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ABSTRACT

DRBEM APPLICATIONS IN FLUID DYNAMICS PROBLEMS AND DQM
SOLUTIONS OF HYPERBOLIC EQUATIONS

Pekmen, Bengisen
Ph.D., Department of Scientific Computing
Supervisor : Prof. Dr. MUnevver Tezer-Sezgin

2014[191 pages

In this thesis, problems of fluid dynamics defined by the twoehsional convection-
diffusion type partial differential equations (PDEs) amved using the dual reci-
procity boundary element method (DRBEM). The terms othanttine Laplacian are
treated as inhomogeneous terms in the DRBEM applicationceQne both sides
are multiplied by the fundamental solution of Laplace emumtand then integrated
over the domain, all the domain integrals are transformeldotondary integrals us-
ing the Green’s identities. The inhomogeneous terms areoappated with radial
basis functions, and the space derivatives in convectivestare easily handled by
using the DRBEM coordinate matrix constructed from theahbasis functions. The
discretization of the boundary is achieved with linear edats. For the solution of un-
steady problems, first order Backward-Euler and third oktaubolt time integration
schemes are used. The boundary only nature of DRBEM prowdego obtain the
results in a small computational cost compared to the douhiasretization methods.
Incompressible fluid flow in cavities, natural and mixed aection flow in enclosures
are simulated when the medium is porous or non-porous, amdwwithout magnetic
effect. The numerical results are visualized for diffeneo-dimensional physical pa-
rameters in terms of streamlines, isotherms, vorticityuced magnetic field lines and
current density contours.

In the thesis, the differential quadrature method (DQM)Is®aised for solving es-
pecially problems defined by hyperbolic equations and neali in nature. DQM is
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made use of discretizing both time and space domains, argbthion is obtained at

one stroke or blockwise without the need of an iteration. it@inearities are handled
using an iteration procedure. Accurate results are oldairseng considerably small

number of Gauss-Chebyshev-Lobatto discretization paitntery small expense. Test
problems include Klein-Gordon, sine-Gordon equationgehligolic telegraph equa-
tions, and viscous Burgers’ equation.

Keywords DRBEM, Magnetohydrodynamics (MHD), DQM, natural and nadxen-
vection flow
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AKISKANLAR D INAM IGI PROBLEMLERNDE KARSILIKLI SINIR
ELEMANLARI METODUNUN UYGULAMALARI VE H IPERBOLIK
DENKLEMLERIN DIFERANSYEL KARELEME METODU ILE COZUMLERI

Pekmen, Bengisen
Doktora, Bilimsel Hesaplama Bolumu
Tez Yoneticisi : Prof. Dr. MUnevver Tezer-Sezgin

2014[191sayfa

Bu tezde, iki boyutlu konveksiyon-difizyon tipi kismi difansiyel denklemler tarafin-
dan tanimlanan akiskanlar dinamigi problemleri kakgisinir elemanlari yontemi ile
¢cozulmustur. Laplace teriminin disindaki terimlarsilikli sinir elemanlari yontemi
uygulamasinda homojen olmayan terimler olarak kabul redHier iki taraf, Laplace
denkleminin temel ¢cozimu ile ¢arpilir ve sonra taniinmiesi Uzerinde integrali alinir.
Tum tanim kiimesi Uizerindeki integraller Green ediilni kullanarak sinir integraline
donusturular. Homojen olmayan terimler, radyal e#rfonksiyonlari ile yaklastirilir,
ve uzay turevleriicin radyal temel fonksiyonlarindangiurulan koordinat matrisi kul-
lanilir. Sinirin ayriklastiriimasi dogrusal elemarilarelde edilir. Zamana bagh prob-
lemlerin gozimiinde birinci dereceden Geri-Euler géric dereceden Houbolt zaman
yonunde ilerleme metotlari kullaniimaktadir. Karghlisinir elemanlari metodunun
sadece siniri ayriklastirmasi, tanim kiimesini ayriki@s metotlara gore kucguk bir
maliyetle sonuclari elde etmeyi saglar. Ortam gozeanektla gozeneksiz ve manyetik
etki varken ya da yokken, oyuklardaki sikistirllamayan skisi ve kapal sistem-
lerde dogal ve karisik konveksiyon akis problemlezigérek profilleri sunulmustur.
Sayisal sonuglar, farkli fiziksel parametreler icin stkimi konturlari, es 1s1 egrileri,
girdap konturlari, indiklenen manyetik alan dogrulagiakim yogunlugu konturlari
olarak gorsellestiriimektedir.

Tezde, diferansiyel kareleme metodu da, 6zellikle, degr olmayan hiperbolik den-
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klemlerle tanimli problemleri ¢ozmek icin kullaniimakhr. Diferensiyel kareleme
metodu hem zaman hem uzay tanim kiimelerini ayriklagkrauollanilir, ve ¢ozim
ardisik yontem gerek olmaksizin blok blok veya tek bip&tselde edilir. Dogrusal
olmayan durumlar bir ardisik prosedurt kullanara&ngl. Hassas sonuclar oldukca az
sayida Gauss-Chebyshev-Lobatto ayriklastirma noktakaullanarak kiiguik maliyetle
elde edilir. Test problemleri Klein-Gordon, sine-Gordan#élemleri, hiperbolik tele-
graf denklemleri ve viskoz Burgers denklemini igerir.

Anahtar Kelimeler Karsilikli Sinir Elemanlari Metodu, Manyetohidrodinénakis,
Diferansiyel Kareleme Metodu, dogal ve karisik konvgksiakis



To Habibe and Selguk
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CHAPTER 1

INTRODUCTION

A fluid is distinguished from a solid with its continuous defation when it is exposed
to a force. The fluid dynamics deals with the motion of a fluid anergy exchange
in the fluid. Thus, the fundamental equations of fluid dynanaiee based on the con-
tinuity equation, the momentum equations and the energgtexqu(the Navier-Stokes
equations plus the energy equation).

If the energy transfer is due to the temperature differetine it is called heat transfer.
The diffusion of energy is referred to as conduction, andctiresection is the transfer
of energy due to the movement of the fluid.

Even though different types of regions (in which the fluid #)vwsuch as cavities or
channels are considered in most of the studies, the fluid flosugh a porous medium
has also taken a great deal of attention due to the applisadigsing in geophysics, in-
sulation for buildings, packed sphere beds and chemicalyt&treactors. In different
combinations of models (Darcy, Brinkman, Forchheimerhvective flows in porous
media are investigated extensively.

The effect of an externally applied magnetic field on the flilngdv and heat transfer
has also attracted a great deal of interest. When the fluitt@rigally conducting,
fluid and the externally applied magnetic field interact vadch other, and generate
an electromotive force resulting with induced current dignghich causes the induced
magnetic field. The total magnetic field (external and indiigeteracts with the in-
duced current density such that the Lorentz force emergks.nfodel equations are
the Maxwell’'s equations from electrodynamics combinedhihie Navier-Stokes equa-
tions from fluid dynamics. In some cases, the induced magfield is neglected due
to the little impact of velocity field on the total magnetiddie

Some remarkable fluid properties which are mostly mentigheslighout the thesis
may be summarized as followd/iscosityof a fluid is the resistance of the fluid to
shear stresses. The kinematic viscositgnd the dynamic viscosity are related to
each other with the relatian= 1/ p, wherep is the fluid density. If is constant, then
the fluid is calledncompressibleViscous flows are classified as laminar and turbulent
flows. If a fluid flows in a smooth or regular path, the flow is edllaslaminar flow
The converse is theurbulent flow Viscous forces in laminar flow, and inertial forces
in turbulent flow are dominant, respectivelewtonian fluidair, water, gasoline) is a



fluid that the viscous stresses are linearly related to tiagnstate.

1.1 Fluid dynamics, Magnetohydrodynamics and heat transfeequations

1.1.1 Navier-Stokes equations

The fluid motion is characterized by the Navier-Stokes aquoat In most of the engi-
neering problems such as modeling the turbulent hydrodimjarablems, flow around
an airfoil etc., Navier-Stokes equations are encountered.

These equations may be formed in different ways as the \glpoessure, the stream
function only (fourth order), the velocity-vorticity antié stream function-vorticity
forms. Each of these forms has advantages and disadvantages difficulty in
velocity-pressure form is the absence of boundary contitior the pressure field,
and the non-existence of pressure variable in the conyimgjuation. However, the
solution of Navier-Stokes equations will be in original iednles as the velocity and
pressure. The disadvantage of the stream function onlytffaarder) formulation
is the necessity of two boundary conditions at one boundaigtp Although the
velocity-vorticity formulation eliminates the pressuerh, an additional criterion is
examined to check the continuity condition. The streamftionevorticity formulation
is an efficient formulation due to the elimination of pregstogether with automatic
satisfaction of continuity equation. This formulation igtrsuitable for three dimen-
sion due to the definition of stream function or computati@oanplexity. On account
of the two-dimensional flow consideration, the stream fiomet/orticity form of the
Navier-Stokes equations has been adopted throughoutd¢hlis th

Basic equations for unsteady, two-dimensional, laminax ®d an incompressible,
viscous fluid without body forces are given in terms of velp@nd pressure of the
fluid

Vu=0 (continuity equation) (1.1a)
vViu = (?9_1: +uVu+ %Vp (momentum equations) (1.1b)

whereu = (u,v) is the velocity field of the fluidyp is the fluid density, is the
kinematic viscosity ang is the pressure. The flow is driven by means of a pressure
gradientVp.

For obtaining dimensionless equations, the following donensional variables are
defined as

/ z Y ;U v tu / p

== =2 — = — = — 1.2

where L is the characteristic lengtiy is the characteristic velocity. Substituting
these variables into Eq&.03-(1.10), and then dropping the prime notations, the non-
dimensional governing Navier-Stokes equation&in- v — p) form are expressed as
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ou Ov

b T 1.3
o + 3y 0 (1.3a)
1, ou ou  Ou Op
Sl v Y I Ve e 1.
Rev T +u8x+v(’9y+6:ﬁ (1.3b)
1y Ov ov ov  Op
Evv_8t+u8x+vﬁy+8y’ (1.3c)

where Re = UL/v is the Reynolds number which is the ratio of inertial forces t
viscous forces. In general, the laminar flow is charactdrizeRe < 2100.

In order to satisfy the continuity condition, stream fuonatis defined asu(= V x )
_o W
oy’ oz

By the definition of vorticityw = V x u, and Eq[(.4), the stream function equation
is derived as

_Ov 0w 0 00N O [0V g
YT o 8y_8x< (%) 8y<8y)_ VY (1.5)

(1.4)

u

If Eq.(1.3d and Eql[.30 are differentiated with respect toandy, respectively, and
then subtracted from each other, the vorticity transpanéiqn is obtained as
_Ow  pow O ow

L o
Sl v PR e 1.
Rev v ot + Jy dxr  Ox Oy (1.6)

Equations[{.5)-(1.6) constitute now the laminar, time dependent flow of an incom-
pressible, viscous fluid in a two-dimensional region. Sitieeboundary information

is usually given for the velocity of the fluid, stream funetiand/or its normal deriva-
tives are available on the boundary through the relailod)( But, the vorticity is
unknown and must be determined by some means on the bounfasyis another
drawback of stream function-vorticity formulation altlgiuthe continuity equation is
automatically satisfied, and the number of equations isaedlu

1.1.2 Natural and mixed convection flows

The driving force for natural (free) convection in a fluid flaswhe temperature varia-
tion of the fluid in the region considered. When the fluid istedadensity decreases
and the fluid rises. In a gravitational field, the net forcengen this movement and the
gravitational force emerges which is referred tdasyancy force Thus, the Navier-
Stokes equations accompanied with the energy equatioredéinatural convection
flow.

Natural convection flow has many applications such as mgldisulation, solar col-
lectors, ovens and rooms etc. Further, free convection floasg occur in bounded or
unbounded regions.



When the fluid motion is generated by an external force such @smp, fan or lid

as well as the temperature difference on the walls of theoregt is called forced

convection. The most encountered physical problems oftbonvection are the
lid-driven cavity problems.

Mixed convection flow is associated with both natural anatddr convection flows
according to the dominance of external force or temperaliffierence. The interaction
between natural and forced convection has numerous apptisas in thermal energy
storage tanks, air-conditioned rooms, etc.

The fluid properties are assumed to be constant except gemsite buoyancy term.
Buoyancy force is added ggcomponent of momentum equation (assumingdirection
of gravitational acceleration vector) according to Bonssqg approximation which is

P = pO[l - B(T - Tc)]7 (17)

wherep is the fluid densityp, is the density of the fluid at the reference temperature
Ty = T., B is the thermal expansion coefficient definedsas- (—1/p) (9p/0T), at
constant pressuré, is the temperature of the fluid;. is the cold wall temperature.

The two-dimensional mixed convection flow of an incomprelesiluid is considered
neglecting viscous dissipatiarand thermal radiatidf Then, the governing equations
involving Navier-Stokes equations and energy equatioas ar

Vau=0 (1.8a)
9 ou 1
vWhi= - +uVu+ ;Vp +gB(T —1T.) (1.8b)
T
aV*T = %—t +u.VT, (1.8¢)

wherea = k;/(pc,) is the thermal diffusivity with thermal conductivity; and specific
heat capacity,, g is the gravitational acceleration vector.

In order to make these governing equations dimensionkesfllowing non-dimensional
parameters are defined as

x Y u vy tu P T-—T.
L’ y L’ U’ U’ L’p pU27 Th—Tc’

(1.9)

where T}, is the heated wall temperature. Substituting [E§)(into Eqs[[.8), and
then dropping the prime notation and eliminating the presserms using the defini-
tions of stream function and vorticity (Ed&.4)-(1.5) and then cross differentiating,
subtracting, the non-dimensional governing equationgiims of stream functiog,

1 The irreversible conversion of work done against viscousd® into internal (thermal) energy.
2 Electromagnetic radiation emitted by accelerated chapgeticles (due to heat) in matter.
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temperaturd” and vorticityw are written as

V3 = —w (1.10a)
1 _, ow ow ow  Gr oT
— = — — U — ——— 1.1
Rev Y + Yo v Jdy  Re? Ox (1.106)
1 _,.. or 90T OT
T=— — — 1.10
PrRev ot +“ax +U8y’ (1.10c)
where the non-dimensional physical parameters are
3
pr=? pa= 92T p, (1.11)
(@ |4e%

with the gravitational acceleratiopand the temperature differendel” = T, — T,
between hot and cold walls.

Prandtl numbePr is ~ 0.71 for air and gaseous heliun¥r ~ 7 in water andPr =~
0.015 for mercury. Liquid metals provide the flows withr < 1 such that heat diffuses
faster than the momentum diffusion.

Grashof numbe¢:r is the ratio of buoyancy force to viscous force. The Richands
numberRi = Gr/Re? determines whether the flow is natural, forced or mixed con-
vection flow. The heat transfer is natural convectio®if>> 1, forced convection if

Ri < 1 and mixed convection iRi ~ 1.

The ratio of convective heat transfer to conductive heatsfiex is referred to adusselt
number Integrating the convective heat transfer coefficient anttiohg it by surface
(enclosure) lengtli, the average Nusselt numh®w is utilized as([137]

or
L f
— hd 0 _
Nu:u where hm:#

1.12
L ) Th _ Tc ( )

1.1.3 Mixed convection flow through a porous medium

Porous medium is characterized by pores between at leastdmogeneous material
constituents.

Darcy (1856) investigated the ratio of the water volume pasthrough a sand layer
to the pressure drop across the length of the layer. Thisisas relation for hydraulic
conductivitya;, as [L1]]
UL
Ap’
whereU is the fluid velocity,L is the layer length of the porous medium, af\d®
hydrostatic pressure difference between the entrancenarexit of the porous medium
layer. Then, this relation is extended to

UL

ap = —— =

(1.13)

ayp =

= % - (H) U, (1.14)

K
I K
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wherex is the permeability of the porous medium, anid the dynamic viscosity of the
fluid. The latter equation is called as Darcy’s law, and it haywritten in differential

form as [[1]]

—Vp-— %u =0, (1.15)

where the second term is mentioned as viscous or Darcy drag.

Brinkman (1949) generalized the Darcy’s law combining thefifluid viscous shear
(1V?u) and the internal fluid-solid viscous dragu(«)u). Thus, Darcy-Brinkman
equation for flow through porous media was defined as

Vp = p.Vu — gu, (1.16)

where . is the effective viscosity of the porous medium, gnd= ¢,; with ¢, =
V/V, as the porosity of the porous medium with volume of the flgicand the control
volumeV..

Later on, inertial terms are also added to EdLf). The generalized form of the mo-
mentum equation in a porous medium is givenEkl[[159

e o 10u 1 Vp u Cp
PVu=—-""4 —uvVu+ — + Sut+ £ 1.17
) u ep8t+egu u+ p +pliu—|—\/E\u\u, (1.17)
where|u| = vu? + v2, and
1.75(1 — a e
=L g o T (1.18)
dy € 150(1 —¢,)

the form coefficient and the permeability of the porous medivespectively, with
diameterd,, of the particle of fibre. The last term in Ef.[(7) is called as Forch-
heimer terms. In general, non-Darcy effect on the flow is m@red with the Darcy-
Brinkman-Forchheimer model. That is, the quadratic dragh$e(or Forchheimer
terms) gain importance when the fluid velocity is high (atigigRe numbers)/11§.

In local thermal equilibrium situation (the negligible tparature difference between
the solid and fluid phases), energy equation for porous medistated as

or
k. V°T = (pcy). 5 + (pcp) pu. VT, (1.19)
wherek.(= €,k + (1 — €,)ks) is the effective thermal conductivity, is the thermal
conductivity of the solidc, is the specific heat at constant pressuye,, ), is the
thermal capacity of the fluidpc, ). (= €,(pc,) r+(1—¢€,)(pc,)s) is the effective thermal
capacity of the porous medium, afjt, ), is the thermal capacity of the solid.

Mixed convection flow through a porous medium has taken gteal of attention in
the last few years due to the large number of applicationseathgrmal energy sys-
tems, storage of nuclear waste, etc. Books by Pop and Inghagh [ngham and
Pop [70], Nield and Bejan[11€], and Martynenko and Khramtso@3] also have lots
of details and application examples on convective flows nops media. In this thesis,
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the Brinkman-extended Darcy equations (and also Darcyldatan model) are stud-
ied, i.e. Forchheimer terms (nonlinear inertial effeatslEq.[L.17) are not considered.

Assuming the isotropic, homogeneous porous medium satlivéith an incompress-
ible,viscous fluid, the continuity equation, equations oftion (setting:, = 1) and the
energy equation for mixed convection flow are given@é |80

V=0 (1.20a)
1
v.Viu = du +uVu+-Vp+ Y +gp(T —1T,) (1.20b)
ot P K
. V*T = %—f +u.VT, (1.20c)

wherev, = ./ p is the effective kinematic viscosity, = k./(pc,); is the effective
thermal diffusivity with the effective thermal conductiyik..

In a similar way, applying the cross-differentiation withetdefinitions of vorticity
w = Jv/dx—0u/dy and stream function = 9y /dy, v = —0y /Ox to the Eqs[.20),
pressure terms are eliminated, and the vorticity transgapration is obtained.

For non-dimensionalization, the following dimensionleasables are defined d8(]

i y,:g )
L’ LU U
tU T-T wl 0

== T = Cow = — ) = 1.21
L’ Th—Tc’w U7¢ UL? ( )

whereU is the characteristic velocity, is the characteristic lengtf, is the cold wall
temperature, and), is the heated wall temperature. The non-dimensional forthef
Brinkman-extended Darcy equatiofisZ() in terms of stream function, vorticity and
temperature is derived as follows

V) = —w (1.22a)
1, oT or  oT
T=— — — 1.22
P'r’ReV ot +u8x +U8y’ ( b)
1, ow ow ow  Gr dT w
B eI e 1.22
ReV T o o v Oy Re?20x DaRe’ (1.22¢)

wherey, = u, v, = v are set whiles, = 1 is fixed, Prandtl Pr), Reynolds e),
Grashof (r) and Darcy ODa) numbers (dimensionless parameters) are given as

L ATL?
Pr:L, Re:U—, GT:L, Da = 2.
o v V2 L?

1.1.4 Mixed convection flow in a porous medium under the effémf a magnetic
field

When the porous medium is also exposed to an externallyeappiagnetic field, mo-
mentum equations contain the electromagnetic force efigerms of the strengti,
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of the applied magnetic field. Mixed convection flow in a paeoedium under the
effect of a magnetic field has also taken the great interggéaally in the applications
as heat exchanger devices, MHD accelerators and genedcked bed reactors, etc.

Neglecting the induced magnetic field in the fluid, the momeméquations, under the
effect of horizontally applied magnetic field, become

ou ou ou 10p v
2, _ 4z 1.23
v.Vu 8t+uax+vay+pax+ﬁu (1.23a)
ov ov ov 10p v o B2
2, 7 i D It TP _ Z—0
vV = T + up + U@y + Yy + v gB(T —T,) + ; v, (1.23b)

whereo is the electrical conductivity of the fluid3, is the magnitude of the applied
magnetic field. The-momentum equation includes the last term with the effect of
horizontally applied magnetic field.

The non-dimensional governing equations in terms of strieauction ), temperature
T, vorticity w using the same non-dimensional variables as ifIE2flf are written as

V) = —w (1.24a)
1, 9T or Or
1, ow ow ow  Gr dT w Ha? v
— = — — — — 1.24
Revw ot +u6$ +U8y Re? 8x+DaRe+ Re 0z’ ( ©)

where the non-dimensional parameter Hartmann nurhlaeis B/ (ko) /i, which is
the ratio of Lorentz force to viscous (shear) foreg\(?u).

1.1.5 Full Magnetohydrodynamic (MHD) flow equations

Magnetohydrodynamics (MHD) is a branch of science dealiitg the magnetic field
in electrically conducting fluids. An externally applied gmetic field interacts with the
conducting fluid (e.g. plasma or liquid metal), and fluid matchanges. The external
magnetic field influences the fluid motion (this influence ipressed mathematically
by including the electromagnetic force in the equations ofiam) and the fluid motion
changes in turn (through Ohm’s Law) the magnetic field. Theraction of the veloc-
ity and magnetic fields involving both hydrodynamic and gl@magnetic phenomena
determines the simultaneous consideration of the fluid en@ck equations and the
electromagnetic field equations making most MHD problerfficdit to study.

The great deal of interest on this subject is encountereddliie crucial applications
in geophysics, plasma physics, MHD generators, MHD punmg$;uments measuring
blood pressure, hydromagnetic dynamos, cooling of nuckstors etc.

In physical and mathematical basis, MHD equations are csegbrof the Navier-
Stokes equations of fluid dynamics and Maxwell’s equatidredextromagnetics. The
main difficulty for obtaining an analytical or numerical gbbn of these equations is
that the satisfaction of divergence-free conditions oneiy and magnetic field.
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Maxwell’s equations for neither magnetic nor dielectrictenals are stated aST]

V x B =y, (J + 60%—?) Ampere’s Law (1.25a)

VxE= —%—]? Differential form of Faraday’s Law (1.25b)
V.E = Eg Gauss’s Law (1.25¢)
V.B = 00 Solenoidal nature aB, (1.25d)

wherey,, is the magnetic permeability, is the total charge density (free and bound
charges)¢ Is the permittivity of free spacd, is the current density is the electric
field andB is the magnetic field.

The displacement currept0E /0t is neglected in Ampere’s law since the propagation
of electromagnetic waves is not consideii#dq, [147].

Ohm’s law characterizing the ability of materials to tramgpelectric charge under an
applied magnetic field is expressed in reference of laborditame as[109, (14]]
J=qu+o(E+uxB), (1.26)

whereo is the electrical conductivity. The convection currentis neglected in the
electromagnetic approximation due to the dominance of ectah proportion tar.

The total force per unit volume acting on the conducting flasidemonstrated as
F,=¢qE+J x B, (1.27)

where the termyE is neglected since the speed of electrons in conductingiBuess
than the speed of lighB[7, [141].

Thus, MHD equations are stated as

V xB=pu,J Ampere’s Law (1.28a)
0B
VXE= 5 Faraday’s Law (1.28b)
J=0(E+uxB) Ohm’s Law (1.28c)
F,=JxB Lorentz force (1.28d)

with the conservation of chardé.J = 0 and the solenoidal nature of magnetic field
V.B =0.

Momentum equations in an incompressible flow consist of #lecity components
and pressure gradient. In full MHD, Lorentz force is addedhtamentum equations
as a body force. Therefore, full MHD equations consist of motam equations and
induction equations if there is no any other source in théesys

Taking the curl of both sides of the Hifl.288 and Eq[{.284), the following equations
are written as

V x(VxB)=pu,(VxJ) (1.29a)
VxJ=0(VXE)+c(V x(uxB)). (1.29b)



Substitution of Eq.290) into Eq.[[.299 gives
V x(VxB)=pno(VxXE)+ p,o(Vx(uxB)). (1.30)

Then, using the Faraday’s law H§.28l) and the identityvV x (V x B) = V(V.B) —
V2B = — V2B due to the solenoidal nature Bf, Eq.[L.30) is rewritten as
0B

1 P

In the presence of heat transfer and induced magnetic fi@hentum equations will
include buoyancy force as well as the Lorentz force. Assgntite constant fluid
properties (.., o, v) except density variation following the Boussinesq apprax
tion, and neglecting Hall effe@ Joule heating effe@ and the viscous dissipation in
energy equation, the two-dimensional full MHD equationghwieat transfer for an

incompressible, viscous fluid are

Vau=0 (1.32a)
9 Ju 1 1
vViu = Fri u.Vu + ;Vp +gB(T —T.) — ;(J x B) (1.32b)
1, 0B
%—UVB—E—VX(UXB) (132C)
aV3T = %_z +u.VT, (1.32d)

whereu =< u,v,0 > is the velocity field andB =< B,, B,,0 > is the induced
magnetic field. These vector form of the equations may beittenwrexplicitly as

% n Z_Z _0 (1.33a)
vViu = % + u% + vg—Z + %g—i + pii’n (aaiy - aaix) (1.33b)
vV = % - u% - vg—; + %g—z — Piin (385;;/ — 6;;;) —gB(T —T.) (1.33c)
Mimvwm S Uaaiﬂﬁ B2 Byg—z (1.33d)
Uuimv?By = 8£y + u%ﬁy + Uaalzy — Bm% — Byg—z (1.33e)
aV*T = or - ua—T - or (1.33f)

o or  ay

The stream function-vorticity formulation is derived slarly as before (done for
Navier-Stokes equations) with the help of vorticity = V x u = (0,0,w) as in
Eq.@L.Y andu = 0v /9y, —v = Oy /0x definitions.

3 This effect is important for ionized gases in the case ofengtmagnetic field.

4 Heat generated by the current (emerging from an appliechpatelifference to a resistor) passing through a
resistor.
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Differentiating Eq{.33¢9 and Eq[{.33B with respect tar andy, respectively, and
then subtracting from each other, pressure terms are etednand vorticity transport
equation is obtained as

ot ox 0 ox
1 o (0B, OB o (0B, OB
- | = (= z B,——*-"2)|. (134
pum,[ O ( or Oy )+ oy ( dr Oy )] (139

For non-dimensionalization, the dimensionless variaatedefined as

/ X / y ! u ! / ’lp
= — = — — — — t —
x L’ y L’ u U’ /U U’ 7 Q/} UL
wL ., T-T. B , B,
e B, =2 B 1.35
e T, —T. 7=~ By v~ By (1.35)

whereB, is the magnitude of the applied magnetic field. Hence, thecioensional
form of the Eqs[I.33 is obtained as (AppendiX)

Re ot ox dy  PrReOdx
Ha? 0 (0B, 0B, 0 (0B, 0B,
— — | = - — = - 1.
ReRem { T ox ( ox oy ) Y Oy ( Oz y )] (1.360)
1 9 0B, 0B, 0B, ou ou
B, = — B,— — B,— 1.
Remv . 5 +u o +v By " B Yoy (1.36¢)
1 0B 0B 0B ov ov
B, = —Y Y Y B,— — B,—~— 1.
Remv v ot o ox v dy " Ox Yoy (1.36d)
1 _,. or or oT
PTR@V ot * " ox v 6_y’ (1.30€)
where
3
Re = @ Rem = ULop,,, Ra M, Pr = Z, Ha = ByL z (1.37)
v va Q@ \ vp

The magnetic Reynolds numbBem represents the ratio of advectiod & (u x B))

to diffusion of B (V?B/opu,,). If Rem > 1, advection dominates over diffusion
whereas diffusion dominates over advectio®ém < 1. In other wordsu has little
impact onB if Rem < 1. In this case, induced magnetic field is neglected, and the
damping effect on fluid motion is only the applied magnetitdfie

Notice that if the induced magnetic field is neglected in acl@sure under the in-
fluence of a horizontally applied magnetic field, the induosaynetic field will be
B = (B, 0,0). Garandet et al/58] showed that the two equations Ohm’s Law
J = o(—=V9 4+ u x B) (whered is the electrical potential) and the conservation of
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currentV.J = 0 are reduced t&?9 = 0 of which has a unique solutiddy = 0 since
there is an electrically insulating boundary around thdasure. Thus)J is reduced to
o(u x B) whereu = (u,v,0), and

i J ok B,
uxB=|u v 0| =—-vBk
By 0 0
i 7k
JxB=oc(uxB)xB=|0 0 —ovBy| =—0ovB2j.
B, 0 0 ]

As a conclusion, the termuvB? is seen in the--component of momentum equation
Eq.(I.23D as a last term.

Ampere’s Law [[.289 enables us to write the current density equation, iigj =
V x B wherej = (0,0, j) in terms of induced magnetic field components

1 (0B, 0B,
J—M—m<8—x— ay)' (1.38)

A Poisson type equation for the current density may also bamdd by using EJI(39).
Differentiating [.339 and [[.33¢ with respect ta; andz, respectively, then subtract-
ing from each other and using the divergence free condifions= 0 andV.B = 0,
the current density equation is deduced as

1_,. 0j 0j dj ow ow
- — s =4 )V _ (B2 4+ B ——
avj Mm<8t+u8x+vé)y x(?x—i_ Y oy
0B, (Ov Ou ov (0B, 0B,
_2|:8l‘ (6_x+8_y)+8_y<6y +%>:| (139)
Defining the non-dimensional variabjé = j/(ByUo) (Appendix/A), Eq.[L.39 in
non-dimensional form is expressed as (dropping the prinetion)

V?j = Re,, (8] +uﬁ+va—j) — (B ow + B 8w)

ot ox oy " O ya—y
0B, (Ov Ou ov (0B 0B
—9 T = 22 — 2. 1.40
[8:6 (6x+8y)+8y(8y+8x)} ( )

Using the similar idea of satisfying the continuity equatithe solenoidal nature &
is also satisfied defining a vector potentaalsB = V x A in which A = (0,0, A). In
this fashion,B, = 0A/dy, B, = —0A/0x. Employing either one of the Eq3.839
or (1.336), magnetic vector potential equation is rendered as
1 0A 0A 0A
—O'va A= E +U% +Ua—y
The non-dimensional variabld’ = A/(ByL) (Appendix[A) provides us to get the
non-dimensional form of the E@L{4]) as (dropping the prime notation again)
1 s 0A 0A 0A
A= — — +v—.
Rem AT 50 T T,

(1.41)

(1.42)
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There is also a relation between magnetic potentiahd current density as

1 (0B, 0B\ _1 (0 ( 04y 0 (04 oy
j_ﬂm(é‘w 6‘y)_um (aa:< (%) y (6y))$VA— fnj  (1.43)

which is similar to the relatioiv?y) = —w between stream function and vorticity.

1.1.6 MHD duct flow

The problem of MHD flow through channels is frequently endeued in nuclear reac-
tors, MHD flow meters, MHD generators, pumps and accelerdtoe concerned fluid

is incompressible, viscous, electrically conducting aridesh down the duct by means
of a constant pressure gradient.

The fluid is subjected to an applied magnetic field paralléhe&x-axis, and the veloc-
ity and the induced magnetic field are in the z-direction Wwhecthe axis of the duct.
Thus, there is only one component of the velocity vecier (0,0, V'), and the mag-
netic field vectoB = (B, 0, B). Further, the pressure depends:oif he dimensional
governing equations are

By 0B  Op ov oV 0B
2y 2 = B+ By— = —-.
WV e "o TP VBB =
Once the non-dimensionalization is done following the arptions in[14]], the di-
mensionless time-dependent governing equations are

(1.44)

V2V + Hag—f =1+ %—‘t/, V?B + Hag—‘; = %—f, (1.45)
in 2 x [0, co) with the initial conditions
V(z,y,0) = B(z,y,0) =0, (z,y) €. (1.46)
and the boundary conditions
V(z,y,t) = B(z,y,t) =0, (z,y) € 0. (1.47)

V(z,y,t) and B(z,y,t) are the velocity and the induced magnetic fields in the
direction. Ha is the Hartmann number. The given no-slip boundary conustensure
that the duct walls are insulating.

