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ABSTRACT

EARLY WARNING ON STOCK MARKET BUBBLES VIA ELLIPSOIDAL
CLUSTERING AND INVERSE PROBLEMS

Kürüm, Efsun
Ph.D., Department of Financial Mathematics

Supervisor : Prof. Dr. Gerhard Wilhelm-Weber

Co-Supervisor : Assist. Prof. Dr. Cem İyigün

February 2014, 87 pages

When a financial bubble bursts, not only a large number of people suffer directly in
society, but it also affects the entire economy. Therefore, it is important to develop an
early warning using mathematics-supported tools that aims at a detection of bubbles.
We introduce a new method which approaches the bubble concept geometrically by
determining and evaluating ellipsoids. In fact, we generate a volume-based index via
minimum-volume covering ellipsoid clustering method, and in order to visualize these
ellipsoids, we utilize Radon transform from the theory of the inverse problems, in the
form of figures. Analyses were conducted for US, Japan and China stock markets.
In our study, we have observed that when the time approaches bubble-burst time, the
volumes of the ellipsoids gradually decrease and, correspondingly, the figures obtained
by Radon transform are becoming more “brilliant”, i.e., more strongly warning. The
thesis ends with a conclusion and an outlook to future investigations.

Keywords : Financial bubbles, early-warning, clustering, inverse problems, ellipsoid.
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ÖZ

ELİPSOİDAL KÜMELEME VE TERS PROBLEMLAR ARACILIĞIYLA HİSSE
SENETLERİ PİYASASINDAKİ BALONLAR İÇİN ERKEN UYARI YAKLAŞIMI

Kürüm, Efsun
Doktora, Finansal Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Gerhard Wilhelm-Weber

Ortak Tez Yöneticisi : Assist. Prof. Dr. Cem İyigün

Şubat 2014, 87 sayfa

Bir finansal balon patladığında, toplumdaki pek çok kişiye doğrudan zarar verdiği
gibi, aynı zamanda, bu durum tüm ekonomik yapıları da etkiler. Bu nedenle, mate-
matik destekli araçlar kullanarak balonların saptanmasını amaçlayan bir erken uyarı
yaklaşımı geliştirmek önemlidir. Balon kavramına, elipsoitlerin belirlenmesi ve de-
ğerlendirilmesi ile geometrik olarak yaklaşan yeni bir yöntem getiriyoruz. Minimum-
hacim kaplayan elipsoit kümeleme yöntemi ile hacim-tabanlı bir endeks oluşturuyor
ve bu elipsoitleri görselleştirmek için, ters problemler teorisinden Radon dönüşümü’
nden, figürler şeklinde, yararlanıyoruz. Analizler, ABD, Japonya ve Çin hisse senedi
piyasaları için yapılmıştır. Çalışmamızda, balonun patlama zamanı yaklaştığında elip-
soitlerin hacimlerinin giderek küçüldüğü ve buna paralel olarak Radon dönüşümü’
nden elde edilen figürlerin daha “parlak”, yani daha güçlü bir uyarı, haline geldiği
gözlemlenmiştir. Tez, sonuç ve gelecekte yapılacak araştırmalara bir bakış açısı ile
sona ermektedir.

Anahtar Kelimeler : Finansal balonlar, erken uyarı, kümeleme, ters problemler, elip-
soit.
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CHAPTER 1

INTRODUCTION

Stock market bubbles take place when the prices of stocks increase overmuch their
fundamental value (intrinsic value). According to the fundamental value of a secu-
rity, an investor can decide whether the security is overvalued or undervalued. If the
intrinsic value of a security is higher than its current market price, it is classified as
overvalued, if not, it is called as undervalued. Hence, he decides about to buy or to sell
the security. An investor is willing to purchase or hold an asset at a price that is above
its fundamental value if he thinks that the asset can be resold at an even higher price in
a later trading round (11). This trading behavior is called “speculation” by Harrison
and Kreps, 1978 (37). As a result, the fundamental value can be thought as the price
which an investor is eager to pay if he is compelled to hold the asset forever, i.e., if he
is not allowed to retrade (11).

The most common calculation method of the fundamental value of a stock or any
security is the discounted cash flow (DCF) analysis that is defined as follows (2):

Fundamental Value of a stock = DCF := CF1
(1+d)1 + CF2

(1+d)2 + . . .+ CFn
(1+d)n . (1.1)

This formula benefits from weighted average cost of capital (WACC) as a discount
variable to explain the time value of money. Here, d is a discount rate and CFn (n ∈ Z+)
is a free cash flow in period n calculated in this form (2):

Free cash flow = Net income + Amortization & Depreciation − Changes in
Working Capital − Capital Expenditures.

Since stock market bubbles are only realized during continuous bull market circum-
stance, the traders’ confidences are very high (14). They believe that the demand for
the stocks will never end and stocks will always become profitable. This belief about
the stock market causes irrational expectations and escalates the stock prices upward
and inflates the size of the stock market bubble as well. This trend ends when some
investors recognize that the prices have risen unrealistically, thus they begin selling
their stocks before the prices go down. Then, other traders follow this attitude; hence,
panic selling starts. Not always but mostly, this process is completed by a sharp decline
in price as in Figure 1.1 and when this acute drop occurs, it is called that the bubble
bursted.
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Figure 1.1: Weekly Shanghai Composite Index for the 2007 crisis (23).

If a bubble affected only a few investors, it would be of a limited importance because
it has a little effect on the overall economy. Bubbles can cause major problems when
they originate in an asset that is commonly held. Then, when the bubble bursts, not
only a large number of people suffer directly, but it also interacts with the economy.
Therefore, dangerous bubbles are generally the ones in a stock market (12).

Most of the companies that grow exponentially through the stock market bubble, when
the bubble bursts, they go bankrupt. This gives rise to an increase of the unemploy-
ment rates (14). Business and consumer consumptions diminish and this may cause to
commence the economic recession (14). Because of these negative effects of bursting
of a bubble, it is important to develop an early-warning to detect it, timely.

The scientific contribution of this thesis is to introduce an early-warning signalling for
bubbles, for the first time by using inverse problems and clustering methods. Here,
we suggest a new approach where the logarithmic price process is approximated and
quantitatively represented with ellipsoids which have a minimum volume (55). The
shape of the price process before and after a bubble burst time inspired us to deal with
this issue, firstly, via ellipses in the 2-dimensional case as shown in Figure 1.2. Here,
as a first and intuitive approach, we plotted the bubble as a “curve-filling” static ellipse,
parallel to the ordinate axis. However, in the two dimensions, we could only consider
their coordinates as time and logarithmic price/index. In order to reflect the features
of the price process better, we generalize the ellipses to higher dimensions. Hence, we
generate ellipsoids.
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Figure 1.2: Geometric interpretation of a bubble.

Generally, the definition of a speculative bubble is known, in consequence of positive
feedback among economists: The index or the price of an asset increases consider-
ably and becomes overvalued. Then, a crash usually occurs in a bear market with
a acute declined prices for months or years, but this case does not occur every time
(46). Therefore, though we became inspired by Figure 1.1 to deal with the bubble
concept via ellipsoids, actually, the ellipse’s position in Figure 1.2 is a special case.
We can monitor the strong increase and the sharp decline in the price process like in
Figures 5.1-5.4, i.e. , an increasing and decreasing price process not always looks like
ellipses. However, we are interested in the dynamics of a (finite) sequence of ellipses.
In fact, since our aim is to develop an early warning, we focus on the dynamics and
the structure of ellipsoids before the crash time, especially, on their volumes in time
dependence. Regarding the structure, in order to image this approach, we construct
Figures 1.3-1.4 in the 2-dimensional case.

Figure 1.3: Structure of ellipsoids before a crash time.

In fact, in Figure 1.3, the dynamics of the ellipsoids does not show a strong change of
the volume before the bubble bursts. In Figure 1.4, the situation is quite the opposite.
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We emphasize that we are interested in ellipsoids (generated by data) “over” interval
like in Figure 1.3 “between” intervals as we had it in Figure 1.2. This dynamical
approach will be supported by a sliding window technique.

In Figure 1.4, shortly before the crash time, the strong drift dominates the whole price
process, and the accumulated “energy” given by the volatility (oscillation) before turns
into the process’ rising up. Therefore, the ellipsoids become shrinking, then, dropping
in terms of their volume; in other words, they become looking like a “needle” as shown
in Figure 1.4. Regarding ellipsoids in general, and needles in particular, and their
underlying covariances of variables, we refer to (4).

Figure 1.4: Geometric interpretation of a pronounced bubble.

In order to obtain each ellipsoid, seven factors, namely, date, log price/index process,
weekly mean, standard deviation, median, growth rate of the price process and weekly
log-iterated return of this process, are employed as a vector, which corresponds to each
week. In fact, the log price process is divided into intervals and the data of each interval
are described by an ellipsoid, determined by minimum-volume covering ellipsoids clus-
tering method, and the volumes of ellipsoids are monitored with the sliding-window
technique which we will explain. Moreover, we call a series of volumes a “volume-
based index”. In other words, the volume is used to measure the size of each ellipsoid.
Then, to visualize these volumes, we benefit from a method from the theory of in-
verse problems which is called the Radon Transform. Here, Radon transform yields
the color (representing the volume) and its change for any regarded ellipsoid, surveyed
and monitored in time dependence. The behavior of the volumes of the ellipsoids and
their change of color can be used as an early-warning signalling to detect bubbles and
to be protected against to destructive outcomes of them.

As for the definition of log-iterated return: Let logp1, logp2, . . . , logpn be logarithmic
prices of any asset or index for the first, the second and, eventually, the nth days.
The return is calculated as logpn − logpn−1 = log(pn/pn−1). However, when the usual
definition of return is used, we observe that Radon transform did not indicate definite
and pronounced signals, i.e., most of the figures have the same color, as we later on
see in Figures 5.16 and 5.18. Therefore, we generate the following variable by taking
the logarithm of prices two times:

log(logp2/logp1) = log(logp2) − log(logp1).
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We call this new variable the log-iterated return. It means a (discrete) change-rate or
first-order information which, as so often in calculus and applied mathematics, implies
and determines the first-order information of the log-price itself.

As for the volume based index, since the logarithm is a monotonic function, there is
no qualitative change path of the index when we compare the common definition of
return with our log-iterated return, as we presented in the example of in Figure 1.5.

Figure 1.5: Comparison of volume based index with usual return and log-iterated re-
turn.

Here, we analyse US, Japan and China stock market bubbles and use S&P 500, Nikkei
225, Shanghai Composite (SSEC) indices. In addition to real data, we also produce
fitted data according to Johansen-Ledoit-Sornette model which will be explained in
detail, later. This model claims that during a speculative bubble, an economic index
follows a power law adorned with a log-periodic oscillation so-called Log-Periodic
Power Law (LPPL). The LPPL is a function of time t, stated by (47):

y(t) ≈ A + B(tc − t)z + C(tc − t)z cos
[
wlog(tc − t) + φ

]
, (1.2)

where tc shows the most probable time of the crash, z is the exponential growth, the
amplitude of the oscillations is controlled by w, and A has to be greater than 0 (A > 0)
and equals the estimated price of the asset at the time of the crash p(tc). Furthermore,
B has to be less than 0 (B < 0) and C is a number different from 0 to guarantee the
log-periodic behavior. As for φ, it is assumed to be in the interval [0, 2π] (46).

The rest of the thesis is organized as follows. In Chapter 2, we introduce famous his-
torical bubbles. Then, we explain Johansen-Ledoit-Sornette model in detail in Chapter
3. A brief introduction of our methodological tools, Minimum-Volume Covering Ellip-
soids clustering method and Radon transform, are provided in Chapter 4. Chapter 5
presents the details of our approach and its treatment. Chapter 6 consists of future re-
search studies related to two main areas which are ellipsoidal calculus, and optimizing
the “area under the ROC curve”. The thesis ends with Chapter 7 by a conclusion and
an outlook.
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CHAPTER 2

FAMOUS HISTORICAL BUBBLES

Here, we present famous financial bubbles which occurred in the history, in order to
perceive destructive results of a possible forthcoming bubble in present times.

2.1 Tulip Mania

The tulip mania is considered as the first recorded financial bubble; it occurred in
the 1630s in Holland. In 1593, tulips were introduced by a botanist Carolus Clusius
who brought them from Ottoman Empire. He planted his garden to examine them for
medicinal purposes. Then, his neighbors stole some of his bulbs in order to make some
quick money. Hence, they gave rise to start the process of Dutch bulb trade (76).

In 1634, the madness of having tulips became too much and daily work was ignored.
Even the lowest members of the society joined the tulip trade. Until 1635, the ma-
nia ascended, the prices increased and many people invested fortunes to possess tulip
bulbs. Then, to sell tulips by their weight, in perits became necessity. Perit was a
small weight which is less than a grain. In fact, 480 grains equalled 1 ounce. Prices
for different varieties were as follows:

Admiral Liefken, weighing 400 perits = 4,400 florins; Admiral Von der Eyk, weighing
446 perits = 1,260 florins; Shilder of 106 perits = 1,615 florins; Viceroy of 400 perits =
3,000 florins; Semper Augustus, weighing 200 perits = 5,500 florins (22). In order to
perceive the value of a single tulip, Table 2.1 can be useful. It was recorded in terms
of items and their values by one of the authors of that time, Munting.
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Table 2.1: Items and their values which were traded for a single Viceroy bulb (22).

Item Value (florins)

Two lasts of
wheat

448

Four lasts of rye 558
Four fat oxen 480
Eight fat swine 240
Twelve fat sheep 120
Two hogsheads
of wine

70

Four casks of
beer

32

Two tons of but-
ter

192

A complete bed 100
A suit of clothes 80
A silver drinking
cup

60

Total 2,500

As with all gambling mania, at the beginning, confidence was high because everybody
was gaining. Tulip stocks were speculated in the rise and fall by the tulip-brokers.
They earned much money, purchasing the stocks when prices dropped, and selling
when they arose. Many people suddenly became rich. Everyone imagined that this
process would last forever. Eventually, wise investors began to recognize that this
imaginary world could not last forever (22). After that, as it happens in many cases
of speculative bubbles, some prudent people started to sell and froze their profits. As
everyone tried to sell while not many were buying, a domino effect became realized
and prices became lower and lower. This caused people to panic and sell regardless of
losses (7). Confidence was destroyed and the tulip market collapsed in February 1637,
abruptly as shown in Figure 2.1.
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Figure 2.1: A standardized price index for tulip bulb contracts (21).

2.2 South Sea Bubble

The South Sea Company was established in 1711 by Earl of Oxford Harley. As a
result of the war between Spain and Britain, British Government left 10 million pounds
in debt. Harley offered the government paying back 10 million pounds of debt to
ameliorate the government’s financial condition. In turn, the government proposed
6% interest to the company (72). In addition to 6% interest, the government suggested
privileged trading rights with Spain’s colonies in the South Seas, today known as South
America (16).

To finance its operations, the company issued stock to investors and the company’s
shares were snatched by investors, rapidly. After their first share issue success, the
company issued more shares. Although the company had an inexperienced adminis-
tration team, investors gathered this stock, competitively (16). It was thought that this
company “could never fail”.

