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ABSTRACT 

ATMOSPHERIC CORRECTION AND IMAGE CLASSIFICATION 

ON MODIS IMAGES BY NONPARAMETRIC REGRESSION SPLINES 
 

 

 

KUTER, Semih 

Ph.D., Department of Geodetic and Geographical Information Technologies 

Supervisor        : Prof. Dr. Zuhal AKYÜREK 

Co-Supervisor : Prof. Dr. Gerhard-Wilhelm WEBER 

 

 

February 2014, 173 pages 

 

 

 

In this study, two novel applications of nonparametric regression splines are 

introduced within the frame of remote sensing: (i) For the first time ever, 

atmospheric correction models are generated for moderate resolution imaging 

spectroradiometer (MODIS) images by using multivariate adaptive regression 

splines (MARS), and its recently introduced version, conic multivariate 

adaptive regression splines (CMARS). The obtained models are applied on the 

predefined test areas of twenty four different MODIS scenes. Simplified model 

for atmospheric correction (SMAC) algorithm, a radiative transfer-based 

approach, is also employed on the same test data. The performance of the 

MARS, CMARS and SMAC models are assessed against MODIS surface 

reflectance products. (ii) Additionally, implementation of MARS algorithm in 

image classification for snow mapping on MODIS images is demonstrated 

within a well-elaborated framework. The relation between the variations in 

MARS model building parameters and their effect on the predictive 

performance are presented in various perspectives. Performance of MARS in 

classification is compared with the traditional maximum-likelihood method. 

For the atmospheric correction, results reveal that MARS and CMARS 
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approaches over perform SMAC method on all test areas. In classification, 

significant improvement in the classification accuracy of MARS models is 

observed as the number of basis functions and the degree of interaction 

increase. On three image sets out of four, the MARS approach gives better 

classification accuracies when compared to maximum-likelihood method. 

Keywords: MARS, CMARS, Conic Quadratic Programming, Atmospheric 

Correction, Multispectral Image Classification 

 



vii 

 

ÖZ 

PARAMETRİK OLMAYAN REGRESYON EĞRİLERİ KULLANILARAK 

MODIS GÖRÜNTÜLERİ ÜZERİNDE  

ATMOSFERİK DÜZELTME VE GÖRÜNTÜ SINIFLANDIRMASI  
 

 

 

KUTER, Semih 

Doktora, Jeodezi ve Coğrafi Bilgi Teknolojileri Bölümü 

                   Tez Yöneticisi           : Prof. Dr. Zuhal AKYÜREK 

                Ortak Tez Yöneticisi : Prof. Dr. Gerhard-Wilhelm WEBER 

 

 

Şubat 2014, 173 sayfa 

 

 

 

Bu çalışmada, parametrik olmayan regresyon eğrilerinin uzaktan algılama 

alanındaki iki özgün uygulaması sunulmaktadır: (i) İlk kez çok değişkenli 

uyarlanabilir regresyon eğrileri (MARS), ve yeni geliştirilen versiyonu olan 

konik çok değişkenli uyarlanabilir regresyon eğrileri (CMARS) kullanılarak 

orta çözünürlüklü görüntüleme spektroradiometresi (MODIS) görüntüleri için 

atmosferik düzeltme modelleri üretilmiştir. Oluşturulan modeller, yirmi dört 

farklı MODIS görüntüsü üzerinde daha önceden belirlenmiş olan test 

alanlarında uygulanmıştır. Radyatif transfer tabanlı olan basitleştirilmiş 

atmosferik düzeltme modeli (SMAC) aynı test alanları üzerinde ayrıca 

kullanılmıştır. MARS, CMARS ve SMAC modellerinin performansları 

MODIS yüzey reflektans ürünleri baz alınarak değerlendirilmiştir. (ii) Ayrıca, 

MARS algoritmasının kar haritalaması amacına yönelik görüntü 

sınıflandırmasında MODIS görüntüleri üzerindeki uygulaması iyi kurgulanmış 

bir çerçeve içerisinde sunulmuştur. MARS model oluşturma parametrelerindeki 

değişikliklerin, oluşturulan modelin sınıflandırma performansı üzerindeki 

etkileri farklı açılardan değerlendirilmştir. Sonuçlar, MARS ve CMARS 

yöntemlerinin atmosferik düzeltme için tüm test görüntüleri üzerinde SMAC 



viii 

 

yönteminden daha iyi sonuçlar verdiğini ortaya koymaktadır. Görüntü 

sınıflandırması için, baz fonksiyonu sayısının ve etkileşim derecesinin 

artırılması ile MARS metodunun sınıflandırma doğruluğunda belirgin gelişme 

olduğu gözlemlenmiştir. Sonuçlar klasik maksimum-olasılık yöntemiyle 

karşılaştırıldığında, MARS metodu ile dört görüntü setinden üç’ü üzerinde 

daha iyi sınıflandırma doğruluğu elde edilmiştir. 

Anahtar Kelimeler: MARS, CMARS, Konik Kuadratik Programlama, 

Atmosferik Düzeltme, Çok Bantlı Görüntü Sınıflandırması 
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1. CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

Remotely-sensed image data have been used as a primary information source 

in spatial technologies. However, a fundamental problem in remote sensing 

(RS) is the perturbations on surface reflectance data due to absorption and 

scattering by atmospheric gases and molecules [1-3]. So, in order to make 

correct analysis and interpretation of remotely-sensed images, the reflectance 

values of the image pixels must accurately represent the ground surface 

reflectance values.  

There are two main approaches in atmospheric correction methodology: (i) 

relative and, (ii) absolute radiometric correction of atmospheric attenuation. 

According to the former, the image histograms of spectral bands are shifted to 

the left, based on the assumption that the offset of the histogram from zero 

brightness value is caused by the atmospheric scattering, which is easy to 

apply, but only provides an approximate correction [2, 4]. In the latter, detailed 

numerical radiative transfer (RT) codes are employed to model the whole 

process of attenuation of solar radiation in the atmosphere [5, 6]. 

However, it should be emphasized that the high accuracy available with 

detailed RT models may not actually be reached when working over large 

areas, due to unknown atmospheric parameters [7]. Additionally, for large 

areas and long time periods, researchers still need faster methods in order to 

derive surface reflectances.  
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To obtain a thematic map by image classification is another challenging task in 

RS because there exist many factors directly affecting the success of the 

process such as technical characteristic and quality of remotely sensed data, 

complexity of landscape, image processing techniques and classification 

scheme employed [8].    

Two main approaches exist in image classification, namely, supervised and 

unsupervised. Until the mid-1990s, supervised classification methods 

originated from conventional statistical techniques such as maximum-likelihood 

(ML) or minimum-distance (MD) were the main classification methods used in 

RS [2]. Unsupervised classification is the contrary approach of supervised 

methods, where the user analyzes the whole image without reference to any 

training data to define separable clusters [9]. The most widely known 

unsupervised method is the K-means (KM) algorithm [10].  

Other alternative image classification techniques based on decision trees (DT), 

support vector machines (SVM), artificial neural networks (ANN) and fuzzy 

classification (FC) have been proposed and assessed [11-14]. However, some 

of these approaches are known to have problems in explaining the connection 

between the predictor variables and the results of classification [8, 15]. 

In this thesis, we would like to propose new alternative approaches to the 

atmospheric correction and image classification by “smartly” and 

“innovatively” treating these issues within the frame of nonparametric 

regression splines. Indeed, nonparametric regression splines offer great 

advantages because in real life problems and natural phenomena, many effects 

often exhibit nonlinear behavior. 

Firstly, for the first time ever in RS, we deal with the application of 

nonparametric regression splines in atmospheric correction by using two state-

of-the-art tools, multivariate adaptive regression splines (MARS) [16], and its 
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recently introduced complementary alternative conic multivariate adaptive 

regression splines (CMARS) [17]. We introduce the novel application of these 

tools to develop atmospheric correction models for moderate resolution 

imaging spectroradiometer (MODIS) data.   

Secondly, we treat the multispectral image classification issue by employing 

MARS approach. According to the results of our intensive literature survey, the 

study by Quirós et al. [15] is the only available one that used MARS as an 

alternative method in multispectral image classification. An image 

classification scheme for snow mapping by using multi-response MARS 

approach on MODIS images is introduced within a well-established frame 

work and the results are presented. 

1.2 Our Tasks 

In order to briefly summarize, our tasks in this thesis to achieve the objectives 

stated in the previous section are 

 to generate atmospheric correction models for MODIS images through 

nonparametric MARS and CMARS methods,  

 to assess the performance of the obtained models, and compare their 

results with an RT-based approach in terms of both accuracy and 

processing time, 

 to employ MARS approach to perform multispectral image classification 

for snow mapping on MODIS images, 

 to comprehensively analyze and reveal the effect of MARS model 

building parameters on the final classification results, 
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 to assess the accuracy obtained with MARS approach and to compare the 

results with the results obtained from classical ML classification method.   

1.3 Contributions of the Thesis 

With this study, we recommend both MARS and our adaptive tool for 

regression and classification, CMARS, to be used in the area of RS, especially, 

as an  alternative to traditional formula-based approaches which have their 

scientific origins in the natural sciences, especially, in physics. However, we 

very much respect and appreciate those formulas as they represent important 

relations between essential, natural dimensions, though on a certain level of 

abstraction and, sometimes, simplification. Our CMARS approach of learning 

and modeling is based on both the empirical data and the mathematics of 

applied probability and, especially, optimization theory, whereby accuracy 

becomes compromised with complexity.  

This thesis has the following contributions related with the atmospheric 

correction and image classification subjects: 

 Two nonparametric regression and classification tools, MARS and 

CMARS, are used for the first time to make atmospheric correction. In 

particular, the models obtained by this new approach do not require any 

atmospherical parameters as input such as atmospheric optical depth, 

water vapor and ozone content. 

 Not only it illustrates the application of the obtained atmospheric 

correction models on MODIS images, but also assesses the performance 

of the two methods, in terms of both accuracy and processing time.  

 Advantages of using CMARS method and further possible applications 

of its extensions are highlighted within the context of our problem in RS. 
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 A novel application of multi-response MARS approach in image 

classification for snow mapping is introduced within a well-elaborated 

frame. 

 It clearly exposes the effects of different MARS model settings on the 

classification results. 

 It demonstrates the application of the proposed approach on MODIS 

images, and reveals its applicability in image classification for snow 

mapping by comparing the results with traditional ML classification 

method. 

 And in overall, it constitutes a base for those who further intend to 

employ these two state-of-the art nonparametric regression and 

classification tools in their RS-related applications.  

1.4 Outline of the Thesis 

The organization of the thesis as follows 

 Overview of MARS and CMARS Methods: In Chapter 2, we begin 

with the discussion on the advantages of using spline functions. Then, 

mathematical basis of MARS algorithm is given, together with the details 

of the parts of the algorithm, namely, forward and backward step. Then 

the alternative formulation of the backward step of MARS to obtain 

CMARS by using the modern methods of continuous optimization is 

introduced.    

 A Brief Review on Radiative Transfer Models and Image 

Classification: In Chapter 3, we first present the basics of interaction 

between the solar radiation and the atmosphere. Derivation of RT 

formulation is explained briefly. Then, widely-recognized RT-based 
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atmospheric correction algorithms are revisited in a chronological order. 

Secondly, in Chapter 3, the methods and techniques used in multispectral 

image classification are covered, yet not in a detailed manner. Instead, 

well-known approaches are shortly introduced together with their pros 

and cons.    

 MODIS Instrument and Products: Since our main data source in this 

study is MODIS, we reserve Chapter 4 to the details related with this 

instrument and its products. First, technical specifications of MODIS 

instrument are given. Then, the inner structure of the scientific data sets 

obtained by different data processing levels that are used in this thesis are 

introduced in details. 

 Atmospheric Correction on MODIS Images by MARS and CMARS: 

Chapter 5 starts with the basic introductory of the data set used in this 

part of the study. Next, the details about the MARS and CMARS model 

training process are mentioned. The test results associated with the 

performance of the MARS and CMARS atmospheric correction models 

are given and compared with the performance of simplified model for 

atmospheric correction (SMAC), an RT-based approach, together with 

the results of statistical evaluations. And the results derived from the 

empirical findings are discussed.   

 Image Classification on MODIS Images by MARS: A novel 

application of MARS algorithm for multispectral image classification on 

MODIS images are introduced in Chapter 6. We begin with the 

introduction of the data set. Then, the details of the approach used in 

multi-response MARS model training are introduced. By systematically 

varying the model building parameters, different MARS models are 

obtained, and then applied on the test images. The performance of the 

models is also compared against ML classification method, and the 

results are presented by using error matrices. The effect of employing 
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different model building parameters in the predictive performance of 

MARS is introduced based on the experimental findings. 

 Conclusions and Recommendations: Finally, Chapter 7 wraps up the 

thesis by presenting the conclusions and overall findings of the study. 

Possible extensions of proposed methods for our future studies are given.   
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2. CHAPTER 2 

OVERVIEW OF MARS AND CMARS METHODS 

2.1 Nonparametric Regression Splines with Continuous Optimization 

and Conic Quadratic Programming 

To estimate unknown (predictor, response) dependency (or model) from 

training data (consisting of a finite number of observations) with good 

prediction (generalization) capabilities for future (test) data is the basic aim of 

the learning task. While regression is to learn a mapping from the input space, 

X, to the output space, Y, where this mapping,  f, is called an estimator, which 

is used for predicting quantitative outputs (i.e., = , =dX Y ); the aim of 

classification is to learn a mapping from the feature space, X, to a label space, 

Y, where this mapping, f, is called a classifier, which is used for predicting 

qualitative outputs (i.e., = , ={0,1}dX Y ). Although the naming convention 

for the learning task depends on the output type, both have common 

characteristics and can be regarded as a task in function approximation [18]. 

As in almost all branches of science and engineering, regression and 

classification also play a crucial role in geographical information systems 

(GIS) and RS, where images taken by Earth-observing satellites are used to 

extract various kinds of information concerning Earth environment. Many 

kinds of regression and classification methods have been applied for 

information extraction from remotely sensed Earth data [19-25]. And at this 

stage, it is of value to emphasize that nonparametric regression and 

classification techniques are mostly the key data mining tools in explaining real 
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life problems and natural phenomena where many effects often exhibit 

nonlinear behavior. 

Introduced by physicist and statistician Friedman [16], multivariate adaptive 

regression splines (MARS) is an innovative nonparametric regression 

procedure that does not make any specific assumption about the underlying 

functional relationship between response and predictor variables. The 

algorithm estimates the model function at two stages; forward step and 

backward step. In the first stage, similar to forward stepwise linear regression, 

the basis functions (BFs) and their products are used to generate a maximal 

model that overfits data. Then in backward step, the model is pruned stepwise 

by eliminating the terms which result in smallest increase in the residual 

squared error until a predefined threshold is reached.  

Conic multivariate adaptive regression splines (CMARS) [17] has recently 

been developed as an alternative method to MARS. In CMARS, instead of 

applying backward step algorithm, a penalized residual sum of squares (PRSS) 

is introduced to MARS as a Tikhonov regularization (TR) problem, and this 

two-objective optimization problem is treated using the continuous 

optimization technique called conic quadratic programming (CQP). Within 

this context, CMARS is more model-based and employs continuous, well-

structured convex optimization which uses interior point methods and their 

codes. 

2.1.1 Advantage of using splines 

The use of spline functions offer great advantages, in general, and in the 

context of our modelling in RS, as it will be explained now compactly [26]:  
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 Splines, from the perspective of just one dimension (input variable), are 

“piecewise polynomials”. If polynomials are used only, then they would 

usually converge to plus or minus infinity when the absolute values of 

the (input) variables grow large. Since real-life processes stay in bounded 

margins (even if these bounds may be very large) generally, polynomials 

would need to have a high degree to oscillate sufficiently in order to 

remain within some reasonable margin. However, with high-degree 

polynomials it is hard and costly to work, in particular, as the real-life 

challenges are multivariate, which may need multiplications and, hence, 

a rapid increase in degree of the occurring multivariate splines. Using 

splines however permits us, in every dimension, to keep the degree of the 

polynomial “pieces” very low. Splines are indeed quite “flexible” and 

sufficiently “elastic” in order to approximate complex and high-

dimensional data structures. So, they are often called “smoothing 

splines”, since they “smoothly” approximate discrete data.  

 The splines of CMARS are more “smooth” even in the sense that their 

oscillation is kept under control via a penalization of their integrals of 

squared first- and, especially, second-order derivatives, i.e., their 

complexity. Then the integrals are discretized, and a program of TR is 

obtained and represented in the form of CQP.  

 The multivariate splines of CMARS are multiplication products of “zig-

zagging”, piecewise linear functions of degree 1 (or 0), and it can be 

carefully determined how many dimensions to include into the process of 

multiplications of those 1-dimensional splines in order to prevent the 

complexity of our model from becoming too high. Let us recall that 

reducing the complexity can also be expressed as an increase in stability.  

 Those multiplications are an expression of the fact that there are input 

variables, which are dependent and, together in groups, contributing to an 

explanation of response variable by those explanatory input variables.  
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 Finally, differently from the use of “stiff” model formulas, which are 

motivated by the tradition in science, our approach by CMARS is very 

adaptive and is getting into the data set with its particular subsets and 

characteristics of shape.   

2.2 MARS Method 

Regression analysis in statistical learning is a method in which numerous 

independent variables are modeled and analyzed. As a form of regression 

analysis, MARS is a nonparametric regression technique. The algorithm is 

widely used in data mining and estimation theory in order to built flexible 

regression models for high dimensional nonlinear data. MARS is an evolved 

form of linear models that can automatically model nonlinear and interactive 

models, and it has great importance in both classification and regression. 

MARS has many successful applications in various fields of science and 

engineering such as operational research, marketing and finance [27-29]; 

biology, ecology and forestry [30-36]; simulation and computation [37, 38]; 

geophysics [39]; engineering [40-43]; medical and biomedical sciences [44-

48]; as well as in GIS and RS [15, 49-51]. 

From this point forward in this section, the basics of MARS method are given 

based on [16, 18, 26, 52]. 

Originated from a modified recursive partitioning methodology, MARS 

algorithm is an extension of classification and regression trees (CART), and 

both are similar in the partitioning of intervals, where two symmetric basis 

functions BFs are constructed at the knot location. However, continuous 

piecewise linear functions are used in MARS algorithm and a continuous 

model that provides a more effective way to model nonlinearities is produced, 
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whereas CART uses indicator functions that leads to lack of continuity, which 

severely affects the model accuracy, and the use of methods from calculus.  

Selection of BFs is data-based and specific to the problem in MARS, which 

makes it an adaptive regression procedure suitable for solving high-

dimensional problems. Additionally, interactive structure of MARS allows 

users to find relations (i.e., dependencies) between variables. In MARS model 

building, piecewise linear BFs are fitted in such a way that additive and 

interactive effects of the predictors are taken into account to determine the 

response variable.  

MARS uses two stages when building up a regression model, namely, the 

forward and the backward step algorithms. In the forward step, BFs to be 

added to the model are determined by a fast searching algorithm, and at the 

end, a possibly large model which overfits the data set is obtained. The process 

ends as soon as the maximum number of BFs, Mmax, a user defined value, is 

reached. However, the model generated in this stage often contains BFs which 

together contribute most or least to the overall performance, and therefore, it is 

more complex and implies incorrect terms. 

The backward step is applied in order to prevent the model obtained in the 

forward step from over-fitting by decreasing the complexity of the model 

without degrading the fit to the data. It removes the BFs that give the smallest 

increase in the residual sum of squares at each step, and eventually, an 

optimally estimated model is generated. 

MARS uses expansions of the truncated piecewise linear basis functions of the 

form: 
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where   is a univariate knot ( ,x   ). These two functions are called as a 

reflected pair and the symbol ‘+’ indicates that only the positive parts are used, 

and otherwise zero. General model on the relation between the input variables 

and their response is defined in the following equation: 

   ,Y f  X  (2.1) 

where Y is the response variable,  1 2, , ,
T

pX X XX  is the vector of 

predictors and   is an additive stochastic component with zero mean and finite 

variance. The logic in MARS is to generate reflected pairs for each input 

( =1,2, , )j j pX  with p-dimensional knots ,1 ,2 ,= ( , , , )T

i i i i p  τ  at or just 

nearby each input data vectors  ,1 ,2 ,, , ,
T

i i i i px x xx  of that input 

( =1,2, , )i N . Therefore, the collection of 1-dimensional BFs of MARS is as 

follows: 

     1, 2, ,: , , , , , , 1,2, , ,j j j j N jC X  X  x x x   j p  
 

           (2.2) 

where N is the total number of observations, p is the dimension of the input 

space. Here,  f X  in Equation (2.1) can be represented as a linear 

combination, which is successively constructed by the set C and with the 

intercept 
0 , and it has the following form: 
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where Bm is a BF or product of two or more BFs from the set C, and it is taken 

from a set of M linearly independent BFs. Here, m
X  is a subvector of X  

contributing to the function 
mB , and 

m  denotes an unknown coefficient of the 

mth BF, or the constant 1  0m  . By multiplying an existing BF with another 

reflected pair including another variable, a new BF is generated that represents 

interaction between different variables, and both the existing BFs and the 

newly created BFs are included in the model. By this way, spline fitting in 

higher dimensions is achieved, leading to multivariate spline BFs with the 

following form: 

      
1

: 1,2, , ,
m

m m m
j j j

K
m

m i i
k

B s x    i N
  


 

    
  

x  (2.4) 

where the total number of truncated linear functions multiplied in the mth BF is 

denoted by Km, m
ji

x


 indicates the input variable corresponding to the kth 

truncated linear function in the mth BF, m
j

  is the knot location for m
ji

x


, and 

finally  1m
j

s

  . 

In order to estimate 
0 , forward step algorithm of MARS starts with the 

constant function  0

0 1B X  . All functions from the set C are considered as 

candidate functions, and possible BFs have the following form: 

 1, 

 
kx , 

  k ix 


 , 
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k lx x , 

  k i lx x


 , 

  k i l jx x 
 
    . 

 

In MARS algorithm, self-interaction is not allowed (i.e., predictor variables 

cannot be the same for each BF); therefore, 
kx  and  

lx  in the above BFs 

represent distinct predictor variables, together with their corresponding knot 

locations 
i  and 

j , respectively. At each step, with one of the reflected pair in 

the set C, all products of a function ( )m

mB X  in the model set are considered as 

a new function pair, which has the following form: 

 1 2( ). ( ). ,k k

M k j M k jB X B X     
        X X  

where 
1M 
 and 

2M 
 are coefficients estimated by least squares. For instance, 

the following BFs are potential candidates: 

 1, 

 
kx , 

  k ix 


 , if 
kx  is already in the model, 

 
k lx x , if 

kx  and 
lx  are already in the model, 

  k i lx x


 , if 
k lx x  and  k ix 


  are already in the model,  

  k i l jx x 
 
    , if  k i lx x


  and l j kx x


    are already in the 

model. 

 

At each step, the model chooses the knot and its corresponding pair of BFs that 

result in the largest decrease in residual error, and the products satisfying the 
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above mentioned condition are successively added to the model until a 

predefined value 
maxM  is reached.  

At the end, a large model that typically overfits the initial data is obtained. 

Then, the backward step is applied in order to prevent the model obtained in 

the forward step from over-fitting by decreasing the complexity of the model 

without degrading the fit to the data. It removes the BFs that give the smallest 

increase in the residual sum of squares at each step, which means that a 

predictor variable can be completely excluded from the model unless any of its 

BFs has a meaningful contribution to the predictive performance of the model, 

and this iterative procedure continues until an optimal number of effective 

terms are represented in the final model. 

Among the sequence of models obtained from the above mentioned process, an 

estimated best model, f̂ , with the optimum number of terms   that gives the 

best predictive fit is chosen through a lack-of-fit (LOF) criteria defined by 

generalized cross validation (GCV), which is given in Equation (2.5): 

 

2

=1

2

ˆ( ( ))
ˆLOF( ) = GCV( ) := ,

(1 ( ) / )

N

i i

i

y f x

f
Q N



 







 (2.5) 

where N  is the number of sample observations, ( ) =Q u dK   with K  

representing the number of knots which are selected in forward step and u  is 

the number of linearly independent functions in the model, d  denotes a cost 

for each BF optimization, and usually = 3d  ( = 2d  is used when the model is 

additive). The numerator is the conventional residual sum of squares, which is 

penalized by the denominator that accounts for the increasing variance in case 

of increasing model complexity, i.e., while larger ( )Q   creates a smaller 

model with less number of BFs, smaller ( )Q   generates a larger model with 
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more BFs. Using the LOF criteria, the best model is chosen according to 

backward step that minimizes GCV. 

2.3  CMARS Method 

As briefly discussed so far, MARS uses two algorithms (i.e., forward and 

backward step), through which it tries to accomplish two tasks simultaneously: 

a good fit to the data, yet a simple model.  

CMARS (“C” stands not only for convex but also continuous and conic) has 

been developed as an alternative method to MARS by utilizing statistical 

learning, inverse problems and multiobjective optimization theories, and its 

basics is briefly discussed in this section based on [17, 18, 26]. 

In CMARS, backward step of MARS is not employed; instead, PRSS with 

maxM  BFs is collected during forward step, and penalty terms are added to the 

least squares estimation in order to control the LOF, introducing an alternative 

point of view to the trade-off between the complexity (accuracy) and the 

stability of the estimation. PRSS summed up during the forward step of MARS 

has the following form: 

     

 

max

1 2

2 22 2

,

11 1
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m m

i i m m r s m
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(2.6) 

Here,  : 1,2, ,m

m j mV j K   denotes the variable set related with the mth 

BF,  
1 2
, , ,

Km

T

m m m mh h hh is the vector of variables contributing to the mth 

BF. Furthermore, 0m   are penalty parameters, and mQ  are suitable 
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integration domains  max1,2, , .m M   Finally,  , :m

r s mG B h
  

  1 2m m m

m r sB h h    h  for  1 2,
T

  , 1 2:    , where  1 2, 0,1   .  

