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ABSTRACT 

 

 

ANALYSIS AND MODELLING OF MACHINE TOOL DYNAMICS 

AND CUTTING STABILITY DURING OPERATION 

 

 

 

ÖZŞAHİN, Orkun 

Ph.D., Department of Mechanical Engineering 

Supervisor: Prof. Dr. H. Nevzat ÖZGÜVEN 

Co-Supervisor: Prof. Dr. Erhan Budak 

 

 

March 2014, 177 pages 

 

 

 

Self-excited vibrations of machine tools during cutting result in process 

instability, poor surface finish and reduced material removal rate. In order to 

obtain stability lobe diagrams to avoid chatter vibration, tool point frequency 

response function (FRF) must be determined. In classical machine tool studies, 

tool point FRF is obtained experimentally or analytically for the idle state of 

the machine. However, during cutting operations, discrepancies are frequently 

observed between the stability diagrams obtained by using FRFs measured at 

the idle state and the actual stability of the process. These deviations can be 

attributed to the changes in machine tool dynamics under cutting conditions. 

 

In this thesis, effects due to the operational conditions on machine tool 

dynamics are investigated. For that purpose, machining center subassemblies 

(spindle, holder and tool) are modeled using Timoshenko beam model 
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including gyroscopic effects, and tool point FRF is obtained using structural 

coupling and modification methods. Using the analytical model, effects of 

operating conditions on machine tool dynamics are investigated for different 

spindle – holder – tool assemblies and cutting speeds. In addition to the 

analytical modeling, variations of machine tool dynamics during operation are 

also investigated experimentally. A new identification method is proposed for 

the identification of in process tool point FRFs.  Then, experimentally and 

analytically obtained FRFs are used in the identification of the spindle bearing 

parameters under cutting conditions. Finally, for a real machining center, tool 

point FRFs under operating conditions are determined using the identified 

speed dependent bearing dynamics and the analytical model proposed. 

Analytically calculated tool point FRFs are verified through chatter tests. 

 

 

Keywords: Machine Tool Dynamics, Gyroscopic Effects, Chatter Stability  
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ÖZ 

 

 

 

OPERASYON SIRASINDAKİ TEZGAH TAKIM DİNAMİĞİNİN VE 

KESME KARARLILIĞININ ANALİZİ VE MODELLENMESİ 

 

 

 

ÖZŞAHİN, Orkun 

Doktora, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. H. Nevzat ÖZGÜVEN 

Ortak Tez Yöneticisi: Prof. Dr. Erhan Budak 

 

 

Mart 2014, 177 sayfa 

 

 

 

Talaşlı imalatta kesme sırasında karşılaşılan kendinden kaynaklı titreşimler 

işlem kararsızlığı, düşük yüzey kalitesi ve talaş kaldırma oranının azalması ile 

sonuçlanmaktadır.Tırlamadan kaçınmak amacıyla kararlılık diyagramlarının 

elde edilmesi için Takım ucu frekans tepki fonksiyonun (FTF) belirlenmesi 

gerekmektedir. Klasik takım tezgahı çalışmalarında takım ucu FTF‟si tezgahın 

statik durumu için deneysel ya da analitik olarak elde edilmektedir. Halbuki, 

kesme sırasında, tezgahın statik durumu için elde edilen FTF‟ler ile belirlenen 

kararlılık diyagramları ile işlemin gerçek kararlılığı arasında çoğunlukla 

farklılıklar gözlenmektedir. Bu farklılıklar kesme sırasında makina 

dinamiğinde meydana gelen değişimlere bağlı olduğu düşünülebilir. 

 

Bu tez kapsamında, operasyon koşullarının tezgah dinamiği üzerindeki etkileri 

araştırılmıştır. Bu amaçla işleme merkezi alt bileşenleri (iş mili, takım tutucu 
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ve takım),  jiroskopik etkilerin dahil edildiği Timoshenko çubuk modeli 

kullanılarak modellenmiş ve takım uç nokta FTF‟si yapısal birleştirme ve 

değişiklik yöntemleri kullanılarak elde edilmiştir. Analitik model kullanılarak 

operasyon şartlarının tezgah dinamiği üzerindeki etkileri farklı iş mili – takım 

tutucu – takım sistemleri ve kesme hızları için araştırılmıştır. Analitik 

modellemeye ek olarak, kesme sırasında takım tezgahında meydana gelen 

değişiklikler deneysel olarak da  araştırılmıştır. İşlem sırasındaki takım uç 

nokta FTF‟sinin belirlenmesi için yeni bir yöntem önerilmiştir. Ayrıca, 

deneysel ve analitik olarak elde edilen FTF‟ler operasyon koşulları altındaki 

rulman parametrelerinin belirlenmesinde kullanılmıştır. Son olarak, gerçek bir 

işleme merkezinde, operasyon koşullarındaki takım uç nokta FTF‟si, hıza bağlı 

olarak belirlenen rulman dinamiği ve analitik model kullanılarak 

hesaplanmıştır. Analitik olarak elde edilen takım uç nokta FTF‟si tırlama 

testleri ile doğrulanmıştır. 

 

 

 

 

Anahtar Kelimeler: Tezgah Dinamiği, Jiroskopik Etkiler, Tırlama Kararlılığı. 
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CHAPTER 1 

 

 

1                                      INTRODUCTION 

 

 

 

This introductory chapter aims at presenting the need of understanding chatter 

stability theory, machine tool modeling strategies and machine tool dynamics 

under operational conditions.  

 

1.1 Chatter Stability and Machine Tool Dynamics 

 

Chatter is a major problem causing poor surface finish, low material removal 

rate, machine tool failure, increased tool wear, excessive noise and increased 

cost for machining applications (Figure 1-1). Most important cause of chatter is 

the regenerative mechanism of the cutting operations and this regenerative 

mechanism can be explained with the cutting tool and workpiece interaction. 

As shown in Figure 1-2, cutting tool can be treated as a flexible element in two 

orthogonal directions, and during cutting operation cutting forces which are 

proportional to chip thickness excite cutting tool in radial and tangential 

directions. Therefore, cutting forces cause tool vibrations, and tool vibrations 

result in wavy profile on the workpiece surface. As shown in Figure 1-2, with 

the rotation of cutting tool, each cutting teeth removes wavy surface left from 

the previous teeth and creates a wavy surface again due to tool vibration. 

Depending on the phase difference between two successive waves, maximum 

chip thickness may exponentially grow while oscillating at a chatter frequency 

that is close to but not equal to dominant structural mode in the system [1]. 

Thus, chip with variable thickness is created during cutting operation and 

variable chip thickness cause variable cutting forces.  This is a closed loop 

system since variable forces cause tool to vibrate, and vibrating tool results 

wavy surface, and again wavy surface results in variable cutting forces.  
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Figure 1-1 Turbine blade surface due to chatter. 

 

 

 

 

 

Figure 1-2 Cutting tool – workpiece interaction and chip thickness variation. 

 

 

 

In order to avoid chatter, mechanisms of dynamic cutting process have been 

examined in detail for decades [1-5], and stability diagrams (Figure 1-3), which 
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provide stable regions in terms of the depth of cut and spindle speed 

combinations, have been developed [3-6]. Implementation of stability theory to 

production causes considerable increase in productivity. For instance, using 

stability diagram given in Figure 1-3, instead of performing cutting operation at 

8000 rpm spindle speed with 1 mm axial depth of cut, machining can be 

performed at 12000 rpm spindle speed with 7 mm axial depth of cut which 

leads to 10 times faster production. 

 

 

 

 

 

Figure 1-3 Stability diagram of the cutting operation. 

 

 

 

In order to obtain stability diagrams, frequency response functions (FRF) at the 

tool tip are needed. In general, tool point FRF is obtained experimentally using 

impact testing (Figure 1-4). In experimental procedure, tool point FRF is 

obtained with exciting the machining center at the tool tip with an impact 

hammer which also measures the impact force, and measuring the response 
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with an accelerometer at the tool tip. Then, using spectrum of excitation and 

response measurements, tool point FRF is calculated. 

 

 

 

 

 

Figure 1-4 Tool point FRF measurement using impact test [14]. 

 

 

 

As seen from Figure 1-4, impact tests require additional time before machining 

operations and in order to obtain stability diagrams, modal testing must be 

performed and tool point FRF should be determined for every combination of 

spindle, holder and tool, which is time consuming and may be costly, 

especially for production machines. These experimental limitations have lead 

researchers to investigate analytical methods to model machining centers 

consist of spindle, holder and tool subassemblies as shown in Figure 1-5 which 

would eliminate the dependency on experiments.  
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Figure 1-5 Machining center subassemblies. 

 

 

 

In order to obtain tool point FRF analytically; Schmitz et al. [7-9] proposed a 

semi – analytical method which applies the receptance coupling technique to 

couple the experimentally obtained spindle – holder subassembly receptances 

with the analytically obtained tool receptances using the contact parameters at 

the holder tool interface. Schmitz‟s semi - analytical method in determining the 

tool point FRF has been followed by several studies based on receptance 

coupling method [10-12]. In addition to semi –analytical models, Ertürk et al. 

[13] proposed an experimentally verified [13,14] analytical model for 

predicting the tool point FRF by combining the receptance coupling and 

structural modification techniques where all components of the spindle-holder-

tool assembly were modeled analytically with the Timoshenko beam theory, 

and combined with the contact parameters at the spindle – holder and holder – 

tool interfaces as shown in Figure 1-6.  
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Figure 1-6 Modeling approach of spindle – holder – tool assembly. 

 

 

 

However, during cutting operations, discrepancies between calculated stability 

diagrams and actual stability of the process are frequently observed as shown 

in Figure 1-7 [14]. One major contributor to these deviations is the changes in 

machine dynamics under cutting conditions. Because, during high speed 

cutting operations gyroscopic moments, centrifugal forces and temperature 

increase cause variations in bearing dynamics. In addition to variations in 

bearing dynamics, dynamic properties of the subassemblies (spindle, holder 

and tool) are also affected from gyroscopic moments. Thus tool point FRFs 

measured at idle state or calculated analytically for idle state of the machining 

center may lead to incorrect chatter predictions. Therefore, for high speed 

cutting operations, development of a modeling approach including rotational 

effects plays a crucial role in accurate prediction of the chatter stability.  
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Figure 1-7 Analytically obtained stability diagram and chatter test results [14]. 

 

 

 

1.2 Literature Review 

 

As shown in previous section in Figure 1-7, discrepancies between calculated 

stability diagrams and actual stability of the process are frequently observed 

and these deviations can be attributed to variations in the machining center 

dynamic properties which may vary due to gyroscopic moments, thermal 

expansions and centrifugal forces. These effects appear during cutting 

operation and cause significant changes on the system dynamics. Due to the 

gyroscopic effects, natural frequencies and corresponding modes of the system 

separate into backward and forward modes [15-17]. Also due to the gyroscopic 

effects, unlike non rotating systems, dynamic responses of the rotating system 

in two orthogonal planes are coupled. Thus, cross coupling effects should be 

considered in analytical modeling of rotating systems.  

 

In addition to the system dynamics, bearing characteristics are also affected by 

the rotational effects. During high rotational speeds, centrifugal forces and 
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gyroscopic moments act on the balls of the bearings pressing the balls toward 

the outer race. This effect causes changes in the contact angles and kinematics 

of the balls as well as redistributing the contact loads in the bearing which 

leads to decreased stiffness [18]. On the contrary, damping of the ball bearings 

increases under the rotational effects [18]. In order to model bearing behavior 

under high rotational speeds, Stone [19] proposed a general theory which 

includes gyroscopic and centrifugal effects. Harris [20] also proposed a method 

that requires solution of nonlinear equations numerically, and showed variation 

of the bearing stiffness under high spindle speeds with different preloads.  

 

Since there exists various effects that cause tool point FRF under operational 

conditions, for accurate prediction of tool point FRF, researchers developed 

models including rotational effects for the machine tool analysis [21-24]. 

However; in all this studies machine tool dynamics is modeled using FEM. In 

addition to gyroscopic and centrifugal effects, thermal expansions may also 

cause variations in the contact conditions of bearings, and thus affect dynamic 

properties of the bearings. In order to include thermal effects, thermo-

mechanical models have also been proposed [25-27]. Therefore, for the 

accurate modeling of the spindle–holder–tool assemblies in the machining 

centers, these effects should be considered. 

 

Similar to the machine tool dynamics researches, in the rotor dynamics 

research area, FEM became the main analysis tool in the last two decades [28-

34]. In addition to the FEM, Frew and Scheffer [35] applied numerical methods 

based on modified Euler equations, and Chena et al. [36] applied pseudo mode 

shape method for rotor – bearing foundation identification and integrated the 

identified foundation dynamics to the FEM. However; in literature there exist 

limited numbers of studies that concentrate on the analytical modeling of rotor 

systems. For the continuous beam model of rotor systems, Lee et al. [37-39] 

proposed modal analysis solution based on non – self – adjoint system 

characteristics. Similarly, Wang and Kirkhope [40-41] proposed eigensolution 

and modal analysis for the undamped rotor systems and applied perturbation 
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analysis for damped cases.  Parker and Sathe [42] proposed an exact solution 

for free and forced vibration of rotating disk spindle systems. In these 

analytical studies, rotors are considered uniform and modeled using Rayleigh 

beam model. However, for low slenderness ratios, shear deformation becomes 

important at high frequencies and Rayleigh beam model which includes rotary 

inertia effects but neglects shear deformation does not provide accurate results. 

Therefore, for accurate modeling of the system, Timoshenko beam model 

should be used. 

 

Another problem in modeling of spindle – holder – tool assemblies is the multi 

segment characteristics of the system. For instance; in the classical 

eigensolution of an m-segment beam, EVP problem requires the solution of a 

characteristic equation expressed in terms of a 4 4m m matrix, where m is the 

number of segments of the rotor system which increases the size of the 

matrices. To overcome this complexity, Schmitz and Donaldson [7], and Erturk 

et al. [12] proposed receptance coupling procedure to determine end point 

FRFs of multi segment beams. However; their studies deal with non rotating 

shafts and neglect gyroscopic effects. For modeling of multi segment rotors 

Hong and Park [43] offers a method based on distributed transfer function 

synthesis (DTFS) which requires the use of Laplace transformations and 

construction of global matrix in the same manner as in FEM. 

 

In addition to the modeling, there have been several experimental studies on 

the machine dynamics under cutting conditions. For that purpose, non-contact 

sensors such as Laser Doppler Vibrometer (LDV) can be used in measurement 

of rotating structures [44-49]. Tatara and Gren [50] used LDV to measure the 

response of machining centers. Similarly, Zaghbani and Songmene [51] used 

operational modal analysis in the determination of the dynamics of the milling 

machine during cutting. However, in these studies, FRFs could not be obtained 

due to the harmonic content of the cutting forces in milling operations. In order 

to overcome the harmonic content problem of the cutting forces, Opitz and 

Weck [52] proposed a spectral measurement method using a workpiece which 
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has a random surface profile. Based on the work of Opitz and Weck [52], 

Minis et al. [53] also used spectral measurement techniques in measuring 

dynamics of a lathe.  In a recent study, Budak and Tunc [54], applied a new 

identification procedure for process damping identification. They identified 

process damping in low cutting speeds using chatter frequency and axial depth 

cut obtained through chatter tests. 

 

1.3 Scope of Thesis 

 

The aim of this thesis is to investigate the spindle – holder – tool assembly 

dynamics and to develop an analytical modeling approach for the machine tool 

dynamics under operational conditions. Since dynamic properties of high speed 

machines may vary due to gyroscopic moments, thermal expansions and 

centrifugal forces during cutting, tool point FRFs at the idle state of the 

machining center do not lead to accurate stability predictions. Therefore, 

developing such a method could make significant contribution to the accurate 

prediction of tool point FRFs, and thus to generation of stability diagrams 

especially for the high speed machining operations. In addition to the analytical 

modeling procedure, this thesis is also concentrated on the identification of the 

tool point FRF and bearing dynamics under operational conditions. Therefore, 

with the implementation of identified speed dependent bearing characteristics 

to the analytical model, stability of the cutting process can be predicted much 

more accurately. 

 

The outcome of the thesis is believed to help increasing not only the accuracy 

of chatter stability predictions, but also better understanding of machine tool 

dynamics under operational conditions which is essential in selection of stable 

process conditions and machine tool design for increased productivity.  
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1.4 Outline of Thesis 

 

Outline of the thesis is as follows: 

 

In Chapter 2, theory of the proposed analytical modeling approach is presented. 

First, equation of motion for Timoshenko beam including gyroscopic effects is 

derived and eigensolution for rotating Timoshenko beam is obtained. After 

that, using the non self adjoint system characteristics, eigenvalue problem 

(EVP) of the rotating Timoshenko beam is solved for free – free end conditions 

and end point FRFs of a rotating Timoshenko beam is obtained. In addition to 

the analytical modeling of free – free beams, receptance coupling procedure for 

rotating multi segment beams is presented. Furthermore, bearing dynamics are 

included into the system by using a structural modification technique. Finally, 

the method proposed is verified by FEA results of a spindle – holder – tool 

assembly using ANSYS. 

 

In Chapter 3, in order to investigate the variation of tool point FRF under 

operational conditions several analytical case studies are presented. In the case 

studies, gyroscopic effects and bearing stiffness variations that result in tool 

point FRF variations are examined for different spindle–holder–tool 

assemblies. In order to determine the gyroscopic effects on the tool point FRF, 

thus on the stability, the tool point FRF of a spindle – holder – tool assembly is 

calculated for various spindle speeds. In addition, effects of the bearing 

parameters are investigated for different spindle – holder – tool assemblies. 

Bearing stiffness variation effects are investigated first for relatively soft 

bearings and then for stiffer bearings.  

 

In Chapter 4, various experimental identification approaches to identify the 

tool point FRFs during cutting operation are presented.  First, tool point FRF 

identification is performed using the relation between actual cutting forces and 

response measured from the holder of the machining center. This approach is 

applied for cutting of a standard and specially designed workpiece separately.  
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Due to the harmonic content of the cutting forces and limitations in the 

measurement capability of dynamometers, tool point FRF is identified for 

limited ranges of frequency and spindle speed.   

 

In Chapter 5, a new identification method is proposed for tool point FRF 

identification during cutting operations. In this identification method, 

experimentally determined chatter frequencies and corresponding axial depth 

of cuts are used for the tool point FRF identification. Using the identification 

method proposed, variations of the tool point FRF under cutting conditions are 

determined for different holder – tool combinations. In addition to identified 

tool point FRFs, stability diagrams are calculated using identified tool point 

FRFs and verified with the chatter test results. 

 

In Chapter 6, procedure for bearing parameter identification both for idle state 

and rotating conditions is presented. First, bearing parameters are identified for 

the idle state and applying effect analysis, bearing parameters that affect the 

elastic mode and stability are determined. Then, using the chatter test results 

and the proposed analytical model, variations of the bearing stiffness values 

with respect to the spindle speed and cutting force are identified. Finally, actual 

stability of the cutting operation is calculated using analytically determined 

tool point FRFs. 

