

A CONTEXT-AWARE AND WORKFLOW-BASED FRAMEWORK FOR PERVASIVE

ENVIRONMENTS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

BĠLGĠN AVENOĞLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

THE DEPARTMENT OF INFORMATION SYSTEMS

FEBRUARY 2014

A CONTEXT-AWARE AND WORKFLOW-BASED FRAMEWORK FOR

PERVASIVE ENVIRONMENTS

Submitted by BİLGİN AVENOĞLU in partial fulfillment of the requirements for the

degree of Doctor of Philosophy in Information Systems, Middle East Technical

University by,

Prof. Dr. Nazife BAYKAL

Director, Informatics Institute ______________________________

Prof. Dr. Yasemin YARDIMCI ÇETĠN

Head of Department, Information Systems ______________________________

Assist. Prof. Dr. P. Erhan EREN

Supervisor, Information Systems, METU ______________________________

Examining Committee Members:

Assoc. Prof. Dr. Altan KOÇYĠĞĠT

Information Systems, METU ______________________________

Assist. Prof. Dr. P. Erhan EREN

Information Systems, METU ______________________________

Assoc. Prof. Dr. Aysu BETĠN CAN

Information Systems, METU ______________________________

Assoc. Prof. Dr. Ġbrahim KÖRPEOĞLU

Computer Engineering, Bilkent University ______________________________

Assoc. Prof. Dr. Alptekin TEMĠZEL

Work Based Learning, METU ______________________________

Date: 27.02.2014

iii

I hereby declare that all information in this document has been obtained and presented

in accordance with academic rules and ethical conduct. I also declare that, as required

by these rules and conduct, I have fully cited and referenced all material and results

that are not original to this work.

Name and Surname : Bilgin AVENOĞLU

 Signature : ____________________

iv

ABSTRACT

A CONTEXT-AWARE AND WORKFLOW-BASED FRAMEWORK FOR PERVASIVE

ENVIRONMENTS

Avenoğlu, Bilgin

Ph.D., Department of Information Systems

Supervisor: Assist. Prof. Dr. P. Erhan Eren

February 2014, 73 pages

 In this thesis study, a framework offering people help and guidance for organizing

their daily activities is proposed. This framework allows users to model their daily activities

in the form of workflows. Due to the dynamic nature of pervasive environments, workflows

are enabled to be adaptable at runtime according to context information collected in

pervasive environments. A workflow engine is used for modeling and management of

workflows and a separate rule engine with Complex Event Processing (CEP) capability is

incorporated into the framework for both enhancing workflow adaptation and execution and

for rule-based context reasoning. The adaptation model in the framework allows modeling

activities in a hierarchical manner, from high level abstract activities to more detailed ones.

Event-driven Architecture (EDA) is utilized for loosely coupled interaction between the

workflow engine and the rule engine, allowing these engines, other context sources and user-

level applications to exchange data among each other. Since workflow engines are

sufficiently complex, EDA allows incorporation of context information into the workflow

models without modifying the workflow language. A higher automation level than the level

supported by workflows is proposed by processing events in pervasive environments using

CEP. A prototype implementation is developed and the framework is evaluated with some

real life examples and experimental tests demonstrating its applicability.

Keywords: Pervasive Computing, Workflow Adaptation, Context-Aware Systems, Complex

Event Processing, Event-Driven Architecture

v

ÖZ

YAYGIN BĠLĠġĠM ORTAMLARI ĠÇĠN Ġġ AKIġ MODELLERĠ TEMELLĠ VE BAĞLAM

BĠLĠNÇLĠ BĠR ÇERÇEVE

Avenoğlu, Bilgin

Doktora, BiliĢim Sistemleri

Tez Yöneticisi: Yrd. Doç. Dr. P. Erhan Eren

ġubat 2014, 73 sayfa

Bu çalıĢmada, insanlara günlük hayattaki etkinliklerinde yardım edebilecek ve onları

yönlendirebilecek bir yazılım çerçevesi önerilmiĢtir. Çerçeve, kullanıcıların günlük

etkinliklerini iĢ akıĢ modelleri ile modellemesine olanak sağlamıĢtır. Yaygım BiliĢim (YB)

ortamlarının devingenliği nedeniyle iĢ akıĢ modellerinin çalıĢma anında bağlama göre

uyarlanması sağlanmıĢtır. ĠĢ akıĢ modellerinin tasarlanması ve yönetilmesi için bir iĢ akıĢ

modeli makinesi kullanılmıĢ, iĢ akıĢ modellerinin uyarlanması ve çalıĢtırılmasına yardım

edecek ve bağlamdan akıl yürütme yoluyla sonuç çıkarabilecek KarmaĢık Olay ĠĢleme (KOĠ)

tabanlı ayrı bir kural motoru çerçeveye dahil edilmiĢtir. ÇalıĢmada kullanılan iĢ akıĢ modeli

uyarlama yaklaĢımı kullanıcılara günlük aktivitelerini üst düzey soyut etkinliklerden daha alt

düzey somut etkinliklere doğru hiyerarĢik biçimde modelleme olanağı sunmaktadır. ĠĢ akıĢ

modeli makinesi ile kural motoru arasında esnek etkileĢime olanak veren bir Olay Temelli

Yapı (OTY) kullanılmıĢ ve bu yapı aynı zamanda diğer bağlam kaynakları ve kullanıcı

uygulamaları ile veri alıĢveriĢini de sağlamıĢtır. OTY, iĢ akıĢ modeli makinelerinin yeterince

karmaĢık olmasından dolayı, bağlam bilgisinin iĢ akıĢ modeli dilinde değiĢiklik yapmadan

bütünleĢtirilmesini sağlamıĢtır. ĠĢ akıĢ modellerinin sağladığı özdevinim YB ortamlarındaki

olayların KOĠ motoruyla iĢlenmesi sonucu daha üst özdevinim düzeylerine çıkarılmıĢtır.

Önerilen çerçeve için bir ön ürün geliĢtirilmiĢ ve uygulanabilirliği gerçek hayattan örneklerin

modellenmesiyle ve deneysel ölçümlerle gösterilmiĢtir.

Anahtar Kelimeler: Yaygın BiliĢim, ĠĢ AkıĢ Modelleri Uyarlaması, Bağlam Bilinçli

Sistemler, KarmaĢık Olay ĠĢleme, Olay Temelli Yapı

vi

ACKNOWLEDGEMENTS

I express sincere appreciation to Assist. Prof. Dr. P. Erhan Eren, for his guidance and insight

throughout the research. Thanks go to other thesis supervising committee members Assoc.

Prof. Dr. Altan Koçyiğit and Assoc. Prof. Dr. Ġbrahim Körpeoğlu for their suggestions and

comments. I offer sincere thanks to other examining committee members, Assist. Prof. Dr.

Aysu Betin Can and Assoc. Prof. Dr. Alptekin Temizel.

vii

TABLE OF CONTENTS

ABSTRACT .. iv
ÖZ .. v
ACKNOWLEDGEMENTS .. vi
TABLE OF CONTENTS ... vii
LIST OF TABLES .. viii
LIST OF FIGURES .. ix

CHAPTERS

1. INTRODUCTION ... 1
1.1. Purpose of The Study ... 1
1.2. Justification of The Study .. 1
1.3. Thesis Study ... 1
1.4. Contributions of The Study .. 4
1.5. Organization of the Study .. 4

2. LITERATURE REVIEW .. 5
2.1. Dynamic Workflows .. 5
2.2. Context-Aware Systems ... 7
2.3. Event Driven Systems and Complex Event Processing ... 10
2.4. Similar Studies ... 10

3. CONCEPTUAL ARCHITECTURE .. 17
3.1. Workflow Engine ... 18
3.2. Workflow Adaptation .. 19
3.3. Rule Engine and Complex Event Processing ... 20
3.4. Event-Driven Architecture ... 21
3.5. Context-Aware Workflows .. 22
3.6. Workflow Automation ... 23

4. IMPLEMENTATION .. 25
4.1 SOMNIUM Modules ... 26
4.2 The Workflow Engine .. 26
4.3 The Rule Engine .. 29
4.4 Event-Driven Messaging.. 30

5. EVALUATION ... 33
5.1 Scenario-based Evaluation ... 33

5.1.1 Modeling User Daily Activities by Design Components 33
5.1.2 Operation of the Modules ... 35

5.2 Experimental Evaluation .. 42
6. CONCLUSION.. 57

REFERENCES .. 61
VITA .. 73

viii

LIST OF TABLES

Table 1 Appropriateness Indication of Context Modeling Approaches 8
Table 2 Timestamp Measurements of Experimental Tests .. 47
Table 3 Lines of Code Needed for Replacing Modules ... 59

ix

LIST OF FIGURES

Figure 1 Basic Components In A Web-Service-Based Context-Aware Systems 9
Figure 2 Conceptual Architecture of the SOMNIUM Framework ... 17
Figure 3 SOMNIUM Framework Implementation ... 25
Figure 4 Workflow for the First School Day ... 34
Figure 5 Messaging Structure for Automatic Completion of the "Leave Home" Task 36
Figure 6 The Rule in the Drools Language for Completion of the "Leave Home" Task 36
Figure 7 The Rule in Esper Language for Completion of the "Leave Home" Task 36
Figure 8 Conditional Routing Definition ... 38
Figure 9 The Rule in Drools Language for Detecting "Lecture Started" Event..................... 39
Figure 10 The Rule in Esper Language for Detecting "Lecture Started" Event 39
Figure 11 Workflow for the Second School Day ... 41
Figure 12 Workflow for the Third School Day .. 42
Figure 13 The SOMNIUM Framework Load Test Measurement Points. 43
Figure 14 Implementation Architecture for YAWL .. 45
Figure 15 Implementation Architecture for jBPM ... 46
Figure 16 SOMNIUM Framework Experimental Test Results .. 48
Figure 17 Comparison of Rule Engines and Workflow Engines ... 49
Figure 18 Paired Comparison of Rule Engines and Workflow Engines 50
Figure 19 Rule Engines Comparison ... 51
Figure 20 Workflow Engines and The Number of Workflows Comparison 52
Figure 21 Messaging Systems Comparison ... 53
Figure 22 Simple Rule - Complex Rule Comparison .. 53
Figure 23 1 Rule/Workflow and 100 Rules/Workflows Comparison 54
Figure 24 Comparison of Different Software Combinations ... 55

1

CHAPTER

1. INTRODUCTION

1.1. Purpose of The Study

 Recent developments in the microlectronics, wireless communication, and mobile

technology show that software and hardware systems are further integrated into everyday

lives of people. Small sensors with wireless capabilities sense the environment and process

the sensed data or send them to another unit for processing, and the inferences as a result of

the processing may be sent to people for guidance through mobile devices, or actuators.

Moreover, besides sensors, other context information related to environments of users,

properties of devices around users and preferences of users may be used in the same way.

Sensing/collecting, sending, processing, inferencing and guiding sequence shows that a

system is needed between the lowest level or the sensing/collecting level and highest level or

guiding level. The main purpose of this research is to produce a framework which bridges

the gap between the lowest-level and highest-level, and to construct a baseline for higher-

level applications in order to offer help and guidance to people when they are carrying out

their daily activities.

1.2. Justification of The Study

 Users engage in many activities in their daily lives. They may need help and

guidance when they are participating in these activities. Since the aim of technology is to

make the life of people easier and help them stay away from making errors, a software

architecture may produce a baseline for fullfilling the needs of people.

 There are many different software and hardware solutions in the literature providing

help and guidance for people. Especially, the number of mobile applications are increasing

currently for this purpose. However, most of these software are customized solutions for

specific needs, and most of them are unaware of each other which means they do not

communicate among themselves. For this reason, people have to install, manage and use

many different types of software for integrating the technology in their daily lives. The

proposed framework in this research aims to produce a generalized framework for helping

and guiding people. Other developed applications can also produce data as input to this

proposed framework and can use the information output by this proposed framework.

1.3. Thesis Study

 Producing such a framework for pervasive environments is not a trivial process. Five

essential properties of such a framework are determined and solutions are provided. These

properties are listed as follows:

2

 Daily activities of people should be modeled first.

 The models produced for user daily activities should be adaptable to the

changing conditions.

 Inferences should be made according to context information.

 The context information should be integrated to the produced models in a

loosely-coupled manner.

 There should be different levels of help and guidance for people according to

user preferences, context of users.

 First of all, daily activities of users should be modeled. People carry out numerous

activities as part of their daily lives and these activities as well as their orders change

according to conditions in the environment. However, despite such changes, daily activities

can be seen as “semi-structured” activities. Generally, while the activities exhibit day-to-day

similarities, some changes may occur. For example, a student goes to school every day by

bus, but if he has limited time on a particular day, he may take a taxi. People generally need

help and guidance in order to organize their daily activities. A software system should know

the skeleton of these semi-structured activities, track the users’ activities, update the skeleton

structure according to the changes in the environment and offer help and guidance to the

users by making inferences. Developing such a software system calls for a modeling

structure in order to model users’ daily activities. In other words, we need technology-

independent and transferrable models of human activities (Kawsar, Kortuem, & Altakrouri,

2010).

Such systems have been implemented for the business process management and

scientific workflows domains. In business process management, business processes are

modeled as workflows and these workflows are executed in a workflow management system.

According to (Chappell, 2009), using workflows allows applications to be designed in a

unified logic, makes them more understandable and also scales well. Moreover, workflows

are especially appropriate for long-running processes which require the application to record

the state of a process such as an employee hiring process which might take weeks from

interviews to hiring of the employee (Chappell, 2009). Similar to the business processes,

user activities in daily life may last a day, a week or a month. Users’ daily activities resemble

the business processes and workflow systems are adapted for use in the pervasive computing

domain. In this domain, workflows can be used for modeling and automating user activities

and several attempts have been made in the literature (Abbasi, Ahsan, Shaikh, & Nasir,

2010; Ranganathan & McFaddin, 2004; Tiedeken, Kreher, & Reichert, 2010; Wieland,

Kopp, Nicklas, & Leymann, 2007).

Second, the models should be adaptable according to the changing conditions. Since

pervasive environments are highly dynamic in nature, it is difficult to know all variations at

modeling time. For this reason, workflow processes need to adapt according to the changing

conditions (Unger, Eberle, Marconi, & Sirbu, 2010). Adaptation of business processes are

already addressed by some studies (Marinovic, Twidle, & Dulay, 2010; Pesic, Schonenberg,

& Van Der Aalst, 2007; W M P Van Der Aalst, Adams, Hofstede, & Pesic, 2009),

(Smanchat, Ling, & Indrawan, 2008). Nevertheless, most popular workflow languages in the

literature do not support all of the adaptation approaches as presented in (Schonenberg,

Mans, Russell, Mulyar, & Van Der Aalst, 2008). For pervasive environments, an adaptation

approach should allow both design-time and run-time adaptation. Because of the

dynamically changing conditions of pervasive environments, runtime adaptation is gaining

3

more importance for workflow systems. Users should be able to define the abstract structure

of their activities, and at runtime they can replace abstract tasks by defining new workflows

or selecting from existing workflows. Even these newly created or selected workflows

should include abstract tasks, and accordingly users can define their tasks hierarchically.

Third, for pervasive environments, raw context data should be processed and used.

The inferences acquired by processing context data can offer direct help and guidance to

users or they may be used for driving the workflows. As discussed with the hierarchical

adaptation above, replacing an abstract task in a workflow with a new or existing workflow

requires implementing a selection mechanism. This selection is generally done by using

simple rules (Adams, Ter Hofstede, Edmond, & Van Der Aalst, 2006). Rules are also used

in other inline structures of workflow systems such as “Conditional Routing” (YAWL - User

Manual Version 2.2, 2011). Because activities depend on context, rules may be much more

complex than expected. For this reason, rules should use context information collected from

pervasive environments and complex rule definitions should be allowed. Rules defined

simply in workflow systems can be handled by rule engines which are specialized systems

designed for complex rule operations. Currently, rule engines support defining rules by

examining patterns, correlation and abstraction, hierarchies and relationships between

context data or events, which is known as “Complex Event Processing (CEP)” (Drools

Fusion User Guide Version 5.5.0.Final, 2012). Using a specialized rule engine with CEP

capability can provide new capabilities for workflow systems. However, rule engines should

not be intertwined with the workflow systems, as this only increases the complexity of these

systems and violates the theory of loose coupling systems (Orton & Weick, 1990).

Fourth, the rule engine and workflow system should be separated to produce a loosely

coupled architecture and communication mechanism between them. The solution for

designing loosely coupled systems calls for implementing an event-driven architecture

(EDA) (Architect & Railways, 2006). EDA also reveals another opportunity for workflow

systems. Similar to integrating a rule engine with the workflow engine, context information

can also be integrated without changing the structure of the workflow engine. Integrating

context data with workflows is known as “context-aware workflows” and it has been

addressed by some studies (Abbasi et al., 2010; Abbasi & Shaikh, 2009; Ardissono, Furnari,

Goy, Petrone, & Segnan, 2007; Cho et al., 2010; Joohyun Han, Cho, Kim, & Choi, 2006;

Hsu, Wu, & Wang, 2010). Most of these studies extend a workflow language with context

information which increases the complexity and hinders standardization on workflow

languages. Integration approaches are gaining more importance because of the complexities

of context management systems and workflow systems. Due to this complexity, they must be

handled by separate systems specialized in their areas. Workflow systems should not be

intertwined with context management systems.

Lastly, different levels of help and guidance should be offered. In the business process

management domain, workflows are used for automating business processes (Wil M P Van

Der Aalst, Hofstede, & Weske, 2003). This automation concept may refer to preventing

errors by putting conditional constraints between activities, organizing activities in some

order by using control structures, and distributing tasks to appropriate workers by utilizing

resourcing structures. However existing automation level of workflows is not enough for

pervasive environments and software systems should provide highest level of automation in

order to be unobtrusive. For this reason, events originating from different sources can be

examined by the rule engine with CEP capability and user activities and workflows can be

4

synchronized automatically according to the rules. Also, rules can be defined in order to

guide people and prevent incorrect operations in pervasive environments.

1.4. Contributions of The Study

The framework proposed in this study incorporates a user activity modeling system,

an event processing system, two implemented modules and an event channel enabling

loosely coupled, reliable and asynchronous messaging between these modules. As such, the

framework can help guide people and automate some activities in their daily lives. The

proposed framework is compatible with Satyanarayanan’s vision which implies that the

necessary software such as location tracking, speech recognition and online calendars and

hardware structures such as computers, wireless sensors, cameras and wireless

communications exist, but the solution is to offer an architecture to integrate these

components seamlessly (Satyanarayanan, 2001). Towards this vision, the proposed

framework offers a system-level engineering solution in the form of a framework

incorporating custom developed software and integrating existing software available in the

literature in a loosely-coupled manner.

Specifically, this framework makes contributions regarding:

 how smart-workflows are used for modeling daily user activities,

 how hierarchical adaptation is applied for handling dynamically changing conditions

related to these activities,

 how a workflow engine is supplemented by an external rule engine with CEP

capability,

 how event-driven architecture is used for integrating these engines in a loosely

coupled manner and for incorporating context information into workflows,

 how events and CEP are used for automation of workflows.

