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ABSTRACT

REACTIONS OF ACYL PHOSPHONATES WITH ORGANOALUMINUM
REAGENTS AND HETERO DIELS-ALDER REACTIONS WITH
UNACTIVATED DIENES

Hossain, Md. Shakhawoat
PhD., Department of chemistry
Supervisor: Prof. Dr. Ayhan Sitki Demir

February 2014, 231 pages

a-Hydroxy phosphonates medicinally important compounds due to broad spectrum
of biological activities. Addition reaction of commercially available
trialkylaluminum reagents (trimethylaluminum and triethylaluminum) to benzoyl and
alkanoyl phosphonates were investigated. Nucleophilic Me3Al solely gave tertiary o-
hydroxy phosphonates in good yields. On the other hand, when Et;Al addition was
carried out at 0 °C hydride addition product rather than ethyl addition was isolated
in good yields. When the temperature was lowered to -100 °C , Et;Al addition was

achieved but in low yields.

We have also investigated the addition reactions of trialkynylaluminum reagents,
mainly triethynyl, tris-propynyl and tris-phenylethynyl, to benzoyl and akanoyl
phosphonates to synthesize tertiary o-hydroxy propargylic phosphonates. Addition of
triethynylaluminium gave the propargylic compounds in low to moderate yields (15-
67%). Addition of tris-propynyl and tris-phenylethynyl reagents formed the expected
products in moderate to good yields (30-75%). In all cases, electronic features of the
aromatic unit affected the chemical yield. Presence of an electron-withdrawing group
on the phenyl ring provided the product in better chemical yield. When benzoyl and
alkanoyl phosphonates were compared in terms of yields, first one formed the

product in better yields at a shorter reaction times.



Hetero Diels-Alder (HDA) reaction is an important reaction for the construction of
the pyranosyl unit of many biologically active compounds. HDA reactions of acyl
phosphonates with 2,3-dimethyl-1,3-butadine were investigated to prepare glycosyl
type phosphonates. To activate the HDA reaction, several Lewis acids were tested.
AICI; was found to be the most effective catalyst by forming glycosyl phosphonates
in acceptable to good yields (40-79%) depending on the acyl phosphonates.

Keywords: Acyl phosphonate, Organoaluminum, a-Hydroxy phosphonate, Glycosyl
phosphonate.
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ACIL FOSFONATLARIN ORGANOALUMINYUM REAKTIFLERIYLE
TEPKIMELERI VE AKTIVE EDIiLMEMIS$ DIENLERLERLE HETERO DIELS-
ALDER TEPKIMELERI

Hossain, Md. Shakhawoat
Doktora Ogrencisi, Kimya Boliimii

Tez Danigmani: Prof. Dr. Ayhan Sitki Demir

Subat 2014, 231 sayfa,

a-Hidroksi fosfonatlar genis spektrumda biyolojik aktiviteye sahip olmalarindan
dolayi tibbi acidan oldukc¢a 6nemli bilesiklerdir. Bu tezde ticari olarak erisilebilir
trialkilaliminyum reaktiflerinin (trimetilaliminyum ve trietilaliminyum) benzoil ve
alkanoil fosfonatlara olan katilma reaksiyonlar1 arastirilmistir. Niikleofilik MesAl
katilmasiyla tersiyer a-hidroksi fosfonatlar tek Grlin olarak iyi verimlerle elde
edilmistir. Diger taraftan, 0 °C’de EtzAl katilmas: ile beklenen etil katilma iiriinii
yerine hidriir katilma iirlinii iyi verimle elde edilmistir. Sicaklik -100 °C ’ye

diisiiriildiiglinde Et3Al katilmasi ger¢eklesmis ancak verim diisiik olmustur.

Bunlara ek olarak trialkilaliminyum reaktiflerinden trietinil, tris propinil ve tris
feniletinil bilesenlerinin benzoil ve alkanoil fosfonatlara katilmasiyla a-hidroksi
propargil fosfonatlarin sentezide arastirilmistir. Trietinilaliiminyum katilmasiyla
beklenen proparjilik bilesikler diisiik ve orta verimlerle (%15-67) elde edilmistir.
Tris-isopropinilaliminyum ve tris-feniletinilaliiminyu orta ile iyi arasinda verimlerle
(%30-75) beklenen {riinleri olusturmustur.  Her durumda aromatik yapinin
elektronik 6zelligi verim iizerine etkili olmustur. Fenil halkasinda elektron g¢eken
gruplar varken verimler daha iyi olmustur. Benzoil ve alkanoil fosfonatlar
kiyaslandiginda katilma tepkimeleri birinci grup bilesiklerle daha yiiksek verimlerle

daha kisa siirede gergeklesmistir.
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Hetero Diels-Alder tepkimesi (HDA) piranosil yapist igeren bir ¢ok biyolojik aktif
bilesigin sentezi i¢in Oonemlidir. Ag¢il fosfonatlarin 2,3-dimetil-1,3-butadin ile olan
HDA tepkimesi sonucu glikosil tipi fosfonatlarin eldesi arastirilmistir. HDA
tepkimesini aktive etmek i¢in farkliLewis asitler denenmistir.. Glikosil fosfonatlari

kabul edilir ile iyi seviyelerdeki verimlerle (%40-79) olusturmak icin en etkili

katalizor AICI3 olmustur.

