Without the support of all these people that I mentioned, I would not be able to

achieve this success.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiv

LIST OF FIGURES . xvi

CHAPTERS

1 INTRODUCTION . 1

1.1 Imaging Systems . 1

1.1.1 Sensor . 2

1.1.2 External Electronics 2

1.1.2.1 Analog-to-Digital Converter 3

1.1.2.2 Controller 3

1.1.2.3 Memory 3

1.2 Digital Circuit Design . 4

1.2.1 Programmable Logic Devices (PLDs) 4

xi

1.2.1.1 Simple Programmable Logic Device
(SPLD) 4

Programmable Logic Array (PLA) . . 4

Programmable Array Logic (PAL) . . 5

1.2.1.2 Complex Programmable Logic Device
(CPLD) 6

1.2.1.3 Field Programmable Gate Array (FPGA) 6

1.2.2 Application Specific Integrated Circuit (ASIC) . . 7

1.3 Motivation for the Thesis 12

2 DESIGN OF THE DIGITAL ASIC 15

2.1 Design Requirements . 15

2.1.1 Image Sensor . 16

2.1.2 Serializer . 18

2.1.3 Host . 18

2.1.4 Speed Requirements 19

2.2 ASIC Architecture . 19

2.2.1 Programming Interface 20

2.2.1.1 Instruction Controller 24

2.2.2 Memory . 27

2.2.3 Data Path . 28

2.2.3.1 FIFO 28

2.2.3.2 Arithmetical Processing Unit 29

xii

2.2.3.3 8B/10B Encoder 30

2.2.4 Programmable Timing Generator 35

3 SIMULATIONS . 37

3.1 Serial Communication Unit and Memory 37

3.1.1 Instruction Controller 42

3.2 Data Path . 45

3.2.1 Arithmetical Processing Unit 45

3.2.2 8B/10B Encoder 46

3.2.3 Data Path - Top Level 47

3.3 Programmable Timing Generator 48

4 DESIGN IMPLEMENTATION . 51

4.1 FPGA Implementation . 51

4.1.1 Communication Tests 52

4.1.1.1 Instruction Controller Tests 56

4.1.2 Data Path Tests 60

4.1.3 FPGA Implementation Results 64

4.2 ASIC Implementation . 66

4.2.1 ASIC Implementation Results 67

5 SUMMARY AND CONCLUSION 71

REFERENCES . 75

APPENDICES

xiii

LIST OF TABLES

TABLES

Table 2.1 ASIC serial communication pins and their explanations 21

Table 2.2 Defined commands for the ASIC and their descriptions. 21

Table 2.3 ASIC to sensor serial communication pins and their explanations. . . 24

Table 2.4 Defined instructions for instruction controller and their descriptions. 25

Table 2.5 Defined function list of the arithmetical processing unit 30

Table 2.6 Explanation of the bits of the multiplication operation defined in the

arithmetical processing unit . 31

Table 2.7 5B/6B encoding scheme. 33

Table 2.8 3B/4B encoding scheme. 34

Table 2.9 Special characters that are defined in 8B/10B encoding. 34

Table 2.10 Memory map for one timing generator block. 36

Table 2.11 Explanation of the configuration bits for one timing generator block. 36

Table 4.1 Estimated power summary of the FPGA implementation. 65

Table 4.2 Synthesis results of the FPGA implementation. 65

Table 4.3 Map results of the FPGA implementation. 65

Table 4.4 Estimated power summary of the ASIC implementation for different

switching modes. 68

xiv

Table 4.5 Synthesis results of the ASIC implementation. 69

xv

LIST OF FIGURES

FIGURES

Figure 1.1 An example imaging system block diagram. 1

Figure 1.2 A simple PLA Structure[1] . 5

Figure 1.3 A simple PAL Structure[1] . 6

Figure 1.4 A simple CPLD Structure[1] . 7

Figure 1.5 Block diagram of an FPGA structure[1] 8

Figure 1.6 Typical FPGA design flow. 9

Figure 1.7 Typical standard cell ASIC design flow. 10

Figure 1.8 MT6415CA imaging sensor with its external electronics designed

by Mikro-Tasarım[2]. 14

Figure 2.1 Simple block diagram of the imaging system studied in the thesis. . 16

Figure 2.2 Video output of the imaging sensor with its synchronization signals. 17

Figure 2.3 Video output of the imaging sensor with its synchronization signals

and the frame sync signal. 17

Figure 2.4 Block diagram of the ASIC with its peripherals. 18

Figure 2.5 Detailed block diagram of the ASIC programming interface with

the ASIC memory block. 20

xvi

Figure 2.6 Timing diagram of the serial interface signals with respect to the

system clock. 21

Figure 2.7 ASIC serial interface timing diagram for the RD_A command. . . . 22

Figure 2.8 Programming timing diagram of the imaging sensor. 24

Figure 2.9 State machine of the instruction controller included in the program-

ming interface. 25

Figure 2.10 Memory map for the "write to sensor memory" instruction. 25

Figure 2.11 Memory map for the "run the image sensor for 1 frame" instruction. 26

Figure 2.12 Memory map for the "go to address" instruction. 26

Figure 2.13 Memory map for an example usage of the instruction controller.

In this example the two sensor memory locations "Address0" and "Ad-

dress1" are programmed with different data inputs in sequential frames. . . 26

Figure 2.14 Map of the complete ASIC memory module. 27

Figure 2.15 Block diagram of the FIFO structure.[3]. 29

Figure 2.16 A possible error situation in the case of unbalanced DC communi-

cation [4]. 31

Figure 3.1 Simulation setup block diagram for the serial communication unit

and the memory . 38

Figure 3.2 Simulation results of the host-to-ASIC interface for one communi-

cation cycle. 39

Figure 3.3 Simulation results of the command decoder with valid commands. . 39

Figure 3.4 Simulation results of the host-to-ASIC interface with the "WR_A"

command. 39

Figure 3.5 Simulation results of the host-to-ASIC interface with the "RD_A"

command. 40

xvii

Figure 3.6 Simulation results of the ASIC-to-sensor interface with "WR_S"

command. 41

Figure 3.7 Simulation results of the ASIC-to-sensor interface with "RD_S"

command. 41

Figure 3.8 Simulation results of the ASIC-to-sensor interface with "UPD_S"

command. 42

Figure 3.9 Simulation setup block diagram for the instruction controller. . . . 43

Figure 3.10 Instruction memory contents for the instruction controller simula-

tions. 43

Figure 3.11 Simulation results for the instruction controller, part 1. 44

Figure 3.12 Simulation results for the instruction controller, part 2. 44

Figure 3.13 Simulation setup block diagram for the data path. 45

Figure 3.14 Simulation results of the arithmetical processing unit with different

input configurations. 46

Figure 3.15 3B/4B encoder simulation results, K=0, e=0, i=0 46

Figure 3.16 3B/4B encoder simulation results, K=1, e=0, i=0 46

Figure 3.17 3B/4B encoder simulation results, Data=111 47

Figure 3.18 5B/6B encoder simulation results, K=0 47

Figure 3.19 Sample simulation results of the 8B/10B encoder, K=0 47

Figure 3.20 Simulation results of the imaging sensor model. 48

Figure 3.21 Simulation results of the data path with 1.5 gain and 1000 count

offset applied on the incoming data. 48

Figure 3.22 Simulation results of the programmable timing generator block. . . 49

xviii

Figure 4.1 Screen capture of the "WR_A" command test. For tests, the loca-

tion with the address "0x01" is programmed with the data "0xABCD". . . 52

Figure 4.2 Screen capture of the "RD_A" command test with a received data

of "0xABCD" from the address "0x01". 53

Figure 4.3 Screen capture of the "RD_S" command test, part 1. The "Address"

textbox shows the current read address, which is "0x04". The result is

printed to the "Receive" textbox, which is "0x1249". 54

Figure 4.4 Screen capture of the "WR_S" command test. The address is as-

signed as "0x04" and the data is given as "0xF0F0". 55

Figure 4.5 Screen capture of the "RD_S" command test, part 2. The "Address"

textbox shows the current read address, which is "0x04". The result is

printed to the "Receive" textbox, which is "0xF0F0". 56

Figure 4.6 Instruction memory map of the dual exposure programming event. . 57

Figure 4.7 Video screen capture with two different exposure settings. The up-

per picture represents the image with 20 ms exposure time and the bottom

picture represents the image with 5 ms exposure time. 58

Figure 4.8 Video screen capture with two different exposure settings and av-

erage of the two images. The bottom picture is constructed from the top

two images which are 5 ms exposed image and 20 ms exposed image,

respectively. 59

Figure 4.9 Video screen capture of the event for which the data is supplied

statically from the arithmetical unit. For this test, channel 0 and channel 1

are programmed with the minimum and maximum count values, respec-

tively. 61

Figure 4.10 Video screen capture of the event for which the data is forced stat-

ically from the ASIC data inputs. For this test, channel 0 and channel 1

are forced to the minimum and maximum count values, respectively. . . . 62

xix

Figure 4.11 Video screen capture of the event for which the raw data is col-

lected from the sensor. 63

Figure 4.12 Video screen capture of the event for which the normalization is

implemented on the video data. For this test, NMeanRange is programmed

as 4096 and NMeanMin is programmed as 9000. 64

Figure 4.13 Detailed ASIC design flow. 67

Figure 4.14 Initial layout placement of the physically implemented digital ASIC

core with a square floor plan. 68

Figure 4.15 Top level layout of the physically implemented digital ASIC core

with a square floor plan. The layout measures approximately 550um both

in height and width in a 90nm CMOS process. 69

xx

CHAPTER 1

INTRODUCTION

Imaging technology is one of the most vivid fields in electronics. With the help of

imaging equipments, people take pictures, record videos or even see what their eyes

cannot. While performing those, the imaging sensor along with its camera electronics

does the job. All parts together that have a role in this sequence called as an imaging

system.

1.1 Imaging Systems

As stated above, an imaging system is the collection of all equipments that are used

in image acquisition process. Commercially available digital cameras can be given

as examples to such systems. Like these digital cameras, there are many electronic

devices that can capture images or videos. Their structures, however, more or the less

the same in terms of used equipments. These equipments can be electrical, optical or

mechanical parts. Figure 1.1 shows an example imaging system block diagram.

Figure 1.1: An example imaging system block diagram.

The electrical parts of the imaging systems mainly consist of an image sensor with its

readout circuit and external electronics that reads the data from that sensor.

1

1.1.1 Sensor

Image sensors are the parts that convert incoming optical radiation into electrical

signals. This can be explained as the part where the imaging process begins. There are

mainly two categories of sensors according to their structures, which are monolithic

sensors and hybrid sensors.

Monolithic sensors are single crystal devices with sensor part and readout circuit

mostly reside on a single chip. The most common examples to these sensors are

silicon based and used for visible wavelengths (0.4µm-0.7µm). CCD and CMOS

sensors are two well-known examples for monolithic sensors.

On the other hand, hybrid sensors are formed by combining separately produced sen-

sor and readout circuit parts together. These sensors are produced from other materi-

als than silicon, to detect the radiation that silicon cannot. Infrared radiation can be

given as an example. Although the wavelength interval 0.7µm to 1µm, which is clas-

sified as near infrared (NIR) region, can be visible with silicon; it is not possible to

detect larger wavelengths than 1µm with it. Short-wave infrared (SWIR) wavelengths

(1µm-3µm), mid-wave infrared (MWIR) wavelengths (3µm-5µm) and long-wave in-

frared (LWIR) wavelengths (8µm-12µm) are examples for such intervals.

The electrical outputs of the sensors are usually very small signals. Also pixel counts

of image sensors are very high for reading them one-by-one. Even a VGA sensor,

which has a resolution of 640x480, contains more than 300000 pixels. In order to

handle those kind of difficulties, readout circuits are used. These circuits take the

sensor output, amplify them and forward to the analog-to-digital converters.

