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ABSTRACT 

FINITE ELEMENT MODELING OF BEAMS WITH FUNCTIONALLY 

GRADED MATERIALS 

 

Gürol, Tolga 

M.Sc., Department of Civil Engineering 
Supervisor: Assoc. Prof. Dr. Afşin Sarıtaş 

 

February 2014, 86 PAGES 

 
 
In this thesis a new beam element that is based on force formulation is proposed for 

modeling elastic and inelastic analysis of beams with functionally graded materials. 

The attempt of producing functionally graded materials (FGM) arose from mixing 

two materials in such a way that both of them preserve their physical, mechanical 

and thermal properties most effectively. FGM shows a gradation through the depth 

from typically a metallic material such as steel or aluminum at one face of the 

beam’s section depth to another material such as ceramic at the other face. The 

change of materials properties is taken according to a power law or an exponential 

law.  

The proposed beam element is based on the use of force interpolation functions 

instead of the approximation of displacement field. Since derivation of displacement 

interpolation functions is rather a tedious task for a beam with FGM, the proposed 

approach provides an easy alternative in this regard. The response of the proposed 

element is calculated through aggregation of responses of several monitoring 

sections. Section response is calculated by subdividing the depth of a monitoring 

section into several layers and by aggregating the material response on the layers. 

Since the formulation of the element is based on force interpolation functions that are 
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accurate under both elastic and inelastic material response, the proposed element 

provides robust and accurate linear and nonlinear analyses of FGM beams with 

respect to the displacement-based approach. For the inelastic analysis, the von Mises 

plasticity model with isotropic and kinematic hardening parameters is assigned for 

both materials for simplicity. 

The consistent mass matrix for the proposed force-based element is also 

implemented for the validation of the vibration modes and shapes obtained from this 

element. For this effort, benchmark problems are both analyzed with the proposed 

beam element and with 3d solid elements in ANSYS. The results indicate that the 

proposed element provides accurate results not only in lower modes but also in 

higher modes of vibration. 

Keywords: Functionally graded materials, finite element method, beam finite 

element, mixed formulation 
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ÖZ 

FONKSİYONEL DERECELENDİRİLMİŞ MALZEMELİ KİRİŞLERİN 

SONLU ELEMAN MODELLEMESİ 

 

Gürol, Tolga 

Yüksek Lisans, İnşaat Mühendisliği Bölümü 
Tez Yöneticisi: Doç. Dr. Afşin Sarıtaş 

 

Şubat 2014, 86 SAYFA 

 
 
Bu çalışmada, elastik ve elastik olmayan analiz modelleri için yeni bir kuvvet tabanlı 

fonksiyonel derecelendirilmiş malzemeli kiriş elemanı sunulmaktadır. Fonksiyonel 

derecelendirilmiş malzeme (FDM) üretme girişimi, her iki malzemenin fiziksel, 

mekanik ve termal özelliklerini en verimli şekilde koruyarak karıştırma fikrinden 

esinlenmiştir. Fonksiyonel derecelendirilmiş malzemeler derinlik boyunca genellikle, 

bir yüzdeki çelik veya alüminyum gibi metalik bir malzemeden diğer yüzdeki 

seramik gibi başka bir malzemeye geçiş yapar. 

Sunulan kiriş elemanı yer değiştirme alanı yaklaşımı yerine kuvvet interpolasyon 

fonksiyonlarına dayanır. FDM’ler için yer değiştirme interpolasyon fonksiyonlarını 

türetmek göreceli olarak daha meşakkatli bir çalışma olduğundan, sunulan kiriş 

elemanı konuyla ilgili rahatlık sağlayacaktır. Sunulan kiriş elemanının tepkisi birçok 

kesitin tepkisinin toplanmasıyla hesaplanmıştır. Kesit tepkileri ise kirişin derinlik 

boyunca malzeme tepkisinin birçok katmana ayrılarak toplanmasıyla hesaplanmıştır. 

Eleman formülasyonu, elastik ve elastik olmayan malzeme tepkileri altında doğrulu 

hassas olan kuvvet interpolasyon fonksiyonlarına göre oluşturulduğu için; lineer ve 

lineer olmayan durumlarda, yer değiştirme tabanlı yaklaşıma göre daha doğru ve 
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etkin sonuçlar verir. Kolaylık açısından, her iki malzeme için de kinematik ve 

izotropik pekleşmeli Von Mises plastisite modeli kullanılmıştır. 

Kuvvet tabanlı elemanın uyumlu kütle matrisi, titreşim modları ve şekillerinin 

karşılaştırması için oluşturulmuştur. Bu karşılaştırmada, ANSYS ile 3 boyutlu 

elemanlar kullanılarak gerçekleştirilmiştir. Sonuçlar düşük modlarda olduğu kadar 

yüksek modlar için de tutarlı sonuç vermektedir. 

Anahtar Kelimeler: Fonksiyonel derecelendirilmiş malzeme, sonlu elemanlar 

yöntemi, kiriş sonlu elemanı, karma formülasyon 
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CHAPTER 1  

INTRODUCTION 

1.1. GENERAL 

Materials have played a significant role in society throughout the history. Mankind 

always tried to produce stronger materials for building durable structures for shelter. 

In early ages of civilization (1500 BC) Egyptians and Mesopotamians mixed straw 

and mud to form bricks for constructing tougher and more enduring buildings. 

Afterwards in 1800 AD, concrete became a widely used composite, which is created 

by mixing cement, aggregate and water. Later, in early 1900’s, fiber reinforced 

plastics, a composite consisting of a polymer matrix reinforced with fibers, ended up 

as an essential material for aerospace, automotive, marine and construction 

industries. 

A preferable way of combining two materials, preserving their properties, is to 

combine them by a varying percentage over the cross section. For example, attaching 

a ceramic surface at the top and a steel surface at the bottom with a smooth transition 

zone, so called the functionally graded materials (FGM), is accepted as a better way 

of bonding rather than sticking them directly without gradation. 

By this procedure, both materials protect their best properties – like high strength, 

high stiffness, high temperature resistance and low density of ceramics and 

toughness and malleability of steel.  

FGMs are being used in several industries and sectors like aerospace, nuclear, 

defense, automotive, communication, energy etc. As well as they are produced 

artificially, the primitive forms of FGMs exist in nature. Bones, human skin, bamboo 
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tree can be considered as organic forms of FGM. Figure 1 illustrates several organic 

and artificial examples that evoke FGM. 

  

 

Figure 1 Organic and artificial illustrations for FGM Jha et al. (2013) 
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The application areas of FGMs can be summarized as follows: 

Aerospace: Spacecraft heat shields, heat exchanger tubes 

Biomedical: Artificial bones, skins, teeth 

Communication: Optical fibers, lenses, semiconductors 

Nuclear field: Fuel palettes, plasma wall of fusion reactors 

Energy sector: Thermoelectric generators, solar cells, sensors 

Automotive: Power transmission systems, breaking systems. 

The theoretical concept of producing FGM was proposed in 1984 in Japan (Jha et al. 

(2013)). Manufacturing and design process of FGM has become the main topic of 

interest in the last three decades. Manufacturing of FGMs can be discussed under 

two subtopics which are gradation and consolidation. Gradation is forming the 

spatially inhomogeneous structure. Gradation processes can be categorized into 

constitutive, homogenizing and segregating processes. Constitutive processes depend 

on a stepwise generation of the graded body from pioneer materials or powders. 

Advances in automation technology in course of the last decades have provided 

technological and economic viability for constitutive processes. Homogenization is 

conversion of the sudden transition between two materials into a gradient. 

Segregating processes start with a macroscopically homogenous material which is 

transformed into a graded material by material transport caused by an external field 

(for example gravitational or magnetic field). Homogenizing and segregation 

processes yield continuous gradients; but such processes have limitations concerning 

the distribution of materials to be produced.  

The consolidation processes, such as drying, sintering or solidification, usually 

comes after the gradation processes. The processing criterions should be determined 

in such a way that the gradient is not wrecked or changed in an unrestrained fashion 

(Kieback et al. (2003)). 
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1.2. LITERATURE SURVEY 

With the aim of moving onto the more effective production and use of FGM 

materials in engineering applications, several analysis techniques have been 

proposed, as well. Most of the analyses of structural members with FGM are based 

on theory of elasticity solution techniques in literature. It is worth mentioning that 

such analyses offer load and boundary condition specific solutions to the problem 

and also focus on linear elastic behaviors of materials only.  

An alternative to such analysis would be the development of plate, shell or solid 

finite elements that will enable analysis of problems with FGM. It is worth 

mentioning that even the available packages like ANSYS or ABAQUS do not 

automatically provide such capabilities and require the development of user-defined 

subroutines and functions.  

