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ABSTRACT 

 

 

OPTIMUM DESIGN OF STEEL STRUCTURES  

VIA ARTIFICIAL BEE COLONY (ABC) ALGORITHM AND SAP2000 

 

 

 

Eser, Cengiz 

M.Sc., Department of Civil Engineering 

Supervisor: Assoc. Prof. Dr. Oğuzhan Hasançebi 

 

February 2014, 81 pages 

 

 

 

Over the past few years, metaheuristic optimization techniques have received 

considerable attention from engineering researchers. Under metaheuristics, swarm 

intelligence based algorithms have been used in the solution of various structural 

optimization problems where the main goal is to minimize the weight of structures 

while satisfying all design constraints imposed by design codes. In this study, 

artificial bee colony algorithm (ABC) is utilized to optimize four truss structures 

from real life and literature. ABC algorithm is one of those popular techniques which 

has proved to be effective when solving combinatorial and nonlinear optimization 

problems such as scheduling, routing, financial product design and other problem 

areas. In this thesis, the results of the ABC algorithm are compared with the results 

of other optimization algorithms from the literature to investigate the use and 

efficiency of this technique for solving steel truss design problems. Artificial bee 

colony algorithm is computerized in VB.NET platform to develop software called 

ABC-SOP2014. ABC-SOP2014 is capable to interact with well-known structural 
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analysis and design software SAP2000 through the Open Application Programming 

Interface (OAPI) for size optimum design of steel structures. In this study the 

program is used only for discrete size optimization of steel truss structures with 

penalty function implementation aiming minimum weight according to design 

limitations imposed by AISC-ASD (Allowable Stress Design Code of American 

Institute of Steel Construction) or limitations specified for the problem without any 

code requirement. The results reveal that the ABC algorithm can be used effectively 

as an optimization technique for truss structures, resulting significant savings. 

Key Words: Artificial Bee Colony, Structural Optimization, Size Optimization, 

Discrete Optimization, Steel Truss Structures 
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ÖZ 

 

 

ÇELİK YAPILARIN YAPAY ARI KOLONİSİ (ABC) ALGORİTMASI VE 

SAP2000 İLE OPTİMUM TASARIMI 

 

 

 

Eser, Cengiz 

Yüksek Lisans, İnşaat Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Oğuzhan Hasançebi 

 

Şubat 2014, 81 sayfa 

 

 

 

Son birkaç yılda, metasezgisel optimizasyon teknikleri mühendislik 

araştırmacılarının önemli ölçüde dikkatini çekmiştir. Metasezgisel teknikler altında, 

sürü zekası tabanlı algoritmalar, temel amacı tasarım kodlarıyla dayatılan tüm 

tasarım kısıtlamalarını sağlarken yapıların ağırlığını en aza indirmek olan çeşitli 

yapısal optimizasyon problemlerinin çözümünde kullanılmıştır. Bu çalışmada, yapay 

arı koloni algoritması (ABC) , gerçek hayat ve literatürden alınan dört kafes sistem 

yapısını optimize etmek için kullanılmaktadır. ABC algoritması, zamanlama, 

rotalama, finansal ürün tasarımı ve diğer problem alanları gibi kombinasyonel ve 

doğrusal olmayan optimizasyon problemlerini çözmek için etkili olduğu kanıtlanmış 

bu popüler tekniklerden biridir. 

Bu tezde, ABC algoritmasının sonuçları, çelik kafes tasarım problemlerini çözmek 

için bu tekniğin kullanımı ve etkinliğini araştırmak amacıyla, literatürdeki diğer 

optimizasyon algoritmalarının sonuçları ile karşılaştırılmıştır. Yapay arı koloni 

algoritması ABC-SOP2014 olarak adlandırılan bir yazılımı geliştirmek üzere 
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VB.NET platformunda programlanmıştır. ABC-SOP2014 çelik yapıların boyutu 

optimum tasarımı için tanınmış yapısal analiz ve tasarım yazılımı SAP2000 ile Açık 

Uygulama Programlama Arayüzü ( OAPI ) aracılığıyla etkileşim yeteneğine sahiptir. 

Bu çalışmada program AISC - ASD (Amerikan Çelik Konstrüksiyon Enstitüsünün 

Emniyet Gerilmesi Tasarım Kuralları)’nın dayattığı tasarım kısıtlamalarına veya 

herhangi bir kod gereksinimi olmadan problemin kendisince belirtilen sınırlamalara 

göre, ceza fonksiyonu uygulanması ile asgari ağırlığı amaçlayarak sadece çelik kafes 

yapıların ayrık boyut optimizasyonu için kullanılmıştır. Sonuçlar, ABC 

algoritmasının çelik kafes yapılar için önemi tasarruflarla birlikte bir optimizasyon 

yöntemi olarak etkin bir şekilde kullanılabileceğini ortaya koymaktadır.  

 

 

Anahtar Kelimeler: Yapay Arı Kolonisi, Yapısal Optimizasyon, Boyut 

Optimizasyonu, Ayrık Optimizasyon, Çelik Kafes Yapılar
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

The concept of optimization is a basic part of our daily lives. To increase the 

company profit implies an objective of economy or to produce the best quality of 

life with the resources available is an objective of engineering. The tool to be used to 

achieve the best in a timely and economical way is optimization.  

There have been developed numerous optimization techniques for optimum 

design of structural systems. With the availability of computer codes, new and more 

sophisticated optimization techniques have been emerged against the conventional 

methods like optimality criteria, dynamic programming and steepest descent. 

Structural optimization with meta-heuristic search methods have become more 

popular as a consequence of acquiring extensive accomplishment in dealing with a 

variety of practical and complex optimization tasks, where it is nearly impossible to 

come up with  the optimum solution by traditional deterministic design procedures. 

These new meta-heuristic optimization techniques developed during last three 

decades enable to engineers and designers find the most proper and efficient solution 

amongst thousands of design alternatives. 

 

1.1 Truss Structures 

Truss structures can be used in buildings as support to roofs and floors. 

Moreover, they can be also used for rail and road bridges or for cranes. A truss 

structure consists of triangular units made up of connections of straight and slender 

bars. Because a truss is not able to transfer moments, bars are subjected to only axial 

compressive or tensile forces. Cross-sectional area is a basic property to characterize 

a truss element to resist these axial forces apart from material properties like 
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modulus of elasticity. The length of a truss member can be determined by the end 

node coordinates. 

A planar truss element has two local and four global dof, a space truss element 

has also two local dof, whereas it has six global dof. 

Trusses offer efficient solutions where material use is considered. However, 

fabrication and maintenance costs must be taken into account. Therefore, a simple 

design with maximum repetition is preferred. 

 

1.2 Artificial Bee Colony (ABC) Algorithm 

Computational researchers have been greatly interested in the natural sciences to 

model and solve complex optimization problems by employing nature- and bio-

inspired algorithms. This is mainly due to complexity and/or non-linearity of the 

problems. Classical algorithms generally require making several assumptions. 

Researchers fascinated by the swarm behavior in nature such ant colonies, honey 

bees, bird flocking, animal herding, and many more, have developed population 

based algorithms such as Ant Colony Optimization, Bee Colony Optimization, 

Particle Swarm Optimization, Fish Schooling, etc. These algorithms have been 

successfully applied to solve computational, complex and non-linear problems from 

different disciplines. 

Swarm Intelligence (Beni and Wang, 1989) is the area of Artificial Intelligence 

that is based on study of actions in various decentralized systems. Swarm 

intelligence (Bonabeau et al. 1999) is the part of artificial intelligence on the basis of 

studying actions of individuals in various decentralized systems. These decentralized 

systems (multi agent systems) are composed of physical individuals (robots, for 

example) or “virtual” (artificial) ones that communicate among themselves, 

cooperate, collaborate, exchange information and knowledge and perform some 

tasks in their environment.   

Few algorithms from the swarm intelligence class, inspired by bees’ behavior, 

appeared during the last decade. An excellent survey of the algorithms inspired by 

bees’ behavior in the nature is given in (Baykasoglu et al. 2007). 

The artificial bee colony optimization algorithm belongs to the class of 

stochastic swarm optimization methods. The proposed algorithm is inspired by the 
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foraging habits of bees in nature. The communication systems between individual 

insects contribute to the configuration of the collective intelligence of the social 

insect colonies. 

Artificial bee colony (ABC) algorithm has been widely used for all types of 

optimization problems in various civil engineering disciplines and other disciplines, 

since it has been introduced originally by Karaboga (2005) for solving numerical 

optimization problems based on simulating real bees social behavior, foraging 

behavior as a heuristic. In this study it is aimed to implement ABC algorithm to 

discrete size optimization of real size steel truss structures, which leads to minimum 

weight design. Details of the ABC algorithm are discussed in chapter 4. 

 

1.3 Software Development 

A computer program called ABC-SOP2014 is developed specially for this study 

as a size optimization tool that is capable of finding the appropriate combination of 

ready sections with optimum cross-sectional areas for the minimum weight design of 

steel truss structures using artificial bee colony algorithm. The software developed 

by using VB.NET programming language interacts with SAP2000 v14 through Open 

Application Programming Interface (OAPI), which is released by Computers and 

Structures, Inc. Artificial Bee Colony Algorithm is embedded in ABC-SOP2014 

program to implement the optimization procedure. ABC-SOP2014 is a user-friendly, 

easy to use program, which enables users to perform structural optimization under 

various constraints such as stress, stability and displacement imposed by problems or 

by specific design codes. The optimization problem in this study is called as discrete 

structural optimization, since the cross-sections of steel members can be selected 

only from a prescribed discrete set of values. 

 

1.4 Outline of the Thesis 

Chapter 2 deals with the basic concepts of optimum structural design. After 

classification of the design process, elements and mathematical formulation of 

structural optimization are described. Types of the optimization tasks and 

classification of numerical optimization techniques are outlined. In Chapter 3 is 

mathematical statement of the structural optimization problem for the structural 
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model is defined, in other words the objective function and the constraints are 

described in details. In chapter 4, the literature survey is done firstly, and then swarm 

intelligence is introduced. Consequently, the main principles of artificial bee colony 

(ABC) algorithm is presented that is used in this study as optimization method. Next 

constraint handling method is outlined. Consequently, a sample problem is solved by 

ABC algorithm and by four classical methods comparatively. Thereafter, the 

optimization program ABC-SOP2014 written in VB.NET programming language 

and developed to find the optimum weight for truss structures by means of ABC 

algorithm is introduced. The main features, capabilities and algorithm of the software 

are also expressed. In chapter 5, four numerical test examples from literature and the 

results obtained by ABC-SOP2014 using ABC algorithm are studied and discussed 

in details. Chapter 6 presents the conclusion, recommendations based on the results 

of the study and issues of future work.  
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CHAPTER 2 

 

 

STRUCTURAL OPTIMIZATION 

 

 

 

2.1 Introduction 

The optimization concept became popular with significant progress in 

capabilities of computers as well as structural analysis and optimization techniques in 

recent decades. Minimum weight optimum design of basic aircraft structural 

components such as columns and stiffened panels, subject to compressive loads was 

initially developed during World War II (Kirsch, 1993). After Schmit offered in 1960 

a comprehensive statement of the use of mathematical programming techniques to 

solve the non-linear-inequality-constrained problem of designing elastic structures, 

his work indicated the feasibility of coupling finite element analysis and nonlinear 

mathematical programming to create automated optimum design capabilities for 

structural systems. Today most engineers who design structures employ complex 

general-purpose structural analysis software and the major challenge for researchers 

in structural optimization is to develop user-friendly methods that are suitable for use 

with such software packages. Another major challenge is to reduce the high 

computational cost of complex real-life problems. 

Haftka & Gürdal (1992) paraphrases Douglas Wilde’s optimal design definition 

as “being the best feasible design according to a preselected quantitative measure of 

effectiveness”. Recently, Christensen & Klarbring (2008) defined structural 

optimization as “the subject of making an assemblage of materials sustain loads in 

the best way.” Both of the definitions address the term “best”, therefore an objective 

should be defined to specify the best. To design a structure with best performance, 

we can make the structure as stiff as possible or as insensitive to buckling or 

instability as possible, or to obtain the lightest structure, we could minimize the 
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weight. Structural optimization problem can be formulated by picking one of the 

preselected quantitative measures like weight, stiffness, critical load, stress, 

displacement and geometry as an objective function that should be minimized or 

maximized using some other measures as constraints. 

Functionality, economy and esthetics can also be considered as the objective in 

the design process. 

This study addresses the solution of constrained optimization problems of steel 

truss structures with stress, stability, displacement and some other constraints by 

using an effective optimization algorithm called artificial bee colony (ABC) 

algorithm, by determining the cross-sectional areas of the structural members for 

minimizing the weight of a given structure. 

