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ABSTRACT 

 

 

SPATIAL DATA ANALYSIS FOR MONITORING AND PREDICTION OF 

SELECTED WATER QUALITY PARAMETERS IN RESERVOIRS: 

PORSUK DAM RESERVOIR CASE 

 

 

 

Yenilmez, Firdes 

Ph.D., Department of Environmental Engineering 

Supervisor: Assoc. Prof. Dr. Ayşegül Aksoy 

Co- Supervisor: Prof. Dr. H. Şebnem DÜZGÜN 

 

 

February 2014, 217 pages 

 

 

In the design of a water quality monitoring network, selection of water quality 

sampling locations is crucial to adequately represent the water quality of the water 

body when high costs of analyses and field work are taken into account. In this 

study, a new approach was proposed to identify the representative water quality 

sampling locations in reservoirs and lakes using geostatistical tools for estimation 

of spatial distribution of selected water quality parameters. To do so, kernel 

density estimation (KDE) was coupled with ordinary 2-dimensional kriging (OK) 

in order to select the representative sampling locations in kriging of dissolved 

oxygen (DO) concentrations in Porsuk Dam Reservoir (PDR). Field data obtained 

in August 2010 were used to start the process of sampling point elimination while 

maintaining the spatial correlation structure of DO. KDE was used as a tool to aid 

in identification of the sampling locations that would be removed from the 

sampling network in order to decrease the total number of samples. Accordingly, 

several networks were generated in which sampling locations were reduced from 

65 to 10 in increments of 4 or 5 points at a time based on kernel density maps. DO 

variograms were constructed and DO values in PDR were kriged. Performance of 

the networks in DO estimations were evaluated through various error metrics, 

standard error maps (SEM), and whether the spatial correlation structure was 

conserved. Results indicated that lower sampling points resulted in loss of 
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information in regard to spatial correlation structure in DO when more than 30 

sampling points were removed from the initial 65. Representativeness of the 

selected network for specific conductivity (SC) was also checked and confirmed. 

Furthermore, potential hotspots for DO and SC were also assessed based on 

landuses in the vicinity of PDR. Then, efficacy of the representative sampling 

locations selection method was tested against the networks generated by experts. 

It was shown that the evaluation approach used in this study provided a better 

sampling network design in which the spatial correlation structure of DO was 

sustained.  

 

In the second part of the study, three-dimensional (3D) kriging of DO with the 81 

sampling points was performed using Stanford Geostatistical Modeling Software 

(SGeMS). Hence, not only the hotspots at the surface of PDR but also in deeper 

layers were constituted and evaluated in terms of the inlets of pollution sources. 

Similar hotspots were obtained both for 2D kriging and 3D kriging of DO for the 

dataset used in this study. Moreover, 3D distributions of DO, SC and temperature 

were constituted to determine the location of the thermocline layer. It was 

identified that the traditional approach of collecting samples from mid depths may 

cause incomplete characterization and evaluation of water quality since 

thermocline layer may not coincide with mid-depth.  

 

Keywords: Monitoring network, kernel density estimation, kriging, Porsuk Dam 

Reservoir, SGeMS 
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ÖZ 

 

 

REZERVUARLARDA SEÇİLMİŞ SU KALİTESİ PARAMETRELERİNİ 

İZLEME VE TAHMİN İÇİN MEKANSAL VERİ ANALİZİ: PORSUK 

BARAJ GÖLÜ ÖRNEĞİ 
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Tez Yöneticisi: Doç. Dr. Ayşegül Aksoy 

Ortak Tez Yöneticisi: Prof. Dr. H. Şebnem DÜZGÜN 

 

 

Şubat 2014, 217 sayfa 

 

 

Su kalite izleme ağlarının oluşturulmasında, örnekleme noktalarının seçimi su 

kütlesindeki su kalitesinin doğru belirlenmesi açısından çok önemlidir. Bununla 

birlikte, analiz ve arazi çalışmalarının yüksek maliyet gerektirmesi bu seçimi daha 

da önemli hale getirmektedir. Bu çalışmada, seçilmiş su kalitesi parametrelerinin 

mekansal dağılımının jeoistatistiksel yöntemler kullanılarak oluşturulması ile 

baraj ve göllerde temsili örnekleme noktalarının belirlenmesi için yeni bir 

yaklaşım geliştirilmiştir. Bu amaçla, kernel yoğunluk tahmini (KDE), iki-boyutlu 

kriging yöntemi ile birlikte 2010 yılı Ağustos ayında elde edilen çözünmüş 

oksijen (ÇO) konsantrasyonu verileri kullanılarak Porsuk Baraj Gölü temsili 

örnekleme noktalarını belirlemek için uygulanmıştır. KDE, örnekleme ağındaki 

toplam örnekleme sayısını azaltmak için uzaklaştırılacak noktaların belirlenmesi 

amacıyla kullanılmıştır. Böylece, her seferinde 4 veya 5 örnekleme noktası 

uzaklaştırılarak farklı örnekleme ağları örnekleme noktaları 65’den 10’a 

düşürülerek oluşturulmuştur. Örnekleme ağları için ÇO variogramları ve kriging 

haritaları oluşturulmuştur. Temsili örnekleme noktalarından oluşan ağ, variogram 

modelleri, kriging haritaları, standart hata haritaları ve verifikasyon sonuçları 

değerlendirilerek belirlenmiştir. Buna göre, ÇO verileri baz alındığında göldeki 

mekansal ilişkinin yansıtılabilmesi için 35 örnekleme noktasına ihtiyaç vardır. 

Seçilen örnekleme ağının, Özgül İletkenlik (Öİ) parametresi için de uygunluğu 
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kontrol edilmiştir. Bununla birlikte arazi kullanımı göz önüne alınarak ÇO ve Öİ 

parametrelerinin yüzeyde oluşturduğu kümelenmeler irdelenmiştir. Daha sonra 

önerilen metodun etkinliği, uzmanlar tarafından seçilen örnekleme ağlarına karşı 

test edilmiştir. Sonuçlar, çözünmüş oksijen parametresi mekansal korelasyonunu 

sürdürmesi sebebiyle bu çalışmada önerilen metodun daha iyi olduğunu 

göstermiştir. 

 

Çalışmanın ikinci bölümünde, Stanford Jeoistatistiksel Modelleme yazılımı 

(SGeMS) kullanılarak 81 noktadan elde edilen ÇO verisi için üç boyutlu kriging 

uygulanmıştır. Böylece, yalnızca PDR yüzeyindeki değil alt tabakalardaki 

kümelenmeler de krililik giriş noktaları dikkate alınarak değerlendirilmiştir. İki 

boyutlu ve üç boyutlu kriging uygulamaları neticesinde elde edilen kriging 

haritaları karşılaştırılmış ve ÇO için benzer kümeler gözlenmiştir. Son olarak 

çözünmüş oksijen, iletkenlik ve sıcaklık parametrelerinin üç boyutlu dağılımları 

termoklin tabakasının belirlenmesi için incelenmiştir. Buna göre geleneksel 

örnekleme çalışmalarında toplam derinliğin yarısından alınan numunelerin 

termoklin tabakası ile çakışmayabileceği ve su kalitesinin hatalı 

değerlendirilmesine sebep olabileceği görülmüştür.  

 

Anahtar Kelimeler: İzleme ağı, Kernel Yoğunluk Tahmini, kriging, Porsuk Baraj 

Gölü, SGeMS 
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CHAPTER 1 

 

 

INTRODUCTION 1

 

 

 

Surface waters play a vital role as drinking water supply, transportation media, 

and for recreation purposes (Nam, 2008). However, the water quality of surface 

waters is under stress due to domestic and industrial wastewater discharges, 

agricultural activities, mining activities, etc. Monitoring is important to assess the 

impacts of these activities.  

 

The design of water quality monitoring networks that constitute of robust and 

representative sampling locations is essential for better water quality 

characterization and management (Do et al., 2012). The method used in the design 

of the monitoring network should be flexible permitting modifications at later 

stages and recognize the economic constraints (Strobl and Robillard, 2008). 

Geostatistical tools are beneficial in identifying the representative sampling 

locations, which can be crucial given the high costs of installment and operation 

(Chehata et al., 2007).  

 

Although geostatistical applications were originated and applied in mining and 

petroleum exploration industries, they are now routinely employed in 

environmental studies (Chehata et al., 2007). Many water quality monitoring 

networks for surface freshwaters have been randomly designed with inconsistent 

and illogical design strategies (Strobl and Robillard, 2008). Researches related 

with this topic point out the necessity of developing water quality monitoring 

network design procedures which can be generally regarded as valid by most 

designers (Sanders et al., 1983; Strobl and Robillard, 2008; Nam, 2008). In many 

water quality network designs, it is aimed to reduce the number of sampling 

location to reduce monitoring costs (Nam, 2008; Strobl et al., 2006a; Kao et al., 

2012; Hedger et al., 2001). Yet, water quality data exhibit spatial correlations. As 
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a result, care should also be given to sustain the original spatial correlation 

structure while reducing the number of sampling points to have a representative 

network.  

 

In lakes and reservoirs, there are several factors like wind action, shape of the 

lake/reservoir, feeder streams and effluents that cause water quality to vary 

spatially and temporally. In the guide to design and implement freshwater quality 

studies and monitoring programs by the United Nations Environment Programme 

(UNEP) and the World Health Organization (WHO), it is stated that if there is 

good horizontal mixing, a single station near the center or at the deepest part of 

the lake will be sufficient to monitor long-term trends. If the lake is large with 

many narrow bays or contains several deep basins, the number of sampling 

stations can be calculated from the log10 of the lake area (in km
2
) (UNEP/WHO, 

1996). Furthermore, it is necessary to take more than one sample to describe water 

quality in stratified lakes. According to the Methods of Sampling and Analysis 

guide that supplements the Turkish Water Pollution Control Regulation, minimum 

five sampling locations should be selected by taking water inlets and outlets, 

coastal activities, locations of pollution sources, hydrodynamic properties into 

account to characterize the water quality in reservoirs and lakes. According to the 

regulation, a network is obtained by dividing the surface of the lake/reservoir into 

grids in different seasons. Samples are collected at various depths of the sampling 

locations that are at the corner points of the network. The results of this study 

were used to determine routine sampling stations.  

 

The European Union Water Framework Directive (2000/60/EC) aims for 

establishment of a framework for the protection of inland surface waters, coastal 

waters and groundwater. In the directive, it is mentioned that monitoring sites 

should be selected in sufficient amounts to assess the magnitude and impact of 

point sources, diffuse sources and hydromorphological pressures in designing 

operational monitoring. Artiola et al. (2004) mentioned that costs associated with 

sampling and analysis, accessibility and sampling time should be taken into 
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account in the selection of sample location and number of samples. Furthermore, 

they emphasized the importance of selection of sampling locations randomly. 

Moreover, the number of samples should be such that the maximum-accepted 

level of error in the results for statistically-based monitoring plans should be 

acceptable. In the study, it was also highlighted that samples should be taken 

throughout the depth in enclosed bodies of water such as lakes and lagoons, 

especially if thermocline is present. Burden et al. (2002) pointed out the 

dependence of the number and location of potential sites on purpose of the 

monitoring program. For example, sampling locations should be at places where 

nutrients are likely to enter the water body to monitor the impact of point sources. 

Furthermore, representative sampling sites should provide appropriate spatial 

information, away from boundary areas (e.g., confluence of streams or rivers), 

convenient to reach, and safely accessible. Yet, no specific method is declared to 

identify representative sampling locations. In overall, although the mentioned 

regulations and guidelines include frameworks for the determination of sampling 

locations in surfacewaters, it is necessary to propose a new approach to design a 

water quality monitoring network with representative sampling locations in 

reservoirs and lakes in which water quality can be governed by thermal and 

density stratification as well.  

 

The main objective of this study is to propose a new approach to identify the 

representative water quality sampling locations especially to obtain the spatial 

water quality distribution through kriging with smaller number of sampling 

points. Porsuk Dam Reservoir (PDR) is the study site. PDR is a large reservoir 

located within the borders of Kütahya and Eskişehir provinces. The water quality 

in PDR is under stress due to point and non-point pollution sources present in the 

borders of both provinces. The water quality of PDR is important because PDR 

supplies drinking water for Eskişehir. The current status of the water quality in 

PDR is in the hypereutrophic-eutrophic range (AKS, 2010) and urgent precautions 

are required to improve the water quality.  
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In this study, the combination of Kernel density estimation (KDE) and ordinary 2-

dimensional kriging (OK) were used to determine the representative sampling 

locations using the field data obtained from 81 sampling locations in August 

2010. Although there have been many studies to optimize monitoring networks, 

this study is the first application where KDE and kriging are combined to identify 

the representative sampling locations in reservoirs while maintaining the spatial 

correlation structure of given water quality parameters, which is crucial for 

accurate interpolation in kriging. Available studies do not focus on whether the 

selected sampling locations are sufficient in reflecting the spatial correlation 

structure of given water quality parameters. If the spatial correlation structure of a 

given water quality parameter is not sustained, the design of water quality 

monitoring network that consist of representative sampling locations for the 

selected parameter may not be possible. This may result in incorrect estimation of 

the spatial distribution of water quality parameters which may lead to 

inappropriate management approaches. In the study, potential hotspots for 

dissolved oxygen (DO) and specific conductivity (SC) are also evaluated based on 

landuses in the vicinity of PDR. Moreover, three-dimensional (3D) distributions 

of DO, SC and temperature were constituted to determine the thermocline layer. 

In most of the water quality modeling and water quality sampling studies, the 

depth to thermocline is assumed as fixed throughout the reservoirs and lakes. This 

situation may cause incorrect characterization and evaluation due to insufficient 

sampling design. Stanford Geostatistical Modeling Software (SGeMS) was used 

to perform 3D kriging of DO and compare the hotspots observed at the surface 

and in deeper layers. 

  



5 

 

CHAPTER 2 

 

 

LITERATURE REVIEW & THEORETICAL BACKGROUND 2

 

 

 

2.1 Optimization of Water Quality Sampling Locations 

 

It is important to develop a solid strategy to design better monitoring networks in 

surface waters. Although many researches have been conducted to optimize 

monitoring networks in river systems, researches on how to design and optimize a 

monitoring network in reservoirs are limited (Nam, 2008).   

 

Do et al. (2012) identified the representative river water quality sampling 

locations using a water monitoring network design procedure which combined 

river mixing length, human activities, and geographic information systems (GIS). 

The importance of each sampling point was determined by a potential pollution 

score (PPS). Lo et al. (1996) designed the water quality monitoring network of the 

Keelung River in Northern Taiwan. A steady-state water quality model was used 

to simulate the water quality of the river. The required monitoring stations were 

selected using kriging. While 15 stations were required for the average flow 

condition, 21 stations were needed for the medium/low flow condition. Icaga 

(2005) used a genetic algorithm (GA) for the optimization of water quality 

monitoring network of the Gediz River Basin in Turkey. Station combination 

scores were determined by taking drainage area, population, irrigation area, 

sample number, observation period and quality observations into account. Then, 

GA was applied to select the best station combination. The number of stations 

required was decreased from 33 to 14 by this optimization technique.  

 

Karamouz et al. (2009a) designed a river water quality monitoring network to 

determine sampling frequencies and location of water quality monitoring stations 

for the Karoon River in Iran. Firstly, a combination of kriging method and 
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analytical hierarchy process was used to determine the optimal location of the 

monitoring stations. In this method, estimation error was used as a criterion to 

locate the station. Secondly, a combination of GA and a river water quality 

simulation model was used. According to the results of models, 35stations were 

proposed. Chilundo et al. (2008) designed a water quality monitoring network for 

the Limpopo River Basin (LRB) in Southern Africa. They examined physico-

chemical, biological and microbiological characteristics at 23 sampling locations 

within the basin between November 2006 and January 2007. 16 sampling 

locations were selected for future sampling by taking temporal changes in 

pollutant concentrations, existing infrastructures, representativeness of the 

locations, identified sources of pollution, main water intakes, compliance with 

water quality standards, and number of contributing tributaries in the basin into 

account.  

 

Beveridge et al. (2012) optimized water quality monitoring network in Lake 

Winnipeg with a surface area of 23750 km
2
 located in Canada. They used water 

isotopes (δ
2
H, δ

18
O) data collected in 240 stations in September-October 2009. 

Two techniques were used to assess the relationships of redundancies between 

neighboring stations. While Local Moran's I technique was conducted to 

determine the clusters of stations that were similar or different, kriging technique 

was used to evaluate the suitability of the sampled network configuration. Good 

correlations were obtained between observed and predicted values. Cross-

validation was applied to evaluate kriging model performance. According to 

results, a large number of stations were identified as redundant. Stations that were 

statistically important or redundant could be determined by the combination of 

techniques proposed in the study. Importance of the evaluation of information 

provided by an individual station together with clusters of stations was 

emphasized.  

 

Kazi et al. (2009) applied principal components analysis (PCA) and cluster 

analysis (CA) to assess the variations in surface water quality of the Manchar 
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Lake in Pakistan. The lake had a surface area of 233 km
2
. Five sampling stations 

were grouped into three clusters based on similar water quality characteristics. 

The need for development of a new optimal sampling design by reducing the 

number of sampling locations and associated cost was suggested.  

 

Jimênez et al. (2005) developed a methodology to design data collection networks 

in lakes and reservoirs. Developed methodology was applied to Porce II reservoir 

in Colombia. Firstly, ELCOM model was used to simulate the hydrodynamics and 

water quality tracers to overcome the lack of field data. Then, the reservoir was 

divided into five subdomains based on temperature distributions and one way 

ANOVA
2
 indices. After that kriging was applied to interpolate and get estimates 

from the available monitoring networks. Finally, optimization process was 

performed to determine the optimal monitoring network considering accuracy 

versus cost.  

 

Varol et al. (2012) examined the spatial and temporal variations of the water 

qualities in Kralkızı (KDR), Dicle (DDR) and Batman (BDR) dam reservoirs in 

2008-2009. The surface areas of Kralkızı, Dicle and Batman dam reservoirs were 

57.5 km
2
, 24 km

2
, 49.25 km

2
, respectively. They used CA, PCA, factor analysis 

(FA) and discriminant analysis (DA). The sampling period (12 months) was 

grouped into two clusters as wet and dry seasons based on CA. Furthermore, 10 

monitoring sites were converted into four clusters based on similarities in the 

water quality characteristics. The outcome of this study was optimal future 

monitoring strategies with decreased monitoring frequencies, number of sampling 

stations and corresponding costs.  

 

Thornton et al. (1982) designed a water quality monitoring program for DeGray 

Lake with a surface area of 53.4 km
2
 located in Southern Arkansas. Sampling 

program was constituted based on horizontal and vertical water quality gradients 

by transect and depth, respectively. Kao et al. (2012) used the uniform cost (UC) 

and coverage elimination uniform cost (CEUC) models to design an optimum 
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water quality monitoring network with minimal cost for the Derchi Reservoir in 

Taiwan which would also help to trace the source of a pollution event. Nam 

(2008) developed an optimization procedure to determine the best locations and 

paths to monitor surface water in a two dimensional space. Hydrodynamics and 

contaminant transport were simulated via a numerical approach. Then, multi-

objective GA was proposed to find the optimized locations and paths.  

 

In addition to the studies mentioned above, Panda et al. (2006) applied factor and 

cluster analysis for effective management of monitoring network in Mahanadi 

River (India). Harmancioglu and Alpaslan (1992) applied the entropy principle to 

evaluate the network efficiency and cost-effectiveness of Porsuk River. Ouyang 

(2005) used PCA and PFA for identification of important surface water quality 

monitoring stations and parameters in St. Johns River in Florida, USA. Ning and 

Chang (2004) introduced an optimal expansion strategy of water quality 

monitoring stations in a river system by fuzzy optimization procedure. Karamouz 

et al. (2009b) designed on-line river water quality monitoring systems for the 

Karoon River (Iran) using the entropy theory. Dixon et al. (1999) presented a 

method to optimize the selection of river sampling sites using GIS, graph theory 

and simulated annealing algorithm. Park et al. (2006) designed water quality 

monitoring network in Nakdong River system (Korea) using genetic algorithm. 

Strobl et al. (2006a, 2006b) proposed a water quality monitoring network design 

methodology for the selection of critical sampling points using GIS, hydrologic 

simulation model and fuzzy logic. Telci et al. (2009) proposed a model for the 

optimal design of monitoring networks in river systems. Erechtchoukova et al. 

(2009) used optimization algorithms for the improvement of temporal monitoring 

design at an existing sampling site.  