 

The trade-off between accuracy and complexity in this optimization problem is 

established through the penalties 
m , and after approximating the multivariate 

integral  
2

2

,
m

m m

m r s m

Q

G B d  
  h h


 by discretizing, the PRSS in Equation (2.6) is 

rewritten as follows: 
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   y B b   (2.7) 

where  1 2: , , ,
T

ny y yy is the vector of response data,   B b  
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T
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Then the new form of PRSS is expressed as follows: 

  
2 2

22
PRSS ,  y B b Lλ  (2.8) 

where L  is a diagonal     max max1 1M M   -matrix and   denotes an 

  max 1 1M   -parameter vector estimated through the data points. The PRSS 
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problem turns into a classical TR problem with 20,       for some .  

A brief introductory to TR can be found in Appendix A.  

The TR problem in Equation (2.8) can be treated by CQP, a technique from 

continuous, in fact, convex optimization, with a convenient choice of bound

Z  as given in the following equation:  

 
 

,

22

minimize ,

subject to , .

h
h

 h  Z  B b y L



 
 (2.9) 

An introduction to CQP is available in Appendix B. At this point, one has to 

note that a careful learning process must be followed in order to obtain the 

values of bound Z . By applying the modern methods of continuous 

optimization, the CQP can be written in this basic notation: 

 
 

2

minimize ,

subject to 1,2, , ,

T

T

i i i i q  k  

x
c x

G x g p x
 (2.10) 

with  
max 11,

T
T

M  0c ,  ,
T

Thx  ,   1 ,N 0G B b , 
1 g y ,  1 1,0, ,0

T
p , 

1 0,q    
max2 1,M  0G L , 

max2 1M  0g , 
max2 2M  0p  and 

2q Z  . 

After writing the optimality conditions for the problem (2.9): 
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where , 1i j NL  , max 2M
L


 , 1NL  , and max 2M

L
  are  1N  - and  max 2M  -

dimensional ice-cream (or second-order, or Lorentz) cones, respectively: 

     1 1 2 2 2

1 1 1 1 2: , , 1 .
TN N

N N NL x x    x x x x    N 

        x  

The competitiveness of CMARS compared with MARS has been demonstrated 

in other applied contexts such as industrial engineering (e.g., quality 

management and control in manufacturing) [17, 53, 54], financial mathematics 

(e.g., prediction of credit default, and identification of stochastic differential 

equations in finance) [27, 55-59], or Earth sciences (e.g., prediction of ground 

motion, related to tectonics and earthquakes) [60]; in various cases of data sets, 

CMARS was superior even.  
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3. CHAPTER 3 

A BRIEF REVIEW ON RADIATIVE TRANSFER MODELS 

AND IMAGE CLASSIFICATION 

3.1 Atmospheric Correction by RT Models 

When examining Earth’s surface from a space-based RS platform, the 

atmosphere is a large factor in the uncertainty associated with a surface 

reflectance measurement. In order to obtain high quality data, the correction of 

atmospheric perturbations acting upon land surface reflectance measurements 

recorded by a space-based sensor is an important topic within RS [61]. 

Dependent on the atmospheric conditions at any one time, the measured 

reflectance from a particular remotely sensed pixel may be increased or 

decreased by the atmosphere. A fundamental problem within RS of Earth is to 

correct land surface reflectance data gathered by space based sensors for the 

perturbations introduced by the passage of radiation through Earth’s 

atmosphere [62, 63]. 

Failure to correct for the atmospheric effects can inevitably lead to different 

surface reflectance values, and will definitely have a significant effect on any 

conclusions drawn from such data. This issue is particularly important in the 

evaluation of images taken by large field of view (LFOV) sensors and spanning 

long time series, over which the atmospheric parameters do not remain 

constant [61, 63].  
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On its path from the Sun to the surface and onwards to the sensor, a photon can 

be disturbed from its course through the influence of atmospheric absorption 

and scattering. The former represents the amount of radiation that is attenuated 

by its passage from the Sun to surface and onwards to the satellite and 

decreases the radiance measured at satellite level. Similarly, the latter accounts 

for the component of radiation that is scattered within the atmosphere and 

directed toward the satellite, depending upon atmospheric conditions it may 

either increase or decrease the measured radiance. Both components can be 

calculated using knowledge of the atmospheric conditions at the time of 

measurement by examining the path length of the light through the atmosphere 

[61, 63]. 

Solar radiation is scattered by atmospheric gaseous molecules and aerosols, 

and two broadly known scattering mechanisms exist, namely Rayleigh and Mie 

(or aerosol) scattering [64]. The former is scattering by the air molecules 

themselves, and it is dominant within the short wavelength region between 0.4 

and 0.7 μm. It is an inverse fourth power function of the wavelength used, i.e., 

its effect diminishes rapidly with increasing wavelength (
4
). The latter is a 

result of scattering of the radiation from larger particles such as those 

associated with smoke, haze and fumes. The effect of Mie scattering also 

decreases with increasing wavelength, but at a slower rate (typically, 
2
 to 

1 
). The wavelength dependence disappears when the atmospheric 

particulates become much larger (i.e., fogs, clouds and dust) [65, 66]. 

On the other hand, absorption by atmospheric molecules is a selective process 

and the incoming energy is converted into heat during this process. Eight gases 

among the nearly thirty atmospheric gases, which are water vapor (H2O), 

carbon dioxide (CO2), ozone (O3), nitrous oxide (N2O), carbon monoxide 

(CO), methane (CH4), oxygen (O2), and nitrogen dioxide (NO2), result in 

observable absorption features over the range 0.4 to 2.5 μm. Atmospheric water 

vapor (uWV) absorption has a significant effect over the half of the spectral 
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region between 0.4 and 2.5 μm, whereas the absorption effects due to the other 

seven gases usually take place within narrower wavelength intervals [65, 66].   

As explained briefly, atmospheric components such as aerosol or water vapor 

content can substantially modify the top of atmosphere (TOA) radiance as seen 

by the satellite. In addition, the view zenith angle (VZA), θv, and the solar 

zenith angle (SZA), θs, also play a major role in determining the effects of the 

atmosphere (Figure 3.1). If the zenith angle is far from nadir then the photon 

must travel through a much larger portion of the atmosphere, and thus the 

chance of an absorption or scattering event greatly increases. Conversely, for 

angles close to nadir, the path length is greatly reduced, as is the uncertainty in 

radiance due to the atmosphere [61, 62, 66].  

 

Figure 3.1: Geometry of the problem, θs: solar zenith angle, θv: viewing zenith 

angle, Δφ: relative azimuth between the Sun and the sensor 

(adapted from [7])  

These atmospheric and geometric parameters are input values in RT models, 

and have to be a priori determined. The finally calculated value is the target 

reflectance, which is supposed to be equal to the in-situ spectroradiometrically 

measured reflectance value, as long as the RT model is accurate and reliable 

[4]. 
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In images, acquired by instruments with high temporal resolution and LFOV 

(i.e., NOAA AVHRR, MSG-SEVIRI), each pixel has a different observational 

geometry and each atmospheric parameter has to be calculated for each pixel 

[7, 63, 65]. Hence, it is highly costly and time consuming to employ models 

based on a rigorous treatment of the RT problem, like second simulation of a 

satellite signal in the solar spectrum (6S) [67], for the atmospheric correction 

of bulk numbers of such satellite images in real-time.  

The simplified model for atmospheric correction (SMAC) was first introduced 

nearly two decades ago as an alternative approach to tackle these problems. It 

is based on the parametrization of detailed RT models [7]. Despite its age and 

lower level of accuracy as compared to 6S, it is still a preferred atmospheric 

correction tool for many research groups due to its high speed [61].  

Even though no atmospheric correction scheme can completely nullify the 

effects of the atmosphere, RT in clear atmosphere is now well understood and a 

significant amount of work has been done in improving the accuracy and 

quality of correction algorithms [61, 65]. 

3.1.1 Definitions of reflectance and radiance 

To help the readers, we think, it is necessary to briefly explain two common 

optical terms continuously used in this study: reflectance and radiance. 

Basic definition of reflectance is the ratio of reflected energy to incident energy 

at a given wavelength, and it is unitless [68]. Three main factors affects the 

quantity of reflected energy [2]: 

 magnitude of the incident energy, 

 material roughness, 
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 and, material type. 

In general, the first two factors are assumed as constants, and the third factor is 

taken into account. Surface roughness plays an important role on the behavior 

of reflectance [2]. If the incoming energy is reflected by a specular (i.e., 

perfectly smooth) surface, the angle of reflection is the same as the angle of 

incidence; whereas, equal reflection in all directions is observed in case of a 

Lambertian surface (i.e., perfectly rough surface) as illustrated in Figure 3.2. In 

real life, many materials exhibit reflectance behaviors between specular and 

Lambertian [10].   

 

Figure 3.2: Reflectance from a) specular, and b) Lambertian surface (adapted 

from [2]) 

On the other hand, radiance is used to measure the amount of radiation, either 

passing through or being emitted from a surface, that falls within a given solid 

angle in a given direction [68]. Its unit is Watts per square meter for a given 

wavelength per steradian (W/m
2
/μm/sr).     

3.1.2 Basic RT formulation  

In RT models, the process for obtaining the ground target’s reflectance value 

has three main stages as illustrated in Figure 3.3. In the first stage, the 

individual pixel values (DNs) are converted to apparent radiances (Lapp). Then, 
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the second stage includes the conversion from Lapp to apparent reflectance 

values, * . The final step is to convert *  to ground target reflectance values,

s . In this section, in order to provide an introduction to atmospheric 

modeling, basic RT equation is described based on [2, 65, 69]. 

 

Figure 3.3: Steps in an RT-based atmospheric correction scheme (adapted from 

[2]) 

From the path between the Sun and the ground target, a certain fraction of the 

incident solar irradiance is scattered into the atmosphere. The remainder of the 

radiation that is incident on the ground target is direct solar radiation (Figure 

3.4a), and this transmitted fraction,   ,sT   is given as follows: 

   exp ,
cos

s

s

T





 
  

 
 (3.1) 

where   is the atmospheric optical depth (AOD), and 
s  denotes the SZA.  

Some portion of the solar radiation is first scattered by molecules or suspended 

particles in the atmosphere, and then reaches the surface. It is known as diffuse 

http://en.wikipedia.org/wiki/Molecule
http://en.wikipedia.org/wiki/Earth%27s_atmosphere
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skylight,  d st  , (Figure 3.4c). Once the effect of diffuse skylight is taken into 

account, Equation (3.1) becomes as follows: 

    exp .
cos

s d s

s

T t


 


 
  

 
 (3.2) 

The contribution of the trapping mechanism, which is actually another 

scattering flux, should also be taken into account. The effect arises from the 

successive reflection and scattering of solar radiation between the neighboring 

ground target and the atmosphere (Figures 3.4d and 3.4e). Spherical albedo of 

the atmosphere, S, and the surface reflectance, ,s  determines the magnitude 

of this effect. Then, the illumination of the ground target is expressed as 

follows: 

  
1

.
1

s

s

T
S







 (3.3) 

 

Figure 3.4: Interaction of the solar radiation with atmosphere: a) direct, b) path, 

c) diffuse, d) multiple, and e) neighbor (adapted from [2]) 
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The proportion of the solar radiation reflected from the ground target is given 

by the following equation: 

  .
1

s
s

s

T
S








 (3.4) 

The total solar radiation reflected by the ground target and directly transmitted 

from the surface to the sensor is not the only main source. The second source, 

which is also scattered into the field of view of the sensor, is the contribution 

from the neighboring target. The reflectance received by the sensor is given in 

Equation (3.5): 

    .
1

s
s v

s

T T
S


 


 


 (3.5) 

Here, 
v  is the VZA, and as in Equation (3.2),  vT   can be expressed as 

follows: 

    exp .
cos

v d v

v

T t


 


 
  

 
 (3.6) 

A fraction of the solar radiation scattered out of the downward solar beam also 

enters into the sensor’s field of view without interaction with the ground target 

(Figure 3.4b), and it is called as the atmospheric reflectance, ( , , )a s v    , 

where   denotes the relative azimuth between the Sun and the sensor. Then, 

the apparent reflectance *  at the sensor is given as follows:  

      * , , ,
1

s
s v a s v

s

T T
S


      


    


 (3.7) 
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where 
s  is the surface reflectance, and the term    s vT T   denotes the 

total atmospheric transmittance along the Sun–target–sensor path. 

Equation (3.7) can be modified in order to consider the effect of atmospheric 

gaseous absorption, as mentioned in Section 3.1. Then, the apparent reflectance 

*  is calculated by the following equation: 

        * , , , ,
1

s
g s v s v a s v

s

T T T
S


        



 
      

 
 (3.8) 

where  ,g s vT    is the atmospheric gas transmittance after absorption. As 

obviously seen, Equation (3.8) deals with the atmospheric scattering and 

gaseous absorption as two independent processes, whereas they occur 

simultaneously in the real atmosphere. 

One should further expand the Equation (3.8) in order to obtain the surface 

reflectance of the ground target as follows: 
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 (3.9) 

Then, Equation (3.9) is transformed into Equation (3.10)  
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Hence, once the apparent reflectance *,  the spherical albedo S and the 

coefficients A and B are known, one can obtain the surface reflectance 
s  of 

the ground target.  

3.1.3 Evolution of RT models 

Generally speaking, the goal of all correction schemes is to nullify atmospheric 

influence by modifying TOA radiance measurement recorded by a sensor in 

accordance with calculated values for the atmospheric absorption and 

scattering along the path travelled by incident light. This process results in a 

surface radiance, or after further computation, a surface reflectance that is free 

from influence by atmospheric scattering and absorption.  

Numerous methods and algorithms, starting from the earlier empirical line 

method and the flat field method to more recent RT modeling approaches, have 

been proposed in order to remove atmospheric effects from images taken by 

sensors with different technical specs and operational objectives, installed 

either on aircraft or satellite platforms. The intend of the following subsections, 

however, is not to cover all these methods in a comprehensive manner. Instead, 

several of widely recognized correction schemes based on rigorous treatment 

of RT models are briefly introduced in a chronological fashion. 

3.1.3.1 MODTRAN 

Moderate spectral resolution atmospheric transmittance (MODTRAN) 

algorithm was developed by US Air Force Research Laboratory, Geophysics 

Directorate in collaboration with Spectral Sciences, Inc. in the late 1980s, and 

has been widely used to analyze AVIRIS data due to its computational speed 
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and its ability to model molecular and aerosol/cloud emissive and scattered 

radiance contributions as well as the atmospheric attenuation [70].  

The MODTRAN code calculates atmospheric transmittance and radiance for 

frequencies from 0 to 50 000 cm
-1

 (wavelength: 200 nm to +∞) at moderate 

spectral resolution, primarily 2 cm
-1

 (20 cm
-1

 in the UV). The basic approach in 

MODTRAN is to approximate the atmosphere and Earth surface as a sequence 

of quasi-homogeneous layers for which the individual layer radiance 

contributions from each of the source terms depicted is considered. The surface 

is treated as a layer of infinite opacity, an opaque boundary with variable 

emissivity/reflectivity. Spherical refraction geometry effects are incorporated 

into calculation of path sums and scattering angles, although multiple 

scattering radiances are based on plane-parallel models. Approximate 

corrections are made for the effects of inhomogeneous distributions of 

temperature and species concentrations within the atmospheric layers [71, 72].  

3.1.3.2 5S 

Simulation of a satellite signal in the solar spectrum (5S) was developed for 

estimation of the solar radiation backscattered by Earth-surface-atmosphere 

system, as observed by a satellite sensor. Given the Lambertian ground 

reflectance, the apparent reflectance of the observed pixel is estimated by 

taking into account the effects of gaseous absorption, scattering by molecules 

and aerosols and, to some extent, inhomogeneity in the ground reflectance. 

Besides the pixel apparent reflectance, the code provides the gaseous 

transmittance, the irradiance at the surface and the different contributions to the 

satellite signal according to the origin of the measured radiance [69].  

5S treats absorption and scattering separately since gaseous transmission is one 

factor in a series of terms describing scattering. For a given spectral band, 5S 
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calculates each term in Equation (3.8) at a step of 5 nm within the spectral 

interval, computes the TOA spectral reflectance, and then integrates TOA 

spectral reflectances over the whole spectral band, giving the TOA apparent 

reflectance, * . These integrations of each parameter of Equation (3.8) over 

the spectral band are highly demanding in computational time [7].   

3.1.3.3 ATREM 

The atmosphere removal algorithm (ATREM), developed by the University of 

Colorado in the early 1990s, allows the retrieval of surface reflectance spectra 

from imaging spectrometer data, such as those collected with AVIRIS, without 

the need for field measurements of reflectance spectra. Since water vapor has a 

spatially variable characteristic, the integrated water vapor amount is obtained 

on a pixel by pixel basis from the 0.94 and 1.14 μm water vapor absorption 

bands using a channel ratio technique [73].  

By using a narrow band spectral model and the derived water vapor values, the 

water vapor transmittance spectrum in the complete solar spectral region 

between 0.4 and 2.5 μm is then simulated. Similarly, based on the solar and 

observational geometry, the transmission spectra of CO2, O3, N2O, CO, CH4, 

and O2 in the 0.4 - 2.5 μm region are simulated. 5S computer code is used for 

the modeling of scattering effect due to atmospheric molecules and aerosols. 

An aerosol model and a surface visibility should be selected by the user to 

model the aerosol effect. The apparent reflectances are obtained by taking the 

ratio of measured radiances to the solar irradiances above the atmosphere. 

Simulated atmospheric gaseous transmittances and the simulated molecular and 

aerosol scattering data are used to derive the surface reflectances from the 

apparent reflectances. The final output of the ATREM consists of water vapor 

image and reflectance-corrected AVIRIS data without use of ground spectral 



35 

 

measurements. ATREM is no longer available to new users and ATREM v3.1 

was the last publicly released version [65].  

3.1.3.4 SMAC 

Simplified method for atmospheric correction (SMAC) is a computationally 

fast and accurate technique for the atmospheric correction of satellite 

measurements in the solar spectrum and was developed by Rahman and Dedieu 

[7] in 1994. The main advantage of the method is that it is several hundred 

times faster than the more detailed RT models. SMAC is based on the 

parameterization of the RT equations. A separate equation for each of the 

atmospheric interaction processes is defined and the coefficients of these 

equations are adjusted to match an accurate RT model. For the development of 

the first version of SMAC, 5S was chosen as the reference model, whereas the 

current version is based on the 6S model.  

Apart from a series of predefined coefficients, dependent upon the RS 

instrument, the algorithm requires 7 input variables: * , 
s , 

v ,  ,  AOD, 

uWV and ozone content (uO3). Then, the surface reflectance of the ground 

target, ,s  is calculated on a pixel-by-pixel basis, computing the surface 

reflectance for each before moving on to the next.  

Most of the equations used in the calculation of process variables are modified 

into a simpler form in SMAC, and by this way, calculation time is reduced by 

decreasing complexity. In order to calculate the gaseous transmission, an 

empirical band model is used in the following form [63]: 

    , exp ,
i

n

g s vT a mU   
 

 (3.11) 
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with 
1 1

.
s v

m
 

    

Here, U denotes the vertically integrated absorber amount, a and n are 

predefined coefficients by analysis of 6S data, which are read into the SMAC 

at run time, and finally, 
s and 

v  are the cosine of the SZA and cosine of the 

VZA, respectively. 

In the presence of several gases in the atmosphere, the total gaseous 

transmittance is retrieved in SMAC by multiplying the transmissions from each 

individual gas as given in Equation (3.12) [63]: 

    
1

, , .
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x

g s v g s v

i
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  (3.12) 

An empirical approach for the total atmospheric transmission is used and 

expressed as a function of AOD at 550 nm and SZA (or VZA) in the following 

form [7]: 

   550 2
0 1 ,s

s v

a
T a a




 
    (3.13) 

where an  are constants to be adjusted for a given spectral band, 
550  is the 

AOD at 550 nm. In Equation (3.13), one has to note that (i) the (cosine) SZAs 

are replaced by the equivalent VZA values in the case of outgoing radiation; 

and (ii) this transmission accounts for both Rayleigh and aerosol scattering 

(i.e., when 
550 0  , the transmission corresponds to Rayleigh scattering). 

Despite its age, the SMAC algorithm is still widely used by many groups and 

projects both with MSG-SEVIRI data [74-76] and that gathered from other 

satellites [77-79]. The primary reason why SMAC approach is still used by so 
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many groups is its simple nature, which means that it can perform an 

atmospheric correction in a short time. 

In addition, when new sensors are introduced, only the band-specific 

coefficients need to be updated while the routines remain the same. Besides, 

SMAC is available as a free and open-source code. This means that it can 

easily be implemented in an operational data preprocessing computer and can 

be modified according to user requirements, which is another attractive feature 

of SMAC algorithm that makes it still popular. SMAC code is given in 

Appendix E.1. 

3.1.3.5 FLAASH 

Fast line-of-sight atmospheric analysis of spectral hypercubes (FLAASH) is a 

MODTRAN4-based atmospheric correction software package developed by 

the Air Force Phillips Laboratory, Hanscom AFB and Spectral Sciences, Inc 

(SSI). It provides accurate, physics-based derivation of apparent surface 

reflectance through derivation of atmospheric properties such as surface 

albedo, surface altitude, water vapor column, aerosol and cloud optical depths, 

surface and atmospheric temperatures from hyperspectral imagery data. 

FLAASH operates in the 0.4 - 2.5 μm spectral range. FLAASH uses the 

standard equation for spectral radiance at a sensor pixel in the solar wavelength 

range (neglecting thermal emission) from a flat Lambertian surface or its 

equivalent [80]. 

In several studies, it has been shown that at least under conditions of clear to 

moderate aerosol/haze, low to moderate water vapor, and nadir viewing from 

any altitude between the ground and the top of the atmosphere, the algorithm is 

capable of generating accurate surface reflectance spectra from hyperspectral 

imagery [81, 82]. 
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3.1.3.6 ACORN 

Atmospheric correction now (ACORN) is a commercially available, enhanced 

atmospheric model-based software that uses licensed MODTRAN4 technology 

to produce high quality surface reflectance without ground measurements [83]. 

The software provides an atmospheric correction of hyperspectral and 

multispectral data measured in the 0.4 - 2.5 μm spectral range.  

ACORN uses look-up tables (LUT) calculated with the MODTRAN4 RT code 

to model atmospheric gas absorption as well as molecular and aerosol 

scattering effects, converting the calibrated sensor radiance measurements to 

apparent surface reflectance. The well mixed gases are constrained by the 

elevation and the observation geometry. Water vapor is estimated from the data 

on a pixel-by-pixel basis using the water vapor absorption bands at 0.94 and/or 

1.15 μm. A lookup table for a range of water column vapor densities is 

generated using MODTRAN4 and then fitted in a least-squares sense against 

the imaging spectrometer data.  

A key feature of ACORN is full spectral fitting to solve for the overlap of 

absorptions between water vapor and liquid water in surface vegetation. 

Visibility is estimated from the AVIRIS data using nonlinear least-squares 

spectral fitting between the AVIRIS radiance spectra and MODTRAN modeled 

radiance with the aerosol optical depth as the primary fitting parameter. The 

two-way transmitted radiance and atmospheric reflectance are calculated for 

each pixel using MODTRAN and the derived water vapor, pressure elevation, 

and aerosol optical depth estimations. Apparent surface reflectance is derived 

from the total upwelling spectral radiance for a given atmosphere using a 

variant of the RT equation [65, 81]. 
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3.1.3.7 ATCOR 

Atmospheric and topographic correction (ATCOR) code was created in the 

early 2000s, and is used for computing a ground reflectance image for the 

reflective spectral bands, and emissivity images for the thermal bands [84]. 

ATCOR has been evolved in the last decade in two different types as ATCOR2 

and ATCOR3. The former is a spatially-adaptive fast atmospheric correction 

algorithm for nearly horizontal surface or flat terrain, whereas the latter is 

designed for rugged topographical surface. Hence, a digital elevation model 

(DEM) is used in the correction algorithm [85, 86].  

Also the third type of the algorithm, ATCOR4, is available for the atmospheric 

correction of airborne imaging spectrometry data. ATCOR4 is an extension of 

the ATCOR3, and a LUT approach is used for the atmospheric correction 

employing the Lambertian assumption. It performs the combined 

atmospheric/topographic correction accounting for the angular and elevation 

dependence of the atmospheric correction functions and calculates surface 

reflectance (solar spectral wavelength region) and surface temperature (thermal 

wavelength region) based on the geocoded and orthorectified imagery [84]. 

3.1.3.8 6S 

The second simulation of a satellite signal in the solar spectrum (6S) is a 

computer code that can accurately simulate the surface reflectance values 

measured by satellite or airborne platforms of land or sea surfaces in the visible 

and near infrared, which is strongly affected by the presence of the atmosphere 

along the Sun-ground target-sensor path, and its first version was introduced in 

the late 1990s as an improved version of 5S [87]. 

6S uses the surface/atmosphere bidirectional reflectance distribution function 

(BRDF) to compute the surface reflectance, as stated in Equation (3.8). It 
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accounts for the coupling between water vapor absorption and aerosol 

scattering, elevated targets, use of anisotropic and Lambertian surfaces, and for 

the calculation of gaseous absorption. The new vector version of 6S code 

(6SV) can work in both scalar and vector modes, and accounts for the 

polarization of solar radiation in the atmosphere [88]. It is based on the method 

of successive orders of scattering (SOS) approximations. Within this method, 

the atmosphere is divided into a number of layers and the RT equation is 

solved numerically for each layer with the help of iterations. The intensity is 

successively computed for photons scattered one, two, three times, etc., with 

the total intensity obtained as the sum of all orders. Numerical integration is 

performed using the decomposition in Fourier series for the azimuth angle and 

Gaussian quadratures for the zenith angle [89].  