Eq.[@.45 may be decoupled by the change of variables

V=V+B, &=V-0B, (1.48)
leading to the following two equations
ov oV
2 - 2= _
VY + Ha o 1, (1.49a)
od 00
2dF - 7
V*® — Ha o 1, (1.49b)
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with the initial and boundary conditions

U(z,y,0) = d(x,y,0) =0, (z,y) € (1.50)
U(x,y,t) =®(z,y,t) =0, (z,y) € 0. (1.51)

In this thesis, Eq€1(49 with Eqs.fL.50-(1.57) are solved applying DQM both in time
and space directions. The solution procedure will be gimeDhapter 4.

1.2 Literature survey

A rapid increase in computer technology brings togethemig solution ideas for
complex problems in fluid mechanics and heat transfer. Téwvg research area has
become known as computational fluid dynamics (CFD) in whiehgoverning partial
differential or integral equations are solved computaliyn(or numerically).

The first and the old numerical method for solving PDE is thidfidifference method
(FDM). Taylor-series expansions are employed for obtgjniifferent difference quo-
tients. In FDM, the domain is discretized by grid or mesh po[88]. The derivatives
in the governing equations are approximated at these gmdgwith any type of dif-
ference quotients. Then, a set of algebraic equations geeby block structured
matrices are obtained. Although FD schemes are easy tonmepie they are not prac-
tical in problems of complex geometry.

For larger or complicated domains, finite element methodF&ould be an alterna-
tive in numerical world. This method divides the domain istdodomains which are
represented by finite elementi3[l]. Then, all sets of subdomain equations are assem-
bled in a global banded or block system matrix. As mesh isedfbreing the geometry
larger and larger, computational cost increases graduiiig reduces the practicality

of the method. Furthermore, FEM is not efficient in infinitgigns.

Finite volume method (FVM) has also taken the great dealtehton in fluid dynam-
ics in the last few decades. FVM is useful on arbitrary geoeesince the physical
domain is subdivided into control volumes surrounding egrith. Conservation prin-
ciples are automatically satisfied in this control voluiig4]. Using the divergence
theorem, the volume integral representation of each voisroenverted to the surface
integrals which are evaluated as fluxes through the boueslafithe control volume.
Flux computations on irregular geometries require muaobreff

Differential quadrature method (DQM) also discretizesdbheain. The derivatives in
PDE are approximated by a weighted linear summation of fonat values at all grid

points [L42). The whole algebraic system of equations is solved at ane.tAccuracy

of the method is very high using considerably small numbeyriafs, particularly non-

uniform grids due to the stability. In complex geometriég efficiency of the method
decreases due to the increase in computational cost.

Boundary element method (BEM) approximates the solutioa pértial differential
equation (PDE) through the boundary, and then computesantolutions using this
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boundary solution. The domain integrals resulting from wesghted residuals are
transformed to boundary integrals with the help of fundatalesolution and diver-
gence theorem. The mathematical basis and applicationeainthod are found in
the inventor’s book[Z4]. The main drawback of the method is the existence of do-
main integrals due to the inhomogeneity in the equation. dured reciprocity BEM
(DRBEM) has been devised for handling this domain integnal also transforming

it to the boundary12Z. BEM has a strong advantage also in solving problems in
infinite or semi-infinite domains with respect to other domdiscretization methods.
The basis of DRBEM is to keep the Laplace term on one side, atckat the other
terms as inhomogeneity on the other side. Both sides areptiedtby the fundamen-
tal solution of Laplace equation, and then integrated dverdomain. The key point
of the DRBEM is to convert all domain integrals to boundanggrals using Green’s
identities. The radial basis functions (RBFs) ease theaqumation of inhomogeneity
and particular solutions.

As a basis to CFD, the Navier-Stokes equations (NS) aredblyalmost all numerical
methods and some of them are summarized below.

The oldest and the most famous study utilizing the impliaittigrid method for solv-
ing the NS equations in a lid-driven cavity is given by Ghiaktin [62]. They have
solved the model lid-driven cavity flow problem for high vefuof Reynolds number
(10%) by using257 x 257 grid points. Gartling%9 solved the NS equations for 2D,
steady, incompressible flow using a Galerkin based FEM, esigéd the flow over a
backward-facing step (BFS). A nine-node biquadratic Lageainterpolation for the
velocity components, and a linear and discontinuous presgproximation between
elements are taken in the computations ugto= 800. Shu and Richardll44] ap-
plied the generalized DQM to the two-dimensional incomgitde NS equations in
stream function-vorticity formulation for obtaining nuneal results of flow past a
circular cylinder. Biswas et al1B used FVM with central difference scheme for the
convection-diffusion terms of NS equations, and a pressomection equation for the
pressure. The laminar incompressible BFS flow for a wideearfdReynolds number
and aspect ratios (A.R.) is tested. Ramsak etl@f[applied the multi domain BEM
to 2D, unsteady NS equations in stream function-vortiadyrfulation, and tested the
procedure in BFS flow and flow over a cylinder. The multi dom@RBEM provides
one to take into account the larger geometry in BFS or flow av@rinder. NS equa-
tions in a lid-driven cavity are also solved using pieceviisear finite elements in the
study B1] in terms of stream function-vorticity. In this study, theévective terms in
the vorticity equation are linearized and unknown voridibundary conditions are
handled by a technigue uncoupling both variables. Choi §8# solved the unsteady
NS equations using DRBEM with an algorithm based on fraeti®iep method in
which a fully explicit second order Adams-Bashfort schemeised for convection
terms. One of the model is chosen as lid-driven cavity, &ads taken up to400.
The resulting systems of equations are solved by GMRES @gimgpstd0 x 40 linear
boundary elements. The Taylor-Green vortex and the lidedrsquare cavity flows are
numerically depicted. Kalita and Gup{a3] developed a new, second order finite dif-
ference approximations both in time and space to solve N&teuns, and applied this
methodology to lid-driven cavity, BFS flows and flow over aiogler. Tsai et al/152]
proposed robust and flexible localized DQM with a fourth orelguation for boundary
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conditions of NS equations. In their study, BFS and lid-@nicavity flows are chosen
as test problems.

Not only one sided lid-driven cavity wall problems but alsmtsided lid-driven cav-
ity wall problems are also reported. Nithiarasu et [&ll']] solved NS equations in
the staggered double driven cavity with the explicit chaastic-based split (CBS)
scheme in view of steady and unsteady flows inside a nonagelar double-driven
cavity. DQM and wavelet-based discrete singular methodJx8e also used by Mer-
aji et al. and Zhou et al.[16€], respectively, in the same geometry.

Some numerical approaches are also performed on the inessiple flow through
the channel involving an obstacle (circular/rectanguldme channel flow around a
hindrance has become a prominent physical problem due varisus applications in
engineering such as building aerodynamics, flow metersirel@c cooling, heat ex-
change systems. Yoshida et dl6E] solved the flow past a rectangular cylinder using
FEM adopting a unique direct time integration. Mukhopadhetal. [L11( also inves-
tigated the confined wakes behind a square cylinder in a @hading the domain
into Cartesian cells and using staggered grids. Later,@retal. 5] used two differ-
ent numerical schemes which are lattice-Boltzmann ancefiratume method (FVM)
to ensure the reliability of the computations for the flowward a square cylinder.
Zhang et al.[165 used the numerical manifold method based on Galerkin‘te)
residuals method for the solution of the incompressible ftmer a square cylinder
with low Reynolds numbers.

In the presence of temperature difference of the fluid, palarly in an enclosure, as a
benchmark problem, natural convection flow in a square ga¥itvhich the side walls
are differentially heated is solved by G. de Vahl Davis in 3983] using the central
FD scheme. In this study, Rayleigh number is used betweeand10°¢ with uniform
mesh sizes ranging frofil x 11 to 81 x 81. In 1990, Lin et al.[89] examined the lam-
inar, buoyancy-assisting mixed convection flow in a BFS getoynwith an expansion
ratio of 2 using250 x 70 grid points FD scheme based on SIMPLE algorithm. In 1992,
Moallemi and Jungd0]] exhibit the importance of Prandtl number in laminar mixed
convection flow, and they found that the buoyancy effect enfktbw becomes more
prominent for large values dPr. In the following year, Iwatsu et al7P] analyzed
the mixed convection flow of a viscous fluid in a lid-driven igwsing FDM. They
obtained results for the main flow characteristics usitag= GrPr = 0 — 10° and
Re = 0 — 3000. Laminar natural convection flow in inclined cavities isditd by
El-Refaee et al/7] in the stream function-vorticity formulation using thestdalse
implicit transient scheme algorithm. Chang et &8|[investigated the natural con-
vection flow using the alternating direction implicit (ADiethod with non-uniform
grids concerning a BFS type enclosure. They ugied 80 grids for Rayleigh number
values in a rang&0® — 10® and Pr = 0.71. Shu and We€e145 solved the natural
convection flow combining the SIMPLE idea with the geneediDQM. They en-
forced the continuity condition on the boundary, and pregos boundary condition
for pressure correction equation. The characteristiceaf transfer in the fluid region
coupled with heat transfer in solid region is studied by Kaen al. [74] using ADI
method. The unsteady mixed convection flow in a cavity wittoadontally oscillat-
ing lid is studied by using a Galerkin finite element schem@8). The dimensionless
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parameters are taken in the range = 10?> — 103, Gr = 10?> — 10°, Pr = 0.71, and
the lid oscillation frequency ranging from1 to 5. Using the same method, Khanafer
concentrated on the laminar mixed convection pulsating flast a BFS inT7] using

a lid-oscillation frequency between 0.1 and 5. They fourat the average wall fric-
tion coefficient increases with an increase in oscillati@yfiency. Kumar et al8H]
examined the solutal and thermal buoyancy forces togethar BFS channel flow
using also the Galerkin method of weighted residuals to mieseecirculatory flow
pattern and its effects on heat and mass transfer undemgabyioyancy ratios and
Richardson number. 2D natural convection in a rectangudsitycis solved by Lo
et al. @2] in velocity-vorticity formulation using DQM. For vortity boundary con-
ditions, higher order polynomial approximations are uségdin [[10] utilized the
stabilized FEM to the natural convection flow in primitiveriadles formulation on
different type of geometries. The proposed method prostise solution and avoids
oscillations (especially in pressure) and is more effecéind convergent as compared
to the streamline-upwind/Petrov Galerkin (SUPG) stabtlan.

The fluid flow and heat transfer characteristics with obstuiside the cavity are also
investigated by some researchers. This configuration hpsriant industrial appli-
cations in geophysical systems and convection in buildwig/s natural cooling flow.
Most of the numerical studies concentrated on obstaclescasidar cylinder inside
an enclosure. Kim et al8F] investigated the natural convection flow with a uniformly
heated circular cylinder immersed in a square enclosumgusimersed boundary
method to describe the importance of the location of the froular cylinder. The
same problem is also analyzed by Hussain ef&] (ising the finite volume method
with Pr = 0.71 andRa = 10® — 10°. Different positions of inner cylinder are studied.
Using a commercial code FLUENT, mixed convection in a lid«ein enclosure with
a circular body is examined also taking into account the ootidn equation inside
the cylinder in[L1§. Three different temperature boundary conditions (ieattal,
conductive, adiabatic) for the inner cylinder, and two eliént orientations @For -y
directions) of the moving lid for simulation of aiding andpmsing flows are presented.
Adding joule heating and magnetic field effects to the sysiRamman et al12q have
shown the significant effect of the cylinder obstacle on thalfflow using Galerkin
finite element method witB8229 nodes with5968 element grid system. The energy
equation in the solid region is coupled to momentum and greggations for the fluid
in the cavity. They found that the increase in the intenditye applied magnetic field
has a retarding effect on the fluid circulation causing theelotemperature gradients
(conductive heat transfer).

Natural and/or mixed convection flows in enclosures comgirsquare shaped ob-
stacles are also encountered in some of the studies. Ha[@5hused the domain
decomposed Chebyshev spectral collocation method towdbdes natural convection
with a square body located at the center of the computatdoralain for a range of
Rayleigh numbers. They have also taken into consideratoying thermal boundary
conditions on the square body as cold, neutral, hot isothkiand adiabatic body con-
ditions. Bhave et al(16] analyzed the optimal square body size and the correspgndin
maximum heat transfer as a function of Rayleigh and Pranattibers. In their study,
non-dimensional parameters rangesine= 10 — 10, Pr = 0.071,0.71, 7.1. Finite
volume method with 00 x 100 mesh size has been used for solving mass, momentum
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and energy equations inside the enclosure when the squackalgle was adiabatic.
Laminar mixed convection is studied in a square cavity witieated square block-
age immersed using finite volume method[Td][ A CFD code ANSYS FLUENT is
used for calculations. The Nusselt number at the blockagacaifor various values
of Richardson numbeR:; = 0.01 — 100 in different blockage sizes and locations is
investigated fixingRe = 100 and Pr = 0.71.

In a porous medium, numerical studies for natural, forcelraixed convection flows
have also attracted the great deal of attention. Khanafdr [80] analyzed the mixed
convection flow in a lid-driven cavity filled with a Darcian itusaturated porous
medium taking into account the internal heat generatiore Aumerical method was
the finite-volume approach along with the ADI procedure. eEfffof the parameters
asRi, Da and internalRa on the mixed convection flow in the cavity is investigated.
Baytas and PoplH] transformed Darcy and energy equations and solved the prob
lem of natural convection in a porous parallelogram encswmerically using the
ADI finite difference method. In primitive variables fornation, Sarler et al/l57]
solved the Darcy model of natural convection (without catim-diffusion terms in
the momentum equation) in differentially heated rectaagubvities using DRBEM
with augmented scaled thin plate splines. Both constantinedr elements are used
in a uniform and non-uniform mesh arrangements. Then, ugiagsame method,
they [15§ extended the Darcy model to Darcy-Brinkman porous medialiing the
viscous term in the momentum equations. FEM with GMRES, Wwisca Krylov
subspace based solver, is applied to solve natural conwvertitrapezoidal porous
enclosures by Kumar and Kumé&Y] using parallel computation. Saeid et d.3¥]
studied the Darcy-Frochheimer model in a square porousycasing the finite vol-
ume method and QUICK scheme for convection terms in energgtean. It is found
that the increase in inertial effects parameter supprdabgeseat transfer in the cav-
ity. Using the FVM based FD scheme in partially heated linkeir porous enclosure,
Darcy-Brinkman-Forchheimer equations are solved by Omiofil9. The highest
heat transfer occurs with the heater located at the vextiahl With the same numer-
ical approach, OztoplR( also examined natural convection in partially cooled and
inclined rectangular enclosures filled with porous mediuBoth studies(119, (120
consider the porosity a&9 and use48 x 48 grid points. In [L2Q, it is found that
inclination angle of the enclosure has a strong influencéerflow and heat transfer
as well as aspect ratio. The problem of steady natural ctioveitow in a right-angle
triangular, inclined trapezoidal, and right-angle trapdal enclosures filled with a
porous medium are solved by the finite difference methodgusirtcessive under re-
laxation for the solution of algebraic equations [ib§ [153 [154 respectively. The
effects of inclination angle, aspect ratio aRd variation on the flow are examined.
Vishnuvardhanarao et all§€ solved the laminar mixed convection flow in a parallel
two-sided lid-driven porous, differentially heated squeavity by using the finite vol-
ume approach with third order accurate upwind scheme. Bhadly is conducted by
varying the key parameters usingl x 121 grid points. It is found that the average
Nusselt number approachéss Gr reachesl0®. Basak et al.13] solved the mixed
convection flow in a lid-driven square cavity with linearlgdted side walls by penalty
finite element method using bi-quadratic elements. Theyieghphe same method to
solve mixed convection in a porous square cavity negledtorghheimer terms with
various thermal wall boundary conditions it2]. Ramakrishna et al1R7] focuses on
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the effect of thermal aspect ratio and thermal boundary itiong in terms of Bejan’s
heatlines again by using penalty FEM with bi-quadratic eleta. They found that the
dominance of lid-driven effect at lowa = 10~° while the dominance of buoyancy at
high Da = 10,1073 is pronounced.

In the presence of a magnetic field, the natural, forced oechconvection flows have
also been studied. At most of these studies, induced magdiedt inside the fluid is
neglected due to the assumption of small magnetic Reynaiaibar which is the case
in industrial applications.

In a non-porous medium, Al-Najem et gb] [investigated the influence of the mag-
netic field on the heat transfer process inside tilted encéssfor a wide range of
inclination angles at moderate and high Grashof numbersslmguhe ADI scheme.
It is found that the strong magnetic field suppresses theemion current, and the
magnetic field has negligible effect on the heat transfersfoall inclination angles.
Chamkhal27] examined the unsteady, laminar, mixed convection flow engresence
of heat generation (or absorption) and an applied magnetut @ising the finite vol-
ume approach along with ADI method. Ece and Buyb#] solved natural convection
flow of a viscous and incompressible fluid in an inclined esule in the presence of
a magnetic field by using differential quadrature methodreiszing the whole enclo-
sure by using rectangles. It is found that magnetic field segges the convective flow
and the heat transfer rate. Sathiyamoorthy and ChanikBg} presented the penalty
FEM with bi-quadratic rectangular elements to solve theiratconvection flow of
electrically conducting liquid gallium. They showed thaeeage Nusselt number de-
creases non-linearly by increasing Hartmann number forigelined angle. Lol@1]
employed the DQM in a unit square cavity as well as the cavitigh aspect ratios 2
and 3 to observe the MHD free convection in an enclosure walagity-vorticity for-
mulation. The system of equations is solved by bi-conjugaaelient iterative solver
technique with the parametefs = 10* — 105, Ha = 0 — 100, Pr = 0.01 — 10
and A.R. = 1 — 3. They conclude that the heat transfer is maximum for higher
(for a fixedGr and Ha = 0), and it decreases with the increase in the intensity of the
magnetic field.

In an inclined porous layer, Bian et dll]] investigated the effect of an electromag-
netic field on natural convection flow using control volumetérdifference method.
It is found that the temperature and velocity fields are $iggmtly modified under
the effect of an applied magnetic field. Using a control vaduatgorithm, Khanafer
and Chamkhdaq9] obtained the numerical results to simulate the hydromtignat-
ural convection flow in an inclined porous enclosure in thmBnan-extended Darcy
model. The control volume method is used to solve the gomgreiquations for
Ha = 0 — 150, Da = 10~* — 0, and inclination angle ranging frolf to 90° fix-
ing Pr = 7 and Ra = 64 x 10°. The effects of both magnetic field and porous
medium were found to reduce the heat transfer and fluid @ticul within the cavity.
Grosan et all84] presented the influence of both the strength and inclinaiogle of
the magnetic field on convective modes of unsteady free abioveflow in a porous
square cavity. A central FD scheme is used for discretimatiith the parameters
Ha = 0—50, Ra = 10 — 10°>, A.R. = 0.01 — 1 and the inclination angle of mag-
netic field ranging ird, 7 /6, /4, = /2. They also studied a similar problem in
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the case of unsteady free convection flow within a squardycéited with a porous
medium taking into account the internal heat generatioarpater. ADI method is em-
ployed with87 x 87 grid field with a non-uniform grid distribution near the wallThe
effect of a magnetic field on steady convection in a trapeda@dclosure filled with
a fluid-saturated porous medium is figured out using centakfdifference method
by Saleh et al/135. Costa et al.[35] applied a two-dimensional equal-order control
volume based finite element method with sensitive relargisrameters to solve natu-
ral convection flow in differentially heated square enctestfilled with fluid-saturated
porous media under the effect of a magnetic field induced loydlgctric currents.
It is found that the natural convection inside the encloslgereases under the influ-
ence of the induced magnetic field, and thus, the heat tnaisstduced. Hasanpour et
al. [66] used the lattice Boltzmann method to depict the Prandtlmemeffect on MHD
mixed convection flow in a porous (the Brinkman-Forchheimedel) lid-driven cav-
ity. They showed that the reduction of fluid movement insitke énclosure with the
increase in Hartmann and the decrease in the Darcy numbérs. magnetic field
effect on steady free convection in different types of psreuaclosures is presented
using DRBEM by Pekmen and Tezer-Sezdl2J. It is observed that the increase in
the strength of the magnetic field causes the suppressidreandtion of the fluid and
the conductive heat transfer using considerably small rurnbundary points.

MHD flow, in terms of the velocity and induced magnetic fieldtloé fluid, through
rectangular or circular ducts (pipes) are solved with saveumerical approaches. In
MHD duct (pipe) flows there are only one component of veloaitg induced magnetic
current in the direction of the axis of the pipe. Tezer-Sezmd Aydin solved
MHD duct problem by using DRBEM with different form of the iatlbasis functions,
and constant elements. The inhomogeneity is approximateddulating radial basis
functions which uses derivative information also. Tezergin [L4§ applied the poly-
nomial and Fourier based DQM to the MHD equations in a reatemgluct under a
transverse external oblique magnetic field for moderateesgbf Hartmann number.
Nesliturk and Tezer-Sezgifl15 proposed a stabilized FEM using the residual-free
bubble functions for solving steady MHD duct flow. By meandho$ stabilization,
the results at very high Hartman®i/ ¢) numbers are obtained. Implementing BEM
with constant elements iAB( for different geometries of the duct cross-section, the
well-known characteristics of MHD flow which are the boundiayer formation near
the walls and the flattening tendency in both the velocity iaddiced magnetic field
are observed with the increase ifu. Bozkaya et al.[19] solved the unsteady MHD
duct flow in a rectangular duct with insulating walls combmpithe DRBEM in space
with DQM in time. The resulting overdetermined system ofedligaic equations are
handled by the least-squares method. Zhang efl&¥] [proposed the two-level ele-
ment free Galerkin (TLEFG) method for solving the steady M#iizt flow equations.

It is found that the TLEFG captures the results at very ldigenumbers. Finite vol-
ume spectral element method is carried out for solving @aasté/IHD flow through

a rectangular pipe by Shakeri et d4lj. Hosseinzadeh et al6§] solved the rect-
angular and circular cross-sectioned MHD duct flow by BEMhwitie constant and
linear elements modifying the fundamental solution to ble &ibrepresent the results
for large values of{ a.

Incompressible MHD flows are also considered when induceghets field lies in the
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plane where the 2D motion occurs. In this case, both the itgland induced current
will have two components (in- andy-directions). The electric current density and
electric field are normal to this plane. Armero et 8] &pplied the Galerkin mixed
FEM to the incompressible MHD equations examining the timegration algorithms
which are long-term dissipative and unconditionally stabT'hey have solved plane
Hartmann flow and MHD flow past a circular cylinder. FEM witms® new stabiliza-
tion techniques is used for solving incompressible MHD éigua in [11,133,[60]. In

all these studies, the MHD flow in backward facing step isedlvn order to simulate
the 2D incompressible MHD flow, Peaceman and Rachford atemg-direction im-
plicit (ADI) scheme is performed at low magnetic Reynoldsiier by Navarro et al.
in [113. Plane Hartmann flow and MHD lid-driven cavity flow problem® solved
in stream function-vorticity-current density-inducedgnatic current and vector po-
tential. Bozkaya and Tezer-Sezg@(] have solved the full MHD problem in terms
of stream function, vorticity, magnetic induction compotgeand current density us-
ing DRBEM. The lid-driven cavity and backward-facing stepfs are chosen as test
problems.

MHD flow with heat transfer is also a prominent problem frora ffhysical point of
view. Abbassi and Nasrallafg][ investigated the MHD flow with heat transfer in a
backward-facing step using a modified control volume FEM@gstandard staggered
grid. The applied magnetic field is normal to the plane. ThH&RLER algorithm
has been used in terms of velocity-pressure unknowns, anlégé&izme is performed
for the time evolution. Senturk et all3§ presented a Lax-Wendroff type matrix
distribution scheme combining a dual-time stepping tegh@with multi-stage Runge-
Kutta algorithm to solve the steady/unsteady magnetizedfal convection problems
with the effect of heat transfer. MHD lid-driven cavity flomatural convection flow in
thermally driven cavity and MHD flow past a circular cylingeoblems are solved.

In this thesis, DQM applications on linear or nonlinear hgmdic type of PDEs are
also studied. Therefore, the related numerical studiegiaes from now on.

The hyperbolic partial differential equations are desadlilas initial value problems
due to the time variation. The space domain of dependenceffoite time interval is
considered to be finite for the equations considered in tesish Further, the hyper-
bolic telegraph equation is encountered in atomic physickia signal analysis, and
the hyperbolic telegraph, Klein-Gordon, sine-Gordon abdBirgers’ equations are a
few examples of hyperbolic type PDEs considered in the shesi

For one-dimensional hyperbolic telegraph equation thereeveral studies which give
numerical solutions. Mohebbi and Dehghd®Tf] give a high-order compact finite
difference approximation of fourth order in space, and wecation method for the
time direction. In[B]], a scheme similar to finite difference method is proposeédgus
collocation points and approximating the solution witmtpiate splines radial basis
functions. Dehghan et al4f]] and Saadatmandi et all33 make use of Chebyshev
cardinal functions and shifted Chebyshev polynomialgeesvely, for expanding the
approximate solution of one-dimensional hyperbolic tedeh equation. In133, the
advantage is to obtain the closed form of the approximatéisol. Dehghan and Ghes-
mati [42] have applied dual reciprocity boundary element methodgBR) for solv-
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ing second-order one-dimensional hyperbolic telegrapiatgn, and Crank-Nicolson
finite difference has been used for the time discretization.

Dehghan and Mohebb#l] have used the same idea given [0f] for solving the
two-dimensional linear hyperbolic telegraph equationchihis the combination of fi-
nite difference in space and collocation in time directidnd104], Mohanty and Jain
introduced a new unconditionally stable alternating dicgcimplicit (ADI) scheme
of second order accurate for two-dimensional telegraplaou The solution is pro-
gressed in time direction by splitting the systems:irandy- directions, and solving
two systems for each time level. MohanlOF] and Mohanty et al. 10§ extended
their studies for linear hyperbolic equations with vareabbefficients in two-space di-
mensions. Mohantyll0g and Mohanty et al.105 also extended solution procedure
by ADI method to two- and three-space dimensional hypeclielegraph equations.
Ding and Zhang34] proposed a three level compact difference scheme of faudér
for the solution of two-dimensional, second-order, inhgereous linear hyperbolic
equation for positive coefficients. Meshless method haslzen used by Dehghan et
al. [4Q,52] for solving two-dimensional telegraph equation. The arional moving
least squares approximation is exploited in order to imtlate the solution by using
monomials from the Pascal triangle #0], and thin plate splines radial basis functions
are used for the approximation of the solution32][ In both of these studies, another
time integration scheme has been used (finite differencahéotime derivatives, and
the solutions are obtained iteratively.

The Klein-Gordon equation (KGE) arises in many scientifieaarsuch as nonlinear
optics, solid state physics and quantum field thed@®4]. This equation has a great
importance in relativistic quantum mechanics, which isiusedescribe spinless parti-
cles. Furthermore, soliton-like structures have gainectatgleal of interest in the last
years. Soliton waves do not create any deformation due peison while progress-
ing. Soliton solutions are encountered in various nonliggéerential equations such
as Korteweg & de Vries equation, the Schrodinger equatiom,sine-Gordon equa-
tion. The two-dimensional sine-Gordon equation (SGE)earisa quantum tunnelling
related with Josephson junction.

Several solution procedures have been developed for goKABE numerically. In
[48], a fourth order compact method in space and fourth ordetahls diagonally
implicit RK-Nystrom method in time are used resulting witbnlinear second order
system of ODEs. Rashidinia et élJ9 developed a numerical solution by using cubic
B-spline collocation method on the uniform mesh points. &wer, a method based
on the tension spline function and finite difference apprations is used in13d.
Dehghan and Ghesma89] obtained numerical solutions of the KGE by BEM and
DRBEM. To improve the results, a predictor-corrector (P€)esne for nonlinearity
is used. Lakestani and Dehghd86] presented two numerical techniques based on
the finite difference and collocation methods. As a meshdegsoach, Dehghan and
Shokri [53] used collocation points and thin plate splines radial $&snctions. For

a generalized nonlinear KGE, a finite element collocatiopreach using cubic B-
splines is employed by Khuri and Sayfy [87).

Differential Transform Method is used to solve KGE by Kantid&nura in [75]. Ab-
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basabandyd] and Shakeri et all1l39 considered the series expansion of solution in
He's variational iteration method. Brats@&g] investigated a PC scheme using rational
approximants of second order of matrix exponential term ihrae time level recur-
rence relation. Wazwaz used tanh method for analyticatrtreat of KGE in [L6Q.
The extended tanh method, the rational hyperbolic funstimethod, and the ratio-
nal exponential functions method to generate new solutweslso used by Wazwaz

[167].

One-dimensional sine-Gordon equation (SGE) is studiddaviferent numerical meth-
ods as collocatiord9], boundary integral approachf|, and finite difference method
with DIRKN methods [10§. For the two-dimensional SGE (for damped and un-
damped cases), Christiansen and Lomdahl have used bothetm®dnof lines and
leap-frog scheme to two spatial dimensions38][ Argyris [8] presented a semidis-
crete Galerkin approach using four-noded bilinear finieame#nts in combination with
a generalized Newmark integration scheme. Djidjeli ef&] applied a two-step, one
parameter method for the reduced form of sine-Gordon eguaito second-order or-
dinary differential equations, and global extrapolatioboth time and space is used to
improve the accuracy. Finite difference scheme in spaca@ayed with fourth order
rational approximants of the matrix exponential term in @¢htime level recurrence
relation, and a new method based on a predictor-correch@nse to avoid nonlinear-
ity in [21]. With the similar approach, Bratsos transformed sinedBorequation to a
second order initial value problem using the method of lind22]. Two-dimensional
SGE has been solved using the dual reciprocity boundaryeglemethod converting
the domain integrals of nonlinear and inhomogenous terrbstmdary integrals, and
a PC scheme is used to overcome nonlinearity in the resu@Dg’s [96]. Dehghan
and Ghesmati proposes the meshless local radial poinpoitgion method (LRPIM)
where the shape functions are constructed using radiad hiasitions and a time step-
ping method is used for the time derivatives employing P@suhto eliminate nonlin-
earity in [41]. The meshless local Petrov-Galerkin (MLPG) method is diseeloped
by Mirzaei and Dehghar®[]. A numerical scheme based on collocation and the thin
plate spline (TPS) radial basis function is propose®).[The study in 6] presents
DRBEM using linear radial basis functions for the solutidrsime-Gordon equation.

The other prominent PDE as a basic example is the system ¢tihean2D Burgers’
equations considered as a prerequisite to the study of N8ukes equations with-
out pressure term and continuity equation. In Khater eidl, g spectral collocation
method based on Chebyshev polynomials is proposed to sblv2[l and systems of
2D Burgers’ equations, and the nonlinearity is elaboratgdelucing the system to
ordinary differential equations which are solved by Rukggta method of order four.
In [43], numerical results of coupled viscous Burger equatioesgaren by using the
Adomian-Padé technique (combination of Adomian decortiposmethod and Padé
approximation ADM-PAILE). They showed that ADM-PARB gives faster convergence
and higher accuracy than ADM. 167, the discrete Adomian decomposition method
is proposed to numerically solve the two-dimensional Brggronlinear difference
equations obtained by using fully implicit finite differemscheme. The quasi-linear
two-dimensional unsteady Burgers’ equations are conveédehe characteristic dif-
fusion equations, and the meshless method (method of fumataisolutions) is used
in [163. Liu and Shi BQ] illustrated the Lattice Boltzmann Method which is based
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on Boltzmann transport equation for the time rate of chariglesoparticle distribution
function in a particular state.

Some analytical solution techniques for solving nonlirgarBurgers’ equations may
be mentioned as follows. One-dimensional Burgers and eouplirgers equations are
solved by He’s variational iteration method [ They compared the obtained solu-
tions with the ADM solutions showing the difficulty in calating ADM polynomials.
Moreover, a semi numerical analytical technique, the dbfidal transform method
(DTM) [1] gives highly accurate results or approximate solutionstf@ Burgers
and coupled Burgers equations. Mittal and Ard@§][presented a numerical scheme
for solving coupled viscous Burgers’ equations in one-spasing Crank-Nicolson
method for the time integration, and cubic B-spline funesidor space discretization.
The cubic B-spline method is simple and straight forward.ti#esauthors indicated,
the accuracy of solution reduces as time increases due tautietion errors in FDM,
although they have used very small time step.