The war between Britain and Spain began again in 1718; therefore all trading occa-
sions stopped. However, this event did not deter the investors for buying stocks. After
a while, management of the South Sea Company recognized that they were not gen-
erating much profit from company’s operations. For this reason, to generate revenues,
they decided to place more importance on issuing stock instead of making actual trade.
Meanwhile, the leaders of the company decided to sell their shares since they noticed
that the company’s stocks were fabulously overvalued relative to its profit. At that
time, the other investors did not realize that, actually, the firm was scarcely profitable
(16).

Eventually, rumors spread among investors about the firm’s administration had sold
all of their shares in the company. Then, panic selling immediately started and soon
the South Sea Company’s shares became worthless as is evident from the Figure 2.2.
Isaac Newton lost over 20,000 pounds. He stated “I can calculate the motion of heav-
enly bodies, but not the madness of people” (16). After the South Sea Bubble busted,
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Britain’s economy collapsed in spite of the government’s endeavors and to heal com-
pletely almost took a century.

Figure 2.2: Log-scale price for south sea company stocks (18).

2.3 1929 Great Depression

The end of World War I brought a new epoch to America. An era of confidence, op-
timism and welfare were being experienced in the United States during 1920s. After
World War I, industrialization and evolution of new technologies such as radio, auto-
mobile, air flight bolstered the economic and cultural boom. The Dow Jones Industrial
Average, DJIA, increased throughout the 1920s and because of the country’s strong
economic conditions, most of the economists thought that shares were the most con-
fident investment. These caused many investors to buy stocks, greedily (17). After a
while, investors purchased stocks on margin which means that the buyer would invest
some of his own money, but the rest were compensated by the broker. In those years,
only 10 to 20% of the stock price had to be paid by the buyer and, hence, 80 to 90%
of the cost of the stock price would be paid by the broker. If the price of the shares
declined lower than the amount of the loan, the broker would probably issue a margin
call, i.e., the buyer must pay back his loan as cash immediately. Therefore, to buy
shares on margin could be very risky. However, in the 1920s, many people who ex-
pected to make a lot of money on the stock market easily, called speculators, purchased
stocks on margin. They supposed that this rising process in prices would never end; so
they could not recognize how serious the risk was which they were taking (66).

The Dow Jones bounced from 60 to 400 from 1921 to 1929. This generated a lot
of new millionaires. Many people mortgaged their homes and invested their savings
into stock market. However, few people really had knowledge about the companies in
which they invested (17).
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In 1929, from June through August, stocks prices reached their highest levels. Economist
Irving Fisher stated that “Stock prices have reached what looks like a permanently high
plateau”, this was the statement many speculators wanted to hear and believe. On 3rd
of September 1929, the DJIA closed at 381.17; hence, the stock market had reached its
peak. Two days later, the market commenced falling. Stock prices fluctuated through-
out September and into October (66).

As indicated in Figure 2.3, a strong bear market, a market condition in which the prices
of shares were decreasing, had started by October 1929. On 24th of October 1929
which is known as Black Thursday, panic selling started since investors distinguished
the stock market boom was actually an over inflated speculative bubble (17). Rumors
spread that people commit suicide (66). Although the Federal Reserve Bank increased
interest rates several times to relieve stock market and overheated economy in 1929,
this could not prevent sad end.

When the stock market crashed on 28th and 29th of October, millionaire margin in-
vestors went bankrupt instantly. In November 1929, DJIA sharply declined from 400
to 145. Over $5 billion worth of market capitalization had been vanished from stocks
that were trading on the New York Stock Exchange in just three days. The stock market
crash of 1929 caused a great economic crisis, known as the Great Depression (17).

Figure 2.3: Dow Jones Industrial Average index from 1915 to 1942 (65).

As we observe from the famous bubble examples above, irrational expectations always
trigger destructive financial crashes. Indeed, this big and yet vaguely understood phe-
nomenon of bubbles asks for a high academic excellence. Academicians and central
bankers still try to find a method to prevent from bubbles and to develop a model which
estimates bubbles, in advance. If we go through the previous studies, in 1988, as one of
the early articles that mentioned bubbles via a theoretical model, Diba and Grossman
described a rational bubble as follows (25):

“A rational bubble reflects a self-confirming belief that an asset’s price depends on a
variable (or a combination of variables) that is intrinsically irrelevant-that is, not part
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of market fundamentals-or on truly relevant variables in a way that involves parame-
ters that are not part of market fundamentals.”

In their study, they claim that a rational bubble begins just on the first date of trading
of an asset. Moreover, they assert that a rational bubble that bursts cannot start again.

In 1989, Camerer represented theories of asset prices’ deviations from fundamental
value by classifying into three categories, which are rational growing bubbles, fads
and information bubbles (13).

In 1990, De Long et al. investigated the role of rational speculators in markets de-
scribed by positive feedback investors. In a short period of time, their model produces
a positive correlation of stock returns when positive feedback investors’ reply to past
price rises by flowing into the market. However, a negative correlation of stock return
is generated a long period of time. In addition to this, the model estimates the stock
market reactions to news since news triggers positive feedback trading (24).

In 1993, Allen and Gorton presented a theoretical model in order to prove that settings
can exist where rational behavior is consistent with stock price bubbles. They presume
that all agents are rational but they populate an imperfect world that is identified by
asymmetric information. In their model, an important property is that it can lead risk-
loving behavior (1).

As we mentioned in Chapter 1, Anders Johansen, Olivier Ledoit and Didier Sornette
represented a theoretical model, the so-called Johansen-Ledoit-Sornette (JLS) model
in 1999 (49). In this model, the bubble process has a log-periodic behavior. Since the
JLS model is successful to catch the bubbles, in our study, we benefitted from it to
generate fitted data. However, in our study, we shall prefer to address the original data
rather from the fitted data.
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CHAPTER 3

THE JOHANSEN-LEDOIT-SORNETTE MODEL

At a symposium sponsored by the Federal Reserve Bank of Kansas City, in 2002, the
former Federal Reserve chairman Alan Greenspan said: “... we recorganized that,
despite our suspicions, it was very difficult to definitively identify a bubble until after
the fact - that is, when its bursting confirmed its existence”. In his speech, he declared
that “It seems reasonable to generalize from our recent experience that no low-risk,
low-cost, incremental monetary tightening exists that can reliably deflate a bubble.
But is there some policy that can at least limit the size of a bubble and, hence, its
destructive fallout? From the evidence to date, the answer appears to be no. But we
do need to know more about the behavior of equity premiums and bubbles and their
impact on economic activity” (35). As we understood from his statement, there is no
exact theory which can estimate the bubbles previously, and as he underlined that how
it important to identify them before they blow up.

Anders Johansen, Olivier Ledoit and Didier Sornette have proposed a theoretical model,
known as the Johansen-Ledoit-Sornette (JLS) model, to designate bubbles in advance.
By analyzing the cumulative human behaviors, the price dynamics is defined by the
model during a time interval related with a bubble process (also called a regime). Also,
after a bubble regime, an estimation for the most probable crash time has been provided
by the JLS model. This model actually does not describe bubbles by exponential prices
but rather by faster-than-exponential growth of price. The reason for this arises from
imitation and herding behavior of noise traders, called as irrational investors (78).

3.1 Evolvement of the Price

In the JLS model, only a speculative asset is considered that does not pay dividends.
The interest rate, risk aversion, information asymmetry, and the market-clearing con-
dition are ignored for simplicity. Rational expectations are equivalent to the martingale
hypothesis (70):

Et

[
p(t

′

)
]

= p(t) ∀t
′

> t. (3.1)
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Here, the price of the asset at time t and the expectation conditional on information
up to time t are shown by p(t) and Et [·], respectively. The solution of Eqn. (3.1) is
a constant, if the asset price is not permitted to fluctuate under the effect of noise as
follows:

p(t) = p(t0).

Here, t0 displays some initial time and the meaning of this equality is that there is no
change in the price. Subsequently, when we study equations related with trajectories
and solutions, we refer to the times t ≥ t0. Since the asset price pays no dividend,
without loss of generality and for simplicity, its fundamental value is p(t) = 0. Thus, a
positive value of p(t) generates a speculative bubble (47). In the model, the crash is the
jump, each jump is defined as a bubble and small jumps are not considered. A jump
process can be indicated by j and the value zero is attained before the crash, and the
value one after the crash, as represented in the following:

j =

{
0, before crash,
1, after crash.

As depicted in Figure 3.1, the cumulative distribution function (cdf) of the time of the
crash, tc, is called 1 − Q(t) and the probability density function (pdf) is

q(t) :=
dQ
dt

(t) ≈
∆Q
∆t

.

The hazard rate of the crash is expressed as (47):

h(t) = q(t)/[1 − Q(t)],

where Q(t) := Pr(tc > t). The hazard rate h(t) compares that change of probability
with the likelihood 1 − Q(t) = Pr(tc ≤ t).

Figure 3.1: The cumulative distribution function (cdf) of the time of the crash.
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According to the JLS model, the asset price is accepted to drop by a certain percentage
κ ∈ (0, 1) in case of a crash, and the dynamics of the asset price before the crash is
stated by (70):

dp(t) = µ(t)p(t)dt − κp(t)d j(t). (3.2)

In order to satisfy the martingale condition for the price process, in Eqn. (3.2), the time
dependent drift, µ(t) (t ≥ t0) is selected, namely,

Et[dp(t)] = µ(t)p(t)dt − κp(t)h(t)dt = 0.

Here, we would like to briefly mention the definition of a Martingale.

Definition 1: The concept of a martingale based on the conditional expectation, where
E(Y |G) is interpreted as (usually optimized) numerical assesment of Y , given the in-
formation G. This information is expressed in terms of σ-algebras (or σ-fields). Let
us assume that we have a rising family of σ-algebras, such that Fs ⊂ Ft, t > s, and for
each t ≥ 0 there exists a random variable Yt which is Ft-measurable; (Yt)t≥0 is a pro-
cess which is adapted to the filtration (Ft)t≥0. The process (Yt)t≥0 is called a martingale
according to (Ft)t≥0 if E(Yt |Fs) = Ys for all t > s, almost everywhere in a probability
space Ω, with respect to the given probability measure P. Here, the main idea is that
Yt is a random variable such that the best estimation of its future value is given today’s
information/value (27). We might call it an “unbiased” estimation with respect to the
underlying time. For further information, we refer to (68).

and, herewith,

µ(t) = κh(t). (3.3)

Substituting Eqn. (3.3) into Eqn. (3.2) will give us Eqn. (3.4) below:

dp(t) = κh(t)p(t)dt − κp(t)d j(t). (3.4)

While j = 0 being the case before the crash, we get an Ordinary Differential Equation,
ODE:

dp = κh(t)p(t)dt ⇒
dp
dt

= κh(t)p(t)⇒ p
′

(t) = κh(t)p(t),

i.e.,

p
′

(t)
p(t)

= κh(t). (3.5)
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Integrating the Eqn. (3.5) from both sides gives

∫ t

t0

p
′

(s)
p(s)

ds =

∫ t

t0
κh(s)ds.

Thus, the following expression is obtained

log
[

p(t)
p(t0)

]
= κ

∫ t

t0
h(s)ds before the crash. (3.6)

According to this new statement, under the condition that there is no crash, any increase
of the probability of a crash implies an increase of the price speed in order to fulfill the
martingale property. With (47) we note that the hazard rate h(t) of the crash drives the
price; that rate is not restricted by any bound so far.

To clarify the investors’ behaviors, the model considers a network of agents. Each of
the agents is indexed by an integer i = 1, 2, . . . , I, and the set of agents is linked with
i is indicated by N(i). According to some graph like in Figure 3.2, the set of agents,
N(i), is directly linked with agent i. An assumption in the model is that agent i can
have only one of two possible states, si ∈ {−1,+1}. Here, the values −1 and +1 can be
interpreted as buy or sell, bullish or bearish, or, in technical or Boolean terms, “on or
off”. The state of investor i is decided by the model as follows (70):

si = sgn

K
∑
j∈N(i)

s j + σεi

 . (3.7)

Here, K is a positive constant and εi is independently distributed with the standard nor-
mal distribution. The parameter K, called the coupling strength, controls the tendency
towards imitation and σ governs the tendency towards idiosyncratic behavior. The pa-
rameter σ can be interpreted as an environmental factor. Bigger values of K reflect
strong imitation (47). If K = 0, only environmental effects determine the decision of
the trader.

The ratio K/σ represents the result of the order and disorder decision; in other words,
it symbolizes the probability of a crash. Also, as long as the average of all values K
was strictly positive, the model allows some of the values of K even to be negative.
The meaning of the negative K is that the investor does not accept other investors’
decisions.

As for the susceptibility of the system, it can be explained by adding a global influence
term G to the Eqn. (3.7):

16



si = sgn

K
∑
j∈N(i)

s j + σεi + G

 . (3.8)

In Eqn. (3.8), K
∑

j∈N(i) s j + σεi corresponds to individual decision and G can be ex-
plained as an average group effect to the investor’s decision. The parameter G will
converge to the state +1 if G > 0; G will approximate the favour state −1 if G < 0 and,
if G = 0, no global influence will exist.

The average state is defined as M = (1/I) ·
∑I

i=1 si. When there is no global influence,
expectation of the average state is zero, E(M) = 0, i.e., agents are equally divided
among the two states. Provided that a positive (negative) global influence is given,
agents in the positive (negative) state will predominate the others, E(M) ·G ≥ 0. With
this notation, the susceptibility of the system is determined as (47):

χ =
d(E(M))

dG
|G=0. (3.9)

The sensitivity of the average state to a small global influence is measured by this
susceptibility. It also has a second interpretation, namely, as the expected squared
deviance (variance) of the average state M around its mean of zero, induced by the
random idiosyncratic shocks εi. The susceptibility is affected by the structure of the
network. At the basis of the JLS model, there are two kinds of network structures: The
2-dimensional grid and the hierarchical diamond lattice.

3.2 Two-Dimensional Grid

In this network structure, the agents are placed on a 2-dimensional grid in the Euclidean
plane. Each agent has 4 nearest neighbors: one to the North, one to the South, one to
the East and one to the West. The related parametric ratio K/σ evaluates the propensity
towards imitation relative to the tendency towards idiosyncratic behavior (47).

The properties of the system are arranged by a critical point Kc. While K < Kc, dis-
order decision wins. The meaning of this, the sensitivity is small for a small global
influence, imitation only propagates, like in a chain reaction or even cascading, be-
tween close neighbors and the susceptibility χ of the system is finite. When K rises
and approaches Kc, order decision reigns, i.e., the system is extremely sensitive to
a small global perturbation, imitation propagates over long distances. In this situa-
tion, the susceptibility χ of the system approaches to infinity with respect to the power
law. Regarding the definition and meaning of a power law, we refer to the works
(15; 30; 75).

This behavior of the χ can be mathematically explained as follows (70):
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χ ≈ A(Kc − K)−γ, γ > 1. (3.10)

Here, the parameter K does not even need to be deterministic, but it could also be a
stochastic process, as long as it proceeds slowly enough. The value tc is called the first
time such that K(tc) = Kc. Then, before the critical date tc, the following approximation
is obtained from Taylor expansion:

Kc − K(t) ≈ constant · (tc − t).

