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ABSTRACT

OPTIMUM DESIGN OF STEEL STRUCTURES
VIA ARTIFICIAL BEE COLONY (ABC) ALGORITHM AND SAP2000

Eser, Cengiz
M.Sc., Department of Civil Engineering

Supervisor: Assoc. Prof. Dr. Oguzhan Hasangebi

February 2014, 81 pages

Over the past few years, metaheuristic optimization techniques have received
considerable attention from engineering researchers. Under metaheuristics, swarm
intelligence based algorithms have been used in the solution of various structural
optimization problems where the main goal is to minimize the weight of structures
while satisfying all design constraints imposed by design codes. In this study,
artificial bee colony algorithm (ABC) is utilized to optimize four truss structures
from real life and literature. ABC algorithm is one of those popular techniques which
has proved to be effective when solving combinatorial and nonlinear optimization
problems such as scheduling, routing, financial product design and other problem
areas. In this thesis, the results of the ABC algorithm are compared with the results
of other optimization algorithms from the literature to investigate the use and
efficiency of this technique for solving steel truss design problems. Artificial bee
colony algorithm is computerized in VB.NET platform to develop software called
ABC-SOP2014. ABC-SOP2014 is capable to interact with well-known structural



analysis and design software SAP2000 through the Open Application Programming
Interface (OAPI) for size optimum design of steel structures. In this study the
program is used only for discrete size optimization of steel truss structures with
penalty function implementation aiming minimum weight according to design
limitations imposed by AISC-ASD (Allowable Stress Design Code of American
Institute of Steel Construction) or limitations specified for the problem without any
code requirement. The results reveal that the ABC algorithm can be used effectively

as an optimization technique for truss structures, resulting significant savings.

Key Words: Artificial Bee Colony, Structural Optimization, Size Optimization,
Discrete Optimization, Steel Truss Structures
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0z

CELIK YAPILARIN YAPAY ARI KOLONISI (ABC) ALGORITMASI VE
SAP2000 iLE OPTIMUM TASARIMI

Eser, Cengiz
Yiiksek Lisans, ingaat Miihendisligi Boliimii
Tez Yoneticisi: Dog. Dr. Oguzhan Hasangebi

Subat 2014, 81 sayfa

Son birkag yilda, metasezgisel optimizasyon teknikleri = miihendislik
arastirmacilarinin 6nemli ol¢iide dikkatini ¢ekmistir. Metasezgisel teknikler altinda,
stirli zekasi tabanli algoritmalar, temel amaci tasarim kodlariyla dayatilan tiim
tasarim kisitlamalarint saglarken yapilarin agirligini en aza indirmek olan cesitli
yapisal optimizasyon problemlerinin ¢oziimiinde kullanilmistir. Bu ¢aligmada, yapay
ar1 koloni algoritmasi (ABC) , gergek hayat ve literatiirden alinan dort kafes sistem
yapisint optimize etmek ic¢in kullanilmaktadir. ABC algoritmasi, zamanlama,
rotalama, finansal {irlin tasarimi ve diger problem alanlar1 gibi kombinasyonel ve
dogrusal olmayan optimizasyon problemlerini ¢c6zmek i¢in etkili oldugu kanitlanmis
bu popiiler tekniklerden biridir.

Bu tezde, ABC algoritmasinin sonuglari, ¢elik kafes tasarim problemlerini ¢6zmek
icin bu teknigin kullanimi ve etkinligini aragtirmak amaciyla, literatiirdeki diger
optimizasyon algoritmalarinin sonuglar1 ile karsilastirilmistir. Yapay ar1 koloni

algoritmast ABC-SOP2014 olarak adlandirilan bir yazilimi gelistirmek {izere
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VB.NET platformunda programlanmistir. ABC-SOP2014 ¢elik yapilarin boyutu
optimum tasarimi i¢in taninmis yapisal analiz ve tasarim yazilimi SAP2000 ile A¢ik
Uygulama Programlama Araylizii ( OAPI ) araciligiyla etkilesim yetenegine sahiptir.
Bu ¢alismada program AISC - ASD (Amerikan Celik Konstriiksiyon Enstitiisiiniin
Emniyet Gerilmesi Tasarim Kurallari)’nin dayattigi tasarim kisitlamalaria veya
herhangi bir kod gereksinimi olmadan problemin kendisince belirtilen sinirlamalara
gore, ceza fonksiyonu uygulanmasi ile asgari agirligi amaglayarak sadece ¢elik kafes
yapilarin ayrik boyut optimizasyonu i¢in kullanilmistir. Sonuglar, ABC
algoritmasimin ¢elik kafes yapilar i¢in onemi tasarruflarla birlikte bir optimizasyon

yontemi olarak etkin bir sekilde kullanilabilecegini ortaya koymaktadir.

Anahtar Kelimeler: Yapay Ar1 Kolonisi, Yapisal Optimizasyon, Boyut
Optimizasyonu, Ayrik Optimizasyon, Celik Kafes Yapilar
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CHAPTER 1

INTRODUCTION

The concept of optimization is a basic part of our daily lives. To increase the
company profit implies an objective of economy or to produce the best quality of
life with the resources available is an objective of engineering. The tool to be used to
achieve the best in a timely and economical way is optimization.

There have been developed numerous optimization techniques for optimum
design of structural systems. With the availability of computer codes, new and more
sophisticated optimization techniques have been emerged against the conventional
methods like optimality criteria, dynamic programming and steepest descent.
Structural optimization with meta-heuristic search methods have become more
popular as a consequence of acquiring extensive accomplishment in dealing with a
variety of practical and complex optimization tasks, where it is nearly impossible to
come up with the optimum solution by traditional deterministic design procedures.

These new meta-heuristic optimization techniques developed during last three
decades enable to engineers and designers find the most proper and efficient solution

amongst thousands of design alternatives.

1.1 Truss Structures

Truss structures can be used in buildings as support to roofs and floors.
Moreover, they can be also used for rail and road bridges or for cranes. A truss
structure consists of triangular units made up of connections of straight and slender
bars. Because a truss is not able to transfer moments, bars are subjected to only axial
compressive or tensile forces. Cross-sectional area is a basic property to characterize

a truss element to resist these axial forces apart from material properties like



modulus of elasticity. The length of a truss member can be determined by the end
node coordinates.

A planar truss element has two local and four global dof, a space truss element
has also two local dof, whereas it has six global dof.

Trusses offer efficient solutions where material use is considered. However,
fabrication and maintenance costs must be taken into account. Therefore, a simple

design with maximum repetition is preferred.

1.2 Artificial Bee Colony (ABC) Algorithm

Computational researchers have been greatly interested in the natural sciences to
model and solve complex optimization problems by employing nature- and bio-
inspired algorithms. This is mainly due to complexity and/or non-linearity of the
problems. Classical algorithms generally require making several assumptions.
Researchers fascinated by the swarm behavior in nature such ant colonies, honey
bees, bird flocking, animal herding, and many more, have developed population
based algorithms such as Ant Colony Optimization, Bee Colony Optimization,
Particle Swarm Optimization, Fish Schooling, etc. These algorithms have been
successfully applied to solve computational, complex and non-linear problems from
different disciplines.

Swarm Intelligence (Beni and Wang, 1989) is the area of Artificial Intelligence
that is based on study of actions in various decentralized systems. Swarm
intelligence (Bonabeau et al. 1999) is the part of artificial intelligence on the basis of
studying actions of individuals in various decentralized systems. These decentralized
systems (multi agent systems) are composed of physical individuals (robots, for
example) or “virtual” (artificial) ones that communicate among themselves,
cooperate, collaborate, exchange information and knowledge and perform some
tasks in their environment.

Few algorithms from the swarm intelligence class, inspired by bees’ behavior,
appeared during the last decade. An excellent survey of the algorithms inspired by
bees’ behavior in the nature is given in (Baykasoglu et al. 2007).

The artificial bee colony optimization algorithm belongs to the class of

stochastic swarm optimization methods. The proposed algorithm is inspired by the



foraging habits of bees in nature. The communication systems between individual
insects contribute to the configuration of the collective intelligence of the social
insect colonies.

Artificial bee colony (ABC) algorithm has been widely used for all types of
optimization problems in various civil engineering disciplines and other disciplines,
since it has been introduced originally by Karaboga (2005) for solving numerical
optimization problems based on simulating real bees social behavior, foraging
behavior as a heuristic. In this study it is aimed to implement ABC algorithm to
discrete size optimization of real size steel truss structures, which leads to minimum

weight design. Details of the ABC algorithm are discussed in chapter 4.

1.3 Software Development

A computer program called ABC-SOP2014 is developed specially for this study
as a size optimization tool that is capable of finding the appropriate combination of
ready sections with optimum cross-sectional areas for the minimum weight design of
steel truss structures using artificial bee colony algorithm. The software developed
by using VB.NET programming language interacts with SAP2000 v14 through Open
Application Programming Interface (OAPI), which is released by Computers and
Structures, Inc. Artificial Bee Colony Algorithm is embedded in ABC-SOP2014
program to implement the optimization procedure. ABC-SOP2014 is a user-friendly,
easy to use program, which enables users to perform structural optimization under
various constraints such as stress, stability and displacement imposed by problems or
by specific design codes. The optimization problem in this study is called as discrete
structural optimization, since the cross-sections of steel members can be selected

only from a prescribed discrete set of values.

1.4 Outline of the Thesis

Chapter 2 deals with the basic concepts of optimum structural design. After
classification of the design process, elements and mathematical formulation of
structural optimization are described. Types of the optimization tasks and
classification of numerical optimization techniques are outlined. In Chapter 3 is

mathematical statement of the structural optimization problem for the structural



model is defined, in other words the objective function and the constraints are
described in details. In chapter 4, the literature survey is done firstly, and then swarm
intelligence is introduced. Consequently, the main principles of artificial bee colony
(ABC) algorithm is presented that is used in this study as optimization method. Next
constraint handling method is outlined. Consequently, a sample problem is solved by
ABC algorithm and by four classical methods comparatively. Thereafter, the
optimization program ABC-SOP2014 written in VB.NET programming language
and developed to find the optimum weight for truss structures by means of ABC
algorithm is introduced. The main features, capabilities and algorithm of the software
are also expressed. In chapter 5, four numerical test examples from literature and the
results obtained by ABC-SOP2014 using ABC algorithm are studied and discussed
in details. Chapter 6 presents the conclusion, recommendations based on the results

of the study and issues of future work.



CHAPTER 2

STRUCTURAL OPTIMIZATION

2.1 Introduction

The optimization concept became popular with significant progress in
capabilities of computers as well as structural analysis and optimization techniques in
recent decades. Minimum weight optimum design of basic aircraft structural
components such as columns and stiffened panels, subject to compressive loads was
initially developed during World War Il (Kirsch, 1993). After Schmit offered in 1960
a comprehensive statement of the use of mathematical programming techniques to
solve the non-linear-inequality-constrained problem of designing elastic structures,
his work indicated the feasibility of coupling finite element analysis and nonlinear
mathematical programming to create automated optimum design capabilities for
structural systems. Today most engineers who design structures employ complex
general-purpose structural analysis software and the major challenge for researchers
in structural optimization is to develop user-friendly methods that are suitable for use
with such software packages. Another major challenge is to reduce the high
computational cost of complex real-life problems.

Haftka & Giirdal (1992) paraphrases Douglas Wilde’s optimal design definition
as “being the best feasible design according to a preselected quantitative measure of
effectiveness”. Recently, Christensen & Klarbring (2008) defined structural
optimization as “the subject of making an assemblage of materials sustain loads in
the best way.” Both of the definitions address the term “best”, therefore an objective
should be defined to specify the best. To design a structure with best performance,
we can make the structure as stiff as possible or as insensitive to buckling or

instability as possible, or to obtain the lightest structure, we could minimize the



weight. Structural optimization problem can be formulated by picking one of the
preselected quantitative measures like weight, stiffness, critical load, stress,
displacement and geometry as an objective function that should be minimized or
maximized using some other measures as constraints.

Functionality, economy and esthetics can also be considered as the objective in
the design process.

