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ABSTRACT

WEIGHT DISCRIMINATION OF BOOLEAN FUNCTIONS WITH
QUANTUM COMPUTATION

Uyanık, Kıvanç
Ph.D., Department of Physics
Supervisor : Assoc. Prof. Dr. Sadi Turgut

February 2014, 85 pages

In this thesis, we investigate solvability of the weight decision problem of two
Boolean functions by quantum computation. In particular, we study this prob-
lem first from a general quantum operator discrimination perspective and second
from a direct algorithmic viewpoint.

As quantum operator discrimination approach is concerned, we give two different
formulations for two different cases. In one, the unitary transformations that
correspond to the function evaluation are applied in a parallel fashion and in
the other, they are applied only sequentially. Since the parallel case can always
be simulated with a serial architecture, we put more emphasis on the serial
approach and present a superior result in the serial setting. Specifically we show
that any protocol with a serial application of p function evaluations interspersed
with p − 1 generic unitary operators in between can be uniquely mapped to a
density matrix acting on some other Hilbert space.

In the direct approach, we generalize Grover’s iteration in such a way that it
can be run deterministically for the discrimination of Boolean functions. We
show that sure-success weight distinguishability problem of two Boolean func-
tions using a certain number of evaluations can be reduced to the problem of
determining whether a point lies inside the convex hull of a curve. This convex
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analysis problem is further translated into a system of algebraic equations of a
single variable. These equations are solved analytically for the case of single and
two evaluations. For more evaluations numerical methods are utilized.

Keywords: Weight Decision Problem, Quantum Algorithm, Grover’s Iteration,
Quantum Information, Quantum Computation
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ÖZ

KUANTUM HESAPLAMAYLA MANTIKSAL FONKSİYONLARIN
AĞIRLIKLARININ AYIRT EDİLMESİ

Uyanık, Kıvanç
Doktora, Fizik Bölümü
Tez Yöneticisi : Doç. Dr. Sadi Turgut

Şubat 2014 , 85 sayfa

Bu tezde kuantum hesaplamayla iki mantıksal fonksiyonun ağırlıklarının ayırt
edilmesinin hesaplanabilirliği araştırılmıştır. Bu problem özel olarak önce genel
bir kuantum operatör ayırt etme perspektifinden ve sonrasında da doğrudan bir
algoritmik bakış açısıyla çalışılmıştır.

Kuantum operatör ayırt etme yaklaşımı söz konusu olduğunda iki farklı durum
için iki farklı formülasyon verilmiştir. Bu durumlardan birinde fonksiyon hesap-
lamaya karşılık gelen üniter dönüşümler paralel olarak diğerinde ise seri olarak
uygulanmaktadır. Paralel durum her koşulda seri bir mimariyle simüle edilebile-
ceğinden seri yaklaşıma daha çok ağırlık verilmiş olup, çalışılan probleme daha
ileri bir çözüm önerilmektedir. Özellikle, fonksiyonlara karşılık gelen p üniter
operatörün aralarında p−1 genel üniter operatörle birlikte seri uygulamasından
oluşan her protokolün p adet Hilbert uzayının tensör çarpımından oluşan uzayda
etki eden farklı bir yoğunluk matrisine birebir eşlenebildiği gösterilmektedir.

Doğrudan yaklaşımdaysa Grover iterasyonu mantıksal fonksiyonların ayırt edil-
mesinde deterministik olarak çalışacak şekilde genellenmektedir. Mantıksal fonk-
siyonların deterministik olarak ve belli bir sayıda hesaplamayla ağırlık ayırt etme
probleminin bir noktanın bir eğrinin konveks örtüsünün içinde olması problemine
indirgenebileceği gösterilmektedir. Daha ötesi, bu konveks analiz problemi tek

vii



değişkenli cebirsel bir denklem sistemine indirgenmektedir. Bu denklemler bir ve
iki hesaplama durumu için analitik olarak çözülmektedir. Daha fazla hesaplama
durumu içinse numerik yöntemler kullanılmaktadır.

Anahtar Kelimeler: Ağırlık Ayırt Etme Problemi, Quantum Algoritma, Grover
İterasyonu, Quantum Bilgi Sistemleri, Quantum Hesaplama
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CHAPTER 1

INTRODUCTION

Perhaps the most important progress in physics that took place during the early
twentieth century was the transition from (what we call now)classical laws of
physics to the modern theory of quantum mechanics. It is a theoretical frame-
work for the construction of physical theories, rather than a collection of laws.
Within this framework, it became possible to describe the interaction of fun-
damental particles and light up to an immense level of accuracy. Since then,
it became an integral part of physical theories and its applications in science
is widely acknowledged[1]. The implications of quantum mechanics were quite
unfamiliar to the “classical” minds of physicists, however, as the experimental
verifications accumulated, the idea that nature behaves in this bizarre way be-
came more permanent. Until 1970’s, on the other hand, scientists were unable to
conduct these experiments by means of a complete control on the atomic scale.
Even though they were able to explain numerous phenomena ranging from the
interactions that take place inside the atoms to the working mechanism of neu-
tron stars, scientists were deprived of such a low level manipulation of atoms or
molecules.

In 1970’s and 1980’s this picture have begun to change. The capability of atomic
force microscope to control single atoms on a surface, creation, detection, and
manipulation of single photons and other similar techniques have become prac-
tical tools of physicists. Also in these years, the observation that the inefficiency
of classical computers to simulate quantum mechanical processes led Feynman
to speculate about a computer that its algorithmic operation is completely quan-
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tum mechanical[2, 3]. This idea was also suggested by Benioff[4, 5, 6] with a
motivation from a self consistency perspective of quantum mechanics[7]. If such
a general purpose quantum computer could be built, then it has been shown that,
any local quantum system could be efficiently simulated[8]. However the striking
thought of Deutsch was that whether any computational task, classical or quan-
tum, could be simulated efficiently with a quantum computer[9]. Yet, this may
be too strong a proposition and it hasn’t been proven until now, however Deutsch
and later Deutsch with Jozsa showed that there exist problems that quantum
computers outperform classical computers on an exponential scale[9, 10].

Deutsch’s influential papers have opened new avenues for both computer science
and physics. His works are often attributed to mark the beginning of quantum
computation. However before continuing on the short history of quantum com-
putation, let us briefly review major breakthroughs in computer science. A good
starting point may be the seminal paper by Alan Turing, which he wrote in 1936.
In this work, he built a theoretical model for defining a class of functions known
as “computable functions”[11]. With this formulation it was possible to show
that every function that is “algorithmically computable” can be run on a hypo-
thetical machine which later named as Turing machine[1]. There were two other
models capturing the same idea by Church[12, 13] and Gödel and Herbrand. It
was also shown that these three approaches are fundamentally equivalent[11],
and the hypothesis of Turing is named as Church-Turing thesis honoring these
two great mathematicians. In essence, as very well stated in [1]: “Turing claimed
that the Universal Turing Machine completely captures what it means to per-
form a task by algorithmic means”. These results are particularly useful for
the quantification of the computational resources independent of the underlying
computational model[11, 7]. Thanks to the basic architecture that Von Neu-
mann developed a few years later, a computer that can work fully as capable
as a Universal Turing Machine was ready to be built[1]. After the invention of
transistors and later integrated circuits, electronics and computer engineers de-
signed more efficient computer hardware ever since however the basic principle
of computing remained the same.

Now let us return our attention to the Deutsch’s arguments. He argued that
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whether a computational device that utilizes quantum mechanical laws of na-
ture in order to efficiently simulate any physical system whether classical or
quantum. An efficient simulation is defined as requiring only polynomial re-
sources to simulate any computational model with a universal Turing machine
therefore the Church-Turing thesis may take the strong form: “Any algorith-
mic process can be simulated efficiently using a Turing machine”[1]. Even when
probabilistic algorithms are considered, the Church-Turing thesis is not funda-
mentally challenged. On the other hand when it is confronted with the idea of
a quantum mechanical computer, a new field of research at the intersection of
computer science and physics has been born. The classical versions of Turing
machine[4, 5, 6, 9] and circuit model[9] are updated to the quantum versions
and later their equivalence is proved[14]. The example of Deutsch and Jozsa
distinguishes constant and balanced Boolean functions on a quantum computer
exponentially faster than classical deterministic algorithms running on a clas-
sical computer. Nevertheless its performance could also be compared with the
classical probabilistic algorithms and quantum speedup can not be achieved in
this case when vanishingly small probability of error is allowed. Shortly after
however Bernstein and Vazirani[15] gave instances of superpolynomially faster
quantum algorithms. The next significant progress was due to Simon[16] in
which he stated a problem where exponential speedup was achieved as com-
pared to any classical algorithm.

Thus far, the problems that were posed to serve as an example of efficient quan-
tum computation had little practical value. It was the remarkable paper by
Shor that changed this picture. His algorithm could find prime factors of very
large integers and discrete logarithm using polynomial time whereas the best
classical algorithm that is known can solve this problem taking superpolynomial
time[17]. This result has serious consequences in our daily lives. Most of the
common cryptographic schemes are based on the difficulty of prime factoring.
If someone can ever build a scalable quantum computer, the reliability of cryp-
tographic systems would be compromised. Nonetheless a quantum computer
that can operate Shor’s algorithm for large numbers is not expected to be built
for quite a while. The other landmark in the field of quantum computation
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was the Grover’s algorithm which can search through an unstructured database
quadratically faster than classical search algorithms[18]. The other algorithms
that we have mentioned provided much better speedups but they all depended
on a premise in the problem. Indeed, later it was shown that all of those prob-
lems were instances of the more general hidden subgroup problem. In contrast,
Grover’s algorithm can be efficiently utilized regardless of the structure of the
search space, thus making it much more applicable.

In this thesis, we study one of the applications of the Grover’s algorithm. Specif-
ically, we investigate solvability of the weight decision problem of two Boolean
functions by quantum computation. We study this problem first from a general
quantum operator discrimination perspective and second from a direct algorith-
mic viewpoint.

Quantum algorithms are fundamentally different from the classical ones. This
is partly because it is highly nontrivial to utilize the nonclassical resources such
as parallelism and entanglement that comes with the availability of quantum
control at the atomic scale. An improvement in this area of science has con-
sequences not only in the computer science and quantum physics but also in
seemingly unrelated subjects such as astrophysics and biophysics. Therefore we
aim to improve and expand our knowledge about this promising field of research.

Organization

Since the weight decision problem can be reformulated as an operator dis-
crimination problem like many other quantum algorithms we start with a brief
review of quantum operator discrimination in Chapter 2. All quantum oper-
ator discrimination protocols necessarily include a quantum state discrimina-
tion step in the end. For this reason, the first part of Chapter 2 is devoted
to quantum state discrimination problem. The discrimination of two orthog-
onal states is rather trivial in quantum mechanics. However quantum states
have a non-zero overlap in general and more sophisticated mathematical tools
are necessary to distinguish such states. In particular we mainly review the
two most common strategies for quantum state discrimination problem: mini-
mum error and unambiguous discrimination. We also mention mixed strategies
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and possible extensions. After giving necessary background information about
quantum state discrimination, we continue with the quantum operator discrim-
ination problem. Even though they are reduced to state discrimination in the
end, there are fundamental differences between quantum operator and quantum
state discrimination tasks. Unlike states, operators can be utilized more than
once in parallel, sequential or any combination of these and there is the choice
freedom in the initial state we fed to the operator. The rest of Chapter 2 contin-
ues with a short survey of literature on operator discrimination and a powerful
mathematical relation between quantum states and quantum operators, namely
Choi-Jamiolkowski isomorphism[19, 20].

In Chapter 3, we present our first contribution. We interpret the weight decision
problem of two functions as a set discrimination problem and first try to solve
it only for the case, in which, quantum operators are applied only in parallel.
Then we continue with a more extensive approach where we discuss the problem
of set discrimination with operators applied sequentially. This approach is more
generic because it can be shown that any scenario involving combinations of
both serial and parallel applications of operators can be equivalently described
with a protocol that consist of only sequential applications[21, 22].

In Chapter 4, we start with a brief review of Grover’s algorithm as our second
contribution and the other related works in the literature on weight decision
problem are based on Grover iteration. We continue with quantum counting[23],
a quantum algorithm that can give the number of solutions to an unstructured
database search problem faster than classical algorithms. Then, we advance to
our specific problem: weight decision of Boolean functions. It is first studied
by Braunstein, Choi and others in [24, 25, 26], thus we review their algorithm
and results thoroughly before giving our treatment to the problem. The other
approach to the problem is our work given in [27] where we introduce an exact
version of Grover iteration and utilize it to discriminate weights. We present
our findings with this method, give analytical and numerical results towards the
end of Chapter 4. We finalize this chapter by comparing the complexities of
classical algorithms, quantum counting, Braunstein and Choi’s method and our
analysis.
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Our conclusions and a short future outlook is the content of Chapter 5.
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CHAPTER 2

QUANTUM OPERATOR DISCRIMINATION

In quantum computation, we usually model an unknown classical function as an
oracle. This way we do not worry about the internal workings of the function.
In other words, it is like having a black box; we can only change its input and
make observations at its output. This is a quantum oracle, usually realized by a
unitary evolution, which means that we can also feed superposition of different
qubits as input and obtain corresponding superposition of evaluations at the
output. This is a direct consequence of quantum parallelism. On the other hand,
calling such a function, whether classical or quantum, costs a precious resource:
time. So we try to make use of counterintuitive properties of quantum mechanics
such as parallelism and entanglement in order to solve a problem significantly
faster than we would have with a classical implementation. The examples where
quantum implementation of such a problem is much faster than the classical
ones can usually be reduced to the identification of a feature of such a function
or complete identification of the function itself. Therefore, oracle identification
or oracle discrimination is a critical part of quantum computation.

In quantum operator discrimination we try to optimize both the circuit archi-
tecture and the input state in order to minimize the number of operator calls.
In a typical quantum operator discrimination scenario, we start with a fixed in-
put state consisting of register qubits and ancilla qubits, evolve the joint system
unitarily with the oracle operator given to us and with some other unitary op-
erators we introduced for optimization and make a measurement to distinguish
output states in the end. If we are allowed we can use the operator to be distin-
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guished more than once, however this would also increase the cost, so we should
be careful while designing such protocols. If the final states are orthogonal to
each other, then there won’t be any problem. In that case we can always find
a measurement that would give different results corresponding to each different
state. However most of the time the states are not orthogonal to each other and
non-orthogonal state discrimination is a nontrivial problem. Therefore, before
delving into quantum operator discrimination we should at least briefly review
quantum state discrimination.

This chapter will continue with a short presentation of quantum state discrimi-
nation problem in section 2.1. Two main strategies and other possibilities will be
briefly mentioned. Based on the discussions on state discrimination, an overview
of quantum operator discrimination will be reviewed in section 2.2.