Anahtar kelimeler: Agil fosfonat, Organoaluminyum, a-Hidroksi fosfonat, Glikosil

fosfonat.
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CHAPTER 1

INTRODUCTION

1.1 Organophosphorus compounds

Organophosphorus compounds having a C—P bond are one of the functional groups
in organic chemistry. These structures were unknown until 1959."® Aquatic and
terrestrial animals and microorganisms are the best source of new types of
organophosphorus compounds. In 1959, aminoethylphosphonic acid (AEP, 1)
(Figure 1.1) was the first organophosphorus compound isolated from sheep rumen by
Horiguchi and Kandatzu.® These compounds are important because of their wide
variety of biological activities, i.e. anticancer, antibacterial, antiviral, antibiotic,
pesticidal, and enzyme inhibitory properties.*® Organophosphorus compounds are
bioactive due to the relatively inert nature of the C-P bond. They are structurally
similar to the biologically important phosphate ester and carboxylic acid functional
groups. These compounds can often act as substrate mimics and interfere with
enzymatic processes. For example, the phosphonic acid analog of glycine is a plant-
growth regulator and the phosphonic acid analog of phenylalanine is a competitive
inhibitor of phenylalanyl-5-RNA-synthase.>*!

O 0
||:I>/OH R—lg/OH (I?,OR'
H2N/\/ OH \OH R—P\OR'
1 2 3

Figure 1.1 Structure of AEP and general structure for phosphonic acids and
phosphonates

Phosphonic acids 2 and their phosphonate derivatives 3 (Figure 1.1) are very
common units in organic chemistry. They are usually employed in synthetic

chemistry for the carbon-carbon bond formation reactions.*? In Figure 1.2, few



examples of natural hydroxyphosphonic acids such as phosphonothrixin 4 and
dihydroxyphosphonic acid 5 are shown. Phosphonic acids 6 and 7 inhibit human
protein tyrosine phosphatase (PTP).”**° 1,1-Difluoroalkylphosphonic acids 8 and 9
inhibit purine nucleoside phosphorylase (PNP).?° Inhibitors of PTP have been shown
to have high pharmacological activity in the treatment of different diseases.”* Their

structures are also shown in Figure 1.2.
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Figure 1.2 Selected biologically important organophosphorus compounds



Derivatives of phosphonic acids, i.e. a-hydroxy-p-amino phosphonates, polyhydroxy
phosphonates, difluoromethylene phosphonates and B-hydroxy phosphonates are
inhibitors of enzymes.”*?® Compound 10 is one of the derivatives of phosphonic
acids and is a regulator of cell activation and proliferation in haematopoetic cells
(Figure 1.2)." Hydroxyphosphonate 11 inhibits HIV protease, and is a prospective
drug for the treatment of AIDS.?® Compound 12 is used as an antiviral medicine for

the treatment of cytomegalovirus infections as well as smallpox.?

1.2 Acyl Phosphonates

Acyl phosphonates are particular class of functional organophosphorous compounds.
Their general structure is RiCOPO(OR3),. The carbonyl group of acyl phosphonates
are activated by the presence of phosphonate group. Acyl phosphonates can be
considered as close analogs of aldehydes and can be prepared via Michaelis—
Arbuzov reaction (Scheme 1.1).*° This reaction goes by addition-elemination
reaction mechanism. The nucleophilic phosphite 14 attacks the electrophilic part of
the acyl halide 13 to give a phosphonium intermediate. Later Sy2 reaction takes place
and the halide anion reacts with the phosphonium intermediate to afford the desired

phosphonate 15 and alkyl halide 16.