 

When the studies and regulations related to the design of monitoring networks in 

water bodies were examined, it was realized that there was a gap in literature and 

regulations about the selection of representative sampling locations in lakes and 

reservoirs. Furthermore, previous studies did not take the spatial correlation of 
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water quality parameters in lakes and reservoirs into account. This situation 

motivated this study to be carried out.               

 

2.2 Application of Kriging in Evaluation of Water Quality Parameters 

within Water Bodies (Rivers, Lakes and Reservoirs) 

 

While there are several studies on the application of kriging on soil samples 

(Goovaerts, 1998; Goovaerts, 1999; Simbahan et al., 2006), oil reservoirs (Rhea et 

al., 1994; Jian and Fanhua, 2009; Aggoun et al., 2006), mining sites (Bastante et 

al., 2008; Ertunc et al., 2013; Bastante et al., 2005), the studies related with the 

application of kriging technique to evaluate the spatial distribution of water 

quality parameters in water bodies are sparse. Some applications for various 

purposes are summarized below.   

 

Little et al. (1997) assessed the accuracy of kriging method to predict water 

quality variable concentrations in Murrells Inlet estuary in South Carolina. 

Different simulations were applied using the combinations of distance metrics 

(Euclidean versus in-water), semivariogram types (spherical versus linear) and 

model trend components (distance to the inlet mouth; without versus with). 

Results indicated improvement when in-water distances were used together with a 

model trend component. The prediction accuracy was not affected significantly by 

the semivariogram type. They mentioned that it is worth to extend the studies 

related with the integration of GIS-based network analysis with kriging using in-

water distances. 

 

Ouyang et al. (2003) evaluated the spatial distribution of total sediment Hg in the 

Cedar-Ortega Rivers watershed in north-east Florida using 3D kriging analysis in 

conjunction with a geostatisitical model named ISATIS and assessed the potential 

risk of Hg to aquatic life based on the Florida Sediment Assessment Guidelines. 

Mercury data was collected from three sampling depth intervals at 58 locations 

along the rivers between February 1998 and February 1999. After preliminary 
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data analysis and constitution of a variogram model, 3D kriging analysis was 

performed. Results showed that rivers were contaminated with Hg to a sediment 

depth of 1.0 m. There was a sharp decrease in Hg between sediment depths of 1.0 

to 2.0 m. This situation pointed out recent and ongoing Hg contamination in the 

rivers. 3D kriging estimation plot of Hg concentrations in Cedar River displayed 

that the maximum depth with Hg concentrations above the limit values was about 

1.5 m. Furthermore, evenly distribution of Hg in rivers was the evidence of Hg 

contamination from multiple sources. 

 

Chehata et al. (2007) adapted, customized and tested data interpretation and 

visualization software tools with geostatistical capabilities to support the 

Chesapeake Bay Program to improve water-quality modeling protocols. 

Following the constitution of a 3D grid, data structure was analyzed using 

experimental semivariograms. Then, anisotropy features were extracted, 3D 

ordinary kriging model was fit, 3D maps for water quality data, such as DO and 

salinity, were constituted at fixed stations. Mapped data in 3D was used as an 

input to the Bay water quality model which simulated future water quality in the 

Bay. Furthermore, the interpolated 3D data was separated into three zones to 

evaluate the upper and lower pycnocline boundary surfaces for a better 

characterization of the pycnocline layer.  

 

Jakubek and Forsythe (2004) calculated sediment quality index (SQI) for 70 

sediment core-sampling locations in Lake Ontario in Canada. Prediction maps for 

polychlorinated biphenyls (PCBs), mercury, lead, and hexachlorobenzene (HCB) 

and SQI were created by ordinary kriging technique. Furthermore, cross-

validation was performed to evaluate the accuracy of results. While the most 

successful surfaces were created for mercury and lead, the most inaccurate results 

were obtained for PCBs. The constituted maps were helpful to explain how stream 

loading and land use practices affected the distribution of contaminated sediment 

in Lake Ontario. 
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Barabas et al. (2001) used geostatistical models to quantify the uncertainty in 

2,3,7,8-tetrachlorodibenzo-p-dioxin concentrations in the sediment of Passaic 

River in New Jersey. After the analysis of 3D variograms and application of 

indicator kriging, cross-validation was performed to evaluate the results. It was 

mentioned that results were helpful in decision-making, delineation of 

contaminated areas and additional sampling needs.  

 

Rathbun (1998) focused on spatial modeling in irregularly shaped regions and 

applied kriging in Charleston Harbor, an estuary on the coast of South Carolina, 

USA. It was mentioned that Euclidean distance may not be an appropriate 

distance metric for spatial analyses of estuaries due to their irregularly shaped 

non-convex regions. Some points between two sampling locations may lie on land 

rather than in water. Kriging model was applied to constitute the prediction maps 

of DO and salinity under both Euclidean and water distance metrics. When the 

cross-validation results for kriging predictions were compared, it was seen that all 

models provided acceptable predictions for DO and salinity. Furthermore, some 

modifications of co-kriging model were suggested to obtain a prediction surface 

for the joint distribution of DO, salinity and temperature. 

 

Forsythe et al. (2004) investigated mercury and lead concentrations in the 

sediments of Lake Ontario and Lake Erie. It was observed that three of the four 

developed models for the 1997-1998 data were statistically valid. Although there 

had been an overall reduction in mercury and lead concentrations within time, the 

concentrations still exceeded Canadian sediment quality limit values in some 

areas. In the study, these areas were evaluated with the landuse and historical data.  

 

Külahcı and Şen (2009) developed a methodology to model the migration of 
210

Pb 

radioisotope in Keban Dam, Turkey. They applied spatio-temporal point 

cumulative semivariograms (STPCSV) using the data measured at 44 stations. 

The radius of influence maps for a set of desired hours were constituted using 

kriging method based on STPCSVs.  
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Büttner et al. (1998) examined the horizontal spatial distributions of 14 

parameters measured in 66 sediment samples collected in ML111 which is an 

acidic mine lake in Germany. While PCA was used to investigate the patterns and 

similarities between concentrations of different heavy metals, ordinary kriging 

method was used to evaluate the spatial distribution of the parameters in the 

sediment. According to results, 66 samples were not enough to decrease the 

spatial variance distributions to suitable levels.     

 

Villard et al. (2010) used kriging method and conditional stochastic simulations to 

analyze, map and simulate 3D patterns of temperature, DO and nitrate in the 

Geneva Lake located in Switzerland and France for the period from 1954 to 2008. 

Because kriging technique was applied on a long term data, the weighted average 

of ten variograms was used for the study period. 3D maps were constructed using 

the data at several depths. Then, spatial and temporal distributions of the 

parameters were investigated. The movements of cool and warm waters in the 

lake with respect to time and space were examined. Results showed no global 

warming effects in the lake. 

 

Hedger et al. (2001) optimized a sampling strategy based on the spatial 

distribution of chlorophlyll-a in two British lakes (Loch Awe and Loch Ness) 

using geostatistical techniques with remote sensing. They mentioned that different 

sampling regimes will be required for different lakes and for different times 

because the spatial variation was specific to lake boundary conditions such as 

morphometry or wind regime. More accurate estimates with smaller estimation 

variances were obtained by systematic sampling rather than random sampling. 

 

Zhang et al. (2011) used ordinary kriging to assess the spatial distribution of water 

quality parameters of Wuliangsuhai Lake in the north of China. The levels of 

water pollution were investigated. They stated that the eutrophication of 

Wuliangsuhai Lake was in a severe state and results of this study were significant 

for the management of the lake.  
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Copertino et al. (1998) evaluated 3D spatial distributions of temperature, DO, 

electrical conductivity, pH and redox potential in the Camastra Resevoir in Italy 

using kriging technique. Results showed the existence of hypolimnetic anoxic 

phenomena. When temperature and redox potential contour maps were analyzed, 

a density increase was observed around the spilling tower. This showed that this 

area in the reservoir was important for environmental problems and evolution of 

anoxic zones.  

 

Guillemette et al. (2011) used ordinary kriging to evaluate water temperature 

characteristics at unsampled locations in the Ste-Marguerite River, Canada. 

Kienel and Kumke (2002) evaluated the spatial variation of diatom assemblages 

from surface sediments in Lake Lama, Siberia using a combined approach of 

ordination and geostatistics.   

 

As it was mentioned before KDE and 2D OK were used in combination to 

determine the representative sampling locations in this study. Neither of the 

studies mentioned above used the combination of KDE and OK nor did these 

studies take into account spatial correlation of water quality parameters in lakes 

and reservoirs.  

 

2.3 Stanford Geostatistical Modeling Software (SGeMS) 

 

Although geostatistical tools were originated in mining industry in late 1950s and 

early 1960s, it is now routinely employed in many disciplines including 

environmental sciences (i.e. characterization of contaminated sediments, remote 

sensing, estimation of fish abundance), meteorology (i.e. spatial and temporal 

distribution of rainfall and temperature), hydrology (i.e. modeling of subsurface 

hydraulic conductivity), ecology (i.e. characterization of population dynamics), 

agriculture (i.e. evaluation of soil properties and crop yields), and health (i.e. 

patterns of diseases, exceeding of limit values, exposure to pollutants). A lot of 

geostatistical softwares with different price, operating systems, user-friendliness, 
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functionalities, graphical and visualization capabilities have been developed due 

to the increasing popularity of geostatistics (Goovaerts, 2010).  

 

The selection of a geostatistical software should be performed based on the 

following considerations (Goovaerts, 2010): 

 

(i) Necessity of access to the source code to enable improvement of in 

algorithms  

(ii) Characteristics of the data (2D or 3D, spatial, temporal, etc.)   

(i) Type of analysis to be implemented (i.e. description of the spatial 

pattern, prediction at unsampled locations, incorporation of secondary 

information, modeling of local or spatial uncertainty).  

(ii) Level of expertise of the user in geostatistics  

 

When available geostatistical softwares were examined (Table 2.1) according to 

the criteria mentioned above, it was decided to use the Stanford Geostatistical 

Modeling Software (SGeMS) to conduct the 3D geostatistical analysis in this 

study. SGeMS supports a plug-in mechanism to let the addition of new 

geostatistical algorithms or supports (Remy et al., 2009). The software offers a 

graphical user interface allowing interactive variogram modeling which measures 

dissimilarity as a function of separation distance and direction and facilitates the 

visualization of data and results in up to 3D. However, basic GIS capabilities, 

such as data queries or linked windows, are not available in the software. SGeMS 

can compute variograms in three directions. The software allows the specification 

of user-defined interpolation grids. It includes methods to evaluate the uncertainty 

about unsampled values and probability of exceeding critical values. It has also 

modules to post-process the set of realizations, create maps of averaged simulated 

values, compute probability of exceeding critical thresholds or measures of 

differences among realizations (Goovaerts, 2010). 
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Table 2.1 Geostatistical softwares with functionalities (modified from the list on 

http://www.ai-geostats.org/ & Goovaerts, 2010) 

 

 
 

 

 

 

 

Name  Code Cost
a

 Reference Data V K CK IK MG S G O

Agromet C++ F Bogaert et al. (1995) 2D X X X

AUTO-IK Fortran F Goovaerts (2009) 2D X X

BMELib Matlab F Christakos et al. (2002) 3D, ST X X X X

COSIM Fortran F ai-geostats website 2D X

EVS (C-Tech) H C Tech Development Corporation 3D X X X X

Explostat F www.explostat.nl/ 2D X X X X X

E{Z}-Kriging F ai-geostats website 2D X X 

Geopack F EPA website 2D X X X

GeoDa F https://geodacenter.asu.edu/software 2D X

GeoXP 1.3 F http://cran.r-project.org/web/packages/GeoXp/index.html X

GMT C F http://gmt.soest.hawaii.edu/ 2D X

GRNN F www.unil.ch/igar/page48171_en.html 2D X

ISIM C F ai-geostats website 3D X

IV F http://alghalandis.com/?page_id=358 2D X

Kriging C F
www.nbb.cornell.edu/neurobio/land/OldStudentProjects/cs490-

94to95/clang/kriging.html#Program

2D X 

SAGA C++ F www.saga-gis.org/en/index.html 2D X X X X

SGS C F www.ftonn.de/Software/sgs/index.html 2D X X

SpatDesign Matlab, Octave F ai-geostats website 3D X X X

Spherekit C F www.ncgia.ucsb.edu/pubs/spherekit/ 2D X X

Surfit C++ F http://surfit.sourceforge.net/index.html X

GCOSIM3D/ISIM3D C F Gomez-Hernandez and Srivastava (1990) 3D X

Genstat F,L Payne et al. (2008) 3D X X X 

GEO-EAS Fortran F Englund and Sparks (1988) 2D X X 

GeoR R F Ribeiro and Diggle (2001) 2D X X X

Geostat Analyst H Extension for ArcGIS 2D X X X X X X

Geostatistical Toolbox F Froidevaux (1990) 3D X X X

Geostokos Toolkit H ai-geostats website 3D X X X X X

GS+ M Robertson (2008) 2D X X X X

GSLIB Fortran F Deutsch and Journel (1998) 3D X X X X X X

Gstat C,R F Pebesma and Wesseling (1998) 3D X X X X

ISATIS (Geovariances) H  www.geovariances.com 3D X X X X X X X

MGstat Matlab F ai-geostats website 3D, ST X X 

SADA (UT Knoxville) F Spatial analysis and decision assistance 3D X X X X X

SAGE 2001 M Isaaks (1999) 3D X 

SAS/STAT H SAS Institute Inc. (1989) 2D X X 

S-GeMS C++ F Remy et al. (2008) 3D X X X X X X

SPRING F Camara et al. (1996) 2D X X X X X

Space-time routines Fortran F De Cesare et al. (2002) 2D, ST X X 

STIS (TerraSeer) M AvRuskin et al. (2004) 2D, ST X X X X X

Surfer M Golden Software, Inc. 2D X X 

Uncert C F Wingle et al. (1999) 3D X X X

Variowin F Pannatier (1996) 2D X 

VESPER F Minasny et al. (2005) 2D X X 

WinGslib  Fortran L www.statios.com 3D X X X X X X

Notes: Cost
a
: H high, M moderate, L low, F free, V variography, K kriging, CK cokriging, IK indicator kriging, MG multi-Gaussian kriging, S simulation, G GIS 

interface, O Other estimators (NN, IDW, splines…), ST spatial-temporal  

http://www.ai-geostats.org/
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There have been studies in which SGeMS software was used. However, the use of 

SGeMS on the determination of spatial distributions of water quality parameters 

within reservoirs is inexistent. Some of the studies related with environmental 

field are summarized in this part. Basarir et al. (2010) used SGeMS to simulate 

the uncertainty associated with the spatial variability of the standard penetration 

test results for a borax stockpile site. Bastante et al. (2008) compared the results of 

indicator kriging, conditional indicator simulation and multiple-point statistics to 

estimate useful slate reserves using SGeMS. Escobedo et al. (2010) used SGeMS 

to analyze semivariograms and estimate kriging parameters to analyze the impact 

of subtropical urban forests in offsetting carbon emissions from cities. Pardo-

Iguzquiza et al. (2011) applied SGeMS to evaluate the morphometric parameters 

of three-dimensional networks of karst conduits. He et al. (2010a) applied 

sequence indicator simulation algorithm using SGeMS to model 3D spatial 

distribution of soil texture under agricultural systems. He et al. (2010b) assessed 

the anisotropic spatial variability of agricultural soil bulk density in an alluvial 

plain of north China using the 3D sequential Gaussian simulation in SGeMS. Qu 

et al. (2013a) evaluated spatial variability of soil total nitrogen contents and 

uncertainty of deficiency or abundance degrees of soil TN concentrations under 

different crop types via sequential Gaussian simulation algorithm of SGeMS 

software. Qu et al. (2013b) simulated spatial distribution of soil Ni concentration 

by sequential Gaussian simulation algorithm of SGeMS software and used the 

results to evaluate health and remediation risk costs caused by incorrect soil Ni 

estimations. Todd et al. (2010) investigated the spatial distribution of SOD values 

using SGeMS to identify the areas with intense oxygen demand in the Little River 

Experimental Watershed and addressed the importance of instream swamps in 

contributing to high DO demand at the watershed scale. Zhou and Xia (2010) 

modeled soil geochemical background distributions of copper, zinc, lead and 

cadmium in the Hengshi River watershed located in southern China using SGeMS 

software.  
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CHAPTER 3 

 

 

STUDY SITE 3

 

 

 

3.1 Porsuk Dam Reservoir and Its Watershed  

 

Porsuk Dam is located at 25 km west of Eskişehir (Figure 3.1). Construction of 

the dam was started in 1966 and completed in 1972. The dam and its reservoir 

were designed and constructed to protect Eskişehir from flooding, irrigate 

Eskişehir and Alpu Plains and supply drinking water to Eskişehir (Ministry of 

Environment and Forestry, 2006). Drainage and surface area of PDR are about 

5104 km
2
 and 24.32 km

2
, respectively. The watershed of PDR is depicted in 

Figure 3.1. While the minimum water surface elevation within PDR is 850 m, the 

maximum water surface elevation is 892.85 m in the bathymetry map in 2001 

obtained from the General Directorate of State Hydraulic Works (SHW) (Figure 

3.2). The basic characteristics of PDR are provided in (Table 3.1).  

 

PDR is mainly fed by Porsuk River, Kunduzlu Stream and waters coming from 

Kargin Regulator of State Hydraulic Works (Muhammetoğlu et al., 2005). A big 

portion of the watershed of PDR is sited within the borders of Kütahya and 

Eskişehir provinces (Sakarya Basin). As a result, the water quality of the reservoir 

is affected by point and non-point pollution sources present in the borders of both 

cities. The water quality of PDR is important because it supplies drinking water to 

Eskişehir. 
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Figure 3.1 Watershed of PDR 
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a) 

 
b) 

 

 

Figure 3.2 a) Bathymetry of the PDR in 2001, b) Histogram of bathymetry (AKS, 

2010) 
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Table 3.1 Basic characteristics of PDR (Ministry of Environment and Forestry, 

2006) 

 

Characteristics Quantities 

Dam Volume 224 000 m
3
 

Crest Elevation 894.35 m 

Crest Length 258 m 

Height 64.70 m 

Maximum Water Elevation 885.20 m 

Normal Water Elevation 882.60 m 

Maximum Storage Volume 525x10
6
 m

3
 

Maximum Storage Area 27.7 km
2
 

Active Reservoir Volume  446x10
6
 m

3
 

Dead Reservoir Volume 19x10
6
 m

3
 

Reservoir Drainage Area 5018 km
2
 

Length of the reservoir 16 km 

 

 

One of the most current studies relevant to the water quality in the reservoir was 

conducted under “special rules designation” study (AKS, 2010). In the study, it 

was mentioned that the large parts of risky areas for surface drainage within the 

watershed of PDR were located at the north of PDR and at the north border of the 

watershed. Topography and landuse within the watershed of PDR was important 

in the evaluation of water quality.   

 

3.1.1 Topography 

 

Topography of a region is important especially in evaluating the impact of diffuse 

sources. Elevation ranges within the watershed of PDR and total surface areas 

within each elevation range are provided in Table 3.2 and Figure 3.3. 

Accordingly, 60.64% of the watershed is within the elevation range of 1000-1200 

m. Lower elevation regions (<1000 m) are located around the PDR and covers 

11.46 percent of the total area of the PDR Watershed.        
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Table 3.2 Elevation Ranges within PDR Watershed (AKS, 2010) 

 

Elevation Ranges (m) Area (km
2
) Percent (%) 

<1000 584.878 11.46 

1000-1200 3095.494 60.64 

1200-1400 1104.098 21.63 

1400-1600 264.413 5.18 

1600-1800 47.002 0.92 

1800-2000 7.232 0.14 

2000-2200 1.169 0.02 

>2200 0.001 0.00 

Total 5104.287 100.00 

 

 

 

In addition to elevation ranges, slopes within PDR Watershed are given in three 

slope groups namely flat and low slope areas (0-10 %), medium slope areas (10-

20 %), and high slope areas (>20%) (Table 3.3). Areas and percent within total of 

each slope group can be seen in Table 3.3 and Figure 3.4. The highest portion of 

the watershed has a slope between 0-10 %.  

