FINITE ELEMENT MODELING OF BEAMS WITH FUNCTIONALLY GRADED
MATERIALS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

TOLGA GUROL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
CIVIL ENGINEERING

FEBRUARY 2014






Approval of the thesis:

FINITE ELEMENT MODELING OF BEAMS WITH FUNCTIONALLY
GRADED MATERIALS

Submitted by TOLGA GUROL in partially fulfillment of the requirements of the
degree of Master of Science in Civil Engineering Department Middle East
Technical University by,

Prof. Dr. Canan Ozgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Ahmet Cevdet Yalginer

Head of Department, Civil Engineering

Assoc. Prof. Dr. Afsin Saritag

Supervisor, Civil Engineering Dept., METU

Examining Committee Members:

Assist. Prof. Dr. Serdar Goktepe

Civil Engineering Dept., METU

Assoc. Prof. Dr. Afsin Saritas
Civil Engineering Dept., METU

Assoc. Prof. Dr. Yalin Arici

Civil Engineering Dept., METU

Assist. Prof. Dr. Ercan Giirses

Aerospace Engineering Dept., METU

Dr. Cenk Tort

MITENG

Date:




I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

Name, Last name: Tolga Giirol

Signature:

v



ABSTRACT

FINITE ELEMENT MODELING OF BEAMS WITH FUNCTIONALLY
GRADED MATERIALS

Girol, Tolga

M.Sc., Department of Civil Engineering
Supervisor: Assoc. Prof. Dr. Afsin Saritas

February 2014, 86 PAGES

In this thesis a new beam element that is based on force formulation is proposed for
modeling elastic and inelastic analysis of beams with functionally graded materials.
The attempt of producing functionally graded materials (FGM) arose from mixing
two materials in such a way that both of them preserve their physical, mechanical
and thermal properties most effectively. FGM shows a gradation through the depth
from typically a metallic material such as steel or aluminum at one face of the
beam’s section depth to another material such as ceramic at the other face. The
change of materials properties is taken according to a power law or an exponential

law.

The proposed beam element is based on the use of force interpolation functions
instead of the approximation of displacement field. Since derivation of displacement
interpolation functions is rather a tedious task for a beam with FGM, the proposed
approach provides an easy alternative in this regard. The response of the proposed
element is calculated through aggregation of responses of several monitoring
sections. Section response is calculated by subdividing the depth of a monitoring
section into several layers and by aggregating the material response on the layers.

Since the formulation of the element is based on force interpolation functions that are



accurate under both elastic and inelastic material response, the proposed element
provides robust and accurate linear and nonlinear analyses of FGM beams with
respect to the displacement-based approach. For the inelastic analysis, the von Mises
plasticity model with isotropic and kinematic hardening parameters is assigned for

both materials for simplicity.

The consistent mass matrix for the proposed force-based element is also
implemented for the validation of the vibration modes and shapes obtained from this
element. For this effort, benchmark problems are both analyzed with the proposed
beam element and with 3d solid elements in ANSYS. The results indicate that the
proposed element provides accurate results not only in lower modes but also in

higher modes of vibration.

Keywords: Functionally graded materials, finite element method, beam finite

element, mixed formulation
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0z

FONKSIiYONEL DERECELENDIRILMIS MALZEMELI KiRiSLERIN
SONLU ELEMAN MODELLEMESI

Girol, Tolga

Yiiksek Lisans, insaat Miihendisligi Boliimii
Tez Yoneticisi: Dog. Dr. Afsin Saritas

Subat 2014, 86 SAYFA

Bu ¢alismada, elastik ve elastik olmayan analiz modelleri i¢in yeni bir kuvvet tabanl
fonksiyonel derecelendirilmis malzemeli kiris elemani sunulmaktadir. Fonksiyonel
derecelendirilmis malzeme (FDM) iiretme girisimi, her iki malzemenin fiziksel,
mekanik ve termal Ozelliklerini en verimli sekilde koruyarak karigtirma fikrinden
esinlenmistir. Fonksiyonel derecelendirilmis malzemeler derinlik boyunca genellikle,
bir yiizdeki ¢elik veya aliiminyum gibi metalik bir malzemeden diger yilizdeki

seramik gibi baska bir malzemeye gecis yapar.

Sunulan kiris eleman1 yer degistirme alani yaklasimi yerine kuvvet interpolasyon
fonksiyonlarma dayanir. FDM’ler i¢in yer degistirme interpolasyon fonksiyonlarini
tiretmek goreceli olarak daha mesakkatli bir ¢alisma oldugundan, sunulan kiris
elemani konuyla ilgili rahatlik saglayacaktir. Sunulan kiris elemaninin tepkisi bir¢ok
kesitin tepkisinin toplanmasiyla hesaplanmistir. Kesit tepkileri ise kirigin derinlik
boyunca malzeme tepkisinin bir¢ok katmana ayrilarak toplanmasiyla hesaplanmistir.
Eleman formiilasyonu, elastik ve elastik olmayan malzeme tepkileri altinda dogrulu
hassas olan kuvvet interpolasyon fonksiyonlarina gore olusturuldugu i¢in; lineer ve

lineer olmayan durumlarda, yer degistirme tabanli yaklasima gore daha dogru ve

Vil



etkin sonuglar verir. Kolaylik agisindan, her iki malzeme i¢in de kinematik ve

izotropik peklesmeli Von Mises plastisite modeli kullanilmistir.

Kuvvet tabanli elemanin uyumlu kiitle matrisi, titresim modlar1 ve sekillerinin
karsilagtirmast i¢in olusturulmustur. Bu karsilastirmada, ANSYS ile 3 boyutlu
elemanlar kullanilarak gerceklestirilmistir. Sonuglar diisiik modlarda oldugu kadar

yliksek modlar i¢in de tutarli sonu¢ vermektedir.

Anahtar Kelimeler: Fonksiyonel derecelendirilmis malzeme, sonlu elemanlar

yontemi, kirig sonlu elemani, karma formiilasyon
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CHAPTER 1

INTRODUCTION

1.1. GENERAL

Materials have played a significant role in society throughout the history. Mankind
always tried to produce stronger materials for building durable structures for shelter.
In early ages of civilization (1500 BC) Egyptians and Mesopotamians mixed straw
and mud to form bricks for constructing tougher and more enduring buildings.
Afterwards in 1800 AD, concrete became a widely used composite, which is created
by mixing cement, aggregate and water. Later, in early 1900’s, fiber reinforced
plastics, a composite consisting of a polymer matrix reinforced with fibers, ended up
as an essential material for aerospace, automotive, marine and construction

industries.

A preferable way of combining two materials, preserving their properties, is to
combine them by a varying percentage over the cross section. For example, attaching
a ceramic surface at the top and a steel surface at the bottom with a smooth transition
zone, so called the functionally graded materials (FGM), is accepted as a better way

of bonding rather than sticking them directly without gradation.

By this procedure, both materials protect their best properties — like high strength,
high stiffness, high temperature resistance and low density of ceramics and

toughness and malleability of steel.

FGMs are being used in several industries and sectors like aerospace, nuclear,
defense, automotive, communication, energy etc. As well as they are produced

artificially, the primitive forms of FGMs exist in nature. Bones, human skin, bamboo



tree can be considered as organic forms of FGM. Figure 1 illustrates several organic

and artificial examples that evoke FGM.

Bamboo Tree® Ceramie-metal FGM'

Figure 1 Organic and artificial illustrations for FGM Jha et al. (2013)



The application areas of FGMs can be summarized as follows:
Aerospace: Spacecraft heat shields, heat exchanger tubes
Biomedical: Artificial bones, skins, teeth

Communication: Optical fibers, lenses, semiconductors

Nuclear field: Fuel palettes, plasma wall of fusion reactors

Energy sector: Thermoelectric generators, solar cells, sensors

Automotive: Power transmission systems, breaking systems.

The theoretical concept of producing FGM was proposed in 1984 in Japan (Jha et al.
(2013)). Manufacturing and design process of FGM has become the main topic of
interest in the last three decades. Manufacturing of FGMs can be discussed under
two subtopics which are gradation and consolidation. Gradation is forming the
spatially inhomogeneous structure. Gradation processes can be categorized into
constitutive, homogenizing and segregating processes. Constitutive processes depend
on a stepwise generation of the graded body from pioneer materials or powders.
Advances in automation technology in course of the last decades have provided
technological and economic viability for constitutive processes. Homogenization is
conversion of the sudden transition between two materials into a gradient.
Segregating processes start with a macroscopically homogenous material which is
transformed into a graded material by material transport caused by an external field
(for example gravitational or magnetic field). Homogenizing and segregation
processes yield continuous gradients; but such processes have limitations concerning

the distribution of materials to be produced.

The consolidation processes, such as drying, sintering or solidification, usually
comes after the gradation processes. The processing criterions should be determined
in such a way that the gradient is not wrecked or changed in an unrestrained fashion

(Kieback et al. (2003)).



1.2. LITERATURE SURVEY

With the aim of moving onto the more effective production and use of FGM
materials in engineering applications, several analysis techniques have been
proposed, as well. Most of the analyses of structural members with FGM are based
on theory of elasticity solution techniques in literature. It is worth mentioning that
such analyses offer load and boundary condition specific solutions to the problem

and also focus on linear elastic behaviors of materials only.

An alternative to such analysis would be the development of plate, shell or solid
finite elements that will enable analysis of problems with FGM. It is worth
mentioning that even the available packages like ANSYS or ABAQUS do not
automatically provide such capabilities and require the development of user-defined

subroutines and functions.

As can be indicated from Figure 1 and examples concerning the usage areas of FGM
mentioned above (thermal coating, heat shields, rocket casing etc.), shell and plate
elements are a way more preferable for modeling tools for such structures. For this
purpose, a study has been performed by Reddy and Chin (1998) for the mechanical
and thermal behavior of shell elements with FGM. A finite shell element for the
analysis of FGM is developed in that study and parametric studies of the thermo-
mechanical coupling effect on FGM are also carried out. The parameters are selected
as the distribution ratios of the materials and types of materials. The outcomes of the
coupled formulation and uncoupled formulation are compared with each other. For
the example with ceramic-rich top surface and metal-rich bottom surface plate
element with FGM, the following statements are concluded in that study. The
temperature fields for coupled and uncoupled formulations show little difference but
this difference diminishes as time goes on. On the contrary, the difference between
the displacement fields, for the coupled and uncoupled formulations, starts to
increase as time progresses; but this difference decreases as the ratio of ceramic

material increases.