1.5. Organization of the Study

In the rest of this thesis, related studies are discussed in Chapter 2. The conceptual

architecture of the proposed framework and its properties are discussed in Chapter 3.

Chapter 4 includes the prototype implementation and its details. The scenario-based

evaluation and evaluation by experimental testing and the results are provided in Chapter 5.

Chapter 6 gives the conclusion.

5

CHAPTER

2. LITERATURE REVIEW

2.1. Dynamic Workflows

Workflow is defined as “the automation of a business process, in whole or part, during

which documents, information or tasks are passed from one participant to another for action,

according to a set of procedural rules” (Allen, 2001). Workflow technology influenced the

enterprises because it provides methods and technologies for modeling, execution and

management of business processes (Wieland, Kaczmarczyk, & Nicklas, 2008). Workflows

include many logical steps that are known as “activities”. Users or other resources such as

machines can interact with activities to automate the activities (Allen, 2001). Completing the

activities sequentially, in parallel or in any other pattern allows completing the work in an

efficient manner. However, many workflows may exist in an organization and they must be

managed carefully. Workflow Management Systems (WMS) are developed for managing

workflows. Allen (Allen, 2001) defines WMS as “a system that defines, creates and manages

the execution of workflows through the use of software, running on one or more workflow

engines, which is able to interpret the process definition, interact with workflow participants

and, where required, invoke the use of IT tools and applications”.

 Recently workflows have been used in pervasive computing environments because

they are appropriate technologies for simplifying and customizing user interaction with his

environment (Ranganathan & McFaddin, 2004). However, workflow technology is useful for

predictable and repetitive processes (Abbasi & Shaikh, 2009) which are not suitable for

dynamic pervasive environments. For this reason, context-awareness and adaptability must

be accommodated into the workflows. Adaptation of workflows are examined in several

studies (Smanchat et al., 2008) (Schonenberg et al., 2008) (W M P Van Der Aalst, Adams, et

al., 2009) (Gu, Pung, & Zhang, 2004) (Adams, Hofstede, Russell, & Aalst, 2009). Since

several different classifications exist, the classification for control-flow perspective of the

business processes (Schonenberg et al., 2008) is appropriate for pervasive environments. In

this classification, adaptation methods (or flexibility types as named by the authors in

(Schonenberg et al., 2008) can be classified as flexibility by design, flexibility by deviation,

flexibility by underspecification and flexibility by change. Flexibility by design is the ability

for a workflows system to propose alternative execution paths at design time. The best path

is selected at runtime for each process instance. Flexibility by deviation is the ability for a

workflow system to deviate at runtime from the defined path. The process model is not

altered. The changes occur in the running process instances. Flexibility by underspecification

is the ability for a workflow system to execute an incomplete model. The model is completed

at runtime. Flexibility by change is the ability for a workflow system to allow changing

process models at runtime. Process instances are turned into a new process model. Currently,

workflow systems do not support all of these adaptation methods. According to (Mans, van

der Aalst, Russell, & Bakker, 2009), the ADEPT1 workflow system supports flexibility by

6

design and flexibility by change, YAWL supports flexibility by design, flexibility by

underspecification and flexibility by change, FLOWer supports flexibility by design and

flexibility by deviation and Declare supports flexibility by design, flexibility by deviation and

flexibility by change. Authors in (Mans et al., 2009) examine a healthcare process and they

propose that all types of flexibility are useful for different parts of the process and different

workflow systems with different types of flexibility can be used together for supporting all

types of flexibility.

There are limited studies related with implementing dynamic workflow technology in

pervasive environments. McFaddin and Ranganathan (Ranganathan & McFaddin, 2004)

propose a prototype for modeling pervasive environments as workflows based on Business

Process Execution Language (BPEL). In this study, a task planner service and BPEL runtime

engine are two main elements of the proposed prototype. Task planner generates a workflow

according to user task requirements. Task planner gets user requirements and chooses a

workflow template from a template service offered by local organization such as a

department store. Task planner then customizes this template according to user preferences

and context requirements. Moreover, task planner can use some predefined rules by

comparing/contrasting the current context parameters for customization. Customized BPEL

workflows are then deployed to the workflow engine. If required, user interacts with the

workflow for making choices or defining new goal details by using produced web pages.

This study does not allow working on multiple workflows. In addition, once the workflows

are deployed no change can be made even some context change.

 One of the most important dynamic workflow projects is ALLOW Project

(“ALLOW - Adaptable Pervasive Flows Project,” 2008). ALLOW project started in

February 2008 and it was completed by January 2011. ALLOW project aims to integrate

people seamlessly to pervasive business and working processes. For this reason, they

propose the concept of Adaptive Pervasive Flow (APF). It is argued that real life processes

resemble the “flows” either explicitly or implicitly. These flows are named APFs and they

can be attached to physical objects or people physically or logically. Because, these objects

or people are mobile flows can change according to context. Because formal models can

model workflows, current and future behavior of workflows can be detected. ALLOW

project proposes a workflow engine that is named as Flow Control Engine (FCE). This

engine can run the workflows in distributed manner. Beside FCE, they propose a BPEL

based flow-model and language (Unger & Hanna, 2008). However, they want to extend

BPEL according to requirements in the project.

 Dynamic or adaptable workflow concept is not limited to the pervasive domain.

There are many studies in business process modeling area. One of the most important work

in this area is the “Declarative Workflows” proposed by Van der Aalst et al (W M P Van Der

Aalst, Pesic, & Schonenberg, 2009). In this study they propose the “DECLARE” framework

and according to them “instead of explicitly defining the ordering of activities in models,

Declare models rely on constraints to implicitly determine the possible ordering of activities

(any order that does not violate constraints is allowed)”. This means that if the constraints in

the process model can be defined there is no need to explicitly determine the order of

activities at beginning. The activity, which is needed to be run, can be determined at runtime

and this gives a flexibility to choose different activities according to context parameters.

Marinovic et al.(Marinovic et al., 2010) proposes an approach similar to the

DECLARE framework. In their approach, they used teleo-reactive programming generally

7

used in programming robots. They say that teleo-reactive programming allows adaptation

mechanisms to context changes and it allows recovering from unexpected situations without

restructuring the workflow. According to them, “a TR program is written as an ordered list

of condition-action rules called a TR procedure”(Marinovic et al., 2010). However the main

problem is the difficulty of modeling workflows in TR procedures and there can be more

than one way to represent a workflow.

 Similarly Sirin et al. (Sirin, Parsia, & Hendler, 2004) proposes a method for

template-based semantic web service composition. They say that instead of building fixed

workflows, pre-defined workflow templates can be created and concrete services can be

bound to workflows at runtime. Their approach includes using ontologies for describing

abstract functionalities and encoding functional and nonfunctional preference parameters in

workflows. They also extend the OWL-S language to implement this approach.

 One discussion in dynamic workflows concept is to develop a new workflow engine

from scratch, like being done in ALLOW project, or select a powerful workflow engine

developed previously and extend it. This is not a trivial discussion because many advanced

workflow engines are present and even many of them lack capabilities to run all workflow

patterns defined by Workflow Patterns initiative (W M P Van Der Aalst, Ter Hofstede,

Kiepuszewski, & Barros, 2003). Yet Another Workflow Language (YAWL) is one of these

workflow engines that can run all these patterns (W M P Van Der Aalst, Aldred, Dumas, &

Ter Hofstede, 2004). YAWL was developed by combining the workflow patterns

information with the benefits of Petri Nets. Petri Nets provide a theoretical approach to

workflows (W M P Van Der Aalst et al., 2004). YAWL supports both control-flow and data-

flow between activities in the flow. However, YAWL workflow engine is not an adaptive

engine for context changes. For this reason, they propose the “Worklet” mechanism. In the

worklet mechanism, process modeler defines standard activities and deviations. Many

deviations, i.e. possible worklets (activities) that can occur, can be defined and one of these

worklets can be selected to run at runtime according to context changes. If none of the

worklets represent the current context then modeler can define a new worklet. This leads to

an evolutionary approach (Adams et al., 2006). Moreover, YAWL workflow engine can be

extended and combined with the worklet concept and DECLARE framework to propose

more dynamic workflows (W M P Van Der Aalst, Adams, et al., 2009).

 As a conclusion, in pervasive environments workflows are used not only for web

service composition but also for modeling user activities. Users may define their activities by

using abstract components and after that they instantiate these abstract components with

more concrete workflows by modeling their activities or by composing software service

around them. The time period or the size of the workflow may change according to activities

of the user and users have the option of defining their activities from high-level abstract

activities to low-level concrete activities. One of the main important challenges is to make

workflows adaptable according to changing conditions of the pervasive environments

without changing the workflow language and inline working structure of the workflow

systems.

2.2. Context-Aware Systems

Context can be defined as any information that can be used to characterize the

situation of an entity. This entity can be a person, place, or object (Lee, Ko, Lee, Lee, &

Helal, 2007). Context information in mobile environments can be related to user’s location,

8

mobile device’s screen characteristics, temperature of the environment, current time and

date, user’s preferences etc. Mobile and pervasive applications require that these applications

must be aware of and adapt to dynamically changing environments. The number of mobile

applications and their services has been increasing and the solution for preventing the

complexity of services is to detect changes in the environment and adapt to them

dynamically (Gu et al., 2004). According to Yang et al. (Yang, Zhang, & Chen, 2008) web

services should be context-aware to give users the right information and services in the right

place. Context information can be used for service discovery (Lee et al., 2007) and service

composition (Boari, Lodolo, Monti, & Pasini, 2008). Moreover, context information can be

used with semantic web languages to achieve context reasoning which is an important aspect

of smart environments (Chen, Finin, & Joshi, 2004) (Gu et al., 2004).

Modeling context information is one of the most important aspects for context-aware

systems since a well-designed context model enables systems to access and process context

information (Strang & Linnhoff-Popien, 2004). In a survey (Strang & Linnhoff-Popien,

2004), context modeling approaches are listed as key-value models, markup scheme models,

graphical models, object oriented models, logic based models and ontology based models.

These context modeling approaches are evaluated according to their properties which are

support for distributed composition (dc), partial validation (pv), richness and quality of

information (qua), incompleteness and ambiguity (inc), level of formality (for) and

applicability to existing environments (app). Table 1 (Strang & Linnhoff-Popien, 2004)

shows the results of this evaluation. According to the table, ontology based modeling

satisfies most of the requirements. However, some evaluation criteria may be included in this

table such as resource consumption when processing the model, and easiness of modeling.

Since ontology based modeling cannot satisfy these requirements best, advantages of other

approaches may come into prominence.

Table 1 Appropriateness Indication of Context Modeling Approaches

Approach - Requirement dc pv qua inc for app

Key-Value Models - - - - - +

Markup Scheme Models + ++ - - + ++

Graphical Models - - + - + +

Object Oriented Models ++ + + + + +

Logic Based Models ++ - - - ++ -

Ontology Based Models ++ ++ + + ++ +

Truong and Dustdar (Truong & Dustdar, 2009) propose a survey for analyzing

techniques and methods for context-aware web service systems. They examine and analyze

several systems and propose the components of a web service-based context-aware system.

They differentiate the services and applications, which utilize the context information from

the components and services, which sense and provide context information. The proposed

architecture can be seen in the figure below:

9

Figure 1 Basic Components In A Web-Service-Based Context-Aware Systems

At the top part of the above figure there exist context-aware services and applications.

All the communication between web services and web service applications are based on

standard web services protocols such as HTTP and SOAP. At the bottom part of the above

figure there exist supporting components. Authors emphasize that the components are

generic enough for current web service-based context-aware systems. The figure can also be

examined from left to right. At the left, there are client applications. However, client side

may also include context sensors. Client applications utilize the web services at the server

side. At the right, there are context-aware services, which produce the context for client side.

These services can also utilize context components between themselves.

 Another context-aware system is Amigo. Amigo Project (“Amigo - Ambient

intelligence for the networked home environment,” 2008) proposes a middleware for running

heterogeneous systems in an interoperable way. This middleware enables to run home

appliances, multimedia players and mobile devices to produce a home network even though

different companies manufacture them. The main components of Amigo Project’s

architecture are the programming and deployment framework, context management service,

awareness and notification, privacy and security and user modeling and profiling. Amigo’s

Context Management Service (CMS) provides human-readable results according to sensed

data. It has an implementation based on Java technology. CMS can be run on Oscar OSGi

framework. CMS components can be installed as bundles to the Oscar. CMS has a CMS

Broker component for discovering and using context sources. Meaningful information can be

extracted from this context by using Jena toolkit and RDF-based ontology models. CMS

allows creating context sources and clients and querying the context information using

SPARQL language (Leutnant, Schmalenstroeer, & Poortinga, 2007).

10

2.3. Event Driven Systems and Complex Event Processing

Michelson (Michelson, 2006) defines an event as “a notable thing that happens inside

or outside your business. An event (business or system) may signify a problem or an

impending problem, an opportunity, a threshold, or a deviation”. In an Event-Driven

Architecture, these events are distributed to all interested subscribers and they evaluate these

messages and take actions. These actions can be an invocation of services, execution of a

business process or information publication (Michelson, 2006). Publish/Subscribe type

communication is a major paradigm for event-driven architecture. In Publish/Subscribe

communication, messages are sent asynchronously and they are sent to all subscribers,

publishers need not know anything about subscribers, recipients are determined by

subscriptions instead of being selected explicitly by senders and messages are sent to

subscribers who have subscribed before the event is published (Cugola & Jacobsen, 2002).

Asynchronous communication is suitable for mobile systems because mobile devices are

often turned off or disconnected from the network (Huang & Garcia-Molina, 2004).

In EDA, events are processed according to some rules and the necessary actions are

taken (Michelson, 2006). Processing different types of events and analyzing the correlation

between events such as casual, temporal and spatial is generally known as CEP (Michelson,

2006). CEP is preferred for processing high-volume and high-speed data generally stored in

memory and this produces advantages compared to the traditional database approach since

they store data into disk (Yao, Chu, & Li, 2010). The importance and applicability of CEP

have been proved in areas such as logistics, finance, manufacturing and energy management

(Buchmann & Koldehofe, 2009).

Events may be used to change and drive workflows. This approach is known as Event-

Driven Business Process Management (EDBPM). According to Ammon (von Ammon,

Emmersberger, Greiner, Springer, & Wolff, 2008) the business process management and

complex event processing platforms run in parallel and both work on business processes.

Authors emphasize that “The BPM- and the CEP-platform correspond via events which are

produced by the BPM-workflow engine and by the IT services which are associated with the

business process steps” (von Ammon et al., 2008). Therefore, events or event streams can

construct meaningful information to change and update workflows and their task items.

2.4. Similar Studies

 The study defined in (Wieland et al., 2007) is the most related study in terms of the

concepts used. In that study, authors extend the BPEL workflow language for integrating

context and propose the use of Context4BPEL language. Context management software,

Nexus, is used for making context queries, handling context events, and routing control flow

by context decision. In that study, the architecture is bound to the Nexus platform and an

event scheduler is used as an event server. They use a language, Event Registration

Language (ERL), for registering events to the Nexus. In contrast, this study is not bound to

any specific application for modeling workflows or for context reasoning. In this study,

events may come from outside into the messaging system and go outside from the

framework using Java Message Service (JMS) standard. Also, a separate rule-engine with

CEP capability is used for event processing which allows complex event processing. One of

the most important distinctions of this study is the way the workflows are used. In this study,

a personal workflow concept is used and different workflow languages can be used for

designing workflows. Moreover, even different workflow languages can be used there is no

need to modify the workflow languages.

11

 CEVICHE Framework (Hermosillo, Seinturier, & Duchien, 2010) is another mostly

related study which aims dynamic business process adaptation by using CEP. In CEVICHE,

CEP engine subscribes to the events and adaptation situations are determined by the rules in

the CEP engine. When an adaptation situation is determined, CEP engine gives this to the

CEVICHE Aspect Manager which uses AO4BPEL, a wrapper on BPEL allowing runtime

process adaptation and the adaptation process is handled by this manager. The rules, business

processes and adaptation conditions are loaded as a specific XML file named as Standard

Business Process Language (SBPL). CEVICHE is not dependent on any CEP engine and

only a translation plug-in is required for using different CEP engines. Compared to the

framework proposed in this research, CEVICHE runs only with BPEL and AO4BPEL. In the

proposed framework different workflow engines can be used. In CEVICHE adaptation is

dependent to the methods of AO4BPEL. In the proposed framework, the adaptation methods

are not dependent on any framework, since many workflow engines inherently propose

advanced adaptation methods. In the proposed framework, these adaptation methods can be

supported by CEP engine. CEVICHE uses EDA only for events cloud. However, in the

proposed framework, all the modules run in EDA. Since the proposed framework is designed

for pervasive environments, different data sources may send data through EDA and also

high-level application may get information through EDA.

Another similar study is described in (Ranganathan & McFaddin, 2004). The study

shows how workflows help people to interact with the environment by coordinating different

web services in a local environment. In the designed architecture, workflow templates are

customized according to users’ preferences and environment context. This customized

BPEL-based workflow is then executed in the BPEL engine. Rules are used for refining

BPEL scripts to select the most appropriate web services. That study does not allow any type

of workflow adaptation as they specify in their conclusion section. The current study differs

from the discussed one in that the concentration is on workflow adaptation and rules are used

for making reasoning on context information by using CEP.

In another study (Abbasi & Shaikh, 2009), a framework is proposed for context-aware

workflows. Authors offer not to modify the workflow engine so that any workflow engine

can be used for this purpose. They use context manager for selecting appropriate activities or

sub-workflows from a pool of workflows for replacing the smart activities defined as a

placeholder. The study implies that the selection process is done by making reasoning

according to domain specific ontologies and sensor data. However, neither the selection

process nor the implementation of the framework is given. The study is also extended with

the context-aware workflow designer (CAWD) (Abbasi et al., 2010). CAWD can be used for

modeling and verifying workflows. It also allows runtime and design time adaptation

according to context information. CAWD uses Microsoft Windows Workflow Foundation

3.5 (WF) as the workflow engine, but any other workflow engine can be used with CAWD.

In contrast to WF, the workflow engines utilized in current study (YAWL (W M P Van Der

Aalst et al., 2004) and jBPM (jBPM Documentation Version 6.0.1.Final, 2013)) include

adaptation strategies inherently. The adaptation strategies that they want to implement are

mostly implemented by YAWL and jBPM already. The main difference of the approach

proposed in the current study from CAWD is that context reasoning is made by utilizing

complex event processing and the results are used for effectively driving the YAWL and

jBPM adaptation strategies. Moreover, the currently proposed approach is an event-driven

system which detects the context changes as events in the environment and responds

according to these events.

