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ABSTRACT 
 
 

MODELING OF INTERSONIC DELAMINATION IN CURVED AND THICK 

COMPOSITE LAMINATES UNDER QUASI-STATIC LOADING 

 
 
 

Gözlüklü, Burak 

PhD, Department of Aerospace Engineering 

Supervisor:  Assoc. Prof. Dr. Demirkan Çöker 

March 2014, 327 pages 

One of the widely used geometrically complex parts in advanced commercial aircraft 

is L-shaped composite laminates in which mixed-mode delamination failure is 

reported. Dynamic delamination under quasi-static loading is studied using explicit 

finite element method in conjunction with Cohesive Zone Modeling (CZM). A 4-

noded interface element working with Bilinear (BL), Xu-Needleman (XN) and rate-

dependent bilinear (RD) CZMs are implemented in ABAQUS/Explicit. The interface 

elements are validated with benchmark tests from literature for each fracture mode 

subjected to static and dynamic loading. A 12-ply woven-fabric Graphite/Epoxy L-

shaped composite laminate is modeled with BL cohesive layers placed in all 

interfaces. Macromechanical and micromechanical behaviors are compared to 

experiments and are found to be in good agreement. Single delamination initiates in 

mode-I and smoothly transitions to mode-II during propagation at intersonic crack tip 

speeds reaching 3500 m/s. Shear Mach waves fronts, follower reflecting waves, train 

of pulses in normal stresses and vortex like particle velocity patterns are observed. 

The analysis is repeated using XN and RD CZMs. XN CZM exhibited early slippage 

of plies due to low initial stiffness, whereas RD CZM provided the best agreement 

with experiments. This thesis reports the intersonic crack propagation in engineering 

parts for the first time, which was previously observed in earthquakes.   

Keywords: Intersonic fracture, delamination, composite materials, fracture 

mechanics, cohesive zone method. 
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ÖZ 
 
 

BÜKÜMLÜ VE KALIN KOMPOZİT LAMİNATLARDAKİ INTERSONİK 

DELAMİNASYONUN SANKİ-STATİK YÜK ALTINDA MODELLENMESİ 

 
 
 

Gözlüklü, Burak 

Doktora, Havacılık ve Uzay Mühendisliği 

Tez Yöneticisi: Doç. Dr. Demirkan Çöker 

Mart 2014, 327 sayfa 

İlerli ticari uçaklarda en çok kullanılan karmaşık şekilli parçalardan biri olan L-

şekilli kompozit laminatlarda karmaşık-modlu delaminasyon raporlanmaktadır. 

Belirli sonlu eleman metodu ile Kohezif Alan Metodu (KAM) kullanılarak dinamik 

delaminasyon sanki-statik yük altında modellenmiştir. Çift-Doğrusal (ÇD), Xu-

Needleman (XN) ve hıza bağlı çift-doğrusal (HB) KAM’lar 4-düğümlü arayüz 

elemanı üzerinden ABAQUS-Explicit’e uygulanmıştır. Arayüz elemanları 

literatürden alınan ölçüt testleriyle her kırılma modu için statik ve dinamik yük 

altında doğrulanmıştır. Her arayüzde ÇD kohezif elemanlar konularak 12-katmanlı 

bir Grafit/Epoksi L-şekilli kompozit laminat modellenmiştir. Makromekanik ve 

mikromekanik davranışlar deneylerle karşılaştırılmış ve iyi sonuçlar elde edilmiştir. 

Tek bir delaminasyon mod-I altında oluşmuş ve yavaşça mod-II durumunda 3500 

m/s intersonik çatlak ucu hızlarında ilerlemiştir. Kesme Mak dalga önleri, takipçi 

yansıyan dalgalar, normal gerilim puls treni, girdap benzeri parçaçık hız vektör 

desenleri gözlemlenmiştir. Aynı analiz XN ve HB KAM’larla tekrarlanmıştır. XN 

KAM düşük ilk sertliği sebebiyle kaymalar göstermiş, HB KAM ise deneylerle en 

yakın sonuçları vermiştir. Bu tez daha önce depremlerde görülen intersonik kırılmayı 

mühendislik yapılarında da gözlendiğini ilk kez göstermiştir. 

Anahtar Kelimeler: Intersonik kırılma, delaminasyon, kompozit malzemeler, çatlak 

mekaniği, Kohezif Alan Metodu 
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CHAPTER 1 

 
 

INTRODUCTION 
 
 
 
In the first part of this chapter, the design and applications of L-shaped composite 

laminates are demonstrated. Next, mechanical loads on L-shaped structures are 

defined where the rib structures in aircraft wings are taken as reference. 

Delamination phenomenon in composite structures is briefly mentioned. The 

definition of the delamination problem in L-shaped composite laminates is made. In 

the second part, literature review is presented for the delamination of L-shaped 

composite laminates and thick-curved laminates. The main contributions are 

presented for each paper for the sake of drawing the total picture in the L-shaped 

composite laminates to the best of our knowledge. The studies are chronologically 

presented. 

1.1.  L-Shaped Structures in Industry  

Box structures or torque boxes are designed to carry both rotational and translational 

loads. They are characteristically composed of orthogonal shells forming a closed 

section [1]. Shells should be connected to each other for continuous load flow within 

a closed section. As shown in Figure 1, the orthogonally positioned shells require 

“L” shaped links which have two arms connected to each of the shells. As a result, 

the load flow is established between the orthogonal surfaces. 

 

 

Figure 1  Torque box composed of orthogonal shells connected with L-shaped 

structures. 
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In aerospace industry, box structures are encountered in aircraft wings, ailerons, 

vertical and horizontal tail planes (Figure 2a). A typical assembly of a passenger 

aircraft wing is shown in Figure 2b. Skins are stiffened longitudinally by spars and 

perpendicularly by ribs. Stringers are generally used to provide out-of-plane stiffness 

to the skins for enhancing stability of the skins [2]. The wing is indeed a pattern 

formation of unit torque boxes where a unit torque box is composed of two adjacent 

ribs, two facing spar sections and two enclosing skins sections. Cross-sections of 

spars are generally in “C” or “Z” shape as shown in Figure 2c and Figure 2d, 

respectively. Ribs are similar structures with thinner profile and may involve stringer 

cutouts (Figure 2e). Spars and ribs are attached to the skins using fasteners. Flanges 

of spars and ribs in the shapes of “C” or “Z” can be decreased to an L-shape as 

highlighted in Figure 2c-e. 

Wind turbine blades are also considered as box structures (Figure 3a). In many cases, 

spars are laid along the blade span with a rectangular cross-section. Spars work as 

primary load carrying members in wind turbine blades [3] (Figure 3b). Formations of 

L-shaped structures can be also seen in the spars of the blades at the corners as 

shown in Figure 3c.  

Several structural configurations of L-shaped parts are illustrated in Figure 4. The L-

shaped parts can be a continuation of the remaining structure that is connected to the 

skin through bolts and nuts (simply by fasteners)(Figure 4a). Or, they can be separate 

structures fastened to the main body such as illustrated in Figure 4b, so called L-

Bracket. In highly loaded cases, L-brackets can be mounted to the back of the main 

structure in a “back-to-back” configuration (Figure 4c).  
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(a) 

 

 

 

(b) 

 

 

 

(c) 

 

 

(d) 

 

(e) 

Figure 2  (a) An aircraft with typical box structure locations, (b) wing assembly 

composed of skins, spars, ribs and stringers where L-shaped formations are 

highlighted in the assemblies of (c) C-shaped spar, (d) Z-shaped spar and (e) wing 

rib. 
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(a) 

 
(b) 

 

 
 

 

(c) 

Figure 3  (a) A wing turbine and its blade, (b) structural details of the blade as a box 

structure together with (b) spar cross-section where L-shaped flanges are highlighted. 

 

 

Bolt
Nut

(a) (b) (c) 

Figure 4  L-shaped parts in the forms of (a) flange of rib/spar, (b) separate part -L-

Bracket- and (c) “back-to-back” configuration. 
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1.2. L-Shaped Composite Laminates  

Lightweight products are highly preferred in aerospace and wind energy industries. 

For instance, fuel consumption of an aircraft linearly increases with the weight [4]. A 

lighter aircraft would either carry more payload or have a longer range with lower 

carbon emission.  

Composite materials have higher specific strength, the ratio of the failure stress per 

unit mass, compared to conventional materials such as Aluminum and Steel [5]. 

Because of this reason, composite materials are demanded in the market. For 

example, the new aircraft such as Airbus A350 XWB aircrafts has 53% [6] and 

Boeing B787 has 50% of composite material in mass, [7]. Carbon Fiber Reinforced 

Plastic (CFRP) material is generally preferred by aerospace industry whereas Glass 

Fiber Reinforced Plastic (GFRP) is typically used in wind blades. Although CFRP is 

more expensive than GFRP, the CFRP has higher specific strength [5]. In our study, 

CFRP laminates are concerned. 

Aerospace industry has been using composite laminates in planar shapes; such as 

skins of the wings (Figure 2b). Today, as the composite manufacturing technology 

advances, composite laminates can be produced in more complex geometries; such 

as the “L” shape. As a result, metallic L-shaped parts are being replaced by 

composite counter parts for saving weight.  

The manufacturing process of the L-shaped composite laminates is a sensitive 

process. It is experienced that the manufacturing process directly affects the strength 

of the L-shaped composite laminates [8]. In industry, several manufacturing trials 

may be required to reach the desired quality in terms of constant thickness, radius 

tolerance, surface quality, straightness of the plies, and homogeneity of resin [8,9]. A 

typical manufacturing assembly of an L-shaped composite laminate for an autoclave 

curing process is shown in Figure 5. A rigid Lay-up Tool works as a smooth surface 

for supporting the plies at the desired geometry. Noting that, the geometry of the lay-

up tool should consider spring back effects after the curing [9]. The material of the 

lay-up tool can be aluminum, composite, steel or invar according to the thermal 

effects and cost [9]. A Release Film can be located between the laminate and the tool 

in order to peel off the cured laminate after the process.  Laminate plies are laid at 

desired orientations over the release film. On the top of the laminate plies, a Bleader 
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Ply is laid. The role of the bleader ply is to enhence the vacuuming effect during the 

curing thanks to its porous surface allowing air flow. By that way, the product has a 

better surface quality. Next, Breather is laid over the bleader ply, which ensures that 

the vacuum is homogeneously distributed over the laminate during the curing cycle. 

To the top of them, Bagging is covered to insulate the assembly by sealing from the 

ends. Next, vacuum lines are appropriately positioned over the bagged assembly. In 

some cases, additional tools such as Caul Plates can be used in order to control the 

resin flow and relative motion of the plies during the curing [9]. The curing cycle 

takes 2 to 4 hours under a pressure of 5 - 7 bars with several temperature steps up to 

180°C. 

 

Lay-up
Tool Release 

Film

Laminate 
Plies

Bagging 
Film

Vacuum 
line

Breather
Bleader ply

Sealant

 

Figure 5  Manufacturing assembly of L-shaped laminate to be cured in an autoclave. 

 

1.2.1. Mechanical Loads on L-Shaped Structures 

According to airworthiness certification documents [10], spars and ribs are Principle 

Structural Elements (PSE’s) of which failures catastrophically affects the structural 

integrity of the airplane. Moreover, these parts are highly loaded during the flight. 

Structural integrity of their L-shaped flanges is therefore critical.  
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(a) (b) 

Figure 6  (a) In-plane sectional forces on an L-shaped rib flange and (b) types of 

loads observed in aircraft wing ribs. 

 

In-plane sectional loads on an L-shaped part are axial load, P, moment, M and shear 

load, V as shown in Figure 6a. Mechanical loads on the wing ribs can be used to 

understand physical sources of the sectional loads on the L-shaped rib-flanges. 

Figure 6b shows the types of loads by numbered from “1” to “5” which are described 

as follows [2];   

Load Type “1”: This type of loading is generally induced by aerodynamic and fuel 

pressure. A compressive load can be induced due to the wing bending, so called 

“crushing load” or “brazier load”. Load Type “1” yields axial force, P, and the 

moment, M, on the section of the L-shaped rib flanges (Figure 6a). 

Load Type “2”: It includes compressive and tensile loads in the x-direction (Figure 

6b-right). It is created by the Poisson’s ratio effect of the skin or related to the end 

loads of the adjacent spars. The direction of the resulting load is through the page for 

the L-shaped rib flange given in Figure 6a. Hence, Load Type “2” does not have any 

influence to the sectional loads in Figure 6a. 

Load Type “3”: This type of loading is formed by the shear flows in the wing or 

induced by the large flight control surfaces such as flaps and ailerons.  As a result, it 

yields shear load, V, on the L-shaped rib flanges (Figure 6a). 
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Load Type “4”: Fuel pressure and sloshing of the fuel are the main sources of this 

kind of loads. It causes the axial force, P and the moment, M on the L-shaped parts 

shown in Figure 6a. 

Load Type “5”: This is the torque load induced during the flight. As the torque is 

dominantly reacted by shear forces in yz-plane, it has a negligible impact to the 

sectional forces shown in Figure 6a. 

 

1.3. The Problem of Delamination in L-Shaped Composite Laminates 

1.3.1. Definition of Delamination 

In a composite laminate made of unidirectional (UD) or woven fabric plies such as 

shown in Figure 7a, cracks may exist in three forms; matrix crack, fiber crack and 

delamination [11]. Matrix crack is the crack passing through the matrix, which is the 

resin of the material in composite laminates. An example picture of matrix cracks in 

a laminate made of fabric plies is shown in Figure 7b. The fibers are normal to the 

page shown by white dots whereas the orthogonal fibers are seen as white lines. The 

resin material is seen as gray filling the volume between the fiber bundles. Similarly, 

the cracks at the fibers are the fiber cracks which are indicated in Figure 7b. In 

general, matrix and fiber cracks are considered as in-plane cracks since they stay 

perpendicular to the lamina plane, xz and yz-planes in Figure 7. Existence of in-plane 

cracks degrades in-plane strength and stiffness of the laminates [12,13].  

Delamination is a longitudinal crack on the ply plane (xy-plane in Figure 7a) that 

passes through the interfaces between the layers, so called ply interfaces or simply 

interfaces (Figure 7a).  Figure 7b shows delaminations in a laminate made of fabric 

layers. It is seen that delaminations follow the ply interfaces along a slightly curved 

path. Notably, although the microscopic view resembles slight curvature, the 

macroscopic fractures surface is straight. Delamination in an unidirectional laminate 

are shown in Figure 7c where the delamination passes through the interface between 

0° and 90° plies.  
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(a) 
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50 μm
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METU

 
(b) 

50 μm

0°

90°

Delamination METU

 
(c) 

Figure 7  (a) A CFRP laminate made of unidirectional or fabric plies where (b) fiber 

cracks, matrix cracks and delamination in a fabric laminate and (c) delamination in a 

laminate made of unidirectional plies are shown. (Courtesy of Department of 

Aerospace Engineering, METU) 
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A delaminated laminate loses its flexural stiffness that makes it more sensitive to 

buckling failure. As seen from Figure 8, the remaining sub-laminates may buckle 

[12]. Buckling mode of the laminate varies for a single or multiple delaminations. A 

buckled laminate considerably loses compressive and shear load carrying capacity. In 

addition to buckling, delamination crack may propagate under cyclic loading [14]. 

Even for quasi-static loading, the delamination can propagate as in our study. Today, 

delamination growth is not allowed by the certification authorities (EASA, FAA), no 

matter it is due to fatigue or static loading [10]. 

 

  

  

  
Figure 8  Four typical buckling modes of a laminate with single and multiple 

delaminations. 

 

1.3.2. Stages of Delamination 

There are two stages of delamination failure; delamination initiation and 

delamination propagation. Delamination initiation is the stage that the flaw forms on 

the interface from an intact structure. Generally, initiation stage is studied by using 

strength of materials approaches based on point-wise stress analysis. On the other 

hand, the propagation stage is the growth of the initiated or existing crack where the 

fracture mechanics is considered. It is worthy to note that our method of Cohesive 

Zone Method is able to handle both the initiation and propagation stages to be 

discussed in the following sections. 

1.3.2.1. Delamination Initiation 

Delaminations may initiate during the manufacturing of a laminate. For instance, a 

forgotten portion of a peel ply or a foreign object that has been left between the plies 

may lead to delaminations [9]. A wrongly applied drilling process can form 

delaminations around the exit of the hole [9,15]. Delaminations which are formed 
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during the manufacturing can be captured by the quality control processes such as 

using non-destructive inspections [9].  

In a survey conducted by International Air Transport Association (IATA) in 1991, 

40% of composite damages reported by the airliners are because of the impacts 

during ground handling and the maintenance [11]. For instance, a simple steel 

hammer used in the maintenance can be mistakenly dropped on the composite 

laminate, which forms delaminations inside the laminate. As the projectile hit the 

laminate, the resulting stress waves move through the thickness of the laminate that 

fractures the lamina interfaces where the stiffness abruptly changes [15].  Actually, 

the delaminations due to the low-velocity impact are very insidious, and therefore 

dangerous, since the delamination may not give any indication from the outside [15]. 

This phenomenon is known as low-velocity impact [16,17] which is a dynamic 

loading condition initiating delamination. 

Delaminations can be also spawned from intact composite laminates which do not 

have any flaws or dynamic impacts. Common sources of delamination in intact 

laminates are summarized in Figure 9 [15]. It can be inferred that the features shown 

in the figure are stress concentration regions in conventional aircraft structures. 

Straight composite laminates may have delaminations at the free edges which are 

called free edge effect [18]. The free edge effect is formed due to unbalance of out-

of-plane loads at the ply interfaces near the end of plies as shown in the middle of 

Figure 9 [15]. Free edges of holes and cut-outs may have delaminations because of 

the same reason. Drop-offs, defined by the ends of the plies which are ending in the 

mid-regions of the laminate, are also other sources of delamination [19]. In stiffened 

panels, the stiffener can be delaminated starting from the ends due to the mismatch of 

the stiffness between the skin and the stiffeners. As seen from Figure 9, the corner of 

L-shaped composite laminates is sensitive to delamination. Certification Authorities 

consider the onset of delamination as a failure of the component [10]. 
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Figure 9  Common sources of delamination in composite structures under specific 

configurations [15]. 

 

The out-of-plane shear and normal stresses on the ply interfaces are called 

Interlaminar Shear Stress (ILSS) and Interlaminar Normal Stress (ILNS), 

respectively. The delamination is initiated as the tractions exceed the ILSS and ILNS 

strength of the interfaces. There are numerous delamination initiation criteria for 

multi-axial stress or traction states, such as Chang and Springer [20], Hill [21], Tong-

Tsai [22], Norris [22], Tong-Norris [22], Kim and Soni [23], Ye [24], Brewer and 

Lagace [25] and Puck [26]. These models are mostly quadratic functions forming 

elliptical surface in terms of applied and critical interlaminar stresses/tractions. The 

critical tensile and shear interface strengths are called interlaminar tensile strength 

and interlaminar shear strength, respectively. In this study, interlaminar (interfacial) 

tensile and shear strengths are denoted by To,II and To,I, respectively. The interfacial 

strengths correspond to through-the-thickness or transverse strengths of the laminate. 

Through-the-thickness strengths are experimentally determined, which are 

determined by the laminate material, stacking and manufacturing processes [27]. 

Test procedures for the determination of transverse strengths can be found in 

American Society for Testing and Materials (ASTM). ASTM-D6415 [28] and 
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ASTM-D2344 [29] are used to determine the interlaminar tensile and shear stresses 

of the laminates.  

1.3.2.2. Delamination Propagation 

Residual Strength is the strength of a delaminated part which can still carry load 

without failure [2]. The propagation of delamination may yield to the ultimate failure 

of the structure until it exceeds the residual strength. Although delamination 

propagation is not allowed by the certification authorities, great effort is made to 

predict the details of delamination propagation in composite materials that would be 

probably possible in near future. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 10  (a) Mode-I, (b) Mode-II and (c) Mode-III fracture modes. 

 

Energy dissipated to grow a crack by formation of newly created surfaces per length 

is called Energy Release Rate, G [30]. The critical energy release rate required 

propagating a crack is called Fracture Toughness, Gc [31] which is a 

material/interface property. It can be stated that smaller the fracture toughness, it is 

easier to propagate the delamination.  Energy release rate can be related to Stress 

Intensity Factor, K, which is a stress based approach based on the stress singularity 

at the crack tip. However, several assumptions in the Stress Intensity Factors, such as 

the sharp crack assumption, are not applicable to the composite materials. Therefore, 

energy release rate approach is generally used for delamination analysis in composite 

materials [31].  

In fracture mechanics, the process of crack growth takes place in three modes [31]; 

Mode-I, Mode-II and Mode-III which are illustrated in Figure 10. The fracture 

energies and critical stress intensity factors at each mode are independent material 
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parameters that are respectively denoted by Gic and Kic, i = I, II, III. In Figure 10, it 

can be inferred that ILNS and ILSS are related to mode-I and mode-II, respectively 

[31].  They are experimentally acquired for each fiber/resin system, stacking and 

curing process. Double Cantilever Beam (DCB) (ASTM D5528, [32]) and End-

Notched Flexure (ENF) (ASTM WK22949, [33]) tests can be used to determine the 

mode-I fracture toughness (GIc) and mode-II fracture toughness (GIIc), respectively. 

In engineering applications, the delamination generally takes place in mixed-mode 

condition [34] which is the combined loading of mode-I, mode-II and mode-III. The 

mixed-mode fracture toughness, Gc, can be experimentally calculated by Mixed-

Mode Bending Test (MMB) (ASTM D6671/D6671M, [35]). There are several 

interaction curves to predict propagation of delaminations in mixed-mode fracture 

conditions such as Benzeggagh-Kenane (B-K) [36], Reeder [37] and Wu and Reuter 

[38] criteria. It is noted that propagation criteria are based on fracture mechanics 

which is different from the delamination initiation criteria based on point-wise 

stress/traction states. The Problem of Delamination in L-Shaped Composite 

Laminates 

The delamination in L-shaped composite laminates (Figure 11c) is a concrete 

problem which has been recently raised in aerospace industry. Millions of dollars 

was paid to repair the L-shaped composite parts since delaminations had been 

observed at the curved regions of the L-shaped composite laminates in in-service 

aircraft according to New York Times [39]. More weight is added to the vehicle by 

repairing the aircraft or by using more layers for strengthening the L-shaped 

laminates. This results in loss of performance and/or reduction in the range of the 

aircraft which are not favored by customers. As a result, both the industry and the 

academy are working on this problem to understand the failure mechanism and take 

precautions from the design stage. 

Manufacturing defects are frequently observed at the curved regions of the L-shaped 

composite laminates which act as initiation sites for delamination. However, the 

problem in the L-shaped composite laminates is not because of the manufacturing. 

There is a much simpler reason specific to the geometry which spawns delamination 

problem even for the intact laminates which is perfectly produced without any defect. 

Once a thick beam takes a curved shape, the sectional loads induce radial normal 
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stresses. This fact was analytically shown by Timoshenko and Goodier [40] for 

isotropic curved beams. For cylindrically anisotropic curved beams, Lekhnitskii [41] 

proved the formations of opening radial stresses under end forces and moments. In 

other words, it can be stated that the development of radial normal stress is due to the 

curved geometry and not related to the type of material or any other reason. Figure 

11a provides the positive sign convention for the sectional loads which “opens” the 

curved region of the L-shaped specimen. The stress state in an infinitesimal element 

taken from the corner has cylindrical shear (σrθ) – simply the “shear stress” -, hoop 

(σθ) and radial normal stresses (σr). The shear and normal radial stresses correspond 

to ILSS and ILNS on the ply interfaces, respectively.  As seen in the opening 

deformation, a positive value of ILNS means tensile load acting normal to the 

interface. As a result, positive ILNS promotes mode-I fracture in L-shaped composite 

laminates [41] (Figure 11b).  

Classical Laminated Plates Theory (CLPT) states that the mismatch of the stiffness 

between the adjacent layers would induce ILSS at the ply interfaces [5]. This means 

that ILSS develops in any kind of multi-directional laminated composite materials. 

Therefore, mode-II dominated delamination driven by the ILSS is a well-known 

phenomenon in the industry. On the other hand, development of positive ILNS is a 

new issue for the industry as they are used to work with planar laminates (e.g. wing 

skins), normally do not have positive ILNS due to the straight geometry. However, in 

L-shaped composite laminates, positive ILNS promotes mode-I together with the 

mode-II.  

The delamination problem because of the development of positive ILNS in L-shaped 

laminates becomes clearer once the fracture toughness and interlaminar strength of 

the composite materials are considered. It is known that the mode-I fracture 

toughness, GIc, is much smaller than mode-II fracture toughness, GIIc, for 

conventional composite laminates [27]. For example, the experimental curve of 

mixed-mode fracture toughness, Gc, as a function of GII/G, where G = GI + GII, is 

presented in Figure 12 for IM7/8552 laminate [42]. It is seen that involvement of 

mode-I (GII/G ≈ 0) reduces the mixed-mode fracture toughness, Gc, simply the 

toughness of the laminate. From the initiation point of view, the same situation is 

observed as the normal interfacial strength is weaker than the shear strength in most 
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of the composites [27]. The weakness at mode-I and interfacial strength in normal 

direction makes the delamination at the curved region of the L-shaped composite 

laminates become problematic for the industry (Figure 11c). 
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(a) 

 
(b) 

 
(c) 

Figure 11  (a) Stress state of the curved region of an L-shaped composite laminate 

under positive M, V and P loads, (b) the effects of stress states to the modes of 

fracture and (c) picture of a delaminated L-shaped composite laminate. 

(Courtesy of Department of Aerospace Engineering, METU) 
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Figure 12  Experimental results of mixed-mode fracture toughness (Gc) as a function 

of GIc/G (G = GI + GII) for IM7/8552, [42]. 

 

1.4. Studies on Delamination in L-shaped Composite Laminates 

In this part, the contributions of the studies about the failure of L-shaped composite 

laminates are chronologically presented. In some cases, this chapter presents graphs 

and charts that are worthy to be noted and therefore discussed in detail. This chapter 

provides the total picture and definitions of some critical information about the 

subject. It should be noted that some of the studies mention about “curved composite 

laminates” instead of “L-shaped composite laminates” which are kept as the original 

in this chapter. Both of the wordings mean the same since the curved region of the L-

shaped composite laminates is indeed “curved composite laminate”. The 

nomenclature in this section is kept same with the original studies in order to refer to 

the corresponding graphs and charts. Hence, the general nomenclature is not 

applicable to the literature survey presented here. 

Until mid-1980’s, no studies about the delamination of L-shaped composite 

laminates has been found in open literature to best of the author’s knowledge. In 

1986, one of the earliest studies about the failure of L-shaped composite laminates 

was performed by Chang and Springer [20] in which L-shaped laminates were 

numerically investigated. The specimen configurations were unidirectional 

symmetric cross-ply laminates with 0°/90° plies and multidirectional laminates 

composed of ±30° and ±45° plies. The influences of the layups as well as the 
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geometrical parameters such as length of the arms (L), inner radius (Ri), total angle 

of the corner (α) and the thickness (B) were investigated. An in-house finite element 

code was used. The predictions of the proposed finite element analyses were verified 

based on hoop stress profile over the thickness for a simply supported composite 

beam under flexural loading (q) as shown in Figure 13a. The verification was based 

on comparisons with the results of CLPT and the elasticity solution derived by 

Pagano [43]. The developed finite element code perfectly agreed with Pagano’s 

elasticity solution whereas CLPT disagreed due to its linear response as shown in 

Figure 13a. It is seen that the prediction of the CLPT under-predict the stress levels 

as well as the results are very different compared to the analytical and FEA. In-plane 

failures were predicted using Tsai-Hill criterion [13]. Furthermore, an elliptical onset 

of delamination criterion was proposed by Chang and Springer [20].  

The effects of the geometrical parameters and stacking sequence were analyzed using 

the developed finite element code by Chang and Springer [20]. From Figure 13b-d, it 

can be seen that the strength of the L-shaped laminates is enhanced with increasing 

the ratio of Ri/B. Addition of 0° plies near the inner and outer radiuses improves the 

strength of the specimen as shown in Figure 13b. A remarkable observation about the 

loading direction was reported by Chang and Springer [20]. In all configurations of 

the parameters, the shear load, F in Figure 13b-c, directed towards the positive x2-

axis fails the specimen in lower loads than the case of shear loading acting towards 

the opposite direction (Figure 13c). In other words, the load that increases the angle 

of the corner is more critical than the loads decreasing the angle according to Chang 

and Springer [20]. As the inner radius increases, this difference is reduced as shown 

in Figure 13b-d. The strength can be reduced by increasing the length of the arms 

respect the thickness, L/B, according to Figure 13d. It is due to fact that the moment 

acting on the corner increases in longer arms. The effect of angle of the corner, α, is 

not as conclusive as the other parameters from the figures. It was reported that the 

delamination was found to be the main failure mode. It can be inferred that 

delamination is the failure mode, without regarding the stacking and the geometrical 

parameters, as long as the radius is small and the shear loading is in positive 

direction which “opens” (increases the corner angle) the curved region of the L-

shaped laminate. 
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(a) 

 
(b) 

 
(c)  

 

 (d)  

Figure 13 (a) Hoop stress divided by the maximum distributed load as a function of 

thickness, (b) normalized strength versus ratio of inner radius to thickness Ri/B plots 

for (b) effect of stacking, (c) loading direction and (d) the length of arm (L/B) [20]. 
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Sun and Kelly [44-46] performed sets of experimental and numerical studies in 

which the failure of L-shaped composite laminates was investigated in detail. The L-

shaped composite laminates were made of CFRP and GFRP plies. The length of the 

arms and the inner radius were 3. and 0.18 inches, respectively, and the widths of 

specimens were changed between 1. to 2. inches. Three different layups were 

studied; “Layup-H”: [90/03/902/03/90]s made of CFRP, “Layup-I”: 

[903/0/903/0/90/0]s made of CFRP and “Layup-J”: [903/03/902/03/90]s made of GFRP. 

The experimental setup is shown in Figure 14a where the load is applied by the load 

cell through a mechanism which creates bending moment and the shear force on the 

curved region. An optical microscope was located near the corner so as to observe 

formations of matrix cracks during the experiments. In Layups-H and J, initial failure 

was caught by the optical microscope as radial matrix cracks at 0° plies near the 

inner radius. It was reported that the formation of radial matrix cracks did not cause 

failure of the specimens without any indication in the load-displacement curves. It 

was reported that the failure always occurred due to delamination revealing an abrupt 

drop in the load carrying capacity. The load levels of initiation of the radial matrix 

cracks varied form 60% to 90% of the failure load. It was thought that the 

delaminations were formed due to the propagation of the initiated radial matrix 

cracks through the interfaces. In Layup-I, delamination took place at the 0°/90° 

interface near the inner radius without any formation of matrix cracks. A finite 

element method with plane strain assumption was used by Sun and Kelly [44] for the 

numerical analysis. The predictions of the numerical models were verified by 

elasticity solution proposed by Timoshenko and Goodier [40] for homogeneous 

isotropic curved beams. For predicting the initiation of matrix cracks, Hill [21] and 

Tsai-Hill [13] criteria were used. Hill criterion successfully predicted the required 

load for matrix cracks within an error margin of 5%. On the other hand, Tsai-Hill 

criterion underestimated the failure load which is not conservative. The elliptical 

criterion proposed by Chang and Springer [20] was used for the onset of 

delamination. The numerical results were in good agreement with the experimental 

results for both the initiation of matrix cracks using Hill criterion and t onset of 

delamination using Chang and Springer criterion. 
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(c) 

Figure 14  (a) Experimental setup, (b) possible paths of matrix crack branching 

towards ply interfaces that form delamination and (c) typical energy release rate 

profile as a function of delamination crack length by Sun and Kelly [44-46] 

 

The delamination failure was rigorously investigated in the second part of the study 

of Sun and Kelly [46]. Virtual Crack Closure Technique (VCCT) [47] was used. 

Noting that, no crack propagation was simulated; VCCT was only used for 

calculating energy release rates at discrete lengths of cracks. Since the delamination 

was initiated by radial cracks in the experiments presented in their previous study 

[45], an initial radial matrix crack was modeled by disconnecting the nodes. Four 

possible branching paths of the radial matrix crack are shown in Figure 14b. For each 

path, the crack was extended by a small amount and the corresponding energy 

release rates were calculated using VCCT. The branching path providing the 

maximum energy release rate was selected and the model was re-meshed, 

accordingly. The energy release rate curves as a function of delamination length were 

found for the layups. All the curves resembled similar profile just like the one shown 

in Figure 14c. The energy release rate increases up to a maximum value after when 

the curve goes down but never reaches below the initial value. This indicates that the 

delamination growth is unstable inside the curved region. This conclusion was 

supported by the experiments in that delaminations were always able to be trapped at 

the arms. Actually, these are typical observations that were repeatedly reported by 
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the other authors working on L-shaped laminates as going to be mentioned in the 

following paragraphs. 

Sun and Kelly [46] proposed to use adhesive films between the interfaces of 0°/90° 

plies in order to strengthen the laminate against delamination. The idea was to 

increase the maximum interlaminar tensile strength and toughness by minimally 

affecting the stiffness and the weight of the laminate. The experiments showed that 

the maximum load capacity was increased by at least +55% using adhesive films. 

Moreover, delamination never started at the interfaces where adhesives were applied. 

In addition, Sun and Kelly [46] suggested using caul-plates during manufacturing of 

L-shaped composite laminates. 

Kedward et al. [48] proposed a simple strength of materials approach to calculate the 

maximum stresses in the curved region for engineering design applications. The 

proposed equations provide the maximum normal radial stress (σr
max(θ)) and the 

maximum shear stress (σrθ
max(θ)) on the section at any angular location, θ, as shown 

in Figure 15.  

 

 

Figure 15  Freebody diagram of the curved region of an L-shaped beam. 
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The formulations derived by Kedward et al. [48] have been widely used in aerospace 

industry. The maximum out-of-plane stresses at the corner were given as follows, 

[48]; 
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where B is the thickness of the beam, Ri is the inner radius, and Ro is the outer 

radius. Ms(θ) is the moment force and Vs(θ) is the shear force acting on the section as 

a function of θ, which can be found from the freebody diagram given in Figure 15; 

[ ] )sin(VR)cos(1PRM)(M mms θ+θ−−=θ   

(2) )cos(V)sin(P)(Vs θ+θ−=θ  

where Rm is the mean of Ri and Ro. Eqns.(1) and (2) were verified by Kedward et al. 

[48] with the analytical solution and finite element analysis. Interestingly, the 

strength of materials approach provided satisfactorily good results compared to the 

analytical solution and finite element analysis.  

Kardomateas [49] derived analytical solution for the stress states of cylindrically 

orthotropic curved beams with linearly varying elastic constants under bending. It 

was one step ahead of Lekhnitskii’s equations [41] since the equations of 

Kardomateas allowed linear variations of elastic constants through the thickness. 

This is a better approximation to multidirectional composite laminates. However, the 

resulting solution was provided in terms of infinite series functions that are hard to 

be applied. In the next study, Kardomateas [50] presented analytical solution for 

generally anisotropic curved beams with linearly varying elastic constants under end 

forces. However, the analytical solution included both complex as well as infinite 

series functions. 

A semicircular composite specimen was proposed by Ko and Jackson [51] for 

investigating the delamination behavior under mode-I condition. Moreover, a 

multilayer analytical model based on anisotropic elastic theory of Lekhnitskii [41] 

was also proposed. The derivation was similar to the one performed by Tolf [52] who 

conducted the stress analysis of curved composite laminates using continuous and 



 

25 
 

discrete methods. The equations of Ko and Jackson [51] covered both the moment 

and the translational loads. The profile and the location of the maximum radial 

normal stresses were calculated using the proposed equations and the results were 

compared to the FEA and anisotropic elastic theory of Lekhnitskii. It was seen that 

the derived formulations demonstrated better results than Lekhnitskii’s equations 

compared to the FEA. 

The specimens proposed by Ko and Jackson [51] may induce mode-II delamination 

at the edges of the loading points. Therefore, Ko and Jackson [53] proposed new 

types of specimens for the analysis of mode-I delamination in curved composite 

laminates. Ko and Jackson [53] proposed a horse-shoe shape specimen and an 

elliptical shape specimen for ensuring mode-I delamination. They also analyzed the 

delamination of curved sandwich structures. They showed that elliptic specimen was 

not suitable for the analysis of de-bonding strength in sandwich structures whereas 

the horse-shoe specimen was suitable for sandwich structures. 

Hiel et al. [54] also proposed experimental semicircular and elliptical specimens for 

determining through-the-thickness strength of laminated composites.  It was shown 

that the elliptical specimens were unusually stronger than the circular ones under 

static and fatigue loads. On the other hand, circular specimens were more sensitive to 

flaws that could exist from the manufacturing stage. Surprisingly, the curved 

composite laminates did not indicate any change of compliance prior to fatigue 

damage.  It was shown that through-the-thickness strength was reduced by increasing 

the moisture content in the laminate. 

O’Brien and Salpekar [55] investigated the effect of specimen volume to through-

the-thickness strength (interlaminar shear and interlaminar tensile strengths) of 

unidirectional CFRP laminates including L-shaped beams. A remarkable observation 

was made that through-the-thickness strength reduces as the thickness increases. No 

conclusion could be made about the effect of width due to large scatters in the data. 

They concluded that flaws of micro voids and resin rich pockets increase with 

thickness. As a result, thick composites have weaker interlaminar shear and tensile 

interfacial strengths (To,I and To,II) due to accumulation of microflaws by increasing 

the thickness.  
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One of the pioneering researches was performed by Martin [56] from NASA. 

According to Martin [56], initiation of delamination is driven by excessive interfacial 

tensile stresses, compressive matrix crack formation near the inner radius or free 

edge effect as illustrated in Figure 16a. In the experiments, an L-shaped composite 

laminate was loaded by shear loading. The specimen was 24-ply unidirectional 

CFRP laminate with 3mm of thickness. Martin [56] observed that the failure was 

always due to delamination in the form of single and multiple delaminations (Figure 

16c). However, large scatters in the failure load were reported in the experiments. 

The propagation of delamination was reported as instantaneous and unstable. The 

delamination had propagated to ends of the arms where they were trapped. Analytical 

study based on orthotropic elastic solutions by Lekhnitskii [41] and FEA with 2D 

plane strain assumption using NASTRAN [57] were performed to calculate the stress 

states along the specimen. Initiation and propagation of delamination were not 

predicted by Martin [56].  It was noted that the maximum radial normal stress was 

attained near the middle of the thickness but close to the inner radius. Martin [56] 

suggested that the thick and thin sub-laminates successively fail after the first 

delamination forms in the original laminate.  

Martin [56] used VCCT method to calculate energy release rate for several lengths of 

delamination. They noted that mode-I energy release rate reaches the maximum near 

the middle regions of the curved region after when it starts to decrease closer to the 

ends of the corner. The mode-II energy release rate became apparent near the ends of 

curvature where mode-I energy release rate was to diminish. In other words, mode-I 

dominated delamination propagation occurred inside the corner whereas mode-II 

became apparent near the ends of curved region.  

In 1993, Martin and Jackson [58] studied two stacking configurations in cross-ply 

CFRP L-shaped laminates under static and fatigue loading. The layups were “Layup-

A” of [04/903/05]s and  “Layup-B” of [04/903/0/902/02]s. The experiments were 

conducted on the same setup with the same specimen given in Martin [56]. They 

reported that all the specimens were failed due to delamination. For Layup-A, tensile 

matrix cracks were observed at 90° ply batch. However, matrix cracking did not 

yield to failure of the specimen. Afterwards, subsequent delaminations were seen due 

to excessing the interlaminar tensile strength at 0° ply batches. For Layup-B, a 
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straight matrix crack was formed at both of the 90° ply batches due to the in-plane 

tensile loading. It was concluded that 90° plies tend to create delamination because 

in-plane tensile cracks propagated to the interface.  

In addition to the experimental study, numerical analysis of the problem was also 

studied by Martin and Jackson [58] on NASTRAN [57] using 2D and 3D elements. It 

is important to note that the results of 2D models with plane strain assumption were 

in perfect agreement with the prediction of 3D models. Furthermore, Martin and 

Jackson [58] revealed the free edge effect by 3D FEA using VCCT method. It was 

shown that energy release rates were the highest at the free edges. Prediction of 

failure point using the interfacial strengths obtained from the centerline was in well 

agreement with the experimental results compared to the predictions based on the 

free edge effect. In other words, structural analysis based on free edge effect was 

mentioned as “over-conservative”. The maximum radial stress was found using the 

equations of Lekhnitskii and compared to the experimental data. For the interlaminar 

shear cracking, Tsai-Hill [13] criterion was used. The transverse static and fatigue 

tensile strength of the matrix were acquired by 90° flat coupon tests. On the other 

hand, interlaminar tensile strengths were directly obtained from curved laminates. 

The fatigue and static strengths of the cross-ply L-shaped laminates were 

experimentally revealed. 

In 1993, equations of motion for thin and moderately thick curved laminated 

composite beams were derived by Qatu [59]. Rotary inertia as well as shear 

deformation was included into the equations for moderately thick curved beams. 

Influences of rotary inertia, inner radius, thickness, material properties and shear 

deformation on the natural frequencies were also discussed.  
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(a) 

 
 

(b) 

 

(c) 

Figure 16 (a) Summary of failure modes in L-shaped composite laminates, (b) 

experimental setup and (c) pictures of single, double and multiple delaminations 

observed in experiment by Martin [56]. 
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Lu et al. [60] formulated the energy release rate of circumferential cracks in 

cylindrically orthotropic curved beams under bending.  The problem was considered 

as a superposition of an intact curved beam under end moment loading and a cracked 

curved beam with opening radial tractions acting on the crack interface (Figure 17). 

As the intact beam has no stress singularity, the stress intensity factor of the original 

problem is equal to the stress intensity factor of the cracked curved beam with 

opening radial tractions acting on the crack interfaces.  

 

 
Figure 17  Problem of a cracked curved beam under moment loading and 

superposition of an intact curved beam under moment and a cracked curved beam 

with opening radial traction acting on crack interfaces. 

 

For a small crack in the middle of the beam, the crack was considered in pure mode-I 

condition. By this assumption, energy release rate with small crack assumption, GI
s 

(superscript, “s” stands for small crack) was derived by Lu et al. [60]; 
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where E1 is elastic modulus in hoop direction and σr is radial stress where the former 

is a material property and the latter can be calculated analytically [40,41]. The 

dimensionless numbers are defined as; λ = E2/E1 and ρ’ = (E1E2)1/2/(2G12)-(ν12ν21)1/2 

where E2 is elastic modulus in radial direction, G12 is shear modulus and ν12ν21 is the 

multiplication of Poisson’s ratios. Normalized energy release rate curves 

(GI
sE1B3/M2) with small crack assumption as a function crack angle, θc, for Ri/Ro = 

2/3 at various η = h1/h2 are shown in Figure 18a. It can be observed that the energy 

release rate is reduced after a critical value between θc = 40° and θc = 60°. This 

means that the crack growth becomes stable after reaching a critical crack length. 

Moreover, the energy release rate monotonically increases as the crack approaches to 

inner curvature. 

Lu et al. [60] also studied the energy release rate for “large” cracks in cylindrically 

orthotropic curved beams. The energy release rate was calculated by J-integral 

around the crack tips using FEA. For an isotropic material (λ = ρ’ = 1), curves of 

normalized mixed-mode energy release rate as a function of the crack angle, θc, for 

Ri/Ro = 2/3 at various η = h1/h2 are presented in Figure 18b [60]. Same observations 

for the small crack assumption (Figure 18a) are applicable to Figure 18b for the large 

cracks. Importantly, it is observed that there is a stable crack length. “Mode-mixity” 

defined by tan-1(KII/KI) versus the crack angle, θc, is given in Figure 18c. An 

important observation can be made from Figure 18c is that mode-II becomes 

dominant as the crack tip approaches to the ends of the corner (θc = 90°). It was 

concluded that the crack may become purely mode-II at the ends of the corner. The 

modulus in radial direction, E2, also affects the energy release rate as seen from 

Figure 18d.  It can be inferred from Figure 18d that orthotropy of the material is an 

important parameter for the delamination response in L-shaped composite laminates. 
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(a) 

 
 

(b) 

 

(c) 

 
 

(d) 

Figure 18 (a) Normalized energy release rate with small crack assumption, (b) 

normalized mixed-mode energy release rate for large cracks, (c) mode-mixity versus 

the crack angle, θc, for Ri/Ro = 2/3 at various η = h1/h2 for isotropic material; i.e. λ = 

ρ’ = 1 and (d) normalized energy release rate for large cracks versus θc for Ri/Ro = 

4/5 at various λ for η = ρ’ =1 [60]. 

 

In 1994, Shivakumar et al. [62] proposed a test procedure for the determination of 

interlaminar tension strength of unidirectional L-shaped composite laminates. The 

specimens were made of 16, 24 and 32 CFRP plies. The proposed test method 

guaranteed the formation of delamination at mid-layers and center of the curved 

region. During the experiment, they reported a sound of “pop” at 20% of failure load. 

They claimed that this was the sound of matrix cracking. The radial locations of the 

delamination were seen at 45%, 44% and 43% of the thickness for 16, 24 and 32 ply 

specimens, respectively. The interlaminar tensile stress distribution was calculated 

using Lekhnitskii’s equations and in-house finite element tool with plane strain 

θc θc 

θc θc 

, 
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assumption. The authors also used the strength of materials based approach proposed 

by Kedward et al. [48] to determine the maximum interlaminar tensile stress in the 

specimens. Among the three methods, the strength of materials approach of Kedward 

et al. [48] perfectly predicted the location of the delaminations in 24 and 32 ply 

laminates. On the other hand, Lekhnitskii’s formula provided the best prediction for 

the 16 ply laminate. Although the difference between the predictions of the three 

methods was less than 3%, the strength of materials approach proposed by Kedward 

et al. [48] was favored by Shivakumar et al. [62] due to its simplicity. Shivakumar et 

al. [62] showed that the interlaminar tension strength of the L-beams decreases as the 

thickness and the width of the specimen increase. In other words, increasing the 

specimen volume reduces the interfacial strength of the laminate as shown in Figure 

19. This conclusion is a one step further of O’Brien and Salpekar [55] who revealed 

the same effect on the thickness but not on the width. Actually, this phenomenon is 

known as volumetric effect which is defined by the decrease of the interfacial 

strengths (To,I and To,II) by increasing the specimen volume. The reason is to having 

more microscopic flaws in larger specimens that reduces the interfacial strength of 

the specimen. 