1.1.2 External Electronics

One common point for all of these sensors is they all need some external electronics

for proper operation. The requirements to the external electronics can be different

between different types of sensors, however. External electronics here means all other

electronic parts that are required to obtain meaningful data from the sensor. ADCs,

controllers and memories are common parts that can be classified in this category.

2

1.1.2.1 Analog-to-Digital Converter

As stated before, sensor converts incoming radiation to analog electrical signals and

readout circuit shapes those analog signals. However, in order to obtain images from

those electrical signals, they should be digitized as pixel values. To achieve this,

analog sensor outputs are converted to digital values via Analog-to-Digital Converters

(ADCs). Different types of ADCs can be found in the market and in the literature.

Resolution in terms of bits, speed, voltage levels and output types are some of the

properties that affect ADC selection. According to the needs of imaging application,

a proper ADC set should be selected in order to obtain correct image from the sensor.

1.1.2.2 Controller

Another important part of an imaging system is the controller. The necessary control

signals and configurations for other electronics are generated and held by this unit.

Since it is the closest digital part to the sensor and ADCs, the programming and driv-

ing tasks of these parts are performed by digital controller. Besides driving sensors

and ADCs, the data transfer between a host and the sensor is also handled by this

part. The controller may be designed as a simple circuit or it may be very complex

depending on the application.

1.1.2.3 Memory

In an imaging system, an external memory can be necessary for many operations.

Storing images, saving configurations or stacking reference frames for processing

purposes can be given as examples. Today, there are many memory choices available

on the market in terms of speed, capacity or for many other specifications.

Besides these common parts, some electronic devices that are designed for specific

sensors are also available in the market. For instance, Texas Instruments’ CCD sig-

nal processor chips have the capability of data processing as well as analog to digital

converters[5]. These devices are used along with CCD cameras. Similarly, the pro-

cessors with more complex operation capabilities are available for CMOS sensors.

3

On the other hand, for the hybrid sensors, the priority is to digitize the data in an

efficient way rather than performing complex processing operations on it. This make

the external electronics more important for such sensors.

In this section, the main parts of an imaging system are explained. Since the thesis is

focused on the development of a digital integrated circuit, the common digital circuit

design methodologies will be explained in the following section.

1.2 Digital Circuit Design

There are two basic design methodologies for digital design. These are using pro-

grammable logic devices and designing application specific integrated circuits.

1.2.1 Programmable Logic Devices (PLDs)

In imaging systems, like most of the electronic systems, analog design is usually the

part where most of the effort is put. Therefore, analog part of the designs are tend

to be more stable and closed to changes after sign-off. The digital part, on the other

hand, need to be designed in relatively short time and it has more tendency to change

or upgrade according to the system needs. This leads to search of easy-to-configure

and reusable devices, which are called as Programmable Logic Devices (PLDs) in

general.

1.2.1.1 Simple Programmable Logic Device (SPLD)

Simple Programmable Logic Devices (SPLDs) can be expressed as gate arrays that

have low logic capacities. These are developed as first PLD examples. Their internal

structures usually consist of simple AND-OR gates. There are mainly two types of

SPLDs in the literature.

Programmable Logic Array (PLA) Programmable Logic Arrays (PLAs) are one

of the first devices that can be counted as PLDs and developed in late 1970s[1]. They

4

include two gate array planes, one for AND gates and one for OR gates. The inputs of

both gate arrays are programmable with a fuse structure. Figure 1.2 shows a simple

PLA structure.

Figure 1.2: A simple PLA Structure[1]

Although obtaining all combinations of AND/OR gates is possible with this structure,

high fuse count makes the device harder to program.

Programmable Array Logic (PAL) Since any combinational logic can be ex-

pressed as sum of products method[6], the sum (OR) parts can be fixed and all the

programming options can be leaved to the products (AND) parts. Programmable

Array Logic (PAL) device implements this idea and fixes the OR plane in a PLA.

Figure 1.3 shows a simple PAL structure.

This structure lessens the programming complexity problem. However, the pro-

grammable combinations of AND/OR gates are less than a PLA device.

5

Figure 1.3: A simple PAL Structure[1]

1.2.1.2 Complex Programmable Logic Device (CPLD)

Complex Programmable Logic Devices (CPLDs) are developed after SPLDs. It pro-

vides multiple SPLD inside it. An interconnect array connects these SPLDs together

to increase the logic interpretation capacity. Figure 1.4 shows a simple CPLD struc-

ture.

The CPLDs provides increased gate count with respect to SPLD structures and im-

plementation of more sophisticated logic functions is possible.

1.2.1.3 Field Programmable Gate Array (FPGA)

Increased success of PLDs in the market leads to development of Field Programmable

Gate Arrays (FPGAs) by Xilinx, in 1985[1]. The idea behind FPGAs is using config-

urable logic blocks (CLBs) with programmable interconnects between them, instead

of simple logic gates. These CLBs are usually capable of performing more complex

logic tasks than previous gate arrays. Figure 1.5 shows block diagram of an FPGA

6

Figure 1.4: A simple CPLD Structure[1]

structure.

In today’s FPGAs, a CLB can host up to 6 input look-up tables (LUTs), flip-flops,

multiplexers and memory structures[7].

The configuration of these logic blocks is the basic design process of FPGAs. This

configuration is performed using design tools that are developed by FPGA vendors.

The high-level schematic or HDL designs are converted to the FPGA configuration

files using these design tools. Figure 1.6 shows typical FPGA design flow.

1.2.2 Application Specific Integrated Circuit (ASIC)

The other way of designing digital integrated circuits, rather than using PLDs, is the

design of an Application Specific Integrated Circuit (ASIC). As the name suggests,

these are electronic devices that are designed and produced for specific applications.

Therefore, ASICs are not general programmable devices like PLDs. Instead, they

serve for specific purposes. The most common ASIC design methods can be summa-

rized as full-custom and semi-custom based designs.

In the full-custom ASIC design method, the whole integrated circuit is designed man-

7

Figure 1.5: Block diagram of an FPGA structure[1]

ually, from top level to the smallest logic cell. This design method is important for

crucial circuits since each step of the design is under the control of the designer. Also

it is possible to obtain better power and performance results than other ASIC design

methods [8] [9]. However, it should be noted that the time requirement of full-custom

design is higher than the other design methods.

In the semi-custom design method, on the other hand, designers mostly use auto-

mated design tools to produce desired circuit. This brings the standard cell design

term. At this point, one thing should be added to the classification of semi-custom

ASIC design. In the early years of the gate array technologies, programmable arrays

and FPGAs were also classified under the semi-custom ASIC design[10]. Since the

gate array technologies, including FPGAs, are explained formerly in this chapter; the

explanation will continue with the standard cell design method.

The standard cell design is one of the most popular methods for ASIC design. In this

method, the circuit is build from a standard cell library, using automated design tools.

8

Figure 1.6: Typical FPGA design flow.

Designers generally use high-level HDL entry for their designs. Synthesis tools map

these HDL designs into standard cell library. This mapping process is followed by

the layout placement and metal routings of these cells, performed by place and route

(PAR) tools. After the verification of the generated layout, the design can be sent to

production [11]. Figure 1.7 shows typical standard cell ASIC design flow. As it can

be seen, the design flow of the standard cell method is similar to the FPGA design

flow, except for the final parts.

Today, FPGAs and ASICs are the two of the best-known and the most discussed

methodologies of the integrated circuit design world. Both of them have some advan-

tages and disadvantages over each other. Also, there are many reviews and compar-

isons between these two design methods. The common comparison points between

these two are in terms of power, area, performance, non-recurring engineering (NRE)

cost, unit cost and design time.

9

Figure 1.7: Typical standard cell ASIC design flow.

In terms of power consumption, ASICs are advantageous than the counterpart FPGA

designs [12]. In the case of FPGA designs, extra gates and non-optimal usage of the

design parts affect power dissipation in a negative way. On the other hand, while

designing a low-power ASIC, power reduction techniques can be used. These tech-

niques may include clock gating or power gating, which are impossible to apply or

not wanted design methods in FPGAs.

Other comparison parameters between ASICs and FPGAs are area and performance

characteristics. Benchmark tests conducted using multiple designs and both on stan-

dard cells and FPGAs show that ASIC designs are better in terms of area and perfor-

mance [12].

One important thing should be added at this point. The power, area and performance

parameters are susceptible to changes from design to design. The used technology

nodes or FPGA devices also affect the results of these comparisons. In addition, the

10

optimization of the design, both on FPGA and ASIC, is an important factor. Usually,

it is better to use specific IP cores in FPGA designs in terms of these parameters. Also

it should be noted that FPGA vendors usually use the latest technology nodes, which

is generally not the case for ASIC designs. This also closes the gap between ASICs

and FPGAs [13].

Other than the discussed parameters, the cost of the design is also an important factor.

The ASIC design process requires expensive computer-aided design (CAD) tools by

its nature. The physical production of the designed parts is also an expensive process.

These can be classified under the NRE costs, which is higher on ASIC designs. On the

other hand, the NRE of the FPGA designs is relatively low. These cost calculations

are meaningful with the volume of the part. As the production volume grows, the

unit cost of the ASIC design will be smaller. However for low volume designs, using

FPGAs will be a cheaper selection.

The last comparison point between the two main methods is the required design time.

From the Figure 1.6 and Figure 1.7, it can be seen that the design processes for both

methods are similar. However, the ASIC design steps require more attention and each

step should be performed cautiously. On the other hand, most of the FPGA design

steps are performed seamlessly by the tools. Although this difference creates a time

gap, it is not the main reason of the different time requirements. The FPGA designs

are ready to use after the last step, while the ASIC designs are only ready for the

production in this stage. Time passed in the production line is the main reason for the

design time differences between the two methods. Therefore, FPGA designs require

significantly lower time to design. This also makes the small design changes possible

in a short time.

The advantages and the disadvantages of both design methods are discussed in this

section. Circuit designers should take these comparisons into account while designing

their components. According to the design needs, the correct methods can be chosen.

11

1.3 Motivation for the Thesis

Up to now, general characteristics of imaging systems and design methods for digital

integrated circuits are explained in general. As stated before, the thesis deals with the

design of a digital ASIC for imaging applications. In this part, the reasons behind

designing such a digital ASIC will be explained.

As explained before, image sensors require some external electronics for proper oper-

ation. Timing requirements, necessary programming operations and data acquisition

can be given as examples to these requirements. In order to fulfill such requirements,

digital integrated circuits are used. These circuits can be implemented using more

than one ways. Software implementation, FPGA (or programmable logic device) im-

plementation and custom ASIC implementation are well-known methods for these

type of circuits.

Software implementation means that all the necessary communication and data ac-

quisition are directly controlled from a host device. Besides the interface problems, it

is difficult to implement fast and synchronous communication as well as lossless data

acquisition. Therefore, it is better to use a device between the host and the sensor that

handles those type of operations.

As an intermediate device, programmable logic devices can be used. Across the pro-

grammable devices, FPGA usage is a common solution. FPGAs are easy-to-use logic

devices, however since the logic capacity and diversity are predefined by vendors,

true optimization is not possible. Even if the functionality is ensured with FPGAs,

unoptimized power and area parameters may be a problem for some designs. For

image sensors, the best way of handling the necessary signals is placing the circuit

as close as possible to the sensor. This minimizes wire delays and possible data loss.

However, it is not desired to have high power and large circuits near the sensor due to

the noise issues. This limits the FPGA usage in designs.

The unwanted cases can be eliminated using custom design methodology. With cus-

tom design, it is possible to obtain full functionality and circuit optimization. It is

also the safest method for near-sensor operations in terms of correct programming

and video data acquisition without any frame loss. This is one of the main reasons of

12

selecting ASIC implementation in this thesis.