6SV is the basic code underlying the MODIS atmospheric correction 

algorithm, and several significant updates have been introduced into the code 

including [88, 89]:  

 a more accurate calculation of highly asymmetric aerosol scattering 

phase functions,  

 an arbitrary variation of a vertical aerosol profile,  

 the ability to change the number of calculation angles and layers,  

 and, the increase in the number of node wavelengths from 10 to 20. 

3.2 A Short Introductory to Image Classification 

In RS, individual pixels each carrying the radiometric information (i.e., 

reflectance or radiance values recorded by the sensor within different a priori 

defined spectral band intervals) are used to form a multispectral image [2]. 

Therefore, in a multidimensional space, called feature space, each spectral 
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band is represented by an axis so that a pixel can be expressed as a point in that 

space [10] (Figure 3.5). If the user works with a 2-D feature space (i.e., number 

of spectral bands is two), lines or curves are used to separate clearly defined 

groups, classes, in which an individual pixel falls. These lines or curves are 

known as decision boundaries. Then the pixel is labeled, i.e., classified, 

according to its position with respect to the decision boundary. In case of 

higher-dimensional problems, these lines or curves are replaced with 

hyperplanes [10]. So, in a multidimensional feature space, classification can be 

regarded as positioning the hyperplanes, and the method that specifies the 

position of a pixel with respect to the hyperplane is called a classifier.    

 

Figure 3.5: From a) image space, to b) feature space 

3.2.1 Supervised versus unsupervised 

Thus, the main objective in image classification is to establish a link between 

each pixel and one or more user-defined labels of classes by using the 

radiometric information contained in the image (Figure 3.6), and to obtain a 

thematic map of the study area [2]. There exist two main approaches:  

 The class labels in the study area are known by the user beforehand,  
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 Or, the class labels are unknown, and the user may want to determine the 

number of separable classes. Then the labels of the separable classes are 

assigned by the user based on his/her expertise of the study area.  

The former approach is known as supervised classification, whereas the latter 

as unsupervised classification or clustering.      

 

Figure 3.6: A multispectral image classifier (adapted from [2]) 

In supervised classification, the user divides the area of his/her interest in a 

specific number of groups in advance. Then he/she acquires samples from each 

group, known as training data, to train the classifier in order to determine the 

decision boundaries in feature space [64]. So, within this respect, supervised 

classification methods require rigorous and frequent user interaction. 

Moreover, the user needs to have sufficient background and experience 

regarding the type and number of groups existing in the study area [2]. 

On the other hand, unsupervised classification methods require less user 

interaction since they learn the characteristics of the groups (i.e., classes) 

directly from the input data. Unsupervised classification is usually preferred in 

cases where the user has less or insufficient knowledge about the data set, and 

wants to see if there exists any natural grouping in the data [2, 9]. 

Unsupervised classification methods are mostly iterative procedures. The 
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number of classes is a priori defined by the user, and the classifier continuously 

refines the class means at each iteration until they converge and remain stable 

in the feature space [2]. The final products of the unsupervised classification 

are subsets called clusters, each of which is linked to a specific group and 

labeled accordingly by the user.  

KM [20] and FC [13] can be given as examples of unsupervised classification 

techniques. ML [11], parallelepiped (PP) [64]  and MD [10] are the well-

known techniques used in supervised classification. It is also of value to 

mention that in some image classification approaches, both supervised and 

unsupervised techniques can be used in combination [90, 91].  

Even though unsupervised approach sounds more straightforward and 

automatic, the levels of accuracy achieved in this method are often lower than 

that obtained in supervised method. The user should pay special attention when 

classifying multispectral images acquired by RS devices since they are very 

complex entities including not only spectral attributes but also spatial 

attributes. The phenomenon known as the mixed pixel problem [2, 92] can 

often be encountered in real-life applications, especially, in complex 

classification problems, where classes are usually overlapping spatially and 

spectrally. The former means that a pixel can be contained in areas which are 

represented by more than one class, whereas the latter indicates that the 

radiometric characteristics of different classes may exhibit similar behaviors. 

Although the overall ability of supervised classification methods originated 

from conventional statistical techniques such as ML or MD approaches are 

limited in solving the mixed pixel problem, they were the main classification 

methods used in RS until the mid-1990s [2]. 

Recent improvements in applied mathematics, especially, in the statistical 

learning and data mining fields, together with the parallel developments in the 

computer technology, have allowed researchers to use many alternative image 
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classification techniques based on DT [93, 94], SVM [95, 96], ANN [97, 98] 

and FC [99, 100]. The reader can find a compact review and comparison of 

these techniques in [8].   

3.2.2 Parametric versus nonparametric 

As discussed in [8, 15], traditional methods in image classification can be 

grouped under two main categories: (i) parametric, and (ii) nonparametric 

methods, and each has its own drawbacks arising mainly from the inherent 

characteristic of multispectral image data. Parametric methods are mostly 

based on Bayesian approach, in which the training data are employed to 

estimate the parameters (i.e., mean and covariance matrices) of the probability 

density function of each class in order to generate the decision boundaries. 

These probability density functions are generally assumed to follow a normal 

multivariate distribution; however, this condition is hardly met in remotely 

sensed data [8]. Another problematic issue in parametric methods, especially, 

in case of complex landscapes with high-dimensional data, is the number of 

samples that the user has to collect in order to train the classifier should be 

increased. Additionally, certain level of uncertainty may further be introduced 

due to insufficient and non-representative training samples [8]. 

The most widely-used parametric classification method is perhaps the ML. The 

main reason behind this fact is that it is robust, and it is available in almost 

every image-processing software as a built-in feature [8]. In ML classification 

approach, a set of user-defined classes is a priory determined, and then, the 

probability P(x) that a pixel vector x of p elements belonging to a class i is 

calculated based on the following Bayesian multivariate normal density 

function [2, 64]: 

  
0.50.5 1( ) 2 exp 0.5 ,p T

i iP 
   

 
x U y U y  (3.14) 
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where  is the determinant, iU  denotes the variance-covariance matrix of the 

ith class,  i y x x , and finally, ix  is the multivariate mean of the ith class. 

On the other hand, nonparametric methods are those that do not make any 

statistical a priori assumption about the underlying density function. 

Consequently, a nonparametric classifier does not need any statistical 

parameters, and the decision boundaries in a multidimensional feature space 

are obtained from training data of all classes [2, 8]. In the studies of [101] and 

[102], it has been shown that the performance of nonparametric methods, even 

with small training samples, are better than parametric ones. In case of mixed 

pixel problem (i.e., training samples overlap), a nonparametric approach should 

be preferred.  

However, as indicated in [15] again, some of nonparametric methods used in 

image classification such as ANN and FC models suffer from certain problems 

related to their black box nature (i.e., no physical insight is available or used, 

but the chosen model is known to have good flexibility and has performed well 

in the past [103]). So, in such methods it is hardly possible to understand the 

relation between the predictor variables and the classification results, which 

hinders the generalizability of the classification. Let us note that in the sense of 

our studies, a “black box” nature may also be called an inverse problem.    
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4. CHAPTER 4 

MODIS INSTRUMENT AND PRODUCTS 

4.1 MODIS Instrument 

MODIS is the name of the two cross-track scanning radiometer instruments 

operated by NASA: one has been on board to Terra satellite since 1999 and the 

other to Aqua satellite since 2002 [104]. The former has a descending orbit 

(southward) over the equator about 10:30 local Sun time, whereas the latter has 

an ascending orbit (northward) over the equator about 13:30 local Sun time.  

The swath width of each instrument is about 2330 km, and each scan is 10 km 

along track (Figure 4.1). They view Earth from an altitude of about 700 km 

above the surface with a ±55° view scan, which means nearly the entire globe 

is observed on a daily basis [104]. Both instruments capture data in 36 spectral 

bands ranging in wavelength from 0.4 μm to 14.4 μm at varying spatial 

resolutions (Table 4.1) in order to investigate Earth’s global dynamics such as 

radiation budget, cloud cover and atmosphere [105]. 

 

Figure 4.1: Observation swath of MODIS (adapted from [106]) 
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Table 4.1: Description of MODIS spectral bands 

Band 
Range  

(μm) 

Centered at  

(μm) 
Use 

Reflective solar bands at 250 m spatial resolution 

1 0.620-0.670 0.659 
aerosol, cloud, land 

2 0.841-0.876 0.865 

Reflective solar bands at 500 m spatial resolution 

3 0.459-0.479 0.470 
aerosol and cloud optical 

thickness, cloud phase, cloud 

effective radius, cloud mask, 

snow, land 

4 0.545-0.565 0.555 

5 1.230-1.250 1.240 

6 1.628-1.652 1.640 

7 2.105-2.155 2.130 

Reflective solar bands at 1000 m spatial resolution 

8 0.405-0.420 0.412 

ocean color, chlorophyll, 

phytoplankton, biogeochemistry 

9 0.438-0.448 0.443 

10 0.483-0.493 0.448 

11 0.526-0.536 0.531 

12 0.546-0.556 0.551 
sediments, atmosphere 

13 0.662-0.672 0.667 

14 0.673-0.683 0.678 fluorescence 

15 0.743-0.753 0.748 
atmosphere, aerosol 

16 0.862-0.877 0.869 

17 0.890-0.920 0.905 
atmospheric total precipitable 

water vapor, clouds 
18 0.931-0.941 0.936 

19 0.915-0.965 0.940 

26 1.360-1.390 1.375 cirrus cloud 

Thermal emissive bands at 1000 m spatial resolution 

20 3.660-3.840 3.750 
cloud & surface, temperature, 

fire & volcano, sea surface 

temperature 

21 3.929-3.989 3.960 

22 3.929-3.989 3.960 

23 4.020-4.080 4.050 

24 4.433-4.498 4.470 
atmospheric temperature profile 

25 4.482-4.549 4.520 

27 6.535-6.895 6.720 
tropospheric water vapor 

28 7.175-7.475 7.330 

29 8.400-8.700 8.550 cloud particle radius 

30 9.580-9.880 9.730 total column ozone 

31 10.780-11.280 11.030 
cloud, surface temperature, fire 

32 11.770-12.270 12.020 

33 13.185-13.485 13.340 

cloud top height, temperature, 

pressure, temperature profile 

34 13.485-13.785 13.640 

35 13.785-14.085 13.940 

36 14.085-14.385 14.240 

 

4.2 MODIS Products 

Since MODIS data may be available at different collection and processing 

levels, users have to identify the type and the coverage of data that they wish to 
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use. MODIS data can be grouped in two broad categories; daily scenes and 

derived products. Products are further separated into Calibration, Atmosphere, 

Land, Cryosphere, and Ocean groups. 

 Calibration product information is available at [107]:             

http://mcst.gsfc.nasa.gov/, 

 Atmosphere product information is available at [108]:                                

http://modis-atmos.gsfc.nasa.gov/, 

 Land product information is available at [109, 110]:                                            

http://modis-land.gsfc.nasa.gov/ and https://lpdaac.usgs.gov/, 

 Cryosphere product information is available at [111]: 

http://nsidc.org/data/modis/index.html, 

 Ocean product information is available at [112]:          

http://oceancolor.gsfc.nasa.gov/. 

As in most satellite data processing systems, MODIS has five different 

processing levels [113]. Raw satellite feeds are given by level 0 data. Level 1 

data is composed of radiometrically calibrated data. Level 2 data is obtained by 

atmospherical correction of level 1 data and it gives the surface reflectance 

values. When level 2 data is gridded into a map projection, and temporally 

composited or averaged as well, level 3 data is obtained. Level 4 data are 

products that are put through additional processing. 

MODIS data up to level 2 are available as an ungridded orbital swath format, 

where each swath typically divided into small segments or granules for ease of 

processing. Higher level data are geolocated into a specific map projection, 

with the geolocated products typically in a set of non-overlapping tiles as 

illustrated in Figure 4.2. 

http://mcst.gsfc.nasa.gov/
http://modis-atmos.gsfc.nasa.gov/
http://modis-land.gsfc.nasa.gov/
https://lpdaac.usgs.gov/
http://nsidc.org/data/modis/index.html
http://oceancolor.gsfc.nasa.gov/
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Figure 4.2: The MODIS sinusoidal grid scheme (adapted from [113])  

The MODIS data files are in hierarchical data format (HDF) [114], which is 

the standard data storage format selected by Earth observing system data and 

information system (EOSDIS). These data files use the extension of HDF-EOS 

(i.e., hierarchical data format – Earth observing system), which has been 

defined by EOSDIS in order to establish standards for storing and applying 

search services to  Earth observing system (EOS) data [115].   

MODIS filenames uses a simple, yet very introductive convention that gives 

brief and useful information associated with the specific product. In order to 

give a specific example, 

“MOD09GA.A2006013.h18v04.005.2008059145954.hdf” file name indicates: 

 MOD09GA – Short name of the product (MOD: Terra / MYD: Aqua), 

 .A2006013 – Julian date of data retrieval (A-YYYYDDD), 

 .h18v04 – Tile (horizontalXXverticalYY), 

 .005 – collection version, 
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 .2008059145954 – Julian date of production (YYYYDDDHHMMSS), 

 .hdf – Data format (HDF-EOS). 

In the following subsections, types of MODIS products used in this study are 

briefly introduced. 

4.2.1 MODIS Level 1B product 

Short introductory of MODIS Level 1B product is given in this subsection 

based on [106, 116, 117]. 

Level 1 processing consists of two phases, namely, Level 1A and Level 1B. 

The former is used to unpack and verify Level 0 MODIS data, whereas the 

latter involves radiometric calibration of the raw detector output values 

contained in the Level 1A data product. Level 1B calibrated data is used as 

input by other applications to generate the images. The Level 1A geolocation 

and Level 1B software systems are used to process the data collected by Terra 

and Aqua, and then to generate the associated product files.  

A 2-hour Level 0 dataset is organized into a set of granules, each of which 

contains approximately 5 minutes of MODIS data, by the Level 1A code. Level 

1A geolocation algorithm calculates the geodetic position (latitude, longitude, 

and height), ground to satellite direction and range, and the Sun direction for 

each MODIS spatial element. It takes the MODIS mirror 1.4771 seconds for 

one scan; therefore, a 5-minute Level 1B product file typically contains 203 

full scans, and occasionally 204 full scans. Level 1B products are summarized 

in Table 4.2. 
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Table 4.2: Level 1B product summary 

Product name Product content Bands Spatial resolution 

MOD/MYD02QKM Calibrated Earth view data 1,2 250 m 

MOD/MYD02HKM 

Calibrated Earth view data 

(also includes bands 1 and 

2, which are aggregated to 

500 m resolution) 

3-7 500 m 

MOD/MYD02HKM 

Calibrated Earth view data 

(also includes bands 1-7, 

which are aggregated to 

1000 m resolution) 

8-36 1000 m 

MOD/MYD02OBC 
On board calibrator and 

engineering data  
N/A N/A 

 

Two calibrated data products, namely the reflectance and Earth-exiting 

radiance, are supplied in Level 1B for the reflective solar bands. In order to 

calculate the reflectances and radiances, user should know how to convert the 

data written in the associated scientific data set (SDS) in the Level 1B product.  

The raw digital signals measured by the reflective band detectors are indicated 

as DN and their values are corrected in Level 1B for the following instrumental 

effects: 

 electronic offsets, 

 nonlinearities in the analog-to-digital converters, 

 angular variations of the scan mirror reflectance, 

 variations in gain caused by variations in the instrument and focal plane 

temperatures, and finally 

 out-of-band spectral response in the short wave infrared (SWIR) bands 5, 

6, 7 and 26. 
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Then the corrected digital signals, dn
a
, are further adjusted for the effects of 

certain variations in calibration parameters from detector to detector within 

each band. The new values of adjusted dn
a
 are now dn

b
 (each dn

b
 is a 32-bit 

floating point number), and they are scaled to the 16-bit representation in the 

SDS. Each dn
b
 in the whole range of [dnmin, dnmax] is scaled into a range of [0, 

32767], which is called scaled integer (SI) representation and illustrated in 

Figure 4.3. 

 

Figure 4.3: Scaled integer representation of dn
b
 in Level 1B product (adapted 

from [106]) 

In order to calculate the reflectance values,  , for the reflective solar bands, 

the following equation is used: 

 ( ),SI      (4.1) 

where  and   are the corresponding reflectance scale and reflectance offset 

values of the corresponding reflective solar band, respectively, and they are 

available as attribute values in the associated band’s SDS. One can also 

calculate the radiances similarly by the help of the following equation: 

 ( ).SI      (4.2) 



54 

 

Here,   and   are the related radiance scale and radiance offset values, 

respectively. The units of the data in the reflective solar bands are given in 

Table 4.3.  

The radiances for thermal emissive bands are represented by 32-bit floating-

point format in Level 1B. The DN values measured by the emissive band 

detectors are corrected for the following effects in Level 1B: 

 nonlinearities in the analog-to-digital converters, 

  self-emission of the instrument and optics, and 

 optical crosstalk in the long-wave bands. 

Scaling of radiance values into 16-bit integers is carried out in the same 

manner as explained for the reflective solar bands. The calculation of the 

radiance values for the thermal emissive bands is again similar as indicated in 

Equation (4.2). 

Table 4.3: Units for reflective solar bands 

Quantity Unit 

dn
b 

unitless 

Reflectance unitless 

Reflectance scale unitless 

Reflectance offset unitless 

Radiance W/m
2
/μm/sr 

Radiance scale W/m
2
/μm/sr 

Radiance offset unitless 

  

4.2.2 MODIS Level 2G surface reflectance product 

A basic outline about MODIS Level 2G MOD/MYD09GA surface reflectance 

product is given based on [113, 118] under this subsection.  
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MODIS surface reflectance product (i.e., MOD09/MYD09) comprises the 

seven MODIS Level 1B reflective solar bands 1-7 (Table 4.1). As briefly 

explained in the Subsection 4.2.1, Level 2 data is obtained via the 

atmospherical correction of Level 1 data and it gives estimated surface 

reflectance values for each band in case of no atmosphere between the ground 

target pixel and the sensor (i.e., no atmospheric scattering or absorption). The 

Level 2G format consists of gridded Level 2 data and its purpose is to separate 

geolocating from compositing and averaging. The entire data mapping to a 

given pixel is conserved as observations at that pixel in the Level 2G format.  

MOD/MYD09 data product series includes several subgroups of products:  

 Level 2G daily products (MOD/MYD09GHK, MOD/MYD09GQK, and 

MOD/MYD09GST), 

 Level 2G-lite daily products (MOD/MYD09GA and MOD/MYD09GQ), 

 Level 3, 8-day composited products (MOD/MYD09A1 and 

MOD/MYD09Q1), 

 and daily Level 3 climate modeling grid products (MOD/MYD09CMG 

and MOD/MYD09CMA). 

Since this subsection aims to introduce only MOD/MYD09GA product, those 

who need further details regarding the other types of MOD/MYD09 products 

should refer to [113].   

MOD/MYD09GA surface reflectance product has two data groups. The first 

group provides daily surface reflectance values for bands 1-7 at 500 m spatial 

resolution. The second group gives observation and geolocation statistics at 1 

km spatial resolution. The details of the MOD/MYD09GA product can be 

found in Table 4.4. 
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Quality assurance (QA) information for all MODIS land products is also 

available for users in order to understand and make best use of the data. For 

MOD/MYD09GA product, the associated QA information can be obtained by 

reading the State_1km data, which is in 16-bit unsigned integer format (Figure 

4.4). In order to interpret the QA values written in the State_1km product, one 

should first convert the pixel’s decimal value into the 16-bit binary 

representation. Users should also note that MODIS data QA layers use big-

endian reference, which means the "first" bit is the farthest to the right and the 

“last” bit is the farthest to the left. Required number of zeros should be added 

to the most significant bit (i.e., to the left) in order to complete the 16-bit 

string.  

To give a specific example, suppose that a pixel’s value in the State_1km QA 

data of a MOD/MYD09GA product reads 1025. When this value is converted 

into binary representation, it gives “10000000001”. To complete the 16-bit 

string, five “0”s should be added to the left, which results in 

“0000010000000001”. If the user needs to read the cloud state info for this 

particular pixel, first two bits (bit 0 and bit 1; i.e., first two bits from the right) 

should be read, and here those bits are now represented in bold 

“0000010000000001”. Even though bits are numbered right to left, bit words 

should be still read left to right, so “01” would not be reversed to “10”. 

According to the State_1km QA info, which is given in Table 4.5, “01” means 

the cloud state of this pixel is defined as “cloudy”. 

 

Figure 4.4: 16-bit binary representation of State_1km QA data 



57 

 

Table 4.4: MOD/MYD09GA science data set 

Data 

Group 
SDS Unit Data Type Valid Range 

Scale 

Factor 

S
p

at
ia

l 
re

so
lu

ti
o
n

: 
5

0
0

 m
  

num_observations_500m none 
8-bit signed 

integer 
0-127 N/A 

sur_refl_b01: Surface 

reflectance band 01  
reflectance 

16-bit signed 

integer 
-100 - 16000 0.0001 

sur_refl_b01: Surface 

reflectance band 02  
reflectance 

16-bit signed 

integer 
-100 - 16000 0.0001 

sur_refl_b01: Surface 

reflectance band 03  
reflectance 

16-bit signed 

integer 
-100 - 16000 0.0001 

sur_refl_b01: Surface 

reflectance band 04  
reflectance 

16-bit signed 

integer 
-100 - 16000 0.0001 

sur_refl_b01: Surface 

reflectance band 05  
reflectance 

16-bit signed 

integer 
-100 - 16000 0.0001 

sur_refl_b01: Surface 

reflectance band 06  
reflectance 

16-bit signed 

integer 
-100 - 16000 0.0001 

sur_refl_b01: Surface 

reflectance band 07  
reflectance 

16-bit signed 

integer 
-100 - 16000 0.0001 

QC_500m: 500m 

reflectance band quality 
bit field 

32-bit unsigned 

integer 
N/A N/A 

Obs_cov_500m: 

Observation coverage 
percent 

8-bit signed 

integer 
0-100 0.0001 

iobs_res: Observation 

number 
none 

8-bit unsigned 

integer 
0-254 N/A 

q_scan: 250m scan value 

info 
none 

8-bit unsigned 

integer 
0-255 N/A 

S
p

at
ia

l 
re

so
lu

ti
o
n

: 
1

 k
m

  

num_observations_1km: 

Number of observations  
none 

8-bit signed 

integer 
0-127 N/A 

State_1km: Reflectance 

quality assurance data 
bit field 

16-bit unsigned 

integer 
N/A N/A 

Sensor zenith angle degree 
16-bit signed 

integer 
0 - 18000 0.01 

Sensor azimuth angle degree 
16-bit signed 

integer 
-18000 - 18000 0.01 

Range: pixel to sensor meter 
16-bit unsigned 

integer 
27000 - 65535 0.04 

Solar zenith angle degree 
16-bit signed 

integer 
0 - 18000 0.01 

Solar azimuth angle degree 
16-bit signed 

integer 
-18000 - 18000 0.01 

gflags: Geolocation flags bit field 
8-bit unsigned 

integer 
0 - 248 N/A 

orbit_pnt: Orbit pointer none 
8-bit signed 

integer 
0 - 15 N/A 
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Table 4.5: Description of bits in a MOD/MYDD09GA State_1km QA data 

Bit 

No. 
Quality data parameter 

Bit 

combination 
Data state 

0-1 cloud state 

00 clear 

01 cloudy 

10 mixed 

11 not set, assumed clear 

2 cloud shadow 
1 yes 

0 no 

3-5 land/water flag 

000 shallow ocean 

001 land 

010 ocean coastlines and lake shorelines  

011 shallow inland water 

100 ephemeral water 

101 deep inland water 

110 continental/moderate ocean 

111 deep ocean 

6-7 aerosol quantity 

00 climatology 

01 low 

10 average 

11 high 

8-9 cirrus detected 

00 none 

01 small 

10 average 

11 high 

10 internal cloud algorithm flag 
1 cloud 

0 no cloud 

11 internal fire algorithm flag 
1 fire 

0 no fire 

12 MOD35 snow/ice flag 
1 yes 

0 no 

13 pixel is adjacent to cloud 
1 yes 

0 no 

14 BRDF correction performed 
1 yes 

0 no 

15 internal snow mask 
1 snow 

0 no snow 

 

4.2.3 MODIS Level 3 daily atmospheric product 

MODIS Level 3 MOD/MYD08_D3 daily atmospheric product is briefly 

introduced in this subsection based on [118-121]. 

MODIS Level 3 atmospheric products are available on a global o o1 1  latitude-

longitude grid (180 360  cells).  Level 3 atmospheric products are produced at 
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3 different temporal resolutions: daily (MOD/MYD08_D3), eight-day 

(MOD/MYD08_E3), and monthly (MOD/MYD08_M3), and they are all stored 

in HDF-EOS files. As well as simple statistics (i.e., mean, standard deviation, 

etc.) for each parameter, marginal density and probability density functions 

between selected parameters are also available in Level 3 data. Aerosol 

properties, cloud radiative properties, atmospheric water vapor and temperature 

are the key geophysical parameters provided in the Level 3 products and they 

are mainly used in applications related to climate and ecosystem monitoring 

and modeling, cloud radiative properties, atmospheric properties, and 

atmospheric correction.  

Parameters such as AOD, uWV and uO3, which are the atmospheric input 

parameters for SMAC, or any other RT-based correction algorithm, are stored 

as a SDS in the associated MOD/MYD08_D3 data. Level 3 daily product spans 

nearly 600 statistical datasets, which is difficult to enlist; however, several 

primary parameters are given in Table 4.6. 