12

Pryss et. al. (Rüdiger Pryss, Julian Tiedeken, & Manfred Reichert, 2010; Tiedeken et

al., 2010) proposes a mobile process engine and a mediation center, known as MARPLE, for

enabling mobile assistance. In that work, mobile devices install some software services and

communicate with a mediation center in order to execute some fragments of a workflow on

the mobile device. Mobile process engine is developed based on the ADEPT (Reichert,

Rinderle, & Dadam, 2003) process model and it includes the ADEPT’s correctness notions

and verification procedures. However, mobile process engine can only control sequence,

parallel and conditional routing execution patterns. In addition to execution patterns, the

mobile process engine allows adaptation on the mobile devices. This adaptation only

includes addition and deletion of single activities and only human activities can be added or

deleted by using local context information. Unlike that work, this one is based on a central

workflow engine and mobile devices can access the management interface by using web

browsers. Also, the currently proposed framework is not constrained with the use of local

context information. A workflow can access global context data if they are in the messaging

system. The concentration on the adaptation concept in the framework is limited with the

subprocesses adaptation concept. One of the workflow engines, YAWL, does not allow

adding or deleting task within the workflow. The other workflow engine, jBPM allows

adding or deleting tasks while using “Ad-Hoc Subprocesses” concept. However, since the

proposed framework is not dependant on any workflow engine different adaptation concepts

may be used and these adaptation concepts can be supplemented by other components in the

framework. The main difference of this framework is the utilization of rule-based adaptation

and automation extended with complex event-processing.

A software solution is proposed by Red Hat Company as JBoss BRMS (“Red Hat

JBoss BRMS,” n.d.) for enterprise business process automation. In this solution, business

process management and rules management are integrated together for businesses to manage

their business processes. This software only allows business rules and processes to run in the

same knowledge base and depends on the JBoss products. In contrast, the proposed solution

in the current study is proposed for pervasive environments and allows different software to

be used for same purposes due to the loosely-coupled integration architecture. Also, rule

management is used not only for processes but also for context reasoning and automation.

Project Aura (Garlan, Siewiorek, Smailagic, & Steenkiste, 2002) designs, implements,

deploys, and evaluates a system for spanning the personal information to the wearable,

handheld, desktop and infrastructure devices. By doing this, the project aims to provide

distraction-free ubiquitous computing to the users. According to Project Aura, required

hardware and software technologies are available, but the integration of these technologies to

provide a whole needs more research. Project Aura was designed based on two scenarios.

Project Aura developed a compute or data-staging server for helping resource constraint

devices to make processing and storing operations. Project Aura also developed a wireless

bandwidth advisor for estimating future congestion level of networks and making

appropriate connection decisions. Moreover, Project Aura developed location detection

methods. Project Aura’s two important services are supporting user mobility and protecting

user from variations of resources. Project Aura only supports location detection and

reasoning in terms of context processing. Other context parameters are not included in

context processing. Project Aura was developed based on two scenarios. It does not propose

generic solutions for pervasive environments.

Context Aware Middleware for Ubiquitous Systems (CAMUS) (Kiani, Riaz, Zhung,

Lee, & Lee, 2005) was developed for providing context synthesis and provision services to

13

users in distributed environments. CAMUS can be used for accessing data from sensors and

devices. This data can be used with ontology repositories to infer meaningful context.

CAMUS offers a centralized middleware solution. In this system, context information is

stored into a centralized repository for later context reasoning activities. CAMUS separates

the environment into domains such as home domain and university domain. Every domain

has its own centralized repository. CAMUS is a SOA based system because it uses Jini

technology. CAMUS is limited with only context processing and it does not support event

based communication. Moreover, CAMUS does not include composition of different

services for achieving a complex task.

 Pervaho (Eugster, Garbinato, & Holzer, 2006) is a platform for developing and

testing mobile ad hoc applications. Pervaho extends J2ME to provide mobile devices to

communicate anonymously and asynchronously through a location-based publish/subscribe

service. Pervaho also includes a mobile application testing tool which is Phomo, a phone

motion simulator. In Pervaho, client devices include a module to detect location changes and

send these changes to the central server. After that, the server examines the potential matches

according to location change and sends messages to the related subscribers. Pervaho uses

UDP between client-server communications. Pervaho also uses J2ME’s location API which

is known as JSR-179 as location detection mechanism. Pervaho only supports location

information as a context parameter.

 Cooltown (Kindberg et al., 2002) project was developed in HP labs to bridge the

World Wide Web and the physical world. In this project, web technology is pushed to the

things like printers, radios and automobiles. Moreover, Cooltown enables discovering non-

electronic things such as CDs, books, printed papers. According to Cooltown, physical

things in our life have information in the web but there is not any connection between these

physical things and the information. For this reason, they proposed “web presence”. Web

presence extends “Home Page” concept. A home page can be correlated with the physical

things. This home page can be put into the web server in the devices if it has the required

processor and storage capacities. For the non-electronic things, home page is put into web

server and some access mechanisms such as barcodes can be used to relate the thing with the

web page. By doing this, a museum visitor can get information about a picture by reading a

barcode on the picture with his PDA’s barcode reader. PDA then shows the related

information web page from the museum’s web server. Cooltown offers different

infrastructures for people, places and things. For example, it offers “eSquirt” for printing a

page without sending the whole page. Printer can get the web page from the server by

reading a barcode or a tag from the thing. It uses internet and web page concept instead of

using Jini or CORBA because they think that it is the best middleware concept. Cooltown

uses only location information in terms of context. Cooltown does not take into account the

events and context changes.

 CARMEN (Bellavista, Corradi, Montanari, & Stefanelli, 2003) is a mobile agent

based context aware middleware. CARMEN offers services to the mobile users according to

the characteristics of the context. According to the part of a given scenario, a user can read

news from a laptop connected wirelessly to the server at boarding gate while he is flying.

After landing, user can continue to read news but this time his palmtop can connect to server

at the new station and it can get localized news according to new location such as weather

and traffic reports. This scenario shows that requalification of the accessed resources based

on location, enforcing the policies in new station and applying the user’s policies are needed.

For these types of requirements CARMEN provides Metadata Manager for storing user

14

preferences and policies and Context Manager for determining location, resource parameters

etc. CARMEN uses Mobile Agents because they imply that several proposals offer using

proxies acting on behalf of limited devices. Proxies can support disconnected operations and

caching results. Also, mobile agents offer management decentralization support which leads

to scalable solutions and avoid management bottlenecks. CARMEN includes an Event

Manager to detect changes such as a user changing his location and the connected access

point. But, this is limited with some standard hardware components because these

components must support some software for mobile agents to migrate. CARMEN uses

Secure and Open Mobile Agent (SOMA) platform as mobile agent platform. CARMEN uses

shadow proxy concept which is a personal mobile proxy migrating in fixed networks to

follow users movements and act as intermediary between wireless devices and user’s

context. CARMEN clients include a service component, which announces entering the

CARMEN domain and exploits shadow proxy to send/receive messages. In CARMEN these

clients are implemented for three environments: J2ME for Pocket PC with IEEE 802.11b

connection, C for Ericsson environment with Bluetooth connection, and in Palm OS devices.

CARMEN is dependent on hardware platforms.

 Wu, Liao and Fu (Wu, Liao, & Fu, 2007) developed a service oriented smart home

middleware based on OSGi and mobile agents. They imply that OSGi platform for smart

home architectures are used as server-centric and this is not suitable for pervasive computing

environments. For this reason they use OSGi bundles on all devices in smart home. These

OSGi enabled devices can communicate between them based on service-oriented approach.

To support service-oriented approach every OSGi based device installs a web service

gateway bundle. Supporting service-oriented approach enables this platform to communicate

with non-OSGi platforms. In this design mobile agents help these devices to cooperate. A

device can download an agent host bundle to work as an agent client. After that it can

communicate through web services. Mobile agents can migrate to other agent hosts on

different OSGi platforms and carry some services to them. In reality mobile agent migration

mechanism is transporting XML-based MASML documents over web services. Using OSGi

on devices can consume much processing power, storage and energy. OSGi is a Java based

platform and needs a Java Virtual Machine to work. Moreover, a web services bundle is

needed to support service-oriented architecture which also increases the resource usage. This

smart home architecture does not include composition of web services for complex

operations.

 MobiPADS (Chan & Chuang, 2003) is a reflective middleware for context aware

mobile computing. MobiPADS platform includes a MobiPADS server connected to the

wired networks and MobiPADS clients on mobile devices connected wirelessly to the

network. Both MobiPADS server and client include two parts: the system components and

MobiPADS service space. System components provide essential services such as service

discovery, event register and configuration manager to the service space. Service space

includes mobilet chains, contextual event objects and metaobjects. Mobilet chains allow

mobile applications above MobiPADS client to benefit from the aggregated functionalities of

a mobilet which can access the system components. Contextual event objects monitor

context changes and report these changes to the subscribers. Metaobjects reflect the

configuration of the composite events and service chain. Through metaobjects event

compositions and service chain can be adaptively reconfigured. MobiPADS allows context-

awareness by using an event notification model. It supports subscription from system

components, the mobilets, and mobile applications. Moreover, MobiPADS event model

15

allows composite events such as monitoring network load, CPU utilization and battery to

construct “high load” event. Another important component of MobiPADS is dynamic service

composition. MobiPADS responds to the changes in the context by reconfiguring the

mobilets service chains. MobiPADS system is implemented in Java platform. MobiPADS

uses SOA approach but it does not use web services. It has proprietary solutions for service

compositions. An application must use the MobiPADS API to access the MobiPADS

platform components. This hinders interoperable communication with other systems.

AlfredO (Rellermeyer, Riva, & Alonso, 2008) is a lightweight middleware, which

allows flexible interaction between mobile devices. AlfredO is a service-based middleware.

This allows mobile phones to interact with devices by using stateless service interfaces

instead of downloading, and installing software packages. AlfredO is based on flexible

client-server architecture. This architecture allows a mobile phone to work as a presentation

tier, discards the completion of the work or work as a logic tier, and processes the work in

high-load networks. AlfredO is based on R-OSGi middleware which allows OSGi services to

be distributed across several devices. AlfredO can produce different rendering of same

interfaces on different devices. If mobile phones do not support Java, AlfredO can produce

browser-based solutions. Two sample applications are developed for testing AlfredO:

MouseController and AlfredOShop. AlfredO resource consumption and latency is tested

with these applications and found usable. AlfredO is related with the resource consumption

and multimodal data on mobile phones. It does not include context and event-driven

modules. It is based on services but it uses Java service interfaces.

Gaia (Roman et al., 2002) is a generic environment that integrates physical spaces and

their ubiquitous devices to form a programmable computing and communication system.

Gaia resembles the operating systems because it tries to do the tasks that all applications

need to use. These tasks include events, presence of entities such as devices, users and

services, discovery and naming. Gaia uses CORBA as a distributed computing environment.

Gaia allows applications to obtain contextual information. Applications query a context

provider or listen to an event channel to get context information. Gaia supports ontologies

and uses first-order predicates. This means that predicate name indicates the context such as

location and its arguments describe the properties of the context. For example, if the

predicate is location, the second argument can be “person” and the third argument can be

“entering”. Gaia uses DAML+OIL for writing ontologies. Gaia uses Rule-based context

synthesizers and machine learning techniques to make context reasoning (Dargie, 2009). The

main disadvantage of Gaia is not using SOA. CORBA is not an interoperable standard for

communication. Gaia only provides core services to the applications but it does not provide a

solution for coordination of these services.

SOCRADES (De Souza et al., 2008) is a middleware for business integration such as

integrating enterprise applications with web services enabled devices. According to

SOCRADES project, there must be efficient collaboration between devices and backend

business systems such as ERPs. This can be done by adding web services capabilities to the

things. However, a middleware is needed between devices and backend systems for reliable

and secure integration. SOCRADES is a web service based shop floor integration

infrastructure. SOCRADES connects Smart Objects of shop floor (manufacturing machines)

to high-level back-end systems such as ERP systems. Devices Profile for Web Services

(DPWS) is used as a standard for web services. Authors offer the middleware and show a

reference implementation for two smart objects. They show how these smart objects can be

16

used in a web service based infrastructure. SOCRADES middleware has the following

features:

 Brokered Access to Devices: An intermediate component exists between web

service clients and servers. By this way, asynchronous invocations of occasionally

connected devices can be handled by publish/subscribe systems.

 Service Discovery: A central repository called Device Manager and Monitor stores

the devices and its services. By the way, all devices can be accessed by ERP systems

whether they have connection or not to the shop floor. However, the discovery area

is limited with the local network because DPWS uses UDP multicast, which cannot

be used in global networks.

 Device Supervision: Device Management and Monitor and DPWS Historian store

information about the state of the DPWS enabled physical devices. This data can be

used for later examination and diagnosis.

 Service Life Cycle Management: SOCRADES enables web services on devices to be

updated at runtime.

 Cross-Layer Service Catalog: Composed Services Runtime enables service

composition at the middleware layer. This BPEL based system is put in the

middleware because it is the intersection of shop-floor and enterprise level services.

 Security Support: SOCRADES supports role based security. Event filtering are

based on roles is possible. Message integrity and confidentiality is inherently

supported by DPWS’s WS-Security standard.

SOCRADES middleware lacks complex context reasoning support. It is developed for

enterprise automation systems for controlling devices in local networks and does not target

global management of devices for everyday activities.

CoCA (Ejigu, Scuturici, & Brunie, 2007) is a context-aware platform for pervasive

computing environments. CoCA architecture includes four components. The first component

is an “Interface Manager”. It is an API-based interface managing the user interface of the

architecture and the interaction of CoCA between other systems. It also triggers the actions

produced by the architecture such as setting a vibrate mode of a phone according to

inferences made by the architecture. The second component is “Data Source”. It provides the

necessary data to the core service of the architecture. Data is modeled as GCoM model (a

generic context management model) which includes context capture, context ontology and

rule capture elements. The third component is “Core Service”. This component is the main

context reasoning component. It populates the ontologies with context data and applies

reasoning techniques on them. The last component is “Supplementary Service”. It includes a

knowledge discovery service for adding learning capacity to the architecture and a

collaboration service for distributing resource exploiting processes to other computers.

Because CoCA uses semantic reasoning, it requires an ontology and context data to be

populated with this ontology. Then, the derivation rules can be used for making inferences.

CoCA does not include a modeling component. For this reason, it is hard to track user

activities unless they are hard-coded to the rules. Moreover, semantic reasoning is a

computational-intensive task and it is affected by the size of the data and the number of rules

(Wang, Zhang, Gu, & Pung, 2004).

17

CHAPTER

3. CONCEPTUAL ARCHITECTURE

In this section, conceptual architecture of the proposed framework, SOMNIUM, is

given. The conceptual design incorporates a workflow engine, a rule engine, and two

SOMNIUM modules, together with an event-driven architecture as shown in Figure 1. The

input to the framework may come from different data sources such as sensors, devices and a

variety of context sources. The input may be raw context data or high level information. The

output includes the information which helps and guides people. The format or syntax of the

input/output information is out of the scope of this research since several styles can be found

readily available in the literature such as XML. The following sections explain why these

building blocks are needed and how they provide solutions for helping and guiding users in

pervasive environments.

Figure 1 Conceptual Architecture of the SOMNIUM Framework

18

3.1. Workflow Engine

 A workflow is defined as “the automation of a business process, in whole or part,

during which documents, information or tasks are passed from one participant to another for

action, according to a set of procedural rules”(Allen, 2001). A workflow is implemented by

using a language and is imported to and executed by a Workflow Management System

(WfMS) (Eberle, Leymann, & Unger, 2011). “Workflows can be described using a formal

model, such as high-level Petri Nets, or through a structured 'programming' language such as

BPEL” (Marinovic et al., 2010). The above definition is derived from the business process

management domain. In the pervasive computing domain, “smart workflow” concept is

offered to bridge the gap between the business processes and the context information

(Wieland, Kaczmarczyk, et al., 2008). Workflows which can be adapted automatically or

semi-automatically according to context information are defined as “Smart Workflows”

(Wieland, Nicklas, & Leymann, 2008). Smart Workflow concept is referred to in different

ways by some other studies, such as “Person-centric Flow” (Unger, Eberle, Leymann, &

Wagner, 2010), “Adaptable Pervasive Flow” (Wolf, Herrmann, & Rothermel, 2009), and

“Situated Flow” (Kortuem, Kawsar, & Altakrouri, 2010). Even though the names used are

different, the concepts are similar. Smart Workflows are similar to classical workflows

(Kortuem et al., 2010). However, they are used for modeling activities of only one person

and tasks can be completed manually by its owner or automatically according to the context.

Smart workflows include modeling of past, current and future activities (Herrmann,

Rothermel, Kortuem, & Dulay, 2008).

 Using workflows allows users to model their activities and make changes on them

according to changing conditions. A study shows that workflows are appropriate for

modeling human daily activities (Unger, Eberle, & Leymann, 2010). For this reason,

workflows are used for pervasive environments in some studies (Herrmann et al., 2008;

Kortuem et al., 2010; Ranganathan & McFaddin, 2004). Humans perform activities in daily

life according to some order and workflows are the IT-representations of these flow of

activities (Unger, Eberle, Leymann, et al., 2010). A person explicitly completes, suspends or

cancels tasks in the workflow according to his activities, so that the user activities and the

workflow are synchronized.

 The synchronization of the user activities with the workflows can be done

automatically by using more intelligent techniques. One of these techniques, activity sensing,

is used for automatically advancing the workflow (Herrmann et al., 2008). A study examines

the relation between Activity Theory and workflows (Adams, Edmond, & Ter Hofstede,

2003). They describe that Activity Theory offers some principles in order to understand

human activity. Authors also determine six criteria that a workflow management system

should support: flexibility and re-use, adaptation via reflection, dynamic evolution, locality

of change, comprehensibility of models, and exceptions as “first-class citizens”. They match

the principles of Activity Theory with these criteria and show that workflow products

support the principles of Activity Theory.

 The core component of the SOMNIUM framework is the workflow engine, also

referred to as the user activity modeling system, where the workflow concept is used for

modeling user activities. Studies discussed above show that workflows can be used for

modeling daily activities. In the SOMNIUM architecture, the workflows represent the

ordered activities in the daily life of a person. However, workflows are not dependent on the

length or the size of the activity. This means that a workflow can represent activities in a

19

short period of time such as ten seconds, or longer periods such as days or weeks. Also, a

workflow can represent few activities of a person such as when he is at home or many more

activities of a person when he is at work.

 Generally, for enterprise usage, each task in the workflow is assigned to a different

person. Even though the SOMNIUM framework supports this, the focus is on the personal

workflow concept, where all tasks in a workflow are owned by the same person.

Accordingly, processes with tasks to be assigned to different people are not considered.

Instead, if a task is to be completed by a person, that task should be a part of his workflow. If

there is an interaction or dependency between tasks owned by different people, this can be

handled by their own workflows interacting by sending messages into the framework which

are then interpreted by other modules in the framework. In SOMNIUM, tasks are completed

by the owner manually, by the framework automatically, or by the workflow engine (some

structures used in the workflow engines may do this such as worklet discussed in section 4.2)

automatically. Since a workflow is owned by only one person, there is no concept of

“process fragments” (Tiedeken et al., 2010; Unger, Eberle, Marconi, et al., 2010). Also, the

framework does not allow the fragments of the workflow to run outside the centralized

workflow engine.