Since the hazard rate of the crash behaves similar to the susceptibility around the criti-
cal point, this approximation fulfills the following statement:

h(t) ≈ B · (tc − t)−α. (3.11)

Here, B is a positive constant, and if the bubble has not bursted yet, to prevent the price
from going to infinity when approaching tc, α should be between 0 and 1. Since the
crash could take place at some time prior to tc, although the crash is not most probably,
as stated in (47), tc is not necessarily the time of the crash. Finally, substituting Eqn.
(3.11) into Eqn. (3.6) gives us the following relation:

logp(t) = logp(tc) + κB
∫ t

tc
(tc − s)−αds,

i.e.,

logp(t) = logp(tc) −
κB

1 − α
(tc − t)1−α.

Hence,

logp(t) = logp(tc) −
κB
β

(tc − t)β before the crash. (3.12)

Since α ∈ (0, 1), β := 1 − α ∈ (0, 1) and p(tc) is the price at the critical time tc. The
logarithm of the price before the crash also obeys the power law. As the price process
approaches the critical date, the slope of the log price (the expected return per unit of
time) becomes limitless. This helps to compensate boundless probability values of the
crash at the next instant (70).
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3.3 Hierarchical Diamond Lattice

Another network structure is the hierarchical diamond lattice. To obtain this lattice,
the process starts with a pair of investors who are connected to each other. Then,
these connections are changed according to a diamond structure. On the diamond, two
original investors reside two opposite vertices and where the two new investors occupy
on the other two vertices. There are 4 links included by this diamond. For each one
of these 4 links, it becomes altered by a diamond in the aforementioned way, and this
procedure is iterated (71). Then, a diamond lattice is formed, as illustrated in Figure
3.2.

Figure 3.2: The relationship between traders and links.

Actually, in Figure 3.2, circles and edges show traders and links, respectively. After l
iterations, (2/3)(2 + 4l) investors and 4l connections between them are obtained (71).
This can be proven by principle of mathematical induction.

The basic properties of the hierarchical diamond lattice are similar to the 2-dimensio-
nal grid. In this network structure, there is also a critical point Kc. The susceptibility is
restricted while K < Kc, and it goes to infinity as K increases towards Kc. Unlike from
a 2-dimensional grid, here, in the hierarchical diamond lattice, the critical exponent
can be a complex number. The general solution for the susceptibility is a sum of terms
like the one in χ ≈ A(Kc − K)−γ, but now with complex exponents −γ + iw, etc. (47).
This approximation is evaluated gradually as follows:
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χ ≈ Re
[
A0(Kc − K)−γ + A1(Kc − K)−γ+iw + . . .

]
, (3.13)

χ ≈ Re
[
A0(Kc − K)−γ

]
+ Re

[
A1(Kc − K)−γ+iw

]
+ . . . ,

χ ≈ Re
[
A0(Kc − K)−γ

]
+ Re

[
A1(Kc − K)−γ(Kc − K)iw

]
+ . . . ,

χ ≈ Re
[
A0(Kc − K)−γ

]
+ Re

[
A1(Kc − K)−γeiwlog(Kc−K)

]
+ . . . ,

χ ≈ A0(Kc − K)−γ + A1(Kc − K)−γRe
[
eiwlog(Kc−K)

]
+ . . . ,

χ ≈ A0(Kc − K)−γ +

A1(Kc − K)−γRe
[
cos(wlog(Kc − K)) + i sin(wlog(Kc − K))

]
+ . . . ,

χ ≈ A0(Kc − K)−γ + A1(Kc − K)−γ cos
[
wlog(Kc − K) + ψ

]
+ . . . .

Here, Re[·] indicates the real part of a complex number and γ, A0, A1, w, ψ are real
numbers. Hence, the power law is corrected by oscillations whose frequency busts as
the price process approach the critical time. These accelerating oscillations are named
as log-periodic, and their frequency λ = w/2π is called the log-frequency (47). If the
same steps are applied, Eqn. (3.14) is obtained for the hazard rate of a crash:

h(t) ≈ B0(tc − t)−α + B1(tc − t)−α cos
[
wlog(tc − t) + ψ

′
]
. (3.14)

Substituting Eqn. (3.14) into Eqn. (3.12), we get:

log
[
p(t)

]
= log

[
p(tc)

]
−
κ

β

{
B0(tc − t)β + B1(tc − t)β cos

[
wlog(tc − t) + φ

]}
, (3.15)

and Eqn. (3.15) can be rewritten as

y(t) ≈ A + B(tc − t)β + C(tc − t)β cos
[
wlog(tc − t) + φ

]
, (3.16)

where A = log
[
p(tc)

]
, B = −κB0/β, C = −κB1/β and φ is another phase constant.

Eqn. (3.16) could be interpreted in terms of a Stochastic Differential Equation (SDE),
equipped with an initial value, governing y(t) (69):


dY(t) = µ(t,Y(t)) dt + σ(t,Y(t)) dW(t),

Y0 = y0,
(3.17)

where µ(·, ·) : [0,+∞) × R → R and σ(·, ·) : [0,+∞) × R → R are the coefficient
functions which belong to drift part with its increment dt and to the diffusion part
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with dW(t), respectively. The initial value y0 is an R-valued random variable and the
continuous-time stochastic process W = (W(t) t ≥ 0) subtends to a Brownian motion.
An R-valued stochastic process Y = (Y(t) t ≥ 0), if it exists, is a solution of the
SDE defined in Eqn. (3.17). By Y(t) we mean anyone of the trajectories (y(t)) =

(Y(t))(w) (w∈Ω); usually, we suppress the mentioning of w. The SDE which are derived
by a Brownian motion is also called an Itô Stochastic Differential Equation (69). We
recall that, usually, Lipschitz and growth conditions are assumed on the problem in
Eqn. (3.17), for a “global” and unique solution. In fact, the right-hand side of Eqn.
(3.16) involves a smoothening of the solution trajectory of the problem in Eqn. (3.17),
where the SDE itself carries a structure which becomes inherited by its solution and its
approximate structure in Eqn. (3.16). Here, we do not provide the technical details.

Because of the randomness that arises in the evolution of the stock prices as time
passes, the dynamics of the stock prices can be modeled through SDEs. They are
comprised of two parts: drift part and diffusion part. The random fluctuations in the
evolution of the stock prices results from the initial condition and the noise generated
by a Brownian motion (and possible jump processes). The random noise term be-
longs to the diffusion part of the SDE. On the other hand, the drift-term includes the
deterministic movements in the stock prices (69):

A + B(tc − t)β︸          ︷︷          ︸
I

+ C(tc − t)β cos
[
wlog(tc − t) + φ

]︸                                  ︷︷                                  ︸
II

.

In this respect, the first part of Eqn. (3.16), I, can be understood as the drift term
and the second part, II, may be expressed as the diffusion term (possibly including an
approximation or smoothening of impulses also)of an SDE. For closer information on
SDEs that may also include jump process, we refer to (19).

If we reconsider the JLS model a bit differently and disregard some factors, then we
note that the parameter β which particularly appears in the diffusion part may be re-
garded as a so-called Hurst parameter, H, of a fractional Brownian motion. From
this point of view, the phenomena of less or more memory, can be represented by the
cases 2H < 1 (long-range dependence) and 2H > 1 (short-range dependence), respec-
tively, compared with the case of a standard Brownian motion, where 2H = 1. For
the interested reader, we refer to work (9; 63) for more details on fractional Brownian
motions.

3.4 The Fitting Process

In the fitting process, so as to diminish the number of unknown parameters, three
linearly embedded variables, A, B and C, have been optimally adjusted and computed
from the obtained values of the nonlinear parameters. For this reason, approximation
of Eqn. (3.16) is rewritten as (46)
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y(t) ≈ A + B f (t) + Cg(t), (3.18)

where

f (t) =

{
(tc − t)β, for a speculative bubble,
(t − tc)β, for an antibubble,

and

g(t) =

{
(tc − t)β cos

(
wlog(tc − t) + φ

)
, for a speculative bubble,

(t − tc)β cos
(
wlog(t − tc) + φ

)
, for an antibubble.

An antibubble is the opposite of the speculative bubble. Like a speculative bubble, it
also follows a log-periodic power law (LPPL) but, of course, with decelerating oscil-
lations and generally being bearish inclined instead of bullish. The term antibubble
comes from the term antiparticle in physics, since an antiparticle is similar to its sib-
ling particle, except that it conveys opposite charges and demolishes its sibling particle
when it comes across with it (48).

The best values of the linear parameters are calculated for each choice of the nonlin-
ear parameters by applying ordinary least-squares (OLS) method with the following
Gaussian normal equations (46):

Xb = y ⇒ (XT X)b = XT y,

namely,

 N
∑N

i=1 f (ti)
∑N

i=1 g(ti)∑N
i=1 f (ti)

∑N
i=1 f (ti)2 ∑N

i=1 f (ti)g(ti)∑N
i=1 g(ti)

∑N
i=1 f (ti)g(ti)

∑N
i=1 g(ti)2


 A

B
C

 =


∑N

i=1 log pi∑N
i=1 log pi f (ti)∑N
i=1 log pi g(ti)

 ,
where

X := N


1 f (t1) g(t1)
...

...
...

1 f (tN) g(tN)

, b :=

 A
B
C

 and y :=


log p1
...

log pN

 .
Here, ti (i = 1, 2, . . . ,N) are the times of the price or recording sampling (ti, pi). The
general solution of this equation is given by

b̂ = (XT X)−1XT y.
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Of course, we may assume that the number of data is greater than the number of un-
knows, q, i.e., N ≥ q = 3. Herewith, the design matrix X has a full rank. Now,
the solutions of A, B and C become inserted into problem (3.18). In case of ill-
conditionedness, we may apply a regularization technique, such as Tikhonov regular-
ization (4). We are very careful before using such a technique here, in order not to
regularize “off ” just those details of information which interest us here most: the bub-
bles. Later on, we shall come to this important aspect more closely, (cf Subsection
5.1).

Fitting a function to data is a nonlinear estimation problem of the residuals sum of
squares, RSS, where the objective function is defined by (46)

min
θ

F(θ) :=
N∑

i=1

(yθ(ti) − yi)2 .

Here, θ = (tc, φ,w, β)T is the vector of unknown parameters, and yθ(·) := y(·), depend-
ing on θ.

The function of the residual sum of squares, F, is an analytically complicated or a
strongly nonconvex function, and it can comprise multiple local minima with quite
similar values. Here, the aim is to find the global minimum and to optimize the ob-
jective function with methods like the downhill-simplex method or the quasi-Newton
method. However, this could be hazardous since these methods can be tricky by direct-
ing a local minimum rather than the global minimum (46). Therefore, more model-
free global optimization solution methods were considered, such as Simulated Anneal-
ing, Taboo Search and Genetic Algorithm, etc.. Here, we used the Genetic Algorithm
(32; 62; 64). Therefore, we would like to introduce this methodology, briefly.

3.5 Genetic Algorithm

The Genetic Algorithm (GA) is an evolutionary algorithm inspired by Charles Darwin’
s “description of natural selection”. In first place, the theory of GA was developed by
John Holland with his pioneer study in 1975. The principal utilities of this algorithm
are, first of all, that there is no need of any particular information about the solution
surface, such as slope or curvature (46). The GA can be performed to various opti-
mization problems which are not suitable for standard optimization algorithms, e.g. ,
the GA is applicable when the objective function is discontinuous, non differentiable,
stochastic, or highly nonlinear. Table 3.1 expresses, shortly, the differences of the
genetic algorithm from a standard optimization algorithm in three principal manners
(32).
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Table 3.1: A basic comparison of Standard and Genetic Algorithm.

Standard Algorithm Genetic Algorithm
At each iteration, a single point is pro-
duced.

At each iteration, a population of
points is produced.

The iteration values approximate an
optimal solution.

The population approximates an opti-
mal solution.

Chooses the next point in the sequence
by a deterministic calculation.

Chooses the next population by cal-
culations which contain random selec-
tions.

The set of candidate solutions are generated contingently in GA; hence, it is also called
as a stochastic algorithm. These randomly produced solutions are collected in a pool
and all individual ones are in the vector form called chromosomes. After a fitness
criterion is implemented to the solution space, the new generation is created from
actual population with respect to reproduction, mutation and crossover (62).

3.5.1 Coding

In this step of the GA, generally, each individual solution is coded in strings which are
so-called chromosomes. Binary coding is one of the common forms of the coding. It
is comprised from components of the genes. Binary values are presented to each gene
indicating, for instance, genes’ functions in metabolic pathways (64).

Figure 3.3: Representation of a chromosome where each box identifies one gene of
chromosome.

3.5.2 Creating the Next Generation

At each step, the GA employs a current population to produce the children which
bring out the next generation. The algorithm chooses a group of individuals in the
current population which is called as parents, who give their genes- the entries of their
vectors- to their children. Generally, the individuals that have better fitness values are
taken as parents by the algorithm. The GA derives three types of children for the next
generation (32). The first are elite children. They have the best fitness values in the
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current generation. Automatically, these individuals survive to the next generation.
The second are crossover children. These individuals are generated by combining the
vectors of a pair of parents. The third group are mutation children. They are produced
by representing random modifications, or mutations, to a single parent. Figure 3.4
displays these three types of children (32).

Figure 3.4: Diagram of three types of children created by the GA for the next genera-
tion.

3.5.3 Reproduction

In this step, the GA chooses the pairs of chromosomes to create offsprings which are
the children of mated pairs. Reproduction take places randomly where the couples that
abide by the fitness criteria more than the others; hence, they have a greater chance
to be chosen (62). The algorithm sequences each chromosome according to its fitness
in the population where the one with minimum error is going to be the first candidate
to be selected. If this individual satisfies the given conditions, e.g., a tolerance value,
then this vector of genes is selected by the algorithm. Otherwise, the GA proceeds the
mutation or crossover operators (64).
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Figure 3.5: A binary-valued, randomly produced pool.

In our study, in the initial population, each element of the population is a vector of
the parameters (tc, φ,w, z). The first population comprises elements with parameters
drawn randomly from a uniform distribution with a pre-determined range.

3.5.4 Crossover

In the crossover step, the genetic characteristics between the individuals are redis-
tributed (62). Variation arises within the two couples of strings which are cut off ran-
domly selected points. Then, these cutted pairs exchange each other. Those exchanges
can be performed in two ways:

1. The first part of the first string can be put at the place of the first part of the second,
or the first parts can remain the same but the tails can be changed by each other.

Figure 3.6: A crossover 1.

2. The selected parts of the cut strings can be crossovered.

Figure 3.7: A crossover 2.
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By randomly drawing two parents, an offspring is generated, without replacement, and
taking the arithmetic mean of them.

3.5.5 Mutation

In nature, mutations happen when offspring are born with a variation within the gene
pool and the outcomes of it can be beneficial or less favorable characteristics. Benefi-
cial mutations are very crucial in the evolution process since it enhances the fitness of
the species. In order to be able to survey the new regions of the search space, mutation
operator of the GA perturbs the solutions. Hence, this mechanism obstructs prema-
ture convergence in a local minimum. Before running the mutation process, firstly, the
range of maximum and minimum values of each coefficient are arranged in the current
population. The parameters are free to drift away from the pre-set range of the parame-
ter solutions thanks to the mutation mechanism. This could be a reparation if one took
a wrong estimate related to the initial intervals in the solution space (46). Similar to
the other operators, after chromosomes are mutated, they are controlled whether they
match to the solution or not, and the algorithm proceeds until the stopping criterion is
satisfied (64).