 

 

Figure 19  Effect of specimen width, inner radius and thickness to the interlaminar 

tension strength [62]. 
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Wisnom and Jones [63] studied thick and curved composite laminates with 

terminating plies at the middle of the specimen under pure bending. The objective 

was to study two initiation features acting together; interlaminar tensile stresses due 

to curved geometry and free edge effect due to terminated plies. In the experiments, 

delamination started at the ends of the terminated plies as expected. Next, the 

delamination branched into upper and lower interfaces of the terminated plies and 

propagated along the specimen. Eventually, the terminated plies were separated from 

the remaining of the laminate. A linear failure criterion was proposed in terms of the 

interaction of curved geometry and free edge effect. The critical moments for 

initiating the delamination in an intact curved laminate and a straight cut ply laminate 

were obtained for using the criterion.  

Cui et al. [64] used curved composite beams for determining the interlaminar tensile 

strength of the composite laminates. The specimen was a semicircular beam with 

horizontal arms. The beam was loaded by four-point bending which yields pure 

moment on the middle of the curved region. Cui et al. [64] compared the differences 

between the predictions of linear and nonlinear FEA. Radial normal stress 

distributions along the thickness for linear and nonlinear finite element analysis for a 

curved composite laminate under pure bending are shown in Figure 20. It is seen that 

linear analysis overshoots the maximum interlaminar stress. It is a crucial 

observation for aerospace applications where linear static analysis is generally 

preferred [10]. Hence, the interlaminar tensile strength of the composite laminates 

can be calculated by nonlinear analysis whereas linear analysis can be used for 

calculating the actual stress distribution under real loading. 
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Figure 20 Radial normal stress distributions along the thickness for linear and 

nonlinear finite element analysis for a curved composite laminate under pure bending 

calculated by Cui et al. [64]. 

 

Cox et al. [65] investigated the influences of through-the-thickness stitching to the 

delamination in L-shaped composite laminates under pure bending (Figure 21). The 

objective of stitching was to bridge the crack front. Stitching was aimed to change an 

unstable delamination growth to a stable bridged delamination growth. A successful 

stitching was defined as being both stiff and numerous. Stitching density, fc, was 

defined as the ratio of total cross-section area to the area covered by the stitch fibers. 

The required stitching density to suppress the unstable delamination propagation was 

derived based on the study of Lu and Hutchinson [66] where the stitching had been 

considered as continuous closing tractions on the crack interface. For design 

purposes, it was mentioned that fc should be proportional to (B/Rm)2 (Figure 21). 

Moreover, the suppression was possible after “moderately curved laminates” which 

was defined as B/Rm < 0.2. The stitching was not very effective for thin laminates. 

For thick parts, the required stitching was lower than the estimated stitching density 

by the proposed formula since the efficiency of the load transfer between the 

stitching fibers and the laminate matrix would be better. Stitching density was 

suggested to be greater than 4% for inhibiting unstable delamination propagation in 

conventional CFRP laminates with moderate curvatures. The failure mode was 

expected to be switched to in-plane compression of inner plies as the delamination 

propagation had been suppressed by stitching. 
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Figure 21  Schematic view of delamination in a stitched curved composite laminate. 

 

In 1997, Fraternali and Bilotti [67] derived a 1D analytical model for L-shaped 

composite laminates having “bi-modular” plies which is defined by having different 

compressive and tension modulus. Indeed, conventional CFRP laminates are 

generally bi-modular. By discretization of the 1D model, finite element model was 

derived. Each ply was modeled as 1D beam elements and connected by a penalty 

technique which forces the mating 1D elements in a perfectly bonded condition. The 

derived finite element model was suggested to be used for analyzing the free edge 

effect and the influence of bi-modularity of the composite L-shaped laminates. 

The free edge effect in curved laminates was investigated by Kaczmarek et al [68], 

both experimentally and numerically. They noted that classical fracture mechanics is 

not possible to be applied as there is no asymptotic value of energy release rate in 

edge delamination.  Therefore, although their experimental specimens did not have 

an initial crack, they postulated an initial crack size which was calculated by the 

relation between fracture toughness and crack size in the plane strain assumption. On 

the other hand, the conventional stress analysis method was considered as 

inconvenient as the free edge delamination has a stress singularity. They proposed an 

improved fracture-mechanics approach to predict the delamination due to free edge 

effect. The approach was experimentally validated. The experiment setup was a 4-

point bending where a highly curved laminate was used. They noted that the failure 

of delamination was instantaneously occurred. The method of numerical analysis was 

VCCT and performed in ABAQUS/Standard using 3D elements [69]. They used 

Multi-Point-Constraints [69] to model the boundary conditions for a free edge in a 

B 
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single element. Thermal residual stresses were also included in the model. They 

concluded that the edge effect was much more severe in curved laminates comparing 

to the straight laminates where the critical energy release rate was much lower. 

The effects of manufacturing process to the thickness variation, fiber volume fraction 

and eventually the strength of the L-shaped composite laminates were studied by 

Naji and Hoa [70]. The curing was performed in autoclave at 5.84 bars with two and 

three temperature stepped cycles. Four specimens, made of 50 layers of CFRP plies, 

were in different combinations of pressure, number of bleader plies and number of 

curing steps. First specimen with one layer of bleader ply was cured by 2-step curing 

cycle while pressurization, so called debulking, at each 10 layers had been 

successively applied. The process of debulking was suggested to remove trapped air 

from the layers; however, it took additional time. The second specimen with one 

layer of bleader ply had been exposed to the debulking process at every 5 layers 

which was introduced to 3-step curing cycle. In the third trial, all the layers had been 

laid without any debulking process and introduced to 2-step curing with 2 layers of 

bleader films. The final specimen was made by debulking at every 10 layers of plies 

by 3-step curing together with two layers of bleader plies. It was seen that the best 

thickness variation was reached at the third and fifth specimens. Actually, the 

differences of the thicknesses among the specimens were so small that the effect of 

curing was not clear. In all the cases, the fiber volume fraction was decreased. A very 

slight increase of fiber fraction was reached by 3-step curing. No wrinkles or 

waviness in the plies were observed. The manufacturing process was also 

numerically simulated. Partial differential equations of heat transfer, resin flow, 

thermo-kinetic and viscosity were used in two-dimensional finite difference method. 

The finite difference solution, which is an explicit scheme, was applied to the 2-step 

and 3-step curing cycles. The thicknesses, the volume fractions and the temperatures 

of the specimens were well predicted by the numerical analysis. The specimens were 

tested in axial loading. A remarkable observation was made that the strength of the 

specimens considerably varied among the manufacturing trials. For instance, the 

failure load of the third and the fourth specimens had the difference as much as 90%. 

The number and the locations of the delaminations were also different. This is an 

important conclusion that the fracture is greatly affected by manufacturing process in 

the L-shaped composite laminates.  
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In 2001, Shenoi and Wang [71] derived an analytical solution for laminated curved 

beams capable of considering stiffness variations in the radial direction. For the 

derivation, it was assumed that the curved beam was laid on an elastic foundation 

under moment loading. The reaction of the elastic foundation was taken as the 

boundary condition using the classical lamination theory. The methodology was 

applied to monolithic and sandwich laminates so as to investigate the influences of 

inner radius and layup to the stress distribution. It was shown that the stacking 

sequence had a considerable effect. For instance, unidirectional laminate showed a 

rather continuous stress profile whereas a four layer-cross ply laminate revealed a 

clear piecewise stress profile along the thickness.  

Münch and Ousset [72] proposed a numerical method for simulating the propagation 

of delamination in curved interfaces. Theoretically, it was based on stationary points 

in total energy of the system that was discretized into mechanical and fracture 

energies. The discretized model was solved by Newton-Raphson method. The 

method was shown as a fast method in terms of convergence rate. However, it was 

noted that it should be coupled with remeshing procedures for the design 

applications. 

Figiel and Kaminski [73] numerically studied delamination propagation driven by 

thermal fatigue of two layered boron/epoxy-aluminum curved laminates. They 

predicted the propagation using Paris – Erdogan fatigue model as a function of 

energy release rate under constant compressive load with cyclic thermal loads. They 

used commercial FEA package of ANASYS [74] to perform the numerical analysis 

where contact modeling and Coulomb friction were considered. It was observed that 

the friction coefficient greatly affected the fatigue life. It showed that increasing the 

friction coefficient increases the fatigue life. They noted that the contact modeling 

enabled heat conduction between the boron/epoxy and the aluminum layers. This 

yielded more realistic simulations in thermal fatigue loading cases. Hence, modeling 

of contact and friction in the fatigue analysis of curved bi-material laminates were 

suggested by the authors. 

Two years later, Figiel et al. [75] analyzed the effects of elastic constants (i.e. 

modulus and Poisson ratio) to the delamination propagation for the same specimen 

under cyclic shear loading. The motivation was based on the uncertainties in the 
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elastic constants coming from the manufacturing process of boron/epoxy. They used 

3D-FEA with a local refinement at the front of a crack at the middle of the specimen. 

Similar to the previous study [73], Coulomb friction and Paris-Erdogan fatigue 

model were used. It was seen that the change of moduli was more effective than the 

change of Poisson ratio. Particularly, increasing the stiffness of the epoxy/boron 

decreased the fatigue life whereas variations in Poisson ratio negligibly influenced 

the fatigue life. 

In 2005, a remarkable study was conducted by Feih and Shercliff [76] who 

investigated the failure of L-shaped composite laminates adhesively bonded to 

composite base and a vertical rib. FEA was carried out using ABAQUS/Standard 

with UMAT user-subroutine [69], which was used to implement constant damage 

terms to degrade in-plane and out-of-plane stiffness of the laminate. In-plane 

damages were calculated using Hashin’s criterion for fiber tensile failure, fiber 

compressive failure, matrix tensile cracking and matrix compressive cracking. The 

values of anisotropic damage constants, changing from 0.01 to 1.0, were 

experimentally found. On the other hand, Tong-Norris criterion was used to predict 

the onset of delamination. The constitutive model of the adhesive layer was based on 

true stress - true strain data with appropriate plasticity model. 2D plane strain was 

assumed in the numerical analysis. It was stated that plane strain assumption neglects 

the free edge effect which was considered as negligible. The plane strain assumption 

was referred to the study of Wisnom [77] who suggested that plain strain is a good 

approximation for width to thickness ratios greater than 10. The anticlastic 

curvatures was related to the magnitude of the term; ν12ν21. It was noted by Feih and 

Shercliff [76] that the term of ν12ν21 was small for CFRP laminates. For the element 

formulation, the difference between using quadratic and linear elements was found as 

5%. For the sake of performance issues, 4-node linear CPE4 type of elements in 

ABAQUS/Standard [69] was used. The height of the elements was equal to one ply 

thickness. The boundary conditions were fine tuned for reaching the same load-

displacement curve with the experimental results. The load was applied by 

displacement input in order to mimic the experimental setup and increase numerical 

stability. The most realistic loading for L-shaped laminated at the rib flanges are 

stated as the combined loading of axial and moment. The combined loading was 

applied by fixing the axial displacement with a prescribed vertical displacement. By 
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that way, the vertical displacement induced moment loading whereas the fixed axial 

displacement induced axial load as the arm deforms vertically. 

 

 

Figure 22  Failure modes observed by Feih and Shercliff [76] in the L-shaped 

composite laminate. 

 

The experimental specimens used by Feih and Shercliff [76] were cross-ply 

unidirectional CFRP laminates. The components were exposed to debulging process 

by vacuuming for 5 min in every four layers in order to get rid of any voids and 

wrinkles at the corner of the specimens.  Thickness deviation in the order of 7-10% 

was recorded. The effect of spring back was measured as 2° which was considered as 

negligible. In the numerical analyses, the failure modes are summarized in Figure 22. 

Delamination was observed between the top and the adjacent plies at the corner. 

Delamination was the failure mode in the experiments.  However, before the 

formation of delamination, the first failure was obtained at the top 45° ply as tensile 

matrix cracking about 20% – 28% of the failure load. Afterwards, tensile matrix 

cracks were observed at the adjacent three 45° plies by then jumping to 0° and 90° 

plies. The next failure mode was recorded as compression matrix cracking at the 

bottom 45° plies corresponding to 55% - 84% of the maximum load. Meanwhile, a 

small portion of 90° plies was failed by tensile matrix cracking at the same load. 

They noted that none of the matrix cracks are visible from the load-displacement 
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curves. However, as a rule of thumb, 30% of the failure load was suggested to be 

considered by the designers as the first failure of the structure for matrix cracking. 

The delamination strength was overshoot by the numerical model as 17% which was 

considered as satisfactory by the authors. Actually, over estimation of failure loads 

were generally the case in the study of Feih and Shercliff [76]. This result was 

explained by not modeling the residual stresses in the finite element analysis. In 

order to compensate, three artificial modifications to the maximum loads were 

proposed. The first proposal was to reduce the fiber strength as -15%.  Second was to 

reduce the through-the-thickness strength by -55%. The final proposal was combined 

reduction of through-the-thickness strength by -20% and the fiber strength by -10%. 

The effect of interlaminar shear strength was considered as negligible. Moreover, no 

fiber breakage was reported in the study. They suggested that the internal radius 

should be larger than 15 mm and the ratio of internal to external radiuses should be 

less than 0.75, and preferably less than 0.6, in order to have the strongest L-shaped 

design. It was shown that L-shaped beams with small radius tend to fail at the inner 

sides of the corner whereas corners with larger radiuses fail at the outer plies under 

bending. Keeping the arm lengths as the same, it was shown that increasing the 

radius enhances the maximum load capacity of the structure. They also analyzed the 

effect of stacking to the maximum failure load. Putting 90° plies closer to the 

symmetry line increased the maximum load capacity of the L-shaped laminates. 

Finally, they proposed an elliptical failure criterion of axial and moment loading can 

be used for design purposes. 

Ecsedi and Dluhi [78] proposed a 1D analytical model for static and dynamic 

analyses of non-homogeneous curved beams due to radial material and geometric 

variations.  The curved beam was assumed as Rayleigh-Bernoulli-Euler beam which 

is a modified version of Euler-Bernoulli beam with rotary inertia. The equations of 

motion for free and forced un-damped vibration were derived. Examples for simply 

supported and clamped boundary conditions were demonstrated. Natural frequencies 

and mode shape factors were calculated for various cross-sections.  

Numerical analysis of delamination initiation and propagation in L-shaped composite 

laminates was conducted by Wimmer et al. [79] in 2006. The specimen was a cross-

ply CFRP laminate composed of 15 plies with the thickness of 2.25 mm, inner radius 
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of 2.25 mm and arm length of 6.4 mm. Quasi-static loading of shear displacement 

was applied to the vertical arm while the bottom of horizontal arm was clamped. The 

simulations were carried using ABAQUS/Standard with plain strain elements in the 

size of 1 μm. The numerical simulation was divided into two parts. The first part was 

the initiation analysis based on Puck criterion [26] which is capable of estimating 

matrix cracking, fiber cracking and delamination initiation failures as well as the 

relative risk factors, i.e. Reserve Factors, for each failure mode. Map of risk factors 

for failures and failure modes are shown in Figure 23a and Figure 23b, respectively. 

The highest risk is seen in delamination failure inside the laminate between 5th and 

6th plies which is one ply inside from the middle of the specimen. In the second step 

of the analysis, VCCT was used in conjunction with ABAQUS/Standard under 

quasi-static loading. The mesh was updated for various cracks lengths at the critical 

delamination location determined by the Puck criterion. It should be noted that CZM 

had been also used by Wimmer et al. [79] for verification of the method. The results 

of VCCT and CZM were in perfect agreement. The snap-back behavior in the load-

displacement curves of the L-shaped composite laminates were revealed as shown in 

Figure 23c. They concluded that the delamination propagation is unstable in L-

shaped composite laminates that can be seen from the snap-back behavior in the 

load-displacement curve. 

Ross et al. [80] developed an analytical model for calculating interlaminar normal 

stress (ILNS) in curved laminates. Generally, ILNS is calculated by using 3D 

dimensional elements. Hence, Ross et al. [80] studied shell elements in order to 

obtain transverse stresses such as ILNS. They formulated the displacement of a 

curved and thick orthotropic laminate by assuming constant thickness and constant 

shear angle during the shear deformation. ILSS and ILNS were reformulated by 

proposing an appropriate displacement field.  The results of 3D FEA in ANSYS and 

their methodology were in well agreement. They had also conducted an experiment 

of a moderately thick curved unidirectional and cross-ply specimen. In the 

experiments, they used Acoustic Emission (AC) devices for locating the failures. AC 

provided noises before the delamination occurs which pointed matrix cracking. More 

noises were recorded by AC during the abrupt load drop in the load-displacement 

curve. They observed more scatter in the results of ILTS compared to ILSS. 
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(a) 

  

(b) 

 

(c) 

Figure 23 (a) Map of risk factors and (b) failure modes predicted by the Puck 

criterion and (c) load-displacement curves obtained by Wimmer et al. [79]. 
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Vanttinen [81] studied the delamination initiation in L-shaped composite rib flanges. 

The main purpose was to find a failure prediction method for the strength of 

composite rib flanges. The loading case was axial loading and specimens are CFRP 

laminates made of fabric plies. Several laminate thicknesses, inner radiuses, bolt 

diameters and the layup configurations have been studied. Laminate thicknesses 

varied from 5.36 mm to 14.92 mm and inner radiuses changed between 5mm and 10 

mm. Fastener diameters of 6.35mm, 9.52 mm and 12.7 mm were also studied. The 

idea of using different fastener diameters was to investigate the stress concentration 

effects. The layup of the laminate were symmetric and balanced in various 

configurations composed of 45°/0° orientations. Vanttinen [81] proposed an 

experimental setup to determine the interlaminar tensile strength of composite 

laminates and compared to ASTM D6415 tests. It was observed that ASTM D6415 

provided the minimum scatter in data as well as conservative results compared to the 

proposed experimental setup. No FEA was performed by Vanttinen [81]. Instead, an 

iterative analytical method was used. Firstly, the moment distribution along the 

corner was calculated by the equations given in ESDU 84039 [82]. The equations in 

ESDU consider the contributions of the bolt and nut to the load distribution. Next, 

Lekhnitskii’s equations were used to calculate the stresses at sets of angles using the 

moment distribution found in the previous step. Afterwards, the failure load for the 

onset of delamination was calculated using Puck and Tsai-Hill criteria. By using this 

method, the influences of the mentioned design parameters were found. A useful 

table, which summarizes of the effects of design features of L-shaped composite 

flanges, is presented in Table 1. It is seen that the strength of the part increases with 

larger bolts or higher modulus of the bolt material. It was explained that stiffer bolts 

induce higher moments acting on the laminate. Similarly, increasing the distance 

between the bolt and the vertical arm was stated as a reduction factor for the strength. 

The accuracy of the predictions made by Puck and Tsai-Hill criteria were also 

revealed by Vanttinen [81]. It was shown that Puck criterion always overshot the 

delamination failure compared to experimental results. Conversely, Tsai-Hill always 

provided conservative failure estimations such that failure loads in the experiments 

were always higher.  

A semi-analytical model for the simulation of delamination in laminated composite 

structures was proposed by Wimmer and Pettermann [83]. The analyzed L-shaped 
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specimen was a 15 ply CFRP laminate with a thickness of 2.25 mm, inner radius of 

2.55 mm and arm length of 6.4 mm. The part was clamped from one of the arms 

while a horizontal quasi-static displacement was applied to the other arm. The 

Griffith’s crack growth criterion [30] was used to predict the required load for the 

propagation. The rate of change of compliance with respect to the change of crack 

length was calculated using ABAQUS/Implicit. An initial delamination was given at 

the interface which is one ply inside from the mid-layer. Influences of spatial 

parameters defining the location of the tips of delamination crack were investigated. 

Griffiths’ stability condition based on the minimum potential energy [30] was used to 

define the stability of the crack propagation for different locations of crack tips. 

Zones of stable and unstable propagation as a function of the spatial parameters were 

calculated. It was seen that larger delaminations tended to be more stable in L-shaped 

composite laminates. In parallel to the Griffiths’ theory, the stable cases had no snap-

back behavior. On the other hand, snap-back behavior was obtained for the unstable 

cases. 

 

Table 1  Effects of design parameters to strength of L-shaped laminates [81]. 

Design Parameter 
Change in 
parameter 

Effect on 
interlaminar 

shear 
strength 

Effect on 
interlaminar 

tension 
strength 

Nut outer diameter + 0 + L 
Washer outer diameter + 0 0 
Washer thickness + 0 0 
Specimen thickness + + L + N 
Arm length + 0 + N 
Distance from bolt to corner + 0 - N 
Elastic modulus of fastener + 0 + N 
Specimen width + + L + L 
Corner Radius + + + 
"+": Strengthen/increase 
"-": Weaken/decrease 
"0": No effect 
"L": Linear effect 
"N": Nonlinear effect 
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One year later, both initiation and propagation of delamination in L-shaped 

composite laminates were experimentally and numerically investigated by Wimmer 

et al. [84]. The L-shaped composite specimen was a cross-ply CFRP laminate of 

which thickness was 3.75 mm, the length of horizontal arm was 50 mm and the 

length of vertical arm was 29.5 mm. Two sets of specimens were manufactured; 

specimens including an initial delamination of 3mm on the interface and intact 

specimens without delamination. One of the arms was clamped while the other was 

pulled quasi-statically with displacement control. During the experiment, the corner 

section of the L-shaped specimen was observed by Digital Image Correlation System 

(DIC) which is a 3D image correlation photogrammetry ARAMIS system. The 

system was used for acquisition of the deformation that was used to obtain contours 

of principle strains during the experiment. ABAQUS/Standard is used for the 

numerical analysis of delamination. The two step method proposed and used by 

Wimmer et al. [79]. The total length of the failed elements predicted by the Puck 

criterion was taken as the initial delamination length as shown in Figure 24a by the 

solid line. Next, VCCT analysis was performed for various lengths of initial 

delaminations as shown in Figure 24a by dash line. The intersection of the solid and 

dash lines was considered as “the critical delamination length” which is assumed as 

the initial delamination. The initial delamination corresponds to point “1” of the 

load-displacement curve as shown in Figure 24b. It is seen that the load increases to 

800 N in 2.3 mm of displacement when a sudden load drop occurs. After the peak 

load, the finite element model having the calculated initial delamination of 0.55 mm 

was run by VCCT method to simulate the propagation. It was stressed that unstable 

delamination propagation took place between the points “1” and “3” in Figure 24b. 

On the other hand, stable propagation was reported between the points “3” and “4” in 

Figure 24b.  The load-displacement curves obtained from the experiments are shown 

in Figure 24c. In some specimens, second load drop can be observed from Figure 24c 

where a second delamination was initiated and propagated. Hence, no single way of 

delamination was observed. It is seen that deviations in failure loads of the 

experimental specimens were too high. Moreover, the predicted curve is quite 

different than the experimental curves in terms of compliance and failure load. 

Authors reported some slippage of the specimens from the test apparatus during the 

loading that might be the reason for the compliance difference. “Kinking”, which is 
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defined as switching of delamination to adjacent interfaces by passing inside the 

plies (Figure 24d), was also studied by Wimmer et al. [84]. High levels of shear 

stresses were stated as relevant to the kinking phenomenon in the L-shaped 

composite laminates. It was stated that if the top of the delamination front has 

negative shear stresses, delamination kinks with a positive angle towards 900 plies. 

Reversely, the delamination would kink with a negative angle towards 900 plies as 

the crack front is under positive shear. 

Wimmer and Pettermann [85] also studied delamination growth under fatigue 

loading in L-shaped composite laminates. Similar to the previous studies, the load 

was applied in shear mode to one of the arms whereas the other arm was clamped. 

The fatigue analysis was performed on ABAQUS/Standard in conjunction with 

MATLAB for post processing. The amplitude of the cyclic force oscillated between 

1N and 8N. A Paris-Erdogan type fatigue law proposed by Dahlen and Springer [14] 

for composite materials was implemented into the semi-analytical method early 

proposed by Wimmer and Pettermann [83]. Starting from zero to 6 mm of initial 

delamination lengths, the required force and displacement for the propagation were 

found. It was shown that the required force for fatigue growth was reduced for larger 

initial delamination lengths. S-N curves were experimentally acquired. After 5x103 

cycles, considerable growth in the crack tip near the clamped arm took place. For the 

other crack tip close to the loading point, 107 cycles were needed to start 

delamination growth. This means that the delamination tends to grow towards the 

clamped arm under cyclic loading in L-shaped composite laminates. Moreover, it 

was shown that the speed of the fatigue growth in the curved region was much faster 

than the growth in the arms.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 24 (a) Initial delamination length and propagation curves, (b) load-

displacement curves of the numerical simulation, (c) experiments and (d) “Kinking” 

in L-shaped composite laminates [84]. 

 

 

Kinking 
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Avalon and Donaldson [86] investigated the strength of L-shaped composite CFRP 

laminates by analyzing the effects of inner radius, laminate thickness and 

introduction of 5% of vapor-grown carbon nano-tubes (CNT’s) to the epoxy resin 

matrix. The numbers of layers of the specimens were 8 and 16 where the inner 

radiuses were 3.175 mm and 6.35 mm, respectively.  They calculated Curved Beam 

Strength (CBS) numerically and experimentally referring to ASTM D6415 [28]. 

They compared the results of the maximum radial stresses calculated by the 

analytical formulation given in ASTM D6415 [28]. In the numerical analysis, they 

also performed 3D-FEA using ABAQUS/Standard to extract the radial stresses. 

Load-displacement curves were also obtained. It was shown that the results of FEA, 

experiments and analytical calculations yielded approximately the same results in 

terms of maximum stress. The maximum radial stress was always between 30 MPa – 

32 MPa not regarding the thickness and the radius of the specimen. They noted that 

CNT’s were filtered out by the fabrics during the curing cycle and tended to be 

moved to the interfaces. Therefore, inclusion of CNT’s was expected to increase the 

interfacial strength since they would act like a through-the-thickness reinforcement 

on the interface. However, the effect of additional vapor-grown nano-fibers 

demonstrated nearly no effect on the interfacial strength. An important observation 

was that the specimens with high thickness to the inner radius ratios and laminates 

enhanced by carbon-nano-fibers tended to show “slip-stick” failure mechanism 

resembling a stepped but without abrupt load drop in the load-displacement curves. 

Although the failure load did not change significantly, the specimens exhibiting slip-

stick failures provided higher toughness to the specimen. The second important 

observation was that the failures showing slip-stick mechanism had always single 

crack whereas the other specimens showing abrupt failure bearing multiple cracks 

throughout the laminate. 

Hoa et al. [87] experimentally investigated the standard test of ASTM D6415/6415M 

of a curved unidirectional CFRP laminates using Digital Speckle Correlation Method 

(DSCM). The interlaminar deformation and delamination of the curved laminates at 

different curvatures and thicknesses were studied. Three different thicknesses with 

20, 40 and 60 layers with three different inner radius/thickness ratios (Ri/B) of 0.8, 

1.0 and 1.5 were studied.  From the experiments, they concluded that the effect of 
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Ri/B to the laminate compliance was negligible whereas the effect of thickness was 

dramatic. It was seen that CBS was linearly improved by increasing the thickness. 

CBS was also increased with higher R/B values but not as effective as the thickness. 

Oppositely, the maximum radial normal stress was decreased with increasing the 

thickness. This phenomenon was explained by the volumetric effect in L-shaped 

composite laminates. Hoa et al. [87] obtained directional strains prior to the failure 

by DSCM.  They recorded that the strain energy was highly dissipated during the 

fracture process. The authors always observed the first failure at 0°/0° interfaces. 

They noted that the toughness of the interfaces between 0°/90° and -45°/45° plies 

were four to two times more than 0°/0°, respectively. The damage zone at the crack 

was observed in the form of fiber pullout, matrix micro-cracking and fiber-matrix 

interface failure. The major failure modes were declared as delamination, matrix 

cracking along the fiber direction and fiber failure. 

In 2012, Gozluklu and Coker [88-90] numerically investigated the unstable dynamic 

delamination propagation in unidirectional L-shaped composite laminates. An initial 

delamination of 1 mm was located in the middle of the L-shaped laminate with the 

arm length of 10 mm, inner radius of 5 mm and the thickness of 3 mm. The loading 

case was the axial loading which is applied quasi-statically. It was shown that the 

stress distribution under axial loading yielded considerably high mixed-mode profile 

compared to the shear loading case as shown in Figure 25a where the mode-mixity is 

defined by absolute value of the ratio of opening radial stress to shear stress. The 

strong mode-mixity in the axial loading case further motivated the authors for 

performing dynamic analysis which is known as critical in the mixed-mode condition 

[91]. For this purpose, interface elements having Bilinear CZM in ABAQUS/Explicit 

[69] were used to model the dynamic fracture.  As the loading was quasi-static, the 

analyses would take too much time by the explicit solver. Hence, linear-elastic part 

of the response was solved using implicit analysis (Figure 25b). The remaining part, 

including the snap-back behavior and the delamination propagation, was solved 

using the explicit solver (Figure 25b). The solution scheme ameliorated the 

convergence issue due to the snap-back behavior during the load drop as well as the 

dynamics of the propagation stage was revealed by the explicit solver.  
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(a) 

 
(b) 

Figure 25  (a) Contours of mode-mixity defined by absolute value of the ratio 

opening radial stress to the shear stress and (b) two-step numerical scheme composed 

of an implicit analysis followed by an explicit solution [88-90]. 

 

Gozluklu and Coker [88-90] presented crucial information about the dynamics of 

delamination during the load drop. The energy balance was acquired as given in 

Figure 26a where kinetic energy, strain energy, damage dissipation and external 

work are shown. At the tip displacement of U = 0.625 mm, delamination started to 

propagate while kinetic energy developed to 0.20 J where it oscillates around 0.12 J. 

It was an important conclusion that the kinetic energy reached considerable levels 

only triggered by the delamination propagation although the loading was quasi-static. 

Moreover, elasto-dynamic radial stress concentration fields were observed in motion 

as shown in Figure 26b. Such fields were not observed in static analysis by using 

implicit solver which is given in Figure 26c. It was shown that the stress fields in 

front of the delamination were disturbed by these stress concentration fields once 

they reached to the crack tip. It was noted that it is interesting to observe 

compressive stresses along the traction-free interface since no contact was modeled. 

A remarkable observation was made on the crack tip speeds of the delamination in L-

shaped composite laminates. The mode-mixity reached by axial loading created shear 

loading on the right crack tip where mode-II was dominated during the propagation 

towards the clamped end. Oppositely, mode-I dominated crack propagation took 

place on the left crack tip. As a result, the crack tip speeds at the right crack tip 

reached to Rayleigh wave speed of the material whereas the left crack tip moved 
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rather slowly. This result complies with the previous observations in the dynamic 

fracture in the straight plates [91]. Finally, a secondary crack formation near the 

clamped straight arm was reported in thick specimens with small initial 

delaminations. It was shown that the secondary crack was formed and coalesced with 

the initial crack during the fracture. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 26  (a) Energy balance and contours of radial normal stress during 

delamination propagation obtained by FEA using (b) explicit and (c) implicit 

methods [88]. 

 

Formation of a secondary crack near the straight arm was further studied by 

Gozluklu et al. [92] and MSc thesis of Yavas [94]. Successive numerical analyses by 

varying the thickness and the length of the initial delamination were performed. Yet, 

the thickness was changed between 3.0 mm to 6.0 mm whereas the length of 

delamination size varies between zero to 8 mm. It was shown that there were three 

types of fracture process in L-shaped unidirectional composite laminates. A summary 
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map of the fracture process is illustrated in Figure 27. The first of the modes is the 

growth of the initial delamination. The second type is the initiation and propagation 

of a secondary crack initiated near the loaded arm while the initial delamination does 

not grow albeit both cracks eventually coalescence. The third is a combination of the 

first two as the initial crack and the secondary crack simultaneously grow and finally 

coalescence. The formation of the secondary crack also influenced the strength of the 

L-shaped laminates. Curves of failure loads as a function of various initial crack 

lengths are shown in Figure 28a. It can be seen that the L-shaped composite laminate 

tends to form a secondary crack at large thicknesses with smaller cracks. This was 

noted as an important observation for design purposes. It seems the initial 

delamination inside the corner might be irrelevant to the fracture and the strength of 

the structure. Hence, Gozluklu et al. [92] and Yavas et al. [93] started a discussion 

about a possible damage tolerance property of the L-shaped composite laminates. 

The strength of the laminate was further normalized by the cross-section area that 

provided the “maximum applied stress” while the effects of thickness (B) and length 

of delamination (a) were combined as a/B. The maximum applied stress versus a/B is 

shown in Figure 28b. Surprisingly, the curves collapse on a single linear band after 

a/B ≈ 0.4. Prior to that point, the strength does not increase just like the “expected 

line” as shown in the figure when the specimen fails because of the secondary crack 

formation. 
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Figure 27  Map of failure for delamination of L-shaped unidirectional composite 

laminates proposed by Gozluklu et al. [92] and Yavas [94]. 

 

 

(a) 

 

(b) 

Figure 28  (a) Maximum tip load vs. initial crack size and (b) maximum applied 

stress vs. normalized initial crack length  (a/B) for different specimen thicknesses 

from 3-mm to 6-mm [92,94]. 

  a/B    
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Yavas et al. [93] and Yavas [94] further focused on experimental and numerical 

analyses of adhesively bonded L-shaped Polycarbonate beams. The idea behind 

using Polycarbonate laminates was to simplify the problem into a homogenous 

material with a weak interface. Two L-shaped Polycarbonate beams were bonded by 

leaving a pre-crack at the middle of the corner where the bonded interface was 

considered as the weak interface. Bilinear CZM was used in two-dimensional finite 

element analyses performed by ABAQUS/Implicit and ABAQUS/Explicit. One of 

the remarkable contributions was to find a reliable experimental fixture for 

accurately applying the shear load to the L-shaped beams since numerous problems 

had been reported in literature about loading of L-shaped composite laminates. The 

boundary condition was theoretically simulated by clamping at one end whereas the 

other end was being pulled for opening the corner of the L-shaped beam. As 

mentioned earlier, the difference between the stiffness in experiments and finite 

element models did not totally agree at shear loading case. Yavas [94] studied on 

three types of experiment fixtures. In Type-1 (Figure 29a), the displacement 

controlled machine head pulls the arm through a cylindrical device which is in 

contact with the lower end of the horizontal arm while the vertical arm is clamped. 

The second fixture type, Type-2, has a roller bearing that allows the rotation by the 

machine head while both arms are clamped (Figure 29b). At the last fixture of Type-

3, the pivot point is located near the machine head while the whole specimen is able 

to move through slide rail in the x-direction as shown in Figure 29c. The load-

displacement curves obtained using the three fixture types and the finite element 

model were found for Polycarbonate material as shown in Figure 29d. It can be 

observed that Type-1 and Type-2 fixtures provide softer response compared to the 

numerical model. On the other hand, Type-3 fixture perfectly agrees with the results 

of the FEA. Hence, the experimental results referred in our study were found by 

Type-3 fixture.  
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Type-1 

(a) 

 

Type-2 

(b) 

 

Type-3 

(c) 

 

(d) 

Figure 29  Experiment fixtures of (a) Type-I, (b) Type-II, (c) Type-III and (d) load-

displacement curves including finite element analysis [94]. 

 

Load-displacement curves of Polycarbonate and L-shaped CFRP laminates with 

different initial crack lengths were experimentally studied by Yavas [94]. 

Importantly, the load-displacement curves exhibited the same behavior no matter it 

was a Polycarbonate or CFRP. An example is shown in Figure 30a where stable and 

unstable curves obtained for various initial crack lengths in CFRP specimens are 

given. Abrupt load drops are explicitly seen for the unstable cases whereas stable 

propagations show further load capacities after the propagation. The curves for 

Polycarbonate are very similar to the results of CFRP. It can be inferred that the 

stability of the L-shaped composite laminates with respect to initial crack size 
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exhibits the same behavior in terms of load-displacement curves. Crack tip speeds 

were calculated by locating the crack tips using ultra-high speed camera capable of 1 

M frm/s. The crack tip speed data for CFRP specimens is shown in Figure 30b. It is 

seen the crack tip speed exceeds shear wave speed of the material revealing 

intersonic crack propagation. For the Polycarbonate specimens, the delamination 

process was observed using Photoelasticity method provided contours of maximum 

shear strain using ultra-high speed camera. A shear Mach wave on the interface was 

observed during the delamination propagation which is shown in Figure 30c. This 

supports the fact that the crack tip speed is also intersonic for Polycarbonate L-

shaped specimens.  

Finally, a geometrically nonlinear finite element scheme was studied by Fraternali et 

al. [95] for buckling and post-buckling analyses of composite curved beams. Both in-

plane and lateral buckling modes of the delaminated composite curved beams were 

investigated. The finite element scheme covered the bi-modularity in the composite 

materials. It was shown that the ratio of tension to compression modulus 

considerably affected the buckling response of curved composite laminates such that 

higher tension modulus provided more stability against buckling. 
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(a) 

 

(b) 

 
(c) 

Figure 30  (a) Experimental load-displacement curves for CFRP L-shaped laminates 

with various initial crack lengths, (b) crack tip speed calculated using ultra-high 

speed camera for CFRP L-shaped laminates and (c) observation of shear mach wave 

by Photoelasticity in Polycarbonate laminate [94].  
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CHAPTER 2 
 
 

THEORETICAL BACKGROUND 
 
 
 
2.1. Analytical Solution of Stresses in L-shaped Orthotropic Plates 

There are numerous studies in literature  for obtaining an analytical solution of stress 

states in thick-curved composite laminates [41,48-53,59,67,71,78]. The analytical 

approaches either assume that the structure is an orthotropic plate or using CLPT for 

directly having a laminated composite material.  In this chapter, the study of 

Lekhnitskii [41] is taken as the basis. Lekhnitskii only provided the solution for 

orthotropic plate assumption for plane stress case. In this study, the solutions for 

plane strain cases are also provided referring to Appendix A. 

2.1.1. Pure Bending 

The equations of equilibrium is satisfied by Airy stress function, ψ(r,θ), such that;  
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An orthotropic curved beam under pure bending is shown in Figure 31. The 

orthotropy pole is the origin and the polar axis lies along the symmetry axis of the 

beam. The inner and outer diameters are denoted as Ri and Ro, respectively. The 

moment, M, acts on the beam ends is determined by the angular location, θ; i.e.  θ < 

2π. The width (through the page dimension) and the thickness of the beam are 

donated by “w” and “B”, respectively, where B = Ro - Ri. 
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Figure 31  Pure bending of an orthotropic curved beam 

 

No shear stress exists for a pure bending of orthotropic curved beams. Hence, 

generalized 2D Hooke’s law for orthotropic materials can be written as below; 

z1312r11r aaa σ+σ+σ=ε θ   

z2322r12 aaa σ+σ+σ=ε θθ  (5) 

θθ τ=γ r66r a   

The stress does not depend on the angular location, θ, due to the orthotropy. As σz is 

very small compared to σr and σθ, terms of σz are neglected in eqn (5). The 

compatibility equation can be written as follows; 
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(6) 

where the dimensionless factor of “kL” is given by Lekhnitskii;  

kL = 2211 aa   (generalized case)  

By using the plane stress constants [5], “kL” takes the below form for the plane 

stress; 

kL = rEEθ  (plane stress) 
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In Appendix A, the elastic constants of orthotropic materials for plane strain case are 

derived as follows; 

kL = )E)1(()E)1(( rzzzrrz θθθ νν−νν−   (plane strain) 

For the solution of the ordinary differential equation in eqn.(6), Lekhnitskii [41] 

provided the Airy stress function for the pure bending, ψM(r); 

LL k1k12
M DrCrBrA)r( −+ +++=ψ  (7) 

where A, B, C, and D are constants and subscript “M” denotes for pure bending of a 

curved beam (Figure 31). From eqn.(4), radial stress, σr,M, and hoop stress, σθ,M, can 

be found as follows (τθ,M = 0) 
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The constants of A, B, C, and D can be found by the boundary conditions which are; 
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By using eqn.(8), the stress functions in the orthotropic curved beam under pure 

bending are found; 
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It can be seen that the stresses are independent of angular location, θ. The 

dimensionless factor, kL, is the only material property affecting the stress states in the 

beam. Noting that, the eqn.(10) is still applicable to cylindrically anisotropic beams. 

Eqn.(10) is singular for isotropic materials with kL = 1. The limit of the eqn.(10) for 

kL → 1 is provided by Lekhnitskii [41] as follows; 
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The stresses across the thickness can be calculated by using eqn.(10) for the L-

shaped laminate studied by Gozluklu and Coker [88] where Er = 8.5 GPa, Eθ = 56.7 

GPa, Ri = 10.0 mm and Ro = 13.42 mm. The normalized tangential and radial stress 

profiles across the normalized thickness direction are shown in Figure 32a where the 

normalization is performed with respect to their corresponding maximums. The 

radial stress reaches the maximum at ~43% of the thickness; i.e. r ≈ 11.47 mm. An 

interesting figure is given in Figure 32b which shows the normalized radial stress 

profiles along the normalized thickness for r/Ri → 0, r/Ri = 1.0 and r/Ri  → ∞ with Ri 

= 5.0 mm. As the thickness or the inner curvature of the specimen increases, the 

location of the maximum radial stress moves from 0.5B to inner curvature line. This 

can be an important observation for designers that the laminate becomes sensitive 
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against delamination near the inner radius once the thickness and/or the inner radius 

is increased. Figure 32c shows maximum radial and tangential stress plots as a 

function of B/Ri where the stresses exponentially decay as the thickness increases.  

 

 
(a) 

 
(b) 

 
(c) 

Figure 32  Normalized stresses as a function of thickness for (a) radial and tangential 

stress for Ri = 5.0 mm and Ro = 8.42 mm, (b) normalized radial stress profile across 

the thickness in various B/Ri and (c) maximum radial and tangential stress plots as a 

function of B/Ri. 

 

Positive moment deforms the curved beam in a way that the beam “opens” as it 

becomes straighter (Figure 33a). This is the positive sign convention of the moment 

loading since radial normal stresses are tensile (σr > 0) under opening moment 
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loading (M > 0). On the other hand, if the moment acting on the beam is the one 

shown in Figure 33b, the beam is being “closed”. The inner radius of an opened 

beam is greater than the inner radius of a closed beam; i.e. R´i,+ > Ri > R´i,-.  Cracks 

are not active under radial compressive stresses (σr < 0) in case of a closed beam if 

there is no shear stress. It means that closing radial normal stresses (σr < 0) are 

irrelevant to the delamination problem in the L-shaped composite laminates under 

pure moment loading. In both cases, compressive longitudinal stresses (σθ < 0) would 

be critical for the buckling of the delaminated plies. 
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X

Y

Ri

M M

R´i,+

 

M > 0 

σr  > 0 

(a) 

“Closing” 

X

Y
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M < 0 

σr  < 0 

(b) 

Figure 33  Representative deformations for (a) “opening” and (b) “closing” of curved 

beams. 

 

 

2.1.2. Translational End Force 

The loads on L-shaped composite laminates can be also translational forces. An 

orthotropic curved beam under translational end force, P, with an oblique angle of ω, 

is shown in Figure 34.  
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Figure 34  Orthotropic curved beam under translational end force, P. 

 

The form of the solution of eqn.(6), ψP(r,θ), is given by Lekhnitskii [41] as follows; 

( ) ( ) θ′+′+′+′+θ+++=θψ ζ−ζ+ζ−ζ+ sin)rln(rDrCrBrAcos)rln(DrCrBrAr),r( 1111
P  (12) 

where A, B,…D are constants, the subscript “P” denotes for pure translational tip 

loading of a clamped curved beam (Figure 34) and the dimensionless parameter “ζ” 

is defined as; 
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For plane stress; 
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Using the elastic constants derived in Appendix-A, “ζ” for the plane strain case is 

given below; 
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The constants of A, B,…D are found by applying the boundary conditions of σr = 0 

and τrθ = 0 and assessing the stresses at the free end reducing to, P; 
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2.2.  Fracture Mechanics 

In this chapter, main physical and mathematical definitions of Fracture Mechanics 

are presented. Related studies from literature are referred chronologically, especially 

in the dynamic fracture mechanics section, so as to establish a basis for our methods 

and evaluation of our results.  

The chapter starts with Linear Elastic Fracture Mechanics (LEFM). Specific subjects 

for delamination (cracks) in laminated composites are further presented in LEFM 

section. Next, Elastic-Plastic Fracture Mechanics (EPFM) is briefly presented as 

EPFM is generally applied for our case. Following the discussions about EPFM, 

Dynamic Fracture Mechanics section is presented. Elastic stress waves, dynamics of 

sub-Rayleigh and intersonic crack propagations are briefly explained. 

In the last chapter, Cohesive Zone Method (CZM) is presented. The theory of CZM, 

types of CZMs, and their applications are briefly mentioned. Xu-Needleman (XN) 

and bilinear (BL) CZMs are derived. Next, effect of rate-dependency is discussed 

where a rate-dependent (RD) CZM is also proposed. Finally, the friction 

phenomenon is briefly presented.  
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It should be noted that the influence of mode-III to the delamination is still polemical 

in literature [96]. In our study, in-plane sectional loads are acting on balanced and 

symmetric layups. As a result, there is no discussion about mode-III loading in our 

study.  

2.2.1. Linear Elastic Fracture Mechanics (LEFM) 

Brittle materials exhibit low fracture toughness and characterized by linear 

relationship between Fracture Toughness and failure stress as shown in Figure 35. 