 

 

 

Table 3.3 Slopes within PDR Watershed (AKS, 2010) 

 

Slope Group (%) Area (km
2
) Percent (%) 

0-10 2657 52 

10-20 1157 23 

>20 1290 25 

Total 5104 100 
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Figure 3.3 Elevations within PDR Watershed (AKS, 2010)  
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Figure 3.4 Slopes within PDR Watershed (AKS, 2010) 
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3.1.2 Landuses in the PDR Watershed 

 

As given in Table 3.4 (AKS, 2010), forests and agricultural areas constitute the 

big portion of the landuses in the PDR Watershed. While forest areas constitute 

38% of the watershed, agricultural areas cover 42% of the watershed. Most of the 

agricultural areas are located on Kütahya, Köprüören, Aslanapa and Altıntaş 

Plains. There are also large agricultural areas around İhsaniye and Dumlupınar 

(Figure 3.5). These land uses, their locations and practices applied in these 

locations are the factors which would impact the pollution load carried to PDR. In 

the watershed, four dams and seven ponds are present. The names and surface 

areas are specified in (Table 3.5) (AKS, 2010). 

 

 

Table 3.4 Distribution of land uses in the watershed (AKS, 2010) 

 

Land Use Type Area (ha) % 

Forests 192593 37.73 

Agricultural  Areas 212657 41.66 

Water Bodies  2826.3 0.55 

Settlements 7089.7 1.39 

Industrial Areas 1480 0.29 

Mining Areas 3624 0.71 

Other Land Uses 90221 17.67 

Total 510491 100 
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Figure 3.5 Mining areas and other land uses in PDR Watershed 

(1: Kütahya Organised Industrial Zone, 2: Kütahya Sugar Refinery, 3: Nitrogen 

Factory, 4: Kütahya Magnesite Facility, 5: Güral Porcelain Factory, 6: Kütahya 

Porcelain Factory, 7: Seyitömer Thermal Power Plant) 
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Table 3.5 The dams and ponds present in PDR Watershed (AKS, 2010) 

 

Dam/Pond Area (Ha) 

Porsuk Dam 2432.6 

Aşağıkuzfındık Dam 238.9 

Enne Dam 42.5 

Söğüt Dam 9.6 

Dutluca 1 Pond 8.6 

Dutluca 2 Pond 4.1 

Dereyalak Pond 3.0 

Pullar Pond 15.3 

Zafertepe Pond 31.6 

Kızılcaköy Pond 13.0 

Emre Pond 27.1 

Total 2826.3 

 

 

 

Table 3.6 Industrial area groups within PDR Watershed (AKS, 2010) 

 

Groups  Area (Ha) 

Organized industrial zones 221 

Organized industrial zones under construction 608 

Individual private industries 470 

Thermal power plant 181 

Total 1480 

 

 

 

Twenty three extensive industrial areas are present in the PDR watershed. These 

areas can be separated into mainly four groups as organized industrial zones, 

organized industrial zones in construction, individual industries and thermal 

power plant. Surface areas covered by these groups are represented in Table 3.6. 

Some of the major industrial facilities and pollution stresses arising from these 

facilities are as follows (AKS, 2010): 
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Kütahya Organised Industrial Zone: Wastewater of this organized industrial 

zone is sent to Kütahya wastewater treatment plant (KWWTP) which has been 

declared to have the capacity to handle the wastewater discharge of both the city 

and the organized industrial zone till 2025. Kütahya Organized Industrial Zone is 

marked with the number 1 in Figure 3.5.         

 

Kütahya Sugar Refinery: Until 1981, the refinery was discharging its 

wastewater directly into Felent Stream. In 1981-1994, treatment was applied and 

the effluent from the refinery’s wastewater treatment plant was discharged into 

Felent Stream. But then, as a result of road construction, the treatment plant of the 

refinery was demolished and the wastewater has been sent to KWWTP since. 

However, as KWWTP became out of service due to shock loadings, the refinery 

has set up its own treatment plant again and started a closed loop operation. The 

domestic wastewater of the facility has been sent to KWWTP. Industrial 

wastewater has been discharged into the Felent Stream as treated or untreated 

depending on the period of the year. The location of Kütahya Sugar Refinery is 

marked with number 2 in Figure 3.5. 

 

Nitrogen Factory: The factory, founded 47 years ago, produces ammonium 

nitrate fertilizer, technical ammonium nitrate, concentrated/diluted nitric acid and 

aqueous ammonia. The wastewater of the factory containing nitrate, nitrite, 

ammonia salt and suspended solids is kept in sedimentation basins and then 

discharged into Porsuk River. Nitrogen Factory is depicted with number 3 in 

Figure 3.5.       

 

Kütahya Magnesite Facility: The facility had a wastewater treatment system 

working as a closed loop between 1983 and 1995. The slurry coming from the 

grinding and washing units of the facility was kept in the sedimentation basins 

gradually. Following sedimentation, the water was recycled back to the system for 

reuse. After 1995, magnetic separators have been used and industrial wastewater 

has not been produced. The facility has a wastewater treatment system for 
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domestic wastewater. The effluent is used to irrigate the garden of the facility. 

Kütahya Magnesite Facility is located in the place shown with number 4 in Figure 

3.5.     

 

Porcelain Factories: Since Güral Porcelain Factory had no wastewater treatment 

plant before 2005, wastewaters were discharged into Porsuk River following 

sedimentation. After 2005, they started to operate an industrial wastewater 

treatment plant and discharged the effluent into Porsuk River. Kütahya Porcelain 

Factory has its own sedimentation basins and effluent is discharged into Porsuk 

River after sedimentation. Yet, treatment is insufficient. The construction of a new 

wastewater treatment unit is in progress. While Güral Porcelain Factory is marked 

with number 5 in Figure 3.5. Kütahya Porcelain Factory is marked with number 6 

in the same figure.           

 

Seyitömer Thermal Power Plant: Following treatment, the effluent of the power 

plant is discharged into Güvez Stream which merges with Porsuk River at 

Başdeğirmen region. However, it has been noticed that the wastewater from the 

ash ponds is being discharged into Güvez Stream when cleaning the ponds. The 

plant location is shown with the number 7 in Figure 3.5.            

 

The watershed is also active in terms of mining activities. Figure 3.5 depicts the 

locations of various mining activities within the watershed. As can be seen several 

mining areas are present in the north of PDR where also higher slopes are 

observed (Figure 3.4). Types and sizes of the mining activities are given in Table 

3.7 (AKS, 2010). 

 

 

 

 

 

 

 



29 

 

Table 3.7 Sizes of mining areas within PDR Watershed (AKS, 2010) 

 

Type Area (Ha) 

Coal Mine 2933 

Magnesite Mine 449 

Silver Mine 201 

Marble Quarry 30 

Dolomite Quarry 5 

Chromite Mine 6 

Total 3624 

 

 

3.1.3 Water Quality History in the Watershed 

 

There have been many studies focusing on the pollution sources and the water 

quality in the watershed of the PDR. Although the study site in this study is 

limited by the reservoir only, studies relevant to water and sediment pollution in 

rivers and streams in the watershed of the PDR will be summarized as well since 

pollution is transported from these sources to PDR.  

 

Water quality monitoring studies in the watershed of PDR started in 1969 by 

collection of data related to pollution of rivers within the Sakarya Watershed by 

the Department of Technical and Quality Control of SHW (Bilge, 1997). SHW 

conducted a study between March 1974 and January 1975 to see the impact of 

Porsuk and Çarksuyu Rivers on the water quality of Sakarya River. The results of 

this study were evaluated and reported in 1977 by the same department. It was 

determined that although Porsuk and Çarksuyu Rivers were polluted by domestic 

and industrial wastewater discharges, the water quality of Sakarya River was quite 

good (Bilge, 1997). In 1978, SHW started a pilot project supported by the United 

Nations Development Program and World Health Organization to examine the 

water quality of Porsuk River. Samples from 10 observation stations and from 

wastewaters of industries were collected for 2 years (Bilge, 1997).       
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In 1981, a project, entitled as “River Basin Management for the Sakarya Basin”, 

was conducted by the Civil Engineering Department of Istanbul Technical 

University, with the cooperation of SHW and participation of the Operations 

Research Department of the Marmara Scientific and Industrial Research Institute 

under the NATO Science for Stability Program. The goal of the project was to 

select the most cost-effective development plan for the basin. In the scope of that 

study, the river basin model was setup and simulations were performed. 

Simulation results showed that the water quality in the Porsuk River was not 

suitable for any use. Domestic discharges, the fertilizer plant, and the industrial 

organized zone were mentioned as the major sources of nutrient pollution. It was 

mentioned that implementation of the best available technologies (BAT) resulted 

with a noticeable improvement in all water quality parameters. Overall, the 

quality of Porsuk River could reach Class II status (slightly polluted water) with 

the application of control strategies (Bilge, 1997; Tanık et al., 2005).  

 

A project entitled as "Water Quality Studies in Natural and Artificial Lakes and 

Basins" was started with the contribution of the British Government in 1984. In 

addition to investigation of physical and chemical water quality parameters within 

the watershed of PDR, biological and microbiological studies were carried out 

(Bilge, 1997). 

 

Yücel et al. (1995) examined cadmium, zinc, copper and lead concentrations in 

soil, water and leaf samples collected from 10 stations located along the Porsuk 

River and its tributaries. The concentrations of mentioned parameters reached to 

unacceptable levels. Moreover, they mentioned that Porsuk River should not be 

used as a drinking and domestic water supply and alternative water supplies 

should be identified. 

 

Bilge (1997) estimated suspended solids, NO3-N, PO4-P, chlorophyll-a and light 

intensity in the Porsuk Dam Reservoir using Landsat TM data. Data was obtained 

from SHW and samples were collected on the date of imagery. The relationships 
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between water quality parameters and radiance values in the first four bands of the 

TM data were determined. Results indicated that PDR acted as a settling pond for 

suspended solids.    

 

Mazlum et al. (1999) investigated the factors causing variations in the observed 

quality data at the Ağaçköy water quality monitoring station located on Porsuk 

River by PCA. For this purpose, water quality parameters including flow rate, 

temperature, pH, electrical conductivity, suspended solids, M-Al, Cl, NH3-N, 

NO3-N, DO, and BOD measured between 1979 and 1984 were used. The results 

of PCA showed that the main causes of variations in water quality in that station 

were small domestic waste discharge, industrial waste discharge, nitrification and 

seasonal effects.  

 

SHW (2001) worked on a project to prepare a water management plan for the 

watershed of PDR. It was declared that the trophic status of PDR shifted from 

eutrophic to hyper-eutrophic state from 1986 to 2001. It was mentioned that the 

phosphorus load reaching to PDR was higher than the critical phosphorus load for 

PDR. Similarly, accumulation of nitrogen within PDR was obvious based on the 

mass balance on nitrogen. Measures that should be applied to control and reduce 

nutrients loads and improve the water quality of PDR were summarized as 

follows:     

    

 KWWTP, which was one of the major phosphorus load contributors to 

PDR, should be operated at full performance,     

 The discharge of the wastewaters of Kütahya Sugar Factory to Porsuk 

River should be prevented, 

 The water quality in Güvez Stream, which is mainly affected by 

wastewater discharges from Seyitömer Thermal Power Plant and 

settlements, should be controlled,   
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 Precautions should be taken to reduce the nitrogen load to Porsuk River 

originating from Kütahya Nitrogen Factory, 

 Suspended solids load originating from porcelain factories should be 

controlled and accumulation should be prevented in PDR.  

 

Çiçek and Koparal (2001) examined the levels of lead, chromium and cadmium 

both in fish (Cyprinus carpio Linnaeus and Barbus plebejus Bonaparte) tissues 

and in the reservoir. While lead and chromium in fish tissues were below 

detection limits, cadmium was above the limit values set by the Turkish 

Agricultural Ministry. Water quality in the reservoir was Class I (high quality 

water) for lead, Class II (slightly polluted water) for chromium, Class III (polluted 

water) for cadmium with respect to the limit values given in Inland Water 

Resources Classes of Water Pollution Control Regulation (Çiçek and Koparal, 

2001).  

 

Beğenirbaş (2002) studied Cu, Cr, Pb, Hg, As and Cd accumulations in freshwater 

mussel samples collected from upstream and downstream of the Kütahya section 

of the Porsuk River. It was observed that the amounts of As, Hg and Pb in viscera 

of mussels were higher than the limit values with respect to relevant regulations.  

  

Ocak et al. (2002) examined ecotoxicological and morphological effects of the 

irrigation water withdrawn from the Porsuk River on some agricultural plants. 

Furthermore, Fe, Zn, Cd, Ni, Pb and Cr contents of the plants were determined. 

Results were compared with the results of control plants which were irrigated with 

tap water. Reasonably higher accumulations of Ni and Cr on some plants 

compared to control plants were observed. Moreover, accumulation of heavy 

metals was detected in sediment as well.  

 

Akdeniz (2004) evaluated stabilization of the polluted sediment of Porsuk River 

with additive materials such as fly ash, lime, cement, zeolites and sepiolites. For 

this purpose, sediment samples were collected from various locations in Porsuk 
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River. While heavy metals including Pb, Zn, Ni, Cd, Cr and Mn in sediment 

samples were higher than limit values, Cu and Cd were less. It was mentioned that 

pollution was especially concentrated at the regions where treatment systems were 

inadequate and at the regions close to industries. 

 

Kutlu et al. (2004) assessed the potential for contamination by mutagenic 

substances in the Porsuk River water and sediments with the aid of Salmonella 

mutagenicity assay (Ames test). Results showed the presence of heavy metals in 

the Porsuk River, mainly in the upstream of Porsuk Dam. This was due to the 

presence of anthropogenic stresses such as industrial activities and urban 

drainage.     

 

Özyurt et al. (2004) investigated the pollution problem in the watershed of PDR 

originating from Kütahya. In this study, discharges from several industrial 

facilities located in Kütahya were analyzed in 2003 to 2004. Analyzed parameters 

were pH, BOD, COD, TSS, Pb, Cd, oil and grease, and total phosphorus. Results 

of the experiments were compared with the Turkish Water Pollution Control 

Regulation. It was observed that some industries did not comply with the 

discharge standards set in the regulation. It was concluded that these industries 

have negative impacts on the pollution load and the conditions for aquatic life in 

the river. 

 

Muhammetoğlu et al. (2005) assessed the impact of different pollution control 

scenarios on the water quality of Porsuk River and the dam system to develop 

reasonable water quality management strategies. Different levels of treatment 

ranging from conventional treatment to tertiary treatment were evaluated for the 

major domestic point sources. Considered treatment options for the major 

industries were based on the allowable discharge limits in the Turkish Water 

Pollution Control Regulation and the best available technologies. QUAL2E and 

BATHTUB models were used to simulate the water quality in the river and in the 

reservoir, respectively. In order to improve the water quality of Porsuk Dam 
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Reservoir from highly hypertrophic state to eutrophic-mesotrophic state, as well 

as to improve the water quality of Porsuk River, the followings were suggested: 

   

- The effluent of KWWTP that is discharged to Porsuk River should be 

diverted, 

- For all industries best available technologies (BAT) and 50% reduction in 

nitrogen and phosphorus loads in the catchment area should be applied. 

 

Koçal (2006) analyzed the eutrophication problem in PDR via modeling. Loads 

coming from point and non-point sources were determined. GROWA, a water 

balance model, was used for the determination of loads originating from non-point 

sources. Total annual evapotranspiration, runoff and groundwater recharge maps 

were obtained by GROWA. According to results, runoff in the fallowed 

agricultural areas was around 50-200 mm/year. Therefore, agricultural activities 

and fertilizer usage in the area constituted significant pollution sources for the 

reservoir. Koçal (2006) suggested that people should be conscious when using 

fertilizers to minimize the transport of excess nutrients to Porsuk River and the 

reservoir. 

 

Orak (2006) assessed the pollution levels in the Porsuk River using fuzzy logic. 

2001-2002 data including DO, BOD, COD and NH3-N at seven water quality 

sampling stations on Porsuk River was obtained from SHW. While the pollution 

class in upstream of Kutahya was determined as Class I (high quality water) for 

both years, Class IV (highly polluted) and Class II (slightly polluted water) were 

observed downstream of industries in 2001 and 2002, respectively. Although the 

water quality of PDR was Class I in 2001 at the outlet of the dam, the Porsuk 

River was polluted in Eskisehir and merged with the Sakarya River as Class IV.         

 

Semerci (2006) collected sediment, water and soil samples from the watershed of 

Porsuk River to determine geotechnical and chemical properties such as pH, 

cation exchange capacity, electrical conductivity and total metal amounts in 
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samples. Results revealed Fe, Mn, Cd, Pb, Ni, Cr and Co and pesticide 

concentrations in the sediment of Porsuk River exceeded the limit values.   

 

Yuce et al. (2006) examined the pollution of water resources in the Eskişehir Plain 

and the Porsuk River Basin. The study aimed at investigation of the degree of 

influence of contaminant sources on the quality of water resources. Six surface 

water samples, 24 groundwater samples and 12 soil samples were collected and 

analyzed from May 2001 to October 2001. Results indicated intensive NO2, NO3, 

NH3, NH4, phenol, AOX, phosphorus, free chlorine, sulfur, Fe, Al, Pb, Cr, Mn, 

Cd, and Zn pollution in Porsuk River and groundwater in some parts of the 

watershed. It was concluded that surface and groundwater in the study area were 

not suitable to use as a drinking and domestic water supply based on the 

comparisons with the relevant Turkish, European Union, and World Health 

Organization standards (Yuce, 2006). 

 

Kavaf and Nalbantcilar (2007) assessed the contamination characteristics of 

surface water and groundwater in the Kütahya plain and examined the relationship 

between contaminant sources and quality of waters. Furthermore, potential risk on 

public health was discussed by comparing with EPA drinking water standards. 

Ag, Al, As, B, Br, Ca, Cd, Cu, Fe, Hg, K, Li, Mg, Na, Ni, P, Pb, S, U, and Zn 

were analyzed in a total of 44 spring, river and groundwater samples. According 

to results, maximum levels were exceeded on the basis of EPA standards. It was 

mentioned that Porsuk River should not be used for drinking and domestic use.  

 

Öztürk (2007) evaluated the environmental problems related to watershed of 

Porsuk River and suggested solutions to these problems.   

 

Arslan (2008) identified the variables that are most important in assessing the 

variations in the water quality of Porsuk River using PCA. The study was 

performed by eight water quality parameters (flow rate, temperature, DO, BOD, 

NH3-N, NO3-N, NO2-N, and PO4-P) measured in 11 water quality sampling 
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stations located on the Porsuk River. Water quality class was determined as Class-

IV both in upstream and downstream of Porsuk Dam.         

 

Büyükerşen and Efelerli (2008) mentioned the factors that negatively affected the 

water quality of PDR. Major ones were partially treated and untreated 

wastewaters of Kütahya, wastewaters of Kütahya Nitrogen Factory and Kütahya 

Sugar Factory, wastes of slaughterhouse, use of fertilizers and pesticides 

intensively in agriculture. While the water quality of Porsuk River exhibited Class 

I properties at upstream of Kütahya, it declined to Class III or Class IV at 

downstream of Kütahya. Similarly, the water quality just at downstream PDR 

exhibited Class I or Class II properties, but then declined to Class IV after it is 

polluted by sources in Eskişehir. It is mentioned that all users of Porsuk River 

must comply with regulations.  

 

Yerel (2010) used multivariate statistical techniques such as PCA, FA and CA to 

evaluate the surface water quality of Porsuk River. Data used in the study covered 

11 parameters measured in 11 observation stations for 5 years. According to the 

results of PCA, 66.88% of variances in the data set was explained by three factors 

of which 42.93% originated from anthropogenic sources. In the CA, eleven 

observation stations were grouped into two clusters based on the similarity of 

surface water quality parameters. The results showed that urban, industrial and 

agricultural discharge strongly affected the east part of the region.  

 

Bakış et al. (2011) investigated the pollution levels both in surface water and 

groundwater within the Porsuk River Watershed. In the study, seasonal surface 

water and groundwater samples were collected in 2005-2006. Results revealed 

that the surface water and ground water within the watershed were classified as 

Class IV on the basis of relevant regulations.  

 

Küçük (2013) conducted a hypothetical assessment to show the relative effects of 

different agricultural practices on the watershed of PDR using ArcSWAT. Ten 
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different scenarios with varying fertilizer and irrigation rates, landuse and point 

source phosphorus load reductions were applied to detect the vulnerable areas for 

phosphorus transport. 40% decrease in the overall soluble P load to the PDR was 

obtained when simultaneously 50% and 20% reductions were applied in fertilizer 

usage and irrigation, respectively.  

 

In none of the studies above, geostatistical tools were used to evaluate the 

representativeness of the water quality sampling locations. Moreover, hotspots 

based on water quality parameter distributions were not evaluated in 2D and 3D 

space based on landuses in the vicinity of PDR. As a result, this study will 

contribute to the enhancement and protection of the water quality in PDR through 

establishing the spatial distributions of DO and SC in 2D and 3D to identify the 

hot spots based on geostatistically representative sampling points.   