The following pseudo code sums up the whole steps of the GA.

Algorithm GA (64):

Step 1. Construct the population by the help of randomly generated vectors of solution
candidates (reproduction).
Step 2. Check whether the candidate solutions in the pool fit the model.
Step 3. By placing the solution with a minimum error as a first candidate, order the
candidate solutions with respect to their fitness.
Step 4. Perform mutation and crossover.
Step 5. Check a recent created pool within Step 4, whether it is fitting the model or
not.
Step 6. Go to Step 3.
Step 7. If there exists a solution that confirms the stopping criteria: STOP; otherwise,
go to Step 4.
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CHAPTER 4

METHODOLOGICAL TOOLS FROM DATA MINING AND
INVERSE PROBLEMS

In our model, we benefit from data mining by clustering methods. We redefine log
price process/index and some variables which are obtained from this log price pro-
cess/index, geometrically, by the help of ellipsoids. The most important property of
the considered ellipsoids is that their volume is not an ordinary volume, but they have
minimum volumes which guaranteed by Minimum-Volume Covering Ellipsoids Clus-
tering method. This minimum-volume approach is fully compatible and supportive
with respect to our aim of detecting volume changes of ellipsoids, including “needles”
(almost pure steep “drifts”) before a bubble bursts.

Hence, we partition the price process/index into the data clusters which are given over
the time axis and represented by ellipsoids with a minimum volume. Then, we observe
the behavior of the volumes via the sliding-window technique. Before expressing the
minimum-volume covering ellipsoids method, firstly, we shall introduce the meaning
of clustering in the following paragraph.

In fact, the clustering problem is to partition any data set by disjoint clusters which
include the points that are considered to be similar. Mathematically represented, given
a data set D with N points, D = {x1, x1, . . . , xN} ⊂ Rn, suppose that the number of
cluster is K (1 ≤ K ≤ N) and D = C1 ∪C2 ∪ . . . ∪ CK , where Ci ∩C j = ∅ if i , j, i.e.,
the points of any two clusters are dissimilar. The meaning of similar is being close in
terms of distances d(x,y) between points x, y ∈ Rn. In particular, if K=1 or K=N, the
whole set D is one cluster or every point is a separate cluster, respectively (45).

To cope with difficulties such as clusters of equal size or of spherical shapes, Maha-
lanobis distance can be used instead of Euclidean distance. That measure is scale-
invariant and it can cope with asymmetric, nonspherical clusters. A promising al-
ternative scale-invariant metric of cluster quality is represented by minimum-volume
ellipsoids, where data elements are allocated into clusters such that the volumes of the
covering ellipsoids for every cluster are minimal (45).

Traditional distance-based clustering methods such as, k-means or k-median methods
are not scale-invariant. However, clustering employing minimum-volume ellipsoids,
that employs the minimum-volume covering ellipsoid for covering all points of any
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regarded cluster and minimizes the total volume of those covering ellipsoids, has the
so-called linear-transformation-invariance property (73).

4.1 Minimum-Volume Covering Ellipsoids Clustering Method

In the minimum-volume covering ellipsoids (MVCE) clustering method, the aim is to
cover m given points a1, a2, . . . , a m ∈ R

n with an ellipsoid of minimum volume. In
our study, each point refers to any week together with 7 different variables which are
date, logarithm of the price/index, weekly mean of log-price process, weekly standard
deviation of log-price process, weekly median of log-price process, weekly growth rate
of log-price process and weekly log-iterated return of the log price process. That is
to say, the vectors, a i (i = 1, 2, . . . ,m) are corresponding to each week in a year, and
as their coordinates they include date (date), log-price process (log pr), weekly mean
(mean), weekly standard deviation (std.dev), weekly median (med), weekly growth
rate (gr rate) and weekly log-iterated return of the logarithmic price process (rtn).
Mathematically represented, this can be stated as follows:

a1 = (1, logpr1,mean1, std. dev1,med1, gr rate1, rtn1)T ,
a2 = (2, logpr2,mean2, std. dev2,med2, gr rate2, rtn2)T ,
...

am = (m, logprm,meanm, std. devm,medm, gr ratem, rtnm)T .

Here, the indices 1, 2, . . . ,m, display the number of the week, i.e., 1 is the 1st week, 2
is the 2nd week, and so on.

We construct a matrix A whose format is n × m and its columns include each week
a1, a2, . . . , a m ∈ R

n, i.e.,

A :=
[
a1| a2| . . .| a m

]
.

This matrixA, by its transposed matrixAT , is the design matrix of an inverse problem.
Then, the ellipsoids are constituted by using the above matrix, and we apply sliding-
window technique to consecutively observe the volumes for monitoring the behavior of
the price process. In order to perform sliding-windows, the size of each window should
be determined, previously. At this point, we benefit from the following assumption
which guarantees that each ellipsoid, including the points a1, a2, . . . , a m, has a positive
volume (73).

Assumption 1 The affine hull of the points a1, a2, . . . , am, spans R n. In mathematical
symbols:

rank
[
A

eT

]
= n + 1,
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where e := (1, 1, . . . , 1)T ∈ R m; hence n < m. We recall that [e
∣∣∣AT ] is the design

matrix of a linear regression model, whereAT comprises the input data and e is related
to the intercept.

In order to constitute the sliding-windows, we basically divide the matrixA according
to the above assumption that warrants ellipsoids which have positive volumes and we
also choose the intervals lengths small enough, to stay under a possible time range
which include a bubble-burst time. For instance, if the optimal length (number of
columns) of all the windows is n + 1 = 8, we partition the matrix A as 1:8, 2:9, 3:10,
and so on. Also, if 9 was another alternative optimal length of each window which
again gave positive volumes of the ellipsoids, we would prefer to choose 8 because it
means a shorter interval than 9. The meaning of this is that, we will observe the price
process with sections of 8 weeks instead of 9 or more weeks. Here, again, we should
underline that these are not ordinary volumes, but by the use of MVCE clustering
method, we guarantee that these volumes are minimal. By this property we intend to
approximate and, in fact, neatly reflect, typical behaviors of the regarded process, e.g.,
high oscillation behavior followed by a sharp increase before a bubble bursts.

An ellipsoid is defined as

EQ,µ :=
{
x ∈ R n∣∣∣ (x − µ)T Q(x − µ) ≤ 1

}
.

Here, µ ∈ R n denotes the center of the ellipsoid and the general shape, directions and
size of the ellipsoid are determined by Q ∈ S n

++. The notation S n
++ displays the convex

cone of the symmetric positive definite n × n matrices Q, in a symbol: Q � 0. By
“ � ”, we indicate positive definiteness. In addition, throughout the thesis, by “ � ”
and “ � ”, we will display positive and negative semi-definiteness, respectively. The
volume of the ellipsoid EQ,µ is given by the formula (πn/2/Γ( n

2 + 1)) · (1/
√

det Q) (73).

Under Assumption 1, the formulation of the minimum-volume covering ellipsoid (MVCE)
problem is given as follows (73):

MVCE1 minQ,µ det Q−1/2

subject to (ai − µ)T Q(ai − µ) ≤ 1 (i = 1, 2, . . . ,m),

Q � 0.

We recall that in the constraints of the optimization problem MVCE1, “ � ” has been
used to represent the partial ordering induced by the cone S n

++. Here, MVCE1 is a
nonconvex program. In order to transform this optimization problem into a convex
program, the variables are changed by the following transformation:
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M :=Q1/2 and z := Mµ.

Hence, the program MVCE1 is equivalently rewritten as

MVCE2 minM ,z ϕ(M , z) := −ln detM

subject to (M ai − z)T (M ai − z) ≤ 1 (i = 1, 2, . . . ,m),

M � 0.

(4.1)

Now, MVCE2 is a convex program. If (M , z) is a solution of the problem MVCE2, the
solution of problem MVCE1 can be found by setting (Q, µ) := (M 2,M −1z) (73).

For the MVCE problem, in 2002, Freund and Sun introduced an algorithm which is
called Dual Reduced Newton (DRN). In the Newton step of this algorithm, the follow-
ing optimization problem obtained by adding slack variables ti and a related logarith-
mic barrier function to the MVCE2 (73):

MVCE3 minM ,z,t −ln detM − θ
∑m

i=1 lnti

subject to (M ai − z)T (M ai − z) + ti = 1 (i = 1, 2, . . . ,m),

M � 0,
t > 0.

Here, t := (t1, t2, . . . , tm)T and t > 0 is understood coordinate wise. Likewise, through-
out the thesis, we mean “ ≥ ”, “ ≤ ” and “ < ” in the sense given by the coordi-
nates. Besides, as θ takes its values between 0 and ∞, the parametrized solutions to
MVCE3 describe the central trajectory of the problem MVCE2. The optimality con-
ditions for MVCE3 are expressed by the Eqns. (4.2)-(4.7) referring to dual multipliers
ui (i = 1, 2, . . . ,m) that are related with the equality constraints in MVCE3, look as
follows (73):

m∑
i=1

ui

[
(M ai − z)aT

i + ai(M ai − z)T
]
−M −1 = 0, (4.2)

m∑
i=1

ui(z −M ai) = 0, (4.3)

(M ai − z)T (M ai − z) + ti = 1 (i = 1, 2, . . . ,m), (4.4)

Ut = θe, (4.5)

u, t ≥ 0, (4.6)
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M � 0. (4.7)

Eqns. (4.2)-(4.7) are solved for (M , z, t, u) directly by using Newton’s method. This
is done by resolving Eqn. (4.3) for z and obtained Eqn. (4.8). Furthermore, in Eqns.
(4.2)-(4.7), e = (1, 1, . . . , 1)T , and U stands for a diagonal matrix whose diagonal
components are entries of the vector u, i.e., U :=diag(u).

z =
MAu

eT u
. (4.8)

Substituting Eqn. (4.8) into Eqn. (4.2), the following condition for the matrix M is
found:

(
AUAT −

AuuTAT

eT u

)
M + M T

(
AUAT −

AuuTAT

eT u

)
= M −1. (4.9)

An important feature of the matrix appearing in Eqn. (4.9) is defined in Proposition 1
(73).

Proposition 1 (73) Under Assumption 1, in the case of u > 0, then(
AUAT −AuuTAT/(eT u)

)
� 0.

For the proof of Proposition 1, we refer to (73). The following remark introduces a
closed form solution for Eqn. (4.9).

Remark 1 For a given S ∈ S n
++, X = S 1/2 denotes the unique positive definite matrix

solving the following equation (73):

1
2

(XT S + S X) = X−1.

For closer information on S 1/2 cf. (80). By the help of Proposition 1 and Remark 1,
the unique solution of Eqn. (4.9) is derived as follows (73):

M := M (u) :=
[
2
(
AUAT −

AuuTAT

eT u

)]−1/2

. (4.10)

Substituting Eqn. (4.10) into Eqn. (4.8), the following proposition is obtained.

Proposition 2 (73) Under Assumption 1, provided that u > 0, then the unique solver
of Eqns. (4.2)-(4.3) and Eqn. (4.7) in M and z is given by:

M := M (u) :=
[
2
(
AUAT −

AuuTAT

eT u

)]−1/2

(4.11)

and

33



z := z(u) :=

[
2
(
AUAT − AuuTAT

eT u

)]−1/2
Au

eT u
. (4.12)

Substituting Eqns. (4.11) and (4.12) into the optimality conditions of Eqns. (4.2)-(4.7),
the variables M and z be explicitly eliminated from the optimality conditions. Hence,
the subsequent reduced optimality conditions which just involve the variables (u,t) are
obtained (73):

h(u) + t = e,
Ut = θe,
u, t ≥ 0.

(4.13)

Here, h = (hi)T
i=1,...,m, and each hi is a nonlinear function of u, defined as follows:

hi(u) := (M (u)ai − z(u))T (M (u)ai − z(u))

= (ai −
Au
eT u )T

[
2
(
AUAT − AuuTAT

eT u

)]−1
(ai −

Au
eT u ).

(4.14)

Eqn. (4.13) is solved by employing Newton’s method for a given value of the barrier
parameter θ. The solution of the following system of linear equations gives the Newton
direction (∆u,∆t) for Eqn. (4.13) at the point (u, t):

∇uh(u)∆u + ∆t = e − t − h(u) =: r1,

T∆u + U∆t = θe − Ut =: r2.
(4.15)

where ∇uh(u) is the Jacobian matrix of h(u), T demonstrates a diagonal matrix whose
diagonal entries are the entries of the vector t, i.e., T :=diag(t), and the unique solution
(∆u,∆t) of the system is given in the subsequent form:

∆u = (∇uh(u) − U−1T )−1(r1 − U−1r2),

∆t = U−1r2 − U−1T∆u.
(4.16)

In order to perform the above methodology, ∇uh(u) and the inverse of the matrix
∇uh(u)−U−1T must be calculated explicitely. Firstly, the matrix ∇uh(u)−U−1T should
be guaranteed to be nonsingular in order to be invertible; this will be done by Corollary
1. As a preparation, the following theorem supplies a formula to compute the Jacobian
matrix ∇uh(u) and h(u).

Theorem 1 (73) Under Assumption 1,
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(i) ∇uh(u) = −2
(∑

(u)/(eT u) +
∑

(u) ⊗
∑

(u)
)
,

(ii) ∇uh(u) � 0,
(iii) h(u) =diag(

∑
(u)).

Here, A ⊗ B displays the Hadamard product of two matrices A and B, i.e., (A ⊗ B)i j :=
Ai jBi j for i, j = 1, . . . ,m, and the matrix function

∑
(u) is defined as in Eqn. (4.17) as

follows:

∑
(u) :=

(
A−

AueT

eT u

)T

M 2u
(
A−

AueT

eT u

)
. (4.17)

This matrix
∑

(u) can be interpreted as a variance-covariance matrix. Soon, its regular-
ity properties will interest us very much. Furthermore, we could express it in terms of
the Fisher information content; for further information cf. (20; 38)

Proof: Let C(u) := M 2(u) =
[
2
(
AUAT − AuuTAT

eT u

)]−1
and ãi(u) := ai −

Au
eT u . From the

definition of
∑

(u), we have

σi j(u) := [
∑

(u)]i j = (ãi(u))TM 2(u)((ã j(u)) (4.18)

and, thus, hi(u) = (
∑

(u))ii from Eqn. (4.14), which displays part (iii) of Theorem 1. To
calculate ∇uh(u), the chain rule is applied. Hence, the following statement is obtained.

∂ãi(u)
∂u j

=
Au

(eT u)2 −
a j

eT u
=
−ã j

eT u

and

∂C(u)
∂u j

= −2C(u)
[
a jaT

j + AuuTAT

(eT u)2 −
a juTAT

eT u −
AuaT

j

eT u

]
C(u)

= −2C(u)ã j(u)(ã j(u))TC(u).

Then, we invoke the chain rule on Eqn. (4.18):

∂hi(u)
∂u j

= −2
eT u (ãi(u))TC(u)ã j(u) − 2(ãi(u))TC(u)ã j(u)(ã j(u))TC(u)ãi(u)

= −2
(
σi j(u)
eT u + (σi j(u))2

)
.