The use of DQM both in space and time directions is encoudiiafd4€]. The authors
proposed to solve time dependent problems (including ordydrder time derivatives
as in Navier-Stokes equations) by a block-marching metlogyan the time direction.
In each time block, DQM is applied both in space and time dives. The novelty of
this approach is in the higher order of accuracy and less atatipnal effort compared
to 4-stage Runge-Kutta method. In this thesis, DQM is used bogpace and time
directions in solving Klein-Gordon, sine-Gordon, Burgermsd MHD duct flow time
dependent equations. In the time direction, solutionsrapeaved blockwise to certain
time levels as well as considering the time as a whole level.

1.3 Plan of the thesis

In the thesis, Chapter 1 introduces the governing equatibtie problems considered
together with their physical importance. The equationstwi@dimensional, laminar,
unsteady flow of an incompressible, Newtonian fluid in thespnee of heat transfer or
an applied magnetic field or both are introduced. Non-dinwgradizations of the gov-
erning equations for each problem are also carried intriodutimensionless problem
parameters either in the first Chapter or in the Appendices.

In Chapter 2, the dual reciprocity boundary element metBRRBEM) is explained on
mathematical basis. Linear elements for boundary disaibin are adopted.

In Chapter 3, the DRBEM applications to some fluid dynamicsbfams either in
porous or non-porous enclosures under the effect of anrettgrapplied magnetic
field are presented. Lid-driven square cavity, staggeredblédid-driven cavity MHD

flow, MHD flow in a cavity containing a centered non-condugtsquare blockage,
backward-facing step MHD flow and MHD flow over a cylinder arngeg as test prob-
lems.

Chapter 4 consists of the DQM applications to hyperbolic BQyperbolic telegraph
eqguation, Klein-Gordon and sine-Gordon equations) in aretavo-space variables,
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parabolic PDEs (Burgers’ equations) and MHD duct flow.

In the Conclusion chapter, overall important numerical phgsical results, and the
future works are mentioned.

1.4 Originality of the thesis

In this thesis, the DRBEM is employed in solving mixed andunatconvection flow
problems in porous enclosures with or without the effectrodpplied magnetic field
for the first time. Also, the full MHD equations (the inducedgmetic field is taken
into consideration) together with energy equation areesbhumerically using DRBEM.
The different geometries of cavities or channels are chasetest problems. In all
numerical results, the variation of dimensionless pararsdas analyzed in terms of
streamlines, isotherms, vorticity, induced magnetic fielels (or magnetic potential or
current density lines). Boundary-only nature of DRBEMiatilg the linear boundary
elements with polynomial radial basis functions proveditength in the chosen prob-
lems using considerably less number of grid points thantimeralomain discretization
methods.

The other original part of the thesis is the application ffedential quadrature method
both in time and space domains solving especially hypeslfiliEs. This enables one
to reach to the required time level either at one stroke arkvase without the need of
an iterative procedure.
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CHAPTER 2

DRBEM SOLUTION OF FREE/MIXED CONVECTION FLOWS
WITHOUT OR WITH MAGNETIC EFFECT

The boundary element method (BEM) is a boundary-only nuraémethod for solv-
ing partial differential equations (PDESs). The solutionlgained in terms of boundary
values only which provides less computational cost anddteation in the dimension-
ality of the problem. The residual obtained by substituapgroximate solution to the
differential equation is weighted in the domain by multiply with the fundamental
solution of the differential equation. Then the applicata$ divergence theorem trans-
forms domain integrals to boundary integrals. However ayglication of BEM to a
non-homogeneous PDE results in a domain integral. In tiss,dae problem dimen-
sion is not reduced and the method becomes unattractive.

In order to alleviate this drawback of BEM, new methodolsgiging to convert all
domain integrals into boundary integrals are developede Qfnthe most outstand-
ing method is the dual reciprocity boundary element metfiiREEM). Keeping the
Laplace term of the differential equation on one side, DRBiEdAts the terms on the
other side as inhomogeneous terms. Inhomogeneity is esqes a linear combina-
tion of coordinate functions based on distances of two gaimthe closed problem
domain, which are related to Laplacian of correspondingi@adar solutions. The
multiplication of both sides by the fundamental solutio.aplace equation, and then
the integration over the domain gives the domain integiidiese domain integrals on
both sides are transformed into boundary integrals usia@itteen’s identities. Coor-
dinate functions are usually the radial basis functionsctvlise distances of fixed and
free points.

DRBEM has many applications in scientific area such as elgstamics, fluid dynam-
ics, electrodynamics, heat transfer, etc. In this chapteBEM is introduced adopting
linear boundary elements, and then some applications of ENRB specific fluid dy-
namics problems are presented.

2.1 The dual reciprocity boundary element method

In this section, the boundary integral equation for Poissequation is derived as
in [24,[127], and then the DRBEM is introduced for transforming domaitegral due
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to the right hand side function to the boundary integral.
Consider the Poisson’s equation in 2D
Viu=b(z,y), (z,y) €, (2.1)

with the boundary conditions

u(z,y) =u(x,y), (r,y) el (Dirichlet type) (2.2)
s = 2 = gey), (ry) €Ty (Neumanntype)  (23)

whereV? is the Laplace operatot, ¢ are given functionsy is the outward normal to
the boundary” = I'; UT'; is the boundary of2, andb(z, y) is a known function. Also,
note that (Figur@.])

2l
s
s

(l‘,y) € Fl o Cj(l‘,y), (ZL‘,y) € Fl
) = {q(x,y), (y)er,, &Y

“L”:{mmw,<awerz’

whereu andg are unknowns on the bounddry andI';, respectively.

Iy

Figure 2.1: Configuration of the region and the boundary ttmnts.

DRBEM uses the fundamental solutian = ;-1n (1) of Laplace equation, which

satisfiesV?u* = —§(x —x;) = —4" with the Dirac delta function having the properties

5t = {go :; i ; i , /Qéf(x)dsz —1 (2.5)
/Qh(a:)é Q0 = {o fo g, (2.6)

for a continuous function(z) atx;.

Multiplying both side of Eq2.1) by the fundamental solution, and integrating over
the domain, the weighted residual statement is obtained

/Q (V?u — b) u*dQ = 0. (2.7)
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By means of Green’s identif§; and insertion of the boundary conditiof53)-(Z.3
using Eql2.4), Eq.[2.7) is rearranged as
ou*

ou
2, 0% * Q _*F_
/Q(uVu bu)d +/p8nud on

/UVQU*dQ—/ bu*dS) :—/ qu*dFQ—/ du*df‘1+/ ﬂq*df‘2+/ uq*dl'y,
Q Q Iy r Iy Iy

udl' = 0 (2.8)

(2.9)
wheregq* = du*/0n (normal derivative of.*).
Using the propertyi.6) in the first term of the left hand side in ER.9),
/ uV3u*dQ = / u(—0")dQ = —c;u;, (2.10)
Q Q
where the constant is
b dtier
=2 "'Eh (2.11)

1, ifie Q\T,
with the internal anglé; atz; (Figure2.2), Eq.R2.9) becomes

ciuﬁ—/bu*dQ—i—/uq*dF:/qu*dF. (2.12)
Q r r

0;
/@\

Figure 2.2: Internal angle at the node

The transformation of the domain integral in Egl2 due to the functiom(z, y) into
the boundary integral is the key point of the DRBEM. The righhd side functiomn
is approximated adlP?]

N+K

bl' = Z fz’jaja (213)
7=1

wherea;’s are sets of initially unknown coefficientdy is the number of boundary
nodes,K is the number of interior pointg;'s are approximating functions. EB.(3
may also be expressed in matrix-vector form as

b =Fa, (2.14)

L Green’s First Identity

/u*VQudQ:/u*a—ude/ VuVu*de,
Q r On Q

/VuVu* dQ) = uaidl“—/ uV2u*dQ
Q 0 Q

T n
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wherei = 1,2,.... N+ K, b = {b;} = {b1, b, ...,by+x}, the symmetric coordinate
matrix F' constructed by;’s columnwise is of siz¢ N + K) x (N + K). Different types

of f’s have been proposed so far. At most of the studies, polyaldorim of the RBFs
(f = 1+r+...+r") as afunction of distance (r;; = \/(z; — z;)* + (y; — y;)?,
distance between the fixadand fieldj points) is encountered. In 1994, Golberg et
al. [63 introduced the augmented thin plate spliriég][ These type of RBFs are also
efficiently employed in most of the applications as26][ Partridge [L2]] discussed
which f function will be suitable in which type of problem.

The particular solutions,;;'s are related tof;;’s with the relationV?a;; = f;;. So,
Eq.@2.13 is written as

N+K

b= Vi, , i=12... N+K (2.15)
j=1

Substitution of EqZ.15) into Eq.R.12) yields

N+K

Cill; —i—/uq*dF—/qu*dF =— Z ajfvzﬁiju*dQ. (2.16)
r r i Q

Applying integration by parts and Green’s theorem to thbtrigand side of EqX19),
a boundary integral equation for each source nadeccurred as

N+K

r r r r

j=1
whereg;; = 0u;;/0n with the outward unit normat to I'.

The boundary of the regioft may be discretized in different forms of the elements
such as constant, linear, quadratic or cubic. In this thésear element discretization
of boundary is adopted.

2.1.1 Boundary discretization with linear elements

Once the boundary is discretized imtp number of linear elements (FB.3), Eq.2.19)
may be written as

Ne 2 Ne 2
e=1 YTk \ k=1 e=17Ts \ k=1

N+K Ne 2 Ne 2
j=1 e=1 /Tr \ =1 e=1"T% \x=1
whereN; and N, are interpolating functions, andl, = N with linear elements. It is

not possible to take andq outside of the integrals due to the linear variation of them
over each element. Therefore, the integrals are to be d@edlnamerically.
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Nodes

Linear Element

Figure 2.3: Configuration for linear elements.

In local coordinate systeng, € [—1, 1], with the help of interpolating functions, the
values ofu andq at any point on the element are given(24,[127]

u(§) = Nyuy + Naug (2.19a)
(&) = N1g1 + Nago, (2.19b)
1-¢ 1+¢ . _ _
whereN; = ——=, N, = ——. The first and second integrals on the left hand side

of Eq.(2.199 is transformed to the local coordinate system as

1
le
/ uq*dly = / u(€)q” d¢ = iy + hiug (2.20a)
Tk -1
* ! * Ee 1 2
qu'dly = [ q(€)u” - d€ = giur + gipuz (2.20b)
T -1

where/. is the length of the linear boundary element, and for eaanetek,

ge 1 ! —1i)- ge
Ny Sde, b= o e —r)n Sd¢ (221a)

2w 1 |I'k—I'i‘2

| :i ' (rg —13)n
ik 2w 1 \rk—ri|2

11l 1

l, 1 /[t 1 l,
gL Ny =d¢,  gh = —/ In N, =d¢, (2.21b)
2 or ), 2

= — n
2w 1 |I'k—I'i‘ ™ |I'k—I'i‘

where superscript$, 2 refer to the starting and the end points of an element. The

integrals in EqZ.2]) are evaluated by Gaussian quadrature. BEM matrices arestbr

with the assembly ok,,’s andg;,’s at the nodes shared by two elements.

Smoothness of linear boundary elements causes the ingarglka); atz; to ber such
thatc; becomed /2. Defining Hy, = H, + %@k with Kronecker delta function;;, (if
i =k, 0; = 1; elsed;, = 0), Eq.2.199 may be rewritten as

N N N+K N N
S Hyuwe =Y Gagr= > o (Z Hilig; — > Gik@kj) - (2.22)
K1 K1 j=1 s k=1

Note that since the nodeof elementt — 1 is the same point as nodeof elementk,
entries of the matrix{;;, will be the summation of,j,, andn;, .
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If i = k, ori = ks, the diagonal entries arg4, 127

Hy=— Y Hy (2.23a)
k=1,ik
Gome (L), ik (2.23b)
i 92 9 ke |, v = Ry, .
G“‘ = % (; — lnée) , if 4= k?g, (223C)

wherek; andk, are the first and second nodes of elemienespectively.

Eq.@2.22) is stated in matrix-vector form as
Hpu, — Gpap = (Hbﬁb — Gb@b)aa (2.24)

where subscript ‘b’ denotes ‘boundary’, and the matridgs Gy, ﬁb, Qb are of size
NxN, NxN, Nx(N+K), Nx(N+K), respectively, and the vectong, q, o
are of lengthV, N, N + K, respectively.

Once the boundary-only system EfZ9) is solved, then the interior solution is ob-
tained with the relation

N N N+K N N
= =S et S Gt S o ( S Hty -3 Gikq@j) @.25)
k=1 k=1 7j=1 k=1 k=1

wherec; = 1 for the interior points. This expression may also be denrated in
matrix-vector form as

Illi = —Hiub + qub + (Iﬁl + Hiﬁb — Gin)a, (226)

where subscripti® refers to interior { = 1,2, ..., K), and the matrice#l;, G, ﬁi
are of sizesk’ x N, K x N, K x (K + N), respectivelyl is the K x K identity
matrix.

Combining the Eqd2:29) and .26, the whole system may be illustrated as
Hb 0 Up Gb 0 Jdb . Hb 0 ﬁb Gb 0 Qb

e ol -G v e 1& o [3])e e
Going back to EqZ.19), and writinga = F~'b instead of the vectoty, Eq.2.279)
may be formed in a compact form as

Hu — Gq = (HU - GQ)F 'b. (2.28)
By takingS = (HU — GQ)F~!, Eq.[2.28 is simplified as

Hu — Gq = Sb. (2.29)
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By means of the relation between the particular solutionthedpolynomial RBFf,
u and ¢ are extracted as follows. Using the relation in polar cauates (for axi-
symmetic case)

V2ﬁ:%%<7“%>:1+r+...+r”:f, (2.30)

the corresponding particular solutians derived as

3

r rn+2

2
r
=—+—=+4+... . 231
b= gt oy (2.31)
Then,
;. 0n_ouor 0w foror  Ordy
=50 " 8ron_ or \9zom dy On
ox dy 1 r r"
= — — ) (=+=+... 2.32
(”anJrryan) <2+3+ +n+2)’ (2.32)
or  ry Or 1y . :
wherer = (r,,r,), r = |r|, and— = = —. Thus, the entries of matrices

or  r oy r
U andQ are computed by putting columnwigg; andgy;, respectively, where, j =
1,2,.... N+ Kandk=1,2,...,N.

Eq.2.29 is reduced to the system of equations of the faflm = d shuffling the
known and unknown boundary informatianis the(N + K) x 1 vector of N unknown
boundary values ofi or q, K unknown interior values ofi, and the vectod consists
of all N + K known values after shuffling.

In the next two sections, DRBEM application is employed fore dependent PDEs
and diffusion-convection type equations.

2.1.2 DRBEM for time-dependent equations NV?u = b(z, y, t, )

Consider the simplest unsteady diffusion equation

ou
2
. 2.
V-u o (2.33)

The application of DRBEM to Eq2(33 results in matrix-vector as
Hu — Gq = Sb, (2.34)
whereb = {b;} = {0u;/0t}, i=1,2,...,N + K.

Using a proper time integration scheme and shuffling withréh&ted known and un-
known boundary information, the system solution is obtdiagV + K points at tran-
sient time levels.
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2.1.3 DRBEM for nonlinear convection-diffusion equations V?u = b(z, y, t, u, i, u,, u,)

If the inhomogeneity includes the time derivative of the miokn as well as convection
terms, i.e.

ou ou ou
U= — U + UV 2.35
Viu \8t+u(?x+v@yj ( )
b:\%a
the application of DRBEM gives, matrix-vector form of E2.5) as
ou ou ou
Hu — =S|—+u—+v—|. 2.36
u— Gq S(8t+u&c+vﬁy) ( )
The expressiob = Fa can also be used for the solution as
u=Fg, B # «a. (2.37)
Differentiation of both sides of EQR(37) with respect tar andy gives
ou OF ou OF
o d — = 2.38
or Ox an oy Oy B ( )

where the matrice8F /0x anddF /Jy are skew-symmetric (i.e4 = —A”). From the
relation Eq2.3%), replacing3 = F'u into the Eq2.38) gives

ou OF ou OF
— F -1 _— = — F -1 . 2 .
o O u and 9y u (2.39)

In order to handle the multiplication of a vector with a main nonlinear terms, the
diagonal matricefu, and|v],; are formed as

Uy 0 ... 0 (%1 0 ... 0
0 Ug ... 0 0 Vg ... 0

[u]g = S : ’ [vla = R : : (2.40)
0 0 ... UN+K 0 0 ... UN+K

Now, Eq.2.36) is rearranged as

Hu— Gq — S (u + e Epty s [V]da—FF_lu) | (2.41)
ox oy
LetM =S <[u]da—FF1 + [V]da—FFl). Then, Eq2.47) will be
ox dy
(H—M)u— Gq = Su. (2.42)

The system of Eq.42) is iteratively solved for increasing time levels using aimye
integration scheme (stable ones are preferred to be abketlarge time increments).
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2.1.4 Computation of second order space derivatives usingaordinate matrix

In the previous section, the convection terms containiedfitist order derivatives are
computed by DRBEM with the help of coordinate matkx If there are terms con-
taining second order derivatives in addition to convectems, computation of these
second order derivatives are achieved again with the coatelimatrix.

Second order space derivatives may be expressed in two Wagdirst one is

Pu  O*F__ Pu  O*F__
@ = @F lu and a—yQ = a—yQF lu. (243)

It is worth to mention here that polynomial radial basis fimes containing linear
termr are not suitable if the second derivatives are to be treatdehb2.43. This is
due to the singularity at = 0. As an example, lef = 1 + r be taken. Then,

of _ofor _ra

= - == 2.44
Jdr Ordx r ( )
?f 0 [Of 0 (ry r? —r?
L~ [ L) = (2Z2) = z 2.4
or? Oz (8:6) ox < r ) rs (2.49)

wherer, = z; — z;. Note that the ternir? — r2) /r® goes tooo asr goes to zero since
r® goes to zero faster thaf.

The second way is to use the first order derivative represenigiven in Eq2.39 [[117].
With the same idea for obtaining E8.89), let

0
= =Fy, v#B7a (2.46)

Differentiating both sides of this expression with respgect (or ), and replacingy
from Eq.2.46) and using EqZ.39 yields

O _OF OFpaou_ OFp, (a—FF_lu) .

or2 %’Y - Ox or O ox (2.47)

2.1.5 Time integration schemes

In this section, two types of finite difference schemes aeflivom Taylor series expan-
sion are introduced. These time integration schemes arg goibe used throughout
the thesis.

2.1.5.1 Backward-Euler method

Backward-Euler method is a first order, implicit method, @ades the formation of
iterative systems between more than two PDE equations.
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Notationally, considek(z,y,t,) = u™. Expanding the Taylor series abatyt =
tmi1 — At, the first order derivative is extracted as

ou|™ A2 9% |
m __ ,m+l _ - _
we= ATl T o ae
Ou|™ oyl gm
a - T —+ O(At) (248)

2.1.5.2 Houbolt method

A third order, implicit time integration scheme which isleal Houbolt method{], is
derived by Taylor expansions written aboyt. ; by taking ag,,, = t,,. 1 —At, t,,_1 =
tmi1 — 2At, t, o =ty — 3At, respectively. Therefore,

18 S — a0 AR P AB BT A |
TRy Ee T A Taree| T mes| Twmoan| T
9 / mot _ it _ g p Ol AN 920 | BAB Bu ™ 16AH 9t ™!
u = U — — —_— S R —
ot 2 o 3 ot 4 ot
o [yt — it gt A 9Pu | 27AS Pu ™ 81AH §ru |
J— U = U J— _ [ S R J—
ot 2 o 3 o 4 ot

11um+1 — 11um+1

Multiplying with the indicated numbers of both sides of thestfithree equations, and
adding the four equations, Houbolt method for the first otithee derivative is obtained
as

a m+1
1™ — 18u™ + 9u™ ' — 2u™ 2 = 6Ata_1; - O(AtY)
oul™ 1 _— m ol o me2 5
= =x (T1u™ — 18u™ + 9u™ ! — 2u™?) + O(AP), (2.49)

which is order ofA¢3.

2.2 DRBEM application to free or mixed convection flows

In this section, natural or mixed convection flows eitheremitie effect of an applied
magnetic field or without magnetic effect in porous enclesuare simulated using
DRBEM. An isotropic, homogeneous porous medium saturaiéid an incompress-

ible fluid is considered. The thermal and physical propsiidhe fluid are assumed to
be constant except for the density variation according tosBmessq approximation.
The fluid and the solid particles are also assumed to be it fbeemal equilibrium.

The viscous dissipation is neglected. The Forchheimergdguadratic drag terms)
are also neglected in the momentum equations. In the casles effect of an applied
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magnetic field, induced magnetic field is also neglectedttamyewith Joule heating
effects. The governing equations are introduced, and tieapplication of DRBEM
to these equations is presented. The solution procedusenmarized, and the results
are visualized in terms of either— T ory) — T — w.

2.2.1 Numerical solution of mixed convection flow in a porousmedium by DRBEM

Initially, DRBEM is applied to solve the steady, two-dimensal mixed convection
flow in a porous square cavity with differentially heated andving side walls. The
problem geometry consisting of the cross-section of a wpiaige cavity which has the
moving lids on the left and right walls is depicted in Figlxd The velocityv = 1
on the vertical walls withu = ¢ = 0; andu = v = ¢ = 0 on the horizontal walls.
The right wall is the hotT}, = 1), and the left wall is the coldl{. = 0) wall while the
top and bottom walls are adiabati¢l(/0n = 0). Vorticity boundary conditions are
unknown, and are going to be derived with the help of DRBEMrdowate matrixF
during the iterative solution procedure.

oT/on =
u=v=1=
e v . W
) T. L)ug Ty )
u=v=1v=>0
.................................. x
T /on =0

Figure 2.4: Problern 2.2.1 configuration.

The non-dimensional governing equations for the two-disiemal, steady, laminar
mixed convection flow in an incompressible fluid-saturatebps medium in terms of
stream function)-temperaturd -vorticity w are 36|

V) = —w (2.50a)
I 1 [ ow ow Gr oT 1
— ) P 2.
epRev v € (u ox v ay) Re? Ox i Da Re " (2.50b)
1 9 or or
T=u—+v— 2.
Br Rev L + v dy (2.50c)

wheree, is the porosity of the porous medium,= 0¢/dy, v = —0y¢/0x, w =
OJv/0x — du/0y. Non-dimensional physical parameters are Reynolds, GfaBlarcy
and Prandtl numbers, respectively, given as

UL ATL? ’
re= YL G _98ATL K g e (2.51)
Ve v? L2 Qe



with characteristic velocity/, characteristic lengtlh, gravitational acceleratio, ef-
fective kinematic viscosity,, permeability of the porous mediur) thermal expan-
sion coefficient3, temperature differencAT = Tj, — T, effective thermal diffusivity
a, of the porous medium. The steady equatidA&@ are constructed keeping the
porositye, in Eq.(L.17 of Chapter[l, and applying the same non-dimensional vari-
ables.

Once the linear boundary elements are used for the disatietizof the boundary,
matrix-vector form for Eq42.50) are written as

Hy™ ! — Gyt = —Su™ (2.52a)
(H— PrReSM)T™*" — GT"' =0 (2.52b)
Re € Gr OF
H - ——=SM — _p m+1 m+l T _FfleJrl 252
( . S Da S) w Guw, €p Resax (2.52¢)
A A F F :
whereS = (HU — GQ)F!, M = <[u]dZ_F_1 + [v]dg—F‘l) , the diagonal ma-
X Yy

trices[ulq, [v]q are formed by the vectoig" ! = (OF /0y )F 1yt vt = —(OF /ox)F 1™,
respectively, anan is the iteration level.

Unknown vorticity boundary conditions are obtained frora tfefinition ofw as

ov  Ou OF OF
=— —— =—F Y- —F1! 2.
Y b dy  0Ox ! oy “ (2.53)

with the help of coordinate matrik. Also, all the space derivatives on the right hand

sides in EqSZ.50) are computed by using DRBEM coordinate maffixi.e.
or  OF ow OF
— I F i 2 F L, 2.54
or  0Ox T 0y Oy v (2.54)

Systems of equationR523-(2.529 are solved iteratively for the unknowns 7', w,
and normal derivatives,, T;,, w, with initial w and7" values, and the iterations con-
tinue until the criterion
[ — ™ NT™ =T o™ — ™
[l [T+ | o [+ |

<e (2.55)

is satisfied where = 10~° is the tolerance for stopping the iterations.

In order to accelerate the convergence for large valuesatfi@m parameters a relax-
ation parameted < ~ < 1 determined by trial and error is used for the vorticity as
w™ T yw™ ! + (1 — y)w™. Further, average Nusselt number through the heated
wall is computed byVu = fol(ﬁT/ax)lmzl dy utilizing the composite Simpson’s rule
(AppendixB).

In the numerical computations of stream function, voryieihd temperature in a square
cavity with heated and upwards moving vertical walls, rbld&sis functionf = 1+ r,
and8-point Gaussian quadrature are used for the constructi&tM matricesk, H
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andG. N = 96, K = 625 are taken, andRe = 100 is fixed. Cavity contains a
fluid saturated porous medium with < 1. Mixed convection flow behavior in this
porous medium is depicted in terms of streamlines, isotegand vorticity contours
for various values oDa, Gr and Pr.

As Da decreases (Figuf25), permeability decreases and causes a force opposite to
the flow direction which tends to resist the flow. This meaias the fluid flows slowly.
While the center of streamlines is in the direction of moviiag, they cluster along

the left and right boundaries forming boundary layers, &edeffects of moving walls
almost disappear. Isotherms become almost perpendioullae top and bottom walls
pointing to the increase in conduction dominated effectrc@ation in the vortic-

ity through the upper corners due to the effect of moving dlasinishes, and strong
boundary layers are formed through the right and left waldsving a stagnant region

at the center.

As Gr increases, the left counter-clockwise secondary celisstabe squeezed through
the left wall, and the clockwise primary cell is centeredoBancy effect is pronounced
due to the increase iRi = Gr/Re?. That is, natural convection is high. Actually, this
can be seen in isotherms@t = 10°. While the isotherms pronounce the forced con-
vection withGr = 103, Da = 0.01(Ri = 0.1) in Figurel2.8, they cluster through the
left and right walls forming strong temperature gradiewisGr = 10° (FigurelZ.6).
Even though there is a Darcy effect with strength = 0.01, we are able to observe
the characteristics of mixed convection flow in a non-poreslium in the cavity{2)].
Vorticity almost covers the cavity with new cells througle tleft and right walls, and
spreads also along the top and bottom walls.

The increase inPr only affects the isotherms (as is seen in Figlr® due to the
dominance of convection terms in the temperature equation.

The decrease in the velocity of the fluid with the decreasBdmumber is shown in
Figurel2.8awith the u-velocity profile through: = 0.5. The dominance of natural
convection with highGr is depicted in Figur2.88 WhenGr is increasedNu values
also increase. Average Nusselt number is almost the sanadl fealues of Grashof
number withDa < 10~* due to the dominance of conduction. HoweVvgr, increases
as Da increases showing the increase in the heat transfer.

Finally, we show how the heat transfer is affected by diffiéralues of porosity. As is
seen in Figur2.93 Nu increases at al, values asDa increases. Higivu values are
obtained by smak, values which yield the increase in convective heat trangfere,
forced convection is dominanfz{ < 1). As the natural convective effect increases
Ri > 1 (Figurel2Z9D), it is found thatNu takes larger values with, = 0.8 than the
other ones. Namely, the natural convection is pronouncéutive increase in,.
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—e—Da=0.1
——Da=0.01
0.8r —&— Da=0.001 ||
—<4— Da=0.0001
0.6r
>
0.4r
:
0 . . ¥ —© . 05 ‘ ‘ .
-0.06 -0.04 -0.02 0 0.02 0.04 10° 10 10° 1072 10*
u Da
(@Gr =10 Pr=0.71, ¢, =1 (b)Pr=0.71, ¢, =1

Figure 2.8: Problerh 2.2.1: Mid-u-velocity profile and axggaNusselt number on the
heated wall.

4

——c, =04

—e—¢, =06

3.5 —e—¢, = 0.8
3,
=25
2,

1.5 —=
0.8 ‘ 1
10 16° 107 10* 10° 10° 10 10°
Da Gr
(@ Gr =103, Pr=0.71 (o) Da = 0.01, Pr = 0.71

Figure 2.9: Problern 2.2.1: Average Nusselt number vanatisithe¢, on the heated
wall.
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2.2.2 DRBEM solution of free convection in porous enclosugeunder the effect
of a magnetic field

In different cross sections as square, isosceles trapszand right-angle trapezoidal
enclosures depicted in FigugelQ Darcy-Brinkman model is considered. In the con-
figurations,B is the applied magnetic field with an inclination angleg is the gravi-
tational acceleration vector, the jagged walls are adiek@f/on = 0), andg, is the
internal heat generation.

Y

(0, 1) gupusssssssisesissssssssssusis D

aT /oy =0 (1,0) T 9Ty =0

(a) Square Cavity (b) Isosceles Trapezoidal

Ty |L B
h [l o

(c) Right-angle Trapezoidal

Figure 2.10: Problein 2.2.2 configurations.

The governing equations {n — v — p — T') form is

ou Ov
4+ 22 =0 2.56
gz " By (2:562
BQ
u= KO oKDy (vsin g cos ¢ — usin® ) (2.56Db)
pOx I
B2
U:—E@—Uﬁ 0 (usinwcosgo—vcoszgo)—|—I{—5g(T—Tc) (2.56¢)
1Oy It v
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or T (a2T 82T) s

Yoz TV T \o2 T a2 ) T ey

2.56d
ox dy ( )

wherex is the permeability of the porous mediumjs the dynamic viscosityi3 is
the magnitude oB, ¢ is the electrical conductivity of the fluid; is the kinematic
viscosity, 8 is the thermal expansion coefficient, is the specific heat at constant
pressurep is the reference density amd is the effective thermal diffusivity.

Using dimensionless variables

y , L , L T -1,
L ae ae B Td ’

/ /

X
xr = — =
L’y

(2.57)

whereT; = T;, — T, in trapezoidal enclosure%,, = (q{)”ﬂ/k) in square cavity, and
then, applying the vorticity definition to eliminate the psere terms, non-dimensional
form of the EqlR.56) in terms ofyy — T may be written as

0% 0% or 01 01
R T S il H 2 (2 7 502
0x? + Oy? fta Ox ¢ <6y2 st 0xy

T 9*T  oor oyworT
g- gL _WIH VoL 2,
0x? * oy? Oy dr  Ox Oy (2.58b)

. %Y
sin(2¢) —i-@ cos® @) (2.58a)

where( = 1 which is the heat generation parameter for the square oatitg () = 0
for trapezoidal cavities, and Rayleigbu and Hartmannd a numbers for the porous
medium, respectively, are

R — g/{ﬁLTd’ Ha? — O'IiBg.
Qv i

(2.59)

The second order space derivatives in Ecg84 are handled by EdR(43), and radial
basis functions are taken gs= 1 + 2 + 7% for the stream function equation and
f=1+rorf =1+r+r?for the temperature equation. Hence, the entries of
coordinate matrices arid, Q will be different for coupled equation&583-(Z.58D.

DRBEM application to this coupled Eq&.E9 with an iteration to eliminate nonlin-
earity results in the following matrix-vector form of thetegions

- - OF ~
(H+ SR)y™! — Gy "t = —Rasg—Fle (2.60a)
X
(H—-SM)T"™ — GT;"*' = —SQ (2.60b)
whereS, R, M are the matrices
§— (Hfj _ Gé) P! §5-— (HI’J _ Gé) P (2.61)
OF - PF - O?F -
—H nlo——F"1 4 sin(2 F! 2o F1 2.62
R = H& <sm oy3 + sin( go)axay + cos’po ) (2.62)

43



OF _ OF — OF _ OF —
M= _—F"* —F ' —F! —F! 2.63

and @ is a constant vectorn is the iteration number]q is the diagonal matrix
constructed by the vectar™*! at each iteration. Shuffling the known and unknown
boundary information and rearranging the EB®0) in the formCx = d, the Gaus-
sian elimination with partial pivoting is used for the sadurt

Step by step, iterative procedure works as

1. TV is taken as zero everywhere except on the boundary. Theapsfunction is
obtained from EqZ.603).

2. Due to the presence of dimensionless physical paraméierand Ha in the
stream function equation, a relaxation paraméter v < 1 for ¢ is employed
as

P (L= )" (2.64)
for accelerating convergence.

3. Stopping criteria is

m+1 _ ,/m Tm+1_Tm
e A - Akt N
[+ o 17 o

< €, (2.65)

wheree = 1le — 7 is the tolerance.