2.1 Quantum State Discrimination

State discrimination is itself a main topic in quantum information. In most gen-
eral form, we deal with ensembles of quantum states with known (or sometimes
unknown) probabilities. Basically, we are confronted with the following prob-
lem. N mixed states ρi are prepared with probabilities ηi,

∑
i ηi = 1. One of

them is secretly selected and given to us from this ensemble. The only accessible
information we have beforehand is the states ρi and corresponding probabilities
ηi. Our task is to determine which state out of these is prepared and given us-
ing quantum measurements. Simplest case would be distinguishing mutually
orthogonal pure states, |ψi〉:

〈ψi|ψj〉 = δij. (2.1)

To distinguish these states, it is enough to make a simple Von Neumann mea-
surement. Applying the projection operators

Mi ≡ |ψi〉 〈ψi| (2.2)
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is sufficient to successfully determine the given unknown state. Notice that since
the states |ψi〉 are orthogonal to each other, the operatorsMi add up to identity,∑
iMi = 1, therefore no inconclusive or wrong result is possible. On the other

hand, nonorthogonal states cannot be perfectly discriminated. This had been
known long before the quantum information tasks came into existence. The
problem of discrimination of nonorthogonal states is an active area of research
in quantum information. There are two main strategies for discrimination of
non-orthogonal quantum states

• Minimum error strategy (ME)

• Unambiguous discrimination (UD).

There other also other strategies like maximal confidence discrimination or mini-
max discrimination; but quantum state discrimination literature is mostly gath-
ered around these two fundamental approaches.

2.1.1 Minimum Error Strategy

The first strategy is due to independent works of Helstrom[28] and Holevo[29]
and have been introduced as early as late 70’s. In this method, we are given
a state ρ that is unknown to us and has been chosen from an ensemble of N
mixed states ρi, which are not necessarily mutually orthogonal. In this ensemble,
each state ρi has a corresponding probability ηi to be prepared, such that they
add up to one: ∑N

i=1 ηi = 1. We aim to specify which state has been selected
from the ensemble while allowing minimal rate of erroneous results. Finding
the operators, which give rise to minimum total probability of error would be
sufficient. These operators could be formally described with positive operator
valued measures (POVMs), {Πj}Nj=1,

∑
j Πj = 1 such that each Πj represents

an operator that its measurement outcome, j, indicates that the prepared state
was ρj. If we denote the unknown state given to us by ρ, then the probability
of concluding that it was prepared as ρj is given by Tr (Πjρ). In [28, 29], the
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minimal probability of error for distinguishing two states is found to be

pE = 1
2 −

1
2 ‖Λ‖ , (2.3)

for an ensemble of two mixed states ρ1 and ρ2, where ‖ ‖ is the trace norm
defined as ‖Λ‖ ≡ Tr

√
Λ†Λ and Λ is the Hermitian operator Λ ≡ η2ρ2 − η1ρ1.

This result is known as Helstrom bound in the literature. Finding optimal
solutions analytically for more than two states is nontrivial in general and may
be a difficult problem, however the conditions that must be satisfied by the
POVMs are known [28, 30, 31]. Various alternative approaches for the known
solutions and solutions for special cases have been studied in several papers and
the interested reader may check [32] for a comprehensive review of the subject.

2.1.2 Unambiguous Discrimination

In unambiguous discrimination strategy, we are not allowed to make an er-
ror. But it is possible to have an inconclusive result. It is first proposed by
Ivanovic[33] and solved for N = 2 by Dieks[34] and Peres[35]. To give an idea
about how the method works, let us assume that we are trying to distinguish
two states ρ1 and ρ2. In this case, we can formulate the strategy with the use
of two POVM operators Π1 and Π2, in order to decide whether the unknown
state was ρ1 or ρ2 respectively. In this process there is zero probability that the
first state ρ1 would be inferred by the measurement Π2 or vice versa, however
as a drawback of this accuracy, we have to introduce another measurement. To
identify this inconclusive decision, we need another POVM operator, Π0, such
that all the operators add up to identity: Π0 +Π1 +Π2 = 1. If the measurement
gives the result i, i = (1, 2), corresponding to the operator Πi, we can be sure
that the supplied state was ρi. On the other hand if the measurement gives
0, we do not obtain any information about the identity of the state. Like the
minimal error strategy, we are interested in the optimum results, so the task
can be reformulated as finding the operators ΠOPT

i , which give minimum total
probability of inconclusive result. For two pure states |ψ1〉 and |ψ2〉, one can
choose Π1 = c1

∣∣∣ψ⊥2 〉 〈ψ⊥2 ∣∣∣ and Π2 = c2

∣∣∣ψ⊥1 〉 〈ψ⊥1 ∣∣∣ where ∣∣∣ψ⊥i 〉’s denote the vec-
tors orthogonal to |ψi〉 and c1 and c2 are the coefficients that are to be found
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from the optimization conditions. One can easily see these operators will not
lead to incorrect results. Π1 and Π2 are positive definite by construction, but
the last operator Π0 should also be positive definite since it corresponds to a
physical operation too [32]. In [32], the optimum failure probability for this case
is found as

QOPT =


2 (η1η2)

1
2 cos (Θ) if cos2(Θ)

1+cos2(Θ) ≤ η1 ≤ 1
1+cos2(Θ) ,

η1 + η2 |〈ψ1|ψ2〉|2 if η1 <
cos2(Θ)

1+cos2(Θ) ,

η1 |〈ψ1|ψ2〉|2 + η2 if η1 >
cos2(Θ)

1+cos2(Θ) ,

(2.4)

where cos Θ = |〈ψ1|ψ2〉| and ηi are the preparation probabilities of ρi. Derivation
of this result is straightforward but there is a bit of some laborious algebraic ma-
nipulation. The solution is partially covered in [32]. Since the main focus of this
work is not the state discrimination, we do not include the intermediate steps.
However, the interpretation of Eq. 2.4 is important. This result reveals that
the POVM {Πi}’s that we have defined lead to the minimal error, however only
when it is possible to define them. In the extreme cases where the probability
of preparing one of the states is too high, the POVM’s doesn’t exist and simply
guessing with an operator using the orthogonal direction to that state give the
lowest probability of error. In figure 2.1, the results of minimum error discrim-
ination and unambiguous discrimination for two pure states is shown. To be
able to make a comparison with the minimum error strategy, error probabilities
corresponding to ME strategy are also included.

When the number of states to be distinguished is larger than two, the problem
becomes complicated. Discrimination of n pure states has been worked out in
[36] for example, however an analytical formula has not been found at the time
this thesis was written. Pure states to be discriminated should be linearly inde-
pendent [37], but if there are more than one copies available, linearly dependent
states can also be unambiguously distinguished [38].

Unlike minimum error discrimination, unambiguous discrimination is progressed
very differently for pure and mixed states [32]. Unfortunately, unambiguous dis-
crimination even for two mixed states is difficult in general and there is ongoing
research about the subject. For mixed states to be unambiguously distinguish-
able, they should satisfy the following condition: the states {ρi} are unambigu-
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ously distinguishable if and only if supp (ρk) 6= supp (ρ1, ..., ρk−1, ρk+1, ..., ρn) ∀k :
1 ≤ k ≤ n [39], where the support of a density matrix ρ, supp (ρ), is the sub-
space spanned by the eigenvectors corresponding to positive eigenvalues of ρ and
the support of a set of density matrices is defined to be the sum of each one’s
support [40, 41].

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2
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η

Q
,
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e

Figure 2.1: {Q,Pe}(optimum error probabilities) vs. η1(probability of preparing
|ψ1〉) for minimum error (Pe - curve below) and unambiguous discrimination
(Q - curve tangent to the linear lines) strategies evaluated for a representative
value of |〈ψ1|ψ2〉|2 = 0.1. For too small η1 below some threshold or too high
above some threshold, error corresponding to UD is linear with η1 as given in
Eq. (2.4)[32].

2.1.3 Other Strategies

Unambiguous discrimination approach can be generalized to the cases where the
states are not linearly independent. One way to do this is through the method
of maximal confidence discrimination[42]. In this approach, one optimizes the
quantity Ci, which is called confidence. It is defined as the conditional proba-
bility, P (ρi|i), of the initial state being ρi, given the outcome i is detected. For
linearly independent states this strategy reduces to unambiguous discrimination.

One can also combine different aspects of these strategies together to search for
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further optimized solutions in between. As indicated in [32], for linearly inde-
pendent pure states, a strategy that interpolates between ME and UD strategies
[43, 44] and for mixed states a unification of ME and maximum confidence strat-
egy [45] has been studied. Another interesting approach is constructing POVMs
directly if possible and test if they give optimized results. A successful example
of this can be found in [46].

In a different approach, one relaxes the condition that the probabilities ηi are
known beforehand. Having this restriction in an approach is called Bayesian. In
contrast with the methods we have discussed up to now, there may be scenarios
where actual probabilities are not relevant or not known as in a noncooperative
cryptographic scenario[47]. In a non-Bayesian setting one applies a so-called
minimax approach to find the optimal minimum error or unambiguous discrimi-
nation rate. It was first introduced in [47]. In [47], the maximum of the smallest
probabilities of correct detection for both ME and UD constraints were consid-
ered.

In general, these optimization problems are very difficult to be solved analyti-
cally, however some of them are straightforwardly applicable to the known nu-
merical optimization methods. References to the examples of these applications
can be found in the comprehensive review by Bergou[32].

2.2 Quantum Operator Discrimination

One of the immediate applications of state discrimination is quantum opera-
tor/channel discrimination. The quantum channels or operations are the math-
ematical models that represent the total effect that is acted on a quantum state
within a physical medium or a black box without dealing with the inner work-
ings of the process. We ignore such information because we do not have any
access to the information about the details or knowing such details would merely
complicate our calculations. On the other hand, we can control the state that
we feed as the input. An example that is particularly important for this thesis
will be the unitary quantum operators which are used to implement classical
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functions. These operators are also called “oracle”, “quantum oracle” or “ora-
cle operator”. The importance comes from the observation that all well-known
quantum algorithms can be interpreted as an oracle discrimination problem [48].

A common formulation of the simplest version of quantum operator discrim-
ination can be formulated as follows: We act the operators εi(·) we wish to
distinguish on an input state ρ. Then discriminate the output states εi(ρ)
with minimum error discrimination[49, 50, 51, 52], unambiguous discrimina-
tion [41, 48, 53] or any other state discrimination scheme. With this primitive
approach, the operator discrimination problem inherits many features of the
quantum state discrimination, thus most of the known results can be immedi-
ately applied to the operator discrimination problem as well. Nevertheless this
is the simplest scheme to be devised. Unlike quantum states, operators can
be applied more than once, in a parallel, sequential or a mixed arrangement.
This additional feature makes it possible to distinguish unitary quantum chan-
nels perfectly with a finite number of uses, in contrast with quantum states,
for which, infinite number of copies are required for perfect discrimination in
general[54].

As an introductory example, we can follow the steps in Sacchi’s work[51], where
ME discrimination of two states is studied. Using Equation (2.3), for error
probability of distinguishing output states, we obtain

PE = min
{ρ∈H}

{1
2 −

1
2 ‖η2ε2(ρ)− η1ε1(ρ)‖

}
= 1

2 −
1
2 max
{ρ∈H}

‖η2ε2(ρ)− η1ε1(ρ)‖ ,
(2.5)

where the minimization is over the input states. It is sufficient to deal with
pure states, since quantum operations are linear and the trace norm satisfy the
following property[55]

‖cA+ (1− c)B‖ ≤ c ‖A‖+ (1− c) ‖B‖ (2.6)

with 0 ≤ c ≤ 1. If we add an ancilla with a Hilbert space H′ of dimensionality
dimH′ and use entangled states fromH⊗H′, the expression for error probability
becomes

P ent
E = 1

2 −
1
2 max
{ρ∈H⊗H′}

‖η2(ε2 ⊗ 1)ρ− η1(ε1 ⊗ 1)ρ‖ . (2.7)
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As a simplification considering the evaluation of the norm in Eq. 2.7, for a finite
dimensional Hilbert space, it is enough to choose dimH′ to be at most dimH
[56, 57].

As it was done with the states, discrimination of operators can be also per-
formed unambiguously. In this case we apply an unambiguous discrimination
procedure to a set of output states εi(ρ) for an input ρ which now minimize
the rate of inconclusive result. Unambiguous discrimination of states was first
applied to operators in Bergou’s work[53]. UD of oracle operators were thor-
oughly discussed in Chefles’ paper [48]. Necessary and sufficient conditions for
unitary operators to be unambiguously distinguishable are presented by Wang
and Ying [41].

One of the most vital parameters that is needed to be discussed in this con-
text is entanglement. Even though “All entangled states are useful for chan-
nel discrimination”[58], there are cases where local entanglement[59] in mul-
tipartite operators, or entanglement with an auxiliary system [48, 21, 60] is
not essential for perfect discrimination between unitary operations. Neverthe-
less, entanglement “can enhance the distinguishability of entanglement-breaking
channels”[51], “can be used to improve the precision of quantum measurements
for either precision or stability”[50] and “can allow us to better distinguish op-
erations” [61]. In addition to these, entanglement help increasing success prob-
ability of discrimination[62] and is found to be useful in many discrimination
cases[22, 41, 63, 64, 65] as compared to protocols without entanglement.

We would like to finalize this chapter with disclosing an effective theoretical
tool for associating quantum channels/operators with quantum states and vice
versa. It was proved that any trace-preserving completely positive operator
ε (·) acting on a D dimensional quantum system can be associated to a density
matrix ωε = (1⊗ ε) Ω which is an element of a D×D dimensional Hilbert space
HD⊗HD, where Ω ≡

∣∣∣Ψ+
D

〉 〈
Ψ+
D

∣∣∣ and ∣∣∣Ψ+
D

〉
≡ ∑D

j=1 |j〉⊗|j〉 is the (unnormalized)
maximally entangled state on the Hilbert space HD ⊗ HD. This result is due
to the work of Jamiolkowski[19] and the improvements of Choi[20], hence it
is usually called Choi-Jamiolkowski isomorphism in the literature. With this
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correspondence, one can apply almost all the main theorems concerning the
states to their operator analogue and vice versa[66]. One example may be given
from the discrimination problem of unitary operations. Suppose we would like
to distinguish two distinct unitary operators U and V acting on D dimensional
Hilbert space HD. From the Choi-Jamiolkowski isomorphism, we know that
there exist two density matrices ωU and ωV which are elements of HD ⊗ HD

corresponding to these operators. Since the supports of ωU and ωV are different,
these states are always unambiguously distinguishable, thus we can immediately
say that the operators U and V are always distinguishable in an unambiguous
fashion.
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CHAPTER 3

QUANTUM SET DISCRIMINATION

In this chapter, we give our solutions to the specific problem of set discrimina-
tion. These sets will correspond to the Boolean functions we want to distinguish
through their weights. These functions of consideration will be implemented by
unitary operators that mutually commute with each other. As the operators can
be applied multiple times before a measurement is performed, how these steps
will be composed make quite a difference in the analysis. There can be many ar-
chitectures possible however there are two main schemes of combinations. First
it is possible to apply these operators in a parallel fashion so that they act on
their input states independent from each other. They may act on an entangled
input state however their individual actions would not have any effect on each
other’s outputs. We call this type of architecture, parallel scheme. The second
one is the serial scheme where the unitaries are concatenated one after another
so that the input of one operator is either the initial state or an output of an-
other operator. Additionally it is possible to alter the state through numerous
processes between two operators but it is possible to take into account of all
these effects with a single unitary. We call such a scenario of acting operators a
serial or a sequential scheme.