Therefore, ∇uh(u) = −2
(∑

(u)/eT u +
∑

(u) ⊗
∑

(u)
)
, proving part (i). Let us note∑

(u) � 0, eT u > 0, and
∑

(u)⊗
∑

(u) � 0 since the Hadamard product of symmetric and
positive semidefinite matrices is symmetric and positive semidefinite (73). Therefore,
∇uh(u) � 0, proving part (ii).

35



Corollary 1 (73) Under the Assumption 1, provided that u > 0 and t > 0, the matrix
∇uh(u) − U−1T is nonsingular.

Proof: From Theorem 1(ii) and the fact that U−1T � 0, it is obvious that ∇uh(u)−U−1T
is nonsingular.

The following procedure is performed to compute the Newton direction (∆u,∆t) for
the reduced optimality conditions of Eqn. (4.13) at a regarded point (u, t).

Algorithm for DRN-DIRECTION (73): Given (u, t, θ) which satisfy u, t, θ ≥ 0:

Step 1. Build and factorize (by Cholesky method) the matrix

M −2(u) :=
[
2
(
AUAT − AuuTAT

eT u

)]
.

Step 2. Form the matrix∑
(u) =

(
A− AueT

eT u

)T
M 2u

(
A− AueT

eT u

)
.

Step 3. Form

∇uh(u) = −2
(∑

(u)
eT u +

∑
(u) ⊗

∑
(u)

)
and factorize (by Cholesky method), ∇uh(u)−U−1T.

Step 4. Resolve Eqn. (4.16) for (∆u,∆t).

The variable (u, t) is called the DRN direction for Dual Reduced Newton method (73).

4.1.1 Algorithm DRN

In order to solve the optimization problem MVCE3, for the MVCE method, the fol-
lowing basic interior-point method is constructed based on the Newton step procedure
(73). We refer to preselected tolerances ε1, ε2 > 0.

Algorithm DRN

Step 1. Initialization.
Put r← 0.99. Select initial values of (u0, t0) satisfying u0, t0 > 0. Put (u, t)← (u0, t0).

Step 2. Control Stopping Criteria.
If ‖e − h(u) − t‖2 ≤ ε1 and uT t ≤ ε2, STOP. Return u, Q := [M (u)]2, and c :=
[M (u)]−1z(u).

Step 3. Calculate Direction.
Put θ ← (uT t)/(10m). Calculate (∆u,∆t) by Algorithm DRN-DIRECTION (u, t, θ).

Step 4. Step-Size Calculation and Step.
Calculate β̄←max{β |(u, t) + β(∆u,∆t) ≥ 0} and β̃← min

{
rβ̄, 1

}
.
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Put (u, t)← (u, t) + β̃(∆u,∆t). Go to Step 1.

In order to maintain the iteration value of (u, t) strictly positive, the condition r < 1 is
applied (73); this can be seen in Step 4. In Step 1, the stopping criteria are controlled.
The tolerances ε1 and ε2 are used for feasibility and optimality, respectively. The barrier
parameter value θ is redefined and the DRN direction is calculated in Step 2. Also, the
norm ‖d‖2 in Step 2 is the Euclidean norm identified as

√
dT d. In Step 3, the calculation

of step size done by a standard min-ratio test augmented by a fraction r ∈ (0, 1.0) which
maintains the new iteration value of (u, t) being strictly positive. To take r = 0.99 has
been found to work best (73).

4.1.1.1 Initialization Strategies

The Algorithm DRN is started choosing a pair (u0, t 0) that fulfills u0, t 0 > 0. For
instance, (u0, t 0) = (αe, αe) for some appropriate positive scalar α. The pair (u0, t 0)
is selected such that these values warrant the initial primal feasibility of M (u0), z(u0).
The algorithm begins by arranging u0 = (n/2m)e; the factor n/2m has been selected
empirically. Then, M (u0) and z(u0) are calculated by Eqns. (4.11)-(4.12). For the
strict primal feasibility, the condition h(u0) ≤ (0.95)e is tested. If this condition is
satisfied, then t 0 is set as t 0 := e−h(u0) > 0. Hence, the positivity of (u0, t 0) and initial
feasibility of the equations h(u)+t = e at (u, t) = (u0, t0) are guaranteed. If the condition
h(u0) ≤ (0.95)e is not satisfied, i.e., h(u0) � (0.95)e, because of h(αu) = (1/α)h(u) by
Eqn. (4.14), u0 is rescaled to guarantee strict feasibility of the algorithm as follows:

α = (1/0.95) max
{
h1(u0), . . . , hm(u0)

}
,

u0 ← αu0,
t0 ← e − h(u0).

(4.19)

This initialization strategy then assures strict positivity of (u0, t 0) also initial feasibility
of the equations h(u) + t = e at (u, t) = (u0, t 0) (73).

4.1.1.2 Stopping Criteria

The following result is the basis of the stopping criteria of Algorithm DRN.

Lemma 7. Under Assumption 1, assume that u > 0. If h(u) ≤ e, then (M , z) =

(M (u), z(u)) is feasible for program MVCE2 and ϕ(M , z) − uT t is a lower bound on
the optimal objective function value of MVCE2.

Lemma 7 explains that the optimality gap of a feasible solution (M , z) = (M (u), z(u))
of MVCE2 is at most uT t, where t = e − h(u) ≥ 0. The stopping criteria of Algorithm
DRN, specified in Step 1, is to control that primal feasibility is fulfilled to a prespecified
tolerance ε1, and then to control whether the relative optimality gap is not greater than
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ε2, where ε2 is the prespecified tolerance. We take ε1 = ε2 := 10−7, in the calculations
(73).

4.2 Radon Transform

In order to view the ellipsoids, we benefit from Radon transform which is one of the
important image transform methods (39). Common image transforms contain Radon
transform, Hough transform or discrete Fourier transform. Actually, Hough transform
is a special case of Radon for straight lines, and since Radon transform has a solid
mathematical basis and is more accurate (33; 26), we prefer to apply Radon transfor-
mation.

With our new method, we aim at an early-warning signalling which, eventually, will
have the form of a graphic user interface (GUI) too (8). In this respect, the theory
of inverse problems provides a scientific tradition and, indeed, practical approaches
such as the use of “reshape” of vectors and matrices, of squares and rectangles, and
of colors. Spikes and more complex data or model structures can become much more
appealing, intuitive and informative (4). For our problem from finance and economics,
this new approach to that area becomes most powerful and convincing when choosing
the representation tool of Radon transform.

The Radon transform (RT) entitled after the Austrian mathematician Johann Karl Au-
gust Radon (1887 - 1956) who worked on the properties of this transform (29). As
in our study on MVCE clustering, Radon transform generally addresses an inverse
problem, namely, in image processing, tomography, discrete tomography, and signal
processing (40). To implement the Radon transform on an image f (x, y) for a definite
set of angles can be thought of as detecting the projection of the image along the given
angles (29). The resultant projection is the sum of the “intensities” of the pixels in any
regarded direction, i.e., by line integrals, such as straight “beams”. In other words, for
a given function f determined in the space, for any pair of coordinate values ρ and θ,
f is integrated along a different line. Hence, the result of this transformation is a new
function (or a new image), R(ρ, θ), where the inputs are the values of ρ and θ and the
output is the value of the integral of f along the corresponding line lρ,θ. This can be
explained by the following scheme (29):

input f 7−→ output
{
(ρ, θ) 7−→

∫
lρ,θ

f ds
}
.

This may be written mathematically by defining

ρ := x cosθ + y sinθ. (4.20)

Referring to this and to δ(·) which is the Dirac delta impulse, the Radon transform can
be defined as (42)
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R(ρ, θ) =

∫ ∞

−∞

∫ ∞

−∞

f (x, y)δ(ρ − x cosθ − y sinθ)dx dy, (4.21)

or

R(ρ, θ) =

∫
lρ,θ

f ds =

∫ ∞

−∞

f (ρcosθ − s sinθ, ρsinθ + s cosθ)ds. (4.22)

We notice in Eqn. (4.21) that (i) both f (x, y) and R(ρ, θ) are functions; (ii) f is a
function of the Cartesian coordinates x and y, while R(ρ, θ) is a function of the polar
coordinates ρ and θ; (iii) R(ρ, θ) is a finite number (the value of an integral) and (iv) in
Eqn. (4.22), within of the integral, the integration variable is s, whereas values ρ and
θ are preselected. Therefore, ρ and θ are considered as constants when calculating the
integral (29).

The Radon transform is a mapping from the Cartesian rectangular coordinates (x, y) to
a distance and an angle (ρ, θ) (polar coordinates). An example of the Radon transform
of an image is given in Figure 4.1 for a specific angle. There, the source and sensor
is rotated around the center of the object. For each angle θ, the rays from the source
which pass through are collected at the sensor. This is iterated for a given set of angles,
generally, θ ∈ [0, 180). Since the outcome would be the same with the case of angle 0,
the angle 180 is not included. At (b), for each angle θ and each distance ρ, the intensity
of the matter a ray perpendicular to the ρ axis crosses are summed up at R(ρ, θ) (42).

(a) (b)

Figure 4.1: An example of the Radon transform of an image for a specific angle θ (42).

The transform for a set of angles can be depicted as in Figures 4.2 and 4.3. In Figure 4.2
(c), the angle θ is taken as 19◦ and the corresponding Radon transform with θ = 19◦

is shown in (d); as we see, there is no peak at the transform. Yet, in Figure 4.3 (f ),
we observe a definite peak for Radon transform which subtends to θ = 64◦. Other
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observations in (d) and (f ) are that for θ = 64◦ the line is distributed over a very small
interval unlike for θ = 19◦ for which the line is distributed over a larger interval.

(c) (d)

Figure 4.2: An example of the Radon transform for the angle θ = 19◦ (42).

(e) (f)

Figure 4.3: An example of the Radon transform when θ = 64◦ (42).
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The complete Radon transform of an image is indicated in Figure 4.4. This means
that, now, there is not only a specific θ, but θ ranges between 0 and 180◦, θ ∈ [0, 180).
The horizontal axis displays θ (degrees) and the vertical axis shows the corresponding
coordinates when the Cartesian x-axis rotates according to these angles. In addition,
at the right-hand side of Figure 4.4, we see a colorbar which indicates the color scale
when we color a figure with the Matlab command colormap.

Figure 4.4: The complete Radon transform of the image (42).
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CHAPTER 5

DETAILS OF MODELING AND MODEL TREATMENT

5.1 Details of General Approach

Firstly, we constitute the matrixA by using the variables date, logarithm of the price,
weekly mean of log-price process, weekly standard deviation of log-price process,
weekly median of log-price process, weekly growth rate of log-price and weekly log-
iterated return of the log-price process. In the matrixA, rows and columns correspond
to variables and weeks, respectively. In order to observe the change of ellipsoids’s vol-
umes, when the bubble-burst time approaches, we apply sliding-window technique on
theA, and we divide the matrixA into submatrices with the “smallest size”,Ak, such
as,A1 includes the columns from 1 to 8,A2 contains the columns from 2 to 9, and so
on. Then, we obtain ellipsoids with minimum volumes by using these submatrices. In
fact, this is done according to the rank criterion in Assumption 1 which guarantees that
the ellipsoids have positive volumes. Here, the important issue is that all the windows
have the same length, i.e., all the submatrices have the same dimensions, and the rea-
son why we choose the smallest length, i.e., the smallest size of the submatrices is for
giving a chance to observe the possibility of any burst of a bubble as early as possible.

As for application, we found the possible smallest size of each submatrix, i.e., where
each submatrix corresponds to a certain window, to be 8 which is also satisfied by
the rank condition in Assumption 1. This means that the size of the each window is
7 × 8. Here, 7 is the number of variables (date, logarithm of the price, weekly mean
of log-price process, weekly standard deviation of log-price process, weekly median
of log-price process, weekly growth rate of log-price and weekly log-iterated return
of the log price process) and 8 is the number of weeks. We proceed with the weeks
beginning from 1 to 8, then 2 to 9, then 3 to 10, and so on, i.e.; by this we employ the
sliding-window technique.

In order to implement this procedure to the fitted data, firstly, as in Figures 5.1-5.5, we
obtain fitted log-prices according to Johansen-Ledoit-Sornette (JLS) model (47; 71; 70)
for the crises of US, Japan and China stock markets respectively. In the figures, tc

demonstrates the estimated bubble-burst time by JLS model and tR stands for the real
bubble-burst time.
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Figure 5.1: Fitted Log-index process for the year 1962 at S&P 500 index.

For Figure 5.1, A=73.48, B=-9.96, C=1.46, tc=1962.4074, z=0.83, w=13.63, φ=1.07
and tR=1962.4416. R2 = 0.8330.

Figure 5.2: Fitted Log-index process for the year 1987 at S&P 500 index.

For Figure 5.2, A=328.63, B=-85.26, C=-17.47, tc=1987.7055, z=0.82, w=13.64, φ=1.40
and tR=1987.8222. R2 = 0.9694.
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Figure 5.3: Fitted Log-index process for the year 2008 at S&P 500 index.

For Figure 5.3, A=1265.47, B=-187.44, C=78.18, tc=2008.7285, z=0.77, w=12.77,
φ=0.28 and tR=2008.7888. R2 = 0.7993.

Figure 5.4: Fitted Log-index process for the year 1990 at Nikkei 225 index.

For Figure 5.4, A=38228.82, B=-7907.31, C=-481.65, tc=1990.0315, z=0.85, w=14.58,
φ=0.26 and tR=1990.0416. R2 = 0.9580.
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Figure 5.5: Fitted Log-index process for the year 2007 at Shanghai Composite index
(SSEC).

For Figure 5.5, A=5374.28, B=-3146.27, C=-429.87, tc=2007.8105, z=0.82, w=12.85,
φ=0.28 and tR=2007.8138. R2 = 0.9671.

Since the JLS model generates daily data, these data are transformed into weekly data,
and another matrix B and submatrices Bk are constructed like the matrices A and Ak

for the case of the real data. Similar to the real data, again, based on Assumption 1,
the length of each window is determined as 8. Theoretically, Corollary 1 guaranteed
that ∇uh(u) − U−1T in the DRN-Direction procedure, is nonsingular. Although we
did not encounter singularity (or ill-conditionedness) of submatrices in the case of real
data, we came across this problem for submatrices over the fitted data. We solved
that problem via two strategies: (i) singular-value decomposition and regularization,
and (ii) a perturmation method, respectively. As we observed from the DRN-Direction
procedure, the matrix∇uh(u)−U−1T is calculated from

∑
(u) and

∑
(u) is obtained using

the related matrix Bk. Therefore, we employed these strategies directly to matrices
which face an ill-conditionedness. Before stating how we perform those methods, we
shortly mention about singular-value decomposition method.

5.2 Singular-Value Decomposition

Systems of linear equations sometimes are rank-deficient or ill-conditioned; these
properties are examined by the help of Singular-Value Decomposition (SVD) (4). This
methodology can be explained as follows:

Definition 2: Given an p × q matrix A of rank r, A can be factorized in the subsequent
manner:

A = U S VT ,

where U and V are p × p and q × q orthogonal matrices, respectively, containing the
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“singular vectors”. Also, UT U = Ip and VT V = Iq; the columns of U are orthonor-
mal eigenvectors of AAT and the columns of V are orthonormal eigenvectors of AT A.
Furthermore, S is a diagonal matrix including the square roots of the eigenvalues from
AAT or AT A in decreasing order (5), i.e., the singular values of A placed in the leading
diagonal of S are arranged in a decreasing order, s1 ≥ s2 ≥ . . . ≥ smin{p,q} ≥ 0 (4). Since
just the first r singular values are different from zero, S can be written as the following
partitioned form, given by block matrices (4; 57):





s1

0. . .

sr

0
0
. . .