In this chapter the design process and the elements of the optimization in the 

structural design process are introduced, to provide a general understanding on the 

subject. Mathematical formulation of nonlinear constrained optimization problem is 

also given. Then, the classification of structural optimization tasks are defined. 

 

2.2 The Design Process 

The design process may be divided into four stages as follows (Kirsch, 1981): 

1. Functionality: The required lanes on a bridge, the required space in an 

industrial building, loads expected to be carried on a truss bridge etc. are 

examples of functional requirements, which are often established before 

entering the design process. 

2. Conceptual design: It is the critical part of the design stage, because the 

designer should select the overall topology, type of structure, and 

materials by his ingenuity, creativity, and engineering judgment to serve 

the structural systems functional purposes. For a bridge deciding whether 

it should be a truss bridge, an arch bridge or perhaps a cable-stayed 

bridge with selected materials is an example to conceptual design. 

3. Optimization: Within the selected concept considering desired 

constraints, satisfying the functional requirements achieving the optimal 

design. For a bridge it would be selection of the best geometry of a truss 

or the cross-sections of the members or minimizing the cost by using 
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least possible amount of material. Utilizing computer with optimization 

algorithms and software is most suitable to this step. 

4. Detailing: After completion of optimization stage, results must be 

checked and modified if necessary. Engineering judgment, experience 

and decision-making process is necessary at this stage. This stage is 

usually controlled by market, social and esthetic factors. 

Iterative procedures for the four stages are often required to find an acceptable 

final design. At the end, even the conceptual requirements are fulfilled, the final 

design may not be optimal. At that point, optimization techniques and computer 

aided design utilizing finite element method based software become the helpful and 

effective tools to make the best possible decision.  

 

2.3 Elements of Optimization 

 

2.3.1 Design Variables 

Design variables are the parameters used in the formulation of the objective 

function to define the structural system. They can be size design variable related with 

cross-sectional quantities like area of a truss member, the moment inertia of a 

flexural member, area of a beam, and thickness of a plate or a shell. The coordinates 

of joints, the location of supports, and the span lengths are examples for 

configurational or geometric layout variables. Some uneconomical members are 

eliminated during the optimization process. Therefore, some design variables are 

defined as integer variables to declare the existence or absence of a structural 

element. For example a truss member joining two nodes which is limited to the 

values 1 and 0 is an integer topological variable. 1 represents the existence of 

member and 0 represents the absence of the member. Number of elements in a 

grillage system, number of spans in a bridge or number of columns supporting a slab 

are some other examples of topological variables. 

Besides integer variables, design variables can be also continuous or discrete. 

Continuous variables are selected between lower and upper bounds of the variable, 

whereas discrete variables are selected from a prescribed set of values. The selection 
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of the design variables must be consistent with the structural model and optimization 

algorithm for the success of the optimization process. 

 

2.3.2 Objective Function 

The objective function is a criterion to determine the quality of the solution and 

the effectiveness of the design. For that reason, a great deal of care, judgment, and 

experience are required for determining the objective function. The common 

engineering objectives involve minimization of overall cost, or minimization of total 

weight, or maximization of mechanical quality, or maximization of net profit, or 

others. In some cases there could be more than one objective that the designer may 

want to optimize simultaneously, called multiobjective or multicriterion 

optimization. However, multiobjective optimization algorithms are more complex 

and computationally expensive. Therefore, in most cases single criterion 

optimization is preferred and other objectives are included as constraints. 

The most common objective in structural optimization applications is the weight 

minimization of the structure due to fact that is readily quantified, but the minimum 

weight concept is not always the cheapest. When we consider the interaction of 

design and technology, we should not forget that cost is practically important than 

the weight, but obtaining the objective function for the cost of the construction is 

more complicated, since it includes parameters such as cost of materials, fabrication, 

transportation, operating and maintenance cost. These factors have direct effect on 

the sizes, shape or topology of the structure. Furthermore, displacements, average 

stiffness of the structure, maximum stress and strain, buckling load, collapse load, 

vibration frequencies or any combination of these can be used as objective function. 

 

2.3.3 Constraints 

The special conditions that must be satisfied in order to produce a feasible 

design are called constraints. The set of solutions that satisfy all constraints is called 

the feasible design. Constraints may be categorized in two groups in structural 

optimization problems: side (design) constraints and behavior constraints. Side 

constraints arise from various considerations such as functionality, fabrication, or 

aesthetics. These constraints are generally related to the lower and upper bounds of 
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design variables. Examples of side constraints include minimum value of a cross-

sectional dimension, minimum thickness of a plate, minimum slope of a roof 

structure, maximum height of a truss. 

Contrary to side constraints, the behavioral constraints derive from mechanical 

response of the structural system under application of loading and impose restrictions 

on the behavior or performance of the system according to the provisions of the 

design codes such as displacement, stress, strength, cracking. Both side and behavior 

constraints may be formulated in the form of inequalities and equalities. 

A problem stated with some constraints is called constrained optimization 

problem, whereas, problems do not include any limitations are called unconstrained 

optimization problems. In some cases, constrained optimization problems are 

converted to unconstrained optimization problems by means of penalty functions or 

other constraint handling methods. 

 

2.3.4 Design Space 

Design space is a region or domain that is described by design variables in the 

objective function. Each design variable is one dimension in a design space, where 

any particular set of variables is indicated as a point.  A design space with n variables 

is a n-dimensional hyperspace. A design which satisfies all the constraints is a 

feasible design and the set of all feasible designs form the feasible region. In Fig. 2-1 

the design space of a three bar truss problem is illustrated, which was first presented 

by Fox in 1960. 

 

2.4 Mathematical Formulation 

The nonlinear constrained optimization problem can be stated mathematically as 

follows: 

 

Find: 

   

𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑁]𝑇   design variables  (2.1) 
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Figure 2-1: Three-bar truss problem and design space (Adapted from Schmit, 

1981) 

 

 

 

To minimize: 

  

𝑚𝑖𝑛 𝑓(𝒙)     objective function   (2.2) 

 

Subject to: 

 

𝑔𝑗(𝒙) ≤ 0  𝑗 = 1, … , 𝐽 inequality constraints 

ℎ𝑘(𝒙) = 0  𝑘 = 1, … , 𝐾 equality constraints            (2.3) 

𝑥𝑖
(𝑙)

≤ 𝑥𝑖 ≤ 𝑥𝑖
(𝑢)

 𝑖 = 1, … , 𝑁 side constraints 

 

 

2.5 Classification of the Structural Optimization Tasks 

Structural optimization tasks can be classified according to type of design 

variables, since the applicable solution strategies are also chosen according to them 

as shown in Fig. 2-2 (Schumacher, 2013): 
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Figure 2-2: Classification of structural optimization tasks according to design 

variables (Schumacher, 2013).  

 

 

 

2.5.1 Size Optimization 

In size optimization problems, the goal may be to find the optimal thickness 

distribution of plate and shell segments or the optimal member cross-sectional areas 

of bars in a truss structure. The optimal thickness distribution minimizes (or 

maximizes) a physical quantity such as the peak stress, deflection, etc. while imposed 

constraints on the state and design variables are satisfied. The thickness of a plate or 

the cross-sectional area of a bar is the design variable and the state variable may be 

their deflection. The main feature of the sizing problem is that the layout of the 

structure and the state variables are prescribed and fixed throughout the optimization 

process. A size optimization problem for a truss tower structure is shown in Fig. 2-3. 
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Figure 2-3: Size optimization of a steel tower structure 

 

 

 

2.5.2 Shape Optimization 

In shape optimization, the aim is to find the best possible geometrical 

arrangement of the structural members. The optimum node locations in a finite 

element model of the structure has to be determined, without changing the 

connectivity of structural elements. 

In the engineering field, the first shape optimization problem was defined by 

Galileo in 1638 at his famous book titled ‘Dialogues Concerning Two New 

Sciences,’ where he used the simple bending theory of beams considering the 

uniform strength criterion to find the optimum shape of a cantilever beam with 

constant width and under tip loading as given in Fig. 2-4. He was often credited with 

the first published theory of the strength of beams in bending, but it was discovered 

in 1967 in the National Library of Spain that this theory was initiated by Leonardo da 

Vinci in his work “The Codex Madrid” published in 1493. Galileo proved that under 

imposed constraints, the optimum shape of a cantilever beam should be parabolic. 

This statement can be recognized as a fundamental model for fully stressed design 

(FSD) concept. 
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Structural optimization methods have been implemented into commercial finite 

element programs to treat large shape optimization problems. However, considerable 

manual efforts to define design variable and added constraints, and to integrate with 

CAD system and optimizer are vitally necessary. 

 

 

 

 

 

Figure 2-4: Shape optimization defined by Galileo in 1638 ( Crew and Salvio, 

2010)  

 

 

 

2.5.3 Topology Optimization 

The topology optimization method solves the most general structural 

optimization problem of distributing a given amount of material freely in the design 

space such that performance is optimized (Sigmund, 2000). Before topology 

optimization, the physical size and the shape and the connectivity of the structure, 

which define together the topology of the structure are unknown. In 1904, Michell 

derived the mathematics behind structures of least volume, or optimal structures and 

his work provided a basis for topology optimization of structures. The computations 

for topology design is shown in Fig. 2-5. 
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Topology optimization can be classified as geometrical topology optimization 

and material topology optimization as shown in Fig. 2-6. 

 

 

 

 

 

Figure 2-5: The flow of computations for topology design (Bendsoe and 

Sigmund, 2003) 

 

 

 

 

 

Figure 2-6: Types of topology optimization, (a) geometrical (bubble-method), 

(b) discrete material distribution, (c) continuous material distribution (Maute, 1998) 
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Figure 2-7: Mimicking of actual industrial design process. Rib structure in front 

part of airplane wing at EADS (courtesy of EADS Military Aircraft)  

 

 

 

As shown in Fig. 2-7, after topology design in aeronautics for the design of 

integrally stiffened machined ribs for the inboard inner fixed leading edge of the new 

airliner, the Airbus 380, a  new type of structure was devised for the ribs which gave 

a weight benefit against traditional (up to 40%) and competitive honeycomb / 

composite designs. 

 

2.5.4 Selection of Material Properties 

Materials can be selected as steel, aluminum, magnesium, composite etc. 

 

2.5.5 Selection of Construction 

Construction type should be selected as plate girder, truss-like structure or 

composite structure etc. 
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2.6 Optimization Methods 

Optimization methods can be categorized in various ways, but in a very general 

way they can be classified in two categories as function and parameter optimization 

methods. 

In function optimization, the problem under consideration is formulated by a 

number of unknown functions and through the optimization process, where the main 

goal is to find the optimum form of these functions. For function optimization 

methods such as differential calculus, the calculus of variations, etc. are used. On the 

other hand, parameter optimization methods search the optimum values of design 

variables for the specified problem. Mathematical programming, quadratic 

programming, methods of feasible directions, optimality criteria (OC), and 

metaheuristic methods are some subsets of parameter optimization methods. 

Finally, a classification of various numerical optimization methods is shown in 

Fig. 2-8.  
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CHAPTER 3 

 

 

PROBLEM STATEMENT 

 

 

 

3.1 Introduction 

The objective of this study is to investigate the use and application of ABC 

algorithm in the realm of structural optimization, and analyze the performance of 

ABC algorithm. The investigations will unveil the capabilities and potentials of this 

algorithm in practical problems from structural optimization literature and provide a 

guidance to potential users with object-oriented software implementation ABC-

SOP2014. 

This chapter describes the mathematical statement of the structural optimization 

problem for the structural model based on the formulation and definitions 

aforementioned in Chapter 2. Constraint implementation is done according the 

provisions of American Steel Institute of Steel Construction-Allowable Stress Design 

(AISC-ASD) code specifications. 

 

3.2 Design Variables 

Mostly in practical sizing design optimization problems of steel structures, the 

cross-sectional areas of structural members are chosen from a list of standard 

sections available on the market such that the final design satisfies the design 

constraints determined by technical specifications of standards. Consequently, the 

cross-sections of structural steel members refer to discrete sizing design variables 

and the optimization process is called as discrete structural optimization. 

The optimum design procedure begins by first deciding the initial values of area 

variables. They can be selected in any way; feasible or infeasible, for simplicity 

equal to each other or not, obtained from a structural design software or from 
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literature, even just by engineering judgment or design experience. Benchmark 

problems solved have shown the algorithm achieves promising results with all these 

initial design point selections. 

