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ABSTRACT 

 

FLOW INITIATION IN SOFTWARE DEFINED NETWORKING 

 

Ahmad SOLTANI 

M.Sc., Department of Information Systems, Graduate School of Informatics 

Supervisor: Assoc. Prof. Dr. Cüneyt F. BAZLAMAÇCI 

February 2014, 71 pages 

 

With today’s technology requirements, computer networks and specifically the 

Internet is being expected to provide mobile, distributed and constantly changing 

services to its users. Forwarding middle boxes used in the industry nowadays are 

configured to have their low-level switching operations (e.g. packet handling), 

tightly coupled to their high-level control definitions and algorithms. This fact has 

contributed in slowing down the innovation in computer networks. Software 

Defined Networking has recently been introduced as an abstraction between 

those low-level and high-level functionalities by introducing a standard protocol 

to act as an interface, which divides control and data planes in middle-boxes. 

There are a number of challenges related to SDN most of which are still treated 

with conventional network or computer science techniques, however some 
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challenges unique to SDN paradigm such as flow initiation overhead and 

controller handling in networks also exist. The present study includes a 

comprehensive literature review of the current state-of-the-art techniques, which 

tackles these challenges and proposes a hybrid mechanism to address the flow 

initiation issue for minimizing the overhead and the delay. This proposal uses the 

unified network map available on controllers to form a-priori knowledge for 

switches for making better forwarding decisions during the flow initiation 

process. 

 

KEYWORDS: Software Defined Networking, Service Centric Networking, Flow 

Initiation, Multiple Controller Handling  
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ÖZ 

 

YAZILIM TANIMLI AĞLARDA AKIŞ BAŞLATMA 

 

Ahmad SOLTANI 

M.Sc., Bilişim Sistemler, Enformatik Enstitüsü 

Tez Danışmanı: Doç. Dr. Cüneyt F. BAZLAMAÇCI 

Şubat 2014, 71 sayfa 

 

Günümüz teknoloji gereksinimleri ile, bilgisayar ağlarının ve özellikle İnternetin 

kullanıcılarına, mobil, dağıtılmış ve sürekli değişen hizmetler sunabilmesi 

bekleniyor. Yönlendirme kutuları ve arayüzlerinde, düşük seviyeli işlemler yüksek-

seviyeli kontrol işlemleri ile yüksek derecede tümleşik olarak tasarlanmıştır. Bu da 

bilgisayar ağları alanında yaşanan inovasyon hızını yavaşlatmıştır. Yazılım Tanimli 

Ağlar (YTA) yakin zamanda kontrol ve veri düzlemleri arasında bölünme sağlayan 

bir arayüz standardı olarak ve bu düşük düzeyli ve üst düzeyli işlevler arasında bir 

soyutlama katmanı olarak ortaya konmuştur. Çoğu YTA sorunları hala eski ağ veya 

bilgisayar bilimleri teknikleri ile çözülmektedir ancak akış başlatılması ve 

denetleyici yönetimi gibi SDN’e özgü başka sorunlar da vardır. Bu çalışma, bu 

zorlukları ele alan kapsamlı bir literatür taraması içerir ve akış başlatılması 
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sorununu gidermek için de hibrit bir mekanizma önerir. Bu öneri akışın 

başlatılması sürecinde anahtarlar için daha iyi yönlendirme kararları almayı 

sağlayan apriori bilgi oluşturmak için de denetleyicilerde bulunan birleşik ağ 

haritasını kullanır. 

 

ANAHTAR KELIMELER: Yazılım Tanımlı Ağ, Hizmet Odaklı Ağ, Akış Başlatma, Çoklu 

Denetleyici Yönetimi  
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1 CHAPTER ONE 

INTRODUCTION 

1.1 Introduction to the problem 

Computer networks, as a type of communication infrastructure, are one of the 

most important technical aspects of how we implement and use different types 

of computerized information systems and distributed computing along with many 

other technologies. In our survey conducted in order to find out fundamental 

requirements of contemporary technologies, it became evident that many 

technologies such as cloud computing, pervasive and embedded computing and 

mobile computing, etc. need a basis of collaborative, distributed and specialized 

processing of data. Meaning that the processing of data in order to provide 

information is required to be distributed to ensure reliability and accessibility, be 

in collaboration to provide context awareness and knowledge discovery, be 

specialized so that each individual acquiring and processing data can perform its 

optimal task instead of using a general purpose centralized computer. A 

combination of ‘hardware and software technologies’, ‘algorithms’, and 

‘frameworks and standards’ all based on the above mentioned basis provide 

opportunities for secure, pervasive and powerful computation to address 

fundamental requirements of contemporary technologies. 
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Figure 1: Requirements and basis for contemporary technologies 

Computer networks were initially designed for serving fixed hosts with topology 

dependent addresses, which drastically differs from what they are used for 

nowadays (Nordstrom, Rexford, & Freedman, 2012). The internet as the largest 

network of networks is being used for accessing services that run anywhere from 

mobile phones and huge servers to a collection of dynamically changing 

heterogeneous and/or virtual machines. Demands of technologies such as cloud 

computing, mobile and embedded-distributed computing, etc. enforce a drastic 

change in computer networks as the main enabler of today’s state-of-the-art 
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technologies. This is mainly the reason why many coping mechanisms such as 

load balancers, DNS servers, etc. are developed to bridge the gaps between the 

initial design of the computer networks and its contemporary use (Rexford, 

2012). 

On the other hand network middle boxes, which are responsible for main 

operations in networks, namely packet forwarding, are proprietary and closed 

sourced and the rate of innovation is almost completely dependent on the 

producer company thus new architectural changes take a lot of time to be 

materialized as fundamental solutions for networking challenges. 

Contrary to computer software and operating systems, computer networking 

architecture and the underlying principles of how they operate did not 

experience a serious evolution during the last four decades. New paradigms have 

started to emerge in late 90’s to cope with shifts in telecommunication network 

consumer and developer demands (McKinney, Montgomery, Ouibrahim, Sijben, 

& Stanaway, 1998) but computer networks in particular have started to play their 

part in this evolution in 2005 (Feamster, Balakrishnan, & Rexford, 2004). 

Principles of Software Defined Networking and new paradigms such as Service 

Centric Networking (SCN) are promising in tackling these issues. 

Some of these new methods, such as Routing Control Protocol (RCP) and “Serval” 

project (Nordstrom, Rexford, & Freedman, 2012), have been proposed as new 

architectures and concepts, to tackle networking challenges. Some, such as SDN, 

have been proposed as standards and frameworks to enable such innovations 

and to provide pace and power to research in computer networks. 

1.1.1 Software Defined Networking 

One of the major bottlenecks in computer networks research is that the network 

programmers are bound with the capabilities that are provided by middle box 
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producers. Other than research and innovation blockage, computer network 

middle boxes control the data flow in network in a completely decentralized 

manner. This, along with pros, introduces some drawbacks for example creates a 

lot of maintenance issues for operators and service providers. Middle boxes are 

configured manually thus controlling the network becomes more error prone 

(Brandon, 2013). Operators and administrators try every method to keep their 

network integrated: via network manager applications, etc. (Kim & Feamster, 

2013). 

One reason why computer networks have not changed as much as other 

computer technologies in their principles and methods may be that switches are 

not as widely configured and administered by everyone as computers and 

software are. Switches are mainly customized and configured in larger networks 

by specialists and until a decade ago current network architecture and methods 

were sufficient for most of their operations. Thus demand has been weak to stir a 

revolution in the proprietary model of business in network solution companies. 

Providing a proprietary middle box with a Command Line Interface (CLI) or other 

types of GUI’s as its operating systems interface (e.g. cisco ios) has made it quite 

hard for network policy makers and protocol designers to innovate. 

Another reason is particularly due to lack of an abstraction between simple 

switch fabric operations (data plane) and high level functions (control plane) that 

operators employ to instruct routers to perform consistent to their policies. The 

absence of decoupled data and control planes makes it difficult to change or 

introduce new functionalities in switches without knowing and/or changing the 

underlying data flow mechanisms. Software Defined Networking (SDN) 

overcomes these limitations. Introducing a standard abstraction of low level 

switch fabric operations, it proposes that the control plane should be decoupled 
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from the switch to provide flexible and scalable manipulation of control plane 

without changing or even knowing the data flow mechanism of the switch fabric. 