In imaging systems, finding external electronics that are responsible for gathering

image from the sensor is not an easy decision, since the performance of these parts

directly affects the quality of the obtained image. Choosing proper devices from

the market requires deep market knowledge as well as significant amount of time

to decide whether the chosen part is appropriate for particular design. Also, it is

not always possible to find devices whose properties meet the exact design criteria.

Usually, designers are forced to choose parts with over-design features, or to sacrifice

some features from their design to fit that part. These features can be the discussed

points like area, power or performance. At the end, this dilemma can cause some

unwanted consequences on the system level. Using custom ASIC implementation

also eliminates such issues.

Custom ASIC implementation that supports sensor operations is a used method in the

industry. Many different companies that work on the imaging sensors design such

ASICs in order to handle sensor operations. FLIR, Teledyne and SRI can be given as

examples to such companies [14] [15] [16]. The structure of these ASICs, however,

can be different according to the requirements. The ASIC can be used to grab video,

to digitize data or even fuse different image types.

Figure 1.8 shows MT6415CA imaging sensor with its external electronics designed

by Mikro-Tasarım. The stack consists of a 640x512 imaging sensor coupled with an

ADC card and an FPGA card. As it can be seen, the sensor itself occupies a small

footprint compared with the other cards. The part that determines the size of this

stack is the FPGA card. Although the complete system is small, it is possible to make

it smaller by changing the peripherals.

In order to make the system smaller, the dimensions of the parts except the sensor

should be decreased. Since the part that determines the size of the stack is the FPGA

card, the best way of decreasing the dimensions is to use a custom made controller.

This brings the design of an ASIC that includes all the digital parts like communica-

tion unit, data acquisition unit etc. This thesis explains the design of such a digital

ASIC with smaller area and power demand than FPGA design. Following chapters

explains the design progress with its verification, implementation and test phases.

13

Figure 1.8: MT6415CA imaging sensor with its external electronics designed by
Mikro-Tasarım[2].

14

CHAPTER 2

DESIGN OF THE DIGITAL ASIC

This chapter deals with the design of the digital ASIC that is used for imaging sensor

drive and data acquisition applications. It explains the basic building blocks that

are designed in the scope of this thesis. The chapter also provides some necessary

background information on these blocks.

2.1 Design Requirements

As stated before, the digital ASIC is designed in order to control an imaging sensor

with its peripherals. This section roughly explains the general building blocks of the

digital ASIC with the requirements of the imaging system.

In this thesis, the imaging system refers to the combination of an image sensor, data

serializers, and the designed digital ASIC. Figure 2.1 shows a simple block diagram

of the imaging system studied in the thesis. As it can be seen from this figure, the

parts except the sensor are enclosed with a dashed line and called as ASIC. Since the

thesis deals with the digital parts of the complete ASIC design, the other parts like

serializers are treated as external electronics according to the digital ASIC.

Before going deeper into the digital ASIC design, the requirements and specifications

of peripherals should be examined. The following parts explains the peripherals that

are used along with the designed digital ASIC. Note that for simplicity, the digital

ASIC will be referred as ASIC from now on.

15

Figure 2.1: Simple block diagram of the imaging system studied in the thesis.

2.1.1 Image Sensor

The image sensor that is used with the ASIC is important since the interfaces between

ASIC and this part are designed according to the selected sensor. For this design, the

sensors with their readout circuits, which will form the imaging system, are chosen

from Mikro-Tasarım’s MT series products. Low number of pin requirement, easy

programmability/controllability, data availability and ease of accessibility for testing

and verification purposes are main reasons for choosing these products [2].

The ASIC is designed with the mentioned sensors in mind. However, the communi-

cation and video interfaces of these sensors are quite general. For communication,

they use a standard 4-wire serial peripheral interface (SPI) bus in slave mode. For

video output, they use Camera Link compatible synchronization signals to mark the

valid pixel data. These signals are data valid (DVAL), line valid (LVAL) and frame

valid (FVAL) signals as well as a pixel clock (PIXCLK) signal for sampling [17].

Figure 2.2 shows the video output of the imaging sensor with its synchronization

signals.

Besides those video synchronization signals that are coming out from the sensor, one

additional synchronization signal is also used between the ASIC and the sensor. The

sensor synchronizes its frames according to the frame sync (FSYNC) signal. This

signal is controlled from the ASIC and sent to the sensor. In order to follow and

control the sensor operation, this signal is required. Figure 2.3 shows the video output

of the imaging sensor with its synchronization signals and the frame sync signal.

16

Figure 2.2: Video output of the imaging sensor with its synchronization signals.

Figure 2.3: Video output of the imaging sensor with its synchronization signals and
the frame sync signal.

In the Figure 2.3, the video output of the sensor is shown as one signal. However, in

order to increase the video data rate without increasing the system clock frequency,

more than one video channel can be used. The sensor that can be used along with

the ASIC can have up to 4-channel video output, each has up to 10 MHz data rate.

Therefore, the system clock of the sensor is taken as 10 MHz, which is also the serial

communication clock frequency.

It is stated that the target products that can be used with the designed ASIC are Mikro-

Tasarım’s MT series products. As an example, the MT6415CA product can be given,

which is mentioned in Chapter 1 as well. It offers all the features that are discussed

in this section [2].

In the design of the digital ASIC, the image sensor outputs are assumed as digitized

signals. In the case of analog image sensor outputs, they must be digitized using

ADC circuits. This is the case for above-mentioned image sensor designed by Mikro-

Tasarim.

17

2.1.2 Serializer

The ASIC outputs the data in a parallel way with a sampling clock. If the serial output

is desired, an optional serializer can be used. There is not any strict specifications on

this part. LVDS transmitters with serializers that are available in the market can be

used according to the speed and data rate considerations.

2.1.3 Host

Host is the part which controls the designed ASIC. Control here means that the com-

munication and programming requirements are fulfilled by the host controller. The

output of the ASIC can also be collected by this host. The host controller may be a

computer or another logic device as long as the interface between the ASIC and the

host is securely formed.

Figure 2.4: Block diagram of the ASIC with its peripherals.

18

2.1.4 Speed Requirements

The mention image sensors are designed to run at a native clock frequency of 10MHz.

Therefore, the system clock of the sensor is chosen as 10MHz. This selection enforces

the ASIC-sensor interface speed to the same clock frequency also. The video output

of each sensor channel has also a 10MHz clock speed. Similarly, this speed enforces

the speed of the data path of the ASIC.

Although the sensor runs at 10MHz system frequency, the ASIC system clock is

chosen as 40MHz. However, not all the parts of the ASIC run at this frequency.

While the communication (except the sensor interface), memory and programmable

timing generator parts run at higher speeds; the sensor communication interface and

the data path run with the sensor native frequency. The higher clock decreases the

communication times and gives extra resolution in timing generation. Also the 4

channel video with each runs at 10MHz can be handled easily with the 40MHz clock.

With those reasons in mind, the system clock frequency of the ASIC is chosen as

40MHz.

In this chapter, the imaging system parts are explained up to now. From now on, the

modules that are designed for digital ASIC to control this imaging system parts will

be explained.

2.2 ASIC Architecture

The ASIC mainly consists of 4 parts. These can be summarized as the serial commu-

nication module, memory, video data path and programmable timing generator. The

video data path can be separated into 3 modules; which are FIFO, arithmetical and

logical unit and 8B/10B encoder. Figure 2.4 shows the block diagram of the ASIC

with its peripherals.

19

2.2.1 Programming Interface

The serial communication module in the ASIC is responsible from the communica-

tion between the digital ASIC, image sensor and host controller. The communication

between those parts can be categorized as host to ASIC and ASIC to image sensor

interfaces. Figure 2.5 shows the detailed block diagram of the ASIC programming

interface with the ASIC memory block.

Figure 2.5: Detailed block diagram of the ASIC programming interface with the
ASIC memory block.

ASIC includes a serial communication interface in order to provide an easy program-

ming to the users. In order to achieve this, a total number of 3 pins are defined on the

ASIC. Table 2.1 shows ASIC serial communication pins and their explanations.

The "sdata_in" pin is the main input for programming operations. The commands and

necessary data are sent through this pin. Communication through this pin requires 8-

20

Table2.1: ASIC serial communication pins and their explanations

Pin Definition Direction
sdata_in Serial data input Input

sdata_out Serial data output Output
en_b Serial communication enable Input

bit command followed by 8-bit address and 16-bit data if necessary. Figure 2.6 shows

the timing diagram of the serial interface signals with respect to the system clock.

Figure 2.6: Timing diagram of the serial interface signals with respect to the system
clock.

The one byte wide command part stands for the programming commands that the

ASIC demands in order to operate properly. Table 2.2 gives the defined commands

for the ASIC and their descriptions.

Table2.2: Defined commands for the ASIC and their descriptions.

Code(Hex) Abbreviation Explanation Operands
0x81 WR_A Write to ASIC memory Address | Data
0x18 RD_A Read from ASIC memory Address
0xC3 WR_S Write to sensor memory Address | Data
0x3C RD_S Read from sensor memory Address
0xCC UPD_S Update sensor memory

WR_A: This operation represents writing data to the ASIC memory block. ASIC

memory block consists of the programmable bits and timing configurations on its

lower (lower addressed) half and image sensor configuration memory on its upper

(higher addressed) half. Any write operation intended to program these parts should

use this command. The "WR_A" command requires an 8-bit address afterwards,

21

as well as an 16-bit data followed by this address. This one byte address points the

location on the memory that will be edited. The remaining two bytes data is written to

this memory location at the end of this operation. With these operands, the execution

of "WR_A" command lasts 32 clock cycles in total. Figure 2.6 can be given as the

timing diagram.

RD_A: This command is applied by the host when a data in the ASIC memory is in-

tended to be read. The operation is similar to the write operation except the data

operand. In order to point the place from where the data will be read, one-byte

long address is enough. After applying this address, the data can be read from the

"sdata_out" pin in the next communication cycle, i.e. driving "en_b" pin high and

again low. Figure 2.7 shows the ASIC serial interface timing diagram for the RD_A

command.

Figure 2.7: ASIC serial interface timing diagram for the RD_A command.

The wait time between the last bit of the address and the first bit of the outgoing data

needs an explanation. Since reading from memory is a time consuming operation, the

design implementation should be safe. In this design, the wait time should be at least

8 clock cycles for safe operation.

WR_S: The sensor write command is similar to the ASIC write command (WR_A).

After this command is sent, address and data bits should be transferred sequentially.

Figure 2.6 can be given as the timing diagram for this operation.

One more thing to know about this operation is that, since a mirror of the sensor

configuration memory is located inside the ASIC memory, any direct write operation

to sensor will cause a mismatch between sensor memory and sensor configuration

memory located in the ASIC. If users want to keep track of the changes in the sensor

22

memory, this should be taken into account.

RD_S: This command is used when the user wants to read a word from the sensor

memory. "RD_S" operation is similar to the "RD_A" operation. However the wait

time that is discussed above is larger since a sensor communication operation takes

place. For a safe communication, this delay should be at least 280 clock cycles. The

large wait time is due to the requirement of two communication operations for reading

and lower clock frequency at the sensor side. Figure 2.7 shows the timing diagram

for this operation, which is the same with the "RD_A" command timing diagram.

UPD_S: The "UPD_S" command is used when user wants to update a large memory

block in the sensor. This large block can include the whole sensor memory. The

programming interval is configurable through ASIC memory with start and end ad-

dresses. The main reason for designing this programming option is to configure the

sensor memory with single command, if the sensor configuration memory is already

programmed in a desired way. For execution of "UPD_S", only the hex command is

enough.