2.2.2.1 Square cavity case

The results are obtained usifig= 1 + 2 + 13 for ¢ and f = 1+ for T', and8-points
Gaussian quadrature is used for boundary integrations.

Computations are carried fd0®* < Ra < 107, Ha < 200 and for magnetic field
inclination anglep = 0,7/6,7/4,7/2. The number of linear boundary elemen{s
is kept around 144, and results are obtained at 289 intediotp For smallH a, we
need to take more elements since the convection due to tatnpebecomes dominant

especially for large values dta.

FiguredZ2.I11showsH a variation for a fixedRa = 10° and inclination angle of magnetic
field p = /6. As Ha increases, maximum value of streamlines drops implying flat
tening tendency of velocity profile for increasing Hartmanumber. Boundary layers
(intensification of stream function lines having equal eslwf streamline contours),
and stagnant cores close to the side walls in streamlinesttemove through the
center of the cavity forming also an intensive layer betwibem in the direction of
the applied magnetic field. Isotherms become parallel tdefieand right walls for
Ha = 100 due to the dominance of pure conduction.

As Ra is increased, maximum value of stream function increasessi®wn in Figure
[2.12 This means that the fluid gains acceleration. For tRghrelaxation parameter
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~ is needed and the number of boundary elements is increasgtore reasonable
physical behavior. Thermal boundary layer formation stéot increasing?a and the
cores become close to the side walls. Isotherms are didtivam being parallel to the
side walls for highRa, covering almost all parts of the cavity. Thus, decreagindor

a fixed Ha, and increasind/ a for a fixed Ra have the same effects on isotherms.

When the inclination angle of magnetic field is changed (see FigiZd3, an inten-
sive layer formation for) is observed in the direction of the external magnetic field.
By the reported),,., values, it can be said that the motion of a fluid inside thetgavi
accelerates when the direction of the magnetic field is ob@rigom the horizontal
(¢ = 0) to the vertical directiong = 7 /2). Isotherms are not affected much with the
change inp.

These behaviors of flow and heat transfer due to the varebbRa, Ha and inclina-
tion angley are expected results for natural convection flow. When the i#uheated,
the fluid particles become less dense and raise, then thedieaitfluid particles trans-
fer energy to the cooler fluid particles and the process noas. So, a convective flow
emerges inside the cavity. Flattening tendency in the floavtae retarding effect of
the Lorentz force are observed as the drop.ip, for increasing values aff a.

Average Nusselt number is the ratio of convective heat tearts conductive heat
transfer. TablR. Jpresents the average Nusselt number (computed by compBasipe
son’s rule on the left wall) variation with respect to vanyid « and Ra values. AsHa
becomes larger thasv, the strength of the heat transfer is progressively witthlagld

Nu attempts to the conductive heat transfer mode. Thereforeremains almost the
same afterfa = 50 in Tablel2.1awhich means that the convection and conduction
change in the same proportion. This is also investigatel thi¢ N values in Ta-
ble2.IBuntil Ra = 105. The stronger magnetic field is needed for large values of
Ra > 10° in order to keep on the valu§u = 0.4905.
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(d) Ha = 200, ¥iyax = 0.0338361, Tmax = 0.12575

Figure 2.11: Problem 2.2.2.Ra = 10°, ¢ = /6
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(d) Ra =107, 7 = 0.65, Upnax = 8.0341900, Timax = 0.06012

Figure 2.12: Problemn 2.2.2.Ha = 50, ¢ = 7/6
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(d) o = 7/2, Uax = 1.9165567, Tmax = 0.13314

Figure 2.13: Problem 2.2.2.Ha = 50, Ra = 10°, N = 168, K = 400

2.2.2.2 Isosceles trapezoidal cavity case

For the computations of isosceles trapezoidal enclosahg 3epoints Gaussian quadra-
ture is used for boundary integrals, afe= 1 +r? + 73, f =1 +r + r? are taken for
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Table 2.1: Problen 2.2.2.1: Average Nusselt number in socerity.

(@) Ra = 10*,p = 7/6 (b) Ha = 50, = 7 /6

Ha Nu ¥ Ra Nu v

0 04314 0.75 10 0.4905 O
10 04903 04 10* 0.4906 O
50 04920 O 10° 0.4904 O
100 0.4919 O 10° 0.4807 0.5
200 04919 O 10" 0.4518 0.65

the radial functions unless otherwise declared. The iatilbm angle of the wald, is
taken ag2 at all test problems. In the figures, minus sign refers to tteetion of the
flow circulation due to the convection in this trapezoidalitaproblem. Inclination
angle of the applied magnetic field is zero. 148 linear boondements and 1127
interior points are used.

As Ha increases, as can be seen from Figutd boundary layer formation on the top
wall is strongly observed since applied magnetic field igfpalrto the top and bottom
walls. Bottom wall boundary layer is also formed fBz > 20. Isotherms become
almost perpendicular to the top and bottom walls due to panelgction whert a is
large. Further, the minimum value of stream function desgea This means that the
convective motion weakens. Whéfa is small, convection is from the left hot wall
through the cold right wall.

As Rais increased, a relaxation parameter is needed fortamgdhe streamlines due
to the dominance 0fa0T'/0x for Ha = 5, ¢ = 0. The minimum value of stream
function increases. Isotherms are nearly parallel to tpeattd bottom walls aga
reaches td0?, and thermal boundary layers are formed at the side wallgirAghe
convection is from the left to the right wall (FiguBe15d).

When the inclination angle of the magnetic field changesfldwve circulation is also
observed in the direction of the magnetic fiejd=€ = /6, 7/4) as is depicted in Figure

2.16

In TableZ2, Nu values along the left hot wall are obtained by usifig= 1 + r

and composite Simpson’s Rule, and the inclination angle 0 is fixed. For a fixed

Ra = 10%, Nu decreases aH « increases and remains in the conduction dominated
situation for a largel{a value as can be seen in Ta@l2a On the other handVu
increases a&a increases for a fixed a = 5. Morever, for a large value dff a = 50,

Nu settles down at a constant value which means that the pudeicthan is dominated
(see Tabl@.2B). The same discussion may be illustrated in Fig@ifwhich is also
observed in135.
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(@)Ha =5, Upin = —3.2413

(¢) Ha = 100, Wi, = —0.0132

Figure 2.14: Problem 2.2.2.Ra = 103, o = 0, N = 148, K = 1127
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(@) Ra = 102, Wi, = —0.4165

(€) Ra = 10*, v = 0.4, ¥pnin = —14.4238

Figure 2.15: Problemn 2.2.2.Zia = 5, 0, = 72°, o =0
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(b) Y= 7T/47 \Ijmin = 761366

(©) o =m/2, ¥min = —5.4592

Figure 2.16: Problem 2.2.2.Ra = 10°, Ha =5
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Table 2.2: Probleh 2.2.2.2: Average Nusselt number in &lesdrapezoidal cavity.

(a) Ha varies (b) Ra varies
Ha Nu Ha=5 Ha=50

5 2.5485 Ra Nu ¥ Nu v
20 1.5712 10? 1.5852 O 1.5670 O
50 1.5659 103 25485 0 1.5659 O
100 1.5668 10* 8.8427 0.4 15825 O

2.2.2.3 Right-angle trapezoidal cavity case

The behaviors of the flow and the temperature in a right-atrgfgezoidal cavity are
investigated by using = 1+r2+73, f = 1+, respectively, and—points Gaussian
quadrature is used for computing the boundary integralsausisign in streamlines
refers to clockwise direction of the flow. Inclination angliethe magnetic field» and
the angle in the top wal,, are fixed ag) and60°, respectively. The right wall has a
partially cooled wall.

As Ha varies as is shown in Figul217 boundary layer occurs on the bottom wall
and partially cooled wall. For increasiria > 20 numbers, isotherms are almost per-
pendicular to the top and bottom walls due to pure conductornthermore, minimum
values of stream function decreases. In other words, fluesfiElowly. The numerical
results shown in Figurg.17are obtained by usini22 number of boundary elements
andg858 interior points. For smalH a« number, a cell emerges through the top wall in
streamlines while it is dispersed and forms a boundary lagehe top wall for a large
Ha number a$0. Isotherms tend to move from the hot left wall to the cold jorbf
the inclined wall but still being perpendicular to the aditib parts of the right wall.

When Ra increases for a fixed numbéfa = 10, a cell emerges in streamlines as
can be seen in Figui218¢ Besides, boundary layer formation on the top of new cell
and bottom wall together with partially cooled wall is webhserved. Isotherms show
almost parallel distribution to the horizontal walls wititreasing values dka due to
the increase in dominance of convective heat transfehésots try to be perpendicular
to the adiabatic parts of the inclined wall, and then formiied boundary layers when
Ra is increased.
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(a) Ha = 57 \I’min = —3.1370

(b) Ha = 10, Wynin = —1.0020

(€) Ha = 50, Wy = —0.0422

Figure 2.17: Problerh 2.2.2.3: Streamlines and isothermight-angle trapezoidal
cavity, Ra = 10°.
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2.2.3 DRBEM solution of unsteady MHD free convection in a sqare cavity

The problem in the previous section is concerned once agéine differences are
time derivative of the temperature and internal heat geiogrparameter in the energy
equation, and the boundary conditions of temperature. Tblelgm is configured as

in Fig.2.19

T /oy =0
%

T

B 1

*qo
A/i

T /oy =0

Ty

Figure 2.19: Problemn 2.2.3: Square porous enclosure.

The non-dimensional governing equations are written as

oT 0? 0? 0?
Vi) = —Ra% — Ha? (8—;5 sin? ¢ + axg}y sin(2¢) + a—;ﬁ cos® cp) (2.66a)
or  oYoT o oT

op 02 OWOL OWOL 2.
VT =5 T 9y ar  or oy (2.66b)

with the initial and boundary conditions

V=T=0, att =0
w=0,T=1/2, atx =0

Yp=0,T=-1/2 atz =1 (2.67)
T

Y =0, a—:0, aty = 0andy = 1.
dy

Ra = grB(T), — T.)L/(cv) is the Rayleigh number for a porous mediufig =
ok B3/ is the Hartmann number for the porous medin= Ra;/Ra with Ra; =

qo L*/(k(T,, — T.)) (internal Rayleigh number) is the heat generation param&te
and7, denote hot right and cold left wallg,is the thermal conductivity.

Employing the Backward-Euler finite difference scheme for time derivative, the
system of equations in matrix-vector form resulting withBBERM application are given
as

OF

(H+SR)y™*! — Guj™! = ~RaS—_F 17" (2.68a)
X
Q S m+1 m+1 S m Q
(H-8M - )T - GTH = - 27" - 8Q (2.68b)
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wherem refers the time level, and the matrices are

S— (Hfj _ GQ) F! §— (Hfj _ Gé) o (2.69)
O*F 0*F 0*F
B o TR -1 2 Ok 4
R = H& (sm gpay2 F* + sm(2g0)8xayF + cos Yo F ) (2.70)
OF - OF -, OF- OF -
M=_—F1 —F!'—-—F1! —F! 2.71

where the diagonal matri)/]4 are constructed by the vectgf**! at each iteration.
In this way, time-integration scheme may be considered asra-snplicit iterative
procedure. The reduced form of both of these equations iriattme of Cx = d is
solved by Gaussian elimination with partial pivoting. Siop criteria in the iteration
is the same as before.

TabldZ. 3reports average Nusselt number (computed at the left hbbwal fol (0T /0x)| =0 dy
using the composite Simpsodss rule (AppendidB)) values at steady-state for a fixed
Ra = 10® with Ha = 1, 10, respectively. The time iteration occurs wittt = 0.01.
These results are in good agreement with the result83g [ 168 boundary element,
1681 interior points are used to obtain the resultsfbr = 1 with a relaxation param-
etery = 0.5, andf = f = 1 + r + 2. On the other hand, the results fiiz = 10 are
obtained by 192 boundary elements and 529 interior poirttsont using a relaxation
parameter, and = 1+ 73, f = 1+ r. It can be deduced that the number of bound-
ary elements and interior points affect the results. Funtioee, the sharp decrease in
average Nusselt number with the increase in Hartmann nupdets to the inhibitive
effect of magnetic field on heat transfer.

Figurel2Z.2Z0describes the variation df« at a fixed Rayleigh numbéka = 10% and
two different inclination angle of magnetic field For a small value oHHa = 1, the
behavior of the fluid does not change much with the inclimatiaglep. Side layers
are formed for isotherms, and streamlines, and a core rdgiostreamlines at the
center of the cavity is observed. However, for increasingesof Ha, fluid flows in
the direction of applied magnetic field, and strong bound@ygr formation occurs at
vertical walls withy = 7/2.

When the Rayleigh number is increased with a fi¥éd = 25 (Figurel2.2]), the
isotherms which are nearly perpendicular to horizontalsMaécome nearly parallel
to them. This demonstrates the increase in convection dasdreffect. Tempera-
ture gradient is pronounced at the left bottom and right umexs. Boundary layer
formation is also observed on vertical walls for high value.

As the heat generation paramefgrs increased or decreased (internal Rayleigh num-
ber varies), the primary cell in streamlines reflected watspect to the direction of the
inclination angle ag) = —1 without changing the velocity of the fluid.
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Table 2.3: Problerh 2.2.3: The average Nusselt numbarsor Ra = 1000 with
Q=1

Ha=1 Ha =10

% Nu [132] Nu [132]

0 9.1782 9.1489 0.7637 0.7952
7/6 9.8091 9.7976 0.8551 0.8796
w/4 10.4477 10.4437 0.9340 0.9620
m/2 11.8925 11.9196 0.7873 0.8065

@Ha=1, p=m/2 (b) Ha =10, ¢ = 7/2

Figure 2.20: Problerh 2.2.3: Isotherms and streamlinesatgtstate with different
Ha values fixingRa = 10°.
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(@) Ra = 10° (b) Ra = 10°, v = 0.5

Figure 2.21: Problern 2.2.3: Steady-state isotherms apdratines w.r.t varyingia
fixing Ha = 25, ¢ = /6, At = 0.01

'Rﬁ\\v/% :

0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8

(@) Q =10, Ymin = —2.2964, Pmax = 0.6192 (0) Q = —10, YPmin = —2.2964, Ymax = 0.6192

Figure 2.22: Probleh 2.2.3: Heat generation and absorfittonyg Ha = 10, Ra =
103, o = 7/6, At =0.1.
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2.2.4 Unsteady mixed convection in a porous lid-driven enokure under a mag-
netic field

The two-dimensional, unsteady, laminar, incompressihledconvection flow in a
porous lid-driven cavity is considered under the effectroharizontally applied mag-
netic field.

The governing non-dimensional equations (setting: 1) in terms of stream function
-temperaturd -vorticity w are presented as

V2 = —w (2.72a)
1 _, ow ow ow  Gr T w Ha? v
— = — — tv— - =—— — 2.72
Rev v ot +u8x + U(‘?y Re? Ox + DaRe + Re Ox ( b)
1 9 oT oT o'  Ra; 1
T=— — v — 2.72
PrRe ot T ox v 0y  Rag PrRe ( ©)

where the dimensionless parametéls, Gr, Re, Ha, Pr, Ra;, Rag are Darcy,
Grashof, Reynolds, Hartmann, Prandtl, internal Rayleigh external Rayleigh num-
bers are

L ATL? B3
Re:U—, GT’:L, Dazi, Ha? = 207
v v? L? H
///L5 ATLB
Pr— 17 Ra; = 954 ., Rap = goATL” = Gr.Pr (2.73)
Qe Vafeke Vo,

The problem is configured in Figu23where the left and right walls are adiabatic,
top wall is the heated wall while the bottom is the cold walk= v = ¢ are all zero on
all boundaries except the moving top wall with velocity= 1, B is the horizontally
applied magnetic field with magnitud& andg is the gravitational acceleration vector.

0

J

oT /on
COT/on =0

T.=0
Figure 2.23: Problein 2.2.4 configuration.

By means of coordinate matrik and the third order backward difference time integra-
tion scheme, Houbolt method (EB.49), the iteration with respect to time is carried
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between the system of equations farw and7’ as

Hy™ ' — Gyt = —Sw™ (2.74a)
F F
s 8—F Lyt ymtl - _8_]_:‘ Lyym+l (2.74b)
oy 0x
aw m+1
Hu"™ "' — Gu"™' = ReS B + Mwm“] (2.74c¢)
_ gsa_F le+1 + S M+1 + HCLQSa F—l m+1
Re 0x ox
HT™ ! — GT™ = PrReS | mH +omrm | g er (2.74d)
a ot Rag '
whereS = (HU - GQ)F~1, M = ([ la g—F Yyv ]dg—Fl , m shows the time
y

iteration, the diagonal matricéa]q and|v]q of size(N + K) x (N + K) are con-
structed by the vectong™ ™!, v, respectivelyRa;/Ray is a constant vector of size
N+ K.

Once the time derivatives are replaced with Edl® and the known and unknown
information are shuffled, the system of equatiddg 43-(2.74d) is solved by direct
Gaussian elimination with partial pivoting.

The iterative solution procedure is as follows

1. w” andT" are taken as zero everywhere except on the boundary.

2. ¢™*! is solved in [Z.743 using the values ofy from mth iteration. Then, the
velocitiesu™ !, v™*+! are computed using™**! in Eq.{2.74D).

3. Boundary conditions for, v are inserted in equationZ.745).

4. The energy equation is solved for**! from Eq.2. 749 with the temperature
boundary conditions.

5. Vorticity boundary conditions are employed by using therdgfin of vorticity
and the coordinate matrix

dv  OJu OF OF
= —— — = _—F W - —F " 2.7
or 0Oy 0Ox v Oy u (2.75)

6. Vorticity w™*! is obtained from EqZ.744).
7. lterations continues until the criterioidd]

[t =™ T =T ™ — ™)
[m 4] o 17| o [

X <€ (2.76)
is satisfied, where = 1le — 05.
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8. Average Nusselt number on hot top wall is computed as

1
mz/a_T
03?/

by using the composite Simpson’s rule.

dx (2.77)

y=1

The results are obtained by usilfig= 1 + r radial basis functions in coordinate matrix
F. Further8—point Gaussian quadrature is used for the integral$ andG matrices.
In general, 120 linear boundary elements asd1 interior points, andPr = 0.71 are
taken in all computations. Once the vorticity is computex,l&rge values of{a, a
relaxation parametér < v < 1 is utilized as

W™t ™ (1 - y)w™. (2.78)

As Da decreases (Figul229), fluid flows slowly due to the decrease in permeability
[80], and the effect of moving lid disappears. Isotherms terfaetimome parallel to the
horizontal walls which indicates the conductive heat tran3d/orticity is concentrated
to the top wall being stagnant at the center.

With the increase it/ a (Figure2.29), heat transfer is suppressed on isotherms vanish-
ing the forced convection by moving lid. The cells in the upped part of the cavity

in both streamlines and vorticity become prominent whikelttwer mid part becomes
stagnant in the cavity. The fluid velocity through the bottomd part nearly becomes
zero as can be seen from the midelocity profiles (Figuré.29, and the fluid mo-
tion is enforced through the top by increasing the intensitthe horizontally applied
magnetic field as is seen from the midelocity.

As Re increases (Figuri@.26), a second counter-rotating cell emerges in streamlines
while the effect of the moving lid increases on the top cethfimg strong boundary
layer from left to right on the top wall. Isotherms circulatside the cavity forming
the strong temperature gradient through the bottom walinil&ily, the increase in
buoyancy parameter, Richardson numb&r= Gr/Re? (Figure2.23), divides the
streamlines into secondary and tertiary counter clockwedks while the isotherms
show the conduction dominated behavior, and vorticity ®maw cell resembling the
streamlines.

The increase in the internal Rayleigh number only altersgbtherms as can be seen
from Figure2.28 The boundary layer formation on the top and bottom wallsés p
nounced pointing to the increase in temperature variati@tad the increase in internal
heat.

When the average Nusselt numb¥w is taken into consideration (Figur&s30a
[2.30D) on the top lid, one can see thatu is almost the same for all values 6fa
whenRi > 1 (Re < 10) fixing Gr = 10?, Ra; = 0, Ha = 0. On the other hand,
Nu increases a®a increases forki < 1 due to the increase in inertial forces as
Re (Re > 10) increases (Figui2.30d which demonstrates the increase in convective
heat transfer. Whet'r = 102, Re = 10%, Ra; = 0 are fixed, Nu decreases and
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becomes almost the same for &lk values asHa increases (Figurig.300). As Ha
decreases, the increaseN is well observed, and the values®t: is larger for large
values ofDa which points to the increase in convection.

P

Da=0.01

0.0001

Da

Figure 2.24: Problerh 2.2.4: Darcy variation withr = Re = 100, Ha = Ra; =
0, At = 0.25.

Ha =10

Figure 2.25: Problerh 2.2.4: Hartmann variation wittu = 0.1, Gr = Re =
100, Ra; = 0, At = 0.5(Ha = 10); At = 0.1(y = 0.1, Ha = 100).
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Re =50

Re = 500

I

Figure 2.26: Proble 2.2.4: Reynolds variation wibth = 0.1, Gr = 10*, Ha =
Ra; =0, At = 0.5(Re = 50); At = 0.1(Re = 500).

Figure 2.27: Problernh 2.2.4: Grashof variation witlu = 0.1, Re = 100, Ha =
Ra; =0, At = 0.5(Gr = 10%); At = 0.1(Gr = 10°).
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=10°

Ral

=10*

Ral

Figure 2.28: Probleni_2.2.4: Internal Rayleigh number vYeme with Da =
0.01, Gr = 100, Re = 1000, Ha = 0, At = 0.5
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Figure 2.29: Problein 2.2.4: Mid-velocity profilesHs varies fixingDa = 0.1, Gr =
Re =100, Ra; = 0.
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Figure 2.30: Problern 2.2.4: Average Nusselt number.
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In this chapter, the natural or mixed convection flow prolde@mporous enclosures
have been solved utilizing the dual reciprocity boundagnmednt method. DRBEM

provides one to obtain the expected behavior of the soluti@cheap computational
expense due to the boundary-only nature of the method. Tinemncal modeling have

been done in terms of stream function, temperature anccugrti he time derivatives

in unsteady problems are handled by implicit finite differemethods while the spatial
discretization is achieved by DRBEM.

The heat transfer under the non-magnetic or magnetic eff@crous enclosures have
been investigated. In both cases, the decrease in perigabijporous medium (the
decrease iDa number) suppresses the heat transfer as well as slowingiitiefbve-
ment. Also, the same behavior is observed in the strengtm axgernally applied
magnetic field due to the retarding effect of Lorentz forclke Vertical direction of the
magnetic field has an accelerating effect on the fluid motiadhé square cavity case.

The other physical dimensionless parameters show the rhamacteristics of the natu-
ral or mixed convection flow. Buoyancy has a stabilizing effan the fluid flow. When
the Richardson numbeR{ = Gr/Re?) is increased, the buoyancy effect outweigh the
effect of the moving lids if they exist. In that case, the baiogy-driven flow is referred
to as natural convection flow. Isotherms are clustered tirabe heated corner and
cross cold corner almost becoming parallel to the othessafléhe enclosure in a two-
sided lid-driven cavity case. The thin thermal boundargfayalong the side walls are
developed with the convective heat transfer. The higheogityr provides the higher
heat transfer and fluid velocity & > 1. In the top lid movement only, circulation in
the isotherms restricted to the sliding lid, and the congadieat transfer in the mid-
dle and bottom parts of the cavity is observed. In the cageiof 1, the two driving
mechanisms, either lid or buoyancy, balance each otheiifigrthe symmetric eddies
in counter-clockwise direction. For small values of Pramdimber, the conductive
heat transfer is pronounced while the convection increagshe increase in Prandtl
number. A strong circulation is observed in isotherms asdRfanumber increases,
and the core of the cavity becomes stagnant, and the sigraéaaf buoyancy is seen
through the side walls.
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CHAPTER 3

DRBEM APPLICATIONS TO FULL MHD EQUATIONS

In this chapter, MHD flow with or without heat transfer is caesed in enclosures.
These are the lid-driven porous or non-porous cavity, thefiven cavity containing a
square blockage at the center, and the staggered douldavah cavity. Also, MHD
flow in a channel containing a backward facing step, and MHW ftwer a square
cylinder placed in a channel are considered and numerit#icos are presented for
several problem parameters. In all these problems, indumagphetic field is taken into
account, and it contributes to the equations as magnetenpal, current density or
induced magnetic field components.

The interaction between the conducting fluid and an appliagmatic field causes an
electromotive force resulting with induced currents ofesrd(u x B). According to
Ampere’s Law, an induced magnetic field is generated bydedwurrents. This in-
duced magnetic fiel@ and the induced current densilydevelop the Lorentz force
B x J. In most of the studies, induced magnetic field is neglectesitd the small
magnetic Reynolds number. In consideration of the inducagmetic field as an un-
known, the governing equations consisting of the combomatif Navier-Stokes and
Maxwell's equations will also contain the induction eqoas, and so they are referred
as full MHD equations. These are already given in Chdfit@.1.5 in detail. In di-
mensional form, the full MHD equations in the presence ofgerature difference for
an incompressible, viscous fluid are expressed as

% n g_z _ 0 (3.1a)
yvzu:%+ug—z+vg—z %g—i%—pﬁi <8£y —8596) (3.1b)
I/VQU:%*FU% ”%*%%‘pi; (aiy —8536) —gB(T - 1T.) (3.1c)
v, - Do vl e p 2o (3.1d)
U%mV?By = a(iy + ué‘aiy + U@iy - BJC% - Byg—z (3.1e)
aV*T = or + ua—T - va—T (3.1f)

ot Ox oy
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This chapter presents the DRBEM solution of the differenti®of the non-dimensional
full MHD equations with or without heat transfer, and the raxioal simulation of
these equations in different geometries. Nondimensipa@din of these full MHD
equations are given in Appendi. Once the dimensionless governing equations are
derived, DRBEM is applied to all equations leaving only lapén terms on the
left hand side, and treating all the other terms as inhomeigefb as mentioned in
Eq.2.19 which is approximated by radial basis functions). In theBERI formula-

tion of the full MHD equations given in the following sectigrthe same BEM matrices

H, G, U, Q constructed as in E@[ZJ), and the coordinate matrR as in EqZ.12)
are utilized.

Further, at all application problems in this chapter, the-tlimensional, unsteady,
laminar flow of an incompressible, viscous, electricallpdocting fluid is considered
under the effect of an externally applied magnetic field eetghg the Joule heating,
viscous dissipation and Hall effects. Also, induced maigrfetld equations are con-
sidered due to the large values of magnetic Reynolds nuniten > 1).

3.1 MHD flow and heat transfer with magnetic potential in a porous medium
(W—A—-T—w)

This problem is an extension of the problem given in se@@in the sense that in-
duced magnetic field is present in the fluid. Thus, the relatpthtions for induced
magnetic field are included, and are combined to give magmetiential A using
the definitionsB, = 0A/dy, B, = —0A/Ox in either one of the induction equa-
tions [[.369-(1.369. Magnetic potentiall is considered as unknown in the governing
equations.

The two-dimensional, laminar flow in a unit lid-driven sgearavity filled with an
incompressible, electrically conducting fluid-saturapedous medium is considered.
The fluid is permeated by a uniform externally applied (intbgical direction) mag-
netic field of strengthB, (Figurel3.1). The physical properties of the fluid, which is
in local thermal equilibrium with the porous medium, are stamt except the density
variation in the buoyant term of the momentum equation atingrto Boussinessq ap-
proximation. The physical problemis referred as Brinkneatended Darcy model due
to the absence of quadratic drag terms (Forchheimer temifei momentum equa-
tion. The porous medium is assumed to be hydrodynamicakyntally, electrically
isotropic (neutral) and homogeneous.

The non-dimensional governing equations in terms of striganation «-vorticity w-
temperaturd’-magnetic potentiall are given in non-dimensional form as (Chayilier

sectiorl. 1.5 AppendixA)

Vi) = —w (3.2a)
1 o OT aT or
PTR@V r= ot * u% i Ua—y (3.2b)

68



Thzl, v=20
1: _— 3
I |
C’go ogo
¥ I T IBO
S 3 g E
D 3 T_) EQ
>~ I U I E>~
E SER
u=v=0
xX
0 T.=0 1

Figure 3.1: Problern 3.1 configuration.
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in which the Reynolds numbéte, Prandtl numbePr, Grashof numbetr = Ra/ Pr,
Hartmann numbef{a, and magnetic Reynolds numb&em are

L ATL? ATL?
Re=UL g o 9PATL o _9PATLT
v V2 OV L?
B2
PTZL, Ha = Olig, Rem = p,,cUL,
Qe 1

and the termw/(DaRe) in Eq.3.20 exists due to presence of the porous medium.
In Eq.8.2), the continuity condition of velocity field and the diverge-free con-
dition of induced magnetic field are satisfied with the relasic = 9y /0y, v =
-0y /0x, B, = 0A/0y, B, = —0A/0x, respectively.

The third order backward difference formula (Houbolt timéegration scheme given
in Eq.(2.49) for the time derivatives is utilized. Then, the iteratiwith respect to time
is settled between the DRBEM formulation of the governing.i&32) in the form of

Hy™ ! — Gyt = —Sw™ (3.3a)
™t =Dyt ™t = D! (3.3b)
m—+1
HT™' — GT;"*' = PrReS ¥ + M7T™H! (3.3¢)
m+1
HA™" — GAI"™™ = Rem$S [E + MA™H (3.3d)
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Bt =DyA™! Bt = —D, A (3.3e)

m+1

Gr 1
m+1 m+1 m+1 m—+1 m—+1
Hw+_qu+ = ReS E —l—Mer _ESDXTJF_'_D—astr

Ha? m m
- RemS([Bx]dez +1 1 [B,],Dyz +1) , (3.30)
where
. R OF OF
S=HU-GQF?! D,=—F1' D,=—F1
( Q) 9 6X Y Yy ay 9

M = ([u]de + [V]dDY) , 2™ = DxB;nH - DyBaTan'

Second order derivatives appearing in the vorticity equa.31) are calculated using
the products oD, andD,, with the coordinate matri¥ as explained in Eq2(49). Di-
agonal matricefuq, [v]4, [Bx]a, [Byla, formed by the vectorg™**, v+, B+ Bt
diagonally, are all of sizéN + K) x (N + K) whereN is the number of boundary
elements andy is the number of interior points, and shows the iteration step with
respect to time.

After the replacement of time derivatives and shuffling fleown and unknown bound-

ary information, the system of equatiois3g, (3.39, (3.39 and B.3i) is solved by
direct Gaussian elimination with partial pivoting.

The solution procedure advances in the following stepstiallyi (at ¢t = 0), 7, A
andw are all taken as zero (except on the boundary). First two tierations are
carried with Backward-Euler scheme. Then the iteratiortiooes with Houbolt time
integration schemea)™*! is solved in[B.38 using the values of) from mth iteration.
Then, the velocities™ !, v™*! are computed using™* from Eq.B.30) inserting
the boundary conditions far andv. The energy equation is solved for"+! from
Eq.3.39. The boundary conditions for magnetic potentilare derived from the
definitions of B, and B,, in terms ofA such thatd = —z + (" is found if the applied
magnetic field is in -direction, i.e. B, = 0, B, = 1. The constant’ is taken as
zero similar to the idea in the boundary conditions of stréamstion). The magnetic
potential equation, E@B(3d), is solved forA™*!. Induced magnetic field components
B+t B+t are computed usingl™ ! from Eq.[3.38 insertingB = (0, By, 0) =
(0,1,0) on the boundary.

Vorticity boundary conditions are found by using the defomtof vorticity with the
help of coordinate matri¥’

w=——— = D" — Dyu". (3.4)

Then, vorticityw™*! is obtained from Eq3.3).
Iterations continues until the criterioid9]

[ — ™l N7 =Tl A = A [lw™ T — ™
[Pl [T+ o [A™ ] [+ |

x <€ (3.5)
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is satisfied withe = 1e — 05, and the solution is obtained at steady-state.

Once the whole system is solved, average Nusselt numbereohetited top wall is
computed using E@(77). Drag Coefficient through the moving wall is also achieved
by [30]

2 Ou

cp = —Ea—y y:1. (36)

As a validation case for the proposed numerical scheme lmesB&RBEM, the average
Nusselt numbers are computed whBm, = 0, Da = oo are taken to reduce the
problem to the mixed convection flow in a lid-driven cavi#2]. It can be seen from
Table3. I that good agreement is obtained in spite of using small nuwidgoundary
elements (at mosV = 96, K = 961) compared to the studi{g] (in which at least
128 x 128 mesh size is utilized).

Table 3.1: Problern 3l1: Comparison®t: at the top wall Pr = 0.71.