 

3.1.4 Current Water Quality of PDR 

 

One of the most current water quality studies is performed under “special rules 

designation” study for enhancement and protection of the water quality in PDR, 

focusing mainly on preparation of watershed protection and landuse management 

plans and definition of the protection zones at where several activities 

(agricultural, industrial, commercial, etc.) can be banned or restricted (AKS 2010; 

AKS, 2011). In this study, 11 sampling locations within the PDR were determined 

to evaluate the water quality in the PDR. Both surface and bottom samples were 

collected. Sampling locations are depicted in Figure 3.6. While sampling locations 

9, 10, 12, 14, 16 and 18 constitute surface sampling locations within PDR, 

sampling locations 11, 13, 15, 17 and 19 are the bottom sampling locations. 

Coordinates of all sampling points are given in Table 3.8. 
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Figure 3.6 Sampling Locations in AKS (2010) 

 

 

Table 3.8 Sampling stations and coordinates 

 

No Sampling Station (SS) 

Coordinates 

(UTM ED-50 Zone 36) 

East North 

9 Southwest PDR 254634 4385905 

10-11 West PDR 255924 4388012 

12-13 Central PDR 257452 4390804 

14-15 Kunduzlu Stream Expansion 261008 4391594 

16-17 East PDR 264353 4390962 

18-19 Dam Crest Area in PDR 265960 4390198 

20 Outlet of PDR 266881 4391337 
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The general trophic classification (Wetzel, 2001) of PDR is defined in relation to 

concentrations of phosphorus, nitrogen, phytoplankton pigment (chl-a), and water 

transparency (Table 3.9). While PDR is in hyper-eutrophic range according to 

mean total P and Chl-a concentrations, it is in eutrophic range in mean TN 

concentration. According to this classification, the reservoir is in hyper-eutrophic 

range.  

 

 

Table 3.9 General Trophic Classification of Lakes and Reservoirs in Relation to 

Phosphorus and Nitrogen
a
 (Wetzel, 2001) and measured concentrations in PDR 

 

Parameter 

(annual mean values) 

O
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Total 

Phosphorus 

(mg m
-3

) 

Mean 8.0 26.7 84.4 - 445 

Range 3.0-17.7 10.9-95.6 16-386 750-1200  

Total Nitrogen 

(mg m
-3

) 

Mean 661 753 1875 - 1244 

Range 307-1630 361-1387 393-6100 -  

Chlorophyll a 

(mg m
-3

) of 

phytoplankton 

Mean 1.7 4.7 14.3 - 21 

Range 0.3-4.5 3-11 3-78 100-150  

Chlorophyll a 

maxima   

(mg m
-3

) 

(worst case) 

Mean 4.2 16.1 42.6 - 80 

Range 1.3-10.6 4.9-49.5 9.5-275 -  

Secchi 

transparency 

depth (m) 

Mean 9.9 4.2 2.45 -  

Range 5.4-28.3 1.5-8.1 0.8-7.0 0.4-0.5  
a
Based on data of an international eutrophication program. Trophic status based on the 

opinions of the experienced investigators. (Modified from Vollenweider, 1979) 
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An evaluation is made based on several water quality parameters measured in 

January, April, August and September 2010 (AKS, 2010). Evaluation is 

performed according to Appendix 1 of the regulation on the quality of surface 

waters intended for abstraction of potable water (Ek 1, İçmesuyu Elde Edilen veya 

Elde Edilmesi Planlanan Yüzeysel Suların Kalitesine Dair Yönetmelik). The limit 

values are given in the Appendix A. Data obtained in January, April, August and 

September of 2010 was averaged. These measurements for some parameters for 

each sampling station are presented in Figures C1-C10 in Appendix C. In these 

figures, green, yellow, orange and red colors map into categories of A1 (drinkable 

water following physical treatment and disinfection), A2 (Drinkable water 

following physical and chemical treatment and disinfection), A3 (Drinkable water 

following physical, chemical and advanced treatment and disinfection) and higher 

than A3, respectively.  

 

The water quality in PDR falls into Category A1 for color, odor, TSS, nitrate, 

copper, zinc, boron, cobalt, cadmium, chrome (total), lead, mercury, barium, 

sulphate, chloride, fluoride, dissolved iron, surfactant (MBAS), fecal coliform, 

fecal streptococcus, and salmonella parameters. COD decreased as progressed 

from entrance (SS9) to outlet of PDR (SS18-19) (Figure C. 1). These results are 

well proportioned with DO concentrations (Figure C. 3 & Figure C. 4). There was 

also a huge decrease in BOD at the outlet of PDR compared to inlet of PDR with 

the exception of increase in the station located in the Kunduzlu Stream expansion 

(SS14-15) (Figure C. 2). Phosphates in all sampling locations within PDR 

represent higher values than for Category A3 (Appendix A). Therefore, PDR is 

rich in phosphates (Figure C. 5). Unlike phosphates, nitrate fells into A1 class at 

all sampling stations (Figure C. 6). There was a declining trend in TKN and NH3-

N from the inlet (SS9) to the outlet of PDR (SS18-19). This was also valid for 

chlorophyll-a (Figure C. 7, Figure C. 8 and Figure C. 9). While TKN observed in 

at the inlet of PDR was in the range of A2 (SS9), it improved to A1 at the outlet of 

PDR (SS18-19) (Figure C. 7). Similarly, NH3-N concentration at the inlet of PDR 

was in the range for A3, it was A2 at the outlet (Figure C. 8). Although 
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conductivity exhibited A1 property throughout PDR, there should be some factors 

causing the increase of conductivity between SS10-11 and SS12-13 (Figure C. 

10). In general it was shown that besides Porsuk River, other factors such as 

Kunduzlu Stream, regulator of SHW, Sofça and Sobran villages and mining 

activities had negative affect on the water quality of PDR.  
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CHAPTER 4 
 

 

METHODOLOGY 4

 

 

 

The principal instrument used in the temporal and spatial management of water 

resources is the water quality monitoring network (Strobl et al., 2006a). Principal 

elements of a monitoring plan can be listed as a clear statement of the objectives, 

definition of intended uses (the present and planned water uses), a complete 

description of the study area (extend of the area, the present and expected 

pollution sources, etc.), description of the locations of the sampling sites, a listing 

of the water quality variables that will be measured, determination of the 

frequency and timing of sampling, estimation of the resources available to 

implement the proposed water quality network (UNEP/WHO, 1996). Strobl et al. 

(2006a) pointed out the absence of a concise methodology to design monitoring 

networks, especially in selection of sampling stations. Modelers often faced with 

non-homogeneity (clustering) problem in data obtained from monitoring networks 

due to preferential sampling or impossibility of reaching certain regions in the 

water body of concern (Kanevski, 2008). Therefore, the design of water quality 

monitoring network that constitutes robust and representative sampling locations 

is an issue in water quality characterization. A good monitoring network design is 

essential in decision making at watershed scale (Do et al., 2012). Geostatistical 

tools can aid in better design of the monitoring networks which is the focus of this 

study. In this study a water quality network is defined by the number of sampling 

points and their distributions.  

 

In the first part of this study, the steps proposed to design a representative water 

quality monitoring network (selection of sampling locations) that maintains the 

actual spatial correlation structure in water quality parameter distribution within 

reservoirs and lakes using geostatistical tools (2D kriging and Kernel Density 

Estimation (KDE)) are presented. The spatial correlation structure defines the 
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distance which two measurements of a variable become spatially 

correlated/uncorrelated. This information can be beneficial to determine the 

locations of sampling points. If the actual structure in water quality parameter 

distribution within reservoirs and lakes is not retained, selected sampling points 

may not be representative. The methodology followed is depicted in Figure 4.1. 

Firstly, the surface area of PDR was divided into square grids of 500 m by 500 m 

because it was assumed to represent actual spatial correlation as it is one of the 

largest sample set that can be obtained. Then, data collection (water quality 

measurements) was performed in field at points in the middle of the grids for the 

field work step of the methodology. After that, measured data was preprocessed 

and divided into sub-data sets as calibration and validation sets for 2D kriging 

(Figure 4.1). Details of these steps are given in Section 4.1. Following these steps, 

exploratory data analysis step was applied. In this step, normality check and 

transformation, trend analysis and removal were performed on the calibration data 

consecutively. If the calibration data did not follow normal distribution, necessary 

transformations were applied. Similarly, if trend was observed in the data, it was 

removed before kriging. After that variogram analysis was performed which 

consisted of experimental variogram construction and fitting a variogram model to 

the experimental variogram. Hence, kriging estimations were made using 

processed calibration data (Figure 4.1).  

 

Validation data set was used to evaluate the accuracy of kriging estimations 

through several measures. In the evaluation step, variogram models, kriging maps, 

kriging error maps, and error metrics were taken into account to decide whether 

the given network was representative and further point reduction was possible or 

not. If further point reduction was possible in the given network (a network is 

defined by the number of sampling points and their distributions), KDE was used 

to define the areas with similar densities. These areas were used in identifying the 

potential water quality sampling locations that could be removed from the 

sampling network in order to decrease the total number of samples. Then based on 

land use information and locations of surface drainage and point source inlets, the 
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sampling points that would be eliminated from the network were determined. 

Several networks were generated to find the best combination. In addition to this 

methodology, sampling points within PDR were selected by 3 different experts in 

watershed management and kriging estimations were obtained based on their 

selection to constitute surface DO maps. As a result comparisons were made 

between kriged estimations based on sampling points selected by experts and the 

ones identified with the proposed methodology.  

 

In the second part of this study, 3D kriging was performed to compare the 

hotspots observed on the surface of PDR with the hotspots in deeper layers. The 

methodology is depicted in Figure 4.2 as a summary. Data collection was 

performed with respect to depth in the middle of the square grids of 500 m by 500 

m that were also used in the first part of the study. Collected data was 

preprocessed. Different from the approach used for 2D kriging, data was not 

divided into calibration and validation sets in 3D kriging application to provide 

more data for 3D kriging. In the exploratory data analysis, normality check and 

transformation were applied on the data. After that variogram analysis was 

performed. Then 3D grid was constructed for kriging and kriging was performed. 

Cross-validation was used to evaluate the accuracy of 3D kriging estimations. In 

the following parts, details of the steps proposed in identification of the 

representative sampling locations for 2D kriging and 3D kriging application 

methodologies will be explained.  
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Figure 4.1 The methodology employed in selection of sampling points 
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Figure 4.2 The methodology employed in 3D kriging 
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4.1 Field Work 

 

The maximum distance between monitoring locations depends on several factors 

such as the size of the water body, fluctuations in water quality parameters, and 

inlets of point and non-point pollution sources. Industries present in the area as 

mentioned in Section 3.1.2 directly affect the water quality of Porsuk River which 

is the main inflow to PDR (Figure 4.3). In previous studies where kriging was 

employed in lakes and reservoirs, the sampling point densities were in the range 

of 0.01 – 0.29 points/km
2
 (Beveridge et al., 2012; Külahcı and Şen, 2009). 

Although higher sampling point densities allow for better representation of the 

water quality in lakes/reservoirs, economic and feasible constraints should be 

taken into account in the selection of the density. Therefore, in this study it was 

deemed that division of the PDR into grids of 500*500 m with approximately 3 

points/km
2
 sampling point density was adequate to start the process of elimination 

of sampling points based on the assumption that it is sufficiently large to represent 

actual spatial correlation. This value is higher than the sampling densities reported 

in literature.  

 

A total of 81 sampling locations were obtained corresponding to the sampling 

density used in this study and sampling points were at the center of 500*500 m 

grids (Figure 4.1). The coordinates of these locations are determined through 

ArcGIS and transferred into a Garmin GPS receiver (GPS map 76CX) before 

conducting the field study. The sampling locations identified earlier were pinned 

down during the field study which was conducted on 24
th

 and 25
th

 of August 

2010. At each sampling location in-situ measurements were made for temperature, 

DO, salinity and SC along the water depth. While DO is one of the important 

water quality parameters for aquatic life and one of the primary concerns of 

limnologists and water resource engineers, SC can be used to evaluate the 

locations of the point and non-point loads (Soyupak et al., 2003; Karamouz et al., 

2009a). For in-situ measurements, a YSI 6600 EDS multiparameter water quality 

sonde was utilized. The data was automatically recorded while the sonde 
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descended along the depth at a given sampling point. Data and corresponding 

depth values were recorded until the sonde hits to the bottom of the lake. Then, 

the data and corresponding depth values were transferred to a computer for 

processing in the office. The data recorded on the surface of sampling locations 

shown in green circles in Figure 4.4 was used as the calibration data set (65 

points), while data recorded in red circles was used as the validation data set (16 

points) to identify the representative water quality sampling locations. The data 

recorded along the depth in the sampling locations (81 points) was used to 

constitute 3D distributions of selected water quality parameters and to perform 3D 

kriging in this study. 

 

 

 
 

Figure 4.3 Porsuk River Inlet to PDR 
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Figure 4.4 Sampling locations in the field study (green circles: calibration data 

points, red circles: validation data points) 
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4.2 Kriging 

 

Kriging is a weighted moving average technique to estimate expected values of 

pollutant concentrations at unmeasured locations. It can be used to assign an 

estimated value to a particular location or to a block, named as point kriging or 

block kriging, respectively. Kriged estimate is a weighted combination of the 

sample values around the point to be estimated. Although other linear unbiased 

estimators also exist such as inverse distance methods, kriging is the best linear 

unbiased estimator in which the mean value can be reproduced by the kriging 

estimate. Moreover, kriging minimizes the estimation error variance (Mohamed 

and Antia, 1998; Kanevski, 2008). 

 

The kriging family models have common features according to the basic 

principles of kriging. First, kriging weights do not depend on the variable values 

as they are defined by a spatial correlation structure described by the covariance 

or the variogram model. Second, kriging is an exact estimator in which the 

estimate honors the conditioning data exactly. Third, kriging features a smoothing 

effect on the estimates - the kriging estimate cannot exceed the data maximum or 

go below the data minimum. Smoothing is characterized by the variability of the 

kriging estimates. Fourth, the kriging variance is not higher than the variance of 

the initial data (Kanevski, 2008).   

 

Kriging analysis of pollutant concentrations consists of five steps (Mohamed and 

Antia, 1998):  

 

- Determine if the measured pollutant concentrations are additive and 

normally distributed. If they are not normally distributed, appropriate 

transformations are required  

- If a trend, not adequately portraying the surface for a particular need, 

exists in data, remove it  
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- Estimate the spatial correlation of pairs of measured concentrations as a 

function of the distance and the direction of their separation, i.e., 

determine the experimental semivariogram  

- Perform a structural  analysis, i.e., fit a theoretical model to the 

experimental semivariogram  

- Perform kriging (Mohamed and Antia, 1998).  

 

4.2.1 Data Transformations Used in Environmental Applications 

 

Measured data should follow a normal distribution in order to apply kriging 

technique to evaluate geospatial distribution of the data. A general Q-Q plot (a 

plot on which the quantiles of measured data versus the quantiles of a standard 

normal distribution are depicted) can be drawn to check normality. For identical 

distributions, the Q-Q plot will be a straight line with 45
o
 inclination. If measured 

data departures from normality, it can be necessary to transform the measured 

values into a new scale (logarithmic, square root, angular, logit, power, arcsin, 

tangent, arctan, and cosine) in which the distribution is nearly normal (Webster 

and Oliver, 2007; Johnston et al., 2001). A normal distribution is not mandatory to 

obtain prediction maps via Ordinary Kriging (OK). However, kriging is the best 

predictor among the ones that are formed from weighted averages and all 

unbiased predictors when data is normally distributed (Johnston et al., 2001). 

Therefore, it is beneficial to apply transformation to obtain a normal distribution. 

Following data transformation, further analysis can be performed and, if 

necessary, results can be transformed back into the original scale later on. Based 

on literature and variables used in this study, logarithmic, square root, angular, 

logit, power, arcsin transformations were used for data which does not follow 

normal distribution based on Q-Q plot. These transformations are explained 

below.  

 

Logarithmic transformation: The log transformation is very common for 

environmental data. If the transformation of data zi (i=1, 2, ……, N) to log(zi) 



53 

 

exhibit a normal distribution, then the variable is said to have a lognormal 

distribution (Webster and Oliver, 2007; Şen, 2002).   

 

Square root transformation: Distributions that are strongly positively skewed will 

often normalize or become symmetric by taking logarithms. Less pronounced 

positive skewness can be removed by taking square roots (Webster and Oliver, 

2007; Şen, 2002).  

 

Angular transformation (ArcSin square root transformation): This is sometimes 

used for proportions in the range 0 to 1, or 0 to 100 if expressed as percentages. If 

p is the proportion, then transform will be expressed as sin
-1

√p (Webster and 

Oliver, 2007). The effect of this transformation is to spread the end of the scale 

while compressing the middle, which can be quite useful for proportion data with 

positive skewness (McGarigal, 2012). 

 

Logit transformation: If p is a proportion (0 < p < 1), then its logit transformation 

will be ln {(p)/(1-p)}. Logit transformation can be quite useful for fitting linear 

models to sigmoid distributions of proportions (Webster and Oliver, 2007; 

Armitage et al., 2002). 

 

Power transformation: This transformation can be used to stabilize variance and 

applied by taking the square or cube of the measured data (Şen, 2002).  

 

ArcSin transformation: This transformation can be quite useful to transform the 

measured values with negative skewness to a distribution that is nearly normal 

(Şen, 2002).  

 

Besides above approaches, transformations like tangent, arctan, and cosine can 

also be applied when the data does not follow a normal distribution. In this study, 

Q-Q plots were derived using ESRI’s ArcGIS 9.3 and Easyfit Professional 

software. Besides visual inspection of the histogram and Q-Q plot of measured 

http://www.statsdirect.com/help/references/refs.htm
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DO values, Easyfit Professional software was used to statistically confirm if the 

data follows normal distribution or not. For this purpose, Kolmogorov-Smirnov 

statistic (D), quantifies the largest vertical difference between empirical 

cumulative distribution function of sample and theoretical cumulative distribution 

function, was calculated. The null hypothesis (H0: data follow the specified 

distribution) was tested according to this statistic. If D is smaller than the critical 

value for a given significance level (α) in standard tables, the null hypothesis was 

accepted. When H0 is rejected at all predefined significance levels, the p-value is 

useful to know at which level it could be accepted. The p-value is calculated based 

on the test statistic, and denotes the risk to reject H0 while it is true (Mathwave, 

2013). If the data does not follow a normal distribution, transformations 

mentioned above were applied to find out the most suitable method for 

transformation of the data to obtain normality.  

 

4.2.2 Identifying trends in data 

 

Another assumption of variogram analysis is that there is no spatially determinant 

trend present in sample values. Sample values should be independent of 

geographic coordinates. If a significant trend is present, then it is likely to distort 

the variogram results to the extent that they may be unintelligible. Alternatively, 

the determinant trend may overwhelm the natural variability to the extent that the 

latter is undetectable (Houlding, 1994). If a trend exists in data, the value at a 

point was consisted of trend component value and fluctuation (residual) at that 

point (Equation 4.1).  

 

………………...………………………...………..(Eq. 4.1) 

 

Where z(xi) is the value at point xi, m(xi) is trend component value at point xi and 

R(xi) is the fluctuation or residual.  
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The trend is the nonrandom (deterministic) component of a surface that can be 

represented by some mathematical formula. If the trend surface does not 

adequately portray the surface for a particular need, it should be removed and the 

analysis should be done for data with no trend (residual) (Johnston et al., 2001). 

The existence of a spatial trend in the data can be investigated by several ways:  

 

- Plotting the variable of interest (z) against x and y coordinates 

- Making a contour plot 

- Making a wire diagram or other three-dimensional representation 

- Fitting a loess (Local Regression) or other regression model 

- Testing model significance 

- Looking for spatial trends in the rediuals (Schuenemeyer and Drew, 2011).  

 

According to these investigations, if trend is flat, linear or quadratic, it represents 

no trend, first order trend and second order in the data, respectively. While 

equation 4.2 was used in the case of a first order trend was present, equation 4.3 

was used for a second order trend. Then, trends were removed from data and 

residuals were used in variogram analysis.  

 

…………………………...……..…( Eq. 4.2) 

 

………..…( Eq. 4.3) 

 

Where x and y coordinates of point xi in x and y directions, respectively.  