This study addresses the solution of constrained optimization problems of steel
truss structures with stress, stability, displacement and some other constraints by
using an effective optimization algorithm called artificial bee colony (ABC)
algorithm, by determining the cross-sectional areas of the structural members for
minimizing the weight of a given structure.

In this chapter the design process and the elements of the optimization in the
structural design process are introduced, to provide a general understanding on the
subject. Mathematical formulation of nonlinear constrained optimization problem is

also given. Then, the classification of structural optimization tasks are defined.

2.2 The Design Process
The design process may be divided into four stages as follows (Kirsch, 1981):

1. Functionality: The required lanes on a bridge, the required space in an
industrial building, loads expected to be carried on a truss bridge etc. are
examples of functional requirements, which are often established before
entering the design process.

2. Conceptual design: It is the critical part of the design stage, because the
designer should select the overall topology, type of structure, and
materials by his ingenuity, creativity, and engineering judgment to serve
the structural systems functional purposes. For a bridge deciding whether
it should be a truss bridge, an arch bridge or perhaps a cable-stayed
bridge with selected materials is an example to conceptual design.

3. Optimization: Within the selected concept considering desired
constraints, satisfying the functional requirements achieving the optimal
design. For a bridge it would be selection of the best geometry of a truss

or the cross-sections of the members or minimizing the cost by using



least possible amount of material. Utilizing computer with optimization
algorithms and software is most suitable to this step.

4. Detailing: After completion of optimization stage, results must be
checked and modified if necessary. Engineering judgment, experience
and decision-making process is necessary at this stage. This stage is
usually controlled by market, social and esthetic factors.

Iterative procedures for the four stages are often required to find an acceptable
final design. At the end, even the conceptual requirements are fulfilled, the final
design may not be optimal. At that point, optimization techniques and computer
aided design utilizing finite element method based software become the helpful and

effective tools to make the best possible decision.

2.3 Elements of Optimization

2.3.1 Design Variables

Design variables are the parameters used in the formulation of the objective
function to define the structural system. They can be size design variable related with
cross-sectional quantities like area of a truss member, the moment inertia of a
flexural member, area of a beam, and thickness of a plate or a shell. The coordinates
of joints, the location of supports, and the span lengths are examples for
configurational or geometric layout variables. Some uneconomical members are
eliminated during the optimization process. Therefore, some design variables are
defined as integer variables to declare the existence or absence of a structural
element. For example a truss member joining two nodes which is limited to the
values 1 and O is an integer topological variable. 1 represents the existence of
member and O represents the absence of the member. Number of elements in a
grillage system, number of spans in a bridge or number of columns supporting a slab
are some other examples of topological variables.

Besides integer variables, design variables can be also continuous or discrete.
Continuous variables are selected between lower and upper bounds of the variable,

whereas discrete variables are selected from a prescribed set of values. The selection



of the design variables must be consistent with the structural model and optimization
algorithm for the success of the optimization process.

2.3.2 Objective Function

The objective function is a criterion to determine the quality of the solution and
the effectiveness of the design. For that reason, a great deal of care, judgment, and
experience are required for determining the objective function. The common
engineering objectives involve minimization of overall cost, or minimization of total
weight, or maximization of mechanical quality, or maximization of net profit, or
others. In some cases there could be more than one objective that the designer may
want to optimize simultaneously, called multiobjective or multicriterion
optimization. However, multiobjective optimization algorithms are more complex
and computationally expensive. Therefore, in most cases single criterion
optimization is preferred and other objectives are included as constraints.

The most common objective in structural optimization applications is the weight
minimization of the structure due to fact that is readily quantified, but the minimum
weight concept is not always the cheapest. When we consider the interaction of
design and technology, we should not forget that cost is practically important than
the weight, but obtaining the objective function for the cost of the construction is
more complicated, since it includes parameters such as cost of materials, fabrication,
transportation, operating and maintenance cost. These factors have direct effect on
the sizes, shape or topology of the structure. Furthermore, displacements, average
stiffness of the structure, maximum stress and strain, buckling load, collapse load,

vibration frequencies or any combination of these can be used as objective function.

2.3.3 Constraints

The special conditions that must be satisfied in order to produce a feasible
design are called constraints. The set of solutions that satisfy all constraints is called
the feasible design. Constraints may be categorized in two groups in structural
optimization problems: side (design) constraints and behavior constraints. Side
constraints arise from various considerations such as functionality, fabrication, or

aesthetics. These constraints are generally related to the lower and upper bounds of



design variables. Examples of side constraints include minimum value of a cross-
sectional dimension, minimum thickness of a plate, minimum slope of a roof
structure, maximum height of a truss.

Contrary to side constraints, the behavioral constraints derive from mechanical
response of the structural system under application of loading and impose restrictions
on the behavior or performance of the system according to the provisions of the
design codes such as displacement, stress, strength, cracking. Both side and behavior
constraints may be formulated in the form of inequalities and equalities.

A problem stated with some constraints is called constrained optimization
problem, whereas, problems do not include any limitations are called unconstrained
optimization problems. In some cases, constrained optimization problems are
converted to unconstrained optimization problems by means of penalty functions or

other constraint handling methods.

2.3.4 Design Space

Design space is a region or domain that is described by design variables in the
objective function. Each design variable is one dimension in a design space, where
any particular set of variables is indicated as a point. A design space with n variables
is a n-dimensional hyperspace. A design which satisfies all the constraints is a
feasible design and the set of all feasible designs form the feasible region. In Fig. 2-1
the design space of a three bar truss problem is illustrated, which was first presented
by Fox in 1960.

2.4 Mathematical Formulation
The nonlinear constrained optimization problem can be stated mathematically as
follows:

Find:

x =[xy, %5, e, xy]T design variables (2.1)
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Figure 2-1: Three-bar truss problem and design space (Adapted from Schmit,

1981)

To minimize:

min f(x)

Subject to:

gi(x) <0
hk(x) =0

O] (W)
XS X S X;

objective function

j=1,..,] inequality constraints
k =1,..,K equality constraints
i=1,..,N side constraints

2.5 Classification of the Structural Optimization Tasks

(2.2)

(2.3)

Structural optimization tasks can be classified according to type of design

variables, since the applicable solution strategies are also chosen according to them
as shown in Fig. 2-2 (Schumacher, 2013):
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Selection of construction:

A A A A

Selection of material (properties):
Aluminium Steel Composite materials

Topology optimization

PAVZAN

A A A A A A
Shape optimization:

A A A A A A
Sizing:

A A A A A A

Figure 2-2: Classification of structural optimization tasks according to design
variables (Schumacher, 2013).

2.5.1 Size Optimization

In size optimization problems, the goal may be to find the optimal thickness
distribution of plate and shell segments or the optimal member cross-sectional areas
of bars in a truss structure. The optimal thickness distribution minimizes (or
maximizes) a physical quantity such as the peak stress, deflection, etc. while imposed
constraints on the state and design variables are satisfied. The thickness of a plate or
the cross-sectional area of a bar is the design variable and the state variable may be
their deflection. The main feature of the sizing problem is that the layout of the
structure and the state variables are prescribed and fixed throughout the optimization

process. A size optimization problem for a truss tower structure is shown in Fig. 2-3.
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(a) Initial design (b) Optimum design

Figure 2-3: Size optimization of a steel tower structure

2.5.2 Shape Optimization

In shape optimization, the aim is to find the best possible geometrical
arrangement of the structural members. The optimum node locations in a finite
element model of the structure has to be determined, without changing the
connectivity of structural elements.

In the engineering field, the first shape optimization problem was defined by
Galileo in 1638 at his famous book titled ‘Dialogues Concerning Two New
Sciences,” where he used the simple bending theory of beams considering the
uniform strength criterion to find the optimum shape of a cantilever beam with
constant width and under tip loading as given in Fig. 2-4. He was often credited with
the first published theory of the strength of beams in bending, but it was discovered
in 1967 in the National Library of Spain that this theory was initiated by Leonardo da
Vinci in his work “The Codex Madrid” published in 1493. Galileo proved that under
imposed constraints, the optimum shape of a cantilever beam should be parabolic.
This statement can be recognized as a fundamental model for fully stressed design
(FSD) concept.
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Structural optimization methods have been implemented into commercial finite
element programs to treat large shape optimization problems. However, considerable
manual efforts to define design variable and added constraints, and to integrate with

CAD system and optimizer are vitally necessary.

Figure 2-4: Shape optimization defined by Galileo in 1638 ( Crew and Salvio,
2010)

2.5.3 Topology Optimization

The topology optimization method solves the most general structural
optimization problem of distributing a given amount of material freely in the design
space such that performance is optimized (Sigmund, 2000). Before topology
optimization, the physical size and the shape and the connectivity of the structure,
which define together the topology of the structure are unknown. In 1904, Michell
derived the mathematics behind structures of least volume, or optimal structures and
his work provided a basis for topology optimization of structures. The computations

for topology design is shown in Fig. 2-5.
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Topology optimization can be classified as geometrical topology optimization
and material topology optimization as shown in Fig. 2-6.

Initialize
(Starting guess)

‘ Finite element analysis
|
Sensitivity analysis
(linearization)

I Low—pass filtering —l
I

Optimization
Method of Moving Asymptotes

LUpda(e design variables

no

converged ?

plot results/
post—processing

Figure 2-5: The flow of computations for topology design (Bendsoe and
Sigmund, 2003)

PANSANNNN
o ]
S i

NOONNNNNNS
-

Figure 2-6: Types of topology optimization, (a) geometrical (bubble-method),

(b) discrete material distribution, (c) continuous material distribution (Maute, 1998)
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s
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Actual structure

A

M;hufactured g structure
Figure 2-7: Mimicking of actual industrial design process. Rib structure in front

part of airplane wing at EADS (courtesy of EADS Military Aircraft)

As shown in Fig. 2-7, after topology design in aeronautics for the design of
integrally stiffened machined ribs for the inboard inner fixed leading edge of the new
airliner, the Airbus 380, a new type of structure was devised for the ribs which gave
a weight benefit against traditional (up to 40%) and competitive honeycomb /

composite designs.

2.5.4 Selection of Material Properties

Materials can be selected as steel, aluminum, magnesium, composite etc.
2.5.5 Selection of Construction

Construction type should be selected as plate girder, truss-like structure or

composite structure etc.
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2.6 Optimization Methods

Optimization methods can be categorized in various ways, but in a very general
way they can be classified in two categories as function and parameter optimization
methods.

In function optimization, the problem under consideration is formulated by a
number of unknown functions and through the optimization process, where the main
goal is to find the optimum form of these functions. For function optimization
methods such as differential calculus, the calculus of variations, etc. are used. On the
other hand, parameter optimization methods search the optimum values of design
variables for the specified problem. Mathematical programming, quadratic
programming, methods of feasible directions, optimality criteria (OC), and
metaheuristic methods are some subsets of parameter optimization methods.

Finally, a classification of various numerical optimization methods is shown in
Fig. 2-8.
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CHAPTER 3

PROBLEM STATEMENT

3.1 Introduction

The objective of this study is to investigate the use and application of ABC
algorithm in the realm of structural optimization, and analyze the performance of
ABC algorithm. The investigations will unveil the capabilities and potentials of this
algorithm in practical problems from structural optimization literature and provide a
guidance to potential users with object-oriented software implementation ABC-
SOP2014.

This chapter describes the mathematical statement of the structural optimization
problem for the structural model based on the formulation and definitions
aforementioned in Chapter 2. Constraint implementation is done according the
provisions of American Steel Institute of Steel Construction-Allowable Stress Design
(AISC-ASD) code specifications.

3.2 Design Variables

Mostly in practical sizing design optimization problems of steel structures, the
cross-sectional areas of structural members are chosen from a list of standard
sections available on the market such that the final design satisfies the design
constraints determined by technical specifications of standards. Consequently, the
cross-sections of structural steel members refer to discrete sizing design variables
and the optimization process is called as discrete structural optimization.