3.1 A Parallel Scheme

Most quantum algorithms are implemented in a “state preparation - a quan-
tum process involving finite number of calls to an oracle - final measurement”
form. We are able to choose an input state and design a circuit architecture
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but finally decide with a finite number of measurements in the end. Therefore
the algorithm has been eventually recast as an oracle identification task. In
Deutsch-Jozsa algorithm[10] this is the most transparent. However, some other
famous quantum algorithms, Grover’s algorithm[18] and even Shor’s[17] algo-
rithm can be reformulated as discrimination of quantum operators or sets of
quantum operators[48].

3.1.1 Construction of the problem

Let F n be a set of vectors f = (f1, . . . , fn) such that fi = 0 or 1:

F n = {f = (f1, . . . , fn) : fi = 0 or 1} . (3.1)

Let us define a subset F n
r ⊂ F n such that

F n
r = {f : exactly r components are 1, other n− r components are 0}(3.2)

An example with n = 5 and r = 2 is given in Table 3.1.

Table 3.1: An example set :F 5
2

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

x1 1 1 1 1 0 0 0 0 0 0
x2 1 0 0 0 1 1 1 0 0 0
x3 0 1 0 0 1 0 0 1 1 0
x4 0 0 1 0 0 1 0 1 0 1
x5 0 0 0 1 0 0 1 0 1 1

We can interpret the vectors as functions by f(i) = fi. Quantum implementation
of these functions, namely unitaries Uf , corresponding to the functions f act on
logN bit input states such that

Uf |x〉I |y〉R = |x〉I |f(x)⊕ y〉R , (3.3)
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where x can take values from 1 toN . Here the first qubit is the input qubit which
doesn’t change through the operation and the second qubit is the result qubit
where the evaluated function is added to the previous value of the register. This
choice of implementation allows us to make use of either |−〉 ≡ 1√

2 (|0〉 − |1〉) or
|+〉 ≡ 1√

2 (|0〉+ |1〉) for initial result qubit states depending on whether change
of phase is needed or not. This can be seen when the actions of unitaries on
these states are evaluated

Uf |x〉 |±〉 = (±1) fi(x) |x〉 |±〉 . (3.4)

Our problem is to find out whether it is possible to discriminate between F n
r and

F n
r′ by processing p identical unitaries Uf in parallel with zero error probability.

In this thesis, we will consider only sets F n
r defined in Eq. (3.1) where of course

many other subsets can also be studied. However, before that, we will deal
with the problem with two sets F n

r and F n
0 where the second set have only one

function with a constant output zero. Here one can quickly recognize Deutsch -
Jozsa problem with the choice r = n/2 with an addition of the other constant
function f(x) = 1 to the second set, i.e. distinguishing F n

n/2 and F n
0 ∪F n

n . In
the parallel scheme, there are p input registers and p result qubits which are
prepared in an initial entangled state. The initial state can be chosen as

|ψp〉 =
p∑
l=0

√
αl

 ∑
1≤i1<i2<···<il≤n

∣∣∣∣∣∣i1i1 · · · il 111 · · · 1︸ ︷︷ ︸
p−l

〉 ∣∣∣∣∣∣∣−− · · ·︸ ︷︷ ︸
l

+ + · · ·+︸ ︷︷ ︸
p−l

〉 (3.5)

where αl will be determined later. For example for p = 3, the initial state |ψ3〉
of 3 input registers and 3 result qubits would be

|ψ3〉 = √
α0 |111〉 |+ + +〉+√α1

n∑
i=1
|11i〉 |+ +−〉

+√α2

n∑
1≤i<j≤n

|1ij〉 |+−−〉+√α3

n∑
1≤i<j<k≤n

|ijk〉 |− − −〉 . (3.6)

We chose the state in Eq. (3.5) because this state is optimal for a permutationally
symmetric problem like the one we are discussing now. αl’s are parameters we

19



want to find which add up to one with the normalization condition:

〈ψp|ψp〉 =
p∑
l=0

(
n

l

)
αl = 1. (3.7)

To make a decision with zero error probability, all possible combinations of
unitaries Uf , Ug chosen from different sets F1 and F2 (i.e., Uf ∈ F 1, Ug ∈ F2

and F1 = F n
0 , F2 = F n

r in our case) applied to the state |ψp〉 should give
vanishing inner products

〈
ψp|

(
U †f
)⊗p

U⊗pg |ψp
〉

= 0. (3.8)

Choosing one of the sets to be the constant set F n
0 , which is the set such that

it includes only one function with constant output zero, may seem to be too
much of a simplification, however it is a proper first step towards the F n

r −F n
r′

discrimination problem. To show that, let us first consider a single call (p = 1)
for the discrimination of any sets F1 and F2. The initial state is

|ψ1〉 = √α0 |1〉 |+〉+√α1
∑
i

|i〉 |−〉 . (3.9)

States after unitaries corresponding to f1 ∈ F1 and f2 ∈ F2 applied are

Uf1 |ψ〉 = √
α0 |1〉 |+〉+√α1

∑
i

(−1)f1(i) |i〉 |−〉 and (3.10)

Uf2 |ψ〉 = √
α0 |1〉 |+〉+√α1

∑
i

(−1)f2(j) |j〉 |−〉 . (3.11)

The inner product becomes

〈
ψ1|U †1U2|ψ1

〉
= α0 + α1

∑
i

∑
j

(−1)f1(i)⊕f2(j) 〈i|j〉 (3.12)

= α0 + α1
∑
i

∑
j

(−1)f1(i)⊕f2(j)δji (3.13)

= α0 + α1
∑
i

(−1)(f1⊕f2)(i). (3.14)
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It can be seen that if we had been started with F0 and H ≡ F1 ⊕F2 instead,
where H contains only the functions h12 = f1 ⊕ f2 the result wouldn’t have
been changed. It is also straightforward to prove it for more than one oracle
calls. Even though this is not equal to the r−r′ discrimination problem yet, it is
possible to extend it to our problem, at least theoretically. Now, the equations
to be satisfied for p-shot discrimination becomes

〈
ψp|U †0Ui|ψp

〉
= 〈ψp|1Ui|ψp〉 = 〈ψp|Ui|ψp〉

=
p∑
l=0

A(n, r, l)αl = 0 (3.15)

where A(n, r, l) are defined as

A(n, r, l) ≡
min(r,l)∑
m=0

(−1)m
(
r

m

)(
n− r
l −m

)
. (3.16)

Using the identity ∑m

 n

r


 n− r
l −m

 =

 n

l

, we can express the Eq. 3.15

as

〈
ψp|U †0Ui|ψp

〉
=

p∑
l=0

B(n, r, l)αl = 1
2 (3.17)

where B(n, r, l) are defined as

B(n, r, l) ≡
min(r,l)∑
m odd

(
r

m

)(
n− r
l −m

)
. (3.18)

Eq. (3.15) (or Eq. (3.17)) together with the normalization condition in Eq. (3.7)
for αl’s completely describes the problem.
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3.1.2 Solution of the problem

Let’s consider kth extreme solution. Namely, the solution that all αi are zero
except α0 and αk

α
(k)
l =


0 if l ≥ 1, l 6= k,

1
B(n,r,k) if l = k,

− A(n,r,k)
2B(n,r,k) if l = 0.

(3.19)

Since it is necessary that α(k)
l ≥ 0 for an acceptable solution, the coefficient

A(n, r, k) should be less than zero. Any acceptable solution is a convex combi-
nation of extreme solutions, namely α(k)’s.

−→α = λ(1)α(1) + λ(2)α(2) + · · ·+ λ(p)α(p) (3.20)

where λ(j) ≥ 0 ∀j, 1 ≤ j ≤ p and ∑λ(j) = 1. Therefore finding minimum k

satisfying A(n, r, k) < 0 is enough. First few terms of A(n, r, k) and B(n, r, k)
are given below

A(n, r, 0) = 1, B(n, r, 0) = 0, (3.21)

A(n, r, 1) = n− 2r, B(n, r, 1) = r, (3.22)

A(n, r, 2) = 1
2
(
(n− 2r)2 − n

)
, B(n, r, 2) = r(n− r), (3.23)

A(n, r, 3) =
(1

6(n− 2r)3 B(n, r, 3) = 1
2r(n− r)(n− r − 1)

+ (3n− 2)(n− 2r)
)
, + 1

6r(r − 1)(r − 2). (3.24)
... ...

At this point, we can advance to the next step, that is distinguishing the union
of two sets F n

r ∪F n
r′ from F n

0 . This time we have an extra equation for r′ that
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must be satisfied,

p∑
l=0

B(n, r′, l)αl = 1
2 (3.25)

Solving either Eq. (3.15) or Eq. (3.17) seems to be difficult for a general p-
evaluation discrimination. We start again with the case p = 1 first

α0B(n, r, 0) + α1B(n, r, 1) = 1/2, (3.26)

α0B(n, r′, 0) + α1B(n, r′, 1) = 1/2, (3.27)

α0 +
(
n

1

)
α1 = 1. (3.28)

There are three equations and two variables, therefore most probably there is
no solution at all. Indeed this is the case since the solution is

1
2r = α1 = 1

2r′ (3.29)

1− n

2r = α0 = 1− n

2r′ (3.30)

and it is meaningless to have r = r′.

For the case p = 2, the equations are

α0B(n, r, 0) + α1B(n, r, 1) + α2B(n, r, 2) = 1/2, (3.31)

α0B(n, r′, 0) + α1B(n, r′, 1) + α2B(n, r′, 2) = 1/2, (3.32)

α0 +
(
n

1

)
α1 +

(
n

2

)
α2 = 1. (3.33)

Employing the convex analysis that has been introduced in the beginning of the
subsection with Eq. (3.19) we reach the solution

α0 = 1−
n(r − r′ − n+1

2 )
2rr′ , (3.34)

α1 = r + r′ − n
2rr′ , (3.35)

α2 = 1
2rr′ . (3.36)
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Positivity of the coefficients αi gives possible r and r′ values for a given size of
the problem n for which the discrimination problems can be solved with only
p = 2 evaluations. The conditions in terms of n, r, and r′ can be summarized as

(r − r′)2 ≤ r + r′ and n ≤ r + r′ (3.37)

(r − r′)2
> r + r′ and n ≤ r + r′ − 1

2

−
√

(r − r′)2 − (r + r′) + 1
4 (3.38)

In Figure 3.1, the solution set for n = 100 is plotted. The solution is symmetric
in r and r′. This figure gives an idea for which r values we can discriminate
sets F n

r from F n
1 . r must be at least approximately half of n. That is because,

distinguishing F n
r from F n

1 and distinguishing F n
r−1 ∪ F n

r+1 from F n
0 is the

same problem. This follows from the fact that any function h12 = f1 ⊕ f2 is
(where f1 ∈ F n

1 and f2 ∈ F n
r ) has a number of roots r − 1 or r + 1.

Figure 3.1: The solution set for 2-evaluations with n = 100. Horizontal and
vertical axes represent r and r′ respectively. It can be seen that for 2-evaluations
F n
r ∪F n

r′ can be distinguished from F n
0 for values located in the upper right

quarter. From this, at least one can deduce that F n
r can be distinguished from

F n
1 for sufficiently large r

(
r >≈ 50 = n

2

)
.
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Case p = 3 is more difficult. There are three extremal solutions for given r

α(r)(1) =
(

1− n

2r ,
1
2r , 0, 0

)
, (3.39)

α(r)(2) =
(

1− n(n− 1)
4r(n− r) , 0,

1
2r(n− r) , 0

)
, (3.40)

α(r)(3) =
(

1− n(n− 1)(n− 2)
2rβ , 0, 0, 3

rβ

)
, (3.41)

where β = 3(n− r)(n− r − 1) + (r − 1)(r − 2). The two solutions for different
values of r and r′ will be convex combinations of these vectors

α =
∑

λ(i)α(r)(i) =
∑

µ(j)α(r′)(j) (3.42)

where 0 ≤ λ(i), µ(j) ≤ 1 and they add up to 1. Numerically we can evaluate
λ(i) and µ(i) for given n, r and r′, thus solve the equation for the coefficients αl,
however we couldn’t find an analytical expression for these coefficients. From
these examples we can see that it would probably be a difficult problem to solve
for p-shot in general. Numerical results from p = 2 to p = 5 is shown in Fig. 3.2.
In this figure, we can see that increasing p increases the distinguishability, but
with a decreasing rate.
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Figure 3.2: The solution set for 2 to 5 evaluations with n = 100. Horizontal and
vertical axes represent r and r′ respectively.

3.2 Density Matrix Correspondence

In the previous section, we considered only a number of parallel calls to the
oracle. Nevertheless we are not restricted to parallel calls in general. In fact,
any protocol consisting of only parallel calls or only serial calls or any mixture
of parallel and serial calls require the same number of oracle invocations for the
optimal scenario [21, 22]. In this section, we show that any protocol with any
combination of parallel and serial calls can be uniquely represented by a density
matrix operating on a Hilbert space with a much higher dimension. This will
enable us to decide if the set discrimination problem is solvable without dealing
with the design of the protocol.

3.2.1 General form of the problem

LetX be an n-level system with the standard orthonormal basis {|1〉X , |2〉X , . . . , |n〉X}
which spans the Hilbert space HX . We model the black box realizing the func-
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tion f with a unitary Uf on X such that it acts on the standard basis vectors
as

Uf |i〉 = fi |i〉 , (3.43)

where fi are complex numbers with unit length: |fi| = 1, thus, fi are eigenvalues
of Uf . We now define fi directly as the eigenvalues of Uf 1. We can define vector
|f〉 in HX by

|f〉 ≡
n∑
i=1

fi |i〉 . (3.44)

Hence, if we call |u〉 ≡ ∑n
i |i〉 = |1〉+ |2〉+ · · ·+ |n〉, then |f〉 = Uf |u〉.

Let F be a set of mutually commuting unitaries. Let G ⊂ F and G ′ ⊂ F

be two disjoint subsets of F . Let a black box carry out a unitary Uf which is
either in G or G ′. By using the processor at most p-times can we decide with
certainty whether Uf ∈ G or Uf ∈ G ′?

3.2.2 Protocol

Let A be an ancilla without any constraint on the dimension of the Hilbert space
HA associated with it. A p-evaluation protocol consist of an initial state

|ϕ〉XA =
∑
i

|i〉X ⊗ |ϕi〉A (3.45)

where
n∑
i

‖ |ϕi〉 ‖2 = 1 (3.46)

by normalization. Let

V(k), (k = 1, . . . , p− 1) (3.47)

be p−1 unitaries on HXA. The sequence of the protocol is given in Algorithm 1.

1 Remember that, we were choosing binary fi ∈ {0, 1} and defined the unitary action as in Eq. 3.3
which gave rise to an effective action Uf |x〉 |±〉 = (±1) fi(x) |x〉 |±〉 in the previous section.
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Algorithm 1 A p-evaluation protocol.

0 The system XA is prepared in the state |ϕ〉XA
1 Processor evaluates Uf on X
1′ The unitary V(1) is applied on XA
2 Processor evaluates Uf on X
2′. The unitary V(2) is applied on XA

...
(p− 1) Processor evaluates Uf on X
(p− 1)′ The unitary V(p−1) is applied on XA
p Processor evaluates Uf on X

Final state is called |Φf〉.

Thus for any given protocol with the unitary Uf the final state |Φf〉 becomes

|Φf〉 ≡ UfV
(p−1)UfV

(p−2) · · ·V1Uf |ϕ〉 , (3.48)

where Uf ≡ (Uf )X ⊗ 1A. We can define an overlap matrix for the protocol by

Sfg ≡ 〈Φf |Φg〉 . (3.49)

The protocol discriminates between G and G ′, if Sff ′ = 0 for every Uf ∈ G and
U f ′ ∈ G ′.