During modeling the structural optimization system, members are grouped 

strategically to reduce the population size and computational cost, as well as 

fabrication time. For small systems each member cross-section can be handled as 

design variable without grouping.  

A vector of discrete integer values I corresponding to the sequence numbers of 

standard steel sections in a given section table for Nd members of the structural 

system  

  

𝚰𝑇 = [𝐼1, 𝐼2, … , 𝐼𝑁𝑑
]                                     (3.1) 

 

constitutes the design space for each member group. A cross-section from vector I is 

assigned randomly to each member group in every iteration step. After Ng iteration 

the assignment procedure is completed for one step. Ng represents total number of 

member groups. 

 Mathematically, design variables can be formulated as a vector of cross-

sectional areas A for each member group: 

 

𝐀𝑇 = [𝐴1, 𝐴2, … , 𝐴𝑁𝑔
]                                   (3.2) 

 

3.3 Objective Function 

In this thesis, the constrained weight (W) minimization of steel structures is 

defined as the objective function as formulated below: 

 

1 1

g k
N N

k m m

k m

Wm n Ai L
 

                                     (3.3) 

 

where W is weight,  Ng is  the total number of member groups in the structure, Ak is 

cross-sectional area of the kth member group, Nk is number of members in member 
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group k and ρm, Lm are unit weight and length of the mth member in the kth member 

group, respectively Saka (1990). 

 

3.4 Constraints 

Typically in any optimization problem, the design variables accordingly the final 

solution are controlled by the constraints imposed on the problem. In the present 

study, constraints are defined according to the provisions of AISC-ASD (1989) 

design code for pin-jointed truss type structures. 

 For truss structures, constraints can be shown in general form as follows: 

 

𝑔𝑚 =
𝜎𝑚

(𝜎𝑚)𝑎𝑙𝑙
− 1 ≤ 0    ;      𝑚 = 1, … , 𝑁𝑚                                                 (3.4) 

 

𝑠𝑚 =
𝜆𝑚

(𝜆𝑚)𝑎𝑙𝑙
− 1 ≤ 0      ;      𝑚 = 1, … , 𝑁𝑚                                                (3.5) 

 

𝛿𝑗,𝑙 =
𝑑𝑗,𝑙

(𝑑𝑗,𝑙)
𝑎𝑙𝑙

− 1 ≤ 0      ;      𝑗 = 1, … , 𝑁𝑗                                                    (3.6) 

 

In Eqns. (3.4-3.6), the functions gm , sm and δj,l are referred as constraints being 

bounds on stresses, slenderness ratios and displacements, respectively; σm and (σm)all 

are the computed and allowable axial stresses for the mth member, respectively; λm 

and (λm)all are the slenderness ratio and allowable value for mth member, 

respectively; Nj is the total number of joints; and dj,l , and (dj,l )all, are the computed 

displacements and allowable displacement, respectively; lastly, l and j represent 

direction and joint id, respectively. 

The allowable tensile stress for the members subjected to axial tension force 

shall not exceed the values calculated in Eq. (3.7): 

 

(σt)all=0.60Fy (on the gross area) 

       (3.7) 

(σt)all=0.50Fu (on the effective net area)  
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where Fy is the yield strength and Fu is the ultimate tensile strength of the material. 

The allowable tensile stress of structural members under axial compression force 

is calculated considering the two possible failure modes of the members known as 

elastic and inelastic buckling. 
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The maximum slenderness ratio is limited to 300 for tension members, and it is 

recommended to be 200 for compression members. Hence, the design constraints 

related with slenderness for structural members under axial tension or compression 

can be expressed as in Eqn. (3.11) 

 

                            300 m m
m

m

K L

r
   (for tension members)  

                                                                                                        (3.11) 

                                200m m
m

m

K L

r
    (for compression members) 

In Eqns. (3.8-3.11), E represents the modulus of elasticity, and Cc stands for critical 

slenderness ratio parameter. Km is the effective length factor and is taken as 1 for all 

truss members, Lm is the length of the mth member, and rm represents minimum radii 

of gyration. 

where, Km , Lm and rm are mentioned before.  
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3.5 Constraint Handling Procedure 

In this thesis, the constraints are handled by integrating a penalty function term 

into the objective function. The constraint integrated objective function is defined to 

evaluate the feasible and infeasible designs, which proportionally penalizes the 

designs with respect to the sum of constraint violations as shown in Eqn. (3.12). 

 

Φ = 𝑊 [1 + 𝛼 ∑ (∑ 𝑔𝑚
𝑁𝑚
𝑘=1 + ∑ 𝑠𝑚

𝑁𝑚
𝑘 ) + 𝛼 ∑ ∑ 𝑑3

𝑗=1

𝑁𝑗

𝑗=1 𝑗,𝑘

𝑁𝑔

𝑖=1
]      (3.12) 

 

In Eqn. (3.12), Φ represents the fitness score which is the penalized objective 

function and 𝛼 is referred to as the penalty coefficient to be used to adjust the 

intensity of penalization. The details of constraints will be presented in section 4.6. 
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CHAPTER 4 

 

 

ARTIFICIAL BEE COLONY (ABC) ALGORITHM AND SOFTWARE 

DEVELOPMENT FOR STRUCTURAL OPTIMIZATION 

 

 

 

4.1 Introduction 

Artificial bee colony algorithm has been widely used for all types of 

optimization problems in various civil engineering disciplines and other disciplines, 

since it has been introduced originally by Karaboga (2005) for solving numerical 

optimization problems based on simulating real bees social behavior, foraging 

behavior as a heuristic. 

Further modifications and improvements of the ABC algorithm have been 

carried out by Karaboga and Basturk (2007a). The main outlines of the ABC 

algorithm have been presented by Karaboga and Basturk (2007b). Later on, ABC 

algorithm has been applied by Akay and Karaboga (2009) on various numerical test 

functions and the results have been compared with other well-known optimization 

algorithms such as the GA, PSO and HS. Recently, a modified version of ABC 

algorithm for constrained optimization problems has been proposed by Karaboga and 

Akay (2011). 

In this study it is aimed to implement ABC algorithm to discrete size 

optimization of real size steel truss structures. To find the minimum weight of steel 

structures by most appropriate cross-sections of structural elements, while satisfying 

the constraints imposed to the structure, software called ABC-SOP2014 has been 

developed. The developed software provides minimum weight design of both truss 

and frame structures, but in this study it is applied only to truss structures. 

In this chapter the literature survey is done firstly, and then swarm intelligence is 

introduced. Consequently, artificial bee colony (ABC) algorithm is discussed 
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broadly. Thereafter, the constraint handling method is presented. An example two-

bar benchmark problem is solved to clarify the use of artificial bee in structural 

optimization comparing the results with other four optimization techniques. Finally 

the details of the developed structural optimization software have been overviewed.  

 

4.2 Literature Survey 

In the literature, there are a huge number of studies about Artificial Bee Colony 

(ABC) Algorithm ranging from normal equations to structural design problems in a 

variety of engineering, finance and other areas. In the following, the applications of 

the technique in structural optimization and civil engineering are reviewed first.  

 

4.2.1 Studies Related to Structural Optimization 

A modified ABC (MABC) algorithm was proposed by Hadidi et al. (2010) for 

size optimization of planar and space truss structures under stress, displacement and 

buckling constraints by applying the concept of probability to modify neighborhood 

search method and by modifying the onlooker and scout phase. Their results 

outperformed the classic ABC algorithm in all benchmark problems. 

Sonmez (2011a) integrated an adaptive penalty function approach (ABC-AP) 

into the ABC algorithm in order to minimize the weight of steel truss structures. 

Constraints were handled with the adaptive penalty function method within ABC to 

get rid of the drawbacks of Deb’s selection method and the static penalty function 

methods. The efficiency of the ABC-AP for optimum design of truss structures was 

studied in five test problems up to 200 elements with fixed-geometry and continuous 

sizing variables subjected to multiple loading conditions. When the results of the 

proposed enhanced algorithm were compared with other optimization methods in the 

literature, it was shown that the approach is efficient as an optimization technique for 

structural designs. 

Sonmez (2011b) made modifications in original ABC with improved 

performance of the algorithm for discrete optimum design of truss problems. Four 

truss problems with up to 582 structural elements and 29 design variables were 

solved to test the effectiveness of the modified algorithm and the results 
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demonstrated the robustness and effectiveness of the proposed method for discrete 

optimization design of truss structural problems 

Aydogdu et al. (2012) used ABC algorithm for solving two discrete constrained 

structural optimization problems. They designed a four story, three-bay 132 member 

irregular steel space frame and an eight-story, 1024 member regular steel space 

frame selecting the sequence numbers of W steel sections from a section pool as 

design variables. The design constraints were implemented according to the 

provisions of LRFD-AISC (Load and Resistance Factor Design [LRFD], 2001) 

which covers the displacement limitations, inter-story drift restrictions, ultimate 

strength requirements and geometric constraints. They obtained lighter designs with 

better performance than both of the optimum designs determined by the dynamic 

harmony search and ant colony optimization algorithms. Finally, they concluded that, 

artificial bee colony algorithm is a robust and efficient approach that can be 

effectively used to determine the optimum designs of large scale, real size steel space 

frames. 

Gerhardt and Gomes (2012) applied  ABC algorithm to three classic benchmark 

problems, spring design and optimization of a 10 bars plane truss and optimization of 

a 52 bars space truss. They used the same architecture as in Akay and Karaboga ( 

2010) but with the minimum penalty rule, that says that the penalty should be kept as 

low as possible so that an infeasible solution could not be optimal Coello Coello 

(2002). Their results indicate that the ABC algorithm is an effective global optimizer 

with relative high computational cost. 

Fiouz et al. (2012) used ABC algorithm with the fly-back mechanism to impose 

the constraints for discrete optimization of 10-bar plane truss and 25-bar and 72-bar 

space truss. In some cases they found same results as other methods used in 

literature, and in other applications their method produced significantly better results. 

The fly-back mechanism technique significantly improved the rate of convergence 

and the accuracy in comparison with other methods. They concluded also, that the 

ability to reduce the structural weight and the computational cost proves that this 

algorithm is one of the most powerful algorithms available for structural truss weight 

optimization. 
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Talatahari et al. (2012) coded ABC algorithm in MATLAB to study four skeletal 

structure benchmark problems and to show the efficiency of the ABC algorithm. The 

results of their study revealed that the ABC algorithm offers results as good as or 

better than other optimization methods and can be used effectively for solving such 

type of problems satisfying various constraint conditions.  

Degertekin (2012) developed an ABC algorithm for the optimum design of 

geometrically non-linear steel frames. He investigated the numerical efficiency of the 

ABC algorithm by solving weight minimization problems of three steel frames taken 

from literature and found better designs than the GA and the HS algorithms in 

shorter time under strength, displacement and size constraints. 

Degertekin and Hayalioglu (2013) developed an improved artificial bee colony 

algorithm (IABC) for size optimization of truss structures in order to enhnce the 

efficiency of the ABC algorithm. Solving a twenty-five bar space truss from 

literature by IABC they verified that the convergence capability of the IABC 

algorithm is significantly better than that of the artificial bee colony algorithm with 

an adaptive penalty function (ABC-AP) and it also obtained better design than the 

ABC-AP and other heuristic search algorithms compared. Less than 0.1% standard 

deviation of 20 independent runs in comparison with the average weight in the 

design example proves that the IABC algorithm converges to near global optimum 

and it is not sensitive to the initial designs. 

Three metaheuristic algorithms, namely harmony search (HS), artificial bee 

colony (ABC) and firefly algorithm (FA) have been evaluated by Miguel and Miguel 

(2013). They solved seven benchmark truss problems and performed the 

optimization of a realistic transmission tower. To optimize these structures on shape 

and sizing under multiple loading conditions, they used penalty approach dealing 

with different type of constraints. They obtained better results than the literature in 

three of the seven examples considered, and in the other four examples the results 

were approximately equal to the best one obtained in literature, without constraint 

violation. In complex examples, involving shape and size optimization with multiple 

natural frequency and buckling constraints, the results of used algorithms were better 

than the results in literature and parameter fine-tuning was not necessary to obtain 
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these results. The computational time was relatively short to find the optimal 

solution. 

Joubari et al. (2013) performed a structural truss mass optimization on size under 

frequency constraints using ABC and gravitation search algorithm (GSA). Their 

results showed that both algorithms reached, better results than the literature in three 

of the four examples considered, and in the other example the structure is 

approximately equal to the best one found, emphasizing the excellent capacity of 

both methods. 