 

In Chapter 7, verification of the proposed modeling approach is presented. For 

that purpose, experimentally identified spindle – holder interface parameters 

and speed dependent bearing dynamics are employed in the modeling of a 

different holder – tool combination.  Thus tool point FRF of new assembly and 

stability diagrams is predicted without performing experiments. Finally 

performing chatter tests, it is experimentally verified that analytical modeling 

procedure and identification method proposed can successfully be used for 

predicting actual stability of the cutting operation without performing further 

experiments for each holder – tool combinations.  
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In Chapter 8, summary and conclusion of the thesis is given. Also, 

recommendations for future work are suggested.  
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 CHAPTER 2 

 

 

2                         MATHEMATICAL MODELING 

 

 

 

2.1 Modeling of the Rotating Timoshenko Beam 

 

Consider a beam element with generalized coordinates as shown in Figure 2-1. 

Here 
zu is the axial displacement, 

xu and yu are the lateral displacements and 

x , y , and 
z  are the rotations with respect to x, y and z axis, respectively. 

 

 

 

 

 

Figure 2-1 Rotating Timoshenko beam generalized coordinates 

 

 

 



16 

 

 

Equation of motion for a rotating Timoshenko beam can be obtained using 

Hamilton‟s principle as follows: 

 

 
2

1

0

t

t

T V W dt            (2.1) 

 

In Equation (2.1), T and V are the kinetic and potential  energies of the rotating 

beam, respectively. W is the work done by the external forces and moments. 

 

Kinetic energy of the rotating Timoshenko beam element of length L can be 

written as follows: 
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  (2.2) 

 

where  is the density, A is the cross sectional area, I is the area moment of 

inertia of the beam cross section about neutral axis, J is the polar moment of 

the beam about the neutral axis and   is the spin speed of the beam.   

 

Also note that in Equation (2.2), first term is the kinetic energy due to the 

rotary inertia, second term is the translational kinetic energy and the last two 

terms are the kinetic energy due to the gyroscopic effects. 

 

Potential energy of a rotating Timoshenko beam can be written as follows: 

 

2 21 1 1

2 2 2
zz zx yzV E dV kAG dV kAG dV           (2.3)

   

where E is Young‟s modulus, G is shear modulus and k is shear coefficient. 



17 

 

 

Displacements and strain-displacement relations can be written as follows: 

 

'( , , , ) ( , )z z x yu x y z t u z t y x          (2.4) 

 

( , , , ) ( , )x xu x y z t u z t         (2.5) 

 

( , , , ) ( , )y yu x y z t u z t         (2.6) 
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       (2.9) 

 

If the strain-displacement relations given by Equation(2.4)- (2.9) are 

substituted into the Equation(2.3), potential energy of the beam length of L can 

be written as follows: 
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If the variations of the kinetic and potential energy expressions are determined 

and substituted into Equation (2.1), the equation of motion can be obtained as 

follows: 
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Since 
xu , yu , 

x  and y are independent variables, four equations will be 

obtained for the equation of motion of a rotating Timoshenko beam. 

 

2 2

2 2
0

yx xu u
A kAG

t z z




  
    

   
                (2.12) 

 

2 2

2 2
0

y yx
u u

A kAG
t z z




  
       

                (2.13) 

 

2 2

2 2
2 0

y yx x
x

u
I I EI kAG

t t z z

 
  

   
      

    
             (2.14) 

 

2 2

2 2
2 0

y yx x
y

u
I I EI kAG

t t z z

 
  

   
      

    
             (2.15)

  



19 

 

 

The boundary conditions of a rotating Timoshenko beam with free – free end 

conditions can be expressed as follows: 
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

  
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      

(2.19) 

 

By eliminating the dynamic bending rotations 
x and y , the equations of 

motion of a rotating Timoshenko beam will take the following form 
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             (2.20) 
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             (2.21) 
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As seen from the Equation (2.20) and Equation (2.21), due to the gyroscopic 

effects, motion in two orthogonal planes are coupled. Thus classical solution 

methods cannot be applied for the solution of a rotating Timoshenko beam. 

 

For the solution of a rotating Timoshenko beam, harmonic vibration can be 

assumed and separation of variables can be applied such that 

 

( , ) ( ) i t

x xu z t U z e  ( , ) ( ) i t

y yu z t U z e                 (2.22) 

 

( , ) ( ) i t

y yz t z e   ( , ) ( ) i t

x xz t z e                              (2.23) 

 

Note that for the free vibration analysis of the beam element, since the element 

is symmetric it is known that the mode shapes of the beam in two orthogonal 

planes will be related with each other by the following relations [17] 

 

( ) ( )f f

x yU z iU z  ( ) ( )b b

x yU z iU z                 (2.24) 

 

where the relations given by the Equation (2.24) correspond to the forward and 

backward modes respectively. 

 

If the expression given by the Equation (2.22) - (2.24) are substituted into 

Equation (2.20), differential equations representing motions in two orthogonal 

planes can be decoupled and the equation of motion can be written as an 

ordinary differential equation for the backward motion as 
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           (2.25) 
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Similarly, for the forward motion, decoupled equation of motion can be written 

as 
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4 2

2 2
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f f

y y

f

y
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 
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  
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  

 
     
 

  

           (2.26) 

 

2.2 Free Vibration Solution for Rotating Timoshenko Beam 

 

The eigensolution for rotating Timoshenko beam can be obtained by using the 

solution procedure given by Aristizabal-Ochoa [55] for non-rotating 

Timoshenko beam.  For free-free end conditions, characteristic equation of 

rotating Timoshenko beam for backward motion can be written as 

 

11 12

11 22 12 21

21 22

0
D D

D D D D
D D

                   (2.27) 

 

where 

 

       11 cos coshD L L                        (2.28) 

 

       12 sin sinhD L L


     


                  (2.29) 

 

   21 sinh sinD L L
 

   
 


 


               (2.30) 

 

    22 cosh cosD L L                    (2.31) 

 

2 K







2 K







2A
K

kAG

 
                 (2.32) 
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                           (2.33) 

 

2

b
   

2 4

2

b d



                   (2.34) 
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 
   

 
   

 
      

(2.35) 

 

As can be seen from Equation (2.35), rotating Timoshenko beam model has 

additional speed dependent terms, compared to the non-rotating case. Thus by 

using the characteristic equation given by Equation (2.27), natural frequencies 

of each elastic mode and corresponding frequency numbers r and r can be 

determined. Finally, the eigenfunction expressions for the dynamic transverse 

deflection and bending rotation can be obtained as follows: 

 

 1 2 3 4( ) sin( ) cos( ) sinh( ) cosh( )b

y r r r r rU z A C z C z C z C z      
       

(2.36) 
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A C Cosh z C z

   

  

   

   

             (2.37) 

 

where 

 

1 1C C ,   11
2 1

12

D
C C

D
  , 3 1

r r

r r

C C
 

 





, 11

4 1

12

r r

r r

D
C C

D

 

 
              (2.38) 

 

For forward motion, the free vibration solution can be obtained in a similar 

way. The only difference will be in the speed dependent terms expressed by 

Equation (2.35). For forward motion b and d will be expressed as: 
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            (2.39) 

 

Also note that the constant rA  can be obtained by the normalization of the 

eigenfunctions using biorthonormality condition which will be discussed in 

Section 2.3. 

 

2.3 Forced Vibration Response of Rotating Timoshenko Beam 

 

To obtain the forced response of a rotating Timoshenko beam to an external 

force applied on the beam at location nz z in y direction, Equations (2.12) - 

(2.15) can be expressed in the following form  

 

          ( )M q G q K q F t                    (2.40) 

 

where M, G, and K are defined as follows: 
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
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   
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    
   
     

              (2.43) 

 

Note that, due to the gyroscopic effects, the system is non – self adjoint. 

Therefore, in order to obtain forced response of a rotating Timoshenko beam, 

equation of motion should be represented in state space as 

 

     
.0 0

( )
0

M M
w w Q t

M G K

   
    

                   (2.44) 

 

where  

 

   
 

.
0

( )
( )

qw Q t
F tq

    
    

                   (2.45) 

 

Equation (2.44) can also be written as: 

 

       
.

( )C w D w Q t                   (2.46) 

 

Note that in Equation  (2.46), D  is self adjoint and C is non – self adjoint, 

therefore system will have left eigenvectors and their adjoint right 

eigenvectors. Thus, Eigen Value Problem (EVP) of rotating Timoshenko beam 

for left and right eigenvectors can be written as follows: 

 

     ( ) ( )l l l

r r rC z D z     , ,l b f               (2.47) 

 

   ( ) ( )l l l

s s sC z D z         , ,l b f               (2.48) 
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where 

 

   ˆ ˆˆ ˆ( )
r r r r r r r r

T
l l l l l l l l l

r y x x y y x x yz U U U U     , ,l b f           (2.49) 

 

   ˆ ˆˆ ˆ( )   
r r r r r r r r

T a l a l a l a l a l a l a l a l
s y x x y y x y xz U U U U     , ,l b f    (2.50) 

 

In Equation (2.48) bar denotes complex conjugate, and in Equations (2.49) - 

(2.50)  superscript a denotes adjoint and superscripts b and f denote the 

backward and forward modes, respectively. 

 

For non – self adjoint systems, left eigenvectors and complex conjugate of their 

adjoint right eigenvectors are related with a constant 
rK which is a pure 

imaginary number [27]. 

 

r r

a l l

x r xK   
r r

a l l

y r yu K u                  (2.51) 

 

Eigenvectors can be simplified using the relation given below:  

 

ˆ
r r

l l l

y r yu u   ˆ
r r

l l l

x r x                   (2.52) 

 

For the non self adjoint EVP, left and right eigenvectors are biorthonormal and 

biorthonormality can be defined using the inner product operator as 

 

, ,r s rs r s r rsC D                       (2.53) 

 

In Equation (2.53) , is the inner product operator and defined as follows: 

 

       1 2 1 2,
T T

a a a b b b                  (2.54) 
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1 1 2 2 1 1 2 2

0 0

, , ,

L L

a b a b a b b a dz b a dz                   (2.55) 

 

where bar denotes complex conjugate. 

 

To determine the forced response of the system, backward and forward modes 

can be treated separately. Thus if we apply the biorthonormality, the constant 

rA  in the eigenfunction expressions of backward and forward modes can be 

determined. For backward modes the constant rA  can be determined as 

follows: 

 

2 1
r

r r r r r

A
K C K E




                  (2.56) 

 

where 

 

       
2 2 2 2
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r r r r

L
b b b b

r y x x yC A U I A U I dz     
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(2.57) 

 

    
2 2

0

2 2
r r

L

b b

r x yE i I i I dz                      (2.58) 

 

Similarly, rA  in the eigenfunction expressions of forward modes can be 

determined as follows: 

 

2 1
r

r r r r r

A
K C K E




                  (2.59) 

 

where 
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(2.60) 

 

    
2 2

0

2 2
r r

L

f f

r x yE i I i I dz                      (2.61) 

 

Response of the system to an externally applied excitation can be expressed by 

using the expansion theorem as follows:  

 

,

( , ) ( ) ( )l l

r r

l b f r

w z t z q t


                   (2.62) 

 

If the expression given by Equation (2.62) is substituted into Equation (2.46) 

and biorthonormality is applied, Equation (2.46) reduces to: 

 

.

( ) ( ) ( )l l l

r r rq t q t P t                    (2.63) 

 

where, 

 

      
0

( ) ( ) , ( )

L

ı l l
r s sP t Q t Q t dz                   (2.64) 

 

Thus, solution in terms of modal coordinates can be obtained as: 

 

( )
( )

l
l r

r l

r

P t
q t

i 



                  (2.65) 

 

Using the solution in terms of modal coordinates, given by Equation (2.65), the 

time response of the system to an applied excitation can be determined. For 
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instance, response of the system to an applied force in y direction at the 

location nz z can be obtained as follows: 

 

,

( ) ( ) ( )
( , ) r r

l a l
y y n y

y l
r

l f b r

U z U z z F t
u z t

i 


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


               (2.66) 

 

Since in the state space, the order of the EVP is doubled, eigenvalues and 

corresponding eigenvectors will be in the form of complex conjugates. Thus, 

the transverse response of the system to the applied force ( )yF t can be written 

as follows: 
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(2.67) 

 

For rotating Timoshenko beam, the receptance functions in y-z plane can be 

defined as follows: 
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(2.68) 

 

Note that structural damping can be included into the model by adding modal 

damping terms to the denominator in Equation (2.67) [17], and then point and 

cross receptance functions in y-z plane can be obtained as  
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Note that 
ryU and 

rx in Equations (2.69) –(2.72)are the normalized backward 

and forward eigenfunctions obtained using biorthonormality condition.  

 

Since the beam has free-free end conditions, there exist two rigid body modes 

in each orthogonal plane where beam can translate or rotate without any elastic 

deformation. Thus the summation term in Equations (2.69) - (2.72) start from 

zero, including the rigid body mode contributions.  Translational and rotational 

rigid body modes can be expressed as 

 

trans trans
yU A                    (2.73) 

 

2

rot rot
y

x
U A L

 
  

 
                  (2.74) 

 

0trans
x                     (2.75) 
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rot rot
x A                     (2.76) 

 

Here, transA  and rotA  are constants and by applying biorthonormality they can 

be determined as  

 

1trans

trans trans
r

A
i C E




                 (2.77) 

 

1rot

rot rot
r

A
i C E




                 (2.78) 

 

where 

 

4transC AL , 0transE                   (2.79) 

 

   
2 2

0

2 2

L
rot rot rot

y xC A U A U dz 
  

     
                (2.80) 

 

   
2 2

0

2 2

L
rot rot rot

x yE i I i I dz   
 

    
 
                (2.81) 

 

Taking the rigid body terms outside the summation sign in Equations (2.69) - 

(2.72) and using the expressions of rigid body mode eigenfunctions given by 

Equations (2.73) -(2.76), point and cross receptance functions in y-z plane can 

be expressed as 

 

   
, 2 2

2
, 1

( ) ( )1
( ) 2

1

r r

l l
y j y il

iy jy r
l
rl b f r

U z U z
H i

AL i

 
    



 

 
 

    
   
 

             (2.82) 
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iy jx r
l
rl b f r

z U z
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  
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 
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  
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   
, 2

2
, 1

( ) ( )
( ) 2

1
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l
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U z z
L i

i
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 

 
 
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   
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2
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1
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x j x il
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l
rl b f r

z z
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i

 
 

  



 

 
 

  
   
 

               (2.85) 

 

In addition to the point and cross FRFs in each orthogonal plane, due to the 

gyroscopic effects, there exist cross coupling between the orthogonal planes. 

Therefore; for the prediction of the complete dynamics of the rotating 

Timoshenko beam, cross FRFs between the orthogonal planes should be 

considered as well. These FRFs can be determined by using the same approach 

presented above, but unlike the FRFs given by Equations (2.82) -(2.85), in the 

FRF expressions for cross coupling terms, eigenfunctions of the two 

orthogonal planes will appear in equations. However; using the relations given 

by Equation (2.24), cross FRFs between the two orthogonal planes can be 

expressed by the eigenfunctions of each plane as follows: 

 

       
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(2.86) 
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(2.87) 
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(2.89) 

 

2.4 FRFs of Multi Segment Beams by Receptance Coupling 

 

In this study the end point FRFs of a multi segment shaft are calculated by 

using receptance coupling method, rather than classical approaches in which 

matrix sizes are increased by assembling the individual matrices.   

 

Graphical representation of receptance coupling of two beam segments is 

shown in Figure 2-2. 

 

 

 

 

 

Figure 2-2 Receptance coupling of two beams. 
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In order to apply receptance coupling to a rotating Timoshenko beam, unlike in 

non – rotating case, cross FRFs between two orthogonal planes should be 

considered as well. Thus based on the FRF definitions given by Equation 

(2.68), and considering the response of the rotating Timoshenko beam at A1 

end to applied force and moment excitations at the same point, receptance 

matrix can be defined as follows: 

 

1 , 1 1 , 1 1 , 1 1 , 11 1

1 11 , 1 1 , 1 1 , 1 1 , 1

1 11 , 1 1 , 1 1 , 1 1 , 1

1 11 , 1 1 , 1 1 , 1 1 , 1

A x A x A y A x A y A x A x A xA x A x

A y A yA x A y A y A y A y A y A x A y

A y A yA x A y A y A y A y A y A x A y

A x A xA x A x A y A x A y A x A x A x

H L H Lu f

MN P N P

u fH L H L

MN P N P





    
    
    

    
   
      





            (2.90) 

 

In Equation (2.90), subscripts indicate the location and direction of the 

excitation or response. For instance, in 1 , 1A y A xH  the second subscript 1A x  

indicates that the force is applied at A1 location in x-direction and the first 

subscript 1A y  indicates the response considered is at A1 location in y 

direction.  

 

Using the response and excitation relations given in Equation(2.90), receptance 

matrices for the subassemblies A and B can be written as 

 

 
   
   

11 12

21 22

A A
A

A A

 
  
 

 
   
   

11 12

21 22

B B
B

B B

 
  
 

                                     (2.91) 

 

where 

 

 
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1 , 1 1 , 1 1 , 1 1 , 1
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 
 
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              (2.92) 
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 

  
 
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             (2.94) 

 

Using the compatibility and continuity conditions at the connection points of 

subassemblies A and B, receptance coupling procedure can be applied and 

FRFs of the coupled structure C can be obtained as follows: 

 

           
1

11 11 12 22 11 21C A A A B A


                    (2.95) 

 

         
1

12 12 22 11 12C A A B B


                    (2.96) 

 

         
1

11 21 22 11 21C B A B A


                    (2.97) 

 

           
1

22 22 21 22 11 12C B B A B B


                    (2.98) 

 

2.5 Including Bearing Dynamics 

 

In this study, the bearing dynamics is included into the system dynamics by 

using the structural modification method suggested by Özgüven [56]. In this 

method, the receptance matrix of a modified system is obtained from the 

receptance matrix of the original system and the modification matrix. Bearing 
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dynamics can be added to the left end of the rotor shaft as shown in Figure 2-3 

and the remaining shaft segments can be coupled to the modified system with 

the receptance coupling procedure given in Section 2.4. 

 

 

 

 

 

Figure 2-3 Including bearing dynamics to the rotor segment by structural 

modification. 

 

 

 

In Figure 2-3 yk  is the translational stiffness, yc is the translational damping, k  

is the rotational stiffness and c is the rotational damping of the bearing. 