Table 4.6: Several primary parameters in MOD/MYD08_D3 daily product 

Name of SDS Unit 
Valid 

Range 

Scale 

Factor 

Optical_Depth_Land_And_Ocean_Mean: 

Aerosol optical thickness at 0.55 μm 
none -100 - 5000 0.001 

Corrected_Optical_Depth_Land_Mean: 

Corrected aerosol optical depth at 0.47, 

0.55, 0.66 μm 

none -100 - 5000 0.001 

Water_Vapor_Near_Infrared_Clear_Mean: 

Water vapor near infrared –clear column 

(bright land and ocean sunlight only): Mean  

 

cm 0 - 20000 0.001 

Water_Vapor_Near_Infrared_Cloud_Mean: 

Water vapor near infrared –cloudy column: 

Mean  

 

cm 0 - 20000 0.001 

Atmospheric_Water_Vapor_Mean: 

Precipitable Water Vapor (IR retrieval) 

Total Column: Mean    

 

cm 0 - 20000 0.001 

Total_Ozone_Mean: Total Ozone Burden Dobson Units 0 - 5000 0.1 
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4.2.4   MODIS snow algorithm and Level 3 daily snow product 

Brief description of MODIS snow algorithm and Level 3 MOD/MYD10A1 

daily snow product is given based on [122-124]. 

Since its launch in 1999, data collected by MODIS on the Terra satellite have 

been extensively used for mapping global snow cover through the SNOWMAP 

algorithm, where each MODIS 500-m pixel is classified as snow or non-snow 

[125]. The snow mapping algorithm is mainly based on the normalized 

difference snow index (NDSI), in which the MODIS bands 4 (centered at 0.555 

μm) and 6 (centered at 1.640 μm) are used, along with a series of threshold 

tests and the MODIS cloud mask [122, 125]. 

Due to the fact that band 6 of MODIS instrument on board to Aqua has 15 

nonfunctional detectors (out of 20), NDSI calculations based on bands 4 and 6 

measurements  cannot be used for this instrument [125].   

Main logic behind snow detection is the fact that the reflectance of snow is 

high in the visible and low in the near infrared region. MODIS uses a fully 

automated snow mapping algorithm, in which bands 4 (0.545-0.565 μm) and 6 

(1.628-1.652 μm) are used to calculate the NDSI value as given in Equation 

(4.3): 

 4 6

4 6

band band
NDSI .

band band





 (4.3) 

If the NDSI of a pixel in a non-densely forested area is ≥ 0.4 and its reflectance 

in band 2 (0.841-0.876 μm) is > 11%, it is labeled as snow. However, very low 

reflectance values make the denominator of the NDSI considerably small, and 

pixels with very dark targets, like black spruce forests, can be erroneously 

classified as snow. Therefore, when the reflectance in band 4 (0.545-0.565 μm) 
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is < 10%, then the pixel is not labeled as snow even if the other conditions are 

met.  

When a forest stand is covered by snow, its spectral response changes in such a 

way that reflectance in the visible generally increases with respect to near 

infra-red reflectance, which results in a decrease in the normalized difference 

vegetation index (NDVI). In order to improve the snow mapping in dense 

forests, NDSI is used together with NDVI. MODIS bands 1 (0.620-0.670 μm) 

and 2 (0.841-0.876 μm) are employed in the calculation of NDVI, and if its 

value ≈ 0.1, the pixel can be labeled as snow even if the value of NDSI is < 0.4.  

Additionally, MODIS infra-red bands 31 (10.780-11.280 μm) and 32 (11.770-

12-270 μm) are employed via a split-window technique to estimate the ground 

temperature in order to eliminate the spurious snow and to increase the 

accuracy of snow mapping. By using this thermal mask, pixels with 

temperature > 283 K are not labeled as snow. 

Since the functionality of MODIS band 6 on Aqua is roughly 30%, snow 

mapping in the swath level algorithm had to be shifted to band 7 (2.105-2.155 

μm) for this sensor, and the details about use of different bands and its effect 

on snow mapping are not in the scope of this subsection, but they can be found 

in [125]. 

There are seven MODIS snow products produced at Level 2 or Level 3, and 

they are at different temporal and spatial resolutions (Table 4.7). The file 

format for snow products is HDF-EOS. Each daily snow product, 

MOD/MYD10A1, is a 
o o10 10  tile (1200 1200 km) with a sinusoidal 

projection. Four SDSs are available in a MOD/MYD10A1: snow cover map, 

fractional snow cover, snow albedo, and, finally QA data. In order to select an 

observation for the day, the scoring algorithm given in Equation (4.4) is 

employed: 
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 score 0.5 0.3 0.2 ,SE ND OC    (4.4) 

where SE indicates the solar elevation, ND is the distance from nadir, and OC 

is the observation coverage. In order to generate the snow cover map, 

observation closest to local noon time (i.e., highest solar elevation angle) 

nearest to nadir with the greatest coverage is selected by the scoring algorithm, 

and then classified as snow, snow-covered water bodies, land, water, cloud or 

other condition.  

Table 4.7: Seven MODIS snow data products 

Name of  

the product 
Level Data dimension 

Spatial 

resolution 

Temporal 

resolution 

MOD/MYD10_L2 L2 1354   2000 km 500 m swath 

MOD/MYD10L2G L2G 1200   1200 km 500 m 

day of multiple 

coincident 

swaths 

MOD/MYD10A1 L3 1200   1200 km 500 m day 

MOD/MYD10A2 L3 1200   1200 km 500 m 8 days 

MOD/MYD10C1 L3 360o   180o (global) 0.05o   0.05o day 

MOD/MYD10C2 L3 360o   180o (global) 0.05o   0.05o 8 days 

MOD/MYD10C L3 360o   180o (global) 0.05o   0.05o month 

 

Observations from the fractional snow cover of L2G product are used to 

determine the daily fractional snow cover, again by using the same scoring 

algorithm in Equation (4.4). Fractional snow is given within 0-100% range by 

the fractional snow cover map. This map includes inland water bodies, and 

non-snow pixels are classified as water, cloud or other condition.  
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By using the MODIS surface reflectance product, the snow albedo is 

determined for the visible and near infra-red bands. The resultant map shows 

the snow albedo within the range of 0-100, and non-snow features are labeled 

with different values. A summary of attributes in a MOD/MYD10A1 daily 

snow tile is given in Table 4.8. 

Table 4.8: MOD/MYD10A1 daily snow tile attributes 

Coordinate system Cartesian 

Valid range 0-254 

Fill value 

255  

(used to fill gaps  

in the swath) 

Key to data values 

0: missing data 

1: no decision 

11: night 

25: no snow 

37: lake 

39: ocean 

50: cloud 

100: lake ice 

200: snow 

254: detector saturated 

255:fill 
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5. CHAPTER 5 

ATMOSPHERIC CORRECTION ON MODIS IMAGES BY 

MARS AND CMARS 

5.1 Image Set and Model Training 

As discussed in Subsection 4.2.2, MOD09GA surface reflectance product 

comprises the atmospherically corrected surface reflectance values for the first 

seven bands, and the vector version of 6S (6SV) is the basic correction 

algorithm behind this product. The algorithm takes the TOA reflectance values 

from MODIS Level 1B (Subsection 4.2.1) product, and makes a series of 

corrections for the absorption and scattering by atmospheric gases and 

molecules. It also takes into account the coupling between atmospheric and 

surface bi-directional reflectance function and adjacency effect.  

Another product family of MODIS is the Level 3 MOD08_D3 daily 

atmospheric product (Subsection 4.2.3), from which AOD, uWV and uO3 can 

be retrieved in order to be employed as input in SMAC. All these features 

make MODIS an attractive and convenient platform for this study.  

24 MODIS images taken by Terra satellite are selected as data set. Half of the 

images are over Alps region (Figure 5.1) and the other half is over Turkey 

(Figure 5.2). Detailed information about the image data set can be found in 

Table 5.1. At this point, we emphasize that all the calculations and operations 

are performed on the 4
th

 reflective solar band (0.545 – 0.565 μm). 
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Figure 5.1: MOD09GA RGB color composite image of Alps (R: 1
st
, G: 4

th
, B: 

3
rd

 band, A11: 06.11.2002) 

 

Figure 5.2: MOD09GA RGB color composite image of Turkey (R: 1
st
, G: 4

th
, 

B: 3
rd

 band, T7: 16.07.2012) 

In the model training phase, for each region (i.e., Alps and Turkey), a training 

polygon with fixed dimension (i.e., rectangular in shape with an area of        

483 000 km
2
), which includes all basic land-cover types, is drawn on each 

image. In order to reveal the effect of the training sample size on the final 

models, two different random point distributions, one with size of 5000,  and 

the other with 10 000, are generated in each training polygon of both regions. 

Next, for each point, TOA reflectance values and atmospherically corrected 

surface reflectance values are extracted from MOD02HKM and MOD09GA 
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products, respectively, together with the corresponding geographic longitudes 

and latitudes. 

Atmospheric parameters (i.e., AOD, uWV and uO3) required to perform 

atmospheric correction through SMAC algorithm on the test areas are obtained 

from MOD08_D3 daily atmospheric product. In order to prepare the input data 

for SMAC, a code written in MATLAB
®
 software [126] is used, and it is given 

in Appendix E.2.   

Table 5.1: TOA reflectance statistics for Alps (A) and Turkey (T) 

Data 

Set 
Date 

Training Set (Area: 483 000 km2) Testing Set (Area: 53 700 km2) 

Min Max Mean Std Min Max Mean Std 

A1 13.01.2006 0.023006 0.515043 0.111236 0.066780 0.021848 0.540773 0.065938 0.062607 

A2 03.02.2005 0.021381 0.612208 0.187324 0.084896 0.027219 0.570827 0.052124 0.038957 

A3 10.03.2002 0.036336 0.634253 0.123546 0.098884 0.052459 0.591130 0.093768 0.061479 

A4 22.04.2005 0.037909 0.815975 0.117174 0.118288 0.045157 0.045157 0.132936 0.154975 

A5 03.05.2003 0.043902 0.831254 0.120384 0.080038 0.042749 0.893523 0.157483 0.158453 

A6 04.06.2007 0.051815 0.984628 0.409352 0.252784 0.039096 1.039224 0.231790 0.193401 

A7 01.07.2007 0.041622 0.617155 0.103806 0.064886 0.051844 1.010623 0.176865 0.142061 

A8 06.08.2008 0.052038 1.018599 0.134000 0.123403 0.042518 0.904316 0.135226 0.100786 

A9 03.09.2001 0.044417 0.730243 0.122082 0.094248 0.031365 0.680813 0.107640 0.108413 

A10 11.10.2001 0.024596 0.706770 0.082712 0.059985 0.020154 0.623411 0.059328 0.039499 

A11 06.11.2002 0.023207 0.499682 0.115683 0.112962 0.019956 0.730805 0.087927 0.099035 

A12 06.12.2003 0.019304 0.497581 0.112805 0.082715 0.020898 0.559915 0.074968 0.08527 

T1 22.01.2007 0.022460 0.438156 0.072725 0.072429 0.018987 0.531954 0.063973 0.061618 

T2 08.02.2004 0.030369 0.494759 0.072528 0.057265 0.025595 0.571422 0.076824 0.080169 

T3 22.03.2009 0.041930 0.767917 0.174026 0.149042 0.038070 0.834106 0.171948 0.146781 

T4 13.04.2008 0.074651 0.735924 0.161762 0.105837 0.046226 0.833497 0.152259 0.119837 

T5 16.05.2011 0.046915 0.763972 0.100172 0.076170 0.038706 0.747831 0.107228 0.077950 

T6 17.06.2003 0.056582 0.981983 0.147624 0.110149 0.077487 0.923808 0.211551 0.138608 

T7 16.07.2012 0.044871 0.627486 0.097143 0.029799 0.055703 0.398507 0.100335 0.030883 

T8 01.08.2005 0.036527 0.909753 0.229990 0.175922 0.036824 0.891506 0.135249 0.094953 

T9 26.09.2009 0.040853 0.783761 0.104974 0.093539 0.033658 0.743776 0.098932 0.056643 

T10 18.10.2002 0.035435 0.173049 0.068862 0.021872 0.032394 0.123435 0.061462 0.015683 

T11 02.11.2010 0.033515 0.279079 0.057913 0.017563 0.024014 0.507661 0.056879 0.033940 

T12 18.12.2006 0.024390 0.443912 0.060216 0.038547 0.025587 0.446532 0.073266 0.034281 

 

As seen in Table 5.1, each month appears once in the dataset. So, month value 

of the image, from which the corresponding model training parameters are 

retrieved, is also written in that point data file. In the next step, the training data 

from each of the training polygons for two different sample sizes are separately 

combined in the associated text files, which results in training data with 60 000 

and 120 000 points on aggregate for each region. 
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In MARS model building,  , , ,
T

   x is the vector of predictor variables, 

where   and   represents the geographic latitude and longitude, respectively, 

  is the TOA reflectance value, and   is the month indicator ( 1,2, ,12  ). 

The observation equation for MARS is given by 

 SRef ( 1,2, , )i i iy  i N  x , where 
iy  is the atmospherically corrected 

surface reflectance obtained from MODIS Level 2G product at 

 , , ,
T

i i i i i   x  with a measurement error 
i . SRef is the function that 

gives the surface reflectance predicted by MARS, and N is the total number of 

observations. 

Since MARS algorithm allows users to define model-building dimensions such 

as maximal number of terms, the degree of interaction among predictor 

variables, different settings are applied for two different training sample sizes, 

and the models that give the optimal GCV and multiple coefficient of 

determination (R
2
) [127] values are chosen. All settings in the model training 

are given in Table 5.2. Salford Systems MARS
®

 Ver. 3 [128] is used for 

MARS model building. 

Table 5.2: MARS model training settings 

 Sample size: 60 000 Sample size: 120 000 

 Alps Turkey Alps Turkey 

Number of basis functions 40 40 40 40 

Degree of interaction 3 2 3 2 

GCV 0.00575 0.00274 0.00562 0.0271 

R2 0.9175 0.8938 0.9189 0.8937 

Adjusted R2 0.9174 0.8937 0.9188 0.8936 

 

The obtained MARS models for two different training sample sizes are applied 

on the related test areas in both regions. Then, the results are compared against 

the MOD09GA product in terms of mean absolute error (MAE) and R
2
 values 

(Table 5.3). Details on the calculations of MAE and R
2
 are given in Appendix 

D. The atmospheric correction algorithm used in MOD09GA is based on 6SV 
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method as mentioned earlier. 6SV has been seriously cross-checked with other 

complex correction algorithms and has given highly accurate results under 

various conditions; therefore, it is preferred as a reference in the comparison of 

the results.   

Table 5.3: Comparison of MARS models obtained with two different training 

sample sizes 

Data 

Set 

Sample size: 60 000 Sample size: 120 000 

MAE R2 MAE R2 

A1 0.0524 0.7619 0.0680 0.7300 

A2 0.0221 0.8247 0.0181 0.8311 

A3 0.0204 0.9138 0.0305 0.8888 

A4 0.0454 0.8341 0.0397 0.8394 

A5 0.0381 0.8721 0.0419 0.8723 

A6 0.0449 0.8953 0.0476 0.8935 

A7 0.0461 0.7990 0.0513 0.7809 

A8 0.0327 0.7878 0.0351 0.7700 

A9 0.0358 0.8628 0.0317 0.8713 

A10 0.0189 0.7132 0.0194 0.7051 

A11 0.0462 0.8324 0.0464 0.8333 

A12 0.0603 0.7988 0.0622 0.8007 

T1 0.0337 0.8133 0.0318 0.8169 

T2 0.0332 0.8779 0.0298 0.8895 

T3 0.0323 0.8235 0.0381 0.7350 

T4 0.0318 0.8810 0.0439 0.8539 

T5 0.0271 0.6758 0.0251 0.6997 

T6 0.0463 0.8839 0.0415 0.8987 

T7 0.0085 0.9184 0.0099 0.9051 

T8 0.0354 0.6912 0.0358 0.6964 

T9 0.0240 0.6861 0.0246 0.6836 

T10 0.0114 0.7879 0.0131 0.7506 

T11 0.0169 0.7913 0.0178 0.7784 

T12 0.0237 0.8995 0.0171 0.9274 

 

In order to see if the MAEs and R
2
s differ with respect to the sample size, an 

appropriate statistical test should be employed. However, prior to any statistical 

test, it is necessary to check whether the accuracy measures follow the normal 

distribution assumption. For this purpose, Shapiro-Wilk test is used to test the 

normality of the MAEs and R
2
s for both sample sizes. The results of the test 

are given in Table 5.4. In all tables that represent the result of statistical tests, 
*
 

indicates statistically significant result at significance level α=0.05. 
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Table 5.4: Shapiro-Wilk test of MAEs and R
2
s for two different MARS models 

obtained via two training samples with different sizes  

Shapiro-Wilk (α=0.05) 

Sample size 60 000 120 000 

 Statistic Sig. Statistic Sig. 

Alps 

MAE 0.939 0.479 0.971 0.918 

R2 0.982 0.990 0.937 0.455 

Turkey 

MAE 0.995 0.713 0.957 0.743 

R2 0.888 0.111 0.914 0.239 

 

Results of the test implies that the accuracy measures of each region calculated 

for two different sample sizes are normally distributed (Sig.>0.05). Therefore, 

parametric paired-samples t test is employed for both regions to see if there is a 

statistically significant difference in MAEs and R
2
s with respect to the training 

sample size. The results of the test are presented in Table 5.5.  

Table 5.5: Paired-Samples t test of MAEs and R
2
s with respect to sample size 

Paired-Samples t test (α=0.05) 

Compared Pair     

(60 000 vs. 120 000) 
t score Sig. (2-tailed) 

Alps MAE -1.368 0.198 

Alps R2 1.713 0.115 

Turkey MAE -0.244 0.811 

Turkey R2 -0.118 0.908 

 

As the results of the paired-samples t test indicate, statistically, there is no 

significant difference in the MAE and R
2
 values for the two sample sizes 

(Sig.>0.05). Thus, sample size of 5000 in each training polygon (i.e., 60 000 on 

aggregate for each region) is used with the associated model building 

parameters given in Table 5.2.    

All statistical analysis mentioned above are carried out by using SPSS 

statistical software [129], and the details of the analysis can be found in [130].  
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In CMARS, basis functions, which are considered for the formulation of PRSS 

in the form of a CQP problem, are created by using Salford MARS
®
. Next, 

CMARS model is obtained by running a MATLAB code. Then, the CQP 

problem is solved by using MOSEK
TM

 software [131]. The details of obtained 

MARS and CMARS models are given in Appendix C. 

5.2 Testing of MARS and CMARS Models 

After generating MARS and CMARS models for each region through the 

training phase, the obtained models are applied on the predefined test areas on 

each image in the related data set. In addition to MARS and CMARS models, 

SMAC algorithm is also employed on the test areas by using a MATLAB code 

given in Appendix E.2. Then, the surface reflectance values produced by 

MARS, CMARS and SMAC algorithms for each test area are compared with 

the ones given by the associated MOD09GA products in terms of MAE and R
2
. 

The results are presented in Table 5.6.  

The images of the test areas obtained from MARS, CMARS, SMAC 

algorithms and from the MOD09GA data for data sets A10 and T11 are given 

in Figures 5.3 and 5.4, respectively.  

5.3 Results and Discussion 

When the surface reflectance values obtained by applying MARS, CMARS 

and SMAC algorithms are compared against the reflectance values of 

MOD09GA product in terms of MAE and R
2
 (Table 5.6), it seems that MARS 

and CMARS outperforms SMAC method. However, it is necessary to 

statistically check the significance of the results.   
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Figure 5.3: Images given by a) MARS, b) CMARS, c) SMAC, and d) 

MOD09GA for A10 data set 

 

 

Figure 5.4: Images given by a) MARS, b) CMARS, c) SMAC, and d) 

MOD09GA for T11 data set 
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Table 5.6: Comparison of results for Alps (A) and Turkey (T) 

Data 

Set 

MAE R2 

SMAC MARS CMARS SMAC MARS CMARS 

A1 0.1291 0.0524 0.0523 0.1672 0.7619 0.7622 

A2 0.0898 0.0221 0.0219 0.0019 0.8247 0.8253 

A3 0.1018 0.0204 0.0201 0.2863 0.9138 0.9141 

A4 0.0606 0.0454 0.0454 0.7934 0.8341 0.8345 

A5 0.0469 0.0381 0.0381 0.8465 0.8721 0.8722 

A6 0.0439 0.0449 0.0449 0.8932 0.8953 0.8953 

A7 0.0484 0.0461 0.0461 0.7688 0.7990 0.7990 

A8 0.0399 0.0327 0.0327 0.7533 0.7878 0.7878 

A9 0.0416 0.0358 0.0358 0.8255 0.8628 0.8628 

A10 0.0564 0.0189 0.0188 0.1717 0.7132 0.7134 

A11 0.1267 0.0462 0.0462 0.4123 0.8324 0.8324 

A12 0.1871 0.0603 0.0603 0.1745 0.7988 0.7988 

T1 0.1017 0.0337 0.0336 0.2680 0.8133 0.8134 

T2 0.0906 0.0332 0.0330 0.5171 0.8779 0.8786 

T3 0.0686 0.0323 0.0320 0.7253 0.8235 0.8256 

T4 0.0497 0.0318 0.0316 0.8262 0.8810 0.8812 

T5 0.0294 0.0271 0.0266 0.6667 0.6758 0.6791 

T6 0.0474 0.0463 0.0460 0.8801 0.8839 0.8871 

T7 0.0205 0.0085 0.0075 0.6974 0.9184 0.9294 

T8 0.0387 0.0354 0.0353 0.6754 0.6912 0.6949 

T9 0.0544 0.0240 0.0234 0.4248 0.6861 0.6901 

T10 0.0518 0.0114 0.0100 0.3420 0.7879 0.8048 

T11 0.0675 0.0169 0.0151 0.2760 0.7913 0.8132 

T12 0.1407 0.0237 0.0228 0.2240 0.8995 0.9046 

 

Thus, repeated measures analysis of variance (RANOVA) [130] can be 

employed to make an analysis for repeated measures on the same individuals 

(i.e., if there exists a difference between SMAC, MARS and CMARS methods 

on the same image in terms of accuracy measures used). But prior to 

RANOVA, the normality of MAEs and R
2
s must be checked for each group. 

Therefore, Shapiro-Wilk test is employed once again, and the results are given 

in Table 5.7.   

Table 5.7: Shapiro-Wilk test of SMAC, MARS and CMARS results 

Shapiro-Wilk Test (α=0.05) 

Accuracy 

measure 
Method 

Alps Turkey 

Statistic Sig. Statistic Sig. 

MAE 

SMAC 0.836 0.025* 0.918 0.273 

MARS 0.939 0.479 0.955 0.713 

CMARS 0.937 0.457 0.951 0.651 

R2 

SMAC 0.848 0.034* 0.918 0.270 

MARS 0.982 0.990 0.888 0.111 

CMARS 0.982 0.991 0.887 0.107 
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According to the test results, MAE and R
2
 values of SMAC for Alps do not 

obey normal distribution assumption (Sig.<0.05). Therefore, Box-Cox 

transformation [132] is applied to these values by using Minitab
®
 [133]. The 

graphs of the Box-Cox transformations for MAE and R
2
 values of SMAC are 

given in Figures 5.5 and 5.6, respectively. 
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Figure 5.5: Box-Cox transformation plot for SMAC MAE values of Alps 
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Figure 5.6: Box-Cox transformation plot for SMAC R
2
 values of Alps 

As indicated in the Box-Cox plot of R
2
 values for SMAC in Alps (Figure 5.6), 

the associated Lambda value is equal to 1.00; therefore, it is not necessary to 

apply a transformation on R
2
 values. For MAE values of SMAC in Alps, 

lambda is equal to -0.50, so MAE values are transformed accordingly. Then, 
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RANOVA test is carried out. The results of the RANOVA test are presented in 

Table 5.8.  

Table 5.8: RANOVA test results 

 

Mauchly’s Test of 

Sphericity  (α=0.05) 

RANOVA           

(α=0.05) 

Chi-Square Sig. F Sig. 

MAE Alps 90.596 0.000* 14.087 0.000* 

R2 Alps 139.638 0.000* 12.204 0.000* 

MAE Turkey 72.058 0.000* 14.020 0.000* 

R2 Turkey 61.493 0.000* 15.333 0.000* 

 

Even though the results of RANOVA indicate significant difference between 

group means (Sig.<0.05), sphericity condition is not satisfied (Sig.<0.05), 

which is a necessary condition for RANOVA. Therefore, the results of Huynh-

Feldt tests are also checked (Table 5.9).   

Table 5.9: Results of Huynh-Feldt tests 

 
Huynh-Feldt Test (α=0.05) 

F Sig. 

MAE Alps 14.087 0.003* 

R2 Alps 12.204 0.005* 

MAE Turkey 14.020 0.003* 

R2 Turkey 15.333 0.002* 

 

The results of the Huynh-Feldt tests indicate statistically significant difference 

between the group means (Sig.<0.05). However, these tests only tell there is at 

least one difference between the group means.  

Thus, pairwise comparisons in SPSS are carried out, and the results are 

presented in Table 5.10. The reader can find the details of the above mentioned 

statistical tests in [130]. 

As observed from the pairwise comparisons, there is a statistically significant 

difference between SMAC and MARS (Sig.<0.05), and also between SMAC 
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and CMARS (Sig.<0.05) for all data sets.  Therefore, we can conclude that 

MARS and CMARS methods have better performances as compared to the 

traditional RT-based method SMAC.  

Table 5.10: Pairwise comparison of the results 

Pairwise Comparison  (α=0.05) 

Dependent 

Variable 
(I) METHOD (J) METHOD 

Mean 

Difference 

(I-J) 

Sig. 

MAE   

Alps 

SMAC MARS -1.468 0.003* 

 CMARS -1.476 0.003* 

MARS SMAC 1.468 0.003* 

 CMARS -0.009 0.095 

CMARS SMAC -1.476 0.003* 

 MARS 0.009 0.095 

R2       

Alps 

SMAC MARS -0.317 0.005* 

 CMARS -0.317 0.005* 

MARS SMAC 0.317 0.005* 

 CMARS 0.000 0.020* 

CMARS SMAC 0.317 0.005* 

 MARS 0.000 0.020* 

MAE 

Turkey 

SMAC MARS 0.036 0.003* 

 CMARS 0.037 0.003* 

MARS SMAC -0.036 0.003* 

 CMARS 0.001 0.003* 

CMARS SMAC -0.037 0.003* 

 MARS -0.001 0.003* 

R2   

Turkey 

SMAC MARS -0.267 0.002* 

 CMARS -0.273 0.002* 

MARS SMAC 0.267 0.002* 

 CMARS -0.006 0.012* 

CMARS SMAC 0.273 0.002* 

 MARS 0.006 0.012* 

 

However, an interesting finding of our study should be further discussed here. 