0

(5.1)

Eigen-decomposition (ED) can also be used in place of SVD. However, ED requires
A to be a square matrix, and even if A was a square matrix, it does not have to have
an eigen-decompositons in the field of real numbers. Unlike ED, SVD always exists
and it can be applied for any matrices (57): large, small, square, rectangular, singu-
lar, nonsingular, sparse or dense. Because of these advantages of SVD, we prefer to
employ it. In MATLAB, we used svd command to calculate singular values of a matrix.

5.2.1 SVD and Regularization

If at the first submatrix ofB (cf. Subsection 5.1), calledB1, we could not find a positive
volume, then we separated the regarded 7×8 matrix into 2×2 matrices, exempting the
first variable, which is the date. Hence, we got a block-structured matrix whose entire
format is 6 × 8, as follows:

2 × 2 2 × 2 2 × 2 2 × 2
2 × 2 2 × 2 2 × 2 2 × 2
2 × 2 2 × 2 2 × 2 2 × 2

.

We calculate the singular values of each 2× 2 matrix above and order these values in a
descending manner. By starting from the smallest one which is very close to zero, we
obtain new 2 × 2 matrices according to the following formula:

Bnew
k = U S new VT ,
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where

S new = S old + P

and

P =

(
0 0
0 0.005

)
.

Since we partitioned the matrix by 2 × 2 submatrices, the format of P is 2 × 2. After
finding the matrix Bnew

k , it is substituted in place of the old version of the matrix, Bk.
Then, we compute the volume of the ellipsoid which is constituted by this matrix. If
we found a positive “sufficiently nonvanishing” volume, then we continue with the
next window [2:9]. If we could not calculate the volume, then we pass to the another
2 × 2 matrix which has the second smallest singular value. Until we have found a
positive volume; this process continues. If we could not find any positive volume,
even if we tried all 2×2 submatrices, then we apply our perturbation method, explained
subsequently.

5.3 Perturbation Method

5.3.1 Foundation of Perturbation Method

Again according to descending order of the singular values, i.e., starting our technique
from any 2×2 submatrix which has the smallest singular value, we apply a perturbation
according to the following formula:

Bnew
k := Bk + ε I2. (5.2)

Here, I2 is the 2 × 2 identity matrix, and, generally, we take ε = 0.001. After making
various computations and trials, we found that the number 0.001is the most appropriate
value since we observed that when we gradually increase the value for the perturba-
tion factor ε such as 0.003, 0.005, 0.01, 0.02,..., 0.09, the volume decreased. This
phenomenon may cause an artificial global minimum point produced. So, it can give
rise to confuse the artificial global minimum points with real global minimum points
observed when the bubble-burst time approaches. However, if we could not obtain a
positive volume with ε = 0.001, we choose a suitable smaller number such as, in the
case of Japan stock market, 0.008.

When we compute the first volume by using the submatrix B1, then we pass to the
second submatrix (or window), B2, whose columns are between 2 and 9. If we found a
positive volume, we continue to the next submatrix, B3, whose columns are between 3
and 10. However, if could not find a positive volume at the matrix 2:9, we again applied
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SVD method to the 9th and 10th columns by dividing them into 2 × 2 submatrices as
follows:

2×2 2×2
2×2 2×2
2×2 2×2

.

Again, we order the singular values of each 2 × 2 submatrix of the columns 9th and
10th, and we start from the 2 × 2 submatrix which has the smallest singular value;
then we get a new matrix according to Bnew

k = U S new VT and substitute it at the
place of the previous one. If we found a positive volume after this regularization, we
pass to the next matrix which is between the columns 3 and 10 and so on. After the
calculation of the volumes of ellipsoids by sliding-windows has been completed, we
observe that when a bubble-burst time approaches, a global minimum point is obtained
at the volume-based indices for real and fitted data which are displayed in Figures
5.6-5.10. For the real data, this global minimum point in the volume-based index is
observed more clearly than for the fitted data. The fitting can be interpreted as a first
kind of regularization in the sense that the data become smooth with reference to the
real data. Because of the smoothness of the fitted data, sometimes we cannot observe
a sharply decreasing process in volume-based index. By the fitting such a temporary
process, which may just be a bubble, could be mildened or even treated as an outlier.
But we are explicitly interested in such outlier-kind of phenomena in this thesis, in
financial bubbles. So, the reason for the less pronounced signal in case of the fitted
data lies in the fact that they are “smoothed” already, with mildened outliers and with
thinner ellipsoids in general “spanned” up by those data, over the windows. This leads
to smaller ellipsoidal volumes and, hence, to weaker signals of warning. In addition
to this, every bubble has its own characteristics. For example, the 1987 October crash
was an outstanding and pronounced one, but the crash that occurred in 1962 May was
a small one which is named as a flash crash. Therefore, especially, at the fitted data,
sometimes, it is not easy to observe that global minimum point.

Let us recall that we offered a 2-stage approach in overcoming illposedness of the in-
verse problem of our study: (i) To see whether the use of SVD works well, if so: to
conduct it, and if it is not the case, (ii) to apply the perturbation technique which we
introduced. In fact, that we employed submatrices of type 2× 2, in order to detect and,
if needed, overcome the illposedness of the entire design matrix of the present (sliding)
window, might seems surprising at the first glance. But for the following reason, the
2 × 2 format turns out to be a very reasonable choice: (a) When we go from one to
the next sliding window, we take away one column while adding a new column which
seems “closest” and most related to its previous column (the last one over the previous
window of time). This possible linear dependence of 2 vectors could be looked at and
become rank-updated. (b) If we looked at larger submatrices with 3 or more rows and
columns, the entire data and, hence, the solution of our model and decision support
system, could become changed too much. In fact, our data are informations of finan-
cial and probabilistic kind, exposing high random fluctuation often. To make bigger
changes which actually would lead to a smoothening, could corrupt both our problem
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and its result. By this we underline that our study of financial bubbles is interested
in “outlier” phenomena in the financial sector, so that all approximations and changes
need to be done with great care, such to say, with a very fine “needle”, such as the
2 × 2-kind of correction matrices are.

Any changes in the conditioning of the design matrix, i.e., on overcoming illposedness,
work via improvements, in fact, increases of (i) singular values or (ii) eigenvalues, un-
less truncation methods were applied. Those changes can be conducted explicitly on
those values, or implicitly through matrices whose roots of characteristic polynomials
they are. Now, any addition of a small increment ∆si or ∆λi to a singular value si or an
eigenvalue λi changes the condition number of the design matrix, i.e., the differences
between smallest and largest of those numbers are diminished, respectively. Since the
product of the condition number and the relative error in any (response) data vector
majorizes the relative error in the corresponding model vector of our solution, a di-
minished condition number leads to a smaller upper bound of the relative error of the
inverse problem. For closer information on the aforementioned sensitivity analysis, we
refer to the works (4; 58; 67) from the theory of inverse problems and to the works (34)
from the numerical analysis of linear algebra.

Since bubbles are rare events and sensitivity analysis necessitate too many data, for the
rare event analysis, sensitivity analysis may not be appropriate. Nevertheless, if the
sensitivity analysis is considered the following issues may be studied.

The sensitivity analysis may play a role for a refined control of singular and eigenvalues
and, by this, of shape and volume of our ellipsoids. This will also include an optimized
choice of the dimensions of the subintervals which we address when regularizing our
inverse problem over time windows, whenever needed. In this respect, sensitivity anal-
ysis can become another model-based module in our entire approach towards an early
warning about financial bubbles and their near-coming bursting time. Herewith, we are
on the way towards a mathematics-based risk management and ellipsoidal uncertainty
quantification, where approximative heuristics are gradually replaced by model-based
techniques.

As mathematical methods of sensitivity analysis, we mention (i) Tikhonov regulariza-
tion, which bases on a strong use of SVD, and (ii) Projection or iterative methods in
cases where the design matrix of inverse problem is sparse (4). If the problem consists
of a differential equation of any kind, a system of such equations, (iii) refined pertur-
bation methods are sometimes used to solve them. Here, the perturbation can lead to
a reduction of the problem: “complexity”; eventually, when withdrawing the pertur-
bation gradually, the approximate solution converges to the real solution. We mention
that also the celebrated “interior point methods” from conic optimization belong to the
perturbation methods (10; 61; 77).

From the perspective of statistics and sensitivity measures, we add the following meth-
ods: (iv) partial derivatives, importance index, variation of inputs by one standard
deviation and by 20%, relative deviation of output distribution, partial rank correla-
tion coefficients, relative deviation ratio, standardized coefficient of regression, rank
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regression coefficients, Gramer-von Mises test, Smirnov test, Mann-Whitney test and
squared-ranks test (36).

(i) (ii)

Figure 5.6: Volume-based index for real and fitted data of 1962 at S&P 500 index.

(i) (ii)

Figure 5.7: Volume-based index for real and fitted data of 1987 at S&P 500 index.
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(i) (ii)

Figure 5.8: Volume-based index for real and fitted data of 2008 at S&P 500 index.

(i) (ii)

Figure 5.9: Volume-based index for real and fitted data of 1990 at Nikkei 225 index.
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Although, we observe the regular decreasing process and occurrence of a global min-
imum point when the bubble-burst time approaches for S&P 500 and Nikkei 225 in-
dices; However, for the Shanghai Composite index, we saw that there are more than
one global minimum points and no regular diminishing process as shown in Figure
5.10.

Figure 5.10: Volume-based index for real data of 2007 at Shanghai Composite index
(SSEC).

The reason of this case is the volatility (whose measurement is a standard deviation) of
US and Japan markets takes values within the definite intervals, but in Chinese stock
market the range of the volatility varies significantly, as the following Figures 5.11-
5.15 show.

Figure 5.11: Volatility of US stock market before 1962 crises.
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Figure 5.12: Volatility of US stock market before 1987 crises.

Figure 5.13: Volatility of US stock market before 2008 crises.

Figure 5.14: Volatility of Japan stock market before 1990 crises.
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Figure 5.15: Volatility of China stock market before 2007 crises.

When the volume index drops and we decide to give an early warning, we particular
have in mind the behavior of the logarithmic asset price and its incremental changes.
It is the idea of a steep “drift” which dominates the diffusion part and might even re-
semble an impulse or a jump, with some time consumption, however. But the reason
of the diminishment of the ellipsoid’s volume could also come from a diminishment
of some other of our variables. Not surprisingly, as explained before, the standard de-
viation could tend to 0, but there might also be other variables “collapsing”. Since the
purpose of this thesis consists in an early warning in the sense of not coming too late,
we leave the possibility of other variables’ approach to 0, and the decision make and
his/her team could look into their values as soon as possible, but in any way, financial
measurements of control of the price process should be taken in time. In future work,
we want to include a closer analysis and representation of the other processes rather
than of the logarithmic price into the early warning signalling.

In order to visualize the ellipsoids, as we mentioned previously, we benefit from Radon
transform. Our study bases on the evaluation of ellipsoids by a Radon transform ap-
plied on the given data over the regarded interval, which actually come from mea-
surements that are now, rather than by Cartesian coordinates, represented by polar
coordinates. We recall that the data, or measurements, are comprised in the matrix A
they enters the definition of the ellipsoid EQ,µ (cf. Section 4.1) through the matrix Q,
which is the inverse of a (empirical) variance-covariance matrix. This inverse matrix
is characterized by the reciprocal values of the eigenvalues of the variance-covariance
matrix. Herewith, the Radon transform represents information about these values. In
particular, a smallest eigenvalue which could be close to 0 contributes to an “impulse”
by the Radon transform through its very high reciprocal value, and such an almost
vanishing eigenvalue also means a very small semiaxis length of the ellipsoid, i.e., a
degeneracy of EQ,µ to a lower dimension almost. Then, the volume of EQ,µ comes close
to 0, indeed.

We observe that Radon Transform generates different colors according to up or down
movements of the volume-based index. We classified these colors as, yellow, orange,
red, grey and black as shown in Figures 5.16-5.20. We notice that, generally, when
the direction of the volume-based index goes up, the color of the RT becomes more
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brilliant and when its direction turns downwards, RT responds with more dark color.
So, the RT yields a signal when the volume index increases or decreases. Volumes
of ellipsoids are obtained from the log-price and 5 other components mentioned by us,
which are derived from the log-price, and RT results are acquired from these ellipsoids.
So, RT can be related with a logarithmic price process.

For the bubble, when we see the bright colors, i.e., yellow, orange or red, we should
hesitate to detect that the bubble-burst time could approach. Actually, that signal could
be wrong which may then convey a fake bubble. The signal of RT becomes mean-
ingful when it is combined with the volume-based index. Together with a decreasing
process of the volume-based index and with the color of RT being very brilliant, i.e.,
yellow, orange or red, we say that the burst time of a bubble could be approached. The
following Figures 5.16-5.20 are some examples of RT colors for the years 1962, 1987,
2008 crisis in the US and the 1990 crisis in the Japan stock markets. That is to say, we
classified the colors which look like in Figure 5.16 as orange, or in Figure 5.17 as red,
and so on.
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Figure 5.16: Examples of Radon signals for the color Yellow.
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Figure 5.17: Examples of Radon signals for the color Orange.
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Figure 5.18: Examples of Radon signals for the color Red.
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Figure 5.19: Examples of Radon signals for the color Gray.
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Figure 5.20: Examples of Radon signals for the color Black.

Figures 5.21 and 5.22 summarize the RT colors and corresponding sliding windows
for the real and the fitted data of the years 1962, 1987, 2008 and 1990. When a local
maximum point occurred and then a regular decreasing process commences, we mea-
sure a decreasing rate and control whether this decline in the volume-based index is
temporary or permanent. If it is permanent, that maximum point is a starting point for
the Figures 5.21 and 5.22. For instance, this local maximum point took place in 110th
sliding window for 1962 crisis in the real data; therefore, the table which belongs to
1962 began from the 110th sliding window and ended with the first sliding window
which does not include the bubble-burst time. This procedure is the same for the fitted
data.
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Figure 5.21: Colors of RT and corresponding sliding windows (SW), related to the real
data, for the crisis in the US and the Japan stock markets.

The 1962 US stock market bubble bursted at the last week of May and this date cor-
responds to the 126th week of our data. Since the length of each sliding window is 8,
the first sliding window which contains the 126th week is the 119th. As we see from
Figure 5.21, the corresponding RT color for the 119th window is orange and until we
reach the bubble-burst time, we observe the colors red and yellow that are the classified
as strong alarms for the bubble-burst time. The 1987 US stock market bubble bursted
in the middle of October, in the 95th week of our data. The first sliding window which
includes the 95th week is the 88th. As we observe from Figure 5.21, the corresponding
RT color for the 88th window is red and until we reach bubble-burst time, we observe
the color red again and again. For the 2008 crisis, the burst of the bubble is realized
at the beginning of October which is the 97th week of the data, and the initial window
encompasses that week is the 90th one. If we look at Figure 5.21, the correspond-
ing RT color for that window is monitored as yellow and also orange. For the cases
of 1987 and 2008, we see strong warnings before the 88th and 90th windows by the
colors orange and yellow. The reason for this lies in the characteristics of those bub-
bles. As we mentioned previously, while the 1962 bubble was a flash bubble, the 1987
was outstanding one, also the 2008 bubble. As for the 1990 Japan stock market bub-
ble, it bursted at the beginning of January which matches with the 103rd week in our
data, and the window which for the first time contains this week is the 96th window.
Our approach almost catches this bubble; however, it gives the signal with four weeks
delay.