Carbas et al. (2013) carried out a comparative study of three metaheuristics for 

optimum design of engineering structures. They selected the Firefly Algorithm 

(FFA), Artificial Bee Colony (ABC), and Cuckoo Search (CS) algorithms and 

designed 132-members space steel frame by using these three different algorithms to 

investigate the minimum weight design. In the design example considered, the design 

constraints include the displacement limitations, inter-story drift restrictions, strength 

requirements for beams and beam-columns which are formulated according to 

provisions of LRFD-AISC (Load and Resistance Factor Design of American Institute 

of Steel Institution). They compared the optimum designs obtained by FFA, ABC, 

and CS algorithms by each other as well as by those attained by the Dynamic 

Harmony Search and Ant Colony Optimization algorithms. The lightest optimum 

design is attained by the artificial bee colony algorithm. Adaptive Firefly algorithm 

(AFFA) is the second bests. It is also noticed the performances of CS and DHS 

algorithms are close to each other in this particular problem. The optimum design 

obtained by Ant Colony Optimization algorithm is the heaviest weight among the 

other algorithms which is 8.73% heavier than the one determined by ABC algorithm. 

 

4.2.2 Studies Related to Other Applications of ABC in Civil Engineering 

Kang et al. (2009a, 2009b) proposed the hybrid simplex artificial bee colony 

algorithm (HSABCA) which combines artificial bee colony algorithm with the 

Nelder-Mead simplex search (NMSS) method for inverse analysis problems. They 

applied the new algorithm which combines the local search ability of NMSS and the 

global search ability of ABC algorithm to parameter identification of concrete dam-

foundation systems. They compared the overall search ability of HSABCA with the 
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basic ABC algorithm and a real coded genetic algorithm (RCGA) on two examples: a 

gravity dam and an arc dam. Obtained results indicate that the proposed algorithm is 

an efficient tool for inverse analysis of dam-foundation systems and it performs 

much better than the other two stochastic algorithms on such problems. 

Li et al. (2011a) showed using four examples the reliability and accuracy of the 

ABC algorithm in reliability analysis of engineering structures. 

Li et al. (2011b) combined fuzzy c-means clustering (FCM) with ABC algorithm 

to overcome the sensitivity to the initialization of clustering centers and to prevent 

trapping into local optima of FCM during risk analysis of dam. Results show that it is 

more accurate and robust than FCM, and it is an efficient tool for risk analysis of 

dams.  

Su et al. (2012) used ABC algorithm for pile group load optimization. They 

concluded that ABC is feasible and has the advantages of high efficiency and easy 

implementation for pile group load optimization. 

Prakash (2012) tried to improve the exploitation capability which in turn 

accelerates the convergence of ABC by embedding convex linear combination in its 

onlooker bee phase, because a poor balance between exploration and exploitation 

may result in a weak optimization method which may cause premature convergence, 

trapping in a local optima, and stagnation. The modified variant called BABC was 

applied to determine and improve the seismic location in the Earth’s crust and upper 

mantle. The proposed variant gave good results and enhanced the accuracy of the 

hypocentral parameters. 

Mandal et al. (2012) used an integrated approach of rough set theory and ABC 

trained support vector machine leak detection of pipeline with maximum accuracy. 

Hossain and El-shafie (2013) presented a paper on developing an optimum 

reservoir release policy by using ABC algorithm. The paper presents a study on 

developing an optimum reservoir release policy by using ABC algorithm for the 

Aswan high dam of Egypt. After using the actual historical inflow, the release policy 

succeeded in meeting demand for about 98% of total time period. 

Jahjouh et al. (2013) studied to obtain the optimum design for reinforced 

concrete continuous beams in terms of cross section dimensions and reinforcement 

details using a fine tuned Artificial Bee Colony (ABC) Algorithm while still 
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satisfying the constraints of the ACI Code (2008). Four RC beams of varying 

complexity are presented and optimized.  

Sun et al. (2013) utilized a modified ABC algorithm to identification of 

structural models and demonstrated the effectiveness, robustness and efficiency of 

the method.  

Kang et al. (2013) proposed an artificial bee colony algorithm with a multi-slice 

adjustment method for locating the critical slip surfaces of soil slopes. They tested 

the proposed algorithm on six benchmark problems and showed its reliable 

performance by solving these problems. Compared with several other population-

based algorithms like PSO, MHS, spline-based GAand RCGA, their method 

demonstrated strong competitive capabilities in terms of convenience, efficiency and 

accuracy. 

Ozturk and Durmus (2013) investigated optimum cost design of columns 

subjected to axial force and uniaxial bending moment via ABC algorithm 

implementing the design constraints according to ACI 318-08 and studies in the 

literature. They selected the height and width of the column, diameter and number of 

reinforcement bars as design variables and the cost of unit length of the column 

consisting the cost of concrete, steel, and shuttering as the objective function. Deb's 

constraint handling method was used. They obtained nearly same values as the 

existing values in the literature. 

Yahya and Saka (2014) used in their study a multi objective artificial bee colony 

(MOABC) algorithm via Levy flights algorithm to obtain the solution of the 

construction site layout planning (CSLP) problem. The objective of the study was to 

optimize the dynamic layout problem under two objective functions of minimizing 

the safety hazards/environmental concerns and the total handling cost of interaction 

flows between facilities. The performance of MOABC with Levy flights is 

demonstrated on a real benchmark construction engineering of construction site 

layout planning problem and the optimum solution obtained is compared with Basic-

MOABC model, max–min Ant system (MMAS) model, and the original construction 

site layout of the studied problem. They concluded that, the results indicated that 

MOABC via Levy flights performs better than the above mentioned algorithms and  
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the proposed model was successfully applied to practical case studies and proved to 

be robust and efficient. 

 

4.2.3 Studies Related to Other Areas of Engineering Optimization 

Standard ABC algorithm is effectively used for solving unimodal and 

multimodal numerical optimization problems even for solving unconstrained 

optimization problems. Improved versions of ABC algorithm are developed to 

handle constrained problems in various areas such as economics, engineering design, 

allocation and location problems, visual target recognition, image clustering, reactive 

power optimization, protein structure prediction, data mining, software testing, 

vehicle routing, neural network training, job shop scheduling, bioinformatics. 

For further applications in a wide range information can be found in Baykasoglu 

et al. (2007), Karaboga et al. (2012), Bolaji et al. (2013), Balasubramani and Marcus 

(2013), Bansal et al. (2013). 

 

4.3 Swarm Intelligence 

Karaboga (2005) defines two basic concepts, self-organization and division of 

labor, as necessary and sufficient properties for obtaining swarm intelligent behavior. 

According to Bonabeau et al. (1999) self-organization can be defined as a set of 

dynamical mechanisms which result in structures at the global level of a system from 

interactions among its lower-level components. Between the components of the 

system the rules specifying the interactions are executed on the basis of purely local 

information, without global knowledge or global planning. However insect colonies 

can collectively build fascinating structures and achieve goals which individual 

insects are incapable of achieving alone. A behavioral model of self-organization is 

proposed for a colony of honey bees by Seeley (1995). Self-organization can be 

described with four basic properties: 

i) Positive feedback promotes the creation of convenient structures. 

Recruitment and reinforcement are typical examples of positive feedback. Trail 

laying and following in some ant species or dances in bees can be shown as the 

examples of recruitment. Seeley, Camazine and Sneyd (1991) have confirmed that 

foragers can home in on the best food source through a positive feedback. 
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ii) Negative feedback counterbalances positive feedback, which leads to 

the stabilization of the collective pattern. Limited number of available foragers, 

saturation, food source exhaustion, crowding or competition at the food sources 

might give rise to a negative feedback mechanism. 

iii) Fluctuations such as random walks, errors, random task switching 

among swarm individuals enable the discovery of new solutions. 

iv) All cases of self-organization rely on multiple interactions. In general, 

self-organization requires a minimal density of mutually tolerant individuals capable 

to make use of the results of their own activities as well as of others’ activities. 

Different tasks inside a swarm are often performed simultaneously by spe­ 

cialized individuals and this phenomenon is called division of labor. Simultaneous 

task performance by specialized workers is believed to be more efficient than 

sequential task performance by unspecialized workers. While parallelism avoids task 

switching, specialization allows greater efficiency of individuals in task performance. 

The basic properties related to self-organization of honey bees are as follows:  

i) Positive feedback: With the increase of nectar amount, the number of 

onlookers visiting them increases, too. 

ii) Negative feedback: The exploration process of a food source abandoned 

by bees is stopped and it helps to labor allocation.  

iii) Fluctuations: The scouts carry out a random search process, which 

enables the discovery of new food sources.  

iv) Multiple interactions: Information about food source locations is shared 

on the dance area.  

 

4.3.1 Behavior of Honey Bee Swarm 

The foraging behavior of honeybees, the process of seeking for nectar in flowers 

is an optimization process in nature. This social behavior has been modeled 

successfully as an optimization technique. 

 The nectar gathering process of honeybees, which emerges their collective 

intelligence consists of three essential elements  (Karaboga, 2005) as shown in Fig. 

4-1: 
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Food sources: The value of a food source depends on many factors, such as the 

proximity to the hive, energy concentration of nectar and the ease to extract it. For 

the sake of simplicity, it is possible to represent the profitability of a source with a 

single quantity, its fitness. 

 

 

 

 

 

Figure 4-1: Basic elements of foraging behavior 

 

 

 

Employed foragers: These bees are associated with a particular food source 

which is exploited by them. Employed bees carry information about their food 

source, such as distance, direction and profitability to other collector bees and share 

it with a certain probability. 

Unemployed foragers: They are constantly looking for a food source to exploit. 

They can be classified as the scouts, searching for new food sources in the 

neighborhood of the hive and as the onlookers, waiting in the hive and choosing a 

food source according to the information shared by employed foragers. 
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The encoding of information is discovered by Karl von Frisch is as follows: The 

duration of waggle dance represents the distance and profitability of the food source, 

namely one second of a waggle dance represents 1,000 meters of flight. And the 

angle of the dance with respect to the comb indicates the location of the food source 

relative to the sun as shown in Fig.4-2 (Seeley, 2010). 

 

 

 

 

 

Figure 4-2: Encoding information between honeybees (Seeley, 2010) 

 

 

 

4.4 Artificial Bee Colony (ABC) Algorithm 

The pseudo-code of the basic ABC algorithm, can be stated step by step as in 

Fig. 4-3 and a basic outline of ABC algorithm is presented in Fig. 4-4.  
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1: Parameters: sn, limit 

2: Initialize the food sources 𝑥⃗𝑖 randomly 

3: Evaluate fitness   𝑓(𝑥⃗𝑖) of the population 

4: cycle= 1 

5: repeat 

6: for i = 1 to sn / 2 do {Employed phase} 

7: for j = 1 to D do 

8: Produce a new food source 𝑣⃗𝑖 in the neighborhood of the food 

source 𝑥⃗𝑖for the employed bee by using 

𝑣⃗𝑖 = 𝑥𝑖𝑗 + 
𝑖𝑗

(𝑥𝑖𝑗 − 𝑥𝑘𝑗) 

9: Select k at random such that 

k ∈ {1, 2, …, sn }, k≠i,  ∈ [-1, 1] 

10: end for 

11: Evaluate solutions 𝑣⃗𝑖 and 𝑥⃗𝑖 

12: if 𝑓(𝑣⃗𝑖) is better than 𝑓(𝑥⃗𝑖) then 

13: Greedy selection 

14: else 

15: counti = counti + 1 

16: end if 

17: end for 

18: for i = sn / 2 + 1 to n do {Onlooker phase} 

19: Calculate selection probability 

20: 𝑃(𝑥⃗𝑘) =
 𝑓(𝑥⃗𝑘)

∑ 𝑓(𝑥⃗𝑘)𝑠𝑛
𝑘−𝑖

 

21: Select a bee using the selection probability 

22: Produce a new solution 𝑣⃗𝑖 from the selected bee 

23: Evaluate solutions 𝑣⃗𝑖 and 𝑥⃗𝑖 

24: if 𝑓(𝑣⃗𝑖) is better than 𝑓(𝑥⃗𝑖) then 

25: Greedy selection 

26: else 

27: counti = counti + 1 

28: end if 

29: end for 

30: for i = 1 to sn do {Scout phase} 

31: if counti >limit then 

32: 𝑥⃗𝑖=random 

33: end if 

34: end for 

35: Memorize the best solution achieved so far 

36: cycle=cycle+1 

37: until cycle=Maximum Cycle Number (MCN) 

38: Post process results and visualization 

 

Figure 4-3: Detailed Pseudo code of the ABC Algorithm 
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Figure 4-4: Flowchart of ABC algorithm 
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4.5 ABC Algorithm for Discrete Optimization 

ABC algorithm was firstly proposed to solve unconstrained optimization 

problems. Karaboga and Akay (2011) proposed a modified ABC algorithm for 

constrained optimization problems. At first step, a randomly distributed initial 

population of sn solutions is generated, where each solution is a D-dimensional 

vector. D represents the number of design variables and i x  represents the ith food 

source in the population. 