The optimum design procedure begins by first deciding the initial values of area
variables. They can be selected in any way; feasible or infeasible, for simplicity
equal to each other or not, obtained from a structural design software or from
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literature, even just by engineering judgment or design experience. Benchmark
problems solved have shown the algorithm achieves promising results with all these
initial design point selections.

During modeling the structural optimization system, members are grouped
strategically to reduce the population size and computational cost, as well as
fabrication time. For small systems each member cross-section can be handled as
design variable without grouping.

A vector of discrete integer values I corresponding to the sequence numbers of
standard steel sections in a given section table for Ng¢ members of the structural

system
1" = I, 1, ... Iy,] (3.1)

constitutes the design space for each member group. A cross-section from vector 1 is
assigned randomly to each member group in every iteration step. After Ng iteration
the assignment procedure is completed for one step. Ng represents total number of
member groups.

Mathematically, design variables can be formulated as a vector of cross-
sectional areas A for each member group:

AT = [Al,AZ, ...,ANg] (3.2)

3.3 Objective Function
In this thesis, the constrained weight (W) minimization of steel structures is

defined as the objective function as formulated below:

Ng Ny
minW => A puL, (3.3)
k=1 =1

where W is weight, Ng is the total number of member groups in the structure, Ax is

cross-sectional area of the kth member group, Nk is number of members in member

20



group k and pm, Lm are unit weight and length of the mth member in the kth member
group, respectively Saka (1990).

3.4 Constraints
Typically in any optimization problem, the design variables accordingly the final
solution are controlled by the constraints imposed on the problem. In the present

study, constraints are defined according to the provisions of AISC-ASD (1989)
design code for pin-jointed truss type structures.

For truss structures, constraints can be shown in general form as follows:

=" __1<0 ; =1,..
In =G~ 1<0 ; m=1,.., N, (3.4)
lm . —_
Sm =G5~ 1<0 ; m=1,.., N, (3.5
d.
5, =—%——1<0 ; j=1,..,N; 3.6
I Gy J ) (3.6)

In Eqgns. (3.4-3.6), the functions gm , sm and dj, are referred as constraints being
bounds on stresses, slenderness ratios and displacements, respectively; om and (om)an
are the computed and allowable axial stresses for the mth member, respectively; Am
and (Am)an are the slenderness ratio and allowable value for mth member,
respectively; N;j is the total number of joints; and d;j, , and (dj; )an, are the computed
displacements and allowable displacement, respectively; lastly, | and j represent
direction and joint id, respectively.

The allowable tensile stress for the members subjected to axial tension force
shall not exceed the values calculated in Eqg. (3.7):

(0v)an=0.60Fy (on the gross area)

(3.7
(0t)an=0.50Fy (on the effective net area)
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where Fy is the yield strength and Fy is the ultimate tensile strength of the material.
The allowable tensile stress of structural members under axial compression force
is calculated considering the two possible failure modes of the members known as

elastic and inelastic buckling.

C, - 27°E (3.8)
Fy
(Kl /1) ] o |
(6.)y = ——2 ¢ | L a<c (inelastic buckling)  (3.9)
5, 3(Koby /1) (Kyly /1)
3 8C, 8C’
(G )a = 127 ; An2C (elastic buckling) ~ (3.10)

23(K,, L, /T,)? "o

The maximum slenderness ratio is limited to 300 for tension members, and it is
recommended to be 200 for compression members. Hence, the design constraints
related with slenderness for structural members under axial tension or compression

can be expressed as in Egn. (3.11)

4 = Kulw 300 (for tension members)

m
m

(3.11)

4 =Kabw <999 (for compression members)

m

In Egns. (3.8-3.11), E represents the modulus of elasticity, and C. stands for critical
slenderness ratio parameter. Kn is the effective length factor and is taken as 1 for all
truss members, Lm is the length of the mth member, and rm represents minimum radii
of gyration.

where, Kn , Lm and rin are mentioned before.
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3.5 Constraint Handling Procedure

In this thesis, the constraints are handled by integrating a penalty function term
into the objective function. The constraint integrated objective function is defined to
evaluate the feasible and infeasible designs, which proportionally penalizes the

designs with respect to the sum of constraint violations as shown in Eqn. (3.12).
N N;
=W |1+ @ (SN g+ " sm) + T, | (3.12)

In Eqgn. (3.12), @ represents the fitness score which is the penalized objective
function and « is referred to as the penalty coefficient to be used to adjust the

intensity of penalization. The details of constraints will be presented in section 4.6.
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CHAPTER 4

ARTIFICIAL BEE COLONY (ABC) ALGORITHM AND SOFTWARE
DEVELOPMENT FOR STRUCTURAL OPTIMIZATION

4.1 Introduction

Artificial bee colony algorithm has been widely used for all types of
optimization problems in various civil engineering disciplines and other disciplines,
since it has been introduced originally by Karaboga (2005) for solving numerical
optimization problems based on simulating real bees social behavior, foraging
behavior as a heuristic.

Further modifications and improvements of the ABC algorithm have been
carried out by Karaboga and Basturk (2007a). The main outlines of the ABC
algorithm have been presented by Karaboga and Basturk (2007b). Later on, ABC
algorithm has been applied by Akay and Karaboga (2009) on various numerical test
functions and the results have been compared with other well-known optimization
algorithms such as the GA, PSO and HS. Recently, a modified version of ABC
algorithm for constrained optimization problems has been proposed by Karaboga and
Akay (2011).

In this study it is aimed to implement ABC algorithm to discrete size
optimization of real size steel truss structures. To find the minimum weight of steel
structures by most appropriate cross-sections of structural elements, while satisfying
the constraints imposed to the structure, software called ABC-SOP2014 has been
developed. The developed software provides minimum weight design of both truss
and frame structures, but in this study it is applied only to truss structures.

In this chapter the literature survey is done firstly, and then swarm intelligence is
introduced. Consequently, artificial bee colony (ABC) algorithm is discussed
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broadly. Thereafter, the constraint handling method is presented. An example two-
bar benchmark problem is solved to clarify the use of artificial bee in structural
optimization comparing the results with other four optimization techniques. Finally

the details of the developed structural optimization software have been overviewed.

4.2 Literature Survey

In the literature, there are a huge number of studies about Artificial Bee Colony
(ABC) Algorithm ranging from normal equations to structural design problems in a
variety of engineering, finance and other areas. In the following, the applications of

the technique in structural optimization and civil engineering are reviewed first.

4.2.1 Studies Related to Structural Optimization

A modified ABC (MABC) algorithm was proposed by Hadidi et al. (2010) for
size optimization of planar and space truss structures under stress, displacement and
buckling constraints by applying the concept of probability to modify neighborhood
search method and by modifying the onlooker and scout phase. Their results
outperformed the classic ABC algorithm in all benchmark problems.

Sonmez (2011a) integrated an adaptive penalty function approach (ABC-AP)
into the ABC algorithm in order to minimize the weight of steel truss structures.
Constraints were handled with the adaptive penalty function method within ABC to
get rid of the drawbacks of Deb’s selection method and the static penalty function
methods. The efficiency of the ABC-AP for optimum design of truss structures was
studied in five test problems up to 200 elements with fixed-geometry and continuous
sizing variables subjected to multiple loading conditions. When the results of the
proposed enhanced algorithm were compared with other optimization methods in the
literature, it was shown that the approach is efficient as an optimization technique for
structural designs.

Sonmez (2011b) made modifications in original ABC with improved
performance of the algorithm for discrete optimum design of truss problems. Four
truss problems with up to 582 structural elements and 29 design variables were

solved to test the effectiveness of the modified algorithm and the results
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demonstrated the robustness and effectiveness of the proposed method for discrete
optimization design of truss structural problems

Aydogdu et al. (2012) used ABC algorithm for solving two discrete constrained
structural optimization problems. They designed a four story, three-bay 132 member
irregular steel space frame and an eight-story, 1024 member regular steel space
frame selecting the sequence numbers of W steel sections from a section pool as
design variables. The design constraints were implemented according to the
provisions of LRFD-AISC (Load and Resistance Factor Design [LRFD], 2001)
which covers the displacement limitations, inter-story drift restrictions, ultimate
strength requirements and geometric constraints. They obtained lighter designs with
better performance than both of the optimum designs determined by the dynamic
harmony search and ant colony optimization algorithms. Finally, they concluded that,
artificial bee colony algorithm is a robust and efficient approach that can be
effectively used to determine the optimum designs of large scale, real size steel space
frames.

Gerhardt and Gomes (2012) applied ABC algorithm to three classic benchmark
problems, spring design and optimization of a 10 bars plane truss and optimization of
a 52 bars space truss. They used the same architecture as in Akay and Karaboga (
2010) but with the minimum penalty rule, that says that the penalty should be kept as
low as possible so that an infeasible solution could not be optimal Coello Coello
(2002). Their results indicate that the ABC algorithm is an effective global optimizer
with relative high computational cost.

Fiouz et al. (2012) used ABC algorithm with the fly-back mechanism to impose
the constraints for discrete optimization of 10-bar plane truss and 25-bar and 72-bar
space truss. In some cases they found same results as other methods used in
literature, and in other applications their method produced significantly better results.
The fly-back mechanism technique significantly improved the rate of convergence
and the accuracy in comparison with other methods. They concluded also, that the
ability to reduce the structural weight and the computational cost proves that this
algorithm is one of the most powerful algorithms available for structural truss weight

optimization.
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Talatahari et al. (2012) coded ABC algorithm in MATLAB to study four skeletal
structure benchmark problems and to show the efficiency of the ABC algorithm. The
results of their study revealed that the ABC algorithm offers results as good as or
better than other optimization methods and can be used effectively for solving such
type of problems satisfying various constraint conditions.

Degertekin (2012) developed an ABC algorithm for the optimum design of
geometrically non-linear steel frames. He investigated the numerical efficiency of the
ABC algorithm by solving weight minimization problems of three steel frames taken
from literature and found better designs than the GA and the HS algorithms in
shorter time under strength, displacement and size constraints.

Degertekin and Hayalioglu (2013) developed an improved artificial bee colony
algorithm (IABC) for size optimization of truss structures in order to enhnce the
efficiency of the ABC algorithm. Solving a twenty-five bar space truss from
literature by IABC they verified that the convergence capability of the IABC
algorithm is significantly better than that of the artificial bee colony algorithm with
an adaptive penalty function (ABC-AP) and it also obtained better design than the
ABC-AP and other heuristic search algorithms compared. Less than 0.1% standard
deviation of 20 independent runs in comparison with the average weight in the
design example proves that the IABC algorithm converges to near global optimum
and it is not sensitive to the initial designs.

Three metaheuristic algorithms, namely harmony search (HS), artificial bee
colony (ABC) and firefly algorithm (FA) have been evaluated by Miguel and Miguel
(2013). They solved seven benchmark truss problems and performed the
optimization of a realistic transmission tower. To optimize these structures on shape
and sizing under multiple loading conditions, they used penalty approach dealing
with different type of constraints. They obtained better results than the literature in
three of the seven examples considered, and in the other four examples the results
were approximately equal to the best one obtained in literature, without constraint
violation. In complex examples, involving shape and size optimization with multiple
natural frequency and buckling constraints, the results of used algorithms were better

than the results in literature and parameter fine-tuning was not necessary to obtain
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these results. The computational time was relatively short to find the optimal
solution.

Joubari et al. (2013) performed a structural truss mass optimization on size under
frequency constraints using ABC and gravitation search algorithm (GSA). Their
results showed that both algorithms reached, better results than the literature in three
of the four examples considered, and in the other example the structure is
approximately equal to the best one found, emphasizing the excellent capacity of
both methods.