3.2.3 Correspondence

For any isometry V on XA, define these n2 block operators Vij on A by

V |i〉X ⊗ |ψ〉A =
n∑
j=1
|j〉X ⊗ (Vji |ψ〉)A . (3.50)

Here V : HXA → HXA but Vji : HA → HA. One can also define block operators
with

Vij = 〈j|V|i〉 . (3.51)

Thus we have

V =
n∑

i,j=1
(|j〉 〈i|)X ⊗ (Vji)A . (3.52)
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Consider the Hilbert space of p-copies of X: (HX)⊗p. The standard basis is

|ipip−1 . . . i1〉 = |ip〉Xp ⊗ |ip−1〉Xp−1
⊗ · · · ⊗ |i1〉X1

(3.53)

where i1, i2, . . . , ip = 1, . . . , n. Let ρ(p) be a mixed state on (HX)⊗p. We define
ρ(p−1), ρ(p−2), . . . , ρ(1) as reduced density matrices as follows:

ρ(k) = ρ
(k)
XkXk−1...X1 ≡ TrXpXp−1...Xk+1ρ

(p). (3.54)

We say “ρ(k) is diagonal inXk” if
〈
ikik−1 . . . i1|ρ(k)|i′ki′k−1 . . . i

′
1

〉
= 0 when ik 6= i′k.

Thus

ρ(k) =
n∑
i=1

(|i〉 〈i|)Xk ⊗ (Fi)Xk−1Xk−2...X1
(3.55)

in such a case.

Theorem 1 There is a one to one correspondence between p-evaluation proto-
cols and density matrices ρ(p) on (HX)⊗p which satisfy the condition that ρ(k)

are diagonal in Xk for all k = 1, 2, · · · , p; so that

Sfg = 〈Φf |Φg〉 =
〈
f⊗p|ρ(p)|g⊗p

〉
. (3.56)

Note that 〈Φf |Φf〉 = 1 ∀f . The condition that ρ(k) is diagonal in Xk is
necessary for this relation to hold true. The idea is

〈
f ⊗ ψ|ρ(k)|f ⊗ ϕ

〉
=
〈
ψ|ρ(k−1)|ϕ

〉
(3.57)

for any |ψ〉 , |ϕ〉 ∈ (HX)⊗(k−1) and any f with |fi| = 1 for all i. As a result of
this

〈
f⊗k|ρ(k)|f⊗k

〉
=

〈
f⊗(k−1)|ρ(k−1)|f⊗(k−1)

〉
(3.58)

= ... (3.59)

=
〈
f |ρ(1)|f

〉
(3.60)

= Trρ(1) (3.61)

= 1. (3.62)

Proof. Proof of Theorem 1 is given in Appendix A. �
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A useful aspect of Thm 1 is the following. Suppose that there are two possible
protocols that solve the problem. By Thm 1, there are two density matrices ρ
and ρ′satisfying the diagonality requirement and Eq. 3.56. Since Eq. 3.56 is linear
in ρ, we consequently reach the conclusion that any mixture ρ̃ = λρ+ (1− λ) ρ′

(0 ≤ λ ≤ 1) of these two density matrices is also a solution to the problem.
Involving Thm 1, once again, we can infer the existence of new protocols (a
protocol for each value of λ) corresponding to ρ̃. Showing the existence of the
new protocols is very trivial if one uses the corresponding density matrices but
accomplishing the same task would be very complicated if one

This approach is useful in the cases where the problem has symmetry. In this
case, we can choose a symmetric density matrix thus work with protocols that
utilize symmetry maximally. Some examples are shown below.

3.2.4 Parallel schemes corresponds to diagonal density matrices

Let the initial state be |ϕ〉 = ∑
i1...ip ci1...ip |ip〉 ⊗ |ip−1〉 ⊗ · · · ⊗ |i1〉 ∈ (HX)⊗p.

Then the final state is evaluated as

|Φf〉 = (Uf )⊗p |ϕ〉 =
∑
i1...ip

ci1...ipfi1 . . . fip |ip . . . i1〉 (3.63)

which gives rise to an inner product

〈Φg|Φf〉 =
∑
i1...ip

∣∣∣ci1...ip ∣∣∣2 (gi1 . . . gip)∗ (fi1 . . . fip) (3.64)

=
〈
g⊗p|ρ|f⊗p

〉
(3.65)

where the density matrix ρ is defined as

ρ =
∑
i1...ip

∣∣∣ci1...ip ∣∣∣2 |ip . . . i1〉 〈ip . . . i1| . (3.66)

Consequently, the protocol can be carried out with a parallel scheme if and only
if the corresponding density matrix ρ(p) is diagonal in the standard basis.
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3.2.5 Our Problem

Let F be a set of vectors f = (f1, . . . , fn) such that fi = ±1:

F = {f = (f1, . . . , fn) : fi ± 1} . (3.67)

Let us define a subset Fr ∈ F such that

Fr =
{
f :

∑
fi = n− 2r

}
(3.68)

= {f : exactly r components fi are − 1} , (3.69)

and the set spanned by the vectors
∣∣∣f⊗k〉 as

Vr,k = span
{∣∣∣f⊗k〉 : f ∈ Fr

}
. (3.70)

Now we can state our problem: Can we discriminate between Fr and Fr′ by
a p-evaluation protocol? Using Theorem 1 we can immediately restate this as
follows. Can we find a density matrix ρ in (HX)⊗p satisfying the diagonality
requirement stated in Thm 1, in such a way that 〈ψ|ρ|ψ′〉 = 0 for any ψ ∈ Vr,p
and ψ ∈ Vr′,p, or equivalently is √ρVr,p orthogonal to

√
ρVr′,p?

3.2.6 Two-evaluation protocols

Since we restated the problem in terms of density matrices, let us try to solve
it for the simplest non-trivial case. Consider that we are restricted to two eval-
uations. Then the density matrix corresponding to this protocol will be of the
form:

ρX2X1 =
∑
ijk

Rijk (|i〉 〈i|)X2
(|j〉 〈k|)X1

=
∑
ijk

Rijk |ij〉 〈ik| . (3.71)

Since it is a valid protocol, by Theorem 1, ρ should be diagonal in X1. By our
construction,

TrX2ρX2X1 = ρX1 is diagonal. (3.72)

ρ is a density matrix, so it is positive semidefinite, also second trace should give
one:

ρ = ρX2X1 ≥ 0, (3.73)
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TrρX1 = 1. (3.74)

Let P be a permutation of {1, 2, . . . , n} and let P |i〉 ≡ |Pi〉. We can see that,
if ρX2X1 solves the discrimination problem, then

ρ′X1X2 = P† ⊗P†ρX1X2P ⊗P (3.75)

also solves the same problem and has the required diagonality property. As a
result,

ρ̃X1X2 =
∑
P

P† ⊗P†ρX1X2P ⊗P (3.76)

also solves the same problem but it is also symmetric under permutations.
Hence, we can assume that ρX2X1 is permutation symmetric

ρX1X2 =
∑
P

P† ⊗P†ρX1X2P ⊗P. (3.77)

Similarly, the complex conjugated density matrix ρ∗X2X1 also solves the same
problem and hence

ρ̂X2X1 = 1
2
(
ρX2X1 + ρ∗X2X1

)
(3.78)

does too, i.e., there is a permutationally symmetric density matrix with real
entries that solves the problem.

First we observe that some of the Rijk values are not different from each other
because of the permutational symmetry given in Eq. (3.75). For example R123 =
R135 = R236 = . . ., R112 = R338 = . . ., . . . So the general form of Rijk is

Rijk = α + β12δij + β13δik + β23δjk + χ123δijδik, (3.79)

where by Eq. (3.78), α, β12, β12, β12, χ123 can be chosen real. Next, Hermiticity
of ρ gives

β13 = β12. (3.80)

We have the density matrix of system X1 as

ρX1 = TrρX2X1 =
∑
jk

R′jk |j〉 〈k| , (3.81)

where
R′jk =

∑
i

Rijk = (nα + 2β12) + (nβ23 + χ123) δjk. (3.82)
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For ρX1 to be diagonal we should have

nα + 2β12 = 0. (3.83)

Also trace of the partial density matrix must be equal to 1

TrρX1 =
∑
j

R′jj = n (nβ23 + χ123) = 1. (3.84)

Next we use the positive definiteness property and by Sylvester criterion we find

β23 ≥ 0 (3.85)

β23 + (n− 1)α ≥ 0 (3.86)

β2
23 + β23χ123 + (n− 1)

(
χ123α− β2

12

)
≥ 0. (3.87)

Up to this point, we preferred a general treatment and didn’t make use of the
condition specific to our problem, which was stated in Subsection 3.2.5. Here-
after we continue with the restrictions that comes with our choice of the problem,
also what we will call the weight decision problem. We can formulate it as dis-
tinguishing two sets F n

r and F n
r′ with different number of roots r and r′ for the

time. In the next section we will introduce weights of the functions as the ratio
of roots to total number of inputs weights, for instance, the weight of a function
from the set F n

r will be ρ = r
n
. However this form of the problem is difficult

to make use of in the current formalism, so, before that, let us continue with
an easier but related problem: the discrimination of no roots (F n

0 ) and r roots
(F n

r ). We restricted the protocol to two evaluations at most so we have

〈g ⊗ g|ρ|f ⊗ f〉 = 0 for all f ∈ Fr and g ∈ F0, (3.88)

where F0 is the set of function without any non-zero outputs. Then it follows
that ∑

ijk

gigjRijkfifk =
∑
ijk

Rijkfifk = 0. (3.89)

The sum over j can be evaluated separately in Eq. (3.89). Let us define a new
matrix Tik as follows:

Tik ≡
∑
j

Rijk = nα + β12 + β23 + nβ13δik + χ123δik (3.90)

= (nβ13 + χ123) δik + (nα + β12 + β23) . (3.91)
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Then, we can write Eq. (3.89) as

∑
ik

Tikfifk = (nβ13 + χ123)
∑

f 2
i + (nα + β12 + β23)

(∑
fi
)2

(3.92)

= n (nβ13 + χ123) + (n− 2r)2 (nα + β12 + β23) (3.93)

= 0. (3.94)

Making use of Eq. (3.83) and Eq. (3.84) we obtain

nχ123 + n2β13 + (n− 2r)2 (nα + β12 + β23) = 0 (3.95)(
1− n2β23

)
+ n2β13 + (n− 2r)2 (β23 − β12) = 0 (3.96)

1 +
(
(n− 2r)2 − n2

)
(β23 − β12) = 0. (3.97)

Let us denote

κ =
(
(n− 2r)2 − n2

)
= 4r(n− r),

so that we get

β23 − β12 = 1
κ
. (3.98)

So that the inequality given by Eq. (3.86) and Eq. (3.83) leads to

β23 ≤
(n− 1)
(n− 2)

2
κ
. (3.99)

Also third inequality given by Eq. (3.87) along with the Equations (3.83), (3.84)
and (3.98) leads to

β23 ≤
(n− 1)
(n− 2)

2κ− n2

κ2 . (3.100)

So

0 ≤ β23 ≤
(n− 1)
(n− 2)

2κ− n2

κ2 (3.101)

and there is a solution only if 2κ − n2 ≥ 0. Any solution, even β23 = 0 is
acceptable, therefore

n2

2 ≤ κ = n2 − (n− 2r) 2 (3.102)

which leads to

(0.15n ')n
√

2− 1
2
√

2
≤ r ≤ n

√
2 + 1
2
√

2
(' 0.85n) . (3.103)
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Before continuing to the case with three evaluation, let us compare this result
with the one we obtained from the parallel scheme. In parallel scheme we found
that nearly half of the functions could be discriminated from the zero func-
tion. On the other hand with the serial scheme we obtain approximately a 70%
discrimination rate.

3.2.7 Three-evaluation

The protocol we have given in the Subsection 3.2.6 can be extended to larger
number of evaluations however it becomes complicated very rapidly with increas-
ing number of evaluations. In this part we will illustrate this behavior without
doing any evaluations since doing so seems to be intractable. First, the density
matrix corresponding to a three evaluation protocol will be of the form given in
Eq. (3.104) instead of the one in Eq. (3.71)

ρX3X2X1 =
∑
ijklm

Qijklm |ijk〉 〈ilm| . (3.104)

Like we did in previous analysis, permutational symmetry will dictate the form
of Qijklm such that

Qt1t2t3t4t5 =
n∑

t1t2t3t4t5=1

α +
∑
i<j

βijδtitj +
∑
i<j<k

χijkδtitjδtitk

+
∑

i 6=j 6=k 6=l
εijklδtitjδtktl +

∑
i<j<k<l

ϕijklδtitjδtitkδtitl (3.105)

+
∑

i<j 6=k 6=l 6=m
γijδtitjδtktlδtktm + νδt1t2 . . . δt1t5

 .
There are 52 coefficients in the most general form ofQijklm when the permutation
symmetries are taken care of. From the Hermiticity of the density matrix, we
have 20 equalities. ρ(3) is diagonal in X2 and ρ(2) is diagonal in X1 thus giving a
total of 8 equalities. Finally the trace should be equal to 1, hence 52− 29 = 23
independent coefficients remain.

We now run the protocol with three evaluations so we have

〈g ⊗ g ⊗ g|ρ|f ⊗ f ⊗ f〉 = 0 for all g ∈ F0 and f ∈ Fr. (3.106)
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which is followed by

∑
ijklm

gigjgjQijklmfiflfm =
∑
ijklm

Qijklmfiflfm = 0. (3.107)

We again take the sum that does not depend on fi’s first and obtain the matrix
elements Tilm:

Tilm ≡
∑
jk

Qijklm. (3.108)

So that the sum gives

∑
ijklm

Tilmfiflfm = (n− 2r)T111 + (n− 2r)3 T123 (3.109)

+n (n− 2r) (T112 + T121 + T122) = 0.

Theoretically this will decrease the number of equations one more, however, this
correction is not as simple as the other constraints. Even if we can make use of
this last constraint, a method of exploiting positive definiteness of the density
matrix is no longer clear as it was in the 2-evaluation protocol. Unfortunately
we were not able to find a way to take it into account. We could continue with
numerical methods however even if we could succeed, four and more evaluations
would surely be unmanageable. Instead we try another method which we will
cover in the next chapter.

36



CHAPTER 4

ALGORITHMS USING GROVER ITERATION

4.1 Grover’s Algorithm

Suppose we have a set of N items identified by the numbers from 0 to N − 1.
Let us have a selector such that it accepts only one of the items and rejects
the others. However we are sure that by no means we can inspect this selector
and request which item will be marked in the end directly. This can formally
defined by a class of Boolean functions f : {0, 1, . . . , N − 1} → {0, 1} such that
preimage of {1} is a set with only one element, {s}; 0 ≤ s ≤ N , for example.
Obviously the best one can do classically is to search the element exhaustively
and it requires N+1

2 calls on average or the query complexity of this process
is of the order O (N). Grover constructed a quantum algorithm that solves
this problem and it requires only O

(√
N
)
function calls [18]. Even though it

does not led to a logarithmic speedup like Shor’s algorithm, its wide range of
applicability makes Grover’s algorithm promising on a large scale.