With this command, the user can use the sensor configuration memory instead of

using direct sensor memory access (WR_S). With this way, it becomes easy to keep

changes of the sensor memory since the sensor memory content is the same with the

sensor configuration memory located in ASIC.

The valid commands for the serial communication unit of the ASIC are explained. As

it can be seen from the timing diagrams and figures, the required time for one commu-

nication cycle can change from 8 clock cycles (i.e. "UPD_S") to 32 clock cycles (i.e.

"WR_S") according to the command needs. If uniform time requirement is desired,

32 clock cycle wide communication can be used for all commands. The unused parts

like address and data together (in the case of "UPD_S") or data alone (in the case of

"RD_A and "RD_S") will be ignored in these cases. Although communication lasts a

bit longer, it is easier to handle all commands with this way.

Like the ASIC itself, in order to configure image sensor that is connected to the ASIC,

dedicated serial ports are added to the design. Table 2.3 shows the ASIC-to-sensor

serial communication pins and their explanations.

23

Table2.3: ASIC to sensor serial communication pins and their explanations.

Pin Definition Direction
sdata_in_sensor Sensor serial data input Output
sdata_out_sensor Sensor serial data output Input

en_b_sensor Sensor serial communication enable Output

The communication between the image sensor and the ASIC is designed as similar to

the ASIC serial interface. However in this mode, the length of the communication is

24 bits instead of 32 bits. Figure 2.8 shows the programming timing diagram of the

imaging sensor.

Figure 2.8: Programming timing diagram of the imaging sensor.

2.2.1.1 Instruction Controller

The programming interface includes an instruction controller, which can be seen in

the Figure 2.5. This part is designed to control the sensor with periodical commands

and it has its own instruction set. The first quarter of the ASIC memory is reserved

for such instructions. These instructions are executed sequentially, with the help of

an address counter and a state machine. Figure 2.9 shows the state machine of the

instruction controller included in the programming interface.

The instructions that are defined for this special block is selected for periodical sensor

operations. There are 3 instructions and the Table 2.4 gives the defined instructions

for instruction controller and their descriptions.

"Write to sensor memory" instruction occupies 2 words in the ASIC memory. Fig-

24

Figure 2.9: State machine of the instruction controller included in the programming
interface.

Table2.4: Defined instructions for instruction controller and their descriptions.

Code(Hex) Explanation
0xC3 Write to sensor memory
0x1F Run the image sensor for 1 frame
0xFF Go to address

ure 2.10 shows the memory map for the "Write to sensor memory" instruction. In

this figure, "Address[7:0]" corresponds to the sensor memory address that will be

programmed and the "Data[15:0]" corresponds to the data that will be written to this

address.

Figure 2.10: Memory map for the "write to sensor memory" instruction.

"Run the image sensor for 1 frame" instruction occupies 1 word in the ASIC mem-

ory. When this command is executed, the ASIC runs the sensor for one frame time.

Figure 2.11 shows the memory map for the "run the image sensor for 1 frame" in-

struction.

"Go to address" instruction occupies 1 word in the ASIC memory. When this instruc-

tion is executed, the address counter is reset to the "Address[7:0]" value. With this

way, the periodicity of whole instruction memory is ensured. Figure 2.12 shows the

memory map for the "go to address" instruction.

Since this part is a bit confusing, it is better to explain it with an example. Figure 2.13

25

Figure 2.11: Memory map for the "run the image sensor for 1 frame" instruction.

Figure 2.12: Memory map for the "go to address" instruction.

shows the memory map for an example usage of the instruction controller. In this ex-

ample the two sensor memory locations "Address0" and "Address1" are programmed

with different data inputs in sequential frames. This operation is repeated as long as

the instruction controller is enabled.

Figure 2.13: Memory map for an example usage of the instruction controller. In
this example the two sensor memory locations "Address0" and "Address1" are pro-
grammed with different data inputs in sequential frames.

26

2.2.2 Memory

Like many other digital programmable electronics, the ASIC contains memory blocks

in order to write and store the desired settings. This memory has a capacity of 256

words, with each word has 16 bits. The configuration settings about the whole ASIC

as well as the image sensor are stored in this block. Programmable features are also

written to and stored in this memory. Figure 2.14 shows the map of the complete

ASIC memory module.

Figure 2.14: Map of the complete ASIC memory module.

The first quarter of the memory is reserved for the instructions, which are explained in

the instruction controller part. The second quarter is used for the ASIC configuration;

in which the arithmetical unit, encoder and programmable timing generator settings

are included. The last half of the ASIC memory is reserved for the imaging sensor.

This 128x16 bit part can be used to store the desired sensor settings.

The memory is controlled by a memory controller. The main purpose to use such a

controller is to organize the communication between multiple modules and the ASIC

memory. This communication consists of two main operations which are write and

read. The write operation is controlled from only one port which is accessible from

27

the host interface. Using one port for writing ensures safe write operation. For the

read operation, however, two independent ports are used. One of these ports is re-

served for the host read operations while the other one is reserved for the sensor read

operations. Choosing two ports for read operation prevents possible conflict between

host and sensor read operations that are executed at the same time. With this way,

safe read operation is also ensured.

2.2.3 Data Path

The data path of the digital ASIC is the part where the image sensor output acquisi-

tion is performed. The main reason of this path is to construct a bridge between the

sensor and the host. While constructing such a bridge, some arithmetical and logical

operations as well as error reduction techniques on the data are taken into account.

For those reasons, a FIFO, an arithmetical processing unit and an encoder is placed

through this path. Following sub-sections explain these units in detail.

2.2.3.1 FIFO

In order to separate different clock domains in the ASIC, asynchronous FIFO struc-

ture are used. Asynchronous FIFO refers to a FIFO type whose write and read clocks

are different from each other. In the applications that require data transmission be-

tween different clock domains, these FIFO structures are used as buffers between

these domains. In ASIC, this structure is used to achieve a safe data acquisition from

the sensor.

The imaging sensor works with a clock that is generated from the ASIC, however,

returns its video data with its own pixel clock. The ASIC, on the other hand, uses its

own clock while performing data path operations. although the speeds of these clocks

are identical, their phase relation may differ. In order to solve the uncertainty between

the pixel clock of the sensor and the clock of the ASIC data path, an asynchronous

FIFO is used in the beginning of the data path.

There are many ways to design an asynchronous FIFO. The most important point

28

while designing one is to assure that data loss does not occur while transferring data

from one clock domain to another. In order to achieve this, a structure with write and

read pointers are used along with the empty and full indicators since it is safe and

easy to implement in both FPGA and ASIC designs[3]. Figure 2.15 shows the block

diagram of the FIFO structure. Since data storage is not an aim of this FIFO, the

memory used in this structure is very small.

Figure 2.15: Block diagram of the FIFO structure.[3].

2.2.3.2 Arithmetical Processing Unit

The ASIC data path includes an arithmetical processing unit to apply some arithmeti-

cal and logical operations on the incoming data. The incoming data represents the

digitized video outputs of the imaging sensor. The unit has both arithmetical and

logical parts. The arithmetical part can perform simple arithmetical operations like

addition or subtraction as well as simple multiplication and division. The logical part,

on the other hand, can apply basic logical operations like AND, OR, XOR and taking

the complement of the incoming data. Table 2.5 gives the defined function list of the

arithmetical processing unit.

29

Table2.5: Defined function list of the arithmetical processing unit

4-Bit
Operation

Control Input
0 0 0 0 G=A
0 0 0 1 G=A+B
0 0 1 0 G=A+B’+1
0 0 1 1 G=A*C
0 1 0 0 G=A*C+B
0 1 0 1 G=A»1
0 1 1 0 G=A«1
0 1 1 1 G=B
1 0 0 X G=A&B
1 0 1 X G=A|B
1 1 0 X G=A⊕B
1 1 1 X G=A’

In the Table 2.5, the control input ’S’ as well as the operand inputs ’B’ and ’C’ are

configured from the device memory. The input ’A’ refers to the incoming video data.

Finally, ’G’ refers to the output of the module[18].

Here, A and B operands are designed as 16-bit digital buses. 16-bit arithmetical and

logical operations that are listed in the Table 2.5 can be conducted using those inputs.

C operand, on the other hand, has 12-bit data width which controls the multiplication

and division operations with a shift-and-add structure. Table 2.6 shows the explana-

tion of the bits of the multiplication operation defined in the arithmetical processing

unit. The final result is calculated by adding the results of the active shift operations.

The more accurate representation of the ’C’ operand can be stated as a fixed-point

unsigned binary number with a scaling factor of 1/28.

As an example, if the user wants obtain "1.25*A" with this multiplication operation,

the ’C’ operand should be programmed as "0x140".

2.2.3.3 8B/10B Encoder

In order to achieve an error-free communication at the LVDS drivers end, an 8B/10B

encoder is placed at the end of the data path.

30

Table2.6: Explanation of the bits of the multiplication operation defined in the arith-
metical processing unit .

C[11:0] Explanation Result (A*C)
100000000000 Multiply with 8 A*8
010000000000 Multiply with 4 A*4
001000000000 Multiply with 2 A*2
000100000000 Multiply with 1 A*1
000010000000 Divide with 2 A/2
000001000000 Divide with 4 A/4
000000100000 Divide with 8 A/8
000000010000 Divide with 16 A/16
000000001000 Divide with 32 A/32
000000000100 Divide with 64 A/64
000000000010 Divide with 128 A/128
000000000001 Divide with 256 A/256

8B/10B encoding is proposed in 1983, by A. X. Widmer and P. A. Franaszek[19]. In

this encoding, 8 bit data is converted into 10 bit data by adding some redundancy. The

reason behind that is to achieve a DC balanced communication and characterize max-

imum run-length. DC balanced communication is important in high speed transfers

to maintain maximum noise margin at differential terminals[20]. This reduces the bit

error rate. Figure 2.16 shows a possible error situation in the case of unbalanced DC

communication. On the other hand, the maximum run-length is important for clock

recovery at the receiver end[19]. In the applications that do not require a transfer of a

separate clock signal, the receiver uses incoming data to estimate data rate. Therefore,

upper-bounded run-length is significant in such communications.

Figure 2.16: A possible error situation in the case of unbalanced DC communication
[4].

31

The 8B/10B encoder consists of one 5B/6B encoder and one 3B/4B encoder that are

connected together. Suppose that the 8 bit code that will be encoded is "ABCDE-

FGH". Than the 5B/6B encoder part converts "ABCDE" to "abcdei" which is a 6-bit

wide symbol. Similarly, the 3B/4B part converts "FGH" to "fghj" which is a 4-bit

wide symbol. The final 10-bit wide encoded symbol will be "abcdeifghj".

The encoder provides DC balance by constantly checking the disparity of send data.

Disparity means the difference between the number of 1’s and 0’s in a given block of

binary data. If these numbers are equal to each other, the disparity is 0. However, if

the number of 1’s are greater, the disparity is positive. Similarly, if the number of 0’s

are greater, the disparity is negative.

In this encoding algorithm, each 6B and 4B blocks are confined to have disparities

-2, 0 and +2. Additionally, the ones with nonzero disparities have inverted pairs

which can be decoded to the same 5B or 3B symbols. According to the state of

running disparity, control unit selects the correct code to secure DC balance at the

line. Table 2.7 and Table 2.8 shows the 5B/6B encoding scheme and 3B/4B encoding

scheme, respectively.

In Table 2.7 and Table 2.8, "ABCDE" or "FGH" represents the code that will be

encoded by this module, from the least significant bit to the most significant bit.

Similarly, "abcdei" or "fghj" represents the encoded code. The "D-1" column stands

for the previous value of the running disparity and the "D" shows the disparity of the

current encoded stream. Finally, "Alternate" field shows the alternative code for the

inverse running disparity value. According to this running disparity value, one of the

alternate codes is selected for encoding.