Carbas et al. (2013) carried out a comparative study of three metaheuristics for
optimum design of engineering structures. They selected the Firefly Algorithm
(FFA), Artificial Bee Colony (ABC), and Cuckoo Search (CS) algorithms and
designed 132-members space steel frame by using these three different algorithms to
investigate the minimum weight design. In the design example considered, the design
constraints include the displacement limitations, inter-story drift restrictions, strength
requirements for beams and beam-columns which are formulated according to
provisions of LRFD-AISC (Load and Resistance Factor Design of American Institute
of Steel Institution). They compared the optimum designs obtained by FFA, ABC,
and CS algorithms by each other as well as by those attained by the Dynamic
Harmony Search and Ant Colony Optimization algorithms. The lightest optimum
design is attained by the artificial bee colony algorithm. Adaptive Firefly algorithm
(AFFA) is the second bests. It is also noticed the performances of CS and DHS
algorithms are close to each other in this particular problem. The optimum design
obtained by Ant Colony Optimization algorithm is the heaviest weight among the

other algorithms which is 8.73% heavier than the one determined by ABC algorithm.

4.2.2 Studies Related to Other Applications of ABC in Civil Engineering

Kang et al. (2009a, 2009b) proposed the hybrid simplex artificial bee colony
algorithm (HSABCA) which combines artificial bee colony algorithm with the
Nelder-Mead simplex search (NMSS) method for inverse analysis problems. They
applied the new algorithm which combines the local search ability of NMSS and the
global search ability of ABC algorithm to parameter identification of concrete dam-

foundation systems. They compared the overall search ability of HSABCA with the

29



basic ABC algorithm and a real coded genetic algorithm (RCGA) on two examples: a
gravity dam and an arc dam. Obtained results indicate that the proposed algorithm is
an efficient tool for inverse analysis of dam-foundation systems and it performs
much better than the other two stochastic algorithms on such problems.

Li et al. (2011a) showed using four examples the reliability and accuracy of the
ABC algorithm in reliability analysis of engineering structures.

Li et al. (2011b) combined fuzzy c-means clustering (FCM) with ABC algorithm
to overcome the sensitivity to the initialization of clustering centers and to prevent
trapping into local optima of FCM during risk analysis of dam. Results show that it is
more accurate and robust than FCM, and it is an efficient tool for risk analysis of
dams.

Su et al. (2012) used ABC algorithm for pile group load optimization. They
concluded that ABC is feasible and has the advantages of high efficiency and easy
implementation for pile group load optimization.

Prakash (2012) tried to improve the exploitation capability which in turn
accelerates the convergence of ABC by embedding convex linear combination in its
onlooker bee phase, because a poor balance between exploration and exploitation
may result in a weak optimization method which may cause premature convergence,
trapping in a local optima, and stagnation. The modified variant called BABC was
applied to determine and improve the seismic location in the Earth’s crust and upper
mantle. The proposed variant gave good results and enhanced the accuracy of the
hypocentral parameters.

Mandal et al. (2012) used an integrated approach of rough set theory and ABC
trained support vector machine leak detection of pipeline with maximum accuracy.

Hossain and El-shafie (2013) presented a paper on developing an optimum
reservoir release policy by using ABC algorithm. The paper presents a study on
developing an optimum reservoir release policy by using ABC algorithm for the
Aswan high dam of Egypt. After using the actual historical inflow, the release policy
succeeded in meeting demand for about 98% of total time period.

Jahjouh et al. (2013) studied to obtain the optimum design for reinforced
concrete continuous beams in terms of cross section dimensions and reinforcement

details using a fine tuned Artificial Bee Colony (ABC) Algorithm while still
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satisfying the constraints of the ACI Code (2008). Four RC beams of varying
complexity are presented and optimized.

Sun et al. (2013) utilized a modified ABC algorithm to identification of
structural models and demonstrated the effectiveness, robustness and efficiency of
the method.

Kang et al. (2013) proposed an artificial bee colony algorithm with a multi-slice
adjustment method for locating the critical slip surfaces of soil slopes. They tested
the proposed algorithm on six benchmark problems and showed its reliable
performance by solving these problems. Compared with several other population-
based algorithms like PSO, MHS, spline-based GAand RCGA, their method
demonstrated strong competitive capabilities in terms of convenience, efficiency and
accuracy.

Ozturk and Durmus (2013) investigated optimum cost design of columns
subjected to axial force and uniaxial bending moment via ABC algorithm
implementing the design constraints according to ACI 318-08 and studies in the
literature. They selected the height and width of the column, diameter and number of
reinforcement bars as design variables and the cost of unit length of the column
consisting the cost of concrete, steel, and shuttering as the objective function. Deb's
constraint handling method was used. They obtained nearly same values as the
existing values in the literature.

Yahya and Saka (2014) used in their study a multi objective artificial bee colony
(MOABC) algorithm via Levy flights algorithm to obtain the solution of the
construction site layout planning (CSLP) problem. The objective of the study was to
optimize the dynamic layout problem under two objective functions of minimizing
the safety hazards/environmental concerns and the total handling cost of interaction
flows between facilities. The performance of MOABC with Levy flights is
demonstrated on a real benchmark construction engineering of construction site
layout planning problem and the optimum solution obtained is compared with Basic-
MOABC model, max—-min Ant system (MMAS) model, and the original construction
site layout of the studied problem. They concluded that, the results indicated that
MOABC via Levy flights performs better than the above mentioned algorithms and
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the proposed model was successfully applied to practical case studies and proved to

be robust and efficient.

4.2.3 Studies Related to Other Areas of Engineering Optimization

Standard ABC algorithm is effectively used for solving unimodal and
multimodal numerical optimization problems even for solving unconstrained
optimization problems. Improved versions of ABC algorithm are developed to
handle constrained problems in various areas such as economics, engineering design,
allocation and location problems, visual target recognition, image clustering, reactive
power optimization, protein structure prediction, data mining, software testing,
vehicle routing, neural network training, job shop scheduling, bioinformatics.

For further applications in a wide range information can be found in Baykasoglu
et al. (2007), Karaboga et al. (2012), Bolaji et al. (2013), Balasubramani and Marcus
(2013), Bansal et al. (2013).

4.3 Swarm Intelligence

Karaboga (2005) defines two basic concepts, self-organization and division of
labor, as necessary and sufficient properties for obtaining swarm intelligent behavior.

According to Bonabeau et al. (1999) self-organization can be defined as a set of
dynamical mechanisms which result in structures at the global level of a system from
interactions among its lower-level components. Between the components of the
system the rules specifying the interactions are executed on the basis of purely local
information, without global knowledge or global planning. However insect colonies
can collectively build fascinating structures and achieve goals which individual
insects are incapable of achieving alone. A behavioral model of self-organization is
proposed for a colony of honey bees by Seeley (1995). Self-organization can be
described with four basic properties:

i)  Positive feedback promotes the creation of convenient structures.
Recruitment and reinforcement are typical examples of positive feedback. Trail
laying and following in some ant species or dances in bees can be shown as the
examples of recruitment. Seeley, Camazine and Sneyd (1991) have confirmed that

foragers can home in on the best food source through a positive feedback.
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i)  Negative feedback counterbalances positive feedback, which leads to
the stabilization of the collective pattern. Limited number of available foragers,
saturation, food source exhaustion, crowding or competition at the food sources
might give rise to a negative feedback mechanism.

iii)  Fluctuations such as random walks, errors, random task switching
among swarm individuals enable the discovery of new solutions.

iv)  All cases of self-organization rely on multiple interactions. In general,
self-organization requires a minimal density of mutually tolerant individuals capable
to make use of the results of their own activities as well as of others’ activities.

Different tasks inside a swarm are often performed simultaneously by spe-
cialized individuals and this phenomenon is called division of labor. Simultaneous
task performance by specialized workers is believed to be more efficient than
sequential task performance by unspecialized workers. While parallelism avoids task
switching, specialization allows greater efficiency of individuals in task performance.

The basic properties related to self-organization of honey bees are as follows:

i)  Positive feedback: With the increase of nectar amount, the number of

onlookers visiting them increases, too.

i)  Negative feedback: The exploration process of a food source abandoned
by bees is stopped and it helps to labor allocation.

iii)  Fluctuations: The scouts carry out a random search process, which
enables the discovery of new food sources.

iv)  Multiple interactions: Information about food source locations is shared

on the dance area.

4.3.1 Behavior of Honey Bee Swarm

The foraging behavior of honeybees, the process of seeking for nectar in flowers
IS an optimization process in nature. This social behavior has been modeled
successfully as an optimization technique.

The nectar gathering process of honeybees, which emerges their collective
intelligence consists of three essential elements (Karaboga, 2005) as shown in Fig.
4-1:
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Food sources: The value of a food source depends on many factors, such as the
proximity to the hive, energy concentration of nectar and the ease to extract it. For
the sake of simplicity, it is possible to represent the profitability of a source with a

single quantity, its fitness.

_, Onlooker Bees

Dancing Area

*
Employed Bee

Scout Bee

Figure 4-1: Basic elements of foraging behavior

Employed foragers: These bees are associated with a particular food source
which is exploited by them. Employed bees carry information about their food
source, such as distance, direction and profitability to other collector bees and share
it with a certain probability.

Unemployed foragers: They are constantly looking for a food source to exploit.
They can be classified as the scouts, searching for new food sources in the
neighborhood of the hive and as the onlookers, waiting in the hive and choosing a

food source according to the information shared by employed foragers.
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The encoding of information is discovered by Karl von Frisch is as follows: The
duration of waggle dance represents the distance and profitability of the food source,
namely one second of a waggle dance represents 1,000 meters of flight. And the
angle of the dance with respect to the comb indicates the location of the food source

relative to the sun as shown in Fig.4-2 (Seeley, 2010).

40
30

20

1000 3000 5000
Distance 10 food source (m)

Duration of waggle run (sec)

Fig 1.4 How a dancing bee encodes information about the distance and direction to a rich
patch of flowers. Distance coding: The duration of each waggle run is proportional to the
length of the outbound flight. Direction coding: Outside the hive the bee notes the angle of
her outbound flight relative to the sun’s direction, and then inside the hive she orients her
waggle runs at the same angle relative to straight up on the comb. Two followers are acquir-
ing the dancing bee’s information,

Figure 4-2: Encoding information between honeybees (Seeley, 2010)

4.4 Artificial Bee Colony (ABC) Algorithm
The pseudo-code of the basic ABC algorithm, can be stated step by step as in
Fig. 4-3 and a basic outline of ABC algorithm is presented in Fig. 4-4.
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10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

20:

21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31
32:
33:
34:
35:
36:
37:
38:

Parameters: sn, limit
Initialize the food sources X; randomly
Evaluate fitness f(;) of the population
cycle=1
repeat
for i=1tosn/2 do {Employed phase}
forj=1toDdo
Produce a new food source ; in the neighborhood of the food
source x;for the employed bee by using
v = xi; + ¢, (i — x7)
Select k at random such that
ke {1,2,....sn} k#i, g€ [-1,1]
end for
Evaluate solutions v; and X;
if £(;) is better than f(¥;) then
Greedy selection
else
counti = countj + 1
end if
end for
fori=sn/2+ 1tondo{Onlooker phase}
Calculate selection probability
>N fGR)
PO = o 7
Select a bee using the selection probability
Produce a new solution ¥; from the selected bee
Evaluate solutions v; and X;
if £(¥;) is better than f(¥;) then
Greedy selection
else
counti = counti + 1
end if
end for
for i = 1 to sn do {Scout phase}
if count; >limit then
X;=random
end if
end for
Memorize the best solution achieved so far
cycle=cycle+1
until cycle=Maximum Cycle Number (MCN)
Post process results and visualization

Figure 4-3: Detailed Pseudo code of the ABC Algorithm
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Determine the neighbor of
the chosen food source
by the onlocker

No

Initial Food Positions

Calculate the
Amount of Nectar

Determine the neighbors of
the chosen food sources by
the employed bees

Calculate the
Amount of Nectar

Selection

All onlookers
distributed?

Yes

Memorize the position
of best food source

Find the abandoned
food sources

Produce new positions
for the abandoned
food sources

Are termination criteria
satisfied?

Yes

Final Food Positions

Figure 4-4: Flowchart of ABC algorithm
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4.5 ABC Algorithm for Discrete Optimization

ABC algorithm was firstly proposed to solve unconstrained optimization
problems. Karaboga and Akay (2011) proposed a modified ABC algorithm for
constrained optimization problems. At first step, a randomly distributed initial
population of sn solutions is generated, where each solution is a D-dimensional

vector. D represents the number of design variables and ;x represents the i food

source in the population.