Grover’s algorithm is based on amplification of the amplitudes of the sought
after states by applying the same iteration until the amplitude of the solution
state is close to one. Naturally this observation leads us to a more general
class of algorithms that use amplitude amplification. In this chapter we will be
covering some remarkable examples of these, indeed our original contribution is
also an example based on Grover iteration and can be categorized into the class
of algorithms that is based on amplitude amplification. In Algorithm 2 the flow
of Grover’s algorithm is given.
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Algorithm 2 Grover’s algorithm
1. Prepare logN bit quantum registers in an equal superposition of states of

each possible input. This can be done with the application of an n bit
Hadamard transform on the zero state. N can be chosen as a power of 2
or the problem can be adjusted to this choice without any complications.
Let N = 2n.

|ψ1〉 = H⊗n |0〉⊗n =
∑
x

1√
N
|x〉 ≡ |Σ〉 (4.1)

2. Repeat the Grover iteration π
4

√
N times. Grover iteration consists of two

steps.

(a) Inversion about the solution state. Its operation can be written as
the unitary operator Uf = 2 |s〉 〈s| − 1.

(b) (−) Inversion about the mean state |Σ〉 = ∑N
i=1 |i〉. It can be given

by the unitary operator UΣ = 1− 2 |Σ〉 〈Σ| .

|ψt〉 = (UΣUf )t |ψ1〉 , (4.2)

where t ≈ π
4

√
N

3. Perform a measurement on the final state. The measurement result will
give the solution s with a small probability of error.
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Note that in the second step of Algorithm 2, the operations Uf and UΣ are given
in a mathematical form rather than an operational layout that reflect their
physical realizations. In fact, the inversion about the mean operator is realized
with two Hadamard transformations and an inversion about the standard state
operator so that their successive applications give

UΣ = H⊗n (1− 2 |0〉 〈0|)H⊗n. (4.3)

The inversion about the solution state Uf is also realized with the help of an
ancilla qubit such that its action on the full state and its effect on the work
qubit are given in Eq. 4.4 and Eq. 4.5. Note that these definitions are the same
as the ones in the previous chapter, specifically Eq. 3.3 and Eq. 3.4

Uf |x〉 |y〉 = |x〉 |f(x)⊕ y〉 , (4.4)

Uf |x〉 |±〉 = (±1) f(x) |x〉 |±〉 . (4.5)

In Nielsen and Chuang’s book a beautiful geometrical visualization is given[1].
We redrew it in Fig. 4.1 to facilitate better understanding of how the algorithm
works. We start with depicting the initial state |Σ〉 as a vector that is a linear
combination of the normalized solution and non-solution basis states, which
are denoted as |s〉 and |ns〉 respectively. In each iteration, the state is first
reflected about the solution state by the oracle operator Uf which selectively
inverts the phases of the solution states and then the resulting state is reflected
about the superposition state Σ by the other part of the iterator, namely, UΣ.
The total effect of these two reflections is equal to a rotation with an angle
θ = 2 sin−1 1√

N
in the |s〉 - |ns〉 basis. Thus, each iteration rotates the state

by the same amount θ. Eventually when the state is rotated enough, that is
after π

4

√
N iterations, it becomes hardly distinguishable from the solution state.

At this point a measurement in the standard basis give the solution state with
maximum success probability.

One can generalize the two iterations such that a single Grover iteration consist-
ing of a Hadamard transform and overall or selective phase inversions are given
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θ/2 

θ

θ/2 

Σ

Σ

Σ

s
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G

Uf

Figure 4.1: Grover’s algorithm visualized. The initial state can always be written
as a linear combination of the normalized superposition of solution states |s〉, and
non-solution states |ns〉. In each iteration the state of the computer is rotated
by an angle θ = 2 sin−1 1√

N
towards the solution state. After O(

√
N) rotations,

the state of the computer is the least distinguishable from the superposition of
solution states.
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in the form

G = −ΥI|0〉 (φ) Υ−1I|s〉 (ϕ) (4.6)

where Υ is a unitary operator and I|ψ〉 (α) denotes the inversion operator by an
angle α so that

I|ψ〉 (α) ≡ 1−
(
1− eiα

)
|ψ〉 〈ψ| (4.7)

With the choice of Υ = H⊗n and φ = ϕ = π we recover the original algorithm
by Grover.

Grover’s algorithm can be applied without any modification to the same problem
with more than one solutions. It is straightforward to show that the algorithm
runs r times faster if there are r solutions instead of one but it gives only one of
the solutions randomly at the output thus recovering the same complexity[67].
This is one example of a number of generalizations of Grover’s algorithm. An-
other generalization is using an arbitrary unitary instead of the Hadamard trans-
form given in Eq. 4.3. In a later work, Grover showed that almost any unitary
can be used instead of the Hadamard transfom without changing the O

(√
N
)

complexity as long as it is used consistently [68]. Grover’s algorithm is unique
among the major algorithms in the sense that it gives a quadratic speedup even
though there is no structure imposed on the search space. However if there is
an inner structure to be exploited, quadratic speedup for this new search space
can be recovered by using appropriate heuristics for the problem[23]. The initial
amplitude distribution and phase inversion angle can also be chosen different
than the original. These versions of the algorithm were studied in papers by Bi-
ham et al.[69, 70]. Even though the original algorithm is probabilistic except for
the case N = 4[71], with several methods it can be converted to a sure success
algorithm. Brassard et al. accomplished this by applying the standard iteration
up until the last step but changing the final step with a smaller step size[72].
Høyer designed an algorithm that adjusts the inversion phase angle in such a
way that the rotations add up to a transformation exactly up to the solution
state[73]. Long fine tuned the amplitude amplification operator with only one
adjustable phase [74], and his algorithm is superior to the others in such a way
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that a single change in the phase which can be obtained in a simple closed form
is enough to obtain 100% success probability[75]. Approaches by Høyer and
Long can be combined in a more general form using an SU(2) representation
involving additional phases which is shown by Hsieh and Li in [76].

A natural question concerning performance is whether Grover’s algorithm pro-
vide the best speedup among other possible quantum algorithms or is there a
room for further improvement for quantum algorithms that solve unstructured
database search problem. Unfortunately Grover’s results are shown to be the
upper limit for unstructured database search. It has been proven asmptotically
by Bennett et al. and Boyer et al. [77, 67] and the exact proof is given by
Zalka[78]. Another feature of the Grover’s algorithm is that it is not a fixed
point algorithm, that is, it does not monotonically converge to a solution. If we
apply more iterations than we should, the state of the computer starts to be-
come less distinguishable than the solution state again. This can be easily seen
in the geometric picture that we drew in Fig. 4.1. The state of the computer
rotates indefinitely if we continue to apply the iterations. As we will see in the
next chapter, this property will become useful when the problem is not find-
ing a solution but finding the number of solutions. Concerning the fixed point
property, it has been shown that Grover’s algorithm can be altered to become
a fixed point algorithm[79].

4.2 Quantum Counting

In the generalizations we mentioned in the Section 4.1 the number of solutions
to the reverse problem f−1(1) =? was known beforehand and we were trying
to obtain those solutions. Suppose that we are not interested in the solutions
themselves but only in the number of the solutions, that is now an unknown.
This is known as quantum counting and it is first studied by Brassard et al.[23].
In this section we will repeat most of their results without giving proofs. Let
us give a more formal definition of the problem: given a boolean function f :
{0, . . . , N − 1} → {0, 1}; find the cardinality of the inverse of the preimage
r ≡ |f−1 (1)| where | | denotes the cardinality of a set. The insight to solve
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this problem comes from the observation that we made earlier. The application
of Grover iteration cause an arbitrary amount of rotation in the state of the
quantum computer (see Fig. 4.1). This amount depends on the set size as well
as the number of solutions to the problem. If the state is rotated enough, we
expect it to end up very close to the same amplitudes that was achieved before in
a periodical fashion. Since we know the set size, learning the period or frequency
will inform us about the number of solutions. In order to obtain such information
we can employ Fourier analysis. The quantum algorithm Count(f, P ) given in
Algorithm 3 shows how this can be achieved with bounded error. The algorithm
accepts two parameters: the Boolean function f whose number of roots we try
to determine and an integer P we introduce to control the number of runs as well
as precision. P can be assumed to be a power of 2 like N . The implementation
of Grover iterations along with the quantum Fourier transform is carried out
using two unitaries:

Cf |m〉 ⊗ |ψ〉 = |m〉 ⊗ (Gf )m |ψ〉 , (4.8)

FP |k〉 = 1√
P

P−1∑
l=0

e2πikl/P |l〉 . (4.9)

Here Gf is the original Grover iteration with Hadamard transforms and phase
inversions equal to π. Notice that Cf takes the parameter m that is recorded
in the first register and apply that many Grover iterations to the state kept
in the second register. The second operator FP is the usual quantum Fourier
transform operator[1]. The parameter P becomes an upper limit for m thus
running Cf along with FP becomes possible. The flow of Count(f, P ) is given
in Algorithm 3.

Brassard et al. proved that the function Count(f, P ) finds an approximate
number of roots r̃ that the maximum it can differ from the actual number of
roots r by

|r − r̃| < 2π
P

√
rN + π2

P 2N (4.13)

with probability at least 8
π2 . Here P > 4. We would like to call Count(f, P )

with P = c
√

N
r
to obtain an estimation on r with constant relative error. Ironi-
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Algorithm 3 Function Count(f, P ). It accepts two parameters, function f of
interest which is implemented as a black box and an integer P to determine the
precision of the algorithm. It returns an approximate number of roots r̃. P can
be taken as a power of 2.

1. Initialize two quantum registers in the equal amplitude superposition of
all states. This can be done the same way as we did in Algorithm 2.

|ψ1〉 = H ⊗H (|0〉 |0〉) =
∑
i,j

1
N
|i〉 |j〉 (4.10)

2. Apply the multiple Grover iteration operator CF

|ψ2〉 = CF |ψ1〉 . (4.11)

3. Apply the quantum Fourier transform on the first register of the resulting
state

|ψ3〉 = (FP ⊗ 1) |ψ〉 . (4.12)

4. Perform a measurement on the final state |ψ3〉. Suppose that you obtain
q̃. If q̃ > P/2 then q̃ ← (P − q̃).

5. Output r̃ = N sin2
(
t̃π/P

)
and q̃ if necessary.
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cally, we are trying to determine the number of roots r itself with this process.
To overcome this dilemma we introduce an adaptive procedure given in Algo-
rithm 4 that starts with the roughest estimation and increases the precision P
until it is acceptable.

Algorithm 4 Function CountRel(f, c). It has two parameters: function f and
constant c that limits error probability.

1. P ← 2

2. While
(
f̃ < 1

)
{
P ← 2P
f̃ ←Maj(Ω (log logN)),Count(f, P ))

}

3. Output Count(f, cP )

Maj(k,Count), in Algorithm CountRel(), denotes the majority vote of k runs
of algorithm Count. For a problem of size N and function f with number of
roots r, an estimate r̃ is generated by CountRel(f, c) such that

|r − r̃| < r

c
. (4.14)

with a probability larger than 3
4 , using Θ

(
(c+ log logN)

√
N/r

)
evaluations of

f [23]. Best we could do classically is testing the function for random inputs. In
that case we would need approximately O(N/r) runs. In summary, by making
use of Grover iteration as well as quantum Fourier transform, a quantum algo-
rithm counting the number of roots of a Boolean function can be constructed.
Please note again that the algorithms and results in this section are due to the
work of Brassard et al.[23] and no original work of the author of this thesis is
included for this part.

45



4.3 Weight Decision Problem

As we have seen in the previous section, periodical nature of repeated applica-
tions of Grover’s iterations allowed us construct a quantum algorithm to extract
the weight of a Boolean function faster than a classical algorithm. By weight
of a function f we mean the ratio of number of inputs r for which outputs of
f are 1 over the number of all possible inputs N , in other words if the weight
of a function f is ρ then ρ = r

N
where r is the number of roots of the equation

f(x) = 1. What if we are sure that the weight of given function is one of the
possible known values let us say ρ1 and ρ2 and we try to determine the correct
weight with minimum number of calls to the function. This problem is known as
the weight decision problem and has many applications. Some examples can be
given from cryptanalysis[80], coding theory[81], built-in self-testing circuits[82]
and fault-tolerant circuit design[83].

The first application of Grover iteration to weight decision problem is realized
by Braunstein et al. and Choi and Braunstein in a series of papers. They first
consider a “symmetric” case of weight discrimination where there is a comple-
mentarity condition on weights such that they add up to one[24]. Then they
remove the restriction and give a solution to the general problem of “asym-
metric” weights and multiple weights[25] and also gave a formal proof of the
asymptotic optimality of their results[26]. Their algorithms works perfectly in
the sense that there is zero probability of incorrectly distinguishing functions
with different weights. The other solution to the same problem is by Uyanik
and Turgut [27]. In this work we used a new approach to alter Grover iterations
so that the process becomes a sure-success one. Specifically we transformed the
decidability problem into a system of algebraic equations. Therefore it is now
easier to decide whether two weights are distinguishable or not especially in the
small number of iterations regime. Since quantum weight decision problem is a
special case of quantum counting, the algorithm by Brassard et al. can also be
used to discriminate weights, however as one would intuitively expect the two
algorithms special to the premise problem are faster than the generic counting
problem. Even in that case their speedup are eventually limited to the order
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of square root [26, 27]. In the remainder of this chapter we will thoroughly re-
view the weight decision problem by first starting with the works by Braunstein,
Choi and others given in Ref. [24, 25, 26] and continue with the work given in
Ref. [27].

4.3.1 Braunstein and Choi’s method

We have seen that successive applications of Grover iterations rotate the state of
the system towards the uniform superpositions of solution basis states. This is
in fact a neat example of quantum operator discrimination where the operator is
applied multiple times sequentially. Successive applications of the same operator
on the same initial state lead to final states that are almost distinguishable. Can
we adapt this technique to distinguish functions with different weights by making
corresponding operators rotate the initial state to mutually orthogonal states?
Moreover can we do this with 100% success rate? The answer to both of the
questions is “yes we can”. However the path from original Grover algorithm to
the exact discrimination of weights in general is non-trivial.