Such problems are generally analyzed by Linear Elastic Fracture Mechanics 

(LEFM). Moderate-to-high toughness materials exhibit nonlinear behavior and they 

are treated by nonlinear fracture mechanics which will be discussed in the following 

chapters. For high toughness materials, simple limit load analysis is adequate. 
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Figure 35  Influence of fracture toughness to structural analysis method 

 

In 1920’s, Griffith [30] studied brittle fracture observed in glass. In the experiments, 

uniform tensile stress of 100 MPa yielded failure, whereas, theoretically, tensile 

stress of 10,000MPa was expected to break the glass. It was concluded that the 

weakness was due to flaws inside the material, such as cracks (Figure 36a). Once a 

crack is analyzed like an elliptical hole with a diminishing radius of curvature, as 

shown in Figure 36a by dash line, local stress in front of the crack tip goes to infinity 

using equations of elasticity [97]. Hence, the theory of elasticity does not work in the 
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cracked bodies. This fact points to Fracture Mechanics as a new tool in solid 

mechanics. 

 

 

(a) 

 

 

 

(b) 

Figure 36  (a) A cracked plate under force, F or displacement, u, and (b) broken 

atomic bonds during crack formation yielding two new crack surfaces. 

 

Griffith proposed required supply energy for propagating a crack by expanding its 

surfaces which is characterized by surface energy density, γs [30]. Creation of new 

surfaces was analogized to breaking the atomic bonds as illustrated in Figure 36b. 

Griffith determined stress distribution in a cracked body using potential energy 

change before and after the crack formation using Inglis’s equations [97]. The 

multiplication of failure stress, σc, and square root of half the crack length, a, was 

observed to be a constant for the brittle fracture of linear elastic glass cracked plates 

[30]; 

 (17) 

where E is the elastic modulus of the glass. During 1940’s, it was seen that peak 

stresses in front of a crack tip in ductile materials, such as metals, cause plastic 
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deformation. During loading and unloading of a cracked body, crack tip dissipates 

energy as the form of heat due to plastic deformation. Orawan [98] proposed 

additional phenomenological surface energy density, γp, for eqn.(17) considering the 

plastic energy dissipation [98]; 

.const
)(E2

a ps
c =

π
γ+γ

=σ  (18) 

In 1956, Irwin [99] recognized that the corresponding plastic zone in front of a crack 

tip is small compared to the crack and specimen size. Released fracture energy 

during the propagation of a crack is deduced from total potential energy available for 

supplying the crack propagation. This available energy is defined as the difference 

between external work, Πe, and internal energy, Π. Rate of change of the available 

fracture energy with respect to crack extension is called (Strain) Energy Release 

Rate, G which is postulated by Irwin[30] as;  
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where B is the thickness. Crack growth takes place when the energy release rate 

exceeds a critical value called Fracture Toughness, Gc which is a material property. 
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u  

Figure 37  Definition of compliance, C, in a load-displacement curve at various crack 

lengths, a’s. 
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The external energy, Πe, can be foumd for a prescribed force, F, or a prescribed 

displacement, u (Figure 36a). In general, load-displacement curves refer to “external” 

loads and “external” displacements acting on a point. The external work done can be 

written as Πe = F·u for one of a prescribed input. The internal energy can be Π = 

1/2·F·u = 1/2·F2·C where, C is compliance of a linear elastic cracked body which is a 

function of crack length, material property and geometry. As a result, eqn. (19) is 

expanded for a fixed displacement case as follows;  
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Noting that eqn.(20) comes out to be the same for a prescribed force.  
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Figure 38  Example of R-curves for (a) various uniform stresses and (b) typical load 

and displacement control.  

 

Uncontrolled crack propagation due to an infinitesimal quasi-static increase of 

load/displacement is called unstable crack propagation. The stability of a crack is 

assessed by Resistance Curves or R-curves. R-curves represent the resistance of a 

cracked body against crack propagation under uniform applied load that can be either 

force or displacement. A crack is stable as long as its energy release rate curve is able 

to intersect with the R-curve of the material.  An example is shown in Figure 38a 

where the thin lines represent energy release rate curves for applied stresses (σ1< σ2< 
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σ3) and the thick line is the resistance curve. The energy release rate curves for the 

applied stresses of σ1 and σ2 yield stable crack propagation due to possible 

intersection points. On the other hand, energy release rate curve for σ3 does just 

intersect with the R-curve. Namely, any stress level above σ3 triggers unstable crack 

propagation. Hence, the maximum attained intersection point corresponds to 

instability point where the fracture toughness, Gc, is reached. Another example is 

given in Figure 38b where energy release rate curves for displacement or force loads 

are shown. Although the values of the energy release rates are the same for 

displacement and force controlled loading, their behaviors are different. It is seen 

that the energy release rate curves for force controlled loading has an instability point 

which can be actually a stable point for displacement control load. It is known that 

displacement control yields more stable crack growth; therefore, displacement 

control loading is generally preferred in experimental fracture mechanics. For the 

same reason, displacement loading is used in this study. In the light of these 

graphical depictions in the figures, the crack growth is stated to be stable under 

below circumstances [31]; 

da
dR

da
dG          and       RG ≤=  (21) 

In parallel to the energy approach, solution for spatial stress distribution in front of a 

sharp crack tip was established by Westergaard [99] and Williams [101]. The main 

assumption is having a sharp crack tip which is characterized by diminishing radius 

of curvature at the crack tips. This geometrical feature yields stresses theoretically in 

infinite magnitudes at the crack tips. An illustration of the singular stress profile is 

shown in Figure 39a where the stresses goes to infinity by the singularity of 1/√r. 

Remarkably, all cracked linear elastic bodies have the same stress singularity of 

1/√r. The difference comes out to be “how severe” the singularity which is depicted 

a constant, so called Stress Intensity Factor (S.I.F.), Kn, which is defined for mode-I, 

mode-II and mode-III (n = I, II, III). The equations of stress distribution in terms of 

S.I.F. are given for as follows [31]; 
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where fij
(n) and gij

(n) are trigonometric functions in terms of angular location, θ,  and 

Dm are constants. In eqn.(22), the last term on the right-hand-side does not have any 

singularity. It can be shown that the last term on the right hand side term is 

overwhelmed by the singularity of the first term. The zone where the singularity 

dominates the stress distribution is called singularity zone or K-dominated zone 

(Figure 39a). The last term on the right-hand-side of eqn.(22) is actually neglected in 

the LEFM. Inside the singularity zone, the influences of bulk material and geometry 

are negligible. The critical value of S.I.F. is called Critical S.I.F. which is a material 

property like the fracture toughness. S.I.F. as a function of the specimen thickness, B, 

is shown in Figure 39b. It is seen that the critical S.I.F. decreases at higher 

thicknesses. The minimum value is reached at the plane strain condition which is 

denoted as KIc. Consequently, plane strain fracture toughness is frequently used for 

design purposes. 
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Figure 39  (a) Stress distribution in front of a crack tip at θ = 0 with 1/√r singularity 

zone and (b) thickness effect to critical stress intensity factor, KIc, within plane stress 

and plane strain. 

 

Energy release rate and stress intensity factors can be related for a self-similar crack 

growth where the shape and the plane of the crack do not change [31];  
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where E′ = E for plane stress, E′ = E / (1 – ν2) for plane strain, μ is shear modulus and 

ν is Poisson’s ratio. The energy release rate, G, in eqn.(23) is the total energy release 

rate; i.e. G = GI + GII + GIII. The energy release rates for pure modes can be extracted 

from the eqn.(23) as; GI = KI
2 / E΄, GII = KII

2 / E΄, GIII = KIII
2 / 2μ. 
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Figure 40  Shape of plastic zones for plane strain and plane stress cases in front of a 

crack, elastic zone and singularity zone for small-scale-yielding. 

 

Although both of the energy release rates (G) and stress intensity factors (K) are used 

in LEFM, differences should be contrasted. The former treats the energy dissipated 

per crack growth that is indeed a more global parameter considering the whole 

cracked body. On the other hand, stress intensity factor locally defines the stress 

distribution in the vicinity of the crack. Moreover, stress intensity factor defines 

more delicate data about the stress field. For our study, S.I.F. is not used since it 

requires sharp crack tip assumption that is not a case for delamination cracks [15].  

In reality, magnitudes of stresses near the crack tip do not develop to infinity. The 

radius of curvature at the tips is actually finite due to inelastic phenomena; such as 
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plasticity in metals, crazing in polymers or fiber bridging in composite materials. 

Similar to the region of singularity, there is a zone of plasticity in front of a crack tip 

as shown in Figure 40. The size of the plastic zone in plane strain is smaller than 

plane stress. Figure 40 also representatively shows the order of relative sizes for 

singularity zone, elastic zone and plastic zone in order to apply LEFM. It means that 

the plastic zone should be considerably smaller than the singularity zone that is to be 

dominated by an elastic region. Having a small region of plastic zone is called small-

scale yielding in Fracture Mechanics. This is a concrete requirement for LEFM 

analysis. Otherwise, Elastic-Plastic Fracture Mechanics is used such as in our case of 

delamination observed in L-shaped composite laminates. 

2.2.1.1. LEFM for bi-material interface cracks 

Delamination is a crack located at the interfaces of composite laminates, which are 

between the plies. Due to layup, adjacent plies may have different stiffness such as in 

the case of a cross-ply laminate. The cracks located between two dissimilar 

materials, as shown in Figure 41, are called bi-material interface cracks. 

 

  

 

Figure 41  Bi-material interface crack 

 

In bi-material interfacial cracks, surface tractions, T, are considered instead of 

stresses since an interface is a surface. The tractions on the interface are derived by 

Erdogan [102] in the complex form as follows; 



 

75 
 

( )
r2

KriT
i

0xyy π
=τ+σ=

γ

=θ
 (24) 

where 









µκ+µ
µκ+µ

π
=γ

ABB

BAAln
2
1

 (25) 

and  κ = 3 - 4νj (j = A,B).  The S.I.F. in eqn.(24) is a complex S.I.F. defined as 

follows [102]; 

( ) ( )πγπ+= coshiKKK 21  (26) 

where different nomenclature is used for the dependent terms of K1 and K2, 

respectively used for S.I.F.’s for mode-I and mode-II so as to be differentiate them 

from KI and KII which are independent terms for conventional cracks as defined in 

the previous paragraphs. A crucial observation in eqns.(24) and (26) is that the crack 

propagation in bi-material interfaces never occurs in pure mode since both KI and KII 

are induced. Strain energy release for an interface crack between two isotropic layers 

is derived by Raju et al. [103] as follows; 

( )γ
→∆

∆+= i
210aI )a(DDRelimG  (27) 

( )γ
→∆

∆−= i
210aII )a(DDRelimG  (28) 

( )10aIII D2RelimGGG
→∆

=+=  (29) 

where Re(.) is the real part of the complex function inside the brackets, D1 and D2 are 

constants. From eqns.(27), (28) and (29), it can be inferred that GI and GII have no 

well-defined limits yet dependent on Δa whereas the total energy release rate has a 

well-defined limit but independent of Δa. 

Phase angle, Ψ, is generally used to assess the “mode-mixity” of the crack 

propagation defined as follows [31]; 









=Ψ −

1

21

K
Ktan  (30) 
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It can be seen that the phase angle, Ψ, converges to 0° and 90° for a pure mode-I and 

mode-II, respectively. In our simulations, energy release rate in mode-I and mode-II 

are used instead of stress intensity factors in eqn.(30). 

 

 

Figure 42 FEA scheme of VCCT for a 2D mesh composed of 4-noded quadrilateral 

elements. 

 

In FEA of delamination in composite laminates, the most frequently used method is 

the Virtual Crack Closure Technique (VCCT) [47]. This technique is based on crack 

closure integral proposed by Irwin [104] which assumes that the fracture energy 

released in crack propagation is equal to the work required to close the crack to its 

original length by a small amount. In 1977, Rybicki and Kanninen [104] proposed 

using crack closure technique in the FEA as VCCT. Figure 42 presents an example 

for FEA scheme of VCCT for 4-noded quadrilateral elements in a 2D case. Nodal 

force vector, F� , at the tip of the crack, node-i, and the relative displacement vector, u�, 

between the nodes k and j, are extracted using FEA. Hence, the energy release rate 

for Δa can be found [104]; 

ûF̂
a2

1Ĝ ⋅
∆

=  (31) 

where G�  is a vector of which components correspond to GI and GII. 

VCCT can be used for calculating energy release rates for individual pure modes as 

well as the total energy release rate. However, an easier method can be used for only 
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calculating the total energy release rate, G, based on the global energy history of the 

component [15]; 

a
G KE

∆
∆Π+∆Π

−=  (32) 

where ΔΠ and ΔΠKE are, respectively, the change of strain energy and kinetic energy 

per crack growth, Δa. Alternatively, eqn.(20) can be used in conjunction with load-

displacement curves as illustrated in Figure 37.  

Several examples of energy release rates as a function of delamination lengths in 

laminates composite structures were provided by Martin and Jackson [58] as shown 

in Figure 43.  In an edge delamination, energy release rate abruptly converges to 

fracture toughness (Gc) as shown in Figure 43a. For the case of a drop-off, energy 

release rate reduces after reaching fracture toughness as illustrated in Figure 43b. 

Two behaviors of energy release rate versus delamination length were mentioned by 

Martin and Jackson [58] as shown in Figure 43c and Figure 43d. It is seen that the 

energy release rate continuously increases for the curved laminated composites. 

The fracture toughness varies with the interface located for each pair of plies with 

different orientations. This makes the problem not limited to the material also 

dependent to the layup of the laminate. For instance, Allix et al. [106] concluded that 

the interfaces between 0°/0° plies had the minimum fracture toughness. An example 

of the fracture toughness of M18/M55J material for specific experiments at different 

orientation pairs are given in Figure 44. It is seen that the minimum toughness was 

always reached for the interface between 0°/0° plies. 
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Figure 43  Energy release rate as a function of delamination length for (a) edge 

delamination, (b) drop-off, (c) first example and (d) second examples of curved 

laminates. 

 

 

Figure 44  Fracture toughness for interface experiments for M18/M55J – (CLS: 

Cracked Lap-Shear test) [107] 
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2.2.2. Elastic-Plastic Fracture Mechanics 

In 1961, Wells [108] observed that sharp crack tip becomes blunt prior to 

propagation through the plastic zone in ductile materials (Figure 45). The relative 

distance between the blunted crack surfaces is called Crack Tip Opening 

Displacement (CTOD). Wells [108] proposed CTOD as a measure of fracture 

toughness in ductile materials. CTOD can be related to energy release rate (G) as 

follows [31]; 

y

2G4CTOD
σπ

=  (33) 

where σy is the yield strength. The major advantage of CTOD is that the crack tip 

plasticity is incorporated. This makes CTOD a unique candidate for problems with 

significant crack tip plasticity.  

 

Plastic zone

C
TO

D

Blunted crack tip

Sharp crack

 
Figure 45  Blunted crack during crack propagation in a ductile material and 

definition of CTOD. 

 

In 1968, Rice [61] proposed a path independent contour integral around a crack tip. It 

was shown that the value of the path-independent contour integral, so called J-

integral, is equal to the energy release rate for a linear elastic cracked body; i.e. J = 

G. As soon as there is no unloading or a crack propagation that has no plastic wake 

left behind, in other words, if a material is linear elastic and monotonically loaded, 

the equality of J = G works.  
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Figure 46  Path-independent J-integral with a counterclockwise path around a crack 

tip. 

 

The J-integral with a counterclockwise path around a crack tip is illustrated in Figure 

46. The J-integral is defined as below [61]; 

∫
Γ









∂
∂

−χ= ds
x
uTdyJ i

i  (34) 

where χ is the strain energy density, Ti are components of the traction vector normal 

to the contour of Γ ,ui are the displacement vector components, and ds is an 

increment of the contour of Γ (Figure 46). Strain energy density, χ, is defined as; 

∫
ε

εσ=χ
ij

0
ijijd  (35) 

J-integral is a versatile method which is also used in Cohesive Zone Method (CZM). 

2.2.3. Dynamic Fracture Mechanics 

Dynamic Fracture Mechanics is relatively a new field in Fracture Mechanics which 

deals with dynamic crack propagation under the influences of inertia, stress waves 

and kinetic energy. In literature, dynamic crack propagation is triggered by impact 

loading, explosive loading or loading at high-displacement rates [31,91,109,110]. 

Dynamic crack propagation under quasi-static loading is observed in earthquakes 

[111] and it is generally studied by geophysics.  
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2.2.3.1. Wave Propagation in Elastic Solids 

Before the discussion of dynamic fracture mechanics, propagation of stress waves in 

an elastic body is presented. There are three types of stress waves in elastic medium; 

dilatational wave (Cd in Figure 54a), shear wave (Cs in Figure 54b), and Rayleigh 

wave (CR in Figure 54c). Dilatational wave is transfer of pressure waves due to 

normal stresses whereas shear wave is made of shear stress pulses.  Dilatational wave 

and shear wave travel through the bulk. On the other hand, Rayleigh wave moves on 

surfaces by means of rotational movement of particles as show in Figure 54c. If an 

impact takes place at a surface as shown in Figure 54d, the impact emanates 

dilatational waves and shear waves propagating through the bulk whereas Rayleigh 

wave moves over the surface in all directions. For a crack like surface in a medium 

under instantaneous normal stress loading, dilatational and shear waves travel in the 

formations of pulses as circular and straight lines (Figure 54e). Figure 54f illustrates 

a similar case but for an instantaneous shear stress loading where similar behavior 

can be observed. One of the observations from Figure 54d-f is that the dilatational 

waves propagate as horizontal and vertical straight and circular lines whereas shear 

waves show further formations of oblique waves.  
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(a) 

 

(b) 

 

(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 47  (a) Dilatational wave, (b) shear wave, (c) Rayleigh wave propagation in 

elastic medium, and (d) Rayleigh, dilatational, shear wave propagation due to surface 

impact, (e) shear and dilatational wave due to instantaneous loading of  normal stress 

and (f) shear and dilatational wave due to instantaneous loading of shear stress. 

Crack tip 
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The speeds of the stress waves are material properties and their magtidues are Cd > 

Cs > CR. Crack tips travel below the Rayleigh wave speed is called sub-Rayleigh 

crack growth, moving above shear wave speed but below the dilatational speed is 

called intersonic crack growth. There is no definition of the crack tip speeds between 

shear and Rayleigh wave speeds since theoretically it is not possible to propagate 

between those speed limits [109]. Actually, this unattainable interval of speed zone is 

generally called forbidden zone.  

 

 

 

 

ZX-Plane 

 

 

ZY-Plane 

Figure 48  Coordinate system of a unidirectional 0° composite ply with cross-section 

cuts on ZX and ZY-planes. 

 

A unidirectional fiber reinforced composite ply is shown in Figure 48 with the cut 

views showing the ply directions on ZX and ZY planes. Single ply is transversely 

isotropic of which elastic constitutive relation is characterized by five independent 

moduli written as follows [5]; 
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The engineering moduli, E11, E22, μ23, μ12 and ν12 are related as follows; 
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Following the engineering moduli, dilatational wave speed in the fiber direction, Cd
∥, 

dilatational wave speed normal to the fiber direction, Cd
⊥, and the shear wave speeds 

in 12/13-planes Cs follows the below relations; 

ρ
= 11||

d
SC   , 

ρ
=⊥ 22

d
SC , 

ρ
= 66

s
SC   (40) 

where ρ is the density. For an isotropic material, eqn.(40) can be written in terms of 

Lame’s constants, λ and μ; 

ρ
µ+λ

=
2Cd   , 

ρ
µ

=sC  (41) 

The Rayleigh wave speed is the smallest root of the below equation [110]; 
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For an isotropic material, eqn.(42) converges to the below form; 

ν+
ν+

≅
1

14.1862.0CC sR  (43) 

Dilatational, shear and Rayleigh wave speeds of various materials are summarized in 

Table 2. It is seen that the highest wave speeds belong to composite materials. 

 

Table 2 Dilatational, shear and Rayleigh wave speeds calculated for various 

materials 

 

AISI 4340 

Steel 
Al 6061 PMMA CFRP* 

Cd (m/s) 5980 6610 2700 7380 

Cs (m/s) 3195 3330 1300 1560 

CR (m/s) 2960 3105 1210 1548 

* In the longitudinal direction for Graphite/Epoxy material taken from Coker et al. [112] 
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A shear Mach wave can be emanated from the crack tip as soons as the crack tip 

exceeds the shear wave speed of the material (Figure 49). Assume that, the crack tip 

moves from point-A to point-B in duration of time, Δt, at an intersonic speed, V. The 

distance between the two points is equal to V·Δt. As the information of shear stress 

does not catch up the crack tip, a stress front of Shear Mach wave is emanated in the 

angle of θs. Geometrically, it can be written as sin(θs) = Cs·Δt/V·Δt. Noting that, 

another Mach wave is emanated if the crack tip exceeds the dilatational wave speed. 

 

 
Figure 49  A shear Mach wave and the angle of wave front for an intersonic crack 

propagation. 

 

2.2.3.2. Dynamic Crack Propagation 

In theory, the crack tip under mode-I loading must move below sub-Rayleigh speeds; 

i.e. V ≤ CR [113]. According to Yoffe [114], crack growth tends to occur in the 

direction of maximum asymptotic hoop stress. This results in crack branching 

(Figure 50a) after an impact loading to a homogeneous isotropic cracked body. 

Experimental evidences show that the limiting crack tip speed in homogeneous 

isotropic elastic materials in mode-I fracture moves between 30% - 60% of Rayleigh 

wave speed without branching [115]. Afterwards, crack starts to branch around 70% 

of Rayleigh wave speed no matter how much energy is used in the impact. In 1994, 

Washabaugh and Knauss [116] has conducted mode-I impact experiments in PMMA 

plates with a weak plane as shown in Figure 50b. The idea is to suppress crack 

branching by forcing the crack to travel along the weak interface. Washabaugh and 
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Knauss [116] showed that the crack tip speed reaches to Rayleigh wave speed for the 

mode-I loading shown in Figure 50b. Hence, the theoretical value can be attained 

once the crack branching is suppressed by putting a weak plane. 

 

 
 (a) 

 
(b) 

Figure 50  Directions of crack propagation for (a) crack branching in homogeneous 

isotropic elastic materials and (b) along a weak interface. 

 

In mode-II fracture, cracks move in sub-Rayleigh regime and above Cs at intersonic 

speeds if adequate fracture energy is sustained. In 1987, Kalthoff and Winkler [119] 

showed that the angle of branching approaches to zero by increasing the loading rates 

in homogeneous isotropic materials. In 1999, Rosakis et al. [111] conducted mode-II 

dynamic fracture experiments on polymers with a weak interface under asymmetric 

impact loading (Figure 51 - left). High speed camera was used to record shear stress 

contours with photo-elasticity method. It was shown that the intersonic crack growth 

occurs and shear Mach waves are captured as shown in Figure 51. Later, Hao et al. 

[120] successfully simulated the same experiment using Cohesive Zone Method.  
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Figure 51  Intersonic mode-II crack growth in polymers captured by Rosakis et al. 

[111] 

 

In 2001, Coker and Rosakis [118] conducted experiments of symmetrical and 

asymmetric impact loading at unidirectional composite plates with a weak interface 

by adhesively bonding the plates. In the experiments, the impact loading was applied 

near the interface from the crack-free side. Symmetric loading yielded mode-I 

fracture whereas asymmetric loading caused mode-II fracture. Hence, both mode-I 

and mode-II dominated fracture were studied in the same setup. Figure 52a presents 

the crack tip speeds as a function of crack extension for mode-I and mode-II 

calculated by Coker and Rosakis [118]. It is seen that crack tip speeds in mode-I 

condition can never exceed the limit of Rayleigh wave speed no matter how much 

energy is applied. On the other hand, crack tip speeds in mode-II condition accelerate 

from shear wave speed up to a maximum level of critical speed, Vc, below the 

dilatational wave speed [118]. They noted that the crack propagates sustainably at the 

critical speed, Vc, in such a way that the crack tip speed tends to travel at discrete 

speeds bands [118]. Huang et al. [121] analytically derived the critical speed of Vc 

for plane stress as follows; 

 (44) 

where Sij are the stiffness of the orthotropic plate given by eqn.(37), eqn.(38) and 

eqn.(39). Eqn.(44) is reduced to Vc=√2Cs for isotropic materials. Dwivedi and 

Espinosa [122] successfully modeled the experiment by Coker and Rosakis [118] 

using CZM in conjunction with FEA.  
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(a) 

 

(b) 

Figure 52  (a) Crack tip speed as a function of crack extension for mode-I and mode-

II fracture and (b) two shear Mach waves observed during intersonic fracture of 

unidirectional composite laminates by Coker and Rosakis [118]. 

 

In 2003, Coker et al. [112] studied dynamic fracture at a weak interface between 

polymer-composite plates under asymmetrical impact loading. In this pair, the 

Rayleigh wave speed of the composite is greater than the shear wave speed of the 

polymer. It was firstly shown that the crack can propagate at such high speeds that 

the crack tip may even exceed the dilatational wave speed of the polymer. Hence, the 

speed of the crack propagation was not limited by the more compliant material. In 

addition to that, mother-daughter crack mechanism [123], in which a small 

“daughter” crack is followed by a larger “mother” crack, was observed in the 

experiments. Initially, single crack starts to propagate as shown in Figure 53a. As the 
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crack tip speed approaches to Rayleigh wave speed of the composite, a smaller 

“daughter” crack emerges in front of the “mother” crack as shown in Figure 53b. At 

this point, the crack tip speed approaches to the forbidden zone (CR < V < Cs). Next, 

the “mother” and “daughter” cracks instantly coalesce, as shown in Figure 53c. As a 

result, the crack “jumps over” the forbidden zone due to the action of coalescence. 

Afterwards, the resulting crack propagates at intersonic speeds. During the 

coalescence, shear Mach waves are formed due to excessing the shear wave speed of 

the polymer (Figure 53c-e).  

 

 

 
(a) 

 
(b) 

 

Figure 53  Stress fringes in Homalite where (a) main (“Mother”) crack at t = 31.9 μs, 

(b) “Mother” and “daughter” crack at t = 36.6 μs, (c) coalescence that creates shear 

Mach wave at t = 50.5 μs taken from Coker et al. [112], (d) illustration of “mother” -  

“daughter” cracks, (e) coalescence and formation of shear Mach wave. 
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(c) 

 
(d) 

 
(e) 

Figure 53 (Continued) 

 

 

2.2.3.3. Dynamic Stress Intensity Factor and Energy Release Rate 

Closed-form solutions of dynamic stress intensity factor, Ki(t) i=I,II are available in 

literature. The dynamic stress intensity factors for a semi-infinite crack can be 

written as; KI(t) ∝ σ0�tCd and KII(t) ∝ τ0�tCs , respectively [109,110]. It is seen 

that the dynamic S.I.F. of a semi- infinite crack continuously increases in the form of 
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√t. However, this is not a general case. Dynamic S.I.F. for a crack at the center of an 

infinite plate was numerically calculated by Sih et al. [124] in which the dynamic 

S.I.F. had a maximum value after when it started to decrease. In all cases, dynamic 

S.I.F. is time dependent and related to material wave speeds. 

The definition of dynamic energy release rate includes the terms of kinetic energy, 

ΠKE, as follows [15]; 







 Π

−
Π

−
Π

−=
da

d
da
d

da
d

B
1)t(G KEe  (45) 

Similar to the definition of dynamic energy release rate, J-integral also includes 

kinetic energy density, χKE, as firstly proposed by Atkinson and Eshelby [125]; 

∫
Γ

→Γ 





∂
∂

−χ+χ= ds
x
uTdy)(limJ i

iKE0  (46) 

where χKE is given; 

t
u
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u
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1 ii

KE ∂
∂

∂
∂

ρ=χ  (47) 

Moreover, the strain energy density, χ, can be represented in the below formation for 

a visco-elastic material in which rate-dependency is important [31]; 

∫ εσ=χ
t

t
ijij

0

dt  (48) 

An important observation in eqn.(46) is the contour Γ which is localized around the 

crack tip. Atkinson and Eshelby [125] showed that the integral is path-independent as 

long as the integral starts from the lower surface and ends at the upper surface of the 

crack for dynamic crack propagation. 

A different version of dynamic J-integral is proposed by Nakamura et al. [126] in 

which energy flux entering into the contour are considered and earlier elasto-

dynamic effects are covered as below [126]; 
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where Vi = ∂ui/∂t.   

R-curves provide further information about the dynamics of crack propagation. It is 

important to notice that excessive energy release rate is converted to kinetic energy 

[126] (Figure 54). Hence, an unstable crack growth with large available fracture 

energy, kinetic energy will be considerably large. High values of kinetic energy 

cause high crack tip speeds, fostering the dynamic phenomenon occurred during the 

process [126]. 
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Figure 54  Kinetic energy zone due to excessive energy release rate in an unstable 

crack growth. 

 

Stress waves may emerge due to the loading itself. Hence, output of a J-integral 

during the early stages of loading may be misleading [109]. Nakamura et al. [128] 

investigated the inertial effects due to the loading waves in a three-point-bending 

impact test that is dedicated for pure mode-I dynamic fracture. Nakamura et al. [128] 

showed that kinetic energy (ΠKE) might be much greater than the strain energy (Π) at 

early stages of impact as shown in Figure 55. In time, the kinetic energy initiated by 

the loading is being damped. Consequently, they proposed a time interval required be 
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elapsed (telp) until at least having an equality between the strain energy and the 

kinetic energy, i.e.; ΠKE(telp) = Π(telp) in order to apply J-integral. An example is 

given in Figure 55 for the three-point-impact test. Initially, kinetic energy jumps due 

to the impact. Later on, kinetic energy is damped and the ratio of ΠKE/Π converges to 

lower values below the unity. In our study, the loading is quasi-static that implies no 

kinetic energy can be imposed by the loading. 

 

 
Figure 55  Ratio of kinetic energy (ΠKE) to strain energy (Π) as a function of 

normalized time in a three-point-bending impact test and time interval suggested by 

Nakamura et al. [128]. 

 

 

2.2.4. Definition of Cohesive Zone (CZ) 

In the vicinity of crack tip, Dugdale [128] and Barrenblatt [130] proposed a small 

transition zone, so called Cohesive Zone (CZ), between traction free crack surfaces 

and elastic body. In 1960, Dugdale [128] proposed a yield strip model at the crack tip 

in that the plasticity limits the stress singularity at the yield stress. Dugdale [128] also 

derived mathematical relations between CTOD and the finite stresses at the CZ. In 

1962, Barrenblatt [130] described the CZ in a more general aspect by relating 

cohesive tractions (T) (Figure 56) and relative displacement (δ), so called traction-

separation law concept in the cohesive zone.  Moreover, Barrenblatt [130] stated that 

the length of CZ, lCZ, the shape of distribution and the magnitude of the cohesive 



 

95 
 

tractions prior to the crack growth are independent of the specimen geometry and the 

applied load. These properties make CZ as a material dependent phenomenon instead 

of a problem specific issue. 

 

a

X

Crack

lCZ

Cohesive traction

 

Figure 56  Cohesive Zone (CZ) in front of a crack tip with cohesive tractions 

proposed by Dugdale [128] and Barrenblatt [130]. 

 

Dugdale [128] and Barrenblatt [130] remarkably asserted the existence of CZ in a 

phenomenological way. Today, CZs are observed by optical techniques. For 

instance, in our case of delamination in CFRP laminates, the polymeric matrix 

dominates the physical appearance of the CZ. One of the physical phenomena in 

polymeric matrix is the crazing [131] (Figure 57). Long molecular chains in 

polymers, so called fibrils, tend to elongate through the crack tip in bundles as shown 

in Figure 57a. Micro-voids and micro-cracks are formed due to the bundling of 

fibrils, which segregate in front of the crack tip resembling crazes in a larger view. 

Microscopic photographs during the development of micro-cracks under ILSS are 

shown in Figure 57b for a brittle resin material. The characteristic view of shear 

micro-cracks is a canted crack with the angle of 45° from the main crack. 

Delamination may breach to the adjacent fiber regions during propagation in 

composite laminates. In these cases, crazing is not adequate to explain the physical 

phenomenon in the cohesive zone. Fibers or beam-like ligaments may bridge the 

crack tip [132] as shown in Figure 58. This phenomenon is called Fiber Bridging that 

is a common feature creating cohesive tractions in front of the crack tip. 
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(a) 

                    

 

(b) 

Figure 57  (a) Representative illustration of microvoids in a cohesive zone and (b) 

microscopic view of microcracks formed out of shear loading in a resin material 

(Photos are taken from Anderson [31]). 

5 μm 
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Figure 58  Fiber bridging made of fibers or beam-like ligaments made of fibers and 

portion of matrix material (Photo is taken form Sørensen and Jacobsen [132]). 

 

2.2.5. Cohesive Zone Method (CZM) 

Numerical analysis of crack propagation by modeling the constitutive law of CZ is 

called Cohesive Zone Method or Cohesive Zone Modeling (CZM). CZMs are 

generally functions of traction (T) and relative displacement of the crack surfaces, so 

called separations (δ). A constitutive law of a CZM is illustrated by springs in Figure 

59 that is shown along a cohesive region with crazing in front of a delamination. CZ 

starts after a traction free zone at δc; i.e. T(δc) = 0 and ends by reaching the 

maximum traction at δo; i.e. T(δo) = To = max.  The corresponding separations for the 

maximum traction may be zero or so small that it is always smaller than δc; i.e. δc > 

δo. In references, δc and δo are called as critical and onset separation, respectively. 

Noting that, the subscripts of “c” and “o” respectively refer to critical and onset 

separations throughout this study.  Referring to the CTOD, critical and onset 

separations are indeed material or interface properties. In between these two 

extremities, traction distribution resembles the characteristic softening behavior. One 

of the first FEA applications was performed by Hillerborg et al. [133] in 1976 to the 

best of author’s knowledge.  

For a contour of Γ surrounding the upper and lower surfaces of a cohesive zone, J-

integral can be calculated with the assumption of δc << lCZ << a;  
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where X = x - lCZ and dy = 0 along the selected contour. 
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Figure 59  Cohesive zone method illustration show on an example of a physical 

cohesive zone in a delamination crack (The photo at the bottom is taken from 

Sridharan [15]). 

 

For a self-similar crack growth and the assumption of small cohesive zone, the below 

equation can be written; 

 (51) 

Eqn.(51) states that the area covered by the CZM traction-separation law is equal to 

the energy release rate, G (Figure 60a). If the vector components, i, in eqn.(51) is 

kept at one direction, eqn.(51) will give energy release rate in mode-i; i.e.: J(i) = Gi.   

Similarly, the total area covered by the T-δ constitutive law is equal to the fracture 

toughness, Gc, such that;  



 

99 
 

 

 

(52) 

 

(a) (b) 

Figure 60  (a) A traction, T, and relative displacement, δ, CZM profile together with 

energy release rate, G, fracture toughness, Gc, and the possible crack tip definitions, 

(b) loading and unloading with development of damage, d. 

 

In general, CZMs have stiffening reaching a maximum traction which is followed by 

a decrease in the stiffness, so called softening (Figure 60a). This behavior can be 

analogized to atomic potential [134] that relies on the assumption made by 

Barrenblatt [130] and generally which is continued by other authors to be mentioned 

in the following paragraphs. 

Up to now, no distinction has been made between mode-I and mode-II. In our study, 

the subscripts of “I” and “II” are used for relating separations and tractions to mode-I 

and mode-II, respectively, whereas the mixed-mode separations and tractions do not 

have subscripts of “I” and “II”. In general, a constitutive law in mode-I considers 

fracture energy in an opening relative displacement for mode-I (δI); i.e. δI > 0 as 

shown in Figure 61a. The area covered in mode-I would be GIc in δc ≤ δI ≤ 0. Highly 

stiff response is exerted by the model for negative mode-I relative displacement; δI < 

0, in order to avoid interpenetration of the mating crack surfaces. On the other hand, 

an anti-symmetric CZM traction-separation law is mostly observed in mode-II case 
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as shown in Figure 61b. Similarly, the area covered by each region in the figure is 

equal to GIIc.  
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δc  δo  

-T0

-δo  

X
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δII 
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Figure 61  CZM constitutive laws for (a) mode-I and (b) mode-II 

 

An issue of compatibility is come across in the mixed-mode scenario. In theory, a 

cohesive interface would fail if the total released fracture energy is equal to the 

toughness. In numerical analysis, however, the load may vary. As a result, the energy 

release rate might be continuously changing through the numerical solution in terms 

of mode-I and mode-II dominancy for a mixed-mode case. For example, a CZM 

traction separation law may reach the critical displacement of δc where GIc was 

already covered as shown in Figure 61a. In that case, the interface is assumed to be 

“failed” by mode-I although GIIc would not be dissipated. Hence, the interface is still 

capable of reacting mode-II loads from modeling point of view. In theory, if an 

interface is failed, no matter it is due to mode-I or mode-II loading, there should be 

no response from the CZ. Therefore, compatibility should be sustained in CZM 

constitutive law through the solution scheme. A detailed discussion was made by 

Gozluklu [135] about incompatible and compatible CZMs in the literature and their 

influences into the numerical solution schemes.  
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One may realize that no initial crack is required to use CZM although, theoretically, 

CZ exists in front of a crack tip. This makes CZM a great tool regarding the 

conventional fracture methods such as VCCT.  In 2000, Mohammed and Liechti 

[136] studied crack initiation at a sharp bi-material edge between aluminum and 

epoxy as shown in Figure 62. Mohammed and Liechti [136] reached excellent 

agreement with the experimental results for the initiation analysis.  

 

 

Figure 62  Application of CZM by Mohammed and Liechti [136] for initiation of a 

crack in bi-material sharp interfaces. 

 

 

2.2.5.1. Definition of the crack tip in CZ 

The definition of crack tip in CZ is not definite since it is a transition region.  

According to Shet and Chandra [137], there are three possible definitions. The first is 

the mathematical crack tip which is defined by the critical separation of δc (Figure 

60a). Mathematical crack tip is the nearest point to the traction-free surfaces and 

generally represents the observable crack tip in the experiments. Geubelle and Baylor 

[175] used mathematical crack tip by seeking d = 1 in their BL CZM. The next 

possible definition is the cohesive crack tip as shown in Figure 60a. Cohesive crack 

tip corresponds to the maximum traction at δ = δo. According to Shet and Chandra 

[137] and Yang and Cox [11], physical appearance of cohesive phenomenon gets 

into shape in the softening region which starts after δ > δo. In other words, cohesive 
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crack tip can be associated with the start of softening phenomena such as formation 

of crazes and/or fiber bridging etc. The first two of the definitions can be attributed 

to physical appearance of the CZM. On the other hand, specified crack tip can be 

used at any location between these two definitions as shown in Figure 60a. Such an 

approach was used by Xu and Needleman [138] in which the displacements of 2δo – 

6δo are specified as a crack tip. They reported no considerable difference between 

using 2δo and 6δo in the results [138]. For mode-II dominated fracture, locating the 

mathematical might be unsuccessful from the stress plots due to large shear stress 

concentration regions and deformation of mode-II fracture which may physically 

hide the crack tip. Coker and Rosakis [112] considered a specified definition of crack 

tip based on the separation value of δ = 5δ0. Unlike the conclusion of Xu and 

Needleman [138], Coker and Rosakis [112] reported different crack tip speeds for 

different definitions of the crack tips. 

2.2.5.2. Irreversibility and Damage Mechanics 

Formation of new surfaces during crack propagation is an irreversible unless there is 

crack healing [139]. Namely, CZM represents an irreversible process. Figure 60b 

shows a CZM constitutive law in which loading and unloading are shown by 

rightward and leftward arrows, respectively. It can be seen that unloading takes place 

through a linear path connected to the origin as firstly proposed by Allix and 

Ladeveze [140], Corigliano and Allix [107] and Camacho and Ortiz [141]. Next, the 

loading goes over the same path towards the right due to the irreversibility. This is a 

typical behavior of CZM during loading/unloading after a finite value of fracture 

energy is released. 

The irreversibility is taken into account by Continuum Damage Mechanics which is 

originally proposed by Kachanov [142] for metal creep in 1958. Although the 

original work of Kachanov did not refer to micromechanics or CZM, continuum 

damage mechanics works well from micromechanics points of view and CZM [143].  
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Figure 63  Original microstructure made of evolving-degrading constituents (left) 

that is homogenized for stable microstructures (middle) where an area, ΔA, is shown 

that is homogenized with a reduced damaged area, ∆A� (right). 

 

The damages, such as voids and cracks, degrade the stiffness of the body as they 

develop in time. Besides, there are stable microstructures as illustrated in Figure 63 – 

left.  In continuum damage mechanics, stable constituents are homogenized so as to 

isolate the degrading microstructures (Figure 63-middle). An enclosed area of ΔA is 

shown in Figure 63-middle where the total area formed by voids and cracks are 

denoted as ΔAdeg. Voids and cracks can be removed from the enclosed area, ΔA, to 

obtain the effective area, ∆A�; i.e. ∆A� =  ∆A - ∆Adeg (Figure 63-right). For each 

plane having a normal vector of n, the ratio of ΔAdeg to ΔA is equal to damage, d(n), 

as follows [143]; 

 (53) 

Damage becomes free from planes such that d(n) ≈ d for an isotropic damage as in our 

case of delamination. As a result, damage is scalar parameter in d ϵ [0,1]. Following 

this definition, the effective area can be defined as; 

 (54) 

An example is given for a delamination at an interface of which CZM is provided in 

Figure 60b. The development of CZM due to loading is illustrated by formations of 

crazes at the crack tip and the corresponding damage values are given in the figure. 

The damage starts with d0 = 0, implying “zero damage”- no degradation in the CZ. 
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As the loading develops, damage gradually increases as d1 < d2 < 1. Finally, the 

damage grows up to unity, d3 = 1, meaning that the interface is totally failed. Hence, 

the stiffness of damaged interface, E�, can be written in the below form for a linear 

damage in the form of eqn.(54) [144]; 

( ) 0Ed1E −=  (55) 

where E0 is the stiffness of the cohesive zone when d = 0. E0 is generally called as 

penalty stiffness or the initial slope of the CZM. The irreversibility of the damage can 

be given as; 

[ ])(dmax)(d
0

τ′=τ
τ≤τ′≤

 (56) 

where τ is the current pseudo time and τ΄ is the pseudo time. The stiffness of a 

damaged interface in the light of irreversible damage becomes the slope of the 

unloading curve (Figure 60b). However, damage mechanics is not always used for 

the irreversibility in the cohesive literature. For instance, Allix and Corigliano [145] 

pioneered using the maximum attained separation whereas Camacho and Ortiz [141] 

proposed a force term in the form of eqn.(56) to consider irreversibility. Qiu et al. 

[146] used a non-dimensional history term determined by an elliptical equation based 

on the separations at normal and shear directions. Another approach was used by 

Borg et al. [139] in which total fracture energy released until that stage of loading 

was continuously removed from the toughness.  

2.2.5.3. Constitutive laws for CZM 

There are extensive number of studies about CZM in civil, mechanical and aerospace 

engineering literature. In this chapter, widely used CZM constitutive laws and their 

breakthrough applications are briefly presented. A summary of CZM constitute 

profiles at normalized axes are shown in Figure 64.  

One of the widely used CZMs is the Exponential CZM, as shown in Figure 64a. 

Exponential CZMs are characterized by continuous exponential functions in which 

the full separation is reached asymptotically by δ/δc → 0. One of the earliest 

exponential CZMs was proposed by Rose et al. [147, 149] based on universal 

metallic binding potential for mode-I fracture. Next, Xu and Needleman [138,147] 
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proposed their so called Xu-Needleman (XN) CZM for both mode-I and mode-II. 

These models have been derived from potential energy functions that were somehow 

based on atomic potentials as also studied by Needleman [150] and Rice and Wang 

[151].  Besides, Shahwan and Waas [152] proposed an exponential function to have a 

decaying constitutive behavior specific to the delamination propagation. The 

magnitude of the maximum traction is generally phenomenological; e.g. it was taken 

as 1/100 of the elastic modulus by Xu and Needleman [138].  However, Coker et al. 

[112] used experimentally determined failure stress of the interface. A modified 

version of XN CZM was proposed by van den Bosch et al. [153] for mixed-mode 

failure case. A similar exponential law was proposed by Rice and Wang [151] who 

studied interfacial embrittlement by solute segregation such as carbon, phosphorus 

and sulfur in iron. Another model with monotonically increasing exponential 

function without having a finite softening region was proposed by Davies et al. 

[154]. In that model, delamination analysis of composite laminates was studied. 

Moreover, Corigliano et al. [155,156] modified the XN model in order to include 

rate-dependency for dynamic delamination. 

XN CZM has been successfully applied to dynamic fracture simulations. Needleman 

and Rosakis [157] modeled steel-PMMA bi-material dynamic crack propagation. 

Coker et al. [112] simulated dynamic crack propagation of polymer-composite under 

asymmetrical impact load using XN CZM. Their FE model predicted the same shock 

waves observed in the experiments (Figure 65a) as well as the crack tip speed as a 

function of time was also in agreement with the experimental results. Remarkably, 

mother-daughter crack mechanism was first simulated using XN CZM (Figure 65a).  

Figure 64b shows the second type of CZM that was proposed by Dugdale [128] for 

elastic-plastic metals. This model exhibits a constant stress, the yield stress, along the 

CZ. This model is one of the earliest CZMs.  A similar model was applied by 

Wisnom and Chang [158] for the delamination problem in notched composite 

laminates under interlaminar shear loading. Wisnom and Chang [158] implemented a 

sharp stiffening region starting from the origin. This was required for their numerical 

simulations in order to have a finite tangent stiffness matrix at the beginning of the 

implicit numerical scheme. 
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Figure 64  (a) Exponential, (b) Dugdale, (c) Piecewise Linear, (d) Polynomial, (e) 

Linear-Polynomial, (f) Linear-Decaying, (g) Rigid-Decaying (h) Rigid- Linear and 

(i) Bilinear (BL) CZMs. 
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The third type is the Piecewise Linear CZM initially proposed by Tvergaard and 

Hutchinson [159] (Figure 64c). In this model, the maximum traction is reached by 

typical stiffening from the origin. Afterwards, the traction stays at the maximum 

level which is followed by a softening region. This CZM was used for modeling the 

crack propagation in elastic-plastic materials by Tvergaard and Hutchinson [159]. A 

similar model was proposed by Yang and Thouless [160] for peeling of adhesively 

bonded T-shaped and L-shaped legs under mixed-mode conditions. Gustafson and 

Waas [161] used Piecewise Linear CZM for investigating the influences of the 

cohesive parameters to the results of DCB, ENF and MMB tests. Scheider [162] 

modified the model of Tvergaard and Hutchinson [159] in the way of smoothing the 

slope of the stiffening and softening regions in order to analyze the ductile fracture 

causing a cup-cone shape at the fracture surfaces. 