Gr = 10? Gr = 10?
Re [72] Present [[/2] Present
100 194 194 134 133
400 3.84 384 362 361
1000 6.33 6.32 6.29 6.29

The numerical results are performed using quadratie=( 1 + r + r2) radial basis
functions in forming coordinate matrik. Further,16-point Gaussian quadrature is
used for evaluating the integralslihandG matrices. In all the computationBy = 1

is fixed (corresponding to ionized gas@})| The numbers of boundary elements
and arbitrarily taken interior point& are needed to be increased when the problem
parameters take large values, especially with high Hantnmaimber, due to the domi-
nance of reaction terms in the vorticity equation. This isfiedl in Tabld3.2in terms
of average Nusselt number for increasing values of Hartmanmber. As can be seen,
not much of a significant variation in the mean Nusselt nunopethe hot top wall is
observed aftevV. = 120 up to Ha = 100. Therefore, in general,20 linear boundary
elements and41 interior points are adopted in the computations. OnlyHer = 100
andHa = 300, N = 160 and N = 176 are used in the computations, respectively.

Table 3.2: Problern 311: Grid analysis withu =0.1, Pr=1, Gr= Re= Rem=100.

Nu
N K Ha=25 Ha=50 Ha=100 Ha=300
80 361 1.7789 1.4001 1.1318 1.0164
120 841 1.8227 1.4709 1.2079 1.0261
160 1521 1.8177 1.4747 1.2292 1.0479
176 1849 1.8122 1.4702 1.2305 1.0540
192 2209 1.8062 1.4645 1.2297 1.0541

As Da decreases (Figuig2), fluid flows slowly due to the decrease in permeability of
porous medium. The effect of moving lid diminishes and th&eeof the streamlines
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clusters through the top wall. Isotherms become nearlygretigular to the vertical

walls referring to the conductive heat transfer. Magnetiteptial lines parallel to ver-
tical walls occur showing the increase in diffusive termsisgnetic potential equation.
Vorticity forms strong boundary layers due to the dominasfoaction term with the

decrease ila.

For large values ofRem (Figurel3.3), the expected variation is observed in magnetic
potential due to the increase in dominance of convectiangan magnetic potential
equation. Magnetic potential lines try to circulate thrbuge center of the cavity
and obey the movement of the lid. For a further increas&dm (Rem = 100),
circulation enlarges and clusters near the left wall. Notimof a change is observed
in streamlines, isotherms, and vorticity.

Since the applied magnetic field is+4n/—direction, boundary layer (Hartmann layers)
formation in the flow through the vertical walls as well as tiwgizontal walls (side
layers) are well observed with the increasédin in Figure3.4 Even secondary flows
appear close to the vertical walls with the increasing isitgnof external magnetic
field as approached to 100 and then 300. Isotherms becomiepé&rahorizontal
walls. This indicates that the increase in the intensithefapplied magnetic field has
an inhibitive effect on the heat transfer. Vorticity is atsmcentrated close to the walls
as Ha increases (action takes place near the walls). The intedsifiagnetic field
makes the magnetic potential lines perpendicular to theatmpbottom walls which
points to the decrease in the effect of the induced magnei. fiThat is, external
magnetic field in4-y-direction is more powerful forcing magnetic potentialidesthe
cavity to be in its direction. Instead of decreasing time@ncentAt for large values
of Ha, once the vorticity transport equation (which contaiiig? in reaction terms)
is solved, a relaxation parameter< + < 1 is used for accelerating convergence of
vorticity asw™ ! < yw™ ™ + (1 — v)w™.

When the direction of the external magnetic field is changethé z-direction, the
same effect is observed in terms of Hartmann and side lay€mat is, firstly the
external magnetic field forces to separate the flow, and thertid effect diminishes
leaving the center region almost stagnant. Boundary layevs obey the rule that
Hartmann layers are formed on the horizontal sides of thi#y\¢cand side layers are on
the top and bottom walls as can be seen from Filielf the external magnetic field
is inclined with an angle from the-axis, the behavior of the flow takes the direction of
the magnetic field forming the loops and the boundary laydegynetic potential lines
inside the cavity also show the direction of the externafipleed inclined magnetic
field.

With the increase of Reynolds number value (Fid8u@, clockwise rotating (primary)
cell adjacent to the upper moving wall becomes larger whigedounter-rotating cell
(secondary cell) shrunks into two small bottom corner esldidnis is due to the buoy-
ancy parameteRi = Gr/Re? decrease which results in a decrease in the intensity of
the inertia term. Both isotherms and vorticity circulatetie cavity asRe increases
due to the dominance of the convection terms. Similarly,itlceease inGGr causes
three cells to emerge in the flow @ndw), and the center of the primary cell moves
in the direction of moving lid remarkably as can be seen frogufe3.7. Conduction
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dominated effect reveals in isotherms due to the increabedayancy effect. On the
moving lid of the cavity, perturbation is pronounced in magmpotential lines.

As expected, the decrease in the heat transfer with theasers Ha number may
also be visualized by average Nusselt number variation®hdhtop wall as shown in
Figurel3.8a The decrease iVu is seen ag/a increases due to the retarding effect of
Lorentz force. For large values 6fa, magnetic Reynolds number enhances convective
heat transfer as can be seen from the increas€urin Figure3.80 However, heat
transfer turns into the conductive heat transfer/as decreases even thoudtem
increases. Overall, not much of an effectfofm on the heat transfer is revealed.

In Figurel3.93 the increase in drag coefficient through the moving walhwfite in-
crease in a points to the increase in shear stresg@u/dy). The variation inRem
has no effect on drag coefficient as can be seen from HgOfe

=0.1
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1414

Da=

0.0001
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Figure 3.2: Problem 3l1Gr = Re = Rem = 100, Pr =1, Ha =5, At = 0.25.
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Figure 3.5: Problerh_3| 1z-direction external magnetic field witba = 0.1, Pr =
1, Gr = Re = Rem = 100; At = 0.25(Ha = 5,25); At = 0.2,y = 0.5(Ha =
50); At =0.1,7 = 0.1(Ha = 100).
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Figure 3.7: Problem 3l1Da = 0.1, Pr = 1, Re = Rem = 100, Ha = 5; At =
0.25(Gr = 10%,10%); At = 0.1(Gr = 10%); At = 0.1,~ = 0.1(Gr = 10).
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Figure 3.9: Problern 3.1: Drag coefficient observation with= Re = 100, Pr = 1.
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3.2 MHD flow and heat transfer with magnetic induction (v — 7' — B, — B, — w)

In this problem, induced magnetic field is computed in itgioial component$, and
B, instead of magnetic potential, and the medium is considered as non-porous.

The governing non-dimensional equations in terms of striearction), temperature
T, induced magnetic field componerts, B,, and vorticityw are

Vi = —w (3.7a)
PrlReVQT = 88—7; + ug—i + UZ_Z; (3.7b)
RimVQBx = 8596 + ué‘ix + Uaa% — Bx% — Byg—z (3.7¢)
RimVQBy = 8£y + u%ﬁy + Uaazzy — Bxg—:; — Byg—: (3.7d)
LVQ _ ow ow ow Ra 0T (3.7¢)

Re T ot +u%+U8—y_P7’R62%
2
__H@ [, 0 (9B, 0B 0 (9B, 0B\]
ReRem Oxr \ Ox oy Jy \ Ox oy
where the dimensionless parameters are ReyrddBrandtlPr, HartmannH a, mag-
netic Reynolddzem, and RayleighRa numbers.

Being used the space derivatives in vetidny the coordinate matrik, and discretized
the time derivatives with Backward-Euler finite differerfoemula, the iteration with
respect to time fot), T', B,, B,, andw is given as

Hy™ ! — Gy = —Sw™ (3.8a)
u™ = Dyz/JmH, V" = —Dyyp™ ! (3.8b)
PrRe _— _— PrRe_, ..
R
(H — Ai”s — RemSM + RemSDx[u];”“) B — GBIt = (3.8d)
Rem .. m il
Y SB.' — RemS[By | Dyu
Rem m m m
(H ——x; 3 — RemSM + RemSD, |v] d“) Byt — GBIt = (3.8¢e)
Rem .. m m
— FSBy — RemS[Bx]d DXU +1
Re Re
H__ _ M m+1 m+1:__ m f
( Ats ReS ) w Gw, A7 Sw (3.8f)
Ha2 m-+1 m-+1 Ra, m+1
- RemS ([BX]d Dx{C} + [By]d Dy{C}) - PTR€SDXT
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where

~ ~ F F
— <HU — G’Q) :E‘_l7 DX g g—XF_l’ Dy — a_F—l

S
M

W'Dy + [V} Dy, {¢} = DyB" — Dy B

Y
B Bya ! [y, [V enter into the system as diagonal matrices of size
(N + K) x (N + K), andm shows the iteration step. The arranged form of the
equations (with the known and unknown information on therutauy) is solved by
Gaussian elimination with partial pivoting.

Initially, w°, BY, By, T° are taken as zero everywhere (except on the boundary). Once
the stream function is computed from E83, velocity components are determined
by using Eq[8.8D) inserting the boundary conditions. Then, temperatureatou
(3.8¢ and induction equation88d-(3.8@ are solved with the insertion of their bound-
ary conditions. Vorticity boundary conditions are complby using Eq[8.4). Then,

the vorticity transport equatiof8{8i) is solved by using these vorticity boundary con-
ditions. The solution process continues in this way unal¢hterion

5 m+1l o m
Z (A ok HOO <e=1le—4 (3.9)

e A

is satisfied where,, stands fon), T, B,, B, andw values at the boundary and interior
points, respectively.

Once the vorticity equation E@8) is solved, in order to accelerate the convergence
of vorticity to steady-state which is rather difficult to a@nge than the other un-
knowns, a relaxation parameter< v < 1 is used agv™ ™! < yw™ ™ + (1 — v)w™

for large values of parameters in reaction terms.

The depicted contours from left to right are streamlinesthisrms, vorticity lines, and
induced magnetic field vectoB,, B, ) at steady-state.

3.2.1 Lid-driven cavity MHD flow

The electrically conducting fluid is moving down the chanwih a pressure gradient
and an imposed magnetic field is in thg-direction which is also perpendicular to the
axis of the channekfaxis). The flow is fully developed, thus the cross-sectibthe
channel is taken as the domain of the problem (lid-drivemtgav

The two-dimensional, unsteady, laminar, incompressiblCMlow and heat transfer
in lid-driven cavity is considered. The problem configuratwith boundary conditions
is depicted as in Figufg.10

The computed results are obtained using the radial bast$ifumf = 1 + r, and16-
point Gaussian quadrature for the integrals in the BEM roesil andG. In general,
N = 120 boundary elementgy = 840 interior points are used.
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Figure 3.10: Problefn3.2.1 configuration.

Table 3.3: Problern 3.2.1: CPU times aid. on the heated wall witlke = 1, Pr =
0.71, Gr = 10%, At = 0.01.

Present Study [34]
15 x 15 25 x 25 15 x 15
Ha Nu CPU Nu CPU Nu CPU
0 217 259 2.08 37.92 2.02 50.60
10 182 3.15 1.74 9543 1.70 34.03
25 1.20 452 1.18 61.51 1.17 42.59
50 1.01 4.76 1.01 59.55 0.97 25.53

The presented numerical procedure is validated negletimghduced magnetic field
as in the case oBH] (in which the top and bottom walls are adiabatic while tifewall

is hot and the right wall is cold, and no-slip boundary coindis are imposed on the
walls). The average Nusselt numbela( = — fol(ﬁT/ax)dy computed by composite
Simpson’s rule (AppendiB)) are in good agreement with the ones compute@4h |
The computational cost (CPU time in seconds) of the predediss naturally less
than the one in the domain discretization methods due tosb®iboundary elements
only as can be seen in Tal€3(e.g.15 x 15 grid, 56 boundary elements only).

As Re increases (Figu@.11), the center of the streamlines in the direction of moving
lid shifts through the center of the cavity forming new setamy eddies at the bottom
corners. The dominance of convection is observed in isotedorming the strong
temperature gradients clustered at the top left and botight corners. \Vorticity is
transported inside the cavity forming boundary layers @nttip moving lid and right
wall close to the upper corner. This shows the concentraifdifow through upper
right corner. Induced magnetic field is not affected muclinvhie increase ike.

With an increase inffa (Figure[3.12), fluid flows slowly due to the retarding effect
of Lorentz force. Two new cells on the right and left parts avity are observed in
streamlines. Heat is transferred by conduction as can lvefs®a isotherms. Induced
magnetic field lines become perpendicular to horizontalsaddie to the decrease in
the dominance of convection terms in the induction equatiéiso, this points to the
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dominance of external magnetic field which is in thgdirection. Vorticity concen-
trates completely near on the wall with the moving lid beitegggsant at the center as
the intensity of magnetic field increases (iféa increases).

An increase in magnetic Reynolds numb&rm has a great influence on the induced
magnetic field only. It shows circulation at the center of tagity due to the domi-
nance of convection terms in the induction equations, aacetfect of external mag-
netic field diminishes (Figufg.13.

As Ra increases (Figuii@.14), the isotherms indicate the conduction dominated effect
due to the dominance of the buoyancy force. Small countakelise eddy in stream-
lines with Ra = 10 occupies the mid-part of the cavity wifhe = 10*, and one more
clockwise cell emerges through the bottom part of the cast§a reaches to the value
Ra = 10°.
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Figure 3.11: Problen 3.2.Rem = 100, Ra = Ha = 10, Pr = 0.1, At = 0.25.
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Figure 3.14: Problein 3.2.1ke¢ = 400, Rem = Ha = 10, Pr = 0.1, At = 0.25.

3.2.2 MHD flow in a lid-driven cavity with a centered square bbckage

The MHD flow problem has taken much interest due to the heastea alterations in
the presence of obstructions in enclosures. The domainsoptbblem is described in
Figurel3.18 The stream function is set to zero on outer boundaries daadiitknown

but a constant on the inner square bound@&d}.[ This constant value of boundary
streamline on the square cylinder is determined consigéhia streamline values when
the square blockage is absent. Outer walls are €plg 0 while the wall around the
square obstacle is heat@g= 1. Heat transfer inside the blockage is neglected due to
the small value of thermal diffusivity of the solid and iteisermal structure.

The blockage is assumed to be non-conducting producinggiaglinduced magnetic
field (Rem is assumed to be very small in the blockage). On both theycawit
solid blockage walls:-component of magnetic field is taken as zer@omponent as
one since external magnetic field is applied in ghdirection. The vorticity boundary
conditions are not known. They are going to be obtained duhe solution procedure
by using the definition of vorticity and DRBEM coordinate matF.

The numerical results are obtained with the same procesgésreed in the previous
section. In the computationg,;, = 0.25 is fixed usingN = 208 linear boundary
elements withiK' = 880 interior points.iy) = —0.05 is taken on the blockage walls by
looking at the average value at the center of the cavity in the absence of blockage
and heat transfer.
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Figure 3.15: Problen 3.2.2: Configuration of square obstisch square cavity.

Figure3.I8shows that the results using DRBEM in solving the mixed cotiva flow
in a lid-driven cavity with a square blockage, are consistéth the results given in
[77] (in terms of Ri = Ra/(PrRe?)).

In this problem, forRa = 103, the center of the primary cell is seen through the moving
lid and a secondary flow is observed at the left bottom corféh® cavity. With
Ra = 10%, the primary cell is shrunk through the right mid part white tsecondary
flow occupies the left part of the cavity. A symmetric behawostreamlines starts to
be pronounced vanishing the effect of moving lid with = 10° and10°. Vorticity
shows a similar behavior to streamlinesfasincreases. This is the common effect of
large Ra values on the flow. Furthermore, isotherms also start to toeileited from
hot blockage to the cold walls forming strong temperatueglgmt through the moving
top wall due to the increase in natural convection (buoyaneyuced magnetic field
lines are also affected with the increaseia, and small perturbation from bottom to
the top wall is observed. Her&em = 1 is purposely taken to observe the effect of
the solid blockage for larg&a (Figure3.13).

Blockage causes the secondary flow to develop at a lower wlii& compared to
cavity without blockage. With the increase ite, the center of the streamlines which
is close to the moving lid again moves to the center of thetgduit to the right of
the blockage (FigurB.18. Meantime, secondary flow becomes prominent close to
the left wall of the cavity. Isotherms are not altered mucht, Bor large values ofe,

a boundary layer is pronounced on the left and bottom walkhefsquare blockage
due to the secondary flow on the left wall of the cavity. Vatyids transported inside
the cavity asRe increases. Induced magnetic field vector tending to thectilne of
moving lid is not affected much.

As expected, the variation dkem has the influence only on the induced magnetic
field lines as can also be seen in FigB&9 Induced magnetic field lines obey the
direction of moving lid with the increase iRem while the square blockage squeezes
them between the blockage and the right wall of the cavity.

As Ha increases (FigurB.20), due to thety-directed applied magnetic field, the
center of the primary cell in streamlines shift through tleater of the cavity nearly
conflicting with the square blockage. Further, the secontlaw at the left wall of
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the cavity becomes smaller, and a tertiary flow emerges atojnevall. Not much
effect of Ha on isotherms is observed. This may be due to the small nunfbr.o
Strongly applied magnetic field (largéa) directs the induced magnetic field lines in
its direction. This is whyRem = 100 has been taken to start with a turbulence at the
right upper corner with smaklf a.

The aim of this example is to examine the effects of both edlemagnetic field and
the blockage in the cavity. Therefore, the streamline valué¢he blockage walls is
exposed to the change A& increases. This is depicted in FiglB21 In the absence
of a square obstacle (FiguB213, clockwise directed primary cell is divided into
two parts and squeezed through the left and right walls, actwlater-rotating cell is
intensified covering the center of the cavity/ds increases. As can be seen, the value
of stream function changes, especially at the center ofdkiggyc Due to this change
in the flow, the stream function value which is denotedyhyon the square obstacle
is taken accordingly with the values shown in Fig@t81a Then, the effects of both
applied magnetic field and blockage placed in the centereotévity, on the flow are
shown in Figurd3.21b It is observed that secondary flow developed with = 5
through the left wall becomes larger, and the center of timagry cell shifts through
the right wall. Further, the primary cell is pronounced begw the right wall of the
obstacle and the right wall of the cavity while a counteatinlg cell emerges from
the top wall of the cavity to the top wall of the square bloakafretarding effect of
Lorentz force starts much earlier (even whlu = 5) and gives symmetric secondary
flow cells on the left and right of the blockage whBm = 50. Further, the increase in
Ha (Ha = 100) squeezes all the flow cells to the boundaries of the cavitis iE the
well known boundary layer formation in the flow for larg#u.

Ri=10

O

Figure 3.16: Problemn 3.2.2: Streamlines and isothermsrmg®f Richardson varia-
tion, Pr = 0.71, Re = 100, L, = 0.25.
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Figure 3.21: Problern_3.2.2: Observation on streamlifgs= Rem = 100, Ra =
103, Pr=0.1.
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3.3 Buoyancy MHD flow with magnetic potential ¢ — T — A — j — w)

In this section, both the magnetic potential and currensdgare utilized as unknowns
in the full MHD equations with the relations

s fm \ Oz Oy Ju

instead of induced magnetic field components. Also, heastes mechanism is taken
into account.

- L (VxB), j= S (3By - 8Bm) _ _LVQA, (3.10)

The governing non-dimensional equations in terms of streeenttion ), temperature
T, magnetic potentiall, current density and vorticityw are ((Appendif)) given as

V2 = —w (3.11a)
1 o OT oT oT

V?A = —Rem j (3.11c)
1 . 0 dJ dJ 1 ow ow

RemV 7= o + Yor + U(‘?y Rem B ox By oy (3.11d)

_ 2 9B, @ + @ + @ 0B, + %
Rem | 0r \Odx 0Oy dy \ Oy ox
1 Ow ow  Ow Ha? ( dj 8]') Ra 0T

=t (B2 05 311
Re' T ot T or +Uay Re PrRe? Ox ( €)

x8x+ yﬁ_y

Again, the space derivatives in the inhomogeneous sounees t@re achieved with the
help of coordinate matri¥, and the time derivative are discretized by Backward-Euler
formula finite difference scheme. The iterative system whthiteration with respect
to time occurs as

Hy™ ' — Gyt = —Sw™ (3.12a)
PrRe S mi1  PrRe . ..
(H A S PrReSM) T GT," = = =ST (3.12b)
HA™! — GAP*! = —RemSj™ (3.12¢)
Rem m o Rem _, .. m
< - S—RemSM) J =Gyt = =S —S([Bx]de+[By]dDy)w
98 (DX[BX]d (Dyv™ ! 4+ Dy ) — Dy [v]q (Dy BT +DXB;”+1)) (3.12d)
Re m+1 m—+1 Re m
<H — ES — ReSM) wmtt — qu = —ESw
-m Ra’ m
~ Ha®S ([BuJaDs+[BylaDy) " — o = SD T (3.12e)
F F A .
whereD, = g—XFl, D, = g—yFl, S= (HU — GQ) F', M=[u] Dy +[v] Dy,
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and the matriceful,, [v],, [Bxl4. [By]4 are diagonal having the diagonal entries from
the vectors,™ !, v+t Bt B+, respectively, and are of sizé/ + K) x (N + K).

Initially, 7°, A°, ;° andw® are taken accordingly with the given boundary values and
as zero at all interior points. The rearranged systems aiteans (reducing to the form
Cx = b) (312 are solved iteratively with respect to time in the givenesrdnce the
stream function equatiof8{124 and magnetic potential equatid®.12¢ are solved,
velocity components and induced magnetic field componeatsanputed using their
definitions

u™tt =Dyt " = —D ™ (3.13)

B;n+1 — DyAerl, B;nJrl — —DxAerl, (314)
and the coordinate matrik gives rise toDx andD,. Then, boundary conditions
for the velocity and the induced magnetic field componergsimserted. Unknown

boundary conditions for current densifyand vorticity w are found again by using
DRBEM coordinate matri¥ in their definitions as

. 1 m m
j= g (DxB)"t! — Dy B (3.15a)
w = D™ — Dyu™t. (3.15b)

The iterative solution process continues up to the ste&atg-solution with the crite-
rion

5 m+1l _ o m
> I | <e (3.16)

> L

satisfied with a tolerance= 1e — 4 whereg, stands for), T, j, A andw values at the
boundary and interior points, respectively.

In order to validate the presented numerical procedureptbielem is reduced to the
form (taking Re = 1/Pr) of the study /B8] (in which horizontal walls are adiabatic,
left wall is the hot wall, right wall is the cold wall, and thelocity is zero on the walls)
and solved by DRBEM. Tabl@.4 shows the good agreement of the presented results
(obtained by at mostv = 112, K = 961) with the study B8] (in which the given
results in this table are obtained by x 41 mesh size).

Table 3.4: Average Nusselt number through the heated léft wa

Ra Present [[38]
10> 1.114 1.116
104 2.241  2.242
105 4.556 4.564

Numerical results are depicted as streamlines, isothemagnetic potential (induced
magnetic field) lines, current density, and vorticity cam Two types of geome-
try are used which are staggered double lid-driven cavitytzackward-facing step in
order to observe the flow separation which occurs with a sudtange in the chan-
nel. For approximating functiof, 1 + r is fixed together with theé0-point Gaussian
quadrature for the integrals in BEM matricHsandG.

92



Table 3.5: Problern 3.3.1: Analyzing the grid independence.

Nu
N K Ha=25 Ha=50 Ha=100
84 328 1.8483 2.1466 2.3070
112 601 1.9037 2.2094 2.3878
140 956 1.9272 2.2326 2.4263
168 1393 1.9370 2.2390 2.4438

3.3.1 Case 1. Staggered double lid-driven cavity MHD flow

The flow is driven down the channel by means of a pressuregtdp, and the fluid
action is maintained with the movements of the top and bottaits of the cavity in the
opposite directions. Externally applied magnetic fielduafices the flow in the cavity
by means of Lorentz force in the momentum equations, andrigigity conducting
fluid in turn produces induced magnetic field inside of thetyaweat transfer in the
fluid due to the cold and hot walls is coupled to the momentumaggns with the
buoyancy force. Thus, the flow is visualized in terms of stréanction and vorticity,
heat exchange with the temperature of the fluid, and the edlutagnetic field with
the magnetic potential and current density, respectively.

The problem configuration is illustrated in FiglB&2[95]. Stream function and ve-

locity component are all zero on the wallsu = 1 on the top wall and; = —1 on
the bottom wall. The jagged walls are adiabati@'(0n = 0), the top wall is the hot
wall T;, = 0.5 and the bottom wall is the cold wall. = —0.5. Magnetic potential is

A = —z on the walls due to thg-component of external magnetic fidgl= (0, By, 0)
with By = 1, h, = 0.4.
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Figure 3.22: Problem 3.3.1: Staggered double lid-drivesitga

As can be seen from Tab®&5 average Nusselt number does not change much for
N > 140. Therefore,N = 140 boundary elements withk® = 956 interior nodes are
used in all computations of this case. In order to acceldhet&onvergence for large
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values of parameters, once the vorticity equation[Efd8 is solved, a relaxation
parameted < v < 1is used as™ ™! + yw™" + (1 — v)w™. Moreover, the average

1.4
. — oT
Nusselt number at the hot top wall is computed from,; = /

— dx using
04 Oy

y=1.4

composite Trapezoidal rule (Appends.

As Re increases (Figuri@.23), twin primary eddies in the flow pattern turn out to be
one main circulation at the center of cavity. Temperatuagligmt increases through the
top and bottom walls pointing to the increase in convectioisotherms. Symmetric
behavior in magnetic potential lines in staggered chansetembined to a uniform
behavior. Strong boundary layer formation in the vortieibd current density through
the moving walls is seen with an increasefina.

With the increase in Rem (FiguB24), the main alteration is observed in magnetic po-
tential lines and current density. Since the effect of difbun terms weakened in these
equations, new cells at the lower left and upper right camenerge. Not much of
a variation in vorticity occurs while counter-clockwisensmetric cells in streamlines
start to be formed.

As Ha increases up to00 (Figure3.29), the center of the streamlines rotate in counter-
clockwise direction trying to form Hartmann and boundanyels. The formation of
the strong temperature gradient shows the increase in cive@eat transfer. Current
density and vorticity contours have the similar behaviorohtis the clustering through
the moving walls and stagnancy at the center. Magnetic patestays the same since
Rem is not changed.

Since the MHD flow in the cavity is mostly influenced with theatical conductivity
and magnetic permeability of the fluid, the flow and magnetieptial behaviors de-
pend on the variations o« and Rem values. In figure8.26[3.27the variations of
Rem andH a are investigated together on streamlines and magnetiofpaitines. For

a small value ofHa (Ha = 5), although four symmetric cells are formed in stream-
lines, these cells are diminished and become one main pricer from one inner
corner to the other inner corner &m increases (Figur@.26. Boundary layer for-
mation through the moving walls and corner walls is obsea®&H a increases. This
may be due to the increase in velocity upA@a = 100. While the symmetric cells
In magnetic potential lines become prominent as increaBing with Ha = 5 (Fig-
ure3.279), the increase it a suppresses this symmetric circulative nature of magnetic
potential lines and force them to be directed in its directim other words, magnetic
potential obeys the direction of external magnetic field/asincreases.

Counter-rotating cells (counter clockwise center cell alatkwise top and bottom
cells), and the motion of moving lids become prominent iratnlines aska in-
creases (FigurB.28. This is an increase in buoyancy which results in a stronger
primary eddy, and upper and lower secondary eddies near ehegnlids balancing
the effect of shear force due to the movement of the lids.hiots become perpen-
dicular to the vertical walls due to the increase in buoyagfégct. The circulation of
vorticity through the moving lids is shrunk and intensifiadaugh the top and bottom
walls being stagnant at the center. The top and bottom sralddl af current density
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Figure 3.23: Problen 3.3.Rem = 100, Ha = 10, Ra = 10, Pr = 0.1, At = 0.2.

with Ra = 10® are expanded with the increasefa while inner corner cells almost
disappear.

The average Nusselt number at the hot top wall is analyzedguwé&3.29 As Ha
increases, convection dominated effectNi, is pronounced up tdia < 100 in
FigB.29a(Rem = 10, Re = 400, Pr = 0.1, Ra = 103). This may be due to the
opposite motions of top and bottom lids. The increasé&im (Ha = 10, Re =

400, Pr = 0.1, Ra = 10%) points to the decrease in mean Nusselt number through the
hot top wall (Fig3.298 which means that the convection decreases with the inefeas
magnetic Reynolds number. Thisis due to the increase insitieof induced magnetic
field weakening the fluid motion.
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Figure 3.24: Problern 3.3.1Re = 400, Ha = 10, Ra = 103, Pr = 0.1, At =
0.01,0.1,0.1.

Figure 3.25: Problen 3.3.1Re = 400, Rem = 10, Ra = 103, Pr = 0.1, At =
0.1(Ha = 5,50), At = 0.1 withy = 0.5(Ha = 100).
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Ha =10, Pr=0.1,At = 0.1.

Figure 3.28: Problefn 3.3.1Re = 400, Rem

Ea
Iz 2

40

(b) Nu; versusRem

L
200

(@) Nu: versusHa

Figure 3.29: Problem 3.3.Vu, at the hot top wall is observed w.ffa and Rem.
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3.3.2 Case 2. Backward facing step MHD flow

MHD flow in a channel with a backward-facing step is consideas depicted in Fig-
ure3.3Q0 The flow is inz-direction prescribed with a parabolic profile at the inlet.
Applied magnetic field is throughy+direction (By = 1), thusA = —x everywhere on
the boundary. A heater is placed on the step, and temperdigirdution decreases
linearly through the walls. The top and bottom walls of tharmel are cold. Exit
condition @/0n = 0) is applied for unknowns), 7', j andw.

In general, N = 200 linear boundary elements with- = 1421 interior points, and
At = 0.1 are used in the computations. In order to accelerate theecgarce for
large values of{a or Rem, a relaxation parametér< ~ < 1 is employed in vorticity
asw™ ™« yw™ ! + (1 — «)w™ or current density ag™ ! < ™+ (1 — )™,
respectively. The length of the channel is takerd as 10. Furthermore, the vorticity
boundary condition at the inlet of BFS is computed from= — V21 while Eq.B.15D
is made use of on the other boundaries, and the current gdrmindary conditions
are computed from E@B(153 except at the exit of the channel.

Numerical results are validated with the incompressibld flow and the natural con-
vection MHD flow in terms of streamlines. Reattachment laradter the step increases
as Re increases and the formation of secondary vortex at the upakis seen from

Re = 500 onwards (Figur&.37) which is consistent with the studyJ]. For increas-

ing values ofRa (102 — 10°) with Pr = 0.71 and/¢ = 4 (Figure3.32), the recirculation
region expands with the increaseia, and new vortexes are formed above the heater

asin [10].

w=1/3, T, =0
1
2, w=16(y—0.5)(1—y) :
— ¢v=-2v®+129° -8y + 3 — By
N 3 3 L
—
N T=2(1-y) —
! q;b: o|& —
| I L
I s =3
! P
OL ,,,,,,,,,,,,,
1 b =0,T.=0 0

Figure 3.30: Problemn 3.3.2: Backward facing step MHD flowfmpmation.

As Re increases (FigurB.33), reattachment length (the distance from the step to the
reattachment point) increases. Isotherms cover almosiialtavity due to the domi-
nance of convection terms in energy equation. Magneticialdines is not affected
much. Current density spreads along the channel formingdemy layers on the top
and bottom walls. Vorticity shows similar behavior withestimlines.

With the increase i a (Figurel3.34), reattachment length decreases, and almost dis-
appears withHa = 50. This is due to retarding effect of Lorentz force. Since the t
and bottom walls are cold walls, not much variation is seemsotherms whileHa
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varies. The increasing strength of the applied magnetid @ekcts the magnetic po-
tential lines to its direction, and make them nearly perparidr to the top and bottom
walls. Current density and vorticity form the strong bourydayers (Hartmann layers)
through the top and bottom walls, and they are stagnant aithter.

As expected, the variation dtem (Figurel3.35 affects the magnetic potential lines
(induced magnetic field lines) and current density linesilgshagnetic potential lines
are almost perpendicular to the top and bottom walls, peation on them increases
with large values ofRem. Similar perturbed movement on the current density through
the center of the region is observed. The strong boundasr fyymations on the
top and bottom walls are also seen in current density. Thegel@pments are due to
the decrease in the effect of diffusion terms in magnetiemptl and current density
equations. For large values éfa and Rem, one needs to use relaxation parameters
especially for vorticity and current density due to the gadgerations in their behav-
iors.