4.3.1.1 Symmetric weight decision problem

First let us observe that the initial state in the original Grover’s algorithm can
be written as ∣∣∣ψ(ρ)

0

〉
= sin βρ2 |s〉+ cos βρ2 |ns〉 (4.15)

where ρ = sin2 βρ
2 , with 0 < βρ ≤ π and the states |s〉 and |ns〉 denote the

normalized superpositions of equal amplitude solution and nonsolution states,
respectively. The standard Grover iteration

G = −I|Σ〉 (π) I|s〉 (π) (4.16)

is recovered when the phase angles are chosen as π and the unitary operation as
H in Eq. 4.6. The state that is obtained by applying standard Grover iteration
k times can be given as∣∣∣ψ(ρ)

k

〉
= sin (2k + 1) βρ2 |s〉+ cos (2k + 1) βρ2 |ns〉 . (4.17)
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Here, the original Grover algorithm is only one step of measurement away to
obtain one of the solutions with a success probability sin (2k + 1) βρ

2 however our
aim is to rotate the same initial state

∣∣∣ψ(ρ)
0

〉
to two mutually orthogonal states∣∣∣ψ(ρ1)

k

〉
and

∣∣∣ψ(ρ2)
k

〉
corresponding to different weights ρ1 and ρ2. Unfortunately,

a straightforward application of the standard Grover iteration achieves this only
for weights that add up to a number very close to 1 and with bounded error. At
this point, we take the exact discrimination condition into consideration. As we
have reviewed in the paragraph after Eq. 4.7 there are several options to make
Grover iteration exact. In [24], Braunstein et al. chooses a method that uses
the original Grover iteration until the last step but changes one of the inversion
phase angles only for the last step to obtain an exact rotation. Furthermore as
the problem requires that the states corresponding to functions with different
weights should be correctly rotated to the mutually orthogonal solution and
non-solution states, one has to alter the last two steps instead of one. In general
these modified phases are different than π and in [24] they are given as

cos θ1 = (−1)k cos βρ1 − cos 2βρ1 cos (2k − 2) βρ1

sin 2βρ1 sin (2k − 2) βρ1

, (4.18)

cos θ2 =
(−1)k sin 2βρ1

(
y sin θ2 − (−1)k sin βρ1

)
cos βρ1 cos 2βρ1 − (−1)k cos (2k − 2) βρ1

. (4.19)

Therefore an algorithm that exactly discriminates functions with weights that
add up to 1 is present. Braunstein et al. calls this symmetric weight decision
problem because there is an additional symmetry condition that the sum of
weights must be 1. We need this symmetry argument because if the weights
are symmetric then on the Bloch sphere, corresponding initial states occupy
symmetric locations in theX−Y plane. Hence the Grover iteration rotates them
symmetrically and an evolution resulting in orthogonal states is guaranteed to
achieve. Detailed flow of the process for an exact discrimination of symmetric
weights is given in Algorithm 5.

4.3.1.2 Asymmetric weight decision problem

The symmetry condition in Algorithm 5 is a strict restriction and we would
like to avoid it if possible. Choi and Braunstein found an effective method
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Algorithm 5 Symmetric weight decision algorithm. The standard Grover iter-
ation G = −I|Σ〉 (π) I|s〉 (π) is applied until the last two steps. By a modification
in the phase angles in the steps k− 1 and k, rotation to the orthogonal solution
and non-solution states is achieved.

1.
∣∣∣ψ(ρ)

0

〉
= H⊗n |0〉⊗n |1〉 = |Σ〉 |1〉, i = 0.

2. If ρ1 ≤ sin2 π
5 , k ← 2, else k satisfies sin2

(
k−1
2k−1

π
2

)
< w1 ≤ sin2

(
k

2k+1
π
2

)
.

k−1
2k−1π < βρ1 ≤ k

2k+1π. βρ1 + βρ2 = π.

3. While (i < k ∗ 2)
{∣∣∣ψ(ρ)
i+1

〉
= −I|Σ〉 (π) I|s〉 (π)

∣∣∣ψ(ρ)
0

〉
,

i← i+ 1
}

4.
∣∣∣ψ(ρ)
k−1

〉
= −I|Σ〉 (−θ1) I|s〉 (π)

∣∣∣ψ(ρ)
k−2

〉
5.
∣∣∣ψ(ρ)
k

〉
= −I|Σ〉 (−θ2) I|s〉 (π)

∣∣∣ψ(ρ)
k−1

〉
6. Measure

∣∣∣ψ(ρ)
k

〉
in the computational basis. Let the result be x̂.

7. If k is odd and if f (x̂) = 1 then ρ← ρ1 else ρ← ρ2.
If k is even and if f (x̂) = 1 then ρ← ρ2 else ρ← ρ1.
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to generalize the algorithm from symmetric weights to generic weights without
changing the run-time but using only 2 qubits of extra space. They achieve such
reduction by using extra inputs so that symmetry is recovered for the modified
function. Let us briefly describe this adaptation. For a discrimination problem
of functions with N inputs we add 3N extra inputs. Let ρ1 and ρ2 be the
weights of the functions f1 and f2, which must be discriminated. It means that
for exactly ri out of N different inputs of fi give 1 and N − ri inputs of fi give
0 so that ρi = ri

N
, where i = 1, 2. For the first N inputs the original function

remains as it is. Next, we duplicate the function for the next N inputs and for
the remaining part we add l inputs that give 1 and 2N − l inputs that give 0.
The modified function f ′ is given in Eq. 4.20

f ′ (x) ≡



f (x) 0 ≤ x < N,

f (x−N) N ≤ x < 2N,

1 2N ≤ x < 2N + l,

0 2N + l ≤ x < 4N.

(4.20)

The altered weights for f ′1 and f ′2 are ρ+ = 2ρ1+l
4N and ρ− = 2ρ2+l

4N . The symmetry
should be recovered for the new function thus l is equal to 2N − (ρ1 + ρ2) .
The modified weights are therefore ρ± = 1

2 ± (ρ1 − ρ2). Since l is an integer,
Algorithm 5 can be used to distinguish the modified oracles corresponding to
the modified functions f1 and f2. Therefore asymmetric weight decision problem
can be solved on a quantum computer taking the same amount of time but using
2 extra qubits that is used for storing quadruple size of input. Note that if the
actual weights are very close to each other, symmetrized weights are close to 0
and 1

4.3.1.3 Multiple weight decision problem

Asymmetric weight decision algorithm can be extended to the multiple weights.
In this case the task is to decide which one of the m weights 0 < ρ1 < ρ2 <

. . . < ρm < 1 is selected. The adaptation for multiple weight decision is given
in Algorithm 6. Here we start with the set S containing all functions with the
given weights. Since we can characterize any function with its weight without
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confusion we labeled them with their weights. We make m− 1 rounds. In each
round we update our information about the largest and smallest weights of the
set S. Then we run the asymmetric weight decision algorithm as if we were
distinguishing the maximum and minimum weights and discard the false result
from the set S. This elimination process will continue until there is only one
weight in S. Finally we output the set with only one element as the correct
weight. This algorithm operates as intended because once the correct weight is
encountered inside the loop, there is no possibility of rejecting it due to the sure-
success property of the asymmetric weight decision subroutine. Since we need
m−1 calls to the oracle, the complexity of the quantum algorithm is O

(
m
√
N
)
.

Comparing it with the classical complexity O(N), it becomes advantageous when
m ≤

√
N .

Algorithm 6 Multiple weight decision algorithm.
1. S ← {ρ1, ρ2, . . . , ρm}

2. While (|S| ≥ 1)
{
ρmin ← SmallestWeightOf (S)
ρmax ← LargestWeightOf (S)
{ρselected, ρnotSelected} = AsymmetricWeightDecision (ρmin, ρmax)
S ← S − {ρnotSelected}
}

3. Return S.

This concludes the findings of Braunstein et al. and Choi and Braunstein’s
further improvements[24, 25]. We will now continue with our contribution to
the subject of weight discrimination.

4.3.2 Our Method

In this subsection we present our method and findings in weight decision problem
of Boolean functions. This subsection is an adaptation from our work given in
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Ref. [27]. The problem definition is the same as Braunstein and Choi’s. We are
given two Boolean functions with different weights ρ = r

N
and ρ′ = r′

N
. We can

only access the function through calling it with different inputs thus it is a black
box from the computational perspective. We try to decide which of the functions
is the actual one with minimum number of calls to that function. In our work
we do not have a distinction of symmetric and asymmetric weight decision hence
we use the name weight decision problem regardless of such symmetry.

4.3.2.1 Preliminaries

We implement the function with a unitary operator with its action

Uf |x〉I |y〉R = |x〉I |y ⊕ f(x)〉R (4.21)

as usual. It is designed to make use of its effective action

Uf |x±〉IR = (±1) f(x) |x±〉IR , (4.22)

so that the phase is rotated by π radians only when f(x) = 1 and the R register
contains the state |−〉 . Here I and R indicate input register and result qubit,
respectively. Let us add an ancilla system A, so that |β1〉 , . . . , |βn〉 be a set of
orthonormal vectors in the state space of the composite system AIR. Note that
the total Hilbert space formed by AIR is not necessarily spanned completely by
these vectors.

Consider the unitary operator

S ≡ 1− 2
n∑
i=1
|βi〉 〈βi| (4.23)

which makes an inversion in n-dimensional subspace, namely the subspace spanned
by {|βi〉i}. Equipped with an oracle and an “inversion about mean” like operator
we can introduce the generalized Grover iteration

Qf ≡ −S (1A ⊗ Uf ) . (4.24)

We now define an n× n “cosine matrix”

Cij ≡ 〈βi|1A ⊗ Uf |βj〉 (4.25)
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to facilitate the expression of multiple iterations of Qf on an arbitrary initial
state. Cij is Hermitian and its eigenvalues lie between −1 and +1 since the
eigenvalues of Hermitian Uf matrices are ±1. Thus we can consider C as the
cosine of angle matrix Θ so that

C = cos Θ. (4.26)

We continue with the definition of n× n matrices R(m). There are exactly m of
them. For any positive integer k, R(k) is given as

R(k) = sin (kΘ)
sin Θ (4.27)

which is a polynomial function of C. The matrices Θ, C, and R depend on the
function f but the dependence of these matrices on function f such as R (f) etc.
will not be shown when it does not cause any confusion. Now we can present a
fundamental result in terms of the matrices R(m) as:

Theorem 2 Provided that the initial state is one of the basis states |βi〉 , the
final state after m iterations of Qf = −S (1⊗ Uf ) is

(Qf )m |βi〉 =
n∑
j=1

(
|βj〉R(m+1)

ji − (1A ⊗ Uf ) |βj〉R(m)
ji

)
. (4.28)

Proof. Theorem 2 can be proved by induction. Verification of Eq. 4.28 for
m = 0 and m = 1 and showing that following recurrence relation is satisfied by
the matrices R(m) is rather straightforward

R(m+2) − 2CR(m) +R(m) = 0. (4.29)

�

For the weight decision problem, we prepare the initial state of the composite
system as

|β〉 ≡
n∑
i=1

ci |βi〉

where ci are the amplitudes that we will determine later. We then consider m
successive applications of the generalized Grover iteration Qf so that the final
state of the system can be written as

|Φf〉 ≡ (Qf )m |β〉 . (4.30)
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Finally, we carry out a measurement on an appropriate part of the system in
order to determine which one of the weights is given. Like Braunstein et al.
we consider only sure-success discrimination algorithms which means all final
states corresponding to the functions with different weights are orthogonal to
each other. That is to say, using a bit of notation of Chapter 3, if two functions
f and g are chosen from the sets FN

r and FN
r′ then m successive applications

of Qf should always lead to orthogonal final states |Φf〉 and |Φg〉 such that
〈Φf |Φg〉 = 0. From a computational point of view, in order to obtain the most
efficient algorithm we have to minimize the number of oracle calls thus the
number of iterations, m.

We can now concentrate on the βi ’s. We make the following choice

|βi〉 = |βi〉AIR ≡ |αi〉A ⊗
(
√
µi

1√
N

N−1∑
x=0
|x−〉IR +

√
1− µi |0+〉IR

)
(4.31)

where µi are real parameters between 0 and 1. The ancilla states |αi〉A are
mutually orthogonal to each other (i.e.,〈αi|αj〉 = δij). This way we guarantee
that |βi〉AIR are also normalized and mutually orthogonal to each other.

Suppose that the weight of the function f is ρ. In this case the ith diagonal entry
of C becomes

Cii = cos θi (f) = 〈βi|1A ⊗ Uf |βi〉 = 1− 2ρµi, (4.32)

thus we find the upper bound of the eigenvalues

0 ≤ θi (f) ≤ cos−1 (1− 2ρ) . (4.33)

From Eq. 4.33, it also follows that R(m) are also diagonal and their diagonal
entry in the ith position is

R
(m)
ii = sinmθi (f)

sin θ (f) . (4.34)

4.3.2.2 Discrimination of zero function

We start with a simpler problem by setting one of the weights to zero like we
did in Chapter 3. Given that the unknown function is either f with an arbitrary
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weight ρ or the zero function z which is identically zero for all of its inputs we
try to determine which one is the actual weight with using minimum number of
function evaluations. We immediately observe that Uz = 1, thus application of
any number of generalized grover iterations corresponding to zero function does
not change the basis states

(Qz)m |βi〉 = |βi〉 . (4.35)

For all the functions with weight ρ to be distinguished from the zero function
after m iterations, the condition 〈Φz|Φf〉 = 0 should be satisfied. Therefore it
follows that

0 = 〈Φz|Φf〉 = 〈β| (Qf )m |β〉 (4.36)

=
∑
ij

a∗i 〈βi| (Qf )m |βj〉 aj (4.37)

=
∑
ij

a∗i
(
R(m+1) (f)− C (f)R(m) (f)

)
ij
aj (4.38)

=
∑
ij

a∗i (cosmΘ (f))ij aj. (4.39)

where we made use of Theorem 2 to advance from Eq. 4.37 to Eq. 4.38. Regard-
less of the number of iterations, Eq. 4.39 is satisfied with n = 1. It means that,
the subspace where S is an inversion is spanned only by |β1〉 . Consequently,
Θ (f) has only one entry which we may denote by θ1 (f). Then, we have

cosmθ1 (f) = 0 (4.40)

for all the functions f with weight ρ. This leads to a value of θ1 (f) = π/2m
for the fastest algorithm (i.e. minimum m). Note that, the definition of βi in
Eq. 4.31 is given so that, θ1 (f) depends only on the weight of the function f .
Therefore the minimum number of iterations, m, is the smallest integer that
satisfies

cos π

2m = 1− 2ρµ1 (4.41)

with the condition 0 ≤ µ1 ≤ 1. Hence the expression for minimum number of
iterations can be found as

mmin (ρ) =
⌈

π

2 arccos (1− 2ρ)

⌉
, (4.42)
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where dye denotes the smallest integer not less than y. We can also find a lower
bound on zero-distinguishable ρ in terms of iteration number m

ρ ≥ ρmin (m) = 1
2

(
1− cos π

2m

)
. (4.43)

This inequality is the answer of the reverse problem: which weights can be
distinguished from the zero function for a given number of iterations.

Setting m = 1 in Eq. 4.43, we observe that any weight larger than 0.5 can be
discriminated from the zero function. This is in fact a special case that corre-
sponds to a variation of the Deutsch-Jozsa problem[10], where in the Deutsch-
Jozsa problem the functions with weight 0.5 are discriminated from functions
with weights either zero or one. For a weight smaller than 1

2 , we would need more
than one iterations. More generally, as we will discuss further in this section,
the more the weights are close to each other, the more evaluations are necessary
to distinguish them without error. This is also the case for the special case of
zero function discrimination. When ρ is much less than 1, we require m ∼ π

4√ρ

function evaluations to distinguish a non-zero function from a zero function.

Table 4.1: Minimum weights of functions, which can be distinguished from the
zero function z by only m function evaluations

m ρmin (m)
1 0.51

2 0.15
3 0.067
4 0.038
5 0.024
10 0.0062

4.3.2.3 Discrimination of two non-zero weights

Now, let us continue with the general case of two non-zero weights, ρ 6= 0 6= ρ′.