One more advantage of the 8B/10B encoding is that it allows to use special charac-

ters other than ordinary codes. These special characters can be used for some user

defined tasks, like marking the start or end of a data packet or defining commands

like reset. In order to define those special characters, one more input is added to the

8B "ABCDEFGH" input, which is "K". Table 2.9 shows the special characters that

are defined in 8B/10B encoding.

There are multiple implementation methods for 8B/10B encoding/decoding. Logic

32

Table2.7: 5B/6B encoding scheme.

Name ABCDE K D-1 abcdei D0 Alternate
D.0 00000 0 + 011000 - 100111
D.1 10000 0 + 100010 - 011101
D.2 01000 0 + 010010 - 101101
D.3 11000 0 x 110001 0
D.4 00100 0 + 001010 - 110101
D.5 10100 0 x 101001 0
D.6 01100 0 x 011001 0
D.7 11100 0 - 111000 0 000111
D.8 00010 0 + 000110 - 111001
D.9 10010 0 x 100101 0
D.10 01010 0 x 010101 0
D.11 11010 0 x 110100 0
D.12 00110 0 x 001101 0
D.13 10110 0 x 101100 0
D.14 01110 0 x 011100 0
D.15 11110 0 + 101000 - 010111
D.16 00001 0 - 011011 + 100100
D.17 10001 0 x 100011 0
D.18 01001 0 x 010011 0
D.19 11001 0 x 110010 0
D.20 00101 0 x 001011 0
D.21 10101 0 x 101010 0
D.22 01101 0 x 011010 0
D.23 11101 0 - 111010 + 000101
D.24 00011 0 + 001100 - 110011
D.25 10011 0 x 100110 0
D.26 01011 0 x 010110 0
D.27 11011 0 - 110110 + 001001
D.28 00111 0 x 001110 0
D.29 10111 0 - 101110 + 010001
D.30 01111 0 - 011110 + 100001
D.31 11111 0 - 101011 + 010100

implementation and look up table implementation are the two most preferred meth-

ods. Logic implementation is chosen in this design because of its low area demand

and HDL friendly structure. In the original paper, the 8B/10B encoding is performed

so that the bit change occurs from the input to the output is minimum[19]. This also

33

Table2.8: 3B/4B encoding scheme.

Name FGH K D-1 fghj D0 Alternate
D.x.0 000 0 + 0100 - 1011
D.x.1 100 0 x 1001 0
D.x.2 010 0 x 0101 0
D.x.3 110 0 - 1100 0 0011
D.x.4 001 0 + 0010 - 1101
D.x.5 101 0 x 1010 0
D.x.6 011 0 x 0110 0

D.x.P7 111 0 - 1110 + 0001
D.x.A7 111 0 - 0111 + 1000

Table2.9: Special characters that are defined in 8B/10B encoding.

Name ABCDE FGH K D-1 abcdei fghj D0

K.28.0 00111 000 1
- 001111 0100 0
+ 110000 1011 0

K.28.1 00111 100 1
- 001111 1001 +
+ 110000 0110 -

K.28.2 00111 010 1
- 001111 0101 +
+ 110000 1010 -

K.28.3 00111 110 1
- 001111 0011 +
+ 110000 1100 -

K.28.4 00111 001 1
- 001111 0010 0
+ 110000 1101 0

K.28.5 00111 101 1
- 001111 1010 +
+ 110000 0101 -

K.28.6 00111 011 1
- 001111 0110 +
+ 110000 1001 -

K.28.7 00111 111 1
- 001111 1000 0
+ 110000 0111 0

K.23.7 11101 111 1
- 111010 1000 0
+ 000101 0111 0

K.27.7 11011 111 1
- 110110 1000 0
+ 001001 0111 0

K.29.7 10111 111 1
- 101110 1000 0
+ 010001 0111 0

K.30.7 01111 111 1
- 011110 1000 0
+ 100001 0111 0

34

minimizes the logic that is required for implementation.

The basic idea behind this logic implementation is to determine changed bits in en-

coding operation and fit those changes in a logic function.

2.2.4 Programmable Timing Generator

The ASIC includes general purpose timing generators for user needs. The timing

generators are designed for image sensors that require external signals to run. These

modules have programmability options in terms of pulse widths, repetition and po-

larity. There are a total number of 8 such blocks and their configurations come from

internal ASIC memory. If user wants to produce a desired timing, the related memory

locations should be programmed. Also note that this module tracks the timing of the

connected sensor with internal counters. Synchronization of these timing signals is

handled with this way.

Each timing generator programmability options occupies 4 words in the ASIC mem-

ory. The 32 location whose addresses lie between 78 and 109 can be used to program

these timings. Table 2.10 shows the memory map for one timing generator block. In

this table, "toggle_pt0" and "toggle_pt1" represents the toggle points of the signal in

one line time. For example, if 100 clock cycle pulse width is desired which starts at

the 250th clock of the line, then these memory locations should be programmed as

250 and 350, respectively.

All the programmability options of the timing signals lie in the "configuration[15:0]"

bits. Table 2.11 shows the explanation of the configuration bits for one timing gener-

ator block. These options are selected according to the needs of the imaging sensors.

In this chapter, the basic building blocks of the digital ASIC are explained with the

requirements of the imaging system. In the next chapter, the simulation results of the

35

Table2.10: Memory map for one timing generator block.

Address* Bits Explanation
0 toggle_pt0[15:0] First toggle point in line
1 toggle_pt1[15:0] Second toggle point in line
2 active_line[11:0] Line number that the signal is active**
3 configuration[15:0] Timing configuration bits

*Indicates the address in the 4-word memory block
**If the signal is one-at-a-frame

Table2.11: Explanation of the configuration bits for one timing generator block.

Bit No. Value Explanation

0
0 Output invert disabled
1 Output invert enabled

1
0 Output is not tied to static value
1 Output is tied to static 0 (1 if invert is enabled)

2
0 One-at-a-line signal
1 One-at-a-frame signal

3
0 Active at every line (or frame, see Bit 2)
1 Active at once in every two line (or frame, see Bit 2)

4
0 If Bit 3 is 1, active at even lines
1 If Bit 3 is 1, active at odd lines

5
0 Disabled
1 Enabled

6-15 - Not used, reserved for future use

designed blocks will be explained.

36

CHAPTER 3

SIMULATIONS

This chapter explains the simulations and design verifications of the ASIC. For sim-

ulations, Xilinx ISE Design Suite is used along with its simulator ISIM [21]. The

building blocks of the ASIC which are explained in the previous chapters are de-

signed using Verilog HDL and simulated using above-mentioned tools.

3.1 Serial Communication Unit and Memory

The serial communication unit and memory together form the programming interface

of the ASIC. The communication module also creates a bridge structure between the

host and the image sensor. In order to verify the operation of those modules properly,

they have simulated with the attached models of the image sensor interface and sensor

memory. Figure 3.1 shows the simulation setup for the serial communication unit and

the memory.

The flow of this block can be summarized as follows: First, the host to ASIC inter-

face samples incoming data that is coming from the host controller. Then, this data

is shaped to meaningful command, address and data parts. The command part is fed

to the command decoder and if it is a valid selection, related code flag is asserted.

With this code flag, the module associated with the given code performs its opera-

tion. When operation is finished, command flags are cleared to be ready for the next

operation.

The host to ASIC communication part is responsible from obtaining necessary data

37

Figure 3.1: Simulation setup block diagram for the serial communication unit and the
memory

at the input pins. The data at the "sdata_in" pin is sampled through this block. After

that; command, address and data codes are sent to the related blocks. Figure 3.2

shows the simulation results of the host-to-ASIC interface for one communication

cycle. In this short simulation, the "WR_S" command is sent to the ASIC whose

corresponding hexadecimal value is "0xC3". After this command, a random address

and data are sent in order to show the order and timing of this communication. As

it can be seen, after each partition (command, address or data) of the incoming data,

associated "ready" signals are formed to inform related blocks.

The valid communication commands of the ASIC are discussed in Chapter 2. Ta-

ble 2.2 gives the available commands and their explanations. Figure 3.3 shows the

simulation results of the command decoder with valid commands. Note that the flags

are cleared manually in this figure to show command decoding operation properly.

Normally these flags are cleared by the related block, at the end of the decoded oper-

ation.

38

Figure 3.2: Simulation results of the host-to-ASIC interface for one communication
cycle.

Figure 3.3: Simulation results of the command decoder with valid commands.

The "WR_A" and "RD_A" commands are related with the ASIC memory. These

commands are used to write to and read from this memory, respectively. Figure 3.4

and Figure 3.5 shows the simulation results of the host-to-ASIC interface with the

"WR_A" and "RD_A" commands, respectively.

Figure 3.4: Simulation results of the host-to-ASIC interface with the "WR_A" com-
mand.

In Figure 3.4, the "WR_A" command is executed. As it can be seen, the address

39

"0x82" is programmed with the data "0xB3D5". Here, the "wr_asic" signal shows the

decoded command and the "stop_command" shows the end of the command, thus it

represents the reset of the flag. Finally, the 16-bit wide "mem" data shows the data of

the desired memory location.

Figure 3.5: Simulation results of the host-to-ASIC interface with the "RD_A" com-
mand.

In Figure 3.5, the "RD_A" command is executed. As it can be seen, the address

"0x02" is desired to be read. Here, the "rd_asic" signal shows the decoded command

and the "stop_command" shows the end of the command, thus it represents the reset

of the flag. The 16-bit wide "mem" data shows the data of the desired memory loca-

tion. In this command, the important point is that the result of the read operation is

output at the second communication cycle, from the "sdata_out_asic" pin. As it can

be seen from the parallelized output "read_asic_data[15:0]", which is the result of the

operation, the content of the memory location "0x02" is transferred to the output as

"0x1804".

The next block is the ASIC to sensor communication module, which organizes the in-

terface between ASIC and the image sensor. When the operation is a sensor read/write

operation, this block is activated. There are 3 commands in this category, which are

"WR_S", "RD_S" and "UPD_S". Simulation results for these three commands are

given in the following parts.

Figure 3.6 shows the simulation results of the ASIC-to-sensor interface with "WR_S"

command. When this command is sent to the ASIC, the address and data bits are

transferred to the sensor. In this example, it can be seen that these bits are sent to the

40

Figure 3.6: Simulation results of the ASIC-to-sensor interface with "WR_S" com-
mand.

sensor by driving the "sdata_in_sensor" and active-low "en_b_sensor" pins.

Figure 3.7: Simulation results of the ASIC-to-sensor interface with "RD_S" com-
mand.

Figure 3.7 shows the simulation results of the ASIC-to-sensor interface with "RD_S"

command. The image sensor memory read operation is similar to the ASIC memory

read operation. That means in order to gather data from sensor, two communication

cycles are needed. Therefore, this operation sends related address in the first cycle

and samples data at the next cycle. In the first "en_b_sensor" cycle, the address of the

memory location that will be read is sent. In the second one, the content of the read

sensor memory location is sampled from the "sdata_out_sensor" pin. This sampled

data is then sent to the host via the "sdata_out_asic" pin.

Figure 3.8 shows the simulation results of the ASIC-to-sensor interface with "UPD_S"

command. The image sensor memory update operation is simply the multiple "WR_S"

operations with automatic address incremental. The data of the write operations are

read from the mirror sensor memory which is located in the upper (higher address)

41

Figure 3.8: Simulation results of the ASIC-to-sensor interface with "UPD_S" com-
mand.

part of the ASIC memory. In the example, the sensor memory addresses from "0x02"

to "0x04" are updated with data "0xB3D5", "0xAE2A" and "0x5555", respectively.

The specialty of this command is that the user can program the whole sensor memory

with just one command, which is easy to handle.