As seen from Table 5.6, MAE and R
2
 values of both regions converge starting 

roughly from the mid-spring until the beginning of fall. Therefore, monthly 

variations in the atmospheric parameters (i.e., AOD, uWV and uO3) should be 

checked in order to see if they contribute to this effect.  The mean relative 

reflectance difference between SMAC and MARS for each month is calculated 

and plotted against the mean value of each atmospheric parameter of that 

month for Alps (Figure 5.7) and Turkey (Figure 5.8). Difference between 

SMAC and CMARS is not considered at this stage due to the close similarity 



77 

 

between MARS and CMARS results.  The readers should note that in Figures 

5.7 and 5.8, uO3 and uWV values on the secondary y-axis are multiplied by 

0.001 and 0.1, respectively. 

In both graphs uO3 follows a constant trend around 310 Dobson Unit for all 

months. So, it is hardly possible to make any comment about the impact of uO3 

on the monthly variations in the performances of SMAC and MARS. However, 

significant inverse relationship is observed between the relative differences in 

reflectance values and both AOD and uWV. Differences in reflectance values 

increases with decreasing AOD and uWV, which mainly corresponds to the fall 

and winter seasons. For AOD around 0.20-0.50 and uWV around 2.0-4.0 cm, 

drastic decrease in relative differences between the reflectance values of 

SMAC and MARS are observed. At first glance, it may be inferred that both 

AOD and uWV have large effect on the performance of SMAC for the 4
th

 

reflective solar band of MODIS (0.545-0.565 μm).      

 

Figure 5.7: Change in the mean relative difference between SMAC and MARS 

reflectance values with respect to atmospheric parameters for Alps 
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Figure 5.8: Change in the mean relative difference between SMAC and MARS 

reflectance values with respect to atmospheric parameters for 

Turkey  

However, absorption effect by water vapor at 0.55 μm for uWV values ranging 

from 0.01 to 5.0 cm is negligible according to [134]. Therefore, we can 

conclude that in case of high AOD, SMAC and MARS seem to merge more 

closely.  

In [63], performances of SMAC and 6S were compared, and a similar relation 

between AOD and the two models were observed. Our findings on SMAC and 

MARS also match up with the results found in [63]. Since the MARS model is 

trained with MOD09GA data, which is based on 6S, it eventually “mimics” the 

behavior of 6S. 

The above mentioned characteristics of SMAC and MARS (and CMARS) are 

more obvious when the image histograms given in Figures 5.9 - 5.12 are 

analyzed. 
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Figure 5.9: Image histograms for Alps data set: a) A1, b) A2, c) A3, d) A4, e) 

A5, and f) A6 
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Figure 5.10: Image histograms for Alps data set: a) A7, b) A8, c) A9, d) A10, 

e) A11, and f) A12 
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Figure 5.11: Image histograms for Turkey data set: a) T1, b) T2, c) T3, d) T4, 

e) T5, and f) T6 
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Figure 5.12: Image histograms for Turkey data set: a) T7, b) T8, c) T9, d) T10, 

e) T11, and f) T12 
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The processing time for the CMARS in the training phase is evidently much 

longer than the MARS (Table 5.11); however, it must be noted that MARS has 

already been in the statistical learning and data mining community for more 

than two decades, and it is available as a standalone and sophisticated software 

package, whereas different software packages (i.e., MARS
®
, MATLAB

®
 and 

MOSEK
TM

) have to be used for the time being in order to obtain the CMARS 

model, which naturally increases the processing time. 

Table 5.11: Processing times (in seconds) for Alps (A) and Turkey (T) 

Data 

Set 

SMAC MARS CMARS 

Training Testing Training Testing Training Testing 

A1 

N/A 

24 

57 

32 

1148 

233 

A2 27 34 241 

A3 23 32 239 

A4 25 33 243 

A5 24 35 241 

A6 26 37 237 

A7 28 32 246 

A8 24 38 244 

A9 24 33 238 

A10 25 35 240 

A11 23 33 242 

A12 24 36 239 

T1 

N/A 

25 

59 

33 

1183 

243 

T2 23 36 229 

T3 27 36 233 

T4 24 35 231 

T5 25 32 239 

T6 24 37 242 

T7 24 34 238 

T8 26 34 234 

T9 23 31 241 

T10 24 34 232 

T11 25 33 238 

T12 26 35 240 

 

The average processing time of MARS (34 seconds) in the testing phase is 

almost comparable with that of SMAC (25 seconds). Although the average 

testing time for CMARS (238 seconds) is longer than the other two models, it 

still seems acceptable and competitive for this kind of huge and complex real-

life data. As new refinements are made on CMARS, improvement on the 

processing time will be achieved. 
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Here, we should further mention that CMARS proposes a “model-based” 

approach on controlling the complexity, in the form of TR which is very well-

established in engineering and realized by us in the form of CQP together with 

its efficient Interior Point Methods. And by this, a remarkable support is gained 

from the more model-based methods of calculus and of modern mathematics in 

general, in particular, through state-of-the-art continuous optimization theory. 

Moreover, via the tradeoff between precision and complexity, CMARS lets us 

open our investigations to real-world challenges which include noise in the 

response (output) variable, namely, to the Theory of Inverse Problems, to Data 

Mining and to Statistical Learning. 

Since we are interested in the multi-criteria antagonism (tradeoff) between 

accuracy and stability (stability may be called as small complexity), this 

tradeoff, keeping the complexity under “control”, is realized by us through 

CMARS in different ways:  

 restraining the discretized integral of first- and second-order derivatives 

of the basis functions within some margin or “tolerance” (under a chosen 

and prescribed upper bound),  

 and using modern optimization theory (model-based approach) for a 

more integrated approach of both the forward and the backward step, 

which we have in MARS.  

By this, we are closer also to exploiting the “power” of differential and integral 

calculus and to future developments in this calculus and in optimization theory.  

Another specific feature of CMARS when viewed within the RS perspective 

regarding our particular problem, CMARS stays “longer” model-based than 

MARS since it offers a more direct and intriguing comparison with the 

traditional “formulas” of RS, which are originated from physics and other 
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natural sciences, where functional relationships between variables are assumed. 

CMARS permits this by its interactive and adaptive “functional model”, which 

is supported by optimization and applied mathematics and can learn under 

different forms of uncertainty.  
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6. CHAPTER 6 

IMAGE CLASSIFICATION ON MODIS IMAGES BY MARS 

6.1 Background of MARS in Multispectral Image Classification 

MARS has many successful applications in many fields of science and 

engineering, as mentioned in Chapter 2. Works such as [15, 35, 135-137] 

indicate that MARS not only performs better in cases where there exist a large 

number of variables, nonlinearity, multicollinearity, and even a high degree of 

interaction between predictor variables. But MARS also has a clear advantage 

over black-box approaches due to its well-elaborated statistical basis.   

However, there is only one example dealing with the application of MARS in 

multispectral image classification [15]. This study used an advanced 

spaceborne thermal emission and reflection radiometer (ASTER) image of a 

part of Spanish province of Badajoz. It has an area of 60 60    km, taken on 4 

August 2000. The forest stand map in vector format that covers some of study 

area was used for both training and testing. Total 17 land classes were a priori 

determined. Training polygons (they are often called region of interest, ROI), 

areas in which the training data were collected, were defined in the forest stand 

map by buffer analysis. Necessary training data were obtained by 

superimposing the ROIs for each class onto the satellite image, and then 

extracting the necessary pixel reflectance values for each spectral band.  

The MARS classification on the image was carried out in binary fashion, i.e., 

each time, one of the classes was fixed and labeled as “1”, and the rest was 

considered belonging to the other class, so labeled as “0”. In this way, class 

probability maps were generated for each class, and then they were combined 
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to obtain the final classification result. The result of the MARS classification 

was then compared with that of ML and PP methods in terms of area under the 

curve (AUC) statistics [138, 139], and as the results revealed, 14 out of 17 

classes, MARS gave better classification accuracies.    

Even though this study revealed the potential of MARS algorithm for the 

classification of multispectral satellite images, it lacks certain important 

aspects, in our opinion:  

 Total area of the ROIs (976 km2), where the training samples were taken, 

was nearly 64% of the area used for accuracy assessment (1523 km2), 

which can easily be assumed as over safe, 

 MARS algorithm allows the user to set certain model building 

parameters that directly affects the model’s predictive performance such 

as the maximum number of BFs and the degree of interaction between 

predictor variables. However, this important issue and its impact on the 

final classification were not addressed, 

 The binary classification approach used in the study is a bit over complex 

and time consuming in operational perspective, especially, when the 

number of classes is high, 

 All the analysis covered a single geographic area, and were carried out on 

a single image taken by a medium spatial resolution sensor (i.e., 

ASTER). So, it is really difficult to reach a fair conclusion about the 

classification performance of MARS. We strongly believe that it should 

also be tested on images of different geographic regions taken by coarse 

resolution sensors such as MODIS, where the effect of mixed pixel can 

easily prevail due to the heterogeneous structure of landscapes over large 

areas. 
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As a result, in order to clarify these shortcomings, and to evaluate the 

classification performance of MARS approach on multispectral images in a 

more comprehensible manner: four MODIS images, two of them taken over 

Alps and the other two over Turkey, are classified by using MARS algorithm 

and traditional ML approach. The results are compared with the corresponding 

reference images by using error matrices (i.e., confusion matrix). In the 

following subsections, details of the analysis are given. 

6.2 Image Set and Model Training 

The data set used in this part of the study consists of four MODIS Terra images 

taken over two different geographic regions: Alps and Turkey. This set 

comprises three different products for each date, MOD02HKM calibrated Earth 

view image, MOD09GA surface reflectance image, and MOD10A1 daily snow 

cover image. For Alps, a single MOD09GA and a single MOD10A1 tile are 

used, whereas four tiles of the same product types are used for Turkey. All 

images have 500 m spatial resolution. The details of the images are given in 

Table 6.1. 

The first step is to decide the number of classes in the images. MODIS is a 

coarse resolution instrument with LFOV sensors, and its tiles cover large areas. 

Therefore, the basic land cover types already available in MOD10A1 are 

chosen, namely, snow, water, cloud, and land (i.e., no snow). We have two 

specific reasons for making this choice: 

 The test regions have surface areas changing roughly from 62 500 to     

67 500 km
2
, and it is hardly possible to find a reference data to assess the 

accuracy of classifiers on such large areas. So, we prefer to use MODIS’ 

own daily snow product,  
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 Different land features such as forest, bare soil and pasture; or different 

cloud types such as low and high level clouds, they all have different 

spectral signatures. Confining each of these spectrally complex features 

in a single class enables us to make the mixed pixel problem more 

apparent in our study, and to evaluate the performances of the classifiers. 

Table 6.1: MODIS data set used in image classification 

Data 

Set 
Date 

Image 

product 

type 

Image size          

(row × col.) 
Image tile info (.hdf) 

AC1 10.03.2002 

MOD02HKM 3423 × 5713 MOD02HKM.A2002069.0950.005.2010080042428 

MOD09GA 2176 × 3384 MOD09GA.A2002069.h18v04.005.2008233075920 

MOD10A1 2176 × 3384 MOD10A1.A2002069.h18v04.005.2008234025715 

AC2 13.01.2006 

MOD02HKM 3409 × 5822 MOD02HKM.A2006013.1055.005.2010203044449 

MOD09GA 2176 × 3384 MOD09GA.A2006013.h18v04.005.2008059145954 

MOD10A1 2176 × 3384 MOD10A1.A2006013.h18v04.005.2008060044128 

TC1 18.12.2006 

MOD02HKM 3550 × 5703 MOD02HKM.A2006352.0810.005.2010186235551 

MOD09GA 4790 × 9372 

MOD09GA.A2006352.h20v04.005.2008245162115 

MOD09GA.A2006352.h20v05.005.2008245153323 

MOD09GA.A2006352.h21v04.005.2008245161752 

MOD09GA.A2006352.h21v05.005.2008245162301 

MOD10A1 4790 × 9372 

MOD10A1.A2006352.h20v04.005.2008245163543 

MOD10A1.A2006352.h20v05.005.2008245154937 

MOD10A1.A2006352.h21v04.005.2008245163033 

MOD10A1.A2006352.h21v05.005.2008245163046 

TC2 22.03.2009 

MOD02HKM 3500 × 5699 MOD02HKM.A2009081.0805.005.2010238222139 

MOD09GA 4790 × 9372 

MOD09GA.A2009081.h20v04.005.2009084013618 

MOD09GA.A2009081.h20v05.005.2009084025517 

MOD09GA.A2009081.h21v04.005.2009084002955 

MOD09GA.A2009081.h21v05.005.2009084010416 

MOD10A1 4790 × 9372 

MOD10A1.A2009081.h20v04.005.2009084053142 

MOD10A1.A2009081.h20v05.005.2009084070048 

MOD10A1.A2009081.h21v04.005.2009084052449 

MOD10A1.A2009081.h21v05.005.2009084052839 

 

It is a characteristic of MODIS instrument that in most of the scenes, it is 

highly probable to observe cloud banks, whether dense or sparse. Another 

difficulty is to differentiate snow from low level clouds, because both exhibit 

large reflectance in visible bands and have similar thermal properties in 

infrared bands [140]. So, this also provides an excellent opportunity to test and 

compare the effectiveness of both classifiers under such challenging situation.    

In model training phase, reflectance values from the solar reflective bands 

(bands 1-7) in MOD02HKM images are used as predictor variables. For each 
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solar reflective band, the SI values are converted to corresponding reflectance 

values. By using the 1
st
, 3

rd
 and 4

th
 bands from MOD09GA images, an RGB 

color composite image of each area is obtained (R=1
st
, G=4

th
, and B=3

rd
 band). 

On each image, a test area is defined (Figure 6.1) in ArcMap™ software [141]. 

 

Figure 6.1: MOD09GA RGB color composite image of AC2 data set (R:1
st
, G: 

4
th

, B: 3
rd

 band) 

In MARS model training, the “earth” module [142] under R statistical software 

[143] is used. The earth module requires two matrices to build MARS models, 

the matrix of predictor variables (i.e., reflectance values of bands 1-7), and the 

matrix of responses (i.e., pixel’s corresponding class). Since we are dealing 

with a multi-response MARS classification, instead of a binary classification as 

applied in [15], a special design for the response matrix is necessary. The 

response matrix should have four columns, each of which represents one of the 

classes. 

At each row, the corresponding class is assigned “1” under the associated 

column and the other cells are labeled as “0”. By this way, earth produces four 

simultaneous models, each have the same set of BFs, but different coefficients. 
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For each class, ROIs for training samples are marked on the associated RGB 

image in such a way that they never fall inside or overlap with the test area on 

that image (i.e., ROIs are excluded from the test areas), and they are saved as 

shape files in ArcMap (Figure 6.2).  

In order to prepare the necessary response-predictor matrix pairs for each data 

set, reflectance values from bands 1-7, together with the associated class labels, 

are extracted onto the pixels delineated by ROIs by using a code written in 

MATLAB, which is given in Appendix E.4.  

The results are saved in text files. The average percentage of training data to 

the associated test area is nearly 25%. The details on the test areas and the 

training data can be found in Table 6.2. 

 

Figure 6.2: Training samples for TC1 data set 
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Table 6.2: Details of training and test data 

Data 

Set 

Test image 

size 

(row × col.) 

Training data size (pixels) 

Snow Water Cloud Land Total 
% to test 

area 

AC1 689 × 494 

=340366 pixels 7796 17700 12154 40216 77866 22.9 

AC2 688 × 494 

=339872 pixels 6214 15800 26678 41300 89992 26.5 

TC1 758 × 544 

=412352 pixels 8065 16261 47555 32452 104333 25.3 

TC2 758 × 544 

=412352 pixels 9821 18031 36286 48732 112870 27.4 

 

An example of a predictor-response matrix pair is given in Figure 6.3.   

 

Figure 6.3: Response-predictor matrix pair for MARS model training 

Table 6.3: Different MARS model building settings applied in image 

classification 

Setting 
Degree of 

interaction 

Max. 

number 

of BFs 

S1 

1 

20 

S2 40 

S3 60 

S4 80 

S5 100 

S6 

2 

20 

S7 40 

S8 60 

S9 80 

S10 100 

S11 

3 

20 

S12 40 

S13 60 

S14 80 

S15 100 
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The predictor-response matrix pair of each data set is introduced into R. Then 

the MARS classification models are generated for different settings of model 

building parameters (i.e., the maximum numbers of BFs and the degree of 

interaction between predictor variables). For all settings, threshold for stopping 

criteria is 10
-6

. These settings are summarized in Table 6.3.  

6.3 Testing of MARS Models 

For each data set, the reference image of the related test area is generated from 

the associated MOD10A1 daily snow product. During this process, some data 

values in MOD10A1 are merged, and then the whole image is reclassified to 

represent four classes: snow, water, cloud, and land Table 6.4.  

Table 6.4: Merging of some classes in MOD10A1 reference image 

MOD10A1              

data value 

Data value    

name 

Reclassified 

as 

37 lake 
water 

39 ocean 

25 no snow land 

50 cloud cloud 

100 lake ice 

snow 
snow 

200 snow 

 

In MOD10A1 daily snow images, water mask is superimposed on all other 

classes, including cloud. Consequently, the cloud cover over water bodies, if 

exists any, is suppressed by the water mask. To deal with the issue, a cloud 

mask is generated from the State_1km QA data available in MOD09GA image 

by using a MATLAB code (Appendix E.5). The cloud mask generated for AC2 

is given in Figure 6.4. The cloud mask is resampled to 500 m spatial resolution, 

and then applied onto the test area in order to obtain the final reference image.    

Each MARS model, generated for each data set with different model building 

settings, given in Table 6.3, is applied on the test areas. ML approach is also 
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employed for each test area. The performance of MARS and ML classifiers on 

the test areas is presented in the associated error matrices.  

 

Figure 6.4: Cloud mask generated from MOD09GA State_1km QA data for 

AC2 data set 

6.3.1 Error matrix 

The readers can find a brief introductory to the concept of error matrix in this 

subsection. 

The classification accuracy of remotely sensed data is often expressed by an 

error matrix [64]. It is composed of square arrays of numbers arranged in the 

form of rows and columns, as illustrated in Table 6.5. The cells in the matrix 

represent the number of pixels assigned to a particular class with respect to the 

actual class as verified in the reference data [144].   
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Table 6.5: A sample error matrix 

  Classified Data  

 
 

Class 1 Class 2 Class 3 Class 4 
Row  

Total 

R
ef

er
en

c
e 

D
a

ta
 

Class 1 130 8 44 48 230 

Class 2 12 162 10 16 200 

Class 3 0 22 170 38 230 

Class 4 8 14 6 180 208 

 
Column 

Total 
150 206 230 282 868 

 

When the total number of correctly classified pixels in a class is divided by the 

total number of pixels of that class as derived from the reference data (i.e., the 

row total), omission error (i.e., producer’s accuracy) is obtained. This measure 

gives the probability of a reference pixel being correctly classified. 

The commission error (i.e., user’s accuracy) is calculated by taking the ratio of 

the total number of correct pixels in a class to the total number of pixels that 

are classified in that class (i.e., the column total). Commission error refers to 

the probability that a pixel labeled as a certain class in the map is really this 

class.  

Overall accuracy, the simplest descriptive statistic, is calculated by dividing 

the total correctly classified pixels (i.e., main diagonal) by the total number of 

pixels. Example calculations are given below. 

Omission Error  Commission Error  Overall Accuracy 

Class 1= 130/230 =57%  Class 1= 130/150 =87%  

642/868 =74% 
Class 2= 162/200 =81%  Class 2= 162/206 =79%  

Class 3= 170/230 =74%  Class 3= 170/230 =74%  

Class 4= 180/208 =87%  Class 4= 180/282 =64%  
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6.4 Results and Discussion 

The related error matrices for AC1, AC2, TC1 and TC2 data sets are given in 

Tables 6.6 - 6.9, respectively (
*
 indicates the highest overall accuracy value, 

and ML means classification by maximum-likelihood method). 

Table 6.6: Error matrix for AC1 data set 

Setting 
Omission Error (%) Commission Error (%) Overall 

(%) Snow Water Cloud Land Snow Water Cloud Land 

S1 69.989 98.798 25.797 97.382 93.510 97.555 8.192 95.783 94.316 

S2 69.507 98.677 27.908 97.171 93.745 97.566 7.619 95.890 94.113 

S3 69.564 98.675 27.720 97.190 93.719 97.566 7.622 95.897 94.129 

S4 69.566 98.675 27.580 97.190 93.705 97.566 7.588 95.897 94.128 

S5 69.555 98.675 27.720 97.190 93.718 97.566 7.623 95.895 94.128 

S6 71.044 98.196 42.777 96.345 94.569 97.892 8.544 96.180 93.726 

S7 73.852 97.907 38.555 96.619 93.231 98.410 8.682 96.280 94.107 

S8 74.898 97.575 34.428 96.683 92.137 98.742 8.350 96.133 94.153 

S9 75.156 97.559 34.146 96.608 91.942 98.754 8.196 96.162 94.127 

S10 76.021 97.599 34.475 96.546 91.923 98.717 8.368 96.242 94.194 

S11 69.940 98.727 39.353 96.790 93.784 97.691 8.931 96.248 94.000 

S12 72.751 97.989 41.839 96.710 94.152 98.285 8.628 96.517 94.086 

S13 73.822 97.658 41.041 96.674 93.742 98.576 8.548 96.442 94.093 

S14 75.766 97.637 34.897 96.636 91.986 98.583 8.257 96.442 94.236 

S15 77.368 97.634 33.255 96.619 91.378 98.591 8.623 96.448 94.387* 

ML 82.692 96.247 22.889 94.050 84.567 99.444 3.432 97.912 92.918 

 

Table 6.7: Error matrix for AC2 data set 

Setting 
Omission Error (%) Commission Error (%) Overall 

(%) Snow Water Cloud Land Snow Water Cloud Land 

S1 61.248 96.177 63.436 89.562 88.007 57.941 97.190 79.772 78.154 

S2 61.368 96.118 63.465 89.573 88.134 57.977 97.345 79.698 78.179 

S3 61.321 96.332 63.458 89.586 88.130 58.032 97.361 79.745 78.207 

S4 61.321 96.327 63.463 89.586 88.132 58.035 97.356 79.743 78.208 

S5 61.321 96.327 63.463 89.586 88.132 58.035 97.356 79.743 78.208 

S6 64.193 95.033 66.499 90.882 85.738 67.059 96.501 77.564 79.862 

S7 61.905 94.509 67.284 92.284 87.973 71.835 95.626 75.213 80.076 

S8 61.031 93.518 68.290 92.409 86.613 73.092 92.773 75.816 80.064 

S9 61.690 93.629 67.742 92.634 86.205 73.436 93.800 75.629 80.149 

S10 63.509 93.668 67.813 92.653 85.783 73.865 94.896 75.921 80.535 

S11 74.821 95.281 68.210 90.839 84.869 73.610 95.659 79.804 82.407 

S12 74.831 92.878 67.876 92.954 83.171 81.929 94.816 77.838 82.743 

S13 74.747 93.809 67.733 92.735 82.626 80.638 95.850 78.210 82.753* 

S14 73.995 94.168 66.541 91.850 80.629 80.479 95.719 77.558 82.010 

S15 77.244 94.390 66.803 91.693 80.082 80.747 95.317 79.263 82.687 

ML 93.714 81.712 66.266 89.007 62.635 98.465 93.391 87.210 82.711 
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Table 6.8: Error matrix for TC1 data set 

Setting 
Omission Error (%) TC1 Commission Error (%) Overall 

(%) Snow Water Cloud Land Snow Water Cloud Land 

S1 61.945 99.755 35.258 97.615 76.077 91.748 88.211 71.036 79.240 

S2 57.144 99.757 37.092 97.570 79.293 91.762 86.127 71.163 79.351 

S3 56.671 99.755 37.403 97.555 79.524 91.788 85.775 71.249 79.392 

S4 56.585 99.755 37.383 97.554 79.528 91.787 85.730 71.237 79.380 

S5 56.571 99.755 37.385 97.554 79.532 91.787 85.723 71.237 79.379 

S6 50.443 99.846 43.871 96.267 84.004 89.133 79.222 74.699 80.148 

S7 53.458 99.824 47.140 95.928 80.671 90.041 80.471 75.906 81.086 

S8 50.950 99.824 47.215 96.107 81.303 89.621 80.241 75.965 80.992 

S9 50.381 99.813 53.381 96.115 80.200 90.731 80.527 78.477 82.566 

S10 49.785 99.815 53.284 96.148 79.947 90.448 80.955 78.391 82.511 

S11 37.324 99.803 46.989 96.186 85.351 90.974 73.182 75.366 79.960 

S12 46.016 99.850 55.201 94.583 82.923 89.438 75.789 79.913 82.131 

S13 53.282 99.851 51.587 94.761 78.616 89.276 77.607 78.859 81.787 

S14 55.053 99.819 54.535 94.707 77.915 90.031 79.345 79.722 82.659 

S15 59.546 99.818 53.103 94.939 71.102 89.931 81.280 80.092 82.704 

ML 75.230 98.320 53.577 92.741 60.615 96.855 81.754 78.984 82.706* 

 

Table 6.9: Error matrix for TC2 data set 

Setting 
Omission Error (%) TC2 Commission Error (%) Overall 

(%) Snow Water Cloud Land Snow Water Cloud Land 

S1 51.853 98.096 44.732 95.836 96.560 94.937 51.347 83.677 83.087 

S2 51.397 98.116 44.208 95.812 96.601 94.347 50.800 83.640 82.941 

S3 51.866 98.118 44.216 95.809 96.566 94.373 50.861 83.724 83.018 

S4 51.872 98.118 44.219 95.810 96.563 94.373 50.868 83.725 83.020 

S5 51.872 98.118 44.219 95.810 96.563 94.373 50.868 83.725 83.020 

S6 38.178 97.960 57.360 93.793 96.682 95.068 38.512 87.591 80.970 

S7 45.477 97.696 56.552 94.398 96.405 98.240 41.475 87.406 82.428 

S8 46.074 97.479 56.580 94.148 96.494 98.852 43.381 86.293 82.355 

S9 53.528 97.382 57.153 93.854 96.552 98.946 46.319 86.648 83.471 

S10 57.538 97.370 56.959 93.919 96.586 98.979 48.802 86.628 84.155 

S11 41.932 97.793 56.191 93.970 96.849 95.288 41.339 86.595 81.551 

S12 78.479 97.762 58.498 92.753 95.077 94.874 58.877 88.892 87.160* 

S13 78.031 97.550 64.003 91.600 95.202 97.994 55.734 89.510 86.979 

S14 78.942 97.439 66.704 89.899 94.480 98.145 52.046 90.367 86.394 

S15 82.138 97.326 66.267 89.762 93.730 98.087 52.020 91.121 86.782 

ML 65.835 96.054 67.146 90.778 93.124 99.099 43.258 92.160 84.624 

 

At first glance, MARS gives better overall accuracy for AC1, AC2 and TC2 

data sets. Even though the performance of ML method on TC1 seems better 

than MARS, their overall accuracies are very close to each other. 
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On all data sets, when the degree of interaction is set to one (i.e., additive 

modeling) and the number of BFs is increased, no remarkable change in the 

overall accuracy is achieved. This behavior can be seen more evidently in 

Figures 6.5 - 6.8, where the overall accuracies of MARS models with different 

degree of interactions (DG) are plotted against the number of BFs for AC1, 

AC2, TC1 and TC2, respectively. We have to emphasize that the vertical axes 

of these graphs are not in common scale for better illustrative purpose.    