 

In this study, the existence of a spatial trend was investigated by plotting DO 

values against 2-dimensional space (in x and y coordinate system), preparing a 

contour plot, and fitting a regression model. Trend analysis and removal were 

performed using ArcGIS 9.3.  
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4.2.3 Variogram Analysis 

 

Variogram analysis consists of the experimental variogram constructed from the 

data and the variogram model fitted to the data. The experimental variogram 

measures the spatial correlation between data points as a function of separation 

distance and direction. If an experimental variogram is randomly distributed or 

does not show a pattern of a typical variogram with separation distance, it simply 

indicates no spatial correlation among data points, and therefore kriging analysis 

is not taken into account. The experimental variogram is constructed by averaging 

one-half the difference squared of the values of measured variable over all pairs of 

observations with the specified separation distance and direction. The variogram 

(γ (h)) is calculated as follows: 

 

  ………..…………...………… (Eq. 4.4) 

 

where γ (h) is the variogram for lag distance h, N(h) is the number of pairs 

separated by the lag distance h, Z(xi) and Z(xi+h) are the values of measured 

variable at spatial locations i and i+h, respectively (Barnes, 2006; He et al., 

2010b; Ouyang et al., 2003).  

 

The variogram model is chosen from a set of mathematical functions. The 

appropriate model is chosen by matching the curve generated by the experimental 

variogram with the curve of the mathematical function. To account for geometric 

anisotropy (variable spatial continuity in different directions), separate 

experimental and model variograms can be constructed for different directions in 

the data set (Barnes, 2006). The behavior of the variogram at distances 

comparable to the size of the domain determines whether the function is stationary 

or not. A function is considered as stationary if it consists of small-scale 

fluctuations (compared to the size of the domain) compared to some well-defined 

mean value. For such a function, the variogram should stabilize around a value, 
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called the sill, as shown in Figure 4.5. The sill is approximately equal to the 

variance of the data. For a stationary function, the length scale at which the sill is 

obtained describes the scale at which two measurements of the variable become 

spatially uncorrelated. This length scale is known as the range, correlation length 

or radius of neighborhood (Mohamed and Antia, 1998). A nugget is an apparent 

discontinuity in the experimental variogram near the origin caused by 

measurement errors or microscale variations. Theoretically, the value of the 

variogram must be zero at the origin. However, in the presence of a nugget, the 

variogram does not seem to approach zero at the origin, but rather have some 

positive value that is significantly larger than zero (Ouyang et al., 2003; Olea, 

1991). 

 

 

 
 

Figure 4.5 An example variogram model illustrating stationary and nonstationary 

behavior (Houlding 1994; Mohamed and Antia, 1998) 

 

 

There are many possible variogram models. When combined with a nugget effect, 

one of the three models is adequate for most data sets: linear, exponential, and 
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spherical models (Barnes, 2006). Example representations for these three models 

are shown in Figure 4.6. If the experimental variogram never levels out, then the 

linear model is usually appropriate. If the experimental variogram levels out, but 

is "curvy" all the way up, then the exponential model should be considered. If the 

experimental variogram starts out straight, then bends over sharply and levels out, 

the spherical model is a good first choice (Barnes, 2006). 

 

Experimental variograms of the DO and SC data were constructed by a script 

written in R Cran Version 2.14.1. Then, the variogram model was automatically 

fitted to the data. The script iterated over 19 different variogram models present in 

the software and picked the one that resulted in the smallest residual sum of 

squares with respect to the experimental variogram. Then, variogram model type, 

nugget, sill and range values were obtained from the selected variogram model. 
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a) Linear Model 

 

 

b) Spherical Model 

 

c) Exponential Model 

 

 

Figure 4.6 Frequently Used Variogram Models for Representing Spatial 

Variability (a: Linear Model, b: Spherical Model, c: Exponential Model) 

(Houlding, 1994) 
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4.2.4 Ordinary Kriging (OK) 

 

Kriging estimations were made through OK with the generated variogram model 

(Equation 4.5). Kriging covers a range of least-squares methods of spatial 

prediction such as ordinary kriging (OK), simple kriging, lognormal kriging, 

universal kriging, factorial kriging, ordinary co-kriging, indicator kriging, 

disjunctive kriging, probability kriging and Bayesian kriging. Among these, OK is 

the most roboust and commonly employed method (Webster and Oliver, 2007). 

OK estimates the values of any measurable parameter at unmeasured locations 

using a weighted linear combination of available samples and creates a prediction 

surface. In OK, the mean is assumed to be constant over the field but unknown. 

The sum of the weights for estimation must add up to 1 to fulfill unbiasedness 

(Equation 4.6). Thus, the estimated value will be free of systematic error. The 

minimization of the estimation error variance is also achieved using OK (Ouyang 

et al., 2003; Schuenemeyer and Drew, 2011; Kanevski, 2008). OK estimator is 

given as:  
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Where Z
*
(xo) is the OK estimate at location x0, and N(xo) is the number of data 

from the neighborhood of (xo) used for the estimation. Z
*
(xo) is obtained as a 

linear combination of known values z (xi).  
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4.2.5 Kernel Density Estimation 

 

KDE is one of the most common nonparametric methods to calculate a magnitude 

per unit area from point or polyline features in a defined kernel with a constant 

radius or bandwidth to obtain a continuous density surface. The features within 

the kernel are weighted according to their distance from the center of a kernel 

(Figure 4.7). Features near the center have a higher weight to contribute to kernel 

density estimation. In KDE maps, locations (clusters) with relatively higher or 

lower densities can be identified easily based on kernel density values (Plug et al., 

2011; Kuter et al., 2011; Amatulli et al., 2007; De la Riva et al., 2004; Koutsias et 

al., 2004; Silverman, 1998; Wang and Wu, 2009).   

 

 

 

 

Figure 4.7 Kernel Density Estimation (Wilson, 2012) 

 

 

KDE can be conducted both based on distance and based on population. KDE 

based on distance is mathematically defined as (Silverman, 1998): 
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where n is the number of point observations, h is the bandwidth, K is the kernel 

function, x is a vector of coordinates that represent the location where the function 
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is being estimated, Xi is the vector of coordinates that represent each point 

observation i and d is the number of dimensions in space.  

 

When a population field is used, KDE is mathematically defined as (Levine, 

2010): 
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where Wi is a weight at the location where the function is being estimated 

(observations closer to the location are weighted more highly than those farther 

away; observations outside the specified bandwidth are excluded) and Ii is an 

intensity (population) at the point location. In this study, selected water quality 

parameters were used as the population field in the calculation of KDE (Levine, 

2010; Wilson 2012).        

 

Selection of bandwidth (h) directly affects the smoothness of density patterns. 

There is no a straightforward rule to specify an appropriate bandwidth. When a 

very small bandwidth is selected, the result highlights individual points with 

inadequate smoothing (spiky). If bandwidth is too large, a smoother density 

surface will be obtained (Plug et al., 2011; Kuter et al., 2011; Brimicombe, 2010; 

Amatulli et al., 2007). Often selection of the bandwidth is performed subjectively 

by visual inspection (trial and error) of several density estimates over a range of 

bandwidths. Evaluation starts with a large bandwidth and progresses with 

decreasing the amount of smoothing until fluctuations that are more “random” 

than “structural” start to appear (Kuter et al., 2011; Wand and Jones, 1995).  

 

In this study, a reduction strategy is proposed to identify the potential water 

quality sampling locations that can be removed in order to decrease the total 

sampling points. After the reduction, remaining sampling points can be suggested 
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for the monitoring program and estimation of the spatial water quality 

distributions in PDR through kriging (Figure 4.1). For this purpose, KDE was 

used and maps were constituted. With KDE maps, areas that have similar kernel 

densities and the sampling points within these areas were identified and put into 

the same cluster. Then based on land use information and locations of surface 

drainage and point source inlets, the sampling points that would be eliminated 

from the network were determined. During sampling point reduction it was made 

sure that at least one representative point retained within a cluster for kriging 

purposes in the procedure presented in Figure 4.1. If there is a point source near to 

a cluster where two sampling points are located, select the point which one is the 

most downstream as representative point. Furthermore, surface drainage inlets 

which are identified using topographic maps or hydrology toolbar of ArcGIS 

should be taken into account in the selection. In a cluster where two sampling 

points are located, again select the location in the most downstream of surface 

drainage inlet. The selected point should be away from streams or rivers inflow 

points and be accessible. By this way, several networks were generated to find the 

best combination.  

 

A naming convention was used in order to represent different sampling networks 

with different numbers of sampling points. The “NXX” notation stands for the 

network that constitute of calibration data with “XX” number of sampling points 

eliminated. Eliminations were conducted based on KDE maps by reducing the 

number of sampling points by 4 or 5 at a time starting initially from 65 sampling 

locations. In this regard, “N04” and “N30” mean that 4 and 30 sampling points 

were removed from the initial calibration data set of 65 sampling points, 

respectively. As a result, kriging for N04 and N30 was carried out based on 61 

and 35 sampling locations, respectively. 
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4.2.6 Evaluation  

 

In the evaluation stage (Figure 4.1), several factors were considered to decide 

whether the given network was representative and conserved the spatial 

correlation structure. The variogram models for the initial network (N00) and 

networks with reduced sampling points (NXX) were compared through 

constructing scatter plots and checking slope and RMSE values to evaluate 

whether the spatial correlation structure of the initial network was conserved or 

not based on γ (h). Kriged values were compared to validation data to check 

whether a given network was successful in determining the concentrations at 

validation points. Measured versus predicted values for validation locations were 

plotted. Moreover, several error metrics (mean errors, root mean square errors, 

etc.) were used in evaluations. The total dataset including measurements from 81 

sampling locations was divided into two sub-datasets to make evaluation possible. 

While the data obtained from 80% of the sampling locations was used to calibrate 

the model, remaining 20% of the locations was selected as the validation dataset 

in 2D kriging estimations.  

 

KDE maps, river inflow points, landuse should be taken into account in the 

selection of validation dataset in reservoirs/lakes. Criteria that can be used to 

compare the methods that are used for prediction of a given parameter are either 

local or global scale. The pattern of the map produced by each method is the local 

one. The maps can be compared based on the ability of the methods to reproduce 

local features by comparison with reference to spatial pattern. On the global scale, 

the methods can be evaluated on basis of their mean errors (ME), root mean 

square errors (RMSE), average kriging standard errors (ASE), mean standardized 

errors (MSE) and root mean square standardized errors (RMSSE) (Wibrin et al., 

2006; Johnston et al., 2001). The Prediction Standard Errors quantify the 

uncertainty for each location in the kriging prediction surface. If data follows a 

normal distribution, the true value of the surface will be within the interval formed 

by the predicted value ± 2 times the prediction standard error in the 95 percent of 
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the time (Johnston et al., 2001). Summary statistics and graphs can be obtained by 

comparing the predicted value to the actual value from cross-validation or 

validation. Let Z(si) be the predicted value from kriging, z(si) be the observed 

value from validation, σ(si) be the prediction standard error for location si, and n 

be the number of observations. Then some of the summary statistics are (Johnston 

et al., 2001): 

 

……………………………………………...………(Eq. 4.9) 

 

…………………………….……………..….(Eq. 4.10) 

 

……………………………………...………………..….(Eq. 4.11) 

 

…………………………………………...…(Eq. 4.12) 

 

…………………………...……....….(Eq. 4.13) 

 

ME should be close to 0, RMSE and MSE should be as small as possible, and 

RMSSE should be close to 1 for a model providing accurate predictions (Johnston 

et al., 2001). The number of sampling locations in calibration dataset is reduced 

subsequently until finding the best combination with small errors (in terms of the 

metrics given above) while maintaining the spatial correlation structure of the 

calibration dataset. The entire evaluation criteria mentioned above was employed 

for 2D kriging  

 

In 3D kriging estimation, dataset including measurements from 81 sampling 

locations was used as collected without dividing the data into subsets. Cross 

validation was used to identify the degree of accuracy that the semivariogram 
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parameters and the search neighborhood possess in predicting the unknown 

locations. In the cross validation procedure, each sample value C at a location x is 

temporarily removed in turn from the data set and a value C
*
 at that location is 

estimated using the remaining (n-1) samples. Then estimated values were 

compared with the measured ones to evaluate measures of accuracy for the 

predictions generated using the OK model. The spread of the points should be as 

close as possible around the linear regression line in the observed versus predicted 

graph (Ouyang et al., 2003; Chehata et al., 2007; Jakubek and Forsythe, 2004).    
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CHAPTER 5 
 

 

RESULTS AND DISCUSSION 5

 

 

 

5.1 2D Kriging 

 

As it is mentioned before, 2D kriging estimation was conducted to determine the 

representative water quality sampling locations within PDR at 2D space for 

selected water quality parameters. As mentioned in section 4.1, raw data obtained 

from field work was preprocessed and divided into sub-data sets as calibration and 

validation sets for 2D kriging. Then, the methodology given in Figure 4.1 was 

followed. 

 

5.1.1 KDE 

 

KDE is the tool which was used to eliminate sampling points based on the 

methodology proposed in this study and also assess the representative water 

quality sampling locations in PDR. The analysis also helped to identify the 

clusters with respect to DO and SC. With population (DO and SC) based KDE, 

kernel density areas and the sampling points within these areas were identified 

based on initial network (N00 with 65 sampling points). Sampling point 

eliminations were conducted based on KDE maps by reducing the number of 

sampling points by 4 or 5 at a time starting initially from 65 sampling locations if 

the given network was representative and suggests further point reduction 

according to variogram models, kriging maps, kriging error maps and error 

metrics. Then during sampling point reduction it was made sure that some of the 

points retained within a given area of similar kernel densities in order to keep one 

or more representative sampling points for kriging purposes.  

 



68 

 

It has been already mentioned in the methodology part that selection of the 

bandwidth (h) of the kernel can strongly affect the smoothness of the density 

patterns. Hence, different bandwidths (250 m, 500 m, 750 m, 1000 m, and 1250 

m) were applied in KDE of calibration dataset to find the most suitable 

bandwidth. While there was too much smoothing in higher bandwidths (>1250 m) 

due to including more water quality sampling locations in KDE, there are many 

spikes in lower ones (250 m, 500 m) both for DO and SC (Figure 5.1 - Figure 

5.10). Therefore, the most suitable bandwidth was selected as 1000 m that 

exhibited sufficient detail to observe kernel density areas without obscuring local 

details both for DO and SC.  

 

Figure 5.4 represents KDE map with 1000 m kernel bandwidth for DO. In the 

figure, population (DO) based kernel density values which were calculated from 

Equation 4.8 ranged between 0 and 58. Kernel density areas with zero value mean 

that there were no sampling locations within kernel bandwidth in these regions to 

estimate kernel density. However, areas with high kernel values around 58 signify 

the contribution of more sampling locations with high DO values to the 

calculation of kernel value at the given locations. Clusters which are areas that 

have similar values and sampling points within these areas can be easily detected 

with this bandwidth both for DO and SC (Figure 5.4 &Figure 5.9).  

 

KDE was also performed based on distance with the selected bandwidth. When 

Figure 5.4 and Figure 5.11 were examined, similar clusters were observed except 

for a cluster around sampling locations 73 and 74 in the population based KDE. 

As a result, for incremental reduction of sampling locations, the h value of 1000 m 

and population based KDE were used. Sampling point eliminations were 

conducted at each specific kernel density area (cluster). As an example KDE map 

of DO for calibration data set (N00) was examined and it was seen that sampling 

locations 47 and 48 were located in the same density area (Figure 5.4). So, at least 

one of them should be kept as a representative point in the mentioned density area 

for kriging. Therefore, sampling location 48 was selected as a representative point 
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and sampling location 47 was removed for N04 (network with 61 sampling 

points) based on surface drainage inlet locations, point source inlets and landuse. 

In this way, KDE maps were obtained iteratively for each reduction in the number 

of water quality sampling locations until the best combination according to 

variogram models, kriging maps, kriging error maps and error metrics is found 

(Appendix D). Other sampling point eliminations were performed in a similar way 

to construct N04. Then KDE map of N04 was generated to determine the 

sampling locations to be removed for N10. Eliminated sampling points based on 

KDE at each network are represented in the maps given in Appendix D.                

 

 

 
 

Figure 5.1 Application of 250 m kernel bandwidth for DO  
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Figure 5.2 Application of 500 m kernel bandwidth for DO 

 

 

 
 

Figure 5.3 Application of 750 m kernel bandwidth for DO 
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Figure 5.4 Application of 1000 m kernel bandwidth for DO 

 

 

 
 

Figure 5.5 Application of 1250 m kernel bandwidth for DO 
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Figure 5.6 Application of 250 m kernel bandwidth for SC 

 

 

 
 

Figure 5.7 Application of 500 m kernel bandwidth for SC 
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Figure 5.8 Application of 750 m kernel bandwidth for SC 

 

 

 
 

Figure 5.9 Application of 1000 m kernel bandwidth for SC 
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Figure 5.10 Application of 1250 m kernel bandwidth for SC 

 

 

 
 

Figure 5.11 Distance based KDE with 1000 m kernel bandwidth 
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5.1.2 Normality Check 

 

The second step of the approach suggested in this study is data exploration 

including normality check, trend analysis and variogram analysis. Firstly, 

normality check was conducted. As it is mentioned before, a normal distribution is 

not necessary to obtain prediction maps in OK process. However, Johnston et al. 

(2001) mentioned that kriging is the best predictor among not only predictors that 

are formed from weighted averages but also among all unbiased ones when data is 

normally distributed. Therefore, it is advantageous to build the analysis on 

normally distributed data. For this purpose, histograms and Q-Q plots were 

prepared to check the normality for DO and SC prior to kriging aplication. The 

DO concentrations measured at 81 sampling points in PDR ranged from 4.85 

mg/L to 22.77 mg/L. The mean DO concentration was 13.43 mg/L with a standard 

deviation of 3.64 mg/L. High DO concentrations are a result of local algal 

abundance and oversaturation. Surface DO concentrations measured at calibration 

points (65 water quality sampling stations in Figure 4.4), on the other hand, 

ranged from 4.85 mg/L to 22.78 mg/L with a mean concentration of 13.57 mg/L 

and a standard deviation of 3.76 mg/L. Furthermore, the SC concentrations were 

between 0.43 mS/cm and 0.76 mS/cm with a mean concentration of 0.56 mS/cm 

and a standard deviation of 0.04 mS/cm. When the histogram and Q-Q plot of DO 

for the initial network (N00 with 65 sampling points) in Figure 5.12 were 

examined, it was obviously seen that the shape of the histogram (a fairly 

symmetrical distribution) and Q-Q plot (near to a linear line) were similar to a 

normal distribution. These were the indicators of normality. However, the shape 

of histogram and the Q-Q plot of SC for the same network slightly departured 

from normality (Figure 5.13).      
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a) Histogram 

 
 

b) Q-Q Plot 

 
 

Figure 5.12 Histogram and Q-Q plot of DO for N00  
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a) Histogram 

 
 

b) Q-Q Plot 

 
 

Figure 5.13 Histogram and Q-Q plot of SC for N00 
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The EasyFit Professional software was also used to statistically confirm whether 

the data follows a normal distribution. Firstly, D (Kolmogorov Smirnov statistic) 

was calculated. According to this statistic, the null and the alternative hypotheses 

were:  

 H0: the data follow the normal distribution;  

 HA: the data do not follow the normal distribution.  

In Table 5.1, D value for DO of N00 network (0.09897) was less than the critical 

values (0.131-0.199) stated in the standard table for all significance levels. 

Consequently, the null hypothesis was accepted for all significance levels. As a 

result, the D value provided additional confirmation about the normality in DO 

data besides visual inspection and DO data was used in the original (non-

transformed) form. However, measured SC data does not follow the normal 

distribution since D value (0.22683) was greater than critical values (0.131-0.199) 

for all significance levels. Therefore, p-value was calculated for the SC data. 

When H0 is rejected at all predefined significance levels, the p-value is useful to 

know at which level it could be accepted (Mathwave, 2013). As it was mentioned 

before the p-value denotes the risk to reject the H0 while it is true. In Table 5.1, p-

value for SC is 0.00202. Accordingly, the risk to reject the H0 while it is true is 

0.202 %. Therefore, it can be said that measured SC data does not follow the 

normal distribution (H0 is rejected). Therefore transformations mentioned in 

section 4.2.1 were applied to obtain a normal distribution. Some of Q-Q plots for 

SC which were obtained after transformations applied were given in Figure 5.14. 