Emergence of “Software Defined Networking” as an evolution of concepts 

introduced in 2005 brought a serious opportunity of a practical and drastic 

change in computer networks for researchers, developers and even proprietary 

middlebox producers by separating the decision and policy making functionality 

of middleboxes from their packet forwarding features. For this it may be possible 

to drive an analogy with the emergence of computer operating system in 1950’s 

for UNIVAC and IBM. In computer systems CPU’s have low level functionalities 

such as adding, reading and writing of bit level data and with the introduction of 

operating systems an abstraction between these low level operations and high-

level applications was introduced. Similarly routers and generally switch fabric of 

middleboxes have low-level operations of dropping, forwarding or de-

multiplexing of incoming packets.  SDN in a similar way has introduced a 

hardware abstraction of the system for computer networks. 

Dependent control-data planes imply that they can hardly be developed 

independently and freely. Since data and control planes are tightly coupled a 

change in control-plane functionality implies a change in the forwarding 

mechanism. A local abstraction between data and control planes is hard to 

standardize due to different implementations by different vendors. There also is 

an innate market resistance by vendors due to marginal profits of proprietary 

operating systems from certificates and licenses as well as professional training 

programs, etc. 
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Figure 2: Software Defined Network Architecture schema. Communication between switches 
and the controller is maintained by a controller protocol and applications are developed upon 
network operating system. (image regenerated based on the present study, literature review  

and authors perception of SDN and its underlying components) 

SDN principles imply that the control functionalities of several switches can be 

moved to a remote server, commonly known as the “controller server” and can 

be presented to the switch fabric by means of standardized protocols and 

virtualization technologies remotely. Software Defined Networking introduces 

several advantages such as fine-grained manipulation power over control 

functions of routers in a network, faster and cheaper processes in the design of 
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new architectures and protocols as well as in testing their implications. However 

these advantages also introduce new challenges. 

These challenges broadly include providing a secure, reliable, accessible and 

dynamic framework in which switches can interact with remote control planes or 

namely “Controllers”. Specifically, challenges such as data flow initiation, 

scalability issues of large networks, controller discovery, switch-controller 

communication security, etc. are some existing challenges. 

1.1.2 Service Centric Networking 

One of the major changes came through rethinking the address scheme in 

networks. Today’s networks operate based on an address scheme (IP addresses), 

which is defined by the location of each node throughout the topology. This 

address is then used to identify interfaces and sockets as well as to de-multiplex 

packets (Nordstrom, Rexford, & Freedman, 2012). This scheme initially was 

thought out to provide nodes with a communication channel rather than services 

and contents. IP addresses, along with TCP/UDP port numbers and protocols 

form a five-tuple identifier, which identifies a connection or a flow of data 

between two nodes in today’s networks, which clearly makes the connection 

completely dependent on the location of the serving and receiving nodes and 

that is basically why it is hard to change the location of either end points 

(Rexford, 2012) and why it is hard to define more than one flow of data within a 

connection. This means when a server or client is dislocated or relocated, as in 

case of a virtual machine migration for instance, the whole connection has to 

start all over again. This fact creates a lot of inconveniences for needs of 

operators and users of networks nowadays. Many servers in data centers are 

being run on virtual machines and hosts on cloud, which change their location in 

network topology and also geographically. Many users use hand-held devices to 
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receive a particular service and constantly switch between devices to access 

different aspects of a service (e.g. accessing streaming media on mobile).  

A lot of techniques were created to give the illusion of an integrated and constant 

connection in case of server relocation and failure and/or client on the move and 

clients agnostic to the location of computers providing the service they use cases. 

These techniques are most of the time unreliable and need a lot of hardware and 

management investment to function properly. 

In a simple distributed or replicated service over the internet, as shown below, 

whenever an instance of a service fails or migrates and whenever another 

instance is sprung up, load balancer, wide area address resolution system and 

and domain name service needs to be updated. This issue in turn produces 

management challenges as in most types of distributed systems. 
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Figure 3: Load balancer management overhead. Upon failure of a distributed/replicated service 
instance, load balancer and WAN address resolution directories must be updated. (Image 

regenerated from source: Jen Rexford’s speech on Software defined service-centric network 
(Rexford, 2012)) 

Likewise, in case of virtual machine migration since the serving machine needs to 

maintain its IP address, it is either restricted to operate in a single layer-two 

subnet, or to use triangular routing techniques to redirect packets to a service 

that has been relocated.  

Many other examples of such scenarios conclude that when a server is 

dislocated, which is the case with many mobile and virtual machines in networks, 

the connections and subsequently services to users have to be re-established. 

In order to better support dynamic services for mobile and multi-homed devices 

a better abstraction between service resolution policy and service resolution 

mechanism is needed alongside abstractions that will allow service name 
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definition to be independent of IP addresses and port number. These in turn 

allow a better separation of control and data planes in a very similar way to 

software defined networking. 

Few recent attempts to change network addressing schemes have introduced 

information or context as the primary entity in networks instead of servers and 

clients involving in a connection. Researchers in this field focus on the content 

that is being exchanged rather than the parties exchanging it. Naming contents 

and building routing protocols based on them will provide a better solution for 

content replication, content movement and load balancing as well as location 

awareness. “Information Centric Networking” or simply ICN is a concept also 

known as Content Oriented Networking, which has sprung several projects 

around the world such as CBCB (Carzaniga, Wolf, & Rutherford, 2004), DONA 

(Koponen, Chawla, & Chun, 2007) and PERSUIT (Lagutin, Visala, & Tarkoma, 2010) 

and MDHT (D’Ambrosio & et., 2011). Roots of ICN or Content Oriented 

Networking lies in a study back in year 2000 when Cheriton introduced the 

concept of Name-based routing in a project called TRIAD (Cheriton & Gritter, 

2000).  

A conceptually close but more inclusive approach was Service Centric Networking 

(SCN), which first emerged in telecommunication networks in 1998, where 

different parties such as Brokers and Retailers of services were introduced to 

create an abstraction where access networks were no longer defining and 

providing the service but instead they provided only the connectivity to service 

providers.  This framework was introduced by Bell Labs using an architecture 

called TINA (McKinney, Montgomery, Ouibrahim, Sijben, & Stanaway, 1998). 

One reason why the author in this study has chosen service centric networking as 

a more inclusive approach to investigate is the convenience of conceiving all sorts 

of content and information dissemination as a type of service instead of treating 
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all types of service as a type of content. (e.g. from a high-level user point of view 

mere controlling of a remote surveillance camera might not explicitly convey an 

information or content exchange). On the other hand Content Centric 

Networking (CCN) studies like DONA and TRIAD do not tackle challenges such as 

end-host stacks, server migration and host network integration (Freedman, et al., 

2010). 

1.1.3 Serval 

One of the most recent studies in the field of Service Centric Networking is a 

project called “Project Serval” investigated by Mike Freedman and Jen Rexford 

along with many other Ph.D. and Post-Doc contributors in the Princeton 

University. In a single framework Serval aims to provide an architecture in which 

services are identified by a service name and also flows that take those services 

on network are identified by different identifiers called “flow identifier”. These 

identifiers are completely independent of IP addresses, i.e., the service is free of 

the locations where end points are located. In serval, the authors are also 

defining a new layer in networking stack above the unchanged “Networking 

Layer” called Service Access Layer (SAL). Without this layer Serval’s attempt 

would be merely replacing IP with a new identifier which will not help with the 

vision of service centric networking. Here ‘service’ is a process or a group of 

processes offering the same functionality and a ‘flow’ is the traffic in the network 

carrying the service. A flow needs to be dynamic in order to change its 

parameters during a single service connection.  
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Figure 4: Serval architecture overview: regenerated from source: Serval (Nordstrom, Rexford, & 
Freedman, 2012) 

In Serval, project investigators believe that the problem with the current 

networking architecture, which makes it hard to define more than one flow for a 

service and hard to recover a service instance failure, is not the IP addressing 

scheme. Instead they believe that the network stack has to be changed. Today all 

the identifiers in network, including the application and transport layers are IP 

bound meaning that they run by identifiers based on IP addresses and port 

numbers. By introducing SAL, which operates above an unmodified Network layer 

(based on IP), authors of Serval propose identifying services and flows based on 

their identifiers in SAL layer. As a result applications and processes can bind to 

serviceID’s and flowID’s using the notion of Active Sockets instead of binding to a 

five-tuple identifier of IP addresses and port numbers alongside protocols. A 

serviceID is unique and its is flexible in representing different granularities of 

service, i.e., it can correspond to a specific instance of a service or a group of 

processes and even a distributed system which provides the same service. This 

architecture enables late-binding as well as service level routing throughout the 

network, which in turn may enable load balancing between different instances of 

a service. It means that it is left to the underlying network stack to discover 
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services and to decide which instance of a service will respond to a request but 

not individual servers. This is mainly why this type of calling sockets is given the 

notion of active sockets because request packets trigger network wide events so 

that control applications can decide to respond based on request packets. 