 

Figure 6.5: Graph of overall accuracy for AC1 data set 

 

 

Figure 6.6: Graph of overall accuracy for AC2 data set 
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Figure 6.7: Graph of overall accuracy for TC1 data set 

 

Figure 6.8: Graph of overall accuracy for TC2 data set 

A similar behavior is also observed on AC1 and AC2 for the second and the 

third degree of interactions. Therefore, it can be concluded that when the 

degree of interaction is fixed, increasing the number of BFs may not always 

contribute significantly to the model’s predictive performance. On the other 

hand, increase in both the number of BFs and the degree of interaction results 

in better classification performance. This a typical, and expected, characteristic 

of MARS method because higher settings for the number of BFs and the 

degree of interaction allow MARS to enlarge its search space in order to add 

more terms into the model, which increase its predictive ability in turn.  
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Table 6.10: MARS model training performance for AC1 and AC2 data sets 

(ST: number of selected terms after the backward pass) 

Setting 
AC1 AC2 

GCV R2 ST GCV R2 ST 

S1 0.04576 0.92940 17 0.03658 0.94510 15 

S2 0.04371 0.93250 27 0.03571 0.94640 26 

S3 0.04358 0.93280 37 0.03565 0.94660 33 

S4 0.04356 0.93280 45 0.03564 0.94660 35 

S5 0.04356 0.93280 45 0.03564 0.94660 35 

S6 0.02945 0.95450 19 0.01614 0.97580 17 

S7 0.02176 0.96650 34 0.01239 0.98140 29 

S8 0.01944 0.97010 49 0.01085 0.98380 39 

S9 0.01855 0.97150 62 0.01026 0.98460 53 

S10 0.01784 0.97260 74 0.00987 0.98520 63 

S11 0.03076 0.95250 17 0.01382 0.97930 16 

S12 0.02089 0.96780 32 0.00972 0.98540 28 

S13 0.01743 0.97310 43 0.00827 0.98760 39 

S14 0.01567 0.97590 55 0.00733 0.98900 49 

S15 0.01437 0.97790 65 0.00659 0.99010 59 

 

Table 6.11: MARS model training performance for TC1 and TC2 data sets 

(ST: number of selected terms after the backward pass) 

Setting 
TC1 TC2 

GCV R2 ST GCV R2 ST 

S1 0.05561 0.91650 16 0.04207 0.93790 16 

S2 0.05409 0.91880 26 0.04075 0.93990 26 

S3 0.05374 0.91930 36 0.04063 0.94010 37 

S4 0.05364 0.91950 45 0.04061 0.94010 45 

S5 0.05364 0.91950 47 0.04061 0.94010 45 

S6 0.03279 0.95070 17 0.02651 0.96090 19 

S7 0.02279 0.96580 33 0.02180 0.96780 36 

S8 0.01923 0.97110 44 0.01960 0.97110 50 

S9 0.01727 0.97410 55 0.01876 0.97240 65 

S10 0.01663 0.97510 68 0.01847 0.97280 75 

S11 0.03218 0.95170 16 0.02563 0.96220 19 

S12 0.02147 0.96780 30 0.01852 0.97270 33 

S13 0.01736 0.97390 44 0.01541 0.97730 45 

S14 0.01450 0.97830 54 0.01381 0.97970 56 

S15 0.01292 0.98060 64 0.01308 0.98070 66 

 

In Tables 6.10 and 6.11, it can easily be observed that GCV and R
2
 values for 

S1, S2, S3, S4 and S5 (DG=1) remain stable, supporting our conclusion. In 

these settings, although the number of terms included in the final model after 

the backward pass increase, no remarkable change in the GCV and R
2
 values is 
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seen. For example, GCV=0.05561 and R
2
=0.91650 for S1 in TC1 data set 

(number of BFs=20, DG=1). Increasing the number of BFs from 20 to 100 

(i.e., S5), only gives 3.5% and 0.33% improvement in GCV (0.05364) and R
2
 

(0.91950) values, respectively.  

When the number of BFs is fixed and the degree of interaction is increased, as 

for S5, S10 and S15 in AC2, significant change is achieved in GCV and R
2
 

values. If one compares S5 with S15, improvement in GCV and R
2
 are 83.8% 

and 4.6%, respectively. 

As inferred from the results shown in Tables 6.6 - 6.9, there is no single setting 

of model building parameters that gives the best classification accuracy for 

each class in multi-response MARS classification. Before making further 

comments on the results, it would be helpful to check the amount of 

overlapping between individual classes, and also to see the percentage of pixels 

for each class in its own training data, which is given in Table 6.12.  

Table 6.12: Percentages of pixels for each class in training data sets 

Data 

Set 
Snow Water Cloud Land 

AC1 10.01 22.73 15.61 51.65 

AC2 6.91 17.56 29.64 45.89 

TC1 7.73 15.59 45.58 31.10 

TC2 8.70 15.98 32.15 43.18 

 

Bar graphs that show the percentage of overlapping pixels between classes in 

MARS and ML methods for each data set are drawn. For MARS method, bar 

graphs are obtained only for the model setting that gives the highest overall 

accuracy for that data set (i.e., for AC1: S15, AC2: S13, TC1: S15, and TC2: 

S12). The graphs are given in Figures 6.9 - 6.16. The associated error matrices 

for MARS and ML methods are also given in Tables 6.13 - 6.16.   
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Figure 6.9: Percentage overlapping of water, cloud and land with snow in 

MARS (OE: omission error, CE: commission error) 

 

 

 

Figure 6.10: Percentage overlapping of water, cloud and land with snow in ML 

(OE: omission error, CE: commission error) 
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Figure 6.11: Percentage overlapping of snow, water and land with cloud in 

MARS (OE: omission error, CE: commission error) 

 

 

 

Figure 6.12: Percentage overlapping of snow, water and land with cloud in ML 

(OE: omission error, CE: commission error) 
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Figure 6.13: Percentage overlapping of snow, cloud and land with water in 

MARS (OE: omission error, CE: commission error) 

 

 

 

Figure 6.14: Percentage overlapping of snow, cloud and land with water in ML 

(OE: omission error, CE: commission error) 
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Figure 6.15: Percentage overlapping of snow, water and cloud with land in 

MARS (OE: omission error, CE: commission error) 

 

 

 

Figure 6.16: Percentage overlapping of snow, water and cloud with land in ML 

(OE: omission error, CE: commission error) 
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Table 6.13: Error matrices of MARS and ML methods for AC1 data set 

 Classified by MARS (S15) 

Snow Water Cloud Land Total 

R
ef

er
en

c
e 

(M
O

D
1

0
A

1
) Snow 28 541 0 2550 5799 36 890 

Water  0 82 382 692 1304 84 378 

Cloud 805 0 709 618 2132 

Land 1888 1177 4271 209 630 216 966 

 Total 31 234 83 559 8222 217 351 340 366 

 Classified by ML 

 Snow Water Cloud Land Total 

R
ef

er
en

c
e 

(M
O

D
1

0
A

1
) Snow 30 505 1 2914 3470 36 890 

Water  6 81 211 2707 454 84 378 

Cloud 1216 0 488 428 2132 

Land 4345 453 8112 204 056 216 966 

 Total 36 072 81 665 14 221 208 408 340 366 

 

 

 

Table 6.14: Error matrices of MARS and ML methods for AC2 data set 

 Classified by MARS (S13) 

Snow Water Cloud Land Total 

R
ef

er
en

c
e 

(M
O

D
1

0
A

1
) Snow 49 406 1681 136 14 875 66 098 

Water  46 50 669 1387 1911 54 013 

Cloud 6049 6515 61 269 16 623 90 456 

Land 4294 3970 1130 119 911 129 305 

 Total 59 795 62 835 63 922 153 320 339 872 

 Classified by ML 

 Snow Water Cloud Land Total 

R
ef

er
en

c
e 

(M
O

D
1

0
A

1
) Snow 61 943 18 24 4113 66 098 

Water  8226 44 135 1545 107 54 013 

Cloud 17 401 454 59 942 12 659 90 456 

Land 11 325 216 2673 115 091 129 305 

 Total 98 895 44 823 64 184 131 970 339 872 
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Table 6.15: Error matrices of MARS and ML methods for TC1 data set 

 Classified by MARS (S15) 

Snow Water Cloud Land Total 

R
ef

er
en

c
e 

(M
O

D
1

0
A

1
) Snow 17 996 1268 7780 3178 30 222 

Water  0 111 569 52 151 111 772 

Cloud 6745 8962 57 383 34 970 108 060 

Land 569 2261 5384 154 084 162 298 

 Total 25 310 124 060 70 599 192 383 412 352 

 Classified by ML 

 Snow Water Cloud Land Total 

R
ef

er
en

c
e 

(M
O

D
1

0
A

1
) Snow 22 736 6 3710 3770 30 222 

Water  9 109 894 352 1517 111 772 

Cloud 13 142 2261 57 895 34 762 108 060 

Land 1622 1301 8859 150 516 162 298 

 Total 37 509 113 462 70 816 190 565 412 352 

 

 

 

Table 6.16: Error matrices of MARS and ML methods for TC2 data set 

 Classified by MARS (S12) 

Snow Water Cloud Land Total 

R
ef

er
en

c
e 

(M
O

D
1

0
A

1
) Snow 53 905 154 3188 11 440 68 687 

Water  0 48 362 29 1078 49 469 

Cloud 2236 575 26 874 16 255 45 940 

Land 555 1884 15 553 230 264 248 256 

 Total 56 696 50 975 45 644 259 037 412 352 

 Classified by ML 

 Snow Water Cloud Land Total 

R
ef

er
en

c
e 

(M
O

D
1

0
A

1
) Snow 45 220 0 18 182 5285 68 687 

Water  918 47 517 429 605 49 469 

Cloud 1717 94 30 847 13 282 45 940 

Land 704 338 21 851 225 363 248 256 

 Total 48 559 47 949 71 309 244 535 412 352 
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As observed in Figures 6.13 - 6.16, and also in Tables 6.13 - 6.16, water and 

land have no significant overlapping with other classes in overall for both 

MARS and ML classification. For water, there is a slight overlapping with 

cloud for MARS and with snow for ML method in AC2 data set, 10.37%-CE 

and 15.23%-OE, respectively. For land, the highest overlapping is with cloud 

for both MARS and ML methods in TC1 data set, both around 18%-CE. So, 

high and comparable accuracy levels are obtained for land and water by MARS 

and ML methods in AC1, TC1 and TC2 data sets. Due to the above mentioned 

overlapping problem, performances of MARS and ML methods differ in AC2 

data set, in favor of MARS for omission error, and in favor of ML for 

commission error. Additionally, land has the greatest percentage in terms of 

pixels in the training data sets, 43% in average (Table 6.12). Although the 

average percentage of water pixels in the training data is 18%, water exhibits 

the lowest overlapping with other classes.     

For snow (Figures 6.9 - 6.10, and Tables 6.13 - 6.16), no considerable 

overlapping exists with water (the highest value: 8.32%-CE in AC2 for ML 

classification). The most significant overlapping with land is in AC1, AC2 and 

TC2 data sets for MARS method with values of 15.72%-OE, 22.50%-OE and 

16.65%-OE, respectively. Overlapping with land in other data sets for both 

MARS and ML methods is roughly around 10%. However, in TC1 data set, 

overlapping with cloud is about 25%-OE/CE for MARS method, and 35%-CE 

for ML method. A mid-level overlapping with cloud is also observed for ML 

method in AC2 and TC data sets. In general, overlapping with cloud in MARS 

method is relatively lower than in ML method.  

For cloud (Figures 6.11 - 6.12, and Tables 6.13 - 6.16), serious overlapping 

exists with snow in AC1 data set for MARS (38%-OE, 31%-CE) and ML 

(57%-OE, 20%-CE) methods, and in AC2 (19%-CE) and TC2 (26%-CE) data 

sets for ML method. However, MARS shows lower overlapping with snow 

than ML method. Additionally, MARS and ML methods exhibit almost similar 
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behaviors in all data sets. Considerable amount of overlapping with land is 

observed (for MARS: AC1: 29%-OE, 52%-CE, AC2: 18%-OE, TC1: 32%-OE, 

TC2: 35%-OE/CE; for ML: AC1: 20%-OE, 57%-CE, AC2: 14%-OE, TC1: 

32%-OE, 13%-CE, TC2: 30%-OE/CE). Only moderate overlapping with water 

is seen in AC1 data set (19%-CE) for ML method. In AC1 training data set, 

percentage of cloud pixels is relatively lower than that of land pixels, 16% and 

52%, respectively. This difference may cause overlapping with land pixels in 

AC1 data set. Cloud has ~30% and ~32% of the training pixels in AC2 and 

TC2 data sets, respectively; whereas ~46% and ~43% of the training pixels 

belong to land for the same two data sets (Table 6.12). In both AC2 and TC2, 

relatively lower overlapping with land than in AC1 is observed. However, 

overlapping with land in TC2 is higher than in AC2 for both MARS and ML 

methods, although these two data sets have the same percentage of pixels in 

training data sets. Therefore, it is hard to relate their overlapping with the 

percentage of training pixels.        

It is also of value to mention that the reference data used in the accuracy 

assessment is MODIS daily snow product (i.e., MOD10A1). This product is 

composed of different layers of data obtained by various algorithms such as 

snow algorithm, land/water mask and cloud mask algorithms [104]. Therefore, 

errors inherent with each layer also pass to MOD10A1 product, and can 

eventually have a negative contribution to our accuracy assessment. On the 

other hand, it is the best available product when the type of the classification 

scheme and the sizes of the test areas are considered.          

According to the results, larger number of BFs and higher degree of interaction 

should be preferred for multispectral image classification by multi-response 

MARS model. However, it should also be noted that there is no unique setting 

for the best model since the performance of the MARS is highly dependent on 

the training data. Therefore, the user should certainly “play” with the primary 

MARS model building parameters, i.e., the maximum number of BFs and the 
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degree of interaction, in order to observe their effects on the model’s behavior 

during the model training phase. 

One drawback of building multi-response MARS model by using R is that it 

does not allow users to adjust classification thresholds (i.e., cut-off values) for 

individual classes as studied by [15] in a binary fashion. On the other hand, 

binary classification approach may not seem operationally practical if the 

number of classes is large. In Salford MARS, only binary classification scheme 

can be implemented. 

Additionally, we have to emphasize that neither our MARS and CMARS 

approaches nor a traditional RT-based method are employed to atmospherically 

correct the TOA reflectance values of the four image sets prior to the 

classification process. Because our classification scheme is not based on an 

end-member extraction approach, in which the mixed pixel problem is treated 

by decomposing those pixels into a set of pure signatures for a certain spectral 

class, and their corresponding proportions [10, 145]. As indicated by [146], 

calibration and atmospheric correction on image data are required in most end-

member approaches. A review of end-member approaches is available in [147].  

In our study; however, we follow a hard classification approach, in which a 

pixel is assigned to a specific class by selecting the greatest likelihood of 

belonging to that class (i.e., one pixel-one class) [10, 148]. In many hard 

classification studies where homogenous atmospheric conditions prevail or a 

single image is classified, atmospheric correction is not considered as a 

necessary pre-processing stage [149, 150].   

Besides, our correction scheme is only valid for the 4
th

 MODIS band, so an 

assessment on the variation in the results of classification based on an 

atmospheric correction on a single band (i.e., MODIS 4
th

 reflective solar band) 

would probably lead no significant outcome. For those who are interested in 
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the effect of the atmosphere on spectral signatures measured by satellites, 

detailed information can be found in [151-153]. 

The classified images of AC1, AC2, TC1 and TC2 data sets are given in 

Figures 6.17 - 6.20, respectively.  

 

Figure 6.17: Classified images of AC1 data set: a) MOD09GA RGB color 

composite image (R:1
st
, G: 4

th
, B: 3

rd
 band), b) MOD10A1 

reference image, c) ML classification, and d) MARS 

classification 

Overlapping of cloud with land and water is apparent in the above figure for 

ML method.    
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Figure 6.18: Classified images of AC2 data set: a) MOD09GA RGB color 

composite image (R:1
st
, G: 4

th
, B: 3

rd
 band), b) MOD10A1 

reference image, c) ML classification, and d) MARS 

classification 

In Figure 6.18c, overlapping of water with snow for ML method is clearly seen 

as also indicated in Figure 6.14. For MARS method (Figure 6.18d), relatively 

slighter overlapping between cloud, water and land is observed. 
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Figure 6.19: Classified images of TC1 data set: a) MOD09GA RGB color 

composite image (R:1
st
, G: 4

th
, B: 3

rd
 band), b) MOD10A1 

reference image, c) ML classification, and d) MARS 

classification 

For ML method in Figure 6.19c, relatively high overlapping between land and 

cloud exists, as compared to MARS method shown in Figure 6.19d. 
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Figure 6.20: Classified images of TC2 data set: a) MOD09GA RGB color 

composite image (R:1
st
, G: 4

th
, B: 3

rd
 band), b) MOD10A1 

reference image, c) ML classification, and d) MARS 

classification 

In Figure 6.20, overall classification performance of MARS seems better than 

ML method. Small water body in the western part of Figure 6.20b is not 

recognized by ML method, but successfully detected by MARS.   

According to our visual inspections on the classified images with respect to 

RGB and MOD10A1 images, MARS has relatively better performance than 

ML classifier for all data sets. 
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7. CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

In this study, we have approached the two main active research topics in RS 

within a different and progressive perspective. First, atmospheric correction 

issue has been treated by using two powerful nonparametric regression tools: 

MARS and CMARS. Then, we have dealt with image classification for snow 

mapping within the frame of multi-response MARS approach.  

Our MARS- and CMARS-based modeling schemes in atmospheric correction 

allow users to perform atmospheric correction on images without the need for 

retrieval of atmospheric parameters, which is required in all RT-based 

approaches. 

Nonparametric atmospheric correction models (nonphysical-based models) 

have been generated for MODIS data (for the 4
th

 reflective solar band) by 

employing MARS and CMARS methods. Performances of MARS and 

CMARS models have been tested on MODIS images, and compared with an 

RT-based correction algorithm, SMAC. According to results of the statistical 

tests on the accuracy measures, MARS and CMARS have demonstrated their 

superiority. 

In the model training phase, atmospherically corrected surface reflectance 

values, which are used as predictor variable for MARS and CMARS, are 

extracted from MOD09GA products. This issue may naturally lead to a 

criticism since these atmospherically corrected surface reflectance values are 

not observed values in real sense, yet predicted values computed from a 

physical-based model, 6S. However, when the spatial resolution and the 

surface area of the images are considered, it is practically impossible to acquire 
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the each pixel’s ground surface reflectance value by in-situ measurements. 

Instead, surface reflectance values predicted by a model with high-accuracy 

have been preferred in model training. 

According to our findings in this study, performance of SMAC method is 

highly dependent on the variations in AOD. For AOD values between 0.20 and 

0.50, our MARS and CMARS methods perform in a similar way with SMAC, 

whereas, MARS and CMARS are more accurate and reliable for lower AOD 

levels.   

Although the comparison reported in Table 5.6 reveals that CMARS has 

accuracy quite similar to MARS, the results of pairwise comparisons given in 

Table 5.10 indicate statistically significant difference in favor of CMARS 

method. 

On the other hand, the computational time spent by CMARS for model 

building is much higher (Table 5.11). This may seem like a shortcoming at first 

glance, but should not been considered as a permanent one. It essentially arises 

from the need for use of several software packages in CMARS processing. 

However, once the model is built (i.e., trained), it is applied on the image data 

consecutively. Therefore, we strongly believe that the testing time, 238 seconds 

in average for our data set, will certainly be confined within more reasonable 

margins as further improvements are made on CMARS algorithm.  

In image classification for snow mapping, use of MARS method has been 

demonstrated in a well-elaborated framework. A multi-response MARS 

classification scheme has been implemented on MODIS images. The 

performance of the approach has been tested under various settings of primary 

model building parameters (i.e., maximum number of BFs and degree of 

interaction between predictor variables). The ML classification has also been 

applied on the same test data for comparison. 
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The multi-response classification has been carried out by using earth module in 

R software. It produces k simultaneous models, where k is the number of 

classes, and each model has the same set of BFs but different coefficients. One 

certain limitation of this approach is that the user is not allowed to define 

certain cut-off values to increase the separability of individual classes as 

implemented in [15] by following a binary fashion classification scheme. 

Binary classification approach would naturally be considered as an alternative. 

However, it may not be practical in cases where the number of classes is high. 

Because for each binary pair, a different MARS model has to be trained. 

The results have revealed that the model building parameters have substantial 

impact on the predictive performance of MARS approach in image 

classification. As the maximum number of BFs and the degree of interaction 

increase, significant improvements are observed in MARS classification, and 

better overall classification accuracies are obtained as compared to ML 

method.  

Spatial and spectral overlapping of classes is a challenging issue in image 

classification, especially when working with coarse-spatial resolution 

instruments. As the results have indicated, significant overlapping between 

snow and cloud is observed, and in fact, it has already been expected. Because 

as mentioned in Section 6.2, snow and cloud have high reflectance in visible 

spectrum, and they exhibit similar thermal characteristics in infrared region. 

Additionally, when classifying for snow, it has also a high tendency to overlap 

with land. MARS approach exhibit lower overlapping in CE values for snow as 

compared to ML method, whereas ML has the same behavior for OE values. 

As compared to the overlapping of land when classifying for snow, cloud has a 

much higher tendency to overlap with land. Again, overall overlapping in CE 

values is less in MARS for cloud. 
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More “realistic” and better performance of MARS approach is also apparent 

when the classified images have been visually inspected and compared with the 

associated RGB and MOD10A1 images. Thus, we hope that the demonstrated 

MARS classification scheme and the presented results would serve as a guide 

and be helpful for those who will consider MARS for their image classification 

applications.  

As an overall conclusion, natural phenomena and real-life problems often 

exhibit nonparametric and multivariate behavior, in which the curse of 

dimensionality may easily prevail. This means, controlled successive 

multiplications may sometimes be inevitable and useful to represent the multi-

dimensional interaction of the model. We have demonstrated that high-

dimensional and complex RS data sets can be wisely handled with the inherent 

smoothing characteristic of splines. 

As our study has showed us, CMARS (and MARS) can be employed as an 

alternative tool for atmospheric correction. For image classification, MARS 

approach has proven its competitiveness and applicability as compared to 

traditional Bayesian-based ML approach. Thus, MARS and CMARS can also 

be used for other problems associated with Earth sciences. By integrating the 

dynamical progress of scientific advances in modern continuous optimization 

with the spatial technologies, we can enhance our understanding of the value of 

spatial data and its inherent structure to reach better modeling capabilities in 

GIS and RS. 

The following points would be considered as further extensions of our study: 

 In this study, the atmospheric correction models produced for MODIS 

data by MARS and CMARS were only applicable on the 4
th

 solar band of 

the instrument. Implementation of MARS and CMARS methods to 

generate atmospheric correction models that can be used for all solar 
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reflective bands of MODIS (bands 1-7) will be an interesting direction to 

pursue. While generating these models, it is also worth experimenting 

with Robust CMARS (RCMARS) [154] through the involvement of 

robust optimization. By this, the regularization in CMARS becomes 

rigorously extended towards a robustification which especially addresses 

uncertainty in the input variables, too, and goes beyond noise in the 

response variable by uncertainty. 

 In this thesis, we presented the application of multi-response MARS 

method in image classification for snow mapping on MODIS images and 

compared its performance with the classical ML approach. However, 

multi-response MARS modeling scheme imposes that the user has no 

freedom to choose specific cut-off values to increase correct 

classification probabilities of individual classes. Implementation of both 

MARS and CMARS methods in binary fashion on larger MODIS image 

sets by making extensive testing with different model building settings 

will be worth examining. Evaluating the performances of binary MARS 

and CMARS classification schemes on other conventional parametric 

and nonparametric methods such as PP, MD, SVM and ANN will have 

great potential. 