X =xM" +rand (0,)(x™ —x™), i=12..,sn j=12..D (4.1)

i N i
where x}“‘” <X; <X

When the design variables are selected from a continuous design space Eqn.
(4.1) is used. If the design variables are to be selected from a set of discrete section

pool, Eqgn. (4.1) is modified as follows:
A9 =11+ INT [rand (O, (1™ - 17™) ], i=12..,sn j=12..D (4.2)
where I™ <1, <™

In Eqn. (4.2) the integer value of I, denotes the index of the design variable. In
truss optimization I, represents the index of cross-sectional area A, in the available

profile list vector. IJT“‘” and I refer to the first and last profile index in section pool.

After all the bees return to the hive with a certain amount of nectar, the first half
(sn/2) that found the best food sources become “employed bees”. While performing
truss optimization, the amount of nectar refers to the weight of the truss and the best
food sources are the lightest trusses explored by foragers. The remaining bees are
called “unemployed bees” or “onlooker bees”. They watch the waggle dance to

decide which of the employed bees to follow.
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Each food source possesses one employed bee. The number of onlooker bees
which will fly to a food source depends on the amount of nectar at that source. The
onlooker bees select the food source according to a probability proportional with the
amount of nectar existing at the food source. Singh (2009). The probability p; for it

source is calculated as shown below:

1 1

_ if (x) AL0)
p; = Zsri/z 1 or p; = ZS{'H./Z 1 (43)
j=1 jf(x) j=1 WD)

A new candidate food source is calculated based on information inherited from

the employed bee:
A = S INT [ B 1 =  17) ], 1=1.2,...,5n/ 2 j=12,..,D(4.4)

In Egn. (4.4) ¢ is a random number between -1 and 1. The left hand subscript (i)
indicates the solution number while the right hand script (i) represents the design
variable number. k is a randomly chosen integer number between 1 and sn/2 that has

to be different from i. As the difference between the parameters  1°** and 1>
decreases, the perturbation on the new candidate food position,|*"decreases.

Therefore, as the search approaches to the optimum solution on the search space, the
step length adaptively decreases. If the food level in the new location is better then
the old one, the new position becomes best food source; otherwise, the old location is
preserved as the best food source.

Since the ABC algorithm is iterative, a food source is discarded by its employed
bee, if there is no improvement in the amount of nectar from a certain food source
after a predefined iteration (LIMIT). If a scout accidentally discovers a rich,

unexplored food source, it becomes an employed bee.
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4.5.1 Diversification Generation Method for Initial Population

In this thesis, the diversification generation method is used for generating the
diverse initial solution set. The diversification generation method does not consider
the objective function, it only focuses on diversification.

First, the last design produced by design module of SAP2000 is used for initial
seed for the method with an acceptable design, which enables the algorithm to find
the optimum results very rapidly by reducing number of iteration cycles and avoiding
redundant computations. The initial seed is randomized by using geometric

distribution during generation of other members of the population as follows:
x| = x™ + g (4.5)

The probability density function of the geometric distribution is given by Eqgn.
(4.6):

1 1\9
P(g) = ﬁ(l — ;) ,g €{0,1,2, ..., +o0} (4.6)

where g represents a geometrically distributed random integer number and ¢
corresponds to the average of this specific distribution (Hasangebi, 2007).

It is pointed out by Hasangebi (2007) that most programming language falls
short of a library to satisfy a function to sample the geometrically distributed random
numbers and suggests using the following equation to generate a geometrically
distributed number:

_ log(1-r;)
gi,l’ gi,z - [log(l—l/(1+(pi)) (47)

where r; is a uniform random number generated between 0 and 1 for each design

variable, and ¢ can formulated as follows:

@ = /number of selected ready section (4.8)
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The ready sections from SAP2000 section list library ordered according to their
cross-sectional areas and enumerated starting from 1 represent the candidate list for
design variables. According to SAP2000 design results integer Id numbers of the
assigned sections are assigned to initial values of design variables. Subsequently, for
each design variable a random number is generated by using Eqn. (4.7) and it is
added or subtracted to the initial value of that design variable. The new random
number that represents the ready section id from the list is assigned to the design

variable. This process is repeated for all the variables until population size is reached.

4.6 Constraint Handling

In most of the previous structural optimization studies, constraint handling has
been achieved using the death penalty method. In this approach, an initial parent
population is formed by creating only feasible individuals and all infeasible solutions
are automatically eliminated. Although this approach is simple to apply, it has some
drawbacks:

i) Firstly, the search process may get stuck at initial stage, since the initial

population is randomly generated and there is a high possibility of constraint

violation occurrence for every individual for problems subject to heavy
constraints.

ii) Secondly, searching through both feasible and infeasible regions is usually

more efficient than searching through only feasible regions with death penalty

implementation, because the first approach enables reaching the optimum from
both regions.

In contrast with the death penalty approach, penalty function implementation
prevents the search stagnation and infeasible candidate solutions are not disregarded.
Since the abovementioned shortcomings are eliminated and also penalty functions
are relatively easier to implement and efficient with a proper parameterization, the
use of a penalty function method is preferred in the present study. Subsequently, a
constrained objective function is defined to evaluate infeasible individuals in

proportion to the sum of the constraint violation as in Eqn. (4.9).
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® = WIJ1+ Penalty(a)| =W [1 +a (Zyil(c))] (4.9

In Eqn. (4.9), W symbolizes the unconstrained and & symbolizes the constrained
objective functions; c refers to the whole set of normalized constraints, and a refers

to the penalty coefficient, used to adjust the intensity of penalization as a whole.
4.7 Sample Problem (Two-bar Truss)

4.7.1 General Statement of the Design Variables

The structural optimization problem is the two bar truss problem (Fox 1971,
Schmit 1981) as shown in Fig. 4-5. The objective function is the weight
minimization of two tubular truss elements which is one of the most used

objective functions in structural optimization.

Figure 4-5: The two bar truss problem

The design of the symmetrical truss is specified by a unique set of values for

the pre-assigned analysis variables summarized in Table 4-1.
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Table 4-1: The pre-assigned analysis variables

Parameter | Description Unit | Value
2P Applied load Ib 66,000
2B Horiz. dist. btw. supports | in. 60
Wall thickness of tube in. 0.1
E Young's modulus psi |30x10°
p Density Ib/in®| 0.3
oy Yield stress of material psi 100,000

The bounds of the two independent design variables are shown in Table 4-2.

below.

Table 4-2: The bounds of design variables

Design Variables | Description Lower bound | Upper bound
d The mean diameter of the tubes 0.1in. 5in.
H The height of the truss 5in. 50 in.

4.7.2 Derivation and Formulation of the Problem

Using elementary analysis, the dependent parameters are tabulated below:

Member force (k): F T P

PL

43

BZ+H2)%

H

Second moment of inertia (in.%): | =é[(d +t)' —(d —t)q _ 7

(4.11)

(d°+1%) (4.12)



(BZ+H2)%
Hd

Member stress (psi): o = (4.13)

>
N|o

. . 2°El 1 7°E(d?+t7)
Buckling stress (psi): o, = —= 4.14
g (p ) e L2 A 8(BZ+H2) ( )

The problem posed is to find d and H such that the weight of the truss system
W =2p7rdt(Bz+H2)% — Min, (4.15)

while requiring that the following imposed behavior constraints be satisfied:

P (BZ+H2)%
gl(d,H)zay—azdy—EH—dZO (4.16)

b
~ _ 7El 1_7z2E(d2+t2) p(BZ+H2)
9: (4, H) =0, —0' === = 8(B°+H?) at  Hd =0 (4.17)

Formally, the objective function f, and the normalized constraints g1, g2 can

now be written as

f(d,H)=2p7zdt(BZ+H2)% (4.18)

d,H)= -1<0 4.19
gl( ) o,nt Hd ( )

d H 8P(BZ+H2)L5 1<0 (4 20)
92( ’ )_ﬁSEtHd(d2+t2) B '

Note that after obtaining a solution (H*, d*), we must ensure that the tubular
cross-sections are indeed thin-walled (i.e., d/t »1).

44



4.7.3 Solution of the Problem

4.7.3.1 Solution of the Problem with ABC Algorithm

The structural optimization problem is solved first by artificial bee colony

(ABC) algorithm and then by four different techniques. Afterwards the results are

compared.

1.

Initially the control parameters of ABC algorithm, population size (the
total number of bees in the colony=N) and maximum number of cycles
(MNC) are set as N=10 and MNC=50.

A random initial bee colony (N different trusses having similar shape but
different member cross-sections) is generated using Eqgn. (4.1). Here the
initial values of the design variables, constrained objective function, the
values of normalized design constraints and unconstrained objective function
for every bees (each truss) are calculated. A static penalty coefficient r=1 is
used to solve the problem. The results of this step are indicated in Table 4-3.
In the ABC algorithm, every food source exploited by the bees represents a
possible solution to a given optimization problem. The location and amount
of the nectar from the flower patch correspond to the design variables and

the fitness function (weight of the truss).

Table 4-3: The initial bee colony

BeeNo| Ay [0.1=d<5| A, |[5<H<50| f(d,H) |gi(d,H)| gz(d,H) | F(d,H)

[EXN

0.7210[3.6330 |0.8308]42.3841 | 35.5598 | -0.6458 | -0.8046 | 35.5598

0.45892.3487 |0.1514|11.8120 | 14.2739|0.2208 |-0.3796 | 17.4251

0.4104|2.1111 ]0.0430]6.9359 |12.2532|1.2089 |0.2667 |30.3341

0.97924.8982 |0.2401|15.8042 | 31.3073|-0.5399 | -0.9404 | 31.3073

0.0904|0.5430 |0.1781|13.0162 | 3.3474 |3.8599 |45.0587|167.0950

0.1902|1.0318 |0.7609]39.2389 |9.6063 |0.2815 |6.8614 |78.2232

0.6894 |3.4779 |0.4040|23.1789 | 24.8535 | -0.5060 | -0.8415 | 24.8535

0.8698 | 4.3622 |0.9262]46.6791 |45.6250|-0.7138 | -0.8749 |45.6250

O (00 |N O |01 |~ W(N

0.5304|2.6988 |0.5639|30.3733 | 21.7175|-0.4529 | -0.6306 | 21.7175

[EY
o

0.82164.1256 |0.4199 | 23.8960 | 29.8262 | -0.5913 | -0.9046 | 29.8262
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3. The trusses are sorted by weight from the lightest to the heaviest, then the
first half of the trusses (N/2) is selected. The selected trusses are referred

as “employed bees”, which found the best food sources.

Table 4-4: The employed bees for the two-bar truss

BeeNo| A1 [0.1<d<5| A, |5<H<50| f(d,H) |gi(d,H) | g(d,H) | F(d,H)

2 10.4589|2.3487 |0.1514]11.8120|14.2739/0.2208 |-0.3796|17.4251

9 10.5304|2.6988 |0.5639|30.3733|21.7175|-0.4529 |-0.6306 | 21.7175

7 10.6894[3.4779 10.4040|23.1789 |24.8535|-0.5060 | -0.8415 | 24.8535

10 ]0.82164.1256 |0.4199|23.8960|29.8262 |-0.5913|-0.9046 | 29.8262

3 10.4104]2.1111 |0.0430(6.9359 |12.2532]1.2089 |[0.2667 |30.3341

4. At the beginning of first cycle we loop over each truss (food source) (i=1,
2,3, ...,, N/2).

5. The remainder of the bees called “unemployed bees” or “onlooker bees”
watch the waggle dance to decide which of the employed bees should be
followed. They decide according to the probability proportional to the
amount of nectar existing at the food source. So we determine how many
solution(s) must be performed on the selected ith truss based on the

probability p(i) using Eqn. (4.3) and recruit the onlooker bees.