 

Figure 5: Serval packet headers. Image regenerated from source: Serval (Nordstrom, Rexford, & 
Freedman, 2012) 

For instance when a process is sprung to bind to a service with the serviceID of 

“X” this will trigger the events that will register that service in the network stack, 

specifically in SAL. Subsequently this can trigger control applications, local or 

remote to the machine, to decide to perform load balancing or other actions. 

Thus with service layer enabled routers (service level routers in gateway routers 

or load balancers) the same network stack that runs on end hosts can run on 

routers to provide very large or wide area networks. 
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Figure 6: Detailed architecture of SAL. Image regenerated from source: Serval (Nordstrom, 
Rexford, & Freedman, 2012) 

Using a controller API on an SDN based controller a variety of service discovery, 

failover and load balancing policies can be introduced to end hosts and middle-

boxes. Thus the controller now can interact with not only end hosts running 

processes based on serviceIDs but also SDN enabled switches that perform 

service oriented forwarding in the network. 

Some challenges that are being studied in Serval as an architecture based on SDN 

are joining the end-host and switch control functionalities, software defined 

service resolution and path selection, as well as general challenges such as 

communication security and policies to register serviceIDs and multiple dynamic 

service instance handling methods.  
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1.2 Purpose of the study 

In Software Defined Networking the time it takes and the process necessary for a 

switch to obtain forwarding rules for new packet types is called “flow initiation 

overhead”. This overhead increases the time needed for the first packet of a flow 

to reach its destination. 

This study enhances current solutions related to flow initiation in Software 

Defined Networking by proposing a hybrid algorithm, which uses currently 

available technology and methods to optimize the time needed for flow initiation. 

As an innate consequence, a tradeoff in the form of extra traffic is introduced by 

the proposed algorithm. However, a through literature review suggests that 

Service Centric Networking bears fundamental solutions to minimize the risks of 

this tradeoff. 

This study proposes the utilization of Service Centric methods and Serval project 

in particular to deal with the tradeoffs resulting from the proposed flow initiation 

algorithm. 

1.3 Significance of the Study 

Although the flow initiation overhead, as a scalability challenge, does not pose a 

threat in near future, thanks to high capacity of controllers to handle thousands 

of requests with low latency (Yeganeh, Tootoonchian, & Ganjali, 2013), it is worth 

mentioning that computer networks and internet grow continuously and new 

paradigms emerge that utilize the network in a more intensive manner. 

Considering high traffic networks with wide topologies (e.g. operators and 

datacenters), scalability of Software Defined Networking is introduced as one of 

the most important challenges of its architecture. Enhancing flow initiation time 

leverages scalability of Software Defined Networks while optimizing resource 

usage in SDNs.  
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In order to tackle bottleneck issues of SDN, which is common in centralized 

controller systems, a variety of solutions have been proposed (ONF O. , 2011). As 

a result of our literature review we have concluded that alternatively the Service 

Centric Networking mechanisms introduced in Serval Project can also resolve 

these and related issues.  

Service Centric approaches have already been employed and tested for different 

services such as HTTP and FTP however the present study argues that 

implementation of controller service using SCN principles with Serval architecture 

is an alternative solution for handling multiple controllers in SDNs. 
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2 CHAPTER TWO 

THEORY 

2.1 Introduction 

Among all the challenges there yet to be tackled, the present study takes SDN 

flow initiation challenge in hand and provides solutions to this problem. The 

author will conduct a series of implementations and tests to demonstrate how 

SCN resolves implementation obstacles and challenges for SDN and vice versa.  

SCN needs an implementation platform in which a new addressing scheme can be 

defined and processed so the traffic can be forwarded based on serviceIDs as well 

as introducing new layers into the network stack. SDN is a promising architecture, 

which can house these types of innovations. Otherwise current technology only 

allows enhancements over the conventional addressing scheme. 

On the other hand SDN has some innate challenges such as scalability and 

controller handling, and SCN is a very promising architecture to provide better 

scalability, load balancing and service discovery opportunities without the need 

for error prone third party patches to the server-client structure. 

This co-existence and co-operation plays an important role in facilitating the 

solution for number of challenges for both sides as well as providing a platform 

on which many requirements of contemporary networking are met. In the 

literature review process of the present study, it became evident that a service 

centric and software defined networking platform will provide a lot of 
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fundamental solution opportunities for future networks such as cloud computing 

and the need for distributed and collaborative computing. Without an abstraction 

between service policy making and service forwarding functionalities it is hard to 

imagine fast innovations in new methods to provide technological requirements 

of contemporary computing needs. In turn, without a separation between data 

and control planes of switches, a radical change in network architecture to house 

new methods seems hard to maintain. 

One of the most successful implementations of SDN is the OpenFlow standard 

protocol, which allows experimental studies to be tested and implemented on 

networks as well. An OpenFlow compliant switch or router still includes low level 

fast packet forwarding capabilities and tables locally, but high-level routing 

protocols are applied on the switch using a remote server on the network. Unlike 

earlier attempts to realize data and control plane separation, such as Ethane 

(Nick McKeown, 2007), Open flow does not require customization of hardware 

(switches that support Ethane protocol). Furthermore, earlier implementations 

such as RCP (Feamster, Balakrishnan, & Rexford, 2004) although made 

deployment easier, were limited to what hijacked protocols (BGP, RIP, etc) could 

support and could not have further innovation or introduction of new protocols, 

and FORCES (Yang & Anderson, 2004) required standardization, adoption and 

deployment of new hardware. OpenFlow uses a secure protocol to allow high 

level control functions to interact with switches via installing rules into tables in 

switches; these tables are named flow tables. When a switch receives a packet, it 

compares it with the available rules and applies the set of mandated actions 

accordingly (e.g. forwards the packet to a port, or drops it or delays it). In case 

there are no rules associated with the corresponding pattern, the switch queues 

the packet in its memory and asks the controller for a set of actions for the new 

packet. Controller, on the other hand, which is listening (as default on port 6633) 

receives the packet and de-multiplexes it to the upper stacks locally, where it is 
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received by the listening instance of a controller application, which is also 

referred to as Network Operating System.  

There are quite a variety of network operating systems available in different 

programming languages such as the following:  

- NOX: A C++/Python controller built and open sourced by Nicira Networks 

(Nicira). 

- POX: A Python based controller application, which is mainly suggested for 

research purposes (Nicira). 

- Beacon: A Java controller built by David Erickson at Stanford (Beacon). 

- Maestro: A Java controller built by Zheng Cai at Rice university (Maestro).  

Each controller application has its own development team, which provides 

similar features but have their own unique libraries too. Beacon controller 

developers claim that it is stable and has had no down-time since it has 

started to control a network of 100 virtual and 20 physical switches for 

months. It is cross-platform, open-source, fast and dynamic. Beacon is written 

and based on Java programming language (Beacon).  

NOX is the original OpenFlow controller which is based on C++ and provides 

ease of development on Linux.  

POX is NOX’s younger sibling which is purely based on Python programming 

language and is suitable for research and fast deployment projects.  

Maestro is funded by NSF and is being developed in Rice University. 

Following is a benchmark of different OpenFlow controllers (network operating 

systems). Although this figure is only provided for historical purposes, it clearly 

demonstrates the number of flows per second handled by different controllers 

running on a number of CPU threads. 
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Figure 7: OpenFlow controller benchmarks. Image regenerated from source: NoxRepo  
(OpenFlow, 2013) 

For this study, POX controller has been selected for the following reasons: 

 POX is based on Python, which is a run-time programming language 

without the need for a compiler. This facilitates the process of 

development of ideas better and eases the path from design to 

implementation. 