As can be indicated from Figure 1 and examples concerning the usage areas of FGM 

mentioned above (thermal coating, heat shields, rocket casing etc.), shell and plate 

elements are a way more preferable for modeling tools for such structures. For this 

purpose, a study has been performed by Reddy and Chin (1998) for the mechanical 

and thermal behavior of shell elements with FGM. A finite shell element for the 

analysis of FGM is developed in that study and parametric studies of the thermo-

mechanical coupling effect on FGM are also carried out. The parameters are selected 

as the distribution ratios of the materials and types of materials. The outcomes of the 

coupled formulation and uncoupled formulation are compared with each other. For 

the example with ceramic-rich top surface and metal-rich bottom surface plate 

element with FGM, the following statements are concluded in that study. The 

temperature fields for coupled and uncoupled formulations show little difference but 

this difference diminishes as time goes on. On the contrary, the difference between 

the displacement fields, for the coupled and uncoupled formulations, starts to 

increase as time progresses; but this difference decreases as the ratio of ceramic 

material increases. 
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In the study of Reddy (2000), the thermo-mechanical behaviors of plates with FGM 

have been analyzed using finite element formulation making use of von Karman type 

large strain formulation. Nonlinear first-order plate theory and linear third-order plate 

theory have been used for the analyses. The results indicate that, the basic response 

of the plates with FGM that are constituted by metal and ceramics, do not necessarily 

lie between the full metal and full ceramic states. The non-dimensional deflection 

was found to reach a minimum at a volume fraction index that depends on the 

properties and the ratio of the properties of the constituents. 

An alternative finite element modeling approach compared to shell or plate element 

is the development of beam finite elements. Beam theories describe section 

kinematics of a beam element, and the beam theories are grouped under Euler-

Bernoulli, Timoshenko and Higher Order beam theories in the literature. 

Development of beam finite elements through the use of various beam theories is 

mainly categorized in two, where the most widely adopted choice is the use of 

displacement-based approach and the alternative method is the use of mixed 

formulation approach. Within the context of displacement-based formulations and 

Timoshenko beam theory assumptions for uniform prismatic beams with 

homogeneous materials, beam finite elements proposed by Friedman and Kosmatka 

(1993) and Reddy (1997) prove to be a shear-locking free element and provide the 

exact the stiffness matrix under linear elastic response.  

In terms of development of beams with FGM, the earliest and the most popularly 

cited work is the beam finite element proposed by Chakraborty et al. (2003) in which 

they developed a new beam element to study the thermo-elastic reactions of FGM 

beams. The generation of shape functions, stiffness and mass matrix for FGM beam 

has been explained in that research. The stiffness matrix is free of shear locking since 

the degree of transverse displacement shape function is higher than the slope shape 

function as discussed by Reddy (1997). Numerical examples concerning the thermal 

and static loadings, free vibration and wave propagation results are also attached to 

the research. It is worth mentioning that the study by Chakraborty et al. (2003) is 
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popularly cited in the literature and is considered as a benchmark formulation for 

FGM beams.  

Stability analysis of functionally graded beams has been carried out in the study by 

Mohanty et al. (2011) through the use of the finite element proposed by Chakraborty 

et al. (2003). In that work, the researchers examined the dynamic stability of 

functionally graded ordinary beams and functionally graded sandwich beams on 

Winkler’s elastic foundation. Functionally graded ordinary (FGO) beams consist of 

first material 100% at top of the section; second material 100% at the bottom of the 

section with a transition zone from topmost to bottommost of the section. Whereas, 

in functionally graded sandwich (FGSW) beams; the transition zone appears as a 

core material between first material at the top with a finite thickness and second 

material at the bottom likewise. In Figure 2 section (A) represents the functionally 

graded sandwich beam and section (B) represents the functionally graded ordinary 

beam in which the transition is through the whole section. In that work, it is 

concluded that for a functionally graded sandwich beam; if the materials vary with 

respect to the power law the beam becomes less stable as the thickness of the FGM 

core increases. In the other case, as the materials vary according to exponential law, 

an increase in the thickness of the FGM core improves the stability of the beam.  

In study by Hemmatnezhad et al. (2013), large amplitude free vibration analysis, 

imposing von Karman type of large strain, of beams with functionally graded 

materials, is realized. The finite beam element formulation for FGM, proposed by 

Chakraborty et al. (2003) has been used in that study, as well. The results obtained 

from numerical simulations are compared with theory of elasticity solutions available 

in the literature.  

Besides the development and use of displacement-based finite elements, it is also 

possible to formulate mixed formulation finite elements for the analysis of FGM 

beams. In the literature, it appears that there is no such element proposed and used 

for the analysis of beams with FGM. It is furthermore worth to mention that inelastic 

analysis of FGM members has not been undertaken in the context of beam finite 
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Table 1 Strong and Weak Satisfaction of Parameters in Variational Principles  

Varied 

Fields 

Functional 

Name 
Strong Satisfaction Weak Satisfaction 

u  
Potential 

Energy 

 on  s  ε u  

 on  σ = σ(ε)  

u  on    u u  

div   on    σ b 0  
*

t on   t t  

σ  
Complementary 

Energy 

div   on    σ b 0  

 on  σ = σ(ε)  
*

t on   t t  

 on  s  ε u  

u  on    u u  

,u σ  
Hellinger-

Reissner 

 on  s  ε u  

u  on    u u  

div   on    σ b 0  

 on  σ = σ(ε)  
*

t on   t t  

,σ ε  No name 
div   on    σ b 0  

*
t on   t t  

 on  s  ε u  

 on  σ = σ(ε)  

u  on    u u  

, ,u σ ε  Hu-Washizu - 

div   on    σ b 0  

 on  s  ε u  

 on  σ = σ(ε)  

u  on    u u  
*

t on   t t  

 

The last two decades witnessed the development and further improvement of the 

nonlinear force-based beam element proposed by Spacone et al. (1996). In this 

regards, detailed literature survey is provided by Saritas (2006) and Soydas (2013). 

Variational base of force-based beam elements is recently shown by Saritas and 

Soydas (2012) to be the same as that of mixed formulation approach, and it was 

shown that the use of Hellinger-Reissner or Hu-Washizu functionals provide the 

mathematical base of the force-based elements. 
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Initial and the most widely cited work in terms of development of a nonlinear force-

based beam finite element was first documented in detail by Spacone et al. (1996). 

The element sets forward to the consistent numerical implementation of the element 

state determination in the context of a standard FEM package. For the displacement-

based finite elements the iterative process depends on the residual forces whereas for 

the proposed element, the procedure is based on the residual deformations. 

In a recent study by Soydas and Saritas (2013), an accurate nonlinear 3d beam finite 

element is proposed for inelastic analysis of solid and hollow circular sections. The 

element is based on Hu-Washizu functional and axial force, shear forces, bending 

moments about both axes and torsional moment is coupled through the use of 3d 

material models and fiber discretization of the section and the use of several 

monitoring sections along element length. The element proposed in that work proved 

to be very effective in capturing the behavior of long and short members that are 

loaded and restrained in various fashions. 

 

1.3. OBJECTIVES AND SCOPE OF THESIS 

In this thesis, the development of a force-based beam element for the analysis of 

functionally graded materials is considered. The beam element that is developed in 

this thesis is based on the use of force interpolation functions instead of the 

approximation of displacement field. The response of the proposed element is 

calculated through aggregation of responses of several monitoring sections. Section 

response is calculated by subdividing the depth of a monitoring section into several 

layers and by aggregating the material response on the layers. Since the formulation 

of the element bases on force interpolation functions that are accurate under both 

elastic and inelastic material response, the proposed element provides robust and 

accurate linear and nonlinear analysis of FGM beams with respect to displacement-

based approach. The formulated element is compared with a previously developed 

displacement-based beam finite element by Chakraborty et al. (2003).  
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For inelastic analysis, von Mises plasticity model with isotropic and kinematic 

hardening parameters is assigned for both materials for simplicity. A simply 

supported pin-pin FGM beam is divided into different numbers of elements (both 

force-based and displacement-based beam elements), and the simply supported 

system is exposed to support vertical displacement from the mid-span. The results 

indicate the accuracy and robustness of the proposed element over the displacement-

based element in terms of global level response as well as local measures such as 

forces and stresses.  

The second effort in this thesis focuses on the vibration characteristics of the 

proposed beam element with FGM. Consistent mass matrix for the force-based 

element is implemented for the validation of the vibration modes and shapes 

obtained from this element. For this effort, benchmark problems are both analyzed 

with proposed beam element and with 3d solid elements in ANSYS. The results 

indicate that proposed element provides not only accurate results in lower modes but 

also in higher modes of vibration.  

 

1.4. ORGANIZATION OF THESIS 

In the second chapter force-deformation relations of proposed beam element will be 

presented and some principal beam theories and their section kinematics will be 

mentioned. Then, the implementation of force-based elements into a nonlinear FEM 

package and the convergence rate of the Newton–Raphson iteration procedure will 

be discussed and derivation of the stiffness matrix and the consistent mass matrix for 

the proposed force-based beam element will be presented. 

In the third chapter; a previously developed displacement-based beam element for 

FGM will be provided for the sake of completeness of the thesis work. The 

formulations for the element will be discussed in detail, where it was observed that 

some of the coefficients presented in the original work required correction.  
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In the fourth chapter; the material model, which is selected to mimic the behavior of 

materials in the FGM section, has been formulated. The radial return mapping 

algorithm for the von Mises plasticity has been presented. 

In the fifth chapter numerical analyses for the proposed beam element will be held 

out. Firstly, non-linear analysis will be realized for the force-based element and then 

the results will be compared with the displacement-based element. Secondly, modal 

analyses will be realized for the proposed force-based finite beam element. The 

modal shapes and natural frequencies will be compared with the results obtained 

from ANSYS.  