3.1.1 Instruction Controller

The instruction controller is simulated with the instructions that are given in the Ta-

ble 2.4. The simulation setup for this block is similar to the communication tests

setup. However in order to get the frame time of the sensor, the timing generator

block is also added. Figure 3.9 shows the simulation setup for the instruction con-

troller.

In the instruction controller tests, the instruction memory is programmed such that the

sensor runs periodically with 2 different frame settings. This is an example usage of

this block and Figure 3.10 shows the instruction memory contents for the instruction

controller simulations. As it can be seen from the figure, the sensor is wanted to

be programmed between consecutive frames with the help of instruction controller.

Such usage is desired by the user, if the sensor needs to be run with different settings

in successive frames.

Simulation for the instruction controller is run with the mentioned settings and Fig-

ures 3.11 and 3.12 shows the simulation results for the instruction controller. Note

42

Figure 3.9: Simulation setup block diagram for the instruction controller.

Figure 3.10: Instruction memory contents for the instruction controller simulations.

43

that in order to the simulations be understandable, the frame time is chosen as a very

small time which lies between "frame_start" and "frame_end" signals.

Figure 3.11: Simulation results for the instruction controller, part 1.

Figure 3.12: Simulation results for the instruction controller, part 2.

In the simulation, the "mem_addr[7:0]" shows the instruction memory address which

is controlled by an address counter. This address starts from 0 and increments as the

instructions are executed one by one. When address is 6, "Go to address 0" instruction

is executed and counter is reset. This cycle is repeated as long as the instruction

controller is enabled.

"state_fetch" signal shows the fetch state which means reading the next instruction

from memory. In this state, the content of the memory location that is pointed by

the address counter is read. After a small "wait" state, the read instruction is decoded.

According to the decoded command, the execution is performed and the state machine

continues with the next address.

The sensor write command triggers the sensor serial communication ports. When this

44

instruction is executed, the address and data that are fetched from memory are sent to

the sensor via "sdata_in_sensor" and "en_b_sensor" pins. The content of these signals

can be verified with the memory map which is given in the Figure 3.10.

3.2 Data Path

The data path of the ASIC forms a bridge between the digitized sensor data and host

device. The video data pass through the sub-modules of this path and reach the output

of the ASIC. As explained in the previous chapters, there are four channel included

in this path and each channel consists of a small FIFO, an arithmetical unit and an

8b/10b encoder.

For simulations of this block, the data path is placed after the video data provider

module which acts as image sensor. Figure 3.13 shows the simulation setup block

diagram for the data path.

Figure 3.13: Simulation setup block diagram for the data path.

3.2.1 Arithmetical Processing Unit

The arithmetical unit is simulated with different input configurations. All the func-

tions that are explained before are tested sequentially. Figure 3.14 shows the simula-

tion results of the arithmetical processing unit with different input configurations.

45

Figure 3.14: Simulation results of the arithmetical processing unit with different input
configurations.

3.2.2 8B/10B Encoder

This part deals with the simulation results of the encoder part. First, the 3B/4B and

5B/6B encoding sub-blocks functional simulation results are given. Then, the whole

8B/10B encoder block is verified using an 8B/10B decoder connected together.

Figures 3.15, 3.16 and 3.17 give the simulation results for this block for different

input configurations.

Figure 3.15: 3B/4B encoder simulation results, K=0, e=0, i=0

Figure 3.16: 3B/4B encoder simulation results, K=1, e=0, i=0

Besides the 3B/4B part of the encoder, the 5B/6B part is also simulated in a similar

manner. Figure 3.18 shows a sample simulation for this part.

After the verification of smaller parts, both encoder modules are connected together

46

Figure 3.17: 3B/4B encoder simulation results, Data=111

Figure 3.18: 5B/6B encoder simulation results, K=0

to form an 8B/10B encoder. Figure 3.19 shows a sample simulation results of the

8B/10B encoder.

Figure 3.19: Sample simulation results of the 8B/10B encoder, K=0

The final simulation on this block is performed with a commercially available Xilinx

8B/10B decoder IP. The two blocks are connected together to verify the designed

8B/10B encoder. With these simulations the functional verification of this block is

performed.

3.2.3 Data Path - Top Level

This part gives simulation results of whole data path, with the setup explained in

Figure 3.13. As video data input, a counter that counts in data valid window is used.

Figure 3.20 shows the simulation results of the imaging sensor model.

47

Figure 3.20: Simulation results of the imaging sensor model.

In the top level data path simulation, one scenario is selected as an example. In this

scenario, the arithmetical unit is programmed to apply 1.5 gain and 1000 count offset.

The encoder at the end of the path is disabled for better understanding of the output

data. Figure 3.21 shows the simulation results of the data path with 1.5 gain and 1000

count offset applied on the incoming data.

Figure 3.21: Simulation results of the data path with 1.5 gain and 1000 count offset
applied on the incoming data.

3.3 Programmable Timing Generator

The final part that will be explained using simulations is the programmable timing

generator block. This block can generate up to 8 independent signals whose pulse

widths, repetitions and polarities are programmable. The programming options of

these signals can be found in Chapter 2, under the "Programmable Timing Generator"

section. For simulations, all of the 8 signals are programmed with different behaviors

in order to check all the programmability options. Figure 3.22 shows the simulation

results of the programmable timing generator block.

The bottom 8 signals in the figure represent the generated timings in this block. For

the sake of simplicity, one frame is programmed as 32 lines and one line is pro-

grammed as 50 clock cycles.

As it can be seen, timings 0,1,3 and 4 are programmed as line based signals, which

48

Figure 3.22: Simulation results of the programmable timing generator block.

means they are activated in every line or two. The "signal0_out" is programmed as

an active high signal produced in every line. The "signal1_out", on the other hand,

chosen as the same signal with different polarity which is active low. Timings 3 and

4 are even and odd versions of the timing 0.

One other property of this block is that it can also produce frame based signals. Tim-

ings 5,6 and 7 can be shown as examples. The "signal5_out" is programmed such

that it is only active in particular line, which is line number 15 in this example. The

signals 6 and 7 are even and odd versions of the timing 5. However in this case, even

and odd calculated from the frame count instead of line count.

Finally the timing "signal2_out" is tied to a static value, which is logic 1 in this case.

Similarly, it is also possible to tie the timings down to logic 0, which is not shown in

this example due to the number of outputs.

In this chapter, the verification of the ASIC is explained in block level. Each block

is simulated with different scenario that is easy to handle. Some simulations are con-

ducted with multiple blocks tied together for better understanding. In some simula-

tions, the model of the external electronics, such as sensor and host, are also included

for correct verification. Since the verification of the blocks are completed, the im-

plementation can be performed starting with FPGA tools. Following section explains

the different implementation methods of the designed ASIC.

49

50

CHAPTER 4

DESIGN IMPLEMENTATION

In the previous chapters, the design of the ASIC with its features are discussed. The

simulation results of the modules that are designed for the ASIC are also justified. In

this chapter, the physical implementation of the digital ASIC will be explained. First,

the implementation of the complete design on an FPGA device will be given. Then,

the silicon implementation of the verified design will be explained.

4.1 FPGA Implementation

The simulation verifications of the designed systems are essential in order to be sure

about the behavior of the circuit. However, it may not be enough for some designs.

For example, if the circuit is designed to be a part of a system, it is better to test the

design with the whole system. For such applications, FPGA implementation plays a

crucial role. This process can also be called as emulation or prototyping, and it offers

simpler verification while speeding up this verification process [22].

For the FPGA implementation, the system that can be seen in Figure 1.8 is used. This

system includes a 640x512 image sensor coupled with MT6415CA readout circuit, a

2-channel 14-bit ADC card and a USB accessible FPGA card with Xilinx Spartan 6

FPGA. This system is chosen because it includes the actual sensor that is planned to

be used along with the designed digital ASIC. Also, it is possible to test the essential

ASIC features with this hardware.

51

4.1.1 Communication Tests

In order to communicate with the ASIC in an easy way, an ASIC test software is

developed. With this software, the functionality tests, including communication, can

be handled in an efficient way. Therefore, the test results of the ASIC is captured

from this software.

The communication tests are performed to verify the simulations of the ASIC com-

munication module and the memory. The communication commands are tested one-

by-one, started from ASIC memory commands.

Figure 4.1: Screen capture of the "WR_A" command test. For tests, the location with
the address "0x01" is programmed with the data "0xABCD".

The first command is "WR_A", which corresponds to "Write to ASIC memory" func-

tion. Figure 4.1 shows the screen capture of the "WR_A" command test. For tests,

52

the location with the address "0x01" is programmed with the data "0xABCD". As

it can be seen from the log textbox, which is located at the bottom of the GUI, the

"WR_A" command is executed.

In order to verify the "WR_A" command test, the programmed memory location

should be read back. This brings the "RD_A" command test, which stands for the

"Read from the ASIC memory" function. For this test, the pre-programmed location,

whose address is "0x01", is read and the result is printed to the textbox under "Re-

ceive" part. Figure 4.2 shows the screen capture of the "RD_A" command test with a

received data of "0xABCD" from the address "0x01". The verification can be made

from the log window by observing the sent and the received data are identical.

Figure 4.2: Screen capture of the "RD_A" command test with a received data of
"0xABCD" from the address "0x01".

After the ASIC memory read and write tests, the sensor memory operations should

53

be verified. For this verification, the randomly selected sensor memory location is

read to see the default content. Figure 4.3 shows the screen capture of the "RD_S"

command test, part 1. The "Address" textbox shows the current read address, which

is "0x04". The result is printed to the "Receive" textbox, which is "0x1249".

Figure 4.3: Screen capture of the "RD_S" command test, part 1. The "Address"
textbox shows the current read address, which is "0x04". The result is printed to the
"Receive" textbox, which is "0x1249".

The next test is the verification of the "Write to sensor memory" command, which

is abbreviated as "WR_S". For the test, the previously read sensor memory location

is programmed with a random value. Figure 4.4 shows the screen capture of the

"WR_S" command test. The address is assigned as "0x04" and the data is given as

"0xF0F0". The log window shows the sequence of these events.

In order to check the sensor memory write function, the written address should read

54

Figure 4.4: Screen capture of the "WR_S" command test. The address is assigned as
"0x04" and the data is given as "0xF0F0".

back. Figure 4.5 shows the screen capture of the "RD_S" command test, part 2. The

"Address" textbox shows the current read address, which is "0x04". The result is

printed to the "Receive" textbox, which is "0xF0F0".

The final communication command that should be tested is the "Update sensor mem-

ory" command, which is "UPD_S". For this command, the related ASIC memory

location that includes the sensor memory update interval is programmed first. Then,

the corresponding sensor mirror memory, which resides in the higher half of the ASIC

memory, is programmed. After those operations, the "UPD_S" command is executed.

After this execution, the updated sensor memory locations are read back and com-

pared with the corresponding sensor mirror memory. Note that since it is difficult to

show each step separately, the results are not shown with a screen capture. However,

55

Figure 4.5: Screen capture of the "RD_S" command test, part 2. The "Address"
textbox shows the current read address, which is "0x04". The result is printed to the
"Receive" textbox, which is "0xF0F0".

this operation can be thought as the multiple occurrence of the "WR_S" event.

4.1.1.1 Instruction Controller Tests

The tests for the instruction controller are held on the same camera setup. For this

test, the commands that are explained in the Table 2.4 are used. As the test vector, the

instruction memory is programmed similarly to the simulation setup input used in the

Chapter 3.