Employment of the acyl phosphonates in organic reactions is difficult. Under the
influence of various nucleophiles, the C-P bond can be easily broken. Decomposition
of acyl phosphonates under the influence of a weak nucleophile such as water is a
common reaction of acyl phosphonates. Effect of nucleophiles on acyl phosphonates
were classified by Pudovik and Gareev.* Proton containing compounds cleaved at
the C-P bond forming an acetic acid and dialkyl phosphate, and aprotic nucleophiles
dissociates the C-P bond through the migration of the phosphorous containing
fragment. Thus all the reactions carried out in our research were done under argon

atmosphere to avoid the nucleophilic attack of moisture and air.


http://en.wikipedia.org/wiki/Nucleophilic
http://en.wikipedia.org/wiki/Electrophilic
http://en.wikipedia.org/wiki/Halide

R,0.::_OR, 0 °C, overnight )j\ OR
~OR2 R,—X
Rl)J\X + FI) Ry I|:|’\OR + 2
OR, 5 2 16
13
14 15

R1= Aryl or alkyl R,= Me, Et

Scheme 1.1 Synthesis of acyl phosphonates by Michaelis—Arbuzov reaction

1.3 a- Hydroxy Phosphonates and their synthesis

a-Hydroxy phosphonates, R;CH(OH)PO(OR;),* are close analogs of a-hydroxy
phosphonic acids, R1CH(OH)PO(OH),. They are biologically important compounds
as enzyme inhibitors including farnesyl protein tranferase (FPT),** human rennin,®

human protein tyrosine phosphatase (PTP),***°

purine nucleoside phosphorylase
(PNP),?® and 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase.* They also
show antiproliferative activity against several human cancer cell®? and prospective

drugs for the treatment of AIDS.?

The development of chemistry of a-hydroxy phosphonates in recent years is due to
its diverse biological application. There are several methods available for the
preparation of a-hydroxy phosphonates in the literature (Figure 1.3). Optically active
hydroxyphosphonates can be synthesized through chemoenzymatic method.* o-
Hydroxy phosphonates can also be synthesized by the reduction of acyl
phosphonates,® hydroxylation of phosphonate stabilized carbanions,®” and [2,3]-

sigmatropic Wittig rearrangements.*®
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Figure 1.3 General synthetic methods for hydroxyphosphonates

Different synthetic methods for the preparation a-hydroxy phosphonates are

discussed in the following sections.

1.3.1 Phosphonylation of carbonyl compounds

The most well known method for synthesizing a-hydroxy phosphonates is
phosphonylation of carbonyl compounds. One of the method is known as Abramov
reaction where trialkyl phosphites are directly added to an aldehyde (Scheme 1.2).3%
0 The second one is Pudovik reaction where dialkyl phosphites are added to either

an aldehyde or ketone (Scheme 1.2).%%
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Scheme 1.2 General scheme for Abramov and Pudovik reaction

Hammerschmidt has reported a study of diastereoselectivity of aldehyde 26 under
both Pudovic and Abramov conditions to give the greatest erythro/threo ratio shown
in Scheme 1.6.** He has found that an Abramov reaction with diisopropyl
trimethylsilyl phosphate 27 (Scheme 1.3) gave the best erythro/threo ratio as 3:1 for
compounds 28:29.

o MesSiO, H H OSiMe;
MesSi~ __OiPr CH)Cl, Me A __OiPr Me. A __OiPr
Me%“ L A — Toipr " oipr
BnO o' BNO O BO O
26 27 28 29

Scheme 1.3 Synthesis of a-hydroxy phosphonates from aldehyde 26

Patel et al. has reported* that carbonyl compounds derived from amino acids, for an
example, the Boc amino aldehyde 30 derived from L-phenylalanine, undergoes
diastereoselective addition of dimethyl phosphite to give a-hydroxy phosphonates 32

and 33 with diastereomeric excess (de) of up to 12:1 (Scheme 1.4).
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Scheme 1.4 Phosphite additions to phenylalanine derivatives 30

In another study related with the synthesis of a-hydroxy phosphonates 37 and 38, t-
butyldimethylsilyl diethyl phosphate 35 was reacted with a-dibenzylamino aldehyde
34 in the presence of TiCl.*® High de's (up to >98:2) in formation of a-hydroxy
phosphonates 38 (98%) were observed. A reversal of the addition stereochemistry 37
(93%) was achieved when diethyl phosphate 36 was employed in place of the t-
BDMS phosphate. Streochemical outcome was explained by the weakened
nucleophilicity of diethyl phosphate. In both cases, removal of the amine protecting

groups gave the related f-amino a-hydroxy phosphonates (Scheme 1.5).

o)
[ OEt 4
SMDBt” “OEt o o
) > | _OEt I _OEt
H  1.2eq TiCl,/CH,Cl, ZORt 2Okt
- o) - + -
Bn—N" 8 LOEt . Bn 'ET: H Bn=N" YoH
Bn H ' OEt n Bn
34 3eq TiCl,/CH,Cl, 37 38