1
pr=—s 1741 —— =02731
17.4251 T 217175 T 24.8535 T 29.8262 T 30.3341

= number of onlooker bees=1.3653~1
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1

Py =—3 L7l —— =02191
174251 T 217175 T 24.8535 T 29.8262 * 30.3341
= number of onlooker bees = 1.0955 = 1
_1
Py =— 248535 — =0.1914
174251 T 21.7175 T 24.8535 1 29.8262 * 30.3341
=>number of onlooker bees=0.9572~1
_1
Pi=—7 - 29-81262 - — =0.1595
174251 T 217175 T 24.8535 + 29.8262 1 30,3341
=>number of onlooker bees=0.7977=~1
_1
ps = — A L —— = 0.1569
174251 T 217175 T 24.8535 T 29.8262 * 30.3341

=>number of onlooker bees=0.7843~1

Accordingly we send 1 employed bee and 1 onlooker bee to each food

source.

6. For the first food source the initial values were given in Table 4-4. The
new values of the design variables for employed bee and onlooker bee are
calculated as

"ev'd = 2.3487 + 0.2853 = (2.3487 — 4.1256) = 6.9359

"eWH = 11.8120 — 0.4145 * (11.8120 — 6.9359) = 9.7910

The new value of the constrained objective function is

=2%025*m*d=* (502 + H?) = 14.2739
new
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New values of the normalized constraints g1, g2 are

g1(d, H) = 0.8384
g,(d, H) = 0.4542

Finally the value of the unconstrained objective function is calculated.

F(d,H) = 25.1143

Table 4-5: The objective function values for the employed bees and onlooker

bees for the-two-bar truss

Bee No Bee ID d A f(d,H) g1 g2 F(d,H)
k ¢1 0.1<d<5 2 5<H<50
Old Bee 2.3487 11.8120 | 14.2739 | 0.2208 | -0.3796 | 17.4251
1 (Former2) | Employed Bee |4 |0.2853 | 1.8416 -0.4145(9.7910 |10.9548 | 0.8384 |0.4542 | 25.1143
Onlooker Bee 1 | 4 | -0.6548 | 3.5123 -0.0102 | 12.0014 | 21.3917 | -0.1948 | -0.8160 | 21.3917
Old Bee 2.6988 30.3733]21.7175 | -0.4529 | -0.6306 | 21.7175
2 (Former 9) | Employed Bee |1 |-0.1835 | 2.6345 -0.8580 | 24.8155 | 19.3343 | -0.3745 | -0.6314 | 19.3343
Onlooker Bee 1| 3 |-0.9972 | 3.4757 0.6160 | 44.8109 | 35.3302 | -0.6363 | -0.7637 | 35.3302
Old Bee 3.4779 23.1789] 24.8535 | -0.5060 | -0.8415 | 24.8535
3 (Former 7) | Employed Bee |5 |-0.3372 |3.0170 0.8077 | 22.5996 | 21.3601 | -0.4214 | -0.7580 | 21.3601
Onlooker Bee 1|2 | -0.5908 | 2.9796 0.0508 | 23.7560 | 21.4923 | -0.4321 | -0.7472 | 21.4923
Old Bee 4.1256 23.8960 | 29.8262 | -0.5913 | -0.9046 | 29.8262
4 (Former 10) | Employed Bee |5 |0.3478 | 4.8262 0.1994 | 23.7126 | 34.7876 | -0.6490 | -0.9405 | 34.7876
Onlooker Bee 1 | 3 | 0.5057 | 4.6862 0.0634 | 24.6616 | 34.3046 | -0.6470 | -0.9345 | 34.3046
Old Bee 21111 6.9359 ]12.2532]1.2089 |0.2667 |30.3341
S (Former 3) | Employed Bee |4 |-0.3369 | 2.7899 0.4426 | 5.0000 |15.9942 |1.2902 |-0.2656 | 36.6300
Onlooker Bee 1| 3 | -0.4984 | 2.5626 0.2137 |5.0000 |14.6910 |1.4934 |-0.0525 | 36.6300

7. At the second cycle same calculations are performed as at the first cycle.
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Table 4-6: The new objective function values for the employed bees and

onlooker bees for the-two-bar truss at the second cycle.

Bee No Bee ID d A f(d,H) g1 02 F(d,H)
¢l |0.1sds5[k| ¢2 |5sHs50
Old Bee 2.3487 11.8120 | 14.2739 | 0.2208 |-0.3796 | 17.4251
1 (Former 2) | Employed Bee |3[0.5924 |1.9527 [5]0.0856 |12.2297 | 11.9247|0.4250 |0.0570 |17.6723
Onlooker Bee 1 [5]-0.9121 | 2.1320 [3]-0.0708 | 12.5759 | 13.0727 | 0.2744 | -0.2002 | 16.6600
Old Bee 2.6345 24.81565 | 19.3343 | -0.3745 | -0.6314 | 19.3343
2 (Former 9) | Employed Bee |4[0.4084 |2.0256 |1[-0.2201 | 22.1216 | 14.2322 | -0.1262 | -0.2026 | 14.2322
Onlooker Bee 1 [3]0.9951 | 2.2539 [3]0.7987 | 26.5853 | 17.0303 | -0.2973 | -0.4007 | 17.0303
Old Bee 3.0170 22.5996 | 21.3601 | -0.4214 | -0.7580 | 21.3601
3 (Former 7) | Employed Bee |5 |-0.4556 | 2.6043 [2]0.1000 | 22.6474 | 18.4519 | -0.3306 | -0.6237 | 18.4519
Onlooker Bee 1 [ 2 | -0.5604 | 2.4615 |5 | -0.4512 | 15.5314 | 15.6740 | -0.0718 | -0.5284 | 15.6740
Old Bee 4.1256 23.8960 | 29.8262 | -0.5913 | -0.9046 | 29.8262
4(F1%;m” Employed Bee |5 |-0.4917 |3.1351 |1|0.6472 |31.2221 [ 25.5875 | -0.5353 | -0.7608 | 25.5875
Onlooker Bee 1 [5]0.0872 | 4.3012 [1[-0.0057 | 23.8316 | 31.0629 | -0.6074 | -0.9159 | 31.0629
Old Bee 21111 6.9359 [12.2532 |1.2089 | 0.2667 |30.3341
5 (Former 3) | Employed Bee [2|-0.57112.0623 [4]0.3165 |5.0000 |11.8230|2.0982 |0.8163 |46.2814
Onlooker Bee 1 [3]0.2045 |2.0395 [4]0.5225 |5.0000 |11.6921|2.1329 |0.8779 |46.8942
8. At 50" cycle final objective function values are obtained as follows:
Table 4-7: The final solution at the 50. cycle for the-two-bar truss
BeeNo| A; [0.1<ds5| A, |5<H<50| f(d,H) |gi(d,H)|gz(d,H) | F(d,H)
1 |0.0559 |1.8784 |[-0.528520.2369 |12.8126|0.0000 |0.0000 |12.8126
2 |-0.8768|1.8784 |-0.8000 |20.2369 |12.8126|0.0000 |0.0000 |12.8126
3 |0.6723 |1.8784 |-0.6683|20.2369 |12.8126|0.0000 |0.0000 |12.8126
4 |-0.1997|1.8784 |-0.0729|20.2369 |12.8126 |0.0000 |0.0000 |12.8126
5 ]0.4351 |1.8784 |0.4523 |20.2369 |12.8126|0.0000 |0.0000 |12.8126

49




~ .
&' ABC TWO BAR TRUSS OPTIMIZATION (=] = e

Initial Parameters Optimization Results
Population Size 10
Fitness x(1)=d x{)=H
i ; 50
E TR LI L Inttial Design 355597788941702  3.63299762606621 42.3840552568436
Best Design 12.8126086528779 1.87835794048578 20.236874831606
74 3 2P Current Design 12.8126086928779 1.87835794048578 20.236874831606
|fe—d—)) l
e ) ’y
ekl (5 A Start Time No of lteration

04:20:23 50

i H
A/\ H

c

START

Figure 4-6: ABC Two Bar Optimization Results

4.7.3.2 Solution of the Problem with Augmented Lagrangian Method (ALM)
Powell, Hestenes, and Rockafellar developed the Augmented Lagrangian
Method, which is based on combining duality with (exterior) penalty functions. The
two bar truss optimization is solved by means of an Excel VBA Code AUGLAG
based on Fletcher-Reeves. At the end of iteration 6, the number of function

evaluations was 314.

Table 4-8: Results of ALM solution

Iﬁer. No Of Func. f(d,H) | Violation d H Lagrange Multipliers

[¢] Ev.
1 1 10.99 10.14 1.00 50.00 0.00 0.00
2 97 12.52 0.05 1.87 19.15 4.62 2.50
3 165 12.81 0.00 1.88 20.20 5.88 2.33
4 237 12.81 0.00 1.88 20.24 5.61 2.40
5 276 12.81 0.00 1.88 20.24 3.07 341
6 314 12.81 0.00 1.88 20.24 3.07 341

Final Constraint Values: gl =] -2.5E-05 g2 = | 1E-05
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4.7.3.3 Solution of the Problem with Zoutendijk’s Method of Feasible Directions
Zoutendijk developed the Method of Feasible Directions, which is still
considered as one of the most robust methods for optimization. The method is

suitable for solving problems with inequality constraints.

The starting point is xo = (5, 50), which is feasible. Table 4-9 presents the

iterations. At the end of iteration 4, the number of function evaluations was 51.

Table 4-9: Results of Zoutendijk’s Method of Feasible Directions solution

Iter. No | No Of Func. Ev. f(d,H) d H Active Set
1 0 54.96 5.00 50.00 -
2 17 24.50 2.24 49.80 2
3 34 16.88 2.76 12.34 1
4 51 12.82 1.88 20.28 1,2
Final Constraint Values: gl =|-0.001566226 g2 = | -8.999E-05

4.7.3.4 Solution of the Problem with the Generalized Reduced Gradient Method
(GRG) (Nonlinear Constraints)

The Generalized Reduced Gradient (GRG) Method is another popular technique
for constrained minimization and is well suited to handle nonlinear equality
constraints. The inequality constraints are transformed to equality constraints as
require, through the addition of slack variables. Excel Solver is based on a GRG
algorithm.

Slack variables, x3 and xs, have been added to g: and g, respectively, as is
required by the GRG method. The starting point is xo = (5, 50, 0.755, 0.91) which is
feasible. Table 4-10 presents the iterations. At the end of iteration 11, the number of

function evaluations was 20.
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Table 4-10: Results of GRG solution

'ﬁg No OEfV'fU“C' (d,H) d H X3 x4
1 1 54.96 5.00 50.00 0.755 0.91
2 3 30.15 2.75 49.83 0.55 0.46
3 5 25.83 2.36 49.82 0.48 0.14
4 7 24.51 2.24 49.81 0.45 0.00
5 9 14.60 1.91 27.41 0.18 0.00
6 11 13.35 1.88 22.80 0.08 0.00
7 13 13.04 1.88 21.39 0.04 0.00
8 15 12.92 1.88 20.78 0.02 0.00
9 17 12.86 1.88 20.50 0.01 0.00
10 19 12.84 1.88 20.37 0.00 0.00
11 20 12.81 1.88 20.24 0.00 0.00

4.7.3.5 Solution of the Problem with the Sequential Quadratic Programming
(SQP) Method

Sequential quadratic programming (SQP) methods have been very popular in
recent years due to their superior rate of convergence. The method used for solution
of the problem was first published by Pshenichny in 1970 in Russian and later in a
book by Pshenichny and Danilin in 1978. SQP is the principal algorithm for NLP in
the Matlab “fmincon” optimizer.

The starting point is xo = (0.1, 5.0), which is infeasible. Table 4-11 presents the

iterations. At the end of iteration 34, the number of function evaluations was 68.

Table 4-11: Results of SQP solution

fter. | Ne OEfVF.”“C' (d,H) d H Violation
1 0 0.57 0.10 5.00 7983.48
2 2 1.13 0.20 5.10 1646.79
3 4 2.14 0.37 5.29 273.53
5 8 5.62 0.98 5.90 13.67
8 14 9.89 1.71 6.54 1.89
13 24 15.97 2.58 13.29 0.00
17 32 14.33 2.24 15.92 0.00
30 60 12.82 1.88 20.19 0.00
34 68 12.81 1.88 20.23 0.00
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4.7.4 Discussion of Solutions of the Problem

A classical benchmark problem is solved with ABC algorithm and with four
other classical techniques. ABC has found the optimum solution at 37. iteration.