 In contrast with the systems accessing only local context data (Wolf et al., 2009),

workflows in the SOMNIUM framework, can access global context information, since all

context information is fed into the messaging system.

3.2. Workflow Adaptation

 Pervasive environments are highly dynamic; hence the conditions and the

characteristics of the environment can change rapidly. Workflow systems should provide

support for these changing conditions in order to be useful in pervasive environments.

Existing workflow systems support different adaptation methods. The studies presented in

(Schonenberg et al., 2008) and (Smanchat et al., 2008) discuss various adaptation

approaches. The main discussion about adaptation is presented in (Schonenberg et al., 2008)

under the “Process Flexibility” label. In that discussion, the main differentiation is on the

structure of the processes. The structure of a process can be defined by using the “Imperative

Approach”, or the “Declarative Approach”. In the imperative approach, a process model is

defined as a detailed specification and this specification is executed step by step (Pesic et al.,

2007). In the declarative approach, a set of constraints are defined and any order of tasks not

violating these constrains is allowed to execute (Pesic et al., 2007). Both approaches have

some advantages and disadvantages. Declarative approaches are more appropriate for semi-

structured processes. However, if the workflow is large and has many constraints, it is hard

to use declarative workflows. Additionally, because the processes are not connected at

design time, users cannot understand the overall workflow (Leymann, Unger, & Wagner,

2010). Imperative approaches lead to over-specification in the process definition and they are

mostly appropriate for only highly-structured processes. However, the second discrimination

in the article which is “Types of Flexibility” can allow imperative languages to be

appropriate for semi-structured activities similar to most of the users’ daily activities.

 One of the “Types of Flexibility” is “Flexibility by Underspecification”

(Schonenberg et al., 2008) and this concept is useful if the details of the process cannot be

known at design time and the process can change according to runtime conditions. This

flexibility type allows defining abstract processes for unknown or uncertain processes. These

20

abstract processes can be filled by concrete processes at runtime according to the existing

conditions, while the concrete processes can be created at runtime or they can be selected

from the previously created processes. Even this new concrete process can include abstract

processes in itself. By this way, a user can define abstract activities for his daily life and he

can hierarchically fill these abstract processes with the concrete ones at that moment.

However, if the user wants to select from the already created processes, this selection may

not be easy, since it may depend on the runtime context. Context data may be examined

according to relations, hierarchies, causalities and patterns between them. For this reason,

complex rules should be defined for this selection and currently, workflow engines don’t

support this type of complex-rule definitions.

 In SOMNIUM, two imperative workflow languages supporting the “Flexibility by

Underspecification” concept are utilized. The SOMNIUM framework can support other types

of adaptation methods if the used workflow software supports these methods. The aim here

is not to be bound to a specific adaptation method. However, in pervasive environments run-

time adaptation is more important and describing how the framework supports one of these

run-time adaptation methods shows the power of the framework.

 Imperative languages supported with flexibility considerations allow easily

modeling of users’ everyday activities. A set of daily activities generally resembles that of

other days, but may be subject to small changes according to changing daily situations.

Moreover, people generally plan their activities starting with a high abstraction level, and

going into more concrete levels; hence, “Flexibility by Underspecification” concept used in

SOMNIUM allows people to define workflows hierarchically in order to match to their daily

activity plans.

 As an example, assume that a person goes to work every day. He can add an abstract

task “Go to Work” to his daily workflow. He can later replace this task with another sub-

workflow according to his conditions. If he has enough time and prefers to go to work by

bus, he can easily use “Go by Bus” workflow as a replacement; or use “Take a taxi” if he is

short on time. The hierarchical workflow concept is also used for modeling activities

corresponding to different time intervals. For example, a university student can create a

workflow which represents the activities of a one semester long course. Assume that this

workflow includes homework, projects, exams and lectures organized by date. The student

can then replace a lecture with another sub-workflow, which includes the activities such as

“go to school, attend lecture, and take a break”. Similarly, the student can replace these

activities by other sub-workflows such as replacing “Go to School” activity with “Go by

Bus” sub-workflow.

3.3. Rule Engine and Complex Event Processing

 Generally, workflow systems incorporate rules for their inline operations such as

selecting one of the many tasks according to some conditions (conditional routing) and

replacing an abstract task by a sub-workflow selected from many existing workflows

(subprocess selection) (YAWL - User Manual Version 2.2, 2011). However, these rule sets

are not enough for use in pervasive environments, where more complex rule sets are needed,

such as accumulating user data for one week period and acting on this data. In order to

handle such complex rule definitions, the use of an external system specifically designed for

this purpose, i.e. a rule engine with CEP capability, is proposed in this study. This rule

engine is a software system producing outcomes by applying rules in any form on collected

21

data (“Drools Expert User Guide,” n.d.). A typical rule engine includes an inference engine,

a rule base, and a working memory (Hill, 2003). It utilizes some special algorithms, such as

Rete (Forgy, 1982), in order to make inferences on the real data in working memory by

applying rules stored in the rule base. Real data include static data stored in the memory or

dynamic state changes occurring continuously.

 State changes are generally known as “Event” (Drools Fusion User Guide Version

5.5.0.Final, 2012). CEP refers to processing of these events for the purpose of identifying

meaningful events by employing techniques such as detection of complex patterns of many

events, event correlation and abstraction, event hierarchies, and relationships between events

such as causality, membership, and timing, and event-driven processes (Drools Fusion User

Guide Version 5.5.0.Final, 2012). Hence, a rule engine with CEP capability enables us to

define complex rule patterns which are typically not available in current workflow engines.

 In the SOMNIUM framework, a rule engine with CEP capability is utilized. The rule

engine examines the context data and produces actions such as “complete task” and “cancel

workflow”. The rule engine has the capability of examining the historical data and making

inferences, with the help of CEP. When using the workflow engine along with the rule

engine these two are separated instead of being tightly integrated together. This provides two

main advantages for the framework. First, no modifications are made to any of the systems’

inline processing structures. So, different workflow engines and rule engines readily

available can be used as part of the SOMNIUM framework, enabling modularity. Second,

running workflows are not affected by changes in the rule base. When the rule base in the

rule engine is dynamically changed at runtime, workflows continue to run in the workflow

engine without interruption. As an example, assume that a person has a workflow for his

daily activities and he has a task in this workflow for outdoor sports. This task depends on

the temperature and the time, and if the temperature is higher than 15°C and the time is five

o’clock the task is automatically enabled. Today, it is rainy and he recognizes that these rules

are not enough for the decision to enable outdoor sports task. He does not have to cancel the

workflow or modify it. He only adds another rule to the rule engine, because the rules are not

integrated with the workflows.

3.4. Event-Driven Architecture

 In everyday life, many events occur such as “the door is closed”, “the lecture is

started”, “the bus left the bus stop”. If a software system needs to use these events and take

some actions according to them, events should be distributed to all interested parties. The

structure which takes events and distributes them to all interested parties immediately for

taking necessary actions is referred to as the EDA (Michelson, 2006). EDA uses an

asynchronous publish-subscribe type of pattern and as such, publishers do not know anything

about subscribers (Architect & Railways, 2006). If the modules are independent and

horizontal communication is needed between them, EDA is implemented supporting loose

coupling (Architect & Railways, 2006).

 Properties of EDA show that the SOMNIUM framework fits this architecture. There

are three main reasons for using EDA. First, modularity is enabled in the framework,

allowing the components to work as independent as possible while communicating with

other components as loosely as possible. Second, while the framework becomes context-

aware, the context information is not intertwined with the workflow engine. The context-

awareness issues are discussed in section 3.5. Third, EDA is used for getting input from

22

context sources and sending output to high-level hardware/software for helping and guiding

people. An event or events may occur by processing the context data coming from different

context sources through EDA and when an event occurs, an end-level user or even an

actuator may be warned through EDA for taking necessary actions. The rule engine and

workflow engine continuously listen to each other and the context sources, and they publish

events according to actions that are taken by examining the context data. Subscribers of these

events can get the events from the EDA. For example, assume that a student is late for the

lecture and he created a rule beforehand which warns him when he is late. The framework

makes a decision when the “lecture started” event is constructed in the framework and no

event has come from the RFID sensor attached to the classroom’s door showing that the

student is in the classroom. When the decision is made by the framework, an event is

published to the EDA, and because a mobile application on the student’s smart phone listens

to these events, the student is warned by the mobile application.

 The publish-subscribe mechanism widely used in event driven architectures is

utilized for loose coupling of the workflow engine and the rule engine. Data sources in the

pervasive environments such as sensors, mobile devices, and web services send events or

context information into topics created beforehand for every data source. These events are

examined by two SOMNIUM modules developed for interacting with the workflow engine

and the rule engine. These two modules also use topic-based subscription to listen to the data

sources and each other. They examine the events and take necessary actions on the workflow

engine and the rule engine, such as “complete a task”, “cancel a workflow”, “listen to a

specific event and send it to rule engine”. As a result of this, the engines are used without

requiring any modifications.

3.5. Context-Aware Workflows

 Users interact with their environments while performing daily activities.

Characteristics of the environments effect the activities’ time, location, order, and the way

they are implemented. Because workflows are used in the SOMNIUM framework for

modeling users’ daily activities, these characteristics also affect the structures of the

workflows. In pervasive computing, characteristics of the environment, users and the system

are referred to as “Context”. Because context information affects users’ activities, workflow

systems should allow context-aware operations. Preprocessing of context, or more generally,

context reasoning, is the process of getting more meaningful information. Different types of

context data or historical context data can be interpreted together in order to extract high-

level information. There are different reasoning techniques in the literature (Bikakis, Patkos,

Antoniou, & Plexousakis, 2008). Rule-based reasoning is one of these techniques, where a

set of if-then rules is used for inference. Rules can be created easily and it is easy to work

with rules (Krumm, 2009). Despite these advantages, rule-based reasoning has some

disadvantages. It is hard to detect conflicts between rules, control large number of rules and

execute many rules efficiently (Krumm, 2009). However, current research shows that rule-

based systems can be extended with CEP techniques. By CEP, patterns, relations or

hierarchies between many different context data or context data coming from same source in

different time periods are extracted. A CEP engine is a stateful rule engine optimized for

long-running and processing multiple event streams coming from different sources while

typical rule-based systems are stateless. One of the most important advantages of CEP over

rule-based systems is comparing event-histories over-time. For this reason, CEP engines

continuously store events and their timestamps. Using these timestamps CEP engines can

make a kind of temporal reasoning by examining events over a period of time. While rule-

23

based systems only process rule-sets, CEP engines use event-based information aggregation

through stateful sessions for determining different relationships between events (Vincent,

2007).

 There already exist some workflow systems allowing context-aware operations.

However, these systems integrate context information into the workflow system and

represent context information within the workflow language (Abbasi et al., 2010; Cho, Choi,

& Choi, 2007; J Han, Cho, & Choi, 2005; Wieland, Kaczmarczyk, et al., 2008; Wieland et

al., 2007), leading to their tight coupling. While the existing workflow languages are already

complex due to the nature of complexities of processes, integration of context information

with the workflow language increases the complexity further. In the SOMNIUM framework,

context information is not tightly integrated with the workflows. If context data are needed

somewhere in the workflow, these data are examined or processed by the rule engine outside

the workflow and only the outputs are sent back to the workflow by mapping them to the

variables defined in the workflow. Also adaptation decisions are given by the rule engine

which examines the context data published by various data sources in the pervasive

environment into the topics defined in the EDA platform. Decoupling of context

management system from the workflow system and handling of context reasoning and

adaptation-by-context operations in separate modules allow each module to specialize while

continuing to work together for producing complete solutions.

3.6. Workflow Automation

 In the business process management domain, workflows are used for automating

business processes (Wil M P Van Der Aalst et al., 2003). This automation concept may refer

to preventing errors by putting conditional constraints between activities, organizing

activities in some order by using control structures, and distributing tasks to appropriate

workers by utilizing resourcing structures. By this way workflows eliminate human errors

and decrease the time needed to complete processes (Allen, 2001). However, automation is

more than that. Automation is defined as “full or partial replacement of a function previously

carried out by the human operator” (Parasuraman, Sheridan, & Wickens, 2000). Automation

has various levels and these levels vary from manual performance to full automation

(Parasuraman et al., 2000). The automation level of workflows is not enough for pervasive

environments and software systems should provide highest level of automation for being

unobtrusive. For this reason, software systems should track user activities, synchronize the

system with user activities, inform users about possible operations or act autonomously

without asking.

 This type of automation can be enabled by using event processing. Events occurring

throughout a day, such as “the door is closed”, “the course is started”, “the bus has just left”

are processed by a rule engine with CEP capability and workflows are synchronized

according to the results obtained from the complex rules. The event-driven architecture and

processing of events by the rules allow the SOMNIUM framework to detect activities of the

people and automatically complete, suspend, cancel tasks and workflows without manual

interaction. Rules are also extended to give the users some help and guidance information.

For example, after the lecture ends, system may inform the user about the time left for

planned activities and he can select one or more of the activities according to the

recommendations.

24

 The SOMNIUM framework is designed to represent different levels of automation.

Users can use workflows without defining any rules or making subscriptions to context

sources. This type of usage is the lowest automation level since the user designs a workflow

for his activities and he manually enacts the workflow. He does not use any sensor data or

high-level context information. However, he can increase the automation level by making

subscriptions to sensors, web services or other data sources that are sending messages to the

messaging system. He can use these data to automatically enact workflows by adding rules

to the system. For example, when a door RFID sensor sends information upon the user

leaving home, a previously defined rule processes this message and automatically completes

the work item “Leave Home” in the user’s workflow. Moreover, context reasoning can be

enabled by rule engine to make more complex inferences from the raw context data. By this

way, the system can examine data coming from different sources or examine historical data

coming from one or more sources to automatically enact workflows, hence increasing the

automation level.

25

CHAPTER

4. IMPLEMENTATION

 Following the conceptual description of the SOMNIUM framework, its

implementation is described in this section. The conceptual architecture of the SOMNIUM

framework includes a workflow engine, a rule engine, an event-driven messaging system and

two SOMNIUM modules. For the prototype implementation, YAWL and JBoss jBPM are

selected as workflow engines, JBoss Drools and Esper are selected as rule engines, and

Apache ActiveMQ and JBoss HornetQ (“HornetQ - putting the buzz in messaging,” n.d.) are

selected as messaging systems. A modular approach is preferred in order to avoid

dependence on any specific software. As a result, two different types of workflow engines,

rule engines and messaging systems are used in the prototype interchangeably to

demonstrate this modularity. However, only “Flexibility by Underspecification” adaptation

mechanism is demonstrated in the framework. Other workflow adaptation techniques can be

used with other workflow engines if the used workflow engines support different adaptation

approaches. Two SOMNIUM modules referred to as SomniumBPM and SomniumCEP are

implemented as well. SomniumBPM manages the YAWL workflow engine and jBPM

workflow engine interchangeably and SomniumCEP manages Drools rule engine and Esper

rule engine interchangeably. Apache ActiveMQ and JBoss HornetQ event-driven messaging

systems are also used interchangeably for connecting all components of the SOMNIUM

framework in a loosely coupled manner. Figure 2 shows the implementation architecture of

the SOMNIUM framework. Next, the reasons for selecting and implementing these

components and how they provide solutions for the given problems are discussed.

Figure 2 SOMNIUM Framework Implementation

26

4.1 SOMNIUM Modules

 Two SOMNIUM modules are implemented for managing the workflow engines and

the rule engines. SomniumBPM for managing YAWL workflow engine and jBPM workflow

engine, SomniumCEP for managing Drools rule engine and Esper rule engine are

implemented.

 SomniumBPM has two responsibilities. First, it listens to events occurring in the

workflow engines and publishes these events to the topic of the YAWL and jBPM in the

messaging system (i.e. Apache ActiveMQ or HornetQ, for details see section 4.4 Event-

Driven Messaging). These events may include workflow engine inline operations such as

“work item enabled”, “work item cancelled”, “case completed”, “work item status changed”,

and “case cancelled”. Second, SomniumBPM subscribes to the rule engine topic, gets the

messages from the rule engine, and applies the received commands in the messages to the

YAWL or jBPM objects. These commands may include “load or launch workflow

specifications”, “complete, cancel, suspend cases (running instances of workflow

specifications)”, “complete, cancel, suspend work item”, and “update case or work item

data”.

 SomniumCEP manages the rule engines and it has two responsibilities. First,

SomniumCEP subscribes and listens to the topics in the messaging system. Different data

sources in pervasive environments can publish messages to these topics. When a message

arrives, SomniumCEP gets the message, parses it, then sends it to the rule engine and fires

the rules. Second, SomniumCEP waits for the results of firing rules, gets these results from

the rule engine and sends them to its topic in the messaging system.

 SomniumBPM and SomniumCEP modules are implemented as HTTP servlet by

using the Java programming language. SomniumBPM and the YAWL engine communicate

through HTTP messaging. The part of the SomniumBPM communicating with the YAWL is

implemented as a YAWL Custom Service (Arthur ter Hofstede, 2010) and it also uses

InterfaceB for some operations (for details of YAWL Custom Service and InterfaceB, see

section 4.2 Workflow Engine). Similarly, SomniumBPM communicates with the jBPM

through HTTP. jBPM core engine, WS-HumanTask (Amend, Ford, Endpoints, Keller, &

Rowley, 2007) based task server, a task listener and a process listener are combined in a

Jetty based server application. By this way, SomniumBPM and jBPM can send and get HTTP

messages between themselves. SomniumBPM modules and YAWL and jBPM engines may

run on different servers. However, SomniumCEP and the Drools rule engine or Esper rule

engine should be run on the same Java virtual machine. All SOMNIUM modules

communicate with ActiveMQ by using TCP and HornetQ by using JNP connections.

4.2 The Workflow Engine

 The workflow engines used in the framework allow modeling user daily activities by

using workflows. In SOMNIUM framework, the YAWL workflow engine and jBPM

workflow engine are used.

 There are various workflow systems developed for modeling business processes.

However, not all of these are suitable for modeling user activities in pervasive environments.

A workflow system should be rich in terms of modeling constructs, support many different

patterns and allow adaptation in order to serve as a user activity modeling system. Moreover,

a workflow system should support a usable software interface which allows regular users to

27

easily create and manage workflows. YAWL and jBPM support most of these requirements

and because of this they are selected as workflow engines for the prototype implementation.

 YAWL is a workflow language based on Petri nets (W M P Van Der Aalst et al.,

2004) and also uses workflow patterns (W M P Van Der Aalst et al., 2003). One of the main

reasons that YAWL is selected as a workflow design and enactment engine is its support for

regular users. Regular users with no programming background can design and deploy

workflows easily (Russell & Ter Hofstede, 2009). YAWL has an editor for workflow

specification and a web-based interface for execution of workflows and management.

YAWL allows late binding and modeling, i.e. “Flexibility by Underspecification” adaptation

method, through the “Worklet” mechanism (Adams et al., 2006; W M P Van Der Aalst,

Adams, et al., 2009). This mechanism allows adaptation at runtime. YAWL has rich

modeling structures such as workflow control flow patterns, timer, and composite activity,

multiple atomic and composite tasks, cancellation structures, and exception handling.