Scheme 1.5 Phosphite additions to phenylalanine derivatives 34



1.3.2 Reduction of acyl phosphonates

a-Hydroxy phosphonates can also be synthesized by reduction of acyl phosphonates.
In one research, Gajda et al. has synthesized diethyl 1-hydroxy phosohonate (S)-40
or (R)-40 in good yields and moderate enantiomeric excesses (53-83% ee) by the
reduction of diethyl acyl phosphonates 39 with borane in the presence of chiral -

butyloxazoborolidines as a catalyst (Cat) (Scheme 1.6).*

HO, H o] H, OH
N\ OEt BHg/(S)-Cat U ort BHg/(R)-Cat A7 oEt
I OEt < R™ okt g [OOEt
O 0O o
(S)-40 39 (R)-40
Cat=B-butyloxazoborolidine,
R=Et (80% ee), Bu (53% ee), i-Bu (76% ee), Ph (82% ee)
Scheme 1.6 Borane reduction of a-ketophosphonates 39
Meier et al.*“® reduced acyl phosphonates 41 with both catecholborane 42 and

borane/dimethylsulfide complex in the presence of a 1,3,2-oxazaborolidine catalyst
43 to produce a-hydroxy phosphonates 44. Reduction of acylphosphonates 41 with
(S)-oxazaborolidine-catecholborane formed (S)-1-hydroxylkylphosphonates 44, and
accordingly reduction with corresponding (R)-oxazaborolidine-catecholborane
afforded (R)-1-hydroxylkylphosphonates with the same stereoselectivity (53-83%
ee) (Scheme 1.7).
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R=Et, i-Pr; R'=Alk, Ar

Scheme 1.7 Oxazaborolidine-catecholborane reduction of acyl phosphonates 41

Meier and co-workers also showed®*“® that when acyl phosphonates 45 were
reduced in the presence of (-)-chlorodiisopinocampheylboranes (Ipc,B-Cl), it
produced (S)-configurated a-hydroxy phosphonates 46 in 65% enantiomeric excess

(Scheme 1.8).

H OH
)k OorR _ ()rlpceB-Cl L OR
. Tor

X fSorR 20°C, THF X

46

45

R=Me, Pr-i, Bn, Ph; R'=Me, Et, Pr-i

Scheme 1.8 Reduction of acylphosphonates 45 with (-)-1pc,BCl



1.3.3 Oxidation reactions of Phosphonates

Another route in the literature for the synthesis of a-hydroxy phosphonates is
oxidation of the related phosphonates. As an example, Skropeta and co-workers
synthesized compound 49 in high yields by the stereoselective oxaziridine 48

mediated hydroxylation of dialkyl benzylphosphonates 47 (Scheme 1.9).*

HO, H
R o OR NaN(SiMes), R’ S OR
|I\OR | ~
cl
47 o 49
N
<
=
°°%
48

R =H, Me, Et, CH,=CHCH, R'=H, NO,, Cl, MeO, CF;

Scheme 1.9 Oxidation of benzylphosphonates 47 with chiral oxaziridines

a-Hydroxy phosphonates can also be synthesized by hydroboration/oxidation of
vinyl phosphonates. The reaction of vinyl phosphonate 50 with borane in THF was

1.** When compound 50 was treated with H,O, and sodium

done by Hampton et a
hydroxide, oxidation and partial hydrolysis resulted in formation of the a-hydroxy

phosphonate 51 as a 1:1 mixture of diastereomers (Scheme 1.10).
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7 | /
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X
HoC~ CHs HaC~ CHs
50 51

Scheme 1.10 Hydroboration/oxidation of vinyl phosphonate 50

To prepare a-hydroxy phosphonates Lalinde and co-workers®® examined
52 with (-)- and (+4)-

diisopinocamphenylborane. Diastereomer 53 (with 1R, 3S stereochemistry) was

hydroboration/oxidation of vinyl phosphonate
isolated from reaction of the nonracemic olefin 52 with the (-)-borane reagent. On
the other hand diastereomer 54 was obtained from the parallel reaction with the (+)-
borane. This selectivity arose from the steric bulk of the phosphoryl group controlled

approach of the chiral borane reagent (Scheme 1.11).

11
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Scheme 1.11 Oxidation of vinyl phosphonate 52

Dihydroxy phosphonates are easily obtained by the method of Yokomatsu et al.*

Alkyl substituted vinyl phosphonates 55 (Scheme 1.12) proceeded with moderate
yield and enantioselectivity when subjected to AD-mix oxidations. But phenyl and
p-methoxyphenyl substituents resulted in better ee's.>! The high ee and the synthetic
transformations demonstrated with the p-methoxyphenyl product attracted more

interest to this method.