The vortex after the step is expanded, and a new secondamneetges close to this
vortex asRa gets larger (FigurB.36). Since the buoyancy effect increases with the
increase inRa, fluid velocity also increases. The terms with Rayleigh namdre
reaction terms in vorticity equation, and thus an effect ortigity is also seen for
large values ofRRa, so is in current density. Magnetic potential lines tend donf
new circulated cells after the step with the increas&in This may be due to the
dominance of buoyancy effect on vorticity, and so on curadgrisity and magnetic
potential. This points that the increase in buoyancy foffexts the magnetic potential
lines.
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Figure 3.31: Problerh_3.3.2: Streamlines in BFS for incorsgitde fluid flow for
varying Re.
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Figure 3.32: Problem 3.3.2: Streamlines in natural comvedtow varying Ra.
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Rem=1 Rem =40 Rem =100

Figure 3.35: Problemn 3.3.22¢ = 100, Ha = 5, Ra = 103, Pr = 0.1.

Figure 3.36: Problem 3.3.Z2¢ = Rem = 100, Ha =5, Pr = 0.1
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3.4 Incompressible MHD flow with magnetic potential(¢) — A — w)

In this case, the temperature difference does not existeidre, the momentum equa-
tions do not contain the buoyant term. Further, the magmpetiential A is taken into
account instead of induced magnetic field components.

The two-dimensional, laminar MHD flow of an incompressiblescous and electri-
cally conducting fluid is considered adopting magnetic ptigé¢ The non-dimensional
governing equations in terms of stream functigrvorticity w, and magnetic potential
A are (Chaptdfl, sectiof.1.5 AppendiXA)

V) = —w (3.17a)
1 9 0A 0A 0A
= — — — 3.17b
Remv ot o ox oy ( )
1, ow ow  Ow

Ha? 0 (0B, 0B, 0 (0B, 0B,
- B (52 - +By— (=2 - :
ReRem Ox \ Ox dy Oy \ Ox dy
where the dimensionless parameters are the Reynolds nutberU L /v, the mag-
netic Reynolds numbe&tem = U Loy, and the Hartmann numbéfa = ByL+/c /.

By using coordinate matrik' for evaluating the space derivatives in non-homogeneous
termsb and the Backward-Euler formula for the time derivativeg itieration with
respect to time is carried between the system of equations, fé andw as

Hy™ ! — Gy = —Sw™ (3.18a)
um+1 — Dymerlu Uerl — _waerl (318b)

Rem m+1 mi1 . Rem .,
(H -5 S RemSM) AT = GATT = —— =S4 (3.18c)
Bt = DyA™! Bt = DA™ (3.18d)
(H - %s - ReSM) W™t — Gut = —%Swm (3.18e)

Ha?
~ 28 ([BuJaDat + [BylaDy¢ )
where
S=(HU-GQ)F! Dy=—F!' D,=—F!
( Q) ’ 0x ' Y Oy

M = [u]de -+ [V]dD f = (DXB?TJrl — DyB;nJrl) ,

Yo
and the diagonal matricés|q, [v]4, [Bx]a,[By]a are formed using the vectoag'**, o™,
B, Byt Once the shuffling of known and unknown nodal values is direere-
duced systems of the for@x = b are solved by Gaussian elimination with partial
pivoting.
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Initially, w® and A° are taken as zero everywhere except on the boundary. Stream
function Eq[B.189 is solved usingnth time level values of vorticityv. The velocity
components are computed by using Bdl8H), and then their boundary conditions are
inserted. The magnetic potential @b + 1)th time level is found using E@(184).
Then, the induced magnetic field components are obtainea fq.[3.18d), and the
insertion of their boundary conditions is carried out. \@ty boundary conditions are
found by using the definition of vorticity with the help of aainate matrix

F F
w=V xu=Dy—-Dyu= 6—F’1@ — 6—F’1u. (3.19)
0x dy

Using these boundary conditions for vorticity equation[8.188 is solved at thém +
1)th time level. Iteration continues in this way until the eribn

[ — ™l A =AM ™ = w™|

[Pl A7 [+ ]

x© ¢ (3.20)

is satisfied where = 1le — 4 is the tolerance for the steady-state solutionA and
w, respectively. Transient level solutions can also be abthat any time valug,, =
mAt.

In the numerical computations, the radial basis functioeschosen ag = 1 + r.
Further,16-point Gaussian quadrature is used for the integraH iand G matrices.

In order to validate the present method, thg;,| values for an incompressible flow in

a lid-driven cavity are given in Tab[&6 As can be seen, the results using considerably
small number of grid points are in good agreement with theltegiven in [62].

Table 3.6: Problerh 34| values of streamlines of Navier-Stokes flow in a lid-
driven cavity.

Present 1[62]
Re ~Meshpts. [¢mi] Mesh pts.  [¢min]

100 17x17 0.1034 129x 129 0.1034
400 41 x41 0.1135 257 x 257 0.1139
1000 55 x55 0.1140 129 x 129 0.1179

3.4.1 Case 1. Lid-driven cavity MHD flow

The problem geometry is given in FiguBe37 Stream function and velocity compo-
nentv are all zero on the walls, and the top wall is moving with a eglou = 1.
Magnetic potential isA = —x + €’ on the walls due to the-component of external
magnetic fieldB, = (0, By, 0) = (0, 1, 0), and the constari’ is taken as zero similar to
the stream function on the boundary. In genelral, linear boundary elements afd1
interior points are used for this case. Since implicit timegration scheme is used,
time incrementA¢ can be taken not too small.

The center of streamlines which is in the direction of moviddor small Re numbers
shifts through the center of the cavity forming new eddiethatlower corners of the
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Figure 3.37: Problem 3.4.1: Configuration of the lid-drieavity MHD flow.

cavity asRe increases. The circulation of vorticity is pronounced fangke values of
Re. These are the expected behaviors for a lid-driven cavityoMlidw for fixed Rem
and Ha as can be seen from FiguBe38 Magnetic potential lines are not affected
much with the variation ofze.

The variation in magnetic Reynolds number causes the miagraential lines to cir-
culate inside the cavity due to the dominance of convecéans in magnetic potential
equation askem gets larger. Not much alteration occurs in streamlines amticity
(Figurel3.39 to steady-state.

Vorticity becomes stagnant at the center clustering thndhg walls as{ a increases
(Figure3.40. Thin boundary layers (side layers) and Hartmann layespectively,

on perpendicular and parallel walls to the directionBf are well observed with an
increase inHa in streamlines. Magnetic potential lines become perperalido the

top and bottom walls pointing to the decrease in convecéons of magnetic potential
equation due to the decrease in velocities, and also, they tie direction of the
externally applied magnetic field @a increases. Since the reaction term dominates
in vorticity transport equation for large value éfa = 100, a relaxation parameter
0<~v=0.1<lisusedas™" = ~yw™ +(1—~)w™ to accelerate the convergence
of vorticity.

The magnitude of the velocity of the fluid decreases due tor¢terding effect of
Lorentz force in the presence of high magnetic field intgnsi. This is confirmed
by the centerline velocity components As: increases in FigurB.41 This is the
well-known flattening tendency of the MHD flovi41]].
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Figure 3.40: Problerh 3.4.1k¢ = Rem = 100, At 0.5,0.2,0.1, for Ha =

5,50, 100.
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Figure 3.41: Problem 3.4.1: Velocity profiles at mid-sessiof the cavity with various
Ha.
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3.4.2 Case 2. MHD flow over a square cylinder

In this case, the MHD flow around a square cylinder confined ahannel between
parallel walls is considered. The inlet velocity profile isiform, and the flow in the

far field is also assumed to be a uniform flow=£ 1). The behaviors of the flow and
magnetic potential are investigated around the squaradsfdiunder the influence of
an externally applied magnetic field which is-y-direction.

The problem configuration is given in FiguB42 The boundary conditions which
are also seen on the figure may be written as follows. At tretink= y — 0.5, w =
0, u =1 v =0, A=0; at the exitoy/on = 0, ow/On = 0, A = —4; on the
square cylinderu = v = ¢ = 0, A = —x, the distance of the left bottom corner of
the square cylinder to both the inlet and the bottom wall.25, andi, = 0.5. In the
computationsN = 280 boundary elements with” = 1380 interior points are used.

Y
1; oY —
By W=1,¢=05 A==z N

AIAH ls —

= —1,¢p=-05 A=—z

—
—

°

®

0

%lll 1

X
Figure 3.42: Problem 3.4.2: Configuration of the MHD flow pastuare cylinder.

In Figured3.43 8.44and3.45 streamline variations with respect to Reynolds and Hart-
mann numbers, and magnetic potential variation with resfgemagnetic Reynolds
number are illustrated, respectively. With the increas&dnFigure3.43, symmet-

ric vortices emerge behind the cylinder, and they elondateugh +-direction. The
increase in Hartmann number suppress this elongation éicesrbehind the cylin-
der as is seen in Figu244 As expected, magnetic potential lines are perturbed in
+x-direction asRem is increased since external magnetic field is perpenditoiltdre
channel walls where the boundary layers start to develau(EB.45).

In Figured3.4613.47, the vortex changes in the streamlines behind the squaraleyl
at transient levels are reported. As can be seen, the symmeittices are shrunk and
a periodic behavior of the flow is observed as time passes.h@&g$luid move away
behind the square cylinder, the periodic behavior dimiessand the flow becomes
uniform at the exit of the channel. This may be due to the umftiow field on the
channel walls.
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Figure 3.43: Problem 3.4.2: Streamlines at steady-state, = 10, Ha = 5.
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Figure 3.46: Problerh 3.4.2: Streamlines at transient $eveé = 300, Rem =
10, Ha = 5.

The remarkable observations throughout this chapter mayutrenarized as follows.
In a porous medium, the decrease in Darcy number slows tlterflotion due to the
decrease in permeability of the porous medium, and dirbetsagnetic potential lines
in the direction of applied magnetic field diminishing the diffect.

Both in a porous or non-porous medium, the increase in tleagity of the externally
applied magnetic field causes the fluid to flow slowly due tordtarding effect of

Lorentz force. The alteration in the magnetic Reynolds nemdffects the induced
magnetic field or magnetic potential due to the dominancew¥ection terms either in
the induction equations or in the magnetic potential egnatMagnetic potential lines
(orinduced magnetic field lines) obey the direction of exédly applied magnetic field
as the strength of the applied magnetic field increases.

The exceptional case is seen on the staggered double davép where the effect of
fluid movement seems to be decreased with the increagenn Also, in the same
problem, the opposite movement of lids dominate over théiegpmagnetic field, and
thus, the fluid velocity still increases a little bit &5: increases up td00.

Heat transfer is retarded under the effect of an intenseeappiagnetic field, and the
weak permeability of a porous medium. The change in magisimolds number
does not affect much the heat transfer except in the casegifeted double lid-driven
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Figure 3.47: Problern 3.4.2: Streamlines at transient $evet = 300, Rem =
10, Ha = 5.

cavity.

The increase in buoyancy force (the increase in Grashof gteRgn number) sup-

presses the induced magnetic field effect from the mid-paitie bottom of the cav-

ity making them parallel to side walls. The other physicahensionless parameter,
Reynolds number, demonstrates the expected behavior eafcampressible flow in

channels.

113



114



CHAPTER 4

DQM TIME-DQM SPACE APPLICATIONS TO HYPERBOLIC
and COUPLED PARABOLIC EQUATIONS

Differential Quadrature Method (DQM) is a global discratibn method. DQM ex-
presses a partial derivative of a function as a linear wemjstum of all the functional
values at the grid points in the interval for that variabléeTmethod is inspired from
the integral quadrature. Initially, Bellman et a5 proposed DQM. Then, the method
is improved by Shu et all{4] for computation of weighting coefficients.

The mainidea of DQM is to compute the weighting coefficientsainy order of deriva-
tive. Bellman et al.[15] employed two approaches. However, the algebraic system of
equations in one of these approaches results in ill-cant matrix as the system
size increases. In order to overcome this difficulty, Sh42] developed a way of
computing the weighting coefficients of first order derivas in a simple, explicit for-
mulation, and then second and higher order derivatives ®carrence relation. In
this improvement, as base functions, Lagrange intermolatolynomials are used due

to the unlimited characteristic on the choice of the gridhpsi Further, these formu-
lations are based on the linear vector space analysis arah#igsis of a high order
polynomial approximation.

DQM is capable of yielding highly accurate solutions usingsiderably small number
of grid points resulting with less computational cost. Altigh equally spaced grid
distribution is preferred at most of the studies, unequsgpigced grid points (e.g. the
roots of Chebyshev polynomials) have been proved to be nedigble and efficient
than equally spaced points.

In this chapter, the application of either polynomial-lzhee Fourier expansion-based
DQM both in space and time directions is presented. Thusdhgion can be obtained
at once (also in blocks) without the need of an iterative pdoce in the time domain.
The iteration is only used to eliminate the nonlinearitieshie equations. These are
the main reasons of treating the time dependent problenssdemed in this Chapter by
DQM. Applications include some prominent physical probdethefined by hyperbolic
type telegraph equation, Klein and sine-Gordon equatiBuasgers’ equations, and
parabolic type MHD duct flow equations.
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4.1 Differential quadrature method

DQM is based on the derivative approximation of a functioa grid point using all
the functional values of the domain.

The first and second derivatives of a functiffx) atx; are approximated by

N
(i) = Z ai; [ (x) (4.1a)
Ffowl;) Z bii f (), (4.1b)
whereN is the number of grid points,= 1,2,..., N, anda,;, b;; are the weighting

coefficients. These weighting coefficients can be deterdiygolynomials or Fourier
series expansion.

4.1.1 Polynomial-based differential quadrature (PDQ) metod

PDQ approximates the functiof{x) as

N
= flaw)ri(x (4.2)
k=1
wheref(x;) is a constant known valué,= 1,2, ..., N, and the Lagrange interpola-
tion polynomials(z) are
X
ne) = — 2D 4.9

(2 — ) QW ()

with
N

Q(z) =[x —x:) and QW(xy) =

i=1

—.

(), — xj). (4.4)

[
L
™=

SettingN (z;, z;) = QW (x;)d,; with the Kronecker operatay;, r;(z) is shortly writ-
ten as

k=1,2,... N. (4.5)

Substitution of the last form af,(x) into the Eqd.2), and then the derivation with
respect tar yields

al N(z, ) B a N (z, zy)
M= 2w Gy = ) = L) TG
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which gives
N N(l) (SL’Z',.’L'J‘)

folri) =) fla)) QW ()
—_———

Jj=1

For evaluation oV (z;, z;), Q(x) is successively differentiated with respecttas
follows

Q(z) = N(z, z)(z — )
Q(l)(x) = N(l)(x, xp)(x — xp) + N(x, 21)
Q(Q)(x) = N® (x,zx)(x — 2p) + 2N(1)(x, Ty) (4.6)

Q(")(:c) = N™ (, ) (x — zp) + nN(”’l)(:c,xk),
wheren =1,2,...,. N —-1; k=1,2,...,N. So,

NO (2, z;) = QW) £, (4.73)
Tr; — l’j
N(l)(xi,%) — % (4.7b)

Eq.@.70) is not convenient to find;; due to the difficulty in computation ad® (z;).
Since a linear operator is satisfied at all sets of base polials in linear vector anal-
ysis, utilizing the base polynomiat~! whenk = 1, the following implication eases
to express;
N N

1 k=1
fl@) =) fla)r* = filz)=0=>> a;. (4.8)
- j=1

k=1

Eq.@.7D is simplified, and thus the weighting coefficients for thetforder derivative
is written as

o ‘ if i £ q 4,

Al ren v 7o LR R (4.92)
N

Qi = — Zaij (4.9b)
j=1
JFi

Continuing with the same idea for obtaining the weightingfGoient for the first
derivatives, the weighting coefficients for the second aigthdr order derivatives in
a recursive relationship may be derived347

n—1

w™
wi; =n (az‘jwﬁ-_l - L) if i # j, (4.10a)

SCZ'—SC]'
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wi ==Y wp, (4.10b)
wheren =2,... N -1, i,j=1,2,...,N, andw}; = a;;.

4.1.2 Fourier expansion-based differential quadrature (BQ) method

FDQ approximates the functiof(z) by a Fourier series expansion in the form

N/2

flz)=co+ Z (cx cos(kx) + dy sin(kz)) , (4.11)
k=1

wherec;, andd, are constants. Also, the Lagrange interpolated trigonooyeblyno-
mials are taken ad#3

ri(x) = Q) : (4.12)
r — Ty
sin 5 P(xy)
where
Xr — {L‘k . X — Tk

Hsm = N(z,z)sin 5

al T — Xj
P(xy) = N(zg, xp) = H sin % and  N(z;,z;) = N(x;, x;)6;.

iy
]j?ék

With the same idea in PDQ, the weighting coefficients areinbthin FDQ. The details
are given in the bookll42]. The weighting coefficients for the first and second order
derivatives are found as

1 P(r; .
a;; = —O‘_—m it i (4.13a)
2sin =5~ P(;)
N
Z (4.13b)
bij = aij [Qa” acot Z ; 7 if i#£j (4.13c)
N
Z " (4.13d)
J#Z
wherer anda are specified as
— 2
T = QWH’ o= b% for periodic problems (4.14a)
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r=a2"% & =_"" for non-periodic problems (4.14b)
a

b—a’ b—

Note that by Eqd4.14), any intervala, b] is transformed td0, 7| (non-periodic prob-
lems) or|0, 27| (periodic problems), respectively.

4.1.3 Grid points distribution

Equally spaced (ES) grid points

In this grid distribution, the distance between each grichpis equal to each other.
Let the physical domain of the problem (& x R) is given asla, b| x [a, b], and let

the region be divided intav x M meshes. The mesh size in bathandy-spaces
will be h, = (b —a)/(N — 1) andh, = (b — a)/(M — 1), respectively, such that
Z; :.T1+(i— 1)hx, Yj :y1+(j—1)hy, 1= 1,2,...,N;j: 1,2,...,M.

Chebyshev and Gauss-Chebyshev-Lobatto(GCL) grid points

Chebyshev polynomials defined[ir1, 1] for nth degree polynomial are given by
Ty (z) = cos(NO), 0<6<m, 0 = arccos(z). (4.15)

The roots of Chebyshev polynomials are
(20 — )7

Tn(x;) = 0= z; = cos TN

i=1,2,... N. (4.16)

Chebyshev points in a physical dom&inb| are obtained by the transformation

_b+a b—a (2i-1)m
Ti = —5 5 008 o

i=2,...,N—1. (4.17)

GCL grid points are the points; satisfying |7y (z;)| = 1 = |cos(N6;)| in which

0; = i%, 1=1,2,...,N. Thus,z; = cos% andz; € [—1,1]. For nodes over an
arbitrary intervala, b], the following transformation gives GCL grid points as
b b— — 1
T; = 42—a_ 2acos(]if_17r), 1=1,2,...,N. (4.18)

As an example, let the physical domain[bel| and N = 17 is the number of division
on bothz andy axes. The node distributions for Chebyshev and GCL gridtpom
illustrated in Figurél.l

In this Chapter, DQM is applied for both space and time d&viga either using the
equally spaced or non-uniform grid distributions. Testgbems are 1D and 2D hyper-
bolic Telegraph equations, Klein and sine-Gordon equatiBargers’ equations, and
MHD duct flow equations.
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Figure 4.1: Non-uniform grid distribution examples.
4.2 One- and two-dimensional hyperbolic telegraph equatios

The hyperbolic differential equations are the basis fodamental equations of atomic
physics. They are commonly used in signal analysis for tréésion and propagation
of electrical signals.

Hyperbolic telegraph equations are encountered in theysbéighulsate blood flow
in arteries, the acoustic waves in Darcy-type porous meahegllel flow of viscous
Maxwell fluids. These equations also model the vibratiorstrofctures (e.g. buildings,
beams).

In this section, DQM in both time and space directions is i@pplo obtain numerical
solutions of one- and two-dimensional linear hyperboliedeaph equations which
contain second order time derivatives.

The use of DQM in both space and time direction, which alsordiszes the initial con-
dition u;, automatically results with an overdetermined system.Atmerical scheme
then provides the solution at any time level without an tiera This makes the main
difference from the conventional time integration methdldse solution is obtained di-
rectly at all required time levels by solving one overdetieed system which contains
the solution at the grid points in space and time directiohse Gauss-Chebyshev-
Lobatto (GCL) points are used in space direction while eidgpially spaced or GCL
grid points are taken in time direction. The numerical poce requires very small
number of grid points in space directions and appropriateber of time grid points
for reaching a certain time level.

Consider the second-order linear hyperbolic telegraplataou in one-dimensional
space irf2,,

utt(x7 t) + 2aut(x, t) + ﬁZU('Ta t) = u:c:v('ru t) + f(l’, t)v (419)
and the second-order two-dimensional hyperbolic teldgemuation i,
utt(xa Y, t)+20zut(x, Y, t)+52U(l’, Y, t) _g(xa Y, t) :uii(xa Y, t)+uyy(xa Y, t)v (420)
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whereQ); = [a <z < b x [t > 0landQy, = [0 < z,y < 1] x [t > 0]. Eqs. .19
[4.20 are damped wave equations for> 0, 8 = 0 of which the solution is of great
importance in wave phenomena, and telegraph equatian for3 > 0. For Eq.@.19),
the initial conditions are assumed to be

u(z,0) =v1(x), w(x,0)=wv(x), a<z<b (4.21)
with Dirichlet
ua,t) = ha(t), u(b,t) = ha(t), t =0, (4.22)
or Neumann type boundary conditions
u:v(a7 t) = kl(t)a um(b7 t) = k2(t>7 t Z 07 (423)
and for Eq#.20
U(SE,y,O):(Z)l(SC,y), ut(x7y70) :¢2<x7y)7 O<.T,y< 1 (424)
with Dirichlet
u(z,y,t) = pi1(x,y,t) ate,y = £1, t >0, (4.25)
or Neumann boundary conditions
Ug(7,y,t) = po(r,y,t) @tz =+1,1>0 (4.26)
uy(z,y,t) = ps(x,y,t) aty =1, t > 0. (4.27)

The functionsf(x,t), hi(t), ha(t), v1(x), va(x), k1 (t), k2(t) are continuous functions

defined Omla and Similarlyg(xa Y, t)) le(fl', ?/)7 ¢2 x, y)apl(xa Y, t)7p2(x7 Y, t)ap?)(xa Y, t)
are defined and continuous 6m.

In the following two sections, polynomial based DQM appiicato 1D and 2D hyper-
bolic equations is explained. Fourier expansion based D@dli@ation is also done in

a similar way with a difference in weighting coefficients.nS®test problems, which
have analytical solution, for different and/ values to observe the accuracy and effi-
ciency of the DQ method is presented. Thus, the accuracyegbithposed method is
measured by the following errors defined 4§, [44]

[ tiexact — Ucomputed|,

RMS error =

nod

||Uexact - uCOmPUted| 2

Relative error=

)

| exac| 2

wherenod is the total number of all grid points in space direction, #melerrors can
be computed at any time level.

4.2.1 One-dimensional hyperbolic telegraph equation

PDQ approximations for the derivatives in 519 can be written as

N

N
Uy = Z AQipUky ,  Uggy = Z birUg (4.28a)
=1 =1
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L L
U = Z Aelik, , Uy = Z Blkuik (4.28b)
k=1 k=1
where: = 1,2,...,N;l = 1,2,...,L, N and L are the number of discretization
points, andu;;., b, anday, b, are the weighting coefficients for the first and second
order derivatives, in space and time directions, respelgtivThese coefficients are

computed by Eq4(9)-(4.10 when PDQ is used. Therefore, EfI9 will be dis-
cretized as

L L N
Z b, + 2a Z aptix + Buy — Z bivur = f(xi,ty), (4.29)
k=1 k=1

k=1

wherei =1,2,...,Nandl=1,2,..., L.
The main system E@(29 may be denoted as an algebraic system

[B]{u} ={/}, (4.30)

wherew is the unknown vector to be determined with the entries atgtine points
(x;,t,), and the matri¥B| consists of the known weighting coefficients. The known
vector f contains the function valueggz;, ¢;) as entries. The initial condition(z, 0) =
v1(z) is inserted to the systed.B0) directly modifying the matriX3] and the vector

f. The other initial condition(x, 0) is expanded by DQM formulation as

L

vo(x;) = we(2,0) = Z ajpuip, 1=1,2,...,N. (4.31)
k=1

Eq.@.37) will also be a system which can be described as

where the matrixB,| and the vectofv, } contain coefficients,, anduvy(z;) as entries,
respectively.

If Dirichlet type boundary conditions are given, these dtiads are directly inserted
to Eq.@.30 and Eql4.32 with the given initial conditions(z, 0). So, the coefficient
matrices B] and[B,| will be of size(N —2)(L —1) x (N —2)(L—1) and(N —2) x
(N —2)(L — 1), respectively.

The systemd4,30 and @.32 form an overdetermined system. Therefore, least square
method or QR factorization will be made use of for obtainimg $olution vectofu }.

If Neumann type boundary conditions are given, the sizelsehew coefficient matrix
[B™*“] in Eq.@.30 and[Bjy*"] in Eq.i4.32 will be (L — 1)N x (L — 1)N and N x

(L —1)N, respectively. Neumann boundary conditions are alsoelized using PDQ
as

N
Fa(h) = ug(a, tr) =Y axgup, (4.33a)
k=1
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N

k?g(tl) :u$(b, tl) = ZaNkukl, l = 1,...,L, (433b)
k=1

which can be formed as a system

[Boo, ] {u} = {k}, (4.34)

where [Byg,| is a matrix of size2(L. — 1) x (L — 1)N containing the coefficients
a1, ang and the vectofk} containsk; (¢;), k2(t;) as entries. Then, the whole system
(4.30 with [B™<"], (4.3 with [Bj<“] and B.39 again is an overdetermined system
which will be solved either by QR or least square method.

Also, the ordering of the unknown vector is important siniee structure of B or
[B"e“] depends on this ordering. To get a well-conditioned mafs the unknown
vector{u} is arranged as in the following order

{u} = {wir, wio, wis, . ... 7uiL}T7

wherei = 2,3, ..., N—1if boundary conditions are Dirichlettype, ahée- 1,2,..., N
if Neumann type boundary conditions are used.

GCL grid points inz-space on an intervat, b are computed by EH18). In the time
direction, equally spaced (ES) grid points are used on @miat[0, 7] as
(I—1)T

tl L—l’l 5 <y ) (35)

4.2.1.1 Test problem.

Consider the one-dimensional hyperbolic telegraph equddi.19 in the intervald <
x < 2w, 0<t<3witha =4, §=2. The exact solution is taken a]]
u(x,t) = e sin(x). (4.36)

In this casef(x,t) = (2 — 2a + %) e 'sin(x). The initial and boundary conditions
are extracted from the exact solution as

u(z,0) = sin(x), u(z,0) = —sin(z), (4.37)
w(0,t) =0, wu(2m,t)=0, te]o0,3], (4.38)
uy(0,t) = e ', w,(2m,t)=et, tel0,3]. (4.39)

Tablé4. Ishows RMS errors obtained by using Dirichlet type boundanddions .39
with differentAt (equally spaced time grid is used) values. It is noticedthat accu-

racy is achieved even with a coarse medh & 0.5) in time direction. It is improved
with a finer mesh{\¢ = 0.25).

Tabled.2 reports RMS errors obtained by Neumann boundary condif®39. Al-
though the accuracy is decreased with Neumann boundarytomsdusing PDQ for
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both time and space derivatives, the results are improvestims of accuracy increas-
ing N. When FDQ weighting coefficients are used in space direetmhPDQ weight-
ing coefficients in time direction, the results by using FD@rewith N = 11 have
better accuracy than the results obtained by PDQ.

Figureld.2 depicts the very well agreement of DQM and exact solutiordifegrent
time levels even with equally spaced time grid points. Theber of GCL grid points
in space is small§y = 17) and At = 0.25 is considerably large compared to other

time integration schemes.

Table 4.1: Problerh 4.2.1.1: RMS errors with= 11 using Dirichlet BCs.

t At =0.25 At=0.5
0.5 8.57e-07 6.20e-05
1 3.94e-07  3.90e-05
2 1.66e-07 3.00e-05
3 6.23e-08 2.93e-05

Table 4.2: Problern 4.2.1.1: RMS errors wittt = 0.25 with Neumann BCs.

PDQ FDOQ

t N=1 N=13 N=17 ~N=1I
05 2.82e05 7.74e-07 2.26e-10  1.79e-10
1.52e-05 3.78e-07  1.45e-10  1.39e-10
4.44e-06 1.41e-07 8.32e-11  8.03e-11
3.09e-06 7.63e-08 5.72e-11  5.53e-11

WN -

0.4

—8—t=1
— % — exact (t=1)
—x—t=2 i
— B — exact (t=2)
—6—1t=3 g
— + — exact (t=3)

0.31

0.2

] N
B 12
0.1rf 3
: P

u(x,t)

Figure 4.2: Problerthi 4.2.3.1: Numerical and exact solut@ndifferent times with
At = 0.25, N = 17 using Neumann BCs.
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4.2.2 Two-dimensional hyperbolic telegraph equation

The space and time derivatives in g0 can be discretized by using PDQ as

N N

Up = Y Qiplliji,  Use = D bikligi, (4.40a)
k=1 k=1
M M

Uy =Y Gjtlis, Uy = Y biktli, (4.40b)
k=1 k=1
L L

U = Z AUijl, Uy = Z bikWij, (4.40c)
k=1 k=1

and the discretized form of E4.20) is
L B L N M
> bwuge 200 apuiet Brugi— Y b — > bjxuwaa=g(zi, yj, 1), (4.41)
k=1 k=1 k=1 k=1

where N, M, L. are the number of discretization pointsany, ¢ directions, and =
1,2,...,N; 7=1,2,...,M;1=1,2,..., L, respectively.

The initial conditionu,(z, y, 0) and the Neumann type boundary conditions are added
to the system Ed4(4]) discretizing them using PDQ approximations as follows

L
w(z,y,0) = Zalkuzjk, I=1;i=1,...,N, j=1,..., M,

k=1

N
ug(0,y,t) = Zalkukﬂ, i=1,

k=1

N
ug(1l,y,t) = ZaNkukjl, i=N;j=1,....M,1=1,....,L, (4.42)

k=1
M
uy(x,O,t) - Zalkuikla ]: 17

k=1
M

uy(x,l,t) = Zdeuikl, j:M7 izl,...,N, lzl,,L
k=1

As in one-dimensional telegraph equation, the DQM diseeetisystem4.47) will be
solved together with the initial and boundary conditiorfsthe boundary conditions
are of Dirichlet type, they will be inserted to the overdetared system combined
with the system resulting from initial conditions. For Neammm boundary conditions,
the system4.47) and .42 will be solved together.

One of the difficulties in two-dimensional hyperbolic talegh equation is that the sys-
tem to be solved becomes larger/ési/, L are increased. This causes more memory
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and CPU usage. To overcome this problem, the system is rédyyceemoving the
entries on the coefficient matrix of the system which coresito known information
(e.g.initial conditionu(x,y,0) and the Dirichlet type boundary conditions). Mean-
while, the right hand side of the reduced system is also nembthking into account
removed known entries in the coefficient matrix.

The order of the unknown vectér: } in this case is organized to get a well-conditioned
system. Consider the unknown vector as a mafrixkhose each row entry corresponds
to a time level. Notationally,

U141 U2j1 e UNj1
U152 U252 e UNj2
)
UijL U2;1I, UNGL
wherej = 1,2,..., M, and the matrix of sizé, x N M will be rewritten as a vector

writing columns consecutively.

The solution is obtained by solving only one system with tiserted initial and bound-
ary conditions, and the aforementioned reduction of knomtries is performed to re-
duce the size of the system. The solution vector containgailired time level values
in it.

The solvability of the overdetermined system of equati@ysthds on the column rank
of the coefficient matrix which i& M/ L in this case. When the initial and/or Neumann
type boundary conditions are discretized using DQM, anceddd the system, the
row size is certainly greater thavwM L which makes the system overdetermined. The
choice of the grid points in both space and time domains &ffée stability of the
system. As mentioned in the Shu’s bo@df], the solution with GCL grid points
becomes more stable than equally spaced grid points in pattesand time directions.
Moreover, appropriate choice df, M and L makes the final coefficient matrix full
column rank.