With ALM method, at the end of iteration 6, the number of function evaluations
was 314. With ZMFD method, at the end of iteration 4, the number of function
evaluations was 51. With GRG method at the end of iteration 11, the number of
function evaluations was 20. With SQP method, at the end of iteration 34, the
number of function evaluations was 68. When the five techniques are compared,
GRG method was the fast converging method with 20 function evaluations, ABC
outperformed well after GRG method. The slowest method was the ALM method
with 314 function evaluations. As can be seen from the results ABC has a high

convergence speed.

4.8 Structural Optimization Software Development with ABC Algorithm

In this study it is aimed to implement ABC algorithm to discrete size
optimization of real size steel truss structures. To find the minimum weight of steel
structures by most appropriate cross-sections of structural elements, while satisfying
the constraints imposed to the structure, software called ABC-SOP2014 has been
developed to evaluate the performance of the ABC algorithm in structural
optimization and to give a visual sense to algorithm with a user-friendly interface.
The developed software provides minimum weight design of both truss and frame
structures, but in this study it is applied only to truss structures. In the present form,
the software can handle only size optimization, further developments can be made to
it to perform shape and topology optimization also.

ABC-SOP2014 is a size optimization tool capable to interact with commercial
structural analysis and design software SAP2000. Although SAP2000 is one of the
most used analysis and design software, it does not always find the best design
possible. The software is coded on the basis of ABC algorithm on VB.NET platform,
which is compatible with the programming language of Open Application
Programming Interface (OAPI) released by Computers and Structures, Inc. The
OAPI functions have been used to access and communicate with SAP2000 v14. This

OAPI provides designers a fast and efficient method to access all of the analysis and
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design options of SAP2000 enabling model transfer, control of data input and output
to and from SAP2000 software environment. The modeling and structural analysis of
the structure to be optimized is carried out by SAP2000 software, which has been
verified the reliability of its analysis results by various benchmark examples. The
integrated ABC- SOP2014 module provides the structural optimization power of
ABC algorithm to the designers.

The initial design of SAP2000 can be used to converge rapidly to the optimum
point by decreasing the number of iterations, however it is not vitally necessary.

Users of the software must install SAP2000 v14, because the references used in
the programming environment were taken from v14. The detailed programming
algorithm of ABC-SOP2014 is shown in Fig. 4-7
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Figure 4-7: The algorithm of ABC-SOP2014
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CHAPTER 5

APPLICATION OF ABC ALGORITHM VIA ABC-SOP2014 SOFTWARE

5.1 Introduction

The numerical correctness, efficiency and validation of the ABC algorithm in
structural size optimization problems has been investigated and experimented using a
test suite consisting of four steel trusses in all. For all the examples presented in this
study, a bee colony of bee size N= 50 was set. Maximum number of cycles (MNC)
was set different in each problem due to variety of design variables.

The software ABC-SOP2014 discussed in the previous section has been used for

performing numerical tests with ABC algorithm.

5.2 Truss Problems

Four different pin-jointed truss examples are solved with ABC-SOP2014. The
design constraints in these problems are stress, stability, and displacement type
arranged according to AISC-ASD (1989) design code specifications. For all the
numerical examples, discrete sets of AISC-ASD ready standard steel sections
available in the section database of SAP2000 or discrete sets of problem specific

cross-sectional area values are used.

5.2.1 22-Bar Cantilever Truss Structure

The first test problem considered is a statically determinant cantilever truss
structure shown in Fig. 5-1, which has been studied by Erbatur et al. (2000) for
discrete design variables.

The objective function is to minimize the mass of the structure under stress

AISC stress constraints imposed on all bars, for which circular hollow pipe sections
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from AISC-ASD design specification are adapted. No member grouping is used to
make the problem harder to optimize. Besides, the member forces are independent of
member sizes due to statical determinacy of the truss, which means no compensation
with the distribution of internal forces amongst the members is possible in case any

design variable is exceeded.

78.74 inch

1y

Il 354.36 inch :i

Figure 5-1: Statically determinate 22-bar plane truss

Sizing optimization of the 22-bar plane truss structure is carried out using ABC
algorithm setting the initial bee colony size as N=50. Maximum number of cycles
(MNC) was set to 1200, but we terminated program at cycle 810. The structural steel
members are selected from a database of 37 circular hollow sections issued in AISC-
ASD (1989) design specification. All of the design variables were set the same initial
cross-sections as PXX8 for the initial design. The results obtained are compared to
the previous work done from the literature (Table 5-1). The result of the ABC
algorithm used in this study yields a weight of 524.5 Ib and a volume of 1849.90 in.?,
which is exactly the optimum solution of the problem. The GAOS level2 has a
weight of 524.5 Ib, which is 4.49% heavier than the result of ABC algorithm. No
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kind of constraint violation occurred as seen in Figs. 5-2 and 5-3. The screenshot of

the optimization results of ABC-SOP2014 program is shown in Fig. 5-4 and the

convergence history of optimization process is shown in Fig. 5-5.

133.07

Figure 5-2: Axial forces on elements of 22-bar planar cantilever truss

Figure 5-3: Element stresses within limitations of 22-bar planar cantilever truss
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Table 5-1: Comparison of the optimum designs for 22-bar planar truss.

A><|al_force Applied Allowable [ True optimum | GAOS level2 | This study ABC
Truss member (kip) stress (ksi) | stress (ksi)

SAP2000 Profile Profile Profile
1 -49.607 -18.51 -18.85 P3.5 P3.5 P3.5
2 -41.339 -15.43 - 18.85 P3.5 P3.5 P3.5
3 -33.071 -14.83 -18.26 P3 P3 P3
4 -24.803 -14.59 -17.2 P2.5 P25 P25
5 -16.535 -15.45 -15.89 p2 p2 P2
6 -8.268 -10.35 -13.62 P15 P15 P15
7 41.339 18.54 21.6 P3 P3 P3
8 33.071 19.45 21.6 P2.5 P25 P25
9 24.804 16.76 21.6 PX2 P25 PX2
10 16.536 20.69 21.6 P15 P15 P15
11 8.268 19.09 21.6 PX.75 P1.25 PX.75
12 -11.023 -10.3 -12.97 P2 P2 P2
13 -11.023 -10.3 -12.97 P2 p2 P2
14 -11.023 -10.3 -12.97 p2 P2 P2
15 -11.023 -10.3 -12.97 P2 P2 p2
16 -11.023 -10.3 -512.97 P2 P2 P2
17 13.779 21.56 21.6 PX1 PX1 PX1
18 13.779 21.56 21.6 PX1 P11/2 PX1
19 13.779 21.56 21.6 PX1 PX1 PX1
20 13.779 21.56 21.6 PX1 PX1.25 PX1
21 13.779 21.56 21.6 PX1 PX1 PX1
22 13.779 21.56 21.6 PX1 P15 PX1

Weight, Ib (kg) 524.5 (237.95) | 548.06 (248.64) | 524.5 (237.95)
Volume, in.3(cm.3) 1849.9 (30314) | 1932.21 (31663) | 1849.9 (30314)

3000

Fitness Score (kg)
~
£
2

g

1500

200 250 300

350 400

450 500

Number of Cycles (x50=Number of Structural Analyses)

550

600 650

700 750 800

Figure 5-5: ABC-SOP2014 design history of 22-bar planar cantilever truss
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5.2.2 25-Bar Space Truss

The second design example considered is a 25-bar space steel truss (Fig. 5-6).
This example has been studied by many researchers with different structural
optimization techniques: Rajeev and Krishnamoorthy (1992) used GA, Li et al.
(2009) utilized HPSO, Camp and Bichon (2004) used ACO, Kripka (2004) used SA
and Sonmez (2009) used ABC.

f,#"

100 inch

100 imch

¥

Hﬂ-ﬁ"‘

Figure 5-6: 25-bar space truss

62



All structural members were assumed to be constructed from a material with a
mass density of 0.1 Ib/ in.® (2,768 kg/m®) and a modulus of elasticity of 10,000 ksi
(68.971 MPa). The stress limitations of the members are +40 ksi (275.6 MPa). The
top nodes 1 and 2 are subjected to displacement limitations of +0.35 in. in three
directions. The structure includes 25 members, which are divided into 8 groups, as
follows: (1) Al, (2) A2~A5, (3) A6~A9, (4) A10~All, (5) A12~A13, (6) Al4~Al7,
(7) A18~A21 and (8) A22~A25. The discrete variables are selected from the set D=
{0.1,0.2,0.3,0.4,05,0.6,0.7,0.8,09,1.0,1.1,1.2,1.3,14,15, 16, 1.7, 1.8, 1.9,
2.0,2.1,2.2,23,24,25,2.6,2.8, 3.0, 3.2, 3.4} (in?). A single loading condition was

imposed to the structure as shown in Table 5-2.

Table 5-2: Nodal loading conditions (kips) for the 25-bar space truss

Node Directions
X y y
1 1.0 -10 -10
2 0 -10 -10
3 0.5 0 0
6 0.6 0 0

The results of ABC algorithm are shown in Table 5-3 and compared with those
previously reported in the literature. The best design results obtained by means of all
the optimization methods listed in Table 5-3 are identical except of GA. 26946
structural analyses were performed in 539 cycles to find the best feasible design (Fig.
5-7).

63



Table 5-3: Comparison of the optimum designs for 25-bar space truss

Variables Optimal cross section area (in.z)
No Des. Vars. GA SA HPSO ACO | ABC (Sonmez) | ABC (This study)
1 Ay 0.1 0.1 0.1 0.1 0.1 0.1
2 Ay ~Ag 1.8 0.4 0.3 0.3 0.3 0.3
3 As ~Ag 23 3.4 3.4 34 34 34
5 A ~Agz 0.1 2.2 2.1 2.1 21 2.1
6 Ay ~Ar7 0.8 1.0 1.0 1.0 1.0 1.0
8 Az ~Ags 3.0 34 34 34 34 34
Weight (Ib) 546.010 484.330 484.85 | 484.85 484.85 484.85
Evaluation (#) 840 40,000 25,000 7,700 24,250 26,946
Constraint violation Nore | 193.8x10" | None None None None
600
500 510.04
400
% 304.79
E 300
w 266.34
g 24599 229.14
- 24133 0351 22204 22168 22124
222.13
236,61
200 232952020 22318 22183 22131 22064 22013 220.00 219.93
100
o}
4] 50 100 150 200 250 300 350 400 450 500 550 600

Number of cycles (x50=Number of Structural Analyses)

Figure 5-7: ABC-SOP2014 design history of 25-bar space truss
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5.2.3 160-Bar Space Truss Pyramid

The third design example considered is a 160-bar space steel pyramid (Fig. 5-8)
with a square base diameter of 16 m (52.5 ft) along both the x and y axis and a total
height of 8 m (26.25 ft). This problem was studied in Carbas et al. (2013) and
Hasangebi and Carbas (2011) using the standard (ACO1) and ranked (ACO2) ant
colony optimization algorithms and recently in Hasangebi and Azad (2014) using
BB-BC and MBB-BC algorithms. The structure contains 55 joints and 160 members
that are linked into seven independent sizing design variables. The grouping scheme
of members is shown in Fig. 5-8 (a). The structural steel members are selected from a
list of 37 hollow pipe sections issued in AISC-ASD (1989) design specification.

The imposed constraints to the structural elements are stress and stability type,
which are limitations of the members are computed according to the provisions of
AISC-ASD (1989). The displacements of all nodes are limited to 4.45 cm (1.75 in) in
each direction. A vertical load of —8.53 kN (—1.92 kips) applied in the z-direction at
all nodes of the pyramid. Consequently, a single load case is considered for design
purpose.