Finally in the sixth chapter, conclusion and recommendations for further studies will 

be documented. 
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CHAPTER 2  

FORCE-BASED ELEMENT FOR FGM BEAMS 

In this chapter, first, force-deformation relations of frame element will be clarified, 

and then some principal beam theories and their section kinematics will be 

mentioned. Thirdly, the implementation of force-based elements into a nonlinear 

FEM package and the convergence rate of the Newton–Raphson iteration procedure 

will be discussed. Development of the proposed beam element is done in a basic 

system where rigid body modes are eliminated. For this reason, conversion of the 

beam response from the basic system to the complete system is cast in this chapter 

after the formulation of the beam element in the basic system. Finally, derivation of 

the consistent mass matrix for the force-based beam element is explained. 

 

2.1. FORCE-DEFORMATION RELATIONS OF FRAME ELEMENT 

WITH SHEAR DEFORMATIONS (TIMOSHENKO BEAM THEORY) 

In this subtopic the element force relations, force shape functions and the derivation 

of section flexibility and stiffness matrices will be clarified. 

 

Figure 3 Simply supported basic system for force-based beam element 
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Figure 3 shows the element end forces of a simply supported (pin-pin) basic system. 

In the absence of element loads the axial force and shear force distribution is 

constant and moment distribution is linear with respect to x-axis. 

 

Figure 4 Nodal end forces and beam statics for force-based beam 

 

From Figure 4 the axial force, shear force and moment equations can be derived 

through simple statics knowledge as follows  

1

2 3

2 3

( )

( ) ( 1) ( )

( ) ( ) /

N x q

x x
M x q q

L L
V x q q L



  

  

    (2.1) 

Equation (2.1) can be written in matrix notation as 

( ) 1 0 0 1

( ) ( ) 0 / 1 / 2 ( )

( ) 0 1/ 1/ 3

N x q

s x M x x L x L q b x q

V x L L q

     
           
          

  
  (2.2) 

In (2.2), the section forces, force interpolation (equilibrium) matrix and element 

force vector will be shown as ( )s x


, ( )b x


 and q


, respectively. 

Now if the principle of virtual forces is used, the following equality can be written. 

 
0

( ) ( )
L

T Tq v s x e x dx    
    (2.3) 
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In (2.3), ( )e x


represent the section deformations, where the components of this vector 

will be mentioned later in this chapter.  

The same interpolation functions have been selected for the force field and the virtual 

force field, thus 

 ( ) ( )T T Ts x q b x 
 

     (2.4) 

Inserting (2.4) into (2.3) we obtain the element deformation vector v


 in the basic 

system as follows 

 
0

( ) ( )
L

Tv b x e x dx   
     (2.5) 

Making use of the chain rule, flexibility matrix of the beam element is obtained. 

 
 

0 ( )( )
( )

( ) ( )
L

T
s

s xe x
qs x

v
f b x f b x dx

q




 
 





  



     (2.6) 

In (2.6) f


is the element flexibility matrix. The terms 
( )

( )

e x

s x







 and 
( )s x

q







 are written 

as sf


 and ( )b x


, respectively. The matrix sf


, so called section flexibility matrix can 

be computed from the inverse of the section stiffness matrix through the relation 

1
s sf k 


. Section stiffness matrix sk


 will be introduced in the next subtopic. 

 

2.2. SECTION KINEMATICS 

In this part two beam theories and their section characteristics will be mentioned. 

First the Euler-Bernoulli beam theory will be represented, where the plane sections 

remain plane and the angle between the normal of the section and tangent to the 

deformed axis of the beam is zero, thus no shear deformation takes place in this 
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beam theory. The second one is, Timoshenko’s beam theory, where in this theory 

plane sections remain plane likewise, but the angle between the normal of section 

and the tangent to the deformed axis of the beam is not necessarily equal to zero. 

According to Timoshenko’s beam theory the beam element can exhibit shear 

deformations.  

There are also other beam theories where the plane sections do not have to remain 

plane, so called higher order beam theories. A discussion of higher order beam 

theories is available in the paper by Reddy (1997). 

 

2.2.1. Euler-Bernoulli Beam Theory 

Figure 5 shows the cross section of a beam element. An arbitrary point P is described 

on the cross section.  

 

Figure 5 Arbitrary cross-section for a solid beam element 

 

Assuming that Euler-Bernoulli beam theory assumptions hold, we can only calculate 

a non-zero strain value that is the normal strain, and it is expressed as follows 

, , ( ) ( ) ( )a z yx y z x y x z x           (2.7) 

Since our analysis is in 2d, we do not seek for moments around y axis; thus curvature 

about y axis is not taken into account, and Equation (2.7) can be simplified as  

( ) ( )x a x y x         (2.8) 
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Hereupon, the curvature about z axis is simply denoted with  . We can show (2.8) 

in vector notation as 

  ( )
1

( )
a

x

x
y

x
 

    
 

     (2.9) 

 

2.2.2. Timoshenko’s Beam Theory  

The difference between Timoshenko and Euler – Bernoulli beam theories is that, the 

plane sections after deformation will not remain normal to deformed axis of the 

beam; thus another deformation variable on the section   is introduced to represent 

the angle difference between the normal to the section and the tangent to the 

deformed axis of the beam.  

Rest of the formulations in this chapter will constitute utilization of the Timoshenko 

beam theory section kinematics, where the strains on the section of a 2d beam 

element can be written as follows 

1 0

0 0 1

a
x

xy

y





 
          

    
 

    (2.10) 

or 

( )x

xy
sa e x


 

 
   

     (2.11) 

where   is the shear deformation of section on the x-y plane in (2.10), sa


 is the 2x3 

compatibility matrix and e


 is the 3x1 section deformation vector in (2.11).  

Now we will establish the relation between section forces and section deformations. 

( ) T

A

ss x a dA   
     (2.12) 
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where  

0

0
x x

xy xy

E

G




 
    

     
    

      (2.13)   

( )

( ) ( )

( )

N x

s x M x

V x

 
   
 
 


     (2.14) 

( )s x


 is the vector of section forces, where N, M and V are axial force through x axis , 

moment about z axis and shear force along y axis, respectively.  

Substituting (2.11) and (2.13) into (2.12) we get 

0
( ) ( )

0
T

s s

A

E
s x a a dA e x

G

  
   

  
   

    (2.15) 

Where the term in brackets is sk


which is called the section stiffness matrix. If the 

material properties do not vary through the section depth, section stiffness matrix can 

be written as follows 

2

0 0

0 0

0 0 0 0
s

A

E yE EA EQ

k yE y E dA EQ EI

G GA

    
         
      


   (2.16) 

Where, I is the moment of inertia about the bending axis, Q is the first moment of the 

area about the bending axis, and if the bending axis matches with the geometric 

centroid then Q is equal to zero. In above equation, GA term is usually corrected for 

the presence of non-uniform distribution of shear over the section, and sGA  is 

substituted instead of GA.  

Since we are dealing with FGM; Young modulus (E) and shear modulus (G) vary 

through the depth of the section. So, the modulus matrix cannot be taken outside the 

integral. For FGM sections sk


 must be computed as follows  
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( ) 0

0 ( )
T

s

A

s s

E y
k a a dA

G y

 
  

 
  

   (2.17) 

Generally two types of material distribution functions are used for FGM. These are 

the exponential law and power law. The exponential law is frequently used in 

fracture studies for FGM, but it does not display curvature for both directions.  

 

Figure 6 Various FGM sections for different values of n 

 

The exponential law can be indicated as follows Chakraborty et al. (2003). 

 

2
( ) exp 1

1
log

2

t

t

b

y
y

h




         
 

   

 (2.18) 

Likewise, the power law can be written as 
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1

( ) ( )
2t b b

n
y

y
h

       
 

 (2.19) 

Here ( )y represents the material properties such as elastic modulus, shear modulus, 

thermal expansion coefficient, mass density etc. t  and b  stand for the topmost 

and bottommost materials, respectively. It is suggested that the power coefficient n 

can be taken between 1/3 and 3. Otherwise, FGM would contain too much of one 

phase (1/3 or 3 contributes to %75 of total volume) (refer to the work by Nakamura 

et al. (2000)).  

Figure 6 and Figure 7 show the material distribution for several FGM sections with 

different power law coefficients (n). 

 

Figure 7 Distribution of ingredients for different values of n 
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2.3. TRANSFORMATION BETWEEN BASIC SYSTEM AND COMPLETE 

SYSTEM 

In this part, conversion from simply supported (pin-pin) basic system to the complete 

system will be discussed. In the basic system, rigid body modes of displacements are 

eliminated, thus there are only the element deformations.  

In 2d case, there are three element deformations, namely the axial deformation and 

the two end rotations for the simply supported basic system. We can also choose 

cantilever basic system as an alternative, and in that case assuming the left end fixed, 

there will be one axial deformation, one transverse displacement and one rotation as 

element deformations existing on the right end of the element.  

In the complete system, the element has two nodes and at each node there are 3 

degrees of freedom, i.e. the translations along and transverse to the element and the 

rotation at that node.  

The necessity of the transformation between the basic system and the complete 

system stems from the formulation of the force-based element in the basic system 

and the fact that the FEM program will provide nodal displacements in the complete 

system. 