Another shape is the Polynomial CZM as drawn in Figure 64d. Polynomial CZMs 

are similar to exponential CZMs except that the formulation is a polynomial 

function. Polynomial CZMs are generally referred to Tvergaard [164] who studied 

the fiber debonding (Figure 66) from a metal matrix fiber reinforced composite 

structure. Tvergaard [164] proposed a quadratic polynomial function. Espinosa et al. 

[165] successfully applied Tvergaard’s polynomial CZM to dynamic fragmentation 

analysis of ceramic materials under impact loading. Pinho et al. [166] has used 

second and third order polynomial CZMs in explicit FEA. At the load-displacement 

curves of DCB and ENF test simulations, Pinho et al. [166] reported less oscillatory 

behavior in the polynomial CZMs compared to linear CZMs. Barrenblatt [130] 

proposed a CZM in a polynomial form. Also, Needleman [150] started with 

polynomial models for the mode-I fracture before the XN CZM. 
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(a) 

 

 
(b) 

Figure 65  (a) Observations of intersonic crack proapagtion yielding a shear Mach 

wave and (b) development of “mother-daughter” crack mechanism [112]. 
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Figure 66  Debonding of fibers from the matrix  

(from the lecture notes of Talreja [163]) 

 

A Linear-Polynomial type of CZM, as shown in Figure 64e, was proposed by Allix 

and Ladeveze [140]. The CZM has a linear part in the stiffening region after whereas 

a polynomial function is active at the softening region. It is one of the earliest CZMs 

that has been applied to delamination problem in laminated composites by Allix and 

Ladeveze [140]. Moreover, Allix and Corigliano [145] simulated the mixed-mode 

delamination in laminated composite laminates using linear-polynomial type of 

CZM. Corigliano and Allix [107] further extended the Linear-Polynomial CZM by 

including rate-dependency and analyzed delamination using the rate-dependent 

CZM. For in-plane fracture of composites, Li et al. [167] proposed a linear-

polynomial type of CZM with two peaks in which the first one was for the matrix 

cracking while the second was used for the fiber cracking.  

The sixth one is the Linear-Decaying CZM that is shown in Figure 64f. It is 

characterized by linear stiffening and exponential softening. Linear-Decaying CZM 

was firstly proposed by Reinhardt and Cornelissen [168] for fatigue analysis of 

concretes under cyclic loading. A similar model without having a stiffening region, a 

rigid type, is shown in Figure 64g. Rigid type of model is specifically called Rigid-

Decaying CZM which was originally proposed by Planas and Elices [169]. This 

model has been rarely used. 

In 1996, Camacho and Ortiz [141] proposed a Rigid-Linear type of cohesive model 

as shown in Figure 64h for the analysis of dynamic fracture in brittle solids under 

impact loading. The constitutive model starts directly from the maximum traction 

point which is followed by a linear softening region. The constitutive equations of 
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the CZM proposed by Camacho and Ortiz [141] have been expanded to 3D analysis 

by Ortiz and Pandolfi [170]. Later on, these models have been accurately used in the 

simulations of dynamic fracture where fragmentation of glasses was further achieved 

by Repetto et al. [171]. Also, Han et al. [172] successfully used the model of Ortiz 

and Pandolfi [170] for the delamination of composite sandwich panels. Yu et al. 

[173] used the CZM of Ortiz and Pandolfi [170] for simulating the dynamic crack 

propagation of asymmetrical dynamic loading of composite plates of Coker and 

Rosakis [116]. Their models correctly predicted the intersonic crack propagation as 

well as having a good agreement with the original numerical study performed by 

Coker et al. [112] using XN CZM.   

 

 

(a) 

 

(b) 

Figure 67  Double shear Mach waves (a) captured in the experiments of Coker and 

Rosakis [118] and (b) numerical simulation of Yu et al. [173] using Rigid-Linear 

type of CZM proposed by Ortiz and Pandolfi [170]. 

 

Bilinear (BL) CZM is one of the most popular CZMs in the composite literature for 

simulating the delamination. The characteristic of BL CZM is having linear 

stiffening and softening regions that result in a triangular shape as shown in Figure 

64i. The pioneers of this type of CZM are Reedy et al. [174], Geubelle and Baylor 

[175] and Mi et al. [176] in which all of them studied the delamination in composite 

laminates. Specifically, Geubelle and Baylor [175] used BL CZM for the modeling 

of delamination due to low velocity impact in explicit FEA. On the other hand, 

Reedy et al. [174] used linear coupling of energy release rates in pure modes whereas 
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Mi et al. [176] used quadratic coupling of energy release rates in implicit FEA. Later 

on, Alfano and Crisfield [144] further extended the BL CZM with a more robust 

formulation by deriving the tangent stiffness matrix to be used with Arc-Length 

Methods [177] for the implicit solvers. The BL CZM of Alfano and Crisfield [144] 

separately manipulates the damage terms for each pure mode that yields the 

incompatibility between mode-I and mode-II at mixed-mode conditions. In order to 

compensate the incompatibility, Camanho et al. [178] proposed using single damage 

term instead of separate terms. Later on, Camanho and Davila [179] used a mixed-

mode fracture criterion in order to make the BL CZMs compatible for both modes. 

On the other hand, Qiu et al. [146] used a non-dimensional term for sustaining the 

compatibility.  

There are many applications of BL CZM in composite literature. Davila et al. [180] 

proposed a shell element, using BL CZM, so as to work as an interface element 

between 3D elements. Chen [181] analyzed delamination of repaired stiffened 

composite panels using BL CZM. Chen et al. [182] simulated the debonding and 

delamination of T-shaped composite part using the BL CZM. De Moura et al. [183] 

and Aoki et al. [184] simulated the low-velocity impact driven delamination in 

composite laminates. Robinson et al. [185] implemented a Paris-Erdogan type 

fatigue law into the BL CZM proposed by Mi et al. [176] so as to simulate fatigue 

driven delamination in composite materials.  

Generally, BL CZM has been used in implicit analysis. For explicit FEA, Warrior et 

al. [186] applied the BL CZM in the simulation of DCB test. They reported 

oscillations in the load-displacement curves even from the beginning of the 

simulation which were considered as numerical artifacts (Figure 68a). Actually, 

oscillatory load-displacement curves are very common in the applications of explicit 

FEA. Similar observations of oscillatory responses were also reported by Pinho et al. 

[166] for the BL CZM. Similarly, Borg et al. [139] also applied BL CZM into 

explicit FE solvers in order to analyze stable mixed-mode delamination under quasi-

static loading in which large solution durations were reported. Later on, Gozluklu 

and Coker [88] solved this issue by using smooth step loading profile of which initial 

slope was gradually increasing from a zero slope (Figure 68b). However, Gozluklu 

and Coker [88] reported strong oscillations after the start of dynamic delamination in 
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the L-shaped composite laminates. In addition to the oscillatory response, long 

solution durations for quasi-static loading using explicit solvers were reported by 

Borg et al. [139]. A numerical scheme based on a combination of implicit and 

explicit solutions was used by Gozluklu and Coker [88] which had considerably 

reduced the solution durations of quasi-static loading in explicit solvers. 

 

 

(a) 

 

(b) 

Figure 68  (a) Oscillatory load-displacement curves of DCB simulation using 

Explicit FE solver found by Warrior et al. [186] and (b) stable response obtained by 

Gozluklu and Coker [88]. 

 

There are BL CZMs which are variable in shape during the simulations. One of them 

was proposed by Hu et al. [187] where the maximum traction was increased by 

keeping the fracture toughness as the same (Figure 69a). The idea was to artificially 

increase the cohesive length to reduce the number of elements required in a cohesive 

zone for an accurate simulation and having easier convergence for implicit solvers. 

Another variable profile was proposed by Corigliano and Ricci [188] in which rate-

dependency was included into the constitutive law. In that case, the maximum 

traction as well as the toughness is variable as shown in Figure 69b. 
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(a) 

 

(b) 

Figure 69  (a) Modification of the maximum traction (N) value of the BL CZM for 

reduction of mesh size proposed by Hu et al. [187] and (b) change of BL CZM due to 

rate dependency proposed by Corigliano and Ricci [188]. 

 

BL CZMs has been successfully applied for the analysis of dynamic crack 

propagation. Dwivedi and Espinosa [122] successfully applied the BL CZM of 

Espinosa et al. [189] to the numerical simulation of the asymmetric impact loading of 

composite plates of Coker and Rosakis [118]. Dwivedi and Espinosa [122] 

successfully captured the shear Mach waves in the simulations where they further 

included frictional effects into their numerical analysis. Recently, Gozluklu and 

Coker [88-90,92] applied BL CZM for revealing the dynamic crack propagation 

under quasi-static loading in delamination of L-shaped composite laminates. The 

modeling approach of Gozluklu and Coker [88-90,92] was also applied to the 

dynamic delamination of bonded L-shaped polymer beams [93,94]. 

In this chapter, several cohesive profiles have been discussed. Yet, the influences of 

cohesive profiles to the predictions were reported to be negligible by Williams and 

Hadavinia [190] and Tvergaard and Hutchinson [159] for stable crack propagation. 

For unstable dynamic fracture, Falk et al. [191] studied the effect of initially rigid 

and linear CZM to the branching of cracks under impact loading for isotropic 

homogeneous material. It was reported that the branching is hard to achieve for 

initially rigid CZMs. Other than that point, no considerable difference was reported 



 

114 
 

for the dynamic fracture in the references. In this study, BL CZM, XN CZM and a 

rate-dependent (RD) CZM will be used to further investigate the influences. 

2.2.5.4. Application and Issues in FEA of CZM 

The simplicity of the constitutive laws makes the CZM a great tool for finite element 

applications. The traction-separation law of a CZM is implemented into interface 

elements, which are located between the mating surfaces; in our case, it is the 

interfaces between the plies. The interfaces, which include the cohesive interface 

elements, are called cohesive interfaces and the elements exhibiting CZM 

constitutive law are called cohesive interface elements (or simply the interface 

elements). For instance, the interface between the upper and lower laminates in a 

DCB test would be the cohesive interface (Figure 70a). The stress/traction 

distribution in front of a crack tip, length of the cohesive zone, lCZ, and the 

corresponding load-displacement curves are illustrated in Figure 70b. In that figure, 

behaviors of five cohesive elements are given under monotonic loading. In the early 

stages of loading, the first element near the crack tip softens which degrades the 

stress/traction distribution near the crack tip. Noting that, the length of the degraded 

region represents the cohesive zone. There is no effect of the degredation in the first 

cohesive element to the load-displacement curve. As the loading continues, the first 

element in front of the crack tip reaches to the critical separation that results in total 

failure of the interface element. At that moment, the length of the cohesive zone is 

totally developed and the crack starts to propagate. In parallel, the maximum load is 

achieved. Afterwards, the load will drop, gradually. This is a typical development of 

the stress field and the interface element for CZM applications. Same behavior is 

applicable to the delamination of L-shaped composite laminates only with the 

difference of the length of the cohesive zone which changes according to fracture 

mode. 

There should be adequate number of interface elements located in CZ in order to 

correctly model the cohesive behavior. The adequate number of interface elements 

also helps the convergence of FEA for implicit solvers.  Turon et al. [192] suggested 

that the minimum number of cohesive elements should be 3 in a CZ for implicit 

solvers. Therefore, the resulting cohesive element length, we, can be defined as; 
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There are several proposals of formulations for calculation of the length of cohesive 

zone, lCZ. The length of the cohesive zone has the below form for plane stress; 
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where E33 is the modulus in the normal to the CZ direction, Gc is the fracture 

toughness, To is the maximum interfacial traction, and κ is the constant which has 

been differently used by authors as given in Table 3. Notably, Harper and Hallet 

[193] noticed that the cohesive zone length obtained by eqn.(58) is not the same with 

the one calculated using FEA.  

The required length of the cohesive elements generally determines the mesh density 

of the finite element model since it would be the smallest dimension in the mesh. As 

seen from eqn.(58), the length of the cohesive zone is proportional to the inverse of 

To
2. It implies that the length of the CZ will be increased in the order of two as the 

maximum traction is reduced. For a longer CZ, the required length of the cohesive 

element will be larger; therefore, it would reduce the mesh density. Consequently, 

the duration of the numerical solution is reduced. The effects of the artificial increase 

of cohesive length by reducing the interfacial strength have been widely studied by 

Turon et al. [192], Harper and Hallet [193], and Hu et al. [187]. They successfully 

reduced the required mesh density and reached nearly the same results compared to 

the results obtained using original strengths. However, excessive reduction of the 

maximum traction can result in an artificial increase of the compliance of the model 

as reported by Harper and Hallet [193]. Moreover, Turon et al. [192] noted that the 

stress distribution at the CZ would be inaccurate. Gustafson and Waas [161] studied 

the influences of the cohesive parameters of fracture toughness and interfacial 

strengths to the predictions of the CZM. They showed that the fracture toughness 

greatly affects the results whereas the interfacial strength indicated negligibly small 

effect. Borg et al. [139] also pointed that the influence of varying the interfacial 

strength of the interfaces to the prediction of DCB, ENF and MMB simulations was 
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negligible. “Fine tuning” of the interfacial strength is a common application in 

references. However, it should be applied with caution. 
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(a) 

 

(b)  

Figure 70 (a) DCB test and (b) development of CZM constitutive law, stress/traction 

distribution in front of a crack tip, length of cohesive zone and the corresponding 

load-displacement curve of DCB test model. 
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Table 3: κ values for the calculation of cohesive zone length, lCZ, in eqn.(58) 

 

κ (in eqn.(58)) 

Hui et al. [194] 2/3π 

Irwin [195] 1/π 

Dugdale [128] and Barenblatt [130] π/8 

Falk et al. [191] 9π/32 

Hillerborg et al. [133] 1.0 

 

Using larger cohesive elements may cause osscilations at the load-displacement 

curves due to the harmonic vibrations and/or wrong estimation of the failure load. 

Figure 71a shows load-displacement curves of various element sizes for DCB test 

using implicit FEA [196]. The stiffness of the component and the failure load are 

artificially increased by decreasing the mesh density. Moreover, load-displacement 

curves reveal more osscilations with larger cohesive elements. Figure 71a shows 

typical response of delaminating specimen using larger cohesive elements. 

   

 

(a) 

 

 

(b) 

Figure 71  (a) Load-displacement curves of (b) DCB test with various element sizes 

[196] (Le = we). 
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Cohesive elements are generally located between the body elements to form a weak 

plane. Cohesive element can be discrete spring (Figure 72a) or continuum line 

(Figure 72b) interface element for 2D-FEA. In most of the previous studies, cohesive 

elements were line interface elements. Xie and Waas [197] specifically named the 

method using discrete spring cohesive elements as “Discrete Cohesive Zone 

Method”.  For the 3D models, the continuum line elements become surfaces as 

shown in Figure 72c which was proposed by Sprenger et al. [197] and Davila et al. 

[180].  

From the Figure 72, it can be observed that the interface elements do not have any 

thickness in the y-direction. Otherwise, they allocate a finite space that may result in 

an artificial increase of the thickness of the body. As CZM deals with traction-

separation laws, instead of stress-stain relations, strains are not calculated. This 

enables using zero-thickness interface elements based on relative displacements of 

the nodes instead of strains. Besides, there are several studies which proposes using 

finite thickness in the interface elements such as Sprenger et al. [198], El-Sayed and 

Sridharan [199,200] where the CZM was based on stress-strain relations. In 

ABAQUS [69], there is continuum line cohesive element called COH2D4, that uses 

traction-separation laws such as BL and Linear-Decaying CZMs. Surprisingly, 

ABAQUS [69] requires finite thickness as an input even though it uses traction-

separation laws. The reason of this requirement and the effect of the thickness are not 

well understood. Hence, BL CZM is re-implemented in the ABAQUS [69] via user-

subroutines although BL CZM has been already available. Noting that, ABAQUS 

[69] has a feature of cohesive surface which can also define BL CZM relation 

between the element faces without defining an interface element. This type of 

modeling is similar to contact modeling, which is not common in literature to the 

best of author’s knowledge. 
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(a) 

 
(b) 

 

(c) 

Figure 72  Undeformed and deformed (a) spring (discrete), (b) line, and (c) surface 

continuum interface elements. 
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One of the disadvantages of using cohesive elements is fixing the possibilities of 

crack propagation paths by the mesh. In order to increase the possibilities, one can 

put cohesive elements between all of the body elements. For instance, a mesh 

composed of triangular elements connected by line cohesive elements are given in 

Figure 73a. In this case, the crack is able to propagate through the cohesive elements 

such as indicated by arrows in the figure. Figure 73b shows the fragmentation of a 

glass specimen which was obtained by failure of cohesive elements under impact 

loading. Even though the interface elements are located between the triangular 

elements, the morphology of the mesh still restricts the movement of the crack. 

Moreover, working with large number of cohesive elements artificially increases the 

compliance of the finite element model because cohesive interface elements further 

introduce compliance at the connecting nodes (Figure 72). The order of the influence 

is directly dependent to the stiffness of the stiffening region of the used CZM which 

is studied in section 5.3.2.3.2. Hence, a CZM is supposed to have a relatively stiff 

initial value for avoiding artificial increase of compliance. Noting that, controlling 

the initial stiffness may not be possible for some CZMs, especially the ones derived 

from a potential function such as XN CZM.  

In addition to using large number of cohesive elements, complex remeshing 

techniques might be required for enabling totally free crack path [141]. According to 

de Borst [202], remeshing techniques do not totally free the crack path. Moreover, 

the numerical solution becomes more cumbersome. A recent method enables the 

propagation passing through the elements because of a smeared representation of 

CZM in terms of shape functions. By that way, the crack propagation becomes mesh 

independent. This method is called Extended Finite Element Method, so called 

“XFEM” in literature [203], which is out of scope of this study. 

 



 

122 
 

  

(a) 

 

 

 

 

 

 

 (b) 

 

Figure 73  (a) A possible crack path in a mesh composed of triangular elements 

bonded by cohesive interface elements and (b) an example of fragmentation modeled 

by cohesive elements performed by Repetto et al. [171]. 

 

Extensive discussion about the numerical integration schemes of cohesive interface 

element can be found in the references [144,146,176,178,179,182,192,193,197,204]. 

It has been reported that inappropriate numerical integration schemes create similar 

effect of using inadequate mesh density such as spurious oscillations in the load-

displacement curves. Schellekens and de Borst [204] investigated this issue in detail.  

Schellekens and de Borst [204] proposed using lumped integration schemes; such as 

Newton-Cotes instead of conventional Gauss method. It can be realized that the 

continuum cohesive elements become spring elements included into Discrete 

Cohesive Zone Modeling by Xie and Waas [197] once the Newton-Cotes scheme is 

selected.  
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Figure 74  Integration points for Newton-Cotes and Gauss schemes for 4-noded line, 

6-noded line and 8-noded surface continuum interface elements. 

 

 

2.2.5.5. Derivation of Bilinear (BL), Xu-Needleman (XN) and Rate-Dependent 

(RD) Cohesive Zone Models (CZMs) 

In our study, BL, XN and RD CZMs are used. The reason for using BL CZM is due 

to successful applications of the model to the composite delamination analyses. On 

the other hand, XN CZM has been successfully applied to high speed dynamic crack 

propagation analyses. Moreover, XN CZM provides a smooth profile compared to 

BL and RD CZMs. Besides, the rate-dependency in the interfacial properties of 

fracture toughness and interfacial strength foster for using RD CZM.  

2.2.5.5.1. Bilinear Cohesive Zone Model (BL CZM) 

BL CZM, the one proposed by Mi et al. [176], is used in our study. BL CZM is 

selected because it has been successfully used in the simulation of composite 

delamination by both explicit and implicit solvers   [146,166,177-182,200,192,193]. 

The derivation made by Camanho and Davila [179] is taken as the reference study. 
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Figure 75  Constitutive law of BL CZM in mixed-mode, mode-I and mode-II.  

 

One of the reasons behind the success of the BL CZM in the composite applications 

is linked to its constitutive law which is established by independent delamination 

initiation and propagation criteria. Figure 75 shows the mixed-mode BL CZM on 

mode-I and mode-II planes in which the maximum traction in mixed-mode condition 

(To) are related through the delamination initiation criterion [20-26]. The critical 

separation in mixed-mode condition (δc) are associated with the propagation criterion 

[36-38]. In those criteria, it is assumed that the pure mode parameters of the 

interface; To,I, To,II, GIc, and GIIc are found by experiments mentioned in section 

1.3.2.  

The initial slope of the BL CZM (E0) is called penalty stiffness. The penalty stiffness 

is generally taken as large as possible in order to minimize the elastic energy stored 
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in the cohesive element. Because all the energy dissipated by the CZM should be 

dedicated to the softening region that should be solely the fracture energy. Moreover, 

the implicit solvers require the tangent stiffness at the first iteration where penalty 

stiffness is used. However, excessively large penalty stiffness may result in 

numerical problems during the matrix operations in FEA scheme. Generally, trial-

and-error method is used to determine the value of penalty stiffness. 

The onset separation in pure modes (δo,I and δo,II) can be found using the slope of the 

CZMs in pure modes as follows; 

0

I,o
I,o E

T
=δ , 

0

II,o
II,o E

T
=δ  (59) 

where the maximum traction values of To,I and To,II can be obtained by the 

experiments such as ASTM D6415/D6415M [28] and ASTM D2344 [29], 

respectively.  

Similarly, the critical separations in pure modes (δo,I and δo,II) can be found by 

relating the area of the traction-separation law to the fracture toughness, GIc and GIIc; 

I,o

Ic
I,c T

G2=δ , 
II,o

IIc
II,c T

G2=δ  (60) 

From Figure 75, the mixed-mode separation, δ, can be written as follows; 

2
II

2
I δ+δ=δ  (61) 

where δI is inside the Mc-Cauley brackets, <x>, that is (x + |x|)/2.  With this method, 

negative separation in mode-I condition can be removed as CTOD < 0.  

 

The angle between the mixed-mode and the mode-I separations is defined as, β, from 

Figure 75; 

I

II)tan(
δ
δ

=β  (62) 

Up to now, the pure mode separations are derived from basic geometry and 

experimental values where the compatibility is established. Firstly, the maximum 

tractions are related to onset of delamination [146,166,177-182, 192, 193, 200]. This 
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is based on the theory that the energy release rate develops in the softening region of 

the CZM, in that a “crack” would be already initiated as the maximum traction was 

reached. In the light of this statement, the maximum mixed-mode traction can be 

related through the point-wise initiation criterion using the pure mode strengths. In 

our study, elliptical or quadratic initiation criterion [20-24] is used to derive the pure 

mode tractions, TI and TII, as below;   

1
T
T

T
T

2

II,o

II

2
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I =



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




 (63) 

Substitution of the eqn.(59) and eqn.(62) into the eqn.(63) gives the mixed-mode 

onset of separation, δ0, as below;  
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 (64) 

where the interpenetration scenario is suited by δI < 0. 

For the propagation of delamination, the criterion proposed by Benzeggagh and 

Kenane [36] (B-K criterion) is applied. B-K criterion is a curve fitting equation with 

a curve fit constant of “η” based on experiments of DCB, ENF and MMB (Figure 

76).  B-K criterion is given as below; 

η


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Figure 76: Application of B-K criterion using DCB, MMB and 4ENF tests for CFRP 

laminate by Turon et al. [200]. 

 

The pure mode onset and critical separations found in eqn.(59) and eqn.(60) are not 

applicable to the mixed-mode condition. The compatibility during the development 

of the separations under mixed-mode condition gives; 

)cos(0
M

I,o βδ=δ , )sin(0
M

II,o βδ=δ , (66) 

)cos(c
M

I,c βδ=δ , )sin(c
M

II,c βδ=δ  (67) 

where superscript “M” refers to pure mode parameters under the mixed-mode 

condition (Figure 75). Assuming the same penalty stiffness at pure modes, the pure 

mode energy release rate under mixed-mode conditions, Gi
M (i = I, II), can be found 

as follows; 

2
E)(cosG 0

2
oc

I
βδδ

= , 
2

E)(sinG 0
2

oc
II

βδδ
=  (68) 

By substituting the eqn.(68) into the B-K criterion, the critical mixed-mode 

separation, δc , is obtained as below; 
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 (69) 

In the above equation, the critical separation represents the failure of the interface. 

The critical separation becomes the mode-II critical separation in case of closing 

mode-I separations.  

 

The unloading behavior of BL CZM is treated by the continuum damage mechanics. 

Isotropic damage, d, can be defined using the linear interpolation between the 

separations at zero damage d = 0 and fully damage d = 1;  
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(70) 

In addition to the above equations, eqn.(55) and eqn.(56) are used in the BL CZM.  

Afterwards, the mixed-mode tractions can be found as T = E�δ. 

2.2.5.5.2. Xu-Needleman Cohesive Zone Model (XN CZM) 

Xu and Needleman [147] proposed a potential function of φ(δ). Total works of the 

separations in mode-I (δI) and mode-II (δII), are denoted as φI and φII, respectively. 

The works of separations are equal to GIc and GIIc, respectively. Following those 

definitions, the potential function was provided by Xu and Needleman [147] as; 
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where q = φII/φI,  r = δI
* / δo,I with δI

* is the separation in normal direction for a total 

failure of the interface due to mode-II without normal traction. The potential function 

of inverse power can be referred to Lennard-Jones potential energy function [134]. 

The onset of separations of δo,I and δo,II can be found using the below relations [138]; 

)1exp(T I,o

I
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2/)1exp(T II,o

II
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=δ   (72) 

where To,I and To,II  refer to the maximum tractions in mode-I and mode-II 

conditions. The tractions in mode-I and mode-II are defined as; TI = ∂φI/∂δI and TII = 

∂φII/∂δII, respectively, which gives; 
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The figures of the constitutive law of XN CZM for mode-I and mode-II are shown in 

Figure 77a and Figure 77b, respectively, where q = r = 1.  In mode-I case, negative 

normal separations is exposed to exponentially increasing stiffness acting as a 

resistance to interpenetration. The maximum normal traction, To,I, is attained at δI = 

δo,I. Beside, an anti-symmetric exponential function is observed in mode-II condition 

where the maximum tangential traction, To,II, is attained at; 
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Figure 77 Constitutive law of XN CZM for (a) mode-I and (b) mode-II. 

 

The maximum tangential traction normalized by the maximum normal traction at δI = 

0 as a function of normalized normal separation for q = 0.5 with r = 0.2, 0.5, and 0.8 

are given in Figure 78a. The maximum normalized tangential traction is increased by 

increasing the negative normalized mode-I separation at q = r. Actually, this acts like 

a friction when q = r and under compressive normal traction. On the other hand, the 

direction of the traction unrealistically changes with positive mode-I separation for r 

> q. Similarly, the friction lowers by increasing the negative normalized mode-I 

separation for r < q, which is not realistic either. Hence, the constitutive law in mode-

II condition does not behave unless r = q. 

The equality of r = q can be taken as a rule and the same investigation can be done 

for the mode-I case. The maximum mode-I traction normalized by the maximum 

mode-II traction without any tangential separation as a function of normalized mode-

II separation for q = r = 0.2, 0.5, 0.8, and 1.0 is shown in Figure 78b. It can be seen 

that the normal traction never goes to zero which is not realistic as the critical shear 

separation has been reached, except for q = 1.0.  Hence, the constitutive law in mode-

I does not behave realistically other than the case of q = 1.0. In mixed-mode 

conditions, XN CZM is applicable for q = r = 1, which implies that φI = φII that is GIc 

= GIIc. This equality is not very realistic in composite materials [18]. This means that 
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the original XN CZM proposed by Xu and Needleman [147] does not behave 

realistically in mixed-mode conditions with GIc ≠ GIIc. 

Van den Bosh et al. [153] proposed to substitute q = 1 into eqn.(71). Next, the 

derivative of eqn.(71) with respect to the tangential separation gives the mode-II 

traction equation. Afterwards, they replaced φI by φII in the mode-II traction 

equation. As a result, the traction equations in the modified XN CZM become;  
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After the modification of van den Bosh et al. [153], two consequences come out. The 

first is that the phenomenological friction is lost. Secondly, the modified CZM does 

not have a potential function due to the artificial modification to the mode-II traction.  

However, the modified XN CZM works efficiently under mixed-mode fracture 

conditions with sustained compatibility between mode-I and mode-II cases.  

Van den Bosch et al. [153] argued that the CZMs do not need to have a potential 

function since CZMs are supposed to be path-dependent. They envisaged two 

different separation paths of “rough surfaces” as illustrated in Figure 79. It can be 

seen that the resulting friction will not be the same for path-1 and path-2. Hence, the 

modified model of van den Bosch et al. [153] complies with the path-dependency. 
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(a) 

 
(b) 

Figure 78  (a) Maximum mode-II traction normalized by the maximum mode-II 

traction without any normal separation, i.e. δI = 0, as a function of normalized mode-

I separation for q = 0.5 with r = 0.2, 0.5, and 0.8 and (b) maximum mode-I traction 

normalized by the maximum mode-II- traction without any tangential separation, i.e. 

δII = 0, as a function of normalized mode-II separation for q = r = 0.2, 0.5, 0.8, and 

1.0. 

 

 

 

Figure 79  Two different separation paths for mating rough surfaces. 

 

In XN CZM, there is neither damage nor a maximum value of the separation. There 

is no damage definition in the XN CZM. It means that XN CZM is a reversible 

model. On the other hand, the interface is assumed to be failed as it reaches to a 

predefined value of separation which is called critical separation and denoted by δc,i 

(i = I,II). In our studies, this value is taken as 20 times the onset values; i.e.  δc,i = 

20δo,i (i = I,II). After that point, the element is removed from the model.  
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Figure 80  Definitions of possible penalty stiffness values in XN CZM for (a) mode-I 

and (b) mode-II. 

 

There is no specific definition of “penalty stiffness” for XN CZM just like seen in 

BL CZM. Instead, several definitions of initial slopes of XN CZM can be attributed. 

For example, the initial slope at δI = 0, denoted by E0,A
XN-I in Figure 80a, can be 

considered for mode-I. The initial slope, E0,A
XN-I, can be calculated by taking the 

derivative of eqn.(76) with respect to δI at δI = 0 and δII=0 (pure mode-I), and by 

using the eqn.(72) as follows; 
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Another definition of the penalty stiffness, E0,B
XN-I, can be To,I/δo,I from Figure 80a. The 

new candidate penalty stiffness, E0,B
XN-I, can be calculated using eqn.(72) as follows; 
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The mean of the above initial slopes can be also used as penalty stiffness in XN 

CZM. The mean of the slopes, denoted by E0,mid
XN-I  and shown as blue line in Figure 80a, 

can be found as follows; 
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Following the same procedure in mode-I, the initial slope for mode-II at δII = 0 (δI = 

0), E0,A
XN-II, can be calculated using eqn.(77) and eqn.(72) (Figure 80b); 
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Using the eqn.(72) and eqn.(75), the penalty stiffness of E0,B
XN-II, is calculated (Figure 

80b); 
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The mid-value of the slopes for mode-II, E0,mid
XN-II, can be found as follows (Figure 80b); 
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An important observation is that the initial slope of XN CZM is strongly dependent 

on the interfacial strength in the power of two.  

2.2.5.5.3. Rate-Dependent Cohesive Zone Models (RD CZMs) 

Two of the cohesive parameters; fracture toughness, Gc, and interfacial strength, T0, 

are known to be rate-dependent (RD) material properties [205,206]. For example, 

fracture toughness as a function of crack tip speed and the interfacial strength versus 

separation velocity, δ̇, are shown in Figure 81a and Figure 81b, respectively for 

CFRP laminates. From the figures, it can be concluded that the fracture toughness 

and the interfacial strength exponentially increases with the crack tip speed and the 

separation velocity.  
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Figure 81  (a) Fracture toughness, Gc, as a function of crack tip speed [205] and (b) 

maximum traction, To, versus separation velocity (δ̇) [206] in CFRP laminates. 

 

There are numerous studies about RD CZMs in literature. Rahul-Kumar et al. [207] 

proposed a RD CZM which is based on inverse power of the separation velocity.  

Rahul-Kumar et al. [207] analyzed T-peel test, compressive shear strength and 

delamination of composite laminates under contact experiments using their RD 

CZM. Landis et al. [208] derived a rate-dependent formulation for the piece-wise 

linear Tvergaard and Hutchinson [159] type of CZM. They analyzed the effects of 

rate-dependency for the fracture of epoxy material. They reported enhancement of 

fracture toughness and maximum stress at higher loading rates. An opposite behavior 

was observed for extremely high stresses such as greater than three times of the yield 

stress. Later, Corigliano and Ricci [196] proposed a rate-dependent BL CZM for 

implicit solvers and simulated DCB and ENF experiments at various loading rates. 

Corigliano and Mariani [209, 210] applied RD CZMs to the delamination analysis 

using implicit FEA. Similarly, Corigliano and Allix [107] proposed a RD Linear-

Polynomial type of CZM for implicit FE solvers. Samudrala et al. [211] used a RD 

CZM, specifically having a linear dependency at the mode-II separation velocity, for 

the simulation of subsonic and intersonic crack propagation in PMMA plates with a 

weak plane [212]. It was shown that the fracture energy was considerably rate-

sensitive. The fracture energy was enhanced by increasing the loading rate and 
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increasing the crack tip speeds close to the dilatational wave speed. Kubair et al. 

[213] developed a RD polynomial type of CZM. The polynomial RD CZM was used 

in conjunction with spectral method [213]. Anvari et al. [214] also proposed a rate-

dependency in a model composed of polynomial and piecewise linear CZMs for 

ductile fracture of aluminum. They stated that that the crack tip speed still increases 

at higher loading rates, although the fracture toughness is enhanced by the strain rate. 

The reason for the increase was explained by decrease of the plastic zone in front of 

the crack. 

The influence of rate-dependency to the delamination process is polemical. For 

example, Corigliano and Ricci [196] numerically simulated a DCB test using RD 

CZMs and compared to the experimental results (Figure 82). It can be seen that the 

failure load is increased from 73N to 75N even though the loading rate is multiplied 

by 10. Corigliano and Ricci [196] claimed that numerical analysis of delamination 

should involve rate-dependent models. However, accurate application of RD CZMs 

to the delamination problems was mentioned as a challenging process since RD 

CZMs involve additional material properties that are hard to be obtained. Moreover, 

RD material properties are too sensitive for the experimental setup [196]. On the 

other hand, there are studies which successfully simulated intersonic crack tip speeds 

without using RD CZMs [112,138,165,173]. According to Corigliano et al. [155], the 

effect of rate-dependency in high speed crack propagation should be debated, 

especially for the cases with high inertial forces.  Despite the discussions about the 

RD, a rate-dependent BL CZM is proposed based on the approach of Corigliano et 

al. [155,156]. The RD CZM is used for understanding the influences of the rate-

dependency on the dynamic delamination of L-shaped composite laminates. 
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Figure 82  Load-displacement curves obtained using RD CZM and experimental data 

points for DCB test of a CFRP laminate [196]. 

 

2.2.5.5.3.1. A simple rate-dependent model of Corigliano et al. [155] 

According to Corigliano et al. [155], the reference studies only work at quasi-static 

regime. Hence, they derived a simple rate-dependency behavior that had been 

implemented into CZMs proposed by Rose et al. [147,149], Camacho and Ortiz[141] 

and Xu-Needleman [147]. Corigliano et al. [156] successfully applied the rate-

dependent CZM to the delamination of composite materials for mode-I case. Due to 

its simplicity, the rate-dependency proposed by Corigliano et al. [156] is used in this 

study. The rate-dependent onset separation, δo, is defined as below; 
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where the separation velocity, δ̇, is defined as δ̇ = ∂δ/∂t. δo,0 and δo,∞ are the onset 

separations at static and limit conditions, respectively. δ̇o is the reference onset 

separation velocity, which is related to speed of fracture energy released during a 

dynamic event. The eqn.(84) can be written for mode-I and mode-II [156].  

The rate-dependent onset separation normalized by static onset separation, δo,0, as a 

function of the speed of separation, δ̇, normalized by the maximum speed at various 

reference onset separation velocity, δ̇o is provided in Figure 83. It can be seen that 

the reference onset separation velocity is related to the “damping” of the onset 
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separation, δo. Hence, a higher value of the reference onset separation velocity 

reduces the effect of rate-dependency.  

 

 

Figure 83  Onset separation, δo, normalized by static onset separation, δo,0, as a 

function of speed of separation, δ̇, normalized by the maximum value at various 

reference onset separation velocity, δ̇o. 

 

In this method, the onset separations at static and limit conditions, δo,0 and δo,∞, are 

assumed to be material properties. These values are the lower and upper bounds of 

the onset separations.  Similarly, the fracture toughness at static and limit cases, Gc,0 

and Gc,∞, are the boundaries of the material fracture toughness. However, none of the 

boundaries involves time dependency. The reference separation velocity, δ̇o, 

determines the time dependency, which is assumed to be known. The RD energy 

release rate as a function of normalized separation speed at various reference 

separation velocities are very similar to the Figure 83 between Gc,0 and Gc,∞. The 

static interfacial strength, denoted as To,0, is also a material property that is 

determined by the experiments mentioned in section 1.3.2. Using the eqn.(72), the 

limit traction, To,∞, in XN CZMs is related to the limit onset separation, δo,∞, and the 

limit fracture toughness, Gc,∞, as follows [155,156]; 
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The same rate-dependency equation given in eqn.(84) can be used for the tractions; 
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Noting that, the curves of traction as a function of normalized speed of separation at 

various reference separation velocities exhibit the same behavior as shown in Figure 

83 between To,0 and To,∞. Figure 84 presents the constitutive law of the exponential 

rate-dependent CZM used by Corigliano et al. [155,156] at various separation 

velocities, δ̇. The figure is drawn using the specified parameters of δ̇o = 70 m/s, Gc,∞ / 

Gc,0 = 5, δo,0 / δo,∞ = 1.5 and To,0 / To,∞ = 2.45 which are taken from [156]. The rate-

dependency appears as the increase of the energy release rate as well as the 

maximum traction at high velocity rates.  

 

 

Figure 84  Normalized traction - separation law of the exponential rate-dependent 

CZM with the parameters of δ̇o = 70 m/s, Gc,∞ / Gc,0 = 5, δo,0 / δo,∞ = 1.5 and To,0 / To,∞ 

= 2.45 for δ̇ = 0 m/s, 50 m/s, 100 m/s and ∞. 
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2.2.5.5.3.2. Derivation of Rate-Dependent Bilinear CZM (RD CZM) 

In this section, the conventional BL CZM is converted into a RD CZM based on the 

rate-dependency proposed by Corigliano et al. [155,156]. The penalty stiffness, E0, is 

assumed to be constant because the penalty stiffness is such a large number that the 

relative effect of rate-dependency can be negligibly small.  

The static and limit values of fracture toughness are material properties which are 

respectively denoted by Gic,0 and Gic,∞ where i = I, II. In this derivation, it is assumed 

that the static and limit maximum tractions are known. In the original study of 

Corigliano et al. [155,156], the static and limit onset separations were known. The 

maximum tractions are denoted by Tio,0 and Tio,∞, respectively, where i = I,II for the 

pure modes. All the onset and critical separations for each mode can be written for 

the static and the limit definitions of the separations as follows; 
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The same procedure presented in the rate-independent BL CZM is followed. Next, 

the eqn.(64) can be separately written for the static and infinite mixed-mode 

separations, δo,0 and δo,∞, respectively, as follows; 
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Similarly, critical mixed-mode separation for δc,0, and δc,∞ can be found for the B-K 

criterion assuming that the factor of “η” is kept constant; 
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The rate-dependent mixed-mode onset separation, δo, is calculated by eqn.(95). In 

addition to reference onset of separation, reference critical separation velocity, δ̇c is 

proposed which is attributed to the RD fracture toughness as follows; 
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Finally, the damage defined by the eqn.(70) can be used with eqn. (84) and eqn.(95). 

The RD CZM is shown in Figure 85a for Gc,∞ / Gc,0 = 5, To,0 / To,∞ = 2.45  and δ̇o = δ̇c 

= 70 m/s. It can be seen that the maximum traction and the fracture toughness 

increase with increasing the separation speed. On the other hand, the penalty stiffness 

does not change. The softening region grows parallel with increasing the separation 

velocity which is due to the equality of δ̇o = δ̇c. Actually, independent controlling the 
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δ̇o and δ̇c create more versatility at the rate-dependencies of maximum traction and 

the fracture toughness comparing to the work of Corigliano et al. [156]. In our 

model, the material properties are based on static and infinite maximum tractions and 

fracture toughness instead of the separation values as in Corigliano et al. [156]. 

 

 
(a) 

 (b) (c) 

Figure 85  RD CZM for  δ̇ = 0 m/s, 50 m/s, 100 m/s and infinite velocities with the 

parameters of Gc,∞ / Gc,0 = 5, and To,0 / To,∞ = 2.4  (a) δ̇o = δ̇c = 70 m/s, (b) δ̇c / δ̇o = 

0.5 and (c) δ̇c / δ̇o = 2.0. 

 

The effect of the reference onset, δ̇o, and critical separation velocities, δ̇c, are 

revealed in Figure 85b-c. For δ̇c / δ̇o = 0.5, the critical separation develops quickly to 

the limit value compared to the onset separation as the slope of the softening part is 
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smaller (Figure 85b). The opposite case is shown in Figure 85c where the traction is 

more rate-sensitive compared to the fracture toughness for δ̇c / δ̇o = 2.0.  

2.2.5.5.4. Friction Modeling 

The main course of attempts to understand the effect of friction in dynamic fracture 

is encountered at geophysics, which investigates the earthquakes along fault lines. 

Generally, the studies about friction in geophysics feed the friction phenomenon in 

composite laminates [215]. 

Under compressive stresses and horizontal perturbation, such as shown in Figure 

86a, the tangential relative displacement creates slippage between two elastic bodies 

in contact. Slippage occurs in two modes; “crack-like” and “pulse-like” [216]. The 

former is characterized by the propagation of the slippage along the whole interface 

like a crack growth (Figure 86b). On the other hand, the latter moves via a small 

pulse of slippage that travels along the interface (Figure 86c). In some cases, a third 

mode of sliding occurs as “train of pulses” that exhibits quasi-periodic slip-stick 

regions as shown in Figure 86d [217]. The conditions for formation of the above 

modes are based on friction coefficient, slippage speed, compressive load and 

temperature [216]. The detailed mechanisms and the influence of the friction 

coefficients are not still well-understood [215]. 

One of the widely used friction models is the Coulomb friction; σ12 = µssσ22, where 

σ12 is the shear stress due to friction, σ22 is the compressive normal stress and µss is 

the friction coefficient which is a constant. However, Coulomb friction model is 

insufficient to explain the complex phenomena occurring in slippage. The deficiency 

starts with using a constant friction coefficient.  Zheng and Rice [218] showed that 

the friction coefficient exhibits decaying behavior by increasing the slippage speed. 

Moreover, Coulomb friction has been shown as ill-posed as shown by Adams [219]. 

For instance, the Coulomb friction force does not converge by increasing the mesh 

density. Rate and history dependent friction models, such as proposed by Prakash 

and Clifton [220], provide more accurate results in terms of predicting the sliding 

modes. Rate and history dependent models are even considered as ad-hoc solutions 

since no agreed friction model has been proposed in the literature, yet. 
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Even though the Coulomb friction exposes the mentioned problems, it has been 

applied to dynamic fracture of composite materials. For example, Dwivedi and 

Espinosa [122] successfully simulated the experiment conducted by Coker and 

Rosakis [118] using CZM and Coulomb friction, together. They reported that the 

effect of friction coefficient to the crack tip speeds was not explicitly evident unless 

very high values of friction coefficients were used. The angle of the shear Mach 

waves were slightly increased by using high values of friction coefficient [122].  

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 86  (a) Friction FE model under impact load, contours of maximum shear 

stress for (a) crack-like, (b) pulse-like and (c) train of pulses due to friction. 
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In our study, friction is not implemented into the cohesive elements as the effect of 

the friction was mentioned to be negligible and to simplify the modeling approach in 

our study. The implementation of Coulamb friction can be easily performed for δI < 

0 using µssE0δI to calculate the tangential traction opposing the mode-II separation 

motion. 
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CHAPTER 3 

 
 

FINITE ELEMENT METHOD 
 
 
 
Finite element method is the numerical solution of differential equations that are 

performed by explicit and implicit methods, so called implicit and explicit FEA, 

respectively. In the implicit FEA, the physical state at t + Δt is calculated using the 

states at t + Δt [221]. On the other hand, explicit FEA is based on the conditions at 

current state of “t” to calculate the state at t + Δt. In this section, implicit, explicit 

FEA methods and their applications with CZM are provided. Afterwards, derivation 

of kinematic equations for a 4-noded continuum line interface element is presented.  

3.1. Implicit Finite Element Analysis with CZM 

The principle of virtual work can be written for a continuum with cohesive interface 

as follows; 
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where ρ is the density, σ� is the stress tensor, δε� is the virtual strain tensor, T� is the 

cohesive traction vector, T�ext is the external traction vector and δu� is the virtual 

displacement vector, Sext is the external area, Sint is the cohesive area  and V is the 

volume. It can be seen that the cohesive term acting on the Sint is introduced to eqn. 

(96) comparing to the conventional definitions of FEA without cohesive modeling. 