12
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B/OCHg AD-mix reagents /?\/IQ/OCHs
RTN"""ocH, R* T OCHs
OH
55 56
55a R = CHjs 56a R = CH3( 33% ee)
bR = CsH5CH,OCH,CH, bR = CsHsCH,OCH,CH> (44% 66)
¢ R=CsHs c R =CgHs ( 91% ee)
d R = p-MeOCgH4 d R = p-MeOCgH,4 ( >95% ee)

Scheme 1.12 Oxidation of vinyl phosphonates 55

1.3.4 Chemoenzymetic synthesis of a-hydroxyphosphonates

Chemoenzymatic synthesis is an effective pathway for synthesis of fine chemicals in
their optically active forms. The use of enzymatic synthesis in organophosphorus
compound is limited to the synthesis of optically active hydroxyphosphonic acids
and their esters. Bacteria, fungi, and various lipases are used as biocatalysts for the
preparation of optically active hydroxyphosphonates.®® Four general processes
applied to the enzymatic synthesis of hydroxyalkylphosphonates are:

(a) Baker’s yeast or other fungi for the bio-reduction of ketophosphonates.

(b) Microorganisms and lipases for the separation of chiral hydroxyphosphonates via
acylation.

(c) Use of lipolytic organisms for hydrolysis of acyloxyalkanephosphonates.

(d) Use of Bacteria and fungi for hydrolytic oxirane ring opening in substituted 1,2-

epoxyethanephosphonates (Figure 1.4).

13
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Figure 1.4 Enzymatic synthesis of hydroxyphosphonates

Racemic a-hydroxyalkylphosphonates were resolved by catalytic acetylation with
Candida antarctica B lipases (CALB) and Candida rugosa lipases (CRL) to (R)- and
(S)-isomers in high enantiomeric excess.”*>* Yuan et al.”® used the lipase CALB in
organic solvents for enantioselective acetylation and resolution of racemic a-hydroxy
alkylphosphonates 57. The subsequent separation of unreacted alcohol (S)-58 and
ester (R)-59 afforded the pure stereoisomers. This method is simple and furnishes
chiral hydroxyalkylphosphonates in high enantiomeric excess (85-95%) (Scheme
1.13).

OH O AcO O
I.OR _ CALB o (IF?,/OR N )\HE/OR
R'}\ﬁ)fn “OR vinylacetate. R M, “OR R | "OR

(£)- 57 (S)-58 (R)-59
R'=Me, Et, vinyl; R=Me, Et; n=0

Scheme 1.13 CALB catalyzed enzymatic kinetic resolution of racemic

hydroxyphosphonates
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6% reported a widely used method for the

Hammerschmidt and co-workers
resolution of racemic a-hydroxy phosphonates 60 by lipases and proteases in a two-
phase system (organic solvent-water) where a phosphate buffer of pH 7 was used.
This method afforded the chiral a-hydroxy phosphonates in an enantiomeric excess
of 98%. Acetates of racemic a-hydroxy phosphonates 61 undergo enzymatic
hydrolysis controlled with various lipases, including esterase of pig liver in the two-
phase system. The highest enantioselectivity was achieved with lipase FAP 15 and
(acetoxy)phenylmethylphosphonates as substrate. Only the (S)-enantiomers of
phosphonates were hydrolyzed to afford enantiomerically pure (S) alcohols. Lipases
AP 6 and FAP 15 were used for the preparation of (S)-phosphonates on a preparative

scale with 81-89% ee (Scheme 1.14).%%°

. H ,OH rR'oco, H
>< _OR pH 7/lipase FAP /< _OR /< _OR

TSor H,O R Por 7 R PioRr
o) 2 o) o)

(+)-60 (S)-61 (R)-60

NEt3 MeOH

Ho, H
R"/<p/OR

1 OR
o
(R)-61

R=Et, i-Pr, t-Bu, MeS(CHy); R'= CHCI, Pr; R"=i-Pr

Scheme 1.14 Two phase enzymatic kinetic resolution of racemic hydrophosphonates
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1.3.5 Miscellaneous addition reactions of acyl phosphonates

In the current literature, there are some examples for the synthesis of a-hydroxy
phosphonates by direct addition to acyl phosphonates. Kim et al. have reported® in
situ addition of allyl indium reagents to acyl phosphonates (Scheme 1.15). According
to their method, compound 62 was simply treated with allyl bromide derivative 63
and indium metal in water, or in a mixture of water and an organic co-solvent. The

desired a-hydroxy phosphonates 64 were isolated in moderate to low yields.

o 0
R')J\P:%EEtt + R~ B " b OFt
I

R XX “OEt
o . THF/AcOH Ho R

62 64

Scheme 1.15 Addition of allylindium reagents to acyl phosphonates 62

Tertiary a-hydroxy phosphonates 68 were synthesized by a novel cross aldol reaction
of a-keto phosphonates 65 with ketones 66 (Scheme 1.16).°° Diethyl
benzoylphosphonate and acetone was used as the model compounds and L-proline 67
as the catalyst. The crossed aldol reaction went smoothly at room temperature in

acetone to form the expected products in good yields.