 

The receptance matrix of the unmodified system (shown in Figure 2-3 as part 

C), and the modification matrix representing dynamic stiffness matrix of the 

bearing can be written in partitioned form as follows: 
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where 
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1 , 1 1 , 1

1 1
1 , 1 1 , 1

C x C x C y C x

C C
C x C y C y C y

H H
H
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 
  
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and 
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(2.101) 

 

Then by using the structural modification method suggested by Ozguven [56], 

the receptance matrix of the modified system represented as C   can be 

obtained as 

 

        
1

C C CI D  


          
         

(2.102)
 

 

However, as the nonzero part of the modifying matrix is smaller than the total 

dof, the size of the matrix that needs to be inverted can be reduced by 

partitioning the matrices [56] so that  

 

 
1

11 11 11 11
C C CI D  




         

              
         

(2.103)
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T
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             (2.104) 
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22 22 21 11 21
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(2.105)

 

 

where 
11D 

 
is the submatrix of the modification matrix, and it can be 

represented as: 

 

 
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Note that to be able to partition  D as given in Equation (2.106), it will be 

necessary to renumber the dofs.  

 

2.6 Elastic Coupling of Subassembly Dynamics 

 

As shown in Section 2.4, end point FRFs of subassemblies (spindle, holder and 

tool) can be obtained by rigidly coupling sub segments. However, in order to 

couple subassemblies (spindle, holder and tool), contact parameters at spindle – 

holder and holder – tool interfaces should be included in receptance coupling 

procedure as shown in Figure 2-4.  
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Figure 2-4 Subassemblies (Spindle, holder and tool) and contact parameters at 

spindle – holder and holder – tool interfaces. 

 

 

 

For instance, end point receptances of the spindle-holder subassembly can be 

obtained through the elastic coupling of the spindle (S) and the holder (H) 

FRFs as follows [12]:  

 

             
1
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                (2.111)

   

where SH represents spindle – holder assembly and  shK  is complex stiffness 

matrix at spindle – holder interface and it can be represented as: 
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Similarly, the point receptance matrix of the assembly at the tool tip is obtained 

as follows: 

 

             
1

1

11 11 12 22 11 21htSHT T T T K SH T

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 

            (2.113) 

 

where SHT represents spindle – holder - tool assembly and  htK  is complex 

stiffness matrix at holder - tool interface. 

 

2.7 Numerical Case Studies 

 

In this section a numerical case study is presented to verify the analytical 

model and the solution approach, as well as to demonstrate the effect of 

including gyroscopic moments on machine tool dynamics. 

 

2.7.1 Verification of the Model 

 

First, in order to verify the accuracy and computational efficiency of the 

proposed analytical modeling approach, a multi segment spindle – holder – tool 

assembly with asymmetric bearings (Figure 2-5) is modeled and analyzed with 

ANSYS, as well as with the proposed approach.  For the ANSYS model, beam 

element BEAM 188 which is based on Timoshenko beam theory is used for the 

rotor segments, and asymmetric front and rear bearings are modeled using 

COMBIN 214 element. Frequency increment in the FRF calculation is selected 

as 0.5 Hz in both ANSYS and in the analytical modeling approach. 
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Bearing properties are given in Table 2-1 and geometry of the spindle, holder 

and tool are given in Table 2-2 - Table 2-4, respectively. Material properties of 

the assembly are taken as follows; mass density ρ=7860 kg/m
3
, Young‟s 

modulus E=200 GPa, Poisson‟s ratio ν=0.3 and structural damping ratio 

0.06  . In Figure 2-5, superscripts f and r correspond to the front and rear 

bearings, respectively. 

 

 

 

 

 

Figure 2-5 Multi-segment rotor (spindle – holder – tool assembly) supported by 

asymmetric bearings. 

 

 

 

Table 2-1 Front and rear bearing properties. 

 

 Front Bearing Rear Bearing 

xk  (N/m) 5. 75 10  5. 75 10  

yk  (N/m) 7. 75 10  7. 75 10  

xc  (N.s/m) 10 10 

yc  (N.s/m) 10 10 
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Table 2-2 Spindle dimensions. 

 

Segment number 1 2 3 4 5 6 7 8 9 10 

Length (mm) 25 115 57 13 20 230 30 33 57.5 6.5 

Outer Diameter (mm) 65 100 120 110 100 90 70 60 55 50 

 

 

 

Table 2-3 Holder dimensions 

 

Segment number 1 2 

Length (mm) 25 110 

Outer Diameter (mm) 70 55 

 

 

 

Table 2-4 Tool dimensions 

 

Segment number 1 2 

Length (mm) 45 55 

Outer Diameter (mm) 18 22 

Inner Diameter (mm) 0 0 

 

 

 

In order to check the accuracy of the proposed analytical model, end point 

FRFs of the assembly are calculated for the x-z and y-z planes with both 

ANSYS and the proposed model for 40 000 rpm spindle speed. In addition to 

the point FRFs, the cross FRFs of the assembly between two orthogonal planes 

are also calculated. The results are given in Figure 2-6 to Figure 2-8. 

 

As seen from Figure 2-6 to Figure 2-8, the analytical model proposed predicts 

the dynamics of the system accurately. The maximum frequency difference 
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between the resonance frequencies calculated with ANSYS and the analytical 

model developed occurs in the sixth mode, and the difference is only 0.9 %. 

For the remaining modes in the frequency range of interest, differences are less 

than 0.1%.  In addition to its high accuracy, the proposed analytical approach is 

computationally very efficient as well. The time required for ANSYS solution 

is 1500 seconds whereas using the proposed analytical model the end point 

FRF of the same assembly can be determined in 102 seconds. 
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Figure 2-6 Tool point FRF in the x-z plane calculated using ANSYS and the 

analytical model. 
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Figure 2-7 Tool point FRF in the y-z plane calculated using ANSYS and 

analytical model. 
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Figure 2-8 Cross FRFs between the two orthogonal planes obtained with 

ANSYS and analytical model. 
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In addition to FRFs given in Figure 2-6 to Figure 2-8, in order to investigate 

the changes in tool point FRF under rotating conditions, tool point FRF of the 

same spindle – holder – tool assembly is calculated at idle state. The tool point 

FRF given in Figure 2-6 is compared with the tool point FRF at 40000 rpm 

spindle speed in Figure 2-9. As seen from Figure 2-9, gyroscopic moments 

cause separation of idle modes into backward and forward modes. 

 

 

 

 

 

Figure 2-9 Tool point FRF in the x-z plane calculated by the analytical model 

for the idle state and for 40000 rpm spindle speed 
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2.7.2 Computational Efficiency of the Method 

 

In this section the computational efficiency of the proposed approach is 

demonstrated for the case study considered. In engineering applications where 

modifications exist, FEM should be reconstructed and the dynamics of the 

whole system should be analyzed for each case.  However, in the proposed 

approach, receptances of the unmodified part of system can be stored and the 

system dynamics can be determined by analyzing the modified part of the 

system only.  For example, in machine tool applications, the spindle remains 

the same in the analyses but different tool holders and cutting tools are 

clamped to the spindle for different cutting operation. In order to demonstrate 

the advantage of the proposed approach, the same case study is used and the 

spindle – holder – tool assembly given in Table 2-2 - Table 2-3 is reanalyzed 

by using a different tool whose properties are given in Table 2-5. Tool point 

FRFs are calculated both with ANSYS and the proposed analytical model. 

Note that in the analytical model, only the receptances of the tool segments are 

recalculated and these receptances are coupled with the previously determined 

spindle – holder subassembly receptances. Therefore; while the determination 

of the modified system dynamics with ANSYS takes 1500 seconds, proposed 

method requires only 21 seconds for the computation of the end point FRFs of 

the modified system.  

 

 

 

Table 2-5Tool dimensions 

 

Segment number 1 2 

Length (mm) 40 57 

Outer Diameter (mm) 10 12 

Inner Diameter (mm) 0 0 
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CHAPTER 3 

 

 

3 EFFECT ANALYSIS OF GYROSCOPIC MOMENTS AND 

SPEED DEPENDENT BEARING STIFFNESS VARIATIONS ON TOOL 

POINT FRF AND STABILITY 

 

 

 

In this section, several cases are presented in order to investigate the variation 

of tool point FRF under operational conditions. In the case studies, two main 

effects that result in tool point FRF variations are examined for different 

spindle–holder–tool assemblies. First, variations of tool point FRF due to 

gyroscopic effects are examined. Second, effects of bearing stiffness variation 

due to rotation of the system on the tool point FRFs are investigated. Finally, 

combined effects of gyroscopic moments and bearing stiffness variations on 

the tool point FRFs are examined. In addition to the tool point FRFs, variations 

of stability diagrams are also investigated for the case studies.   

 

3.1 Case Study 1 

 

In order to investigate the effects of gyroscopic moments, spindle–holder–tool 

assembly is first modeled for non-rotating case and then for spindle speed of 

25000 rpm.   Geometry of the spindle, holder and tool are given in Table 3-1 to 

Table 3-3 respectively. Dynamic properties of the interface and bearings are 

also given in  

Table 3-4. Material properties of the spindle–holder–tool assembly are taken 

as: Mass density 7860   kg/m
3
, Young‟s modulus 200E   GPa, Poisson‟s 

ratio 0.3   and material loss factor is assumed to be 0.003  .  

 

For the interface parameters at the spindle – holder and holder – tool 

connection, identified parameters given in the study of Ertürk et.al [12] are 
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used. Also for the bearing properties, numerical values given in the reference 

[12] are used. 

 

 

 

Table 3-1 Spindle dimensions for case study 1 

 

Segment number 1 2 3 4 5 6 7 8 9 10 

Length (mm) 26 26 26 38 100 66 75 30 40 40 

Outer Diameter (mm) 66 66 66 66 76 70 62 58 58 58 

Inner Diameter (mm) 54 48 40 32 32 32 32 32 32 32 

 

 

 

Table 3-2 Tool Dimensions for case study 1 

 

Segment number 1 2 

Length (mm) 45 55 

Outer Diameter (mm) 18 22 

Inner Diameter (mm) 0 0 

 

 

 

Table 3-3 Holder Dimensions for case study 1 

 

Segment number 1 2 3 4 5 6 

Length (mm) 22 129 24 26 26 26 

Outer Diameter (mm) 72 60 70 54 48 40 

Inner Diameter (mm) 16 16 16 16 16 16 
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Table 3-4 Dynamic properties of the bearings and interfaces for case study 1 

 

  

Translational 

Stiffness 

(N/m) 

 

Rotational 

Stiffness 

(N.m/rad) 

 

Translational 

Damping 

(N.s/m) 

 

Rotational 

Damping 

(N.m.s/rad) 

Spindle – 

holder interface 
5x10

7
 1.5x10

6
 10 - 

Holder – tool 

interface 
2x10

7
 1.5x10

6
 10 - 

Front Bearing 7.5x10
5
 - 10 - 

Rear Bearings 2.5x10
6 

- 10 - 

 

 

 

In order to study the effects of gyroscopic moment on the tool point FRF of the 

spindle – holder – tool assembly, tool point FRF is calculated at 25 000 rpm 

spindle speed and also at idle conditions. The results are shown in Figure 3-1. 

 

As seen from Figure 3-1, gyroscopic effects cause separation of idle modes 

into backward and forward modes as expected, and the amount of separation 

between backward and forward modes increases with spindle speed. Also note 

that, in order to investigate only the effects of the gyroscopic moments, for the 

rotating case bearing properties are not updated according to the spindle speed 

but they are used as given in  

Table 3-4. Thus the only reason for the differences between the FRFs given in 

Figure 3-1 will be the gyroscopic effects.  
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Figure 3-1 Comparison of the tool point FRFs calculated by using the 

analytical model for the idle state and for 25000 rpm spindle speed. 

 

 

 

Although the effect of gyroscopic moment on frequency response may not be 

much, its further effects may be more important in stability analysis. In order to 

investigate the effects of gyroscopic moments on stability of the cutting 

process, stability limits of the cutting process are calculated using FRFs in 

operating and idle conditions by using the analytical milling chatter stability 

model proposed by Budak and Altintas [5]. During the stability calculation 

workpiece is taken as an aluminum alloy, and the radial depth of cut is taken as 

3 mm. The cutting force coefficients are taken as Kt=625 MPa and Kr=100 

MPa [24]. 
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The effect of gyroscopic moments on the stability diagram is shown in Figure 

3-2 which demonstrates that rotational effects may increase stability limits of 

the cutting operation so that an unstable point on the diagram may actually be 

stable. 

 

 

 

 

 

Figure 3-2 Stability diagrams predicted using the tool tip FRFs for the idle state 

and 25 000 rpm spindle speed. 

 

 

 

Note that stability diagram given in Figure 3-2 is for 25000 rpm spindle speed. 

The tool point FRFs are also calculated for spindle speeds 9000 rpm, 15000 

rpm and 35000 rpm and corresponding stability limits are determined.  The 

change in the stability limits for different spindle speeds are tabulated in Table 

3-5.  
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Table 3-5 Variations in the stability limits for different spindle speeds 

 

 Maximum axial depth of cut using 

(mm) 

 

Spindle Speed [rpm] Using FRFs 

at idle state 

Using FRFs for 

rotating spindle 

Difference (%) 

9000  0.27 0.3 10 

15000 0.23 0.3 23 

25000 0.27 0.46 41 

35000 0.2 0.38 47 

 

 

 

As can be seen from Table 3-5, if gyroscopic moment is not considered and 

FRFs of the idle state were used, the stability limits predicted would be 

significantly underpredicted. 

 

During high rotational speeds, centrifugal forces and gyroscopic forces act on 

the balls of the bearings pressing the balls toward the outer race. This effect 

causes changes in the contact angles and kinematics of the balls as well as 

redistributing the contact loads in the bearing which leads to decreased 

stiffness [18]. Thermal expansions may also cause variations in the contact 

conditions, and thus affect dynamic properties of the bearings. Thus, in 

addition to the gyroscopic effects on the spindle–holder–tool assembly 

dynamics, bearing stiffness variation due to rotational speed should be 

considered for accurate prediction of the tool point FRF. 

 

In order to investigate the effects of bearing stiffness variation due to rotational 

speed on tool point FRF thus, on stability, tool point FRF is calculated for the 

idle state with the bearing parameters given in Table 3-4. In addition to the idle 

FRF, tool point FRF is computed for 25000 rpm spindle speed with the bearing 

stiffness values updated according to rotational speed as given in Table 3-6. 
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Bearing stiffness values are updated based on the study of Altintas and Cao 

[21]. Obtained tool point FRFs are given in Figure 3-3. 

 

 

 

Table 3-6 Updated bearing parameters for case study 1 

 

  

Translational 

Stiffness 

(N/m) 

 

Rotational 

Stiffness 

(N.m/rad) 

 

Translational 

Damping 

(N.s/m) 

 

Rotational 

Damping 

(N.m.s/rad) 

Front Bearing 4.5x10
5
 - 10 10 

Rear Bearing 1.5x10
6 

- 10 10 

 

 

 

 

 

Figure 3-3 Tool point FRF calculated by the analytical model for the idle state 

and for 25000 rpm spindle speed rotating condition. 
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As seen from Figure 3-3, the variation of the bearing properties causes 

significant changes in the spindle rigid body modes. On the contrary, tool 

modes are not affected by the bearing stiffness variations as expected.  

 

Similar to the gyroscopic moment effect analysis, to demonstrate the effects of 

the bearing stiffness variations due to rotational speed on chatter stability, 

stability diagrams are generated using the FRFs given in Figure 3-1 and Figure 

3-3 with the same cutting parameters. Obtained stability diagrams are given in 

Figure 3-4. 

 

 

 

 

 

Figure 3-4 Stability diagrams predicted using the tool tip FRFs for 25 000 rpm 

spindle speed with and without bearing stiffness variation effect. 
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As seen from Figure 3-4, even with a considerable change in the tool point 

FRF, stability diagrams are not affected. This is due to the dominant 

characteristics of the tool modes since the stability is governed by the dominant 

tool mode in this case. Thus deviations between the actual stability of the 

process and stability predicted using idle FRF are due to the gyroscopic 

moments. Consequently, it can be said that the changes in bearing stiffness 

properties due to rotational speed do not affect stability diagram for the case 

studied. 

 

3.2 Case Study 2 

 

It is a well known phenomenon that stiffness characteristics of bearings are 

highly depend on the preload applied, and with increasing preload bearing 

stiffness values increase. Also Erturk et al. [14] showed that for the highly stiff 

bearings, variations in the bearing stiffness values affect the elastic modes in 

tool point FRF. Therefore; spindle – holder – tool assembly given in Table 3-1 

- Table 3-3 is modeled for 25000 rpm spindle speed and idle state. Unlike 

previous case, tool point FRF of the spindle–holder–tool assembly is obtained 

with stiffer bearings. For the stiffer bearing case, bearing stiffness values are 

taken as given in Table 3-7 for the front and rear bearings.  Also note that the 

order of the magnitude of the bearing stiffness values is kept at 10
6
 N/m. 

 

Calculated tool point FRFs for idle state and at rotating conditions are shown in 

Figure 3-5.  Also note that, during the calculation of tool point FRFs given in 

Figure 3-5, the same bearing parameters are used. Thus variations between 

these FRFs can be attributed to the gyroscopic effects only.  
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Table 3-7 Dynamic properties of the bearings at the idle state  

 

 
 

Translational 

Stiffness (N/m) 

 

Rotational 

Stiffness 

(N.m/rad) 

 

Translational 

Damping 

(N.s/m) 

 

Rotational 

Damping 

(N.m.s/rad) 

Front 

Bearings 
5.5x10

6
 - 100 10 

Rear 

Bearings 
5.5x10

6 
- 100 10 

 

 

 

 

 

Figure 3-5 Tool point FRF calculated by the analytical model for the idle state 

and for 25000 rpm spindle speed rotating condition. 
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As seen from Figure 3-5, gyroscopic effects cause separation of the modes 

similar to the previous case. In addition to the tool point FRF variation, to 

investigate the effects of gyroscopic moments on the stability of the cutting 

process, stability limits of the cutting process are calculated using FRFs in 

operating and idle conditions. The stability calculation is made for a workpiece 

made of aluminum alloy, and radial depth of cut of 3 mm is used. The cutting 

force coefficients are taken as Kt=625 MPa and Kr=100 MPa [6]. Calculated 

stability diagrams are given in Figure 3-6. 

 

 

 

 

 

Figure 3-6 Stability diagrams predicted using the tool tip FRFs for idle state 

and 25 000 rpm spindle speed without bearing stiffness variation effect. 
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As seen from Figure 3-6, similar to case 1, gyroscopic effects cause increase in 

stability limits of the cutting process and it should be kept in mind that stability 

diagram given in Figure 3-6 is calculated using tool point FRF for 25000 rpm 

spindle speed. Thus, stability diagram given in Figure 3-6 is valid for cutting 

operation at 25000 rpm spindle speed.  For higher spindle speeds, tool point 

FRF thus stability limit should be recalculated for the corresponding spindle 

speed. As shown in previous case, with the increasing spindle speed, deviations 

in the stability limit will be much more.  

 

In addition to gyroscopic effects, in order to investigate the effect of bearing 

stiffness variations due to rotational speed on stability of the cutting process, 

tool point FRF of the spindle – holder – tool assembly is calculated for idle and 

rotating conditions. For the idle condition, tool point FRF is calculated with the 

bearing parameters given in Table 3-7 and for the rotating conditions, tool 

point FRF is calculated for 25000 rpm spindle speed with the bearing 

properties updated according to rotational speed as given in Table 3-8. 