In the study of Reddy (2000), the thermo-mechanical behaviors of plates with FGM
have been analyzed using finite element formulation making use of von Karman type
large strain formulation. Nonlinear first-order plate theory and linear third-order plate
theory have been used for the analyses. The results indicate that, the basic response
of the plates with FGM that are constituted by metal and ceramics, do not necessarily
lie between the full metal and full ceramic states. The non-dimensional deflection
was found to reach a minimum at a volume fraction index that depends on the

properties and the ratio of the properties of the constituents.

An alternative finite element modeling approach compared to shell or plate element
is the development of beam finite elements. Beam theories describe section
kinematics of a beam element, and the beam theories are grouped under Euler-
Bernoulli, Timoshenko and Higher Order beam theories in the literature.
Development of beam finite elements through the use of various beam theories is
mainly categorized in two, where the most widely adopted choice is the use of
displacement-based approach and the alternative method is the use of mixed
formulation approach. Within the context of displacement-based formulations and
Timoshenko beam theory assumptions for uniform prismatic beams with
homogeneous materials, beam finite elements proposed by Friedman and Kosmatka
(1993) and Reddy (1997) prove to be a shear-locking free element and provide the

exact the stiffness matrix under linear elastic response.

In terms of development of beams with FGM, the earliest and the most popularly
cited work is the beam finite element proposed by Chakraborty et al. (2003) in which
they developed a new beam element to study the thermo-elastic reactions of FGM
beams. The generation of shape functions, stiffness and mass matrix for FGM beam
has been explained in that research. The stiffness matrix is free of shear locking since
the degree of transverse displacement shape function is higher than the slope shape
function as discussed by Reddy (1997). Numerical examples concerning the thermal
and static loadings, free vibration and wave propagation results are also attached to

the research. It is worth mentioning that the study by Chakraborty et al. (2003) is



popularly cited in the literature and is considered as a benchmark formulation for

FGM beams.

Stability analysis of functionally graded beams has been carried out in the study by
Mohanty et al. (2011) through the use of the finite element proposed by Chakraborty
et al. (2003). In that work, the researchers examined the dynamic stability of
functionally graded ordinary beams and functionally graded sandwich beams on
Winkler’s elastic foundation. Functionally graded ordinary (FGO) beams consist of
first material 100% at top of the section; second material 100% at the bottom of the
section with a transition zone from topmost to bottommost of the section. Whereas,
in functionally graded sandwich (FGSW) beams; the transition zone appears as a
core material between first material at the top with a finite thickness and second
material at the bottom likewise. In Figure 2 section (A) represents the functionally
graded sandwich beam and section (B) represents the functionally graded ordinary
beam in which the transition is through the whole section. In that work, it is
concluded that for a functionally graded sandwich beam; if the materials vary with
respect to the power law the beam becomes less stable as the thickness of the FGM
core increases. In the other case, as the materials vary according to exponential law,

an increase in the thickness of the FGM core improves the stability of the beam.

In study by Hemmatnezhad et al. (2013), large amplitude free vibration analysis,
imposing von Karman type of large strain, of beams with functionally graded
materials, is realized. The finite beam element formulation for FGM, proposed by
Chakraborty et al. (2003) has been used in that study, as well. The results obtained
from numerical simulations are compared with theory of elasticity solutions available

in the literature.

Besides the development and use of displacement-based finite elements, it is also
possible to formulate mixed formulation finite elements for the analysis of FGM
beams. In the literature, it appears that there is no such element proposed and used
for the analysis of beams with FGM. It is furthermore worth to mention that inelastic

analysis of FGM members has not been undertaken in the context of beam finite



elements. In a study by Bocciarelli et al. (2008) the use of Von Mises plasticity
model for metallic materials and Drucker-Prager plasticity model for ceramic type
materials have been proposed for the analysis of FGM members. In that study, solid
finite elements have been used for modeling FGM. Identification of the material
parameters of FGM requires both experimental studies and analytical validation, and
this requires significant amount of effort. In this thesis, an effort is also demonstrated

for the inelastic analysis of FGM beams.

Material A

Transition
one

Material B

A B

Figure 2 Variation of material properties on the depth of FGM beams

For the sake of completeness of literature survey, the development and use of force-
based and mixed formulation beam finite elements is also presented in this part.
Since the proposed beam element actually bases on the same assumptions of the
initial force-based element proposed in the literature, such a presentation is necessary
in order to point out also the differences of the element proposed in this thesis.
Displacement-based elements are formulated within the context of principle of
virtual displacements or more generally called as principle of minimum potential
energy. In this approach, displacement fields are the independent variables. In mixed
formulation approaches, stress and strain fields are also brought into the functional
and the satisfaction of the equations are weakened. A summary of the strong and
weak satisfaction of variational principles are listed in Table 1. For the description of

the fields listed in the table, refer to the work by Saritas and Soydas (2012).



Table 1 Strong and Weak Satisfaction of Parameters in Variational Principles

Varied Functional
Strong Satisfaction Weak Satisfaction
Fields Name
£€=V°u on Q .
Potential dive+b=0 on Q
u c=o(c) on Q
Energy t=t on T .
u=u" on [,
dive+b=0 on Q
Complementa; £=V’u on Q
° P i 6=0c() on Q
Energy . u=u" on [
t=t on I,
dive+b=0 on Q
Hellinger- £=V°u on Q
u,c 8 c=o0(c) on Q
Reissner u=u’" on [,
t=t on T,
) £€=V°u on Q
dive+b=0 on Q
6. No name 6=0o() on Q
t=t on [,
u=u on [
dive+b=0 on Q
£€=V'u on Q
u,0,8 Hu-Washizu - c=o0(c) on Q
u=u" on [
t=t on T,

The last two decades witnessed the development and further improvement of the
nonlinear force-based beam element proposed by Spacone et al. (1996). In this
regards, detailed literature survey is provided by Saritas (2006) and Soydas (2013).
Variational base of force-based beam elements is recently shown by Saritas and
Soydas (2012) to be the same as that of mixed formulation approach, and it was
shown that the use of Hellinger-Reissner or Hu-Washizu functionals provide the

mathematical base of the force-based elements.



Initial and the most widely cited work in terms of development of a nonlinear force-
based beam finite element was first documented in detail by Spacone et al. (1996).
The element sets forward to the consistent numerical implementation of the element
state determination in the context of a standard FEM package. For the displacement-
based finite elements the iterative process depends on the residual forces whereas for

the proposed element, the procedure is based on the residual deformations.

In a recent study by Soydas and Saritas (2013), an accurate nonlinear 3d beam finite
element is proposed for inelastic analysis of solid and hollow circular sections. The
element is based on Hu-Washizu functional and axial force, shear forces, bending
moments about both axes and torsional moment is coupled through the use of 3d
material models and fiber discretization of the section and the use of several
monitoring sections along element length. The element proposed in that work proved
to be very effective in capturing the behavior of long and short members that are

loaded and restrained in various fashions.

1.3. OBJECTIVES AND SCOPE OF THESIS

In this thesis, the development of a force-based beam element for the analysis of
functionally graded materials is considered. The beam element that is developed in
this thesis is based on the use of force interpolation functions instead of the
approximation of displacement field. The response of the proposed element is
calculated through aggregation of responses of several monitoring sections. Section
response is calculated by subdividing the depth of a monitoring section into several
layers and by aggregating the material response on the layers. Since the formulation
of the element bases on force interpolation functions that are accurate under both
elastic and inelastic material response, the proposed element provides robust and
accurate linear and nonlinear analysis of FGM beams with respect to displacement-
based approach. The formulated element is compared with a previously developed

displacement-based beam finite element by Chakraborty et al. (2003).



For inelastic analysis, von Mises plasticity model with isotropic and kinematic
hardening parameters is assigned for both materials for simplicity. A simply
supported pin-pin FGM beam is divided into different numbers of elements (both
force-based and displacement-based beam elements), and the simply supported
system is exposed to support vertical displacement from the mid-span. The results
indicate the accuracy and robustness of the proposed element over the displacement-
based element in terms of global level response as well as local measures such as

forces and stresses.

The second effort in this thesis focuses on the vibration characteristics of the
proposed beam element with FGM. Consistent mass matrix for the force-based
element is implemented for the validation of the vibration modes and shapes
obtained from this element. For this effort, benchmark problems are both analyzed
with proposed beam element and with 3d solid elements in ANSYS. The results
indicate that proposed element provides not only accurate results in lower modes but

also in higher modes of vibration.

1.4. ORGANIZATION OF THESIS

In the second chapter force-deformation relations of proposed beam element will be
presented and some principal beam theories and their section kinematics will be
mentioned. Then, the implementation of force-based elements into a nonlinear FEM
package and the convergence rate of the Newton—Raphson iteration procedure will
be discussed and derivation of the stiffness matrix and the consistent mass matrix for

the proposed force-based beam element will be presented.

In the third chapter; a previously developed displacement-based beam element for
FGM will be provided for the sake of completeness of the thesis work. The
formulations for the element will be discussed in detail, where it was observed that

some of the coefficients presented in the original work required correction.

10



In the fourth chapter; the material model, which is selected to mimic the behavior of
materials in the FGM section, has been formulated. The radial return mapping

algorithm for the von Mises plasticity has been presented.

In the fifth chapter numerical analyses for the proposed beam element will be held
out. Firstly, non-linear analysis will be realized for the force-based element and then
the results will be compared with the displacement-based element. Secondly, modal
analyses will be realized for the proposed force-based finite beam element. The
modal shapes and natural frequencies will be compared with the results obtained

from ANSYS.

Finally in the sixth chapter, conclusion and recommendations for further studies will

be documented.

11
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CHAPTER 2

FORCE-BASED ELEMENT FOR FGM BEAMS

In this chapter, first, force-deformation relations of frame element will be clarified,
and then some principal beam theories and their section kinematics will be
mentioned. Thirdly, the implementation of force-based elements into a nonlinear
FEM package and the convergence rate of the Newton—Raphson iteration procedure
will be discussed. Development of the proposed beam element is done in a basic
system where rigid body modes are eliminated. For this reason, conversion of the
beam response from the basic system to the complete system is cast in this chapter
after the formulation of the beam element in the basic system. Finally, derivation of

the consistent mass matrix for the force-based beam element is explained.

2.1. FORCE-DEFORMATION RELATIONS OF FRAME ELEMENT
WITH SHEAR DEFORMATIONS (TIMOSHENKO BEAM THEORY)

In this subtopic the element force relations, force shape functions and the derivation

of section flexibility and stiffness matrices will be clarified.

1

y y
/N N\

Figure 3 Simply supported basic system for force-based beam element
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Figure 3 shows the element end forces of a simply supported (pin-pin) basic system.
In the absence of element loads the axial force and shear force distribution is

constant and moment distribution is linear with respect to x-axis.