After the discretization, the virtual energy becomes; 
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extintext S
2

2
T

S

T

S
ext

T

V

T =
∂
∂

ρ⋅+⋅−⋅−σ⋅=Ω ∫∫∫∫   (97) 

where B�T is the transpose of B�  matrix relating the strain tensor to the displacement 

vector, N�Tis the transpose of the shape function matrix, N� , Q�T is the transpose of the 

Q�  matrix relating the separation vector to the displacement vector and Ω is the set of 
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equations. The implicit method iteratively solves the eqn. (97)at t + Δt condition 

using the numerical schemes such as Newton-Raphson method [221] as follows; 
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where K�(u�) is the tangent stiffness matrix, Δu� is the displacement increment, and “j” 

is the iteration number. Equilibrium between the external loads, P�, and the internal 

loads, P� r, are iteratively reached at each increment;  

0)û(P̂P̂ )j()j(
r ≈−  (100) 

CZM has been dominantly used with implicit FEA. However, softening behavior of 

the CZM promotes snap-back behavior as shown in Figure 87. In snap-back 

behavior, convergence becomes a problematic issue especially for conventional 

methods such as Newton-Raphson. One of the reasons is divergence to infinity as the 

tangent stiffness matrix diminishes at the peak loads (Figure 87a). Secondly, 

Newton-Raphson uses constant loads in the iterations, which cannot reverse the 

iteration towards the internal points as illustrated in Figure 87a. For the solution of 

snap-back behavior, an arc equation can be augmented in order to reach the internal 

points as proposed by Crisfield [177], Riks [223], Wempner [224] and Ramm [225]. 

This method is called arc-length method, which has been successfully applied to the 

implicit FEA with CZM [135,144,146,178,180,182]. However, the arc-length 

method cannot thoroughly ameliorate the convergence problem. 
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(a) (b) 

Figure 87  Load-displacement curve of a system with snap-back behavior being 

iteratively solved by (a) Newton-Raphson and (b) arc-length methods. 

Another method for increasing the convergence performance is to artificially include 

viscosity to the CZM formulation such as proposed by Gao and Bower [226]. This 

method is known as viscous regularization in the CZM literature. However, 

excessive application of viscous regularization may result in over-estimation of the 

failure load. 

Implicit FEA is very effective for systems exhibiting a relatively linear response. 

Gozluklu and Coker [88,89,90] used the implicit FEA at the linear part of the L-

shaped composite laminate analysis where the snap-back part is continued by the 

explicit FEA. This sequential approach cannot be used in this study since VUEL 

subroutines do not enable. 

3.2. Explicit Finite Element Analysis with CZM 

In explicit FEA, there is no iterative method such as Newton-Raphson and therefore 

no tangent stiffness matrix.  In explicit FEA, the acceleration vector, ü�, is directly 

calculated by Newton’s 2nd law; 

 (101) 

where M�  is the lumped mass matrix. The displacement field can be calculated by the 

central difference method (in compliant with ABAQUS [69]); 
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In the explicit procedure, the time increment complies with Courant–Friedrichs–

Lewy condition [69] which dictates that adequately small time is required for the 

delivery of information between two nodes through the smallest distance. This 

limiting value of the time increment is called stable time increment. The stable time 

increment is calculated by Le/Cd where Le is the length of the smallest element in the 

mesh and Cd is the dilatational wave speed of the material, which is the fastest 

information speed in the continuum.  

Explicit FEA does not have a convergence problem which is a concrete advantage 

compared to the implicit FEA. Gozluklu and Coker[88] used explicit scheme in the 

snap-back behavior due to delamination where the convergence is problematic. 

However, stable time increment is generally so small that the required CPU time for 

the solution of a quasi-static problem is unattainably inflated. Therefore, explicit 

FEA is generally preferred for high speed physical phenomena such as impact 

loading, crash simulations, explosions simulations etc.  For quasi-static cases, Borg 

et al. [139] reported high durations of simulation for the explicit FEA in conjunction 

with CZM. This can be reduced using “mass scaling” method [69]. However, 

inappropriate application of mass scaling might yield artificial inertial effects. 

 
 

(a) 
 

(b) 

Figure 88 Load-displacement curves for (a) delamination simulation using 3rd order 

polynomial and BL CZMs [166] and (b) DCB test at various loading rates [88]. 
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Other issues may arise during the application of CZM to quasi-static fracture 

simulations using explicit FEA. As mentioned by Borg et al. [139] and Pinho et al. 

[166], start of crack propagation may trigger harmonic vibrations that cause 

oscillatory reaction forces in the load-displacement curves as shown in Figure 88a. 

These oscillations are attributed to successive failure of the cohesive elements of 

which failure create a small disturbance in the specimen eventually leading to 

specimen wide vibrations. At the early stages of loading, there are small oscillations 

as seen in Figure 88a. In this case, the profile of the loading was a ramp. This 

problem can be solved using a smooth step profile which sustains a gradual evolution 

of the load. 

Beside the early stages of loading, the failure load and the compliance may be 

artificially increased at higher loading rates as shown in Figure 88b. The reason is 

that the inertial effects may become considerably high. Hence, the loading rates are 

obtained by trial and error analyses to have both an economic and inertia-free 

(“pure”) load-displacement curves in this study. In case of viscosity, high loading 

rates may yield considerable viscous response of the system. 

The essential concern of using CZMs with the explicit FEA is having harmonic 

vibrations triggered the start of crack propagation [88, 139,166]. The main reason of 

the oscillations is the successive failure of cohesive elements one-by-one. Each 

failure yields a small disturbance in the elastic body. Eventually, the vibrations 

become a specimen wide phenomenon. Pinho et al. [166] showed that increasing the 

magnitude of interfacial strength fosters oscillatory response. Coversely, higher order 

CZMs reduced the oscillations, especially for the mode-I fracture [166]. Pinho et al. 

[166] showed that using 3rd order polynomial CZM significantly reduced the 

oscillations in mode-I fracture as shown in Figure 88a compared to the BL CZM 

which is a first order CZM. In addition to the order of the CZM, using more elements 

in a cohesive zone reduced the oscillations. Moreover, conventional techniques such 

as using higher structural damping and/or loading at slower rates also helped to 

reduce the harmonic vibrations. The conclusions of Pinho et al. [166] will contribute 

to the discussions of our results. 
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3.3. Interface Element Formulation 

In this chapter, shape functions and kinematic equations for a 4-noded continuum 

line cohesive interface element are derived (Figure 89). The kinematic equations 

together with the constitutive equations, given in the previous chapter, are required to 

implement the interface element into ABAQUS via VUEL user subroutine [69].  The 

user subroutine used in the study is provided in Appendix B. 

 

1 2

34

y

 x,ξ

(ξ = -1) (ξ = 1) 

: Node
: Integration Point

Node set
   n = 1

Node set
   n = 2

 
Figure 89  Local coordinate system, node numbering and location of integration 

points of the 4-Noded continuum line interface element implemented in ABAQUS. 

 

3.3.1. Derivation of Shape Functions 

The continuum line interface element has linear interpolation function, Σ(ξ), in order 

to be compatible with the conventional quadrilateral bulk elements; 

ξ+=ξΣ 10 AA)(  (104) 

where A0, A1 are constants and ξ is non-dimensional coordinate of x-direction. In 

order to zero the shape function at nodes 2 and 3, “node set 2” n = 2 in Figure 89, 

possible form of shape function at nodes 1 and 4 (n = 1) can be given as follows; 

)1(C)(N 01 −ξ=ξ  (105) 

where N1(ξ) is the shape function at n = 1, and C0 is a constant. In order to have unity 

at n = 1, the constant, C0, is found; 

2
1C              1)11(C)1(N 001 −=⇒=−−=−  (106) 
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Similarly, the second shape function at n = 2 can be obtained following the same 

procedure. The shape functions for n = 1, N1(ξ), and n = 2, N2(ξ), are summarized 

below; 

)1( 
2
1)(N        ,        )1( 

2
1)(N 21 +ξ=ξ−ξ=ξ  (107) 

3.3.2. Kinematic Equations  

The continuum line interface element should be compatible with element orientation 

angle of θe (Figure 90a). Transformation from global to local coordinates is required 

for calculating the displacement and internal force vectors.  
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(b) 

Figure 90 (a) Rotated continuum line interface element and (b) sign conventions of 

element orientation angle. 

 

Assume that the interface element is rotated through the displacements of nodes, i, 

(Xi, Yi) in global coordinate system. The orientation of the element can be calculated 

based on a vector of AB������⃗  passing through the points of A and B located at the middle 

of the node sets 1 and 2, respectively; 
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The vector of AB������⃗  is calculated to find the element orientation angle considering the 

sign convention for 0° ≤ θe ≤ 90°  as illustrated in Figure 90b; 

 
XXXX
YYYYtan

4132

41321
e 








−−+
−−+

=θ −  (109) 

Figure 90b also shows an interface element located in the negative global X-direction 

with the element orientation angle of θe. It can be seen that the definition of element 

orientation angle in +X-direction compensates all geometrical configurations.  

The transformation matrix, R�, is defined in terms of element orientation angle, θe, as 

below; 









θθ−
θθ

=
ee

ee

cossin
sincos

R~  (110) 

Using the data of the previous increment, eqn. (101) to eqn. (103) are solved by 

ABAQUS [69] that provides nodal displacement vector with respect to global 

coordinate system for the interface element, u�e at the current increment. In the matrix 

form, the displacement vector in global coordinates is given; 

[ ]T4,Y4,X3,Y3,X2,Y2,X1,Y1,Xe uuuuuuuuû =  (111) 

where the subscripts indicate the directions and the node numbers.   
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Figure 91 Displacement vector for node-i 



 

155 
 

In the next step, relative displacement vectors (separation vector) in global 

coordinates, Δ�n, are found for the node sets of n = 1 and n = 2 using the 

corresponding shape functions as follows; 

)ûû(N~ˆ n
bottom,e

n
top,e

nn −=∆  (112) 

where subscripts “top” and “bottom” refer to the nodes 3-4 and nodes 1-2, 

respectively. Actually, the displacement vectors in eqn.(112) are partitions of u�e, and 

Δ�n with n = 1,2 are partitions of Δ� .The matrix form of shape functions at node sets, 

n, is defined as below; 
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The global nodal displacements to separation matrix, Q�′, can be written as follows; 





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


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Q~  (114) 

where Q�′ relates the parameters of Δ�  and u�e by the following relation; 

eûQ~ˆ ′=∆  (115) 

Using the transformation matrix, R�, separations in local coordinate system (xy-

system in Figure 91), δ�, can be calculated; 

∆=δ ˆR~ˆ  (116) 
  

[ ]TIIIee ûQ~û)Q~R~(ˆ δδ==′=δ  (117) 

where Q� is the global displacement to local separation matrix that is used to 

calculate the internal loads, P� r. 
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3.3.3. Numerical Integration 

The internal force vector due to the cohesive tractions in the element, P� r,ch, can be 

found using the following integration; 

∫∫
−

ξ⋅=⋅=
1

1

T

S

T
ch,r d)Jdet(T̂Q~wdS)T̂Q~(P̂

int

 (118) 

where w is the width of the specimen and det(J) is the determinant of Jacobian 

matrix [221], which can be generalized for a 1D-line element as the half-length of the 

element as follows; 

4
)YYYY()XXXX(
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2

4132
2

4132 −−++−−+
=  (119) 

The integral in eqn. (118) can be calculated numerically by the below equation [221]; 

∑∫
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(120) 

Newton-Cotes integration scheme is used due to the reasons mentioned in section 

2.2.5.4. The constants of the integration are H1 = H2 = 1/2 and ξ1 = -1, ξ2 = 1. 

3.3.3.1. Numerical Calculation of Energy Release Rate 

The energy release rates (GI and GII) are calculated using the definition of CZM as 

provided in eqn. (51). ABAQUS [69] provides the change of displacement that can 

be used to calculate the change of separations Δδ(j) = δ(j) - δ(j-1) at the j-th increment. 

Concerning the FE models in our study, the stable time increments, Δt, are so small 

that a simple rectangular integration scheme is adequate as illustrated in Figure 92. In 

that case, the tractions are calculated at the current increment. The below relation is 

used for the calculation of Gi for i = I, II; 

)j(
i

j

)j(
ii TG ∑ δ∆=  (121) 
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Figure 92 Rectangular integration scheme at the current increment, j.  
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CHAPTER 4 

 
 
BENCHMARK TESTS FOR VERIFICATION OF COHESIVE INTERFACE 

ELEMENT 
 
 
 
In this chapter, the implemented cohesive interface elements using BL, XN, and RD 

CZMs are verified through the benchmark tests taken from the literature. First of the 

benchmark tests is the Double Cantileve Beam (DCB) tests which represents the 

quasi-static mode-I delamination. The second one is the End-Load Slip (ELS) test 

dedicated for the quasi-static mode-II delamination. The next test to be used for the 

verification is the Three-Point Bending Impact test which represents dynamic mode-I 

fracture. Finally, experiment of asymmetric dynamic loading of polymer-composite 

plates is used for modeling a mode-II dominated intersonic delamination problem to 

verify the implementation. In each tests, numerical issues or modeling parameters are 

discussed. For the modeling of quasi-static fracture, the loading rate is kept as fast as 

possible in order to reduce the solution duration. Similarly, the mesh sizes are used 

referring to the reference study or based on a mesh sensitivity studies. 

4.1. Double Cantilever Beam (DCB) Test 

Double Cantilever Beam (DCB) Test is used to determine mode-I the fracture 

toughness (GIc) of the interfaces. The crack propagation is stable and the loading is 

quasi-static. The geometry of the DCB specimen is rectangle with an initial crack of 

a = 50 mm (Figure 94). The length of the specimen is 150 mm and the thickness is 

3.96 mm made of Carbon/Epoxy woven fabric plies. The specimen is pulled from the 

tips of the arms by displacement loading, U(t), of which definition is a “smooth step” 

formulated as below [69]; 
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where UL is the total loading displacement, tL is the loading duration, and t is the 

time. In the simulations of RD and XN CZMs, the loading duration and total loading 
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displacement are taken as tL = 0.0175 s and UL = 3.5 mm, respectively, which gives a 

loading profile shown in Figure 93.  

 

 

Figure 93 Loading profiles of smooth step with UL = 3.5 mm & tL = 0.035 s and UL = 

10. mm & tL = 0.1 s. 

 

Quadrilateral plane strain elements with single integration point at the centroid, so 

called “CPE4R” in ABAQUS [69], are uniformly used in the mesh of the specimen 

bulk. The implemented cohesive interface elements are located along the crack path 

starting from the crack tip (Figure 94).  The width of the elements (dimension in X-

direction) is denoted by “we” whereas the height of the elements (dimension in Y-

direction), he, is determined by the number of rows of elements, Ne, in the model 

(Figure 94). In the simulations, the mesh parameters are taken as; we = 100 µm and 

Ne = 6 (he = 330) µm, otherwise stated. The stable time incrementation, Δt, is 

calculated as 1.268x10-8 s by ABAQUS. 

The material properties of the specimen is taken from the study of Gozluklu and 

Coker [88] in which isotropic properties of Graphite/Epoxy woven fabric with 

modulus was 60 GPa, Poisson’s ratio was 0.30 and density was 1600 kg/m3. The 

cohesive and interface properties are provided in Table 4 taken from [88]. Noting 

that the mode-II properties are assumed to be equal to the mode-I properties; i.e. GIIc 

= GIc and To,II = To,I based on the study of Gustafson and Waas [161] who showed 

that the influence of mode-II properties is negligibly small in the simulations of DCB 
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test. For the RD CZM, the dynamic interface properties are taken as GIc,∞ = 5GIc, 

TIo,∞ = 2.5To,I, δ̇c= δ̇c = 70 m/s, based on the proportions between rate-dependent and 

independent interface properties presented by Corigliano et al. [156]. 

 

 
Figure 94  DCB specimen dimensions, boundary conditions and morphology of the 

mesh. 

 

 

Table 4 Interface and cohesive properties for DCB. 

GIc 

(N/m) 

To,I 

(MPa) 

B-K criterion 

constant, η 

Penalty Stiffness, 

E0 (N/m3) 

352.3 60 2.25 1014 

 

 

Fringes of opening stresses (σ33) at various stages of crack propagation are shown in 

Figure 95. The location of the crack tip can be followed through the stress 

concentration point which resembles a “butterfly” shape as expected for the plane 

strain condition.  

 



 

162 
 

 

 

 

 

Figure 95 Evolution of crack propagation in DCB (partially shown) specimen and the 

contours of normal stresses (σ33) from top to bottom (t3 > t2 > t1).  

 

The load-displacement curves of DCB test can be analytically derived using the 

beam theory and the definition of fracture toughness [135]. The analytical solution 

predicts the failure load at 45.9 N with a displacement of U = 2.61 mm (2U = 5.22 

mm). The load-displacement curves of BL and XN CZMs are shown in Figure 96a 

together with the analytical solution. All curves agree very well with each other. 

However, spurious oscillations are observed for the BL CZM at the load-

displacement curves after the failure load - the start of crack propagation. On the 

other hand, XN CZM exhibits smoother behavior after the start of crack propagation. 

Indeed, using higher order CZMs in the DCB simulations is known to reduce the 

oscillatory response of the load-displacement curves as suggested by Pinho et al. 

[166] (Figure 88a).  

2U1 

2U2 

 

2U3 
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(a) 

 

(b) 

Figure 96  Load-displacement curves for (a) BL, XN and (b) RD CZMs at various 

loading durations compared to the analytical solution. 

 

The implemented cohesive interface element with RD CZM is used for various 

loading durations; i.e. tL = 0.0175s, tL = 0.0070s, and tL = 0.0035s. The resulting 

load-displacement curves are shown in Figure 96b. The curves are drawn by taking 

an average of four data points in order to reduce the scatter. For the original time of 

tL = 0.0175s, there is no difference between the predictions of RD and BL CZMs 

This means that rate-dependent phenomenon is negligible at the original rate of 

loading. However, the critical load increases upto 50N by increasing the loading rate 

as shown in Figure 96b. This supports the increase of fracture toughness and the 

maximum interfacial strengths at higher loading rates (Figure 81). The results are in 

good agreement with the results of Corigliano and Ricci [196] who reported a same 

level of increase in the failure load of DCB test (Figure 82). The compliance of the 

specimen is increased by the inertial effects as the slope of the linear part is increased 

for the loading durations smaller than tL = 0.0035s. Hence, excessively faster loading 

rates hide the influence of rate dependency in the interface. Actually, it can be 

suggested that studing the rate-dependency using DCB test simulations in 

conjunction with explicit FEA may not be very effective. 

The influence of mesh size, we, is investigated by the DCB simulations based on the 

suggestion of Pinho et al. [166] who mentioned that using smaller cohesive elements 

0

10

20

30

40

50

60

0 1 2 3 4 5 6

Lo
ad

 (N
) 

Displacement, 2U (mm) 

BL
XN
Analytical Solution

UL= 3.5 mm 
tL= 0.0175 s 

28

36

44

52

60

3 4 5 6

Lo
ad

 (N
) 

Displacement, 2U (mm) 

Analytical Solution
t_L = 0.0035s
t_L = 0.0070s
t_L = 0.0175 s



 

164 
 

decrease the oscillatory response. Load-displacement curves obtained using various 

element sizes of we = 50 µm, 200 µm, and 400 µm are shown in Figure 97. It can be 

seen that the spurious oscillations in the load-displacement curves are reduced by 

using smaller cohesive elements. Hence, our results support the suggestion of using 

smaller elements for reducing the oscillations in the DCB simulations in conjunction 

with CZM. 

 

 

Figure 97  Load-displacement curves using interface element sizes of we = 50 µm, 

200 µm, and 400 µm for the DCB test. 

 

 

4.2. End-Load Split (ELS) Test 

End-Load Split (ELS) test is used for determining mode-II fracture toughness (GIIc) 

of composite laminates [227]. In CZM literature, numerical simulation of ELS test 

was also used for the verification of implemented cohesive interface elements for 

mode-II fracture such as performed by Chen et al.  [228]. 
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Figure 98  ELS specimen dimensions, boundary conditions and morphology of the 

mesh. 

 

The specimen dimensions, boundary conditions and morphology of the mesh are 

shown in Figure 98. The length of the specimen is 105mm, the thickness is 3.05 mm 

and the length of the initial crack is 60 mm. The part is clamped from the right end 

whereas the load is applied upwards by a displacement loading from the lower-left 

corner. The profile of the loading is a smooth step defined by the eqn. (122) with UL 

= 25 mm and tL = 0.10 s. Hence, single loading rate of UL = 25 mm and tL = 0.10 s 

are used in the simulations.  

The height of the elements, he, is taken as 254 µm for the entire model. The model 

has a fine mesh zone near the cohesive elements through the crack propagation path 

where the width of the elements, we,1, becomes 90 µm. The width of the elements in 

the coarse mesh region, we,2, increases to 1200 µm. A basic definition of frictionless 

contact, so called “hard contact” in ABAQUS [69], is modeled over the faces of the 

arms as illustrated in Figure 98. The stable incrementation, Δt, is calculated as 

1.104x10-8 s by ABAQUS. 

The laminate is made of Graphite/Epoxy plies which have the following material 

properties; E11 = 130 GPa, E22 = 8 GPa, υ = 0.27, and G12 = 6 GPa [227]. However, 

Chen et al. [228] artificially reduced the original longitudinal modulus, E11, to 100 
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GPa in order to reach similar results of the experiments conducted by Blackman et al. 

[227]. They attributed the artificial reduction in the stiffness to the complexity of the 

boundary conditions in the original study. Hence, the reduced longitudinal stiffness 

of E11 = 100 GPa is also used in our simulations. The interface properties are taken 

from the study of Chen et al. [228] that are provided in Table 5.  

 

Table 5 Interface and cohesive properties for ELS [228]. 

GIIc 

(N/m) 

To,II 

(MPa) 

B-K criterion 

constant, η 

Penalty Stiffness, 

E0 (N/m3) 

856 48 2.25 5x1015 

 

Figure 99 shows the development of crack propagation on the partially shown 

specimen together with the contours of shear stresses. The location of the crack tip 

can be followed through the stress concentration region. The crack propagates 

towards the right as the displacement increases. 

 

 

 

 

 

Figure 99  Development of crack propagation in ELS (partially shown) specimen and 

the contours of shear stresses from top to bottom (t3 > t2 > t1).  
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Load-displacement curves of the simulations of ELS test using RD, BL and XN 

CZMs together with the experiments and the numerical results of Chen et al. [228] 

are shown in Figure 100. It is observed that the curves obtained by BL and XN 

CZMs are perfectly in agreement with each other and in a good agreement with the 

curve obtained by Chen et al. [228]. 

 

 

Figure 100  Load-displacement curves for the simulation of ELS test using BL, RD 

and XN CZM, experimental data and the curves obtained by Chen et al. [228]. 

 

In the DCB simulation (section 4.1), locating the crack tip was an easy process as the 

mathematical crack tip, d = 1 (Figure 60a) is very close to the point of maximum 

normal stress which can be easily located from the stress concentration region. 

Moreover, the deformation of mode-I “opens” the arms of the crack as a result the 

crack tip becomes physically more visible (Figure 10a). On the contrary, locating the 

crack tip in the ELS simulation is harder. Firstly, the length of the shear 

concentration region is so large that locating the point of maximum shear stress 

would be useless and not precious. Moreover, deformation of mode-II fracture 

physically hides the location of the crack tip as the arms are sliding over each other 

(Figure 10b). As a result, exact location of the crack tip under mode-II fracture is not 

agreed in references (section 2.2.5.1). Figure 101 shows contours of shear stresses 

and the damage distribution during the crack propagation of ELS simulation. The 
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length of the cohesive zone is found to be around lCZ = 5 mm and the distance 

between the mathematical crack tip (d = 1) and the center of the stress concentration 

region is  ̴ 3.7 mm. The length of the cohesive zone can be calculated using eqn. (58) 

and Table 3. The approximated cohesive length can be found around 3 mm which is 

smaller than the cohesive length found by FEA (lCZ = 5 mm). This result supports the 

statement of Harper and Hallet [193] about the mismatch between the lengths of 

cohesive zone calculated by analytical and FEA (section 2.2.5). It can be seen that 

the distribution of damage is dominated by the damaged zone very close to d → 1.0 

but not equal to unity. In short, specified or cohesive crack tip definitions are 

effective for locating the stress concentration region in mode-II. 
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Figure 101  Damage distribution in front of crack tip and positions of mathematical 

and cohesive crack tips together with shear stress contours in mode-II condition. 

 

 

4.3. Three-Point Bending Impact Test 

Three-Point Bending Impact test is dedicated for investigation of the dynamic failure 

in mode-I condition. The specimen geometry and the boundary conditions are shown 

in Figure 102 where the length and height of the specimen are 152mm and 37 mm, 

respectively. An initial crack with the length of 7.4 mm is located at the lower side 

(Figure 102). The numerical simulation is based on the study of Zhang and Paulino 
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[229] who numerically used this experiment for the verification of their cohesive 

interface elements under dynamic mode-I condition. The case of Glass/Epoxy plate 

with 40% fiber volume fraction studied by Zhang and Paulino [229] is considered. 

The size of the cohesive elements is 97 which is the same mesh size in the reference 

study [229].  Triangular plain strain body elements, so called “CPE3” in ABAQUS 

[69], are used for the specimen bulk. The material properties of Glass/Epoxy 

specimen are given in Table 6 [229]. The impact is applied to the middle point of the 

top side in a triangular velocity profile increasing linearly to 5 m/s in 0.2 ms and 

linearly decreasing back to zero in 0.2 ms [229]. The stable time incrementation, Δt, 

is calculated by ABAQUS [69] as 1.32x10-8 s. 

 

 

Figure 102  Three Point Bending Impact test specimen geometry, boundary 

conditions, loading and the mesh of the finite element model. 

 

 



 

170 
 

Table 6: Material and interface properties of Glass/Epoxy composite used in Three-

Point Bending Impact test [229] 

E 

(Gpa) 

υ Density 

(kg/m3) 

Cd 

-dilitational 

wave speed 

(m/s) 

GIc 

(N/m) 

To,I 

(MPa) 

Penalty 

Stiffness 

(N/m3) 

B-K 

Factor 

9.010 0.31 1678 2476 1101.8 180.2 1014 2.25 

 

Figure 103 shows the contours of normal stresses in the X-direction at equal time 

intervals of 40µs starting from t = 420µs. The location of the crack tip can be 

followed through the stress concentration region. The crack propagates under mode-I 

conditions taking 140 μs to pass through the entire chord of the specimen.  The 

fringes are in good agreement with eachother and with the results of Zhang and 

Paulino [229].  

 

t0 = 420µs 

 

 

t - t0 = 40µs 

 

t - t0 = 80µs 

 

t - t0 = 120µs 

 

Figure 103  Contours of constant longitudinal stress (σxx - Figure 102) at equal time 

intervals of 40 µs starting from t = 420 µs. (t0 = 0 defines the beginning of impact). 
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Figure 104a presents the crack tip speed - time graphs obtained using BL and XN 

CZMs after the start of crack propagation together with the results of Zhang and 

Paulino [229]. In Figure 104a, the crack starts to grow from 100 m/s reaching a 

maximum speed of 270 m/s in all cases. After attaining the maximum crack tip 

speed, there is a second peak at t ≈ 8 µs and a third one at t ≈ 15 µs. The crack tip 

speed curves of both CZMs and the one obtained by Zhang and Paulino [229] are in 

good agreement with each other. Noting that, the crack tip speeds were not calculated 

by Δa/Δt. Instead, 5-point stencil method was used [230]. The 5-pt stencil method 

reduces the scatter of the speed data as shown in Figure 104b. 5-pt Stencil method 

was used in reference studies for the calculating the speed of intersonic crack 

propagations  [118]. 

The effect of the rate-dependent interface parameters to the crack tip speed can be 

analyzed by Three-Point Bending Impact test by varying the ratio of the infinite to 

the static toughness, which is denoted by “k”; i.e. GIc = GIc,0 = GIc,∞ / k. For the 

interfacial strength, the ratio of “k” is related in the order of two; i.e. TIc = TIc,0 = 

2TIc,∞ / k. The reason is that the ratio of the infinite to the static interfacial strengths 

are nearly half of the ratio of the fracture toughness based on the composite material 

properties provided by Corigliano et al. [156].  Figure 105 provides the crack tip 

speed curves as a function of time for k = 1.0, 1.25, 2.5, 5.0 and 10.0 where k = 1 

points to no rate-dependency (“no RD” in Figure 105). The onset and critical 

separation velocities are equal to 70 m/s (δ̇o = δ̇c = 70 m/s) which is provided by 

Corigliano et al. [156]. It can be noticed that the maximum crack tip speeds are 

reduced by increasing the factor “k”. On the other hand, the secondary peaks become 

blunter as the factor “k” increases. In other words, it can be stated that the crack 

becomes more “viscous” with higher values of “k”. An important observation from 

Figure 105 is that the difference between the curves using k = 5 and k = 10 is smaller 

than the difference between the curves of k = 1.25 and k = 2.5. The difference is 

coming from the rate-dependency behavior proposed by Corigliano et al. [156] 

(Figure 83). 
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(a) 

 

(b) 

Figure 104  (a) Crack tip speed vs time graphs for the three point bending impact test 

using BL and XN CZMs and (b) speed raw data calculated using Δa/Δt and the 

resulting curve with 5-pt stencil method for BL CZM. 
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Figure 105  Crack tip speed-time graphs for the three point bending impact test using 

RD CZM with various k of 1.0, 1.25, 2.5, 5.0 and 10.0 factors, which is defined by 

GIc = GIc,∞ / k, and TIc = 2TIc,∞ / k. 

 

4.4. Asymmetric Dynamic Loading of Polymer-Composite Plate 

Dynamic crack propagation under asymmetric impact loading of adhesively bonded 

polymer-composite plates was studied by Coker et al. [112] in which intersonic crack 

propagation was investigated (Figure 106). In the bi-material interface, the crack 

propagation is under mode-II dominated condition albeit it is somehow a mixed-

mode condition dictated by the eqn. (26). This experiment is especially used as a 

verification simulation for the implemented cohesive interface elements in an 

intersonic crack propagation case.  
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Figure 106  Geometry, boundary conditions, loading and mesh of the finite element 

model for asymmetric dynamic loading of an adhesively bonded polymer-composite 

plate [112]. 

 

A unidirectional CFRP composite laminate is adhesively bonded to a polymer plate 

by leaving an initial crack length of 25 mm from the left side as shown in Figure 106. 

The dimensions of the plates are 125 mm x 100 mm. The impact loading in the x-

direction is applied from the left side of the composite plate as illustrated in Figure 

106. A stepped-triangular velocity profile with the maximum speed of 40 m/s at t = 

25 µs is used so as to model the scenario of “Case-I” in [112]. The same mesh 

properties of [112] are adopted; triangular plane stress elements, CPS3 of ABAQUS 

[69], and the element size of 75 µm near the interface are used. The bulk material 

properties of the CFRP composite and polymer materials are given in Table 7 and 

Table 8, respectively. The interface properties are provided in Table 9, which are all 

taken from the study of Coker et al. [112]. The stable time incrementation, Δt, is 

calculated by ABAQUS [69] as 2.046x10-9 s. 
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Table 7. Material properties of CFRP composite [112]. 

E11 

(Gpa) 

E22 

(Gpa) 

G12 

(Gpa) 

ν12 ρ 

(kg/m3) 

Cd (plane stress) 

- dilatational 

wave speed 

(m/s) 

Cs (plane stress) 

- shear wave 

speed (m/s) 

CR (plane 

stress) 

- Rayleigh 

wave speed 

(m/s) 

80.0 8.9 3.6 0.25 1478 7380 1560 1548 

 

Table 8. Material properties of Polymer (Homalite©) [112]. 

E 

(Gpa) 

ν  ρ 

(kg/

m3) 

Cd (plane stress) 

- dilatation wave 

speed (m/s) 

Cs (plane stress) 

- shear wave 

speed (m/s) 

Cs (plane stress) 

- Rayleigh wave 

speed (m/s) 

5.2 0.34 1230 2187 1255 1155 

 

Table 9. Interface properties [112]. 

GIc = GIIc 

(N/m) 

To,I = To,II 

(MPa) 

26.1 28.0 

 

 

Crack tip speeds as a function of time are plotted in Figure 107a for RD, BL and XN 

CZMs together with the experimental and the numerical results obtained by Coker et 

al. [112]. The experimentally determined crack tip speed is provided around 7500 

m/s whereas the numerical results shows the crack tip speeds around 7200 – 7300 

m/s by Coker et al. [112]. The dilatational wave speed (Cd) is given as 7450 m/s in 

[112]. In our results, the 5-pt stencil method has been used for the calculation of the 

speeds aimilar to [112]. All of the three CZMs predict the same crack propagation 

speeds around the dilatational wave speed that is in good agreement with the results 

of Coker et al. [112]. Interestingly, the effect of the rate-dependency seems 

negligible. 
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(a) 

 
(b) 

Figure 107  (a) Crack tip speed-time graph for asymmetric dynamic loading case of 

an adhesively connected Homalite-Composite plates using BL and XN CZMs 

compared to the results of Coker et al.[112] and (b) contours of constant maximum 

shear stresses at t = 12.2 µs after the impact showing two shear Mach waves 

emanating from the crack tip. 
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Contours of the maximum shear stress fields are shown in Figure 107b at t = 12.2 µs. 

As the crack tip speed exceeds both the longitudinal and shear wave speeds of 

polymer plate, two Mach waves are emanated from the crack tip. The angle of the 

shear Mach waves are calculated as 9.6° and 16.9°. Using the relation of sin(θ) = 

Cs/V, the dilatational wave and the shear wave speeds given in Table 8 can be 

reached.The study of asymmetric dynamic loading of polymer-composite plate is 

repeated using CPE4R [69] elements. Exactly the same patterns seen in Figure 107b 

are observed.  
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CHAPTER 5 

 
 
MODELING OF DYNAMIC DELAMINATION IN L-SHAPED COMPOSITE 

LAMINATES 
 
 
 
In this chapter, sectional loads on L-shaped composite laminates are shortly 

discussed. A recent experimental study that is used as the reference to the 

simulations is brefly presented. Next, the modeling of L-shaped composite laminate 

under axial loading is studied using BL CZM. Following, parametric studies for 

several numerical parameters are conducted by using BL CZM. After the discussion 

on BL CZM, the analysis is repeated using XN and RD CZMs. Finally, an overall 

discussion is presented in this chapter. 

5.1. Shear versus Axial loading of L-shaped Parts 

Three sectional forces; V, P and M are applied to the L-shaped composite laminates 

as shown in Figure 6a. The first of sectional loads is the “shear loading” denoted by 

“V” in Figure 108a. The second type of the sectional forces is the axial loading as 

illustrated in Figure 108b. The deformation shown in Figure 108b is a result of 

displacement input of Uy.  

 
(a) 

 
(b) 

Figure 108  Original shape (black lines) and deformed shape (blue lines) of L-shaped 

composite laminates under (a) axial and (b) shear loading by displacement and force 

inputs. 
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Both the shear loading and the displacement controlled axial loading induce moment 

on the curved region as shown in Figure 109a. In the shear loading, the moment is 

can be calculated as VxL where “L” is the length of the moment arm. For the 

displacement controlled axial loading, the moment, M’, is induced due to the 

clamping boundary condition at the arm.  

 

 

 

(a) 

 

 

(b) 

Figure 109  (a) Forces acting on the curved region under shear loading, axial loading 

with force input and axial loading with displacement input and (b) induced moment, 

M’, as a function of Uz for axial loading case. 

 

Although the induced moment, M’, is zero at the beginning of the axial loading, M’ 

linearly develops with the Uz as shown in Figure 109b. It means that the moment is 

induced according to the type of loading; i.e. whether it is displacement or force. On 

the other hand, the moment induced by the shear loading does not change as 

considerable as the axial loading since the moment arm does not substantially vary. 

The resulting moment will be either an “opening” or “closing” one which defines the 
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sign of the radial stress according to eqn. (10). The positive sing convention of the 

sectional forces of P and V is intentionally selected to induce opening moment. 

 

  

(a) (b) 

Figure 110 Radial normal (solid line) and radial shear (dash line) distributions for (a) 

shear and (b) axial loading cases. 

 

Figure 110a and Figure 110b show the radial normal and shear stress distributions of 

shear and axial loading cases at several sections, respectively. Radial normal and 

shear stresses are normalized by the maximum stress attained in the curved region 

and represented by solid and dash lines, respectively. The stress distribution is 

dominated by the radial opening stresses compared to the shear stresses for the shear 

loading. The maximum stress is attained at 0° in Figure 110a and closer to the inner 

radius. A more convoluted stress distribution is achieved in the axial loading as 

shown in Figure 110b. Initially at -45°, the magnidutes of shear and opening stresses 

are close to eachother. The shear stress develops to the maximum level at +45° 

where the normal stress diminishes. The stress distribution in axial loading cases 

suggests that a crack propagating from the lower arm towards the upper arm is 

initially exposed to mode-I and mixed-mode in the curved region and then it is 

exposed to mode-II fracture in the upper arm.  
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Figure 111  Fringe contours of |σ33/σ13| in the L-shaped orthotropic material taken 

from the study of Gozluklu and Coker [88] for shear (left) and axial (right) loadings 

(1- fiber direction, 3-thickness direction). 

 

Fringe contours of |σ33/σ13| of an L-shaped orthotropic beam with a centered crack 

subjected to shear and axial loads are shown in Figure 111. The ratio of the radial 

normal stress (σ33) to shear stress (σ13) can be considered as a stress based “mode-

mixity” parameter. Blue color corresponds to mode-I dominated fracture whereas red 

color refers to mode-II dominated fracture. From the Figure 111, more complex 

crack propagation behavior can be expected for the axial loading case since two sides 

of the crack tip are exposed to different modes. On the other hand, the fracture modes 

in the shear loading case may be more straight forward as both crack tips are under 

similar loading conditions. Specifically, mode-I dominated fracture is expected in the 

curved region whereas mode-II dominated fracture is expected in the arms region for 

the shear loading case. 

Typical load-displacement curves for the fracture of L-shaped composite laminates 

under axial and shear loads can be summarized in Figure 112 based on the references 

of  [79,83-85,88,94]. A relatively linear loading part is observed in all cases until the 

failure of the part which is associated with the delamination. During the load drop, 

snap-back behavior is observed where a load-controlled solution will follow the dash 

line denoted by “d” whereas a displacement controlled solution or the experiment 

reveals a vertical load drop as shown by the line “e”. Noticeably, the curve “c” can 
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be reached by using arc-length method as discussed in section 3.1. The load-

displacement curves with snap-back behavior are generally observed in the models 

with smaller initial cracks as suggested by Wimmer et al. [83]. Moreover, they are 

attributed to “unstable fracture” in which instantaneous crack growth takes place. 

Relatively stable fractures resemble the curves like “a” and “b” in Figure 112. Stable 

fractures are generally attained with larger initial cracks as suggested by Wimmer et 

al. [83] or using stitching as mentioned by Cox et al. [65]. 

 

 

Figure 112  Typical load-displacement curves obtained for the fracture of L-shaped 

composite laminates [83]. 

 

 

5.2. Recent Experiments on Delamination of L-shaped Composite Laminates  

Uyar et al. [231,232] recently conducted experiments on the delamination of L-

shaped composite laminates in METU Laboratories. Their experimental fixture was 

designed to create a displacement loading perpendicular to the horizontal arm as 

shown in Figure 113a. The load was kept parallel to the Z-direction through the pivot 

pin bearing system. The specimen was bolted to the pivot pin in favor of fixing the 

loaded arm with respect to the curved region of the specimen. The vertical arm of the 

specimen was clamped to the fixture by fasteners. The lower side of the fixture was 

free to translate along the X-direction through a linear motion bearing system which 

provided a smooth and precised motion. As a result, no reaction force in the X-axis 
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was induced. The testing machine is a screw-driven displacement controlled tensile-

compression machine having 10 kN of loading capacity (Schimadzu Autograph 

AGS-J).  All experiments had been conducted at the cross-head speed of 3 mm/min 

at room temperature.  Photron FASTCAM SA-5 ultra-high-speed camera system was 

used at 500,000 fps with a resolution of 64x32 pixels to capture the dynamic 

delamination (Figure 113b). The focus of the camera was aimed at the curved region 

of the L-shaped laminate which is encircled in Figure 113a. 

The experimental specimen is 12 layer cross ply laminate ([(0°/90°)6]s) made of 

AS4/8552 plain weave woven fabric plies. The laminate was manufactured by hand-

lay up method by lying on a male tool together with caul-plates. The curing was 

performed at the pressure of 6.9 bar in an autoclave at 180° C. The total thickness of 

the laminate is 3.36 mm, the length of the upper arm is 9 cm, the length of the lower 

arm is 15 cm and the inner radius is 1 cm.  The specimen was mounted on the fixture 

40 mm from the ends of the clamps as shown in Figure 113a. Several specimens 

were tested in the experiments. However, the results of specimen F1 and specimen 

F2 are taken for this study since these are the available results for today. 
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(a) 

 

(b) 

Figure 113 (a) Experimental fixture for the shear loading of L-shaped composite 

laminates and the area observed by the camera and (b) experimental setup composed 

of the fixture and the ultra-high speed camera. 
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(a) 

 
Δt = 0 

(b)  

 
Δt = 3.8 μs 

(c)  

 
Δt = 7.6 μs 

(d) 

Figure 114 (a) Final view of the failed specimen F2, and (b) snapshot from the ultra-

high speed camera captured for experimentally locating the initiation point (Δt  = 0) 

and during propagation at (c) Δt  = 3.8 μs and (d) Δt  = 7.6 μs for F2 [231,232]. 

 

In the experiments, Uyar et al. [231, 232] initially obtained load-displacement 

curves. Similar to Shikumar et al. [62], a sound of “pop”, which was attributed to 

matrix cracking, was reported by Uyar et al. [231, 232] near the 60-70% of the 

failure load. Following, the delamination occurs instantaneously with a loud sound of 

“bang” in parallel to the abrupt load drop in the load-displacement curves. They 
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observed that a large main delamination at the 5th interface which is between the 5th 

and 6th plies numbered from the inner radius at the final view (Figure 114a). The 

main delamination was totally propagated through the specimen until reaching the 

clamped area where the specimen is mounted.  In addition, they reported other small 

delaminations at the curved region during the load-drop starting at Δt = 570 μs. The 

delamination occurred so instantaneously that the process was hardly captured by the 

camera at 500,000 fps.  The crack length and crack tip speeds versus time data were 

also calculated using the camera recordings where the crack tips are visually located 

as shown in Figure 114. The crack tip speeds were calculated using forward 

difference method by Δa/Δt where Δa is the change of crack length observed from 

the recordings in Δt of time. For the specimen of F2, the initiation stage was captured 

by the ultra-high speed camera at the 5th interface with the angular location of 12° 

from the centerline of the curved region (Figure 114b). The delamination at the 5th 

interface propagated towards the both ends. The pictures shown in Figure 114b-d are 

captured at Δt = 0 (initiation), Δt = 3.8 μs and Δt = 7.6 μs, respectively. They 

recorded a radial motion of the delaminated laminates which vibrates in around 33.3 

kHz. After four to five cycles, the vibration is damped. The results of the 

experiments for the specimens F1 and F2 are provided together with the numerical 

results in the following sections. 

 

5.3. Modeling of Delamination in L-shaped Composite Laminates under Shear 

Loading 

Modeling of delamination in L-shaped composite laminates under shear loading is 

studied (Figure 6a). The numerical investigation is motivated from the experimental 

study of Uyar et al. [231,232].  

5.3.1. Locating the cracks tips in the L-shaped laminates 

In our simulations of delamination in L-shaped composites, both mode-I and mode-I 

propagations are observed. As discussed in section 2.2.5.1, the exact location of the 

crack tip is polemical, especially for the mode-II fracture. Hence, specified crack tip 

is defined by the point of partial damage reaching 60%; i.e. d = 0.6. This definition 

of the crack tip is denoted by d0.6. The damage value of d = 0.6 is determined by 

trial-and-error analysis that gives the best crack tip definition for locating the 
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opening stress concentration region at the specimen arms. On the other hand, 

mathematical crack tip is denoted by d1.0 in which the damage is equal to unity. 

Representative stress distribution and the definitions of the crack tips for BL and RD 

CZMs are shown in Figure 115. It is seen that the locations of d1.0 and d0.6 are close 

to each other as well as to the experimental crack tip that is defined as the last point 

of the visible arms for mode-I. On the other hand, d1.0 is the closest definition to the 

experimentally observable crack tip whereas d0.6 is considerably far from the 

experimentally observable crack tip for mode-II condition as illustrated in Figure 

115-right. Hence, d1.0 is a better approximation for comparison purposes with the 

experimental observations. However, d1.0 does not always stay inside the stress 

concentration region especially for mode-II delamination such as shown in Figure 

101. Namely, neither d0.6 nor d1.0 would be adequate to explain all delamination 

process including both mode-I and mode-II conditions. Because of these reasons, 

both d1.0 and d0.6 definitions of the crack tip are generally provided in this study. The 

discussion about d1.0 is not applicable to the XN CZM since the traction decay of the 

XN CZM takes place asymptotically. For XN CZM, the separation of δ = 10δ0 is 

used. 