 POX unlike NOX is a multithread processor friendly controller. NOX only 

operates with one CPU. 

 POX is actively being developed and its development mailing lists are 

more active. 
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2.2 Flow initiation in OpenFlow 

OpenFlow as a control-switch communication protocol provides three types of 

messages transmitted between switches and the controller. The author will not 

discuss all message types here since this exceeds the boundaries of this research. 

A specific message however, namely “Packet_in”, will be discussed  which is 

signaled when switch forwards a part or whole bits of a packet to controller for 

routing decisions to be made accordingly. Packet_in message is a type of 

asynchronous message. Asynchronous messages are sent by switches mainly to 

report a state, error or arrival of a new type of packet. 

When a switch receives a packet, which does not have a rule or set of actions 

associated with it in its forwarding table, and the switch has enough buffer 

memory, Packet_in event contains only some fraction of the original packet 

header and a bufferID to be used by the controller when setting the forwarding 

rule for the corresponding new packet (ONF O. N., OpenFlow Switch 

Specification, Version 1.0 (Wire Protocol 0x04), 2011). Consequently when the 

controller decides what to apply on the newly arriving packets, using OpenFlow 

standard with TLS (Transport Layer Security) or TCP communication protocol, 

inserts a rule in the forwarding table of the corresponding switch. Afterwards 

switch acts on the buffered packet(s) based on this new rule. 

In case a switch does not support packet buffering or has run out of buffer 

memory, it forwards the whole packet instead and will act based on the new rule 

once it is dictated by the controller. Meanwhile other packets that arrive in the 

same flow are either automatically dropped or are treated based on an existing 

forwarding until a new rule is provided or are forwarded as whole packets to the 

controller without buffering them. If buffering is employed as the default 

algorithm, this will pose the following risks and challenges: 

 Initial flow of packets must wait in the buffer until:  
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1. Packet_in message containing part of the first packet’s header is 

composed. 

2. The composed packet_in message reaches to the controller. 

3. Controller processes the message and decides on the forwarding 

rule(s). 

4. Forwarding rule(s) is/are dictated to the switch as a flow table row. 

 In case the switch lacks a buffer or its buffer is full, all of the packets of the 

unknown flow will either be sent to the controller as a whole (not just the 

header of the first packet but all bits of all of packets) and usually are 

expired or dropped until the corresponding rule are dictated by the 

controller. In this case, there is a possibility of unnecessary bandwidth 

usage in terms switch buffer space as well as retransmissions. 

 Late Packet_in: There is a possibility that the controller message is 

delayed or dropped for intermediate switches on a path (from packet 

source to packet destination). As an instance, if next hop (switch) in the 

path is far from the controller compared to the initial switch, the following 

rare but possible scenario may occur:  

1. Initial switch receives the forwarding rule before the second hop 

(switch) in the path does. 

2. Initial switch forwards the packet to the second switch on the 

path. 

3. Second switch has not yet received the forwarding rule for the 

subject message, either because the controller chose a longer path 

for load balancing reasons, or the rule was delayed or dropped due 

to buffer overflow. Thus the second switch treats the new packet 

as it should and sends the packet_in request to the controller 

4. Controller recalculates the rules for the subject message while the 

switch is keeping it in its buffer. 
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5. This iteration repeats itself whenever the next switch in the path is 

far from the controller compared to the switch sending the 

packet_in message. 

The “Late Packet_in” case is depicted in Figure 8. 

 

Figure 8: Late Packet_in : Flow initiation  

When huge networks of operators and access networks are considered these 

risks grow proportionally. Thus it is regarded as a scalability challenge.  

There have been a number of studies conducted to reduce or optimize flow 

initiation process. Tootoonchian et al. (Tootoonchian, Gorbunov, & Ganjali, 2012) 
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demonstrated that this challenge can be tackled by modifying NOX controller and 

introduced NOX-MT which focused on NOX controller performance and 

multithreading capabilities using known techniques such as I/O Batching, etc. 

Results of the mentioned study brought a magnitude of progress in controller 

performance. DevoFlow (Curtis, 2011) on the other hand has proposed to handle 

short-life flows by data-plane where only persistent flows are defined by 

controllers. This method, supported by ASICs, forwards fewer requests to 

controller alleviating flow initiation concerns. In 2010, a study on flow-based 

networking, namely DIFANE is introduced, which addressed the concern with 

centralized controller architectures. Yu proposed that by proactively installing all 

possible rules and data-paths, partitioning these rules among switches and then 

forwarding new packets to the switches containing related rules, will dramatically 

lessen the switch-controller requests.  

As another solution, at first glance, simply eliminating the buffering step and 

sending whole new packets to the controller and forwarding those initial packets 

right from the controller point until the optimal path is installed on the source 

switch, might seem as an alternative solution (see Figure 11: Algorithm 2, case 1: 

optimal in section 3.2.2). Advantages of this method are: 

 Reduction of switch buffer expenses. 

 The possibility to program the controller to immediately forward initial 

packets it receives while flow initiation process takes place, thus 

eliminating the waste of time in flow initiation and reducing the time 

needed for first packets to arrive to the destination. 

 Reduction of the risk of Packet_in Echo scenario by reducing the risk of 

buffer overflow or loss of initial packets. 

The author will demonstrate that eliminating the buffering step from the default 

solution for flow initiation will not provide a better solution to the above 
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mentioned risks either. Details of cases and scenarios will be presented in section 

3.2 where the default algorithm fails to address flow initiation challenges in 

either way: either buffering packets and sending packet header to the controller 

(which will be referred to as “buffer-flow solution” in this study) or sending whole 

packets to the controllers for decision making (which will be referred to as 

“forward-flow solution” in this study). Afterwards another approach as a fitter 

solution to the issue will be described which in essence is formed around 

installing apriori information regarding the network topology on switches to 

facilitate a more intelligent decision between a buffer-flow or forward-flow 

solution when an unfamiliar stream of packets arrive to a switch. 

The theory provided in this study as a solution will in turn face a bottleneck issue 

at controller point. Although initial benchmarks of single OpenFlow controller has 

demonstrated that 30000 switch requests can be handled (Tavakkoli, 2009), 

replicating the controller instances eliminates this bottleneck. It is worth 

mentioning that as a result of replicating controller service instances, handling 

multiple controllers (service discovery, load balancing, failover, etc.) will sprung 

up as a new challenge.  

In case controller service is considered no different than any other service type, 

SCNs or particularly Serval claim a fundamental progress in addressing the issues 

related to multiple and dynamic service instances such as service discovery, load 

balancing and failover scenarios. This is basically the reason why author has 

decided to study controller handling in SCN also. 

2.3 Controller Handling 

In OpenFlow switch specification document version 1.2 mechanisms to utilize 

multiple controllers were introduced. These mechanisms, which continued 

through the last version of OpenFlow switch specification document version 
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1.3.2, only support controller failover and load balancing (ONF O. , 2011) (ONF O. 

N., OpenFlow Switch Specification Version 1.3.2 (Wire Protocol 0x04), 2013). 

Based on the latest version of the above mentioned document, a switch may 

connect to several controllers. In cases of controller failure or overloading, switch 

connects to alternative controllers based on installed rules. The rules involving 

the multiple control handling are entirely orchestrated by controllers. Multiple 

controllers connected to a switch choose a role based on the policy made by 

controllers themselves. Controller roles are as follows: 

 Equal: This is the default role of a controller when connected to a switch. 

Sending the OFPCR_ROLE_EQUAL request, the controller is given the 

“Equal” role and is equal to all other controllers in the same role and has 

full access and rights to the connected switch. 

 Master: This role is similar to the “Equal” role, except that a switch can 

only have one “Master” role controller. When a controller claims this role 

by sending the OFPCR_ROLE_MASTER request message, the switch 

changes the role of all other Master controllers to “Slave” without 

informing them. 

 Slave: in this role the controller has read-only access to the switch and will 

not be able to alter the state of the switch. The switch on the other hand 

does not send any asynchronous message to the controller in this role 

except the port status message. 

A switch might have multiple Equal and Slave role controllers and at most only 

one Master controller. 