1 L& L M&, ppy
! ! P
1,4, 7,4 1+,
L L L

Figure 4 Nodal end forces and beam statics for force-based beam

From Figure 4 the axial force, shear force and moment equations can be derived

through simple statics knowledge as follows

N(X) =q

X X
M(x) = (E—l)% +(E)q3 (2.1)
V(x)=—(0,+0,)/L

Equation (2.1) can be written in matrix notation as

N (x) 1 0 0 ql
s(X)=sM(X)p=]0 x/L-1 x/L |302 :Q(x)g (2.2)
V(X) 0 -1/L -1/L||93

In (2.2), the section forces, force interpolation (equilibrium) matrix and element

force vector will be shown as S(X), b(x) and q, respectively.

Now if the principle of virtual forces is used, the following equality can be written.

oq'v =

58" (x)e(x)dx (2.3)

O ey
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In (2.3), e(X) represent the section deformations, where the components of this vector

will be mentioned later in this chapter.

The same interpolation functions have been selected for the force field and the virtual

force field, thus

557 (x)= 590" (¥) (2.4)

Inserting (2.4) into (2.3) we obtain the element deformation vector V in the basic

system as follows

v=|b" (x)e(x)dx (2.5)

O ey

Making use of the chain rule, flexibility matrix of the beam element is obtained.

F= Jor 0 1, bexdx (2.6)

oe(x) 4 05X
0s(X) 69

In (2.6) f is the element flexibility matrix. The terms are written

as f, and Db(X), respectively. The matrix f_, so called section flexibility matrix can

be computed from the inverse of the section stiffness matrix through the relation

f. =k.'. Section stiffness matrix k¢ will be introduced in the next subtopic.

2.2. SECTION KINEMATICS

In this part two beam theories and their section characteristics will be mentioned.
First the Euler-Bernoulli beam theory will be represented, where the plane sections
remain plane and the angle between the normal of the section and tangent to the

deformed axis of the beam is zero, thus no shear deformation takes place in this

15



beam theory. The second one is, Timoshenko’s beam theory, where in this theory
plane sections remain plane likewise, but the angle between the normal of section
and the tangent to the deformed axis of the beam is not necessarily equal to zero.
According to Timoshenko’s beam theory the beam element can exhibit shear

deformations.

There are also other beam theories where the plane sections do not have to remain
plane, so called higher order beam theories. A discussion of higher order beam

theories is available in the paper by Reddy (1997).

2.2.1. Euler-Bernoulli Beam Theory

Figure 5 shows the cross section of a beam element. An arbitrary point P is described

on the cross section.

Ay

Figure 5 Arbitrary cross-section for a solid beam element

Assuming that Euler-Bernoulli beam theory assumptions hold, we can only calculate

a non-zero strain value that is the normal strain, and it is expressed as follows
(X, Y,2) = &,(X) = Y&, (X) + 2x (X) 2.7)

Since our analysis is in 2d, we do not seek for moments around y axis; thus curvature

about y axis is not taken into account, and Equation (2.7) can be simplified as
g, =&,(X) = yx(X) (2.8)
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Hereupon, the curvature about z axis is simply denoted with x . We can show (2.8)

in vector notation as

e, =1 —y]{i’j((:)) } 9)

2.2.2. Timoshenko’s Beam Theory

The difference between Timoshenko and Euler — Bernoulli beam theories is that, the
plane sections after deformation will not remain normal to deformed axis of the

beam; thus another deformation variable on the section ¥ is introduced to represent

the angle difference between the normal to the section and the tangent to the

deformed axis of the beam.

Rest of the formulations in this chapter will constitute utilization of the Timoshenko
beam theory section kinematics, where the strains on the section of a 2d beam

element can be written as follows
1 0 a
8 —
S (2.10)
Vxy 0 0 1
Y

or

e
{ X}=§s@(><) (2.11)
Ve

Xy

where y is the shear deformation of section on the x-y plane in (2.10), a, is the 2x3

compatibility matrix and € is the 3x1 section deformation vector in (2.11).

Now we will establish the relation between section forces and section deformations.

5(x) = &' gdA 2.12)
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where

{ax} {E OHSX}
o= = (2.13)
Ty 0 G||7y

N (X)
5(X) =1 M(x) (2.14)
V (x)

S(X) is the vector of section forces, where N, M and V are axial force through x axis ,

moment about z axis and shear force along y axis, respectively.

Substituting (2.11) and (2.13) into (2.12) we get

JE 0
§(X)=U§s {0 G}QsdA}Q(X) (2.15)

Where the term in brackets is K, which is called the section stiffness matrix. If the

material properties do not vary through the section depth, section stiffness matrix can

be written as follows

E -yE 0 EA -EQ 0
k=[|-yE yE 0|dA=|-EQ EI 0 (2.16)
A0 0 G 0 0 GA

Where, | is the moment of inertia about the bending axis, Q is the first moment of the
area about the bending axis, and if the bending axis matches with the geometric
centroid then Q is equal to zero. In above equation, GA term is usually corrected for

the presence of non-uniform distribution of shear over the section, and x,GA is

substituted instead of GA.

Since we are dealing with FGM; Young modulus (E) and shear modulus (G) vary
through the depth of the section. So, the modulus matrix cannot be taken outside the

integral. For FGM sections k, must be computed as follows
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LB 0
Iss—ias{ . G(y)}asdA 2.17)

Generally two types of material distribution functions are used for FGM. These are
the exponential law and power law. The exponential law is frequently used in

fracture studies for FGM, but it does not display curvature for both directions.

-

n=1/3 n=1/2

Figure 6 Various FGM sections for different values of n

The exponential law can be indicated as follows Chakraborty et al. (2003).

oY) = 9, exp(—o“( —Z—hyD
_Lo e
°" zlog[ﬁbj

Likewise, the power law can be written as

(2.18)
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oY) = (@, —sob)(%%j + 9, (2.19)

Here ¢o(y) represents the material properties such as elastic modulus, shear modulus,
thermal expansion coefficient, mass density etc. @, and g, stand for the topmost

and bottommost materials, respectively. It is suggested that the power coefficient n
can be taken between 1/3 and 3. Otherwise, FGM would contain too much of one
phase (1/3 or 3 contributes to %75 of total volume) (refer to the work by Nakamura

et al. (2000)).

Figure 6 and Figure 7 show the material distribution for several FGM sections with

different power law coefficients (n).

1
n:
0.75] . n=4
n:
< n=1
o 0.50]
o)
= n=0.
n=0.2
0.25]
n=0.125
0]
pbottom l)top

Material Properties

Figure 7 Distribution of ingredients for different values of n
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2.3. TRANSFORMATION BETWEEN BASIC SYSTEM AND COMPLETE
SYSTEM

In this part, conversion from simply supported (pin-pin) basic system to the complete
system will be discussed. In the basic system, rigid body modes of displacements are

eliminated, thus there are only the element deformations.

In 2d case, there are three element deformations, namely the axial deformation and
the two end rotations for the simply supported basic system. We can also choose
cantilever basic system as an alternative, and in that case assuming the left end fixed,
there will be one axial deformation, one transverse displacement and one rotation as

element deformations existing on the right end of the element.

In the complete system, the element has two nodes and at each node there are 3
degrees of freedom, i.e. the translations along and transverse to the element and the

rotation at that node.

The necessity of the transformation between the basic system and the complete
system stems from the formulation of the force-based element in the basic system
and the fact that the FEM program will provide nodal displacements in the complete

system.

From Figure 8, making use of the small deformation theory, the compatibility

equations between element deformations and nodal displacements are derived as

follows:
v, =u, —U,
v, =U, -« (2.20)
v, =U, -«

where o = Us—u,) luz)
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Vorlp {_‘f\yqs

& V.G, PIN - PIN BASIC SYSTEM

DEFORMED SHAPE

Uy L Uy
U29p2 U5;P5
™ UpoP UgPs 1, > NODE BEAM ELEMENT
U33p3 L U4,p4

Figure 8 Conversion from simply supported system to 2 node beam element

Equation (2.20) can be written in matrix notation as

— _LI1
1001 0 o0fluy
Vl

1 1 u,
up=|0 & 10 —2 0f 2.21)

Vs 1 1 u4

<~ 0o — 00 — 1%

LT L L,

6

a ?

Equilibrium of the basic element forces and the nodal force vector in complete

system can be cast as follows:
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-1 0 0
p
e L1
P, L L q
0 1 0 '
Pl 0 (2.22)
P, 0 0 q
3
pS 0 _l _l g
Ps L
5 L0 0 1]

Given that basic element forces are related to the basic element deformations with
the relation q = kv, we can substitute (2.21) in (2.22) to get

p=k,u (2.23)

~el

where k,, = a'ka is the element stiffness matrix in complete system for the two node

beam element. This stiffness matrix is actually now calculated in the element local
coordinate system. Further transformation can be easily achieved by rotation to the
global coordinate system in order to consider the angles between the local
coordinates X, Y and z and the global coordinates X, Y and Z. In depth discussion of
these transformations is available in Filippou and Fenves (2004) for 2d case and

Soydas (2013) for 3d case.

24. STATE DETERMINATION OF FORCE-BASED ELEMENT

Implementation of the force-based element is sought in standard finite element
software that is based on displacement method of analysis. In such a solution
platform, displacements are incremented iteratively in order to achieve convergence
to the applied loads. Since the force-based element requires the input of element
forces and its output is element deformations, an element state determination
procedure is necessary for the force-based element to be a part of the solution

strategies of displacement-based solutions.
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The general procedure for handling nonlinearity in displacement-based finite element
solution platform can be summarized as follows. Finite element program solves the

nonlinear system of equations between applied forces P, and resisting forces P, .

E)app
P —B(W=0 (2.24)

Since the equation is nonlinear, the system must be linearized in order find the
correct displacements that satisfy above equation. By using Taylor’s series expansion
about an initial guess, an incremental iterative solution for global nodal
displacements is obtained as given in the next equation, and this iterative process is

also named as Newton-Raphson method.

{E)app - Er (l,:!|)} _%Aui = Q
e (2.25)

Aui = lSiil{E,app - E)r(g|)}

An initial guess for global nodal displacements can be taken as U, =0 for the start of

analysis or the last state of converged nodal displacements.

After calculation of each increment, global nodal displacements U are updated and

sent to each element with the purpose of receiving back element forces and stiffness.