Sizing optimization of the 160-bar space pyramid is carried out using ABC
algorithm setting the initial bee colony size as N=50. Maximum number of cycles
(MNC) was set to 1000. Two runs executed with different initial design points. At
first run all of the design variables were set the heaviest circular hollow section
(PXX8), at second run a lighter pipe section (P10) was selected for the initial design
variables. The results obtained are compared to the previous work of Hasangebi and
Carbas (2011) and to recent work of Hasangebi and Azad (2014) (Table 5-4).

It should be noted that for all the solutions reported in Table 5-4, no kind of
constraint violation occurred. Similar to the result of the MBB-BC algorithm ABC
algorithm yields an identical design weight of 2788.84 kg (6148.35 Ib) after 56
cycles in first run and 61 cycles in second run, which is the best solution to the
problem found so far. The final designs attained using BB-BC, ACO1, and ACO2
techniques are slightly heavier; namely 2821.27 kg (6219.83 Ib), 2875.01 kg
(6338.31 Ib) and 2817.56 kg (6211.65 Ib), respectively. The screenshot of the
optimization results of ABC-SOP2014 program is shown in Fig. 5-9.
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Table 5-4: Comparison of optimization results for 160-bar space pyramid.

Sizing variables

Optimal cross-sectional areas (in.?)

ACO2

ACO1

BB-BC

MBB-BC

This study ABC

1

1.07

1.07

1.07

1.07

1.07

0.669

0.669

0.669

0.669

0.669

1.07

1.07

1.07

1.07

1.07

0.669

0.799

0.669

0.669

0.669

1.07

1.07

1.07

1.07

1.07

0.669

0.669

1.07

0.669

0.669

~N (OO0 W

1.48

1.70

1.07

1.07

1.07

Weight, Ib (kg)

6211.65

6338.31

6219.83

6148.35

6148.35

(2817.56)

(2875.01)

(2821.27)

(2788.84)

(2788.84)

& ABC-SOP 2014 Size Optimization of Stee Structures with Artficial Bee Colony Algorithm

o ||&@ |~
File View Define Optimization
i =} i
Quick Menu | o0 iy section predesian | optimize
& nBC o= ][=
Parameters Iniidl Design Group Name  Assigned Section Best Weight Best Fitness lter
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Figure 5-9: ABC-SOP2014 optimization results of 160-bar truss pyramid
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The fitness scores of the solutions attained at two independent runs after
different cycles are plotted in Fig. 5-10. Although the initial design points were
different, identical designs are attained after 61 cycles and 2991 structural analyses

for the first run and after 56 cycles 2787 structural analyses for the second run.
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Figure 5-10: ABC-SOP2014 design history of 160-bar space pyramid

5.2.4 693-Bar Braced Barrel Vault

The last example is a three dimensional braced barrel vault structure which was
already built for roofing the platform shelters at the Thirumailai Railway Station in
Chennai, India as shown in Figs. 5-11 and 5-12.

The braced barrel vault contains 259 joints and 693 bars which are linked into 23

independent size variables considering the symmetry about centerline as shown in
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Fig. 5-13. The member grouping scheme is shown in Fig. 5-13 (a) and the front and
plan view are provided in Fig. 5-13 (b) and Fig. 5-13 (c), respectively.

Figure 5-11: The platform shelter at Thirumailai Station, LUZ, Chennai, India

The braced barrel vault is subjected to a uniform dead load (DL) pressure of 35
kg/m?, a positive wind load (WL) pressure of 160 kg/m?, and a negative wind load
(WL) pressure of 240 kg/m? which are combined under two separate load cases for
design purposes as follows:

(i) 1.5(DL+WL) = 1.5(35 +160) = + 292.5 kg/m? (+2.87 kN/m?)

(i) 1.5(DL-WL) = 1.5(35-240) = -307.5 kg/m? (-3.00 kN/m?), along z
direction.

The displacements of all nodes are limited to a maximum value of +£0.254 cm
(0.1 in) in x, y and z directions. The strength and stability requirements of steel
members are imposed according to the provisions of AISC-ASD (1989). The
structural steel members are selected from a database of 37 circular hollow sections
issued in AISC-ASD (1989) design specification.
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Figure 5-12: The cross-section of the parallel vault and railway tracks

Standart auto design procedure of SAP2000 guided to a feasible design weight
of 15691.35 kg (34593.5 Ib) that is far from the optimum. The real weight of the
structure was 8250 kg (18188.10 Ib). On the other hand, an optimum design weight
of 5001.8 kg (11027.1 Ib) is achieved by the ABC algorithm without any constraint
violation. This best design is tabulated in Table 5-5 with section designations
assigned to each member group and the convergence history of the algorithm is
plotted in Fig. 5-14.

The optimal design of the 693-bar braced barrel vault was first presented by
Hasangebi and Carbas (2011) using a standart ant colony optimization (ACO1) and
ranked ant colony optimization (ACO2) stating that the minimum weight are found
6068.69 kg (13379.19 Ib) and 5503.65 kg (12133.47 Ib).

The solutions to this problem obtained with ABC, ACO1, and ACO2 are
tabulated in Table 5-5. ABC result takes the first place when it is compared to the
results of ACO2 and ACO1 with a 5001.8 kg weight, 9.12% lighter than ACO2 and
17.58% lighter than ACO1. ABC result is 68.12% lighter than SAP2000 auto design

procedure weight.
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Figure 5-13: The 693-bar braced vault, a) 3-D view, b) Front view, c¢) Plan view
(Hasangebi and Carbas, 2011).
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Table 5-5: Comparison of ABC with other optimization methods for 693-bar

braced barrel vault.

] ] ACO2 ACO1 ABC
Size variables Ready Section Area, cm? (in?) Ready Section Area, cm? (in%) Ready Section Area, cm?’ (in?)

1 P4 2045 (3.17) PX3 3.02 (19.48) PX3 3.02 (19.48)
2 P1 3.18 (0.494) PX15 6.90 (1.07) P1 3.18 (0.494)
3 P1.25 4.32 (0.669) P1 3.18 (0.494) P.75 2.15 (0.333)
4 PX1.25 5.68 (0.881) PX1.25 5.68 (0.881) P1 3.18 (0.494)
5 P. 75 2.15(0.333) P1.25 4.32 (0.669) P.75 2.15(0.333)
6 P5 27.74 (4.3) PX4 28.45 (4.41) PXX2.5 25.99 (4.03)
7 P1 4.32 (0.669) P1.25 4.32 (0.669) PX1 4.12 (0.669)
8 PX1.25 5.68 (0.881) PX15 6.90 (1.07) P1 3.18 (0.494)
9 PX35 23.74 (3.68) PXX2 17.16 (2.66) P1 3.18 (0.494)
10 P1 4.32 (0.669) PX1.25 5.68 (0.881) P.75 2.15 (0.333)
1 P1.25 2.79 (0.433) P1 3.18 (0.494) P3 14.39 (2.23)
12 PL5 5.16 (0.799) PX1 4.12 (0.669) P2 6.90 (1.07)

13 P15 5.16 (0.799) PX1.25 5.68 (0.881) P2 6.90 (1.07)

14 P1 4.32 (0.669) PX2 955 (1.48) P1 3.18 (0.494)
15 PX.75 2.79 (0.433) P.75 2.15(0.333) PX.75 2.79 (0.433)
16 PL5 5.16 (0.799) P15 5.16 (0.799) P1.25 4.32 (0.669)
17 PX2 955 (1.48) P2.5 10.97 (1.70) PX1 4.12 (0.669)
18 P1.25 4.32 (0.669) P1.25 4.32 (0.669) PXX2 17.16 (2.66)
19 P1 4.32 (0.669) P15 5.16 (0.799) P1 3.18 (0.494)
20 P.75 2.15 (0.333) PX15 6.90 (1.07) P.75 2.15 (0.333)
21 PX2.5 14.52 (2.25) P4 2045 (3.17) P1 3.18 (0.494)
22 P15 5.16 (0.799) P1 3.18 (0.494) P.75 2.15(0.333)
23 P.75 2.15 (0.333) PX.75 2.79 (0.433) P.75 2.15(0.333)

Weight 5503.65 kg (12133.47 Ib) 6068.69 kg (13379.19 Ib) 5001.8 kg (11027.1 Ib)

18000

Best feasible solution

Figure 5-14: ABC-SOP2014 design history of 693 bar braced vault
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CHAPTER 6

CONCLUSIONS

6.1 Conclusion

The objective of this thesis is to investigate the use and efficiency of artificial
bee colony (ABC) algorithm in structural optimization. The used version of ABC
algorithm is a modified version of the original algorithm. Diversification generation
method has been used to initialize the population. A software called ABC-SOP2014
has been developed to evaluate the performance of the ABC algorithm in structural
optimization on real size steel truss structures and to give a visual sense to algorithm
with a user-friendly interface. The software is capable to outperform size
optimization program that is interacting with a commercial structural analysis and
design software SAP2000 by evaluating the analysis data to find the optimum for the
minimum weight design of truss structures.

ABC-SOP2014 offers a practical optimization tool to the ABC algorithm and to
the designer.

Most of the studies about structural optimization with ABC algorithm have been
used continuous design variables, whereas in this thesis three discrete examples from
literature are covered. This thesis contributes to extend the discrete structural sizing
optimization field of ABC algorithm providing satisfactory performance with
feasible and near optimal solutions compared to previously work done.

Besides discrete sizing optimization of steel structures, there are also some other
useful features of the developed program such as:

e It requires a small amount of input due to nature of ABC algorithm selected
to optimization. Only colony size and maximum number of cycles constitute

the algorithmic input parameters. Other input data, namely SAP2000 file of
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the model, group data, section list, penalty coefficient @ and some design
parameters can be imposed easily.

e Material properties can be modified by ABC-SOP2014.

e The grouping property of the software decreases the fabrication requirements
and increases the convergence speed.

e It enables the user to create his section lists from ready steel profile lists of
SAP2000 or user defined sections.

e Structural analysis, design and optimization algorithm can be managed
simultaneously by ABC-SOP2014.

e The optimization history is kept in a specified array to make comparison and
measure its performance.

e Language integrated query (LINQ) is used to perform the queries for the best
solutions in ABC algorithm, which is a recent approach of programming
technique.

As a conclusion, considering the results of the presented study it can be inferred
that ABC algorithm with penalty implementation interactively working with
SAP2000 is a reliable and efficient discrete sizing optimization technique under the
constraints problem specific or imposed by design code provisions with the objective
of weight minimization. This functional optimization tool provides optimized
designs saving material, construction time and reducing the cost of the structure

significantly.

6.2 Final Recommendations

Artificial bee colony algorithm is a nature-inspired heuristic search technique,
which refers to experience-based techniques for problem solving, learning, and
discovery that give a solution which is not guaranteed to be optimal. To obtain
satisfactory results considering the random nature of the search algorithm, the initial
parameters should be carefully selected according to the number of design variables
to be optimized. Besides proper population size selection, minimizing the number of
design variables and the size of discrete section pool is very important to reduce the

computational cost. It has been observed that computation time of the structural
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systems with lesser number of size variables and reduced discrete sets is significantly
shorter.

The optimization process via ABC algorithm interacting with SAP2000 takes
more time than expected, because of huge amount of data transfer. The structural
analysis performed for the initial population is equal to population size and after
selecting the best half of the colony, at every iteration cycle half the structural
analysis number is the same as population size. Using parallel computing and
utilizing a local search algorithm may help to come up with this drawback.

An initial design obtained by SAP2000 with a small fitness score provides better
performance. The use of results from previous runs also supplies better performance.

Lastly, it should be considered, that this program is not an analysis and design
software alone, the results must be checked by experienced and authorized
consultants. It can be used also for educational and research purposes to discover and

evaluate new and possibly better design options.

6.3 Future Work

The developed software is working simultaneously with SAP2000 software.
Each interaction and each analysis consumes time depending on the problem size,
hardware performance and also source code optimization performance. To save
computational time an integrated finite element module can be added to the software.

Further development can be made with adding new design codes to provide
users the opportunity to compare the effect of various constraints imposed by
different design code specifications. The algorithm also can be modified or adapted
properly for better convergence. A hybridization with other algorithms can be a good
example for modification. Some control parameters can be assigned to increase the

efficiency of the algorithm.
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