 

0 min max min(0,1)( ), 1,2,..., 1,2,...,i j j j jx x rand x x i sn j D       (4.1) 

 

where min max

j j jx x x   

 

When the design variables are selected from a continuous design space Eqn. 

(4.1) is used. If the design variables are to be selected from a set of discrete section 

pool, Eqn. (4.1) is modified as follows: 

 

0 min max min(0,1)( ) , 1,2,..., 1,2,...,i j j j jI I INT rand I I i sn j D            (4.2) 

 

where min max

j j jI I I   

 

In Eqn. (4.2) the integer value of 
jI denotes the index of the design variable. In 

truss optimization 
jI represents the index of cross-sectional area 

jA in the available 

profile list vector. min

jI and max

jI refer to the first and last profile index in section pool. 

After all the bees return to the hive with a certain amount of nectar, the first half 

(sn/2) that found the best food sources become “employed bees”. While performing 

truss optimization, the amount of nectar refers to the weight of the truss and the best 

food sources are the lightest trusses explored by foragers. The remaining bees are 

called “unemployed bees” or “onlooker bees”. They watch the waggle dance to 

decide which of the employed bees to follow. 
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Each food source possesses one employed bee. The number of onlooker bees 

which will fly to a food source depends on the amount of nectar at that source. The 

onlooker bees select the food source according to a probability proportional with the 

amount of nectar existing at the food source. Singh (2009). The probability 𝑝𝑖 for ith 

source is calculated as shown below: 

 

 𝑝𝑖 =

1

𝑖𝑓(𝑥)

∑
1

𝑗𝑓(𝑥)
𝑠𝑛/2
𝑗=1

  or   𝑝𝑖 =

1

𝑖𝑓𝑊(𝐼)

∑
1

𝑗𝑊(𝐼)
𝑠𝑛/2
𝑗=1

  (4.3) 

 

 

A new candidate food source is calculated based on information inherited from 

the employed bee: 

 

( ) , 1,2,..., 1,2,...,new best best best

i j j i j k jI I INT I I i sn / 2 j D       (4.4) 

 

In Eqn. (4.4)  is a random number between -1 and 1. The left hand subscript (i) 

indicates the solution number while the right hand script (i) represents the design 

variable number. k is a randomly chosen integer number between 1 and sn/2  that has 

to be different from i. As the difference between the parameters best

i jI  and best

k jI  

decreases, the perturbation on the new candidate food position new

i jI decreases. 

Therefore, as the search approaches to the optimum solution on the search space, the 

step length adaptively decreases. If the food level in the new location is better then 

the old one, the new position becomes best food source; otherwise, the old location is 

preserved as the best food source. 

Since the ABC algorithm is iterative, a food source is discarded by its employed 

bee, if there is no improvement in the amount of nectar from a certain food source 

after a predefined iteration (LIMIT). If a scout accidentally discovers a rich, 

unexplored food source, it becomes an employed bee. 
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4.5.1 Diversification Generation Method for Initial Population 

In this thesis, the diversification generation method is used for generating the 

diverse initial solution set. The diversification generation method does not consider 

the objective function, it only focuses on diversification. 

First, the last design produced by design module of SAP2000 is used for initial 

seed for the method with an acceptable design, which enables the algorithm to find 

the optimum results very rapidly by reducing number of iteration cycles and avoiding 

redundant computations. The initial seed is randomized by using geometric 

distribution during generation of other members of the population as follows: 

 

𝑥𝑖
′ = 𝑥𝑖

𝑖𝑛𝑖 + 𝑔𝑖      (4.5) 

 

The probability density function of the geometric distribution is given by Eqn. 

(4.6): 

 

𝑃(𝑔) =
1

𝜑+1
(1 −

1

𝜑
)

𝑔

, 𝑔 ∈ {0,1,2, … , +∞}    (4.6) 

 

where g represents a geometrically distributed random integer number and φ 

corresponds to the average of this specific distribution (Hasançebi, 2007). 

It is pointed out by Hasançebi (2007) that most programming language falls 

short of a library to satisfy a function to sample the geometrically distributed random 

numbers and suggests using the following equation to generate a geometrically 

distributed number: 

 

𝑔𝑖,1, 𝑔𝑖,2 = [
𝑙𝑜𝑔(1−𝑟𝑖)

𝑙𝑜𝑔(1−1/(1+φ𝑖))
]     (4.7) 

 

where 𝑟𝑖  is a uniform random number generated between 0 and 1 for each design 

variable, and φ can formulated as follows: 

 

φ = √𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑟𝑒𝑎𝑑𝑦 𝑠𝑒𝑐𝑡𝑖𝑜𝑛   (4.8) 
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The ready sections from SAP2000 section list library ordered according to their 

cross-sectional areas and enumerated starting from 1 represent the candidate list for 

design variables. According to SAP2000 design results integer Id numbers of the 

assigned sections are assigned to initial values of design variables. Subsequently, for 

each design variable a random number is generated by using Eqn. (4.7) and it is 

added or subtracted to the initial value of that design variable. The new random 

number that represents the ready section id from the list is assigned to the design 

variable. This process is repeated for all the variables until population size is reached. 

 

4.6 Constraint Handling 

In most of the previous structural optimization studies, constraint handling has 

been achieved using the death penalty method. In this approach, an initial parent 

population is formed by creating only feasible individuals and all infeasible solutions 

are automatically eliminated. Although this approach is simple to apply, it has some 

drawbacks:  

i) Firstly, the search process may get stuck at initial stage, since the initial 

population is randomly generated and there is a high possibility of constraint 

violation occurrence for every individual for problems subject to heavy 

constraints. 

ii) Secondly, searching through both feasible and infeasible regions is usually 

more efficient than searching through only feasible regions with death penalty 

implementation, because the first approach enables reaching the optimum from 

both regions.  

In contrast with the death penalty approach, penalty function implementation 

prevents the search stagnation and infeasible candidate solutions are not disregarded. 

Since the abovementioned shortcomings are eliminated and also penalty functions 

are relatively easier to implement and efficient with a proper parameterization, the 

use of a penalty function method is preferred in the present study. Subsequently, a 

constrained objective function is defined to evaluate infeasible individuals in 

proportion to the sum of the constraint violation as in Eqn. (4.9). 
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Φ = 𝑊[1 + 𝑃𝑒𝑛𝑎𝑙𝑡𝑦(𝑎)] = 𝑊 [1 + 𝛼 (∑ (𝑐)
𝑛𝑗

𝑗=1
)]   (4.9) 

 

In Eqn. (4.9), W symbolizes the unconstrained and Φ symbolizes the constrained 

objective functions; 𝑐 refers to the whole set of normalized constraints, and 𝛼 refers 

to the penalty coefficient, used to adjust the intensity of penalization as a whole.  

 

4.7 Sample Problem (Two-bar Truss) 

 

4.7.1 General Statement of the Design Variables 

The structural optimization problem is the two bar truss problem (Fox 1971, 

Schmit 1981) as shown in Fig. 4-5. The objective function is the weight 

minimization of two tubular truss elements which is one of the most used 

objective functions in structural optimization.  

 

 

 

 

 
Figure 4-5: The two bar truss problem 

 

 

 

The design of the symmetrical truss is specified by a unique set of values for 

the pre-assigned analysis variables summarized in Table 4-1.  



43 

Table 4-1: The pre-assigned analysis variables 

 

Parameter Description Unit Value 

2P Applied load lb 66,000 

2B Horiz. dist. btw. supports in. 60 

t Wall thickness of tube in. 0.1 

E Young's modulus psi 30x106 

ρ Density lb/in3 0.3 

σy Yield stress of material psi 100,000 

 

 

 

The bounds of the two independent design variables are shown in Table 4-2. 

below. 

 

 

 

Table 4-2: The bounds of design variables 

 

Design Variables Description Lower bound Upper bound 

d The mean diameter of the tubes 0.1 in. 5 in. 

H The height of the truss 5 in. 50 in. 

 

 

 

4.7.2 Derivation and Formulation of the Problem 

Using elementary analysis, the dependent parameters are tabulated below: 

 

Member force (k): 
 

1
2 2 2B HPL

F P
H H


       (4.11) 

  

Second moment of inertia (in.4):      
4 4 2 2

64 8

td
I d t d t d t

       
 

 (4.12) 
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Member stress (psi): 
 

1
2 2 2B HF P

A t Hd





             (4.13) 

 

Buckling stress (psi): 
 

 

2 2 22

2 2 2

1

8
e

E tEI

L A B H

d



 


           (4.14) 

 

The problem posed is to find d and H such that the weight of the truss system 

 

 
1

2 2 22 .W dt iB H M n      (4.15) 

 

while requiring that the following imposed behavior constraints be satisfied:  

 
 

1
2 2 2

1 , 0y y

B HP
g d H

t Hd
  




                 (4.16) 

 
 

 
 

1
2 2 2 2 2 22

2 2 2 2

1
, 0

8
e

E t B HEI P
g d H

L A t HdB H

d
 



 
     


          (4.17) 

Formally, the objective function f, and the normalized constraints g1, g2 can 

now be written as 

 

 
1

2 2 2( , ) 2 Hf dt Bd H                 (4.18) 

 

 
 

1
2 2 2

1 , 1 0
y

B HP
g d H

t Hd 


                 (4.19) 

 
 

 

1.5
2 2

2 3 2 2

8
, 1 0

P B H
g d H

EtHd d t


  


                          (4.20) 

 

 

 Note that after obtaining a solution (H*, d*), we must ensure that the tubular 

cross-sections are indeed thin-walled (i.e., d/t »1). 
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4.7.3 Solution of the Problem 

 

4.7.3.1 Solution of the Problem with ABC Algorithm 

The structural optimization problem is solved first by artificial bee colony 

(ABC) algorithm and then by four different techniques. Afterwards the results are 

compared. 

1. Initially the control parameters of ABC algorithm, population size (the 

total number of bees in the colony=N) and maximum number of cycles 

(MNC) are set as N=10 and MNC=50. 

2. A random initial bee colony (N different trusses having similar shape but 

different member cross-sections) is generated using Eqn. (4.1). Here the 

initial values of the design variables, constrained objective function, the 

values of normalized design constraints and unconstrained objective function 

for every bees (each truss) are calculated. A static penalty coefficient r=1 is 

used to solve the problem. The results of this step are indicated in Table 4-3. 

In the ABC algorithm, every food source exploited by the bees represents a 

possible solution to a given optimization problem. The location and amount 

of the nectar from the flower patch correspond to the design variables and 

the fitness function (weight of the truss).  

 

 

Table 4-3: The initial bee colony 

 

Bee No  0.1≤d≤5  5≤H≤50 f(d,H) g1(d,H) g2(d,H) F(d,H) 

1 0.7210 3.6330 0.8308 42.3841 35.5598 -0.6458 -0.8046 35.5598 

2 0.4589 2.3487 0.1514 11.8120 14.2739 0.2208 -0.3796 17.4251 

3 0.4104 2.1111 0.0430 6.9359 12.2532 1.2089 0.2667 30.3341 

4 0.9792 4.8982 0.2401 15.8042 31.3073 -0.5399 -0.9404 31.3073 

5 0.0904 0.5430 0.1781 13.0162 3.3474 3.8599 45.0587 167.0950 

6 0.1902 1.0318 0.7609 39.2389 9.6063 0.2815 6.8614 78.2232 

7 0.6894 3.4779 0.4040 23.1789 24.8535 -0.5060 -0.8415 24.8535 

8 0.8698 4.3622 0.9262 46.6791 45.6250 -0.7138 -0.8749 45.6250 

9 0.5304 2.6988 0.5639 30.3733 21.7175 -0.4529 -0.6306 21.7175 

10 0.8216 4.1256 0.4199 23.8960 29.8262 -0.5913 -0.9046 29.8262 
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3. The trusses are sorted by weight from the lightest to the heaviest, then the 

first half of the trusses (N/2) is selected. The selected trusses are referred 

as “employed bees”, which found the best food sources. 