The choice of |βi〉 in Eq. 4.31 make sure that all the matrices Θ, C and R are
diagonal. Let us have two functions f and g with respective weights ρ and ρ′.
We are interested in the inner product of the final states
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〈Φf |Φg〉 =
n∑
i=1
|ci|2

(
R

(m+1)
ii (f)R(m+1)

ii (g)−R(m+1)
ii (f)R(m)

ii (g) cos θi(g)

−R(m)
ii (f)R(m+1)

ii (g) cos θi(f)

+R(m)
ii (f)R(m)

ii (f) cos θi (f ⊕ g)
)

= 0. (4.44)

where we utilized Theorem 2 again to obtain this result. The last term inside
the sum of Eq. 4.44 comes from the inner product

〈βi| (1⊗ Uf ) (1⊗ Ug) |βi〉 = 〈βi| (1⊗ Uf⊕g) |βi〉 (4.45)

= cos θi (f ⊕ g) (4.46)

and this cosine term can be evaluated as

cos θi (f ⊕ g) = 〈βi|1A ⊗ Uf⊕g|βi〉 = 1− µi
2t
N
, (4.47)

where t is the number of solutions to the equation (f ⊕ g) (x) = 1. Equivalently,
the weight of the function f ⊕ g is t/N . The possible values t can have are
t = |r − r′| , |r − r′| + 2, . . . , r + r′ − 2, r + r′ , considering any f with weight ρ
and any g with weight ρ′. Observe that Eq. 4.44 is linear in t. Hence, it can be
reduced to two independent equations

n∑
i=1
|ci|2Ai = 0, (4.48)

n∑
i=1
|ci|2Bi = 0 (4.49)

subject to the condition
n∑
i=1
|ci| = 1, (4.50)

where Ai and Bi are given as

Ai ≡ cos (mθif ) cos (mθig)

+sin (mθif ) sin (mθig)
sin (θif ) sin (θig)

(1− cos (θif ) cos (θig)) , (4.51)

Bi ≡
sin (mθif ) sin (mθig)

sin (θif ) sin (θig)
(2− cos (θif ) cos (θig))

= 2 (ρ+ ρ′)µi
sin (mθif ) sin (mθig)

sin (θ) sin (θig)
. (4.52)
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Therefore our task reduces to finding n-tuplets (Ai, Bi) on a two dimensional
A−B plane such that ∑i |ci|

2 (Ai, Bi) = (0, 0) which means that the convex hull
of the set of points {(Ai, Bi)} contains the origin, the point (0, 0). Let us call
the condition that the convex hull of a set of points should include a fixed point
as “convex hull property”.

Note that, once the problem is fixed with some arbitrary weights ρ and ρ′ and
a number of iterations m, Ai and Bi depend only on the adjustable parameter
µi. Let us show only this dependence explicitly (i.e., Ai = A (µi) and Bi =
B (µi)), so that the set of points (Ai, Bi) is a finite subset of the continuous curve
(A (µ) , B (µ)) where 0 ≤ µ ≤ 1. This allows us to make the observation that the
origin should also be in the convex hull of the whole curve (A (µ) , B (µ)), but
this means that the problem can be solved with n = 2. This is because finding
only two points on the curve such that the line connecting them includes the
origin is enough to show the convex hull property.

In the last paragraph, we have transformed the problem of distinguishability
of two weights ρ and ρ′ with m function evaluations into a problem in convex
analysis: whether a curve and the point origin satisfies convex hull property. We
can express the coordinates of the curve (A (µ) , B (µ)) as

A (µ) = Tm (y)Tm (y′) + Um−1 (y)Um−1 (y′) (1− yy′) , (4.53)

B (µ) = Um−1 (y)Um−1 (y′) (2− y − y′) , (4.54)

where y = 1 − 2ρµ, y′ = 1 − 2ρ′µ and Tm and Um denote the Chebyshev
polynomials. Their definition are given as follows:

Tm (x) ≡ cos (m arccos (x)) , (4.55)

Um (x) ≡ 1
m

d

dx
Tm (x) . (4.56)

Even though the parameters (A (µ) , B (µ)) are only polynomials in terms of µ,
the problem of determining whether the origin is within the convex hull of the
curve can become intractable with increasing number of iterations. In that case
we may resort to numerical techniques.

When m = 1, A (µ) = 1 for any the value µ, therefore the convex hull of the
curve can not contain the origin. Consequently, a single evaluation of oracle is
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never enough for sure-success discrimination of two weights with both different
from 0 or 1. Distinguishability starts with m = 2 iterations. An example with
m = 2 is shown in Fig. 4.2 where the weights are taken to be ρ = 0.95 and
ρ′ = 0.45. Observe that the parametric curve (A (µ) , B (µ)) starts from the
point (A (0) , B (0)) = (1, 0). It turns out that this is the case for all the cases
even for m = 1. However the curve ends at a nontrivial point. Since it starts
from a point on the positive part of the horizontal axis, if we can find a second
intersection on the negative part of the axis, we can easily construct a convex
combination that gives (0, 0). Even though this simplification covers most of the
solutions, for a complete analysis we have to find compact inequalities in terms
of the weights ρ and ρ′.

- 1.0 - 0.5 0.5 1.0

- 1.0

- 0.5

0.5

1.0

A

B

μ=0

μ=1

Figure 4.2: B (µ) vs. A (µ) for m = 2, ρ = 0.95 and ρ=0.45

m=2 case

Before studying the general case, we start with the simplest cases where we
can find analytical solutions. For m = 2 we will see that compact formulas for
distinguishability is possible. When m = 2, µ dependence of A and B is found
as
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A(2) (µ) = 1− 8µ2 (ρ− ρ′)2
, (4.57)

B(2) (µ) = 8µ (ρ+ ρ′) (1− 2µρ) (1− 2µρ′) , (4.58)

where we introduced the superscripts in order to emphasize the number of itera-
tions. Our requirement is that, there exists two distinct points

(
A(2) (µ1) , B(2) (µ1)

)
and

(
A(2) (µ2) , B(2) (µ2)

)
on the curve, such that the following is satisfied

∑
i=1,2
|ci|2

 A(2) (µi)
B(2) (µi)

 =

 0
0

 . (4.59)

Hence there should exist two values, µ1 and µ2 such that

B(2) (µ1)
A(2) (µ1) = B(2) (µ2)

A(2) (µ2) , (4.60)

and both
(
A(2) (µ1) , A(2) (µ2)

)
and

(
B(2) (µ1) , B(2) (µ2)

)
pairs should have op-

posite signs, i.e., if A(2) (µ1) is positive then A(2) (µ2) is negative or vice versa and
same thing for B (µ)’s as well. A helpful observation is that if there is a solution
to Eq. 4.60, then there is always a solution with µ2 = 1. It can be proved by
considering all the possible orderings of the two roots µ0 ≡ (2ρ)−1, µ′0 ≡ (2ρ′)−1

and the pole µp ≡
(
2
√

2 |ρ− ρ′|
)−1

of B(2) (µ) /A(2) (µ). The details of the proof
can be found in Ref. [27]. By setting µ2 = 1, we obtain the following

B(2) (µ1)A(2) (1)− A(2) (µ1)B(2) (1) =
(
Kµ2

1 + Lµ1 +M
)

(µ1 − 1) = 0 (4.61)

with
µ1 ≤ µp (4.62)

where

K = 4ρρ′
(
1− 8 (ρ− ρ′)2) (4.63)

L = 8 (ρ− ρ′)2 + 4ρρ′ − 2 (ρ+ ρ′) (4.64)

M = (2ρ− 1) (2ρ′ − 1) . (4.65)

As it can be seen from Eq. 4.61, for two iterations, the hardest step to find the
conditions on the weights is solving a quadratic equation. For more than two
iterations, the algebraic equation to be solved will be of higher degrees and it
will be harder to solve analytically.
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General case

Applying the same procedure for three iterations, we obtain the following
(A (µ) , B (µ)) coordinates

A(3) (µ) = −128µ4ρρ′(ρ− ρ′)2 + 64µ3(ρ− ρ′)2(ρ+ ρ′)

−48µ2(ρ− ρ′)2 + 1, (4.66)

B(3) (µ) = µ
(
16µ2ρ2 − 16µρ+ 3

) (
16µ2ρ′2 − 16µρ′ + 3

)
. (4.67)

Observe that for the case where m = 3, the order of A(3) (µ) and B(3) (µ) are 4
and 3 respectively. The most difficult equation to be solved is now 4th order.
Comparing it with the 2nd order Eq. 4.61, we see that it would be impractical
to try to solve these equations for m > 2 analytically. Fortunately, we can
employ numerical methods without so much effort. Note that it is also possible
to solve this problem directly without applying Theorem 2. However without
Theorem 2, one needs to optimize |βi〉’s one by one. In contrast, in the current
approach, optimization of only one parameter, µ is enough and it is clearly an
advantage for both analytical and numerical approaches.

Numerical results obtained with our method for several iterations (m = 2, 3, . . . , 8)
are plotted in Fig 4.3 along with a few results obtained by the algorithm given
by Choi et al. Observe that, starting farthest from the diagonal, each iteration
contributes enclosing more area representing distinguishable space of weights.
With each run, amount of this enclosure decreases, as the problem becomes
harder for weights that are closer to each other.

Symmetries

Notice that the patterns are symmetric with respect to the main diagonal
(i.e., ρ = ρ′ line). This observation is anticipated because whether we swap
the weights or not, starting from the same initial state, the inner product of
the final states obtained from these weights doesn’t change. However we would
expect one more symmetry: distinguishing ρ from ρ′ should not be different
from distinguishing 1 − ρ from 1 − ρ′ since this corresponds to inverting the
function output for all the inputs. The complexity of the problem does not
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Figure 4.3: Number of iterations up to 8 as a function of ρ and ρ′. The areas
with darker shade correspond to higher m values and the areas with lighter
shade or no shade correspond to lower m values. The lightest region is for
m = 2. The disc-like black region on the diagonal corresponds to weight pairs
that have no solutions with m ≤ 8 iterations. To be able to make a comparison,
the whole region is also divided by 6 lines which are parallel to the diagonal.
These divisions, from the outermost to the inner ones, correspond to the weight
pairs distinguishable by k = 2, 3, 4 iterations with the algorithm given in [24, 25].
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change with such modification. Unfortunately our formalism does not detect
this kind of bit flip in any part of the computation. It is possible to remove
this deficiency by adjusting the unitary S in the algorithm by changing it to
S ′ = S (1⊗ Uu) where Uu corresponds to the unitary for the constant function
u(x) = 1. It can easily be checked that S ′ has complex eigenvalues and also
many of the eigenvectors that correspond to −1 are not in the form of Eq. 4.31.
Thus, our conclusion is that, even though it is possible to design an algorithm
with an inherent (ρ, ρ′) ↔ (1− ρ, 1− ρ′) symmetry, it would be unnecessarily
complicated. Alternatively we can run the algorithm one more time with the
inverted outputs and make a decision after considering both results with the
expense of doubling the run-time of the algorithm. The decidability of weights
when such a symmetry is taken into consideration is drawn in Fig. 4.4.

4.3.3 A comparison of query complexities

We end this chapter by a brief comparison of query complexities of the algorithms
given in Chapter 4.

Classical complexities

Let us start with the classical case first. A deterministic classical algorithm
would use approximately

mcl,det ∼ N (1− |ρ− ρ′|) (4.68)

steps to make a decision on two weights in the worst case. However a probabilis-
tic algorithm could achieve better. Let us assume that, with such an algorithm,
minimum s random queries are needed to discriminate two weights ρ and ρ′.
Then, the sum of standard deviations should be smaller than the difference of
the weights

σρ − σρ′ < |ρ− ρ′| (4.69)

where σλ denotes the standard deviation of the random shooting process of a
function with weight λ. This scenario is one of the typical examples of hyperge-
ometric distribution, but calculating the standard deviation may be difficult for
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Figure 4.4: Symmetrized version of Fig. 4.3.
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it. Luckily, for large N the hypergeometric distribution can be approximated to
a binomial process, thus the standard deviation can be given as

σρ '
√
ρ (1− ρ)

m
(4.70)

and using Eq. 4.69 it is found that at least

mcl,prb ∼
4ρ (1− ρ)
|ρ− ρ′|2

(4.71)

evaluations are necessary to discriminate two weights with negligible error.

Complexity of quantum counting and the method by Choi et al.
Since weight discrimination is a special case of quantum counting, we would

like to present the query complexity of the quantum counting for the problem
of discrimination of two weights first. In Refs. [24, 25] the query complexity for
quantum counting is given with the following argumentation: Since any weights
can be symmetrized, finding the complexity for symmetric weights is sufficient.
For symmetric weights one can write the weights as

ρ1 = sin2
(

mπ

4m+ 2

)
(4.72)

ρ2 = cos2
(

mπ

4m+ 2

)
(4.73)

and setting P = 4m + 2 is enough to check that whether the weight is ρ1 or
ρ2. On the other hand it has been shown in [24, 25] and also its optimality is
verified in [26] that m queries are needed for the method by Choi et al. In [26],
optimal m has been expressed in terms of the weights as

mBC ∼
π

2

√
ρ (1− ρ′)
|ρ− ρ′|

(4.74)

in the regime where the weights are close to each other and to 1
2 . Comparing

them with the classical case, a square-root speedup has been achieved by both
quantum counting and the method of Choi et al. Braunstein and Choi’s method
is 4 times faster than the quantum counting and does not need a quantum
Fourier transform however it is a specialized algorithm for weight discrimination
whereas quantum counting is a more general algorithm in the sense that it can
discriminate any number of weights.
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Complexity of our method

As we discussed before, we always have the point (A,B) = (1, 0) as the starting
point in the geometrical picture we presented to understand the µ dependence
of the parameters A and B. Finding a second point on the negative side of the
horizontal axis would lead to a solution since the (0, 0) point can be obtained
by a convex combination of these two points. Even though better solutions can
be found for m > 2, this approximation is good enough to estimate the order
of quantum complexities. Therefore we search for the roots of B and check the
sign of A at these points. Note that, either mθif or mθig is an integer multiple
of π at the roots of B. in Eq. 4.52 so, the second term in Eq. 4.51 vanish. From
negativity of A, Eq. 4.75 follows:

|mθif −mθig| >
π

2 . (4.75)

Since the limits of the algorithm are tested when the weights are close to each
other, we can assume so and linearize the expression as

m (θif − θig) = m
(
cos−1 (1− 2µρ)− cos−1 (1− 2µρ′)

)
(4.76)

' m (ρ− ρ′) ∂

∂ρ
cos−1 (1− 2µρ) (4.77)

= m
ρ− ρ′√
ρ
(

1
µ
− ρ

) > π

2 (4.78)

and by making use of the observation that for an optimal solution µ . 1 we
obtain

mUT ∼
π

2

√
ρ (1− ρ)
|ρ− ρ′|

. (4.79)

Let us compare this result with the previous ones. A quadratic speedup in com-
parison with classical algorithms is achieved. Similar to Braunstein and Choi’s
method, this method also works four times faster than quantum counting. There
is almost no difference between the two specialized weight decision algorithms in
the large number of iterations regime. However as shown in Fig. 4.3, for most of
the weights that can be discriminated by small number of iterations, our method
gives slightly improved results, whereas Braunstein and Choi’s results are better
than ours for some of the weights. The former observation is partly because of
the fact that, Braunstein and Choi’s method sets the number of iterations in
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the beginning of their algorithm only by looking at the difference of the weights
regardless of the weights themselves. On the contrary, our method is more flex-
ible so that we are able to adjust the parameters of the algorithm for optimal
number of iterations for all the weight decision scenarios. However the latter
observation also takes place since our method lacks a bit flip symmetry. As we
have seen in Fig. 4.4, symmetrized version of our method is strictly superior to
the one in [25] for the first few iterations.
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CHAPTER 5

CONCLUSIONS AND OUTLOOK

In this thesis we studied the sure-success weight decision problem of Boolean
functions using quantum algorithms. In particular, we progressed through two
methods.