Obtained tool point FRFs are given in Figure 3-7. 

 

 

 

Table 3-8 Updated bearing parameters according to rotational speed 

 

  

Translational 

Stiffness 

(N/m) 

 

Rotational 

Stiffness 

(N.m/rad) 

 

Translational 

Damping 

(N.s/m) 

 

Rotational 

Damping 

(N.m.s/rad) 

Front 

Bearings 
2.5x10

6
 - 100 10 

Rear 

Bearings 
2.5x10

6 
- 100 10 
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Figure 3-7 Tool point FRF calculated by the analytical model for the idle state 

and for 25000 rpm spindle speed rotating condition with bearing stiffness 

variation. 

 

 

 

As seen from Figure 3-7, variation of the bearing stiffness affects the spindle 

rigid body modes and spindle elastic mode simultaneously. Also tool mode 

located at 1300 Hz does not affected by the bearing stiffness variation.  

 

Finally, to demonstrate the effects of bearing stiffness variations due to 

rotational speed on chatter stability prediction, stability diagrams are generated 

for idle and rotating conditions with the same cutting parameters used in the 

previous case. Obtained stability diagrams are given in Figure 3-8. Note that to 

demonstrate the effect of gyroscopic moments and bearing stiffness variations 

due to rotational speed on stability, stability diagram is determined for two 

different rotating conditions as given in Figure 3-8. For the first rotating 

condition, only the gyroscopic effects are included and bearing parameters are 

not updated according to rotational speed. In the second rotating condition, 
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both gyroscopic effects and bearing stiffness variation due to rotational speed 

are included in tool point FRF calculation.  

 

 

 

 

 

Figure 3-8 Stability diagrams predicted using the tool tip FRFs for idle state 

and  for 25 000 rpm spindle speed with and without bearing stiffness variation 

effect. 

 

 

 

As seen from Figure 3-8, compared to gyroscopic effects, bearing stiffness 

variation causes considerable change on stability diagrams. Especially, in 

stability lobe, deviations due to the bearing stiffness variations become crucial.  

Thus, it can be concluded that based on the tool mode dominant characteristics 

and bearing dynamics, bearing stiffness variation may cause considerable 

variations on the stability of the process.  
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3.3 Case Study 3 

 

In case study 1 and case study 2, effects of the gyroscopic moments and 

bearing stiffness variations are examined. In these case studies, bearing 

stiffness values are taken in the order of magnitude of 10
5
 - 10

6
 N/m

 
 based on 

the study of  Erturk et al. [14] and in case study 2, it is shown that when stiffer 

bearings are used, in addition to the spindle rigid body modes, spindle elastic 

modes are also affected by stiffness variations of bearings which will lead to 

considerable variations in the stability diagrams of the cutting operation. In the 

work of Altintas Cao [21], speed dependent bearing characteristics are 

presented and in these studies, bearing stiffness values are given in the order of 

magnitude of 10
8
 N/m.  Thus, in this case study, effects of the rotating 

conditions on stability diagrams are examined for spindle – holder – tool 

assembly with much more stiff bearings given in literature.  For that purpose, 

tool point FRF is determined for idle and 15000 rpm spindle speed conditions. 

The spindle and holder given in previous cases are used. The clamped tool 

dimensions are given in Table 3-9. Bearing parameters used for the idle and 

rotating cases are given in Table 3-10 and Table 3-11, respectively. The 

calculated tool point FRFs are shown in Figure 3-9. 

 

 

 

Table 3-9 Tool dimensions for case study 3 

Segment number 1 2 

Length (mm) 40 25 

Outer Diameter (mm) 12 14 

Inner Diameter (mm) 0 0 
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Note that to demonstrate the effects of the gyroscopic moments and bearing 

stiffness variations separately, two different rotating tool point FRFs are given 

in Figure 3-9. In the first rotating tool point FRF only the gyroscopic moments 

are included and bearing stiffness values are not updated according to the 

rotational speed. In obtaining the second rotating tool point FRF, both 

gyroscopic effects and bearing stiffness variations are considered. 

 

 

 

Table 3-10 Dynamic properties of the bearings at the idle state for case study 3 

 

  

Translational 

Stiffness 

(N/m) 

 

Rotational 

Stiffness 

(N.m/rad) 

 

Translational 

Damping 

(N.s/m) 

 

Rotational 

Damping 

(N.m.s/rad) 

Front 

Bearings 
2x10

8
 - 100 10 

Rear 

Bearings 
2x10

8 
- 100 10 

 

 

Table 3-11 Updated bearing parameters according to rotational speed for case 

study 3 

 

  

Translational 

Stiffness 

(N/m) 

 

Rotational 

Stiffness 

(N.m/rad) 

 

Translational 

Damping 

(N.s/m) 

 

Rotational 

Damping 

(N.m.s/rad) 

Front Bearing 0.5x10
8
 - 100 10 

Rear Bearings 0.5x10
8 

- 100 10 

 



63 

 

 

 

 

Figure 3-9 Tool point FRF calculated by the analytical model for the idle state 

and for 15000 rpm spindle speed rotating condition with and without bearing 

stiffness variation. 

 

 

 

As seen from Figure 3-9, similar to the case study 2, gyroscopic effects cause 

separation of the modes, and variation of the bearing stiffness values causes 

variation on the elastic modes. Tool mode located at 2100 Hz is not affected by 

the bearing stiffness variation. 

 

Finally, to demonstrate the effects of the bearing stiffness variations due to 

rotational speed on chatter stability prediction, stability diagrams are generated 

for idle and rotating conditions for the machining of an aluminum alloy 

workpiece with 3 mm radial depth of cut. The cutting force coefficients are 

taken as Kt=625 MPa and Kr=100 MPa. Obtained stability diagrams are given 

in Figure 3-10. 
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Figure 3-10 Stability diagrams predicted using the tool tip FRFs for idle state 

and  for 15 000 rpm spindle speed with and without bearing stiffness variation 

effect. 

 

 

 

As seen from Figure 3-10, similar to the results given in Figure 3-8, compared 

to the gyroscopic effects, bearing stiffness variation causes considerable 

change in stability diagrams. Thus, it can be concluded that idle FRFs may 

cause under prediction of the stability. 

 

3.4 Case Study 4 

 

In addition to the results given in Section 3.3, to examine cases where the tool 

mode is dominant and spindle is supported on stiff bearings as given in Table 

3-10, tool overhang length is increased as shown in Table 3-12. Similar to the 

previous case studies, tool point FRF is calculated for idle state and for 15000 

rpm spindle speed with and without bearing stiffness variation. For the idle and 
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rotating conditions bearing parameters given Table 3-10 and Table 3-11 are 

used respectively. Obtained tool point FRFs are given in Figure 3-11. 

 

 

 

Table 3-12 Tool Dimensions for case study 4 

 

Segment number 1 2 

Length (mm) 40 55 

Outer Diameter (mm) 12 14 

Inner Diameter (mm) 0 0 

 

 

 

 

 

Figure 3-11 Tool point FRF calculated by the analytical model for the idle state 

and for 15000 rpm spindle speed rotating condition with and without bearing 

stiffness variation. 
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As seen from Figure 3-11, for 15000 rpm spindle speed there exist slight 

change in the tool point FRF due to the gyroscopic effects. However; due to 

bearing stiffness variations, unlike previous cases, tool mode is also affected.  

Finally, in order to investigate the effect of the gyroscopic moments and 

bearing stiffness variations on stability, stability diagrams are calculated using 

the same cutting conditions used in the previous case studies. Calculated 

stability diagrams are given in Figure 3-12. 

 

 

 

 

 

Figure 3-12 Stability diagrams predicted using the tool tip FRFs for idle state 

and  for 15 000 rpm spindle speed with and without bearing stiffness variation 

effect. 
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As seen from Figure 3-12, unlike previous cases, stability lobe is shifted to the 

left due to the bearing stiffness variations so that an unstable point on the 

diagram obtained using idle FRF is actually stable and on the contrary stable 

point is actually unstable. 

 

In this chapter using the analytical model proposed, variations of tool point 

FRF under operational conditions are studied for different spindle – holder – 

tool assemblies. In the case studies, two main effects that result in tool point 

FRF variations are examined. First, dynamic variations of the assembly due to 

the gyroscopic effects are investigated. Second, the effects of bearing stiffness 

variation due to rotational speed on the tool point FRFs thus on stability 

diagrams are investigated.  It is observed that gyroscopic moments cause 

separation of each mode in tool point FRF into backward and forward modes. 

It is also observed that this separation causes increase in stability limit of the 

cutting operation for relatively high spindle speeds. Case studies showed that 

effect of bearing stiffness variations on tool point FRF depends on bearing 

stiffness characteristics and relative stiffness of the tool with respect to whole 

assembly. As shown in case study 1, when relatively soft bearings are used in 

the machining center, bearing stiffness variations have negligible effect on tool 

point FRF. However; for stiffer bearing case, variations of the bearing stiffness 

values affect first elastic mode of the spindle which might lead to considerable 

deviations in stability of the cutting operations depending on the relative 

stiffness of the tool with respect to spindle. In case studies, it is observed that 

when tool point FRF is dominated by tool mode, bearing stiffness variations do 

not affect tool point FRF, and therefore the stability of the cutting operation is 

not affected by bearing stiffness variations On the contrary, when relatively 

thick tool is clamped to machining center and stability is determined by spindle 

modes, bearing stiffness variations cause considerable deviations in stability 

diagrams.  
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 CHAPTER 4 

 

 

4 EXPERIMENTAL IDENTIFICATION OF THE   TOOL POINT 

FRF 

 

 

 

The approach proposed in this chapter aims to determine in process system 

FRF using the relation between cutting forces that excite the system and 

response of the system measured simultaneously during cutting operation. For 

that purpose two different strategies are applied. First, identification is 

performed for conventional cutting operation. Then, identification is performed 

for the machining of a specially designed workpiece. 

 

4.1 Spectral Density Measurement 

 

In dynamic systems, system FRF can be obtained by the input-output 

relationship. In literature there exist different types of estimators which are 

suitable for different types of systems and conditions [57] – [59]. In real life 

applications, determination of the system FRF is highly dependent on the 

accurate estimation of the noise exist in the measurement of input and output 

signals. For instance, for the system given in Figure 4-1, x(t) and y(t) are the 

input and output signals, respectively. xm(t) and ym(t) are the measured input 

and output signals of the system, respectively, and nx(t) and ny(t) represent the 

noises in the measured signals.  
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Figure 4-1 The effects of the measurement noise on both input and output. 

 

 

 

In order to determine the system FRF, noise levels in the input and output 

signals should be examined carefully. In cases where there exist noise only in 

the output signal, H1 estimator gives accurate estimates of the system FRF 

where H1 can be represented as follows [59]: 

 

1

( )
( )

( )

m m

m m

x y

x x

S f
H f

S f
         (4.1) 

 

In Equation (4.1), 
m mx yS is the cross power spectrum between input and output 

signals and 
m mx xS  is the power spectral density function of the input signal. 

Also note that, since there does not exist noise in the input signal measurement, 

( ) ( )mx t x t . 

 

Also, when there exist noise only in the input signal measurement, system FRF 

can be obtained by the estimator given as follows: 

 

2

( )
( )

( )

m m

m m

y y

y x

S f
H f

S f
         (4.2) 
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Note that, since there does not exist noise in the output signal 

measurement, ( ) ( )my t y t . 

 

Finally, when there exist noises both in the input and the output signal 

measurements as shown in Fig. 1, system FRF can be determined by the 

estimator H3 defined as follows [59]: 

 

3

2 2

( ) ( ) ( )
( )

2 ( )

( ) ( ) ( ) 4 ( ) ( )

2 ( )

m m m m

m m

m m m m m m

m m

y y x x

y x

x x y y x y

y x

S f f S f
H f

S f

S f f S f S f f

S f



 




  
 



   (4.3) 

 

where ( )f  is the ratio of the spectra of the measurement noises in the input and 

output signals, as defined below 

 

( )
( )

( )

x

y

n f
f

n f
          (4.4) 

 

In real applications, it is difficult to determine the noise ratio of the input and 

output signals. In such cases, it can be assumed that the ratio of the spectra of 

the measurement noises is unity( ( ) 1f  ) [59]. 

 

In system identification, in addition to the correct estimator choice, another 

important criterion is the consistency of the input and output signals. In cases 

where there are additional inputs to the system that cannot be estimated or 

when there is a nonlinear relation between the input and output signals, applied 

FRF estimators will not give correct results. At that point, coherence function 

between the input and output signals can provide valuable information about 

the accuracy of the identification process. For a linear time invariant system 

coherence function between input and output signals can be defined as follows: 
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   .        (4.5)

        

where ( )xyS f  is the cross power spectrum between input and output signal. 

Similarly, 
xxS  and 

yyS  are power spectral density functions of the input and 

output signals, respectively. Generally, coherence functions greater that 0.75 

can be taken as acceptable in the system identification processes. 

 

4.2 Mass Loading Effect of Accelerometers on Tool Point FRF 

 

In machine tool studies accelerometers are commonly used to obtain tool point 

FRFs experimentally. Although mass of a typical accelerometer used in these 

measurements is extremely small compared with the spindle and the cutting 

tool, it can have a significant effect on the FRF measurement [60,61]. As given 

in study of Orkun et al. [60,61], even a 2.5 gram accelerometer may cause 

considerable variations on tool point FRF. Mass loading effect of 

accelerometers can be eliminated by using non contact measurement devices. 

In addition, mass loading effects of accelerometers can be compensated using 

structural modification techniques.   

 

When tool point FRF of a spindle – holder – tool assembly is obtained using 

accelerometer, mass loading effect can be compensated and tool point FRF can 

be obtained accurately as follows [60,61]: 

 

   
1

11 11 11
um umSHT I SHT D SHT


           
           

m
   (4.6) 

 

where,  I  is the identity matrix,  D  is the modification matrix and superscript 

m refer to the modified and um refer to unmodified properties of the system. 

 

 



73 

 

 

Since modification requires only mass of the accelerometer, the modification 

matrix is given by 

 

   2D M          (4.7) 

  

where M  is mass of the accelerometer and   is the excitation frequency. 

 

Using the modification matrix given in Equation (4.7), Equation (4.6) will take 

the form 

 

 
11

11 2
111

SHT
SHT

SHT M


  

um
m

um
      (4.8) 

 

Using the modification method, the mass effect of the accelerometer can be 

eliminated from the FRFs measured with accelerometer, and accurate tool 

point FRFs can be obtained as studied in detail in [60,61]. 

 

4.3 Standard Cutting 

 

In order to determine the system dynamics during machining, the response of 

the system to cutting forces can be used. For this purpose, cutting forces can be 

measured and used as an input to the system and the response of the system to 

them can be measured using a laser sensor, and finally the system FRF can be 

obtained by using the input-output relation between cutting forces and 

vibration measurements.  

 

In order to identify variations of machining center dynamics under operational 

conditions, a 25 mm diameter end mill with 50 mm overhang length and 1-

tooth is clamped to machining center. Since spindle part of the milling machine 

used in the experiments (a 5-axis high speed DMG Evo 50 machining center) is 

placed inside a casing, response measurements are taken from the rotating 
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holder part. First, the milling machine is excited at the tool tip by an 

instrumented impact hammer and the response of the system is measured at the 

tool holder with a laser vibrometer for the idle state of the spindle. Obtained 

cross FRF (G12) is given in Figure 4-2. Here, subscript 1 represents the 

response point which is on the holder, and subscript 2 represents the excitation 

point which is the tool tip. 

 

 

 

 

 

Figure 4-2 Tool point–holder cross FRF (G12). 

 

 

 

In order to obtain  tool point – holder cross FRF during machining operation, 

cutting operation was performed on an aluminum alloy in down milling mode 

using 1 mm axial depth of cut, 12.5 mm radial immersion and 2025 rpm 

spindle speed. During the cutting operation, cutting forces are measured with a 

Kistler table type dynamometer which is directly attached to the workpiece and 

the response of the system is measured at the holder by using a laser 
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vibrometer.  Frequency spectrum of the measured cutting force in the x-

direction and frequency spectrum of the laser vibrometer measurement are 

given in Figure 4-3 and Figure 4-4, respectively. 

 

As seen from Figure 4-3 and Figure 4-4, main problem in this approach is the 

harmonic characteristics of the cutting forces. Since the cutting forces excite 

the system mainly at the tooth passing frequency and at its higher harmonics, 

system responds to the cutting force excitation at the same frequencies. For 

example, for the cutting operation with 1 tooth and 2025 rpm spindle speed, 

tooth passing frequency is 33.75 Hz and its higher harmonics are 67 Hz, 101 

Hz and 134 Hz. Therefore, it is not possible to obtain FRF of the system in a 

certain frequency band. Instead, specific points of the FRF for the given cutting 

operation are obtained.  

 

 

 

 

 

Figure 4-3 Spectrum of the cutting force in the x-direction with respect to the 

spindle axis. 
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Figure 4-4 Frequency spectrum of the laser vibrometer measurement. 

 

 

 

In order to overcome harmonic content problem of the cutting operation and 

obtain FRF for each frequency in the interested band, it is assumed that the 

system dynamics is not affected significantly from the relatively small spindle 

speed variations. Based on this assumption, the system is excited around each 

mode using the pre-determined spindle speeds. For example, the required 

spindle speeds in order to excite the spindle modes located at 91Hz and 134 Hz 

are given in Table 4-1 for the tool having 4 cutting edges.  

 

As seen from Table 4-1, system can be excited in the frequency band of 85 Hz 

– 145 Hz by changing spindle speeds. Also note that to be able to excite the 

spindle effectively, relatively large radial and axial depth of cuts are chosen for 

the cutting operations.  
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Table 4-1 Spindle speeds and corresponding tooth passing frequencies for the 

tool with 4 cutting edges 

 

Radial 

immersion (%) 

Spindle speed 

(rpm) 

Tooth passing 

frequency 

(Hz) 

30 1275 85 

30 1305 87 

30 1350 90 

30 1380 92 

30 1425 95 

30 1455 97 

30 1575 105 

30 1650 110 

30 1875 125 

30 1905 127 

30 1950 130 

30 1980 132 

30 2025 135 

30 2055 137 

30 2100 140 

30 2175 145 

 

 

 

In addition to spindle speeds given in Table 4-1, system can be excited at the 

same frequencies with higher spindle speeds by changing the number of cutting 

edges of the tool. For that purpose, pre-determined spindle speeds and 

corresponding tooth passing frequencies for end mill with 1 cutting edge are 

given in Table 4-2.  
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Table 4-2 Spindle speeds and corresponding tooth passing frequencies for the 

tool with 1 cutting edge 

 

Radial 

immersion (%) 

Spindle speed 

(rpm) 

Tooth passing 

frequency 

(Hz) 

30 5100 85 

30 5400 90 

30 5700 95 

30 6000 100 

30 6600 110 

30 7500 125 

30 7200 120 

30 7620 127 

30 7800 130 

30 8100 135 

30 8220 137 

30 8400 140 

 

 

 

In order to determine the  tool point – holder cross FRF, cutting tests were 

performed on a 5 – axis machining center using spindle speeds given in Table 

4-1 and Table 4-2 where a 25 mm diameter end mill with 50 mm overhang was 

attached to the holder. Cutting was performed using 1 mm axial depth of cut, 

30% radial immersion, where feed was chosen as 0.25 mm/revolution. During 

the cutting operation, cutting forces were measured with a Kistler table type 

dynamometer which is directly attached to the workpiece and the response of 

the system was measured by a laser vibrometer at the holder. Measurement 

points on the milling machine are shown in Figure 4-5 where point 1 and 2 

represent the response and force measurement points, respectively.  
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Figure 4-5 Measurement locations for the cutting forces and response on the 

machining center. 