For a switch to connect to the controller the following steps take place: 

1. When the switch activates an interface or is turned on, it propagates a 

“link up” message.  
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2. Controller initiates the connection to the switch by sending and receiving 

hello packets and exchanging OpenFlow versions supported. 

3. Switch informs the controller about its functions and status. 

4. Connection establishes between controller and the switch for further 

OpenFlow protocol transmissions. 

This method can alternatively be performed in the service layer instead. This not 

only creates a firm basis for further features of multiple controller handling such 

as virtualization and dynamically distributed and specialized controller service, 

but also provides a distributed service resolution mechanism that is controlled 

centrally in a controller server, which is similar to the mechanism that is currently 

used for out of service level routing and policy making methods. 
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3 CHAPTER THREE 

THE PROPOSED TECHNIQUES 

3.1 Introduction 

 Since OpenFlow is one of the most successful SDN implementations and 

undoubtedly the most famous platform to realize SDN architecture, the author 

will proceed to run simulations and implementations based on OpenFlow 

framework. “Mininet” network emulator, as one of the most frequently used 

emulators available, that supports OpenFlow controllers and switch instances, is 

initially tested in order to check its utility in simulating virtual networks on a 

single Linux based PC that can serve for the purposes of the present study. 

Simulation on such a platform ensures the possibility of implementing the 

outcome of the study on physical/real machines since mininet uses real Linux 

kernels for hosts and real switch image: Open Virtual Switch Kernel (OVSK), for its 

switches, which is built into all new Linux kernels. 

3.2 Flow initiation 

As stated in section 2.2 of chapter 2, flow initiation causes a considerable delay in 

communication over OpenFlow based SDN model. To resolve this issue, the 

author suggests the following theory: 

Proactive flow installation by controller based on a function, which 

decides if destinations of all possible paths are best accessed (less distant 
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and less delayed in packet transmission) by controller or the source of the 

flow. This study suggests a mechanism, which involves a switch, either 

local on controller machine or connected via dedicated and highly reliable 

and fast link and a mechanism that uses the available network map as a-

priori knowledge in order to pre-configure switches. 

In this context when destination switch is said to be “optimally accessible” by a 

node it means that the communication with the destination from that node in 

network takes less time. This criteria can be manipulated, however the concept is 

that if a node has the most desirable path to a switch when compared to a 

controller, the switch is optimally accessible by the node, and vice versa, if a 

controller has the most desirable path to a switch when compared to another 

node, the switch is optimally accessible by the controller. 

3.2.1 Current flow initiation algorithm (Algorithm 1) 

As default, OpenFlow switch description document suggests a Packet_in message 

that includes a part of the header of the new packet to be sent to the controller 

for decision making while packets of the new flow wait in switch buffer, until the 

new forwarding rule arrives from the controller. For purpose of convenience this 

algorithm will be referred to as “PIM”: Packet_In Method. 

Case 1 (optimal): Desirable case for “packet_in transmission” method. In this case 

since the destination access is faster from the source switch, transmission of only 

the header of the packets is preferable, since packets waiting in buffer will arrive 

to the destination faster and unnecessary traffic is not created from controller to 

the destination switch. 
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Figure 9: Algorithm 1, Case 1: Optimal 

Case 2 (non-optimal): Destination switch is accessible by the controller in less 

time. 

In this case since the destination is more easily accessible by the controller, 

forwarding the whole packets instead of only the header is more desired. 

Buffered packets will eventually have to follow a path that is easily accessible by 

the controller, thus if the controller receives the whole packets it may forward 

them from the controller point and may save the time it takes for the initial 

switch to forward buffered packets only after receiving the forwarding rules. 

Sending only the header will delay the arrival of packets to the destination. 
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Figure 10: Algorithm 1, case 2 : non-optimal 

3.2.2 Sending whole packet (Algorithm 2) 

An OpenFlow switch sends the whole packet to the controller for decision making 

only if its buffer is missing or it is full or it is configured to do so. If this method is 

not bound to the above mentioned limitations, whole packets can be sent to the 

controller regardless of the buffer status. Upon receiving a new packet from a 

switch, the controller not only installs new forwarding rule on switches on the 

path but also forwards the packets it received during the flow initiation process. 

For purpose of convenience, this algorithm can be referred to as “OFM” standing 

for “original flow method”, in which packets are not buffered, instead are sent to 

the controller. 

Case 1 (optimal): Destination switch is accessible by the controller in less time. 
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In this case since the destination is more easily accessible by the controller, 

forwarding the whole packets instead of only the header is optimal. Since 

buffered packets will eventually follow a path that is easily accessible by the 

controller, if the controller could have received the whole packet it could forward 

them from controller point and save the time it takes for the source switch to 

forward the buffered packets (after receiving forwarding rules). 

 

Figure 11: Algorithm 2, case 1: optimal 

Case 2 (non-optimal): Destination switch is accessible by the source of the flow in 

less time. 

In this case sending the whole packet is not desired, since the source switch has a 

better condition for forwarding initial packets to destination and the path from 

controller to destination is less optimized. Besides sending the header is faster 

and consumes less bandwidth. 
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Figure 12: Algorithm 2, case 2: non-optimal 

3.2.3 Hybrid Algorithm (Algorithm 3):  

Referred to as “HYB” method for convenience, this method utilizes the cases 

where previous algorithms were advantageous. As seen in previous sub-sections, 

both approaches have advantages and disadvantages in certain cases. However if 

switches could have an information, which is based on the topology, they can be 

dictated when to use each flow initiation method. This study contributes by 

suggesting that using the network map composed by statistics acquired from 

switches in an SDN, controllers can install rules to determine whether a switch 

should utilize PIM method (buffer the original packets) or OFM method (do not 

buffer packets) when new flows arrive towards specific destinations. This 

operation can be performed when controller is sprung up as follows: 

1. Controller puts a table together composed of all possible subnet routes 

for all the switches (based on their location in network). 
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2. Controller decides which destinations are optimally accessable by the 

controller from all sources. 

3. Controller installs a rule on switches dictating whole package 

dissemination (Algorithm 2) in the above mentioned cases. 

4. The rest of the routes are regarded by default as optimal cases and are 

ordered to apply Algorithm 1. 

5. These initiation rules are placed on the bottom of the flow table to allow 

new rules and regulations to be placed on the top in future, preventing 

their execution once new policies take effect upon actual packet arrivals. 

Case 1 (optimal): Destination switch is optimally accessible to the controller. 

Case 2 (optimal): Destination switch is optimally accessible to the source of the 

flow. 

 

Figure 13: Hybrid Algorithm 3 (the main contribution) Both cases : optimal 
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In this algorithm regardless of the possible cases, since the best of Algorithm 1 

and 2 are chosen intelligently, all cases are optimized. 

This hybrid algorithm, which is suggested in the present study, is testable using 

mathematical models. However as a result of accepting the whole packets in 

some cases and taking on the role of forwarding initial packets yields a 

forwarding role and traffic on the controller. To resolve these issues this study 

suggests that high speed packet switching functionality to be integrated on the 

controller machines locally. The resulting platform will act analogous to brain in 

living organisms, which not only perform decision making but also play role in 

neural pulse transmission in living neural systems. As for extra traffic burden on 

controller machine, this study has also conducted a literature survey to find best 

practices in service handling challenges. This is basically the reason why “Multiple 

Controller Handling” is being addressed by the author. 

To test the above mentioned, simulation in a high-traffic large network will 

demonstrate enhancement in flow initiation time compared to Algorithm 1 and 

Algorithm 2. 

 

3.2.4 Multiple Controller Handling 

Since OpenFlow and any other SDN implementation for that matter implies 

control functionality to be dictated by a controller to the switch fabric, it is safe to 

assume control traffic as a type of service. It is necessary to keep in mind that in 

order for switches and controllers to communicate on service level, both need to 

have an understanding of service centric addressing scheme, namely serviceID’s 

and FlowID’s as well as the network stack which processes packets containing the 

above mentioned encapsulations. 
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Considering controller traffic as a type of service will allow inter-controller load 

balancing and failover recovery mechanisms to be implemented inherently more 

robust and secure. 