 

 

 

Table 4-4: The employed bees for the two-bar truss 

 

Bee No  0.1≤d≤5  5≤H≤50 f(d,H) g1(d,H) g2(d,H) F(d,H) 

2 0.4589 2.3487 0.1514 11.8120 14.2739 0.2208 -0.3796 17.4251 

9 0.5304 2.6988 0.5639 30.3733 21.7175 -0.4529 -0.6306 21.7175 

7 0.6894 3.4779 0.4040 23.1789 24.8535 -0.5060 -0.8415 24.8535 

10 0.8216 4.1256 0.4199 23.8960 29.8262 -0.5913 -0.9046 29.8262 

3 0.4104 2.1111 0.0430 6.9359 12.2532 1.2089 0.2667 30.3341 

 

 

 

4. At the beginning of first cycle we loop over each truss (food source) (i=1, 

2, 3, …,, N/2). 

 

5. The remainder of the bees called “unemployed bees” or “onlooker bees” 

watch the waggle dance to decide which of the employed bees should be 

followed. They decide according to the probability proportional to the 

amount of nectar existing at the food source. So we determine how many 

solution(s) must be performed on the selected ith truss based on the 

probability p(i) using Eqn. (4.3) and recruit the onlooker bees. 

 

𝑝1 =

1
17.4251

1
17.4251

+
1

21.7175
+

1
24.8535

+
1

29.8262 +
1

30.3341

= 0.2731 

⇒number of onlooker bees=1.3653≈1 
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𝑝2 =

1
21.7175

1
17.4251

+
1

21.7175
+

1
24.8535

+
1

29.8262 +
1

30.3341

= 0.2191

⇒ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑛𝑙𝑜𝑜𝑘𝑒𝑟 𝑏𝑒𝑒𝑠 = 1.0955 ≈ 1 

𝑝3 =

1
24.8535

1
17.4251

+
1

21.7175
+

1
24.8535

+
1

29.8262 +
1

30.3341

= 0.1914 

⇒number of onlooker bees=0.9572≈1 

 

𝑝4 =

1
29.8262

1
17.4251

+
1

21.7175
+

1
24.8535

+
1

29.8262 +
1

30.3341

= 0.1595 

⇒number of onlooker bees=0.7977≈1 

 

𝑝5 =

1
30.3341

1
17.4251

+
1

21.7175
+

1
24.8535

+
1

29.8262 +
1

30.3341

= 0.1569 

⇒number of onlooker bees=0.7843≈1 

 

 

Accordingly we send 1 employed bee and 1 onlooker bee to each food 

source. 

 

6. For the first food source the initial values were given in Table 4-4. The 

new values of the design variables for employed bee and onlooker bee are 

calculated as 

𝑑1
𝑛𝑒𝑤 = 2.3487 + 0.2853 ∗ (2.3487 − 4.1256) = 6.9359 

𝐻1
𝑛𝑒𝑤 = 11.8120 − 0.4145 ∗ (11.8120 − 6.9359) = 9.7910 

The new value of the constrained objective function is 

 

𝑓𝑛𝑒𝑤 = 2 ∗ 0,25 ∗ 𝜋 ∗ 𝑑 ∗ (502 + 𝐻2) = 14.2739 
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New values of the normalized constraints g1, g2 are 

 

𝑔1(𝑑, 𝐻) = 0.8384 

𝑔2(𝑑, 𝐻) = 0.4542 

 

Finally the value of the unconstrained objective function is calculated. 

 

𝐹(𝑑, 𝐻) = 25.1143 

 

 

 

Table 4-5: The objective function values for the employed bees and onlooker 

bees for the-two-bar truss  

 

Bee No Bee ID 
d H 

f(d,H) g1 g2 F(d,H) 
k  0.1≤d≤5 k  5≤H≤50 

1 (Former 2) 

Old Bee     2.3487     11.8120 14.2739 0.2208 -0.3796 17.4251 

Employed Bee 4 0.2853 1.8416 5 -0.4145 9.7910 10.9548 0.8384 0.4542 25.1143 

Onlooker Bee 1 4 -0.6548 3.5123 2 -0.0102 12.0014 21.3917 -0.1948 -0.8160 21.3917 

2 (Former 9) 

Old Bee     2.6988     30.3733 21.7175 -0.4529 -0.6306 21.7175 

Employed Bee 1 -0.1835 2.6345 4 -0.8580 24.8155 19.3343 -0.3745 -0.6314 19.3343 

Onlooker Bee 1 3 -0.9972 3.4757 5 0.6160 44.8109 35.3302 -0.6363 -0.7637 35.3302 

3 (Former 7) 

Old Bee     3.4779     23.1789 24.8535 -0.5060 -0.8415 24.8535 

Employed Bee 5 -0.3372 3.0170 4 0.8077 22.5996 21.3601 -0.4214 -0.7580 21.3601 

Onlooker Bee 1 2 -0.5908 2.9796 1 0.0508 23.7560 21.4923 -0.4321 -0.7472 21.4923 

4 (Former 10) 

Old Bee     4.1256     23.8960 29.8262 -0.5913 -0.9046 29.8262 

Employed Bee 5 0.3478 4.8262 2 0.1994 23.7126 34.7876 -0.6490 -0.9405 34.7876 

Onlooker Bee 1 3 0.5057 4.6862 1 0.0634 24.6616 34.3046 -0.6470 -0.9345 34.3046 

5 (Former 3) 

Old Bee     2.1111     6.9359 12.2532 1.2089 0.2667 30.3341 

Employed Bee 4 -0.3369 2.7899 1 0.4426 5.0000 15.9942 1.2902 -0.2656 36.6300 

Onlooker Bee 1 3 -0.4984 2.5626 3 0.2137 5.0000 14.6910 1.4934 -0.0525 36.6300 

 

 

7. At the second cycle same calculations are performed as at the first cycle.  
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Table 4-6: The new objective function values for the employed bees and 

onlooker bees for the-two-bar truss at the second cycle. 

 

Bee No Bee ID 
d H 

f(d,H) g1 g2 F(d,H) 
k  0.1≤d≤5 k  5≤H≤50 

1 (Former 2) 

Old Bee     2.3487     11.8120 14.2739 0.2208 -0.3796 17.4251 

Employed Bee 3 0.5924 1.9527 5 0.0856 12.2297 11.9247 0.4250 0.0570 17.6723 

Onlooker Bee 1 5 -0.9121 2.1320 3 -0.0708 12.5759 13.0727 0.2744 -0.2002 16.6600 

2 (Former 9) 

Old Bee     2.6345     24.8155 19.3343 -0.3745 -0.6314 19.3343 

Employed Bee 4 0.4084 2.0256 1 -0.2201 22.1216 14.2322 -0.1262 -0.2026 14.2322 

Onlooker Bee 1 3 0.9951 2.2539 3 0.7987 26.5853 17.0303 -0.2973 -0.4007 17.0303 

3 (Former 7) 

Old Bee     3.0170     22.5996 21.3601 -0.4214 -0.7580 21.3601 

Employed Bee 5 -0.4556 2.6043 2 0.1000 22.6474 18.4519 -0.3306 -0.6237 18.4519 

Onlooker Bee 1 2 -0.5604 2.4615 5 -0.4512 15.5314 15.6740 -0.0718 -0.5284 15.6740 

4 (Former 

10) 

Old Bee     4.1256     23.8960 29.8262 -0.5913 -0.9046 29.8262 

Employed Bee 5 -0.4917 3.1351 1 0.6472 31.2221 25.5875 -0.5353 -0.7608 25.5875 

Onlooker Bee 1 5 0.0872 4.3012 1 -0.0057 23.8316 31.0629 -0.6074 -0.9159 31.0629 

5 (Former 3) 

Old Bee     2.1111     6.9359 12.2532 1.2089 0.2667 30.3341 

Employed Bee 2 -0.5711 2.0623 4 0.3165 5.0000 11.8230 2.0982 0.8163 46.2814 

Onlooker Bee 1 3 0.2045 2.0395 4 0.5225 5.0000 11.6921 2.1329 0.8779 46.8942 

 

 

 

8. At 50th cycle final objective function values are obtained as follows: 

 

Table 4-7: The final solution at the 50. cycle for the-two-bar truss  

 

Bee No  0.1≤d≤5  5≤H≤50 f(d,H) g1(d,H) g2(d,H) F(d,H) 

1 0.0559 1.8784 -0.5285 20.2369 12.8126 0.0000 0.0000 12.8126 

2 -0.8768 1.8784 -0.8000 20.2369 12.8126 0.0000 0.0000 12.8126 

3 0.6723 1.8784 -0.6683 20.2369 12.8126 0.0000 0.0000 12.8126 

4 -0.1997 1.8784 -0.0729 20.2369 12.8126 0.0000 0.0000 12.8126 

5 0.4351 1.8784 0.4523 20.2369 12.8126 0.0000 0.0000 12.8126 
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Figure 4-6: ABC Two Bar Optimization Results 

 

 

 

4.7.3.2 Solution of the Problem with Augmented Lagrangian Method (ALM) 

Powell, Hestenes, and Rockafellar developed the Augmented Lagrangian 

Method, which is based on combining duality with (exterior) penalty functions. The 

two bar truss optimization is solved by means of an Excel VBA Code AUGLAG 

based on Fletcher-Reeves. At the end of iteration 6, the number of function 

evaluations was 314. 

 

 

Table 4-8: Results of ALM solution 

 

Iter. 

No 

No Of Func. 

Ev. 
f(d,H) Violation d H Lagrange Multipliers 

1 1 10.99 10.14 1.00 50.00 0.00 0.00 

2 97 12.52 0.05 1.87 19.15 4.62 2.50 

3 165 12.81 0.00 1.88 20.20 5.88 2.33 

4 237 12.81 0.00 1.88 20.24 5.61 2.40 

5 276 12.81 0.00 1.88 20.24 3.07 3.41 

6 314 12.81 0.00 1.88 20.24 3.07 3.41 

Final Constraint Values: g1 =  -2.5E-05 g2 =  1E-05 
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4.7.3.3 Solution of the Problem with Zoutendijk’s Method of Feasible Directions 

Zoutendijk developed the Method of Feasible Directions, which is still 

considered as one of the most robust methods for optimization. The method is 

suitable for solving problems with inequality constraints. 

 

The starting point is x0 = (5, 50), which is feasible. Table 4-9 presents the 

iterations. At the end of iteration 4, the number of function evaluations was 51. 

 

 

 

Table 4-9: Results of Zoutendijk’s Method of Feasible Directions solution 

 

Iter. No No Of Func. Ev. f(d,H) d H Active Set 

1 0 54.96 5.00 50.00 - 

2 17 24.50 2.24 49.80 2 

3 34 16.88 2.76 12.34 1 

4 51 12.82 1.88 20.28 1,2 

Final Constraint Values: g1 =  -0.001566226 g2 =  -8.999E-05 

 

 

 

4.7.3.4 Solution of the Problem with the Generalized Reduced Gradient Method 

(GRG) (Nonlinear Constraints) 

 

The Generalized Reduced Gradient (GRG) Method is another popular technique 

for constrained minimization and is well suited to handle nonlinear equality 

constraints. The inequality constraints are transformed to equality constraints as 

require, through the addition of slack variables. Excel Solver is based on a GRG 

algorithm. 

Slack variables, x3 and x4, have been added to g1 and g2, respectively, as is 

required by the GRG method. The starting point is x0 = (5, 50, 0.755, 0.91) which is 

feasible. Table 4-10 presents the iterations. At the end of iteration 11, the number of 

function evaluations was 20. 
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Table 4-10: Results of GRG solution 

 

Iter. 

No 

No Of Func. 

Ev. 
f(d,H) d H x3 x4 

1 1 54.96 5.00 50.00 0.755 0.91 

2 3 30.15 2.75 49.83 0.55 0.46 

3 5 25.83 2.36 49.82 0.48 0.14 

4 7 24.51 2.24 49.81 0.45 0.00 

5 9 14.60 1.91 27.41 0.18 0.00 

6 11 13.35 1.88 22.80 0.08 0.00 

7 13 13.04 1.88 21.39 0.04 0.00 

8 15 12.92 1.88 20.78 0.02 0.00 

9 17 12.86 1.88 20.50 0.01 0.00 

10 19 12.84 1.88 20.37 0.00 0.00 

11 20 12.81 1.88 20.24 0.00 0.00 

 

 

4.7.3.5 Solution of the Problem with the Sequential Quadratic Programming 

(SQP) Method 

Sequential quadratic programming (SQP) methods have been very popular in 

recent years due to their superior rate of convergence. The method used for solution 

of the problem was first published by Pshenichny in 1970 in Russian and later in a 

book by Pshenichny and Danilin in 1978. SQP is the principal algorithm for NLP in 

the Matlab “fmincon” optimizer. 

The starting point is x0 = (0.1, 5.0), which is infeasible. Table 4-11 presents the 

iterations. At the end of iteration 34, the number of function evaluations was 68. 