COOH
O o}
NH O R, OH
L _ory P é 67 0
/ ' R
R' P_ A1
o)
65 66 68

R'= Ph, Me, Ph-CH,, etc...
R,= Et, Me, i-Pr
R2= Me, -OCH3

Scheme 1.16 Synthesis of tertiary a-hydroxy phosphonates by crossed aldol reaction
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1.4 Synthesis of Propargylic Alcohols

In this dissertation one of our interests was to develop a new method for the synthesis
of a-hydroxy phosphonates and then extend this method to the synthesis of

propargylic phosphonates.

Propargylic phosphonates can be considered as close analogue of propargylic
alcohols. Propargylic alcohols are useful building blocks for a large number of
pharmaceutically significant molecules (Figure 1.5).°”  For that reason there are
several methods available in the literature for their synthesis. The addition of
acetylides to carbonyl substrates gives access to propargylic alcohols, which are
valuable intermediates for the synthesis of complex natural products.®® Moreover, the
addition of alkynes to ketones is a practical strategy to create tertiary alcohols with a
new stereogenic center under mild conditions.®® Traditionally, propargylic alcohols
are synthesized by addition of a metal acetylide to aldehydes or ketones with a

stoichiometric or catalytic amount of a base.”

HO, R,

RMR

HO& 71

N

R Ry R
75 R

\ / Ph
O] HO& ey
" R
R™ R, X R Ry
69 R1
7 76

Figure 1.5 Propargylic alcohols as synthetic intermediates
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The most common methods to prepare propargylic alcohols are through
i) Reduction of an ynone [Scheme 1.17, Eq. (1)] and
ii) Metal-catalyzed alkynylation of a carbonyl group [Scheme 1.17, Eq. (2)]

* OH
e LI
R Y R Y 1
S R, Reduction N R @
78 79 !
)OJ\ Alkynylation HO Rz
+ M——R 2
Ao, ) R>\ )
80 69 R1

Scheme 1.17 Common methods for the synthesis of propargylic alcohols 69 and 79

Here are some examples from the literature for the synthesis of propargylic alcohols.
The first alkyne addition to an aldehyde was published by Mukaiyama and co-
workers (Scheme 1.18).”* According to their work, lithium acetylides was reacted
with various aldehydes to get corresponding propargylic alcohols with moderate ee
values. They reported that slow addition of the aldehyde led to increase in chemical
yields. The substrate scope for this reaction was also investigated by changing
silylacetylenes (TES, TBS, Ph3Si and Ph,MeSi).

DME, -35 °C -
TMS —=——1i A
o) T™S
81 83
2. (j)l\H

Scheme 1.18 First example of alkynylation of benzaldehyde
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The addition of alkylzinc reagents to aldehydes has been well documented area of
research since 1978.” Alkynylzinc reagents were also found to be very useful due to
high functional group tolerance.”® Soai and co-workers were reported the first
addition of alkynylzinc reagents to aldehydes (Scheme 1.19)"* In situ formation of
bisalkynylzinc 85 was added to corresponding aldehydes in the presence of amino

alcohol 86. Propargylic alcohols 87 were obtained in excellent yields.

r|1—Bu
n-Bu—N OH

—

Me Ph HO

- > N
+ \Ro——1Zn R
R H 2 2 Hexane-THF 1 X

84 85 23°C

Scheme 1.19 Addition of alkynylzinc to aldehydes 84

The example given below represents the first alkynylation reaction of a ketone was
reported by Merck and Dupont. They used their method for the synthesis of anti-
AIDS drug efavirenz (Scheme 1.20).”°® In this method pyrrolidine-ephedrine
derivative 88 was treated with dimethylzinc to form 89. Later compound 89 was
added to a metal acetylide to obtain intermediate zincate 90. The reaction between
trifluoromethyl ketone 91 and zincate 90 furnished the resultant propargylic alcohol
92.
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OMe =
Q W e QT
N on  Mexzn N~ O =M N9

/N MeOH PH Ph Ph Ph

Ph  Ph
88 89
tolune/THF Cl\©f§o
o o1
25 °C NH,
FsC //f

OH

Cl

NH,
92

Scheme 1.20 First example of alkynylide addition to ketone 91

Alkynylation of a-keto ester is very useful method to access highly functionalized
propargylic alcohols. Propargylic alcohols having C-P bond can be considered as
close analogues of propargylic carboxylates. Herein, only two examples from the
literature related to alkynylation of a-keto ester were given. Jiang and co-workers
showed that”” aliphatic alkynes and phenylacetylene are valuable nucleophiles for the
alkynylation of a-keto esters in presence of catalytic zinc(ll) triflate and amino
alcohol 95 (Scheme 1.21). Both linear and cyclic keto esters gave excellent yields
and enantioselectivities. However, enolizeable ketones did not show good results.