Since the force-based element actually provides output of element deformations, then
the element state determination can be established by imposing the nodal
displacements calculated from Equations (2.21) and (2.25). We denote the imposed
element deformations received from the finite element program as (V). Imposed
deformations should match with the state of the force-based element, and this

compatibility statement can be written as follows:

7-v(q)=0 (2.26)
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The term v(q) in (2.26) is the response of the force-based element, and under general

case the response of the element is nonlinear and requires linearization as written in

the next equation:

_ v
V-lv(Q)+—= (9-9,)|=0 (2.27)
o =
~19=%  Aq
fo ~
pg=[ '] {7 v} 228)
G, =0+ Ag (2.29)

. -1
In (2.28) the term inverse of section flexibility matrix [Isl] , that is equal to section

stiffness matrix K, can be computed from (2.17).

With the calculation of new updates for basic element forces from Equation (2.29),
new values of section forces can be obtained by the use of Equation (2.2), i.e.

s(X) =b(x)q. Since the section state determination requires the input of section

deformations but not the section forces, then one more effort is necessary to match

the imposed section forces calculated from s(x) =b(x)q with s(e). For this effort,

the imposed section forces are denoted with a hat value to signify the imposed

quantity, the equality to be satisfied is written as follows:
5-5(8)=0 (2:30)

The section deformations must be compatible with element end forces. The term

s(e) will be linearized as follows
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s—|se)+2  (e—g)|=0 (2.31)
58 P e
~1e=gy Ae
L ks |
Inserting § = kg(x)g into (2.31), we get
ae=[k!]" {boa-see)) (2.32)
&, =& +Ae (2.33)

The element deformations will be computed as given in Equation (2.5) and with the

new values of section deformations computed from Equation (2.33), we obtain
L
Vi = _[DT ()&, (X)dx (2.34)
0

Equation (2.32) requires the calculation of section stiffness matrix k. The numerical
computation process of k; for beams consisting of only one material can be
summarized as follows. The material subroutine reads the section deformations (¢, )

and history variables (in case of hardening) at each layer of the beam section and at
each integration point along the length of the beam as input, then it takes out the
consistent tangent modulus and stresses as output variables. The consistent tangent
modulus and stresses at each layer of the beam’s cross section are transferred into a
numerical integration process to acquire the section stiffness matrix and section
forces as written in the following equation:

0o

ki=|a, —adA (2.35)
JA Og
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For beams with FGM, the section deformations and history variables are sent to two
different material subroutines separately and then these two separate material outputs

are added in accordance with their weighted material ratio at the layer.

With the calculation of section stiffness matrix, the element flexibility matrices ( f )

and element stiffness matrices (K) will also be updated with the use of following

equations:

—

fi+1 —

lsi+l :[

(2.36)

i+17-1

b™ (%) f"b(x)dx
']

1=

i N . o : .
where f"' = [Igs'“] is the section flexibility matrix corresponding to €.,(X) each

section deformations.

The convergence check is handled at the global level through the satisfaction of

~P.(u;)| <TOLERANCE, the

equilibrium equations within a tolerance, i.e. H Poo

iteration stops.

2.5. THE CONVERGENCE RATE OF NEWTON-RAPHSON METHOD

Newton—Raphson iteration procedure is utilized for the solution strategy of the
nonlinear system of equations. The stiffness matrix is updated and its inverse is
calculated at each iteration. As exhausting as it may seem in terms of computational

cost, the convergence rate of this method is quite powerful.

The convergence rate of the Newton—Raphson method can be proven as follows.

First the Taylor series will be portrayed

f(a)=f(x )+

Po@=x) , 'O @—%) | 190 @=x)", o 3
¢ « y .

Higher Order Terms (H.O.T.)
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Making use of the mean value theorem, one can prove the existence of such point

X =¢ that satisfies (2.37) in the following form

f(a)=f(x)+

fo@=x)  fE)a=x) _, (238)
1!

2!

In (2.38),

" _ 2
f (5)(20[' %) represents the H.O.T. (higher order terms).

The iteration steps of Newton—Raphson method is visualized in Figure 9

Figure 9 Visualization of Newton—Raphson iterations

Following relation can be comprised from Figure 9

_y )
Xn+l - Xn f ,(Xn) (239)

After dividing (2.38) with f'(x,) and rearranging the terms, the following equation

is obtained

{ e _Xn}'a+ P&@-x) (2.40)
fi(x) 21'(x,)
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Inserting (2.39) into (2.40) leads us to the final relation between the error terms of

successive iterations.

o, G,
=300 @) 241
|| én

Taking the absolute of right and left sides, we can write

(&,) (2.42)

f \J
AL

Since there is a quadratic relation between the errors of successive iterations, the
convergence rate of Newton—Raphson iteration method is quadratic provided that the

tangent to the function is accurately calculated.

2.6. FORCE-BASED CONSISTENT MASS MATRIX

In this thesis, mass matrix of the proposed element for FGM beams is obtained in a
consistent manner with the formulation of the element. Since the proposed element
does not require the use of displacement interpolation functions, it is necessary to
derive the displacement field along the length of the beam in a consistent way with
the force-based formulation. This can actually be obtained in a simple fashion with
unit dummy load method, i.e. with the use of principle of virtual forces approach as
done in the derivation of the element in Section 2.1. Such an approach was proposed
by Molins et al. (1998) and successfully implemented and used recently by Soydas
(2013). With this alternative derivation of consistent mass matrix, we can obtain the
mass matrix of any type of beam element that is uniform or tapered and with

homogeneous or heterogeneous material distribution.

Derivation of the mass matrix within force-based approach relies on the use of
cantilever basic system due to its simplicity in establishing the displacement field.

For the cantilever basic system, the basic element forces are axial force and
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transverse (shear) force and moment values at the right node, while the left node is
fixed. Actually these three basic forces exactly match with the element end forces for

the complete system as well. Denoting the basic forces of cantilever system as (.,
we can calculate the section forces as follows:
N(x)

s() =1 V(x) [ =b,(xL)q, (2.43)
M (X)

Where the section forces are arranged as given above, and the force interpolation

matrix for the cantilever basic system is

10 0
b.(x,L)={0 1 0 (2.44)
0 (L-x) 1

The section mass and stiffness matrices are calculated as:

m,(x) = [&/ p(y) &, dA (2.45)

k(0 =[al {E(y) (2.46)

Js
A 0 Gy~

where a, the section compatibility matrix previously introduced in Equations (2.10)

and (2.11) is rearranged as follows:

1o -y
as{o | 0} (2.47)

Mass matrix of the force-based element is written in a 6x6 dimension, i.e. in the

complete system with 3 degrees of freedom per each end node, as follows:

mll le
m, = { - } (2.48)

m21 m22
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Where the components of element mass matrix are calculated from sub-matrices

m,, = ;' [l (x, L)ls;%x)[ [or(xOm, (&)1, (&) £'d éjdx (2.49)

m,, = f'

© ey

by (, L)&‘(x)[ [ol xHm.(&)(0] (0,6~ 1, (&) 1,bI (0, L)) ds]dx (2.50)
my, =m,, =—0,(0,L)m,, +Ibc (0,x)m, (x) fcp(x) tc-ldx (2.51)

m, =B, (0.)m, + [ b, (0.0m, (x) (b7 (0.0~ £, (0 b7 (O.L))dx  (2.52)

In above equations, element flexibility matrix for the cantilever system is denoted as

f., and it is calculated as follows:

f, = [ B (x, L)' (0b, (x, L)dx (2.53)

S e

And the partial flexibility matrix f_, of the cantilever system is given as:

Fp 00 = [0 (£,50k.' 0B, (&, X)d¢ (2.54)

Force-based consistent mass matrix for prismatic beams with FGM obtained from
Equations (2.48) to (2.53) are compared with the mass matrix of the displacement-
based element proposed by Chakraborty et al. (2003) that is presented in the next
chapter, and they are observed to be giving the same matrix for uniform prismatic
FGM beams. However, in the case when the beam is tapered, then the displacement-
based approach will result in an approximation, while the proposed approach will

still give the exact consistent mass matrix for FGM beams.
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CHAPTER 3

A DISPLACEMENT-BASED ELEMENT FOR FGM BEAMS

In this chapter, a previously developed beam finite element for FGM Chakraborty et
al. (2003) will be discussed. Some of the formulations and derivation steps that have

not been clearly stated in Chakraborty et al. (2003) are presented in detail.

Also, during this investigation, it has also been detected that a coefficient used in
shape functions appears to be represented incorrectly. Since the mentioned finite
beam element will be used in the numerical examples and verifications, the

presentation of this element is justified for the sake of completeness.

3.1. FORMULATION OF DISPLACEMENT-BASED ELEMENT

Figure 10 Coordinate system for the finite element model

In Chakraborty et al. (2003), considering Timoshenko beam theory, the axial and

transverse displacement fields are expressed as,
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U(X,Y,z,t) =u(X,t)— yg(x,t)
W(X,Y,z,t)=w(Xx,t)

The strains are expressed as

_au

€ =U,, —Y9,,
T o y¢
ou oW
yxy :_+_:_¢+W’x
oy ox

Where (.),x represents differentiation with respect to x-axis.

The relation between stress and strain is expressed as

{ox}_{E(y) 0 He}
z-xy 0 G ( y) 7. Xy
The strain energy (S) and kinetic energy (T) are written as

L
S :ljj(axgx +7,,7,, )AAdX
2 0A

L
T :lJ. p(Y)U? +W?)dAdx
20A

3.1)

(3.2)

(3.3)

(3.4)

(3.5)

Where () represents the time derivative. p(Yy), L and A are density, length and the

area of the cross section. Applying Hamilton’s principle, the following equations of

motion are obtained. The implementation of Hamilton’s principle is explained in

Appendix.

ou: IOU_ Ilﬁ_ Allu’xx +Bll¢9xx =0

ow: IOW_ ASS (Wﬁxx _¢’x ) =0

5¢ : Izé - |1l'J' + Bllu’xx _D11¢’xx _Ass (an _¢)
Where
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[A, B, Du]=[[1 v y']|E(y)dA
As; = [G(y)dA (3.7)
[, L LI=[[1 vy ¥ ]e(y)dA

The interpolation functions for uU,w,¢ are selected for the element to be giving a

shear-locking free element.

In case of assigning interpolation functions improperly for the vertical translation and
slope, the phenomenon called shear locking occurs. Especially, if linear interpolation
functions are assigned for both vertical translation and slope, then the beam element
behaves very stiff for larger values of length to depth ratio. To deal with this
phenomenon, one should use higher order interpolation functions for vertical

translation than slope.

Since the order of interpolation function for vertical translation (W) is higher than the

order of the interpolation function for the slope (@) as discussed by Reddy (1997).