 

 

 

Assuming that the system dynamics is not affected significantly by relatively 

small spindle speed variations, as mentioned earlier, force and response 

measurements FRFs given in Figure 4-6 can be taken as tool point – holder 

cross FRFs of the system.  

 

 

 

 

 

Figure 4-6 Tool point – holder cross FRFs for static case and during cutting 

operation. 
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As can be seen from Figure 4-6, during cutting significant changes in the FRFs 

are observed. This is more pronounced at the first spindle mode located at 90 

Hz, which is shifted to the lower frequencies during cutting operation. For the 

second mode located at 135 Hz, no significant change is observed compared to 

the first mode. But it should be kept in mind that FRFs given in Figure 4-6 are 

obtained by using the assumption that system dynamics is not affected from 

relatively small spindle speed variations. 

 

4.4 Cutting with Specially Designed Workpiece 

 

Rather than exciting the system with harmonic cutting forces as shown in 

Figure 4-3 and Figure 4-4, exciting the system with random forces can provide 

much more valuable information for the determination of the spindle FRF. In 

order to excite the system with random cutting forces, specially designed 

workpiece can be used [52]. For that purpose, a workpiece having randomly 

distributed channels with random thicknesses is prepared as shown in Figure 

4-7. 

 

Cutting operation is performed on the same 5-axis machining center where 25 

mm diameter end mill with 50 mm overhang length is attached to the holder. 

Cutting was performed with 1 mm  axial depth of cut, 30% radial depth of cut 

and 500 rpm spindle speed. During the machining operation, cutting forces 

were measured with a dynamometer which is directly connected to the 

workpiece and response of the system is measured at the tool holder of the 

system with a laser vibrometer.  
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Figure 4-7 Workpiece with random surface profile. 

 

 

 

During the determination of the tool point – holder cross FRF, H3 estimator is 

used due to the feedback characteristics of the cutting operation. Coherence 

function between the cutting force in the x direction with respect to the spindle 

axis and vibrometer measurement is shown in Figure 4-8. 

 

As seen from Figure 4-8, for low frequencies around the interested spindle 

modes, which are located between 70 Hz and 140 Hz, coherence function is 

around 0.6-0.8 which decreases with frequency. Especially for frequencies 

larger than 800 Hz, coherence is close to 0. This high frequency behavior of the 

identification process is an expected result due to the limited measurement 

capacity of the dynamometer.  
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Figure 4-8 Coherence function between the cutting force in the x direction with 

respect to the spindle axis and vibrometer measurement. 

 

 

 

The tool point – spindle cross FRF obtained by using H3 estimator is given in 

Figure 4-9. As it can be seen from this figure as well, similar changes are 

observed in the spindle FRF for the three different spindle speeds considered. 

For the spindle mode located at 100 Hz, there is a decrease in the stiffness. For 

the second mode located in 140-160 Hz frequency band, in addition to the 

decrease in the stiffness, damping values are increased. These results are 

consistent with the expected bearing stiffness and damping changes under 

rotating conditions as stated in [18] since bearing properties affect mainly the 

spindle modes [14].  

a) 

b) 
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Figure 4-9 Tool point – holder cross FRFs for static case and during cutting 

operation at spindle speeds 500 rpm, 1000 rpm and 2000 rpm. 

 

 

 

In order to overcome the harmonic content problem of the cutting forces, 

specially designed workpiece which has randomly distributed channels on the 

upper surface is used during operation. In this approach, system FRF is 

obtained for each spindle speed uniquely.  However; due to the measurement 

capability of the dynamometer, tool point FRF is determined for lower 

frequencies and elastic modes that determine the stability could not be 

identified. Also due to the noise problems at high spindle speeds, tool point 

FRFs could not be identified above 2000 rpm spindle speed. 

 

 

 

 



84 

 

 

 

 

 

 



85 

 

 

CHAPTER 5 

 

 

5 INVERSE STABILITY SOLUTION FOR IN PROCESS TOOL 

POINT FRF IDENTIFICATION 

 

 

 

In this chapter, a new identification method called inverse stability solution is 

proposed for the in process FRF determination. For that purpose, actual chatter 

frequency and axial depth of cut at limit are employed in the identification 

method suggested.  Proposed method is applied on a real machining center for 

two different holder – tool combinations and verified with chatter test results. 

 

5.1 Mathematical Formulation 

 

In the stability theory, axial depth of cut at limit and chatter frequency can be 

determined as follows [5]: 

 

 2
lim

2
1R

t

a
NK



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          (5.1) 
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where 
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 0 xx yy xx yy xy yxa G G            (5.4) 

 



86 
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                   (5.10) 

 

where xxG  and yyG are the tool point FRFs in the x and y directions 

respectively, N  is the number of cutting teeth, tK  is the cutting force 

coefficient, st  and ex are start and exit angle of cutting tooth, T is tooth 

period.  

 

Note that, tool point FRFs can be expressed using modal parameters as 

follows: 
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where r  is damping ratio of the r
th 

mode in x direction, r
n  is natural 

frequency of the r
th 

mode in x direction and c  is chatter frequency. 

 

Analytical definitions of chatter frequency and corresponding axial depth of cut 

given by Equation (5.1) and Equation (5.2) can be used for the identification of 

tool point FRF with the experimentally obtained chatter frequency and axial 

depth of cut as follows: 

 

exp
lim lim

analytical erimentala a                 (5.12) 

 

expanalytical erimental
c c                 (5.13) 

 

As can be seen from Equation (5.11), each tool point FRF in two orthogonal 

planes contains 3 unknowns for each mode which are modal stiffness, natural 

frequency and damping.  However; equating experimentally and analytically 

obtained chatter frequency and axial depth of cut 2 equations can be obtained 

as shown in Equation (5.12) and Equation (5.13). 

 

At this point characteristics of the stability theory can be used for 

simplification of the solution procedure. First, it is well known that depending 

on the dominant characteristics of the spindle – holder – tool assembly modes 

in the tool point FRF, different regions of the stability diagram is determined 

by different modes. Thus instead of using summation term in tool point FRF, 

each mode can be identified using different regions of stability diagram.  

 

In addition to the stability behavior, it can be assumed that modal mass of each 

mode remains same. Using this assumption modal stiffness and damping in 

each orthogonal plane can be treated as unknowns.  Thus, identification 

procedure requires the determination of 4 unknowns.  At this point, two 

different approaches can be applied. First, chatter test results at a certain 
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spindle speed can be used and 4 unknown can be determined using 

optimization techniques since each chatter test provides 2 equations as shown 

in Equation (5.12) and Equation (5.13). 

 

Alternatively, chatter test results for two different spindle speeds can be used 

and 4 unknowns can be solved using 4 nonlinear sets of equations.  For the 

second alternative, it can be assumed that variations of the tool point FRF can 

be neglected by small spindle speed variations. For instance, for the 

identification of the system dynamics, chatter test results at 7400 rpm and 7500 

rpm can be used based on this assumption. In addition, by adding one more 

chatter test results at a different spindle, 6 unknowns in two orthogonal planes 

can also be solved using least square error method.   

 

As a summary, for the identification purpose first, tool point FRFs should be 

obtained using impact test and stability diagrams should be determined using 

the stability theory proposed by Budak and Altıntaş [5]. Based on the 

characteristics of stability diagrams, modes that effect the stability of the 

cutting operation can be directly determined from calculated stability diagrams 

and chatter frequencies. Then modal parameters of the tool point FRF should 

be determined using modal identification. Finally, keeping the modal stiffness 

and damping of the dominant mode as unknown, chatter frequency and axial 

depth of cut can be determined analytically. In order to identify unknown 

modal parameters, required equations can be obtained through chatter tests. At 

a certain spindle speed, actual values of the chatter frequency and axial depth 

of cut can be obtained. Thus, using the analytically and experimentally 

obtained chatter frequency and axial depth of cut, unknown modal parameters 

can be identified using Equation (5.12) and Equation (5.13). Proposed solution 

procedure is also given in Figure 5-1. 
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Figure 5-1 Inverse stability solution procedure 
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5.2 Application on real machining center 

 

In this section, proposed inverse stability solution procedure is applied on a 

real machining center for various holder and tool geometries. First, tool point 

FRFs are obtained using impact testing for the idle state of the machining 

center.  Using the impact test results, predicted stability diagrams of the cutting 

processes are obtained with the stability model of Budak and Altintas [5].  

Then chatter tests are performed for various spindle speeds where chatter 

frequency and axial depth of cut at the stability limits are determined. Finally, 

using the chatter test results, variations in the tool point FRFs are determined 

with the proposed solution procedure. 

 

5.2.1 Case Study 1 

 

It is a well phenomenon that during high speed cutting operations, gyroscopic 

moments cause separation in assembly modes into backward and forward 

modes. In addition to structural variations, due to gyroscopic moments and 

centrifugal forces, bearing stiffness values decrease. Also as shown in Chapter 

3, variations in the spindle modes cause variations in the stability of the process 

in cases where the tool mode is not dominant in determining the stability in the 

frequency range of interest.  Thus, to investigate the variations of tool point 

FRF during cutting operation and to be able to identify the variations of the 

spindle modes, relatively rigid end mill whose diameter is 25 mm with 40 mm 

gauge length and 4 teeth is clamped to the machining center.  Geometry of the 

holder and tool are given in Table 5-1 and Table 5-2 respectively.  
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Table 5-1 Holder  dimensions 

 

Segment number 1 2 3 4 5 6 

Length (mm) 26 58 17 15 40 30 

Outer Diameter (mm) 63 50 45 60 45 30 

Inner Diameter (mm) 25 25 15 15 15 15 

 

 

 

Table 5-2 Tool Dimensions 

 

Segment number 1 2 

Length (mm) 40 60 

Outer Diameter (mm) 23 25 

Inner Diameter (mm) 0 0 

 

 

 

First, the tool point FRFs in x and y directions are obtained by impact testing 

for the idle state of the machining center. Obtained tool point FRFs in x and y 

directions are given in Figure 5-2 and Figure 5-3 respectively. 
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Figure 5-2 Tool point FRF in the x – direction at the idle state. 

 

 

 

 

 

Figure 5-3 Tool point FRF in the y – direction at the idle state. 
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In addition to the tool point FRFs given in Figure 5-2 and Figure 5-3, modal 

parameters of the tool point FRFs are identified using modal identification 

techniques and given in Table 5-3 and Table 5-4 respectively. Also calculated 

tool point FRFs using modal parameters for x and y directions are given and 

also compared with experimental ones in Figure 5-4 and Figure 5-5, 

respectively. 

 

 

 

Table 5-3 Modal parameters of the tool point FRF in x-direction 

 

Mode number  

Natural 

frequency 

(Hz) 

Modal 

stiffness 

(N/m) 

Damping 

ratio (%) 

1
st
 mode  225 7.7 x10

7
 4.25 

2
nd

 mode 660 8.31x10
7
 7.88 

3
th

 mode 800 3 x10
8
 7.79 

4
th

 mode 1632 2.6 x10
8
 4.37 

 

 

 

Table 5-4 Modal parameters of the tool point FRF in y-direction 

 

Mode number  

Natural 

frequency 

(Hz) 

Modal 

stiffness 

(N/m) 

Damping 

ratio (%) 

1
st
 mode  241 1.46 x10

8
 5.56 

2
nd

 mode 744 3.37x10
7
 4.11 

3
th

 mode 907 1.97 x10
8
 3.63 

4
th

 mode 1046 3.54 x10
8
 2.18 
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Figure 5-4 Comparison of tool point FRF in x direction obtained using modal 

testing with that calculated using identified modal values. 

 

 

 

 

 

Figure 5-5 Comparison of tool point FRF in y direction obtained using modal 

testing with that calculated using identified modal values. 
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In order to determine the variations of the tool point FRF under cutting 

conditions, chatter tests are performed on  Deckel Maho 5 axis machining 

center with the holder – tool combination whose dimensions are given in Table 

5-1 and Table 5-2. Cutting is performed on 7075 aluminum workpiece with 

100% radial immersion and 0.1 mm/tooth feed.  During the chatter tests, at 

certain spindle speeds, axial depth of cut is increased incrementally and sound 

is measured with a microphone. Finally, using the spectrum of the sound 

information and observations on the workpiece surface, chatter frequency and 

corresponding axial depth of cut are determined. Machining center and 

experimental setup are shown in Figure 5-6. 

 

 

 

 

 

Figure 5-6 Experimental setup. 
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For instance, for 14000 rpm spindle speed, for the stable cutting condition 

frequency spectrum of the microphone measurement is shown in Figure 5-7. 

As seen from Figure 5-7, dominant frequency components are located at 466 

Hz and 935 Hz which are second harmonics of the spindle rotational frequency 

and tooth passing frequency, respectively. 

 

 

 

 

 

Figure 5-7 Frequency spectrum of microphone measurement of the stable 

cutting operation at 14000 rpm spindle speed. 

 

 

 

In addition to stable cutting measurements, at the instant that chatter occurred, 

frequency spectrum of the microphone measurement is given in Figure 5-8. In 

addition to microphone measurements, workpiece surface obtained after the 

stable and unstable cutting operations are given in Figure 5-9 . As seen from 

Figure 5-8, dominant frequency component is at 616 Hz which is not a tooth 
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passing frequency or one of its higher harmonics. Also as shown in Figure 5-9, 

chatter marks appears on the workpiece surface in unstable cutting operations. 

 

 

 

 

 

Figure 5-8 Frequency spectrum of microphone measurement of the unstable 

cutting operation at 14000 rpm spindle speed. 
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Figure 5-9 Workpiece surface after stable and unstable cutting operations. 

 

 

 

In addition to the 14000 rpm spindle speed, chatter tests are performed at 

various other spindle speeds and obtained results are given in Figure 5-10 with 

the predicted stability diagram which is obtained using the tool point FRF for 

idle state of the machining center. Also chatter frequencies and corresponding 

axial depth of cuts at the limit are given in Table 5-5 with the predicted chatter 

frequencies and axial depth of cuts using idle state FRFs. 
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Figure 5-10 Stability diagrams obtained for idle state and chatter test results. 

 

 

 

Table 5-5 Predicted and actual values of the chatter frequency and axial depth 

of cut. 

 

Spindle 

Speed 

(rpm) 

Cutting 

speed 

(mm/s) 

 

Predicted 

lima (mm)  

 

Predicted 

chatter 

frequency 

c  (Hz) 

 

Actual 

lima (mm) 

 

Actual 

chatter 

frequency 

c  (Hz) 

6200 8115 4 727.5 2.65 694 

6300 8247 3.6 732 2.6 697 

7400 9686 2.39 762 2.8 727 

7500 9818 2.42 764.4 3.1 728 

14000 18300 4.45 722.8 3 616 
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As seen from Figure 5-10 and Table 5-5, considerable amount of discrepancies 

are observed between the predicted and actual stability of the cutting operation. 

Due to the relatively high speeds, these discrepancies cannot be due to the 

process damping effect [35].  

 

In order to identify the tool point FRF, first, modes in x and y directions that 

effect stability are determined. As given in Table 5-5, predicted chatter 

frequencies are between 720 Hz and 765 Hz. Thus it can be concluded that 3
rd

 

mode in x direction and 2
nd

 mode in y direction are dominant modes and 

chatter would occur due to these modes. Therefore, modal stiffness and 

damping of these modes are taken as unknown parameters and remaining 

modal parameters are kept constant. Then, using the cutting process parameters 

and stability theory chatter frequency and axial depth of cut are calculated 

analytically at spindle speeds given in Table 5-5. Finally equating analytically 

and experimentally obtained chatter frequencies and corresponding axial depth 

of cuts, unknown modal parameters are obtained using proposed solution 

procedure. Results of these calculations are given in Table 5-6 and Table 5-7. 

Note that, for the identification procedure, it is assumed that variations in the 

tool point FRF for an increment of 100 rpm spindle speed can be neglected. 

Thus, in order to determine both natural frequency and damping ratio, two sets 

of chatter test results differ from each other by 100 rpm spindle speed are used 

simultaneously in the identification procedure. 

 

 

Table 5-6 Identified modal parameters in x direction at various spindle speeds 

 

 

 

Spindle 

speed 

0 rpm 

 

Spindle 

speed  

6200 rpm – 

6300 rpm 

 

Spindle 

speed  

7400 rpm – 

7500 rpm 

 

Spindle 

speed  

13900 rpm – 

14000 rpm 

Natural frequency (Hz) 800 797 793 782 

Damping (%) 7.79 5.1 8 8.8 
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Table 5-7 Identified modal parameters in y direction at various spindle speeds 

 

 

 

Spindle 

speed 

0 rpm 

 

Spindle 

speed  

6200 rpm – 

6300 rpm 

 

Spindle 

speed  

7400 rpm – 

7500 rpm 

 

Spindle 

speed  

13900 rpm – 

14000 rpm 

Natural frequency (Hz) 744 672 642 611 

Damping (%) 4.11 7.6 3.9 5.7 

 

 

 

As seen from the identification results given in Table 5-6 and Table 5-7, the 

dominant mode shows a speed dependent behavior and with increasing spindle 

speed, the shift in the dominant mode increases.  

 

In addition to the identification results, dominant mode of tool point FRF is 

recalculated for the 7400 rpm – 7500 rpm spindle speed range using the 

identification results and obtained tool point FRFs in x and y directions are 

given with the tool point FRFs of the idle state in Figure 5-11 and Figure 5-12 

respectively. 
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Figure 5-11 Idle condition tool point FRF and calculated tool point FRF using 

identified parameters for 7400-7500 rpm spindle speed in x direction. 

 

 

 

 

 

Figure 5-12 Idle condition tool point FRF and calculated tool point FRF using 

identified parameters for 7400-7500 rpm spindle speed in y direction. 
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In order to check the accuracy of the identification procedure, stability 

diagrams are recalculated using the identified tool point FRFs under 

operational conditions. Obtained stability diagrams are given with the stability 

diagrams obtained for the idle state and chatter test results in Figure 5-13 - 

Figure 5-15. Note that, recalculated stability diagrams using the identified tool 

point FRFs under operational conditions are called modified stability. 