OH
W oTBS
NMe
O,N 2
o % Q =~ "OTBS
OMe Zn(OTf)2» TEA =
Ph)k[( . _ OTBS MeO” 7
o) tolune, 70 °C HO Ph
93 94 96

Scheme 1.21 Alkynylation of activated ketone 93 with catalytic amount of zinc salt

20



Rebeca and co-workers synthesized propargylic alcohols through the zinc mediated
alkynylation of o-keto esters (Scheme 1.22).”® The reaction was efficiently promoted
by perhydro-1,3-benzoxazines 98 derived from 8-aminomenthol. Under optimum
reaction conditions, they were able to obtain high enantioselectivity. Various
aromatic and heteroaromatic a-keto esters were used in this method. Both electronic
effects or steric hindrance on the aromatic ring were not observed. Aliphatic alkynes

were also used as a substrate and good enantioselectivity was observed.

Ph tolune, r.t, 98 HO //

[ ; o
OR; o)
H Rz

O 99
97
-20°C,45h
OTBS OTBS
tolune, r.t, 98b HO ///_

+ ZnMe N

I ? o) Ph>\”/OEt
OEt o)

: oy

0] 100
94
-20°C, 45 h
o R H o R H
98a, R= Ph 98d, Rf Ph
_ 98e, R=iPr
98b, R=iPr 98f R=H
98c, R=H r T

Scheme 1.22 Addition of alkynylzinc derivatives to a-keto esters in presence of 98
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1.5 Reactions of Organoaluminum Reagents

The role of organoaluminum reagents are well-established in olefin oriented
petrochemicals and are useful tools in selective organic syntheses. Properties of these
reagents depend on the high Lewis acidity of the organoaluminum monomers which
depend on the tendency of the aluminium atom to complete electron octets. Almost
all alkylaluminum compounds react vigorously with oxygen or air and
trialkylaluminum and dialkylaluminum halides are particularly reactive and often
ignite spontaneously.” For that reason, they are difficult to handle and need special
precautions. Organoaluminum compounds show great tendency to form 1:1
complexes, even with neutral bases such as ethers. “Oxygenophilicity” of
organoaluminum reagents are of great value in the design of selective synthetic
reactions. The coordination of a molecule with organoaluminum reagent causes a
change of reactivity, and the coordinated group may be activated or deactivated

depending upon the type of reaction.

Since this dissertation focuses on addition of organoaluminum reagents to acyl
phosphonates, we would like to present few examples from literature that involves

organoaluminum reagents.

Trialkylaluminum reagents are one of the useful organoaluminum reagents for
alkylation reactions because they are economically obtained on an industrial scale
from aluminum hydride and olefins.%° Unfortunately, their use in chemistry is still
rare. One successful catalyst for the enantioselective addition of trialkylaluminum to
aldehydes is titanium complexes bearing chiral diols or N-sulfonylated amino
alcohols as ligands.®® However, high catalyst loadings and the slow reaction rate
hamper the potential utility of these catalytic systems. Woodward and co-workers
reported®® the addition of trialkylaluminum to aldehydes in the presence of nickel
catalyst. Excellent enantioselectivities with low catalyst loadings were attained.
When prepared DABAL-Me; (1.0-1.5 equiv) 102a was added to benzaldehyde in

THF in the presence of [Ni(acac),] (acac=acetylacetone; 1 mol%) and Feringa ligand
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103 (Rax, S,S, 2 mol%) at 5 °C , the resulting alcohol 104 (R=Ph) was isolated in
high yield and enantioselectivity (Scheme 1.23).

AIR
) SO
O\ Lot
N PN
AR, NS
Ph
DABAL-Me; 102a
DABAL-Et3 102b (Rax, S,S)-Feringa ligand 103
DABAL-R;
THF,5°C, 1-3 h
or
AR5 on o
0 THF, -20 °C, 6h . :
% or A~
R™H [Ni(acac), | R™ Me R™ Et
101 (Rax, S,S) 103 (R)-104 (R)-105

Scheme 1.23 The asymmetric synthesis of chiral secondary alcohols from aldehydes

using organoaluminum reagents

In another work Albert and co-workers have examined the addition reactions of
triethylaluminum reagent to aldehydes by using (S)- or (R)-BINOL (Scheme 1.24).%
Triethylaluminum was added to benzaldehyde in the presence of chiral ligands i.e.
BINOL and Hg-BINOL. Benzaldehyde was easily alkylated to give 1-phenyl-1-
propanol quantitatively with 81% ee when (R)-BINOL 106 was used as the chiral
ligand. In the case of (S)-Hs-BINOL, the expected alcohol was obtained with
improved enantioselectivity. This method was found to be very practical and general

in terms of providing high yields for a variety of aromatic aldehydes 110.
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)OL AlEts, 0°C, HiO* HOxEt
Ar H AL ; Ar H
Cat =Ti(O-iPr), + Ligand
110 111