From Figure 8, making use of the small deformation theory, the compatibility 

equations between element deformations and nodal displacements are derived as 

follows: 

 

 

1 4 1

2 3

3 6

v u u

v u

v u




 
 
 

     (2.20) 

where 5 2( )u u

L
 
  
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Figure 8 Conversion from simply supported system to 2 node beam element 

 

Equation (2.20)  can be written in matrix notation as 





1

2
1

3
2

4
3

5

6

1 0 0 1 0 0

1 1
0 1 0 0

1 1
0 0 0 1v

a
u

u

u
v

u
v

uL L
v

u
L L u

                                   






    (2.21) 

Equilibrium of the basic element forces and the nodal force vector in complete 

system can be cast as follows: 
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



1

2
1

3
2

4
3

5

6

1 0 0

1 1
0

0 1 0

1 0 0

1 1
0

0 0 1
T

q

p

a

p

p L L q
p

q
p

q
p

L Lp

 
  
  
             
    

   
   
   
  



 

    (2.22) 

Given that basic element forces are related to the basic element deformations with 

the relation q kv


, we can substitute (2.21) in (2.22) to get 

elp k u


     (2.23) 

where T
elk a ka
 

 is the element stiffness matrix in complete system for the two node 

beam element. This stiffness matrix is actually now calculated in the element local 

coordinate system. Further transformation can be easily achieved by rotation to the 

global coordinate system in order to consider the angles between the local 

coordinates x, y and z and the global coordinates X, Y and Z. In depth discussion of 

these transformations is available in Filippou and Fenves (2004) for 2d case and 

Soydas (2013) for 3d case.  

 

2.4. STATE DETERMINATION OF FORCE-BASED ELEMENT  

Implementation of the force-based element is sought in standard finite element 

software that is based on displacement method of analysis. In such a solution 

platform, displacements are incremented iteratively in order to achieve convergence 

to the applied loads. Since the force-based element requires the input of element 

forces and its output is element deformations, an element state determination 

procedure is necessary for the force-based element to be a part of the solution 

strategies of displacement-based solutions.  
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The general procedure for handling nonlinearity in displacement-based finite element 

solution platform can be summarized as follows. Finite element program solves the 

nonlinear system of equations between applied forces appP


 and resisting forces rP


. 

 ( ) 0app rP P u 
   

     (2.24) 

Since the equation is nonlinear, the system must be linearized in order find the 

correct displacements that satisfy above equation. By using Taylor’s series expansion 

about an initial guess, an incremental iterative solution for global nodal 

displacements is obtained as given in the next equation, and this iterative process is 

also named as Newton-Raphson method.  

 

1

( )
{ ( )} 0

{ ( )}

r i
app r i i

i i app r i

iK

P u
P P u U

U

U K P P u


   



  


 
    



   

    (2.25) 

An initial guess for global nodal displacements can be taken as 0 0U 
 

 for the start of 

analysis or the last state of converged nodal displacements.  

After calculation of each increment, global nodal displacements U


 are updated and 

sent to each element with the purpose of receiving back element forces and stiffness.  

Since the force-based element actually provides output of element deformations, then 

the element state determination can be established by imposing the nodal 

displacements calculated from Equations (2.21) and (2.25). We denote the imposed 

element deformations received from the finite element program as (v



). Imposed 

deformations should match with the state of the force-based element, and this 

compatibility statement can be written as follows:   

( ) 0v v q 

  
      (2.26) 
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The term ( )v q
 

 in (2.26) is the response of the force-based element, and under general 

case the response of the element is nonlinear and requires linearization as written in 

the next equation: 

0

0

0 0( ) ( ) 0
q q q

f

v
v v q q q

q
 

 
 
 

     
 
 

  






    


    (2.27) 

 
1

i
iq f v v


    



  
     (2.28) 

1i iq q q   
  

     (2.29) 

In (2.28) the term inverse of section flexibility matrix 
1

i
sf


  


, that is equal to section 

stiffness matrix sk


, can be computed from (2.17).  

With the calculation of new updates for basic element forces from Equation (2.29), 

new values of section forces can be obtained by the use of Equation (2.2), i.e. 

( ) ( )s x b x q
  

. Since the section state determination requires the input of section 

deformations but not the section forces, then one more effort is necessary to match 

the imposed section forces calculated from ( ) ( )s x b x q
  

 with ( )s e
 

. For this effort, 

the imposed section forces are denoted with a hat value to signify the imposed 

quantity, the equality to be satisfied is written as follows:  

( ) 0s s e 

   
      (2.30) 

The section deformations must be compatible with element end forces. The term 

( )s e
 

will be linearized as follows 
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0

0

0 0( ) ( ) 0

s

e e e

k

s
s s e e e

e
 

 
 

     
 
  

  




      


    (2.31) 

Inserting ( )s b x q
  

 into (2.31), we get 

 1
( ) ( )i

s ie k b x q s e


        
     (2.32) 

1i ie e e   
  

      (2.33) 

The element deformations will be computed as given in Equation (2.5) and with the 

new values of section deformations computed from Equation (2.33), we obtain 

 1 1

0

( ) ( )
L

T
i iv b x e x dx    

     (2.34) 

Equation (2.32) requires the calculation of section stiffness matrix sk


. The numerical 

computation process of sk


 for beams consisting of only one material can be 

summarized as follows. The material subroutine reads the section deformations ( 1ie 


) 

and history variables (in case of hardening) at each layer of the beam section and at 

each integration point along the length of the beam as input, then it takes out the 

consistent tangent modulus and stresses as output variables. The consistent tangent 

modulus and stresses at each layer of the beam’s cross section are transferred into a 

numerical integration process to acquire the section stiffness matrix and section 

forces as written in the following equation: 

T
s

A

s sk a a dA





 

  


     (2.35) 
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For beams with FGM, the section deformations and history variables are sent to two 

different material subroutines separately and then these two separate material outputs 

are added in accordance with their weighted material ratio at the layer.  

With the calculation of section stiffness matrix, the element flexibility matrices ( f


) 

and element stiffness matrices (k


) will also be updated with the use of following 

equations: 

 
1 1

0
1 1 1

( ) ( )

[ ]

L
i T i

i i

sf b x f b x dx

k f

 

  





   

 

    (2.36) 

where 
11 1i i

ssf k
    

 is the section flexibility matrix corresponding to 1( )ie x


 each 

section deformations.  

The convergence check is handled at the global level through the satisfaction of 

equilibrium equations within a tolerance, i.e. ( )app r iP P u TOLERANCE 
  

, the 

iteration stops.  

 

2.5. THE CONVERGENCE RATE OF NEWTON–RAPHSON METHOD 

Newton–Raphson iteration procedure is utilized for the solution strategy of the 

nonlinear system of equations. The stiffness matrix is updated and its inverse is 

calculated at each iteration. As exhausting as it may seem in terms of computational 

cost, the convergence rate of this method is quite powerful. 

The convergence rate of the Newton–Raphson method can be proven as follows. 

First the Taylor series will be portrayed 

2 (3) 3

Higher Order Terms (H.O.T.)

'( )( ) ''( )( ) ( )( )
( ) ( ) ... 0

1! 2! 3!
n n n n n n

n

f x x f x x f x x
f f x

     
     


 (2.37) 
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Making use of the mean value theorem, one can prove the existence of such point 

x   that satisfies (2.37) in the following form 

 
2'( )( ) ''( )( )

( ) ( ) 0
1! 2!

n n n
n

f x x f x
f f x

    
     (2.38) 

In (2.38), 
2''( )( )

2!
nf x  

 represents the H.O.T. (higher order terms). 

The iteration steps of Newton–Raphson method is visualized in Figure 9 

 

Figure 9 Visualization of Newton–Raphson iterations 

 

Following relation can be comprised from Figure 9 

 1

( )

'( )
n

n n
n

f x
x x

f x    (2.39) 

After dividing (2.38) with '( )nf x  and rearranging the terms, the following equation 

is obtained 

 
2( ) ''( )( )

0
'( ) 2 '( )

n n
n

n n

f x f x
x

f x f x

 
  

    
 

 (2.40) 
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Inserting (2.39) into (2.40) leads us to the final relation between the error terms of 

successive iterations. 

 2
1

1

''( )
( )

2 '( )n n
n

nn

f
x x

f x

 
 






  

 
 (2.41) 

Taking the absolute of right and left sides, we can write 

  2

1

''( )

2 '( )n n
n

f

f x

    (2.42) 

Since there is a quadratic relation between the errors of successive iterations, the 

convergence rate of Newton–Raphson iteration method is quadratic provided that the 

tangent to the function is accurately calculated. 

 

2.6. FORCE-BASED CONSISTENT MASS MATRIX 

In this thesis, mass matrix of the proposed element for FGM beams is obtained in a 

consistent manner with the formulation of the element. Since the proposed element 

does not require the use of displacement interpolation functions, it is necessary to 

derive the displacement field along the length of the beam in a consistent way with 

the force-based formulation. This can actually be obtained in a simple fashion with 

unit dummy load method, i.e. with the use of principle of virtual forces approach as 

done in the derivation of the element in Section 2.1. Such an approach was proposed 

by Molins et al. (1998) and successfully implemented and used recently by Soydas 

(2013). With this alternative derivation of consistent mass matrix, we can obtain the 

mass matrix of any type of beam element that is uniform or tapered and with 

homogeneous or heterogeneous material distribution.  