 

 

 

 

 

Figure 5-13 Stability diagrams obtained for idle state and 6300 rpm – 6400 rpm 

spindle speeds. 
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Figure 5-14 Stability diagrams obtained for idle state and 7400 rpm – 7500 rpm 

spindle speeds. 

 

 

 

 

 

Figure 5-15 Stability diagrams obtained for idle state and 13900 rpm - 14000 

rpm spindle speeds. 
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As seen from Figure 5-13 - Figure 5-15, with the increasing spindle speed, 

deviations in the stability of the cutting operation increases. Also note that each 

stability diagram given in Figure 5-13 - Figure 5-15, is valid in the vicinity of 

the spindle speeds used during identification.  In addition to the stability 

diagrams given in Figure 5-13 - Figure 5-15, predictions obtained using 

modified stability diagrams are given in Table 5-8 with the actual chatter test 

results.  

 

 

 

Table 5-8 Predictions obtained using modified stability diagrams and actual 

values of the chatter frequency and axial depth of cut. 

 

Spindle 

Speed (rpm) 

 

Predicted 

lima (mm)  

 

Predicted chatter 

frequency c  

(Hz) 

 

Actual 

lima (mm) 

 

Actual chatter 

frequency c  

(Hz) 

6200 2.7 694.3 2.65 694 

6300 2.65 696.8 2.6 697 

7400 2.85 727 2.8 727 

7500 3.07 728.3 3.1 728 

14000 2.8 616 3 616 

 

 

 

As seen from Table 5-8, compared to predictions given in Table 5-5 which are 

obtained using tool point FRF of the idle state of machining center, stability of 

the cutting operation can be predicted accurately with the modified stability 

diagrams. 
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5.2.2 Case Study 2 

 

In addition to the identification of speed dependent system behavior during 

cutting operation, in order to investigate the effect of cutting forces on system 

dynamics, tool point FRF of the same spindle – holder – tool assembly is 

identified under various cutting forces. 

 

For a cutting operation at a certain spindle speed, cutting forces can be 

increased by increasing radial immersion or feed per tooth. Therefore, to 

investigate the effect of force amplitude on the system dynamics two 

alternative approaches can be applied. First, identification can be performed 

with various radial depth of cuts. For instance, stability diagrams of a cutting 

operation on 7075 aluminum workpiece with 0.1 mm/tooth feed are calculated 

for radial immersion of 100% and 50%. Calculated stability diagrams are given 

in Figure5-16. 

 

 

 

 

 

Figure5-16 Stability diagrams obtained by idle state FRF with radial immersion 

of 100% and 50%. 
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As seen from Figure5-16, when radial immersion is decreased, stable axial 

depth of cuts increase. Since it is difficult to perform chatter tests with such 

high axial depth of cuts, altering cutting forces with changing radial immersion 

is not a feasible approach for this case.  

 

For the second alternative, stability diagrams of a cutting operation on 7075 

aluminum workpiece with 100% radial immersion with feed per tooth values of 

0.08 mm/tooth and 0.2 mm/tooth are calculated. Calculated stability diagrams 

are given in Figure 5-17. 

 

 

 

 

 

Figure 5-17 Stability diagrams obtained by idle state FRF with feed 0.08 

mm/tooth and 0.2 mm/tooth. 

 

 

 



108 

 

 

As seen from Figure 5-17, changing feed of the cutting operation does not 

affect stability of the process. Therefore, for the investigation of the effect of 

cutting forces on the system dynamic, chatter tests are performed at 7500 rpm 

spindle speed with feed values of 0.08 mm/tooth, 0.1 mm/tooth, 0.16 mm/tooth 

and 0.2 mm/tooth values. Radial immersion is taken as 100%.  Experimentally 

determined chatter frequencies and corresponding axial depth of cuts at the 

limit are given in Table 5-9 with the predicted chatter frequencies and axial 

depth of cuts obtained using stability diagrams for idle condition. 

 

 

 

Table 5-9 Predicted and actual values of the chatter frequency and axial depth 

of cut for 7500 rpm spindle speed with chancing feed. 

 

Feed per 

tooth 

(mm/tooth) 

 

Predicted 

lima (mm)  

 

Predicted chatter 

frequency c  

(Hz) 

 

Actual 

lima (mm) 

 

Actual chatter 

frequency c  

(Hz) 

0.08 2.42 764.4 3 731 

0.1 2.42 764.4 3.1 728 

0.16 2.42 764.4 3.25 718 

0.2 2.42 764.4 3.45 706 

 

 

 

As seen from Table 5-9, with increasing feed, deviations between the predicted 

and actual stability of the cutting operation increases. This behavior is an 

obvious evidence of the force dependent characteristics of the tool point FRF.  

 

Similar to the previous case studies, using the chatter test results modal 

parameters of the dominant mode is identified and identified modal parameters 

for x and y directions are given in Table 5-10 and Table 5-11, respectively. 
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As seen from identification results given in Table 5-10 and Table 5-11, with 

increasing feed, the dominant mode deviates more from the idle condition. This 

behavior shows that system dynamics is also affected by the forcing level that 

excites the machining center. 

 

 

 

Table 5-10 Identified modal parameters in x direction at 7500 rpm spindle 

speed with various feed 

 

 
 

Idle 

 

Feed 0.08 

mm/tooth 

 

 

Feed 0.1 

mm/tooth 

 

 

Feed 0.16 

mm/tooth 

 

 

Feed 0.2 

mm/tooth 

 

Natural 

frequency (Hz) 
800 726 726 716 699 

Damping (%) 7.79 6.8 6.9 8 9 

 

 

 

Table 5-11 Identified modal parameters in y direction at 7500 rpm spindle 

speed with various feed 

 

 
 

Idle 

 

Feed 0.08 

mm/tooth 

 

 

Feed 0.1 

mm/tooth 

 

 

Feed 0.16 

mm/tooth 

 

 

Feed 0.2 

mm/tooth 

 

Natural 

frequency (Hz) 
744 684 676 663 651 

Damping (%) 7.79 8.5 8 7.4 7 
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Finally, in order to verify the accuracy of identified modal parameters under 

operational conditions, stability diagrams are recalculated using identified 

modal parameters and they are given in Figure 5-18.  As seen from Figure 

5-18, feed values of the cutting operations cause deviations in the actual 

stability of the process and with increasing feed deviations in the stability 

increase.  Also note that modified stability diagrams given in Figure 5-18 are 

valid at 7500 rpm spindle speed and for higher spindle speeds such as 12000 

rpm, deviations from idle condition will be much more and it is observed that 

effects of operating conditons cause increase in stability limit at 7500 rpm 

spindle speed. However; at 12000 rpm spindle speed effects of operating 

conditions cause decrease in stability limit. 

 

 

 

 

 

Figure 5-18 Stability diagrams obtained by idle state FRF and identified in 

process FRFs at 7500 rpm spindle speed with feed of 0.1 mm/tooth,  0.16 

mm/tooth, and 0.2 mm/tooth. 
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Table 5-12 Predictions obtained using idle condition, modified stability 

diagrams and actual values of the chatter frequency and axial depth of cut. 

 

Feed 

(mm/tooth) 

 

Predicted 

lima (mm) 

(idle FRF) 

 

Predicted 

lima (mm) 

(in process FRF) 

 

Actual 

lima (mm) 

0.1 2.7 3.08 3.1 

0.16 2.65 3.22 3.25 

0.2 2.85 3.42 3.45 

 

 

 

Finally, cutting forces are calculated using Cutpro software with identified tool 

point FRFs at 7500 rpm spindle speed and feed values of 0.1 mm/tooth, 0.16 

mm/tooth, and 0.2 feed/tooth.  Calculated cutting forces in x, y and z directions 

are given in Figure 5-19 - Figure 5-21, respectively. Also note that, since 

cutting forces are also affected by axial depth of cut, during the calculation of 

cutting forces corresponding axial depth of cut at limit is used for each feed 

values. 
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Figure 5-19 Cutting forces in x direction 

 

 

 

 

 

Figure 5-20 Cutting forces in y direction 
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Figure 5-21 Cutting forces in z direction 

 

As seen from Figure 5-19 - Figure 5-21, with increasing feed values, 

considerable amount of increase in cutting forces occurs. These force 

dependent characteristics can be attributed to the variations of the bearing 

stiffness values with increasing force on bearings. 

 

5.2.3 Case Study 3 

 

In order to investigate the spindle – holder – tool assembly dynamics under 

operational conditions where the tool point FRF is dominated by tool mode, 12 

mm carbide tool with 58 mm overhang length is clamped to machining center 

with the holder given in Table 5-1. First, tool point FRF in x and y directions 

are measured by impact testing and given in Figure 5-22 and Figure 5-23, 

respectively. 
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Figure 5-22 Tool point FRF in x – direction at the idle state. 

 

 

 

 

 

Figure 5-23 Tool point FRF in y – direction at the idle state. 
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In addition to the tool point FRFs given in Figure 5-22 and Figure 5-23, modal 

parameters of the tool point FRFs are identified using modal identification 

techniques and obtained modal parameters of the tool point FRFs in x and y 

directions are given in Table 5-13. 

 

 

 

Table 5-13 Modal parameters of the tool mode in x and y directions. 

 

 

Natural 

frequency 

(Hz) 

Modal 

stiffness 

(N/m) 

Damping 

ratio (%) 

x direction  1649 5.08 x10
6
 2.26 

y direction 1669 4.16 x10
6
 3.98 

 

 

 

Similar to previous case studies, stability diagram is determined for machining 

of 7075 aluminum with 100 % radial depth of cut using the tool point FRFs of 

the idle state of machining center. Calculated stability diagram is given in 

Figure 5-24. In addition to calculated stability diagram, chatter tests are 

performed at various spindle speeds and chatter test results are shown in Figure 

5-24. Obtained chatter frequencies and corresponding axial depth of cuts at the 

limit are given in Table 5-14 with the predicted chatter frequencies and axial 

depth of cuts. 
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Figure 5-24 Stability diagrams obtained for idle state and chatter test results. 

 

 

 

Table 5-14 Predicted and actual values of the chatter frequency and axial depth 

of cut. 

 

Spindle 

Speed (rpm) 

 

Predicted 

lima (mm)  

 

Predicted chatter 

frequency c  

(Hz) 

 

Actual 

lima (mm) 

 

Actual chatter 

frequency c  

(Hz) 

8400 0.57 1598 0.59 1614 

8450 0.52 1605 0.54 1619 

12500 0.95 1575 0.8 1580 

12600 0.84 1580 0.78 1574 

12650 0.79 1582 0.72 1583 

 

 

 



117 

 

 

As seen from Figure 5-24 and Table 5-14, there is not a significant deviation 

between the predicted and actual stability limits and chatter frequencies. 

Moreover, using the experimentally determined chatter frequencies and axial 

depth of cut, dominant tool mode of tool point FRF is identified for different 

spindle speeds. Identification results for x and y directions are given in Table 

5-15 and Table 5-16, respectively.  

 

 

 

Table 5-15 Identified modal parameters for tool mode in x direction at various 

spindle speeds. 

 

Tool mode 

 

Spindle 

speed 

0 rpm 

 

Spindle 

speed  

8400 rpm - 

8500 rpm 

 

Spindle speed  

12500 rpm - 

12600 rpm 

Natural frequency 

(Hz) 
1649 1650 1625 

Modal stiffness 

(N/m) 
5.08 x10

6
 5.086 x10

6
 4.93 x10

6
 

Modal damping ratio 

(%) 
2 1.9 1.9 
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Table 5-16 Identified modal parameters in y direction at various spindle 

speeds. 

 

Tool mode 

 

Spindle 

speed 

0 rpm 

 

Spindle speed  

8400 rpm - 

8500 rpm 

 

Spindle 

speed  

12500 rpm - 

12600 rpm 

Natural frequency 

(Hz) 
1669 1669 1640 

Modal stiffness 

(N/m) 
4.16 x10

6
 4.16 x10

6
 4.01x10

6
 

Modal damping ratio 

(%) 
2.78 1.6 1.7 

 

 

 

As shown in Table 5-15 and Table 5-16, compared to case study 1, small 

amounts of deviations are observed between idle state and rotating state of 

machining center.  For instance; deviation between idle state and 12500 rpm 

spindle speed condition is 1.7% for x direction. Also for 8400 rpm spindle 

speed 4 Hz increase (0.25 %) in tool mode of the tool point FRF in x direction 

is observed which might be due to the experimental error or variation of the 

holder – tool connection parameters. 

 

Finally, stability diagrams are recalculated using identified tool point FRFs and 

modified stability diagrams are validated by experimentally obtained chatter 

frequency and axial depth of cut.  For validation purposes, modified stability 

diagram is obtained using identified tool point FRFs for 8400 rpm and 8450 

rpm spindle speeds.  Predicted values using modified stability diagram and 

actual values of the chatter frequency and axial depth of cut are given in Table 

5-17. 
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Table 5-17 Actual values of the chatter frequency and axial depth of cut and 

predicted values by modified stability diagrams. 

 

Spindle 

Speed (rpm) 

 

Predicted 

lima (mm)  

 

Predicted chatter 

frequency c  

(Hz) 

 

Actual 

lima (mm) 

 

Actual chatter 

frequency c  

(Hz) 

6300 0.455 1620 0.46 1630 

8400 0.59 1614 0.59 1614 

8450 0.52 1617 0.54 1619 

 

 

 

As seen from Table 5-17, using modified stability diagram, chatter can be 

predicted accurately for 8400 and 8450 rpm spindle speeds. This is an expected 

result since tool point FRF is identified using chatter test results performed at 

8400 and 8450 rpm spindle speeds. Using the same modified stability diagram, 

chatter behavior of the cutting operation can be predicted accurately for 6300 

rpm spindle speed as well.  

 

In addition, modified stability diagram is recalculated using the tool point FRFs 

identified using experimental results obtained at 12500 and 12600 rpm spindle 

speeds. Predictions obtained using modified stability and experimental results 

are also given in Table 5-18. 
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Table 5-18 Actual values of the chatter frequency and axial depth of cut and 

predicted values by modified stability diagrams. 

 

Spindle 

Speed (rpm) 

 

Predicted 

lima (mm)  

 

Predicted chatter 

frequency c  

(Hz) 

 

Actual 

lima (mm) 

 

Actual chatter 

frequency c  

(Hz) 

12500 0.75 1581 0.77 1574 

12600 0.72 1585 0.72 1583 

 

 

 

In this chapter a new identification procedure is proposed and applied on a real 

machining center for different holder – tool combinations. Identification results 

show that tool point FRF thus stability of the cutting operations is affected by 

spindle speed and cutting forces simultaneously depending on the holder – tool 

combinations. For the cases where tool mode is dominant, it is observed that 

tool point FRF is not affected by the rotating conditions. However, when 

stability of the cutting operation is determined by the spindle and holder 

modes, deviations due to rotational conditions becomes crucial. It is also 

observed that both spindle speed and cutting forces affect the tool point FRF 

and cause variations in the tool point FRF, thus on chatter stability. 
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CHAPTER 6 

 

 

6              IDENTIFICATION OF BEARING DYNAMICS 

 

 

 

During cutting operations gyroscopic moments and centrifugal forces cause 

variations in bearing dynamics. Although there exists speed dependent bearing 

models in literature, in machining centers bearings are located inside 

machining centers and speed dependent bearing characteristics are not supplied 

by the manufacturer. Even though bearing information is obtained from the 

manufacturer, after several years of operation bearing dynamic characteristics 

will not remain the same. Therefore, identification of speed dependent bearing 

dynamics plays a crucial role for the accurate prediction of machining stability. 

 

6.1 Identification of Bearing Parameters at Idle State 

 

In order to identify bearing parameters at idle state, the holder - tool 

combination given in Table 5-2 and Table 5-3 is used as a case study and it is 

clamped to 5 axis machining center. Spindle dimensions of the machining 

center are given in Table 6-1. Then, tool point FRFs in x and y directions are 

obtained using impact testing. 

 

 

 

Table 6-1 Spindle Dimensions 

 

Segment number 1 2 3 4 5 6 7 8 9 

Length (mm) 32 16 22 45 78 279 20 16 66 

Outer Diameter (mm) 80 80 80 80 90 75 64 60 55 

Inner Diameter (mm) 45 40 35 30 27 41 31 31 31 



122 

 

 

In addition to experimentally obtained tool point FRFs, spindle – holder – tool 

assembly is modeled for the idle state using analytical modeling procedure 

given in Chapter 2. Note that in order to obtain tool point FRF analytically, 

bearing and interface parameters should be determined. Since there does not 

exist any analytical model for the interface parameters and bearing are located 

inside the machining center, these parameters are determined experimentally. 

For that purpose, first, tool point FRF in x direction is calculated with the 

interface and bearing parameters given in Table 6-2 and Table 6-3. Then, 

calculated tool point FRF is taken as an initial estimate and by manually tuning 

the analytically obtained tool point FRFs with respect to experimentally 

obtained tool point FRFs interface parameters and bearing parameters are 

identified. Identified interface parameters and bearing parameters in x direction 

are given in Table 6-4 and Table 6-5, respectively. Calculated tool point FRF is 

given in Figure 6-1 with the experimentally obtained tool point FRF. 

 

 

 

Table 6-2 Initial estimates of the interface parameters for x direction 

 

 

Translational 

Stiffness (N/m) 

 

Rotational 

Stiffness 

(N.m/rad) 

 

Translational 

Damping 

(N.s/m) 

 

Rotational 

Damping 

(N.m.s/rad) 

Spindle–holder 

interface 
5x10

7
 1x10

6
 10 22 

Holder – tool 

interface 
5x10

7
 1x10

6
 10 10 
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Table 6-3 Initial estimates of the bearing parameters for x direction 

 

 
 

Translational 

Stiffness (N/m) 

 

Rotational 

Stiffness 

(N.m/rad) 

 

Translational 

Damping 

(N.s/m) 

 

Rotational 

Damping 

(N.m.s/rad) 

Front bearing 5x10
6
 1x10

6
 1000 10 

Rear bearing 5x10
7
 1x10

6
 1000 10 

 

 

 

 

 

Figure 6-1 Tool point FRF in the x direction for the idle state obtained using 

impact testing and initially estimated interface parameters and bearing 

parameters. 
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Table 6-4 Dynamic properties of the interfaces in x direction. 

 

 

 

Translational 

Stiffness (N/m) 

 

Rotational 

Stiffness 

(N.m/rad) 

 

Translational 

Damping 

(N.s/m) 

 

Rotational 

Damping 

(N.m.s/rad) 

Spindle–holder 

interface 
7.6x10

7
 1.6x10

6
 100 220 

Holder – tool 

interface 
8.2x10

7
 1.5x10

6
 100 100 

 

 

 

Table 6-5 Dynamic properties of the bearings in x direction. 