We also compute the decline rates with respect to the local maximum points in volume-
based indices; the rate can be thought as first-order or finite difference information.
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For the year 1962, we observe that the highest decline occurs as - 12.956% when the
bubble-burst time approaches. For 1987, the maximum decline is -16.792%. As for
2008, the highest decrease rate is -10.330%. Also, for the 1990 Japanese stock market
bubble, we observed an decrease in volume-based index by -15.956%. Thus, we can
conclude that if this decline exceeds 10%, the decision maker should be careful for
the bubble-burst time could get very close. In other words, 10% can be thought as a
decline threshold for the volume-index of the real data.

Figure 5.22: Colors of RT and corresponding sliding windows (SW), related to the
fitted data, for the crisis in the US and the Japan stock markets.

At Figure 5.22, because of the term (tc − t) in JLS model, we cannot proceed beyond
the week of bubble-burst time. Therefore, the last line is the first sliding window which
includes the week of bubble bursted. For instance, for the year 1962, the bubble bursts
at the 124th week and the first sliding window that contains this week is 117th window;
however, we can not observe the RT color (also volume of an ellipsoid) for the 118th
window. This case is the same for the fitted data which belong to the years 1987, 2008
and 1990. Nevertheless, we monitor strong signals with the colors yellow, orange and
red before the burst time of the bubble, except of the year 2008. We recall here a
main reason is given by the smoothness of the fitted data which lead to small volumes
and small changes of the colors in time. The highest decline rates in volume-based
index for the years 1962, 1987, 2008 and 1990, related to the fitted data, are, -9.305%
, -8.952% , -9.359% and -12.755%, respectively.

We would like to emphasize that our entire approach means an approximation and does
not promise an exact, error-free prediction. Actually, we are not providing a detection
in the sense of a deterministic “machine model”, “algorithm”, or even “machine” or
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“apparatus”; otherwise, the financial sector was not in the class of NP-hard decision
problems where it, however, can be found. For more information of machines of differ-
ent complexity classes we refer to (31). We also do not send our signal or information
at a bubble-burst time which, in fact, is unknown, but we give a warning at a moment
when there is a strong indication that a bubble-burst time is close to appear. Therefore,
we call it an early warning, and since we do not think in terms of a (deterministic)
machine or apparatus, we prefer not to add the word “system” to “early warning”, but
we add “signalling”. This just means a warning sent to decision makers from econ-
omy, finance or politics. As this warning is given before a possible burst time of a
bubble, those responsible managers are asked to revisit their variables and parameters
and to take precaution in order to control asset prices or indices into more “healthy”,
more reasonable value intervals, to prevent from heavy collapses of prices, indices,
companies and economies, respectively.
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CHAPTER 6

FUTURE RESEARCH STUDIES

As future research challenges related to this thesis, two main areas are introduced and
also offered to the scientific community. They are related with an intensified use of
ellipsoidal calculus, and with optimizing the “area under the ROC curve” as another
alternative for a signalling of an early-warning, respectively.

6.1 Ellipsoidal Calculus

In this thesis, the variables which are employed to develop an early-warning signalling,
were produced from log-prices/log-index processes. So, the external effects, such as
economic indicators, have not yet been considered. In order to deal with the interaction
between burst time of a bubble and economic variables and also to understand the
embedded behavior, the so-called system dynamics of the bubble process, discrete-
time regulatory target-environment systems (TE-regulatory systems) in the presence
of ellipsoidal uncertainty can be used. In other words, a specific description of the
system’s multivariate uncertain states are decided on and identified with ellipsoidal
calculus (53). By this approach, it is also possible to explain one country’s effect on
another country related to financial crises.

The TE-regulatory systems consist of two different groups of data. The first one in-
cludes the targets; which are the most crucial variables in the system and they hinge
on the second group which is named as the environmental items. Despite those groups
of data are strongly related, they reflect entirely different behaviors. Through cluster-
ing and classification methods, the structure of the data can be better perceived and
these methods allow to describe groups of data whose elements jointly act on further
clusters of target and environmental elements. The uncertain states of those clusters
become identified by ellipsoids; and ellipsoidal calculus is performed to assess the dy-
namics of the TE-regulatory system; i.e., the states of both target and environmental
variables of the TE-model are presented via ellipsoids (53). Therefore, firstly, we will
shortly repeat the mathematical definition of an ellipsoid and its volume.

An ellipsoid in R q is defined with its center µ ∈ R q and a symmetric nonnegative
definite configuration matrix Σ ∈ R q × q as
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E(µ,Σ) = {Σ1/2u + µ | u ∈ R q, ‖u‖2 ≤ 1},

where Σ1/2 is a matrix square root which fulfills Σ1/2(Σ1/2)T = Σ. If Σ reveals a full
rank, the nondegenerate ellipsoid E(µ,Σ) is described with the following way:

E(µ,Σ) = {x ∈ R q | (x − µ)T Σ−1(x − µ) ≤ 1}.

The eigenvectors of the matrix Σ indicate directions of the principal semiaxes of E. The
semiaxes lengths of the ellipsoid E(µ,Σ) are calculated with the eigenvalues of Σ,

√
λi,

where λi (i = 1, 2, . . . , q). The volume of E(µ,Σ) can be represented by volE(µ,Σ) =

Vq
√

det(Σ), where Vq is the volume of the unit ball in R q , i.e.,

Vq =


πq/2

(q/2)! , for even q,

2qπ(q−1)/2((q − 1)/2)!
q! , for odd q.

A discrete-time version of TE-regulatory systems in presence of ellipsoidal uncertainty
is predicated on clustering the sets of targets or environmental items, respectively,
which means the unification of variables mostly exerting effect on other groups of
system variables. The uncertain states of those clusters are defined by ellipsoids; these
provide a more detailed definition of uncertainty which represents the correlation of
data items. Clusters of unknown parameters, all of them directly depending on the
structure of the set of system variables, decide on the dynamical behavior of the clusters
and their interactions (53).

In the thesis, we particularly have one ellipsoid over each time interval k and we follow
its dynamics via a transition to interval k + 1, then k + 2, etc.. Here, the ellipsoids are
preprocessed by the minimum-volume clustering approach, based on the data that re-
late to the regarded intervals. With the ellipsoidal calculus and model, we can identify
that transition process, and can go beyond the thesis’ main framework.

6.1.1 The Discrete-Time Model

In a discrete-time TE-regulatory system, the number of target factors and environmen-
tal variables are taken into account as n and m, respectively. Here, functionally related
groups of targets or environmental items are assumed to be described in a preprocess-
ing stage of clustering and data analysis. Especially, the set of targets can be partitioned
into R disjoint or overlapping clusters Cr ⊂ {1, 2, . . . , n} (r = 1, 2, . . . ,R). Likewise,
the set of all environmental items can be grouped into S (disjoint or overlapping) clus-
ters Ds ⊂ {1, 2, . . . ,m} (s = 1, 2, . . . , S ). In a condition of disjointness of the clusters
the properties Cr1 ∩ Cr2 = ∅ for all r1 , r2, and Ds1 ∩ Ds2 = ∅ for all s1 , s2, are
satisfied. Furthermore, since every cluster matches to a functionally related group of
data elements, the uncertain states of these clusters are described by ellipsoids (53).

66



Ellipsoids may be designated with intervals if clusters are singletons, i.e., 1-dimensional.
Additionally, flat ellipsoids E(µr,Σr) ⊂ R|Cr | and E(ρs,Πs) ⊂ R|Ds | would refer to data
sets where at least one of the variables is definitely known; however, we can avoid this
by an artificial extension in the corresponding coordinate directions of length ε > 0.
That is to say, one can impose lower bounds on the semiaxes lengths. Likewise, the
extension can be controlled by imposing sufficiently large upper bounds and, hence,
one can keep away from “needles” (cf. Chapter 1 and 4) or even degenerate (lower-
dimensional) ellipsoids.

The target items in a regulatory system are described by

(i) the interactions among the clusters of target items
(defined by an n × n-interaction matrix ATT and a vector of n-intercept vector
VTT ),

(ii) the influences of the clusters of environmental items onto the target clusters
(defined by an n × m interaction-matrix AT E and an n-intercept vector VT E)

The unknown parameters of the regulatory system are composed by the entries of the
interaction matrices ATT , AT E and the intercept vectors VTT , VT E. Clusters of parame-
ters, represented by particular submatrices and subvectors of ATT , AT E and VTT , VT E,
describe affine-linear coupling rules. To define the interactions among the clusters of
target items, a submatrix ΓTT

jr ∈ R
|C j |×|Cr | of ATT is designated to each pair C j and Cr (the

components of C j and Cr decide about the indices of rows and columns). This subma-
trix can in turn be taken into account as a connectivity matrix among the clusters C j

and Cr that corresponds to the (uncertain) degree of connectivity among the elements
of the two clusters of targets. Later on, an additional shift (intercept) will be inserted
by the subvector ΦTT

j ∈ R
|C j | of VTT . In case of overlapping clusters, the submatrices

ΓTT
jr and subvectors ΦTT

j will be partially comprised of the same elements (53).

The impact of the clusters of environmental items on the target clusters can be ex-
plained, similarly.

For every pair of target clusters C j and environmental clusters Ds, a submatrix ΓT E
js ∈

R|C j |×|Ds | (the elements of C j and Ds determine the indices of rows and columns) and
a subvector ΦT E

j ∈ R|C j | of VT E are determined. The submatrix ΓT E
js behaves as a

connectivity matrix among the clusters C j and Ds and ΦT E
j acts as a shift (53).

In addition to the regulatory system of target variables, we look at an environmental
regulatory system which can be identified by

(iii) the interactions among the clusters of environmental items
(defined via an m × m interaction-matrix AEE and an m-intercept vector VEE),

(iv) the influences of the target clusters on the environmental clusters
(defined via an m × n interaction-matrix AET and an m-intercept vector VET ).

The degree of connectivity between the pairs of environmental clusters Di and Ds or
a pair of environmental and target clusters, Di and Cr, are represented through the
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submatrices ΓEE
is ∈ R

|Di |×|Ds | of AEE and ΓET
ir ∈ R

|Di |×|Cr | of AET , and also the subvectors
ΦEE

i ∈ R
|Di | of VEE and ΦET

i ∈ R
|Di | of VET .

The discrete-time model, which allows to compute the estimations X̂(k)
r and Ê(k)

s of the
ellipsoidal states of target and environmental variables, is presented by the following
pseudo model.

TE Model (53):

For k = 0, 1, 2, . . .; and for j = 1, 2, . . . ,R:

Step 1. Interactions among the clusters of targets

(A) Effect of cluster Cr onto cluster C j:

G(k)
jr = ΓTT

jr · X
(k)
r + ΦTT

j (r = 1, 2, . . . ,R).

(B) Cumulative effect of all clusters of targets onto cluster C j:

G(k)
j =

⊕R
r=1 G(k)

jr .

Step 2. Effects of the environmental clusters onto the clusters of targets

(A) Effect of environmental cluster Ds onto target cluster C j:

H(k)
js = ΓT E

js · E
(k)
s + ΦT E

j (s = 1, 2, . . . , S ).

(B) Cumulative effect of all environmental clusters onto cluster C j:

H(k)
j =

⊕S
s=1 H(k)

js .

Step 3. Sum of effects onto the target clusters

X(k+1)
j
= G(k)

j
⊕ H(k)

j
.

For i = 1, 2, . . . , S :

Step 1. Interactions among the clusters of environmental items

(A) Effect of cluster Ds onto cluster Di:

M(k)
is = ΓEE

is · E
(k)
s + ΦEE

i (s = 1, 2, . . . , S ).

(B) Cumulative effect of all environmental clusters onto cluster Di:

M(k)
i =

⊕S
s=1 M(k)

is .

Step 2. Effects of the target clusters onto the clusters of environmental items

(A) Effect of target cluster Cr on environmental cluster Di:

N(k)
ir = ΓET

ir · X
(k)
r + ΦET

i (r = 1, 2, . . . ,R).
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(B) Cumulative effect of all target clusters onto environmental cluster Di:

N(k)
i =

⊕R
r=1 N(k)

ir .

Step 3. Sum of effects on clusters of environmental items

E(k+1)
i
= M(k)

i
⊕ N(k)

i
.

For closer and refined information on how the fusion “
⊕

” is defined and how the
possible ellipsoidal regression problems are defined, we refer to the works (53; 54).

Since ΓTT
jr · X

(k)
r + ΦTT

j , ΓT E
js · E

(k)
s + ΦT E

j , ΓEE
is · E

(k)
s + ΦEE

i and ΓET
ir

(k)
r + ΦET

i are affine-
linear transformations, the sets G(k)

jr , H(k)
js , M(k)

is and N(k)
ir are ellipsoids. Additionally,

G(k)
j , H(k)

j , M(k)
i and N(k)

i are described by sums of ellipsoids and, thus, form ellip-
soids again. Hence, the model given here allows us to obtain and evaluate predictions
(X̂(k+1)

1 , . . . , X̂(k+1)
R , Ê(k+1)

1 , . . . , Ê(k+1)
S )T of the ellipsoidal states of targets or environmen-

tal items. In future research, we shall investigate the core properties of the ellipsoids
and determine their centers and configuration matrices.

For example, for the time step k ∈ N0, predictions of X̂(k)
r and Ê(k)

s are expressed by the
ellipsoids, i.e., X̂(k)

r = E
(
µ(k)

r ,Σ
(k)
r

)
andÊ(k)

s = E
(
ρ(k)

s ,Π
(k)
s
)
.

In the frame of ellipsoidal calculus, the most important problem is how the target and
environmental clusters will be organized according the bubble concept. We recall that
the dynamics investigated in our thesis, where “single ellipsoid” at time interval k is
transferred into a single ellipsoid at time interval k + 1, can be considered as a special
interpretation and application of that general model from ellipsoidal calculus, and both
suit into a wider framework. In fact, our further suggestion is that log-prices can be
used as one cluster of target variable, and economic indicators, such as GDP, inflation
or interest rate, may be considered, namely, for environmental clusters one by one or
all together or constituted by two or more indicators together within one cluster.

6.2 Receiver Operating Characteristics Analysis

6.2.1 Optimizing the Area Under the Curve

To compute the probability of bubble-burst time in the future, Area Under the (ROC)
Curve may be used as a tool. It can be thought a kind of an early-warning signalling.