Derivation of the mass matrix within force-based approach relies on the use of 

cantilever basic system due to its simplicity in establishing the displacement field. 

For the cantilever basic system, the basic element forces are axial force and 
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transverse (shear) force and moment values at the right node, while the left node is 

fixed. Actually these three basic forces exactly match with the element end forces for 

the complete system as well. Denoting the basic forces of cantilever system as cq


, 

we can calculate the section forces as follows: 

 

( )

( ) ( ) ( , )

( )
c c

N x

s x V x b x L q

M x

 
   
 
 

  
 (2.43) 

Where the section forces are arranged as given above, and the force interpolation 

matrix for the cantilever basic system is 

 

1 0 0

( , ) 0 1 0

0 ( ) 1
cb x L

L x

 
   
  


 (2.44) 

The section mass and stiffness matrices are calculated as: 

 T( ) ( )s s s

A

m x a y a dA   
 (2.45) 

 T ( ) 0
( )

0 ( )s s s

A

E y
k x a a dA

G y

 
  

 
  

 (2.46) 

where sa


 the section compatibility matrix previously introduced in Equations (2.10) 

and (2.11) is rearranged as follows: 

 
1 0

0 1 0s

y
a

 
  
 

 (2.47) 

Mass matrix of the force-based element is written in a 6×6 dimension, i.e. in the 

complete system with 3 degrees of freedom per each end node, as follows:  

 11 12

21 22
el

m m
m

m m

 
  
 
 


 

 (2.48) 
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Where the components of element mass matrix are calculated from sub-matrices  

 -1 T 1 T -1
22

0

( , ) ( ) ( , ) ( ) ( )
L L

c c s c s cp c

x

m f b x L k x b x m f f d dx     
  

 
       

 (2.49) 

 -1 T 1 T T -1 T
21

0

( , ) ( ) ( , ) ( ) (0, ) ( ) (0, )
L L

c c s c s c cp c c

x

m f b x L k x b x m b f f b L d dx      
  

 
         

 (2.50) 

 -1
12 21 22

0

(0, ) (0, ) ( ) ( )
L

c c s cp cm m b L m b x m x f x f dx           
 (2.51) 

  T -1 T
11 21

0

(0, ) (0, ) ( ) (0, ) ( ) (0, )
L

c c s c cp c cm b L m b x m x b x f x f b L dx          
 (2.52) 

In above equations, element flexibility matrix for the cantilever system is denoted as 

cf


, and it is calculated as follows: 

 T -1

0

( , ) ( ) ( , )
L

c c s cf b x L k x b x L dx    
 (2.53) 

And the partial flexibility matrix cpf  of the cantilever system is given as: 

 T -1

0

( ) ( , ) ( ) ( , )
x

cp c s cf x b x k x b x d      
 (2.54) 

Force-based consistent mass matrix for prismatic beams with FGM obtained from 

Equations (2.48) to (2.53) are compared with the mass matrix of the displacement-

based element proposed by Chakraborty et al. (2003) that is presented in the next 

chapter, and they are observed to be giving the same matrix for uniform prismatic 

FGM beams. However, in the case when the beam is tapered, then the displacement-

based approach will result in an approximation, while the proposed approach will 

still give the exact consistent mass matrix for FGM beams.  
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( , , , ) ( , ) ( , )

( , , , ) ( , )

U x y z t u x t y x t

W x y z t w x t

 


 (3.1) 

 The strains are expressed as 

 
, ,

,

x x x

xy x

U
u y

x
U W

w
y x



 


   


 

    
 

 (3.2) 

Where (.),x represents differentiation with respect to x-axis. 

The relation between stress and strain is expressed as 

 
( ) 0

0 ( )
x x

xy xy

E y

G y

 
 
    

    
    

 (3.3) 

The strain energy (S) and kinetic energy (T) are written as  

 
0

1
( )

2

L

x x xy xy

A

S dAdx       (3.4) 

 2 2

0

1
( )( )

2

L

A

T y U W dAdx      (3.5) 

Where (.) represents the time derivative. ( )y , L and A are density, length and the 

area of the cross section. Applying Hamilton’s principle, the following equations of 

motion are obtained. The implementation of Hamilton’s principle is explained in 

Appendix. 

 
0 1 11 11

0 55

2 1 11 11 55

: , , 0

: ( , , ) 0

: , , ( , )

xx xx

xx x

xx xx x

u I u I A u B

w I w A w

I I u B u D A w

  
 

   

   
  

    





 

 (3.6) 

Where 
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 

 

2
11 11 11

55

2
0 1 2

1 ( )

( )

1 ( )

A

A

A

A B D y y E y dA

A G y dA

I I I y y y dA

   



   







 (3.7) 

The interpolation functions for , ,u w   are selected for the element to be giving a 

shear-locking free element.  

In case of assigning interpolation functions improperly for the vertical translation and 

slope, the phenomenon called shear locking occurs. Especially, if linear interpolation 

functions are assigned for both vertical translation and slope, then the beam element 

behaves very stiff for larger values of length to depth ratio. To deal with this 

phenomenon, one should use higher order interpolation functions for vertical 

translation than slope.   

Since the order of interpolation function for vertical translation ( w) is higher than the 

order of the interpolation function for the slope ( ) as discussed by Reddy (1997). 

 

2
1 2 3

2 3
4 5 6 7

2
8 9 10

u c c x c x

w c c x c x c x

c c x c x

  

   

  

 (3.8) 

The term 11B  and 1I  is zero for homogenous sections. Completing the following 

formulations with the specified shape in such case will end up with the stiffness 

matrix in Reddy (1997), i.e. the Interdependent Interpolation Element for 

Timoshenko’s beam theory. This so called beam element is been utilized as the 

default frame element for some popular FEM packages like SAP2000. 

Equation (3.8) is substituted into the static part of (3.6). The static part of (3.6) is 

obtained by eliminating the terms with time derivatives, thus the governing partial 

differential equation is transformed into a system of ordinary differential equations.  

The static part of (3.6) can be shown as 
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11 11

55

11 11 55

: , , 0.................(3.13.1)

: ( , , ) 0.................(3.13.2)

: , , ( , )....(3.13.3)

xx xx

xx x

xx xx x

u A u B

w A w

B u D A w

 
 
  

  
  

  
 (3.9) 

Also 

 

3
2

5 6 7

6 7

9 10

10

, 2

, 2 3

, 2 6

, 2

, 2

xx

x

xx

x

xx

u c

w c c x c x

w c c x

c c

c




   
       
    
      
      

 (3.10) 

Substituting (3.10) into (3.9)1 

 11
3 10

11

B
c c

A
  (3.11) 

Substituting (3.10) into (3.9)2 

 6 7 9 102 6 2 0c c x c c x     (3.12) 

From (3.12) 

 

10
7

9
6

3

2

c
c

c
c




 (3.13) 

Substituting (3.10) into (3.9)2 and using (3.11) 

 

2 2
11 3 11 10 55 5 6 7 8 9 10

11 3 11 10 55 5 8

2
11

10 11 10 55 5 8
11

10 5 8

3 5 8

2 2 ( 2 3 0

2 2 ( ) 0

2 2 ( ) 0

( ) / 2

( ) / 2

B c D c A c c x c x c c x c x

B c D c A c c

B
c D c A c c

A

c c c

c c c




       

   

   

  

 

 (3.14) 
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Where 11 55
2

11 11 11( )

A A

B D A
 


 and 11 55

2
11 11 11( )

B A

B D A
 


 

Using (3.13) and (3.14) interpolation functions can be rewritten as 

 

2
1 2 5 8

2 3
4 5 9 5 8

2
8 9 5 8

1
( )

2
1 1

( )
2 6
1

( )
2

u c c x c c x

w c c x c x c c x

c c x c c x





 

   

    

   

 (3.15) 

In matrix form 

 

1 2 4 5 8 9

{ } [ ( )]{ }

{ } { , , , , , }

u

u w N x a

a c c c c c c



 
   
  



 (3.16) 

A relation can be formed between column vector { }a  and nodal displacements by 

using boundary conditions for each node, (at x=0 and x=L) 

 

1

1

(0)
[ ]

( )

ˆ{ } [ ] { }

ˆ{ } [ ]{ }

N
G

N L

u G a

a G u





 
  
 




 (3.17) 

Where[ ( )]N x , 1[ ]G   and [ ]G  are 

 

2 2

3 3 2

2 2

1 1
1 0 0

2 2
1 1 1

[ ( )] 0 0 1
6 6 2

1 1
0 0 0 1

2 2

x x x

N x x x x x

x x x

 

 

 

  
 
   
 
  
  

 (3.18) 
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2 2

1

3 3 2

2 2

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

1 1
1 0 0[ ] 2 2

1 1 1
0 0 1

6 6 2
1 1

0 0 0 1
2 2

L L LG

L L L L

L L L

 

 

 



 
 
 
 
 
   
 
 
 
 

  
 

 (3.19) 

 

2 2 2 2

2

3 2 3 2

2 2

2 3 2 3

1 0 0 0 0 0

1 6 3 1 6 3

12 12 12 12

0 1 0 0 0 0

[ ] 12 6 12 6
0 0

12 12 12 12

0 0 1 0 0 0

6 (4 12) 6 (2 12)
0 0

12 12 12 12

L L

L L L L L L

G L

L L L L L L

L L

L L L L L L

   
   


   

   
   

 
    

    
 
 
    
 

    
 
 

     
     

 (3.20) 

 1 1 1 2 2 2ˆ{ }
T

u u w u w  is the vector of nodal displacements of the element. 