The present study will not analyze the implications of implementing serval 

architecture on current OpenFlow based POX controllers and effects of various 

failover scenarios since the scope of the work in hand does not include how 

service centric perspective introduces a redemption from techniques that are 

being used for load balancing and recovery operations. This solution for 

bottlenecks in controller point is solely suggested by the author based on 

information derived through the literature review conducted for the main 

purpose of the study. As future work however this suggestion may be applied to 

demonstrate an automated and fundamentally robust process in which switches 

query control planes for packet forwarding instructions. The author does not 

expect a better performance in terms of controller discovery time or rate; rather 

expect to end up with similar results with an IP based topology on a service 

centric approach. The contribution here is to demonstrate that service centric 

approach is implementable and feasible and is a fundamental solution to the 

challenge. 

For this method the author argues that controller handling is feasibly 

implementable by the serval network stack on both controller and switches. 

Controller will run POX as its network operating system and will communicate 

with the switch based on serviceIDs and FlowIDs instead of IP, port and protocol 

tuples. 

In controller service discovery, switch receives a packet, which has no 

corresponding entry to match in its flow table, encapsulates it with a service level 

header and forwards it to either a service level broadcast address or its known 

controller instance. Then the controller receives the enquiry and decides to de-
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multiplex it or forward it to another controller machine based on its service 

policies. Afterwards the control traffic is established accordingly. 

In case of a controller failover or overload scenario, service level policies will 

handle the incidence in a much similar manner when any other service type fails 

or needs load balancing automatically. 

Both cases above shall demonstrate Serval’s ability to handle incidents of initial 

discovery and failover mechanisms of SDN based networks. 

In Serval project, the authors demonstrate that service centric network and 

Serval architecture function adequately and smoothly on a number of protocols 

by implementing a prototype containing almost 28000 lines of code. This 

prototype has demonstrated that applications like Firefox, TFTP, Iperf, Mangoose, 

Apache bench, etc. are easily portable to service level operation only by changing 

few lines of codes. In these prototype tests, authors have concluded with similar 

results as conventional methods in protocols such as HTTP, FTP, etc. as expected 

(Nordstrom, Rexford, & Freedman, 2012).  

Controller service which is transmitted over OpenFlow protocol is essentially no 

different than HTTP or any other protocol for that matter. Since controller service 

is being introduced recently and applications using OpenFlow protocols are 

numbered, it is easier to apply a service centric approach to available applications 

and new features to be introduced to SDN architecture. 

This will also pave the path for all other network traffics to be able to migrate to 

service centric architecture since switches understand SCN addressing and 

network stack schemes. 
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4 CHAPTER FOUR 

SIMULATION BASED ASSESSMENT OF PROPOSED TECHNIQUES 

4.1 Algorithm expression 

For any arbitrary topology, the Hybrid Algorithm will find the best method of flow 

initiation regardless of the location of the controller, source and destination 

hosts. This hybrid algorithm, being intuitively evident, can also be explained as 

follows: 

As discussed in section 3.2 we can conclude that the time required for initial 

packets of new and unknown flows to reach their destination in Algorithm 1 Case 

1 and Algorithm 2 Case 1 are smaller than Case 2 respectively. 

For convenience the following reference table is constructed: 

Table 2: Scenario specific flow initiation time reference 

Scenario Time needed for initial packets of 

unknown flows to reach 

destination. 

Algorithm 1 Case 1   

Algorithm 1 Case 2   

Algorithm 2 Case 1  ’ 

Algorithm 2 Case 2  ’ 
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If the following assumption is made for both algorithms: 

In a single topology: 

If the probability of Case 1 incident equals   , then the probability of Case 2 

incidents are equal to       in each algorithm. 

Then we can conclude that the expected values of initial packet latency (average 

time needed for initial packets to arrive destination) during flow initiation for all 

three algorithms are as following: 

  {          }                 

  {          }                  

  {          }                 

Thus we can conclude that: 

Since                    and at the same time                   

Then:  

  {          }      {          }    

  {          }      {          }  

The present study also provides simulation results for all the above mentioned 

cases and concludes that Hybrid algorithm provides enhancements over both 

Algorithms 1 and 2. 

Literature survey also supports the suggested method to resolve controller 

congestion issue by resorting to multiple controllers and handling them by service 

centric architecture and mechanisms. 
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4.2 Simulation 

In order to simulate OpenFlow and SDN concepts there are in total three 

simulators available, namely EstiNet, MiniNet and NS3. Before reviewing each 

simulator it is important to stress the basic and fundamental necessity of the 

present study in order to demonstrate merits of HYB method. First and foremost, 

the controller in the setup of the network for this study will need to operate in an 

“in-band” mode. In-band control in this context means that the controller will use 

the same medium-channel for control traffic and data traffic. (data and control 

traffic are transmitted on the same network.) 

4.2.1 EstiNet 

EstiNet is a simulator/emulator which allows its users to use both of its 

capabilities. However, it is a proprietary and it is indeed an expensive 

simulator/emulator for the purposes of the present study, and hence is not used 

here. In addition, Esti-Net is not set up to utilize in-band controller mechanisms 

out of the box and modifications in source code are necessary (information based 

on the email reply from the developer team of EstiNet). 

4.2.2 Mininet 

Mininet is a considerably fast to deploy emulator and it is easy to test openflow 

setups in mininet. The author has started the present study utilizing mininet for 

experimental purposes. However, since its documentation in general and its 

functionality assessment in particular are very limited, it was not obvious in the 

short term that mininet will not serve for the purpose of the present study. The 

reasons why we did not use mininet in the present study are as follows: 

 Mininet has few components to support in-band controllers, which is 

necessary for this study. There is no method to define and use a 

controller, which is also used for data transmission. Provided controller 
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classes and switches all utilize out-band control mechanisms, which 

means all switches and controllers are connected to each other on a 

network separate from the actual data network. 

 We changed the component codes in mininet so that it will provide in-

band control mechanisms, however since mininet controller and switches 

are not created for hybrid-networks (networks which control and data 

signals are on the same sets of connections and network), mininet 

emulator demonstrated unexpected results and performance. Technically 

speaking, the code for mininet generated unnecessary recursive outputs. 

The controller, as a result of being not programmed to handle in-band 

controlling mechanisms repeatedly logged following messages: 

o |99097|poll_loop|DBG|[POLLIN] on fd 7: 

o |99098|poll_loop|DBG|[POLLIN] on fd 8: 

o |99106|vconn|DBG|Dropped 9272 messages in last 1 

seconds due to excessive rate 

It indicated great amount of packet loss due to the recursion taking place 

in the controller. In short the fact that the controller and switches in 

mininet are not optimized for in-band traffic created this excessive traffic.  

 In mininet all switches and controllers are in the same namespace sharing 

same processes as the host computer. Only user space switches are 

compatible with separate namespace capability which cannot be used for 

remotely controlled in-band controllers. 

4.2.3 NS3 

NS3 provides modules for OpenFlow and SDN networks, however thanks to its 

comprehensive and solid documentation, in process of testing, it became quickly 

evident that NS3 does not support in-band controlling mechanisms for switches 

and remote controllers (ns3). Each switch in NS3 has its own class of controller, 

which is connected via a loopback interface on the same switch, therefore 

remote connection and link failure scenarios cannot be implemented. 
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Initially it seems as the best solution to modify codes of switches and controllers 

in NS3 to accommodate the purposes of the present study, however due to the 

complex nature of written codes for switches and controllers in NS3 it is 

necessary to have adequate knowledge on all aspects and classes in components 

of NS3 to change a behavior in a module. Since most of the capabilities of 

modules in NS3 are not necessary for this study and are out of the scope of the 

present work, this solution was discarded. However it is also indicated in the 

development documentation that remote controllers can be an option for future 

development projects and are welcomed by the developer team of NS3. 

4.2.4 Simulation Tools  

Since available simulation/emulation tools could not be used for the purpose of 

this study, the authors have developed a new simulator, which would serve for 

the purpose of the present work. 

In order to provide compatibility and ease of porting to NS3, initially C++ was 

chosen as the language of programming. A program consisting of over 2900 lines 

of C++ code is written to simulate a network with SDN capabilities. However since 

the garbage collection is not handled automatically in C++, especially when raw 

pointers are used, the program demonstrated unexpected crashes and memory 

leaks during the experiments.  