 Finally, an interesting future direction would be to see if MARS and 

CMARS can be incorporated in studying the time dependent variety of 

the problem, i.e. processing of large image data sets, both time-discretely 

and time-continuously.  
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A. APPENDIX A 

TIKHONOV REGULARIZATION 

Tikhonov regularization (TR) is the most common and well-known form to 

make ill-posed problems regular and stable [155]. Tikhonov solution can be 

expressed easily in terms of the singular value decomposition (SVD) of the 

coefficient matrix A of regarded linear systems of equations ,Ax b where A is 

an ill-conditioned ( )N m -matrix. The standard approach to approximately 

solve this system of equations is known as least squares estimation (LSE). It 

seeks to minimize the residual 
2

2
Ax b . To solve different kinds of TR 

problem, we use SVD to have a solution that minimizes the objective function 

including 
2

x . However, in many cases, it is preferred to achieve a solution 

that minimizes some other measure of x, such as the norm of first- or second-

order derivatives. They are, in approximate sense, given by first- or second-

order difference quotients of x, considered as a function that is evaluated at the 

points k and k+1. These difference quotients approximate those derivatives; 

altogether, they are comprised by products Lx of x with some suitably chosen 

Tikhonov matrices L. These matrices represent the discrete differential 

operators of first- and second-order, respectively. Hereby, the optimization 

problem is in the following form: 

 
2 22

2 2
minimize .  

x
Ax b Lx  

Generally, the above equation consists of high order TR problems, and 

generalized SVD is used to solve them. In many situations, to obtain a solution 

which minimizes some other measure x, the norm of the first- or second- 

derivative is preferred.                                                                                                                                                                                                                                                   
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B. APPENDIX B 

CONIC QUADTRATIC PROGRAMMING 

Conic quadratic optimization is defined as the problem of minimizing a linear 

objective function subject to the intersection of an affine set and the direct 

product of quadratic cones of the form 

 
1 2 2

1

1

 .
m

m

m j

j

x x






 
 
 
 

x  

Many optimization problems may be created in the form of quadratic cone, 

which is also known as the second-order (i.e., Lorentz or ice-cream) cone. 

Linear, convex quadratic and convex quadratically constrained quadratic 

optimization are some examples. The problem of minimizing the sum of norms 

and robust linear optimization can also be given as examples [156]. In [157, 

158], different implementations of conic quadratic optimization can be found.  

A CQP problem, a conic problem, can be given in the following form [157]:     

 
minimize

subject to

     

  ,

T

K
  0

x

c x

Ax b
                                                                                                           

for which the cone K is the direct product of several Lorentz cones. Therefore, 

the following expression can be used to represent K: 

 1 ... .rm m
K L L E     
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In general, a CQP problem is an optimization problem with linear objective 

function and finitely many “ice-cream constraints”,   ( 1, 2,..., ).mii i L
i r  0A x b  

Therefore, a CQP problem can be expressed in the following form [157]: 

 
minimize

subject to

     

     ( 1, 2,..., ).mi

T

L
i r  0

x

c x

Ax b
 

If the data matrix, [ ,i iA b ], is subdivided as follows: 

  , ,
i i

i i T

i i
q


 
 
 

D d
A b

p
 

where
i

D  is of the size ( 1
i

m  )  dim  ,x the problem can be written as follows: 

 

2

minimize

subject to

   ,    

     ( 1, 2,..., ).

T

x

T

i i i i
q i r   

c x

D x d p x
 

This form is the most explicit one, in which 
i

D  indicate matrices of the same 

row dimensions as x, 
i

d  represent vectors of the same dimensions as the 

column dimensions of the matrices
i

D , 
i

p  are vectors of the same dimensions 

as x, and 
i

q  indicate real numbers [157]. 
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C. APPENDIX C 

MARS AND CMARS MODELS 

The notation used here is as follows: 
1X  and 

2X  are geographic latitude and 

longitude (i.e.,   and  ), respectively, 
3X  is the TOA reflectance value (i.e., 

 ), and finally, 
4X  denotes the month indicator (i.e.,  ). 

C.1 MARS and CMARS Models for Alps    

 Basis functions generated in the forward step of MARS algorithm: 

   

   

   

   

1 3 2 3

3 4 4 4

5 4 3
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7
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26 1 4 3
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29 4
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 MARS model obtained after the backward step: 
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 CMARS model: 

max
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C.2 MARS and CMARS Models for Turkey 

 Basis functions generated in the forward step of MARS algorithm: 

   

   

   

   

1 3 2 3

3 4 4 4

5 4 3

6 4 3

7

( ) max 0,   0.7039 ,        ( ) max 0,  0.7039  ,

( ) max 0,   6.0001 ,        ( ) max 0,  6.0001  ,

( ) max 0,   6.0001 max 0,  0.7039  ,       

( ) max 0,  6.0001  max 0,  0.7039  ,

(

B X B X

B X B X

B X X

B X X

B

   

   

   

   

x x

x x

x

x

   

   

   

   

3 8 3

9 1 4

10 1 4

11 4 12 4

13

) max 0,   0.1591 ,      ( ) max 0,  0.1591  ,

( ) max 0,   33.0836 max 0,  6.0001  ,      

( ) max 0,  33.0836  max 0,  6.0001  ,

( ) max 0,   8.0001 ,      ( ) max 0,  8.0001  ,

( )

X B X

B X X

B X X

B X B X

B

   

   

   

   

x x

x

x

x x

x    

   

   

   

2 3

14 2 3

15 3 4

16 3 4

max 0,   39.5459 max 0,   0.7039 ,   

( ) max 0,  39.5459  max 0,   0.7039 ,

( ) max 0,   0.3128 max 0,  8.0001  ,        

( ) max 0,  0.3128  max 0,  8.0001  ,

X X

B X X

B X X

B X X

   

   

   

   

x

x

x

 

 



148 

 

 

   

   

   

   

 

17 2 3

18 2 3

19 2 3

20 2 3

21 1

( ) max 0,   40.8146 max 0,  0.1591  ,   

( ) max 0,  40.8146  max 0,  0.1591  ,

( ) max 0,   40.0364 max 0,   0.7039 ,   

( ) max 0,  40.0364  max 0,   0.7039 ,

( ) max 0,   33.3572

B X X

B X X

B X X

B X X

B X

   

   

   

   

 

x

x

x

x

x  

   

 

 

 

 

 

4

22 1 4

23 3

24 3

25 4

26 4

27 3

max 0,   6.0001 ,

( ) max 0,  33.3572  max 0,   6.0001 ,

  ( )  max 0,   0.8951 , 

( )  max 0,  0.8951  ,

( ) max 0,   4.0001 ,

( )  max 0,  4.0001  ,

  ( )  max 0,   0.3159 max 0,  4

X

B X X

B X

B X

B X

B X

B X

 

   

 

 

 

 

  

x

x

x

x

x

x  

   

   

   

   

4

28 3 4

29 2 3

30 2 3

31 1 3

32

.0001  ,

  ( )  max 0,  0.3159  max 0,  4.0001  ,

  ( )  max 0,    39.5027 max 0,   0.7039 ,

  ( )  max 0,  39.5027  max 0,   0.7039 ,

( )  max 0,   34.9980 max 0,   0.7039 ,

( ) 

X

B X X

B X X

B X X

B X X

B



   

   

   

   

x

x

x

x

x    

   

   

   

 

1 3

33 1 3

34 1 3

35 1 3

36 1

 max 0,  34.9980  max 0,   0.7039 ,

( )  max 0,   35.9806 max 0,   0.7039 ,

( )  max 0,  35.9806   max 0,   0.7039 ,

( )  max 0,   35.8098 max 0,   0.7039 ,

( )  max 0,  35.8098  m

X X

B X X

B X X

B X X

B X

   

   

   

   

  

x

x

x

x  

   

   

   

   

3

37 1 4

38 1 4

39 2 4

40 2 4

ax 0,   0.7039 ,

( )  max 0,   37.4083 max 0,  8.0001  ,

( )  max 0,  37.4083  max 0,  8.0001  ,

( )  max 0,   40.6531 max 0,  4.0001  ,

( )  max 0,  40.6531  max 0,  4.0001  .

X

B X X

B X X

B X X

B X X



   

   

   

   

x

x

x

x

 

 

 

 MARS model obtained after the backward step: 

0

1
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ˆ  ( )
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 CMARS model: 

max

0

1

1 2 3

4 5 6

7 8 9

10

ˆ  ( )

      = 0,7883 0,0107 ( )  0,5609 ( )  0,1036 ( )

          0,0441 ( )  0,3407 ( )  0,1152 ( )

         0, 2084 ( )  0,0023 ( ) 0,0012 ( )
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D. APPENDIX D 

ACCURACY MEASURES 

The accuracy measures to evaluate the performances of SMAC, MARS and 

CMARS methods are presented as follows: 

 General notation: 

iy  : ith observed response value, 

ˆ
iy  : ith fitted response, 

y  : mean of observed values, 

N : number of observations. 

 Multiple coefficient of determination (R
2
): It is a value that indicates 

how much variation in response is explained by the model. Higher R
2
 

values means better fit to the data. It is expressed as: 

 

 

2 1

1

ˆ

R : 1 .

N

i i

i

N

i

i

y y

y y





 
 

  
  
 




 

 Mean absolute error (MAE): It gives the average magnitude of error. 

The smaller the MAE, the better it is. The formula is: 

 
1

1
ˆMAE : .

N

i i

i

y y
N 

   

These measures of accuracy can be found in statistic text books such as [159].  
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E. APPENDIX E 

MATLAB CODES 

E.1 SMAC Code 

The SMAC code is available at http://www.cesbio.ups-tlse.fr/us/serveurs4.htm 

[160]. The code given below calculates the atmospherically corrected surface 

reflectance of a target pixel. 

function y = smac(tetas, tetav, phis, phiv, uh2o, uo3, taup550, pression,  

                 r_toa, ah2o,nh2o,ao3,no3,ao2,no2,po2,aco2,nco2,pco2,ach4, 

                 nch4,pch4,ano2,nno2,pno2,aco,nco,pco,a0s,a1s,a2s,a3s,a0T, 

                 a1T,a2T,a3T,taur,a0taup,a1taup,wo,gc,a0P,a1P,a2P,a3P,a4P, 

                 Rest1,Rest2,Rest3,Rest4,Resr1,Resr2,Resr3,Resa1,Resa2, 

                 Resa3,Resa4) 

  

  

%Adapted to MATLAB by: Semih Kuter 

%Date                : June 2008 

  

  

%SMAC Calculations 

  

crd=180./pi; 

cdr=pi/180.; 

  

us = cos(tetas*cdr); 

uv = cos(tetav*cdr); 

dphi=(phis-phiv)*cdr; 

Peq=pression/1013.0; 

  

  

%------ 1) air mass  

m =  1./us + 1./uv; 

  

  

%------  2) aerosol optical depth in the spectral band, taup  

taup = (a0taup) + (a1taup) * taup550 ; 

  

  

%------  3) gaseous transmissions (downward and upward paths) 

to3 = 1. ; 

th2o= 1. ; 

to2 = 1. ; 

tco2= 1. ; 

tch4= 1. ; 

  

uo2=  Peq^po2; 

uco2= Peq^pco2; 

uch4= Peq^pch4; 

uno2= Peq^pno2; 

uco = Peq^pco; 

http://www.cesbio.ups-tlse.fr/us/serveurs4.htm
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%------  4) if uh2o <= 0 and uo3 <= 0 no gaseous absorption is computed 

if( (uh2o > 0.) || ( uo3 > 0.) ) 

  

        to3   = exp ( (ao3)  * ((uo3 *m)^(no3))) ; 

        th2o  = exp ( (ah2o) * ((uh2o*m)^(nh2o))) ; 

        to2   = exp ( (ao2)  * ((uo2 *m)^(no2))) ; 

        tco2  = exp ( (aco2) * ((uco2*m)^(nco2))) ; 

        tch4  = exp ( (ach4) * ((uch4*m)^(nch4))) ; 

        tno2  = exp ( (ano2) * ((uno2*m)^(nno2))) ; 

        tco   = exp ( (aco)  * ((uco*m)^(nco))) ; 

end 

  

  

%------  5) Total scattering transmission  

ttetas = a0T + (a1T*taup550/us) + ((a2T*Peq + a3T)/(1.+us)) ; %downward  

ttetav = a0T + (a1T*taup550/uv) + ((a2T*Peq + a3T)/(1.+uv)) ; %upward   

  

  

%------  6) spherical albedo of the atmosphere  

s = (a0s * Peq) +  a3s + (a1s*taup550) + (a2s *taup550^2) ; 

  

  

%------  7) scattering angle cosine  

cksi = - ( (us*uv) + (sqrt(1. - us*us) * sqrt (1. - uv*uv)*cos(dphi) ) ); 

if (cksi < -1 )  

    cksi=-1.0 ; 

end 

  

  

%------  8) scattering angle in degree  

ksiD = crd*acos(cksi) ; 

  

  

%------  9) rayleigh atmospheric reflectance 

% pour 6s on a delta = 0.0279  

ray_phase = 0.7190443 * (1. + (cksi*cksi))  + 0.0412742 ; 

  

taurz = taur*Peq; 

  

ray_ref   = ( taurz*ray_phase ) / (4.*us*uv) ; 

  

  

%-----------------Residu Rayleigh --------- 

Res_ray= Resr1 + ((Resr2 * taurz*ray_phase) / (us*uv))   

               +(Resr3 * ((taurz*ray_phase/(us*uv))^2));   

  

  

%------  10) aerosol atmospheric reflectance  

aer_phase = (a0P) + (a1P)*ksiD + (a2P)*ksiD*ksiD +(a3P)*(ksiD^3)  

          + (a4P) * (ksiD^4);    

  

ak2 = (1. - (wo))*(3. - (wo)*3*(gc)) ; 

ak  = sqrt(ak2) ; 

e   = -3.*us*us*(wo) /  (4.*(1. - ak2*us*us) ) ; 

f   = -(1. - (wo))*3.*(gc)*us*us*(wo) / (4.*(1. - ak2*us*us) ) ; 

dp  = e / (3.*us) + us*f ; 

d   = e + f ; 

b   = 2.*ak / (3. - (wo)*3*(gc)); 

del = exp( ak*taup )*(1. + b)*(1. + b) - exp(-ak*taup)*(1. - b)*(1. - b) ; 

ww  = (wo)/4.; 

ss  = us / (1. - ak2*us*us) ; 

q1  = 2. + 3.*us + (1. - (wo))*3.*(gc)*us*(1. + 2.*us) ; 

q2  = 2. - 3.*us - (1. - (wo))*3.*(gc)*us*(1. - 2.*us) ; 

q3  = q2*exp( -taup/us ) ; 

c1  =  ((ww*ss) / del) * ( q1*exp(ak*taup)*(1. + b) + q3*(1. - b) ) ; 

c2  = -((ww*ss) / del) * (q1*exp(-ak*taup)*(1. - b) + q3*(1. + b) ) ; 

cp1 =  c1*ak / ( 3. - (wo)*3.*(gc) ) ; 

cp2 = -c2*ak / ( 3. - (wo)*3.*(gc) ) ; 
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z   = d - (wo)*3.*(gc)*uv*dp + (wo)*aer_phase/4. ; 

x   = c1 - (wo)*3.*(gc)*uv*cp1 ; 

y   = c2 - (wo)*3.*(gc)*uv*cp2 ; 

aa1 = uv / (1. + ak*uv) ; 

aa2 = uv / (1. - ak*uv) ; 

aa3 = us*uv / (us + uv) ; 

  

aer_ref = x*aa1* (1. - exp( -taup/aa1 ) ) ; 

aer_ref = aer_ref + y*aa2*( 1. - exp( -taup / aa2 )  ) ; 

aer_ref = aer_ref + z*aa3*( 1. - exp( -taup / aa3 )  ) ; 

aer_ref = aer_ref / ( us*uv ); 

  

  

%--------Residu Aerosol -------- 

Res_aer= ( (Resa1) + (Resa2) * ( taup * m *cksi )   

       + (Resa3) * ((taup*m*cksi )^2) ) + (Resa4) * ((taup*m*cksi)^3); 

  

  

%---------Residu 6s----------- 

tautot=taup+taurz; 

Res_6s= ( (Rest1) + (Rest2) * ( tautot * m *cksi )   

      + (Rest3) * ((tautot*m*cksi)^2) ) + (Rest4) * ((tautot*m*cksi)^3); 

  

  

%------  11) total atmospheric reflectance  

atm_ref = ray_ref - Res_ray + aer_ref - Res_aer + Res_6s; 

  

  

%-------- reflectance at toa 

tg      = th2o * to3 * to2 * tco2 * tch4* tco * tno2 ; 

  

  

%reflectance at surface  

  

  r_surf = r_toa - (atm_ref * tg) ; 

  y = r_surf / ( (tg * ttetas * ttetav) + (r_surf * s) );  

 

E.2 MATLAB Code to Run the SMAC Algorithm on a MODIS Image 

%function runsmacnew runs the smac code on selected sets of MODIS images 

function y = runsmacnew(pressure) 

 

%pressure=1013  

  

%Author: Semih Kuter 

%Date  : June 2008 

  

  

%Get the Text File containing SMAC Inputs 

CurrentFolder = pwd; 

[FileName1,PathName1] = uigetfile('*.csv', 'SELECT THE SMAC INPUT TEXT FILE'); 

cd(PathName1); 

fid = fopen(FileName1); 

smacinput = textscan(fid, '%f %f %f %f %f %f %f %f %f', 

'Delimiter',',','HeaderLines',1); 

fclose(fid); 

  

%SOLAR ZENITH ANGLE 

tetas = double(smacinput[106])/100; 

  

%SENSOR ZENITH ANGLE 

tetav = double((smacinput[85]))/100; 
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%SOLAR AZIMUTH ANGLE 

phis = double((smacinput[85]))/100; 

  

%SENSOR AZIMUTH ANGLE 

phiv = double((smacinput{4}))/100; 

  

%WATER VAPOR CONTENT 

uh2o = double((smacinput{5}))/1000; 

  

%OZONE CONTENT 

uo3 = double((smacinput{6}))/10000; 

  

%ATMOSPHERIC OPTICAL DEPTH 

taup550 = double((smacinput{7}))/1000; 

  

%MOD02 TOP OF ATMOSPHERIC REFLECTANCE  

r_toa = double(smacinput{8}); 

  

%MOD09 ATMOSPHERIC REFLECTANCE  

mod09 = double(smacinput{9}); 

  

  

%Get the sensor calibration parameters 

CurrentFolder = pwd; 

[FileName9,PathName9] = uigetfile('*.dat', 'SELECT THE SENSOR CALIBRATION 

FILE'); 

cd(PathName9); 

fid = fopen(FileName9); 

C = fscanf(fid,'%f',49);  

fclose(fid); 

F=C'; 

Fcell=num2cell(F); 

  

[ah2o,nh2o,ao3,no3,ao2,no2,po2,aco2,nco2,pco2,ach4,nch4,pch4,ano2,nno2,pno2,aco

,nco,pco,a0s,a1s,a2s,a3s,a0T,a1T,a2T,a3T,taur,sr,a0taup,a1taup,wo,gc,a0P,a1P,a2

P,a3P,a4P,Rest1,Rest2,Rest3,Rest4,Resr1,Resr2,Resr3,Resa1,Resa2,Resa3,Resa4]=Fc

ell{:};  

  

  

%Run SMAC Calculations 

pression = pressure; 

  

ImgSize = size(tetas); 

y = zeros(ImgSize(1),ImgSize(2)); 

tic; 

tstart=tic; 

for i=1:ImgSize(1) 

    for j=1:ImgSize(2) 

        y(i,j) = smacnew(tetas(i,j), tetav(i,j), phis(i,j), phiv(i,j), 

uh2o(i,j), uo3(i,j), taup550(i,j), pression, r_toa(i,j), 

ah2o,nh2o,ao3,no3,ao2,no2,po2,aco2,nco2,pco2,ach4,nch4,pch4,ano2,nno2,pno2,aco,

nco,pco,a0s,a1s,a2s,a3s,a0T,a1T,a2T,a3T,taur,a0taup,a1taup,wo,gc,a0P,a1P,a2P,a3

P,a4P,Rest1,Rest2,Rest3,Rest4,Resr1,Resr2,Resr3,Resa1,Resa2,Resa3,Resa4); 

    end 

end 

telapsed=toc(tstart); 

  

  

%Reference ASCII File for the SMAC output in ASCII format 

[FileName10,PathName10] = uigetfile('*.asc', 'SELECT THE REFERENCE ASCII 

FILE'); 

cd(PathName10); 

fid = fopen(FileName10); 

out = textscan(fid, '%s %s'); 

C = cellstr(out{1,2}); 

fclose(fid); 
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ncols = ['ncols',' ',char(C(1,1))]; nrows = ['nrows',' ',char(C(2,1))]; 

xllcorner = ['xllcorner',' ',char(C(3,1))];  

yllcorner = ['yllcorner',' ',char(C(4,1))]; cellsize = ['cellsize',' 

',char(C(5,1))]; NODATA_value = ['NODATA_value',' ',char(C(6,1))]; 

img_dat=strvcat(ncols,nrows,xllcorner,yllcorner,cellsize,NODATA_value); 

  

  

%Write output to a space-delimited ASCII file 

[FileName11,PathName11] = uiputfile('*.asc', 'SAVE SMAC RESULT AS'); 

cd(PathName11); 

dlmwrite('del01.asc',img_dat,'delimiter','','newline','pc'); 

dlmwrite('del02.asc',y,' '); 

system(['for %f in ("del01.asc", "del02.asc") do type "%f" >> "' FileName11 

'"']); 

delete('del01.asc', 'del02.asc'); 

  

  

%CALCULATE RMSE ERROR BY USING SMAC & MOD09 DATA 

r=sqrt(sum((y(:)-mod09(:)).^2)/numel(y)); 

fprintf('RMSE in SMAC = %f\n',r) 

fprintf('Process time in sec. = %f\n',telapsed) 

cd(CurrentFolder); 

  

%MAX & MIN VALUES FOR SMAC IMAGE 

fprintf('Maximum Reflectance Value in SMAC = %f\n',max(max(y))) 

fprintf('Minimum Reflectance Value in SMAC = %f\n',min(min(y))) 

  

E.3 MATLAB Code to Prepare the Necessary Input Data for SMAC 

Processing 

%function valextract2points extract raster values to points stored in a 

%shape file and prepares the data necessary for SMAC processing 

function y = valextract2points(refscales) 

  

%"refscales" is the reflectance scale value of the corresponding MODIS 

%band and must be entered without its exponent (i.e., -e5)  

  

%Author: Semih Kuter 

%Date  : March 2012 

  

  

%GET THE ARCGIS SHAPE FILE IN WHICH POINTS ARE STORED 

CurrentFolder = pwd; 

[FileName1,PathName1] = uigetfile('*.shp', 'SELECT THE SHAPE FILE'); 

cd(PathName1); 

S = shaperead(FileName1); 

dimensions = size(S); 

row=dimensions(1); 

column=dimensions(2); 

  

  

%GET THE SZA FILE  

[FileName2,PathName2] = uigetfile('*.tif', 'SELECT THE SZA FILE'); 

cd(PathName2); 

sza = geotiffread(FileName2); 

info_sza=geotiffinfo(FileName2); 

refmatrix_sza=info_sza.RefMatrix; 

  

  

%GET THE VZA FILE  

[FileName3,PathName3] = uigetfile('*.tif', 'SELECT THE VZA FILE'); 

cd(PathName3); 

vza = geotiffread(FileName3); 

info_vza=geotiffinfo(FileName3); 
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refmatrix_vza=info_vza.RefMatrix; 

  

   

%GET THE SAA FILE  

[FileName4,PathName4] = uigetfile('*.tif', 'SELECT THE SAA FILE'); 

cd(PathName4); 

saa = geotiffread(FileName4); 

info_saa=geotiffinfo(FileName4); 

refmatrix_saa=info_saa.RefMatrix; 

  

   

%GET THE VAA FILE  

[FileName5,PathName5] = uigetfile('*.tif', 'SELECT THE VAA FILE'); 

cd(PathName5); 

vaa = geotiffread(FileName5); 

info_vaa=geotiffinfo(FileName5); 

refmatrix_vaa=info_vaa.RefMatrix; 

  

   

%GET THE WV FILE  

[FileName6,PathName6] = uigetfile('*.tif', 'SELECT THE WV FILE'); 

cd(PathName6); 

wv = geotiffread(FileName6); 

info_wv=geotiffinfo(FileName6); 

refmatrix_wv=info_wv.RefMatrix; 

  

   

%GET THE O3 FILE  

[FileName7,PathName7] = uigetfile('*.tif', 'SELECT THE O3 FILE'); 

cd(PathName7); 

o3 = geotiffread(FileName7); 

info_o3=geotiffinfo(FileName7); 

refmatrix_o3=info_o3.RefMatrix; 

  

   

%GET THE AOD FILE  

[FileName8,PathName8] = uigetfile('*.tif', 'SELECT THE AOD FILE'); 

cd(PathName8); 

aod = geotiffread(FileName8); 

info_aod=geotiffinfo(FileName8); 

refmatrix_aod=info_aod.RefMatrix; 

   

  

%GET THE MOD02 FILE  

[FileName9,PathName9] = uigetfile('*.tif', 'SELECT THE MOD02 FILE'); 

cd(PathName9); 

mod02 = double(geotiffread(FileName9))*refscales*0.00001; 

info_mod02=geotiffinfo(FileName9); 

refmatrix_mod02=info_mod02.RefMatrix; 

  

   

%GET THE MOD09 FILE  

CurrentFolder = pwd; 

[FileName10,PathName10] = uigetfile('*.tif', 'SELECT THE MOD09 FILE'); 

cd(PathName10); 

mod09 = double(geotiffread(FileName10))/10000; 

info_mod09=geotiffinfo(FileName10); 

refmatrix_mod09=info_mod09.RefMatrix; 