The exact shape functions can be derived by multiplying [ ( )]N x  and [ ]G  

 
ˆ ˆ{ } [ ( )]{ } [ ( )][ ]{ } [ ( )]{ }

[ ( )] [ ( )][ ]

u

u w N x a N x G u x u

x N x G



 
      
  

 

 (3.21) 

[ ( )] ( ) ( ) ( )
T

u wx x x x        is a 3x6 matrix containing the exact shape 

functions for axial, transverse and rotational degrees of freedom. 

Element force members (axial, shear and moment) can be expressed as  
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x xx

A

x xx

A

x xx

A

N dA

V dA

M y dA











 







 (3.22) 

Imposing (3.2) and (3.3); (3.22) can be written as 

 
11 11

55

11 11

, ,

( , )

, ,

x x x

x x

x x x

N A u B

V A w

M B u D






 
 
  

 (3.23) 

From (3.23) element force vector can be associated with vector { }a  in matrix form as 

 { } [ ]{ }F G a  (3.24) 

where [ ]G  and { }F  are 

 

   

11 11

55 55

11 11

11 11

55 55

11 11 11 11 11 11

0 0 0 0

0 0 0 0

0 0 0 0
[ ]

0 0 0 0

0 0 0 0

0 0

A B

A A

B D
G

A B

A A

B B D L D B L D   

 
  
 

   
 
 

    

 (3.25) 

 { } [ (0) (0) (0) ( ) ( ) ( )]x x x x x xF N V M N L V L M L     (3.26) 

The stiffness matrix can be evaluated by substituting (3.17) into (3.24) 

 ˆ ˆ{ } [ ][ ]{ } [ ]{ }F G G u K u   (3.27) 

[ ( )]x  (exact shape functions) and [ ]K  (stiffness matrix) are 
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3 3 2

3 2 2 2 3 2

2

2 2

1 0 0

( 12 12 2 3 )
6 ( 1) 6 ( 1)

( 6 6 2 ) (3 12 4 12 )
3 ( 1)

[ ( )]

0 0

( 12 2 3 )
6 ( 1) 6 ( 1)

( 6 6 )
3 ( 1)

x

L

x L L x x x L x
x x

L L L

x x L L x x L xL x L L L x L x
xL

L L L
x

x

L

x x x xL x
x x

L L L

x x L x L xL x x
xL

L L

   
 

       


  
 

  




   
 

       


 

   
   
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where 2

1

12 L






 

 

3.2. THE CONSISTENT MASS MATRIX 

The consistent mass matrix is described as summation of four sub-matrices as given 

by Chakraborty et al. (2003). 

 u w uM MM M M                      (3.30) 
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uM   , wM    and M    stand for the contributions of axial (u), translational ( w ) 

and slope ( ) degree of freedoms. uM     represents the coupling between axial and 

slope degree of freedoms. 

The components of consistent mass matrix are figured as follows 
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    

          

                   









 (3.31) 

For homogenous sections; since 1I  is zero, it can be indicated from (3.31) that the 

term uM     yields zero. 
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CHAPTER 4  

MODELING INELASTIC BEHAVIOR OF FGM BEAMS 

In this chapter, firstly the von Mises plasticity and its yield criteria will be presented. 

Secondly, evolution equations will be derived for the von Mises model with linear 

kinematic and linear isotropic hardening. Finally the stress update algorithm for 

hardening plasticity will be indicated. 

Generally, von Mises plasticity model is used for modeling the inelastic behavior of 

metals. For nonlinear analyses of beams with functionally graded materials the use of 

the von Mises plasticity for metallic part and Drucker-Prager plasticity model for 

ceramic part of FGM is suggested in Bocciarelli et al. (2008). Despite this 

suggestion, as a first effort to the analysis of FGM beams, inelastic analyses carried 

out in Chapter 5 will use the same material model for both metallic and ceramic 

parts; since it is observed that the degree of material change can actually ensure such 

a choice is valid as long as one of the materials state of stress allows such a use. 

Detailed explanation will be presented in Chapter 5. 

With such a choice, von Mises plasticity model is adopted for describing the inelastic 

behavior of both constituting parts of FGM. 

 

4.1. VON MISES PLASTICITY 

In solid mechanics, the stress tensor can be divided into two parts. These are called 

as the volumetric part and the deviatoric part. The volumetric part does not involve 

yielding for the von Mises plasticity since it is only related with the first invariant. 
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Only the deviatoric part can provoke yielding. So the following decomposition is 

considered 

1
( )1 ( ) 1

3
tr dev p       

    
    (4.1) 

Where 
1

( )
3

p tr 


 and ( )dev  
 

. 

The J2 – invariant of ( )dev  
 

 is introduced 

 2

1 1
:

2 2
J tr        

   
     (4.2) 

Assuming that the material is under such uniaxial stress 
11 0 0

0 0 0

0 0 0
u




 
   
  


 and the 

yielding starts at 11 0y  . As mentioned above, deviatoric stresses cause yielding for 

von Mises plasticity. Starting from this argument, the norm of 11 0@( )u y  


 and 

the norm of the applied stress is compared, and we get 

0

0 0

0

2
0 0

3
1 2

( ) 0 0
3 3

1
0 0

3

u

y

dev y y

y



 
 
 
    
 
 
  


 

Thus, the von Mises theory of plasticity assumes the following yield function. 

 0 0

2 2
( ) : 0

3 3
y y           

   
   (4.3) 

 

The spectral decomposition of 


is considered as 
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  
3

1
i i i

i

n n 


 
   

     (4.4) 

In Figure 11 the visualization of the von Mises yield surface 0  in the principal 

stress space is shown. The yield surface corresponds to a cylinder with an axis 

coincident with the hydrostatic stress state, i.e. 1 2 3     

 

Figure 11 Visualization of the von Mises yield surface 

 

4.2. VON MISES PLASTICITY WITH LINEAR ISOTROPIC AND 

KINEMATIC HARDENING 

A basic model problem of J2-plasticity with a combined isotropic and kinematic 

hardening is considered. The state of the material is described by { , , , }p   
  

, 

where , ,p  
  

 and   are total strain, plastic strain, internal variable for kinematic 

hardening and internal variable for isotropic hardening, respectively. 

The free energy function is assumed to have the following form 
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 ( ) ( , )e p p        
  

 (4.5) 

where e p   
  

. The particular form of the free energy function is chosen as 

 2 2' '1 1 1
: :

2 2 2
e e e

e p

e h H



           
    

 (4.6) 

In (4.6)  , , H  and h  are bulk modulus, shear modulus, linear kinematic 

hardening parameter and linear isotropic hardening parameter, respectively, with 

( )e ee tr  . 

Stresses are obtained from (4.6) as follows 

 '1 2e e
e e      
  

 (4.7) 

Thermodynamical forces , 


 conjugate to internal variables , 


 are obtained as 

 aaa       


 (4.8) 

Evolution equations for ,p 
 

 and   are obtained by a generalization of maximum 

dissipation. The elastic domain is defined as 

 3 3 3 3{( , , ) x x | ( , , ) 0}x xR R R       
  

  (4.9) 

where 

 0

2
( , , ) ( ) 0

3
'

y    

  

   

 


  

 

 (4.10) 

The boundary of the elastic domain (4.11) defines a yield surface in stress-space. 

 3 3 3 3{( , , ) x x | ( , , ) 0}x xR R R        
  

  (4.11) 
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The principle of maximum dissipation states that for a given plastic strain, kinematic 

hardening parameter and isotropic hardening parameter , ,p  
 

 among all possible 

stresses * * *, ,  
 

, i.e. ( , , ) 0   
 

, the plastic dissipation 

 * * * *: :pD          
  

 (4.12) 

attains its maximum. 

The actual dissipation is obtained by the following maximization problem 

 
* * *

* * * 3 3 3 3

{ : : }

( , , ) x xx x

pD MAX

R R R

     

  

  



  
  

 

 (4.13) 

The maximization problem (4.13) is handled by using the method of Lagrange 

multipliers. Instead of the maximizing the dissipation under the constraint condition 

( , , ) 0   
 

 ,  * * *: :pD            
  

 will be minimized. The corresponding 

Lagrange functional is written as follows 

 * * *( , , , ) : : ( , , )£ p                    
      

 (4.14) 

Gives the evolution equation 
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 
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   
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  
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   



  

   

    

 

 

 

  


 

  


 



 (4.15) 

and 

 0 0 0       (4.16) 

From (4.15) one can conclude that p  
 
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(4.16) is the loading/unloading conditions (also known as the Karush-Kuhn-Tucker 

conditions). 

The mathematical meaning of the Karush-Kuhn-Tucker conditions can be 

summarized as; either the constraint is active ( 0,      or inactive ( 0,     . 