As it was seen from the figure that a better fit to normal distribution for SC was 

not obtained via the transformations when it was compared with Q-Q plot of 

original data (Figure 5.13). So, it was decided to use the SC data in the original 

(non-transformed) form. 
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Table 5.1 D and P Value for DO and SC calibration data (N00) 

 

Sample Size 65 

DO 
D-Value 0.09897 

P-Value 0.51568 

SC 
D-Value 0.22683 

P-Value 0.00202 

α 0.2 0.1 0.05 0.02 0.01 

Critical Value 0.131 0.149 0.166 0.185 0.199 

 

 

a) 

 
 

 

Figure 5.14 Q-Q Plots of SC Data after transformations were applied                      

(a: Logarithmic, b: ArcSin, c: ArcTan) 
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b) 

 
 

c) 

 
 

 

Figure 5.14 Q-Q Plots of SC Data after transformations were applied                      

(a: Logarithmic, b: ArcSin, c: ArcTan) (Continued) 
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5.1.3 Trend Analysis 

 

The existence of a spatial trend in the data was also investigated in the data 

exploration part of the methodology. It can be determined by several ways such as 

plotting the variable of interest against x and y coordinates, making a contour plot, 

fitting a regression model (Schuenemeyer and Drew, 2011). The trend analysis 

plot of DO data for initial network (N00 with 65 sampling points) in 2 

dimensional space (DO(x,y)) is depicted in Figure 5.15. Each vertical stick in the 

plot represents the location and the values of DO at each data point along the 

depth. The points are projected onto perpendicular planes. A best-fit line is drawn 

through the projected points, which model trends in specific directions. If the line 

is flat, this would indicate that there is no trend. However, the light green line in 

the Figure 5.15 starts out with high values and decreases from west to east to a 

certain distance until it levels out. This demonstrates that the data seems to exhibit 

first order trend in the east-west direction (Johnston et al., 2001). Moreover, the 

projection actually exhibits a U-shape in the north-south direction. Because the 

trend is U-shaped, a second order was used for the global trend (Johnston et al., 

2001). The trend seen is possibly caused by the fact that the pollution is high at 

the entrance part of PDR (inlet of Porsuk River). High nutrient concentrations and 

low depth stimulate the growth of algal blooms in this region of PDR. In addition, 

a decreasing trend is observed from the inlet of PDR towards the outlet. Similarly, 

trend analysis plot of SC for N00 exhibits a U-shape both in the east-west 

direction and in the north-south direction (Figure 5.16). Trend analysis was 

performed for each subsequent network (N04, N10, N15, N20, N25, N30, N35, 

N40, N45, N50, N55) generated by reduced sampling locations. If existent, these 

trends were removed before kriging application via ArcGIS 9.3 using the 

approach presented in section 4.2.2. Then, residuals were used in variogram 

analysis.    
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Figure 5.15 Trend Analysis for DO 

 

 

 
 

Figure 5.16 Trend Analysis for SC 

 

 

5.1.4 Variogram Analysis 

 

The last step before kriging estimation is the variogram analysis. As given in the 

methodology section, variogram analysis consisted of constructing experimental 

variograms for different sampling networks and fitting the variogram models. 
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Experimental variograms for DO and SC were created by R Cran Version 2.14.1 

and then the variogram models were automatically fitted to the DO and SC data 

belonging to N00 network (calibration data with 65 sampling points) (Figure 

5.17). Since the variogram of DO exhibited a typical variogram pattern (Figure 

5.17), it was indicated that DO values in PDR were spatially correlated and 

kriging could be applied. Moreover, directional dependence was checked in 

variogram analysis. Variograms constructed in different directions indicated that 

omni-directional dependence (isotropic).  

 

 

 

 

Figure 5.17 Variogram Fitting in R Cran 

 

 

Variograms were generated for each subsequent sampling network (Appendix E) 

and it was checked whether the spatial correlation structure of DO was maintained 

with respect to the one for N00. Figure 5.18 provides the DO variograms for all 

networks. While x axis shows the distance between samples, y axis corresponds to 

variogram values which were obtained from fitted variogram models. The figure 

revealed that the spatial correlation structure of the DO calibration data set was 

significantly sustained until 30 water quality sampling locations were removed 
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(N30). The spatial correlation structure for DO was noticeably deteriorated with 

the elimination of 35 or more sampling locations.  

 

 

 
 

Figure 5.18 DO variograms for all sampling networks 

 

 

Sill and nugget values were also checked. Sill (the sum of nugget and partial sill) 

defines the average maximum variance between a set of points (Jimenez et al., 

2005). When sill and nugget values were compared with respect to N00 (Table 

5.2), percent deviations increased significantly when 35 or more sampling points 

were removed (more than 75% for nugget and 23% for sill). The highest variance 

was observed for N55 (252% for nugget and 90% for sill). The deviations for N30 

were about 6% and 2% for nugget and sill, respectively. The deviations in range 

values with the removal of sampling points did not exhibit a pattern. The range 

value for N30 was 1491 m. According to this result, sample locations separated by 

distances closer than 1491 m are spatially autocorrelated, whereas locations 
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farther apart than 1491 m are not. For most networks, non-zero nugget values 

were obtained. This may be due to microscale variations in DO which may be 

expected in eutrophic water bodies. In general, there were no significant 

differences in sill, nugget, and range values depending on the model type 

(spherical or gaussian) for DO in PDR. According to Table 5.2, the highest 

maximum variance was observed for N55.  

 

 

Table 5.2 DO variogram model parameters for different sampling networks 

 

Sampling 

Network 

Number of 

Sampling 

Locations 

Variogram 

Model 
Nugget 

(C0) 

psill 

(C) 

Sill 

(C0+C) 
Range 

N00 65 Gaussian 5.36 5.08 10.44 1205 

N04 61 Gaussian 5.68 4.77 10.45 1350 

N10 55 Gaussian 3.43 6.85 10.28 1093 

N15 50 Gaussian 2.31 8.77 11.08 1069 

N20 45 Spherical 3.09 8.00 11.09 2081 

N25 40 Gaussian 5.84 5.24 11.08 1820 

N30 35 Gaussian 5.66 5.00 10.66 1491 

N35 30 Gaussian 9.36 3.49 12.85 2793 

N40 25 Spherical 0 12.82 12.82 2178 

N45 20 Gaussian 0 14.32 14.32 1095 

N50 15 Gaussian 0 18.73 18.73 1070 

N55 10 Spherical 18.87 1.00 19.87 1680 

 

 

In order to validate whether the spatial structure in DO was conserved or not for 

networks with smaller number of sampling points, the variogram models for N00 

and others (NXX) were compared through constructing a plot which γ (h) of N00 

variogram model versus γ (h) of NXX variogram model was drawn. All plots 
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were provided in Appendix F. The slope of the graph and RMSE values within 

95% confidence level are given in Table 5.3. If the slope is close to 1, then it can 

be concluded that the variogram model of a network (NXX) is similar to the 

variogram model of N00. This can be achieved if the correlation structure in DO 

is maintained for networks with lower sampling points (NXX). The slope values 

presented in Table 5.3 are significant at 95% confidence level. As defined by 

slope and RMSE values, spatial correlation structure is conserved until 35 or more 

sampling points are removed. The best fit was obtained for N30 with a slope of 

0.996 and an RMSE value of 0.269. Starting with N35, slopes deviated from 1.0 

and RMSE values increased. The deviation in the slope was less than 6% for 

networks that maintained the spatial correlation structure. For N35, the deviation 

was 16% and increased up to 52% (for N55) as more sampling points were 

removed.  

 

Nugget-to-sill ratio was also used to classify the spatial dependence. Sun et al. 

(2003) stated that the variable have a strong, moderate and weak spatial 

dependence if the ratios are less than 25%, between 25 and 75% and higher than 

75%, respectively. N00 network represents a moderate spatial dependence for DO 

with a nugget-to-sill ratio of 51. Similarly, N30 represented a moderate spatial 

dependence with a ratio of 53. However the ratio increased to 73 for N35 and 

reached to 95 for N55. The nugget-to-sill ratio shifted from moderate to weak 

spatial dependence for DO starting with N35.  

 

  



87 

 

Table 5.3 Relationships between the DO variogram models for N00 and different 

networks (NXX) 

 

Sampling 

Network 

Number of 

Sampling 

Locations 

Slope RMSE 

N04 61 1.003 0.129 

N10 55 1.027 0.554 

N15 50 0.959 0.960 

N20 45 0.942 0.479 

N25 40 0.980 0.514 

N30 35 0.996 0.249 

N35 30 0.837 0.867 

N40 25 0.829 1.322 

N45 20 0.747 1.716 

N50 15 0.571 1.486 

N55 10 0.483 1.437 

 

 

The same procedure was applied for SC as well. Although the spatial correlation 

structure of the calibration data set for SC was significantly protected with the 

removal of up to 35 sampling points (N35) as for DO, it was seen from the 

fluctuations in Figure 5.19 that SC was more sensitive to the variations in spatial 

correlation structure. As can be seen in Table 5.4, there is no a pattern in the 

deviations of variogram model parameters with the removal of sampling points. 

The range value for N30 was 996 m. For the same network SC exhibited a shorter 

range value with respect to the range value for DO. According to this result, 

sample locations separated by distances closer than 996 m are spatially 

autocorrelated. 
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The information such as type of variogram model, nugget, sill and range values 

obtained from variogram analysis was used as input values to variogram analysis 

included in ArcGIS 9.3 software to conduct kriging analysis.  

 

 

 
 

Figure 5.19 SC variograms for all sampling networks 
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Table 5.4 Variogram models and parameters for SC 

 

Sampling 

Network 

Number of 

Sampling 

Locations 

Variogram 

Model 
Nugget 

(C0) 

psill  

(C) 

Sill 

(C0+C) 
Range 

N00 65 Gaussian 0.00052 0.00081 0.00133 4272 

N04 61 Gaussian 0.00057 0.00076 0.00133 4272 

N10 55 Spherical 0.00073 0.00034 0.00107 2967 

N15 50 Gaussian 0.00028 0.00090 0.00118 1717 

N20 45 Gaussian 0.00026 0.00025 0.00051 2438 

N25 40 Gaussian 0.00024 0.00021 0.00045 2438 

N30 35 Gaussian 0 0.00046 0.00046 996 

N35 30 Gaussian 0 0.00080 0.00080 2931 

N40 25 Exponential 0.00014 0.00090 0.00104 2419 

N45 20 Gaussian 0 0.00081 0.00081 2335 

N50 15 Gaussian 0 0.00091 0.00091 2204 

N55 10 Spherical 0.00089 1 1.00089 1680 

 

 

 

5.1.5 Kriging 

 

OK method was used to estimate water quality parameters (surface DO and SC) to 

determine the potential hotspots (problematic zones in terms of water quality with 

high/low DO and SC concentrations) and to find representative water quality 

sampling locations generated for using KDE maps and variogram models as well. 

Generated variogram model and parameters in the previous section were used as 

input values to conduct OK. Firstly, kriging maps produced through OK were 

evaluated by taking the possible pollutant sources into account. When surface DO 

distribution in PDR given in Figure 5.20 for N00 is examined, three zones with 

high DO concentrations (shown by black circles) and one zone (shown by red 
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circle) with low DO concentration were identified. The zones with lowest and 

highest concentrations can be critical for environmental evaluations. Low DO 

may hinder ecological activity and adversely impact aquatic species. According to 

Table 1 of the Turkish Water Pollution Control Regulation (Su Kirliliği Kontrolü 

Yönetmeliği, Tablo1, Kıtaiçi Su Kaynaklarının Sınıflarına Göre Kalite Kriterleri) 

given in Appendix B, a DO value greater than 8 mg/L corresponds to Class I (high 

quality water which is suitable to provide potable water only with disinfection, for 

recreational purposes, for trout production, for animal production and farming 

needs, and for other purposes). If DO is between 6-8 mg/L and 3-6 mg/L, the 

water body is classified as Class II (slightly polluted water which is suitable to 

provide potable water through advance or appropriate purification, for recreational 

purposes, for fish production other than trout, for irrigation water and for all uses 

other than Class I) and Class III (polluted water which can be used for providing 

industrial water following an appropriate purification, excluding industries 

requiring quality water such as food and textile), respectively. DO less than 3 

mg/L indicates Class IV (highly polluted water) quality. Furthermore, the limit 

values for eutrophication control given in Table 2 of the same regulation states 

that while the limit value for natural conservation areas is 7.5 mg/L, it is 5 mg/L 

for use for various purposes. When surface DO concentrations in PDR are 

examined with respect to the criteria presented in the regulation, it can be 

concluded that PDR is in good conditions since DO values in PDR are high. Yet, 

excess DO (oversaturation) can be an indication of poor quality as well which 

results due to excess algal productivity (eutrophication problem). In fact, high DO 

values observed in PDR is a result of eutrophication. This was also confirmed by 

high TP and Chl-a concentrations (above the hyper-eutrophic range) in PDR 

(Table 3.9). As seen in Figure 5.20, oversaturated DO concentrations around 22 

mg/L was observed at the Porsuk River inlet upstream. This is not surprising 

because Porsuk River transports high loads of nutrients and pollutants to PDR and 

cause eutrophication. At the inlet, depth is really shallow (around 1 m) in 

comparison to the rest of the reservoir. This stimulates the growth of algae and 

results in high chlorophyll-a and DO concentrations.  
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Figure 5.20 OK of DO for N00 (calibration data set) 

 

 

High DO clusters can also be seen around Softça Village (around sampling 

location 18) where the wastewater of the village was discharged into the reservoir. 

The same area was also subject to agricultural runoff from the fields around the 

village. DO concentrations decrease to acceptable levels in the east of PDR (8-10 

mg/L). This can be as a result of deeper depths (up to 32 m) and mechanisms in 

PDR affecting the fate of pollutants. PDR acts as a treatment medium. It is 

obvious from the figures provided in Appendix C that the water quality improved 

from inlet to the outlet. For example, while BOD exhibits higher values than A3 

class (drinkable water following physical, chemical and advanced treatment and 

disinfection) in the inlet, it falls into A1 class (drinkable water following physical 
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treatment and disinfection) in the outlet (Figure C. 2). Furthermore, algal 

productivity decreases due to reduction in nutrients (Figure C. 9).  

 

Proceeding the general evaluation of the kriging map derived for N00, kriging 

maps were also constituted for other networks with reduced number of sampling 

points (N04, N10, N15, N20, N25, N30, N35, N40, N45, N50 and N55). When 

the kriging maps provided in Figure 5.20 and Figure 5.21 were compared, it was 

seen that similar hotspots were obtained for N00 and N04 dataset (removal of 4 

water quality sampling locations from the initial calibration dataset – N00). The 

deviations of minimum, mean and maximum DO concentrations for N04 

compared to the prediction surface of N00 were less than 1%. This showed that 

there was no big difference in terms of predictions. When kriging maps of DO for 

all networks (Appendix G) were examined, it was noticed that the low and high 

DO regions identified in N00 were conserved up to the removal of 35 sampling 

points (N35). However, relatively more smoothing was obtained for N40 to N55. 

Furthermore, hot spots observed in N00 were less distinctive when more than 35 

sampling points were removed. Moreover, the range of DO values in prediction 

surface increased for N55, indicating overestimation in some regions while 

underestimations in some other.  
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Figure 5.21 OK of DO for N04 

 

 

 

Standard error maps were also constituted for all networks based on the validation 

data set (data obtained from 20% of the 81 sampling locations) to see the errors 

associated with the kriging predictions (Appendix G). While the highest standard 

errors (around 3.7 mg/L) in DO were observed in the shoreline of PDR, lowest 

standard errors (around 2.7 mg/L) were observed at the sampling locations for 

N00 and N04 networks (Figure 5.22 & Figure 5.23). When SEMs for all networks 

were examined (Appendix G), it was seen that when up to 30 sampling points 

were removed, the maximum standard error remained the same (about 3.7 mg/L). 

For N35 the value slightly increased to 3.8 mg/L. However, as more sampling 
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points were removed, the maximum standard error in DO values increased (5.0 

mg/L for N55). As well as the standard error magnitudes, the total area of high 

standard errors expanded.  

 

 

 

 
 

Figure 5.22 SEM of DO for N00 
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Figure 5.23 SEM of DO forN04 

 

 

SEM of N00 was also subtracted from SEM of N04 to clearly indicate the 

locations where standard errors increase or decrease following the elimination of 4 

sampling points. Figure 5.24 depicts that while standard errors increased 

especially in the locations where water quality sampling stations were removed, 

errors decreased in some parts of the PDR shoreline. Difference of SEMs of DO 

for N00 and other networks were given in Appendix G (Figures G25-G35).  
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Figure 5.24 Difference of SEMs of DO for N04 and N00 

 

 

Another way to evaluate the quality of kriging map is to compare the predicted 

values obtained from kriging map of the network at validation locations with the 

measured ones. DO concentrations at validation locations were predicted by 

creating a prediction surface via OK based on measured values at sampling 

locations of each network. This step was called as calibration. Moreover, the 

comparison of the predicted values at validation locations with the measured ones 

constituted validation step. The spread of the points should be as close as possible 

around the dashed gray line in the observed versus predicted DO graph given in 

Figure 5.25a and Figure 5.25b. In these figures most of the points are close to the 

dashed gray line except for two points (sampling locations 75 and 81) shown 
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within red circles. At these points measured DO concentrations were nearly half 

of the DO concentrations in the adjacent sampling stations. Sampling location 75 

was so near to a village which discharged its domestic wastewater directly into 

PDR. This may be the reason of lower DO value in the location with respect to its 

neighbors. The lower DO value in sampling location 81 than the adjacent 

sampling locations may be a result of measurement error, morphological structure 

of the reservoir and unidentified pollution sources. High DO values in the 

adjacent sampling stations caused overestimations in predictions at the mentioned 

locations. When these two sampling locations were removed from the validation 

dataset, a better result was obtained (Figure 5.26). However, the mentioned 

locations were kept in the validation dataset to avoid biased sampling point 

selection and to see the success of kriging predictions in the presence of the 

mentioned points. All measured vs. predicted graphs were given in Appendix I.      

 

 

 

a) N00 

 

b) N04 

 
 

Figure 5.25 Measured versus predicted DO at validation points for N00 and N04 
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Figure 5.26 Measured versus predicted DO at validation points for N00 after 

selected sampling locations (red circles in Figure 5.25) were removed from the 

validation dataset 

 

 

Summary statistics obtained for validation are given in Table 5.5. As it is 

mentioned before in Section 4.2.6, ME and MSE values should be close to 0 to 

indicate accurate predictions. Furthermore, RMSE, RMSSE and ASE values 

indicate the variability in the predictions with respect to measured values. While 

RMSE and ASE should be as small as possible, RMSSE should be close to 1 to 

identify that predictions are close to observations and the prediction standard 

errors are valid. When Table 5.5 was examined, it was observed that all networks 

rendered low ME values between 0.2-0.4 except for N40 and N55 with ME values 

of 0.65 and 1.18, respectively. Figure 5.27 revealed that ASE usually increased as 

the number of sampling locations decreased, with the exception of N40 (25 

sampling locations were used in this network). When measured DO values in the 

removed sampling locations in N35 to generate N40 were examined, it was seen 

that most of the values were below the average value for the N35 network. While 

the average concentration in the removed sampling locations was 10.73 mg/L, the 

average concentration for N35 was 13.40 mg/L. The removal resulted in an 

increase in the average DO concentration and a decrease in the DO variance for 

N40 with respect to N35. Therefore, prediction values were close to the mean of 

N40 and hence to each other. This situation resulted with a 28% decrease in ASE 

compared to N35. However, the kriging prediction values at validation locations 
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were close to the mean, the values diverged from the observation values and 

caused the increase of ME for N40. A sharp increase (76 %) was observed in ME 

for N40 compared to N35. This is because ME was calculated based on the 

differences between the observed and predicted values at validation points.  

 

 

Table 5.5 Validation results for OK of DO  

 

Sampling 

Network 

Number of 

Sampling 

Locations 

ME RMSE ASE MSE RMSSE 

N00 65 0.40 3.09 2.94 0.12 1.03 

N04 61 0.36 3.06 2.92 0.10 1.02 

N10 55 0.36 3.00 2.75 0.091 1.04 

N15 50 0.35 3.20 2.72 0.087 1.12 

N20 45 0.35 3.13 2.65 0.10 1.14 

N25 40 0.25 2.99 2.92 0.06 0.99 

N30 35 0.41 2.92 2.99 0.118 0.95 

N35 30 0.37 2.96 3.43 0.097 0.85 

N40 25 0.65 2.93 2.47 0.24 1.27 

N45 20 0.34 3.11 3.31 0.043 0.94 

N50 15 0.32 3.43 3.90 0.044 0.87 

N55 10 1.18 4.38 4.09 0.21 1.04 

 

 

As given in Figure 5.28, the lowest RMSE value was 2.92 corresponding to N30 

network. When the number of sampling locations was decreased, RMSE of 



100 

 

estimates were increased. If ASE value is greater than RMSE, the variability of 

the prediction is being overestimated. However, RMSSE values greater than 1 

translate to an underestimation in the variability of the predictions. According to 

validation results given in Table 5.5, while the variability of the predictions is 

underestimated for N00, N04, N10, N15, N20, N25, N40 and N55 based on the 

comparisons of ASE and RMSE values, for others (N30, N35, N45 and N50) it is 

overestimated. However, RMSSE values for all networks, except for N40 with a 

RMSSE value of 1.27, were close to 1 which showed the success of reduction 

scenarios in capturing of the variability of the predictions (Figure 5.29).  