U=C, +C,X+C,X
W=C, +C,X+C, X" +C,X’ (3.8)

P =Cy +CoX+C X

The term B,, and |, is zero for homogenous sections. Completing the following

formulations with the specified shape in such case will end up with the stiffness
matrix in Reddy (1997), i.e. the Interdependent Interpolation Element for
Timoshenko’s beam theory. This so called beam element is been utilized as the

default frame element for some popular FEM packages like SAP2000.

Equation (3.8) is substituted into the static part of (3.6). The static part of (3.6) is
obtained by eliminating the terms with time derivatives, thus the governing partial

differential equation is transformed into a system of ordinary differential equations.

The static part of (3.6) can be shown as
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Su:—AU,, +B g =0 (3.13.1)

I XX

SW:—A (W, —F1, ) =0erre (3.13.2)
54:B U, —D, b, —A (W, —¢)...(3.13.3)

Also

2c,
C; +2C,X +3¢,X°
= 2¢, +6C, X

[

I XX

=

b3

9
x
X

S =
>

C, +2C,,
2¢,,

ASS
-
>
<

Substituting (3.10) into (3.9);
B
C; =Gy Al_li

Substituting (3.10) into (3.9),

2C, +6C,X—Cy —2C,;X=0

From (3.12)
c
C7 :?0
C
C, :—29

Substituting (3.10) into (3.9); and using (3.11)

2 2
2B,,c, -2D,,c,, — As(Cs +2C,X+3C, X" —C; —C,X—C o X~ =0

2B,,¢; —2D,,¢,p — A;5(Cs =¢5) =0
B 2
2 Alll C10_2D11C10_A55(C5_C8):0
1

Cpo = _ﬂ(cs _Cg)/z
C,=a(C;—C)/2

36

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)



Where = _AAs and o = B A

(Bllz_DllAll) (Bllz_DllAll)
Using (3.13) and (3.14) interpolation functions can be rewritten as

1
u=c, +c2x+505(c5 — )X’

1 1
w=c, +c5x+5ch2 _E'B(CS —-c)X’

¢=cg+c9x—§/f<c5—cg>x2

In matrix form

u
Uy =|w|=[N()]{a;
¢

{a} ={c,,c,,c,,Cs,C;,Co}

(3.15)

(3.16)

A relation can be formed between column vector {a} and nodal displacements by

using boundary conditions for each node, (at x=0 and x=L)

L [N
©] {N(LJ

{0} =[G]{a}
{a} =[G]{u}

Where[N(X)],[G]" and [G] are

1 x 0 —lozx2 locx2 0
2 2
[N(X)]=|0 0 1 x—lﬂx3 lﬂx3 1y
6 6 2
0 0 0 —lﬂx2 l+l,b’x2 X
L 2 2 ]
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0 0 1 0 0 0
0 0 O 0 0
1 1
[G]—l — 1 L O —EOCL EO(L 0 (319)

! 0 0 0 0 0
1 -6 —3alL 1 6a —3alL
L plr+12 pL+12 L Bl+12 BL+I2
0 1 0 0 0 0
[G]= 0 -12 ﬂL2 +6 0 12 -6 (3.20)
pL+12L L +12 pL+12L LA +12
0 0 1 0 0 0
-6p _ -(4pL+12) 6  -2pL-12)
i pL+12 B +12L AL +12  pU+12L |

O ={u w ¢4 u w ¢ }T is the vector of nodal displacements of the element.

The exact shape functions can be derived by multiplying [N (X)] and [G]

u

{up =| w|=[N()H{a} =[NOOI[GI{} = [R(x)]{0}
¢

[ROOT=IN()G]

(3.21)

[N(X)]:[&u(x) N, (X) t*éqj(x)}T is a 3x6 matrix containing the exact shape

functions for axial, transverse and rotational degrees of freedom.

Element force members (axial, shear and moment) can be expressed as
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V, = [7,dA (3.22)
A

Imposing (3.2) and (3.3); (3.22) can be written as

Nx = Allu’x _Bll¢’x
V, = As(W,, —9) (3.23)
|\/Ix = _Bllu’x +D11¢’x

From (3.23) element force vector can be associated with vector {8} in matrix form as

{F}=[Gl{a} (3.24)
where [G] and {F} are
[0 -A, 0 0 0 B, |
00 0 A, A, 0
C_S—O B, O 0 0 -D,, 395
[€1=] A, 0 0 0 —Bn(')
0 0 0 Ass _Ass 0
0 -B;, 0 (aBll_ﬁDll)L (ﬂDll_aBll)L D, |

{Fi=[-N,(0) -V,(0) -M,(0) N, (L) V,(L) M, (D)] (3.26)
The stiffness matrix can be evaluated by substituting (3.17) into (3.24)

{F}=[G][G]{u} =[K]{U} (3.27)

[R(X)] (exact shape functions) and [K] (stiffness matrix) are
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1-— 0 0
L
X L +12L—12x+28% —3/X'L X
ban-1) w(B pX =3pXL) X 1)
L L L
X xp(BL +6L—6x+AXL-2Px) w3 L+ AL +12L—4xpL —12X)
3apxL(—-1)
L L L
[(NO)]=
X
- 0 0
L
X —Xp(=12+28X =3 X
—6oyx(——1) m P3P0 —6xBy(—-1)
L L L
X X (—6L+ X’ L— BXL +6X) xp(3AxL -2 +12)
3opxL(—-1)
L L L L J
A /L 0 -B, /L -A, /L 0 B, /L
12 12
o AV 6A 0 _12AY 6A. Y
L L
D]l 11
-B, /L 6Ay T+3A55y/L B,/L —6Ay —L+3A wL
[K]=
-A, /L 0 B, /L A, /L 0 -B, /L
12 12
_BAY eay o AV 6w
L L
D11 Dl]
B,/L 6Ay —T+3A55y/L -B, /L 6Ay T—3A55y/L
1
where v = >
12+ gL
3.2. THE CONSISTENT MASS MATRIX

(3.28)

(3.29)

The consistent mass matrix is described as summation of four sub-matrices as given

by Chakraborty

et al. (2003).

[M]=[My]+[My ]+ [M,]+[My,]
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[Mu], [MW] and [M ¢] stand for the contributions of axial (U), translational (W)
and slope (¢) degree of freedoms. [M u ¢] represents the coupling between axial and
slope degree of freedoms.

The components of consistent mass matrix are figured as follows

[M,]= I 1T [8, el
[My]= I (%] [, Dex
(™, ] =£|2([x¢]T [, o
(M J= 00T [ Jo [, 13 e

(3.31)

For homogenous sections; since |, is zero, it can be indicated from (3.31) that the

term [M U ¢] yields zero.
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CHAPTER 4

MODELING INELASTIC BEHAVIOR OF FGM BEAMS

In this chapter, firstly the von Mises plasticity and its yield criteria will be presented.
Secondly, evolution equations will be derived for the von Mises model with linear
kinematic and linear isotropic hardening. Finally the stress update algorithm for

hardening plasticity will be indicated.

Generally, von Mises plasticity model is used for modeling the inelastic behavior of
metals. For nonlinear analyses of beams with functionally graded materials the use of
the von Mises plasticity for metallic part and Drucker-Prager plasticity model for
ceramic part of FGM is suggested in Bocciarelli et al. (2008). Despite this
suggestion, as a first effort to the analysis of FGM beams, inelastic analyses carried
out in Chapter 5 will use the same material model for both metallic and ceramic
parts; since it is observed that the degree of material change can actually ensure such
a choice is valid as long as one of the materials state of stress allows such a use.

Detailed explanation will be presented in Chapter 5.

With such a choice, von Mises plasticity model is adopted for describing the inelastic

behavior of both constituting parts of FGM.

4.1. VON MISES PLASTICITY

In solid mechanics, the stress tensor can be divided into two parts. These are called
as the volumetric part and the deviatoric part. The volumetric part does not involve

yielding for the von Mises plasticity since it is only related with the first invariant.
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Only the deviatoric part can provoke yielding. So the following decomposition is

considered

tr(g)l +dev(g) = pl+g’ @.1)

1
o==
3

Where p = %tr(g) andg’ =dev(o).

The J2 — invariant of ¢’ =dev(g) is introduced

J, :—tr[q’~’]—%g’:q' (4.2)
o, 00

Assuming that the material is under such uniaxial stress g, =| 0 0 0| and the
0 0 0

yielding starts ato,, = y,. As mentioned above, deviatoric stresses cause yielding for

von Mises plasticity. Starting from this argument, the norm of ¢, @(o,, =Y,) and

the norm of the applied stress is compared, and we get

2
EYO 0 0
1 2
”dev(gu )” =l 0 3 Yo 0 = EYO
1
i 0 0 -3 yo_

Thus, the von Mises theory of plasticity assumes the following yield function.

- \Eyo <0 (4.3)

gl

’ ’ ! 2
®(g)=\g':q —\Eyo =|
The spectral decomposition of ¢ is considered as
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c=Y.a(n®n) (4.4)

In Figure 11 the visualization of the von Mises yield surface ® =0 in the principal
stress space is shown. The yield surface corresponds to a cylinder with an axis

coincident with the hydrostatic stress state, i.e. 0, =0, =0,

Figure 11 Visualization of the von Mises yield surface

4.2. VON MISES PLASTICITY WITH LINEAR ISOTROPIC AND
KINEMATIC HARDENING

A basic model problem of J2-plasticity with a combined isotropic and kinematic

hardening is considered. The state of the material is described by {¢,&°,a,a},

where ¢,&6",a and a are total strain, plastic strain, internal variable for kinematic

hardening and internal variable for isotropic hardening, respectively.

The free energy function is assumed to have the following form
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=y (c-¢")+y’(a,a) (4.5)

where ¢° =&—¢P. The particular form of the free energy function is chosen as

w:%/c(ee)2+,u§e':ge'+%ha2+%H0~t:q (4.6)

l//e l//p

In (4.6) k,u#, H and h are bulk modulus, shear modulus, linear kinematic

hardening parameter and linear isotropic hardening parameter, respectively, with

e’ =tr(&®).
Stresses are obtained from (4.6) as follows
g=0,y = xe®1+2us® 4.7)

Thermodynamical forces £, f conjugate to internal variables ¢, are obtained as

B=0yy B=0yy (4.8)

Evolution equations for £, and a are obtained by a generalization of maximum

dissipation. The elastic domain is defined as
E={(g,4.) e R“xRxR|§(a. 5, ) < 0} (4.9)
where

VCNNOE H§H‘\E(VO +B)<0
¢=g-p

(4.10)

The boundary of the elastic domain (4.11) defines a yield surface in stress-space.