Moreover, external applications can interact with YAWL by using “custom services”

approach or using interfaces supported by YAWL.

 One of the significant characteristics of YAWL is its solution for adaptation problem

known as “Worklet” which is developed based on the “Activity Theory” (Adams et al.,

2009). Actually, a worklet is a small and complete workflow developed for replacing an

abstract activity at runtime. In YAWL, a task in a workflow can be defined as an abstract

activity and several worklets can be assigned to this abstract activity by defining some rules

for making selection among these worklets at runtime according to the context data.

Moreover, a new worklet and corresponding rules can be added to the workflow engine,

when there is a new condition that cannot be handled with the existing rules. Rules in

YAWL are defined as Ripple-Down Rules (RDR). RDR rules maintain a rule node hierarchy

in a binary-tree structure (YAWL - User Manual Version 2.2, 2011). These rules include

simple conditional elements for comparisons, and time-based complex events cannot be

handled with RDR. Hence, the rules are separated from the workflows in the SOMNIUM

framework, complex rules are processed by a dedicated rule engine outside the workflow

engine, and the outputs are mapped to the corresponding variables in the workflows. So,

workflow engine can continue to use the RDR tree based on these variables. This enables

loosely-coupled integration of the rule engine and the workflow engine.

 As discussed before, users tend to plan their activities from high-level abstract

activities to low-level concrete activities. Hence, the worklet mechanism is used in order to

provide hierarchical adaptation for modeling users’ daily activities hierarchically and

executing them in the workflow engine. For using this mechanism, the user defines an

activity as “abstract activity”. Then, he creates new workflows by using the “YAWL

Workflow Editor” (YAWL - User Manual Version 2.2, 2011) or use existing workflows for

replacing this activity at runtime according to various conditions. These conditions can be

defined by the “Worklet Rules Editor” (YAWL - User Manual Version 2.2, 2011) if they are

simple conditions, and more complex conditions are defined in the rule engine of the

framework. This replacement workflow, i.e. worklet, also includes abstract activities and

similarly these abstract activities are replaced by other workflows. By this way, activities are

modeled hierarchically similar to the real life.

 Although, it can be said that YAWL is an appropriate workflow engine for pervasive

environments because of the discussed characteristics, there exist criticisms about YAWL

and workflow patterns (Börger, 2011) and the rebuttal (W. M. P. Aalst & ter Hofstede, 2012)

28

about these criticisms. Börger (Börger, 2011) indicates that workflow patterns are not well

founded and they do not have empirical validation. Aalst et. al. (W. M. P. Aalst & ter

Hofstede, 2012), answer that workflow patterns usage frequencies are examined by some

studies and these patterns are formed from experiences over many projects. Also, they say

that workflow patterns are appropriate modeling tools for end users and languages such as

Abstract State Machines (ASMs), Business Process Modeling and Notation (BPMN),

Unified Modeling Language (UML), Event-driven Process Chain (EPCs) are less suitable for

end user modeling. In the current proposed SOMNIUM framework, workflow patterns also

appear as appropriate modeling tools for modeling daily activities in pervasive

environments.

 One of the most important properties of YAWL is its open architecture for

communication with other systems. YAWL supports some software interfaces for managing

operations from outside of the workflow engine. InterfaceB is one of these interfaces which

is an Application Programming Interface (API) for interacting with YAWL engine (Arthur

ter Hofstede, 2010). It provides case and task operations such as launching a case,

completing a task etc. InterfaceB interface is used for communication with YAWL and it is

utilized in two ways in the framework. First, SomniumBPM (for details see section 4.1

SOMNIUM Modules section), is implemented as a “YAWL Custom Service” and by this

way it can receive notifications from the YAWL engine related to status changes of the tasks

and cases (Arthur ter Hofstede, 2010). Second, the API’s methods are used for operations on

tasks and cases, such as canceling a case or completing a task. The SomniumBPM module

uses the InterfaceB to apply these commands to the tasks and cases in the workflow engine.

 The other workflow engine used in the framework is jBPM and it is a software

developed by JBoss Community for flexible business process management. jBPM is

developed with Java and beside others, it includes a core workflow engine, a human task

service based on Web Services Human Task (WS-HumanTask) specification, an Eclipse-

based and a web-based graphical editor for designing workflows and a management console

for process and task management. jBPM uses BPMN 2.0 specification language for

expressing business processes.

 jBoss Community proposes a product, JBoss BRMS, for business process and

decision management and this product combines Drools Expert, Drools Fusion, Drools

Guvnor and jBPM products. In this product rules are written in separate files in Drools

language and integrated with the processes. The aim of this integration is to run processes

and rules in the same knowledge session(Salatino & Aliverti, 2012) and get the power of

CEP for business process management. This approach uses the rules and events for

managing processes similarly with the SOMNIUM framework. However, SOMNIUM

framework uses loosely coupled integration architecture. In SOMNIUM, the rule engine and

workflow engine run separately. This architecture offers similar capabilities with the BRMS

and produces other advantages such as using the rule engine as the context reasoning

component.

 jBPM offers two different adaptation methodologies. The first one is similar to

YAWL’s worklet mechanism and users can define abstract processes hierarchically by using

a “Reusable Sub-Process” component in a workflow specification. The second one is “Ad-

Hoc Sub Process”. This approach resembles the Declare’s constrained-based declarative

approach. In this approach, users can select different process fragments, repeat tasks and add

new tasks into the defined ad-hoc process.

29

 BPEL is not selected as a workflow language for the SOMNIUM framework. BPEL

is a standard for defining the web services behavior from abstraction level to execution level

(Ouyang, van der Aalst, Dumas, ter Hofstede, & La Rosa, 2007). Because it is a widely

known de-facto standard it has many commercial (Oracle BPEL Process Manager, Microsoft

Biztalk Server 2004, IBM WebSphere Application Server Enterprise, etc.) and open source

(Apache ODE) implementations. However, BPEL has some disadvantages. In (W M P Van

Der Aalst et al., 2005), authors state that BPEL is difficult to use because Extensible Markup

Language (XML) representation of BPEL documents and even its graphical implementations

can only be understood by experts. They also imply that, even though BPEL supports both

abstract and executable processes, BPEL is mostly used as an executable language and it

fails for modeling abstract processes. Moreover, according to that study, a language should

not support both abstract and executable process levels.

 Similar criticisms are listed in (Vigneras, 2008) for BPEL. The author states that

BPEL resembles structured languages such as Java rather than BPMN or YAWL and it is not

user friendly, hard to read, hard to learn and hard to implement. The example given in the

article shows that some workflows cannot be represented equivalently by structured

workflow languages.

 In pervasive environments, for modeling user daily activities readable workflows are

needed which can be easily designed by regular users. Because, BPEL is used for pure cross-

organizational processes (W M P Van Der Aalst et al., 2005), it may not be appropriate for

user activity modeling. Similarly, in (Rüdiger Pryss et al., 2010; Tiedeken et al., 2010),

authors find BPEL too low level for dynamically evolving or adapting mobile processes.

 Creating and modifying workflows by end users may seem impractical. However,

workflow engines generally provide separate solutions for designing workflows. YAWL has

a desktop-based editor for designing workflows and jBPM also has a web-based editor for

workflow designing. Moreover, other approaches are also possible such as using templates

or constructing workflows by process mining techniques (W.M.P. van der Aalst & Weijters,

2004). Workflow templates can be created by expert users and shared by other novice users.

By this way a novice end user can use the workflow template by making some small

modifications on it. Process mining algorithms can also be used for extracting workflows

from the activities of people. However, because the process mining algorithms run on the

recorded activities, activities of the people should be recorded first.

4.3 The Rule Engine

 One of the most important design components of the SOMNIUM framework is the

rule engine which supports CEP. Two different rule engines, JBoss Drools and Esper, with

CEP support and highly popular in the literature, are used in the framework for the prototype

implementation. The goal here is not to compare these two systems, but instead to show how

it is easy to remove a module from the framework and replace it with another similar one.

 Two components of Drools are used in the framework: Drools Expert and Drools

Fusion. Drools Expert is the rule engine itself and Drools Fusion is the CEP module (Bali,

2009). The Drools platform is selected because its rule language is easy to understand and

modify. Drools uses the Rete algorithm, hence the performance of the system does not

depend on the number of rules (Bali, 2009).

30

 Esper is also another popular open source rule engine in the literature with CEP

support. Esper uses Event Processing Language (EPL) which supports filtering, joins,

aggregation, and causality in one language. In contrast to database approach, Esper stores the

queries i.e. rules and run the data on these queries which allows Esper to be run in real-time.

(Esper Reference, 2012).

 The rule engine (Drools or Esper) interacts with the module SomniumCEP in the

framework. SomniumCEP gets messages containing context data, from the messaging

system and relays it to the rule engine for evaluation. The rule engine fires the rules, infers

the results and gives the output to SomniumCEP which then publishes the results back to the

messaging system.

 The rule engine has two important tasks in the framework. First, it processes raw

context data in order to obtain high level results. For example, when a door sensor senses

that a person enters the room, it sends this context data into the corresponding topic in the

messaging system. Because, SomniumCEP has subscription to this sensor topic, it gets the

message and gives it to the rule engine. After firing the rule, rule engine infers that there is

someone in the room. Then, the rule engine activates SomniumCEP for sending this

inference to the SomniumCEP’s topic in the messaging system. Second, the rule engine

allows automation in the framework. The rules in the engine support managing of the users’

activities. For example, when a user completes an activity, this activity is automatically

completed in the workflow engine by examining the rules fed by data from the sensors in the

pervasive environment. Also, the rules are used for guiding the users. For example, a user

can be informed about the time left for an activity, if the remaining time is below a critical

threshold. For automation, the rule engine decides to complete, cancel, and suspend

workflow tasks and workflows according to the rules. When the rule engine outputs an

action related to the workflows or tasks, it sends the command to SomniumCEP, which then

sends this command to the SomniumCEP’s topic listened to by SomniumBPM for applying

commands in the YAWL and jBPM workflow engines.

4.4 Event-Driven Messaging

 The SOMNIUM framework uses EDA for enabling loose coupling between the

workflow engine and the rule engine. Besides this, EDA enables using data coming from

different data sources such as sensors, web services or other applications. These data are

easily fed into the framework by using publish-subscribe type communication. Moreover, the

output generated by the framework can also be utilized by high-level hardware/software. For

the prototype implementation, this type of communication is supported by JMS and it has

received wide industry support (“Getting Started with Java Message Service (JMS),” 2004).

JMS provides a standardized API for sending and receiving messages by using Java

programming language. A pervasive framework, such as SOMNIUM framework, needs more

than sending and receiving messages, such as guaranteed delivery, high availability, high

performance and scalability. For this reason, two open source JMS 1.1 compliant messaging

server are used: Apache ActiveMQ (Snyder, Bosanac, & Davies, 2011) and JBoss HornetQ.

 Pervasive systems have to collect context data from different systems. For example,

data coming from sensors, web service calls, mobile devices or manual insertions need to be

fed into the pervasive system. In the publish-subscribe type structure, these event-generators

feed data to the corresponding topics. Other modules in the system which already have

subscriptions to these topics get data and operate on the data. Also, modules themselves

31

publish data generated by the operations within the modules. This allows two-way

communication mechanism between the modules. In the framework, the workflow engines

and the rule engines have corresponding topics created beforehand in ActiveMQ and

HornetQ. They send their inline operation results to these topics through their SOMNIUM

modules, SomniumBPM and SomniumCEP. Also SomniumBPM listens to the topic of the

SomniumCEP and SomniumCEP listens to the topic of the SomniumBPM. By this way,

workflow engine and rule engine exchange data about the operations of each other.

33

CHAPTER

5. EVALUATION

5.1 Scenario-based Evaluation

In this section, a sample scenario is given for evaluating the framework. In this sample

scenario, how workflows can be used for modeling user daily activities and adapted to the

changing daily conditions is shown. Moreover, it shows how the components of the

framework work together. The scenario contains daily activities of a university student for

three days. The student starts with a simple workflow on the first day and he extends it on

the second day and the third day. In this example, the student generally leaves his home,

goes to school, attends a lecture and goes back to home, every weekday. However, he may

make some changes on this flow according to his special needs or changing conditions of the

environment. How these changes are handled by the SOMNIUM framework is demonstrated.

For this demonstration only YAWL workflow engine, YAWL components and adaptation

structures are used since jBPM offers the similar structures. However, in the experimental

evaluation section, both of the workflow engines are used.

5.1.1 Modeling User Daily Activities by Design Components

A workflow is designed for the first school day and it is used for presenting how some

YAWL structures are used for modeling users’ daily activities. These structures indicated by

rectangles in Figure 3 are examined. On the first day, the student leaves his home at 12:30.

Depending on the traffic, he generally arrives at his department between 13:00 and 13:30.

On this day he arrives at 13:35 because of heavy traffic. His course is to start at 13:40. So, he

does not have time for any other activity and he directly attends the lecture. After the lecture,

he leaves the department, at which point he has two optional tasks to carry out. He can select

one of these two tasks according to the remaining time, since these two tasks have time

constraints. He has the option of bypassing both of these two tasks and selecting the “Go

Home” task. Figure 3 shows the workflow for the first day of the student. Also, this

workflow is used in section 0 to show how modules execute within the SOMNIUM

framework.

34

Figure 3 Workflow for the First School Day

Five design components (or structures) are used for modeling the activities on the first

day: “Conditional Routing”, “Composite Task”, “Cancellation Set”, “Timer” and “Workflow

Patterns”.

“Conditional Routing” is used for handling situations when a user needs to select one

or more activities according to context information. For the first school day, after the student

enters the department, the YAWL engine selects “Attend Course” or

“Pre_Course_Activities” tasks according to the remaining time. This situation is modeled by

using the “Conditional Routing” structure. A condition which checks the time left value is

defined by using the “Conditional Routing” structure of YAWL. According to the value of

the time left variable, the “Attend Course” task or the “Pre_Course_Activities” task is

selected automatically by YAWL.

In YAWL, a workflow specification can include more than one “sub-net” which

includes a set of activities starting from the “Input Condition (a circle including a triangle)”

to the “Output Condition (a circle including a square)”. One of these sub-nets is selected as

the root net (YAWL - User Manual Version 2.2, 2011). The other sub-nets can be represented

by using “Composite Task” component in this root net. In other words “Composite Task” is

a container for sub workflows. In our example, a composite task is used for representing the

lecture activities. Using a container decreases the complexity of the main workflow and it is

more understandable for end users especially for large workflows. Because the lecture

activities may include many tasks, defining them in a different sub-net increase the

readability of the root net. Readability of the workflows is important, because the framework

is used in pervasive environments by people with different levels of information literacy.

For the first school day, after attending the lecture and leaving the department, the

student has three alternatives: he can apply for a transcript and go home, he can go to the

library and go home, or he can directly go home because he does not have enough time for

applying for a transcript or going to the library. Three design components are used for

modeling these activities. First, the “Timer” component is used for controlling the time left

for “Apply for Transcript” or “Return Books to Library” tasks. The “Timer” component has

a timer which starts when the task associated with the “Timer” component is enabled. In this

35

case, a timer component is defined for each of the “Apply for Transcript” and “Return Books

to Library” tasks, and when they are enabled, the corresponding timers are started. A

variable is defined in the workflow specification and the expiration time of the “Timer”

components is determined by the value of this variable. When the time determined by this

variable goes off, the tasks which have the timer components (in our case “Apply for

Transcript” and “Return Books to Library” tasks) are removed from the “Worklist” of the

user. Worklist is a software component in YAWL which includes the work items of the user

that are ready to be executed (YAWL - User Manual Version 2.2, 2011). Second, the

“Cancellation Set” is used for constraining the user to select one of the three options

discussed above. A cancellation set is defined for a task, and when this task is completed all

the other tasks included in its nominated cancellation set are deactivated (YAWL - User

Manual Version 2.2, 2011). In this example, when “Apply for Transcript” task is completed,

the task “Return Books to Library” is removed from the worklist of the user. Similarly, when

“Return Books to Library” task is completed, the task “Apply for Transcript” is removed

from the worklist of the user. The student also does not have to do one of these two tasks and

he can directly go home. When this happens, the tasks “Apply for Transcript” and “Return

Books to Library” tasks are removed from the worklist, because they are in the cancellation

set of the task “Go Home”. Third, “Parallel Split (AND-split)” and “Simple Merge (XOR-

join)” workflow patterns are used to be able to model these activities. “Parallel Split (AND-

split)” is used because it allows two or more parallel branches to be enabled and executed

concurrently. In this case “Apply for Transcript” and “Return Books to Library” tasks are

enabled concurrently. “Simple Merge (XOR-join)” is used, because if one of these tasks

(“Apply for Transcript” or “Return Books to Library”) is completed, the subsequent task

which is “Go Home” is enabled.

5.1.2 Operation of the Modules

The operation of the modules in the framework is discussed by using workflows for

three school days.

For the first school day (Figure 3), four different parts of the workflow are explained.

For the first part, inline operation of the modules is shown when a workflow is started, and

the first task which is “Leave Home” is automatically completed. When a workflow starts,

the SOMNIUM framework needs to make subscriptions and creates rules and task commands

such as complete, suspend, for all of the tasks in the workflow specification if the user wants

SOMNIUM to provide higher-level automation. However, for simplicity, only the first task’s

requirements are shown on loading and starting of the workflow. Examining the first task

can give insight for the overall working mechanism of SOMNIUM. Figure 4 represents the

sequence diagram for the completion of the “Leave Home” task. Initially, modules make the

necessary subscriptions to the topics created manually in ActiveMQ or HornetQ. The

SomniumCEP module subscribes to the topic “HomeDoorSensorTopic”, which is fed by the

outdoor RFID sensor of the user’s home. SomniumBPM subscribes to the topic of

SomniumCEP, which is the “SomniumCEPTopic” for getting the commands depending on

whether the user leaves his home or not. When the user leaves his home, the RFID sensor

sends this information to the “HomeDoorSensorTopic” topic in ActiveMQ or HornetQ. After

that, SomniumCEP gets this message as a subscriber to this topic. Then, SomniumCEP gives

this message to the Drools or Esper rule engine and executes the rules. The rule written in

the Drools rule language or the Esper rule language decides to complete the “Leave Home”

task, and Drools or Esper gives this message to SomniumCEP. SomniumCEP sends this

message to the topic the “SomniumCEPTopic” in ActiveMQ or HornetQ. The code in Figure

5 shows how this rule is implemented in the Drools rule definition language. Figure 4 and

36

Figure 5 show the framework implementation with the Drools rule engine, YAWL workflow

engine and ActiveMQ messaging system. Figure 6 shows the same rule written in Esper

language.

Figure 4 Messaging Structure for Automatic Completion of the "Leave Home" Task

Figure 5 The Rule in the Drools Language for Completion of the "Leave Home" Task

Figure 6 The Rule in Esper Language for Completion of the "Leave Home" Task

37

In Drools, rules are created using the “rule”, “when”, “then”, and “end” keywords.