 

 

Table 4-11: Results of SQP solution 

  

 Iter. 

No 

No Of Func. 

Ev. 
f(d,H) d H Violation 

1 0 0.57 0.10 5.00 7983.48 

2 2 1.13 0.20 5.10 1646.79 

3 4 2.14 0.37 5.29 273.53 

5 8 5.62 0.98 5.90 13.67 

8 14 9.89 1.71 6.54 1.89 

13 24 15.97 2.58 13.29 0.00 

17 32 14.33 2.24 15.92 0.00 

30 60 12.82 1.88 20.19 0.00 

34 68 12.81 1.88 20.23 0.00 
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4.7.4 Discussion of Solutions of the Problem  

A classical benchmark problem is solved with ABC algorithm and with four 

other classical techniques. ABC has found the optimum solution at 37. iteration. 

With ALM method, at the end of iteration 6, the number of function evaluations 

was 314. With ZMFD method, at the end of iteration 4, the number of function 

evaluations was 51. With GRG method at the end of iteration 11, the number of 

function evaluations was 20. With SQP method, at the end of iteration 34, the 

number of function evaluations was 68. When the five techniques are compared, 

GRG method was the fast converging method with 20 function evaluations, ABC 

outperformed well after GRG method. The slowest method was the ALM method 

with 314 function evaluations. As can be seen from the results ABC has a high 

convergence speed. 

 

4.8 Structural Optimization Software Development with ABC Algorithm 

In this study it is aimed to implement ABC algorithm to discrete size 

optimization of real size steel truss structures. To find the minimum weight of steel 

structures by most appropriate cross-sections of structural elements, while satisfying 

the constraints imposed to the structure, software called ABC-SOP2014 has been 

developed to evaluate the performance of the ABC algorithm in structural 

optimization and to give a visual sense to algorithm with a user-friendly interface. 

The developed software provides minimum weight design of both truss and frame 

structures, but in this study it is applied only to truss structures. In the present form, 

the software can handle only size optimization, further developments can be made to 

it to perform shape and topology optimization also. 

ABC-SOP2014 is a size optimization tool capable to interact with commercial 

structural analysis and design software SAP2000. Although SAP2000 is one of the 

most used analysis and design software, it does not always find the best design 

possible. The software is coded on the basis of ABC algorithm on VB.NET platform, 

which is compatible with the programming language of Open Application 

Programming Interface (OAPI) released by Computers and Structures, Inc. The 

OAPI functions have been used to access and communicate with SAP2000 v14. This 

OAPI provides designers a fast and efficient method to access all of the analysis and 
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design options of SAP2000 enabling model transfer, control of data input and output 

to and from SAP2000 software environment. The modeling and structural analysis of 

the structure to be optimized is carried out by SAP2000 software, which has been 

verified the reliability of its analysis results by various benchmark examples. The 

integrated ABC- SOP2014 module provides the structural optimization power of 

ABC algorithm to the designers. 

The initial design of SAP2000 can be used to converge rapidly to the optimum 

point by decreasing the number of iterations, however it is not vitally necessary. 

Users of the software must install SAP2000 v14, because the references used in 

the programming environment were taken from v14. The detailed programming 

algorithm of ABC-SOP2014 is shown in Fig. 4-7 
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Figure 4-7: The algorithm of ABC-SOP2014 
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CHAPTER 5 

 

 

APPLICATION OF ABC ALGORITHM VIA ABC-SOP2014 SOFTWARE 

 

 

 

5.1 Introduction 

The numerical correctness, efficiency and validation of the ABC algorithm in 

structural size optimization problems has been investigated and experimented using a 

test suite consisting of four steel trusses in all. For all the examples presented in this 

study, a bee colony of bee size N= 50 was set. Maximum number of cycles (MNC) 

was set different in each problem due to variety of design variables. 

The software ABC-SOP2014 discussed in the previous section has been used for 

performing numerical tests with ABC algorithm. 

 

5.2 Truss Problems 

Four different pin-jointed truss examples are solved with ABC-SOP2014. The 

design constraints in these problems are stress, stability, and displacement type 

arranged according to AISC-ASD (1989) design code specifications. For all the 

numerical examples, discrete sets of AISC-ASD ready standard steel sections 

available in the section database of SAP2000 or discrete sets of problem specific 

cross-sectional area values are used.  

 

5.2.1 22-Bar Cantilever Truss Structure 

The first test problem considered is a statically determinant cantilever truss 

structure shown in Fig. 5-1, which has been studied by Erbatur et al. (2000) for 

discrete design variables. 

The objective function is to minimize the mass of the structure under stress 

AISC stress constraints imposed on all bars, for which circular hollow pipe sections 
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from AISC-ASD design specification are adapted. No member grouping is used to 

make the problem harder to optimize. Besides, the member forces are independent of 

member sizes due to statical determinacy of the truss, which means no compensation 

with the distribution of internal forces amongst the members is possible in case any 

design variable is exceeded. 

 

 

 

 

Figure 5-1: Statically determinate 22-bar plane truss 

 

 

 

Sizing optimization of the 22-bar plane truss structure is carried out using ABC 

algorithm setting the initial bee colony size as N=50. Maximum number of cycles 

(MNC) was set to 1200, but we terminated program at cycle 810. The structural steel 

members are selected from a database of 37 circular hollow sections issued in AISC-

ASD (1989) design specification. All of the design variables were set the same initial 

cross-sections as PXX8 for the initial design. The results obtained are compared to 

the previous work done from the literature (Table 5-1). The result of the ABC 

algorithm used in this study yields a weight of 524.5 lb and a volume of 1849.90 in.3, 

which is exactly the optimum solution of the problem. The GAOS level2 has a 

weight of 524.5 lb, which is 4.49% heavier than the result of ABC algorithm. No 
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kind of constraint violation occurred as seen in Figs. 5-2 and 5-3. The screenshot of 

the optimization results of ABC-SOP2014 program is shown in Fig. 5-4 and the 

convergence history of optimization process is shown in Fig. 5-5. 

 

 

 

 

 

Figure 5-2: Axial forces on elements of 22-bar planar cantilever truss 

 

 

 

 

 

Figure 5-3: Element stresses within limitations of 22-bar planar cantilever truss 
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Table 5-1: Comparison of the optimum designs for 22-bar planar truss. 

 

 

 

 

 

Figure 5-5: ABC-SOP2014 design history of 22-bar planar cantilever truss 

Axial force 

(kip)
True optimum GAOS level2 This study ABC

SAP2000 Profile Profile Profile

1 -49.607 -18.51 - 18.85 P3.5 P3.5 P3.5

2 -41.339 - 15.43 - 18.85 P3.5 P3.5 P3.5

3 -33.071 -14.83 -18.26 P3 P3 P3

4 -24.803 -14.59 -17.2 P2.5 P2.5 P2.5

5 -16.535 -15.45 -15.89 P2 P2 P2

6 -8.268 -10.35 -13.62 P1.5 P1.5 P1.5

7 41.339 18.54 21.6 P3 P3 P3

8 33.071 19.45 21.6 P2.5 P2.5 P2.5

9 24.804 16.76 21.6 PX2 P2.5 PX2

10 16.536 20.69 21.6 P1.5 P1.5 P1.5

11 8.268 19.09 21.6 PX.75 P1.25 PX.75

12 -11.023 -10.3 -12.97 P2 P2 P2

13 -11.023 -10.3 -12.97 P2 P2 P2

14 -11.023 -10.3 -12.97 P2 P2 P2

15 -11.023 -10.3 -12.97 P2 P2 P2

16 -11.023 -10.3 -512.97 P2 P2 P2

17 13.779 21.56 21.6 PX1 PX1 PX1

18 13.779 21.56 21.6 PX1 P 11/2 PX1

19 13.779 21.56 21.6 PX1 PX1 PX1

20 13.779 21.56 21.6 PX1 PX1.25 PX1

21 13.779 21.56 21.6 PX1 PX1 PX1

22 13.779 21.56 21.6 PX1 P1.5 PX1

Weight, lb (kg) 524.5 (237.95) 548.06 (248.64) 524.5 (237.95)

Volume, in.
3
(cm.

3
) 1849.9 (30314) 1932.21 (31663) 1849.9 (30314)

Allowable 

stress (ksi)
Truss member

Applied 

stress (ksi)
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5.2.2 25-Bar Space Truss 

The second design example considered is a 25-bar space steel truss (Fig. 5-6). 

This example has been studied by many researchers with different structural 

optimization techniques: Rajeev and Krishnamoorthy (1992) used GA, Li et al. 

(2009) utilized HPSO, Camp and Bichon (2004) used ACO, Kripka (2004) used SA 

and Sonmez (2009) used ABC. 

 

 

 

 

 

Figure 5-6: 25-bar space truss 
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All structural members were assumed to be constructed from a material with a 

mass density of 0.1 lb/ in.3 (2,768 kg/m3) and a modulus of elasticity of 10,000 ksi 

(68.971 MPa). The stress limitations of the members are ±40 ksi (275.6 MPa). The 

top nodes 1 and 2 are subjected to displacement limitations of ±0.35 in. in three 

directions. The structure includes 25 members, which are divided into 8 groups, as 

follows: (1) A1, (2) A2~A5, (3) A6~A9, (4) A10~A11, (5) A12~A13, (6) A14~A17, 

(7) A18~A21 and (8) A22~A25. The discrete variables are selected from the set D= 

{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 

2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.8, 3.0, 3.2, 3.4} (in2). A single loading condition was 

imposed to the structure as shown in Table 5-2.  

 

 

 

Table 5-2: Nodal loading conditions (kips) for the 25-bar space truss  

 

 

 

 

 

The results of ABC algorithm are shown in Table 5-3 and compared with those 

previously reported in the literature. The best design results obtained by means of all 

the optimization methods listed in Table 5-3 are identical except of GA. 26946 

structural analyses were performed in 539 cycles to find the best feasible design (Fig. 

5-7). 

 

 

 

Node

x y z

1 1.0 -10 -10

2 0 -10 -10

3 0.5 0 0

6 0.6 0 0

Directions
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Table 5-3: Comparison of the optimum designs for 25-bar space truss  

 

 

 

 

 

 

 

 

Figure 5-7: ABC-SOP2014 design history of 25-bar space truss 

 

 

No Des. Vars. GA SA HPSO ACO ABC (Sonmez) ABC (This study)

1 A1 0.1 0.1 0.1 0.1 0.1 0.1

2 A2 ~A5 1.8 0.4 0.3 0.3 0.3 0.3

3 A6 ~A9 2.3 3.4 3.4 3.4 3.4 3.4

4 A10 ~A11 0.2 0.1 0.1 0.1 0.1 0.1

5 A12 ~A13 0.1 2.2 2.1 2.1 2.1 2.1

6 A14 ~A17 0.8 1.0 1.0 1.0 1.0 1.0

7 A18 ~A21 1.8 0.4 0.5 0.5 0.5 0.5

8 A22 ~A25 3.0 3.4 3.4 3.4 3.4 3.4

546.010 484.330 484.85 484.85 484.85 484.85

840 40,000 25,000 7,700 24,250 26,946

None 193.8 x 10"
6 None None None NoneConstraint violation

Optimal cross section area (in.
2
)Variables

Weight (lb)

Evaluation (#)
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5.2.3 160-Bar Space Truss Pyramid 

The third design example considered is a 160-bar space steel pyramid (Fig. 5-8) 

with a square base diameter of 16 m (52.5 ft) along both the x and y axis and a total 

height of 8 m (26.25 ft). This problem was studied in Carbas et al. (2013) and 

Hasançebi and Çarbaş (2011) using the standard (ACO1) and ranked (ACO2) ant 

colony optimization algorithms and recently in Hasançebi and Azad (2014) using 

BB-BC and MBB-BC algorithms. The structure contains 55 joints and 160 members 

that are linked into seven independent sizing design variables. The grouping scheme 

of members is shown in Fig. 5-8 (a). The structural steel members are selected from a 

list of 37 hollow pipe sections issued in AISC-ASD (1989) design specification. 

The imposed constraints to the structural elements are stress and stability type, 

which are limitations of the members are computed according to the provisions of 

AISC-ASD (1989). The displacements of all nodes are limited to 4.45 cm (1.75 in) in 

each direction. A vertical load of −8.53 kN (−1.92 kips) applied in the z-direction at 

all nodes of the pyramid. Consequently, a single load case is considered for design 

purpose. 