 

 

 
Figure 115  Definitions of crack tips for Mode-I (with normal stress fringe) and 

Mode-II delamination (with shear stress fringe) for BL and RD CZM. 
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5.3.2. Numerical Modeling of Intersonic Delamination using BL CZM 

Numerical modeling is performed for the experimental specimen mentioned in 

section 5.2. The deformable region, staying between the clamps, is modeled. Hence, 

the length of the arms is 40 mm in our model (Figure 117a). The material properties 

of AS4/8552 are taken from the material specification datasheet [233] which is 

provided in Table 10. The longitudinal modulus (E11) is the minimum of the average 

of tension and compression modulus in the datasheet [233]. The reason for taking the 

minimum value is to have the closest compliance to the experimental specimen 

where were softer than the nominal data. This can be attributed to environmental 

factors such as aging. Using the average of compressive and tension modulus is a 

general attitude in engineering applications for modeling the specimens under 

bending where both compressive and tensile stresses are equally formed. Interfacial 

normal and shear strengths are taken as To,I = 40 MPa and To,II = 53 MPa, 

respectively. The interfacial strengths are based on the report of [234] where 4-Point 

Bending (ASTM D6415 [28]) and Short-Beam Flexure (ASTM D2344 [29]) tests 

were conducted.  On the other hand, GIc and GIIc were experimentally obtained in 

METU labs as 375.3 N/m and 1467.1 N/m, respectively, using DCB and Edge Notch 

Fracture (ENF) tests [235].  Interface and ply numbering are started from the inner 

radius as indicated in Figure 117a. All of the eleven interfaces are modeled using the 

implemented zero-thickness cohesive interface elements using BL CZM. The penalty 

stiffness of the BL CZM is taken as 1x1014 N/m3 in order to minimize the numerical 

effects of penalty stiffness and minimize the elastic energy stored prior to the 

softening phenomenon as mentioned in section 2.2.5.4. Higher values of penalty 

stiffness are avoided in order to not to create numerical problems and not to be too 

much deviant from XN CZM. The profile of the resulting BL CZM is shown in 

Figure 116 where the crack tip definitions of d0.6 and d1.0 are shown. The curve 

fitting term of the B-K criterion, η, is directly taken from the study of Gozluklu and 

Coker [88] as 𝜂 = 2.25. The dilatational wave speed in the ply direction, C||
d, is 

calculated as 6600 m/s and the shear wave speed, Cs, is calculated as 1636 m/s using 

the eqn.(40). The Rayleigh wave speed, CR, is calculated as 1572 m/s using the 

eqn.(42). All the interface and cohesive properties are summarized in Table 11.   
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Table 10: Material properties of AS4/8552 [233]. 

E11 

(GPa) 

E33 

(GPa) 

G13 ≈ 0.75 x 

G12 (GPa) 

v13 Density (kg/m3) Cured ply 

thickness (mm) 

55.7 8.5 3.7 0.30 1570 0.28 

      

Table 11  Interface and cohesive properties of woven fabric CFRP laminate. 

GIc 

(N/m) 

GIIc 

(N/m) 

To,I 

(MPa) 

To,II 

(MPa) 

B-K 

criterion, 

η 

Dilitational 

wave speed, 

C||
d (m/s) 

Shear wave 

speed, Cs 

(m/s) 

Rayleigh 

wave speed, 

CR (m/s) 

375.3 1467.1 40 53 2.25 6600 1636 1572 
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Figure 116  Traction-separation profile of BL CZM together with d1.0 and d0.6 

definitions of the crack tip for mode-I. 

 

The mesh of the finite element model is homogeneous as shown in Figure 117b. The 

width of the elements is we = 150 μm at the mid-line. The height of the elements is he 

= 70 μm which gives 4 elements in one ply thickness. Noting that, the width of the 

elements in the curved region becomes 143 μm at the outermost chord whereas it 

shrinks to 107 μm at the inner chord. The bulk elements are CPE4R, which is a 4-
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noded plane strain element with single integration point at the centroid. Noting that, 

CPE4R is the only quadrilateral plane strain element available in ABAQUS/Explicit 

[69].  Total number of nodes is 47040, number of CPE4R elements is 37584, number 

of cohesive interface elements is 8613, and number of degrees of freedom is 141120. 

The stable time incrementation, Δt, is calculated by ABAQUS as 9.212x10-9 s. 

Solution duration of a single simulation takes 27 hours and 15 minutes by a 64-bit 

Intel Core i7-2620M CPU 2.70 GHz with 8 GB RAM computer. 

Delamination propagation is inhibited from the ends of the arms by “gluing” the 

nodes of the cohesive elements. The reason is that the experimental fixture shown in 

Figure 113a grabs the laminate from the ends where the laminate is squeezed. Hence, 

no propagation may occur due to the compression at the ends. This is taken as a 

boundary condition in our simulation by stopping the delamination at the latest 

interface nodes by inhibiting separation of the cohesive elements. The vertical arm is 

clamped except for translation in the x-direction. The lower right tip of the horizontal 

arm is displaced by UL = 25 mm in duration of tL = 0.025 s in the Z-direction. A 

displacement controlled “quasi-static fast loading” is applied, which is discussed in 

the next section. 
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(a) 

 
(b) 

Figure 117  (a) Boundary conditions, geometry and (b) mesh of the L-shaped 

composite laminate made of twelve woven fabric CFRP plies with eleven interfaces. 

(1- chord (fiber) direction, 3-thickness direction) 
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5.3.2.1. Quasi-static fast loading 

The main drawback of using explicit FEA in quasi-static loading is the very long 

durations of solution (or “CPU time”). The total number of increments, Σj, can be 

defined as Σj = tL/Δt, where tL is the loading duration and Δt is the stable time 

incrementation. In order to have a quasi-static loading, the loading duration, tL, 

should be in the order of seconds, as for our case. On the other hand, the stable time 

incrementation is extremely small such as in the order of 10-7 - 10-11 s. As a result, 

the number of increments becomes so many that CPU time can be unattainably long. 

As a remedy to the problem, Gozluklu and Coker [88] proposed a sequential method 

in which the quasi-static loading is solved by implicit FEA as mentioned in sections 

3.1 and 3.2. However, the sequential method needs a restart file that has the 

information of deformation state at the end of the implicit solution. Unfortunately, 

this is not suitable for the VUEL subroutines due to the program limitations of 

ABAQUS [69]. Hence, explicit FEA is solely used in this study. 

Instead of sequential method, minimization of the loading duration, tL, helps to 

reduce the CPU time. However, a fast loading might not be quasi-static, as it may 

yield dynamic loading. There are two phenomena that may influence the results in 

case of dynamic loading considering equation of motion. Firstly, viscous effects may 

become dominant due to high loading speeds. In our simulations, the only viscous 

phenomenon included in the simulations is the rate-dependency of the RD CZM. The 

second one is the inertial effects due to high acceleration rates. By minimizing the 

viscous and inertial effects, fast loading can be achieved without sacrificing the 

quasi-static assumption.  

As discussed in the section 3.2, the loading profile of “smooth step” defined by eqn. 

(122) is used since it does not induce osscilations in the early stages of loading. From 

eqn. (122), the speed and the acceleration profiles can be obtained for the smooth 

step as below [69], 
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The resulting profiles of loading speed, V(t), and acceleration, A(t), for UL = 1 and tL 

= 1 as a function of  time and  displacement, U(t), are shown in Figure 118a and 

Figure 118b, respectively. The maximum speed of 1.88 is attained at t = 0.5tL & U = 

0.5UL whereas the maximum acceleration of -5.77 (+5.77) is attained at t = 0.21tL (t 

= 0.79tL) and U = 0.066UL (U = 0.934UL). Figure 118a shows that the specimen is 

gradually accelerated from zero to a finite value, which inhibits the development of 

oscillations in the early stages of loading. Hence, the acceleration is dominated by 

the loading duration, tL, in the power of three whereas it is linearly dependent to the 

UL. Hence, trial-and-error analysis on the loading duration with a fixed value of UL 

would reveal the effect of loading speed in the explicit analysis using the smooth 

step.  

 

Figure 118 Loading speed (V) and acceleration (A) profiles for UL = 1 mm and tL = 1 

s of a smooth step as a function of (a) time and (b) displacement, U. 

 

The simulations at four loading durations of tL = 2.5s, tL = 0.25s, tL = 0.025s, and tL = 

0.0025s with UL = 25 mm are performed for L-shaped composite laminate using RD 

CZM. The reason for using RD CZM is to include viscous effects in the interface. 

The rate-dependent interface properties are based on the study of Corigliano et al. 
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[156]; i.e. GIc,∞ = 5GIc, GIIc,∞ = 5GIIc, TIo,∞ = 2.5To,I, TIIo,∞ = 2.5To,II and the onset and 

critical separation velocities of 70 m/s [156].  The load displacement curves of 

different loading speeds (durations) are shown in Figure 119a. The loading speeds 

with tL = 0.0025 spawned considerable disturbance in the load-displacement curves 

that are associated to inertial effects. On the other hand, the load-displacement curves  

the remaining curves of the remaining speeds sit on each other in Figure 119a. The 

percentage change of crack tip speeds obtained using tL = 0.25s, tL = 0.025s, and tL = 

0.0025s are calculated with respect to tL = 2.5s for the left and the right crack tips as 

shown in Figure 119a and Figure 119b, respectively. For the left crack tip, the fastest 

loading speed of tL = 0.0025s reaches 10% of difference whereas the remaining 

speeds exhibit less than 2.5%. The effect of loading speed is very dramatic for the 

fastest loading speed of tL = 0.0025s where the percentage difference reaches 90%. 

The percentage differences of the remaining loading durations are less than 2%. As a 

result, the loading speeds in advance of tL = 0.0025s with UL = 25 mm can be 

confidently used assuming a quasi-static loading. 
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(a) 

 
(b) 

 
(c) 

Figure 119 (a) Load-displacement curves, (b) percentage change with respect to tL = 

2.5s for left crack tip and (c) right crack tip speed versus time curves obtained for tL 

= 0.0025s, tL = 0.025s, tL = 0.25s, and tL = 2.5s. 
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5.3.2.2. Results and Discussion 

The simulation using BL CZM is performed in ABAQUS/Explicit [69] with the 

implemented cohesive interface element. The load-displacement curves of the 

simulation together with the experimental results of F1 and F2 are shown in Figure 

120a. As a general behavior, the load increases almost linearly with the displacement 

up to a maximum level, so called “failure load”. This point can be associated with 

delamination initiation (point “A”). Afterwards, the load is abruptly dropped which 

can be associated with the propagation stage. In the experiments, the failure load of 

specimen F1 is found to be 753 N at U = 19.5 mm shown by light blue dash line in 

Figure 120a. The load drop of F1 continues until reaching 250 N at U = 19.4 mm. On 

the other hand, the specimen F2 is failed at the load of 735N when the tip 

displacement is U = 18.7 mm, shown by the red dash line in Figure 120a. After the 

minimum load is attained during the load drop, the reloading stage starts with a 

higher compliance (point “B”). The agreement between the experimental specimens 

is very good compared to the similar studies on L-shaped composite laminates in 

references (section 1.4). In the simulations, the failure point is found as 762 N at U = 

19.4 mm which is nearly the same with the experimental result of F1 specimen 

(Figure 120a). Following the failure point, the load is abruptly dropped similar to the 

experimental results albeit spurious oscillations start as representatively shown by 

the dash lines in Figure 120b. The frequency of the oscillations for the reaction 

forces is around 50 kHz. Hence, not all the data is plotted in the figure. Otherwise, it 

would be filled by a “black area” due to huge amount of oscillating curves. The 

oscillations are observed to be slightly reduced by increasing displacement and time. 

The oscillations continue harmonically around the “slope – BL” shown by the 

straight blue line in Figure 120b. The slope can be extended leftward to U = 19.4 mm 

in order to capture an approximate point “B” around 140N for the simulation. 

Delamination propagation continues for several cycles of the reaction force at U = 

19.4 mm. In other words, delamination propagation cannot be associated to a single 

load drop in the simulations. 
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(a) 

 
(b) 

Figure 120  Load-displacement curves obtained for (a) BL CZM together with the 

experimental result and (b) slopes of second loading parts of experiments and BL 

CZM  with the severe oscillations (Point “A”: Start of initiation, Point “B”: End of 

propagation). 
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Prior to the delamination initiation, contours of radial opening (σ33), shear (σ13) and 

longitudinal (σ11) stresses are shown in Figure 121a left, middle and right, 

respectively.  At that instance, no damage has been developed in the specimen. In 

other words, no material nonlinearity has affected the stress distribution. As a general 

behavior, the curved region is dominated by opening stresses whereas the arms are 

dominated by shear stresses together with compressive normal stresses. The 

maximum opening stress is attained at the curved region around 42% of the thickness 

with respect to the inner radius. Shear stresses are localized at four points near the 

corners of the curved region where the maximum shear stress of 42.7 MPa and the 

minimum of -24.3 MPa are located close to the inner radius (Figure 121a-middle). 

The longitudinal stresses resemble a typical stress distribution of a beam under 

bending load. From the Figure 121a, the delamination is expected to initiate under 

mode-I condition at the curved region by exceeding the interfacial normal strength of 

To,I = 40 MPa (Table 11). On the other hand, propagation is expected to occur along 

the arms in mode-II. However, assessments about the fracture modes based on initial 

stress distribution may not provide real modes since stress states would change 

during the crack growth. The final view of the delaminated specimen obtained by the 

simulations is shown in Figure 121b where the opening, shear and longitudinal stress 

distributions are plotted. It is seen that the delamination crack lies along the 5th 

interface which is the closest interface to 42% of the thickness at the point of 

maximum opening stress (Figure 121a-left). The left (L) and right (R) crack tips of 

the delamination is stopped close to the boundary conditions. The final picture is 

very similar to the experimental specimen as shown in Figure 114a where the cracks 

were stopped near the clamps. Unfortunately, small delaminations in the other 

interfaces of the curved region observed during the experiments are not predicted by 

the simulations. Besides, there are minor delaminations initiated near the boundary 

conditions subsequent to the delamination at the 5th interface. These cracks are not 

discussed because they are small and could be numerical artifacts since they are 

located near the boundary conditions. Figure 121b-left shows that the normal stresses 

localize at the curved regions of each delaminated part, resembling the same 

distribution observed in Figure 121a-left. However, the level of the opening stresses 

is not adequate to initiate a new crack at the delaminated arms. On the other hand, 

shear concentration regions are observed in motion while the specimen is under 
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harmonic vibrations that were initiated by the delamination (Figure 121b-middle). 

The longitudinal stresses indicate that the delaminated parts are under bending 

(Figure 121b-right). 

Up to now, numerical results that can be obtained using conventional numerical and 

experimental methods are presented. The progress of the delamination process taking 

place between Figure 121a and Figure 121b is the critical part which needs non-

conventional analysis techniques that is the focus of this study. Contours of radial 

normal stresses just prior to initiation at t = 19400 μs (t = 19.4 ms) and beginning of 

the initiation at tin,BL = 19406 μs are shown in Figure 122a and Figure 122b, 

respectively. Notably, Figure 122a is nothing but a zoomed view of the curved region 

given in Figure 121a-left. The total angle of the curved region becomes 84° due to 

the deformation of the specimen. The maximum opening stress of 40 MPa is attained 

at the angle of 13° counterclockwise from the centerline of the curvature, equal to an 

arc-length of 2.6 mm (Figure 122a). After 6 μs, initiation of a delamination becomes 

apparent as local decreases in the normal stress contours as shown in Figure 122b 

where one cohesive element is totally failed with d = 1. Hence, tin,BL = 19406 μs is 

assumed as the reference time of initiation for BL CZM. The time of occurrence is 

generally calculated with respect to the time of initiation, tin,BL, using the following 

notation; ΔtBL = t - tin,BL. The initiation can not be observed in the shear and 

longitudinal stress contours which are, therefore, not presented. Finally, it can be 

stated that the location of the initiation point predicted by BL CZM is very close to 

the experimental point reported as 12° counterclockwise (Figure 114b). 
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Figure 121 Contours of (a) opening radial (σ33) (left), shear (σ13) (middle) and fiber 

stress (σ11) (right) prior to delamination initiation and (b) opening radial (σ33) (left), 

shear stress (σ13) (middle) and fiber stress (σ11) (right) at the final view.  
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        t = 19400 μs 

             (a) 

 

tin,BL = 19406 μs 

           (b) 

Figure 122  Contours of radial normal stresses (σ33) (a) just before the initiation at t = 

19400 μs and (b) during the initiation with one failed cohesive element (d = 1) at 

tin,BL = 19406 μs for the simulation with BL CZM. 

 

Following the start of initiation, propagation of delamination can be followed from 

Figure 123 where the boundaries of layers (cohesive interfaces) are drawn as grey 

lines. The locations of left and right crack tips are labeled by “L” and “R”, 

respectively, for d1.0. In addition, partially damaged crack tip locations of d0.6 are 

denoted by small letters; i.e. “l” is for the left crack tip and “r” is for the right crack 

tip. Contours of constant radial normal (σ33), shear (σ13) and longitudinal (σ11) 

stresses are presented in top, middle and bottom of the figure, respectively. From left 

to right, successive stages of delamination propagation can be followed from the 

stress plots given at the instants of ΔtBL = 0.6 μs, ΔtBL = 1.6 μs, ΔtBL = 2.6 μs, ΔtBL = 

3.6 μs, and ΔtBL = 5.6 μs.  In Figure 123-top, the opening radial stresses are 

concentrated in front of the crack tips as the crack propagates to both sides. The left 

crack tip just passes the vertical arm at ΔtBL ≈ 2.5 μs, whereas the right crack tip 

stays inside the curved region. At ΔtBL = 3.6 μs, the crack tip for d0.6 (r,l) accelerates 

whereas the crack tip for d1.0 (R,L) stay below the opening stress concentration. From 

a different interpretation, the opening stresses in front of the opening stress 

σ33(MPa) 
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concentration is reduced by damage segregation that is being followed by the crack 

tip of d0.6 (r,l). In parallel, shear stresses develop from ±15 MPa to ±30 MPa 

symmetrically at both crack tips. These behaviors favors that mixed-mode crack 

propagation is taking place at ΔtBL = 3.6 μs where mode-II condition gradually 

dominates. The segregation of the damage zone can be explained by transition from 

mode-I to mode-II loading zones where the length of the cohesive zone, lCZ, in the 

mode-II is larger than the length in mode-I (lCZ,I < lCZ,II) as discussed in section 2.2.5 

(Figure 101). At ΔtBL = 5.6 μs, the right crack tip moves to the horizontal arm and 

the opening stresses are sinked.  As a general behavior for the curved region, 

delamination initiates and propagates under mode-I conditions for couple of 

microseconds. Afterwards, mixed-mode propagation is followed by mode-II 

dominated crack propagation as the crack approaches to the arms. It can be seen that 

the crack tip definition of d1.0 is compliant with the opening stress concentration 

region and therefore provided the best crack tip definition. Figure 123-bottom reveals 

that the longitudinal stress distribution does not resemble zones of stress 

concentration at the crack tips as the crack is along the hoop direction. Instead, 

typical longitudinal stress distribution under bending loading is observed.  
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  ΔtBL = 0.6 μs      ΔtBL = 1.6 μs            ΔtBL = 2.6 μs          ΔtBL = 3.6 μs            ΔtBL = 5.6 μs  

 
 

Figure 123  Contours of constant (top) opening (σ33), (middle) shear  (σ13) and 

(bottom) longitudinal stresses (σ11) with respect to time together with locations of 

fully damaged (d1.0) and partially damaged (d0.6) left (l,L) and right (r,R) crack tips at 

the curved region for BL CZM (grey lines represent the interfaces). 
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Figure 124 shows contours of constant radial opening (top), shear (middle) and 

longitudinal stresses (bottom) in the horizontal arm with respect to time together with 

right crack tip locations (r, R). The important observation from the opening stress 

plots is the formation of oblique opening stress gradients, stress waves, at the crack 

tip for d0.6. No observation of stress waves can be made from shear and longitudinal 

stress contours. In order to show the details of stress waves, a zoomed view of the 

opening stress plot at ΔtBL = 11.6 μs is shown in Figure 126a. The angle of the stress 

wave is calculated as 41° from the crack line which is almost kept the same during 

the propagation in the horizontal arm until ΔtBL = 13.6 μs. After ΔtBL = 13.6 μs, the 

angle of the stress wave approaches to 90° as it slows down and finally disappears at 

ΔtBL = 15.6 μs. The wave front is accompanied by other stress waves coming behind 

the crack tip of d0.6. The number of accompanied stress waves is being developed in 

time which can be seen form Figure 124-top. It can be seen that shear stresses are 

dominated at the horizontal arm compared to the opening stresses. This suggests that 

the crack propagation in the horizontal arm takes place under mode-II condition. An 

important observation is that the crack tip of d1.0 does not correctly represent the 

location of the right crack tip after ΔtBL = 7.6 μs. The crack tip of d1.0 is both far 

away from the stress wave fronts and stress concentration regions. It seems that the 

crack tip definition using d0.6 perfectly represents the location of the crack tip in the 

horizontal arm where mode-II crack propagation is expected.  
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Figure 124  Contours of (top) opening, σ33, (middle) shear, σ13, and (bottom) 

longitudinal, σ11, stresses at various time intervals for the horizonal arm using BL 

CZM ( r,R → d0.6, d1.0 crack tips, dash lines show shear Mach wave fronts).  
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Contours of constant radial opening (σ 33), shear (σ13) and longitudinal stresses (σ11) 

together with the locations of left crack tips (L,l) for the vertical arm are respectively 

shown in Figure 125. At ΔtBL=5.6 μs, an interesting view of the crack is shown. The 

left crack tip of d0.6 is under pure mode-II condition as the compressive stresses are 

acting with shear stresses. On the other hand, the left crack tip of d1.0 is located at the 

opening stress concentration region stressing a mode-I dominated condition. Two 

different definitions for the left crack tip may direct two different loading modes at 

the same time. Actually, the definition of the left crack tip using d1.0 does not reflect 

the crack tip position after ΔtBL=5.6 μs. Similar to the horizontal arm, the crack 

propagation takes place under mode-II condition along the vertical arm from the 

stress plots given in Figure 125-left and Figure 125-middle. Opening stress waves 

trailing the crack tip and following reflecting waves are also observed in the vertical 

arm. In contrast to the right crack tip, the stress waves are visible throughout the 

propagation in Figure 125-left. Furthermore, the angle of the stress waves is 

continuously changing in the figures. The change of angles, which were 

distinguished from the stress fringes at each microsecond, are measured as 40°, 34°, 

30° and 35° at ΔtBL = 6.6 μs, ΔtBL = 9.6 μs, ΔBL = 12.6 μs and ΔtBL = 15.6 μs, 

respectively (Figure 126b).  

Stages of development of a stress wave can be better followed from Figure 127 

where the opening stress fringes and the left crack tip locations (l,L) are given at 

ΔtBL = 5 μs, ΔtBL = 6 μs, ΔtBL = 8 μs, and ΔtBL = 9 μs for the vertical arm. At ΔtBL = 

5, there is no sign of stress wave front where compressive stresses are acting on “l” 

whereas tensile stresses are applied to “L”. One microsecond later, a stress wave 

front of compressive stress becomes visible above “l”.  At ΔtBL = 8 μs, a second 

wave is emanated from “L” while the initial wave front moves to the right. 

Afterwards, the second wave becomes blurry around “L” whereas the initial stress 

wave moves further to the right.  It should be noted that exactly the same patterns are 

observed at the right crack tip during the given time interval. Therefore, Figure 127 

is also applicable to the right crack tip. The morphology and the kinetics of the stress 

waves reveal signatures of shear Mach wave emanated from the crack tip during 

intersonic crack propagation. Similar to our case, Dwivedi and Espisona [122] 

reported formations of shear Mach waves only in the normal stress plots during 
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intersonic crack propagation in composite laminates. It is suggested that the first and 

the second opening stress waves are emanated from d1.0 and d0.6 definitions of the 

crack tips as they successively exceed the shear wave speed of the material. Stress 

waves will be revisited once the crack tip speed curves are presented in the following 

paragraphs. 
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Figure 125 Contours of (top) opening, σ33, (middle) shear, σ13, and (bottom) longitudinal, σ11, stresses at various time intervals for the 

vertical arm using BL CZM ( l,L → d0.6, d1.0 crack tips, dash lines show shear Mach wave fronts, stress legends are given in Figure 124). 
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(b)  

Figure 126 Zoomed views of  opening stress contours showing stress wave fronts and 

reflecting waves for (a) right crack tip (r) in horizontal arm at ΔtBL = 13.6 μs and (b) 

left crack tip (l) in vertical arm at ΔtBL = 6.6 μs, ΔtBL = 9.6 μs, ΔBL = 12.6 μs and 

ΔtBL = 15.6 μs. 
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Figure 127  Development of shear Mach wave fronts during the transitioning to the 

intersonic delamination regime together with opening stress contours. 

From the stress plots, it can be stated that fully damaged, d1.0, definition of the crack 

tip represents the crack tip position for mode-I dominated delamination such as for 

the curved region. On the other hand, partially damaged crack tip of d0.6 provided the 

best representation of the crack tips in the arms where mode-II dominated crack 

propagation takes place. Neither definition of the crack tips would be adequate to 

explain the whole process in the L-shaped composite laminate where the 

delamination involves both mode-I and mode-II regions. As the experimental results 

are referred in our analysis, the crack tips that were observed in the experiments can 

be also concerned for selecting one of them. Figure 128 shows experimental and 

numerical pictures giving an L-shaped composite specimen with similar crack 

lengths. The experimental crack tip is a black pixel which shows the last black-to-

white contrast distinguishable to the naked eye. In other words, the end of “black 

zone” inside the crack region is considered as “the crack tip”. Noting that, no stresses 

were observed in the experiments. The nearest crack tip definition to that point in the 

simulations would be d1.0 since it corresponds to full separated crack surfaces. 

Moreover, most of the experimental data are available for the curved region where 
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d1.0 works well. Hence, the crack tip definition of d1.0 is selected for the remaining 

study. Noting that, the results of d0.6 are also provided whenever needed.  

 

      

(a)             (b) 

Figure 128  (a) Location of a crack tip observed during the experiments, (b) 

numerical model with crack tips definitions of r and R for d0.6 and d1.0, respectively. 

 

Crack length versus time curves for left (L) and right (R) crack tips are shown in 

Figure 129 where the experimental results for the specimens of F1 and F2 are also 

provided. The crack lengths corresponding to end of curved regions (EoCR) for left 

(L) and right (R) crack tips are represented by horizontal lines in the figure. In Figure 

129, the experimental results, which mostly cover the curved region, agree well with 

the numerical predictions. There is a rapid propagation regime of crack propagation, 

which starts from the beginning and continues until ΔtBL ≈ 18 μs. This time of 

interval is covered by the previous stress plots where signatures of shear Mach waves 

were encountered. In the rapid propagation regime, the left and right crack tips 

quickly reach  ̴ 41 mm and  ̴ 27 mm, respectively. Afterwards, the crack propagation 

continues either discretely or slowly until the crack tips arrive near the boundary 

conditions. Finally, the left and right crack tip reaches 45 mm and 50 mm of crack 

lengths, respectively. The whole process takes around 130 μs when the tip 

displacement is at U = 19.4 mm and the load has been oscillated around seven times. 

Minor propagations at the 5th interface or initiation of small delamination at other 

R 
r 
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layers around the boundary conditions are observed at the later stages of loading that 

are not covered by the figure as they are not discussed. This study focuses on that 

rapid propagation regime which reveals signatures of intersonic crack propagation, 

experimentally and numerically. 

 

 

Figure 129 Crack length versus time curves for left (L) and right (R) crack tips for 

numerical and experimental results (EoCR: End of Curved Region). 

 

The energy release rate for mode-I (GI) and mode-II (GII) for the left and right crack 

tips are respectively shown in Figure 130a and Figure 130b where the horizontal axis 

represents the crack tip positions, SL and SR. Both crack tips initiate and propagate 

under pure mode-I condition which stays dominant until the crack tips reach SR = SL 

≈ 4.0 mm. Afterwards, the fracture mode is smoothly transitioned to mode-II at SR = 

SL ≈ 12 mm. The fracture mode can be summarized in Figure 130c in that the crack 

starts propagation from the curved region under mode-I condition after it smoothly 

transitions to mode-II through a mixed-mode propagation region. A remarkable 

symmetry of energy release rate curves between left and right crack tips can be 

observed in Figure 130 in SL,SR < 27 mm. It shows that the crack tip propagation 

takes place under symmetric fracture conditions during the rapid propagation regime 

although there is no geometrical symmetry. For SR > 27 mm, the right crack tip 

propagates under complex mixed-mode regimes. Actually, those parts are 

corresponding to the secondary crack growth stages stated for Figure 129 in the 

previous paragraph. 
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(a) 

 

(b) 

 

(c) 

Figure 130 Energy Release rate as a function of crack tip locations (SL,SR) for (a) left 

(L) and (b) right (R) crack tips  and (c) representative zoning of the specimen in 

terms of fracture modes. (EoCR: End of Curved Region) 
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Left and right crack tip speeds as a function of time obtained using BL CZM and 

experimental results for specimens F1 and F2 are shown in Figure 131a and Figure 

131b, respectively. No speed data for right crack tip of the F2 specimen was 

available in the experiments. Crack tip speeds are calculated for both d1.0 and d0.6 

definition of the crack tips. Initiation of delamination takes place asymptotically in 

the speed curves for d1.0 because the initial crack almost suddenly occurs in a finite 

length. Noting that, d0.6 definition of the crack tip similarly initiated asymptotically 

which is out of the time axis of the figure since d0.6 initiated at ΔtBL = -2.75 μs. It is 

known that crack tip speeds cannot exceed Rayleigh wave speed under mode-I 

condition which is the case at the curved region during the initiation. Hence, it is 

assumed that the delamination initiates around 1.2 μs when the sub-Rayleigh crack 

propagation starts after the asymptotic regime. It should be noted that the crack 

initiation with cohesive elements is a polemical subject that is not focused by this 

study. After the initiation, d1.0 definition of left and right crack tips propagate at sub-

Rayleigh wave speeds around 1000 - 1200 m/s until ΔtBL ≈ 6.7 μs. The crack tip for 

d0.6 develops to intersonic speeds around 3.5 μs whereas d1.0 definition of the crack 

tips transition from sub-Rayleigh to intersonic speeds at ΔtBL = 8 μs. The crack tips 

for d1.0 and d0.6 sustainably propagate at intersonic speeds of 3500 m/s and 2500 m/s, 

respectively. In general, left and right crack tips exhibit nearly the same kinetic 

behavior until reaching the maximum speeds. Afterwards, the left crack tip tends to 

continue at intersonic speeds whereas right crack tip gradually slows down to sub-

Rayleigh wave speeds. Specifically, d0.6 definition of the crack tips generally moves 

slower than the d1.0 definition of the crack tips at the intersonic regime before ΔtBL < 

12 μs for the left and ΔtBL < 10 μs for the right crack tips. Afterwards, both 

definitions of the crack tip slow down to sub-Rayleigh wave speeds together. For the 

experiments, the left crack tip speed data for the F2 specimen shows that the 

propagation occurs at sub-Rayleigh speeds around 1250 m/s for ΔtBL = 4 μs. After it 

slows down to 420 m/s at ΔtBL = 5.7 μs, intersonic crack tip speed of 2200 m/s at 

ΔtBL = 7.6 μs was recorded in the experiment which is very close to the numerical 

curve obtained for d1.0 definition. For the right crack tip, the speed data of F1 and F2 

specimens are marked as squares and triangles, respectively, in Figure 131b. Both 

specimens revealed that the crack propagates at sub-Rayleigh speeds around 700 – 

1200 m/s until reaching ΔtBL = 5.7 μs. Specimen F2 reaches very close to Rayleigh 



 

216 
 

wave speed at ΔtBL = 7.6 μs whereas F1 specimen shows that the crack propagation 

travels at an intersonic speed of 1700 m/s, just above the shear wave speed, at ΔtBL = 

8.6 μs. Afterwards, F1 specimen slows down to sub-Rayleigh wave speed of 1250 

m/s at ΔtBL = 11.5 μs. In general, experimental results agree with the crack tip speeds 

obtained for d1.0 definition of the crack tip using BL CZM even after considering 2.8 

μs of time difference between the two definitions. This supports the proposal that d1.0 

definition of the crack tip is a good approximation for the experimental crack tips 

that can be followed from the camera recording by naked eye. Especially, right crack 

tip speeds obtained experimentally agree well with the numerical results except for 

the speed data near t = 8 μs where BL CZM reaches to critical speed. Although the 

experimental speeds of F1 are not very close to the numerical results, the crack tip 

behavior of F1 characterized by increasing from sub-Rayleigh to intersonic speeds 

and then dropping down to sub-Rayleigh speed is in compliant with the numerical 

crack tip behavior. 

It is suggested that the stress waves that were observed in the arms were actually 

shear Mach waves emanated from the crack tip since the crack tip speed curves 

revealed intersonic speeds. The propagation speed of crack tips for d0.6 at intersonic 

regime can be calculated from the angle of the wave front, θ, using the equation of V 

= Cs/sin(θ) (section 2.2.3.1) where Cs = 1636 m/s (Table 11). The angle of the shear 

Mach wave is measured as 41° for the horizontal arm at ΔtBL = 5.6 μs, ΔtBL = 7.6 μs 

and ΔtBL = 11.7 μs (Figure 126a). The crack tip speed calculated from θ = 41° is 

2494 m/s which is indicated by “X” in the Figure 131b. The crack tip speeds 

calculated from the wave angle sit on the right crack tip speed curve for d0.6.  For the 

vertical arm, the crack tip speeds can be estimated from the wave angles shown in 

Figure 126b as 2545 m/s, 2925 m/s, 3272 m/s, 3272 m/s and 2852 m/s at  ΔtBL = 6.6 

μs, ΔtBL = 9.6 μs, ΔtBL = 12.6 μs, ΔtBL = 13.6 μs and ΔtBL = 15.6 μs, respectively. 

The calculated crack tip speeds from the wave angles are in perfect agreement with 

the left crack tip speeds for d0.6. These results further validate the predictions of the 

numerical model especially for the formation of shear Mach waves at intersonic 

speeds. 

 



 

217 
 

 

(a) 

 

(b) 

Figure 131  Crack tip speed as a function of time calculated using FEA in 

conjunction with BL CZM, experimental specimens for (a) left crack tip and (b) right 

crack tip (EoCR: End of Curved Region for d1.0 definition of the crack tip). 
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Although exact correspondence between the stress waves and the crack tip speed 

curves cannot be made due to approximation methods used for the speed data, 

development of shear Mach waves can be approximately followed from Figure 131. 

For instance, the development of shear Mach wave emanated from the left crack tip 

(l) shown in Figure 127 can be explained from Figure 131b. It can be seen that no 

shear Mach wave front can be observed at ΔtBL = 3.3 μs since the crack tip speeds are 

below sub-Rayleigh wave speed. At ΔtBL = 4.3 μs, the shear Mach wave is visible at 

the crack tip of “l” when the crack tip speed is intersonic speed of 2540 m/s. At each 

step, the angle of the shear Mach wave is gradually decreased that is attributed to the 

increase of the crack tip speed for d0.6. It should be noted that although the formation 

of secondary shear Mach wave emanated from the crack tip of “L” at ΔtBL = 6.3 μs 

can be explained by the corresponding intersonic speed in Figure 131b, the 

disappearance of the Mach wave cannot be explained from the speed curves. The 

formation of the secondary shear Mach wave is similar to the slip-stick friction 

behavior as shown in Figure 86d where the resulting formation is so called “train of 

pulses” [217]. 

Two observations can be made for the general behavior of the crack propagation 

using BL CZM. At first, an asymptotical intersonic initiation stage is continued by 

sub-Rayleigh propagation inside the curved region. Second is that the crack tips 

suddenly reach intersonic crack tip speeds near the arms. As discussed in section 

2.2.3.2, increase of crack tip speeds can be attributed to the mode of fracture. It is 

recalled that the mode-II propagation tends to travel at intersonic speeds whereas 

mode-I crack growth is limited below the Rayleigh wave speed of the material 

(Figure 52a). In addition to the stress plots, phase angles, Ψ(t), as a function of time 

is a better tool to analyze the mode-mixity which are shown in Figure 132a and 

Figure 132b, respectively. It can be seen that both phase angle figures start from the 

zero and stay Ψ < 10° which suggests that the initiation takes place under pure mode-

I condition that is maintained for about 3.5 μs. This result is in compliant with the 

crack tip speeds which are below Rayleigh wave speed during the first couple of 

microseconds after the initiation stage. Afterwards, the phase angles gradually 

converge to ninety degree meaning that the propagation takes place under mixed-
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mode condition during the transition. After ΔtBL > 8 μs, the propagation continues 

under almost pure mode-II condition. Comparison of Figure 131 and Figure 132 

suggests that both crack tips propagate in sub-Rayleigh wave speed for Ψ < 80° after 

when it speeds up to intersonic speeds (Ψ > 80°). Namely, the transition from sub-

Rayleigh to intersonic speeds is in parallel with the mode transition from mode-I to 

mode-II. However, the phase angles cannot explain the decrease in the right crack tip 

speed between 8 μs < ΔtBL < 14 μs in Figure 131b as the phase angle of Ψ ≈ 90° 

directs a mode-II crack propagation. The reduction in the speeds can be attributed to 

the depletion of the available energy for fracture.  Interestingly, the similarity 

between the phase angles of left and right crack tips are dramatically the same for 

ΔtBL < 16 μs. The symmetry in the kinetics of the crack growth conflicts with 

asymmetry in the initial stress distributions as shown in Figure 121a. It is suggested 

that the symmetry in the kinetics of the propagation can be explained that the crack 

propagation is driven by the release of strain energy stored by the quasi-static loading 

not by the external stresses.  

 

 

(a) 

 

(b) 

Figure 132  Phase Angle, Ψ, as a function of time for (a) left and (b) right crack tips 

(EoCR: End of curved region). 

 

The energy balance in the specimen as a function of time is shown in Figure 133a 

after t = 10 ms where total work done, strain, fracture and kinetic energies are 
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presented. In addition, there are artifical strain and viscous dissipation energies 

because of using slight hourglass control and quadratic damping in the bulk elements  

(CPE4R) [69]. These artificial phenomena are inherently involved by 

ABAQUS/Explicit as a default property [69]. In this study, the total fraction of the 

artificial energies never exceeds 5% of the total work which is suggested by the 

ABAQUS [69]. In Figure 133a, the external work done has been totally transformed 

into strain energy before the load is gradually increased to the failure load. When 

strain energy and external work reach 6.7 J at t = 19.4 ms, the strain energy suddenly 

drops down to 2.6J whereas external energy does not change. In parallel, fracture 

energy rapidly jumps to 2.6 J and the kinetic energy develops to 1.5J at the rapid 

propagation region. This behavior dictates that the strain energy is transformed not 

only to fracture energy but also to kinetic energy at the rapid propagation region 

(Figure 133a). Development of kinetic and the fracture energies as a result of 

increase of specimen compliance while decreasing the strain energy can be explained 

by eqn. (45). The remarkable point is that kinetic energy reaches considerably high 

values under quasi-static loading and it is only initiated by the delamination reaching 

intersonic speeds. To the best of author’s knowlegde, such a behavior has not been 

shown before for composite engineering parts. After the rapid propagation phase, 

strain and kinetic energies are harmonically transformed to eachother with an 

amplitude and frequency of  ̴ 1.6J and  ̴ 500 Hz, respectively. It means that the initial 

jump of the kinetic energy was an overshoot of the component disturbed the 

equilibrium of the specimen and eventually leading to vibrations.  

The intersonic delamination takes place at the rapid propagation region where the 

majority of the energy transformation occurs. After the rapid transformation, there 

are minor increases of fracture energy as a result of small or discrete crack growths at 

slow speeds and other minor crack initiation regions near the boundary conditions as 

mentioned before. Figure 133b gives a zoomed view of the Figure 133a at the rapid 

transformation region. The majority of the energy transformation occurs around 20 

μs. In detail, the fracture energy is dissipated slightly before ΔtBL = 0  since the 

damage starts to develop prior to the initiation that was assumed to be the instant 

when an element attains d = 1. A second phase of vibration is observed at the 

frequency of 50 kHz which is seen from the harmonic transformations of strain and 

kinetic energies. The high frequency vibrations can be linked to the supirious 
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osscilations in the load displacement curves as they have the same frequency around 

50 kHz (Figure 120b). Noting that high frequency vibrations of 33.3 kHz were 

reported by the high speed camera recordings in the experiments. The vibrations in 

the simulations are very close to the expermental results. The vibrations were 

damped after several cycles in the experiments.  

 

 
(a) 

 
(b) 

Figure 133 (a) Energy balance (external work done, strain, and kinetic and fracture 

energies) for BL CZM after t = 10 ms and (b) energy balance focused on the rapid 

transformation region as a function of time. 
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tin,BL = 19406 μs    ΔtBL = 0.6 μs ΔtBL = 2.6 μs 

 

 

 ΔtBL = 5.6 μs  ΔtBL = 7.6 μs ΔtBL = 11.6 μs 

Figure 134 Vector plots of resultant velocity during initiation (tin,BL = 19406 μs) and 

stages of propagation at ΔtBL = 0.6 μs, ΔtBL = 2.6 μs, ΔtBL = 5.6 μs, ΔtBL = 7.6 μs, and 

ΔtBL = 11.6 μs (Left and right crack tips are shown as “L” and “R”, respectively). 
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Initiation of the delamination triggers the motion of the L-shaped composite 

specimen. Vector plots of resultant velocity during the initiation at ΔtBL = 0 and 

stages of propagation at ΔtBL = 0.6 μs, ΔtBL = 2.6 μs, ΔtBL = 5.6 μs, ΔtBL = 7.6 μs, 

and ΔtBL = 11.6 μs are shown in Figure 134. The adjacent parts of laminate separated 

from the 5th interface at the delamination site start to radially translate to the opposite 

sides by the initiation. At ΔtBL = 0.6 μs, the radial separation of the parts accelerates 

to  ̴ 25 m/s. The magnitude of the radial separation velocity further develops to 50 

m/s at ΔtBL = 5.6 μs. Afterwards, the separation velocity spreads to both directions 

following the crack tips (“L” and “R”). Starting from ΔtBL = 2.6 μs, the vortex like 

velocity vectors appear in the vicinity of the crack tips. The velocity vectors at the 

arms are so complex that velocity vectors resembles a longitudinal separation 

indicating shear deformation and vortex like formations. The velocity field loses its 

symmetry when the crack reaches the half of the arms at ΔtBL = 11.6 μs. The velocity 

vectors at the arms become more significant even reaching to 20 m/s in the arm 

direction at ΔtBL = 11.6 μs. 

 

 
  

 

Figure 135 Particle velocity vector plot at ΔtBL = 5.6 μs and a zoomed view of a 

vortex like formation above the right crack tip (R) (Velocity legend is given in 

Figure 134). 
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Several interesting observations can be made from Figure 134. First of all, the 

velocity fields somehow resemble the same characteristic of mode-mixity seen in the 

phase angles. For instance, the mode-I dominated zone at the curved region shows 

opening velocities whereas separation velocities are observed at the arms where the 

mode-II fracture is dominated. The second remarkable observation is the formations 

of vortex like hot spots at the velocity plots. A zoomed view of the vortex like 

formations is shown in Figure 135 at ΔtBL = 5.6 μs. The zoomed view shown on the 

right side of Figure 135 presents a rather smooth velocity distribution making whirl 

motion during the crack propagation. Such formations are generally observed at the 

mixed-mode fracture regions in the vicinity of the d1.0 definition of the crack tip. 

5.3.2.3. Parametric Study 

The prediction of the numerical analysis using BL CZM presented in the previous 

section is based on material and interface properties as well as the numerical 

parameters such as mesh density and number of cohesive interfaces.  The material 

and interface properties are actually “fixed values” that are obtained from 

experiments. On the other hand, the numerical parameters of mesh density and the 

number of cohesive interfaces can be changed. The objective of this section is to 

investigate the effects of such numerical parameters. Load-displacement curves, 

fracture pattern, stress distributions and crack-tip speed curves are studied.  

5.3.2.3.1. Mesh Sensitivity Study 

The height of the elements is applicable to the bulk elements since the cohesive 

elements do not have height. On the other hand, the width of the elements is 

determined by the minimum number of cohesive elements used in a cohesive zone 

(lCZ) as discussed in section 2.2.5.4 where two cohesive elements are suggested for 

implicit solvers. However, there is no such a solid suggestion for the explicit FEA. 

Initially, the simulations with the element widths of we = 1000 μm, 500 μm, 250 μm, 

125 μm, and 62.5 μm are repeated. The height of the body elements is 132 μm, 

except for the finest mesh (we = 62.5 μm) where he = 90 μm. Figure 136 shows 

failure load and failure displacement normalized by the values obtained using the 

finest mesh model with we = 62.5 μm and he = 90 μm as a function of mesh density 

characterized by the number of cohesive elements per cohesive zone (lCZ). The 

length of the cohesive zone is 1.76 mm which is calculated for mode-I. In Figure 
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136, both the failure loads and the failure displacements converge to unity by we = 

125 μm corresponding to 8 elements in a cohesive zone. It should be noted that 

severe oscillations in the load-displacement curves just after the failure point are 

observed no matter which of the mesh size was used. 

 

 

Figure 136  Normalized parameters of failure loads and failure displacements as a 

function of mesh density characterized by the number of cohesive elements modeled 

per cohesive zone (lCZ,I / we) for we = 1000 μm, 500 μm, 250 μm, 125 μm , 62.5 μm 

and lCZ,I = 1.76 mm. 

 

For the above widths of the interface elements, the curves of left and right crack tip 

speeds for a certain interval of time (1 μs < t < 10 μs) are plotted in Figure 137a and 

Figure 137b, respectively. In Figure 137a, the influence of the mesh size is observed 

to be small for the left crack tip except for the coarsest mesh size of we = 1000 μm. 

The right crack tip speeds are in good agreement with each other for we = 250 μm, 

125 μm and 62.5 μm (Figure 137b). However, the mesh sizes of we = 1000 μm and 

500 μm diverge from the crack tip speed curve. Hence, there is no considerable 

difference in the crack tip speed data for we ≤ 250 μm. This conclusion supports 

using we = 125 μm in our simulations. 
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(a) 

 
(b) 

Figure 137  Crack tip speed as a function of time for (a) left and (b) right crack tips 

for the mesh sizes of we = 1000 μm, 500 μm, 250 μm, 125 μm and 62.5 μm. 