Receiver Operating Characteristics (ROC) analysis is designed for two-state problems
such as default or non-default, dead or alive, since such problems are from the real
world (of observations) which often expresses itself as a two-state world, and an ROC
analysis is performed to assess the distinction power of a model. In order to develop an
early-warning, we can benefit from ROC analysis by determining a threshold between
two classes which could be “bubble” and “no bubble”, respectively. These classes are
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understood in the sense of a time of a bubble burst existing or not existing. Hence, the
early-warning signalling displays an alarm when a measurement surpasses the thresh-
old. In addition to this, we can develop multi classes instead of only two classes, and
we can determine risk levels related to how much we are close to the bubble-burst
time. As we remember, these levels and classes can be naturally identified with a finite
number of colors. (cf. Subsection 5.3.1)

An ROC curve reflects the relationship among the “true positive fraction” (fraction of
actually positive cases correctly classified as positive) and the “false positive fraction”
(fraction of actually negative cases incorrectly classified as positive) (59), as repre-
sented in Figure 6.1 (43). Here, the words positive and negative correspond to the bub-
ble and no-bubble cases, respectively. In terms taken over from medical diagnosis, true
positive fraction (TPF) is equivalent to sensitivity, while false positive fraction (FPF)
is equivalent to 1-specificity, as the sum of the FPF and TNF is equal to 1. Hence,
an ROC curve displays the connection between sensitivity and specificity (59). The
relationship between FPF and TPF may be explained by a contingency table, stated in
Figure 6.1.

Figure 6.1: Model estimation versus actual case of relative frequency of the bubble and
no-bubble cases, represented by a contingency table or a confusion matrix.

According to the bubble concept, the contingency table can be interpreted as follows:

TPF: The model estimated as bubble and in reality bubble (sensitivity).
FPF: The model estimated as bubble and in reality no-bubble (1-specificity).
FNF: The model estimated as no-bubble and in reality bubble.
TNF: The model estimated as no-bubble and in reality no-bubble (specificity).

We introduce random variables S p and S n as model score distributions of bubble and
no-bubble case, respectively, and suppose that they obey a normal distribution with
different means and standard deviations. Mean and standard deviation of the no-bubble
distribution are named by µn and σn, and for the bubble distribution by µp and σp,
respectively. We suppose that the parameters σn and σp are nonzero. The shape of the
populations is shown in Figure 6.2.
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Figure 6.2: Two normal distributions associated with actually bubble and actually no-
bubble case.

The cumulative distribution function of the decision variable s, called the score, for
the no-bubble and the bubble case are named as Fn(s) and Fp(s), respectively. Both
functions can be described by (59):

Fn(s) := Φ

(
s − µn

σn

)
and Fp(s) := Φ

(
s − µp

σp

)
. (6.1)

The ROC curve is a function of TPF(c) versus FPF(c), drawn for each cut-off value c.
The case can be classified as bubble if s ≤ c, and as no-bubble if s > c. It is important
to notice that we presume our cut-off values to increase as from left to right on the
decision variable axis.

At first, the smallest score received after applying the model is investigated. The logit
model can be applied in order to compute the scores. Here, the meaning of a score is
forecasting the probability that an event takes place or not. That is to say, by using a
set of independent variables we estimate a binary dependent outcome. For our case,
the occurrence of a bubble burst can be included as a dependent variable in a relation-
ship with macroeconomic indicators, and the linear probability model which is used
to calculate the probability of occurrence of the bubble burst can be expressed as the
following model (44):

log
(

P(Y = 1 |X = x)
P(Y = 0 |X = x)

)
= β0 + β1 · x1 + . . . + βp · xp + ε. (6.2)

Here, x = (1, x1, x2, . . . , xp)T ∈ Rp+1 and βm (m = 0, 1, 2, . . . , p) are predictor vec-
tor and coefficients, respectively. By ε, we mean a noise term. The predictor X
and its vectorial values x corresponds to the input variables of our bubble research
or macroeconomic indicators. Moreover, Y represents a binary response, i.e., Y fol-
lows a Bernoulli distribution. Thus, for a Bernoulli distributed variable we have the
relationship P(Y = 1 |X) = E(Y |X) (60). Furthermore, the values 0 and 1 express the
bubble and no-bubble case, respectively. As seen from Eqn. (6.2), P(Y = 1 |X = x)
obeys a logistic distribution, i.e.,
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P(Y = 1 | X = x) = E(Y | X = x) =

(
exp(XTβ)

1 + exp(XTβ)

) ∣∣∣∣∣∣
X=x

. (6.3)

where P(Y = 1 |X = x) represents the likelihood of the occurrence of the bubble burst.

The values of FPF and TPF corresponding to each setting of the cut-off point c can be
stated by (59):

TPF(c) := Pr(s ≤ c | p) = Φ

(
c − µp

σp

)
and FPF(c) := Pr(s ≤ c | n) = Φ

(
c − µn

σn

)
.

(6.4)

The expressions in Eqn. (6.4) include cumulative distribution functions to represent
how we can obtain each ROC curve point with respect to any different cut-off value.
Thus, we can conclude that the ROC axes are comprised by the two cumulative distri-
bution functions that are introduced in Eqn. (6.1). In order to make a decision about
the model, i.e., whether its discriminative power of between two classes is good or bad,
one of the most appealing ways is to compute the Area Under the (ROC) Curve, to ob-
serve the differences between the corresponding curves. This integral area is defined
by the following term (52):

Area Under the Curve = AUC :=
∫ 1

0
Fp(s) dFn(s). (6.5)

Ideally, an excellent model, i.e., a model that differentiates two classes very effectively,
has an AUC with value very close the value 1. In other words, any model with a rather
steep ROC curve is a better one, whereas an area value of 0.5 means a random forecasts.
Accordingly, a greater AUC value can be regarded as performing better when it comes
to the discrimination of two classes (74).

ROC curves produced from experimental visual data approximate closely theoretical
ROC curves generated from normal probability distributions. Hence, they can be plot-
ted as a straight line beyond binormal axes whose coordinates scale the normal-deviate
value of the probability linearly (41). That transformation can be visualized in the form
of Figure 6.3.
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(i) (ii)

Figure 6.3: (i) ROC curve of TPF compared with FPF (79), and (ii) Normal-deviate
plot of ROC curve (79).

Such an ROC curve can be identified through two parameters: a, being the ordinate
intercept, and b, which is the slope of the straight-line plot on normal-deviate axes. If
an ROC curve is plotted as a straight line over the normal-deviate axes, the vertical and
horizontal coordinates of each point on this line are coupled by (59):

Φ−1(T PF) = a + b · Φ−1(FPF). (6.6)

Here, the function Φ−1 takes values in (−∞,∞). Herewith, the coordinates of the ROC
plot are received by

T PF = Φ(a + b · Φ−1(FPF)). (6.7)

By the expressions in Eqn. (6.4) , a cut-off value can be formulated in terms of FPF
and TPF as the following expression:

c = σn · Φ
−1(FPF(c)) + µn = σp · Φ

−1(TPF(c)) + µp. (6.8)

If we drawn the statement Φ−1(TPF(c)) from Eqn. (6.8), we obtain the following Eqn.
(6.9) which will be used to get the ROC parameters:

Φ−1(TPF(c)) =
µn − µp

σp
+
σn

σp
Φ−1(FPF(c)). (6.9)

Here, Eqn. (6.9) is accepted uniformly, i.e., for all c ∈ R. If we compare Eqns. (6.6)
and (6.9) on TPF(c) and FPF(c), which take the values into the interval [0,1], then we
can decide the ROC parameters a and b as in Eqn (6.10):

a =
µn − µp

σp
and b =

σn

σp
. (6.10)
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In order to rewrite the ROC curve axes by using ROC parameters, we can assign a
random variable ν such that s − µn = σn · ν, σn , 0. Via this linear combination
between s and ν, we can rewrite our cumulative distribution functions as follows:

Fn(s) = Φ((s − µn)/σn) = Φ(ν), (6.11)

where ν := (s − µn)/σn. Substituting s = σn · ν + µn into Fn(s) and Fp(s), gives the
distribution functions which will be used to explain the multi cut-off values case:

Fn(ν) = Φ(ν) and Fp(ν) = Φ(a + b · ν). (6.12)

As we mentioned at the beginning of this section, we can use ROC analysis for the
multiple cut-off values, as seen in Figure 6.4 (56). These cut-off values can be em-
ployed as thresholds of risk levels which can indicate how we close the bubble-burst
time.

Figure 6.4: In a multiple cut-off values situation, the resulting classes are indicated
with respect to the normal distribution curves.

In order to generalize the multiple cut-off values case, we presume that we have R
classes. Therefore, we are concerned with R − 1 cut-off values, c1, c2, . . . , cR−1, which
divide the decision variable axis into R classes as shown in Figure 6.4, and these cut-off
values fulfill c1 < c2 < . . . < cR−1. The coordinates of a binormal ROC curve are then
computed by Eqn. (6.12) as follows (59):

FPF(ci) = Fn(ci) = Φ(ci) and TPF(ci) = Fp(ci) = Φ(a + b · ci). (6.13)

As represented in Figure 6.5, the cut-off points are transformed into thresholds values
by the standard normal cumulative distribution function. Consequently, the thresholds
take values between 0 and 1. Therefore, we get the first threshold value as t0 = 0,
and the last one as tR = 1, such that 0 < ti < 1 for all i = 1, 2, . . . ,R − 1, and the
most crucial subject is that all threshold values are in a strictly increasing order from
the smallest one to the greatest, i.e., ti−1 < ti. The relationship between thresholds and
cut-off values is described by Φ(ci) = ti; these values are lying on the FPF axis of the
ROC curve.
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Figure 6.5: The relationship between thresholds and cut-off values.

In fact, this relationship can be explained more clearly and functionally by the follow-
ing statement:

Φ(c) = t ⇔ c = Φ−1(t). (6.14)

Let us recall that we have introduced AUC as AUC :=
∫ 1

0
Fp(s) dFn(s). We remind

that we also defined Fp(s) and Fn(s) for the multiple cut-off values along with the Eqn.
(6.13). Now, we can represent the AUC as the Eqn. (6.15) (for further technical details
see (56)).

AUC :=
∫ 1

0
Φ(a + b · Φ−1(t))dt. (6.15)

By solving the following optimization problem, the thresholds and, herewith, the cut-
off values can be obtained (56):

maxa,b,τ α1 ·
∫ 1

0
Φ(a + b · Φ−1(t))dt − α2 ·

∑R−1
i=0 (γi

n − (ti+1 − ti))2

subject to
∫ ti+1

ti
Φ(a + b · Φ−1(t))dt ≥ δi (i = 0, 1, 2, . . . ,R − 1),

t0 = 0 and tR = 1.

(6.16)

Here, the decision variable τ is a vector which comprises the thresholds ti, whereas
“regularity” parameters δi ≥ 0 are chosen by the modeler or decision maker before-
hand, and the parameters γi are “sensitivity” for some particular purpose of “propor-
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tionality” of the each classes. Moreover, γi and n indicate the number of historical data
in the i th class (i = 0, 1, 2, . . . ,R − 1) and the total number of historical data in certain
time interval, respectively. The ratio γi/n displays the relative frequency of the data in
the i th class.

In fact, by solving the above optimization problem we realized three aims: The first
one is (i) to compute the threshold values ti and the ROC curve parameters a and b
simultaneously, making the area under the ROC curve, AUC, maximal or, equivalently,
since the underlying total area is equal to 1, minimizing 1-AUC. This is depicted in
Figure 6.5. The second purpose (ii) is that these threshold values should be inclined to
maximize the estimation accuracy of the model, i.e., that they should assure class sizes
close to the data proportions directly provided by the data. That is to say, threshold
values which tend to minimize the difference between some data-based value and the
corresponding model estimation value for each class. The third goal is (iii) while re-
alizing the first two goals, to balance the different subareas which altogether comprise
the AUC, i.e., balancing the size of the classes, and to order the thresholds. Our third
goal is approached by the inequality constraints in the above problem.

For further detailed and refined information on how this optimization becomes dis-
cretized in a balanced, regularized way and then solved as a nonlinear regression prob-
lem, we refer to our previous work (56).

Our new method of optimizing the Area under the ROC Curve that we explain here,
is a module on our way to narrow down uncertainty related with the estimator which
we present in this thesis. When optimizing that AUC, we maximize the discriminative
power of the classification, which expresses itself by the identification of finitely many
risk levels. Herewith, we are going beyond the classical ROC technique from statistics
of “testing” the statistical quality of our estimator, but we are on the way of suiting
that new method into the ellipsoidal methodology of this thesis. Maximizing the AUC
strongly increases affirmation, bringing the estimation proposed by us closer to deter-
minism but, of course, remaining in the realm of approximation. In our future work,
we aim to further integrate all these methods of early warning and risk management.
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CHAPTER 7

CONCLUSION AND OUTLOOK

In our thesis, we present an early-warning signalling for financial bubbles by bene-
fitting from the theory of optimization, of inverse problems and clustering methods.
For the time being, we consider the US, Japan and China stock markets since bubbles,
mostly, occur in these markets. Yet, we will extend our work for further countries’
stock markets and also for other types of assets such as gold and oil markets.

Here, we generated a new index and called it as volume-based index, and we have found
that when the time approaches the bubble-burst moment, the volumes of the ellipsoids,
i.e., the volume-based index, gradually decrease and, correspondingly, the signals ob-
tained by Radon transform are becoming more “brilliant”, i.e., more strongly warning.
The meaning of more brilliant or more strongly warning is given by the color change
of Radon transform. If it turns to orange, yellow or red, together with a decreasing pro-
cess of the volume-based index, then that could be- and has been in our computations-
an early-warning for the bubble-burst time. This tool is appropriate, particularly, for
the less volatile markets. In future research, we focus on to find methods for more
volatile markets.

Standard models and simulations of scenarios of extreme events are exposed to count-
less sources of error and each of these sources can have a negative effect on the valid-
ness of the estimations (51). In the modeling process, some of the ambiguities are
under control and they generally include trade-offs between a more accurate descrip-
tion and controllable computations. Other sources of errors are far beyond control as
they are inherent in the modeling methodology of the particular fields (70). Even if
there are remarkable counter-examples (3; 6; 28), analytical theoretical estimations are
still out of reach for many complex problems and numerical resolution of the equations
(when they are known) or of scenarios is credible in the center of the distribution, i.e.,
in the regime far from the extremes where good statistics can be accumulated (70).
Hence, the two known strategies for modeling are both restricted in this regard (70).
Crises with extraordinary effects are extreme events that take place seldomly, and are
thus completely under-sampled and poorly constrained (70). In the light of these ex-
planations, we did not make a simulation study in this thesis. We have also performed
our volume-based approach on the fitted data. However, as a future work, we plan to
benefit from compound Poisson processes (19; 50; 69) to explain bubbles and by this
approach it may be possible to test the model by simulated data.
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The originality of our study is that the concept of bubbles is dealt with geometrically
by using the theory of inverse problems and one of the clustering methods, called
minimum-volume covering ellipsoids, supported by optimization theory. This is a new
and pioneering approach. Our study may contribute to a deeper theoretical understand-
ing of financial bubbles. Investors may control their risks, and the risk management
departments at the banks may use theoretical and empirical results of our investigations
to manage their market risk. In addition to these groups interested, Central Banks and
policy makers could benefit from our theoretical and empirical results, and they could
test and apply our approach to monitor their risk levels and compute the risk associ-
ated with various economic factors. This could prevent from financial and economics
crises.
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E. Kürüm, N. Azevedo, D. Pinheiro and G.-W. Weber, Stochastic Control of
Hybrid Systems with Applications to Finance, 8th International Conference on

85



Optimization: Techniques and Applications (ICOTA8), Shanghai, China, De-
cember 10-13, 2010.

Book Chapter
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