Sizing optimization of the 160-bar space pyramid is carried out using ABC 

algorithm setting the initial bee colony size as N=50. Maximum number of cycles 

(MNC) was set to 1000. Two runs executed with different initial design points. At 

first run all of the design variables were set the heaviest circular hollow section 

(PXX8), at second run a lighter pipe section (P10) was selected for the initial design 

variables. The results obtained are compared to the previous work of Hasançebi and 

Çarbaş (2011) and to recent work of Hasançebi and Azad (2014) (Table 5-4). 

It should be noted that for all the solutions reported in Table 5-4, no kind of 

constraint violation occurred. Similar to the result of the MBB-BC algorithm ABC 

algorithm yields an identical design weight of 2788.84 kg (6148.35 lb) after 56 

cycles in first run and 61 cycles in second run, which is the best solution to the 

problem found so far. The final designs attained using BB-BC, ACO1, and ACO2 

techniques are slightly heavier; namely 2821.27 kg (6219.83 lb), 2875.01 kg 

(6338.31 lb) and 2817.56 kg (6211.65 lb), respectively. The screenshot of the 

optimization results of ABC-SOP2014 program is shown in Fig. 5-9. 
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(a) 

 

(b) 

 

(c) 

Figure 5-8: 160-bar pyramid: (a) 3-dimensional view; (b) front view; (c) plan 

view (Hasançebi and Çarbaş, 2011). 
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Table 5-4: Comparison of optimization results for 160-bar space pyramid. 

 

Sizing variables 

Optimal cross-sectional areas (in.2) 

ACO2 ACO1 BB-BC MBB-BC This study ABC 

1 1.07 1.07 1.07 1.07 1.07 

2 0.669 0.669 0.669 0.669 0.669 

3 1.07 1.07 1.07 1.07 1.07 

4 0.669 0.799 0.669 0.669 0.669 

5 1.07 1.07 1.07 1.07 1.07 

6 0.669 0.669 1.07 0.669 0.669 

7 1.48 1.70 1.07 1.07 1.07 

Weight, lb (kg) 

  

6211.65 6338.31 6219.83 6148.35 6148.35 

(2817.56) (2875.01) (2821.27) (2788.84) (2788.84) 

 

 

 

 

 

 

Figure 5-9: ABC-SOP2014 optimization results of 160-bar truss pyramid 
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The fitness scores of the solutions attained at two independent runs after 

different cycles are plotted in Fig. 5-10. Although the initial design points were 

different, identical designs are attained after 61 cycles and 2991 structural analyses 

for the first run and after 56 cycles 2787 structural analyses for the second run. 

 

 

 

 

 

Figure 5-10: ABC-SOP2014 design history of 160-bar space pyramid 

 

 

 

5.2.4 693-Bar Braced Barrel Vault 

The last example is a three dimensional braced barrel vault structure which was 

already built for roofing the platform shelters at the Thirumailai Railway Station in 

Chennai, India as shown in Figs. 5-11 and 5-12. 

The braced barrel vault contains 259 joints and 693 bars which are linked into 23 

independent size variables considering the symmetry about centerline as shown in 
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Fig. 5-13. The member grouping scheme is shown in Fig. 5-13 (a) and the front and 

plan view are provided in Fig. 5-13 (b) and Fig. 5-13 (c), respectively. 

 

 

 

 

 

Figure 5-11: The platform shelter at Thirumailai Station, LUZ, Chennai, India 

 

 

 

The braced barrel vault is subjected to a uniform dead load (DL) pressure of 35 

kg/m2, a positive wind load (WL) pressure of 160 kg/m2, and a negative wind load 

(WL) pressure of 240 kg/m2 which are combined under two separate load cases for 

design purposes as follows:  

(i) 1.5(DL+WL) = 1.5(35 +160) = + 292.5 kg/m2 (+2.87 kN/m2)  

(ii) 1.5(DL–WL) = 1.5(35–240) = –307.5 kg/m2 (–3.00 kN/m2), along z 

direction. 

The displacements of all nodes are limited to a maximum value of ±0.254 cm 

(0.1 in) in x, y and z directions. The strength and stability requirements of steel 

members are imposed according to the provisions of AISC-ASD (1989). The 

structural steel members are selected from a database of 37 circular hollow sections 

issued in AISC-ASD (1989) design specification. 
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Figure 5-12: The cross-section of the parallel vault and railway tracks 

 

 

 

Standart auto design procedure of SAP2000 guided to a feasible design weight 

of 15691.35 kg (34593.5 lb) that is far from the optimum. The real weight of the 

structure was 8250 kg (18188.10 lb). On the other hand, an optimum design weight 

of 5001.8 kg (11027.1 lb) is achieved by the ABC algorithm without any constraint 

violation. This best design is tabulated in Table 5-5 with section designations 

assigned to each member group and the convergence history of the algorithm is 

plotted in Fig. 5-14. 

The optimal design of the 693-bar braced barrel vault was first presented by 

Hasançebi and Çarbaş (2011) using a standart ant colony optimization (ACO1) and 

ranked ant colony optimization (ACO2) stating that the minimum weight are found 

6068.69 kg (13379.19 lb) and 5503.65 kg (12133.47 lb). 

The solutions to this problem obtained with ABC, ACO1, and ACO2 are 

tabulated in Table 5-5. ABC result takes the first place when it is compared to the 

results of ACO2 and ACO1 with a 5001.8 kg weight, 9.12% lighter than ACO2 and 

17.58% lighter than ACO1. ABC result is 68.12% lighter than SAP2000 auto design 

procedure weight. 
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Figure 5-13: The 693-bar braced vault, a) 3-D view, b) Front view, c) Plan view 

(Hasançebi and Çarbaş, 2011). 
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Table 5-5: Comparison of ABC with other optimization methods for 693-bar 

braced barrel vault. 

 

 

 

 

 

 

 

Figure 5-14: ABC-SOP2014 design history of 693 bar braced vault 

   

Ready Section Area, cm
2
 (in

2
) Ready Section Area, cm

2
 (in

2
) Ready Section Area, cm

2
 (in

2
)

1 P4 20.45 (3.17) PX3 3.02 (19.48) PX3 3.02 (19.48)

2 P1 3.18 (0.494) PX1.5 6.90 (1.07) P1 3.18 (0.494)

3 P1.25 4.32 (0.669) P1 3.18 (0.494) P.75 2.15 (0.333)

4 PX1.25 5.68 (0.881) PX1.25 5.68 (0.881) P1 3.18 (0.494)

5 P. 75 2.15 (0.333) P1.25 4.32 (0.669) P.75 2.15 (0.333)

6 P5 27.74 (4.3) PX4 28.45 (4.41) PXX2.5 25.99 (4.03)

7 P1 4.32 (0.669) P1.25 4.32 (0.669) PX1 4.12 (0.669)

8 PX1.25 5.68 (0.881) PX1.5 6.90 (1.07) P1 3.18 (0.494)

9 PX3.5 23.74 (3.68) PXX2 17.16 (2.66) P1 3.18 (0.494)

10 P1 4.32 (0.669) PX1.25 5.68 (0.881) P.75 2.15 (0.333)

11 P1.25 2.79 (0.433) P1 3.18 (0.494) P3 14.39 (2.23)

12 P1.5 5.16 (0.799) PX1 4.12 (0.669) P2 6.90 (1.07)

13 P1.5 5.16 (0.799) PX1.25 5.68 (0.881) P2 6.90 (1.07)

14 P1 4.32 (0.669) PX2 9.55 (1.48) P1 3.18 (0.494)

15 PX.75 2.79 (0.433) P.75 2.15 (0.333) PX.75 2.79 (0.433)

16 P1.5 5.16 (0.799) P1.5 5.16 (0.799) P1.25 4.32 (0.669)

17 PX2 9.55 (1.48) P2.5 10.97 (1.70) PX1 4.12 (0.669)

18 P1.25 4.32 (0.669) P1.25 4.32 (0.669) PXX2 17.16 (2.66)

19 P1 4.32 (0.669) P1.5 5.16 (0.799) P1 3.18 (0.494)

20 P.75 2.15 (0.333) PX1.5 6.90 (1.07) P.75 2.15 (0.333)

21 PX2.5 14.52 (2.25) P4 20.45 (3.17) P1 3.18 (0.494)

22 P1.5 5.16 (0.799) P1 3.18 (0.494) P.75 2.15 (0.333)

23 P.75 2.15 (0.333) PX.75 2.79 (0.433) P.75 2.15 (0.333)

Weight

ABC

5001.8 kg (11027.1 lb)

Size variables
ACO2 ACO1

5503.65 kg (12133.47 lb) 6068.69 kg (13379.19 lb)
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CHAPTER 6 

 

 

CONCLUSIONS 

 

 

 

6.1 Conclusion 

The objective of this thesis is to investigate the use and efficiency of artificial 

bee colony (ABC) algorithm in structural optimization. The used version of ABC 

algorithm is a modified version of the original algorithm. Diversification generation 

method has been used to initialize the population. A software called ABC-SOP2014 

has been developed to evaluate the performance of the ABC algorithm in structural 

optimization on real size steel truss structures and to give a visual sense to algorithm 

with a user-friendly interface. The software is capable to outperform size 

optimization program that is interacting with a commercial structural analysis and 

design software SAP2000 by evaluating the analysis data to find the optimum for the 

minimum weight design of truss structures. 

ABC-SOP2014 offers a practical optimization tool to the ABC algorithm and to 

the designer. 

Most of the studies about structural optimization with ABC algorithm have been 

used continuous design variables, whereas in this thesis three discrete examples from 

literature are covered. This thesis contributes to extend the discrete structural sizing 

optimization field of ABC algorithm providing satisfactory performance with 

feasible and near optimal solutions compared to previously work done. 

Besides discrete sizing optimization of steel structures, there are also some other 

useful features of the developed program such as: 

 It requires a small amount of input due to nature of ABC algorithm selected 

to optimization. Only colony size and maximum number of cycles constitute 

the algorithmic input parameters. Other input data, namely SAP2000 file of 
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the model, group data, section list, penalty coefficient 𝛼 and some design 

parameters can be imposed easily. 

 Material properties can be modified by ABC-SOP2014. 

 The grouping property of the software decreases the fabrication requirements 

and increases the convergence speed. 

 It enables the user to create his section lists from ready steel profile lists of 

SAP2000 or user defined sections. 

 Structural analysis, design and optimization algorithm can be managed 

simultaneously by ABC-SOP2014. 

 The optimization history is kept in a specified array to make comparison and 

measure its performance. 

 Language integrated query (LINQ) is used to perform the queries for the best 

solutions in ABC algorithm, which is a recent approach of programming 

technique.  

As a conclusion, considering the results of the presented study it can be inferred 

that ABC algorithm with penalty implementation interactively working with 

SAP2000 is a reliable and efficient discrete sizing optimization technique under the 

constraints problem specific or imposed by design code provisions with the objective 

of weight minimization. This functional optimization tool provides optimized 

designs saving material, construction time and reducing the cost of the structure 

significantly. 

 

6.2 Final Recommendations  

Artificial bee colony algorithm is a nature-inspired heuristic search technique, 

which refers to experience-based techniques for problem solving, learning, and 

discovery that give a solution which is not guaranteed to be optimal. To obtain 

satisfactory results considering the random nature of the search algorithm, the initial 

parameters should be carefully selected according to the number of design variables 

to be optimized. Besides proper population size selection, minimizing the number of 

design variables and the size of discrete section pool is very important to reduce the 

computational cost. It has been observed that computation time of the structural 
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systems with lesser number of size variables and reduced discrete sets is significantly 

shorter.  

The optimization process via ABC algorithm interacting with SAP2000 takes 

more time than expected, because of huge amount of data transfer. The structural 

analysis performed for the initial population is equal to population size and after 

selecting the best half of the colony, at every iteration cycle half the structural 

analysis number is the same as population size. Using parallel computing and 

utilizing a local search algorithm may help to come up with this drawback. 

An initial design obtained by SAP2000 with a small fitness score provides better 

performance. The use of results from previous runs also supplies better performance. 

Lastly, it should be considered, that this program is not an analysis and design 

software alone, the results must be checked by experienced and authorized 

consultants. It can be used also for educational and research purposes to discover and 

evaluate new and possibly better design options. 

 

6.3 Future Work 

The developed software is working simultaneously with SAP2000 software. 

Each interaction and each analysis consumes time depending on the problem size, 

hardware performance and also source code optimization performance. To save 

computational time an integrated finite element module can be added to the software. 

Further development can be made with adding new design codes to provide 

users the opportunity to compare the effect of various constraints imposed by 

different design code specifications. The algorithm also can be modified or adapted 

properly for better convergence. A hybridization with other algorithms can be a good 

example for modification. Some control parameters can be assigned to increase the 

efficiency of the algorithm. 
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