First, we explored the problem within the framework of quantum operator dis-
crimination in Chapter 3 after giving necessary background information on quan-
tum state discrimination and quantum operator discrimination in Chapter 2. In
this approach we observed that only parallel calls to the function augments
the distinguishability of functions but not so much. Alternatively, the unitaries
corresponding to the function can be applied in a sequential manner. Thus
we followed this approach next and obtained more promising results. The se-
rial formulation is advantageous in the sense that any other formulation can be
translated into a serial formalism[21, 22]. Consequently, the main focus in Chap-
ter 3 was serial applications. We intoduced a powerful theorem that creates a
connection between quantum protocols that consist of p sequential applications
of the unitary evaluation that realizes the function and the density matrices in
the product Hilbert space H⊗p. Through this connection we were able to estab-
lish the conditions for p = 2 evaluations without much effort. In contrast, even
for p = 3 evaluations, the equations for distinguishability became intractable.

In the second method, we applied Grover iteration directly to the problem.
Grover’s iteration in its original form is not exact. We modified the algorithm in
a novel way so that an exact discrimination of functions with different weights
is possible. As of this writing, sure success discrimination can be achieved with
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three algorithms, quantum counting[23], Braunstein and Choi’s algorithm[24, 25]
and our method[27]. We reviewed all these methods in Chapter 4. As its name
suggests, quantum counting algorithm gives the number of inputs of a Boolean
function that lead to the output 1. Since it can distinguish any number of func-
tions with different weights, decision of two functions becomes a special case.
The other two algorithms are specialized versions in the sense that they can
only discriminate two weights and all three achieve a square-root speedup as
compared to classical algorithms. This should not be a surprising fact because
they all are based on the Grover iteration and the query complexity reduction
of Grover algorithm is shown to be no more than square root[67, 77, 78]. There
is however a slight difference of complexities between these algorithms. Special-
ized algorithms turns out to be approximately 4 times faster than the quantum
counting algorithm. When the weights are closer to each other, more queries are
necessary. We made a query comparison of two algorithms in this region of the
weight space and found that our method gives approximately the same speed as
the Braunstein and Choi’s. In a closer look, our results indicate that for different
weight combinations in the small number of iterations regime, better quantum
discrimination scenarios are possible.

Future work

There can be several possible extensions of these two approaches. Here we
list some of them. We have tested the density matrix correspondence only
for the weight decision problem of two functions. From the quantum operator
discrimination perspective, “the weight” in our problem, becomes the common
property that defines which set a unitary operator belongs to. The task then
can be reformulated as the quantum operator discrimination of these sets of
unitaries. One can define a more general property such as a class of weights
versus some other class or weights. An example could be discriminating zero
function from any other non-zero function. Conversely one can define a more
specific version or consider a completely different property of a Boolean function.
Weight is only one of the components in a Walsh transform of a Boolean function.
A possible direction may be taking other components of the Walsh transform
into consideration. Special functions such as bent functions which always lead to
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a balanced Walsh transform have useful applications in cryptography[84]. The
methods we introduced in this thesis may be extended to determine or make use
of such properties.

Weight is in a sense the Boolean counterpart of the definite integral of a function
over its domain. A possible long-term continuation of our work may be discrim-
ination of real functions whose integral over a specific domain is guaranteed to
give one of the two predetermined vaues.

We used a novel technique to make Grover’s algorithm a sure-success one for
the weight decision problem. Even though there exists several other methods
in the literature for the same purpose, our method may be preferrable in other
problems with fastest quantum algorithm solutions are available using Grover
iteration. Searching for such problems can be counted as one of the many
possible continuations of our works compiled in this thesis.
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APPENDIX A

PROOF OF THE DENSITY MATRIX

CORRESPONDENCE THEOREM

Here we give the proof of Theorem 1

Proof. For a given protocol {|ϕ〉 ,V(k)} define∣∣∣ϕ(k)(ik, ik−1, . . . , i1)
〉
≡ V

(k−1)
ik,ik−1

V
(k−2)
ik−1,ik−2

· · ·V (1)
i2,i1 |ϕ(i1)〉 (A.1)

thus, the final state becomes

|Φf〉 =
∑
i1···ip

fi1 . . . fip |ip〉X ⊗
∣∣∣ϕ(p)(ip, . . . , i1)

〉
A

(A.2)

and the overlap matrix is

Sfg = 〈Φf |Φg〉 =
∑
i1...ip
j1...jp

f ∗i1 . . . f
∗
ipgj1 . . . gjpδipjp

〈
ϕ(p)(ip, . . . , i1)|ϕ(p)(jp, . . . , j1)

〉
.

(A.3)
For the forward implication, define ρ = ρ(p) by

ρ ≡
∑
i1...ip
j1...jp

δipjp
〈
ϕ(p)(ip, . . . , i1)|ϕ(p)(jp, . . . , j1)

〉
|i1 . . . ip〉 〈j1 . . . jp| (A.4)

so that

〈ip . . . i1|ρ|jp . . . j1〉 = δipjp
〈
ϕ(p)(ip, . . . , i1)|ϕ(p)(jp, . . . , j1)

〉
(A.5)

and we recover the overlap matrix given in Equation (A.3)

Sfg =
∑
i1...ip
j1...jp

(
fi1 . . . fip

)∗ (
gj1 . . . gjp

)
〈ip . . . i1|ρ|jp . . . j1〉 (A.6)

×
〈
f⊗p|ρ|g⊗p

〉
(A.7)
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We will prove the diagonality property of ρ by induction. To do this, first observe
that ρ(p) is diagonal in Xp:

ρ(p) =
∑
i1...ip
j1...jp

(|ip〉 〈ip|)Xp ⊗ δikjk
(〈
ϕ(p)(ip−1, . . . , i1)|ϕ(p)(jp−1, . . . , j1)

〉
Xp−1...X1

|ip−1 . . . i1〉 〈jp−1 . . . j1|
)

(A.8)

Now let us assume ρ(k) is diagonal in Xk, thus ρ(k) is of the form

ρ(k) =
∑
i1...ik
j1...jk

(|ik〉 〈ik|)Xk ⊗ δikjk
(〈
ϕ(k)(ik, . . . , i1)|ϕ(k)(jk, . . . , j1)

〉

|ik . . . i1〉 〈jk . . . j1|
)
Xp−1...X1

(A.9)

=
∑
i1...ik
j1...jk−1

(|ik〉 〈ik|)Xk

⊗
(〈
ϕ(k−1)(ik−1, . . . , i1)|V †ikik−1

Vikjk−1|ϕ(k−1)(jk−1, . . . , j1)
〉

|ik . . . i1〉 〈jk . . . j1|
)
Xp−1...X1

. (A.10)

Then ρ(k−1) can be obtained as

ρ(k−1) = TrXkρ(k) (A.11)

=
∑
i1...ik
j1...jk−1

(〈
ϕ(k−1)(ik−1, . . . , i1)|V †ikik−1

Vikjk−1|ϕ(k−1)(jk−1, . . . , j1)
〉

|ik−1 . . . i1〉 〈jk−1 . . . j1|
)
Xp−1...X1

(A.12)

=
∑

i1...ik−1
j1...jk−1

(〈
ϕ(k−1)(ik−1, . . . , i1)|δik−1jk−1,|ϕ(k−1)(jk−1, . . . , j1)

〉

|ik−1 . . . i1〉 〈jk−1 . . . j1|
)
Xp−1...X1

(A.13)

=
∑

i1...ik−1
j1...jk−1

(
δik−1jk−1,

〈
ϕ(k−1)(ik−1, . . . , i1)|ϕ(k−1)(jk−1, . . . , j1)

〉

|ik−1 . . . i1〉 〈jk−1 . . . j1|
)
Xp−1...X1

. (A.14)

Thus ρ(k−1) is also diagonal in Xk−1. We were able to write Eq. (A.13) because
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of the special structure of the V matrices:

VV† = 1 (A.15)∑
ijkl

V (|i〉 |ψl) (〈i| 〈ψl|)V† = 1 (A.16)
∑
ijkl

(|i〉Vji |ψl〉)
(
〈i| 〈ψl|V †ki

)
= 1 (A.17)

∑
ijkl

(|i〉 〈i|)A
(
Vji |ψl〉 〈ψl|V †ki

)
X

= 1XA. (A.18)

This implies

∑
ilk

Vji

(∑
l

|ψl〉 〈ψl|
)
V †ki = 1A (A.19)∑

ijk

VjiV
†
ki = 1A = δjk, (A.20)

and therefore we have ∑
ijk

V †ikVij = δkj. (A.21)

Since ρ(1) is a diagonal matrix, and the trace Trρ(1) reduces to the normal trace
and is equal to 1 because of Eq. (3.46). Lastly, to see that ρ(p) is a positive
definite matrix, observe from the definition Eq. (A.4) that its matrix elements
ρij also constitute an overlap matrix and overlap matrices are always positive
definite. Therefore these conditions we have shown up to now justify that the
matrix we have defined in Eq. (A.4) is a density matrix and satisfy the property
“diagonality in Xk”.

Now, for the opposite implication, let a density matrix ρ(p) on (HX)⊗pbe given
to us such that ρ(k) is diagonal in Xk for all k = 1, . . . , p. Define

∣∣∣ω(k)(ik, . . . , i1)
〉

=
√
ρ(k) |ik . . . i1〉 . (A.22)

This is actually a vector in HXk ⊗ · · · ⊗ HX1 . We know

〈
ω(k)(jk, . . . , j1)|ω(k)(ik, . . . , i1)

〉
= 〈jk, . . . , j1|ρ|ik, . . . , i1〉 (A.23)

and this is 0 if jk 6= ik. Define the |θ〉 vector as

∣∣∣θ(k)(jk−1, . . . , j1)
〉

=
n∑
i=1
|i〉 ⊗

∣∣∣ω(k)(i, jk−1, . . . , j1
〉
. (A.24)
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Then,

Θ(jsk−1, . . . ; ik−1, . . .) =
〈
θ(k)(jk−1, . . . , j1)|θ(k)(ik−1, . . . , i1)

〉
(A.25)

=
n∑
i=1
〈i|i′〉

×
〈
ω(k)(i, jk−1, . . . , j1)|ω(k)(i′, ik−1, . . . , i1)

〉
(A.26)

=
n∑
i=1

〈
i, jk−1, . . . , j1|ρ(k)|i′, ik−1, . . . , i1

〉
(A.27)

=
〈
jk−1, . . . , j1|ρ(k−1)|ik−1, . . . , i1

〉
(A.28)

=
〈
ω(k−1)(jk−1, . . . , j1)|ω(k−1)(ik−1, . . . , i1)

〉
(A.29)

= 〈jk−1|ik−1〉

×
〈
ω(k−1)(jk−1, . . . , j1)|ω(k−1)(ik−1, . . . , i1)

〉
(A.30)

Hence there is an isometry Ω(k−1) : (HX)⊗k → (HX)⊗k such that∣∣∣θ(k)(jk−1, . . . , j1)
〉

= Ω(k−1) |jk−1〉X ⊗
∣∣∣ω(k−1)(jk−1, . . . , j1)

〉
A
. (A.31)

At this point we can pass to an ancilla instead of using (HX)⊗k−1 as ancilla.
Let A be a system with an infinite-dimensional Hilbert space (i.e., HA can be
required to be sufficiently large.) Form the association∣∣∣ω(k)(jk, . . . , j1)

〉
←→

∣∣∣ϕ(k)(jk, . . . , j1)
〉
A

(A.32)

(HX)⊗k ←→ HA (A.33)

Let Fk : H ⊗k
X → HA be an isometry (k = 1, . . . , p). We can define this anyway

we want. Fk is an isometry means

F †kFk = 1kX . (A.34)

Let
∣∣∣ϕ(k)(jk−1, . . . , j1)

〉
≡ Fk

∣∣∣ω(k)(jk, . . . , j1)
〉
, thus

F †k

∣∣∣ϕ(k)(jk, . . . , j1)
〉

=
∣∣∣ω(k)(jk, . . . , j1)

〉
. (A.35)

Now, rewrite Eq. (A.31) as
n∑
i=1
|i〉 ⊗

∣∣∣ω(k)(i, jk−1, . . . , j1)
〉

= Ω(k−1) |jk−1〉

⊗
∣∣∣ω(k−1)(jk−1, . . . , j1)

〉
(A.36)

= Ω(k−1) |jk−1〉

⊗F †
∣∣∣ϕ(k−1)(jk−1, . . . , j1)

〉
(A.37)
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and apply 1X ⊗ Fk, to obtain
n∑
i=1
|i〉 ⊗

∣∣∣ω(k)(i, jk−1, . . . , j1)
〉

= (1X ⊗ Fk) Ω(k−1)
(
1X ⊗ F †k−1

)
|jk−1〉 (A.38)

⊗
∣∣∣ϕ(k−1)(jk−1, . . . , j1)

〉
. (A.39)

Now define V as

V(k−1) ≡ (1X ⊗ Fk) Ω(k−1)
(
1X ⊗ F †k−1

)
, (k = 2, 3, . . . , p). (A.40)

So V(k−1) is an isometry on XA and
n∑
i=1
|i〉 ⊗

∣∣∣ϕ(k)(i, jk−1, . . . , j1)
〉

= V(k−1) |jk−1〉 ⊗
∣∣∣ϕ(k−1)(jk−1, . . . , j1)

〉
, (A.41)

hence ∣∣∣ϕ(k)(i, jk−1, . . . , j1)
〉

= V
(k−1)
ijk−1

∣∣∣ϕ(k−1)(jk−1, . . . , j1)
〉
. (A.42)

If we take i as jk∣∣∣ϕ(k)(jk, jk−1, . . . , j1)
〉

= V
(k−1)
jkjk−1

V
(k−2)
jk−1jk−2

· · ·V (1)
j2j1

∣∣∣ϕ(1)(j1)
〉
. (A.43)

So define |ϕ〉XA = ∑n
i=1 |i〉 ⊗

∣∣∣ϕ(1)
i

〉
and then

UfV
(p−1) · · ·V(1)Uf |ϕ〉 =

∑
fip . . . fi1 |ip〉X ⊗

∣∣∣ϕ(p)(ip, . . . , i1)
〉
A
(A.44)

= |Φf〉 . (A.45)

Thus the overlap matrix becomes

〈Φf |Φg〉 =
(
fip . . . fi1

)∗ (
gip . . . gi1

)
δipjp

×
〈
ϕ(p)(ip, . . . , j1)|ϕ(p)(jp, . . . , j1)

〉
(A.46)

=
(
fip . . . fi1

)∗ (
gip . . . gi1

)
×
〈
ω(p)(ip, . . . , j1)|ω(p)(jp, . . . , j1)

〉
(A.47)

=
〈
f⊗p|ρ|g⊗p

〉
(A.48)

This completes the second part of the proof. �
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