It can be remembered that the simulations are performed with different sensor set-

tings take place in consecutive frames. This method is used when multiple different

56

frames of same scene are necessary. These differences between frames can be ex-

pressed in many way; like wavelength, focus, exposure etc. Those multiple frames

can be used for "image fusion", which means combining multiple images by extract-

ing meaningful data from each of the single images[23]. One common method of this

can be stated as the multiple exposure imaging. In this method, it is possible to obtain

an image from differently exposed images, leaving under-exposed and over-exposed

areas behind. This is used to increase dynamic range and it forms the basics of High

Dynamic Range (HDR) imaging[24]. For the instruction controller tests that in the

ASIC, the dual exposure in consecutive frames is implemented.

For the dual exposure test, the instruction memory is programmed according to the

two different exposure levels. Figure 4.6 shows the instruction memory map of the

dual exposure programming event. As exposure times, 5ms and 20ms are selected

with the current test conditions.

Figure 4.6: Instruction memory map of the dual exposure programming event.

In addition to the instruction memory, the programmable timing generator block is

also programmed according to the sensor needs. One of these timings is used to

trigger the frame synchronization input of the sensor. Also the arithmetical unit is

programmed for the normalization of the image, which will be explained in the data

path tests.

The whole camera setup is used with the mentioned settings. The video output is

collected with the developed ASIC test software. Figure 4.7 shows the video screen

capture with two different exposure settings. The upper picture represents the image

with 20 ms exposure time and the bottom picture represents the image with 5 ms

exposure time. Note that the software shows the upper 8 bit part of the incoming 14

57

bit ADC data. Any other processing or manipulation techniques are not performed

on the raw image.

Figure 4.7: Video screen capture with two different exposure settings. The upper pic-
ture represents the image with 20 ms exposure time and the bottom picture represents
the image with 5 ms exposure time.

58

The two differently exposed images includes different data. The under-exposed parts

in less exposed image can be seen clearly in the other. On the contrary, the saturated

parts in more exposed image can be seen in the other. The two images can be com-

bined in many ways. The simplest averaging is performed on the image using the

software to see the effects of double exposure. Figure 4.8 shows the video screen

capture with two different exposure settings and average of the two images. The bot-

tom picture is constructed from the top two images which are 5 ms exposed image

and 20 ms exposed image, respectively.

Figure 4.8: Video screen capture with two different exposure settings and average of
the two images. The bottom picture is constructed from the top two images which are
5 ms exposed image and 20 ms exposed image, respectively.

59

4.1.2 Data Path Tests

In order to verify the data path implementation, the previously explained camera setup

is used. In this test, the communication tests are also included since it is necessary

to program the ASIC and the sensor, properly. The main reason to perform this test

is to verify the data acquisition of the ASIC. The sensor is programmed to give two

channel video output to the two channel 14-bit ADC card. The ADC outputs are given

as inputs to the two of the ASIC input channels. The output is observed at the output

channels of the ASIC.

There are some other programming options for the data path also. The arithmetical

unit and the encoder options are also important to get true values from the outputs.

The encoder part is held disabled to obtain meaningful data at the video outputs. With

the different settings of the arithmetical unit, multiple tests are conducted.

For the first test, the arithmetical unit is programmed to give static values at the out-

put. This test is performed to verify the data path after the arithmetical unit. In order

to see the difference between the two channels, they are programmed as distinct val-

ues. Figure 4.9 shows the video screen capture of the event for which the data is

supplied statically from the arithmetical unit. For this test, channel 0 and channel 1

are programmed with the minimum and maximum count values, respectively.

The second test is conducted with the similar thought, but different static data providers.

This time, the arithmetical unit programmed as transparent, i.e. the input is transferred

to the output without any change in the value. However, the data input channels of the

ASIC are connected to static values instead of the sensor video outputs. The values

of the static inputs are programmable through the developed software. Figure 4.10

shows the video screen capture of the event for which the data is forced statically

from the ASIC data inputs. For this test, channel 0 and channel 1 are forced to the

minimum and maximum count values, respectively. Note that while the previous test

verifies the data path after the arithmetical unit, this test ensures the functions of the

whole data path in terms of inputs and outputs.

The third test about the verification of the data path is the acquisition of the sensor

video outputs. In order to follow the verification process easily, the setup mentioned

60

Figure 4.9: Video screen capture of the event for which the data is supplied statically
from the arithmetical unit. For this test, channel 0 and channel 1 are programmed
with the minimum and maximum count values, respectively.

in the second test is edited and the ASIC video data inputs are connected to the sensor

video outputs. The data path is held in the transparent settings to see the raw video

outputs at the end of the data path. This raw video data is collected with the developed

software and displayed on the host computer. Figure 4.11 shows the video screen

capture of the event for which the raw data is collected from the sensor.

The results of the third test shows that it is hard to see a proper image from the raw

video data due to the small signal levels. For example for an 14-bit system, looking to

the full scale counts from 0 to 16383 when the image information lies between 8000

and 12000 may not be a good idea. To overcome this problem, the image should be

normalized or the histogram of the image should be equalized[25]. The forth test is

about this issue and it tries to verify the arithmetical unit by implementing a linear

61

Figure 4.10: Video screen capture of the event for which the data is forced statically
from the ASIC data inputs. For this test, channel 0 and channel 1 are forced to the
minimum and maximum count values, respectively.

histogram equalization technique.

The range of the pixel values in an image can be expressed as,

NRange = NMax −NMin + 1 (4.1)

where NMax is the maximum pixel value and NMin is the minimum pixel value. On

the other hand in the case of small video signal levels, the meaningful range of the

pixel values in an image can be expressed as,

NMeanRange = NMeanMax −NMeanMin + 1 (4.2)

where NMeanMax is the maximum meaningful pixel value and NMeanMin is the mini-

mum meaningful pixel value. In other words, the NMeanRange can be expressed as the

62

Figure 4.11: Video screen capture of the event for which the raw data is collected
from the sensor.

range where the normalization is desired. With these variables are in hand, the new

value of a given pixel can be expressed as,

N = (NCurrent −NMeanMin) ∗ (NRange/NMeanRange) +NMin (4.3)

where N is the normalized pixel value and NCurrent is the current pixel value. For

14-bit pixel values, since NMax and NMin is equal to 16383 and 0, respectively;

Equation 4.3 becomes,

N = (NCurrent −NMeanMin) ∗ (16384/NMeanRange) (4.4)

Equation 4.4 shows that, with the proper selection of NMeanRange and NMeanMin val-

ues, the normalized pixel value, N , can be calculated with the "A*C+B" operation.

It can be remembered that this operation is in the list of the supported arithmetical

operations of the ASIC arithmetical unit. Therefore with the proper programming,

63

normalization can be applied on ASIC. Figure 4.12 shows the video screen capture of

the event for which the normalization is implemented on the video data. For this test,

NMeanRange is programmed as 4096 and NMeanMin is programmed as 9000.

Figure 4.12: Video screen capture of the event for which the normalization is im-
plemented on the video data. For this test, NMeanRange is programmed as 4096 and
NMeanMin is programmed as 9000.

4.1.3 FPGA Implementation Results

One of the important points in the design is the power consumption. In order to

estimate the power consumption of the design, Xilinx XPower Analyzer tool is used

along with the Xilinx ISE. The target architecture is selected as Spartan 6 since it is

used in the implementation and tests. In these estimations, constraints are selected

according to the different clock domains of 40MHz and 10 MHz. Table 4.1 shows the

estimated power summary of the FPGA implementation.

64

Table4.1: Estimated power summary of the FPGA implementation.

Dynamic Static Total
Supply Power (mW) 23.50 36.40 59.90

Besides the power consumption, the instance count of the synthesized design is an

important factor for the area estimation. Table 4.2 shows the synthesis results of the

FPGA implementation.

Table4.2: Synthesis results of the FPGA implementation.

Instance Count
RAM (16x16 bit) 4

Adders/Subtractors 32
Adder Trees 4

Counters 2
Accumulators 8

Registers 4831
Comparators 37
Multiplexers 713

Xors 52

The synthesized implementation is then mapped to the FPGA. Table 4.3 shows the

map results of the FPGA implementation.

Table4.3: Map results of the FPGA implementation.

Instance Count
Slice Registers 5160

Slice LUTs 6914

The mapped results are then given to the place and route tool. On the final result, the

timing analysis is performed and a maximum frequency of approximately 50MHz is

65

obtained. Note that this timing result is obtained with 40MHz timing constraints on

the clock lines.

4.2 ASIC Implementation

The other method of implementing the designed ASIC is the physical implementation.

As explained in the Chapter 1, there are multiple methods of this implementation.

Here, the standard cell based implementation method is selected for the ASIC.

The main reason behind this selection is to be able to use automatic standard cell im-

plementation tools, which is the way of converting RTL designs into physical layout.

Since the ASIC design is completed with the Verilog HDL, such tools are necessary

for ASIC implementation. There are multiple tools in the industry for such designs.

In this work, the Cadence Encounter software is used. This software covers all the

steps of implementation from RTL to layout[26].

In Chapter 1, the implementation steps of the ASIC are given in the Figure 1.7 as

it can be remembered. Mentioned figure shows the implementation steps roughly.

Figure 4.13 shows the detailed ASIC design flow.

In the ASIC implementation method, the steps that are given in the Figure 4.13 are

followed. For the design and synthesis, a 90nm standard cell library is used with

a supply voltage of 0.9V. The timing requirements are given as the same as in the

simulations and FPGA implementation. In this way, the physical implementation of

the proposed design is completed.

As it can be seen, the implementation starts with the RTL design entry, which is

performed using Verilog HDL in this design. After this process, the synthesis tool

converts the design into a netlist which is formed by standard cells. Then, this netlist is

mapped to an initial layout placement. Figure 4.14 shows the initial layout placement

of the physically implemented digital ASIC core with a square floor plan.

The placement operation is followed by the clock tree placement operation. The

connections between the placed cells are made in the routing stage and the final design

is verified in terms of timing, design rules and equivalence with the netlist. Note that

66

Figure 4.13: Detailed ASIC design flow.

between the important steps, one or more optimization stages are added to obtain a

better final product.

Figure 4.15 shows the top level layout of the physically implemented digital ASIC

core with a square floor plan. The layout measures approximately 550um both in

height and width.

4.2.1 ASIC Implementation Results

For the power estimation of the ASIC implementation, the Power Analysis tool of the

Cadence Encounter software is used. In the estimations, different switching ratios are

applied with the dominant frequency of 40MHz. Table 4.4 shows the estimated power

summary of the ASIC implementation for different switching modes. Note that the

frequency is selected as 40MHz although some parts of the design (e.g. data path)

67

Figure 4.14: Initial layout placement of the physically implemented digital ASIC core
with a square floor plan.

run at 10MHz. These results can be inferred as the worst case dissipations obtained

from the power analysis tools.

Table4.4: Estimated power summary of the ASIC implementation for different
switching modes.

Internal Switching Leakage Total
Power @ 20% switching (mW) 2.265 0.93 1.084 4.279
Power @ 50% switching (mW) 5.263 2.21 1.084 8.557

Power @ 100% switching (mW) 10.03 4.213 1.084 15.32

In order to obtain some information on the area coverage of the ASIC implementation,

instance counts should be examined. Table 4.5 shows the synthesis results of the

ASIC implementation.

One of the most important points in the ASIC implementation process is the timing

results. In this implementation, 40MHz timing constraints are applied to the clock

lines. With these settings, approximately 50MHz maximum working frequency is

obtained.

68

Figure 4.15: Top level layout of the physically implemented digital ASIC core with
a square floor plan. The layout measures approximately 550um both in height and
width in a 90nm CMOS process.

Table4.5: Synthesis results of the ASIC implementation.

Instance Count
Sequential 5880

Inverter 627
Logic 11430

The obtained power estimations of the FPGA and ASIC designs can be compared.