 

According to Table 5.5, MSE was close to 0 for some networks such as N45 and 

N50 compared to N00. This showed that the use of high number of sampling 

locations in predictions may mess up MSE values. It was obvious from Table 5.5 

that different networks were seen as better when different error metrics were taken 

into account. So, the use of only error metrics in the selection of the suitable 

networks may not be sufficient.  

 

 

 
 

Figure 5.27 ASE values for OK of DO for different sampling point numbers 
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Figure 5.28 RMSE values for OK of DO for different sampling point numbers 

 

 

 

 
 

Figure 5.29 RMSSE values for OK of DO for different sampling point numbers 
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The error metrics, variogram model, kriging map and SEM revealed that 10 water 

quality sampling locations were not enough to correctly reflect the spatial 

correlation structure of DO over the surface of PDR. Furthermore, N30 (35 

sampling locations) was the best network among other networks with the 

representative sampling locations for DO, based on error metrics, SEM, kriging 

map and mainly variogram model. In this network, the spatial correlation structure 

of DO variogram was significantly conserved with respect to N00. In addition, 

similar hotspots were observed in N30 and N00. Lowest RMSE value was 

obtained for this network. On the average, two sampling points were selected per 

correlation length of N30 (1491 m) based on average pair distance (703 m).   

 

After the selection of representative water quality sampling locations for surface 

DO in PDR, it was checked whether similar results could be obtained for another 

water quality parameter for the selected monitoring network. For this purpose 

salinity and SC were selected as candidates. The relationship between surface SC 

and  salinity in PDR is depicted in Figure 5.30. High correlation  was observed 

(R
2
 = 0.97) between SC and salinity. Therefore it was decided to use SC only. The 

surface SC values can differ greatly from location to location depending on the 

composition of inflowing tributaries, point source pollution such as domestic and 

industrial wastewater discharges and non-point source pollution such as 

agricultural run-off.  
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Figure 5.30 Relationship between SC and salinity 

 

 

As a first step, surface SC distribution was constituted (Figure 5.31) and 

examined. It was obviously seen that SC at the inlet of the reservoir was 

noticeably higher than in the rest of PDR. This was mainly due to Porsuk River. 

SC values in PDR exhibited higher values especially around Softça Village 

(sampling locations 18 and 20) and in the southeast of PDR where the residual 

wastewater from agricultural areas are discharged to PDR through the Kargin 

Regulator intermittently (sampling locations 66, 68 and 70). 

 

Surface SC values in PDR were evaluated according to Appendix 1 of the 

regulation on the quality of surface water intended for the abstraction of potable 

water. Even the maximum surface SC value was less than the limit value (1 

mS/cm) given in the mentioned regulation. Therefore, PDR was in a better 

condition in SC compared to DO.   
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Figure 5.31 OK of SC for N00 

 

 

The selected network for DO (N30) was also used to constitute the surface SC 

distribution in PDR (Figure 5.32). In addition to the hotspots observed in Figure 

5.31, two additional hotspots with high SC concentrations and one with low SC 

concentration were detected around sampling locations 28, 46 and 39, 

correspondingly. The additional hotspot with low SC value around sampling 

location 39 can be as a result of dilution effect due to inflow of Kunduzlu Stream 

to PDR. The lower salinity value in Kunduzlu Stream compared to the salinity in 

PDR was the evidence of lower ionic content with respect to PDR. In Figure 5.33 

and Figure 5.34 the highest standard errors (around 0.03 mS/cm) were at the 
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shoreline of PDR for N00 and N30, respectively. Similar to the results obtained 

for DO, the lowest standard errors were observed at sampling locations for N00 

and N30. Figure 5.35 provides a visual representation of the difference between 

the standard error maps for N00 and N30. According to Figure 5.35, standard 

errors decreased noticeably. This may be attributed to the measurement errors in 

some locations during the field study and improvements in predictions after these 

locations were removed.  

 

 

 

 

Figure 5.32 OK of SC for N30 
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Figure 5.33 SEM of SC for N00 
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Figure 5.34 SEM of SC for N30 

 



108 

 

 
 

Figure 5.35 Difference of SEMs of SC for N30 and N00 

 

 

According to Figure 5.36a and Figure 5.36b, which depicted measured versus 

predicted SC values at validation locations for N00 and N30, respectively, most of 

the points were close to the dashed gray line (theoretical best). This was a visual 

evidence of qualified results obtained from OK of SC.       
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a) N00 

 

 
b) N30 

 

 
 

Figure 5.36 Measured versus predicted SC for N00 and N30  

 

 

Summary statistics for the validation stage are given in Table 5.6. When Table 5.6 

was examined, low error values were observed both for N00 and N30 in general. 

While higher ASE compared to RMSE for N00 translates to an overestimation in 

the variability of the predictions, lower ASE compared to RMSE for N30 is the 

indication of underestimation in the variability of the predictions. Although the 

same RMSE value was exhibited for N30 and N00, ME, ASE and MSE for N30 

were lower compared to N00. Although the deviation of RMSSE from 1 for N30 

was higher than the one for N00, still RMSSE value for N30 was close to 1 

showing the success of the network in capturing the variability of the predictions. 

In general N30 also generated good results for SC based on error metrics, SEM, 

variogram model and kriging map. All kriging and standard error (SEM) maps 

were provided in Appendix G and Appendix H.   
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Table 5.6 Validation Results for OK of SC  

 

Sampling 

Network 

Number of 

Sampling 

Locations 

ME RMSE ASE MSE RMSSE 

N00 65 -0.002 0.019 0.025 -0.096 0.750 

N30 35 -0.001 0.019 0.017 -0.092 1.377 

 

 

5.1.5.1 Results for the Networks Selected by Experts 

 

The monitoring network defined by N30 was the best one among other networks 

with reduced number of sampling points in being representative and preserving 

the spatial correlation structure in selected water quality parameters through the 

proposed monitoring network selection approach. In order to test the efficiency of 

the framework applied in this study, a traditional network design approach was 

used as well for comparison. Networks were created by three watershed experts. 

The experts were provided with landuses in the PDR Watershed, inflows and 

outflows, surface drainage inlets, locations of point and non-point pollution 

sources, and distributions of initial 65 sampling locations on PDR. Then, the 

experts were asked to select 10 sampling points which was the lower limit to 

enable kriging. After the selections of networks by experts, kriging were applied 

to constitute the surface DO maps. Then results were compared with the one for 

N55 which was obtained through the approach proposed in this study. First of all, 

each expert selected different points as the sampling locations among 65 points. 

Sanders et al. (1983) stated that 100 different designers would develop 100 

different sampling network designs for a given water body. According to 

validation results obtained for these selections (Table 5.7), different networks 

appeared as better if different error metrics were taken into account. For example, 

while the network of Expert 3 (NE3) seemed better than the others based on ME 

and MSE, the selection of Expert 2 (NE2) was better in terms of RMSE and ASE. 

In overall the selection of Expert 1 (NE1) was poor in accordance to error metric 
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quantities. N55 and NE3 produced better DO predictions than others. The graphs 

of measured versus predicted DO values at validation sampling locations for the 

networks are provided in Figure 5.37. The graphs belonging to N55 and NE3 

indicated better results such that predictions were close to the measured ones. The 

worst case was for NE1.  

 

 

Table 5.7 Validation Results for the selections of experts 

 

Sampling 

Network 

Number of 

Sampling 

Locations 

ME RMSE ASE MSE RMSSE 

N55 10 1.18 4.38 4.09 0.21 1.04 

NE1 10 -4.27 7.32 3.93 -0.99 1.71 

NE2 10 1.41 4.05 3.26 0.44 1.25 

NE3 10 0.09 4.25 4.54 0.003 0.92 

 

 

The last evaluation was performed based on variogram parameters. While NE3 

was successful based on the evaluations made so far, the spatial correlation 

structure of the original data set was totally lost in NE3 as can be derived from the 

variogram parameter values in Table 5.8. The range, nugget, and sill values were 

unreasonable when the size of the study domain was considered. The range value 

for NE3 was about 98 km which was more than 6 times longer than the length of 

the reservoir. This indicated that only error metrics and observed versus predicted 

maps may not be sufficient in judging the representativeness of the sampling 

network. It should be noticed that experts considered watershed characteristics 

(inflows, outflows, pollution sources, landuses, etc.) in the selection of sampling 

locations to constitute monitoring networks. In the approach, on the other hand, 

statistically valid sampling locations were determined while still using judgment. 

When the spatial correlation structure in DO data was considered in addition to 
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the other evaluation criteria, N55 was the best network. This indicated that 

proposed strategy for sampling network design was efficient. 

 

 

a) N55 

 
b) NE1 

 
c) NE2 

 
d) NE3 

 
 

Figure 5.37 Measured versus predicted DO at validation points for the networks 

of experts and N55 
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Table 5.8 Variogram model parameters for the networks of experts and N55 

 

 Number of 

Sampling 

Locations 

Variogram 

Sampling 

Network 
Model 

Nugget 

(C0) 

psill 

(C) 

Sill 

(C0+C) 
Range 

N55 10 Spherical 19 1.00 20 1680 

NE1 10 Spherical 17 1.00 18 1710 

NE2 10 Exponential 7 2.06 9.06 1674 

NE3 10 Exponential 14.89 49.50 64.39 98392 

 

 

 

5.2 3D Kriging 

 

In addition to 2D kriging of DO, 3D kriging was also applied to investigate the 

change of hot spots in deeper layers. Hotspots may change depending on pollution 

sources (surface drainage and landuse around the PDR) and other factors like 

groundwater inflow, water abstraction, etc. Therefore, hotspots obtained from 3D 

kriging could be good indicators of entrance points of pollution sources.            

 

5.2.1 Normality Check 

 

In the first step of 3D kriging application, normality checking was performed. As 

it is mentioned before a normal distribution is not necessary to obtain prediction 

maps in OK process. However, Johnston et al. (2001) mentioned that if the data is 

normally distributed, kriging is the best predictor. Therefore, DO data was 

statistically analyzed, histogram and Q-Q plot (Figure 5.38) were derived to check 

normality using ArcGIS software prior to kriging analyses. The DO 

concentrations measured along the depths (a total of 2090 points) ranged from 

0.35 mg/L to 27.33 mg/L with a mean concentration of 9.41 mg/L and a standard 

deviation of 4.82 mg/L while the surface DO concentrations in PDR measured at 

65 water quality sampling stations were between 4.85 mg/L and 22.77 mg/L with 

a mean concentration of 13.57 mg/L and a standard deviation of 3.76 mg/L. It was 
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seen that mean DO concentration within PDR decreased when DO concentrations 

measured along the depths were taken into account.     

 

The shape of the histogram and Q-Q plot of 3D DO data confirmed that DO data 

exhibited a distribution close to normal distribution. EasyFit Professional software 

was again used to statistically confirm that data follows the normal distribution. 

According to Table 5.9, D value was greater than all critical values. So H0 (the 

data follow the normal distribution) was rejected. It was seen that the risk to reject 

the H0 while it is true was so small based on p-value. This also confirmed that 

measured DO data in 3D does not follow normal distribution. Transformations 

explained in methodology section were applied but a better fit to normal 

distribution for DO was not obtained. Therefore, it was decided to use the original 

(non-transformed) data in spite of slight deviation from normality based on Q-Q 

plot.  

 

 

a) Histogram 

 
 

Figure 5.38 Histogram and Q-Q plot for 3D DO data 
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b) Q-Q Plot 

 

 

Figure 5.38 Histogram and Q-Q plot for 3D DO data (Continued) 

 

 

 

Table 5.9 D and P value for DO data for 3D-kriging 

 

Sample Size 2090 

DO 

D-Value 0.06122 

P-Value 2.9594E-7 

α 0.2 0.1 0.05 0.02 0.01 

Critical Value 0.02347 0.02675 0.0297 0.0332 0.03563 
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5.2.2 Variogram Analysis 

 

Variogram for 3D DO data was constituted using SGeMS. For this purpose, firstly 

data set was prepared in the appropriate format for SGeMS. SGeMS mainly 

supports three analytical variogram models and positive linear combination of 

these models. These are spherical, exponential and gaussian. All these models are 

permissible in 3D (Remy et al., 2009). As a first step, the experimental 

semivariogram was constituted to express the spatial correlation of pairs of 

measured DO concentrations as a function of the distance and the direction of 

their separation. Omni-directional variogram was calculated since the directional 

variography is assumed to be isotropic. Afterwards, theoric model which was 

suitable for this experimental variogram was determined. The plot and parameters 

of this variogram model are shown in Table 5.10 and Figure 5.39. The spherical 

model provided good fit to the experimental variogram of 3D DO data. Nugget 

effect was not observed in the variogram. A sill of 21.53 and a range of 543.91 

were used for DO.     

 

 

Table 5.10 Variogram Parameters for 3D DO data 

 

Variogram Model DO 

Type Spherical 

Nugget 0 

Sill 21.53 

Range (m) 543.91 
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Figure 5.39 The spherical variogram model fitted to the experimental variogram 

of 3D DO data 

 

 

5.2.3 Kriging 

 

Firstly distributions of DO, SC and temperature in 3D were constituted using a 

script written in Matlab. In deep large water bodies, a thermocline layer can be 

formed due to change of temperature with depth. This layer acts as a physical 

barrier to exchanges between surface and bottom layers and causes the depletion 

of DO in deeper parts (Chehata et al., 2007). From Figure 5.40, it was realized 

that thermocline layer exists approximately between 10 m and 14 m below the 

surface and exhibits a regular pattern in deep parts. However, DO exhibits a 

patchy pattern at sampling locations located close to the outlet of PDR (Figure 

5.41). A thin thermocline layer is observed in Figure 5.42. In most of the water 

quality modeling and water quality sampling studies, water samples are collected 

from half of the total depths at the water quality sampling stations as well as from 

surface and bottom. For example, the total depth at sampling location 62 is 32 m, 

one of the water samples would be taken from 16 m below surface. In this 

γ 
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situation, this water sample may not represent the quality of the thermocline layer. 

This situation may cause incorrect characterization and evaluation. Therefore, 

temperature, DO and SC profile of the water body of concern should be 

determined using a sonde that can take measurements along the depth at a 

sampling point, before water sampling points along the depth are determined.     

 

 

 
 

Figure 5.40 X-Z View of 3D temperature data 
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Figure 5.41 X-Z View of 3D DO data 

 

 

 
 

Figure 5.42 X-Z View of 3D SC data 

 

 

The multiparameter sonde used in data collection is capable of recording 

measurements down to 30 m below surface level. Following the examination of 

collected data, it is realized that the effective depth which data could be collected 

2.5 2.52 2.54 2.56 2.58 2.6 2.62 2.64 2.66 2.68

x 10
5

-30

-25

-20

-15

-10

-5

0  

Dissolved Oxygen(mg/L)

X

 

D
ep

th
 (

m
)

5

10

15

20

25

2.5 2.52 2.54 2.56 2.58 2.6 2.62 2.64 2.66 2.68

x 10
5

-30

-25

-20

-15

-10

-5

0  

Specific Conductivity (mS/cm)

X

 

 

D
ep

th
 (

m
)

0.4

0.5

0.6

0.7

0.8

0.9



120 

 

in the field study conducted in August 2010 was approximately 29 m below 

surface.  

 

To perform 3D kriging for DO, 3D grid system was constructed in SGeMS 

(Figure 5.43) and OK was performed. When the distribution of DO for each layer 

is examined, the lowest DO values (0.35 mg/L) were observed at the bottom 

(depth of 29 m) (Figure 5.44). This also showed the presence of an anoxic zone at 

the bottom of the reservoir. There was no significant improvement in DO values 

from bottom to 15 m below surface. Moreover, estimated values obtained from 

cross-validation were compared with the measured ones to evaluate measures of 

accuracy of 3D kriging estimation for DO. The spread of the points was near to 

the linear regression line in the observed versus predicted graph (Figure 5.45). 

Correlation coefficient between measured and estimated DO values was 0.94. 

This is a good correlation and an indication of the accuracy of the predictions. 

Results obtained from kriging are given with a depth increment of 5 m in Figure 

5.44. Figure 5.20 was compared to Figure 5.44 and it was seen that similar 

hotspots were obtained both for 2D kriging and 3D kriging of DO. Therefore, for 

the dataset used in this study 2D kriging was sufficient to determine the hotspots 

for DO. Yet, the results of 3D kriging can be useful to determine the water 

abstraction points for domestic usage within PDR. According to this, the turquoise 

zone in the central part of PDR with 8.5 mg/L DO is the most suitable part of 

PDR for water abstraction. Furthermore, 3D kriging can be valuable for water 

quality control and modeling studies by producing the data at unsampled locations 

if desired. Yet, it must be emphasized that the results obtained in this study is 

based on a field work employed only once in time due to logistic and economic 

constraints.          
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Figure 5.43 Grid for 3D kriging 
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Figure 5.44 3D Kriging Maps of DO at different depths 
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Figure 5.44 3D Kriging Maps of DO at different depths (Continued) 
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Figure 5.45 Measured versus predicted DO obtained from 3D OK 
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CHAPTER 6 
 

 

CONCLUSIONS AND RECOMMENDATIONS 6

 

 

 

The main objective of this study is to propose an approach to identify the 

representative water quality sampling locations for the Porsuk Dam Reservoir 

(PDR) in predicting the spatial distribution of selected water quality parameters 

with the least number of sampling points possible. Different from the studies in 

literature, KDE and ordinary 2-dimensional kriging method were used in 

combination to determine the representative sampling locations.   

 

Constructed kriging maps were evaluated by taking the possible pollutant sources 

into account. The zones with the lowest and highest concentrations were 

determined. While high DO clusters were observed at the inlet of PDR upstream 

and around Softça Village (around sampling location 18), a low DO cluster was 

observed in the east part of PDR. While the highest standard errors were observed 

in the shoreline of PDR due to being the furthest locations from sampling points, 

lowest standard errors were observed at the sampling locations. Furthermore, 

predicted values at validation locations were compared with the measured ones to 

evaluate the quality of kriging maps. Generally, observed values were correlated 

with the measured ones. According to the Methods of Sampling and Analysis 

guide that supplements the Turkish Water Pollution Control Regulation, a total of 

five sampling locations are enough to characterize the water quality in reservoirs. 

However, the variogram model, kriging map, SEM and error metrics revealed that 

35 water quality sampling locations were required to correctly reflect the spatial 

correlation structure of water quality over the surface of PDR for the given case. 

Conservation of this dependency and structure can be important in better 

characterization of continuous water quality distribution especially when kriging 

will be used. Uncertainties in predictions can be decreased as well when the 

spatial correlation structure in water quality data is conserved. This, on the other 
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hand, may require high number of samples. It can be argued that high number of 

sampling locations would be increasing sampling costs. The trade-off between 

cost and better characterization would always be an issue. However, a 

representative sampling network design should also sustain spatial dependencies 

of a given parameter in a water body as well. Geostatistical tools can be helpful 

for that purpose. Developments in monitoring tools (i.e. ion sensitive probes) and 

remote sensing techniques may enable measurements at higher number of 

sampling points with lower costs which would aid in designing representative 

sampling or monitoring networks.   

 

According to European Union Water Framework Directive (2000/60/EC), good 

status in all water bodies should be achieved until 2015. If a part of a lake is of a 

different water quality class compared to the rest of the lake, the lake must be sub-

divided into different parts because each part will have a different ecological 

reference situation and a different vulnerability of pressures. This study would be 

beneficial in the identification of these parts and taking decisions for management.  

 

The efficiency of the monitoring network selection approach was tested using the 

monitoring stations defined by three watershed management experts. Results 

showed that rather than subjective sampling location selection, a systematic 

approach in designing the network would aid in better estimation of the 

distribution of a given water quality parameter over the domain. It is likely that 

the procedure suggested in this study could be used for other lakes and reservoirs 

efficiently. It was also observed that the selected KDE bandwidth and range value 

for N30 are not exactly the same, but they have the same order of magnitude. 