As well as, the physical meaning of (4.16) states that either plastic flow or unloading 

occurs. 

 p



   


   



 




 (4.17) 

  indicates a physical property (norm of the rate of change of plastic strain tensor) 

The evolution of  (isotropic hardening variable) 

 
2 2 2

:
3 3 3

p p p         
  

 (4.18) 

is directly related to the evolution of plastic strain. 

 

4.3. STRESS UPDATE ALGORITHM FOR HARDENING PLASTICITY 

We integrate the evolution equations (4.15) by using an implicit backward Euler 

Algorithm. 

 
1 1 1

1 1 1

1 1

2

3

p p
n n n n

n n n n

n n n

n

n

  
  

  

  

  

 

 

 

 

  

  
 (4.19) 

where 
1

1

1

n

n

n

n









 




 and 1 1 1'n n n     
 

 along with 1 1 1 10, 0 0n n n n           

The internal variables at time { , , }p
n n n nt   
 

 are known. From (4.7) and (4.8) 
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'
1 1 1 1

1 1

1 1

' 2 2 ( ' )e p
n n n n

n n

n n

H

h

    
 

 

   

 

 

  





   


 (4.20) 

The trial state is defined as 

 

,
1 1

1

1

' 2 ( ' )trial p
n n n

trial
n n

trial
n n

H

h

   

 

 

 





 





  


 (4.21) 

From (4.19) and (4.21), (4.20) can be rewritten as, 

 

,
1 1 1 1

1 1 1 1

1 1 1

' ' 2

2

3

trial
n n n n

trial
n n n n

trial
n n n

n

H n

h

  

  

  

   

   

  

 

 

 

  

 
 (4.22) 

Using the equations above 1n 


 can be written as follows 

 1 1 1 1 1 1' (2 )trial
n n n n n nH n              

   
 (4.23) 

Where 
,

1 1 1'trial trial trial
n n n     

   

Rewriting (4.23) 

 
1 1 1 1 1 1

1 1 1 1 1

(2 )

(2 )

trial trial
n n n n n n

trial trial
n n n n n

n n H n

n H n

   

   

     

    

  

    

   

  

 (4.24) 

From (4.24) we acquire two important equations. Since 1, , nH    and norm of a 2nd 

order tensor are always positive the unit tensors, 1
trial
nn 


 and 1nn 


, must be equal. 

Hereupon, rest of the terms in (4.24) should satisfy the equality. Therefore, 
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1 1

1 1 1(2 )
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n n

trial
n n n

n n

H   
 

  



  
 

 

 (4.25) 

Current yield function can be written as 

 1 1 0 1

2
( )

3n n ny      


 (4.26) 

Substituting (4.25) and (4.22) into (4.26) 

 

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 (4.27) 

1
rialt

n acts as an identifier for the plastic loading. If 1 0trial
n  , the material is in the 

elastic domain, thus a corrector step is not necessary and 1 0n    since there is no 

plastic flow. Otherwise ( 1 0trial
n  ), the elastic domain is overstepped and a corrector 

step is needed to stabilize the material. 

In other words, for an elastic step 
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1 1
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 

 
 (4.28) 

For an elastoplastic step 1n   has to be computed from the consistency condition 
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 (4.29) 
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For the plastic loading case, by inserting (4.29) into (4.22), the corrector step can be 

expressed as 

 

, 1
1 1 1

1
1 1 1 1

1
1 1

2
' '
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 
 (4.30) 

Radial return mapping algorithm with isotropic and kinematic hardening is 

visualized in Figure 12 

 

Figure 12 Visualization of the von Mises plasticity with isotropic and kinematic 
hardening through the principal stress state 
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CHAPTER 5  

VERIFICATION OF THE PROPOSED BEAM ELEMENT 

In this chapter, inelastic behavior and vibration characteristics of the proposed force 

beam element will be investigated. 

There are studies concerning the inelastic behavior of FGM in literature. Bocciarelli 

et al. (2008) suggests the use of the J2 plasticity for metallic materials and Drucker – 

Prager yield condition for ceramic part; but in this work J2 plasticity will be used for 

both materials. In addition; the force-based finite beam element and displacement-

based finite beam element formulations will be compared for different numbers of 

layers, integration points and elements for the study case. 

The modal analysis for the FGM beam element will be compared with the ANSYS 

results for different length / span ratios. 

 

5.1. COMPARISON OF INELASTIC BEHAVIORS 

As mentioned above, J2 plasticity rule has been utilized for both materials for the 

inelastic analysis of FGM beam elements. The main difference between J2 plasticity 

and Drucker – Prager yield condition is; for J2 plasticity, the yield surface does not 

depend on the volumetric part of the stress tensor, unlike Drucker – Prager yield 

condition. For the one dimensional analysis case, (where the axial stress components 

along y and z axes and shear components along the x-z and y-z surfaces are imposed 

to be zero) the mentioned difference above simplifies into; the lack of the Von Mises 

plasticity to exhibit different yield behavior for tension and compression separately 
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by means of quantity, unlike the Drucker – Prager yield condition. To eliminate any 

mistake due to the use of J2 plasticity for ceramic part, the alumina is heavily placed 

in the compression zone of the beam, i.e. the top material of the beam in our 

example, and exposed to decrease rapidly through the depth, obeying the power law 

with an exponential coefficient of n=8. In other words, the alumina material is placed 

at the compression zone and it swiftly gives place to metallic material as the section 

move towards the bottom. The reason behind such distribution type is to minimize 

the misleading tensile regime of alumina material in the system; because in the 

tensile zone alumina will be assumed to yield at the same stress value as in the 

compression region, and this yield value will be far beyond its actual tensile yield 

strength. A substantial property of Drucker–Prager yield model is that, a change in 

the volumetric stress causes expansion or contraction of the yield surface. The 

absence of such behavior for the alumina material (since it is modeled using von 

Mises yield criteria in this work) will remain as a deficiency.  

Primarily, the structural system for the inelastic analysis study case is visualized in 

Figure 13 to enlighten the further explanations about this comparative study.  

 

Figure 13 Inelastic Loading Example 

 

For the inelastic case, the simply supported system shown in Figure 13 will be 

exposed to a displacement in the transverse –y direction at the mid-span. The support 

conditions are pinned at both ends. The length, depth and width of the beam are 2 m, 

100 mm and 100 mm, respectively. The bottom material (steel) properties are E = 

210 GPa, G = 80 GPa, y = 500MPa and top material (alumina) properties are E = 

390 GPa, G = 137 GPa, y,compression = 2000MPa and y,tension = 250MPa, but since von 
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Mises plasticity is used for alumina, yield strength is taken as the compressive 

strength, i.e. y = 2000MPa for both tension and compression. This assumption is 

also validated with the contribution of alumina to total response in terms of state of 

stress distributions as presented at the end of this section. The isotropic hardening 

parameter and kinematic hardening parameters for both materials are taken as E×10-6 

of each material and zero, respectively. As a result, elastic perfectly plastic material 

behavior is considered in the verification study. 

Firstly, load vs. deflection curves for the force-based beam elements and 

displacement-based beam elements will be plotted (Figure 14 to Figure 19) for 3, 5, 

10 Lobatto integration points (monitoring sections) through the length and 11, 21, 41 

trapezoid integration points (number of layers) through the depth of section. One 

beam element per half-span will be used for both the force-based and the 

displacement-based analyses.  

Another analysis for 5 Lobatto points and 41 layers with 4 force-based elements per 

half-span will be held out. The outcomes of this analysis are observed to be the 

converged nonlinear response, and are used for comparison purposes. Results are 

represented in Table 2. 

Secondly the force-based and displacement-based beam formulations will be 

compared for different numbers of elements. For this analysis, the number of layers 

on each section and integration points along the length of each element will be 

determined in such a way that they minimize the error for the corresponding beam 

formulation type (force-based or displacement-based).  
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Figure 14 One force-based element per half-span and nIP = 3 

 

 

Figure 15 One force-based element per half-span and nIP = 5 
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Figure 16 One force-based element per half-span and nIP = 10 

 

 

Figure 17 One displacement-based element per half-span and nIP = 3 
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Figure 18 One displacement-based element per half-span and nIP = 5 

 

 

Figure 19 One displacement-based element per half-span and nIP = 10 
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Figure 20 Four force-based elements per half-span and nIP = 5 

 

Table 2 L/d = 5 Comparison of element responses for varying discretizations 

 

As can be seen from the Table 2, increasing the number of layers decreases the error 

of peak mid-span force and initial tangent modulus for both force-based elements 

and displacement-based elements.  

The number of integration points (number of sections) do not affect the initial 

tangent modulus. 3 Lobatto points give exact result for the integration of a 3rd degree 

polynomial, since n Lobatto points give exact result for the definite integration of 
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are assumed to stay in the elastic regime; the displacement-based and force-based 

FGM beam formulation gives the same stiffness and mass matrices. Thus the 

analyses will not be held separately for each formulation types. The analyses results 

will be compared with a well-known FEM software package ANSYS. 

The beam will be modeled using brick elements with 8 nodes via ANSYS. The mesh 

size will be taken as 5 mm for each brick element. Since the analyses are realized in 

a 3D media in ANSYS, some of the modes will be sorted out (For instance, bending 

and shear modes about z axis, torsion modes and modes for which warping is 

dominant etc). The axial modes and bending modes about y axis of the ANSYS 

model will be compared by means of natural frequencies and mode shapes with the 

proposed beam element.  