The rule starts with the rule name and then the condition and consequence sections are

written (Bali, 2009). In this rule, a rule with the name “User Leaves His Home” is created

and when a message comes to Drools from the “HomeDoorSensorTopic”, the parameters’

values are evaluated. If the name of the topic represented by “parameter_0” is

“HomeDoorSensorTopic”, the type of the parameter represented by “parameter_1” is

“Value” and the value represented by “parameter_2” equals to one, the condition evaluates

to true and a message is published by the “publishDroolsEvent” method, which implies that

the task with the name “Leave_Home_3” of the workflow with the case number “194” is to

be completed. The number “194” represents the case number of the workflow given

automatically to all launched workflow specifications by the YAWL workflow engine.

Similarly “Leave_Home_3” represents the task identifier of the “Leave Home” task in

YAWL. The method “publishDroolsEvent” sends the “Complete Task” command to the

topic “SomniumCEPTopic” in ActiveMQ. When SomniumBPM module gets this completion

message from the “SomniumCEPTopic” topic which it listens to, it sends the “Complete”

command to the YAWL engine and the YAWL engine completes the task.

For the second part, the implementation of the “Conditional Routing” structure in the

framework is discussed. This example shows how a variable defined in the YAWL workflow

specification is updated automatically by the SOMNIUM framework. It is assumed that the

“Enter Dept” task which is the second task in the sample workflow is completed by the

SOMNIUM framework, when the user enters the department. This completion process of the

“Enter Dept” task is similar to the completion process of the “Leave Home” task discussed

above. Instead of repeating the discussion on this process for “Enter Dept” task, it is better to

concentrate on the step when “Enter Dept” task is completed. When the “Enter Dept” task is

decided to be completed by the rules in Drools, the update of the “TimeLeft” parameter is

also decided according to the corresponding rules defined in Drools and sent as a command

together with the “Complete Enter Department Task” command. By this way, the

“TimeLeft” parameter is updated by SomniumBPM because it listens to these commands

coming from SomniumCEP. After completion of the “Enter Dept” task, YAWL checks

whether the “TimeLeft” parameter is greater than five minutes or not. If it is less than or

equal to five minutes, YAWL automatically starts the “Attend Course” composite task.

Figure 7 shows how “Conditional Routing” is defined in YAWL.

38

Figure 7 Conditional Routing Definition

For the third part, how context information coming from the users’ environments

affects the workflows of the users is shown. For this purpose, automatically detecting the

“lecture started” event and completing the task “Lecture Started” in the sample workflow is

discussed. The “Attend Course” composite task is used for representing the course related

activities. The “Lecture Started” task is one of the activities in this composite task related to

the lecture. For automatic detection of the “lecture started” event, a simple sensor network is

implemented in a classroom for collecting context data. Arduino (Arduino, n.d.) open source

electronics prototyping platform is used for this purpose. Sensors in this network sense

context data such as motion, light, door status, and noise level. Arduino Uno development

boards, Digi XBee (“Digi XBee Wireless RF Module,” n.d.) wireless modules and RedBee

RFID reader (125 kHz) (“RedBee RFID Reader,” n.d.) are used. A rule engine examines the

collected data and infers whether the lecture is started, break is given, and the lecture is

ended. For this part, only how lecture started event is detected and interpreted by the

framework is shown. Several sensor sets are implemented in the classroom for detecting

various events in the classroom. However, for detecting “lecture started” event, only an

RFID sensor is used for detecting availability of the students and the instructor, and a Hall

Effect sensor for detecting whether the door is open or not. A small Java program is

implemented for getting the lecture time from the schedule and sending an alert to a topic in

ActiveMQ/HornetQ which is listened to by SomniumCEP. Using these sensors, the rule in

Figure 8 is written for detecting the “Lecture Started” event. Figure 9 shows the same rule

written in Esper language. When the event is detected by firing this rule, Drools or Esper

sends the complete “Lecture Started” task command to SomniumCEP, and then,

SomniumCEP sends this message to the topic “SomniumCEPTopic” in ActiveMQ/HornetQ

which is listened to by SomniumBPM. The process is similar to the completion of “Leave

Home” task. However, for the “Lecture Started” event, the event definition is more complex

because it needs to use data coming from different sources. When all the data coming from

39

different sources is ready, the SOMNIUM framework automatically detects the event and

completes the task. The rule in Figure 8 shows that, for detecting the “lecture started” event,

more than or equal to five students and the instructor must be in the classroom, the door must

be closed and the start time of the lecture must have come.

Figure 8 The Rule in Drools Language for Detecting "Lecture Started" Event

Figure 9 The Rule in Esper Language for Detecting "Lecture Started" Event

For the last part, some other important structures within YAWL and how they produce

solutions for modeling users’ daily activities are discussed. After the lecture is ended, the

student leaves the department. The time is 16:30 when he leaves the department. After that

time he can go to library for returning books or he can apply for transcript. Because public

institutions in his location close at 17:00, he can complete only one of these tasks. If he does

not want to do any of these two tasks, he can directly go home. When the user leaves the

department, “Apply for Transcript”, “Return Books to Library” and “Go Home” tasks

become enabled. If the user completes the “Apply for Transcript” task, the “Return Books to

Library” task automatically is deactivated and vice versa. If the user completes the “Go

Home” task, the tasks “Apply for Transcript” and “Return Books to Library” are

automatically deactivated. If the user does not complete any of these three tasks, “Apply for

Transcript” and “Return Books to Library” tasks are automatically deactivated after thirty

minutes from the completion of “Leave Dept” task, due to the “Timer” structure.

On the second day, the student leaves his home at 12:30 and he arrives at the

department at 13:20. His course again will start at 13:40. He has enough time for talking to

40

his instructor. He modifies his workflow by adding new sub-workflows to the

“Pre_Course_Activities” task. He adds, “Talk to Instructor”, “Go to Bookstore” and “Drink

Tea” workflows. If he has time more than five minutes, and the instructor is in the office, the

system automatically selects the “Talk to Instructor” workflow. If the instructor is not in his

office, the workflow engine selects either one of the other two workflows according to the

remaining time. If the remaining time is more than 10 minutes, the workflow engine selects

the “Go to Bookstore” workflow; otherwise it selects “Drink Tea” workflow. For this second

day, he has ten minutes and his instructor is in the office. The workflow engine can easily

check the “InstructorInOffice” parameter updated by the SOMNIUM framework, when the

RFID sensor in front of the office door detects that the instructor comes to his office. After

that, RDR rules defined in the YAWL’s rule editor are enough for selecting the correct

workflow. However, in pervasive environments rule definitions are typically not as simple as

checking only one parameter. There may be other students in the instructor office or he may

be talking on the phone. For detecting other students, more RFID sensor events should be

tracked, and for detecting whether the instructor is talking on the phone, the noise level

should be tracked continuously. These types of complex events cannot be handled by RDR

rules. Assume that these sensor sets are implemented and the SOMNIUM framework detects

that the instructor is available. So the student talks to his instructor, and then attends the

lecture. After that, he leaves the campus to go home. Figure 10 shows the workflow for the

second day of the student.

41

Figure 10 Workflow for the Second School Day

On the third day, the student again leaves his home at 12:30 and arrives at the

department at 13:25. His course again will start at 13:40. Today his instructor is not in the

department. He has fifteen minutes for doing something before attending the course. He can

talk to the teaching assistant, get the course syllabus from him and go to bookstore for

buying the course book given in the syllabus. However, he cannot go to bookstore by

walking or by using ring shuttle bus, because fifteen minutes is not enough for these options.

He modifies his workflow by adding new sub-workflows to the “Go_To_Bookstore” task.

He adds, “Go by Walking”, “Go by Ring” and “Find another Solution” workflows. If he has

more than thirty minutes, the system automatically selects the “Go by Walking” workflow. If

he has more than twenty minutes and less than or equal to thirty minutes, the system

automatically selects “Go by Ring” workflow. If he has more than ten minutes but less than

or equal to twenty minutes then the system selects the “Find another Solution” workflow.

The user can replace this workflow by another workflow at runtime. For example, if he has a

friend with a car, he can go with him to bookstore and replace the “Find another Solution”

workflow with “Go with a Friend” workflow. On this day the student takes a taxi for going

to bookstore and replaces “Find another Solution” workflow with “Go by Taxi” workflow.

By this way he can hierarchically adapt his workflow according to changing conditions.

Figure 11 shows the workflow for this third school day. In this workflow, the

“Pre_Course_Activities” task and the “Go_To_Bookstore” task are defined in the form of

worklet.

42

Figure 11 Workflow for the Third School Day

5.2 Experimental Evaluation

The performance and operation of inline messaging architecture in the SOMNIUM

framework are evaluated. For this evaluation Drools and Esper CEP engines, YAWL and

jBPM workflow engines and ActiveMQ and HornetQ messaging systems are used. However,

the aim of this experimental evaluation is not to assess or compare the performances of the

individual components used in the framework. The aim is to show how the framework is

operating, how the replacement of the components by its counterparts affects the working

structure of the framework and which parts of the framework consume how much time.

Because the aim is not to assess or compare the software, YAWL, jBPM, Drools, Esper,

ActiveMQ and HornetQ are used as they are in their default versions. No parameters related

to performance, operation, security of these software are modified from their default values.

In the experiments, calculating the timestamps of the messages includes starting and

completing of two different tasks. The first task that is used is completing the “Leave Home”

task. This task includes a simple rule (Figure 5) and this rule gets only a sensor event and

decides to complete the task according to the value of the sensor. The second task that is

used is completing the “Lecture Started” task. This task includes a complex rule (Figure 8)

and it needs at least eight events for completion: the time of the lecture must be over, the

43

instructor must be in the classroom, the door must be closed and at least five students must

be in the classroom.

Apache JMeter load testing tool (“Apache JMeter,” n.d.) is used for the experimental

evaluation of the framework. A publisher and a subscriber are created in JMeter. The

publisher simulates the sensor events by publishing 2 and 101 events. We omit the initial

messages, because they are affected by the initialization delays of the software components

in modules. By this way we make the analysis of 1 and 100 messages. Threads are used for

publishing messages. For simple rule, 2 messages are sent within 8 seconds when there are 2

rules in CEP modules and 2 workflows in BPM modules and 101 messages are sent within

404 seconds when there are 101 rules in CEP modules and 101 workflows in BPM modules.

For complex rule, 2 messages are sent within 16 seconds when there are 2 rules in CEP

modules and 2 workflows in BPM modules, and 808 messages are sent within 808 seconds

when there are 101 rules in CEP modules and 101 workflows in BPM modules.

Experimental tests are repeated 5 times and the average of the scores are used when there are

2 rules and workflows in the framework for eliminating the errors which occur due to

network congestion, CPU overloading etc. Messages are processed by the framework and

the JMeter subscriber gets the final result messages. Figure 12 shows how these messages

are processed in the framework. The timestamps at 7 different points in the framework are

measured and recorded to a database for analysis.

Figure 12 The SOMNIUM Framework Load Test Measurement Points.

(1 - JMeter sends messages to the ActiveMQ/HornetQ topic in place of sensors. 2-

SomniumCEP gets these messages from the ActiveMQ/HornetQ topic, parses the messages

and gives them to Drools or Esper. 3 - Drools or Esper fires the rules and gives results

(including YAWL/jBPM commands) back to SomniumCEP, which sends messages to

ActiveMQ/HornetQ topic. 4 - SomniumBPM gets the messages from ActiveMQ/HornetQ,

parses messages and applies commands to YAWL/jBPM. 5 – Commands are get by

YAWL/jBPM and related workflow tasks are started. 6 – Commands are processed by

YAWL/jBPM, tasks are completed and results are given to SomniumBPM. 7 -

SomniumBPM sends the result messages to the corresponding ActiveMQ/HornetQ topic and

jMeter gets the results.)

44

When making these measurements, three computers are used. The first one is a 64-bit

Windows 7 Home Premium based laptop computer with an Intel Core i7-2630QM 2.00 GHz

processor, and 8 GB RAM. This computer runs YAWL’s YAWL4Study 2.3final and jBPM

5.4.0 Final workflow engines, SomniumCEP and SomniumBPM modules, Apache JMeter

2.11 and JBoss Drools 6.0.1 Final and Esper 4.6.0 rule engines. YAWL software and

SomniumCEP (including Drools or Esper) and SomniumBPM modules are deployed to

Apache Tomcat 6.0.18 servlet container. jBPM workflow engine is deployed to Jetty server

version 9.0.4. The second computer is a 64-bit Windows 7 Home Premium based laptop with

an Intel Core i7-2630Q740 1.73 GHz processor, and 4GB RAM, and runs Apache

ActiveMQ 5.6.0 and JBoss HornetQ 2.3.0 Final. The third computer is a 32-bit Windows

Vista Home Premium based laptop computer with an Intel Core 2 Duo-P8600 2.40 GHz

processor, and 3 GB RAM and it runs Oracle 11g Express Edition database for storing

calculated timestamps. The first computer and third computer are run in the same LAN and

the second computer which includes messaging software is run in another LAN.

When making these measurements, two different architectures (Figure 13 and Figure

14) are used because of the different implementation architectures of the YAWL and jBPM.

For both of the architectures, the implementation of the event-driven messaging server and

CEP engines and SomniumCEP module are same. The messaging servers are standalone

Java-based applications and they are run continuously in the second computer. The only

difference between messaging servers are the communication protocols. ActiveMQ uses

TCP communication and HornetQ uses JNP (socket/RMI based protocol used by JBoss)

(“Naming on JBoss,” 2004). CEP engines, Drools and Esper, are run with SomniumCEP

module and they are loaded to the Apache Tomcat servlet container as servlet. SomniumCEP

module runs the CEP engines, fires the rules and gets the results by using API calls

In YAWL-based implementation architecture (Figure 13), YAWL engine is deployed

to Apache Tomcat and the communication with the engine is done through its InterfaceB

servlet-based interface using HTTP calls. In this experimental evaluation, only starting and

completing a task commands are used. SomniumBPM gives start and complete commands to

YAWL. At step 5, YAWL starts the related task, completes it and sends a message to the

YAWL Custom Service listening the YAWL engine. Calculating the time between the start

task event and the complete task event is different. YAWL registers the completion time,

after making an HTTP call to the YAWL Custom Service for announcing the completion

event. For this reason, completion time also includes the networking delay between YAWL

and YAWL Custom Service. In other words, the elapsed time between Step 5 and Step 6

includes the announcement of the completion message to the YAWL custom service.

45

Figure 13 Implementation Architecture for YAWL

 In jBPM-based implementation architecture (Figure 14), jBPM Business Process

Management Suit is deployed to the Jetty servlet engine and http server. jBPM can also be

run as a standalone Java application. However, for calculating consistent results between

different components of the framework the implementation architecture of the jBPM is

implemented in the same way as YAWL. jBPM engine can be assigned a “Task Event

Listener” and this listener listens to the events in the engine. When a new task status change

occurs, engine warns the task listener. However, the listener runs with the engine together.

Again, for consistency between implementation architectures, a custom listener servlet is

implemented and deployed to the Apache Tomcat together with the SomniumBPM. By this

way an HTTP call is needed between jBPM listener and the custom listener similarly

between YAWL and YAWL Custom Service. The elapsed time calculation for starting and

completing events is similar for jBPM and YAWL. In jBPM, a WS-HumanTask

specification-based human task service is needed for enabling the tasks to interact with the

human users. For this reason we implement a human task service together with the jBPM

engine. Eventually, jBPM component includes a jBPM engine, a human task service and a

task event listener.

46

Figure 14 Implementation Architecture for jBPM

Table 2 shows the timestamp results for experimental tests in seconds. In Table 2,

“COMB” column shows the different combinations of the software that are used in the tests.

In this column, “D” shows the measurements when the Drools rule engine is used, “E”

shows the measurements when the Esper rule engine is used, “Y” shows the measurements

when the YAWL workflow engine is used, “J” shows the measurements when the jBPM

workflow engine is used, “A” shows the measurements when the ActiveMQ messaging

system is used and “H” shows the measurements when the HornetQ messaging system is

used. The numbers 1 and 2 at the end of the combinations represent the simple rule and

complex rule respectively. “TOTAL” column shows the number of rules and workflows in

the rule engine and workflow engine respectively. The “GENDIF” column shows the general

time difference between steps “1” and “7”. The column “S1_2” shows the difference in

seconds between steps “1” and “2”. Other columns (S2_3, S3_4, S4_5, S5_6 and S6_7)

show the results for the corresponding steps. The columns including “_P” string at the end

shows the percentage of the difference in the given steps. The columns including “_ST”

string at the end shows the standard deviations of the time differences in the given steps.

 Figure 15 shows the graphical representation for all experimental test results.

According to the Figure 15, it can be inferred that the time consumed by the steps between 4

and 5 takes more percentage than others when YAWL workflow engine is used. This occurs

due to the InterfaceB communication interface of YAWL. Since no parameters of YAWL

are changed for increasing the performance, this does not mean that YAWL runs slower than

the others. The figure also shows that workflow engines consume more time than the

complex event processing engines whatever the software combinations are used. Moreover,

it can be inferred that, complex event processing engines consume the minimum time

compared to other measurement steps.

4
7

Table 2 Timestamp Measurements of Experimental Tests

(In “COMB” column, “D” represents Drools, “E” represents “Esper”, “Y” represents “YAWL”, “J” represents “jBPM”, “A” represents

“ActiveMQ”, “H” represents “HornetQ”, “1” represents “Simple Rule”, and “2” represents “Complex Rule”. “TOTAL” column shows the

number of rules and workflows in the framework. “S1_2” and other “SX_Y” columns show the time difference between steps. Columns end

with “_P” string show the percentages and columns end with “_ST” string show the standard deviations of the respective steps.)

4
8

Figure 15 SOMNIUM Framework Experimental Test Results

49

 Figure 16 shows the proportions of consumed time by the rule engine and the

workflow engine. According to the Figure 16 the workflow engines consume more time than

the CEP engines. When calculating these scores it is inferred that, the processing of the first

message takes much longer than the other messages at both the rule engines and workflow

engines. This probably occurs due to initialization of the software components in the

engines. For this reason, scores are calculated by excluding the first messages (since 2 and

101 rules and workflows are created in the framework the figure shows the scores excluding

the first messages). Certainly, these results depend on the memory and processing

capabilities of the used computers and the configuration parameters of the software. Default

configuration parameters of the given software versions are used in the experimental testing.

Figure 16 Comparison of Rule Engines and Workflow Engines

 Figure 17 compares the different rule engine and workflow engine combinations.

This graphic takes the average of the rule engine and workflow engine scores. In other

words, the graphic shows the average proportions of steps S2_3 and S5_6 without

considering the messaging systems, rule complexity and number of rules/workflows.

According to this graphic Esper performs slightly better than Drools. Even though the

average scores of the Drools (0.0089 and 0.0086) and Esper (0.0075 for both) do not change

when they are run with jBPM and YAWL, the proportions are changing. This occurs because

of the InterfaceB communication interface of YAWL which consumes more time than the

jBPM communication interface implemented by the researcher.