Furthermore, 3D distributions of DO, SC and temperature were constituted to 

determine the location of the thermocline layer. It was seen that the traditional 

approach of collecting samples at mid-depths at the water quality sampling 

stations may not represent the thermocline or average concentrations. 3D kriging 

was also applied to investigate the change of hot spots in deeper layers. In general 

3D kriging maps were beneficial to observe the spatial change of water quality 



127 

 

within deeper layers, decide on the water abstraction points for domestic usage 

and produce data at unsampled locations.  

 

To improve the findings, some recommendations for future studies are as follows; 

 

- application of the suggested approach in this study for other reservoirs and 

lakes would be beneficial. 

 

- the size of the grids which is used in the determination of initial sampling 

points should be changed depending on size of the water body. 

 

- this study should be repeated for other seasons as well to see whether the 

same points are selected as representative sampling locations or not and to 

determine the seasonal variations in hot spots. Because PDR is a dynamic 

system in nature, water quality parameters within PDR fluctuate over time 

and space. So, temporal and spatial variations should be considered as well 

in the selection of representative water quality sampling locations within 

dynamic systems like PDR.    

 

- the water quality parameters tested can go beyond DO and SC due to the 

eutrophication problem in PDR. In this study, only probe measurements 

were performed due to economic constraints. Inclusion of other water 

quality parameters such as Chl-a, NO2, NO3, PO4 and other available 

nutrients may be possible.  

 

- the impact of different variogram models and kriging models on results 

can be evaluated 

 

- uncertainties caused by data, variogram model, kriging model, trend 

removal, etc. should be examined. 



128 

 

- remote sensing can be included in the approach for estimating the spatial 

distribution of selected water quality parameters which may also aid in 

reducing the number of sampling stations.  

 

- in general, the concentration prediction maps produced by kriging can 

considerably smoother than those produced by simulated annealing. 

Therefore, this study can be repeated by simulated annealing to better 

identify local details. 
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APPENDIX A 
APPENDICES 

 

REGULATION ON THE QUALITY OF SURFACE WATER INTENDED 

FOR THE ABSTRACTION OF POTABLE WATER 

(İçmesuyu Elde Edilen veya Elde Edilmesi Planlanan Yüzeysel Suların Kalitesine 

Dair Yönetmelik (79/869/AB ile değişik 75/440/AB) (Ministry of Environment 

and Forestry, 2010)) 

 

 

 

Table A. 1 Quality Standards By Category 

 
 Parameters A1 

K 

A1 

Z 

A2 

K 

A2 

Z 

A3 

K 

A3 

Z 

1 pH  6,5- 8,5  5,5-9  5,5-9  

2 
Color (after simple 

filtration) 
mg/l Pt scale 10 20 (I) 50 100 (I)   

3 Total Suspended Solids mg/l SS 25      

4 Temperature ºC 22 25 (I) 22 25 (I) 22 25 (I) 

5 Conductivity 
@ 20 ºC 

μs/cm 
1000  1000  1000  

6 Odor 

(dilution 

factor @ 25 

ºC) 

3  10  20  

7* Nitrates mg/l NO3 25 50 (I)  50 (I)  50 (I) 

8
1
 Fluorides mg/l F 0,7-1 1,5 0,7-1,7  

0,7-

1,7 
 

9 
Total Decomposable 

Organic Chlorine 
mg/l CI       

10* Dissolved Ferrous mg/l Fe 0,1 0,3 1 2 1  

11* Manganese mg/l Mn 0,05  0,1  1  

12 Copper mg/l Cu 0,02 
0,05 

(I) 
0,05  1  

13 Zinc mg/l Zn 0,5 3 1 5 1 5 

14 Boron mg/l B 1  1  1  

15 Beryllium mg/l Be       

16 Cobalt mg/l Co       

17 Nickel mg/l Ni       

18 Vanadium mg/l V       

19 Arsenic mg/l As 0,01 0,05  0,05 0,05 0,1 

20 Cadmium mg/l Cd 0,001 0,005 0,001 0,005 0,001 0,005 

21 Total Chrome mg/l Cr  0,05  0,05  0,05 

22 Lead mg/l Pb  0,05  0,05  0,05 

23 Selenium mg/l Se  0,01  0,01  0,01 

24 Mercury mg/l Hg 0,0005 0,001 0,0005 0,001 0,0005 0,001 

25 Barium mg/l Ba  0,1  1  1 

26 Cyanide mg/l Cn  0,05  0,05  0,05 

27 Sulphur mg/l SO4 150 250 150 250 (I) 150 
250 

(I) 
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Table A. 1 Quality Standards By Category (Continued) 

 
28 Chlorine mg/l CI 200  200  200  

29 
Surfactants (react with 

methylene blue) 

mg/l 

(laurilsülfat) 
0,2  0,2  0,5  

30*
1
 Phosphates mg/l P2 O5 0,4  0,7  0,7  

31 

Phenols (Phenol Index) 

Para nitroaniline 4 

aminoantipyrine 

mg/l C6 

H5OH 
 0,001 0,001 0,005 0,01 0,1 

32 

Dissolved or emulsified 

hydrocarbons (after the 

separation with 

petroleum ether) 

mg/l  0,05  0,2 0,5 1 

33 
Polycyclic aromatic 

hydrocarbons 
mg/l  0,0002  0,0002  0,001 

34 
Total Pesticide 

(Parathion,BHC,dieldrin) 
mg/l  0,001  0,0025  0,005 

35* 
Chemical Oxygen 

Demand (COD) 
mg/l O2     30  

36* DO Saturation Ratio % O2 >70  >50  >30  

37* 

Biochemical Oxygen 

Demand (BOD5) 

(Without nitrification @ 

20 ºC) 

mg/l O2 <3  <5  <7  

38 
Kjeldahl Nitrogen 

(except for NO3) mg/l N 1  2  3  

39 
Ammonia Nitrogen 

(NH3-N) 
mg /l N 0,05  1 1,5 2 4(I) 

40 

Decomposable 

substances with 

chloroform 

mg/l SEC 0,1  0,2  0,5  

41 Total organic carbon mg/l C       

42 

Remaining organic 

carbon TOC after 

flocculation and 

membrane filtration (5μ) 

mg/l C       

43 Total Coliforms @ 37 ºC /100 ml 50  5.000  50.000  

44 Fecal Coliforms /100 ml 20  2.000  20.000  

45 Fecal streptococci /100 ml 20  1.000  10.000  

46 Salmonella 5.000 ml No  No    

A1: Drinkable water following physical treatment and disinfection, A2: Drinkable water following 

physical and chemical treatment and disinfection, A3:Drinkable water following physical, 

chemical and advanced treatment and disinfection  
1
 The highest average annual temperature of these values for a given limit values. (top and bottom) 

Z = compulsory, K = guide, I= exceptional climatic or geographic conditions, * See paragraph (d) 

of Article 12   
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APPENDIX B 
 

 

THE TURKISH WATER POLLUTION CONTROL REGULATION 

(Ministry of Environment and Forestry, 2010) 

 

 

 

Table B. 1 Quality Criteria for Inland Water Resources Classes 

 
 WATER QUALITY CLASSES 

WATER QUALITY PARAMETERS I II III IV 

A) Physical and inorganic chemical 

parameters 

    

    1) Temperature (
o
C) 25 25 30 > 30 

    2) pH 6.5-8.5 6.5-8.5       6.0-9.0 except 6.0-9.0  

    3) Dissolved oxygen (mg O2/L)
a
 8 6 3 < 3 

    4) Oxygen saturation (%)
a
 90 70 40 < 40 

    5) Chloride ion (mg Cl‾/L) 25 200 400
b
 > 400 

    6) Sulphate ion (mg SO4
=
/L) 200 200 400 > 400 

    7) Ammonium nitrogen (mg NH4
+
-N/L) 0.2

c
 1

c
 2

c
 > 2 

    8) Nitrite nitrogen (mg NO2‾-N/L) 0.002 0.01 0.05 > 0.05 

    9) Nitrate nitrogen (mg NO3‾-N/L) 5 10 20 > 20 

  10) Total phosphorus (mg   P/L) 0.02 0.16 0.65 > 0.65 

  11) Total dissolved solid (mg/L) 500 1500 5000 > 5000 

  12) Color (Pt-Co unit) 5 50 300 > 300 

  13) Sodium (mg Na
+
/L) 125 125 250 > 250 

B) Organic parameters     

    1) Chemical oxygen demand (COD)    

(mg/L) 

25 50 70 > 70 

    2) Biological oxygen demand (BOD) (mg/L) 4 8 20 > 20 

    3) Total organic carbon (mg/L) 5 8 12 > 12 

    4) Total kjeldahl nitrogen (mg/L) 0.5 1.5 5 > 5 

    5) Oil and grease (mg/L) 0.02 0.3 0.5 > 0.5 

    6) Surfactants (react with methylene blue) 

(MBAS) (mg/L) 

0.05 0.2 1 > 1.5 

    7) Phenolic compounds (volatile) (mg/L) 0.002 0.01 0.1 > 0.1 

    8) Mineral oils and derivatives (mg/L) 0.02 0.1 0.5 > 0.5 

    9) Total pesticides (mg/L) 0.001 0.01 0.1 > 0.1 

C) Inorganic pollution parameters
d
     

    1) Mercury (μg Hg/L) 0.1 0.5 2 > 2 

    2) Cadmium (μg Cd/L) 3 5 10 > 10 

    3) Lead (μg Pb/L) 10 20 50 > 50 

    4) Arsenic (μg As/L) 20 50 100 > 100 

    5) Copper (μg Cu/L) 20 50 200 > 200 

    6) Chrome (total) (μg Cr/L) 20 50 200 > 200 

    7) Chrome (μg Cr
+6

/L) 
less than 

detection limit 
20 50 > 50 

    8) Cobalt (μg Co/L) 10 20 200 > 200 

    9) Nickel (μg Ni/L) 20 50 200 > 200 

  10) Zinc (μg Zn/L) 200 500 2000 > 2000 

  11) Cyanide (total) (μg CN/L) 10 50 100 > 100 

  12) Fluoride (μg F‾/L) 1000 1500 2000 > 2000 

  13) Free chlorine (μg Cl2/L) 10 10 50 > 50 

  14) Sulphur (μg S
=
/L) 2 2 10 > 10 
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Table B. 1 Quality Criteria for Inland Water Resources Classes (Continued) 

 
  15) Iron (μg Fe/L) 300 1000 5000 > 5000 

  16) Manganese (μg Mn/L) 100 500 3000 > 3000 

  17) Boron (μg B/L) 1000
e
 1000

e
 1000

e
 > 1000 

  18) Selenium (μg Se/L) 10 10 20 > 20 

  19) Barium (μg Ba/L) 1000 2000 2000 > 2000 

  20) Aluminum (mg Al/L) 0.3 0.3 1 > 1 

  21) Radioactivity (pCi/L)     

        alfa-activity 1 10 10 > 10 

        beta-activity 10 100 100 > 100 

D) Bacteriologic parameters     

    1) Fecal coliform(MPN/100 mL) 10 200 2000 > 2000 

    2) Total coliform (MPN/100 mL) 100 20000 100000 > 100000 
(a) It is sufficient that only one of the parameters of the saturation concentration or percentage is satisfied.  
(b) It might be necessary to reduce the concentration limit for watering plants that are sensitive to chlorine.  

(c) Free ammonium nitrogen concentration should not exceed 0.02 mg NH3
–N/L depending on pH value.  

(d) The criteria in this group give the total concentration of the chemical types that constitute the parameters.   

(e) It might be necessary to reduce the criteria down to 300 μg/L for watering plants that are sensitive to boron.  
Class I: high quality water, Class II: slightly polluted water, Class III: Polluted water, Class IV: highly polluted water  
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APPENDIX C 

 

 

WATER QUALITY MEASUREMENT RESULTS 
 

 

 

 
 

Figure C. 1 Average COD distribution within PDR (AKS, 2010) 
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Figure C. 2 Average BOD5 distribution within PDR (AKS, 2010) 

 

 

 

 
 

Figure C. 3 Average DO Saturation distribution within PDR (AKS, 2010) 
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Figure C. 4 Average DO distribution within PDR (AKS, 2010) 

 
 

 

 
 

Figure C. 5 Average Phosphates distribution within PDR (AKS, 2010) 
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Figure C. 6 Average Nitrate distribution within PDR (AKS, 2010) 

 

 

 

 
 

Figure C. 7 Average Kjeldahl Nitrogen distribution within PDR (AKS, 2010) 
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Figure C. 8 Average Ammonia Nitrogen distribution within PDR (AKS, 2010) 

 
 

 

 
 

Figure C. 9 Average Chlorophyll-a distribution within PDR (AKS, 2010) 
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Figure C. 10 Average Conductivity distribution within PDR (AKS, 2010) 
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APPENDIX D 
 

 

KDE MAPS 
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Figure D. 1 KDE map of DO for each network 
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Figure D. 1 KDE map of DO for each network (Continued) 
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Figure D. 1 KDE map of DO for each network (Continued) 
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APPENDIX E 

 

 
VARIOGRAMS 
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Figure E. 1 DO variogram for each network 
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Figure E. 1 DO variogram for each network (Continued) 
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Figure E. 1 DO variogram for each network (Continued) 
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Figure E. 2 SC variogram for each network 
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Figure E. 2 SC variogram for each network (Continued) 
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Figure E. 2 SC variogram for each network (Continued) 
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APPENDIX F 

 

 

RELATIONSHIP BETWEEN γ(h) OF N00 VARIOGRAM MODEL AND 

γ(h) OF NXX VARIOGRAM MODEL 

 

 

 

 
 

Figure F. 1 Relationship between γ(h) of N00 variogram model and γ(h) of N04 

variogram model 
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Figure F. 2 Relationship between γ(h) of N00 variogram model and γ(h) of N10 

variogram model 

 

 

 

 
 

Figure F. 3 Relationship between γ(h) of N00 variogram model and γ(h) of N15 

variogram model 
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Figure F. 4 Relationship between γ(h) of N00 variogram model and γ(h) of N20 

variogram model 

 

 

 

 
 

Figure F. 5 Relationship between γ(h) of N00 variogram model and γ(h) of N25 

variogram model 
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Figure F. 6 Relationship between γ(h) of N00 variogram model and γ(h) of N30 

variogram model 

 

 

 

 
 

Figure F. 7 Relationship between γ(h) of N00 variogram model and γ(h) of N35 

variogram model 
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Figure F. 8 Relationship between γ(h) of N00 variogram model and γ(h) of N40 

variogram model 

 

 

 

 
 

Figure F. 9 Relationship between γ(h) of N00 variogram model and γ(h) of N45 

variogram model 
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Figure F. 10 Relationship between γ(h) of N00 variogram model and γ(h) of N50 

variogram model 

 

 

 

 
 

Figure F. 11 Relationship between γ(h) of N00 variogram model and γ(h) of N55 

variogram model 
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APPENDIX G 

 

 

OK AND ERROR MAPS OF DO 

 

 

 

 
 

Figure G. 1 OK of DO using N00 data set 

 



174 

 

 
 

Figure G. 2 SEM of DO using N00 data set 
 

 

 

 
 

Figure G. 3 OK of DO using N04 data set 
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Figure G. 4 SEM of DO using N04 data set 
 

 

 

 
 

Figure G. 5 OK of DO using N10 data set 
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Figure G. 6 SEM of DO using N10 data set 

 

 

 

 
 

Figure G. 7 OK of DO using N15 data set 
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Figure G. 8 SEM of DO using N15 data set 
 

 

 

 
 

Figure G. 9 OK of DO using N20 data set 
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Figure G. 10 SEM of DO using N20 data set 
 

 

 

 
 

Figure G. 11 OK of DO using N25 data set 
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Figure G. 12 SEM of DO using N25 data set 
 

 

 

 
 

Figure G. 13 OK of DO using N30 data set 
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Figure G. 14 SEM of DO using N30 data set 
 

 

 

 
 

Figure G. 15 OK of DO using N35 data set 
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Figure G. 16 SEM of DO using N35 data set 
 

 

 

 
 

Figure G. 17 OK of DO using N40 data set 
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Figure G. 18 SEM of DO using N40 data set 
 

 

 

 
 

Figure G. 19 OK of DO using N45 data set 
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Figure G. 20 SEM of DO using N45 data set 
 

 

 

 
 

Figure G. 21 OK of DO using N50 data set 
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Figure G. 22 SEM of DO using N50 data set 
 

 

 

 
 

Figure G. 23 OK of DO using N55 data set 
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Figure G. 24 SEM of DO using N55 data set 
 

 

 

 
 

Figure G. 25 Difference of SEMs of DO for N04 and N00 
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Figure G. 26 Difference of SEMs of DO for N10 and N00 
 

 

 

 
 

Figure G. 27 Difference of SEMs of DO for N15 and N00 
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Figure G. 28 Difference of SEMs of DO for N20 and N00 
 

 

 

 
 

Figure G. 29 Difference of SEMs of DO for N25 and N00 
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Figure G. 30 Difference of SEMs of DO for N30 and N00 
 

 

 

 
 

Figure G. 31 Difference of SEMs of DO for N35 and N00 
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Figure G. 32 Difference of SEMs of DO for N40 and N00 
 

 

 

 
 

Figure G. 33 Difference of SEMs of DO for N45 and N00 
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Figure G. 34 Difference of SEMs of DO for N50 and N00 
 

 

 

 
 

Figure G. 35 Difference of SEMs of DO for N55 and N00  
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APPENDIX H 

 

 
OK AND ERROR MAPS OF SC 

 

 

 

 
 

Figure H. 1 OK of SC using N00 data set 
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Figure H. 2 SEM of SC using N00 data set 
 

 

 

 
 

Figure H. 3 OK of SC using N04 data set 
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Figure H. 4 SEM of SC using N04 data set 
 

 

 

 
 

Figure H. 5 OK of SC using N10 data set 
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Figure H. 6 SEM of SC using N10 data set 
 

 

 

 
 

Figure H. 7 OK of SC using N15 data set 
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Figure H. 8 SEM of SC using N15 data set 
 

 

 

 
 

Figure H. 9 OK of SC using N20 data set 
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Figure H. 10 SEM of SC using N20 data set 
 

 

 

 
 

Figure H. 11 OK of SC using N25 data set 
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Figure H. 12 SEM of SC using N25 data set 
 

 

 

 
 

Figure H. 13 OK of SC using N30 data set 
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Figure H. 14 SEM of SC using N30 data set 
 

 

 

 
 

Figure H. 15 OK of SC using N35 data set 
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Figure H. 16 SEM of SC using N35 data set 
 

 

 

 
 

Figure H. 17 OK of SC using N40 data set 
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Figure H. 18 SEM of SC using N40 data set 
 

 

 

 
 

Figure H. 19 OK of SC using N45 data set 
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Figure H. 20 SEM of SC using N45 data set 
 

 

 

 
 

Figure H. 21 OK of SC using N50 data set 
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Figure H. 22 SEM of SC using N50 data set 
 

 

 

 
 

Figure H. 23 OK of SC using N55 data set 
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Figure H. 24 SEM of SC using N55 data set 
 

 

 

 
 

Figure H. 25 Difference of SEMs of SC for N04 and N00 
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Figure H. 26 Difference of SEMs of SC for N10 and N00 
 

 

 

 
 

Figure H. 27 Difference of SEMs of SC for N15 and N00 
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Figure H. 28 Difference of SEMs of SC for N20 and N00 
 

 

 

 
 

Figure H. 29 Difference of SEMs of SC for N25 and N00 
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Figure H. 30 Difference of SEMs of SC for N30 and N00 
 

 

 

 
 

Figure H. 31 Difference of SEMs of SC for N35 and N00 
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Figure H. 32 Difference of SEMs of SC for N40 and N00 
 

 

 

 
 

Figure H. 33 Difference of SEMs of SC for N45 and N00 
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Figure H. 34 Difference of SEMs of SC for N50 and N00 
 

 

 

 
 

Figure H. 35 Difference of SEMs of SC for N55 and N00 
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APPENDIX I 

 

 

MEASURED VS. PREDICTED GRAPHS 

 

 

 
N00 

 

N04 

 
N10 

 

N15 

 
N20 

 

N25 

 
N30 

 

N35 

 

N40 

 

N45 

 

 

Figure I. 1 Measured DO vs. Predicted DO graph obtained from OK 
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Figure I. 1 Measured DO vs. Predicted DO graph obtained from OK (Continued) 
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Figure I. 2 Measured SC vs. Predicted SC graph obtained from OK 
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Figure I. 2 Measured SC vs. Predicted SC graph obtained from OK (Continued) 
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