GE={(g.5.8) eR"xRxR|{(c. . ) =0} (4.11)
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The principle of maximum dissipation states that for a given plastic strain, kinematic

hardening parameter and isotropic hardening parameter £°, ¢, among all possible

stresses g*,é*,,[)’*, i.e. ¢(c, B, ) <0, the plastic dissipation

* *

D'=g:6’~-f:a-fa (4.12)

attains its maximum.

The actual dissipation is obtained by the following maximization problem

D=MAX{g :£" - :a-fa}

koo ¥ 3x3,P3X3 (4'13)
(¢, /. B) e R™xR¥ xR

The maximization problem (4.13) is handled by using the method of Lagrange

multipliers. Instead of the maximizing the dissipation under the constraint condition
O, B,p)<0, D= —o :£P+ B &+ f a will be minimized. The corresponding

Lagrange functional is written as follows
Lo, p.p,0)=~g :£°+f ¢+ f a+ g, b, h) (4.14)

Gives the evolution equation

L :zaqq):zagq):z@:z Ziﬁ”
g:—zaé,q):magq):/zujig (4.15)
az—wﬂq):;t\g
and
220 $<0 Ap=0 (4.16)

From (4.15) one can conclude that £ = ¢
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(4.16) is the loading/unloading conditions (also known as the Karush-Kuhn-Tucker

conditions).

The mathematical meaning of the Karush-Kuhn-Tucker conditions can be

summarized as; either the constraint is active (4 >0, =0) or inactive (1 =0,$<0).

As well as, the physical meaning of (4.16) states that either plastic flow or unloading

occurs.
Hgﬂ\:ﬂ”@@”:ﬂ ﬁ ) (4.17)

A indicates a physical property (norm of the rate of change of plastic strain tensor)

The evolution of « (isotropic hardening variable)

a:@x:@”gﬂ\:@w/gp:gp (4.18)

is directly related to the evolution of plastic strain.

4.3. STRESS UPDATE ALGORITHM FOR HARDENING PLASTICITY

We integrate the evolution equations (4.15) by using an implicit backward Euler

Algorithm.
‘gnpﬂ = énp + }/n+10n+1
Qnﬂ = Qn + 7n+10n+1 (419)
2
Ay =0y + 70y g
n+1 .
Where DFH-] =T and é:nﬂ = Q-n+1 - @nﬂ along Wlth ]/n+l Z 0’ ¢n+l S O’ ﬂ“n+1¢n+l = O

The internal variables at time t, {¢”,,,,} are known. From (4.7) and (4.8)
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gl = 2/“‘5?;1 =2u(g" 1~ &n)
ﬁnﬂ = Hgnﬂ (420)

ﬁnﬂ = han+1

The trial state is defined as

wtrial ' p
o =2u(g - &)

Brii=Ha, (4.21)

ﬂtrial — hO!n

n+1

From (4.19) and (4.21), (4.20) can be rewritten as,

' _ wtrial
O ni1 =0 ni _2ﬂ7/n+10n+1

gnﬂ = @:ﬁl +H yn+1r~1n+l (422)

rial 2
18n+1 =ﬂr:+1| + hyn+1\/;

Using the equations above &  can be written as follows

é:m-l =0\ - ﬂn+l = é::l{lﬂl - (2,U +H )7/n+1 Dn+1 (423)

trial ____trial trial
§n+l =0 _ﬂn+1

Where = ~
Rewriting (4.23)
§n+1 Dr’H—l = gr::lil D:]T;I —(Z/J +H )yn+lnn+1
T (4.24)
Do [0+ et H)z ] = i s

From (4.24) we acquire two important equations. Since x,H,y,,, and norm of a ond

order tensor are always positive the unit tensors, n"@ and n

~Nn+l1 ~Nn+12

must be equal.

Hereupon, rest of the terms in (4.24) should satisfy the equality. Therefore,
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__ ftrial
- rJn+1

trial
= |gna

n

~n+1

§n+1

(4.25)

—Qu+H)y,.,

Current yield function can be written as

h+1 = §n+1

2
—\E(YO *Fo) (4.26)
Substituting (4.25) and (4.22) into (4.26)

2 ria 2
—(2,Ll+ H)]/ml _\/;(yo + rt1+1| +h7ﬂ+l\/;)

rial 2
1% (y0+ rt1+ll)_(2/u+H+_h) V i+l
3 \q,—l

unknown

trial
(I)n+1 = efnzr”;l

(4.27)

trlal
n+1

trlal

" acts as an identifier for the plastic loading. If¢"™ <0, the material is in the
elastic domain, thus a corrector step is not necessary and y,,, =0 since there is no
plastic flow. Otherwise (¢ > 0), the elastic domain is overstepped and a corrector

step is needed to stabilize the material.

In other words, for an elastic step

g,
B ﬁL“:i' gr <0 (4.28)
ﬁnﬁ—l:ﬁrt:?l

For an elastoplastic step y,,, has to be computed from the consistency condition

ria 2
¢n+1 = ¢r:+1| _(2lu+ H +§h)7n+1 =0
¢tria| (429)

n+1

yn+1: 2
2u+H +§h
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For the plastic loading case, by inserting (4.29) into (4.22), the corrector step can be

expressed as

) 2 trial
q'n+l = Q-'ﬂ?l - /ud)n+l N
2u+H + 3 h
ﬂ _ﬂtrial+ H t:i?l n |f ¢tria| > O 4 30
n+l T S+l ~n+l n+1 ( : )
2u+H+=h
SRR
trial
B = B+ Lt 2 \/g
2u+H +§ h'3

Radial return mapping algorithm with isotropic and kinematic hardening is

visualized in Figure 12

— B

§In+1

nn+‘l

o,

(yield surface at t,

yield surface att, 4

—hy |12
Bn+‘1_ Bn_ h {n+1\l3:‘

O,

Figure 12 Visualization of the von Mises plasticity with isotropic and kinematic
hardening through the principal stress state
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CHAPTER 5

VERIFICATION OF THE PROPOSED BEAM ELEMENT

In this chapter, inelastic behavior and vibration characteristics of the proposed force

beam element will be investigated.

There are studies concerning the inelastic behavior of FGM in literature. Bocciarelli
et al. (2008) suggests the use of the J2 plasticity for metallic materials and Drucker —
Prager yield condition for ceramic part; but in this work J2 plasticity will be used for
both materials. In addition; the force-based finite beam element and displacement-
based finite beam element formulations will be compared for different numbers of

layers, integration points and elements for the study case.

The modal analysis for the FGM beam element will be compared with the ANSYS

results for different length / span ratios.

5.1. COMPARISON OF INELASTIC BEHAVIORS

As mentioned above, J2 plasticity rule has been utilized for both materials for the
inelastic analysis of FGM beam elements. The main difference between J2 plasticity
and Drucker — Prager yield condition is; for J2 plasticity, the yield surface does not
depend on the volumetric part of the stress tensor, unlike Drucker — Prager yield
condition. For the one dimensional analysis case, (where the axial stress components
along y and z axes and shear components along the x-z and y-z surfaces are imposed
to be zero) the mentioned difference above simplifies into; the lack of the Von Mises

plasticity to exhibit different yield behavior for tension and compression separately
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by means of quantity, unlike the Drucker — Prager yield condition. To eliminate any
mistake due to the use of J2 plasticity for ceramic part, the alumina is heavily placed
in the compression zone of the beam, i.e. the top material of the beam in our
example, and exposed to decrease rapidly through the depth, obeying the power law
with an exponential coefficient of n=8. In other words, the alumina material is placed
at the compression zone and it swiftly gives place to metallic material as the section
move towards the bottom. The reason behind such distribution type is to minimize
the misleading tensile regime of alumina material in the system; because in the
tensile zone alumina will be assumed to yield at the same stress value as in the
compression region, and this yield value will be far beyond its actual tensile yield
strength. A substantial property of Drucker—Prager yield model is that, a change in
the volumetric stress causes expansion or contraction of the yield surface. The
absence of such behavior for the alumina material (since it is modeled using von

Mises yield criteria in this work) will remain as a deficiency.

Primarily, the structural system for the inelastic analysis study case is visualized in

Figure 13 to enlighten the further explanations about this comparative study.

P,

L2 L2

Figure 13 Inelastic Loading Example

For the inelastic case, the simply supported system shown in Figure 13 will be
exposed to a displacement in the transverse —y direction at the mid-span. The support
conditions are pinned at both ends. The length, depth and width of the beam are 2 m,
100 mm and 100 mm, respectively. The bottom material (steel) properties are E =
210 GPa, G = 80 GPa, o, = 500MPa and top material (alumina) properties are E =
390 GPa, G = 137 GPa, Gy compression = 2000MPa and Gy tension = 250MPa, but since von
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Mises plasticity is used for alumina, yield strength is taken as the compressive
strength, 1.e. o, = 2000MPa for both tension and compression. This assumption is
also validated with the contribution of alumina to total response in terms of state of
stress distributions as presented at the end of this section. The isotropic hardening
parameter and kinematic hardening parameters for both materials are taken as Ex107
of each material and zero, respectively. As a result, elastic perfectly plastic material

behavior is considered in the verification study.

Firstly, load vs. deflection curves for the force-based beam elements and
displacement-based beam elements will be plotted (Figure 14 to Figure 19) for 3, 5,
10 Lobatto integration points (monitoring sections) through the length and 11, 21, 41
trapezoid integration points (number of layers) through the depth of section. One
beam element per half-span will be used for both the force-based and the

displacement-based analyses.

Another analysis for 5 Lobatto points and 41 layers with 4 force-based elements per
half-span will be held out. The outcomes of this analysis are observed to be the
converged nonlinear response, and are used for comparison purposes. Results are

represented in Table 2.