 

 
 

Translational 

Stiffness (N/m) 

 

Rotational 

Stiffness 

(N.m/rad) 

 

Translational 

Damping 

(N.s/m) 

 

Rotational 

Damping 

(N.m.s/rad) 

Front bearing 9.6x10
6
 7.6x10

6
 3500 10 

Rear bearing 4.55x10
7
 1.6x10

6
 2600 40 

 

 

 

Similarly, interface and bearing parameters in y direction are identified by 

manually tuning the analytically obtained tool point FRFs with respect to 

experimentally obtained tool point FRFs in y direction. Identified interface and 

bearing parameters are given in Table 6-6 and Table 6-7, respectively. 
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Table 6-6 Dynamic properties of the interfaces in y direction. 

 

 

Translational 

Stiffness (N/m) 

 

Rotational 

Stiffness 

(N.m/rad) 

 

Translational 

Damping 

(N.s/m) 

 

Rotational 

Damping 

(N.m.s/rad) 

Spindle–holder 

interface 
12.6x10

7
 1x10

6
 50 170 

Holder – tool 

interface 
8x10

7
 1.5x10

6
 100 100 

 

 

 

Table 6-7 Dynamic properties of the bearings in y direction. 

 

  

Translational 

Stiffness 

(N/m) 

 

Rotational 

Stiffness 

(N.m/rad) 

 

Translational 

Damping 

(N.s/m) 

 

Rotational 

Damping 

(N.m.s/rad) 

Front bearing 1.45x10
6
 3.83x10

6

 3500 10 

Rear bearing 1.02x10
8
 1.5x10

6
 1000 10 

 

 

 

Analytically obtained tool point FRFs in x and y directions (by using identified 

interface and bearing parameters) are shown in Figure 6-2 and Figure 6-3, 

respectively, together with the experimentally obtained tool point FRFs. 
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Figure 6-2 Analytically and experimentally obtained tool point FRFs in the x 

direction for the idle state. 

 

 

 

 

Figure 6-3 Analytically and experimentally obtained tool point FRFs in the y 

direction for the idle state. 
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6.2 Identification of Contact Parameters 

 

Accurate identification of contact dynamics is very crucial in predicting the 

dynamic behavior and chatter stability of spindle-tool assemblies in machining 

centers. The stiffness and damping parameters of these critical interfaces affect 

the prediction of chatter frequencies and depth of cut limits, respectively. 

Contact parameters at the spindle – holder and holder – tool interfaces can be 

obtained by manually tuning the analytically obtained tool point FRFs with 

respect to experimentally obtained tool point FRFs as given in previous 

section. In addition to this approach, contact parameters can be identified using 

closed form method proposed by Orkun et al. [61, 62]. In this identification 

method, elastic receptance coupling equations previously used for coupling the 

system components (spindle, holder and tool) are rearranged to give the 

complex stiffness matrix at the holder-tool and spindle-holder interfaces in a 

closed-form manner as follows [61, 62]: 

 

             
1

1
1 1

12 11 11 21 22 11shK H H SH H H S




           
   (6.1) 

 

             
1

1
1 1

12 11 11 21 22 11htK T T SHT T T SH




           
   (6.2) 

 

In order to identify contact parameters using the proposed method, right hand 

sides of Equation (6.1) and Equation (6.2) should be determined. In these 

equations, holder, tool and spindle receptances can be obtained analytically. In 

addition, receptances of spindle – holder ( 11SH ) and spindle – holder – tool 

( 11SHT ) assemblies can be obtained experimentally.  

 

For the spindle – holder – tool assembly receptance matrix, the first element of 

the matrix which is 11

shtH  can be obtained by performing impact testing. But the 

remaining receptances cannot be obtained due to the difficulty in measuring 
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angular displacements and exciting the system with moment. Therefore, 

approximate methods are applied for determining the Rotational Degree of 

Freedom (RDOF) related receptances 
11

shtL , 
11

shtN  and
11

shtP  [61,62].  As it is 

shown that proposed identification method is highly sensitive to the noise in 

measured FRF data, it is suggested to identify the dynamical contact 

parameters by taking the average of the parameters calculated using the data 

obtained at several frequencies at the mode which is most sensitive to contact 

dynamics. 

 

Although the contact parameters identified by using this approach yield pretty 

accurate results, contact parameters should be identified for each holder – tool 

combinations and this will be time consuming due to test requirement for each 

combination. In order to eliminate experimental dependancy, the method is 

extended further bu using neural networks [63]. In this approach, neural 

networks are trained using identified contact parameters. Therefore, it is shown 

that by performing identification for limited sets of holder – tool combination, 

contact parameters can be predicted in a wide range of holder – tool 

combination and experimental dependency can be eliminated in contact 

parameter identification. 

 

6.3 Effect of Bearing Dynamics on Tool Point FRF 

 

As seen from the identification results given in Section 6.1, front and rear 

bearings have translational and rotational stiffnesses. Also, as shown in 

Chapter 5, only variation of the dominant mode that determines chatter stability 

can be identified using inverse stability solution procedure. Therefore, using 

the experimentally identified tool point FRFs under cutting conditions, only 

bearing parameters that affect the elastic mode can be determined accurately. 

Thus, before the identification of speed dependent bearing dynamics, effects of 

each bearing parameter on tool point FRF should be investigated. 
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In order to investigate the effects of bearing dynamics on tool point FRF, first 

spindle – holder – tool assembly given in Section 6.1 is modeled with the 

interface and bearing parameters given in Table 6-4 and Table 6-5. Then, front 

bearing translational stiffness value is decreased 30% and remaining 

parameters are kept constant. Obtained tool point FRF in x direction is given 

with the original tool point FRF in Figure 6-4. 

 

As seen from Figure 6-4, variation of translational stiffness of front bearing 

affects the rigid body mode of the spindle and elastic modes that determine the 

stability are not affected. Therefore, front bearing translational stiffness values 

at idle state can be used and translational stiffness of front bearings can be 

eliminated in the identification procedure of speed dependent bearing 

dynamics.  

 

 

 

 

Figure 6-4 Effect of translational stiffness of front bearing on tool point FRF in 

x direction. 
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Similarly, in order to investigate the effect of front bearing rotational stiffness 

values on tool point FRF, corresponding stiffness value is decreased 70% and 

remaining parameters are kept the same as shown Table 6-4. Calculated tool 

point FRF in x direction is given with the original tool point FRF in Figure 6-5.  

 

As seen from Figure 6-5, front bearing rotational stiffness does not affect the 

spindle rigid body mode and mainly affect the elastic mode that determines the 

stability. 

 

 

 

 

 

Figure 6-5 Effect of rotational stiffness values of front bearing on tool point 

FRF in x direction. 

 

 

 

In addition to front bearing dynamic properties, effect of rear bearing dynamics 

on tool point FRF is investigated in a similar manner. First, effect of 

translational stiffness of rear bearing is investigated by decreasing the stiffness 

30 % while keeping remaining parameters the same as shown in Table 6-4. 
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Then, rotational stiffness of rear bearing is examined similarly and the results 

obtained are given in Figure 6-6 and Figure 6-7. 

 

 

 

 

 

Figure 6-6 Effect of translational stiffness values of rear bearing on tool point 

FRF in x direction. 

 

 

 

Effect analysis results show that, variation of the front bearing rotational 

stiffness and rear bearing translational stiffness affects the elastic mode and for 

the accurate prediction of chatter stability during cutting operation, speed 

dependent dynamics of these bearing parameters should be identified. 

 

Note that effect analysis results are valid for the case studied. For different 

holder – tool combinations and machining centers, effect of each bearing 

parameter on tool point FRF should be investigated carefully. In cases where 

different effects are observed, identification method suggested in this study 
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should be performed and bearing parameters that affect tool point FRF and 

cutting stability should be identified.   

 

 

 

 

 

Figure 6-7 Effect of rotational stiffness values of rear bearing on tool point 

FRF in x direction. 

 

 

 

6.4 Identification of Bearing Dynamics under Operational Conditions 

 

In addition to identified bearing parameters and analytically determined tool 

point FRFs for idle state of the machining center, speed dependent bearing 

parameters are identified using experimentally identified in process tool point 

FRFs. Identification of speed dependent bearing parameters is performed by 

manually tuning analytically obtained tool point FRF. Identified bearing 

stiffness values for x and y directions are given in Table 6-8 and Table 6-9, 

respectively.   
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As seen from identification results given in Table 6-8 and Table 6-9, bearing 

stiffness values decrease with increasing spindle speed as expected. For 

instance, at 14000 rpm spindle speed bearing stiffness values decreases to 40 % 

of the idle values.  

 

 

 

Table 6-8 Identified speed dependent bearing stiffness values in x direction. 

 

 

Idle state 6400 rpm 7500 rpm 14000 rpm 

Front Bearing  

Rotational  Stiffness  

(N.m/rad)  

7.65x10
6
 5.73x10

6
 5.12x10

6
 3.21x10

6
 

Rear Bearing  

Translational Stiffness  

(N.m/rad)  

4.55x10
7
 3.41x10

7
 3.05x10

7
 1.91x10

7
 

 

 

 

Table 6-9 Identified speed dependent bearing stiffness values in y direction. 

 

 

Idle state 6400 rpm 7500 rpm 14000 rpm 

Front Bearing  

Rotational  Stiffness  

(N.m/rad)  
3.83x10

6

 3.06x10
6

 2.98x10
6

 2.22x10
6

 

Rear Bearing  

Translational Stiffness  

(N.m/rad)  
1.02x10

8

 0.816x10
8

 0.805x10
8

 0.55x10
8
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Afterwards, using identified speed dependent bearing parameters, tool point 

FRFs are recalculated. As an example, analytically determined tool point FRFs 

for x and y directions for idle state and 6400 rpm spindle speed are given in 

Figure 6-8 and Figure 6-9, respectively. Also note that, analytically determined 

tool point FRF for 6400 rpm spindle speed contains both gyroscopic effects 

and bearing stiffness variations.  

 

 

 

 

 

Figure 6-8 Analytically determined tool point FRFs in x direction for idle state 

and 6400 rpm spindle speed. 
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Figure 6-9 Analytically determined tool point FRFs in y direction for idle state 

and 6400 rpm spindle speed. 

 

 

 

In order to check the accuracy of stability prediction, stability diagrams are 

calculated for machining of aluminum 7075 with 100% radial immersion. 

Calculated stability diagrams are given in Figure 6-10  with the actual chatter 

test results presented in Section 5.2.2.1. 
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Figure 6-10 Analytically obtained stability diagrams for idle state, 6300 rpm 

spindle speed and chatter test results. 

 

 

 

Similarly, tool point FRF is calculated analytically for 7500 rpm and 14000 

rpm spindle speeds using the corresponding identified speed dependent bearing 

parameters, and stability diagrams are determined using analytically obtained 

tool point FRFs. Obtained stability diagrams are given in Figure 6-11 and 

Figure 6-12 with the chatter test results. 
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Figure 6-11 Analytically obtained stability diagrams for idle state, 7500 rpm 

spindle speeds and chatter test results. 

 

 

 

 

 

Figure 6-12 Analytically obtained stability diagrams for idle state, 14000 rpm 

spindle speeds and chatter test results. 
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As seen from stability predictions given in Figure 6-10 - Figure 6-12, using the 

identified speed dependent bearing parameters, actual stability of the cutting 

operation can be predicted analytically. In addition to the given stability 

diagrams, predicted axial depth of cut at limit and chatter frequencies for 

various spindle speeds are given in Table 6-10 with the actual chatter test 

results.  

 

 

 

Table 6-10 Actual values of the chatter frequency and axial depth of cut at limit 

and predicted values by in process FRFs and idle FRFs. 

 

Spindle 

Speed 

(rpm) 

Predicted 

lima (mm) 

using idle 

FRF 

 

Predicted 

lima (mm) 

using in 

process 

FRF  

 

Predicted 

chatter 

frequency c  

(Hz) 

using in process 

FRF 

 

Actual 

lima (mm) 

 

Actual chatter 

frequency c  

(Hz) 

6200 4 2.73 694 2.65 694 

6300 3.6 2.61 696.5 2.6 697 

7400 2.39 2.9 726 2.8 727 

7500 2.42 3.1 728.5 3.1 728 

14000 4.45 2.98 616 3 616 

 

 

 

Note that stability diagrams given in Figure 6-10 - Figure 6-12 are valid in the 

vicinity of the corresponding spindle speeds only. Tool point FRFs are 

recalculated for 100 rpm spindle speed increments in 6000 rpm – 14500 rpm 

spindle speed band and limiting axial depth of cut at each spindle speed is 

determined. Then, complete stability diagram which is valid for all spindle 
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speeds is obtained by combining the calculated limiting axial depth of cut and 

spindle speed pairs. Obtained stability diagram is given in Figure 6-13 with the 

stability diagrams valid only at 6300 rpm and 14000 rpm spindle speeds. 

 

 

 

 

 

Figure 6-13 Stability diagram calculated using tool point FRF at 6300 rpm 

spindle speed, 14000 rpm spindle speed and combined stability diagram valid 

at all spindle speeds. 

 

 

 

As seen from Figure 6-13, stability diagram calculated for 6300 rpm spindle 

speed over estimates stability limit at higher spindle speeds. Similarly, stability 

limit calculated for 14000 rpm spindle speed over estimates stability limit at 

lower spindle speeds. However, combined stability diagram shows actual 
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stability behavior of the cutting operation and can be used in stability 

prediction for all spindle speeds. Moreover, combined stability diagram is 

given in Figure 6-14 with the stability diagram obtained using tool point FRF 

at idle state. 

 

 

 

 

 

Figure 6-14 Stability diagram calculated using tool point FRF at idle state and 

combined stability diagram valid at all spindle speeds. 

 

 

 

In addition to identified bearing dynamics with varying spindle speed, bearing 

stiffness values are identified at 7500 rpm spindle speed for different feed 

values using the chatter test results given in Section 5.2.2.2.  Identified bearing 

parameters in x and y directions are given in Table 6-11 and Table 6-12, 

respectively. 
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Table 6-11 Identified force dependent bearing stiffness values in x direction. 

 

 
0.1 

mm/tooth 

0.16 

mm/tooth 

0.2 

mm/tooth 

Front Bearing  

Rotational  Stiffness  

(N.m/rad)  

5.12x10
6
 4.44x10

6
 4.21x10

6
 

Rear Bearing  

Translational Stiffness  

(N.m/rad)  

3.05x10
7
 2.78x10

7
 2.55x10

7
 

 

 

 

Table 6-12 Identified force dependent bearing stiffness values in y direction 

 

 
0.1 

mm/tooth 

0.16 

mm/tooth 

0.2 

mm/tooth 

Front Bearing  

Rotational  Stiffness  

(N.m/rad)  

2.98x10
6

 2.72x10
6
 2.6x10

6
 

Rear Bearing  

Translational Stiffness  

(N.m/rad)  

8.05x10
7

 7.75x10
7
 7.24x10

7
 

 

 

 

As seen from Table 6-11 and Table 6-12, with increasing feed bearing stiffness 

values decrease. Identification results show that, in addition to spindle 

rotational speed, bearing dynamics is also affected by forces acting on the 

system. 

 

In this chapter, bearing parameters under operational conditions are 

investigated. First, bearing parameters at idle state are identified using 
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experimentally obtained tool point FRFs and analytical model suggested. Then, 

effect of translational and rotational stiffness values of front and rear bearings 

on tool point FRF is analyzed. Results show that, variation of the front bearing 

rotational stiffness and rear bearing translational stiffness affect the dominant 

elastic mode for the case studies. Finally, using effect analysis results bearing 

parameters that affect dominant mode of the tool point FRF are identified at 

various spindle speeds and feed values. Identification results show that bearing 

parameters decrease with increasing spindle speed and cutting forces that 

excite the system. 
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CHAPTER 7 

 

 

7     EXPERIMENTAL VERIFICATION AND CASE STUDIES 

 

 

 

In this chapter, verification of the analytical modeling procedure and 

identification methods is performed. For that purpose, holder – tool 

combination which was not used in the identification procedure is clamped to 

the machining center and the tool point FRF is calculated using the analytical 

model suggested along with the previously identified bearing parameters. 

Then, stability diagrams are calculated and accuracy of the predicted stability 

diagrams is investigated with chatter tests. In addition, variations of the tool 

point FRF and stability are investigated for a dominant tool mode case. 

 

7.1 Case Study 1 

 

In order to verify the analytical modeling procedure and identification 

methods, a 4-teeth carbide tool of 100 mm length and 25 mm diameter is 

clamped to the same machining center used in previous Chapters with a 

different holder which was not used in the identification procedure presented in 

Chapter 6. The overhang length of the tool is 56 mm and holder dimensions are 

given in Table 7-1.  

 

First, tool point FRF is measured by impact testing at the idle state of the 

machining center. The tool point FRFs are also calculated using the analytical 

model suggested with the identified bearing and interface parameters which are 

given in Chapter 6. Calculated tool point FRFs in x and y directions are shown 

along with the experimentally obtained tool point FRFs in Figure 7-1 and 

Figure 7-2, respectively.  
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Table 7-1 Holder  dimensions 

 

Segment number 1 2 3 4 5 6 

Length (mm) 25 10 90 16 6 10 

Outer Diameter (mm) 63.5 50 63 48 64 55 

Inner Diameter (mm) 25 25 10 10 10 10 

 

 

 

 
 

Figure 7-1 Analytically and experimentally obtained tool point FRFs in the x 

direction for the idle state. 
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Figure 7-2 Analytically and experimentally obtained tool point FRFs in the y 

direction for the idle state. 

 

 

 

As seen from Figure 7-1 and Figure 7-2, analytically and experimentally 

obtained tool point FRFs are in good agreement in the frequency band 

containing dominant mode at 550 Hz. Note that, bearing dynamics are not 

affected by holder and tool dimensions and remain the same as identified in 

Chapter 6.  Not only bearing dynamics, but also the dynamics of the spindle – 

holder interface does not change when a different holder is clamped to the 

same machining center. Thus the same spindle – holder interface parameters 

can be used for different holder combinations.  Finally, since spindle and 

holder elastic modes are not affected by the contact parameters at holder – tool 

interface, average values can be used for the holder – tool contact parameters. 

Thus in the analytical model, the previously identified interface and bearing 

parameters can be used, and tool point FRFs can be calculated analytically 
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without performing any experimental work. Theoretically calculated FRFs are 

given Figure 7-1 and Figure 7-2. 

 

In addition to tool point FRFs at idle state of the machining center, tool point 

FRFs including gyroscopic effects and bearing stiffness variations at 6000 rpm 

and 7000 rpm spindle speeds are also calculated. Note that, the bearing 

stiffness values employed in the analysis for spindle speeds of 6300 rpm and 

7500 rpm are the values identified in Chapter 6. For 6000 rpm and 7000 rpm 

spindle speeds, linear speed dependent variation is assumed for the bearing 

dynamics, and the corresponding bearing stiffness values are determined by 

applying interpolation. Obtained rotational tool point FRFs in x and y 

directions are given in Figure 7-3 and Figure 7-4, respectively. 