GCL grid points on0, 1] for z- andy-spaces are taken as

1 1—1 .
xi_§(1_COS(N—17T))’ 1=1,2,..., N, (4.43)

1 1
yj:§<1—cos<]\j4_1ﬂ)), j=1,2,..., M. (4.44)

Furthermore, time direction is divided equally as[#3) or by GCL grid points on
an intervall0, 7] as

t = (4.45)

N | M
N
—_
|
@)
o}
wn
A~
b{N
]
—_
3
N———
N———
|
\.}—‘
u[\I)
h



4.2.2.1 Test problem 1.

Now, the two-dimensional telegraph equati@d?() is considered in the regioh <
x,y <1, t > 0,witha = g = 1. The analytical solution given b¢(] is

u(z,y,t) = cos(t) sin(x) sin(y), (4.46)

from which initial condition, Dirichlet boundary conditis andy(x, y, t) are extracted
as

u(z,y,0) = sin(z)sin(y), u(z,y,0) =0, (4.47a)
u(z,0,t) =0, 0<z<1,y=0, (4.47b)
u(0,y,t) =0, 0<y<1, =0, (4.47c)
u(l,y,t) = cos(t)sin(1)sin(y), 0<y<1, t>0 (4.474d)
u(z, 1,t) = cos(t) sin(z)sin(l), 0<zx <1, t>0 (4.47€)
g(x,y,t) = 2sin(z) sin(y) [cos(t) — sin(t)]. (4.471)

Tabled.3presents the comparison of the DQM solution and the exagtisalin terms

of relative errors for differenf\¢ values when equally spaced time grid points are used.
In this two-dimensional problem, FDQ approximation for apalerivatives, keeping
PDQ approximation for time derivatives is also studied. A be seen from the Table,
both PDQ and FDQ approximations in space directions givesiithe same accuracy
even with coarse time grid pointa\( = 0.5 and At = 0.25) taking a little more
space grid points in FDQ. Furthermore, lass increased4 is decreased), accuracy
increases.

Table 4.3: Problern 4.2.2.1: Relative errors.

PDQ (N=M=17) FDQ (N=M=21)
t Af=025 Af=05 AL=025 At=05
05  1.18e-09  8.80e-05  3.62e-09  8.93e-05
1 1.11e-09  594e-05  3.62e-09  6.03e-05
2 4.28e-10  9.17e-05  3.43e-09  9.31e-05
3 1.36e-10  1.09e-04  3.66e-09  1.10e-04

4.2.2.2 Test problem 2.

In this case, EJ4.20) is taken into account with = 8 = 1 anda = 5, 5 = 1 inthe
region0 < z,y < 1, ¢t > 0. The analytical solution is given b¢T]

u(z,y,t) =In(l+x+y+1t), (4.48)

with the initial conditions
1

=—\ (4.49)
l+z+vy

u(z,y,0) =In(l+z+y), w(ry,0)
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and the boundary conditions are of Dirichlet and Neumana typ

1

uy(x,O,t) = m, OSZE S 1,
1
umlv 7t:77 OS §17 tZOa
Lot = sy Y

u(z,1,t) =In(24+x+1t), 0<az<1,

The inhomogeneity is extracted from the exact solution as

200 2
oy t)=—"  +In(l+zx+y+1t)+
g(z,y,t) T — 57 In( y+1)

1
I+z+y+t)?

(4.50)

Relative errors between numerical solution (PDQ) and esalcition for differentAt
values are presented in TaBlgl Even with a largeAt = 1, about10~* accuracy is
reached. As\t is decreased, accuracy is increased as expected. The ecreades
with a highera value. Again, it is noticed that with considerably small rhen of
grid points both in space directiov(= M = 11) and time directionf¢ = 0.5 or
At = 0.25), at leastl0~% accuracy is obtained.

Table 4.4: Problem 4.2.2.2: Relative errors with differeaitues ofo.

a=0F=1 a=5 =1
At =0.25 At =0.5 At =1 At =0.25 At =0.5
9.65e-08 6.55e-05 1.18e-03 5.02e-08 9.67e-06
8.24e-09 9.65e-07 2.60e-04 7.75e-09 2.03e-06
1.53e-08 1.04e-05 5.68e-04 2.69e-08 9.64e-06

g W~

4.2.2.3 Test problem 3.
Consider the homogeneoug ¢, y, t) = 0) Eq.4.20 in the region) < x,y < 1, t >
0, with o = 1 + 72, 3 = 1. The exact solution is given b
u(x,y,t) = e 'sin(mx)sin(ry),
with the initial conditions

u(z,y,0) = sin(rz) sin(my),
ui(x,y,0) = —sin(7x) sin(7y),

and Dirichlet and Neumann boundary conditions on paralélsiare

u(z,0,t) =0, 0<z<l1,
u(l,y,t) =0, 0<y<I, t>0,
uy(z,1,t) = —me 'sin(mz), 0<z<1
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u.(0,y,t) = me 'sin(my), 0<y<1.

Table[4.5 compares the numerical solution (both PDQ and FDQ) with #taeteso-
lution for different time levels in terms of RMS errors. FDQiMghting coefficients
are used in space directions remaining PDQ weighting ceaflis in time direction
(FDQ-PDQ) as well as PDQ approximation is used in both diwast(PDQ-PDQ). In
this problem, we use GCL grid points in both space and timections. FDQ-PDQ
approximation gives better accuracy than PDQ-PDQ appratkan for this problem.

To emphasize the importance of the GCL grid points in timection, Figure&.3{4.4
present RMS errors versus the number of grid points in timecton. The number
of GCL grid points in space directiomlM = M = 11) atT = 3 is fixed and only
PDQ-PDQ approximation is considered. When the number célggsepaced points
in time exceed&8, the system becomes rank deficient. This means that largberum
of ES grid points in time direction causes unstable soluton the other hand, GCL
grid points in time direction still gives very good accurdoy 11 < L < 41 as can be
seen in Figur@.4 Moreover, RMS error usingl to 23 ES grid points increases faster
than RMS error using the same number of GCL grid points in tifibe accuracy
with GC'L grid points in time direction remains in a scale betwéehx 10~? and
1.8 x 1079,

This observation is important for physical problems whieljuire the solution at a
high time level. In that case, the number of grid points indidirection should be
large and endure oscillations of the solution. Thus, GCH goints in time are more
preferable than ES grid points.

Table 4.5: Problein 4.2.2.3: RMS errors for u(x,t) usiig= N = 11, L = 13.

t  PDQ-PDQ FDQ-PDQ
0.75  1.31e-09 1.38e-11
2.25  1.04e-09 9.40e-12

3 6.71e-10 7.74e-12
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RMS Error

4.3 Klein-Gordon and sine-Gordon equations

The Klein-Gordon equation (KGE) arises in many scientifigaarsuch as nonlinear
optics, solid state physics and quantum field thed@®d]. This equation has a great
importance in relativistic quantum mechanics, which isiusedescribe spinless parti-
cles. Furthermore, soliton-like structures have gaineckatgleal of interest in the last
years. Soliton waves do not create any deformation due pedigon while progress-
ing. Soliton solutions are encountered in various nonliggéerential equations such
as Korteweg & de Vries equation, the Schrodinger equatiom,sine-Gordon equa-
tion. The two-dimensional sine-Gordon equation (SGE)earia quantum tunnelling

x 10~

12

RMS Error

14

16

11<L<23

24 10

15 20 25 30 35 40 45
1l1<L<41

Figure 4.3: Problen 4.2.2.3: RMS error versus ES grid pamtisne direction.

RMS Error

1.8

16

14}

1.2f

0.8

0.6

0.4f

0.2

10

25 30
1ll1<L<41

35 40 45

Figure 4.4: Problern 4.2.2.3: RMS error versus GCL grid mointime direction.
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related with Josephson junction.

In this section, the one-dimensional quadratic and cub&rikGordon equations, and
two-dimensional sine-Gordon equation are solved by usgiifigrential quadrature method
in space direction and also blockwise in time directiontidthand derivative boundary
conditions are also approximated by DQM.

4.3.1 Klein-Gordon equation (KGE)

The nonlinear KGE has the general form
utt+rum+au—|—fyuk:f(:c,t), a<x<b t>0, (4.51)
with the initial conditions
u(@,0) = ¢1(z),  w(r,0) = ¢s(), (4.52)

and with the Dirichlet or Neumann type boundary conditiavisgerer, «, v are known
constants. The E@(5R]) is called Klein-Gordon equation with quadratic nonlirigar
if £ = 2, with cubic nonlinearity ifk = 3.

The linearization of the Ed@(5]) is done as
o™ 4y (@) e = ) (4.53)
wheren is the iteration number.
The discretized form of the E@L(EJ using the derivative approximations by DQM
(Eq.@.29) is
Z blku”“ +7 Z by + aul T+ (] nyk-l ultt = f(zi, 1) (4.54)
H,_/

wherei = 1,...,N;l = 1,...,L; L, N are the total number of grid points in time

and space domains, respectively, andandby;, are the weighting coefficients for the
second order derivatives in space and time. The underbtaced are formed as a
diagonal matrix.

The initial conditionu,(z, 0) is also discretized as

L
f(21,0) = Ay = do(x;), i=1,...,N, (4.55)
k=1

whereg, values are known, and contain the other initial valués, 0) = ¢,(z) (the
values ofu;;). The algebraic system from E4.E9) is added to the system of E4.529)
resulting in an overdetermined system.

The boundary conditions may be Dirichlet

wla,t) = (), u(bt) = hot), t>0, (4.56)
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or Neumann type
ug(a,t) =ri(t), wugx(b,t) =rs(t), t>0. (4.57)

Dirichlet type boundary conditions are directly insertedte system of Ed4(54). On
the other hand, Neumann type boundary conditions are adsoatized by DQM as

a tl Zalkukl =T tl (458)

b tl ZaNkukl = T2 tl) = 1,...,L (459)

which give also an algebraic system and added to the sy#$té) together with

Eq.@.55.

The order of the unknown vectdr. } is arranged as

{u} = {wir, wio, wis, . . . 7uiL}T7

wherei = 2,3, ..., N—1ifboundary conditions are Dirichlet type, ahe- 1,2,..., N
if Neumann type boundary conditions are used.

When Dirichlet type boundary conditions are given, the esysf4.55) of size (N —
2) x (N — 2)(L — 1) with the systemi4.54) of size(N — 2)(L — 1) x (N —2)(L —
1) contructs an overdetermined system of gi2e— 2)L x (N — 2)(L — 1). With
Neumann boundary conditions, the systedh&4), (4.55 and B.58{4.59 will be of
sizesN(L —1) x N(L—1), N x N(L —1)and2(L — 1) x N(L — 1), respectively.
Thus, the resulting overdetermined system will be of 8izZ€ + L — 1) x N(L — 1).
Obviously, the system size becomes larger with large vatfids and L. This may
cause unstable results especially when high time-levels@amnsidered. Therefore, we
divide the time direction into blocks and consider each blocitself as is shown in
Figureld.B. The advantageous part of DQM emerges from the use of smalbaciof
grid points in each time-block as well as in space domain.

As can be seen from Figug5 initial conditionsu(z,0), u(x,0) for the first block
are givenu(z, 0) for the other blocks is taken agz, 1) which is the computed result
at the last time-value of the previous time-block.

Moreover, we need to define naw/(z, 0) condition for the next blocks after the first
one. Using the computed results at previous time block, wstcoct theu,(z, 0) for
the next time-block by using again DQM approximation:pas

L
g (24, 15") = wy (s, 71) Z , 1=12,...,N (4.60)
k=

wherem = 2,...,bl, bl is the number of blocks ang},;, shows the weighting coeffi-
cients for the second order derivative in time for one block.
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.
u(xﬁ tO) - u(xw t%) L
Block 3 =
up(i, 1) = ug(i,17) = Z aj g,
k=1
u(wg, t2) = u(wg, th) .
Block 2 1 =1 1
u(zi, t5) = ue(ws, 1) = Z AppWig
k=1
u(x,0) = u(z,t})
Block 1
u(z,0) = uy(x, t})
T
Figure 4.5: Time blocks for 1D KGE.
4.3.2 sine-Gordon equation (SGE)
The general form of the two-dimensional sine-Gordon equas
0*u ou  0*u  0*u _
T + BE =92 + ap O(z,y)sin(u), (z,y)€Q, t>0. (4.61)

where() = {(x, Y)

a<z<b c<y< d}. The initial conditions are given as

ou
u(z,y,0) = f(z.y), 5 (2,9,0) = g(z,y), (x,y) €, (4.62)
with boundary conditions
ou
5, (@ y:t) = Mz, y.1), (z,y) € 09, ¢t >0, (4.63)
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wheref, g andh are known continuous functions, afid/on is the normal derivative
of u.

The function®(x, y) can be interpreted as a Josephson current density,(@ang) and

g(x,y) are wave modes or kinks and velocity, respectively. Therpaters is called

dissipative term, which is assumed to be a real numsber0. Whens = 0, equation
(4.6 reduces to the undamped SGE in two space variables. Whef, the damped
SGE is obtained.

The solution procedure for solving SGE using DQM is simitathe solution proce-
dure given for KGE. In that case, domain is two-dimensiondl laoth first and second
order time derivatives are approximated by H§Q).

Thus, the nonlinear undamped SGER]) is discretized and linearized as

L
nguml Zblku;‘ﬁl ijkuzkl = —P(z,y)sin(u") (4.64)
k=1

wheren is the iteration number, = 1,...,N;5 = 1,...,M;k = 1,...,L, and
bix, bk, by, are the weighting coefficients for the second order dexeatin z-, y-,
t-domains, respectively, ang, is the weighting coefficient for the first derivative in
time.

The initial and boundary conditions are also discretizedsipng DQM

L
u(wi, 45, 0) = g(wi,y;) = Y @iy =0, (4.65a)
k=1

M
y(Ti e ty) Zalku?,:{l =0, uy(z;,d,t)= Z Mmrtlrt =0, (4.65b)

k=1
N N

ux(aa Ys, tl) = Z aNkukjl =0, x(ba Yi, tl) = Z alkuzj—’zl =0, (465C)
k=1 k=1

wherei =1,... , N;j=1,..., M;l=1,...,L.

As in the case of Klein-Gordon equation, the syst@n&4) together with the initial
condition @.653 and Neumann boundary conditio@E&§50)-(4.659 give an overde-
termined system for the numerical solution of sine-Gordquagtion. The solution
procedure is also blockwise in time direction. Time bloakghis two-dimensional
case are constructed as shown in Figdu@

The discretized systems id.64) and .69 are solved iteratively by taking the initial
unknown vector, as a zero solution. Then, the iteration is carried till thegssigned
convergence criteria is achieved.
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(xia Y, t%) = U(l’i, Yjs t%) L
G, v, 1) = wilwi gy, 1) = D agulyy,

k=1
Block 2
(xiuyj7t(2)) = U(l’i,yj,ti) L
k=1
Block 1 )
(2,9,0)
Ut<CU, Y, 0)
s

Figure 4.6: Time blocks for 2D sine-Gordon equation.

4.3.3 Solution procedure

Numerical solutions are obtained with DQM by using Gaussffyishev-Lobatto(GCL)
grid points in space intervals, and GCL grid points in eaaledly divided time blocks.
Due to the overdetermined systems resulting from the itgeof boundary conditions,
QR factorization is used for the solution.

The stopping (convergence) criterion|jig”*! — u"|| < e with e = 1e — 09.
The first and the last time level values of any time block armamoted as

to :(m_1>a7 iy, :ma7
whereT' is the up time-value.
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Some error definitions used in the problems are

compute .
exact__ qcomP j, 1=1,...,nod

Lo = max |u
(2

nod

_ exact computecjg
Ly, = g (s u;

i=1
RMS = Ly/Vnod,

wherenod is the total number of grid points in space. These errors yatiare-value
are computed once the system is solved at one stroke at aenpbtonk.

The energy of cubic nonlinear Klein-Gordon equation is give

1
E(t) = 5/ [uf + Tu? 4+ 2G(v)] dz,
R
1 2 2 o | u
=5 | |u+Tup+au + ——|dr, (4.66)
2 Jr 2
and of the sine-Gordon equation (for undamped ¢ase0) is also computed
1
E(t) = 5 // [Ui + ui +u? +2(1 — cos u)} dxdy. (4.67)

as in [96,55], respectively. For computing integras§6) and &.67), Clenshaw-Curtis
Quadrature15]] is employed since we use GCL grid points in space direction.

4.3.4 Klein-Gordon problems
4.3.4.1 Quadratic Klein-Gordon equation

Consider the Klein-Gordon equation with quadratic nordnity and exact solution

u(z,t) = xcos(t) [13Q

Uy — Uy +u* = —zcOost + a2 cos’t, x € (—1,1), t >0, (4.68)
subject to the initial conditions
u(z,0) =2, wu(z,0)=0, ze[-1,1], (4.69)
and Dirichlet boundary conditions
u(—1,t) = —cos(t), wu(l,t)=cos(t), t >0. (4.70)

The results in Tabl@.§ are obtained by using N= 21 GCL grid points in space

direction, andl0 time-blocks with11 GCL grid points in each block which is a quite
coarse grid. It is found that DQM both in space and blockwmsnne procedure gives
very good accuracy compared to numerical procedurés3lBJ using considerably

small number of grid points both in time and space domain® ddcturacy is almost
doubled in terms of RMS errors than the errors giveri5g|,[and much better than
the accuracy obtained iL8( as can be seen from Talie6. Both space and time
increments used in our solution procedure are much larger tite ones used B3,

134.

136



Table 4.6: Problein4.3.4.1: Errors in quadratic Klein-Goreéquation.

Present Results In[53] In [130], Method II
t Lo Loy RMS RMS RMS
1 1.74e-13 3.96e-13 8.64e-14 6.51e-06 4.89%e-10
3 2.68e-12 4.37e-12 9.54e-13 1.17e-05 4.66e-10
5 3.19e-12 5.16e-12 1.13e-12 2.19e-05 9.41e-11
7 2.89%e-12 49le-12 1.07e-12 2.58e-05 5.09e-10
10 3.60e-12 6.08e-12 1.33e-12 7.95e-06 3.96e-10

4.3.4.2 Kink Wave (Cubic Klein-Gordon equation)

This is a cubic nonlinear KGE in the formd3q
Uy — Uy + ou — fu® =0 (4.71)

in the region—10 < x < 10 with initial conditions

u(z,0) = \/% tanh(kz), wi(x,0) = —c\/% r sech(kz), (4.72)

wherer =, /5%, anda, 8, ¢ — a? > 0. The exact solution is
u(z,t) = \/g tanh(k (z — ct)), (4.73)

from which Neumann boundary conditions may be extracted as
uy(—10,1) = m\/gsecﬁ (k(=10 — ct)) (4.74)
u,(10,1) = m\/gsecﬁ (k(10 — ct)) . (4.75)

Tableld, 7 shows the accuracy of the computed solutions with the vangof number

of grid points in space and, $ values at = 1. As can be seen, whenis increased
(amplitude of the Kink wave/«a/ [ increases), the accuracy reduces. As expected,
accuracy is improved when the number of grid points in spaeetibn is increased.

Tablel4.8 gives the Kink wave numerical solutions at different tim€kese results are
obtained by dividing T= 24 into 24 time blocks.11 GCL grid points are used at each
time block where the number of iterations carried.isMoreover, Tablé&.8 presents
solutions with N= 96 GCL grid points in space, and= 0.1, 3 =1, ¢ = 0.3.

Figuréd. Ashows the space-time graph of numerical solution of kinkewaith N = 96
and L= 11 GCL points in each time blocks up to= 12.

In Tabled4.1and4.8, the energy differences in magnitude between specific atidlin
times are also presented.
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Table 4.7: Problemn 4.3.4.2: Errors for Kink Wave with diffat number of grid points

in space at = 1.

N Lo RMS E(0) |E(t) — E(0)]
a=01 =1, ¢=03
16 2.13e-03 8.08e-04 0.0509468 3.50e-06
32 1.80e-04 7.32e-05 0.0510529 9.57e-08
64 2.21e-07 1.13e-07 0.0510541 4.19e-12
128 3.07e-12 8.29e-13 0.0510541 2.02e-15
256 1.86e-12 2.11e-13 0.0510541 5.90e-16
a=0.1, =10, ¢c=0.3
16 6.73e-04 2.56e-04 0.0050947 3.50e-07
32 5.69e-05 2.31e-05 0.0051053 9.57e-09
64 6.99e-08 3.56e-08 0.0051054 4.20e-13
128 9.74e-13 2.62e-13 0.0051054 9.80e-17
256 5.92e-13 6.69e-14 0.0051054 2.26e-16
a=02 =1,¢=03
16 1.13e-02 4.42e-03 0.2090723 7.10e-05
32 3.21e-03 9.40e-04 0.2142506 4.59e-05
64 1.55e-04 4.10e-05 0.2150807 1.87e-07
128 1.71e-07 6.72e-08 0.2150849 2.04e-12
256 6.19e-12 2.20e-12 0.2150849 1.52e-13

Table 4.8: Problemh 4.3.4.2; Errors for Kink Wave at diffaremes.

L. RMS  [E(f) — E(0)]
9 441e-09 1.09e-09  1.66e-12
12 5.25e-09 1.21e-09  6.99e-12
18 3.56e-08 1.38e-08  1.52e-09
24 4.17e-07 1.81e-07  4.37e-07

4.3.4.3 Single-Soliton.

The same nonlinear Klein-Gordon equatiop— a’u,, + au — Bu® = 0 is solved in
the region—10 < x < 10 with the initial conditions/B89, 48,130

2 2
u(z,0) = @/Fasech)\w), u(z,0) = cA Fasecr()\x) tanh(\x), (4.76)
where) = /% anda, 3, a? — ¢ > 0. The exact solution is
a?—c
2c
u(z,t) = 4/ ?sech{A (x — ct)), (4.77)

wherec is the velocity and the real parametgRa/ 3 is the amplitude of the wave.
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u(x,t)

Figure 4.7: Problemn 4.3.4.2: Space-time graph of numesiglaition of Kink Wave up
tot =12.

Neumann boundary conditions is extracted from the exaatisol as

u(—10,t) = —\/2»?@)\ sechiA(—10 — ¢t)) tanh(A(—10 — ct)), (4.78)
u,(10,t) = \/2»?@/\ secliA(10 — ct)) tanh(A(10 — ct)). (4.79)

Table[4.9 shows errors for the DQM solution using several number af gaints in
space direction fot = 1 with L = 11 GCL grid points in one time-block, and =

0.3, B = 1, ¢ = 0.25. Furthermore, Tablg.10 shows that DQM gives very good
accuracy with L= 11 GCL grid points in each 12 time-blocks up toT12 using N=
256. This again corresponds approximately:te- 0.08 (in the sense of equally spaced
grid points) space increment which is larger than the ones us other numerical
methodsi48, [13(. Figureld.8 depicts the space-time numerical solution at different
time-levels up ta = 12.

Energy differences with the initial energy are also tatedan Tablé4Z.9and4.10Q Itis
seen that energy does not change as time progresses.
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Table 4.9: Problern 4.3.4.3: Errors for Single Soliton witfiedent number of grid
points in space at= 1.

N L RMS EQ) |E(Z) — E(0)]
64 5.96e-02 9.56e-03 0.124433  2.38e-04
128 3.17e-03 4.49e-04 0.119067  2.42e-06
192 1.02e-04 2.08e-05 0.118905  8.52e-09
256 9.01e-06 1.60e-06 0.118904  2.10e-10
320 2.82e-07 5.00e-08 0.118904  5.12e-14

Table 4.10: Problemn 4.3.4.3: Errors for Single Soliton #edent times.

L. RMS  |E(f) — E(0)]
6 1.64e-05 3.326-06  4.94e-08
9 1.62e-05 3.71e-06  6.27e-08
12 2.23e-05 4.47e-06  6.81e-08

Figure 4.8: Problern 4.3.4.3: Surface plot of Single-Salito

4.3.4.4 Double Soliton.

Now, the equation Eq(7]) is considered in the region10 < x < 10 with the initial
conditions[L3Q

u(z,0) = % [sech(\; (z — z4)) + sech(Xa(z — 27))] (4.80)
u(z,0) = 1\ %Sech(kl(x — L(l))) tanh ()\1((1; — L(l))) (4.81)
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+ oMo \/%SECh()\Q(x — xg)) tanh (Ao(z — 7)), (4.82)

where); = /=%, i =1,2anda, 8, a® — ¢} > 0. The exact solution is

u(z,t) = Z \/%Sech()\i(x — it — 1)) - (4.83)

Since the Neumann boundary conditien$—10, ¢) andu, (10, ¢t) are almost zero even
for large time values, we will also take the zero gradientt@tioundary for this case
asin 23 /48).

The parameters are takena@s= 0.3, 5 =1, ¢; = 0.25, ¢ = —0.25, 2z} = —2 and
r3 = 2 as in 23] wherez}, x3 andc;, ¢, are the initial (t=0) positions and velocities
of two solitons, respectively.

Tablel4. 11 shows L, errors at different time levels. & 11 GCL grid points in each
7 time blocks up to T= 7 and N= 256 GCL grid points in space are employed. At
the collision timet = 7.5, a blow-up occurs as can be seen in Figlu&for which we
used N= 320 GCL points in space anel GCL grid points inbl = 15 time blocks up
toT="7.5.

For the last three examples, the meaning of small differ¢iagg — E(0)| is that the
energy is conserved at any time level.

Table 4.11: Problemn 4.3.4.4: Errors for Double Soliton &edént times withZ(0) =
0.237807.

L. TE() —EQ)]
8.76e-06 1.49e-10
5.92e-05 1.90e-09
3.33e-04 4.17e-09
1.79e-03 6.46e-09
9.54e-03 8.26e-09
5.32e-02 9.74e-09
4.02e-01 2.33e-07

~NOoO O, WN R~
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u.b)

Figure 4.9: Proble 4.3.4.4: Surface plot of collision obtgolitons at = 7.5.

4.3.5 sine-Gordon problems.
4.3.5.1 Test sine-Gordon problem.

The aim of this test problem is to show the advantage of DQMiegipon when the
boundary conditions are time dependent.

The SGE Eq4.6]) is considered witl# = 0 and® = 1 and the analytical solutio®[]
asu(zx,y,t) = 4arctan(exp(x + y — t)), and thus the initial condition®0, 55|

u(z,y,0) = 4arctan(exp(z + y)), —-7<z,y<7,
_ dexp(zty)
1+ exp(2z +2y)’

and boundary conditions are

Ut(l’,y,O): 77§l‘7y§77

B dexp(z+y+1)
~ exp(2t) + exp(2z + 2y)
" dexp(x +y+1)
Y exp(2t) + exp(2z + 2y)
As can be seen in Table12 the L, errors with DQM are less than the Lerrors
using RBF in (). The errors with DQM are obtained usingNM = 36 GCL grid
points inxy-space withhl = 7 blocks in time and L= 5 GCL grid points in each time
block. When the number of grid points in the space domdin< x,y < 7 or in time

domain is increased, the increase in accuracy in terms.0fll; and RMS errors may
be obtained.

, for x=-7 andz=7, -7 <y <7,t >0,

, fory=-7andy=7, -7 <x <7,t>0.
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The numerical solution @t= 7 is depicted in Figurd.1Qa), and Figur@.IQ(b) shows
the agreement between numerical and exact solutions whem.

Table 4.12: Problein4.3.5.1: Errors for sine-Gordon tesbiam.

Present Results In[50], RBF method

t RMS Ly Lo Lo

1 0.0008 0.0279 0.0050 0.2860
3 0.0012 0.0423 0.0062 0.5872
5 0.0016 0.0593 0.0096 0.8288
7 0.0025 0.0893 0.0157 1.0706

(@) S ‘ ‘ ‘ (?)
:

b

10 0 o

- _ =X
y 10 10 « y

Figure 4.10: Problen 4.3.5.1: Plots for test sine-Gordatlam.

4.3.5.2 Line soliton in an inhomogeneous medium

Consider SGE witld = 1+ secH/z2 + 42 while 3 = 0 over the region-7 < z,y <
7 with the initial conditions(8, [32]

—3.5
u(z,y,0) = 4arctan {exp (a:o o5 )} ,

T —3.5
=0.62 h
u(z,y,0) = 0.629 sec ( 0.954),

and zero gradient on the boundary.

Figured4. 11 are obtained using N- M = 21 GCL grid points inzy— space, L= 5
GCL points at eachi8 time-blocks. These figures are depicted in termsiofu/2)

at timest = 0,6, 12, 18. The line soliton is going through— direction without un-
dergoing any deformations as il]] It is transmitted as a straight line soliton. The
deformation occured in the study of Christiansen and Lorh{la® at ¢ = 12 was
due to the boundary conditions. In this study, the discagéibn of Neumann bound-
ary conditions using DQM and adding to the main system is anaggiate approach
to eliminate this deformation. DQM has the capability of ttagmg this transmission
through the inhomogenity.
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Figure 4.11: Problen 4.3.5.2: Line soliton in an inhomogenmedium.



4.3.5.3 Circular ring solitons

For the cas® = 1, § = 0 over the region-7 < z,y < 7, the circular ring solitons
are obtained with the initial conditions

u(z,y,0) = 4arctan [exp (3 — \/m)} :

u(z,y,0) =0,
and the zero gradient on the boundary.

Table[4.13 shows the energy at some valuesiofThe results are obtained by using
bl = 18 time-blocks with L= 6 GCL grid points at each block. It can be seen that
the energy is conserved when dissipative term is zere: M = 36 GCL grid points
are used in space direction to capture good behavior in &fuf2 The soliton
wave in terms ofin(u/2) is drawn with the corresponding contours at different times
From the initial stage té = 2.8, shrinks are observed. As time goes on, oscillations
and radiations begin to form and continue. Furthermorecémer of soliton does not
change during all transformations. The results are in ggoeleanent with22,/46,(96].

Table 4.13: Problerh 4.3.5.3: The energy of the circular 8oliton when E0) =
150.7983.

t =2.8 t=5.6 =84  t=11.2  1=12.6
ED) 150.7938 150.7588 150.7559 150.7671 150.7724
[E(t) — E(0)] 0.0045  0.0395  0.0424  0.0312  0.0259
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Figure 4.12: Problemn 4.3.5.3: Circular ring solitons.

147



4.3.5.4 Collision of two circular solitons

Two circular ring solitons collide in case & = 1 and initial conditions/@6]

4—/(x+3)2+ (y+7)2
0.436 ’

u(z,y,0) = 4 arctan [exp (

4—/(x+3)2+ (y+7)2
0.436 ’

u(z,y,0) = 4.13sinh (

over theregion-30 <z < 10and—-21 <y < 7.

The system is solved in the regionl0 < x < 10 and—7 < y < 7 and then the
solution is expanded by symmetry relations.

In Figured4.13 surface plots of the collision of two expanding circulargisolitons
which are in terms ofin(u/2) are depicted using N- M = 36 GCL grid points in
space, and1 time-blocks with L= 5 GCL grid points in each block. A large oval
ring soliton which is resulted with the collision betweerotexpanding circular ring
solitons is emerged by two oval ring solitons bounding on mmuéar region. These
are in good agreement with the results8n96).

4.3.5.5 Collision of four circular solitons

In this case, four circular ring soliton® (= 1, 5 = 0) collide with the initial condi-
tions

4—(z+3)+(y+3)
0.436

_ 41— (@ 432+ (y+3)
uy(z,y,0) = 4.13sech< 0436

)

u(z,y,0) = 4arctan [exp

over the region-30 < z,y < 10. The Sine-Gordon equation is solved-#10 <
x,y < 10, then the solution is expanded using symmetry relations.

We obtain Figureg.14in terms ofsin(u/2) using N= M = 41 GCL points in space
and 11 time-blocks up tot = 11 with L = 5 GCL points in each block. As can
be observed, there is a complex interaction of the four @rcsolitons in the center
where the values af vary rapidly. These are also in good agreement with the tesul

in [8,9§].
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4.4 The Burgers equations in one- and two-space

As a fundamental partial differential equation from fluichdynics, Burgers’ equation
occurs in various areas of applied mathematics such as flmugh a shock wave
traveling in a viscous fluid, modelling of dynamics, heat dwoction, and acoustic
waves. Also, Burgers’ equation in two-space is a simplifiextiet of incompressible
Navier-Stokes equations without considering pressura.téfherefore, the study of
Burgers’ equation can be considered as a prerequisite tettisy of Navier-Stokes
equations.

The coupled viscous Burgers’ equation in one-space is diydh0dQ

Up — Uz + NUU, + @ (VU +uv,) =0, x € (a,b), t € (0,7

U — Vgge + N0V + B (vuy +uv,) =0, x € (a,b), t € (0,7] (4.84)
with initial and the boundary conditions
u(x, 0) = fl(x)v U(ZE,O) = fQ(x)a (4858.)
u(a,t) = i(a,t), wu(b,t) =1(b,1), (4.85b)
v(a,t) = ¢1(a,t), v(b,t) = ¢a(b,t), (4.85¢)

wherer) is a real constanty, 5 are arbitrary constants depending on the system param-
eters such as Peclet number, Stokes velocity of particlegalgravity and Brownian

diffusivity [[114).