In order to demonstrate effects of the hybrid flow initiation mechanism, the 

authors re-wrote the whole simulator program from scratch in Python language, 

which provides automatic and efficient garbage collection mechanisms and has a 

less steep curve of programming and exception handling processes. This removes 

the risk of constant crashes during experiments and provides adequate 

performance metrics to test different scenarios.  
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The Python code for this simulation consisting of over 1500 lines of code using 

Python 2.7 codes is used to carry out experiments to evaluate our proposal in this 

study. 

As a platform on which the code will run, authors have chosen GNU/Linux Debian 

on a dual-core 2.6 Gigahertz CPU computer which uses 4 Gigabytes of RAM. Linux 

distribution is selected since it provides full utilization of multi-threading and 

concurrency and is easier to setup compared to UNIX and UNIX based operating 

systems. 

In Figure 14 the preliminary class diagram for the simulator indicates that the 

simulator is designed only to serve for the purposes of this study, however other 

types of uses can be derived based on its capabilities. 

 



44 
 

 

Figure 14: Simulator Class Diagram 

Simulation experiments aim to demonstrate following points: 

Using suggested hybrid mechanism in the present study for flow initiation, 

 Reduces the number of packets buffered in switches for flow initiation 

purpose, 

 Reduces the number of switches that buffer initial packets for flow 

initiation, 

 Reduces the average time for initial packets of unknown flows to reach 

their destination. 

During simulation following mechanisms are used: 
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 Overall architecture: Authors have put effort to model the characteristics 

and features of the simulator as close to real networks as it is useful for 

the purposes of the present study. Overall architecture of the simulator is 

as follows: 

o Node Types:  

 Hosts: nodes with one interface (NIC), one forwarding table 

(network route to and from the default gateway), sending 

and receiving echo applications and replying to ingress 

echo messages. 

 Switches: nodes with multiple interfaces, multiple flow 

tables, echo sending/receiving applications and controller 

communication applications. 

 Controllers: nodes that are inherently capable of switching, 

plus routing, flow modification, receiving interface statistics 

from switches, applications  for sending and receiving echo 

messages and communicating on control features with 

switches. 

o Interfaces: each node on network can install one or more network 

interface card in order to connect to network Links. Each interface 

has bandwidth parameter that can be set individually. 

o Interface Address: each interface can have two types of address: 

 Hardware address: can be assumed and be utilized as MAC 

address. 

 Software address: can be assumed and be utilized as IP 

address, IPv4, IPv6 or any arbitrary address type. 

o Network Links: each network link, similar to network cable, 

connects two Network Interface Cards to each other and has a 

random and configurable link delay capability. 
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o Packets: consist of: 

 Packet Header: contains customizable header space to 

indicate packet sender/receiver MAC and IP addresses, 

protocol type, etc. 

 Packet Payload: for different types of packet headers 

different types of payloads can be assigned. The type of 

payload in a packet is determined by the protocol property 

of the header of packet. Using packet header protocol type, 

receiving party can demultiplex and read packet contents 

(payload) 

o Simulator: creates topologies, starts/stops the simulation and 

determines the time of simulation. 

o Applications: each host, controller or switch have different 

applications for reading and/or sending different types of packets. 

o Flow Tables: Each switch has one or more flow tables which store 

rules as tuples on which the forwarding mechanism is based on. 

Each flow tale has list of Flows (rules). 

o Interface Statistics Packet: sent by each switch to the controller 

(described below), contains the list of interfaces present on a node 

and all of their properties such as the bandwidth and the peered 

interface on the other end of the link. 

 Controller Discovery Mechanism: Currently OpenFlow switches broadcast 

“connection-up” messages indicating their states as “Up” and wait until a 

controller receives, responds and binds with them (ONF O. N., OpenFlow 

Switch Specification Version 1.3.2 (Wire Protocol 0x04), 2013). This 

handshake, while being quite useful when the controller is present in the 

network, can generate unnecessary broadcast flood inside network and 

on the other hand the controller will need to discover shortest path and 
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statistics to each switch separately. Since the suggested flow initiation 

mechanism in the present study is agnostic to the underlying topology 

and controller discovery mechanisms, authors are suggesting a different 

controller mechanism in order to create an autonomous controller 

discovery method, authors have implemented following algorithm: 

o Upon initialization, switches stay in listening mode. 

o Upon initialization, controller broadcasts a packet containing the 

address of the controller and hops (intermediary nodes) to reach 

the controller (initiated by the controller as being zero). For 

convenience this packet is called the “controller beacon” in the 

present study. 

o Each switch, upon receiving the controller beacon checks to see if 

it has already received a controller beacon from another source.  

o If the switch has already received a beacon, checks if its 

“hops_to_controller” parameter is less than the newly received 

beacon’s “hops_to_controller” parameter. 

 If newly received beacon is from a closer source to the 

controller, the switch re-sets its controller access address 

and “hops_to_controller” parameters based on the new 

beacon, creates a new beacon with augmented 

“hops_to_controller” propery and broadcasts the beacon 

packet from all of its interfaces except the ingress port. 

 Otherwise, the switch discards the new beacon packet. 

 Network Discovery: Each switch, upon setting up its controller access 

parameters based on received beacons, sends an “interface_statistics” 

message out of its controller access interface (which was set as the ingress 

interface of the beacon packet). Since the other switch sitting on the 

other end of the line also knows which interface finally leads to the 
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controller, the “interface_statistics” packet finds its way to the controller. 

This way the controller also acquires knowledge of the whole network 

without the need for all switches to broadcast their status. Since all 

control access interfaces on all switches are best interface to access 

controller (determined by the controller discovery method described 

above), “interface_statistics” packets are directed to the controller via the 

shortest path without the need for any calculation. 

With the above features, authors have aimed to provide a solid and minimal way 

for the simulator to provide an experiment environment for purposes of the 

present study. 

4.2.5 Experiments 

The present part of our study aims to demonstrate the differences in three 

algorithms analyzed in the previous sections. In each experiment, the numbers 

provided are average of three iterations of execution.  

Experiment 1: Linear topology with 2 switches 

To begin with, a topology consisting of 2 switches and 2 hosts is considered as 

depicted in Figure 15. In experiments 1, two hosts in this topology send echo 

packets to one another. In each experiment, h1 attempts to send an echo packet. 

After the corresponding flow initiation mechanism takes place, the actual 

transmission begins. When h2 receives the echo packet, it immediately composes 

an echo reply packet and attempts transmitting it to the IP address, which sent 

the original echo packet. This transmission of echo reply packet will in turn be 

preceeded with a flow initiation process for its own flow type, source and 

destination co-ordinates. Latency, which is the time difference between the 

transmission of echo packet and the reception of the echo reply packet by h1, is 
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taken as the primary parameter to be considered for our experimental 

evaluation. Only 100 Mbps connections are used in this experiment 

 

Figure 15: Experiment 1 

 

 

The purpose of this experiment is to demonstrate that HYB and OFM are 

approximately equal in terms of latency in this topology. However, the PIM 

method (buffering initial packets in source switch) performs poorly when 

compared to other two methods of flow initiation. 
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The clear reason for this result to appear is that the destination is more quickly 

accessed by the controller, thus sending the Original Flow to the controller 

eliminates the time needed for waiting for flow initiation and retransmitting the 

echo packet once rules are installed by the controller. 

Experiment 2: Linear topology with 4 switches 

The purpose of this experiment is to demonstrate that by growing the network in 

size for linear topologies, the effect of HYB method magnifies and still the 

difference between the evaluation result for OFM and HYB methods stays close 

with a clear advantage on HYB method. The reason for this advantage will be 

discussed in section 14.2.6. Only 100 Mbps connections are used in this 

experiment. 

 

Figure 16: Experiment 2 
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As seen above while HYB and OFM methods outperform the PIM method, the 

difference between their performances has grown, which is expectable due to 

more distant sender and receivers of echo packet. 