 

 

 

 
 

Figure 7-3 Analytically determined tool point FRFs in x direction for idle state, 

6000 rpm and 7000 rpm spindle speeds. 
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Figure 7-4 Analytically determined tool point FRFs in y direction for idle state, 

6000 rpm and 7000 rpm spindle speeds. 

 

 

 

In addition to calculated tool point FRFs, stability diagrams are calculated for 

machining of 7075 aluminum with 100 % radial immersion and 0.1 mm/tooth 

feed using the stability model proposed Budak and Altıntaş [5]. Finally, chatter 

tests are performed at 6000 rpm and 7000 rpm spindle speeds. Calculated 

stability diagrams both for idle FRFs and in process FRFs are given with the 

chatter test results in Figure 7-5 and Figure 7-6. 

 

 

 

 



148 

 

 

 
 

Figure 7-5 Analytically obtained stability diagrams for idle state, 6000 rpm 

spindle speed and chatter test results. 

 

 

 

 
 

Figure 7-6 Analytically obtained stability diagrams for idle state, 7000 rpm 

spindle speed and chatter test results. 
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As seen from Figure 7-5 and Figure 7-6, actual stability of the cutting operation 

can be predicted much more accurately with the tool point FRFs including 

gyroscopic effects and bearing stiffness variations. For instance, at 6000 rpm 

spindle speed, predicted axial depth of cut using idle FRF is 0.74 mm. 

However; in actual cutting operation chatter occurred at 1.1 mm which can be 

predicted by using in process FRF is 1.13 mm. Similarly, at 7000 rpm spindle 

speed, predicted axial depth of cut using idle FRF is 2.17 mm. However; in 

actual cutting operation chatter occurred at 5 mm and it can be predicted as 

5.15 mm by using in process FRF.  Stability predictions using idle FRFs and in 

process FRFs are given in Table 7-2 with the actual stability of the cutting 

operation.  

 

 

 

Table 7-2 Actual stability limit and stability predictions using idle FRFs and in 

process FRF 

 

Spindle 

Speed (rpm) 

 

Predicted 

lima (mm) 

using idle 

FRFs 

 

Predicted 

lima (mm) 

using in 

process 

FRFs 

 

Actual 

lima (mm) 

6000 0.74 1.13 1.1 

7000 2.17 5.15 5 

 

 

 

Similar to the stability predictions given in Chapter 6, stability diagrams given 

in Figure 7-5 and Figure 7-6 are valid in the vicinity of the corresponding 

spindle speed only. Therefore, for the accurate prediction of actual stability of 

the cutting operation, tool point FRF should be recalculated at that operating 
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speed and the corresponding stability should be used before the machining 

operation. 

 

7.2 Case Study 2 

 

As shown in the previous section, variations in bearing dynamics due to 

changes in rotational speed cause deviations in the stability of the cutting 

operation. However; using analytical model suggested and identified bearing 

dynamics, actual stability of a cutting operation can be predicted accurately.  In 

this section, holder – tool combinations for which the dominant tool mode 

determines the stability regions are analyzed. For that purpose, a 4-teeth 

carbide tool of 72 mm length and 12 mm diameter is clamped to the same 

machining center. The overhang length of the tool is 58 mm. Holder 

dimensions are given in Table 7-3. 

 

 

 

Table 7-3 Holder dimensions 

 

Segment number 1 2 3 4 5 

Length (mm) 25 18 16 6 10 

Outer Diameter (mm) 63.5 50 44 64 55 

Inner Diameter (mm) 12 12 15 15 15 

 

 

 

First, tool point FRF is measured by impact testing at the idle state of the 

machining center. Then by manually tuning the analytically obtained tool point 

FRFs, contact parameters at the holder – tool interface are identified and then 

the tool point FRF of the spindle – holder – tool assembly is calculated by 

using identified contact and bearing parameters. For the bearing dynamics and 

contact parameters at the spindle – holder interface, previously identified 
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values are used. Identified contact parameters in x and y directions are given in 

Table 7-4. Analytically obtained tool point FRFs for idle state in x and y 

directions are compared with the experimentally obtained tool point FRFs in 

Figure 7-7 and Figure 7-8, respectively. 

 

 

 

Table 7-4 Contact parameters at holder – tool interface in x and y direction 

 

Holder – tool 

interface 

 

Translational 

Stiffness 

(N/m) 

 

Rotational 

Stiffness 

(N.m/rad) 

 

Translational 

Damping 

(N.s/m) 

 

Rotational 

Damping 

(N.m.s/rad) 

x direction 8.1x10
6
 1x10

6
 20 10 

y direction 7.3x10
6
 1x10

6
 20 10 

 

 

 

As seen from Figure 7-7 and Figure 7-8, unlike in the case study 1 given in 

Section 7.1, tool point FRF is dominated by the tool mode, and the spindle 

mode located at 1200 Hz will not have any contribution to stability of the 

cutting operation. 
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Figure 7-7 Analytically and experimentally obtained tool point FRFs in the x 

direction for the idle state. 

 

 

 

 

 

Figure 7-8 Analytically and experimentally obtained tool point FRFs in the y 

direction for the idle state. 
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Secondly, in order to investigate effect of rotational conditions on stability, 

gyroscopic moments and bearing stiffness variations are examined separately. 

First, tool point FRFs are calculated for idle state, 14000 rpm and 35000 rpm 

spindle speeds analytically with the same bearing parameters. Then, using 

analytically obtained tool point FRFs, stability diagrams are calculated for the 

machining of 7075 aluminum with 100 % radial immersion and 0.1 mm/tooth 

feed. Obtained stability diagrams are given in Figure 7-9.   

 

 

 

 

 

Figure 7-9 Stability diagrams predicted using the tool tip FRFs for idle state, 

14000 rpm and 35000 rpm spindle speed (effects of operating speed on bearing 

dynamics are not considered). 

 

 

 



154 

 

 

As seen from Figure 7-9, at 14000 rpm, gyroscopic moments do not affect 

stability of the process and expected variations are observed at 35000 rpm 

spindle speed. Also note that, since same bearing parameters are used in tool 

point FRF calculations, observed deviations in Figure 7-9 are due to gyroscopic 

moments only. 

 

In order to investigate the effects of bearing stiffness variations on tool point 

FRF, rear bearing translational stiffness values are decreased 70 % and 

remaining parameters are kept constant. Then, tool point FRF is calculated for 

the decreased and nominal values of the bearing parameters. Obtained tool 

point FRFs are given in Figure 7-10. 

 

 

 

 

 

Figure 7-10 Effect of translational stiffness values of rear bearing on tool point 

FRF. 
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As shown in Figure 7-10, 70 % decrease in rear bearing translational stiffness 

value does not cause variations in the tool mode, and only spindle modes are 

affected by the bearing variations.  

 

Similarly, in order to examine the effect of front bearing rotational stiffness on 

tool point FRF, corresponding stiffness value is decreased 70 % while keeping 

the remaining parameters constant, and tool point FRF is recalculated.  

Calculated tool point FRFs for both cases are given in Figure 7-11. As seen 

from Figure 7-11, front bearing rotational stiffness variations mainly effects 

spindle modes and there exist negligible change in the tool mode. 

 

 

 

 

 

Figure 7-11 Effect of rotational stiffness values of front bearing on tool point 

FRF. 
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In addition to effect analysis given in Figure 7-9 - Figure 7-11, combined 

effects of gyroscopic moments and bearing stiffness variations are investigated. 

For that purpose, tool point FRF of the spindle – holder – tool assembly is 

calculated for 8500 rpm spindle speed with bearing stiffness values identified 

in Chapter 6 for that speed. Then using analytically obtained tool point FRFs, 

stability diagrams are calculated for the machining of 7075 aluminum with 100 

% radial immersion and 0.1 mm/tooth feed. Calculated stability diagrams both 

for idle state and 8500 rpm spindle speed are given in Figure 7-12. 

 

 

 

 

 

Figure 7-12 Stability diagrams predicted using the tool tip FRFs for idle state 

and 8500 rpm spindle speed with bearing stiffness variation effect. 
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As seen from Figure 7-12, since tool mode is not affected by the bearing 

variations as shown in Figure 7-10 and Figure 7-11, negligible variations are 

observed between stability diagrams obtained using idle and in process FRFs. 

Similarly, tool point FRFs are calculated for 12500 rpm spindle speed and 

stability diagram is calculated for in process FRFs. Obtained stability diagram 

is given in Figure 7-13 with the stability diagrams obtained using idle FRF. As 

seen from Figure 7-13, small deviations occur in the stability of the cutting 

operation for 12500 rpm spindle speed. 

 

 

 

 

 

Figure 7-13Stability diagrams predicted using the tool tip FRFs for idle state 

and 12500 rpm spindle speed with bearing variation effect. 
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In addition to calculated stability diagrams, chatter tests are performed and 

obtained results are given with the predicted axial depths of cut at limit using 

idle FRFs and in process FRFs in Table 7-5. As seen from Table 7-5, compared 

to case study 1, deviations between the actual stability and predicted stability 

using idle FRF is not crucial.  

 

To sum up, as shown in case study 1, variation in the bearing stiffness values 

affects the spindle elastic modes and considerable deviations are occurred in 

the stability of the cutting operation when spindle modes are dominant in the 

tool point FRF. On the contrary, as shown in case study 2, when relatively 

thick end mill is clamped to machining center and tool point FRF is dominated 

by the tool mode, bearing stiffness variations have negligible effect on stability 

diagrams since tool mode is not affected by bearing dynamics. Therefore it can 

be concluded that, for the cases where spindle modes are dominant in the tool 

point FRF, modeling approach presented in this study should be employed and 

in process tool point FRFs including variations of the bearing dynamics should 

be calculated.  

 

 

 

Table 7-5 Predicted and actual values of axial depth of cut. 

 

Spindle 

Speed (rpm) 

 

Predicted 

lima (mm) 

using idle 

FRF  

 

Predicted 

lima (mm) 

using in 

process 

FRF  

 

Actual 

lima (mm) 

8500 0.48 0.47 0.49 

12500 0.84 0.78 0.75 

12600 0.79 0.75 0.76 
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CHAPTER 8 

 

 

8                                     CONCLUSIONS 

 

 

 

8.1 Conclusions 

 

In this thesis, a complete analytical model for a machining center under 

operational conditions is presented by extending the previously developed 

model by Erturk et al. [37]. In addition to analytical model suggested, a new 

procedure is proposed for the identification of tool point FRF and bearing 

dynamics under operational conditions. Modeling approach developed and the 

numerical and experimental studies carried out in this thesis are summarized 

and major conclusions obtained are given in this section. 

 

In machine tool studies high speed machining centers are generally modeled 

using FEM. However, in this study an alternative modeling procedure is 

suggested. In the model suggested, machining center subassemblies (spindle, 

holder and tool) are modeled using Timoshenko beam model including 

gyroscopic effects where tool point FRF is obtained by structural coupling and 

modification methods. The method proposed is verified by FEM using 

ANSYS. The results show that the method developed can provide highly 

accurate predictions with a considerable reduction in computational time. In 

addition to the accuracy and computational speed of the method proposed, the 

further advantage of using receptance coupling and modification techniques is 

demonstrated with a machine tool application in which modifications only in 

certain parts of the system are required. In such applications computational 

time is reduced drastically. For instance, with the method developed, tool point 

FRF is obtained 70 times faster compared to FEM as given in Chapter 2. 
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Using the analytical model proposed, variations of tool point FRF under 

operational conditions are investigated for different spindle – holder – tool 

assemblies. In the case studies, two main effects that result in tool point FRF 

variations due to operating conditions are examined. First, changes in the tool 

point FRF due to the gyroscopic effects are investigated. Second, the effects of 

bearing stiffness variation on the tool point FRFs are investigated. It is 

observed that, due to gyroscopic moments stability limits increase with 

increasing spindle speed. In addition, variations in bearing stiffness values 

affect stability diagram depending on the holder – tool combination. It is 

observed that, variation in the bearing stiffness values affects the spindle elastic 

modes and considerable deviations are occurred in the stability of the cutting 

operation when spindle modes are dominant in the tool point FRF. On the 

contrary when relatively thick end mill is clamped to machining center and tool 

point FRF is dominated by the tool mode, bearing stiffness variations have 

negligible effect on stability diagrams since the tool mode is not affected by 

bearing dynamics. Therefore it can be concluded that, for the cases where 

spindle modes are dominant in the tool point FRF, variations of the bearing 

dynamics due to operating conditions should be considered in the dynamic 

analysis and therefore in stability studies.  

 

In addition to the analytical model developed, dynamics of a milling machine 

during operation is investigated experimentally, not only to verify analytical 

model developed, but also for the determination of the tool point FRF during 

cutting operation. In these experimental studies two different approaches are 

employed. First, the system dynamics is investigated with the examination of 

the input and output relation between cutting forces and the system response. 

In this approach, due to the measurement capability of the dynamometer, tool 

point FRF is determined for lower frequencies and elastic modes that 

determine the stability could not be identified. Also due to the noise problems 

at high spindle speeds, tool point FRFs could not be identified above 2000 rpm 

spindle speed. In the second approach, a new identification procedure is 

proposed which is called inverse stability solution procedure. In this method, 
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experimentally determined chatter frequency and corresponding axial depth of 

cut are used in order to identify tool point FRF. Identification method 

suggested is applied to a real machining center and it is shown that tool point 

FRF can be accurately identified with the method proposed. Moreover, it is 

observed that, both spindle rotational speed and cutting forces cause variations 

in tool point FRF. In addition to the success of the proposed method in tool 

point FRF identification, it has the advantage of eliminating the necessity of 

using expensive equipments such as dynamometer and laser vibrometer. The 

method suggested requires impact testing equipment for the idle FRF 

measurement and a simple microphone for the detection of chatter frequency 

and limit value of axial depth of cut. 

 

As shown in numerical case studies presented in Chapter 3, variations of the 

bearing dynamics under cutting conditions should be included in the analysis 

for accurate prediction of the stability. In machining centers bearings are 

located inside the machining centers and speed dependent bearing 

characteristics are not supplied by the manufacturer. Even if the bearing 

information is obtained from the manufacturer, after several years of operation 

the dynamic characteristics will not remain the same. Therefore, identification 

of bearing dynamics plays a crucial role for the accurate prediction of 

machining stability. In this thesis, using the identified tool point FRFs under 

cutting conditions and employing the analytical model suggested, speed and 

force dependent bearing stiffness values are identified. Regarding the bearing 

stiffness identification, the observed variations in the dynamic behavior are 

attributed to the changes in the bearing parameters assuming that contact 

dynamics at the spindle – holder interface are not affected by the cutting 

conditions. Identification results show that bearing stiffness values decrease 

with increasing spindle speed and increasing cutting forces. 

 

Finally, it is shown that experimentally identified spindle – holder interface 

parameters and speed dependent bearing dynamics can be used in modeling 

different holder – tool combinations in the same machining center. Therefore, 
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with the implementation of identified speed dependent bearing characteristics 

to the analytical model, stability of high speed cutting operations can be 

predicted accurately before cutting operations, which was the primary objective 

of this thesis. 

 

The contribution of this study to the literature can be summarized as follows: 

 

First, an alternative modeling procedure is suggested for the tool point FRF 

calculation including gyroscopic moments. In analytical model proposed, 

instead of applying FEM, sub-segment Frequency Response Functions (FRFs) 

are obtained analytically and sub-segment FRFs obtained are coupled by using 

receptance coupling method. Unlike existing approaches, machining center is 

modeled using symmetric beam elements with free-free end conditions 

regardless of the actual boundary conditions, and bearing properties are 

included into system dynamics by employing structural modification 

techniques. Thus, response of the system under operating conditions is 

obtained by using symmetric beam elements by reducing the computational 

cost drastically, without losing accuracy. 

 

Second, using analytical model developed, effects of gyroscopic moments and 

bearing stiffness variations are investigated with numerical examples which 

give better insight in machine tool dynamics under operational conditions.  

 

Third, a new identification procedure is proposed for the in process tool point 

FRF identification. In identification method developed, in process FRFs are 

identified using experimentally obtained axial depth of cuts and chatter 

frequencies. Using identification method developed the necessity of expensive 

equipments, complicated experimental setups and signal processing problems 

are eliminated. Moreover, stability diagrams are recalculated using identified in 

process FRFs and it is shown that deviations in stability of the machining 

operations can be predicted much more accurately by using identified in 

process FRFs. 
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Fourth, bearing dynamics of a machining center under operating conditions are 

identified for the first time in the literature. It is shown that bearing dynamics is 

affected by spindle rotational speed and cutting forces that excite the 

machining center. Using identification method developed, bearing dynamics 

under various spindle speeds and cutting forces is identified. Furthermore, 

using analytical model suggested and identified speed dependent bearing 

stiffness values, stability diagram which is valid at all spindle speeds is 

calculated. This is the first time in the literature that complete stability diagram 

including effects of gyroscopic moments and bearing stiffness variations is 

theoretically obtained and experimentally verified. 

 

Finally, a different holder – tool combination is clamped to same machining 

center and it is shown that tool point FRF of the new assembly can be predicted 

by using the analytical model proposed and the previously identified bearing 

dynamics, without performing further experiments. Therefore, experimental 

dependency is eliminated in stability predictions.  In addition, it is shown that 

when spindle modes are dominant, the stability of the machining operation is 

affected by bearing stiffness variations. On the contrary, when the tool is the 

most flexible component in the machining center, negligible variations occur in 

the stability due to bearing stiffness variation. These conclusions enable 

researchers and machine shop operators to understand the underlying cause of 

frequently observed and unexpected deviations in stability of the machining 

operations. 

 

The outcome of the thesis is believed to help increasing not only the accuracy 

of chatter stability predictions, but also better understanding of machine tool 

dynamics under operational conditions which is essential in selection of stable 

process conditions and machine tool design for increased productivity. 
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8.2 Recommendations for Future Work 

 

Although in this study a complete modeling procedure is presented, there are 

several aspects that need to be investigated further. 

 

First of all, in this study bearing stiffness variations due to gyroscopic 

moments, centrifugal forces and cutting forces are investigated. However, 

effects of thermal variations are not included in the analysis. Therefore, an 

experimental set up which enables measurement of spindle temperature can be 

constructed and identification can be performed at various bearing 

temperatures. Thus, variation of the bearing stiffness values with increasing 

temperature can be identified.  

 

Secondly, in this study, variations in the tool point FRFs are attributed to 

variations of the bearing dynamics and it is assumed that contact parameters at 

the spindle – holder and holder – tool interface remain same under operational 

conditions. Detailed analysis need to be performed by increasing preload on 

bearings since with increasing preload, variations in the bearing stiffness 

values decrease. Therefore, for high preloaded bearings, amount of deviations 

between in process and idle tool point FRFs should be lower than the observed 

deviations presented in this study. Such a further study will provide the validity 

of the contact parameter assumption. On the contrary, if the same deviations 

are observed in high preloaded bearing case, speed dependent contact 

parameters should also be identified and should be implemented to the model 

with the speed dependent bearing dynamics. 
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