 

Figure 27 Visualization of ANSYS FGM beam model 

 

The first analysis will be held out over a homogenous prismatic section made of 

steel. The depth and width of the section will be taken as 100 mm and 100 mm, 

respectively. Several analyses will be performed using different length / depth (L/d) 
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ratios. The steel material properties will be selected as E = 210 GPa, G = 80 GPa, = 

7850 kg/m3. 

 

Table 4 Material properties at each layer of the ANSYS model 

Section Properties 

(From top to bottom) 

Modulus of 

Elasticity (GPa) 

Bulk Modulus  

(GPa) 

Mass Density 

(kg/m3) 

1 360.95988 128.090448 4304.0882 

2 309.20578 111.971913 5110.3342 

3 264.87214 97.881688 6067.6070 

4 226.89501 85.564537 7204.1971 

 

In the second analysis a beam with functionally graded material will be imitated. The 

beam cross section will be divided into 4 parts. The material properties for each part 

will be determined by using exponential law for FGM. The ANSYS model is 

visualized in Figure 27 and the material properties at each layer are presented in 

Table 4. 

The top material (steel) properties are E = 210 GPa, G = 80 GPa, = 7850 kg/m3 and 

bottom material (alumina) properties are E = 390 GPa, G = 137 GPa, = 3950 kg/m3. 
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Table 11 Frequency comparison of proposed beam element and ANSYS model 
for rectangular steel section d=100 mm and b=100 mm 

  

Beam 
Element 
SCF=5/6 

Beam 
Element 
SCF=1 

ANSYS 
Model 
Natural 

Error 
SCF=5/6

Error 
SCF=1

1 82.89 82.97 83.072 0.23% 0.13%
2 496.6 499.8 498.17 0.31% 0.33%
3 1293.2 1293.2 1295.3 0.16% 0.16%
4 1306.1 1323.3 1311.6 0.42% 0.89%
5 2369.8 2418.8 2382.2 0.52% 1.54%
6 3610.9 3710.4 3631.4 0.56% 2.18%
7 3882.6 3882.7 3882.7 0.00% 0.00%
8 4971.0 5138.1 4997.6 0.53% 2.81%
9 6413.7 6481.5 6440.2 0.41% 0.64%
10 6481.5 6662.9 6459.9 0.33% 3.14%
11 7916.1 8259.4 7931.7 0.20% 4.13%
12 9095.9 9095.9 9018 0.86% 0.86%
1 324.02 325.25 325.48 0.45% 0.07%
2 1743.7 1778.7 1756 0.70% 1.30%
3 2586.3 2586.4 2594.6 0.32% 0.32%
4 4150.2 4286.0 4189 0.93% 2.32%
5 6895.6 7191.2 6971.2 1.08% 3.16%
6 7765.3 7765.3 7757.4 0.10% 0.10%
7 9822.0 10314.3 9931.9 1.11% 3.85%
8 12774.9 12963.0 12818 0.34% 1.13%
9 12962.9 13503.0 12902 0.47% 4.66%
1 1774.7 1807.1 1794.2 1.09% 0.72%
2 6465.8 6465.9 6510.4 0.69% 0.68%
3 6703.0 7036.0 6813.7 1.62% 3.26%
4 14019.5 14817.5 14262 1.70% 3.90%
5 18195.1 19413.3 18232 0.20% 6.48%
6 19413.2 19594.8 18879 2.83% 3.79%

2

ModeL/d

10

5

Steel Section
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Table 12 Frequency comparison of proposed beam element and ANSYS model 
for FGM section d=100 mm and b=100 mm 

  
Beam Element 
SCF=1 Natural 

Frequencies (Hz)

ANSYS Model 
Natural Frequencies 

(Hz)
Error

1 113.67 113.92 0.22%
2 683.56 681.69 0.27%
3 1778.11 1772.1 0.34%
4 1818.63 1813.2 0.30%
5 3295.14 3245.3 1.54%
6 5021.85 4922.6 2.02%
7 5390.9 5377.7 0.25%
8 6965.39 6776.3 2.79%
9 9043.38 8697.5 3.98%
10 8918.44 8893.8 0.28%
11 11183.3 10724 4.28%

12 12449.4 12231 1.79%

1 445.25 446.25 0.22%
2 2417.4 2388.5 1.21%
3 3591.6 3604.2 0.35%
4 5812.3 5684.2 2.25%
5 9723.5 9414.3 3.28%
6 10688 10634 0.51%
7 13979 13410 4.24%
8 17364.1 16868 2.94%
9 18542 17603 5.33%
10 22392 20871 7.29%
11 24320 22380 8.67%

12 25340 23074 9.82%

1 2463.04 2450.1 0.53%
2 8523.3 8527.3 0.05%
3 10036 9753.4 2.90%
4 19785.8 18969 4.31%
5 25676 23908 7.40%

6 27398 25022 9.50%

L/d Mode

Top Alumina - Bottom Ceramics FGM Section

10

5

2
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The modal analyses results for steel section are presented in Table 11.  

As the length/depth ratio decreases, shear deformations turn out to be more 

deterministic on the results of analyses. The proposed beam element is constituted in 

accordance with Timoshenko’s beam theory. Since the plane sections remain plane 

after deformation the beam is not capable of mocking the realistic shear 

deformations. This lack of behavior for the beam element ends up with a statement 

that as the length/depth ratio decreases the natural frequency error increases. On the 

other hand for the axial modes the beam element gives less than 1% error even for 

L/d=2.  

Speaking of the FGM section, the same statements can be put forward for the error 

values given in Table 12. In addition, the bending - axial coupling terms, aroused in 

the evolution of FGM finite element formulation, end up with complicated mode 

shapes. Such behavior of FGM makes it difficult to match between the modes of 

ANSYS and the proposed beam element especially for fewer values of L/d. 
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CHAPTER 6  

CONCLUSIONS 

6.1. SUMMARY 

The main purpose of this thesis is to represent a new force-based beam finite element 

to be used in the analysis of functionally graded materials. For this purpose, force-

based formulation has been adapted to be compatible with a typical FGM section, 

where the material properties vary through depth of the section. The proposed force-

based beam element has been compared with a previously developed displacement-

based beam finite element for regarding the non-linear behavior. Also vibration 

analysis of the proposed beam element is verified with ANSYS results using 3D 

solid elements. 

 

6.2. CONCLUSIONS  

 The elastic behavior of the force-based element and the displacement beam 

element yields the same results.  

 For the inelastic analyses of beams with FGM, 1 force-based element per half 

span yields an error less than 1% whereas the error of 1 displacement-based 

element per half span is about 40%. 

 For the vibration analyses, as length/depth ratio increases the errors for   

frequencies of the proposed beam element tends to decrease. 

 The proposed beam element is able to determine even the axial-bending 

mixed mode shapes and frequencies for L/d=10 and L/d=5. 
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 It is getting more insistent to match the complex mode shapes as length/depth 

ratio decreases. 

 

6.3. RECOMMENDATIONS FOR FUTURE STUDY 

For the yield behavior of alumina material in FGM model, Drucker–Prager yield 

criteria can be utilized. By this means the proposed beam’s mechanical behavior can 

be more realistic.  

Thermo-mechanical analyses should be realized in order to investigate the 

distribution of the temperature field under specified heat and/or body loadings. 

In addition, a parametric study for functionally graded materials can be held out by 

means of finite element analysis, to be utilized in the design process of FGM beams. 
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APPENDIX A 

DEFINITION OF VARIATION 

 

Total energy functional is indicated in (3.4) and (3.5). The formulation will be 

derived according to minimization of energy functional. 

 2 2

0

1
[( ) ( )( )]

2

L

x x xy xy

A

P S T y U W dAdx              (A.1) 

The variation of a functional ( , , )F u w   with respect to u  is 

 
0

( , , ) ( , , )
lim

F u v w F u w
u



  


 
  (A.2) 

where v  is the test function that satisfies essential boundary conditions of the 

corresponding differential equation. 

Using (3.1),(3.2) and (3.3)  
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 (A.3) 

taking the derivative of  (A.3) with respect to u  
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 (A.4) 
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Applying integration by parts for the terms 
00 0

, , , ,|
L LL

x x x xxu v dx u v u vdx    and 

00 0
, , , ,|

L LL

x x x xxv dx v vdx     , (A.4) will transform into 

                   0
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x x
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 
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  (A.5) 

The terms in the last row of (A.5) are either representing the external forces or zero 

depending on the boundary condition type of the freedom (EBC or NBC) 

If the boundary condition type is essential, the term mentioned above will be zero 

since the test functions have to satisfy the essential boundary conditions of the 

corresponding differential equation ( ( ) 0EBCv x  ). Otherwise the term clearly 

represents the external forces since the shape functions are constituted in such a way 

that they yield ( ) 1NBCv x  at natural boundary conditions according to finite element 

shape functions. 

After handling the mentioned term above; substituting the terms defined in (3.7) into 

(A.5) yields 

0 1 11 11: , ,xx xxu I u I A u B        (A.6) 

The same procedure (taking derivative of ( , , )P u w   with respect to w  and  ) can be 

applied to acquire the other terms of (3.9). 

 