 

The mesh density also affects the fracture pattern characterized by the number and 

locations of delaminations. In the trial simulations, the major influencing parameter 

is the number of elements modeled through the thickness or the height of the 

elements, he. The number of elements in the thickness direction between the each 

interface, Ne, is defined by Ne = 280mm/he where 280 μm is one ply thickness 

(Figure 117). The models with Ne = 1, 2 and 3 are investigated by comparing to the 

finest mesh model, we = 62.5 μm with Ne = 6 elements (Figure 138a). The results 

show that the models having Ne = 2, 3 and 6 predict the delamination at the 5th 

interface as presented in 5.3.2.2. On the other hand, the model having Ne = 1 (Figure 

138b) predicts a different fracture pattern with a new delamination at the 6th interface 

during the load-drop. Hence, using single element in one ply thickness wrongly 

predicts the fracture pattern. 
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(a)         (b) 

 
 

(c) 

     
(d) 

Figure 138 Curved region of the finite element modelgiven for (a) Ne = 6, (b) Ne = 1 

and locations of delaminations predicted by the models having (c) Ne = 2, 3, 6 and 

(d) Ne = 1 elements during the load-drop (ply boundaries are shown by straight 

lines). 

 

5.3.2.3.2. Number of Cohesive Interface Lines and Penalty Stiffness  

Numerical modeling of a laminate composed of multiple plies can be associated with 

modeling all the interfaces. As mentioned in section 2.2.5.4, the compliance of the 

model could be artificially increased due to introduction of cohesive compliance into 

the system if there are too many cohesive elements in the system.  
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1 Interfaces 3 Interfaces 5 Interfaces

7 Interfaces 11 Interfaces

 

Figure 139  L-shaped composite laminate specimen with 1, 3, 5, 7 and 11 lines of 

cohesive interfaces shown by red lines. 

 

Five different number of cohesive interfaces; 1, 3, 5, 7 and 11 are studied as shown 

in Figure 139. In the models, the cohesive lines are equally spaced through thickness. 

The compliance of the specimen is specified as the average of the inverse slope of 

the load-displacement curves up to the failure point. The change of compliance with 

respect to number of cohesive interfaces is shown in Figure 140a for the penalty 

stiffness of 4x1013 N/m3, 2x1013 N/m3, and 1x1013 N/m3. It can be seen that the 

specimen compliance linearly increases with the number of cohesive interfaces. 

Moreover, the penalty stiffness strongly decreases the compliance of the specimen. 

The effect of the penalty stiffness is isolated for the models using 1 and 7 cohesive 

interfaces as shown in Figure 140b. It is important to notice that the influence of the 

penalty stiffness is much more dramatic. The percentage difference of the 

compliance is calculated with respect to the specimen compliance without cohesive 

interface. Figure 140c shows the percentage difference of the compliance as a 

function of number of cohesive interface lines. The maximum increase of the 

compliance is about 4% for the model with 11 cohesive interfaces having the softest 

penalty stiffness of 1x1013 N/m3. On the other hand, the model using the penalty 

stiffness of 1x1014 N/m3 gives only 0.55% of difference. The effect of penalty 

stiffness is much more pronounced as seen in Figure 140d, where any reduction in 

the penalty stiffness exponentially increases the compliance of the specimen. In 
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conclusion, the value of the penalty stiffness dominates the compliance effect 

compared to the number of cohesive lines. 

The numerical analyses are repeated using the softest (compliant) penalty stiffness of 

1x1013 N/m3 corresponding to 1/10 of the original model (1x1014 N/m3). Figure 141a, 

Figure 141b and Figure 141c respectively shows the resulting load-displacement, left 

and right crack tip speed curves for d1.0 definition using BL CZM with the original 

penalty stiffness (BL) and the compliant BL CZM (BL (Compliant)) using the softest 

penalty stiffness. Although the failure load is slightly increased by 10 N, the failure 

displacement is considerably increased by 1 mm for the compliant BL CZM (Figure 

141a). Hence, the compliance of the specimen is increased by 4% for the BL 

(Compliant). The crack tip speed curves exhibit the same profile; however, it shifts 

towards the right by 0.7 μs prior to the transition region (Figure 141b-c). It means 

that the crack propagation in sub-Rayleigh speeds, where mode-I dominated crack 

propagation occurs, takes longer time by the compliant BL CZM. 

Influences of using multiple cohesive interfaces are not limited to increase of 

compliance. Cohesive interfaces also cause discontinuities of stress contours at the 

interfaces. Figure 142 shows two example contour plots of opening stress (σ33) 

obtained using a fine mesh (left) and a coarse mesh (right) in the thickness direction 

for a model with 11 cohesive layers. In Figure 142, there is no damage developed in 

the cohesive elements and no relative displacements between the interfacial nodes. 

The former mesh has Ne =55 elements, whereas the latter has Ne =22 elements in the 

thickness direction, where we = 250 μm for both. It can be seen that the stress 

contours are discrete between the interfaces for the coarse mesh model (Ne =22). On 

the other hand, the mesh with Ne =55 shows rather smooth stress distribution with 

continuous contour lines. The reason for the stress discontinuities can be attributed to 

the mismatch of the integration points between the cohesive and the bulk elements. 

The integration points of the cohesive elements are located at the nodes whereas the 

bulk elements, CPE4R, have a single integration point at the centroid.  Using large 

number of elements in the thickness direction reduces the effect of the mismatch of 

the integration schemes as the number of data points for extrapolating the stresses is 

increased. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 140  (a) Compliance of the specimen versus number of cohesive interfaces, 

(b) compliance versus penalty stiffness and difference of compliance change with 

respect to number of cohesive interfaces as a function of (c) number of cohesive 

interfaces and (d) penalty stiffness, E0. 
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(a) 

 
(b) 

 
(c) 

Figure 141 (a) Load-displacement curves and crack tip speeds as a function of time 

curves for (b) left and (c) right crack tips for the original BL CZM and the compliant 

BL CZM (BL (Compliant)). 
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Figure 142  Contours of constant opening stresses (σ33) on the curved region during 

the shear loading with 11 layers of interface lines (black straight lines) using fine 

mesh (left) and coarse mesh (right) for the thickness direction. 

 

Slight discontinuities in the stress contours are also reported in the references 

[112,165,217].  For example, the stress fringes shown in Figure 86 reveal 

discontinuities at the stress contour lines although the mesh is extremely fine. These 

types of discontinuities are attributed to early sliding of the plies in shear 

deformation before any softening. The sliding of the plies can be observed from 

tangential relative displacement of the interface nodes.. The influence of early sliding 

of plies becomes much evident for multiple interface models and with compliant 

CZMs. Figure 143a provides the angles of Mach waves for the models with single 

and multiple interfaces using the original BL CZM with E0 = 1014 N/m3 and multiple 

interface model using the compliant BL CZM with E0 = 1013 N/m3 at an instant of 

intersonic crack propagation. The angle of the Mach waves are measured as 37° for 

both single and multiple interface models which are all using the high penalty 

stiffness of E0 = 1014 N/m3. On the other hand, the angle of the Mach wave in the 

upper and lower delaminated parts are reduced to 28° and 30°, respectively, for the 

compliant BL CZM using E0 = 1013 N/m3. The reduction in the wave angles is 

attributed to early sliding of the interfaces for the compliant BL CZM since the crack 

tip speeds are nearly the same. The difference between the upper and lower 

delaminated arms is accounted for the number of interfaces in the delaminated parts 

where the former has the largest number of interfaces revealing more sliding and 

therefore smaller Mach wave angle. It is suggested that the sliding of plies makes a 

rigid body motion of the plies that results in a false view of canted stress contour 
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lines although the angle of stresses inside the plies are correct. Representative stress 

contour lines for sliding (soft CZM) and non-sliding cases (stiff CZM) together with 

the ply stress contour lines are shown in Figure 143b. It can be seen that although the 

stress contour lines inside the plies are parallel with the non-sliding model, sliding of 

the plies forms an artificial canted stress line forming the shear Mach wave front. 

This phenomenon will be revisited in section 5.3.3.1 where XN CZM exhibited 

similar patterns. 

As mentioned in section 2.2.5.5.1, the penalty stiffness is required for implicit 

solvers as the first perturbation requires tangent stiffness matrix. The value of the 

penalty stiffness in explicit solvers should be taken as high as possible while it 

should not create numerical problems such as during matrix operations. 
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(a) 

 
(b) 

Figure 143  (a) Angles of Mach wave fronts obtained by single interface with E0 = 

1014 N/m3, multiple interface with E0 = 1014 N/m3 and E0 = 1013 N/m3  and (b) 

representative stress contours lines due to early sliding of plies (straight black line) 

together with a reference non-sliding stress contour line (red dash line). 
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5.3.3. Numerical Modeling of Intersonic Delamination using XN CZM 

Two FE models for the L-shaped specimen presented in section 5.3.2 were solved 

using XN CZM. The first of the models is the one shown in Figure 117a with all of 

the parameters are the same except for the CZM where XN CZM is used. The second 

L-shaped model for the XN CZM is nothing but modeling single interface at the 5th 

interface where all remaining parameters are the same. The reason for building a 

second model with single interface is to minimize the effect of using large number of 

cohesive interfaces to the artificial compliance referring to the discussion in section 

5.3.2.3.2. Unfortunately, XN CZM does not have an independent penalty stiffness 

parameter that can be increased to minimize the artificial increase of the specimen 

compliance. The penalty stiffness of the XN CZM using Table 11 can be 

approximately calculated as 1.3x1013 N/m3 using the eqn. (81) and eqn. (83). It means 

that the initial stiffness of XN CZM is very close to the penalty stiffness of the 

compliant BL CZM that exhibited early sliding of the plies in section 5.3.2.3.2. 

Hence, a single interface model is needed to find out possible complications.  The 

main objective of this section is to make a comparison between XN CZM with BL 

CZM using the model with 11 interfaces. Hence, “XN CZM” in the following 

paragraphs directly corresponds to the model with 11 interfaces otherwise the single 

model is indicated as “XN CZM (Single Int.)” or “XN CZM with single interface”. 

Secondly, the influences of using multiple interfaces with XN CZM are revealed 

wherever the differences are evident.  

Traction-separation profile of XN CZM together with the BL CZM using Table 11 

properties are shown in Figure 144. The onset separations for mode-I and mode-II 

are calculated as δo,I = 3.5 μm and δo,II = 23.7 μm, respectively which are greater than 

the onset separations of BL CZM. The location of the crack tip is calculated using 

6δo,i whenever mode-I and mode-II separations (i = I, II) are attained first which was 

also used by Xu and Needleman. As the XN CZM is an exponential function, using 

the separation value for zero traction as a crack tip is not convenient. Hence, the 

value corresponding to d1.0 of BL CZM is assumed as 6δo,I for XN CZM. No 

discussion is made for any other crack tip for the sake of simplicity and the reasons 

mentioned in section 5.3.2.2. 
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Figure 144 Traction-separation profile of XN CZM together with the BL CZM for 

mode-I. 

 

 

5.3.3.1. Results and Discussion 

The simulation using XN CZM is performed in ABAQUS/Explicit [69] with the 

implemented interface element via VUEL user-subroutine. The load-displacement 

curve of the numerical analysis using XN CZM is shown in Figure 145a together 

with the BL CZM and the experimental results. The failure point of the XN CZM 

curve is found to be 791 N with U = 20.6 mm when initiation of delamination takes 

place. Just after the load drop, severe oscillations are observed for the XN CZM 

accompanied with the propagation of delamination very similar to the BL CZM. 

Hence, no effect of using high order CZM is observed for reducing the oscillations or 

changing the load-displacement behavior. The load level at the reloading stage is 

calculated around 150 N using the same procedure in BL CZM for getting rid of 

oscillations. Although the model of XN CZM overshoots the failure load of the 

experiments by 5.5%, the failure is predicted very well. The vital observation is that 

the compliance of the XN CZM is slightly greater than the compliance of the model 

using BL CZM.  
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(a) 

 

Figure 145 (a) Load-displacement curves of XN CZM, BL CZM and the 

experimental results and (b) with the curve obtained for single interface model (XN 

CZM (Single Int.)). 
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The load-displacement curve obtained using XN CZM with single interface (XN 

CZM (Single Int.)) is shown in Figure 145b together with the curves of BL CZM and 

XN CZM. It can be seen that the failure load of XN CZM with single interface is still 

the same with XN CZM albeit the displacement, U, reduces to 20.1 mm. The XN 

CZM has the highest compliance whereas XN CZM with single interface has the 

same compliance with the BL CZM. This result dictates that the effect of using large 

number of cohesive interfaces is more evident for the XN CZM. 

The fracture pattern obtained from XN CZM is the same with BL CZM which is the 

delamination at the 5th interface reaching the ends of the specimen. Moreover, the 

stress plots given in Figure 121 are the same for the XN CZM. The fracture pattern 

obtained from XN CZM with single interface is also the same. However, the figures 

of initiation are not the same compared to Figure 122. Figure 146a and Figure 146b 

shows contours of radial normal stresses (σ33) prior to initiation at t = 21393 μs and 

during the initation at tin,XN = 21397 μs for the model with XN CZM, respectively. 

During the initiation, the angle of the curved region is 83° which is slightly smaller 

than the angle obtained by BL CZM due to the larger crack tip displacement, U, in 

XN CZM. The maximum opening radial stress is attained at 23° towards the vertical 

arm. Interestingly, the angular location of the initiation point is 20° (Figure 146b) 

which is not the same location of the maximum stress (Figure 146a). Recalling that, 

the delamination was initiated at the point where the maximum stress had been 

attained for the BL CZM (Figure 122). The stress contours prior to the initiation and 

at the instant of initiation obtained by the XN CZM with single interface are 

presented in Figure 146c and Figure 146d, respectively. The time of initiation in the 

single interface model, tin,XN_1 = 20555 μs, is earlier than the XN CZM. Such a 

difference can be expected as the failure tip displacement of the single interface 

model is smaller than the XN CZM model. An interesting observation is that the 

angular location of the maximum stress and the initiation points are not equal to the 

model with 11 cohesive interfaces even though the angle of the curved region is 

same. Moreover, the angular locations of the initation parameters, maximum stress 

and initiation points, are closer to the BL CZM for the XN CZM with single 

interface. This suggests that the number of cohesive interfaces may also affect the 

location of the initiation point. 
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Figure 146  Contours of radial normal stresses (σ33) (a) just before the initiation at t = 

21393 μs of XN CZM and (b) during the initation at t = 21397 μs of XN CZM and 

(c) prior to initiation at t = 20550 μs of XN CZM with single interface and (d) during 

the initation with at t = 20555 μs of the simulation using XN CZM with single 

interface. 
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t1 – tin,XN = 1.0 μs     t3 – tin,XN = 3.0μs   t4 – tin,XN = 4.0 μ     t5 – tin,XN = 5.0 μs   t7 – t1in,XN = 7.0 μs 

 

 

Figure 147  Contours of constant (top) opening (σ33), (middle) shear  (σ13) and 

(bottom) longitudinal stresses (σ11) with respect to time together with locations of 

fully damaged (d1.0) and partially damaged (d0.6) left (l,L) and right (r,R) crack tips at 

the curved region for XN CZM (grey lines represent the interfaces). 
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Contours of constant radial opening (σ33), shear (σ13) and longitudinal stresses (σ11) 

with respect to time together with the locations of left (L) and right (R) crack tips at 

the curved region for the model using XN CZM are shown in Figure 147-top, Figure 

147-middle and Figure 147-bottom, respectively. From the opening stress contours, it 

can be seen that the opening stresses reduce as the left and right crack tips propagate 

towards the arms. The stress contours are very similar to the results of BL CZM 

shown in Figure 123. However, the stress plot reveals formations of circular stress 

contours at each ply. An example of shear stress distributions with circular patterns is 

shown in Figure 148a which is the zoomed view of the picture ΔtXN = 3.0 μs in 

Figure 147-middle. The corresponding stress plot obtained using XN CZM with 

single interface is also provided in Figure 148b where smoother stress distribution 

without any circular formations can be seen. It is sugguested that the interfaces in the 

XN CZM exhibit soft mechanical response that reduces strain compatability in the 

thickness direction. As a result, shear stresses individually develop inside the plies 

while weakly sustains the total stress distribution. It should be noted that similar 

patterns are observed for the multi-interface model for compliant BL CZM discussed 

in section 5.3.2.3.2. 

 

  
(a)  

 
(b) 

Figure 148  Contours of shear stresses at ΔtXN = 3.0 μs for (a) XN CZM and (b) XN 

CZM (Single Int.) 
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Figure 149  Contours of (top) opening, σ33, (middle) shear, σ13, and (bottom) 

longitudinal, σ11, stresses at various time intervals in horizonal arm for XN CZM ( R 

→  6δo,I definition of crack tip, orange arrow follows opening stress concentration).
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Figure 150 Contours of (top) opening, σ33, (middle) shear, σ13, and (bottom) longitudinal, σ11, stresses at various time intervals in vertical arm 

for XN CZM ( L →  6δo,I definition of crack tip, orange arrow follows opening stress concentration, legends are given in the previous figure).  
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Figure 149-top, Figure 149-middle, and Figure 149-bottom respectively show 

contours of constant radial opening (σ33), shear (σ13) and longitudinal stresses (σ11) at 

the horizontal arm for XN CZM. The small-orange arrows follow the tip of the 

opening stress distributions. The stress gradients at the right crack tip are oblique but 

not as sharp as the BL CZM shown in Figure 124. Other the other hand, no oblique 

stress gradients that could be the reflecting waves are not observed in the simulations 

of XN CZM in the horizontal arm. The fringes of shear and longitudinal stresses 

(Figure 149-middle, and Figure 149-bottom, respectively) exhibit very similar stress 

contours compared to the results of BL CZM shown in Figure 124-middle and Figure 

124-bottom, respectively. There are minor differences such as formations of circular 

shear stresses concentrating at the middle of the plies of the XN CZM simulations. 

For the vertical arm, the contours of opening, shear and longitudinal stresses at 

various time intervals are respectively shown in Figure 150-left, Figure 150-middle 

and Figure 150-right for the XN CZM. An arrow for locating the left crack tip (L) 

and a small-orange arrow following the tip of the opening stress distributions are 

shown in the figures. The opening stresses form clear formations of oblique gradients 

during the propagation of the left crack tip. The oblique formations are visible for the 

reflecting stress waves. Although the gradients are not as clear as BL CZM seen in 

Figure 125-left, the stress waves are expected to be shear Mach waves in the vertical 

arm. Shear and longitudinal stresses are very similar to the stress contours of BL 

CZM except for the formations of circular shear stresses concentrating inside the 

plies. 
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Figure 151  Contours of constant opening stresses (σ33) for horizontal and vertical 

arms obtained using XN CZM with single interface at ΔtXN_1 = 13 μs (The legend 

is given in Figure 150). 
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Example plots for constant opening stress contours are presented in Figure 151 for 

horizontal and vertical arms at ΔtXN_1 = 13 μs using XN CZM with single 

interface. At first glance, the stress distribution at the horizontal arm is somehow 

similar to the one given in Figure 149-top in terms of stress concentrations of 

tensile/compressive regions and remaining stress patterns moving with the crack 

tip. However, the morphology is not exactly the same. For example, the oblique 

stress gradient at the crack tip obtained by XN CZM with multiple interfaces is 

elongated than the gradient found for the single interface model. Moreover, the 

magnitudes of the moving stress concentrations behind the crack tip are smaller in 

the single interface model. Similarly, the stress contours at the vertical arm in the 

single interface model seems similar to the result obtained by the multiple 

interface model (Figure 150-left). Yet, the stress concentration in the single 

interface model is smoother and more circular shape compared to the fringes 

given in Figure 150-left. For instance, the tensile and compressive stress 

concentration fields obtained using multiple interfaces in Figure 150-left resemble 

more tilted morphology like a canted “water drop” with the sharp end looking 

downward. In addition to the morphology of the stress fields, the magnitudes of 

the stress concentrations in the delaminated arms are smaller in the single 

interface model. Actually, the morphology of the stress gradients in the multiple 

interface models can be attributed to early sliding of the XN CZM model. The 

opening stress concentration region in front of the left crack tip at ΔtXN_1 = 13 μs 

obtained using the models with multiple interfaces and single interface are shown 

in Figure 152a and Figure 152b, respectively. It can be seen that the contour lines 

are “translated” towards the right between each ply in Figure 152a if they are 

followed from bottom to the up. On the other hand, the stress contours are rather 

smooth in Figure 152b where no interface was modeled at the portion of the 

laminate shown in the picture. It is suggested that the sliding motion of the plies 

causes an artificial effect to the morphology of the stress contours of the XN CZM 

model in such a way that the contour lines eventually resemble a more canted 

view. The sliding phenomenon discussed in section 5.3.2.3.2 disturbs the stress 

morphology in XN CZM simulations even for the non-damaged regions. 
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(a) 

 
(b) 

Figure 152  The opening stress concentration region in front of the left crack tip at 

ΔtXN_1 = 13 μs obtained using (a) multiple interfaces and (b) single interface model. 

 

The left and right crack tip speeds as a function of time using XN CZM and XN 

CZM with single interface models together with the BL CZM and experimental 

results are shown in Figure 153a and Figure 153b, respectively. For the left crack 

tip, the predictions of the models with single and multiple lines of XN CZMs are 

very well agreed with each other. The left crack tip speeds propagate at sub-

Rayleigh wave speeds until ΔtXN = 11 μs when they suddenly jump to 4200 m/s. 

Just after reaching the top speed, they continue the propagation at critical speed of 

Vc for more than 4 μs. Afterwards, they start to decelerate. The behavior of the 

XN CZM is very similar to the BL CZM except the time of the speed jump to 

intersonic speeds 4.5μs later than BL CZM for the left crack tip. The behavior of 

the left crack tip is supported by the stress contours shown in Figure 150-left 

where the formations of Mach waves emerge at ΔtXN = 13 μs. Similar to the left 

crack tip, XN CZM and XN CZM with single interface are in agreement with 

each other for the right crack tip. XN CZM exhibits a low profile of propagation 

speeds which is dominated by sub-Rayleigh wave speeds. The right crack tip 

accelerates to intersonic speeds around 1800 m/s when the crack tip approaches to 

EoCR at t = 11.3 μs. The predictions of XN CZM are only in agreement with BL 

CZM for the first 6 μs. After that time, the speed curves of both models exhibit 

different behaviors. In general, experimental data is predicted with adequate 

accuracy by XN CZM for the right crack tip. Lack of Mach wave formations for 

the opening stresses at the horizontal arm (Figure 149-top) can be explained from 

Figure 153b which shows slower crack tip speeds.  
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(a) 

 

(b) 

Figure 153  Crack tip speed as a function of time graphs of XN CZM, XN CZM with 

single interface and BL CZM for (a) left and (b) right crack tips 

 

The energy balance obtained for XN CZM is shown in Figure 154a where external 

work, strain, kinetic and fracture energies are plotted. The delamination occurs at t ≈ 

21.4 ms when the external work of 7.4 J is reached. Afterwards, kinetic energy 

rapidly develops to 1.8 J while strain energy decreases to 2.8J and the fracture energy 

reaches 2.9J. Similarly, the strain energy and the kinetic energy transform to each 

other in a frequency of 50 kHz which is equal to the frequency obtained for the BL 
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CZM. A vital observation is the small osscilations observed in the fracture energy. In 

theory, as the fracture process is irreversible, there could be no decrease in the 

fracture energy unless the crack is “healed”. The osscilations in the XN CZM show 

decreases of fracture energy although they are small. This happens due to the fact 

that XN CZM is a reversible model before reaching the fracture toughness. Hence, 

the small osscilations create “negative” separations that artificially heal the crack. 

Hopefully, the decreases of the fractue energy is negligibly small. However, this is a 

very important observation that should be concerned for modeling XN CZM with 

unloading scenarios. 

The kinetic energy graphs of XN and BL CZMs are shown in Figure 154b as a 

function of time after initiation. It can be seen that the kinetic energy of XN CZM is 

slightly greater than BL CZM. The reason is that XN CZM has higher strain energy 

stored at the failure point since it fails at higher load and displacement (Figure 145a). 

Therefore, more strain energy is available for kinetic energy. No considerable 

difference is observed in the kinetic energy of the XN CZM with single interface 

model which is therefore not presented in the figure. Figure 154c shows the fracture 

energies released during the delamination propagation for the simulations of XN 

CZM, BL CZM and XN CZM with single interface. An important obsrvation from 

the XN CZM is that the fracture energy starts from 0.32 J, not from the zero, at the 

time of initiation. The difference of 0.32 J is sustained between the fracture energies 

of BL and the XN CZMs in the remaining part of the figure. The difference of 0.32 J 

is also observed in the total work done. On the other hand, the model using XN CZM 

with single interface starts from zero and develops to the same level of BL CZM that 

is around 2.6 J. These results suggest that early sliding of all the interfaces, not 

limited to the 5th interface, released “unmature fracture energy” before the failure 

point since the soft interfaces in the XN CZM spawn considerable separation at the 

cohesive elements forming an unreal fracture energy. This is one of the 

complications rised by the compliant initial slope of XN CZM. 
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(a) 

 
(b) 

 

(c) 

Figure 154  (a) Energy balance obtained by XN CZM, (b) kinetic energy curves for 

XN CZM and BL CZM and (c) fracture energies for BL CZM, XN CZM and XN 

CZM with single interface. 
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5.3.4. Numerical Modeling of Intersonic Delamination using RD CZM 

The L-shaped composite laminate and the finite element model presented in section 

5.3.2 was solved using RD CZM. Traction-separation profile of RD CZM using the 

properties of Table 11 is shown in Figure 155 for mode-I case. The rate-dependent 

interface properties are referred to the study of Corigliano et al. [156]; i.e. GIc,∞ = 

5GIc, GIIc,∞ = 5GIIc, TIo,∞ = 2.5To,I, TIIo,∞ = 2.5To,II and the onset and critical separation 

velocities are taken as 70 m/s since they were provided for delamination of CFRP 

laminates [156]. The constitutive law of RD CZM at zero separation speed is 

equivalent to BL CZM. The crack tip definition in RD CZM is d1.0 where fully 

damaged element (d = 1.0) is considered as the crack tip. 
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Figure 155 Traction-separation profile of RD CZM for various separation speeds at δ̇ 

= 0, 50 m/s, 100 m/s and infinite speed. 

 

5.3.4.1. Results and Discussion 

The simulation using RD CZM is performed in ABAQUS/Explicit [69] with the 

VUEL user-subroutine. The resulting load-displacement curve obtained from the 

numerical simulation of L-shaped composite laminate is shown in Figure 156 

together with the experimental results of F1 and F2 specimens and BL CZM. The 

load-displacement curves of RD and BL CZMs are indistinguishably the same. 

Actually, the rate-dependency in the interface does not affect the load-displacement 

curve including the spurious oscillations that still exist as severe as original. 
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Figure 156  Load-displacement curves of RD CZM, BL CZM and the experimental 

results. 

The delamination occurs at the 5th interface similar to the other CZMs. The final and 

initial stress distributions are indistinguishably same with the results of BL CZM 

shown in Figure 121. The constant stress contours of opening radial stresses prior to 

initiation and the start of initiation are shown in Figure 157a and Figure 157b, 

respectively, where the angle of the curved region, the angular location of the 

maximum stress and the initiation point are indicated. The angle of the curved region 

is equal to 84°, the same with BL CZM, which is expected from the load-

displacement curves. The angular location of the maximum stress and the initiation 

location are attained at 13° from the centerline. The locations of the initiation 

parameters are the same with the prediction of the BL CZM. Even the time of 

initiation is found as tin,RD = 19402 μs which is only 4 μs earlier than tin,BL.  
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t = 19396 μs 

 
tin,RD = 19402 μs 

Figure 157 Contours of radial normal stresses (σ33) (a) just before the initiation at t = 

19396 μs and (b) during the initation at tin,RD = 19402 μs of the model using RD 

CZM.  
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  ΔtRD = 0.8 μs    ΔtRD = 1.8 μs            ΔtRD = 2.8 μs      ΔtRD = 3.8 μs        ΔtRD = 5.8 μs 

 

Figure 158  Contours of constant (top) opening (σ33), (middle) shear  (σ13) and 

(bottom) longitudinal stresses (σ11) with respect to time together with locations of 

fully damaged (d1.0) and partially damaged (d0.6) left (L) and right (R) crack tips at 

the curved region for RD CZM (grey lines represent the interfaces). 
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13.8 μs 

ΔtRD = 
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Figure 159  Contours of (top) opening, σ33, (middle) shear, σ13, and (bottom) 

longitudinal, σ11, stresses at various time intervals in horizonal arm for RD CZM ( R 

→  6δo,I definition of crack tip, orange arrow follows opening stress concentration).
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Figure 160 Contours of (top) opening, σ33, (middle) shear, σ13, and (bottom) longitudinal, σ11, stresses at various time intervals in vertical arm 

for RD CZM ( L →  6δo,I definition of crack tip, orange arrow follows opening stress concentration, legends are given in the previous figure).  
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In the curved region, contours of constant opening, shear and longitudinal stresses 

obtained using RD CZM are shown in Figure 158-top, Figure 158-middle, and 

Figure 158-bottom, respectively. The opening stress contours for the RD CZM are 

very similar to the contours in Figure 123-top. A slight difference can be seen at ΔtRD 

= 3.8 μs and ΔtRD = 5.8 μs in Figure 158-top where the magnitude of the stress 

concentration at the right crack tip is greater than the stresses in the corresponding 

pictures of BL CZM (Figure 123-top). The shear and longitudinal stresses of RD 

CZM are indistinguishably the same with the BL CZM at the curved region.  

The constant contours of opening, shear and longitudinal stresses are shown in 

Figure 159 for the horizontal arm. Similarly, the location of the crack tip and the 

location of the ends of the opening stress gradients are shown by black and orange 

arrows, respectively. The pictures of opening stresses before ΔtRD = 7.8 μs exhibit 

almost the same stress plots compared to the BL CZM including shear Mach waves 

and reflecting waves. At ΔtRD = 7.8 μs, interestingly, a second oblique stress gradient 

resembling a shear Mach wave front is observed behind the main wave front at the 

right crack tip. Moreover, there are many small wave fronts which seem to be 

reflecting waves appear behind of the second wave front after ΔtRD > 7.8 μs. Finally, 

the last position of the crack tip in the figures is behind the BL CZM which suggests 

that the crack propagation is slower and stopped slightly earlier than RD CZM. The 

shear stresses seen in Figure 159-middle are similar to BL CZM. However, the shape 

of the shear stress concentration is no more in an elliptical shape which was seen in 

both XN and BL CZMs. Instead, the shape is like a “fish” which has two larger 

regions in the tips of the concentration region. Finally, the stress distribution in the 

longitudinal stresses presented in Figure 159-bottom is very similar to the results of 

BL CZM only with the difference of slower crack propagation.  

For the vertical arm, the fringes of opening, shear and longitudinal stresses are 

presented in Figure 160-left, Figure 160-middle and Figure 160-right, respectively. 

To be a contrast, the oblique opening stress gradients are very similar to the BL CZM 

until reaching ΔtRD = 13.8 μs. Afterwards, the wave fronts are not the same in the 

delaminated laminates in which the thicker laminate has more reflecting waves 

compared to the other one. The final position of the left crack tip, before the 

temporary crack arrest, is behind the position of BL CZM, which suggests that the 
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crack propagation at the left crack tip is also slower than the BL CZM. Other than the 

opening stresses, the shear and the longitudinal stresses are indistinguishably the 

same with the stress fringes of BL CZM. 

 

 

(a) 

 

(b) 

Figure 161  Crack tip speed as a function of time graphs of RD CZM together with 

BL CZM and experimental results for (a) left and (b) right crack tips 
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The crack tip speed as a function of time curves obtained using RD CZM together 

with BL CZM and experimental results for left and right crack tips are shown in 

Figure 161a and Figure 161b, respectively. The left crack tip propagates at sub-

Rayleigh speeds around 1100 m/s until ΔtRD = 8 μs. Afterwards, the left crack tip 

speed reaches the critical speed of Vc = 3500 m/s around ΔtRD = 9 μs. Following the 

maximum speed, the left crack tip speed gradually slows down to sub-Rayleigh 

speed. In general, the RD CZM predicted slower crack propagation speeds. 

Moreover, RD CZM does not sustain its speed at Vc between ΔtRD = 10.5 μs and 

ΔtRD = 19 μs as it slows down gradually. Actually, the left crack tip behaves a 

viscous behavior of the BL CZM which is expected. A remarkable observation is that 

the experimental data points are best agreed with the RD CZM compared to XN and 

BL CZM. Especially, the RD CZM can capture the speed point of 1500 m/s at ΔtRD = 

7.62 μs as well as the previous experimental points. For the right crack tip, the crack 

propagation continues at sub-Rayleigh speed until ΔtRD = 8 μs, which is longer than 

the BL CZM. The right crack tip speed gradually increase to 2500 m/s at ΔtRD = 10 

μs. Afterwards, the crack tip slows down to 60 m/s at ΔtRD = 13.2 μs after when the 

crack propagation continues. Similar to the left crack tip, right crack tip exhibit 

slower propagation with longer durations of increases and decreases with the lower 

maximum speeds compared to the BL CZM. RD CZM also excellently predicted the 

experimental speeds. Especially, the crack tip speeds of F1 specimen are very close 

to the curve of RD CZM. In general, RD CZM provided the best prediction of the 

speeds so far. Noting that, the crack tip speeds can be better predicted once the rate-

dependent parameters are fine-tuned by experimental results.  

The external work done, strain, kinetic and fracture energies obtained using RD 

CZM are shown in Figure 162a where BL CZM results are also provided for 

reference. The external work done at the instant of delamination initiation at 19.4 ms 

is found as 6.7J. It can be seen that the external work done is the same with the BL 

CZM. However, strain, fracture and kinetic energies are not the same. The strain 

energy is dropped to 2.4 J whereas the kinetic energy and the fracture energy 

increase to 1.2 J and 3.2 J, respectively. The transformations of strain and kinetic 

energies also exist in the same frequency of 50 kHz for RD CZM. However, the 

kinetic energy of RD CZM is smaller than the kinetic energy obtained by the BL 

CZM as shown in Figure 162b. The fracture energy obtained using the RD CZM is 
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about %25 higher than the BL CZM as seen in Figure 162c. The reason of the 

difference in the energies is that the rate-dependency in the RD CZM increases the 

fracture toughness at higher separation rates. Hence, it can be roughly stated that 

global fracture toughness is approximately increased around 25% due to the rate 

effects. The increase in the fracture energy explains the lower levels of kinetic 

energies since the strain energy is transformed into more fracture energy due to 

increase of fracture toughness with high separation rates.  
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(a) 

 
(b) 

 
(c) 

Figure 162  (a) Energy balance obtained using RD CZM, (b) kinetic energy curves 

and (c) fracture energies of RD and BL CZMs. 
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5.4. Final Discussions 

One of the topics of discussion is the oscillatory response of the specimen following 

the initiation of delamination. The oscillations not only affect the load-displacement 

curves but also the figures of energy balance. The other topic is the definition of the 

crack tip during the delamination process. It is observed that the definition of the 

crack tip depends on the fracture mode. In addition, remarkable observations are 

made for an engineering part of L-shaped composite laminates. First of all is the 

formation of shear Mach waves emanated from the crack tip under quasi-static 

loading. The second is the formation of secondary Mach waves that resemble the 

“train of pulses” that is generally observed in friction simulations. Finally, 

delamination in L-shaped composite laminate shows a unique feature of transitioning 

from mode-I to mode-II fracture modes as well as transitioning from sub-Rayleigh to 

intersonic crack tip speeds.  

Oscillatory response in the load-displacement curves has been observed following 

the delamination of the L-shaped composite laminates for all of the CZMs and mesh 

sizes. In reference to the section 3.2, spurious oscillations in the load-displacement 

curves are known to be the phenomena for explicit FEA in conjunction with CZM. 

Pinho et al. [166] suggested that the oscillatory response can be reduced by using 

smaller cohesive elements or higher-order (“smoother”) CZMs. Considerable 

reduction in the oscillation is achieved in the DCB simulations as discussed in 

section 4.1 by reducing the mesh size and using XN CZM. In the simulations of 

stable crack propagation such as the DCB test, oscillations are attributed to the small 

disturbances initiated by successive failure of the cohesive elements. However, the 

oscillatory response observed in the L-shaped laminates cannot be solely explained 

by this phenomenon. First of all, oscillations are extremely severe in the 

delamination of L-shaped composite laminates. Secondly, negligible amelioration 

has been achieved by reducing the mesh size and using XN CZM. Hence, the 

suggestions made by Pinho et al. [166] did not work for the oscillations observed in 

the delamination of L-shaped composite laminates.  
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Figure 163  Load-displacement curves obtained using BL CZM in shear loading case 

for various combinations of damping and loading durations. 

 

The main difference between the crack propagations in a DCB and an L-shaped 

composite laminate is the stability of the crack. The stability of the delaminations in 

the L-shaped composite laminates can be explained over the load-displacement 

curves presented in Figure 112. During the load drop represented by the curve “e”, 

the crack growth takes place.  The fracture energy is developed as suggested by the 

eqn. (20) which further implies that the specimen compliance is also developed 

together with the fracture energy.  Keeping in mind, the load-drop takes place almost 

instantaneously which was also shown, experimentally. As a result, the stored strain 

energy dominated by the radial opening stresses is suddenly released at the curved 

region where the initiation occurs. The resulting motion is the radial translation of 

the delaminated parts to opposite directions starting from the initiation point. 

Following, the separating motion becomes a component wise phenomenon. The 

process develops the kinetic energy so rapidly that the vibrations are triggered. The 

frequency of the vibrations is the same for all mesh sizes (after a converged value) 

and CZMs. Even, rate-dependency in the interface has no effect. Actually, Uyar et al. 

[231,232] reported vibrations of the delaminated plies during their experiments at the 
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suggested that the harmonic vibrations induce oscillations in the load-displacement 

curves which is a real phenomenon. Yet, the duration of the oscillations may not be 
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correct since the experiment showed that the vibration is damped in several cycles. It 

also indicated that there is strong damping in the real specimen. Moreover, the data 

acquisition frequency and the sensitivity of the tensile test machine are not as high as 

the numerical analysis. Hence, it is suggested that the testing machine could not 

record the oscillations in the loads. 

 

 
(a) 

 
(b) 

Figure 164 Crack tip speed as a function of time curves of overdamped and lightly 

damped models for (a) left and (b) right crack tips. 
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βR is the stiffness proportional damping coefficients [69]. The mass proportional 

viscosity, αR, works like “viscous ether” against the flexural vibrations. Therefore, 
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three load displacement curves obtained using BL CZM for the shear loading case to 

see the influences of the mass proportional damping and solution time. An undamped 

system (αR = 0) for a faster loading, characterized by UL = 35 mm and tL = 0.35 s 

(eqn. (122)), is shown by the thin green line. It can be seen that severe oscillations 

follow the load drop at U = 19.4 mm. The oscillations are slightly reduced before 

reaching U = 24.0 mm. Afterwards, the oscillations continue harmonically at 

moderate levels in the steady-state condition. Thick blue line represents longer 

duration of loading by tL = 2.8 s together with a slight damping of αR = 0.1. It can be 

seen that the oscillations are damped gradually and the reloading curve becomes 

clearer. The black line represents an overdamped system with αR = 10. for a longer 

solution duration of tL = 2.4 s. The load-displacement curve slightly undershoots 

during unloading at U = 19.4 mm. Afterwards, it gradually moves to the reloading 

stage that is expected from an overdamped system. No oscillation is observed for the 

overdamped system even though the load data is acquired in every 1 μs. The 

undershooting during the unloading stage can be removed if the frequency of the data 

acquisition is increased to levels of the test machine. An important observation is that 

the effect of damping and the loading duration have nearly no effect to the failure 

point and the point of reloading while diminishing the oscillations in the load-

displacement curves. From micromechanical point of view, the curves of crack tip 

speed versus time data are analyzed for overdamped and lightly damped models 

(Figure 164) where no effect of the damping can be seen.  Hence, the mass-

proportional damping can be used in order to remove oscillations in the load-

displacement curves without affecting the delamination kinetics and failure point of 

the delamination fracture in L-shaped composite laminates. 
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(a) 

 
(b) 

Figure 165  Crack tip speed as a function of time for BL CZM showing a new crack 

tip definition of d(Ψ) for (a) left and (b) right crack tips. 
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of the crack tip position [111,112,136,138,144]. For example, Geubelle and Baylor 

[175] used d1.0 in BL CZM whereas Coker et al. [112] used 5δo in the XN CZM 

which can be considered as a partially damaged crack tip definition. In our results, 

fully damaged definition of the CZM, d1.0, is generally referred since this is to 

provide the nearest point to the experimentally observable crack tip. However, d1.0 

cannot be used for locating the shear Mach waves in the arms. Now, we propose a 

flexible definition of the crack tip which is defined as a function of phase angle, Ψ; 

i.e. d(Ψ). Specifically, linear interpolation between d1.0 and d0.6 can be used such as 

d(Ψ) = d1.0 + Ψ(d0.6-d1.0)/90°. It can be shown that d(Ψ) directs to d0.6 for mode-II, 

d1.0 for mode-I and a smooth transition of the damage in mixed-mode condition. The 

crack tip speeds as a function of time are shown in Figure 165 using the new crack 

tip definition for the left and right crack tips. It can be seen that d1.0 continues in 

mode-I region until ΔtBL = 4 μs which is followed by mixed-mode definition of the 

crack tip. Next, the crack tip speed calculated for d0.6 continues in the mode-II 

region. This enables continuous definition of the crack tip to be achieved throughout 

the propagation. However, the crack tip speeds should be found by following the 

stress fields using DIC in the experiments. 

Numerical models using all CZMs successfully predicted the main delamination at 

the 5th interface in the experiments. However, the other sites of delamination inside 

the curved region could not be captured. The simulation using BL CZM is further 

continued to have other delaminations in the specimen.  A second delamination is 

formed at the 8th interface in U ≈ 38.1 mm which is followed by a third delamination 

at the 2nd interface in U ≈ 42.3 mm (Figure 166). The sequence of the locations of the 

secondary and the third delaminations are perfectly in agreement with the study of 

Martin [56]. However, the other sites of delaminations observed in the experiments 

are not limited to those plies. Moreover, these delaminations were reported during 

the load drop. 
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U = 19.4 mm U = 38.1 mm U = 42.3 mm

5th interface
8th interface

2nd interface

 

Figure 166  Other delaminations at large displacements for the numerical model of 

BL CZM. 

 

Shear Mach waves are observed only in the opening (normal) stress contours during 

our simulations. No wave fronts can be observed in shear and longitudinal stresses. 

Similarly, Dwivedi and Espinosa [122] obtained shear Mach waves only in the 

normal stress contours as shown in Figure 167a where longitudinal, maximum shear 

and opening stress contours are shown from left to right. It can be seen from Figure 

167a-right that the shear Mach wave is visible in the normal stress plot whereas there 

is no sign of shear Mach wave in the other stress fringes. A second example is the 

formation of “train of pulses” as shown in Figure 167b-left (taken from the opening 

stress plots of RD CZM at ΔtRD = 10.8 μs). Train of pulses is observed in slip-stick 

type of sliding simulations dedicated for friction modeling [217] (Figure 167b-right). 

On the other hand, although no friction is modeled in our simulations, train of pulses 

can be observed. Hence, the mechanisms can be different albeit the resulting stress 

patterns are similar. 
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(a) 

 

 

 

 
(b)  

Figure 167  (a) Longitudinal (σ11), maximum shear (principle σ12) and normal stress 

(S22) fringes obtained by Dwivedi and Espinosa [122] and (b) train of pulses obtained 

in our analysis and obtained by Coker et al. [217] in friction studies. 

 

The experimental conditions that are used to obtain intersonic crack growth are 

generally based on “sudden loading”. For instance, Rosakis et al. [111] used impact 

loading to reach intersonic crack growth emanating shear Mach waves as shown in 

Figure 168a. Rosakis et al. [111] applied high levels of kinetic energy by the 

impactor for exceeding the threshold to the intersonic regimes. Xia et al. [236] used 

small explosion at the epicenter of tilted interface under compression for the analysis 

of super-shear rupture (Figure 168b).  On the other hand, the intersonic delamination 

in L-shaped composite laminates occurred spontaneously under quasi-static loading; 

without any means of sudden loading. An ordinary tension test machine is adequate 

to have the intersonic fracture in L-shaped composite laminates. Moreover, the 

Train of pulses 

Train of pulses 
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experiments of super-shear earthquakes and intersonic crack propagation studies in 

references used “idealized specimens” such as plates. On the other hand, the fracture 

of L-shaped composite laminates under shear loading occurs in its original shape 

without taking any precaution for the intersonic delamination. Moreover, a smooth 

transition from mode-I to mode-II while transitioning from sub-sonic to intersonic 

speeds is attained by the L-shaped composite laminates. Hence, L-shaped composite 

laminates may be used as a remarkable tool for investigating intersonic fracture 

showing both sub-Rayleigh and intersonic delamination under quasi-static loading. 

 

 
(a) 

 

(b) 

Figure 168  Shear Mach waves obtained using (a) impact loading [111] and (b) 

explosion devices [236]. 

 

One of the remarkable observations of this study is the intersonic delamination 

occurred under quasi-static loading. Intersonic crack propagation under quasi-static 

loading is generally seen in earthquakes which is a subject of geophysics. The energy 

shear Mach 
wave 

shear Mach 
waves 
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is stored by the earth crust in thousands of years. In the order of seconds, the crack 

propagation takes place, which is “instantaneous”. The crack propagation speed in 

the 1999 earthquake of Gölcük, Turkey was shown to be intersonic, so called “super-

shear” rupture, exceeding the seismic shear wave speed [237]. Figure 169a shows the 

fracture of North Anatolian Fault line where shear March wave is emanated from the 

right crack tip (Eastern) during super-shear rupture [238]. Same behavior is observed 

in L-shaped composite laminates in terms of intersonic crack propagation, emanation 

of shear Mach waves in both crack tips under quasi-static loading. A remarkable link 

between the kilometer scales to milimeter scales might have been established in 

terms of the same fracture behavior for engineering parts and earth crust by this 

study. 