50

Figure 17 Paired Comparison of Rule Engines and Workflow Engines

 Figure 18 compares the consumed time by Drools and Esper rule engines according

to rule complexity (simple rule and complex rule) and the number of rules (1 rule and 100

rules). The affects of the messaging systems and workflow engines are eliminated by

averaging the values. This graphic shows that Esper performs slightly better than Drools.

Moreover, there is a significant difference between 1 and 100 rules regardless of rule engine

and rule complexity. However, the rule complexity (simple or complex) does not make

significant difference whether there is 1 rule or 100 rules in the rule engines. When the rule

engines are run with 1 rule, processing of simple rule takes much time than processing of the

complex rule unexpectedly. This occurs due to the approach for sending messages to the

framework. In this experimental testing, messages are sent one by one and these messages

are put in the rule engine as soon as they come. When the first message arrives at the rule

engine, the related rule is activated in the memory and the other messages (other 7 messages

for complex rule) do not repeat this memory activation process. After the last message (7
th

message) arrives, the rule is executed and this execution process is similar with the simple

rules. If the messages are stored in temporary storage without inserting them to the rule

engine and if they are inserted to the rule engine all together when the last message arrives

51

then the processing of the complex rules should take more time than the processing of the

simple rules.

Figure 18 Rule Engines Comparison

Figure 19 compares the times consumed in different steps when jBPM and YAWL

workflow engines are used. The effects of the messaging systems, rule engines and rule

complexity are excluded by taking the average scores. This graphic shows that jBPM

significantly performs better than YAWL. This occurs due to InterfaceB communication

between step 4 and 5. The time between these two steps also affects the general difference

when the YAWL engine is used. The time between steps 5 and 6 shows the elapsed time

between starting a task and completing a task. This difference is also significantly higher for

YAWL than jBPM. According to this figure, it cannot be said that there is a significant

difference between the consumed times when the number of workflows loaded in the

workflow engines are different (1 workflow or 100 workflows).

52

Figure 19 Workflow Engines and The Number of Workflows Comparison

Figure 20 compares ActiveMQ and HornetQ messaging systems. The effects of the

rule engines, workflow engines and rule complexity are excluded by taking the average

scores. According to this graphic, ActiveMQ significantly performs better than HornetQ.

The number of rules in the rule engines (1 or 100) and the number of workflows in the

workflow engines (1 or 100) do not significantly affect the messaging system when

ActiveMQ is used. However, there is a slight difference for HornetQ when 1 rule/workflow

is loaded to engines and 100 rules/workflows are loaded to the engines.

53

Figure 20 Messaging Systems Comparison

 Figure 21 compares the time differences between different steps according to the

rule complexity. The effects of the messaging systems, rule engines, workflow engines and

the number of rules/workflows are eliminated by averaging the scores. There is no

significant difference between any steps in terms of the rule complexity.

Figure 21 Simple Rule - Complex Rule Comparison

54

 Figure 22 shows the consumed times in different steps when 1 rule/workflow and

100 rules/workflows are run in rule engines and workflow engines. There is no significant

difference between number of rules/workflows except for the steps 4 and 5. Between step 4

and 5 running 1 rule/workflow takes slightly much time than 100 rules/workflows. This

difference also affects the general difference.

Figure 22 1 Rule/Workflow and 100 Rules/Workflows Comparison

 Figure 23 shows the comparison of the consumed times at different steps for 8

different combinations of software modules that are used for experimental evaluation. The

rule complexity and the number of rules/workflows are not taken into account and the scores

are averaged. According to this figure, the best combination is “Esper-jBPM-ActiveMQ”.

Moreover, the combinations including the jBPM always perform better between steps 4-5

and 5-6 and in the general difference.

55

Figure 23 Comparison of Different Software Combinations

57

CHAPTER

6. CONCLUSION

This study proposes a framework for helping and guiding users when they are carrying

out their daily activities. Hence, users’ daily activities need to be modeled first, and for this

purpose, workflows are used. Most of the workflow systems in the literature offer a user

interface for designing workflows. However, while some of them are user-friendly, most of

them are produced for designers who have technical knowledge. This is the case for

workflow systems that are used in this study, YAWL and jBPM. They have user-friendly

editors for designing workflows but they are designed for people who have technical

knowledge. End users should be able to design their activities without any technical

knowledge. Using workflow templates may ease the designing process and decrease the time

to prepare a complete workflow model. Moreover, since this research proposes context-

aware workflows, context information should be included into the designers. Users should

easily relate the context information, raw data or high-level information, with the activities

within the workflows and the workflows themselves. Additionally, user friendly mobile

applications such as (Tüysüz, 2013), may allow end users to use this framework in daily life.

Since this framework is used as a baseline, such applications are needed for integrating this

framework into daily life.

 The current study proposes a method for adaptation of workflows according to

changes in users’ daily life by using hierarchical adaptation concept with CEP capability.

This adaptation approach is useful and it represents the real adaptation requirements of users

in pervasive environments. However, other adaptation approaches used in the literature may

also be used for pervasive environments, such as adding a new task to a workflow and

deleting a task from the workflow at runtime. The applicability of different adaptation

concepts can be proposed and implemented for the framework.

Software for pervasive environments should include a context-aware system, since

users interact with their environments continuously throughout a day. The solutions

proposed in the literature integrate context with the workflow language which increases the

complexity of the workflows. This study proposes an EDA-based approach for loosely

coupling of context information with the workflows. This loosely coupling approach allows

workflow systems and context-management systems to evolve on their own. Currently, many

improvements have been done in the literature for both of the concepts. Workflow patterns

are offered for workflow systems which allow enhancing the design process. Similarly,

context modeling and reasoning methods are continuously developing. For this reason,

producing a new language by integrating the workflow systems by context management

systems may constrain the evolution of these systems

.

58

Using EDA enables the main components of the framework to evolve on their own

without restrictions coming from the tight integration. EDA also enables this framework to

become a modular system because the components of the system can easily be replaced by

their similar counterparts. For the implementation part, a JMS-based publish-subscribe type

messaging system is used for implementing the event-driven architecture. JMS is generally

used for local systems communicating through TCP. However, the framework can be used

and evaluated using an internet-based publish-subscribe approach. Such an approach may

allow this framework to scale well for very large number of users, since internet-based

publish-subscribe approaches offer decentralized architectures.

This framework also proposes different levels of automation which in fact is a

complex concept. In this framework, users can change the automation level by adding or

subtracting rules, and subscribing or unsubscribing to the data sources. If a user makes

necessary subscriptions and writes the rules, the framework tracks his activities

automatically and provides help when it is really needed. Unobtrusiveness is one of the most

important properties of the software and hardware systems for pervasive environments.

Adjusting automation level according to users’ preferences allows software and hardware

technologies to be invisible and turns the technology to “calm technology”.

The scalability of a framework for pervasive environments is an important concept

since large number of users, devices and resources are continuously interacting within these

environments. Experimental tests show that the current implementation of the prototype may

not be enough in terms of the consumption of computer resources when this framework is

open to public. Several solutions can be suggested. First of all, the workflow engine and rule

engine should be run in different cluster of computers running in a load balanced fashion.

Second, experimental tests show that the HTTP calls to the workflow engines for task and

case operations take much time to complete. Instead of HTTP calls, TCP-based or JNP-based

communication types may be selected for overcoming this bottleneck. Third, if many

concurrent users use the framework the messaging systems may be another bottleneck. As a

solution, most of the messaging systems propose clustered broker implementation as is the

case with ActiveMQ and HornetQ. Since the framework implemented in this research is a

prototype for testing functionality, the scalability aspects of the prototype is left for future

study.

Extensibility of a framework for pervasive environments is another important concept.

Event-driven architectures used in this research support flexibility and extensibility which

allow systems to evolve (Taylor, Yochem, Phillips, & Martinez, 2009). Other systems can be

easily plugged into the framework and subscribe to low-level and high-level events thanks to

the EDA. It is estimated that two important components may increase the value of the

framework through using this extensibility feature of the proposed framework. First, since

rule-based context reasoning is provided by the framework and the context data is modeled

in key-value pairs, a semantic context reasoning component may be plugged to the

framework. Semantic reasoning applications use ontologies and ontologies have high and

formal expressiveness (Baldauf, Dustdar, & Rosenberg, 2007). Moreover, since defining an

ontology offers a uniform way of describing the structure of a domain, ontologies enable

knowledge sharing and reuse (Strang & Linnhoff-Popien, 2004). Second, another important

component that may increase the value of the framework is knowledge discovery

component. The framework may automatically produce different workflows and offer them

to the end users by examining the everyday activities of the users. Data mining and process

59

mining techniques may be used for discovering the activities and producing rules

automatically.

Another extensibility issue for the framework is the modular approach that is used.

Thanks to this modular approach, different software can be used for workflow engine, rule

engine and messaging system and the effort needed for replacing one of these with another

may affect the implementation decisions. For replacing a component, an adaptor-like

program should be developed and integrated to the SOMNIUM modules. Since modules used

are complex, replacing one module with another may be time-consuming if the details of the

replacing component is unknown and needs to be done by professionals. However, if the

implementers have knowledge about the replacing component, several lines of code can be

easily written for integration. Table 3 shows the number of lines of code to be written in Java

language for the components used in the framework. Besides this, if the used rule engine

component is replaced with another rule engine, rules should also be converted to the

language of the new software. The rules required for pervasive environments may be

complex and converting these rules may be time-consuming if the details of the new

language are unknown. Moreover, if the workflow engine is replaced with another, the

workflow definition files should also be converted. Obviously, if both of the workflow

engines support a common standard known as BPMN, this conversion is not needed.

Table 3 Lines of Code Needed for Replacing Modules

Module Lines of Code

YAWL 43

jBPM 106

Drools 55

Esper 39

ActiveMQ 26

HornetQ 29

In the SOMNIUM framework, it is proposed that workflow patterns are appropriate

modeling tools for modeling user daily activities in pervasive environments. Although these

patterns are produced mostly by examining the business processes, they also exist in daily

activity patterns of the people. A future study may show how other workflow patterns can be

used for modeling widely used activity patterns in everyday life.

61

REFERENCES

Aalst, W. M. P. Van Der, Dumas, M., Hofstede, A. H. M., Russell, N., Verbeek, H. M. W.,

& Wohed, P. (2005). Life after BPEL? Russell The Journal Of The Bertrand Russell

Archives, 3670(2), 35–50. Retrieved from

http://www.springerlink.com/index/p4743p8w27ktm5r5.pdf

Aalst, W. M. P. Van Der, Hofstede, A. H. M., & Weske, M. (2003). Business Process

Management  : A Survey. Business, 2678(1), 1–12. doi:10.1007/3-540-44895-0_1

Aalst, W. M. P., & ter Hofstede, A. H. M. (2012). Workflow patterns put into context.

Software & Systems Modeling, 1–5. doi:10.1007/s10270-012-0233-4

Abbasi, A. Z., Ahsan, M. U., Shaikh, Z. A., & Nasir, Z. (2010). CAWD: A tool for designing

context-aware workflows. 2nd International Conference on Software Engineering and

Data Mining (SEDM).

Abbasi, A. Z., & Shaikh, Z. A. (2009). A Conceptual Framework for Smart Workflow

Management. In 2009 International Conference on Information Management and

Engineering (pp. 574–578). IEEE. doi:10.1109/ICIME.2009.95

Adams, M., Edmond, D., & Ter Hofstede, A. H. M. (2003). The application of activity

theory to dynamic workflow adaptation issues. In Proceedings of the 2003 Pacific Asia

Conference on Information Systems PACIS 2003 (Vol. 369, pp. 1836–1852). Citeseer.

Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.90.3874&rep=rep1&am

p;type=pdf

Adams, M., Hofstede, A. T. E. R., Russell, N., & Aalst, W. I. L. V. A. N. D. E. R. (2009).

Dynamic and context-aware process adaptation. Russell The Journal Of The Bertrand

Russell Archives, (ii), 104–136.

Adams, M., Ter Hofstede, A. H. M., Edmond, D., & Van Der Aalst, W. M. P. (2006).

Worklets: A service-oriented implementation of dynamic flexibility in workflows. On

the Move to Meaningful Internet Systems 2006 CoopIS DOA GADA and ODBASE,

4275, 291–308. doi:10.1007/11914853_18

Allen, R. (2001). Workflow: an introduction. Workflow Handbook, 15–38. Retrieved from

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Workflow+:+An+Int

roduction#0

62

ALLOW - Adaptable Pervasive Flows Project. (2008). Retrieved from http://www.allow-

project.eu/

Amend, M., Ford, M., Endpoints, A., Keller, C., & Rowley, M. (2007). Web Services

Human Task. Business, 8(June), 206–213. doi:10.1007/s11121-007-0070-9

Amigo - Ambient intelligence for the networked home environment. (2008). Retrieved

February 19, 2014, from http://www.hitech-projects.com/euprojects/amigo/index.htm

Apache JMeter. (n.d.). The Apache Software Foundation. Retrieved March 22, 2014, from

http://jmeter.apache.org/

Architect, E. I., & Railways, D. (2006). How EDA extends SOA and why it is important.

Integration The Vlsi Journal, 5(December), 1–6. Retrieved from http://soa-

eda.blogspot.com/2006/11/how-eda-extends-soa-and-why-it-is.html

Ardissono, L., Furnari, R., Goy, A., Petrone, G., & Segnan, M. (2007). A Framework for the

Management of Context-Aware Workflow Systems. Architecture, 80–87. Retrieved

from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.76.7648&rep=rep1&am

p;type=pdf

Arduino. (n.d.). Arduino. Retrieved March 21, 2014, from http://www.arduino.cc/

Arthur ter Hofstede, S. C. M. A. (2010). YAWL - Technical Manual (pp. 15–44). Retrieved

from http://www.yawlfoundation.org/manuals/YAWLTechnicalManual2.1.pdf

Baldauf, M., Dustdar, S., & Rosenberg, F. (2007). A survey on context-aware systems.

International Journal of Ad Hoc and Ubiquitous Computing, 2(4), 263–277.

doi:10.1504/IJAHUC.2007.014070

Bali, M. (2009). Drools JBoss Rules 5.0 Developer’s Guide. Birmingham UK Packt

Publishing. Packt Publishing. Retrieved from http://www.amazon.com/dp/1847195644

Bellavista, P., Corradi, A., Montanari, R., & Stefanelli, C. (2003). Context-aware

middleware for resource management in the wireless Internet. IEEE Transactions on

Software Engineering, 29(12). doi:10.1109/TSE.2003.1265523

Bikakis, A., Patkos, T., Antoniou, G., & Plexousakis, D. (2008). A Survey of Semantics-

Based Approaches for Context Reasoning in Ambient Intelligence. Proceedings of the

IEEE, 11(1), 14–23. Retrieved from http://discovery.ucl.ac.uk/1321817/

63

Boari, M., Lodolo, E., Monti, S., & Pasini, S. (2008). Middleware for automatic dynamic

reconfiguration of context-driven services. Microprocessors and Microsystems, 32(3),

145–158.

Börger, E. (2011). Approaches to modeling business processes: a critical analysis of BPMN,

workflow patterns and YAWL. Software Systems Modeling, 1–24. doi:10.1007/s10270-

011-0214-z

Buchmann, A., & Koldehofe, B. (2009). Complex Event Processing. It - Information

Technology, 51(5), 241–242. doi:10.1524/itit.2009.9058

Chan, A. T. S., & Chuang, S.-N. C. S.-N. (2003). MobiPADS: a reflective middleware for

context-aware mobile computing. IEEE Transactions on Software Engineering, 29(12).

doi:10.1109/TSE.2003.1265522

Chappell, D. (2009). The Workflow Way: Understanding Windows Workflow Foundation.

Retrieved from http://www.davidchappell.com/TheWorkflowWay--Chappell.pdf

Chen, H., Finin, T., & Joshi, A. (2004). Semantic Web in the context broker architecture. In

Proceedings of the Second IEEE Annual Conference on Pervasive Computing and

Communications.

Cho, Y., Choi, J., & Choi, J. (2007). A Context-Aware Workflow System for a Smart Home.

2007 International Conference on Convergence Information Technology ICCIT, 6(2),

95–100. doi:10.1109/ICCIT.2007.263

Cho, Y., Shin, C., Park, D., Cho, S., Cho, K., Park, J., & Yoe, H. (2010). A Workflow

Service Scenario Based on uWDL for Smart Agriculture. In 2010 5th International

Conference on Embedded and Multimedia Computing (pp. 1–4). IEEE.

doi:10.1109/EMC.2010.5575749

Cugola, G., & Jacobsen, H. A. (2002). Using publish/subscribe middleware for mobile

systems. ACM SIGMOBILE Mobile Computing and Communications Review, 6(4), 25–

33. doi:10.1145/643550.643552

Dargie, W. (2009). Context-Aware Computing and Self-Managing Systems (Chapman &

Hall/CRC Studies in Informatics Series) (p. 405). Chapman and Hall/CRC.

De Souza, L., Spiess, P., Guinard, D., Köhler, M., Karnouskos, S., & Savio, D. (2008).

Socrades: A web service based shop floor integration infrastructure. The Internet of

Things, 4952, 50–67. doi:10.1007/978-3-540-78731-0_4

Digi XBee Wireless RF Module. (n.d.). Retrieved December 14, 2012, from

http://www.sparkfun.com/products/8664

64

Drools Expert User Guide. (n.d.). Retrieved December 14, 2012, from

http://docs.jboss.org/drools/release/5.4.0.Beta2/drools-expert-

docs/html_single/index.html#d0e26

Drools Fusion User Guide Version 5.5.0.Final. (2012). Retrieved from

http://docs.jboss.org/drools/release/5.5.0.Final/drools-fusion-

docs/html_single/index.html

Eberle, H., Leymann, F., & Unger, T. (2011). Implementation Architectures for Adaptive

Workflow Management. In ADAPTIVE 2010 (pp. 1–6). Xpert Publishing Services.

Retrieved from http://www2.informatik.uni-stuttgart.de/cgi-

bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2011-03&engl=0

Ejigu, D., Scuturici, M., & Brunie, L. (2007). CoCA: A Collaborative Context-Aware

Service Platform for Pervasive Computing. Fourth International Conference on

Information Technology (ITNG’07). doi:10.1109/ITNG.2007.49

Esper Reference. (2012). Retrieved from http://esper.codehaus.org/esper-

4.7.0/doc/reference/en-US/pdf/esper_reference.pdf

Eugster, P., Garbinato, B., & Holzer, A. (2006). Pervaho: A Development and Test Platform

for Mobile Ad hoc Applications. In 2006 3rd Annual International Conference on

Mobile and Ubiquitous Systems Workshops (pp. 1–5). Ieee.

doi:10.1109/MOBIQW.2006.361719

Forgy, C. L. (1982). Rete: A Fast Algorithm for the Many Pattern/ Many Object Pattern

Match Problem. Artificial Intelligence, 19(1), 17–37.