Experiment 3: Linear topology with 8 switches 

The purpose of this experiment is to demonstrate the continuity in the advantage 

of utilizing OFM and HYB methods and to demonstrate the effect of growth in 

network size on this advantage. Only 100 Mbps connections are used in this 

experiment. 
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Figure 17: Experiment 3 

 

This experiment will also act as a base for further experiments where PIM 

presents more advantageous results when compared to OFM but still falls short 

when compared to HYB method. 
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As clearly seen above, the time difference between sending echo and receiving 

echo packets using HYB and OFM is almost half the value for PIM method. This 

growth expressively indicates that with growing number of nodes in a linear 

topology with a controller in middle, HYB and OFM methods yield a considerable 

gain with regards to the time needed for initial packets of unknown flows to 

reach their destinations. 

Experiment 4: Non-linear topology with multiple loops 

When single or multiple loops are introduced in the network, the effect of HYB 

method becomes bolder as it outperforms both OFM and PIM. 
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Figure 18: Experiment 4 

For this experiment additional links between pairs of switches are created to 

demonstrate the effect of HYB method incrementally. For this experiment both 1 

Mbps and 100 Mbps links are tested. 

Experiment 4-1: Only Link 1 active 
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Experiment 4-2: Link 1 and link 2 active 

 

Experiment 4-3: Link 1, 2 and link 3 active 
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Experiment 4-4: all 4 links active 

 

As a clear indication, all four experiments demonstrate that the HYB method is at 

least as fast as other two methods. 
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By activating intermediary links one by one, the topology changes. As a result, in 

each step, the sender and receiver of the echo packet get closer to each other 

and the controller falls far to the destination compared to the source in the last 

experiment (4-4). The expected result is that in first experiment PIM method to 

fall short and OFM and HYB to perform better, and in last experiment to observe 

that the PIM and HYB methods to outperform the OFM method, which is exactly 

what results yield in terms of the time needed for initial echo packets to reach 

destination. This gradual change in the topology is a direct lead to demonstrate 

to consistent efficiency of the HYB method. 

Experiment 5: Arbitrary topology with multiple loops 

In order to demonstrate the utilization comparison among flow initiation 

methods, this experiments takes an arbitrary network topology and performs 

various echo experiments between pairs of hosts. 

 

Figure 19: Experiment 5 

For purpose of demonstrating the buffer usage of the switches in topology in 

each flow initiation method, the topology in Figure 19 is created on the simulator. 

The exact interface connection of the topology above is demonstrated in Figure 
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20. Here the closely bound nodes represent interfaces of the same device, edges 

between them demonstrate internal routes and edges out of them demonstrate 

outer links to other switches. 

 

Figure 20: Experiment 5 , interface connections 

 

Here, the following experiment is performed: 

From all hosts in the network, random other IP’s are send an echo message. The 

choice and the time between echo messages are completely random to provide 

an arbitrary case for the experiment. 

Here is the buffer size plot for PIM method: 
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Figure 21: Buffer Size plot for all switches in network when PIM method is used 

Here is the buffer size plot for PIM method: 

 

Figure 22: Buffer Size plot for all switches in network when Hybrid method is used 
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As can be derived from the comparison between Figure 21 and Figure 22 , where 

each color of line indicate a switch in topology, in a 5 minute run, where hosts 

constantly echo random destinations: 

 In HYB method less number of switches are needed to buffer packets. 

 The maximum number of buffered packets reach 9 packets in PIM where 

HYB method tops only 4 packets. 

 In HYB method only few switches intensively use buffer, and much 

frequently empty their buffers leaving more space and less requirement 

for buffer space and less possibility of buffer overflow. 

Needless to say, OFM method does not allow switches to buffer packets, thus is 

not plotted. 

Following experiments are applied to demonstrate the efficiency of HYB method 

once again in initial packet delivery time, however this time in an arbitrary 

network. 

 

The average of number of events regarding sending (Blue color) and receiving 

(Green color) echo packets is plotted below: 
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Figure 23: Echo packet send/receive events in HYB method (1: cutoff 20 packets) 

Here is another experiment with a longer duration: 

 

Figure 24: Echo packet send/receive events in HYB method (average of 10 repetitions) 

Observing how closely the number of send-receive events follow each other in 

HYB method we can compare it to other flow initiation methods below: 
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Here is the same experiment for OFM method. 

 

Figure 25: Echo packet send/receive events in OFM method (10 repetitions) 

 

Here is the same experiment for PIM method: 

 

Figure 26: Echo packet send/receive events in PIM method (1 repetition) 
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Figure 27: Echo packet send/receive events in PIM method (10 repetitions) 

 

As can be derived from the above comparison, HYB method has a closer number 

of sent and received packets in each time instance and the time delay between 

the moments when the number of sent packets and receive packs are equal (all 

packets have arrived to the destination) is considerably less than OFM method 

and PIM methods. 

 

 

 

4.2.6 Findings 

From experiment 1 to 4 it can be clearly derived that hybrid flow initiation 

method in all cases has less or equal latency when compared to other two 

methods. 
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A comment that is worth mentioning is that in experiment 4 as more links are 

added that shortens the path between hosts, PIM and HYB methods’ 

performance gets closer and when less number of such links are activated 

meaning that hosts are further apart from each other OFM performance is almost 

the same as the other two. This is expected because when hosts are close to each 

other OFM is not a desirable flow initiation method.  

During experiment 5 authors concluded that the HYB method yields a 

considerable enhancement over buffer size and buffer usage in networks when 

compared to the PIM method. It is also evident from the comparisons between 

the  echo send-receive time analysis of all three methods, HYB method of flow 

initiation on average provides means that enable initial packets of unknown flows 

to reach their destination quicker. 

 

 

4.3 DISCUSSION 

4.3.1 Economic influences 

The present study does not aim to analyze monetary and economic implications 

of suggested methods. Production or configuration of switch-capable controller 

machines, bandwidth expenses and buffer expenses will all have influence on the 

selection of the optimal choice. 

4.3.2 Implications of controller platforms with switch capabilities 

As was discussed briefly in section 3.2.3 a platform with high speed switching 

capabilities and controller functionalities might at first seem like taking a step 

backwards to conventional networks. However, this study does not suggest 

coupling control and data planes in a single device again. Instead, two distinct 
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planes of the suggested platform will continue negotiating still based on SDN 

principles. The co-existence of those two functionalities on a single device, 

however will provide a communication speed that is incomparable to remote 

controller and switches over the network. 
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5 CHAPTER FIVE 

5.1 CONCLUSION 

Software Defined Networking as a considerably new principle has evolved the 

way networks operate and has brought unprecedented innovation pace into the 

field of computer networks. However similar to almost any new concept, it has its 

own challenges. 

One of the challenges unique to Software Defined Network architecture is to 

reduce the time needed for flow initiation for new arrival packets. For this 

challenge, the present study proposes a hybrid solution which takes advantages 

of previously implemented algorithms and uses the internal network topology 

knowledge of controllers to decide when to utilize the advantageous one to 

achieve an optimal flow initiation time. 

This study has also argued that using service centric approach to resolve multiple 

controller challenges is as applicable as any other distributed service over the 

network.  

Although proposed concepts are intuitively logical, simulations are conducted to 

support findings and arguments of this study in practice. 

The simulation experiments solidly conclude a sustaining and consisting 

advantage when the suggested Hybrid flow initiation method is utilized. Hybrid 

method provided less need for buffer and also quicker packet arrival time during 

flow initiation in an SDN. 
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When Hybrid method is used, the controller provided rules to switches prior to 

their request to ask for one of these flow initiation methods: 

 For farther destinations, don’t buffer packet, send the original flow to the 

controller unless told otherwise later. 

 For closer destinations, buffer the packet, wait for flow initiation to 

conclude. 

This way switches could save time during flow initiation and used less buffer size 

to hold initial packets. 

The implications of this suggested method is: 

 Less buffer expenses and resources needed in switches. 

 Quicker results on flow initiation process. 

 Less buffer overflow possibilities and thus less packet transmission 

failures. 

 

5.2  FUTURE WORKS 

NetBrain: The author will enhance the study over the possibility and implications 

of prototyping a platform on which controller functions communicate with a high 

speed switch local to the device. This platform for its analogy to function as the 

brain in neural systems can be seen as the Network Brain. 

Technological requirements, Hardware and Software design aside, involve 

utilization of new methods and algorithms as well as mechanisms currently used 

in computer science, to enhance the overall reliability and performance of 

software defined networks. 
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The code for the simulation will be optimized for further use, and will be put 

online as an open source project to serve for other researches in SDN area. 
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