In addition to the scientific discussions mentioned in the previous paragraphs, there 

may be a contribution of our study to the aerospace industry in terms of validation of 

finite element models. Generally, finite element models are validated by experiments 

where load-displacement curves, the stress/strain data and the resulting failure modes 

are generally compared. Adequate number of experiments is required to establish a 

confidence level. These validations are required by the Airworthiness Authorities 

[10]. It is proposed that the parameters considered for the validation may involve 

crack tip speeds and the development of fracture pattern. As a result, the confidence 

level of the FEM can be further established in addition to typical parameters of load-

displacement curves and stress/strain data. As an example, although BL CZM and 

RD CZM predicted the same failure load, RD CZM is further in agreement with the 

experiments in terms of crack tip speeds. Hence, RD CZM further extends the 

confidence of the reliability of the model compared to the BL CZM. As a result, the 

number of experiments to establish the confidence can be reduced since there would 

be more data to be evaluated by the validation experts. However, this approach needs 

further experimental instruments such as ultra-high speed camera as used in our 

analysis. Moreover, crack tip speed data cannot be easily obtained. 
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(a) 

 

             
(b) 

 

Figure 169  Shear Mach waves emanated from the crack tip (a) in the Golcuk 

Earthquake in 1999 [238] in the scales of kilometers and (b) in L-shaped composite 

laminate in the scales of millimeters (Shear Mach wave fronts are shown in red dash 

lines). 
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CHAPTER 6 

 
 

SUMMARY AND CONCLUSIONS 
 
 
 
6.1. Summary 

In the introductory part, the definition of the problem and the literature survey are 

presented. It is shown that composite materials are sensitive to interfacial normal, 

defined as “opening stresses” which promotes mode-I fracture. The interfacial 

strength in the normal direction and toughness in mode-I are very weak in composite 

materials. On the other hand, opening stresses are induced in the L-shaped composite 

laminates due to the curved and thick geometry. Therefore, delamination in L-shaped 

composite laminates becomes a concrete problem in aerospace and wind energy 

industries after composite manufacturing technology enabled replacing metallic L-

shaped parts with their composite counterparts. Literature about the L-shaped 

composite laminates generally focuses on the initiation of the delamination where 

they give consent that delamination is the main failure mode. The delamination in 

curved and thick composite laminates is reported as unstable. Numerical simulations 

about the propagation stage are either limited due to lack of propagation data from 

the experiments or the bad quality of the experimental specimens.  

In the second part of the study, theoretical backgrounds including analytical solutions 

to the delamination problem and fracture mechanics are briefly discussed. CZM and 

its applications to the finite element analysis are presented. Next, traction-separation 

constitutive laws of BL and XN CZMs are derived. A new RD CZM based on a rate-

dependency theorem presented by Corigliano et al. [155] are proposed using BL 

CZM formulations. It is shown that the interfacial strength and toughness are rate-

dependent properties. 

In the third part, the kinematic equations of a 4-noded interface element in compliant 

with all CZMs are derived. The cohesive interface element is implemented into 

ABAQUS/Explicit via VUEL user-subroutine. The issues of implicit and explicit 

FEA in conjunction with CZM are discussed. For the explicit FEA, examples of 
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oscillations in the load-displacement curves are presented. The reason is attributed to 

successive failure of the cohesive elements that create small disturbances eventually 

yielding vibrations. In references, the use of smaller cohesive elements and higher 

order CZMs to get rid of spurious oscillations are suggested. 

In the fourth chapter, the implemented interface elements having the CZM 

formulations are validated for static mode-I, static mode-II, dynamic mode-I and 

dynamic mode-II dominated fractures by DCB, ELS, 3-Pt. Bending Impact and 

Asymmetric Composite-Polymer tests, respectively. The benchmark tests are further 

studied to reveal the effect of mesh size, crack tip definitions, rate-dependent 

interface properties and the type of body elements for piloting the simulations of L-

shaped composite laminates. It is perceived that DCB is not a good example for 

studying the rate-dependency behavior of the RD CZM since inertial forces 

dominates the load-displacement curves before revealing the rate-dependent effects. 

The spurious oscillations after the start of delamination are observed in the DCB 

simulation. The oscillations are reduced by using smaller elements or XN CZM as 

suggested by Pinho et al [166]. ELS is the other example that is inefficient to study 

the influences of the rate-dependent interfacial properties. The damage distribution in 

the vicinity of mode-II crack tip is shown over the mode-II stress concentration in the 

ELS simulation. The length of cohesive zone for mode-II is so large that the fully 

damaged and partially damaged crack tip definitions are far away from each other. 

The effect of rate-dependency is investigated by the 3-Pt Bending Impact simulation. 

The rate dependency ratio of “k” is dominant in the early speeds of loading rate. 

Moreover, the crack tip speed curves become blunter and slower with the higher “k”. 

In other words, the crack becomes more “viscous” during the propagation by RD 

CZM. The numerical study of asymmetric composite-polymer impact test manifested 

that the effect of RD CZM does not affect the critical crack propagation speed. The 

shear Mach waves are still observed using 4-noded single integration hourglass 

controlled body elements of CPE4R [69] that is the body element used in the 

simulations of L-shaped composite laminate. The implemented interface element 

using BL, XN and RD CZMs are successfully validated by the benchmark tests. 

In the fifth part, intersonic delamination of curved and thick composite laminates in 

an L-shaped form is numerically studied using explicit FEA in conjunction with the 
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three CZMs. The main discussion is based on the modeling of all interfaces in a 12 

layer woven fabric CFRP laminate using BL CZM. The specimen geometry and 

properties are taken from a recent experiment conducted at METU where ultra-high 

speed camera is utilized for capturing the fracture process and crack tip speeds. All 

the interfacial and material properties are either determined by independent 

experiments or taken from the material data sheet. Before presenting the numerical 

results, a synopsis is presented about shear and axial loading of L-shaped composite 

laminates. It is shown that moment loading that promotes the opening radial stresses 

is induced by shear loading. On the other hand, displacement controlled axial loading 

linearly induces the moment, which is an important analytical observation for stress 

engineering applications. Next, the experimental method, which is the reference 

study of our simulations, is briefly discussed. Following, two definitions of the crack 

tip, fully damaged (d1.0) and partially damaged at 60% (d0.6), are made. The fully 

damaged crack tip provides the closest definition to the experimentally observable 

crack tip albeit it loses the accuracy for following the stress concentration region 

during mode-II crack propagation. Hence, both definitions of the crack tips are 

illustrated in the results of BL CZM. In the next section, a loading scheme which is 

both fast and quasi-static is obtained after trial-and-error analyses in order to reduce 

the CPU time in our simulations. The fast-quasi-static loading approach is used 

throughout the study. Finally, the simulations are repeated using XN and RD CZMs. 

6.2. Conclusions 

Following are the conclusions that can be stated for the simulations of delamination 

in L-shaped composite laminates using BL CZM; 

• Load-displacement curves are successfully predicted by BL CZM in terms of 

failure point and the compliance compared with the experimental results. 

• Failure point in the load-displacement curves is associated with the 

delamination initiation whereas load-drop is associated with the propagation 

stage, supported by the experiments. 

• Oscillations after the start of the delamination are observed in the load-

displacement curves. The frequency of the oscillations is found around 50 

kHz which is close to the frequency of vibrations in the experiments which 

was 33.3 kHz. 
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• The delamination is initiated at the 5th interface which is the main 

delamination in the experiments. Angular location of the initiation site and 

the maximum opening stress are found as 13° counter-clockwise from the 

centerline. This prediction is very close to the experimental results of 

specimen F2 which is at the 5th interface and 12° counter-clockwise from the 

centerline.  

• Delamination propagates at the 5th interface that is the closest one to the 

maximum opening stress calculated by the analytical solution for our 

specimen geometry and material properties. However, the secondary 

delamination sites reported at the later stages of loading in the experiments 

are not captured by the numerical analysis. The delamination at the 5th 

interface propagates until ends of arms providing a similar picture of the 

experimental results. The specimen makes couple of cycles as the crack 

propagation takes place. 

• Delamination initiates at intersonic speeds under mode-I condition. 

Consequently, the crack propagates towards the arms while transitioning 

from mode-I to mixed-mode condition in the curved region. In addition, the 

crack tip speeds transition from sub-Rayleigh to intersonic speeds as the 

fracture mode transitions from mixed-mode to mode-II condition in the arms. 

• Fully damaged definition of the crack tip, d1.0, provides the best 

representation of the crack tip in the curved region where mode-I dominates. 

As the mode transitions from mode-I to mode-II, partially damaged definition 

of the crack tip, d0.6, provides better representation. The distance between the 

two crack tip definitions increases as the length of the cohesive zone 

increases by the mode-II condition. 

• A shear Mach wave is emanated from the d0.6 definition of the crack tip. The 

shear Mac wave is visible in the opening stress plots when the crack 

propagates at intersonic speeds in the arms. Similar formations of oblique 

stress waves, suggested to be reflecting waves of the initial shear Mach wave, 

are also observed. A second shear Mach wave appears for a short duration 

emanated from the d1.0 definition of the crack tip while revealing “train of 

pulse” formations. 
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• Fully damaged, d1.0, definition of the crack tip is selected for the main 

discussion since it provides the closest location to the experimentally 

observable crack tip and best prediction for the experimental crack tip speeds. 

• Experimental crack tip speeds are concurring with the numerical predictions.  

• All the energy transformation, as well as the main crack propagation process, 

takes less than 20 μs.  

• Kinetic energy develops to considerable levels after it is triggered by 

initiation of delamination. Before the initiation, kinetic energy is negligibly 

small. 

• The strain energy is harmonically transformed to kinetic energy in two phase 

vibrations. The first of the phases is high frequency vibration at 50 kHz that is 

very close to the experimental observation. The other vibration is at 500 Hz 

in larger amplitude. 

• Particle velocity vector plots further supports the fact that the kinetic energy 

is triggered by the delamination. The motion of separation spreads from the 

initiation site towards the remaining parts of the specimen in several 

microseconds. Eventually, the motion of separation becomes specimen wide 

phenomenon. The separation motion spreads like a “whipping” action that is 

also observed in the experiments. 

• Vortex like particle velocity patterns are observed in motion close to the 

crack tips. The vortex like particle velocity patterns become apparent at the 

mixed-mode zones near the curved region. 

A parametric study of mesh density, modeling multiple cohesive lines and penalty 

stiffness is performed using BL CZM. Here are the conclusions drawn; 

• Mesh density affects the load-displacement curves, 

• Modeling single body element at each ply (thickness) causes incorrect 

prediction of the delamination pattern. 

• Modeling multiple cohesive interfaces linearly increases the compliance of 

the specimen. 

• Modeling soft penalty stiffness exponentially increases the specimen 

compliance. Hence, high penalty stiffness values are suggested in case of 

modeling multiple interfaces. 
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• Complaint CZMs spawn early sliding of plies that is defined as considerable 

relative displacement at adjacent interface nodes. This phenomenon yields 

tilted views of stress plots due to rigid body translation of stress contour lines. 

• Using large number of body elements in the thickness reduces the stress 

discontinuities between the interfaces which is attributed to the 

incompatibility of the integration points between the body and interface 

elements.  

• No considerable difference is observed between the predictions of multiple 

and single interface models using stiff penalty stiffness in BL CZM.  

• Mesh density, penalty stiffness and multiple interface modeling are validated 

for BL and RD CZMs using appropriate penalty stiffness value. 

• The modeling parameters used in the simulation of L-shaped composite 

laminates are validated. 

The simulation is repeated with XN CZM using two different FE models. XN CZM 

does not have independent penalty stiffness value that can be adjusted for getting rid 

of the numerical artifacts discussed in the parametric study of BL CZM. Moreover, 

the approximate penalty stiffness, initial slope, of XN CZM is very close to the 

penalty stiffness of the compliant BL CZM used in the parametric study. Hence, the 

first model has all interfaces modeled whereas the second model has single interface 

at the 5th interface. The main discussion is made over the comparison to BL CZM 

and the influences of using multiple interfaces in XN CZM. The conclusions are; 

• XN CZM slightly overshoots the failure point in the load-displacement 

curves around 5.5% compared to experimental results. The XN CZM model 

with multiple interfaces shows higher compliance during the loading stage. 

The delamination pattern is the same with the BL CZM. 

• Angular location of the maximum stress and the initiation points are predicted 

as 21° and 18°, respectively. Namely, the delamination is not initiated where 

the maximum stress is attained. The location of the initiation is more deviant 

from the experimental result compared to the BL CZM. 

• XN CZM exhibits early slippage of the plies for the multiple interface model. 

The problem of early slippage of plies is not observed in the single interface 

model.  
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• Shear stress contours reveal circular patterns of stress concentrations inside 

each ply. This is attributed to the slippage of plies. 

• Shear Mach waves are not as clear as in BL CZM for both single and multiple 

interface models. 

• The crack tip speeds are in fair agreement with the experimental results and 

slower than BL CZM.  

• Intersonic crack tip speeds are attained only in the vertical arm. 

• Early slippage of the plies artificially dissipates considerable fracture energy 

before released by the delamination for the multiple interface model.  

• Minor healing of cracks are observed in terms of small reductions in the 

fracture energy curves that is attributed to the reversible formulation of XN 

CZM. 

• Angular location of the failure point and crack tip speed profiles of XN CZM 

cannot be attained using BL CZM by varying the penalty stiffness value. 

Hence, the studies on XN and BL CZMs revealed that influences of CZM 

profiles are prominent in L-shaped composite laminates. 

The third model of RD CZM is used to simulate the same problem. The following 

conclusions are made; 

• Load-displacement curves are exactly the same with the BL CZM. Spurious 

oscillations in the load-displacement curves still exist for RD CZM.  

• Similar stress contours observed in the BL CZM are acquired. Train of pulses 

in the opening stress contours is apparent in the simulations of RD CZM. 

• Crack tip speeds calculated by RD CZM are generally between BL CZM and 

XN CZM. RD CZM provides the best prediction among the all CZMs 

compared to the experimental results. 

• The kinetic energy is smaller for the RD CZM simulation whereas the 

fracture energy is increased about 25% due to toughening of the interface by 

rate-effects. The decrease in the kinetic energy is attributed to the less 

available energy in the external work due to higher dissipated fracture energy. 

Three observations from the simulations are revisited after the simulations of the 

CZMs. Firstly, neither changing the mesh size nor using XN CZM ameliorates 



 

280 
 

oscillatory response of the L-shaped composite laminates after the initiation. 

Hence, the oscillations in the L-shaped composite laminates are suggested to be 

associated with the unstable crack propagation. The oscillations in the load-

displacement curves are diminished by introduction of mass proportional 

damping into the system. It is shown that load-displacement and crack tip speed 

curves are negligibly affected by the damping. The specimen was able to be 

damped after several cycles in the experiments. Hence, the experimental 

evidence supported the proposal of using high levels of damping.  Following the 

discussion about damping, a new definition of the crack tip as a function of phase 

angle is proposed. The new crack tip definition covers all fracture modes as well 

as it continuously follows the stress concentration region throughout the 

propagation. Finally, the other delamination sites are attained at larger 

displacements of loading where the order of delamination initiations is in perfect 

agreement with the study of Martin [56]. In aerospace industry, crack tip speeds 

and development of fracture pattern can be included as new parameters for the 

validation of FEMs. The confidence level of the FEM can be further established 

in addition to load-displacement curves and stress/strain data. As a result, the 

number of validation tests can be reduced. 

Shear Mach waves and train of pulses were reported in literature. Train of pulses 

is generally encountered in sliding experiments where the friction is studied. 

Although no friction is modeled in our simulations, the train of pulses can be 

observed in L-shaped composite laminates. Shear Mach waves were reported in 

the simulations of fracture under impact loading or explosively triggered 

fractures as a subject of geophysics. In our study, shear Mach waves are observed 

under quasi-static loading. To the best of author’s knowledge, it is the first time 

that an engineering specimen exhibits intersonic delamination which is induced 

by quasi-static loading. Moreover, the delamination in our case smoothly 

transitions from mode-I to mode-II as the crack tip gradually transitions from 

sub-Rayleigh to intersonic speeds. In literature, intersonic delamination is 

generally studied using specific experimental setups which guarantee the 

dynamic fracture. On the other hand, the dynamic fracture in this study can be 

studied by using simple tension test machine. Therefore, L-shaped composite 

laminate might be an effective tool for studying intersonic cracks in wide variety 
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of applications including super-shear rupture in earth fault lines and catastrophic 

failure in aerospace structures.  

6.3. Future Work 

In the future, the numerical modeling approach can be further extended. Firstly, 3D 

modeling of the delamination can be used. This would enable simulating more 

complicated geometries as well as studying free-edge-effects in the composite 

laminates. Modeling the problem by 3D elements would enable studying mode-III 

fracture.  

Modeling mechanisms for kinking of delamination can be introducted to the model 

as kinking has been frequently observed in most of the experiments.  The simplest 

method for utilization of kinking can be modeling of inplane damage in the plies, 

such as matrix cracking, fiber cracking. Damaged plies may allow the delamination 

to branch towards the adjacent interfaces which would be a kinking. However, 

modeling of kinking through inplane damages does not reflect the correct behavior 

from fracture mechanics point of view. A more complicated and robust modeling 

technique of XFEM can be used. XFEM can be coupled with cohesive elements for 

modeling both kinking and delamination in a single model that would rely on 

fracture mechanics. Instead of XFEM, cohesive elements can be located between all 

the triangular body elements where two different types of cohesive elements would 

exist. In this case, very high penalty stiffness or rigid-linear CZMs can be used. 

Moreover, VUEL subroutine will be enhanced to work with sequential analysis 

method [88]. As a result, the solution duration of the numerical analyses will be 

considerably reduced. 

In addition to the numerical methodology, the observations of this study should be 

further investigated. Firstly, other delamination sites at the curved region observed in 

the experiments were not captured by our simulations. It can be observed that the 

delaminated parts cannot reach to the interfacial strength of the laminate. 

Introduction of viscoelasticity to the laminate bulk may increase the stiffness of the 

plies. The stresses may increase due to the introduction of viscoelasticity and they 

may reach to interfacial strength under high strain rates attained during dynamic 

fracture. This may enable predicting the other delaminations during the same load 

drop. Hence, the simulations should be repeated by introducing viscoelasticity in the 
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composite bulk. In addition to prediction of other delamination sites, the transition of 

sub-Rayleigh to intersonic crack tip speeds suggests that there should be a mother-

daughter crack mechanism during the transition. Unfortunately, mother-daughter 

crack mechanism has not been observed in our study. Similarly, the formation of 

train of pulses should be investigated in more detail. Actually, mechanism of the 

transition is an important subject to further work on.  
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APPENDIX A 
 
 

PLANE STRAIN COMPLIANCE MATRIX FOR ORTHOTROPIC 
MATERIALS 

 
 
 
In text books, elastic constants for plane stress assumption are easily found since the 

plane stress is a part of Classical Lamination Theory [5]. However, plane strain 

solution is not available. In this chapter, plane strain elastic constants are derived. 

 The Generalized Hooke’s law for the orthotropic materials in Voigt notation is given 

as follows [5]; 
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where the 6x6 matrix is called Compliance Matrix, C�. Moreover, symmetry of the 

compliance matrix spawns that; νyx / Ey = νxy / Ex, νyz / Ey = νzy / Ez and νzx / Ez = νxz / 

Ex.  

The stresses are calculated by inversing the eqn.(125). Stiffness matrix, S� , is the 

inverse of compliance matrix; i.e. S�  = C�-1.The stiffness matrix is not explicitly 

written for the generalized case for the sake of simplicity.  

The strains on yz and zx planes are zero for the plane strain assumption; i.e.: εzz = 0, 

εyz = 0 and εzx = 0. Hence, Hooke’s law becomes as follows; 
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(126) 

 

As seen from eqn., τyz = 0 and τzx = 0 whereas σzz ≠ 0. By neglecting the part for σzz, 

the plane strain stiffness matrix becomes a square matrix. Hooke’s law is therefore 

reduced by removing 3rd, 4th and 5th columns and rows in eqn. (126) to reach the 

below 2D stress-strain relation; 
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where 

zyxzyxyzzxxyzyyzzxxzyxxy ννν+ννν+νν+νν+νν=Λ  

The plane strain compliance matrix, C�Strn, can be reached by inversing the stiffness 

matrix in eqn.(127), such that; 
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APPENDIX B 
 
 

VUEL USER-SUBROUTINE 
 
 
 
The following code is written in the language of Fortran 90. Some of the matrix 

calculations are written in explicit form in order to optimizite the program efficiency. 

CODE: 

c     user element for truss along the X global axis 

      subroutine vuel( 

     *     nblock, 

c          to be defined 

     *     rhs,amass,dtimeStable, 

     *     svars,nsvars, 

     *     energy, 

c           

     *     nnode,ndofel, 

     *     props,nprops, 

     *     jprops,njprops, 

     *     coords,ncrd, 

     *     u,du,v,a, 

     *     jtype,jelem, 

     *     time,period,dtimeCur,dtimePrev,kstep,kinc,lflags, 

     *     dMassScaleFactor, 

     *     predef,npredef, 

     *     jdltyp,adlmag) 

 

      include 'vaba_param.inc' 

 

      parameter ( zero = 0.d0, half = 0.5d0, one = 1.d0, two=2.d0 ) 
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c     operation code 

      parameter ( jMassCalc            = 1, 

     *            jIntForceAndDtStable = 2, 

     *            jExternForce         = 3) 

 

c     flags 

      parameter (iProcedure = 1, 

     *           iNlgeom    = 2, 

     *           iOpCode    = 3, 

     *           nFlags     = 3) 

 

c     time 

      parameter (iStepTime  = 1, 

     *           iTotalTime = 2, 

     *           nTime      = 2) 

 

c     procedure flags 

      parameter ( jDynExplicit = 17 ) 

 

c     energies  

      parameter ( iElPd = 1, 

     *            iElCd = 2, 

     *            iElIe = 3, 

     *            iElTs = 4, 

     *            iElDd = 5, 

     *            iElBv = 6, 

     *            iElDe = 7, 

     *            iElHe = 8, 

     *            iElKe = 9, 

     *            iElTh = 10, 

     *            iElDmd = 11, 

     *            iElDc = 12, 

     *            nElEnergy = 12) 
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c     predefined variables 

      parameter ( iPredValueNew = 1, 

     *            iPredValueOld = 2, 

     *            nPred         = 2)     

 

c     indexing in a 3-long vector 

 

      parameter (factorStable = 0.99d0) 

       

**------------------------------------ 

C     A - H and O - Z --> REAL*8 

**------------------------------------ 

 

      dimension rhs(nblock,ndofel), amass(nblock,ndofel,ndofel), 

     *     dtimeStable(nblock), 

     *     svars(nblock,nsvars), energy(nblock,nElEnergy), 

     *     props(nprops), jprops(njprops), 

     *     jelem(nblock), time(nTime), lflags(nFlags), 

     *     coords(nblock,nnode,ncrd), u(nblock,ndofel), 

     *     du(nblock,ndofel), v(nblock,ndofel), a(nblock, ndofel), 

     *     dMassScaleFactor(nblock), 

     *     predef(nblock, nnode, npredef, nPred), adlmag(nblock) 

 

      dimension cord_n1(2),cord_n2(2),cord_n3(2),cord_n4(2), cord_mid(2) 

      dimension vec_A(2),vec_B(2),vec_mid(2),Trnsfrm(2,2),del_GLOBAL(2) 

      dimension del_LOCAL(2),force_GLOBAL(2),force_LOCAL(2), damage(2) 

      dimension del_step_GLOBAL(2),del_step_LOCAL(2) 

      dimension GI_step(2), GII_step(2), trac_(2,2), del_(2,2) 

      dimension vel_GLOBAL(2), vel_LOCAL(2) 

 

      character(20) :: cElmID 

      character(50) :: cFileOut 
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      if (jtype .eq. 2 .and. 

     *    lflags(iProcedure).eq.jDynExplicit) then  

 

         width = props(1)   !The width to be used for multiplying the traction 

         E0  = props(2)     !The penalty stiffness matrix or E for the X&N 

         trac_Ic = props(3)     !Mode-I ILST  

         trac_IIc = props(4)    !Mode-II ILSS           

         GIc = props(5)     !Mode-I fracture toughness 

         GIIc = props(6)    !Mode-II fracture toughness 

         rho = props(7)     !Density used for the integration 

         fBK = props(8)     !The factor for BK criterion 

         StableTime = props(9)     !Stable integration time 

         Delfactor = props(10)     !Deleting  the Xu_needleman CZM at that del_o 

         GIc_inf = props(11)       !Infinite GIc 

         GIIc_inf = props(12)      !Infinite GIIc 

         trac_Ic_inf = props(13)        !Infinite Mode-I ILST  

         trac_IIc_inf = props(14)       !Infinite Mode-II ILSS 

         vel_Ref_o = props(15)       !Reference Separation vel. onset 

         vel_Ref_cr = props(16)       !Reference Separation vel. onset 

         jPrintFreq = jprops(1)    !Increment frequency for outputting in file 

         jModel = jprops(2)        !The model; 1 for X&N, 2 for modX&N,3 for bi. 

         nIP = 2         !The nIP is two rods 

   

c        

____________________________________________________________________

__     

c        xxx The characteristic lengths are found for each model xxxx   

    SELECT CASE (jModel) 

   CASE (1:2) 

c    Xu and Needleman Model characteristic length 

parameters 

                delo_I =GIc/(trac_Ic*exp(one))     !@Normal dir. 
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          delo_II=GIIc/(trac_IIc*sqrt(exp(one)/two)) !@Tangent dir. 

          XN_q = GIc/GIIc 

           XN_r = XN_q 

           delcr_I = Delfactor*delo_I 

           delcr_II = Delfactor*delo_II 

   CASE (3) 

c    Bilinear Model length parameters 

                delo_I = trac_Ic / E0 

                delcr_I = two * GIc / ( delo_I * E0 ) 

                delo_II = trac_IIc / E0 

                delcr_II = two * GIIc / ( delo_II * E0 ) 

   CASE (4) 

c    Rate-Dependent Bilinear Model length parameters 

                delo_I = trac_Ic / E0 

                delcr_I = two * GIc / ( delo_I * E0 ) 

                delo_II = trac_IIc / E0 

                delcr_II = two * GIIc / ( delo_II * E0 )  

                delo_I_inf = trac_Ic_inf / E0 

                delcr_I_inf = two * GIc_inf / ( delo_I_inf * E0 ) 

                delo_II_inf = trac_IIc_inf / E0 

                delcr_II_inf = two * GIIc_inf / ( delo_II_inf * E0 )  

                                                                                 

         END SELECT         

c        

____________________________________________________________________

__  

c        

____________________________________________________________________

__   

c            &&&&& ABAQUS - Mass Matrix Update &&&&&                                                                

         IF ( lflags(iOpCode).eq.jMassCalc ) THEN 

            DO kblock = 1, nblock 

c              The current coordinates of nodes , kblock                
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               cord_n1(1) = coords(kblock,1,1)+u(kblock,1) 

               cord_n2(1) = coords(kblock,2,1)+u(kblock,3) 

               cord_n3(1) = coords(kblock,3,1)+u(kblock,5) 

               cord_n4(1) = coords(kblock,4,1)+u(kblock,7) 

               cord_n1(2) = coords(kblock,1,2)+u(kblock,2) 

               cord_n2(2) = coords(kblock,2,2)+u(kblock,4) 

               cord_n3(2) = coords(kblock,3,2)+u(kblock,6) 

               cord_n4(2) = coords(kblock,4,2)+u(kblock,8) 

  

c              The upward diagonal vector, vec_A, kblock                

               vec_A(1) = cord_n4(1) - cord_n1(1) 

               vec_A(2) = cord_n4(2) - cord_n1(2) 

 

c              The downward diagonal vector, vec_B, kblock                

               vec_B(1) = cord_n3(1) - cord_n2(1) 

               vec_B(2) = cord_n3(2) - cord_n2(2) 

 

c              The mid-vector, vec_mid, kblock 

               vec_mid(1) = half*(vec_A(1) + vec_B(1)) 

               vec_mid(2) = half*(vec_A(2) + vec_B(2)) 

                

c              The length of the mid-vector, |vec_mid|, kblock 

               alen_vec_mid = sqrt(vec_mid(1)*vec_mid(1)+ 

     *                  vec_mid(2)*vec_mid(2)) 

                

c              The area to be used for traction, kblock 

               half_area = half*alen_vec_mid*width 

 

c              The height of the element is dived into two 

               aheigth_1= sqrt((cord_n2(1) - cord_n1(1))**two + 

     *              (cord_n2(2) - cord_n1(2))**two) 

               aheigth_2= sqrt((cord_n4(1) - cord_n3(1))**two + 

     *              (cord_n4(2) - cord_n3(2))**two) 



 

311 
 

                

                                           

c              The mass matrix can be updated                

               am1   = aheigth_1*(half_area*rho/2) !"/2":Up and down nodes 

               am2   = aheigth_2*(half_area*rho/2) !"/2":Up and down nodes 

                

               amass(kblock,1,1) = am1 

               amass(kblock,2,2) = am1 

               amass(kblock,3,3) = am1 

               amass(kblock,4,4) = am1 

               amass(kblock,5,5) = am2 

               amass(kblock,6,6) = am2 

               amass(kblock,7,7) = am2 

               amass(kblock,8,8) = am2 

                

            ENDDO 

c        

____________________________________________________________________

__               

             

c        

____________________________________________________________________

__   

c            &&&&& ABAQUS - Force Matrix Update &&&&&  

         ELSE IF ( lflags(iOpCode) .eq. 

     *             jIntForceAndDtStable) THEN 

            DO kblock = 1, nblock 

             

c                PRINT *,    svars(kblock,1)   

c                PRINT *,    svars(kblock,2) 

c                PRINT *,    svars(kblock,3) 

c                PRINT *,    svars(kblock,4) 

c                PAUSE 
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c              Initializing some terms  

               damage(:) = zero 

               GI_step(:) = zero 

               GII_step(:) = zero 

               trac_x = zero 

               trac_y = zero 

                

   

c              The current coordinates of nodes , kblock                

               cord_n1(1) = coords(kblock,1,1)+u(kblock,1) 

               cord_n2(1) = coords(kblock,2,1)+u(kblock,3) 

               cord_n3(1) = coords(kblock,3,1)+u(kblock,5) 

               cord_n4(1) = coords(kblock,4,1)+u(kblock,7) 

               cord_n1(2) = coords(kblock,1,2)+u(kblock,2) 

               cord_n2(2) = coords(kblock,2,2)+u(kblock,4) 

               cord_n3(2) = coords(kblock,3,2)+u(kblock,6) 

               cord_n4(2) = coords(kblock,4,2)+u(kblock,8) 

  

c              The upward diagonal vector, vec_A, kblock                

               vec_A(1) = cord_n4(1) - cord_n1(1) 

               vec_A(2) = cord_n4(2) - cord_n1(2) 

 

c              The downward diagonal vector, vec_B, kblock                

               vec_B(1) = cord_n3(1) - cord_n2(1) 

               vec_B(2) = cord_n3(2) - cord_n2(2) 

 

c              The mid-vector, vec_mid, kblock 

               vec_mid(1) = half*(vec_A(1) + vec_B(1)) 

               vec_mid(2) = half*(vec_A(2) + vec_B(2)) 

                

c              The length of the mid-vector, |vec_mid|, kblock 

               alen_vec_mid = sqrt(vec_mid(1)*vec_mid(1)+ 
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     *                  vec_mid(2)*vec_mid(2)) 

                

c              The area to be used for traction, kblock 

               half_area = half*alen_vec_mid*width    

 

c              The current rotation, Teta            

               Teta = acos(vec_mid(1)/alen_vec_mid) 

c               IF (vec_mid(1).lt.zero) Teta = Teta + aPI 

                

c              The transformation matrix, Trnsfrm            

               Trnsfrm(1,1) =  cos(Teta) 

               Trnsfrm(1,2) =  sin(Teta) 

               Trnsfrm(2,1) = -sin(Teta) 

               Trnsfrm(2,2) =  cos(Teta) 

                

               DO nRod = 1,nIP     

        

               SELECT CASE(nRod) 

                CASE (1) 

c                   Relative displacement in global coords, ROD = 1 

                    del_GLOBAL(1) = u(kblock,3) -  u(kblock,1) 

                    del_GLOBAL(2) = u(kblock,4) -  u(kblock,2)    

c                   Relative displacement step in global coords, ROD = 1 

                    del_step_GLOBAL(1) = du(kblock,3) -  du(kblock,1) 

                    del_step_GLOBAL(2) = du(kblock,4) -  du(kblock,2)   

c                   Separation speed, ROD = 1 

                    vel_GLOBAL(1) = v(kblock,3) -  v(kblock,1) 

                    vel_GLOBAL(2) = v(kblock,4) -  v(kblock,2)  

                CASE (2) 

c                   Relative displacement in global coords, ROD = 2 

                    del_GLOBAL(1) = u(kblock,7) -  u(kblock,5) 

                    del_GLOBAL(2) = u(kblock,8) -  u(kblock,6)      

c                   Relative displacement in global coords, ROD = 2 
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                    del_step_GLOBAL(1) = du(kblock,7) -  du(kblock,5) 

                    del_step_GLOBAL(2) = du(kblock,8) -  du(kblock,6) 

c                   Separation speed, ROD = 2 

                    vel_GLOBAL(1) = v(kblock,7) -  v(kblock,5) 

                    vel_GLOBAL(2) = v(kblock,8) -  v(kblock,6) 

               ENDSELECT 

c              Relative displacement in local coords, kblock 

               del_LOCAL = MATMUL(Trnsfrm,del_GLOBAL)  

c              Relative displacement step in local coords, kblock 

               del_step_LOCAL = MATMUL(Trnsfrm,del_step_GLOBAL)   

c              Separation speed in local coords, kblock 

               vel_LOCAL = MATMUL(Trnsfrm,vel_GLOBAL)   

                               

c              Skipping the fully damaged element integration point 

               IF (svars(kblock,nRod).eq.one) THEN !Damage = 1 

                    rhs(kblock,:) = zero 

                    trac_x = zero 

                    trac_y = zero 

                    GI_step(:) = zero 

                    GII_step(:) = zero 

                    del_(1,nRod) = del_LOCAL(2) 

                    del_(2,nRod) = del_LOCAL(1) 

                    GoTO 999 

               ENDIF  

 

c              The relative displacement terms in opening and shearig modes 

               del_I = del_LOCAL(2)   !The Y-direction is mode-I 

               del_II = del_LOCAL(1)  !The X-direction is mode-II 

               del_step_I = del_step_LOCAL(2) 

               del_step_II = del_step_LOCAL(1) 

               vel_I = vel_LOCAL(2) 

               vel_II = vel_LOCAL(1)                
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c              The magnitude of the relative displacement 

               del_I_MC = (del_I + abs(del_I)) / two 

               del = sqrt(del_I_MC**two + del_II**two) 

                

c              The magnitude of the separation speed  

               vel = sqrt(vel_I**two + vel_II**two)               

 

c               ------------  CALCULATION OF THE TRACTION - MODEL ------------ 

         SELECT CASE (jModel) 

 

C  xxxxxxxxxxxx THE ORIGINAL XU and NEEDLEMAN MODEL 

(1994)xxxxxxxxxxxx 

         CASE (1)               

         IF (XN_r.eq.one) THEN  

          

c         The Normal Traction 

         trac_y = GIc/delo_I*exp(-del_I/delo_I)* 

 2        (del_I/delo_I*exp(-(del_II**two)/ 

     3        (delo_II**two))) 

 

c         The Tangential Traction 

         trac_x = two*GIc/delo_I*(delo_I/delo_II)* 

 2        del_II/delo_II*(XN_q)*exp(-

del_I/delo_I)* 

     3       exp(-

(del_II**two)/(delo_II**two)) 

      

         ELSE 

          

c         The Shear Traction 

         trac_y= GIc/delo_I*exp(-del_I/delo_I)* 

 2        (del_I/delo_I*exp(-(del_II**two)/ 
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     3      (delo_II**two))+(one-XN_q)/(XN_r-

one)*(one- 

     4        exp(-(del_II**two)/(delo_II**two)))* 

 5        (XN_r-

del_I/delo_I)) 

 

c         The Tangential Traction 

         trac_x = two*GIc/delo_I*(delo_I/delo_II)* 

 2   del_II/delo_II*(XN_q+(XN_r-XN_q)/(XN_r-

one)*del_I/ 

     3        delo_I)*exp(-del_I/delo_I)* 

     4        exp(-

(del_II**two)/(delo_II**two)) 

        ENDIF 

 

c                   Dummy Damage for Xu and Needleman Models 

c                   .. Mode_I ..      

                    IF ((del_I.ne.zero).AND.(del_I.gt.delcr_I)) THEN 

                        damage(nRod) = one 

                    ENDIF 

c                   .. Mode_II ..      

                    IF ((del_II.ne.zero).AND. 

     2                                (ABS(del_II).gt.delcr_II))THEN 

                        damage(nRod) = one 

                    ENDIF 

                     

 

c    xxxxxxxxxxxx THE MODIFIED XU and NEEDLEMAN MODEL by [ Bosch 

(2006)] xxxxxxxxxxxx 

       CASE (2) 

 

c        The Normal Traction 

        trac_y=  GIc/delo_I*(del_I/delo_I)* 
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 2       exp(-del_I/delo_I)*exp(-(del_II**two)/ 

 3       (delo_II**two)) 

   

c        The Tangential Traction 

        trac_x = two*GIIc/delo_II*(del_II/delo_II)* 

 2       (one+del_I/delo_I)*exp(-(del_II**two)/ 

     3     (delo_II**two))*exp(-del_I/delo_I) 

       

c                   Dummy Damage for Xu and Needleman Models   

   

c                   .. Mode_I ..      

                    IF ((del_I.ne.zero).AND.(del_I.gt.delcr_I)) THEN 

                        damage(nRod) = one 

                    ENDIF 

c                   .. Mode_II ..      

                    IF ((del_II.ne.zero).AND. 

     2                                (ABS(del_II).gt.delcr_II))THEN 

                        damage(nRod) = one 

                    ENDIF 

                     

                  

c           xxxxxxxxxxxx  THE BILINEAR MODEL xxxxxxxxxxxx 

                 CASE (3) 

 

c                   Calculation of the onset displacement 

                    beta = del_II / del_I 

                    IF(del_I > 0) THEN !Mixed-Mode action 

                        delo = delo_I*delo_II*sqrt((one + beta**two)/  

     *                   (delo_II**two + (beta*delo_I)**two)) 

                    ELSE         !No Mode-I, Mode-II active only 

                        delo = delo_II 

                    ENDIF   
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c                   Calculation of the onset displacement 

                    IF(del_I > 0) THEN !Mixed-Mode action 

                        delcr = two/(delo*E0)*(GIc + (GIIc - GIc)* 

     *                      (beta**two/(one + beta**two))**fBK) 

                    ELSE         !No Mode-I, Mode-II active only 

                        delcr = delcr_II 

                    ENDIF     

                

c                   Damage is taken or assumed                

                    IF(del > delo) THEN 

                         damage_cand=((del-delo)/(delcr-delo))*delcr/del 

                         damage_cand=min(damage_cand, one) 

                    ELSE 

                            damage_cand = zero 

                    ENDIF 

                     

                     

                    damage(nRod) = max(damage_cand, svars(kblock,nRod))  

c                   The traction in x-direction on the rod element 

                    trac_x = (one - damage(nRod))*E0*del_II 

                

c                   The traction in x-direction on the rod element 

                    trac_y = (one - damage(nRod))*E0*del_I              

                    IF (del_I<0) trac_y = E0*del_I 

 

c           xxxxxxxxxxxx  RATE-DEPT BILINEAR MODEL xxxxxxxxxxxx 

                 CASE (4) 

 

c                   Calculation of the onset displacement 

                    beta = del_II / del_I 

                    IF(del_I > 0) THEN !Mixed-Mode action 

                        delo_0 = delo_I*delo_II*sqrt((one + beta**two)/  

     *                   (delo_II**two + (beta*delo_I)**two)) 
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                        delo_inf = delo_I_inf*delo_II_inf*sqrt 

     *                      ((one + beta**two)/(delo_II_inf**two  

     *                         + (beta*delo_I_inf)**two)) 

                    ELSE         !No Mode-I, Mode-II active only 

                        delo_0 = delo_II 

                        delo_inf = delo_II_inf 

                    ENDIF   

                             

c                   Calculation of the onset displacement 

                    IF(del_I > 0) THEN !Mixed-Mode action 

                        delcr_0 = two/(delo_0*E0)*(GIc + (GIIc - GIc)* 

     *                      (beta**two/(one + beta**two))**fBK) 

                        delcr_inf = two/(delo_inf*E0)*(GIc_inf +  

     *                  (GIIc_inf - GIc_inf)*(beta**two/(one +  

     *                    beta**two))**fBK) 

                    ELSE         !No Mode-I, Mode-II active only 

                        delcr_0 = delcr_II 

                        delcr_inf = delcr_II_inf 

                    ENDIF     

                     

c                   Rate dependent values are found 

                    delo = one/(one/delo_inf+(one/delo_0-one/delo_inf)* 

     *                  exp(-abs(vel)/vel_Ref_o)) 

                    delcr = one/(one/delcr_inf+(one/delcr_0-one/ 

     *                  delcr_inf)*exp(-abs(vel)/vel_Ref_cr))         

                

c                   Damage is taken or assumed                

                    IF(del > delo) THEN 

                         damage_cand=((del-delo)/(delcr-delo))*delcr/del 

                         damage_cand=min(damage_cand, one) 

                    ELSE 

                         damage_cand = zero 

                    ENDIF 
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                    damage(nRod) = max(damage_cand, svars(kblock,nRod))  

c                   The traction in x-direction on the rod element 

                    trac_x = (one - damage(nRod))*E0*del_II 

                

c                   The traction in x-direction on the rod element 

                    trac_y = (one - damage(nRod))*E0*del_I              

                    IF (del_I<0) trac_y = E0*del_I 

          

               END SELECT 

c              ------------------------------------------------------------------------                

                 

c              Force = traction * force factor in LOCAL system              

               force_LOCAL(1) = trac_x * half_area 

               force_LOCAL(2) = trac_y * half_area 

 

c              Transformation of force matrix from Local to Global            

               force_GLOBAL = MATMUL(TRANSPOSE(Trnsfrm),force_LOCAL) 

  

               SELECT CASE(nRod) 

                CASE (1) 

c                   Assemble internal load in RHS, ROD = 1 

                    rhs(kblock,1) = -force_GLOBAL(1) 

                    rhs(kblock,3) =  force_GLOBAL(1) 

                    rhs(kblock,2) = -force_GLOBAL(2) 

                    rhs(kblock,4) =  force_GLOBAL(2) 

                CASE (2) 

c                   Assemble internal load in RHS, ROD = 2 

                    rhs(kblock,5) = -force_GLOBAL(1) 

                    rhs(kblock,7) =  force_GLOBAL(1) 

                    rhs(kblock,6) = -force_GLOBAL(2) 

                    rhs(kblock,8) =  force_GLOBAL(2)                   
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               ENDSELECT 

                

c              Averaging for the element output_________________ 

               del_(2,nRod) = del_II 

               del_(1,nRod) = del_I 

c              __________________________         

 c              Saving the damage term and dissipation energy 

               svars(kblock,nRod) = damage(nRod)  

 

c                writing of the crack tip info               

                 IF((svars(kblock,1).eq.one).AND. 

     *                   (svars(kblock,2).eq.one))THEN 

c                   Averaging the tractions and displacements for the centroid      

                    del_ave_I =  (del_(1,1)+del_(1,2))/two       

                    del_ave_II =  (del_(2,1)+del_(2,2))/two     

                 

c                   Calculatng energy release rate for the element 

                    GI = (svars(kblock,3) + svars(kblock,4)) 

     *                  /(two* half_area) 

                    GII =(svars(kblock,5) + svars(kblock,6)) 

     *                  /(two* half_area)                

                    Gc = GIc + (GIIc-GIc)*((GII/(GI+GII))**fBK)  

                    open(UNIT=100005,FILE= 

     *                  "C:\ABAQUS_JOBS\Crack_History.out",          

     *                              STATUS='UNKNOWN',POSITION='APPEND',  

     *                                  IOSTAT=ierror)  

 

c                   The lcoation of the element (mid point)    

                    cord_mid(1) = (cord_n1(1) + cord_n2(1) + cord_n3(1) 

     *                      + cord_n4(1))/4.d0 

                    cord_mid(2) = (cord_n1(2) + cord_n2(2) + cord_n3(2) 

     *                      + cord_n4(2))/4.d0 
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                    WRITE(UNIT=100005,FMT='(I20,2X,F20.15,2X,I20, 

     *                 6(F25.15))')kinc,time(iTotalTime), 

     *                      jElem(kblock),alen_vec_mid,GI,GII,Gc, 

     *                          del_ave_I*10**3,del_ave_II*10**3 

                    CLOSE (100005) 

                 ENDIF   

c              Calculating the steps of new energy release rates 

               GI_step(nRod) = del_step_I * trac_y * half_area 

               GII_step(nRod) = del_step_II * trac_x * half_area     

               svars(kblock,nRod+2)=svars(kblock,nRod+2)+GI_step(nRod) 

               svars(kblock,nRod+4)=svars(kblock,nRod+4)+GII_step(nRod) 

                                           

999            ENDDO  

                                

               energy(kblock, iElIe) = zero 

               energy(kblock,iElDmd) = GI*two*half_area 

               energy(nblock,iElCd) =  GII*two*half_area 

               energy(kblock,iElDmd) = (GI+GII)*two*half_area 

   c              Dilitational wave speed 

               dtimeStable(kblock) = StableTime 

                

            ENDDO !kblock - element by element do ends! 

         ELSE IF ( lflags(iOpCode) .eq. 

     *             jExternForce) THEN 

            IF (jdltyp.eq.123) THEN  

               DO kblock = 1, nblock 

                  rhs(kblock,4) = adlmag(kblock) 

               ENDDO 

            ENDIF 

         ENDIF 

      ENDIF 

      RETURN 

      END           
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