Garlan, D., Siewiorek, D. P., Smailagic, A., & Steenkiste, P. (2002). Project Aura: toward

distraction-free pervasive computing. Ieee Pervasive Computing, 1(2), 22–31.

doi:10.1109/MPRV.2002.1012334

Getting Started with Java Message Service (JMS). (2004). Retrieved March 22, 2014, from

http://www.oracle.com/technetwork/articles/java/introjms-1577110.html

Gu, T., Pung, H. K., & Zhang, D. Q. (2004). A middleware for building context-aware

mobile services. 2004 IEEE 59th Vehicular Technology Conference VTC 2004Spring

IEEE Cat No04CH37514, 5(1), 2656–2660. doi:10.1109/VETECS.2004.1391402

Han, J., Cho, Y., & Choi, J. (2005). Context-aware workflow language based on web

services for ubiquitous computing. Computational Science and Its Applications–ICCSA

2005, 1008–1017. Retrieved from

http://www.springerlink.com/index/t588qyd8t6n8218g.pdf

65

Han, J., Cho, Y., Kim, E., & Choi, J. (2006). A Ubiquitous Workflow Service Framework.

Computational Science and Its ApplicationsICCSA 2006, 30–39. Retrieved from

http://www.springerlink.com/index/1125k33326572g76.pdf

Hermosillo, G., Seinturier, L., & Duchien, L. (2010). Using Complex Event Processing for

Dynamic Business Process Adaptation. 2010 IEEE International Conference on

Services Computing, 466–473. doi:10.1109/SCC.2010.48

Herrmann, K., Rothermel, K., Kortuem, G., & Dulay, N. (2008). Adaptable Pervasive Flows

- An Emerging Technology for Pervasive Adaptation. 2008 Second IEEE International

Conference on SelfAdaptive and SelfOrganizing Systems Workshops, 108–113.

doi:10.1109/SASOW.2008.25

Hill, E. F. (2003). Jess in Action: Java Rule-Based Systems. Environment. Manning

Publications Co.

HornetQ - putting the buzz in messaging. (n.d.). Retrieved March 22, 2014, from

http://www.jboss.org/hornetq

Hsu, H.-J., Wu, S.-Y., & Wang, F.-J. (2010). A Methodology to Developing Context-Aware

Pervasive Applications. In 2010 Fifth IEEE International Symposium on Service

Oriented System Engineering (pp. 206–213). IEEE. doi:10.1109/SOSE.2010.63

Huang, Y., & Garcia-Molina, H. (2004). Publish/Subscribe in a Mobile Environment.

Wireless Networks, 10(6), 643–652. doi:10.1023/B:WINE.0000044025.64654.65

jBPM Documentation Version 6.0.1.Final (No. Chapter 23). (2013). Retrieved from

http://docs.jboss.org/jbpm/v6.0.1/userguide/

Kawsar, F., Kortuem, G., & Altakrouri, B. (2010). Supporting Interaction with the Internet

of Things across Objects , Time and Space. Design Issues, 1–8.

doi:10.1109/IOT.2010.5678441

Kiani, S. L., Riaz, M., Zhung, Y., Lee, S. L. S., & Lee, Y.-K. L. Y.-K. (2005). A distributed

middleware solution for context awareness in ubiquitous systems. In 11th IEEE

International Conference on Embedded and RealTime Computing Systems and

Applications RTCSA05 (Vol. 0, pp. 451–454). IEEE Computer Society.

doi:10.1109/RTCSA.2005.9

Kindberg, T. I. M., Barton, J., Morgan, J., Becker, G., Caswell, D., Debaty, P., … Serra, B.

(2002). People , Places , Things  : Web Presence for the Real World. Mobile Networks

and Applications, 7(5), 365–376.

66

Kortuem, G., Kawsar, F., & Altakrouri, B. (2010). Flow-driven ambient guidance. In 2010

8th IEEE International Conference on Pervasive Computing and Communications

Workshops (PERCOM Workshops) (pp. 796–799). IEEE.

doi:10.1109/PERCOMW.2010.5470544

Krumm, J. (2009). Ubiquitous Computing Fundamentals. Chapman & Hall/CRC. Retrieved

from http://dl.acm.org/citation.cfm?id=1803789

Lee, C., Ko, S., Lee, S., Lee, W., & Helal, S. (2007). Context-Aware Service Composition

for Mobile Network Environments. Korea Science Engineering Foundation, 4611,

941–952.

Leutnant, V., Schmalenstroeer, J., & Poortinga, R. (2007). Context Management Service, IST

Amigo Project. Retrieved from

https://www.google.com.tr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CC

UQFjAA&url=https://gforge.inria.fr/frs/download.php/3229/CMS-

Tutorial.pdf&ei=MmcjUufMB8KGhQeL3YDwDg&usg=AFQjCNEySW2DnO-qu1-

bgNKcqiOcN64KpA&sig2=Bi4r69OlnBtktGYE7BGYXQ&bvm=bv.51495398,d.ZG4

Leymann, F., Unger, T., & Wagner, S. (2010). On designing a people-oriented constraint-

based workflow language. In C. Gierds & J. Sürmeli (Eds.), Proceedings of the 2nd

CentralEuropean Workshop on Services and their Composition ZEUS 2010 Berlin

Germany February 2526 2010 (Vol. 563, pp. 25–31). CEUR-WS.org. Retrieved from

http://www2.informatik.uni-stuttgart.de/cgi-

bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2010-13&engl=0

Mans, R. S., van der Aalst, W. M. P., Russell, N. C., & Bakker, P. J. M. (2009). Flexibility

Schemes for Workflow Management. BPM 2008 Workshops, 17, 361–372.

Marinovic, S., Twidle, K., & Dulay, N. (2010). Teleo-Reactive workflows for pervasive

healthcare. 2010 8th IEEE International Conference on Pervasive Computing and

Communications Workshops PERCOM Workshops, 316–321.

doi:10.1109/PERCOMW.2010.5470648

Michelson, B. M. (2006). Event-Driven Architecture Overview. Architecture, 8.

doi:10.1571/bda2-2-06cc

Naming on JBoss. (2004). JBoss Inc. Retrieved February 12, 2014, from

https://docs.jboss.org/jbossas/jboss4guide/r1/html/ch3.chapter.html

Orton, J. D., & Weick, K. E. (1990). Loosely Coupled Systems: A Reconceptualization.

Academy of Management Review, 15(2), 203–223. doi:10.2307/258154

67

Ouyang, C., van der Aalst, W. M. P., Dumas, M., ter Hofstede, A. H. M., & La Rosa, M.

(2007, October 20). Service-oriented processes  : an introduction to BPEL. Semantic

Web Services  : Theory, Tools, and Applications. Information Science Reference (IGI

Global). Retrieved from http://eprints.qut.edu.au/15271/1/15271.pdf

Parasuraman, R., Sheridan, T. B., & Wickens, C. D. (2000). A model for types and levels of

human interaction with automation. IEEE Transactions on Systems Man and

Cybernetics Part A Systems and Humans, 30(3), 286–297. Retrieved from

http://www.ncbi.nlm.nih.gov/pubmed/11760769

Pesic, M., Schonenberg, H., & Van Der Aalst, W. M. P. (2007). DECLARE: Full Support

for Loosely-Structured Processes. 11th IEEE International Enterprise Distributed

Object Computing Conference EDOC 2007, 287–287. doi:10.1109/EDOC.2007.14

Ranganathan, A., & McFaddin, S. (2004). Using workflows to coordinate Web services in

pervasive computing environments. Proceedings IEEE International Conference on

Web Services 2004, 288–295. doi:10.1109/ICWS.2004.1314750

Red Hat JBoss BRMS. (n.d.). Retrieved March 22, 2014, from

http://www.redhat.com/products/jbossenterprisemiddleware/business-rules/

RedBee RFID Reader. (n.d.). Retrieved March 22, 2014, from

http://www.sparkfun.com/products/10073

Reichert, M., Rinderle, S., & Dadam, P. (2003). ADEPT workflow management system:

flexible support for enterprise-wide business processes. Information Systems Journal,

370–379. Retrieved from http://portal.acm.org/citation.cfm?id=1761169

Rellermeyer, J., Riva, O., & Alonso, G. (2008). AlfredO: an architecture for flexible

interaction with electronic devices. Middleware 08 Proceedings of the 9th

ACMIFIPUSENIX International Conference on Middleware. Retrieved from

http://portal.acm.org/citation.cfm?id=1496950.1496953

Roman, M., Hess, C., Cerqueira, R., Ranganathan, A., Campbell, R. H., & Nahrstedt, K.

(2002). A middleware infrastructure for active spaces. Ieee Pervasive Computing, 1(4),

74–83. doi:10.1109/MPRV.2002.1158281

Russell, N., & Ter Hofstede, A. H. M. (2009). Surmounting BPM challenges: the YAWL

story. Computer Science Research and Development, 23(2), 67–79.

doi:10.1007/s00450-009-0059-7

Rüdiger Pryss, Julian Tiedeken, & Manfred Reichert. (2010). Managing Processes on Mobile

Devices: The MARPLE Approach. In CAiSE’10 Demos. Retrieved from

http://dbis.eprints.uni-ulm.de/663/

68

Salatino, M., & Aliverti, E. (2012). jBPM5 Developer Guide (p. 364). Packt Publishing.

Retrieved from http://www.amazon.com/jBPM5-Developer-Guide-Mauricio-

Salatino/dp/1849516448

Satyanarayanan, M. (2001). Pervasive computing: vision and challenges. Ieee Personal

Communications, 8(4), 10–17. doi:10.1109/98.943998

Schonenberg, H., Mans, R., Russell, N., Mulyar, N., & Van Der Aalst, W. (2008). Towards a

Taxonomy of Process Flexibility. Information Systems Journal, 81–84. Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.142.6746&rep=rep1&a

mp;type=pdf#page=87

Sirin, E., Parsia, B., & Hendler, J. (2004). Template-based Composition of Semantic Web

Services. AAAI Fall Symposium on Agents and the Semantic Web, FS-05-01(1), 85–92.

Retrieved from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.74.2584

Smanchat, S., Ling, S., & Indrawan, M. (2008). A survey on context-aware workflow

adaptations. Proceedings of the 6th International Conference on Advances in Mobile

Computing and Multimedia MoMM 08, 13(1), 414. doi:10.1145/1497185.1497274

Snyder, B., Bosanac, D., & Davies, R. (2011). ActiveMQ in Action. (J. Bleiel, Ed.)Online (p.

406). Manning Publications Co.

Strang, T., & Linnhoff-Popien, C. (2004). A Context Modeling Survey. Graphical Models,

Workshop o(4), 1–8. doi:10.1.1.2.2060

Taylor, H., Yochem, A., Phillips, L., & Martinez, F. (2009). Event-Driven Architecture:

How SOA Enables the Real-Time Enterprise (1st ed.). Addison-Wesley Professional.

Retrieved from http://www.citeulike.org/user/Scis0000002/article/6512654

Tiedeken, J., Kreher, U., & Reichert, M. (2010). Towards flexible process support on mobile

devices. Forum American Bar Association, 72 LNBIP, 150–165. doi:10.1007/978-3-

642-17722-4_11

Truong, H., & Dustdar, S. (2009). A survey on context-aware web service systems.

International Journal of Web Information Systems, 5(1), 5–31.

doi:10.1108/17440080910947295

Tüysüz, G. (2013). A Workflow-based mobile guidance framework for managing personal

activities. Middle East Technical University.

69

Unger, T., Eberle, H., & Leymann, F. (2010). Research challenges on person-centric flows.

In C. Gierds & J. Sürmeli (Eds.), Proceedings of the 2nd CentralEuropean Workshop

on Services and their Composition ZEUS 2010 Berlin Germany February 2526 2010

(Vol. 563, pp. 97–104). CEUR-WS.org. Retrieved from http://www2.informatik.uni-

stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2010-12&engl=0

Unger, T., Eberle, H., Leymann, F., & Wagner, S. (2010). An event-model for constraint-

based person-centric flows. In 2010 IEEE International Conference on Progress in

Informatics and Computing (pp. 927–932). IEEE. doi:10.1109/PIC.2010.5687886

Unger, T., Eberle, H., Marconi, A., & Sirbu, A. (2010). Declarative language for goals,

constraints, adaptation and evolution. Retrieved from http://www.allow-

project.eu/deliverables/allow_d3-2_v1_0final.pdf

Unger, T., & Hanna, E. (2008). Basic flow-model and language for Adaptable Pervasive

Flows. Retrieved from http://www.allow-project.eu/deliverables/allow_d3-

1_v1_0final.pdf

Van Der Aalst, W. M. P., Adams, M., Hofstede, A. H. M., & Pesic, M. (2009). Flexibility as

a Service. Technology, 5667, 319–333. Retrieved from

http://www.springerlink.com/index/m630826617341mq0.pdf

Van Der Aalst, W. M. P., Aldred, L., Dumas, M., & Ter Hofstede, A. H. M. (2004). Design

and Implementation of the YAWL System. Proceedings of the 16th International

Conference on Advanced Information Systems Engineering CAiSE04, 3084, 281–305.

Retrieved from http://www.springerlink.com/index/CPA194XBMAUDUUWN.pdf

Van Der Aalst, W. M. P., Pesic, M., & Schonenberg, H. (2009). Declarative workflows:

Balancing between flexibility and support. Computer Science Research and

Development, 23(2), 99–113. doi:10.1007/s00450-009-0057-9

Van Der Aalst, W. M. P., Ter Hofstede, A. H. M., Kiepuszewski, B., & Barros, A. P. (2003).

Workflow Patterns. Distributed and Parallel Databases, 14(1), 5–51.

doi:10.1023/A:1022883727209

Van der Aalst, W. M. P., & Weijters, A. J. M. M. (2004). Process mining: a research agenda.

Computers in Industry. Retrieved from

http://www.sciencedirect.com/science/article/pii/S0166361503001945

Vigneras, P. (2008). InfoQ: Why BPEL is not the holy grail for BPM. Retrieved March 22,

2014, from http://www.infoq.com/articles/bpelbpm

70

Vincent, P. (2007). Differences between a BRE and a rule-driven CEP engine (Part 1) | The

TIBCO Blog. Retrieved October 15, 2013, from

http://www.tibco.com/blog/2007/06/26/differences-between-a-bre-and-a-rule-driven-

cep-engine-part-1/

Von Ammon, R., Emmersberger, C., Greiner, T., Springer, F., & Wolff, C. (2008). Event-

Driven Business Process Management. In 2nd International Conference on Distributed

Event-Based Systems. Retrieved from http://epub.uni-

regensburg.de/6829/1/edBPMDEBS2008.pdf

Wang, X. H., Zhang, D. Q., Gu, T., & Pung, H. K. (2004). Ontology based context modeling

and reasoning using OWL. Proceedings of the Second IEEE Annual Conference on

Pervasive Computing and Communications Workshops.

doi:10.1109/PERCOMW.2004.1276898

Wieland, M., Kaczmarczyk, P., & Nicklas, D. (2008). Context Integration for Smart

Workflows. In 6th IEEE International Conference on Pervasive Computing and

Communications PerCom (2008) (pp. 239–242). Ieee. doi:10.1109/PERCOM.2008.27

Wieland, M., Kopp, O., Nicklas, D., & Leymann, F. (2007). Towards Context-aware

Workflows. In B. Pernici & J. A. Gulla (Eds.), CAiSE07 Proc of the Workshops and

Doctoral Consortium (Vol. 2, pp. 1–15). Citeseer. Retrieved from

http://www2.informatik.uni-stuttgart.de/cgi-

bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2007-18&engl=0

Wieland, M., Nicklas, D., & Leymann, F. (2008). Managing technical processes using smart

workflows. Towards a ServiceBased Internet First European Conference ServiceWave

2008 Madrid Spain December 1013 2008 Proceedings, 5377, 287–298. Retrieved from

http://www2.informatik.uni-stuttgart.de/cgi-

bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2008-111&engl=0

Wolf, H., Herrmann, K., & Rothermel, K. (2009). Modeling Dynamic Context Awareness

for Situated Workflows. On the Move to Meaningful Internet Systems: OTM 2009

Workshops, 98–107. Retrieved from http://link.springer.com/chapter/10.1007%2F978-

3-642-05290-3_19

Wu, C.-L. W. C.-L., Liao, C.-F. L. C.-F., & Fu, L.-C. F. L.-C. Service-Oriented Smart-Home

Architecture Based on OSGi and Mobile-Agent Technology. , 37 IEEE Transactions on

Systems Man and Cybernetics Part C Applications and Reviews 193–205 (2007).

IEEE. doi:10.1109/TSMCC.2006.886997

Yang, S. J. H., Zhang, J., & Chen, I. Y. L. (2008). A JESS-enabled context elicitation system

for providing context-aware Web services. Expert Systems with Applications, 34(4),

2254–2266. doi:10.1016/j.eswa.2007.03.008

71

Yao, W., Chu, C.-H., & Li, Z. (2010). Leveraging complex event processing for smart

hospitals using RFID. Journal of Network and Computer Applications, 34(3), 799–810.

doi:10.1016/j.jnca.2010.04.020

YAWL - User Manual Version 2.2. (2011). The YAWL Foundation (p. 256). Retrieved from

http://www.yawlfoundation.org/manuals/YAWLUserManual2.2.pdf

73

VITA

Bilgin Avenoğlu was born in Ġstanbul, Turkey on March 10, 1978. He received his B.S.

degree in Computer Education from Gazi University in June 2001 as a valedictorian. He

received his M.Sc. degree in Computer Education and Instructional Technology from Middle

East Technical University (METU) in 2005. He worked more than five years in several

public and private companies as a Software Developer and Senior Software Developer. After

then, he worked as a Research Assistant in The Department of Information Systems, METU

between 2007 and 2012. His main research areas are Pervasive/Ubiquitous Computing,

Intelligent Environments, Context-aware Systems, Event-driven Architectures, Rule-based

Systems and Complex Event Processing and Business Process Management.

X

TEZ FOTOKOPİ İZİN FORMU

ENSTİTÜ

Fen Bilimleri Enstitüsü

Sosyal Bilimler Enstitüsü

Uygulamalı Matematik Enstitüsü

Enformatik Enstitüsü

Deniz Bilimleri Enstitüsü

YAZARIN

Soyadı : ... AVENOĞLU ..
Adı : BİLGİN ...
Bölümü : .. BİLİŞİM SİSTEMLERİ ...

TEZİN ADI (İngilizce) : A CONTEXT-AWARE AND WORKFLOW-BASED FRAMEWORK FOR

 PERVASIVE ENVIRONMENTS

TEZİN TÜRÜ : Yüksek Lisans Doktora

1. Tezimin tamamı dünya çapında erişime açılsın ve kaynak gösterilmek şartıyla tezimin bir
kısmı veya tamamının fotokopisi alınsın.

2. Tezimin tamamı yalnızca Orta Doğu Teknik Üniversitesi kullancılarının erişimine açılsın. (Bu

seçenekle tezinizin fotokopisi ya da elektronik kopyası Kütüphane aracılığı ile ODTÜ dışına
dağıtılmayacaktır.)

3. Tezim bir (1) yıl süreyle erişime kapalı olsun. (Bu seçenekle tezinizin fotokopisi ya da

elektronik kopyası Kütüphane aracılığı ile ODTÜ dışına dağıtılmayacaktır.)

Yazarın imzası Tarih .. 27/02/2014

X

X