Moreover, the system of two-dimensional Burgers’ equatiddavier-Stokes equations
without pressure gradient) ai&d7]

1
u + uuy + vuy, = Te (Ugy + Uyy), (x,y) €D, t>0 (4.86a)

1
U + UV, + vy = Te (Vg + V), (z,y) €D, t>0 (4.86b)

subject to initial conditions and Dirichlet or Neumann bdary conditions
u(@,y,0) = h(z,y), v(z,y,0) = k(z,y), (z,y)€D (4.87a)
u(z,y,t) = plx,y,t), v(z,y,t) =r(z,y,t), (z,y) €D, t >0 (4.87b)
ou

v
o m(z,y,t) & o l(x,y,t), (r,y) € 0D, t >0 (4.87¢)

where Re is the Reynolds numbef) = {(z,y)| a < z,y < b}, 0D is its boundary,
andh, k, p, r, m, [ are known functions.

4.4.1 The coupled Burgers’ equations in one-space

The system of Eq#(89) is linearized first with the following iterative procedure
oumtt  Purt! ou™ (8u" nav") 0

B 97 — (4.88a)

o o0x ta 8xv o0x
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ot Ox? Oz

ot 92ntl , Ov™ iy ountl
ox ox

v+ u”“ai) —0. (4.88b)

The procedure exploits’ ! by solving Eq[#.889, and then using thig" ™ in Eq.4.880
for obtaininguv™*!. Initially, u° andv are given, and: denotes the iteration number.

The differential quadrature method is applied both in timd apace directions to the
linearized form of the equations E&.8834.88l). Polynomial based DQ approxima-
tions for the derivatives in EqEL{8834.880) can be written as

N N
Uy = E iUkl ,  Ugy = g birug , 1 =1,..., N,
=1 =1
N
= E Ak Ukl s Vg = E birv , 1 =1,..., N, (4.89)
=1 =1

L L
Uy = E c‘zlkuik, Ve = E C_levl'k, lzl,...,L,
k=1 k=1

wherea;;., b;. are the coefficients of first and second order space dersmtespec-
tively, anda,;, are the first order time derivative coefficients.and L are the number
of discretization points im- and¢-directions, respectively.

The DQM discretization of Eq&{88#4.88K) are written now

N

L N

k=1 k=1 k=1

L
> ayvt szkv&“ + (nulj+ Bul™) Zalkvkl—i—ﬁvdZalku"H 0. (4.90b)

Then, the system of Eq4.0044.900) is solved at one stroke in the whole region
[a, 6] x [0, T7.

The iteration between E@.{903 and Eq/4.90D is carried until the convergence crite-

rion
n+1

[l | O |

K| [l

il

X <€ (4.91)

is satisfied with a tolerance= le — 7.

4.4.1.1 Test problem for 1D viscous Burgers’ equation

In this case, EJ4.89) is taken withny = 2 for different values ofv, 5 in the region
x € [—10,10], t € (0, 1]. The exact solution is given bit47 as

u(z,t) = ag (1 — tanh (A(z — 2At))),
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260 —1
200 — 1

oz, t) = ag ( — tanh (A(z — 2At))> ,

4af —1 . . " ,
% anday is an arbitrary constant. Initial and boundary condi-
(0%

tions are extracted fr_om the exact solution.

whereA = 0.5a

Table4d. 14shows thel, and L., errors for several values afandg at the time values

t =0.5and1.0. N = 51 andL = 11 GCL grid points are computed in space (by
Eq.@.18) and time domains (by E@Z9). It is noticed that accuracy increases with
the decrease in,.

Table 4.14: Probleim 4.4.1.1: Errors for 1D Burgers’ equatiaith N = 51, L = 11.

u \"

t ao « I} Ly Lo Lo L
05 005 0.1 0.3 7.09e-04 6.78e-05 5.65e-04 3.55e-05
0.05 0.3 0.03 1.01e-03 1.48e-04 1.45e-03 3.37e-04
0.005 0.1 0.3 3.54e-05 4.47e-07 2.70e-05 1.78e-07
0.0005 0.1 0.3 3.49e-06 4.27e-09 2.66e-06 1.63e-09
1 0.05 0.1 0.3 1.21e-03 1.06e-04 9.08e-04 5.45e-05
0.05 0.3 0.03 1.46e-03 1.48e-04 2.43e-03 4.03e-04
0.005 0.1 0.3 3.78e-05 4.48e-07 2.84e-05 1.78e-07
0.0005 0.1 0.3 3.59e-06 4.28e-09 2.73e-06 1.64e-09

4.4.2 The Burgers equations in two-spaces

In order to eliminate the nonlinearity, an iterative systemEqs.@.86) is formed as
follows

ou" L out o ou" 1 (QPut OPu”
o " or TV oy T Re ( 02 oy (4.922)
o ovt L ovt 1 (9P 9P"

wheren is the iteration numberu” is obtained from Ed4.924 and substituted into
Eq.@.920) for computingv™.

Polynomial based DQ is constructed for all derivatives:iny- and¢-directions in

Eq.4.923 as

N M L

Uy = g Qi Ukjl, Uy = g AjkWUikl,  Up = E Qi Wijks (4.93a)
k=1 k=1 k=1
N M

Upy = E bikUpji, Uy = E biktikt, (4.93b)
k=1 k=1
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wherei = 1,2,...,N; j=1,....M; 1 =1,2,...,L,andN, M, L are the number
of grid points inz, y andt spaces, respectively. Similarly, derivatives in Q@) are
defined for they unknown.

The resulting discretized system of equations may be wirate

L _
= zk n—1— ik n
Z a kul]k + Z ( Z]l alk ) uk]l + Z < 2]l 1a]k 6) Ui = 0 (494a)
L _.
Zt:l Vi + Z ( Uik — Zk) Uy + Z ( Vi g — Z) Vi = 0. (4.94b)

At the beginning,u’ and v are taken as zero everywher@{y;,#)). Firstly, the
Eq.[@.949 is solved at one stroke in each time block. Then, the obdauzdues of

u are carried out in the second equati@n94l). The solution procedure continues
in this iterative way between these two coupled equatiori$ tine stopping criterion
Eq.@.9) is satisfied withe = 1e — 11. Also, it is noticed that the computed values at
an up time value of a time block are the initial values of thethiene block.

4.4.2.1 Test problem for 2D viscous Burgers’ equation.

Eqgs.;.86) is concerned in the regiamr, y) € [0, 1] with the exact solutiorill67]

1

wz,y,t) = 4 4(1+ exp(Re(—t — 4z + 4y)/32)) (4.952)
3 1

ol yt) = 1t (1 + exp(Re(—t — 4z + 4y)/32))’ (4.95D)

and the initial and boundary conditions are taken from tkacesolution. The bound-
ary conditions also change with time.

For small Re numbers, GCL grid points in both directions (18 and Eq[4.45)

give good agreement with the exact results. This is due tmgtstability and conver-
gence properties of GCL grid poinis4Z]. In Table4. 15 L. error is given at different
time levels for several values @fe. Due to the dominance of convection terms with
the increase iRe, the increase in the number of spatial discretization gamproves

the results. In Tabld. 18 DQM results are compared with the exact results at some
specific GCL grid points in space withe = 100.

For a much larger value dte, concerning the system as one block up te 2 increas-

ing the number of grid points makes the whole system venelafdnerefore, keeping
N = M fixed, time is equally divided into blocks and each block ived as a whole
system. By this way, one enables to make the time incremeallesmiteration is car-
ried out at each block taking the previous block values dglnieration values. The
results in Tabl@lL.17obtained by usingv = M = 23 with L = 7 in each9 blocks up

tot = 2 (i.e. 0.25 is the time block increment) capture at lea$t? accuracy. Mittal et
al. [99] has also solved the same problem by using DQM in space anatdéin Runge
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Kutta method in time direction. In that study, for the samgrieds number, at least
10~2 accuracy inL, error is also seen at equally spaced spatial points.

Table 4.15: Problem 4.4.2.T., errors for 2D Burgers’ equations for various values
of L and Re.

t=1.0 t=2.0
N=M L Re U v U v
11 11 1 2.00e-15 6.00e-15 2.55e-15 5.22e-15
11 11 10 3.55e-12 3.54e-12 2.80e-12 2.80e-12
11 11 100 1.47e-03 1.47e-03 1.20e-03 1.20e-03
11 21 100 1.48e-03 1.48e-03 1.20e-03 1.20e-03
21 11 100 1.75e-05 1.75e-05 1.04e-05 1.04e-05

Table 4.16: Probleh 4.4.2.1: 2D Burgers’ equations safutiith Re = 100, N =
M =21, L =13att =05, 2.

u %
Exact DQM Exact DQM

t=0.5
(0.5000,0.0955) 0.50033 0.50033 0.99967 0.99967
(0.2730,0.2730) 0.54332 0.54333 0.95668 0.95667
(0.6545,0.2730) 0.50044 0.50045 0.99956 0.99955

(0.5,0.5) 0.54332 0.54332 0.95668 0.95668
(0.5,0.9045) 0.74263 0.74263 0.75737 0.75737
t=2

(0.5000,0.0955) 0.50000 0.50000 1.00000 1.00000
(0.2730,0.2730) 0.50048 0.50048 0.99952 0.99952
(0.6545,0.2730) 0.50000 0.50000 1.00000 1.00000

(0.0955,0.5) 0.55815 0.55814 0.94185 0.94186
(0.5,0.5) 0.50048 0.50048 0.99952 0.99952
(0.5,0.9045) 0.55815 0.55815 0.94185 0.94185
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Table 4.17: Problerh 4.4.2.1: 2D Burgers’ equations with= 1000, N = M =
23, bl =9, L = Tatt = 0.5, 2.

u v
Exact DOM Exact DOM

t=0.5
(0.0794,0.0794) 0.50000 0.49672 1.00000 1.00328
(0.0794,0.5000) 0.75000 0.75243 0.75000 0.74757
(0.0794,0.9206) 0.75000 0.75601 0.75000 0.74398
(0.5000,0.0794) 0.50000 0.49882 1.00000 1.00118
(0.5000,0.5000) 0.50000 0.51162 1.00000 0.98838
(0.5000,0.9206) 0.75000 0.75750 0.75000 0.74252
(0.9206,0.0794) 0.50000 0.50559 1.00000 0.99441
(0.9206,0.5000) 0.50000 0.49212 1.00000 1.00788
(0.9206,0.9206) 0.50000 0.51456 1.00000 0.98548

t=2
(0.0794,0.0794) 0.50000 0.50984 1.00000 0.99016
(0.0794,0.5000) 0.50001 0.47327 0.99999 1.02673
(0.0794,0.9206) 0.75000 0.73039 0.75000 0.76961
(0.5000,0.0794) 0.50000 0.50356 1.00000 0.99645
(0.5000,0.5000) 0.50000 0.49451 1.00000 1.00548
(0.5000,0.9206) 0.50001 0.48653 0.99999 1.01347
(0.9206,0.0794) 0.50000 0.49954 1.00000 1.00046
(0.9206,0.5000) 0.50000 0.50094 1.00000 0.99906
(0.9206,0.9206) 0.50000 0.49977 1.00000 1.00024

4.5 MHD flow in a rectangular duct

The governing equations of the unsteady MHD duct flow of amnmgressible, elec-
trically conducting fluid are of diffusion-convection typend the velocity field/ is
coupled with the induced magnetic fieltlin the equations. These coupled equations
are easily treated by DQM. Therefore, the DQM discretizatibthe governing equa-
tions in terms of transformed variables, and the numeresllts are presented in this
section.

Coupled MHD equations are

OB 0V
2 —_— = —
VIVt Ham o — = 1, (4.96a)
oV OB
2 —_— =
VB + Ham o — =2 =0, (4.96b)

whereV = B = 0 on the boundary of the duct which is insulatéfl is the Hartmann
number given byByL+/c /vp.

The decoupled form of the dimensionless MHD duct flow equtid.96 by the
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change of variable¥ =V + B, & =V — B are
ov oV

2 _—— — = —
VAUt Hao — 1, (4.97a)
o> 0P
2 j— —_— e — = —
VIO — Hag — =0 = 1, (4.97b)

with the initial and boundary conditions

U(z,y,0) = d(x,y,0) =0, (z,y) €
U(x,y,t) =®(z,y,t) =0, (z,y)€ IN.

Equationsi.97) are parabolic convection-diffusion equations which lmeeaonvec-
tion dominated for large values éfa.

Applying the polynomial based DQ, all the derivatives in E497) may be arranged
as follows

- U &
% = Zaik\llkjlu w = Zbik\likjl (498)
k=1 k=1
A v L
—_— = Zajk\lliklu 22 ijk\pikl (499)
dy =1 Oy k=1
0T PV -
o= Zalkq]zjka Eri Zblk‘l’z‘jk (4.100)
k=1 k=1
wherei = 1,...,N;j5 = 1,...,M;l = 1,2,..., L discretization points or-axis,

y-axis andi-axis, respectively. This formulation is similar fér.

The discretized forms of the E4.073 and Eql4.97D) are as follows

N M N L
Z bir Wi + Z Ejk‘l’ikl + Ha Z i Wi — Z aWijr = —1. (4.101a)
k=1 =1 k=1 k=1

N M N L
Z bir Ppji — Z bjr®iry — Ha Z ai Ppji — Z a @i = —1. (4.101b)
k=1 k=1 k=1 k=1

The system#, 1014 and E.1010 will be solved at one time. The solution set will give
all values at each time level. Left hand side of EqL018 gives a huge block matrix of
size(Lx M xN)x(Lx M xN). Concerning the unknown vector as a matrix, each row
corresponds to one time level. In order to reduce the sysizsn Birichlet boundary
conditions are inserted. Furthermore, an iterative s@eeeralized minimum residual
norm (GMRES) is employed to solve the deduced system of emsabf the form

Az = b due to the increase in the system size to obtain the reasobahhvior for
large values o a.

Gauss-Chebyshev-Lobatto (GCL) grid pointsomandy spaces and equally spaced
grid points ont-axis are used. For the rectangular diet <z < 1,—-1 <y < 1),
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all grid points are computed as

1 i~ 1 - 1)T
:cz-z—cos(z ), yj:—cos(j )7 ti:! (4.102)

N -1 M-—1 L—-1"
where: =1,2,...,N;7=1,2,...,M;l=1,2,..., LandT is the up time value.

Figureld. 153 shows the behaviors of velocity and induced magnetic fiaddgkhez-
axis(y = 0,0 < z < 1) for Ha = 10 at several time levels. As is seen, almost the
same values are obtainedtat 0.3 andt = 0.5. Namely, the steady-state solution
starts at = 0.3.

Figured4. 164,18 show the surface plots and contours of velocity and inducad-m
netic field lines from top to bottom at the left column and tigblumn part of the

figures, respectively. With the increase in Hartmann numéteong boundary layer
formations clustering through the walls is observed botthevelocity and induced
magnetic field. Further, the velocity becomes stagnanteaténter of the duct.

Due to the small up time valueg, is taken as small in high values éfa. As an
observation, although the up time value is small, largeeslof . may be taken as
well asN = M. However, the expected behavior is not well observed. Ifdlerance
e = le — 3 is attained to determine the steady staté;(;,+1 — V; ;.|| < € and
@i jnr1 — Pijnll,, < €), the steady state time values witha = 10, 100,500 are
computed a®.3, 0.1, 0.1, respectively. Alteration in this tolerance and up timeueal
naturally affect the time value to reach the steady-stateckd in time also work in
this problem.
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Figure 4.15: Problemn 4.57a = 10, T =0.5, N =M =21,L =6
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Figure 4.16: Problein 4.5: Surface and contour plots of vgl@nd induced magnetic
field lines withHa = 10.

In this chapter, differential quadrature method (DQM) iplégd to some prominent
physical problems such as 1D and 2D hyperbolic telegraphtems, Klein and sine-

Gordon equations, Burgers’ equations and MHD duct flow eqnat In all problems,

time dependent governing equations are discretized by D@ in time and space
directions. In some cases in which the small up time leveéegiired or exists, the
system is considered as a whole meaning that the numericéilbsois obtained at one
stroke. For some other cases, as the space derivativessaretied by DQM, time

derivatives are discretized at each time blocks. That esstiiution is obtained at one
stroke in one block and these results provide the progrei¢srafion for the next time

levels. Nonlinearity at all problems is eliminated by amateon depending on initial

condition(s).

The accuracy of the proposed method (DQM both in time andeypacvery good
when the results are compared with the existent analytadatiens. In general, the
results are obtained using considerably small number of jgoints. However, the
system considered as a whole has large size for 2D problesuking with high com-
putational cost and much more memory usage than 1D problenasder to alleviate
this drawback, block by block time iterations, boundary dians (Dirichlet type)
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Figure 4.17: Problein 4.5: Surface and contour plots of vglend induced magnetic
field lines withHa = 100, T'=0.3, N = M = 36, L = 4.

implementation and the iterative solvers are utilized. theoremarkable point is that
the usage of non-uniform grid point distribution exhibitsmerically stable results.
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CHAPTER 5

CONCLUSION

The most parts of this thesis involve the dual reciprocityrmary element solution
of mixed (natural and forced) convection flow problems inqu® and non-porous
medium either in the presence of an applied magnetic fieldittrowt the magnetic
effect. The two-dimensional incompressible fluid flow goeat by the Navier-Stokes
equations, and the Maxwell’'s equations in the presence ghete effect are solved
numerically. DRBEM is chosen due to the boundary-only retfrthe method, and
linear boundary elements are adopted throughout the thEaisher, the DRBEM is
capable of using the fundamental solution of Laplace eqona@nd approximating
the inhomogeneous terms by radial basis functions. Inqaat, DRBEM is used
to compute space derivatives with the help of coordinateimednstructed by radial
basis functions.

In an isotropic, homogeneous porous medium, Brinkmanneled Darcy model is
adopted. In this case, the decrease in the effective pagamatcy number gives rise
to the slow fluid movement. Under the effect of an applied netigriield, the problems
are considered either neglecting the induced magnetic dielibt, according to the
value of magnetic Reynolds number. In most of the applicationduced magnetic
field is neglected due to the small magnetic permeabilithefdlectrically conducting
fluid. The intense imposition of an applied magnetic fielce (thcrease in Hartmann
number) causes the fluid to flow slowly, and heat transfer pppgessed. This is a
similar effect as in the decrease in Darcy number in a poroedivm. Further, the
natural convection is pronounced with the increase in bnoyaln other words, the
forced convection (e.g. due to the lid movement in a lid-elnicavity) diminishes.

In addition to the momentum equations and energy equatmmsidering the induc-
tion equations which means that the induced magnetic figidtisieglected, the two-
dimensional, unsteady, laminar MHD flow of an incompressikiscous fluid is also
solved by DRBEM utilizing a conventional time integratiocheme. The governing
equations referred as full MHD equations are solved eithéetims of magnetic in-
duction components or only magnetic potential and currensiy variables. In these
problems, induced magnetic field or magnetic potential biehaare altered with the
variation in magnetic Reynolds number.

Apart from the applications of DRBEM to fluid flow problemsffdrential quadrature
method is also used for solving mostly hyperbolic, and paliattype partial differ-
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ential equations. DQM is applied both in discretizationiofd and space derivatives.
This enables one to obtain the numerical results at oneestidkwever, in 2D prob-
lems, the discretized system both in space and time resu#tdarge sized system of
equations causing high computational cost and memory us@gerefore, the pro-
posed method progresses block by block in time dividing tim@ blocks. In general,
the computed results are obtained by using considerablyl soraber of grid points
by DQM compared to the other domain discretization methods.

Further investigations should be concentrated on the dok@tompositions in the
applications of DRBEM and DQM for complicated regions. Alstixed convection
flow in a porous enclosure containing an electrically comidigaobstruction under the
effect of an applied magnetic field should be investigated.
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APPENDIX A

Non-dimensionalizations

Defining the non-dimensional variables as,

VR R
T—-T B B

T/: Cc B/ _$ B/ :_y
T,—T. ° By " 0
A Y wL J

A = r_ ¥ ’r_ r_
AR AT BoUo

the dimensionless equations for stream function, tempegavorticity transport and
induced magnetic field are derived as follows.

A.1 Stream function equation

Note that
B ov  Ou

J— - . = 2
w—qu—a$ By V=

Applying the non-dimensional variables, we obtain

UL_, , Uu
VA
Cancelling the same terms and dropping the primes, thenstitgaction equation
V) = —w (A.1)

is obtained.

A.2 Energy equation

The dimensional governing equation for energy is
oT

aVPT = = + VT (A.2)
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The non-dimensional parameters are used as

OAT_, , UATOT' UAT ,0T UAT ,0T"
T = / 9L A.
I I or "L Yor L Yoy (A-3)

If each term is multiplied by./(UAT'), and the prime notation is dropped, the non-
dimensional form of the energy equation will be

L op_OT 0T OT

T=— — — A.4
PrRe ot +u8x+vﬁy (A4)
where
Q L_y a 1
I2°U v LU PrRe

A.3 Induction, magnetic potential and current density equdions

In Eq.@.33),
1 2y OB
and
Vx(uxB)=ulV.B) - B(@) + (B.V)u— (u.V)B (A.6)
0 0
where

such that

Ju ou OB 0B v Jv 0B 0B
B)=<B,—+By— —u———v-——, By—+ By —u—" .
V> (uxB) =< m@x—i_ Yoy e U@y’ ””a:ﬁ Yoy e U@(y )
A.7

Thus, the induction equations for the- and y— components oB in dimensional
form are

1 v’B, — 0B, N u@BJ; 0B, ou ou

o o "or TVay Poan Py, A8
1 0B 0B 0B ov ov

—— V?’B, = Y 4 Y _B,— — B,— A.

a,umv Y ot o ox v dy “Ox Yoy (A.8b)

which are employed by non-dimensional variables as

By
O i L2

BU OB, | BU 0B,  BU 0B, Byl o, 00  BoU o, ou/

v2B/: _ _
=L o L “ar L Vay L Ttor L Yoy
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Bo_gop _ BoU 0B,  BU 0B, B OB, B 0v B 00
O L L ot L — ox L oy L ox’ L Yoy

Multiplying all the terms byL/(B,U) and dropping the prime notation, the non-
dimensional form of the induction equations are obtained as

1 0B, 0B, 0B, ou ou

2n _p_p
Remv B, = BT +u E +v 3y B, o B, By (A.9a)
1 0B 0B 0B ov v
B, = Y Y Y _B,— — B,— A.
RemV v ot T ox v oy *Ox Yoy (A.9b)

where
By L 1

opumL? BoU  Rem’

Since the current displacement is assumed to be negligiéyl scurrent density is

1
J=—(VxB). (A.10)
o
Consideringl = (0,0, j) andB = (B,, By, 0), we can write
1 (0B, OB,
= — | —Z — . A.11
= ( o 0y ) (A1)

Now, it can be given in non-dimensional form as

, B, (0B, 0B
'B = v = A.12

and canceling the termis,U o on both sides of E4X.12), and then dropping the prime
notation, non-dimensional current density is

1 (0B, 0B,
7= Rem < or Oy ) ' (A13)

Applying the operator-0/9y to Eq.[A.8d) and9/dx to Eq.[A.80), and then adding
these two, it can be written

1 o2 0B, 0B,\ _ 0 (0B, 0B,
T b ox oy ) Ot \ ox dy
OudB, 9*B, 0OudB, 0*°B,

+8x Ox u 12 Oy Ox _u(?y(?x
— " ,

1 2 3 2
+@ 0B, U82By Qv 0B, _08231
Ox Oy Oxdy Oy Oy 0y?
3 4 Y 4
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_3Bm@_3@+331@+3 0u
Or Ox, "022 0Oy Ox  “Oydx
—_— »

J/

3 5 1 5
_%@ B 0% 0B, 0u 882u

ox 8y_ y8y8x+ 6@/ 8y+ y8—y2
———— v N —

TV
1’ 6 3’ 6

o ai @i ) —
® —Bya% <% - g—Z) = —Byg—j.

Thus, the dimensional form of the current density equatson i

Iy 9j 95 6_] ow ow
UV]—,um<8t+ 8x+ ay Bgca +Byay

-9 9B, @+% +@ 8Bm+%
or \O0xr Oy oy \ Oy oxr )|’
With the help of the defined non-dimensional parameters,amengite

BOUO'VQ , ByU?c (8_]’ 05,07 ) _ By (B’ ow' B 8w’)

oz VI s g Y ey ) T e \ B t By

ByU [0B., (ov'  ou o' (0B, 0B,
—+ |+ +
L? | 0x \ox' Oy ay’ \ Oy’ ox'
Once the each term is multiplied By /(U B,), and the prime notation is dropped, the
non-dimensional form of the current density equation is alstained as

dj dj o ow ow
= B,— + B,—
V3 = R€m<8t+ 8az+ 8y> ( xax—i— yay>

0B, (Ov Ou ov (0B 0B
_ g |9Be (OV  OU) OV (0B OBy A.14
lé’x <5‘x+5‘y>+5‘y<8y+3x)] (A1)

-2
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The z- andy-components oB in terms of vector potentiak = (0,0, A) is written
asB, = 0A/0y and B, = —0A/0x satisfying the solenoidal natufé.B = 0.
Putting these definitions into E@\(11), and then non-dimensionalizing, we obtain, in
succession,

VZA = — i)
ByL .
%VQA’ = —pmBoUaj’
V?A = —u,,ULoj'

V?A = —Remj

Or, with already non-dimensionalized equations, suldstiguhe definitions of3,, and
B, into Eq.[A.13), the magnetic potential equation is obtained as

o1 _82A B 0?A
1= Rem ox?  0y?

V?A = —Remj (A.15)

An alternative magnetic potential equation may be derimstbiad of EqA.15). Using
Eq.A.99) andB, = 0A/dy,

L o (04 _ 0 (04) | 0 (04) | 0 (04) oo
Rem oy ) ot \ oy ox \ Oy Jy \ Jy “Ox Yoy
0A 0% [0A 0% [0A 0 [0*A 0 [0*A 0
217 N Ml I el I Ml I Il 2
v (5‘y) Ox? <5‘y)+8y2 (321) dy <5‘$2) +f')‘y <5y2) dy (V:4)
1 0 2\ 0 [0A 0 0A ou 0A
Remdy VA =3, (8t) oy (“ax) T Oy ox
0 ( 8A) ov OA ou ou

(=) -2 B, — B, —
+ dy ! dy dy Oy ox Yoy

Cancelling bold terms by the last two terms using continedyation and the definition
B, = —0A/0x, and then dropping the operat@fdy from both sides, the following
magnetic potential equation is obtained

L o, 04 04 0A

= — —. A.16
Rem ot +u8:c+vﬁy ( )

A.4 \orticity transport equation

In Eq.[L.32D,

1 1 1
—S@xB)=_(BxJ) = (Bx(VxB)),
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where

A A k
Bx(VxB)=Bx |2 (% 0| =|B, By 0

i 0By OB,

0B, OB

0B, OB
—<p, Ly T2 _p (v e
- y<3x 3y)’ m<3~’6 8y>>’

and note thag = (0, —g, 0) is considered.

Thus, momentum equations ferandv components, respectively, are

ou u@u v@ . l@_P B, (0B, B 0B,
ot ox oy pOx  ppy \ Ox oy
ov ov ov 10P B, (8By B 0B,

ot T Ve T 00y pam \ Oz Oy

(A.17)

) g —T.) (A18)

When the non-dimensional variables are performed with tredimensional defini-
tion of pressure ag”’ = P/(pU?),

W _UROW VR o U o pRoP B (0B, o,
L? CLoY L 0 L 0y  pL 0 punLl Y\ 0x Oy

vU_, , U0  U? 00 U?* ,0v pU? 0P B: _, (0B, 0B ,
Wty = 22 L = & 2 & B _ %P _ AT
L? Vi L ot + L or * L’ oy’ + pL Oy * oL T\ 0’ Oy 95 '

and each termis multiplied biy/ U2, then dropping the prime notations, non-dimensional
form of u- andv-components of velocity are deduced as

1, ou ou ou OP Ha? 0B 0B
— = — — —+—+-——B, | -2 A.19
Rev Y +u6:1: J”’ay - Ox - ReRem ™ < Ox oy ) ( 3
1, ov v dv 0P Ha? 0B 0B Ra
— = — — —+———B, Ll T
Rev RY - " ox - U@y * Jy  ReRem < Oz oy ) PrRe?
(A.19b)
where
vU L v 1
e A.20
202 LU  Re (A-202)
gBATL a.vv. >  gBATL}a 12 Ra
_ b — A.20b
U2 awvwl? av  vU?L?>  PrRe? ( )
B L  Bj Lop BjL’c 1 v Ha? (A.200)

oL U2 ppumU? Lo opunULUL " ReRem

Applying the operator8/dy and—3d/0x to the EqslfA.198) and [A.19D), respectively,

pressure terms are eliminated and the non-dimensionatigitransport equation is
obtained as

1, ow ow  Ow Ra 0T

— = — — U = = A.21

Rev Y i ey v Jdy  PrRe? 0x ( )
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H [0 (0B, OB\ , 0 (0B, 0B,
ReRem | "0z \ 0z dy Yoy \ Ox dy

. 1 B B, ‘ .
Since 9B, 9 = 4, Eq.[A.21) may also be written as
Rem \ Ox dy
1, Ow ow  Ow Ha? dj dj Ra 0T
— = — — ——— |B,=—+B,=— | ——— (A22
Rev Y + or v Ay Re ( Ox + YOy PrRe? Ox ( )

Note that the dimensional vorticity equation may be exeddiy Eqslf.17)-(A.19

eliminating the pressure at dimensional stage. Then, agpthe non-dimensional
variable definitions to this dimensional form of the vottyaequation, non-dimensional
vorticity equation as in EGX.Z]) is obtained. In other words, consider the equation

ow ow ow oT
2, OW ow ow 0L
I/Vw—ﬁt +uax+vay gﬁ&c

1 o (0B, 0B, o (0B, OB,
 Plim leé‘x ( oz Oy ) +Byé‘y ( oz Oy )} - A2

and the dimensionless definition of vorticity = wL /U with the other dimensionless
variables defined at the beginning of this appendix. In pmogtions,

vU_, , U?0w U? 00 U?* 00w gBAT,,
e . h =z _9P2
VY S e T ey T2 ey T L
B2 [, 0 (0B, 0B\ _ 0 (0B, 0B
R A A TR
Pl L ox' \ Oz dy dy' \ Ox oy

Once each term is multiplied b§? /U2, then EqA.29) is rewritten as

Vo, 0w Ow 0w gBLAT
[T R I WA A
2 0B! ! 0B! !
_ 5 B;i v _ 9B, +B’i v _ 98, . (A.25)
Pl U? oxr' \ oz’ oy’ Yoy' \ ox’ oy’

Dropping the prime notation, and with the definitions of ditsienless number&(20),
the vorticity transport equatio®(21) in dimensionless form is obtained.
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APPENDIX B

Composite quadrature rules with equally spaced points

B.1 Composite trapezoidal rule

Suppose that the intervéd, b] is subdivided inton subintervalsz;, ;.| of width
h = (b — a)/n by using the equally spaced nodes= a + ih, fori = 0,1,2,...n.
The composite trapezoidal rule farsubintervals for the approximation of the integral

of f(x) over|a,b] is [94]
[ e~ b + o) 03 5w, B

. b— :
and the error term |&—2ah2f”(7), T € (a,b). Note thatn can either an even or an
odd number.

B.2 Composite Simpson’s rule

Suppose that the intervad, b] is subdivided int®2n subintervalsz;, x; ;] of equal
width h = (b — a)/(2n) by usingz; = a +ih fori = 0,1,2,...,2n. The composite
Simpson’s rule foRn subintervals for the approximation to the integralfdf) over

[, b] is [94]
/ f(l’)dfmg(f(a)+f(b)+2z_:f(xzz-)+4Zf(fczi1)>, ®2)

. b— :
and the error term |s—ah4f(4>(7), 7 € (a,b). Note that the number of subintervals
should be an even numbex).

B.3 Composite Simpson’s 3/8 rule

Suppose that the intervgl, b] is subdivided int®n + 1 subintervalsz;, z; 1] of equal
widthh = (b—a)/(3n+1) by usingr; = a+(i—1)hfori =1,2,...,3n+1. Extending
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the Simpson’s}/8 rule [29], the composite Simpson’s rule fén + 1 subintervals for
the approximation to the integral ¢f ) over|a, b] is derived as

/ f(z)dz ~ % <f(951) + 3Zf($3z‘—1) + 3Zf($3i) + 2Zf($3z‘+1) + f(xN)> ;
=1 =1 =1 (BB)

. b— -
and the error term |&Wah4f(4)(r), 7 € (a,b). Note that\V — 1 should be divided
by 3.
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