While comparing those results, it should be noted that the technology node of the

ASIC implementation is 90nm while the node of the Xilinx Spartan 6 family is

69

45nm[27]. The reason to use a 90nm process in the ASIC implementation is to be

as close as possible to the FPGA implementation in terms of technology node. If any

other technology is desired, the design can be easily migrated to the other nodes since

the used design flow is straightforward. With these specifications in mind, it can be

seen that the ASIC implementation is advantageous over the FPGA design in terms

of power.

In the implementation results, the final instance counts of both designs are exam-

ined. However, it is not possible to deduce the direct comparison results from these

numbers. The reason behind this problem is the difference between the mapping li-

braries of the two implementation methods. While FPGA implementation uses slices

and LUTs to map the given design, ASIC implementation method uses a pre-defined

standard cell library. However if a comparison is desired, the similar numbers of

sequential elements in both designs can be observed.

Finally, the timing analysis results of the two designs can be observed. With the sim-

ilar timing constraints, up to 50MHz maximum frequency is obtained on the both de-

signs. Note that on the ASIC implementation, similar timing performance is achieved

with the FPGA implementation; with less power consumption.

In this section, the different implementation methods of the designed circuit is given

with the tests and analysis. The given design parts in previous chapters are verified

using sensor-in-the loop tests and the FPGA tested circuit is implemented using high-

level synthesis tools. In the following chapter, the conclusion of the thesis will be

explained.

70

CHAPTER 5

SUMMARY AND CONCLUSION

The thesis deals with the design of a digital ASIC that is used for for drive and data

acquisition of image sensors. After the determination of the design specifications,

the ASIC is designed using Verilog HDL. This design then simulated using Xilinx

design and simulation tools. After the simulation verifications, the ASIC is tested on

a Xilinx Spartan 6 FPGA board with the sensor-in-the-loop tests. The final design is

converted to the physical layout using automated design tools. The achievements that

are obtained while designing the ASIC can be summarized in the following way:

1) The design can handle image sensor communication and data acquisition while

generating necessary periodical signals that are needed by the sensor. During those

operations, it offers a wide range of programmability options as well.

2) The programming options of the ASIC can be controlled through a standard 3-wire

SPI interface in slave mode. The programming is simplified with the help of the pre-

defined communication commands. These communication commands are handled

by the communication module which handles all the communication between ASIC-

sensor and host-ASIC interfaces.

3) The ASIC includes 256x16 bit register based memory. This 256 word memory

is used to save the sensor settings, ASIC configurations and some instructions. The

sensor settings are saved in the upper half part of the memory and all the sensor mem-

ory is mapped to this part. The instruction memory saves sequential instructions that

are used for periodical sensor operations. Finally, the ASIC configuration memory is

used to store the necessary ASIC settings.

71

4) The instructions that are written in the instruction memory can be used for period-

ical sensor operations. With it own instruction set, the frame based periodicity of the

sensor can be controlled through this memory. This part of the memory is controlled

with the instruction controller module which includes an address counter and a simple

state machine for this operation.

5) The sensor timings can be controlled with the programmable timing generator

block of the ASIC. This block can generate up to 8 timing signals with a wide range

of programmability options. Generation of line based, frame based, static, active low

and active high signals are some of these programmability options. These settings are

selected while considering general image sensor operations.

6) The data path of the ASIC can acquire the video data output of the sensor. Up to 4

channels of video are supported. Each channel consists of an arithmetical unit and an

encoder. Mentioned parts bring some manipulation capabilities over the video data.

The arithmetical unit resides in this path can apply some arithmetical operations on

the data like addition, subtraction or multiplications as well as some logical operations

like and, or, xor. The encoder, on the other hand, ensures an error-free communication

if the output serialization is the case.

7) The whole ASIC is designed using Verilog HDL in a modular way. The design is

simulated using Xilinx design tools. In the simulations, the ASIC is connected with

the sensor device models as well.

8) After the simulations, the ASIC is tested on a complete image system. The system

includes a MT6415CA image sensor, a Spartan 6 FPGA and a 2-channel 14-bit ADC

card. The ASIC is placed in the FPGA and tested accordingly. With this way, the

sensor-in-the-loop tests are conducted and the features of the ASIC are verified with

the real hardware.

9) The verified ASIC is given to the synthesis tools to obtain physical layout of the

design. For this operation, Cadence Encounter software is used with a 90nm stan-

dard cell library. With this way, the layout of the ASIC is obtained with the design

automation tools. The final layout measures approximately 550um both in height and

width.

72

10) Finally, the two implementation methods are compared according to the obtained

power, area and timing results. From these comparisons, it is seen that the ASIC

implementation is advantageous over the FPGA implementation in general.

Although the ASIC provides wide range of programmability options, some of the

features can be improved. The future work for the ASIC can be expressed in the

following way:

1) The arithmetical unit resides in the data path can be improved to obtain advanced

operations. For example, the frame based operations like dark-image subtraction or

filtering can be given as examples.

2) For frame based operations the device memory should be increased. For this rea-

son, a custom designed memory can be used in the ASIC. Another solution can be

the addition of the supports for external memory modules.

73

74

REFERENCES

[1] Programmable Logic Design, Quick Start Guide. Tech-
nical report, Xilinx, 2008. also available at
http://www.xilinx.com/support/documentation/boards_and_kits/ug500.pdf
[Online; accessed 04-Feb-2014].

[2] Selim Eminoglu, Murat Isikhan, Nusret Bayhan, M. Ali Gulden, O. Samet In-
cedere, S. Tuncer Soyer, Serhat Kocak, Gokhan S. Yilmaz, and Tayfun Akin.
MT6415CA: a 640x512-15um CTIA ROIC for SWIR InGaAs detector arrays,
2013.

[3] Clifford E. Cummings. Simulation and Synthesis Techniques for Asyn-
chronous FIFO Design. In SNUG (Synopsys User Group Confer-
ence), San Jose, CA, 2002. also available at http://www.sunburst-
design.com/papers/CummingsSNUG2002SJ_FIFO1.pdf [Online; accessed 04-
Feb-2014].

[4] J. Goldie and S. Poniatowski. Lvds goes the distance? SID Symposium Digest
of Technical Papers, 30(1):126–129, 1999.

[5] CCD Analog Front-End with Timing Generator for Digital Cam-
eras. Technical report, Texas Instruments, 2013. also available at
http://www.ti.com/lit/ds/symlink/vsp8133.pdf [Online; accessed 04-Feb-2014].

[6] E.A. Bender and S.G. Williamson. A short course in discrete mathematics.
Dover books on mathematics. Dover Publications, 2005.

[7] 7 Series FPGAs Configurable Logic Block User Guide.
Technical report, Xilinx, 2013. also available at
http://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CL
B.pdf [Online; accessed 04-Feb-2014].

[8] W.J. Daily and A. Chang. The role of custom design in ASIC chips. In Design
Automation Conference, 2000. Proceedings 2000, pages 643–647, 2000.

[9] D.G. Chinnery and K. Keutzer. Closing the power gap between ASIC and cus-
tom: an ASIC perspective. In Design Automation Conference, 2005. Proceed-
ings. 42nd, pages 275–280, 2005.

[10] M.J.S. Smith. Application specific integrated circuits. VLSI systems series.
Addison-Wesley, 1997.

75

[11] David G. Chinnery and Kurt Keutzer. Closing the Power Gap between ASIC
and Custom - Tools and Techniques for Low Power Design. Springer, 2007.

[12] Ian Kuon and J. Rose. Measuring the Gap Between FPGAs and ASICs.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, 26(2):203–215, 2007.

[13] Andreas Ehliar. Performance driven FPGA design with an ASIC perspective,
Linköping University, Ph.D. dissertation, 2009.

[14] FLIR Lepton. also available at http://www.flir.com/cvs/cores/view/?id=62648
[Online; accessed 19-Mar-2014].

[15] SIDECARTM ASIC. also available at http://www.teledyne-
si.com/imaging/sidecar.html [Online; accessed 19-Mar-2014].

[16] Acadia R© II Embedded Video Processors. also available at
http://www.sri.com/engage/products-solutions/acadia-ii-embedded-video-
processors [Online; accessed 19-Mar-2014].

[17] Specifications of the Camera Link Interface Standard for Digital Cam-
eras and Frame Grabbers. Technical report, 2000. also available at
http://www.imagelabs.com/wp-content/uploads/2010/10/CameraLink5.pdf
[Online; accessed 04-Feb-2014].

[18] M. Mano and C.R. Kime. Logic and computer design fundamentals. Prentice
Hall, 3rd edition, 2004.

[19] A. X. Widmer and P. A. Franaszek. A DC-Balanced, Partitioned-Block, 8B/10B
Transmission Code. IBM Journal of Research and Development, 27(5):440–
451, 1983.

[20] LVDS Owner’s Manual, Including High-Speed CML and Signal Condi-
tioning. Technical report, Texas Instruments, 2008. also available at
http://www.ti.com/lit/ml/snla187/snla187.pdf [Online; accessed 04-Feb-2014].

[21] Xilinx Design Tools - ISE Design Suite 14. also available at
http://www.xilinx.com/publications/matrix/Software_matrix.pdf [Online; ac-
cessed 24-Mar-2014].

[22] M. Courtoy. Emulation: prototyping without the hassles of fpga-to-asic conver-
sion. In WESCON/’95. Conference record. ’Microelectronics Communications
Technology Producing Quality Products Mobile and Portable Power Emerging
Technologies’, pages 283–, 1995.

[23] P.J. Burt and R.J. Kolczynski. Enhanced image capture through fusion. In Com-
puter Vision, 1993. Proceedings., Fourth International Conference on, pages
173–182, May 1993.

76

[24] S. Mann and R.W. Picard. Being ’undigital’ with digital cameras: Extending
Dynamic Range by Combining Differently Exposed Pictures. Technical Re-
port 323, M.I.T. Media Lab Perceptual Computing Section, 1994. also appears
IS&T’s 48th annual conference, Cambridge, Massachusetts, May 1995.

[25] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing (3rd Edi-
tion). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2006.

[26] Cadence Encounter Digital Implementation System: The fastest,
most deterministic path to power, performance, and area realiza-
tion. Technical report, Cadence, 2013. Data sheet, also available at
http://www.cadence.com/rl/resources/datasheets/edi_system_ds.pdf [Online;
accessed 04-Feb-2014].

[27] High-Volume Spartan-6 FPGAs: Performance and Power Leadership
by Design. Technical report, Xilinx, 2011. also available at
http://www.xilinx.com/support/documentation/white_papers/wp396_S6_HV_P
erf_Power.pdf [Online; accessed 22-Mar-2014].

77

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Imaging Systems
	Sensor
	External Electronics
	Analog-to-Digital Converter
	Controller
	Memory

	Digital Circuit Design
	Programmable Logic Devices (PLDs)
	Simple Programmable Logic Device (SPLD)
	Programmable Logic Array (PLA)
	Programmable Array Logic (PAL)

	Complex Programmable Logic Device (CPLD)
	Field Programmable Gate Array (FPGA)

	Application Specific Integrated Circuit (ASIC)

	Motivation for the Thesis

	Design of the Digital ASIC
	Design Requirements
	Image Sensor
	Serializer
	Host
	Speed Requirements

	ASIC Architecture
	Programming Interface
	Instruction Controller

	Memory
	Data Path
	FIFO
	Arithmetical Processing Unit
	8B/10B Encoder

	Programmable Timing Generator

	Simulations
	Serial Communication Unit and Memory
	Instruction Controller

	Data Path
	Arithmetical Processing Unit
	8B/10B Encoder
	Data Path - Top Level

	Programmable Timing Generator

	Design Implementation
	FPGA Implementation
	Communication Tests
	Instruction Controller Tests

	Data Path Tests
	FPGA Implementation Results

	ASIC Implementation
	ASIC Implementation Results

	Summary and Conclusion
	REFERENCES
	APPENDICES