   

y=zeros(row,9); 

y2=zeros(row,3); 

y3=zeros(row,1); 

r1=zeros(1,row);c1=zeros(1,row); 

r2=zeros(1,row);c2=zeros(1,row); 

r3=zeros(1,row);c3=zeros(1,row); 

r4=zeros(1,row);c4=zeros(1,row); 

r5=zeros(1,row);c5=zeros(1,row); 

r6=zeros(1,row);c6=zeros(1,row); 

r7=zeros(1,row);c7=zeros(1,row); 

r8=zeros(1,row);c8=zeros(1,row); 



159 

 

r9=zeros(1,row);c9=zeros(1,row); 

a1=zeros(1,row);a2=zeros(1,row); 

a3=zeros(1,row);a4=zeros(1,row); 

a5=zeros(1,row);a6=zeros(1,row); 

a7=zeros(1,row);a8=zeros(1,row); 

a9=zeros(1,row);a10=zeros(1,row); 

a11=zeros(1,row); 

  

tstart=tic; 

for i=column:row 

     

    [r1(i),c1(i)] = map2pix(refmatrix_sza, S(i,1).X,S(i,1).Y); 

    a1(i)= sza(ceil(r1(i)),ceil(c1(i))); 

     

    [r2(i),c2(i)] = map2pix(refmatrix_vza, S(i,1).X,S(i,1).Y); 

    a2(i)= vza(ceil(r2(i)),ceil(c2(i))); 

     

    [r3(i),c3(i)] = map2pix(refmatrix_saa, S(i,1).X,S(i,1).Y); 

    a3(i)= saa(ceil(r3(i)),ceil(c3(i))); 

     

    [r4(i),c4(i)] = map2pix(refmatrix_vaa, S(i,1).X,S(i,1).Y); 

    a4(i)= vaa(ceil(r4(i)),ceil(c4(i))); 

     

    [r5(i),c5(i)] = map2pix(refmatrix_wv, S(i,1).X,S(i,1).Y); 

    a5(i)= wv(ceil(r5(i)),ceil(c5(i))); 

     

    [r6(i),c6(i)] = map2pix(refmatrix_o3, S(i,1).X,S(i,1).Y); 

    a6(i)= o3(ceil(r6(i)),ceil(c6(i))); 

     

    [r7(i),c7(i)] = map2pix(refmatrix_aod, S(i,1).X,S(i,1).Y); 

    a7(i)= aod(ceil(r7(i)),ceil(c7(i))); 

     

    [r8(i),c8(i)] = map2pix(refmatrix_mod02, S(i,1).X,S(i,1).Y); 

    a8(i)= mod02(ceil(r8(i)),ceil(c8(i))); 

     

    [r9(i),c9(i)] = map2pix(refmatrix_mod09, S(i,1).X,S(i,1).Y); 

    a9(i)= mod09(ceil(r9(i)),ceil(c9(i))); 

     

    a10(i)=S(i,1).X; 

     

    a11(i)=S(i,1).Y; 

end 

  

y(:,1)=a1; 

y(:,2)=a2;     

y(:,3)=a3;     

y(:,4)=a4;     

y(:,5)=a5;     

y(:,6)=a6; 

y(:,7)=a7; 

y(:,8)=a8; 

y(:,9)=a9; 

y2(:,1)=a10; 

y2(:,2)=a11; 

y2(:,3)=a8; 

y3(:,1)=a9; 

     

  

%COLUMN HEADERS & WRITING THE OUTPUT TO A COMMA SEPARETED CSV FILE 

headers1=['SZA',',','VZA',',','SAA',',','VAA',',','WV',',','O3',',','AOD',',','

MOD02',',','MOD09']; 

headers2=['X',',','Y',',','MOD02']; 

headers3=('MOD09'); 

  

%SMAC input csv file 

[FileName11,PathName11] = uiputfile('*.csv', 'SAVE THE SMAC INPUT FILE AS'); 

cd(PathName11); 

fid = fopen(FileName11,'w'); 

fprintf(fid,'%s\r\n',headers1); 

fclose(fid); 
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dlmwrite(FileName11,y,'-append','delimiter',',','precision',9); 

  

%MARS xtest csv file 

b1='xtest.csv'; 

fid = fopen(b1,'w'); 

fprintf(fid,'%s\r\n',headers2); 

fclose(fid); 

dlmwrite(b1,y2,'-append','delimiter',',','precision',9); 

   

%MARS ytest csv file 

b2='ytest.csv'; 

fid = fopen(b2,'w'); 

fprintf(fid,'%s\r\n',headers3); 

fclose(fid); 

dlmwrite(b2,y3,'-append','delimiter',',','precision',9); 

  

telapsed=toc(tstart); 

fprintf('Process time in sec. = %f\n',telapsed) 

  

 

E.4 MATLAB Code to Prepare Response and Predictor Matrices for 

Multi-Response MARS Classification 

%function trngpointextract_snow extract raster values onto points stored in a 

%shape file to prepare training file for MARS snow classification 

function y = trngpointextract_snow 

  

%class indicates the landuse type of the shape file, and valid input ranges: 

%snow  =1 

%water =2 

%cloud =3 

%land  =4 

  

%Author: Semih Kuter 

%Date  : January 2013 

  

  

  

%GET THE ARCGIS SHAPE FILES IN WHICH THE SAMPLING POINTS ARE STORED 

%CurrentFolder = pwd; 

[FileName1,PathName1] = uigetfile('*.shp', 'SELECT THE SNOW SHAPE FILE'); 

cd(PathName1); 

S = shaperead(FileName1); 

Sdimensions = size(S); 

Srow=Sdimensions(1); 

Scolumn=Sdimensions(2); 

  

  

[FileName12,PathName12] = uigetfile('*.shp', 'SELECT THE WATER SHAPE FILE'); 

cd(PathName12); 

W = shaperead(FileName12); 

Wdimensions = size(W); 

Wrow=Wdimensions(1); 

Wcolumn=Wdimensions(2); 

  

  

[FileName13,PathName13] = uigetfile('*.shp', 'SELECT THE CLOUD SHAPE FILE'); 

cd(PathName13); 

C = shaperead(FileName13); 

Cdimensions = size(C); 

Crow=Cdimensions(1); 

Ccolumn=Cdimensions(2); 
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[FileName14,PathName14] = uigetfile('*.shp', 'SELECT THE LAND SHAPE FILE'); 

cd(PathName14); 

L = shaperead(FileName14); 

Ldimensions = size(L); 

Lrow=Ldimensions(1); 

Lcolumn=Ldimensions(2); 

  

  

%GET THE B01 FILE  

[FileName2,PathName2] = uigetfile('*.tif', 'SELECT THE BAND 01 IMAGE'); 

cd(PathName2); 

b01 = geotiffread(FileName2); 

info_b01=geotiffinfo(FileName2); 

refmatrix_b01=info_b01.RefMatrix; 

  

  

  

%GET THE B02 FILE  

[FileName3,PathName3] = uigetfile('*.tif', 'SELECT THE BAND 02 IMAGE'); 

cd(PathName3); 

b02 = geotiffread(FileName3); 

info_b02=geotiffinfo(FileName3); 

refmatrix_b02=info_b02.RefMatrix; 

  

  

  

%GET THE B03 FILE  

[FileName4,PathName4] = uigetfile('*.tif', 'SELECT THE BAND 03 IMAGE'); 

cd(PathName4); 

b03 = geotiffread(FileName4); 

info_b03=geotiffinfo(FileName4); 

refmatrix_b03=info_b03.RefMatrix; 

  

  

  

%GET THE B04 FILE  

[FileName5,PathName5] = uigetfile('*.tif', 'SELECT THE BAND 04 IMAGE'); 

cd(PathName5); 

b04 = geotiffread(FileName5); 

info_b04=geotiffinfo(FileName5); 

refmatrix_b04=info_b04.RefMatrix; 

  

  

  

%GET THE B05 FILE  

[FileName6,PathName6] = uigetfile('*.tif', 'SELECT THE BAND 05 IMAGE'); 

cd(PathName6); 

b05 = geotiffread(FileName6); 

info_b05=geotiffinfo(FileName6); 

refmatrix_b05=info_b05.RefMatrix; 

  

  

  

%GET THE B06 FILE  

[FileName7,PathName7] = uigetfile('*.tif', 'SELECT THE BAND 06 IMAGE'); 

cd(PathName7); 

b06 = geotiffread(FileName7); 

info_b06=geotiffinfo(FileName7); 

refmatrix_b06=info_b06.RefMatrix; 

  

  

  

%GET THE B07 FILE  

[FileName8,PathName8] = uigetfile('*.tif', 'SELECT THE BAND 07 IMAGE'); 

cd(PathName8); 

b07 = geotiffread(FileName8); 

info_b07=geotiffinfo(FileName8); 

refmatrix_b07=info_b07.RefMatrix; 
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%GET THE B31 FILE  

[FileName9,PathName9] = uigetfile('*.tif', 'SELECT THE BAND 31 IMAGE'); 

cd(PathName9); 

b31 = geotiffread(FileName9); 

info_b31=geotiffinfo(FileName9); 

refmatrix_b31=info_b31.RefMatrix; 

  

  

  

%GET THE B32 FILE  

[FileName10,PathName10] = uigetfile('*.tif', 'SELECT THE BAND 32 IMAGE'); 

cd(PathName10); 

b32 = geotiffread(FileName10); 

info_b32=geotiffinfo(FileName10); 

refmatrix_b32=info_b32.RefMatrix; 

  

%MATRIX PREALLOCATIONS 

y1=zeros(Srow,12); 

y2=zeros(Wrow,12); 

y3=zeros(Crow,12); 

y4=zeros(Lrow,12); 

y=zeros(Srow+Wrow+Crow+Lrow,12); 

  

r1=zeros(1,Srow);c1=zeros(1,Srow); 

r2=zeros(1,Srow);c2=zeros(1,Srow); 

r3=zeros(1,Srow);c3=zeros(1,Srow); 

r4=zeros(1,Srow);c4=zeros(1,Srow); 

r5=zeros(1,Srow);c5=zeros(1,Srow); 

r6=zeros(1,Srow);c6=zeros(1,Srow); 

r7=zeros(1,Srow);c7=zeros(1,Srow); 

r8=zeros(1,Srow);c8=zeros(1,Srow); 

r9=zeros(1,Srow);c9=zeros(1,Srow); 

  

r10=zeros(1,Wrow);c10=zeros(1,Wrow); 

r11=zeros(1,Wrow);c11=zeros(1,Wrow); 

r12=zeros(1,Wrow);c12=zeros(1,Wrow); 

r13=zeros(1,Wrow);c13=zeros(1,Wrow); 

r14=zeros(1,Wrow);c14=zeros(1,Wrow); 

r15=zeros(1,Wrow);c15=zeros(1,Wrow); 

r16=zeros(1,Wrow);c16=zeros(1,Wrow); 

r17=zeros(1,Wrow);c17=zeros(1,Wrow); 

r18=zeros(1,Wrow);c18=zeros(1,Wrow); 

  

r19=zeros(1,Crow);c19=zeros(1,Crow); 

r20=zeros(1,Crow);c20=zeros(1,Crow); 

r21=zeros(1,Crow);c21=zeros(1,Crow); 

r22=zeros(1,Crow);c22=zeros(1,Crow); 

r23=zeros(1,Crow);c23=zeros(1,Crow); 

r24=zeros(1,Crow);c24=zeros(1,Crow); 

r25=zeros(1,Crow);c25=zeros(1,Crow); 

r26=zeros(1,Crow);c26=zeros(1,Crow); 

r27=zeros(1,Crow);c27=zeros(1,Crow); 

  

r28=zeros(1,Lrow);c28=zeros(1,Lrow); 

r29=zeros(1,Lrow);c29=zeros(1,Lrow); 

r30=zeros(1,Lrow);c30=zeros(1,Lrow); 

r31=zeros(1,Lrow);c31=zeros(1,Lrow); 

r32=zeros(1,Lrow);c32=zeros(1,Lrow); 

r33=zeros(1,Lrow);c33=zeros(1,Lrow); 

r34=zeros(1,Lrow);c34=zeros(1,Lrow); 

r35=zeros(1,Lrow);c35=zeros(1,Lrow); 

r36=zeros(1,Lrow);c36=zeros(1,Lrow); 

  

  

a1=zeros(1,Srow);a2=zeros(1,Srow); 

a3=zeros(1,Srow);a4=zeros(1,Srow); 

a5=zeros(1,Srow);a6=zeros(1,Srow); 

a7=zeros(1,Srow);a8=zeros(1,Srow); 
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a9=zeros(1,Srow);a10=zeros(1,Srow); 

a11=zeros(1,Srow);a12=zeros(1,Srow); 

  

a13=zeros(1,Wrow);a14=zeros(1,Wrow); 

a15=zeros(1,Wrow);a16=zeros(1,Wrow); 

a17=zeros(1,Wrow);a18=zeros(1,Wrow); 

a19=zeros(1,Wrow);a20=zeros(1,Wrow); 

a21=zeros(1,Wrow);a22=zeros(1,Wrow); 

a23=zeros(1,Wrow);a24=zeros(1,Wrow); 

  

a25=zeros(1,Crow);a26=zeros(1,Crow); 

a27=zeros(1,Crow);a28=zeros(1,Crow); 

a29=zeros(1,Crow);a30=zeros(1,Crow); 

a31=zeros(1,Crow);a32=zeros(1,Crow); 

a33=zeros(1,Crow);a34=zeros(1,Crow); 

a35=zeros(1,Crow);a36=zeros(1,Crow); 

  

a37=zeros(1,Lrow);a38=zeros(1,Lrow); 

a39=zeros(1,Lrow);a40=zeros(1,Lrow); 

a41=zeros(1,Lrow);a42=zeros(1,Lrow); 

a43=zeros(1,Lrow);a44=zeros(1,Lrow); 

a45=zeros(1,Lrow);a46=zeros(1,Lrow); 

a47=zeros(1,Lrow);a48=zeros(1,Lrow); 

  

  

  

tstart=tic; 

%SNOW 

for i=Scolumn:Srow 

     

    a1(i)= 1; 

     

    [r1(i),c1(i)] = map2pix(refmatrix_b01, S(i,1).X,S(i,1).Y); 

    a2(i)= b01(round(r1(i)),round(c1(i))); 

     

    [r2(i),c2(i)] = map2pix(refmatrix_b02, S(i,1).X,S(i,1).Y); 

    a3(i)= b02(round(r2(i)),round(c2(i))); 

     

    [r3(i),c3(i)] = map2pix(refmatrix_b03, S(i,1).X,S(i,1).Y); 

    a4(i)= b03(round(r3(i)),round(c3(i))); 

     

    [r4(i),c4(i)] = map2pix(refmatrix_b04, S(i,1).X,S(i,1).Y); 

    a5(i)= b04(round(r4(i)),round(c4(i))); 

     

    [r5(i),c5(i)] = map2pix(refmatrix_b05, S(i,1).X,S(i,1).Y); 

    a6(i)= b05(round(r5(i)),round(c5(i))); 

     

    [r6(i),c6(i)] = map2pix(refmatrix_b06, S(i,1).X,S(i,1).Y); 

    a7(i)= b06(round(r6(i)),round(c6(i))); 

     

    [r7(i),c7(i)] = map2pix(refmatrix_b07, S(i,1).X,S(i,1).Y); 

    a8(i)= b07(round(r7(i)),round(c7(i))); 

     

    [r8(i),c8(i)] = map2pix(refmatrix_b31, S(i,1).X,S(i,1).Y); 

    a9(i)= b31(round(r8(i)),round(c8(i))); 

     

    [r9(i),c9(i)] = map2pix(refmatrix_b32, S(i,1).X,S(i,1).Y); 

    a10(i)= b32(round(r9(i)),round(c9(i))); 

     

         

       

    a11(i)=S(i,1).X; 

     

    a12(i)=S(i,1).Y; 

end 

  

y1(:,1)=a1;      %class snow 

y1(:,2)=a11;     %X 

y1(:,3)=a12;     %Y 

y1(:,4)=a2;      %b01 



164 

 

y1(:,5)=a3;      %b02 

y1(:,6)=a4;      %b03 

y1(:,7)=a5;      %b04 

y1(:,8)=a6;      %b05 

y1(:,9)=a7;      %b06 

y1(:,10)=a8;     %b07 

y1(:,11)=a9;     %b31 

y1(:,12)=a10;    %b32 

  

  

  

%WATER 

for i=Wcolumn:Wrow 

     

    a13(i)= 2; 

     

    [r10(i),c10(i)] = map2pix(refmatrix_b01, W(i,1).X,W(i,1).Y); 

    a14(i)= b01(round(r10(i)),round(c10(i))); 

     

    [r11(i),c11(i)] = map2pix(refmatrix_b02, W(i,1).X,W(i,1).Y); 

    a15(i)= b02(round(r11(i)),round(c11(i))); 

     

    [r12(i),c12(i)] = map2pix(refmatrix_b03, W(i,1).X,W(i,1).Y); 

    a16(i)= b03(round(r12(i)),round(c12(i))); 

     

    [r13(i),c13(i)] = map2pix(refmatrix_b04, W(i,1).X,W(i,1).Y); 

    a17(i)= b04(round(r13(i)),round(c13(i))); 

     

    [r14(i),c14(i)] = map2pix(refmatrix_b05, W(i,1).X,W(i,1).Y); 

    a18(i)= b05(round(r14(i)),round(c14(i))); 

     

    [r15(i),c15(i)] = map2pix(refmatrix_b06, W(i,1).X,W(i,1).Y); 

    a19(i)= b06(round(r15(i)),round(c15(i))); 

     

    [r16(i),c16(i)] = map2pix(refmatrix_b07, W(i,1).X,W(i,1).Y); 

    a20(i)= b07(round(r16(i)),round(c16(i))); 

     

    [r17(i),c17(i)] = map2pix(refmatrix_b31, W(i,1).X,W(i,1).Y); 

    a21(i)= b31(round(r17(i)),round(c17(i))); 

     

    [r18(i),c18(i)] = map2pix(refmatrix_b32, W(i,1).X,W(i,1).Y); 

    a22(i)= b32(round(r18(i)),round(c18(i))); 

     

         

       

    a23(i)=W(i,1).X; 

     

    a24(i)=W(i,1).Y; 

end 

  

y2(:,1)=a13;      %class water 

y2(:,2)=a23;      %X 

y2(:,3)=a24;      %Y 

y2(:,4)=a14;      %b01 

y2(:,5)=a15;      %b02 

y2(:,6)=a16;      %b03 

y2(:,7)=a17;      %b04 

y2(:,8)=a18;      %b05 

y2(:,9)=a19;      %b06 

y2(:,10)=a20;     %b07 

y2(:,11)=a21;     %b31 

y2(:,12)=a22;     %b32 

  

  

  

%CLOUD 

for i=Ccolumn:Crow 

     

    a25(i)= 3; 
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    [r19(i),c19(i)] = map2pix(refmatrix_b01, C(i,1).X,C(i,1).Y); 

    a26(i)= b01(round(r19(i)),round(c19(i))); 

     

    [r20(i),c20(i)] = map2pix(refmatrix_b02, C(i,1).X,C(i,1).Y); 

    a27(i)= b02(round(r20(i)),round(c20(i))); 

     

    [r21(i),c21(i)] = map2pix(refmatrix_b03, C(i,1).X,C(i,1).Y); 

    a28(i)= b03(round(r21(i)),round(c21(i))); 

     

    [r22(i),c22(i)] = map2pix(refmatrix_b04, C(i,1).X,C(i,1).Y); 

    a29(i)= b04(round(r22(i)),round(c22(i))); 

     

    [r23(i),c23(i)] = map2pix(refmatrix_b05, C(i,1).X,C(i,1).Y); 

    a30(i)= b05(round(r23(i)),round(c23(i))); 

     

    [r24(i),c24(i)] = map2pix(refmatrix_b06, C(i,1).X,C(i,1).Y); 

    a31(i)= b06(round(r24(i)),round(c24(i))); 

     

    [r25(i),c25(i)] = map2pix(refmatrix_b07, C(i,1).X,C(i,1).Y); 

    a32(i)= b07(round(r25(i)),round(c25(i))); 

     

    [r26(i),c26(i)] = map2pix(refmatrix_b31, C(i,1).X,C(i,1).Y); 

    a33(i)= b31(round(r26(i)),round(c26(i))); 

     

    [r27(i),c27(i)] = map2pix(refmatrix_b32, C(i,1).X,C(i,1).Y); 

    a34(i)= b32(round(r27(i)),round(c27(i))); 

     

         

       

    a35(i)=C(i,1).X; 

     

    a36(i)=C(i,1).Y; 

end 

  

y3(:,1)=a25;      %class cloud 

y3(:,2)=a35;      %X 

y3(:,3)=a36;      %Y 

y3(:,4)=a26;      %b01 

y3(:,5)=a27;      %b02 

y3(:,6)=a28;      %b03 

y3(:,7)=a29;      %b04 

y3(:,8)=a30;      %b05 

y3(:,9)=a31;      %b06 

y3(:,10)=a32;     %b07 

y3(:,11)=a33;     %b31 

y3(:,12)=a34;     %b32 

  

  

  

%LAND 

for i=Lcolumn:Lrow 

     

    a37(i)= 4; 

     

    [r28(i),c28(i)] = map2pix(refmatrix_b01, L(i,1).X,L(i,1).Y); 

    a38(i)= b01(round(r28(i)),round(c28(i))); 

     

    [r29(i),c29(i)] = map2pix(refmatrix_b02, L(i,1).X,L(i,1).Y); 

    a39(i)= b02(round(r29(i)),round(c29(i))); 

     

    [r30(i),c30(i)] = map2pix(refmatrix_b03, L(i,1).X,L(i,1).Y); 

    a40(i)= b03(round(r30(i)),round(c30(i))); 

     

    [r31(i),c31(i)] = map2pix(refmatrix_b04, L(i,1).X,L(i,1).Y); 

    a41(i)= b04(round(r31(i)),round(c31(i))); 

     

    [r32(i),c32(i)] = map2pix(refmatrix_b05, L(i,1).X,L(i,1).Y); 

    a42(i)= b05(round(r32(i)),round(c32(i))); 

     

    [r33(i),c33(i)] = map2pix(refmatrix_b06, L(i,1).X,L(i,1).Y); 
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    a43(i)= b06(round(r33(i)),round(c33(i))); 

     

    [r34(i),c34(i)] = map2pix(refmatrix_b07, L(i,1).X,L(i,1).Y); 

    a44(i)= b07(round(r34(i)),round(c34(i))); 

     

    [r35(i),c35(i)] = map2pix(refmatrix_b31, L(i,1).X,L(i,1).Y); 

    a45(i)= b31(round(r35(i)),round(c35(i))); 

     

    [r36(i),c36(i)] = map2pix(refmatrix_b32, L(i,1).X,L(i,1).Y); 

    a46(i)= b32(round(r36(i)),round(c36(i))); 

     

         

       

    a47(i)=L(i,1).X; 

     

    a48(i)=L(i,1).Y; 

end 

  

y4(:,1)=a37;      %class land 

y4(:,2)=a47;      %X 

y4(:,3)=a48;      %Y 

y4(:,4)=a38;      %b01 

y4(:,5)=a39;      %b02 

y4(:,6)=a40;      %b03 

y4(:,7)=a41;      %b04 

y4(:,8)=a42;      %b05 

y4(:,9)=a43;      %b06 

y4(:,10)=a44;     %b07 

y4(:,11)=a45;     %b31 

y4(:,12)=a46;     %b32 

  

  

y=vertcat(y1,y2,y3,y4); 

  

%Scolumn HEADERS & WRITING THE OUTPUT TO A COMMA SEPARETED CSV FILE 

headers1=['CLASS',',','X',',','Y',',','B01',',','B02',',','B03',',','B04',',','

B05',',','B06',',','B07',',','B31',',','B32']; 

  

telapsed=toc(tstart); 

  

%SNOW TEST DATA csv file 

[FileName11,PathName11] = uiputfile('*.csv', 'SAVE THE TEST DATA AS'); 

cd(PathName11); 

fid = fopen(FileName11,'w'); 

fprintf(fid,'%s\r\n',headers1); 

fclose(fid); 

dlmwrite(FileName11,y,'-append','delimiter',',','precision',9); 

  

  

  

fprintf('Process time in sec. = %f\n',telapsed) 

  

 
 

E.5 MATLAB Code to Obtain Cloud Mask from MOD09GA State_1km 

QA Data 

%function cloudmask makes a cloud mask from MOD09GA State_1km QA data 

function y = cloudmask 

  

  

  

%Author: Semih Kuter 
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%Date  : March 2013 

  

  

  

%GET THE MOD09GA  STATE1KM QA FILE 

CurrentFolder = pwd; 

[FileName1,PathName1] = uigetfile('*.tif', 'SELECT THE MOD09GA STATE_1KM_QA 

IMAGE'); 

cd(PathName1); 

[mod09,data] = geotiffread(FileName1); 

row = size(mod09,1); 

column = size(mod09,2); 

  

  

 

%CALCULATIONS 

y = zeros(row,column); 

tstart=tic; 

for i=1:row; 

    for j=1:column; 

        S=dec2bin(mod09(i,j),16); 

        a=str2double(S(15)); 

        b=str2double(S(16)); 

        if a==0 && b==1; 

           y(i,j)=0; 

        elseif a==1 && b==0; 

           y(i,j)=0; 

        else 

           y(i,j)=1; 

        end; 

    end;  

end; 

telapsed=toc(tstart); 

  

  

%WRITE CLOUD MASK INTO A GEOTIFF IMAGE 

[FileName2,PathName2] = uiputfile('*.tif', 'SAVE THE CLOUD MASK IMAGE AS'); 

cd(PathName2); 

geotiffwrite(FileName2,y,data); 

  

   

fprintf('Process time in sec. = %f\n',telapsed) 

  

cd(CurrentFolder); 
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