Secondly the force-based and displacement-based beam formulations will be
compared for different numbers of elements. For this analysis, the number of layers
on each section and integration points along the length of each element will be
determined in such a way that they minimize the error for the corresponding beam

formulation type (force-based or displacement-based).
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Figure 14 One force-based element per half-span and nIP =3
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Figure 15 One force-based element per half-span and nIP =5
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Figure 16 One force-based element per half-span and nIP =10

600_ ........... Ced e EBEEE SRR RS nERRaAN RRRT T e ennand RRRA A bLanadLiLe _

500
oy
-
<
- 400 -
g
300
=
&=
7
~ 200 _
=
-
wob /e nl=11
‘nl =2
—nl =41
) 1 | L L 1 1 | 1 | T
0 20 40 60 80 100 120 140 160 180 200 220

Midspan Deflection (mm)

Figure 17 One displacement-based element per half-span and nIP =3
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Figure 18 One displacement-based element per half-span and nIP =5
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Figure 19 One displacement-based element per half-span and nIP =10
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Figure 20 Four force-based elements per half-span and nIP =5

Table 2 L/d =5 Comparison of element responses for varying discretizations

. Peak Mid-span Error of Peak Mid- Initial Tangent Error of Initial
Numl?er of | Number of Force (kN) span Force Modulus (KN/mm) Tangent
Sections Layers -
(Lobatto) | (Trapezoidal) FB DB FB DB FB DB FB DB
nl =11 395.663 | 596.620 | 3.03% | 55.35% | 12.8477 | 12.8477 | 3.48% 3.48%
nlP=3 nl =21 386.272 | 580.629 | 0.58% | 51.19% | 12.5027 | 12.5027 | 0.70% | 0.70%
nl =41 383.421 | 576.904 | 0.16% | 50.22% | 124156 | 12.4156 | 0.00% 0.00%
nl =11 395.733 | 559.594 | 3.04% | 45.71% | 12.8477 | 12.8477 | 3.48% 3.48%
nlP =5 nl =21 386.390 | 544.560 | 0.61% | 41.80% | 12.5027 | 12.5027 | 0.70% 0.70%
nl =41 383.683 | 540.893 | 0.09% | 40.84% | 12.4156 | 12.4156 | 0.00% | 0.00%
nl =11 395772 | 567.841 | 3.05% | 47.86% | 12.8477 | 12.8477 | 3.48% 3.48%
nlP =10 ul =21 386.502 | 552.701 | 0.64% | 43.92% | 12.5027 | 12.5027 | 0.70% 0.70%
nl =41 384.064 | 548.810 | 0.01% | 42.90% | 124156 | 12.4156 | 0.00% 0.00%
Exact Force: 384.045]4 force-based elemets per half-span, 5 sections (nlP) on each element, 41
Exact Tangent: | 12.41562]layers (nl) on each section

As can be seen from the Table 2, increasing the number of layers decreases the error

of peak mid-span force and initial tangent modulus for both force-based elements

and displacement-based elements.

The number of integration points (number of sections) do not affect the initial

tangent modulus. 3 Lobatto points give exact result for the integration of a 31 degree

polynomial, since n Lobatto points give exact result for the definite integration of
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any polynomial with an order of 2n-3. Integral terms that have been utilized to
calculate the stiffness matrices over the length of the beam, consists at most 2™
degree polynomials for both beam formulations; thus 3 Lobatto points are sufficient
to calculate the exact stiffness matrices for the elastic case. Also, it can be assured
from Table 2 that both beam formulations (force-based and displacement-based)
ends up with the same stiffness matrices for prismatic beams with FGM inside the

linear elastic domain.

For the further nonlinear analyses the number layers and sections will be kept
constant and the same loading will be applied to the example problem under varying
element numbers. The number of layers and number of sections will be selected as
21 and 5, respectively. The estimated errors for the force-based elements remain
under 1% for the selected numbers as can be seen in Table 2. The selection also gives

the second least error for displacement-based element.

nlP =
600 ‘ ‘ ]
500 e i
2
B e i
=
3
300 |
=
2,
Loac0- 7 1DB
g 4 DB
----16 DB
100 i
—2FB
| | | | | | | |
% 20 40 50 80 100 120 140 160 180 200 220
Midspan Deflection (mm)

Figure 21 Load-Deflection curve for several numbers of elements (DB and FB)
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Figure 22 Bending moment distribution along the length of beam
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Figure 23 Curvature distribution along the length of beam
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Figure 24 Axial force distribution along the length of beam

Table 3 Computation times of several analyses with different element numbers

and formulation types (nIP =5, number of layers = 21)

Number of elements per Formulation Type Computation time (sec)
half-span
1 Displacement-based 181.75
4 Displacement-based 847.08
16 Displacement-based 4032.3
1 Force-based 268.48
2 Force-based 535.10

As presented in Figure 21, the number of elements does not affect the results

significantly for force-based beam elements. The curves for 1 and 2 force-based

elements per half-span are almost overlapped. On the other hand, increasing number

of elements decreases the error for displacement-based formulation.

62



The force-based formulation gives more accurate results than displacement-based
formulation. Even the solution with 16 displacement-based elements per half-span is

not capable of mocking the behavior of 1 force-based element per half-span.

Speaking of the bending moment plot represented in Figure 22, as the number of
displacement-based elements increases the results approach to force-based element
formulation. But the displacement-based formulation does not provide a continuous

solution for moment diagram unlike force-based formulation.

For the curvature diagram attached Figure 23, the discussions about error mentioned
can be reclaimed; but the significant curvature difference between 1 FB and 2 FB is

originated from the difference between total numbers of sections.

Considering the computation times in Table 3 and the accuracy of several analyses
discussed above, one can state that using 1 force-based beam element per half-span is

the most suitable option for nonlinear FEM analysis.
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Figure 25 Normal stress distribution
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Figure 26 Shear stress distribution

The normal stress distribution and shear stress distribution through the depth of the
beam with FGM are presented in Figure 25 and Figure 26, respectively. It can be
indicated clearly from Figure 25 that steel material dominates the section, since a
very high power coefficient has been used for the distribution (n = 8). Also, it can be
verified that the alumina material does not contribute the section in the tensile

regime, as stated in the beginning of the topic.

From Figure 25 and Figure 26, through depth of the section, shear stress tends to

increase as normal stress decreases. For 2D analysis such equation

(0'1 2430, = O'yz) can be obtained on the yield surface from (4.3). This equation

explains the reverse relation between normal stress and shear stress.

5.2. COMPARISON OF VIBRATION CHARACTERISTICS

In this section, modal analyses will be realized for a prismatic cantilever beam. Since

the cross section does not change through the length of the beam and the materials
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are assumed to stay in the elastic regime; the displacement-based and force-based
FGM beam formulation gives the same stiffness and mass matrices. Thus the
analyses will not be held separately for each formulation types. The analyses results

will be compared with a well-known FEM software package ANSYS.

The beam will be modeled using brick elements with 8 nodes via ANSYS. The mesh
size will be taken as 5 mm for each brick element. Since the analyses are realized in
a 3D media in ANSYS, some of the modes will be sorted out (For instance, bending
and shear modes about z axis, torsion modes and modes for which warping is
dominant etc). The axial modes and bending modes about y axis of the ANSYS
model will be compared by means of natural frequencies and mode shapes with the

proposed beam element.

Figure 27 Visualization of ANSYS FGM beam model

The first analysis will be held out over a homogenous prismatic section made of
steel. The depth and width of the section will be taken as 100 mm and 100 mm,
respectively. Several analyses will be performed using different length / depth (L/d)
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ratios. The steel material properties will be selected as E =210 GPa, G = 80 GPa, p=
7850 kg/m’.

Table 4 Material properties at each layer of the ANSYS model

Section Properties Modulus of Bulk Modulus Mass Density
(From top to bottom) Elasticity (GPa) (GPa) (kg/m®)
1 360.95988 128.090448 4304.0882
2 309.20578 111.971913 5110.3342
3 264.87214 97.881688 6067.6070
4 226.89501 85.564537 7204.1971

In the second analysis a beam with functionally graded material will be imitated. The
beam cross section will be divided into 4 parts. The material properties for each part
will be determined by using exponential law for FGM. The ANSYS model is
visualized in Figure 27 and the material properties at each layer are presented in

Table 4.

The top material (steel) properties are E = 210 GPa, G = 80 GPa, p= 7850 kg/m’ and
bottom material (alumina) properties are E = 390 GPa, G = 137 GPa, p= 3950 kg/m’.
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Table 5 L/d = 10 Vibration frequencies and shapes for homogenous section

made of steel

Mode 1: 83.072 Hz

\

Mode 1: 82.885 Hz

Mode 2: 498.17 Hz

Mode 2: 496.634 Hz

Mode 3: 1295.3 Hz

Mode 3: 1293.2 Hz

Mode 4: 1311.6 Hz

Mode 4: 1306.1 Hz

Mode 5: 2382.2 Hz

/
%

Mode 5: 2369.8 Hz

Mode 6: 3631.4 Hz

LN\
DN

Mode 6: 3610.9 Hz
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Table 5 (continued)

™

Mode 7: 3882.7 Hz

Mode 7: 3882.6 Hz

Mode 8: 4997.6 Hz

/N N\
NV

Mode 8: 4971.0 Hz

Mode 9: 6440.2 Hz

/ANYVANEVAN
VU

Mode 9: 6413.7 Hz

Mode 10: 6481.5 Hz

Mode 10: 6459.9 Hz

Mode 11: 7931.7 Hz

NN

Mode 11: 7916.1 Hz

Mode 12: 9018.0 Hz

Mode 12: 9095.9 Hz
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Table 6 L/d =5 Vibration frequencies and shapes for homogenous section made
of steel

Mode 1: 325.48 Hz Mode 1: 324.02 Hz

Mode 2: 1756.0 Hz Mode 2: 1743.7 Hz

Mode 3: 2594.6 Hz Mode 3: 2586.3 Hz
\_/A\
Mode 4: 4189.0 Hz Mode 4: 4150.2 Hz
\//\v/
Mode 5: 6971.2 Hz Mode 5: 6895.6 Hz
Mode 6: 7757.4 Hz Mode 6: 7765.3 Hz
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Table 6 (continued)

VANV
N VAN

Mode 7: 9931.9 Hz Mode 7: 9822.0 Hz

Mode 8: 12818.0 Hz Mode 8: 12774.9 Hz

Mode 9: 12902.0 Hz Mode 9: 12962.9 Hz
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Table 7 L/d = 2 Vibration frequencies and shapes for homogenous section made

of steel

Mode 1: 1794.2Hz

Mode 1: 1774.7 Hz

Mode 2: 6510.4 Hz

Mode 2: 6465.8 Hz

Mode 3: 6813.7 Hz

RN
AN

Mode 3: 6703.0 Hz

Mode 4: 14262.0 Hz

AN /

~__~

Mode 4: 14019.5 Hz

Mode 5: 18232.0 Hz

SN/
N

Mode 5: 18195.1 Hz

Mode 6: 18879.0 Hz

Mode 6: 19413.2Hz
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Table 8 L/d = 10 Vibration frequencies and shapes for 4 layers of FGM section

me 3

Mode 1: 113.92 Hz Mode 1: 113.67 Hz
e

Mode 2: 681.69 Hz Mode 2: 683.56 Hz

Mode 3: 1772.1 Hz Mode 3: 1778.11 Hz

Mode 4: 1813.2 Hz Mode 4: 1818.63 Hz

NN
O\

Modg 5:3245.3 I_-Iz Mode 5: 3295.14 Hz

VA NEVAN
DUV

Mode 6: 4922.6 Hz Mode 6: 5021.85 Hz
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Table 8 (continued)

Mode 7: 5377.7 Hz

N A~/
vV

Mode 7: 5390.9 Hz

Mode 8: 6776.3 Hz

ANWAN/
\VARAVARV

Mode 8: 6965.39 Hz

Mode 9: 8697.5 Hz

NN N
\VAVAVA

Mode 9: 9043.38 Hz

Mode 10: 8893.8 Hz

AVANYA
\JV /!

Mode 10: 8918.44 Hz

Mode 11: 10724 Hz

AWAWAWA
VAVAVA

Mode 11: 11183.3 Hz

Mode 12: 12231 Hz

Mode 12: 12449.4 Hz
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Table 9 L/d =5 Vibration frequencies and shapes for 4 layers of FGM section

Mode 1: 446.25 Hz

Mode 1: 445.25 Hz

Mode 2: 2388.5 Hz

o
\/

Mode 2: 2417.4 Hz

Mode 3: 3604.2 Hz

e
~_——~

Mode 3: 3591.6 Hz

/N\__/
\V%

Mode 4: 5812.3 Hz

Mode 5: 9723.5 Hz

Mode 6: 10634.0 Hz

o~ /
S~ \/

Mode 6: 10688 Hz
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Table 9 (continued)

SN N/
N

Mode 7: 13410 Hz Mode 7: 13979 Hz

Mode 8: 17364.1 Hz

NN\ N
\J VU \

Mode 9: 18542 Hz

ANANA
VAAVAAVA

Mode 10: 20871 Hz Mode 10: 22392 Hz

Mode 11: 22380 Hz Mode 11: 24320 Hz

AWAWA
VAVAVAY

Mode 12: 23074 Hz Mode 12: 25340 Hz
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Table 10 L/d =2 Vibration frequencies and shapes for 4 layers of FGM section

Mode 1: 2450.1 Hz Mode 1: 2463.04 Hz
Mode 2: 8527.3 Hz Mode 2: 8523.3 Hz
Mode 3: 9753.4 Hz Mode 3: 10036.0 Hz
Mode 4: 18969 Hz Mode 4: 19785.8 Hz
' V/\\/’
Mode 5: 23908 Hz Mode 5: 25676 Hz
Mode 6: 25022 Hz Mode 6: 27398 Hz
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Table 11 Frequency comparison of proposed beam element and ANSYS model
for rectangular steel section d=100 mm and b=100 mm

Steel Section

L/d Mode Beam Beam ANSYS Error Error
Element Element Model SCr=s/6 | sCF=1
SCF=5/6 SCF=1 Natural

1 82.89 82.97 83.072 0.23% 0.13%

2 496.6 499.8 498.17 0.31% 0.33%

3 1293.2 1293.2 1295.3 0.16% 0.16%

4 1306.1 1323.3 1311.6 0.42% 0.89%

5 2369.8 2418.8 2382.2 0.52% 1.54%

6 3610.9 37104 3631.4 0.56% 2.18%

1 O 7 3882.6 3882.7 3882.7 0.00% 0.00%
8 4971.0 5138.1 4997.6 0.53% 2.81%

9 6413.7 6481.5 6440.2 0.41% 0.64%

10 6481.5 6662.9 6459.9 0.33% 3.14%

11 7916.1 8259.4 7931.7 0.20% 4.13%

12 9095.9 9095.9 9018 0.86% 0.86%

1 324.02 325.25 325.48 0.45% 0.07%

2 1743.7 1778.7 1756 0.70% 1.30%

3 2586.3 2586.4 2594.6 0.32% 0.32%

4 4150.2 4286.0 4189 0.93% 2.32%

5 5 6895.6 7191.2 6971.2 1.08% 3.16%
6 7765.3 7765.3 7757.4 0.10% 0.10%

7 9822.0 10314.3 9931.9 1.11% 3.85%

8 12774.9 12963.0 12818 0.34% 1.13%

9 12962.9 13503.0 12902 0.47% 4.66%

1 1774.7 1807.1 1794.2 1.09% 0.72%

2 6465.8 6465.9 6510.4 0.69% 0.68%

3 6703.0 7036.0 6813.7 1.62% 3.26%

2 4 14019.5 14817.5 14262 1.70% 3.90%
5 18195.1 19413.3 18232 0.20% 6.48%

6 19413.2 19594.8 18879 2.83% 3.79%
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Table 12 Frequency comparison of proposed beam element and ANSYS model
for FGM section d=100 mm and b=100 mm

Top Alumina - Bottom Ceramics FGM Section

L/d Mode Beam Element ANSYS Model.

SCF=1 Natural [Natural Frequencies Error
Frequencies (Hz) (Hz)

1 113.67 113.92 0.22%
2 683.56 681.69 0.27%
3 1778.11 1772.1 0.34%
4 1818.63 1813.2 0.30%
5 3295.14 32453 1.54%
6 5021.85 4922.6 2.02%
1 O 7 5390.9 5377.7 0.25%
8 6965.39 6776.3 2.79%
9 9043.38 8697.5 3.98%
10 8918.44 8893.8 0.28%
11 11183.3 10724 4.28%
12 12449 .4 12231 1.79%
1 445.25 446.25 0.22%
2 2417.4 2388.5 1.21%
3 3591.6 3604.2 0.35%
4 5812.3 5684.2 2.25%
5 9723.5 9414.3 3.28%
6 10688 10634 0.51%
5 7 13979 13410 4.24%
8 17364.1 16868 2.94%
9 18542 17603 5.33%
10 22392 20871 7.29%
11 24320 22380 8.67%
12 25340 23074 9.82%
1 2463.04 2450.1 0.53%
2 8523.3 8527.3 0.05%
3 10036 9753.4 2.90%
2 4 19785.8 18969 4.31%
5 25676 23908 7.40%
6 27398 25022 9.50%
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The modal analyses results for steel section are presented in Table 11.

As the length/depth ratio decreases, shear deformations turn out to be more
deterministic on the results of analyses. The proposed beam element is constituted in
accordance with Timoshenko’s beam theory. Since the plane sections remain plane
after deformation the beam is not capable of mocking the realistic shear
deformations. This lack of behavior for the beam element ends up with a statement
that as the length/depth ratio decreases the natural frequency error increases. On the
other hand for the axial modes the beam element gives less than 1% error even for

L/d=2.

Speaking of the FGM section, the same statements can be put forward for the error
values given in Table 12. In addition, the bending - axial coupling terms, aroused in
the evolution of FGM finite element formulation, end up with complicated mode
shapes. Such behavior of FGM makes it difficult to match between the modes of
ANSYS and the proposed beam element especially for fewer values of L/d.
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CHAPTER 6

CONCLUSIONS

6.1. SUMMARY

The main purpose of this thesis is to represent a new force-based beam finite element
to be used in the analysis of functionally graded materials. For this purpose, force-
based formulation has been adapted to be compatible with a typical FGM section,
where the material properties vary through depth of the section. The proposed force-
based beam element has been compared with a previously developed displacement-
based beam finite element for regarding the non-linear behavior. Also vibration
analysis of the proposed beam element is verified with ANSYS results using 3D

solid elements.

6.2. CONCLUSIONS

e The elastic behavior of the force-based element and the displacement beam
element yields the same results.

e For the inelastic analyses of beams with FGM, 1 force-based element per half
span yields an error less than 1% whereas the error of 1 displacement-based
element per half span is about 40%.

e For the vibration analyses, as length/depth ratio increases the errors for
frequencies of the proposed beam element tends to decrease.

e The proposed beam element is able to determine even the axial-bending

mixed mode shapes and frequencies for L/d=10 and L/d=5.
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e [t is getting more insistent to match the complex mode shapes as length/depth

ratio decreases.

6.3. RECOMMENDATIONS FOR FUTURE STUDY

For the yield behavior of alumina material in FGM model, Drucker—Prager yield
criteria can be utilized. By this means the proposed beam’s mechanical behavior can

be more realistic.

Thermo-mechanical analyses should be realized in order to investigate the

distribution of the temperature field under specified heat and/or body loadings.

In addition, a parametric study for functionally graded materials can be held out by

means of finite element analysis, to be utilized in the design process of FGM beams.
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APPENDIX A
DEFINITION OF VARIATION

Total energy functional is indicated in (3.4) and (3.5). The formulation will be

derived according to minimization of energy functional.
1k . .
P=S+T =§jj[(gxgx +7,7y)+ PNU WA (A1)
0A

The variation of a functional F(u,w, @) with respect to U is

Su =lim F(U+EV,W,¢)— F(U,W,¢)

-0 &

(A.2)

where V is the test function that satisfies essential boundary conditions of the

corresponding differential equation.

Using (3.1),(3.2) and (3.3)

L E x X ’ G - 9% 2
P(u,w,¢):%”{ (YU '_y¢.3 FBON-pw, )+
+o(Y)(U—-yg@)" +(W)")

0A

JdAdx (A.3)

taking the derivative of (A.3) with respect to U

% [ [(EOX+av), ~ya, ¥ +GI-g+w, ) + pyX(+e0) - yg)* +(W)’)) dAck—P(u,w,)

ou=—"24

&
L

1 .
ST TIE®u, v, 2y, v,,)+ ply)e i —2ygiridads
§U — 0A (A.4)

&

1§ j
o= | [N, v, 298, v, )+ Ay 200~ 2y ek
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L L
Applying integration by parts for the terms IO u,, v, dx=u,, V:— IO u,, vdx and

[ oV Ox =4, V[, ~ [ 4., VX, (A4) will transform into

L

SU = [ [VIE(Y)(—U,,, +Y8, )+ p(Y)(ii + y)]dAdx
- (A.5)

HVOOLE(Y)UX),, ~Yh(X)0 )+ pYNUX) — YFOO)IdA]],

The terms in the last row of (A.5) are either representing the external forces or zero

depending on the boundary condition type of the freedom (EBC or NBC)

If the boundary condition type is essential, the term mentioned above will be zero
since the test functions have to satisfy the essential boundary conditions of the

corresponding differential equation (V(Xg.)=0). Otherwise the term clearly

represents the external forces since the shape functions are constituted in such a way

that they yield V(X.gc)=1at natural boundary conditions according to finite element

shape functions.

After handling the mentioned term above; substituting the terms defined in (3.7) into

(A.5) yields
Su:lli—1,4—Au,, +B 4., (A.6)

The same procedure (taking derivative of P(U,W,¢@) with respect to W and ¢) can be

applied to acquire the other terms of (3.9).
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