A, ¢, o,
O QT Qo O

106 107 108 109
(R)-BINOL (S)-BINOL (R)-Hg-BINOL (S)-Hg-BINOL

Scheme 1.24 Asymmetric synthesis of chiral secondary alcohols from benzaldehydes

using organoaluminum reagents

1.6 Hetero Diels-Alder Reactions

Diels-Alder reaction is a very well known reaction for the construction of six
membered rings.®* Hetero Diels-Alder (HDA) reaction is a type of Diels-Alder
reaction which is very useful for the construction of heterocycles in one step.® First
report of a hetero Diels-Alder (HDA) reaction was appered in 1951 by Gresham and
Steadman. In 1982 the HDA was extended to non-activated aldehyde as dienophile
by Danishefsky and co-workers using Lewis acid catalyst.%® Since that time, several
manuscripts were published related to HDA reactions for the synthesis of
dihydropyranone units (Scheme 1.25). HDA reaction is very practical in terms of
having pyran containing heterocycles which are very common unit in many natural

products.
Roberson et al. have examined the mechanism of the Lewis acid catalyzed HDA of

aldehydes with activated dienes both experimentally and theoretically for several

systems.®” Two reaction pathways were observed from these studies. In the first case,
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the HDA product formed through a Mukiyama-type aldol addition step and
subsequent cyclization took place under acidic conditions. In the second case,
concerted [4+2] cycloaddition reactions take place to form the HDA product
(Scheme 1.30).

TMSO O

PhWOMe .
OMe y R R \
o ~__R Mukiyama-aldol pathway 07X R
P 114
Ph™ H Z>0SMT Ph):;\lo
112 R OMe R
113 k S R / 116

|
Ph OSMT
R
115
Diels-Alder pathway

Scheme 1.25 Mukiyama aldol vs Diels-Alder pathway for the pyran ring formation

There are mainly two types of HDA reactions. In the first one, a diene reacts with
aldehyde which participates as a heterodienophile. This reaction goes with normal
electron demand HDA. In the second one, an enal reacts as the diene with electron
rich dienophiles. This reaction is called inverse electron demand HDA reaction.
According to Frontier Molecular Orbital (FMO) analysis the controlling orbitals for
normal electron demand HDA reactions are HOMO of diene and LUMO of
dienophile. Theoretical studies®’ revealed that Lewis acids lower the LUMO of the
dienophile and enhance the reaction rate. Similarly, in the inverse electron demand
HDA reactions the HOMO of the dienophile and the LUMO of the diene are the
controlling orbitals. Lewis acids coordinate to the diene and enhance the rate by
decreasing the HOMO-LUMO gap of the reaction. A summary of these FMO
considerations is presented in Figure 1.6.
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Dienophile Diene

Figure 1.6 A FMO diagram of the uncatalyzed and Lewis acid catalyzed normal
electron HDA (left) and inverse electron demand HDA (right).®

In this dissertation, we also focused on the Hetero Diels-Alder reactions of acyl
phosphonates with unactivated dienes. Based on literature survey, we have tried to
select HDA reactions that involves close analogue of acyl phosphonates. HDA
reaction of unactivated diene 117 with methyl glyoxylate by using a Ti-BINOL
complex 119 formed the HDA product in reasonable yield and moderate to good

enantioselectivity (Scheme 1.26).% This work was reported by Nakai et al.

OMe i talyst 119 (10 mol%) T
catalys mol*“o
i o 2 3
N OMe -55 °C,1h COZMe
117 118 | 120
O\Ti,Br
l l o~ Br
119

Scheme 1.26 Ti-BINOL catalysed HDA reactions of unactivated diene
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Evans et al. have used o,B-unsaturated acyl phosphonates 121 as diene for HDA
reactions with enol ether 122 as dienophile. Chiral Cu(ll) complexes 123 was used to
catalyze the HDA reaction which afforded cyclic enol phosphonates 124 (Scheme
1.27).%

" 2
/f | Catalyst 123 /(j
- L
HsCO.
HaCO. OEt " p7 07 "ot
°P HaCO™ I
HiCO 5 122 o
124

121 0
Me_ Me

CTI| =
—N._-N

i Cu X= OTf, SbFg

123
Scheme 1.27 HDA reactions of a,B-unsaturated acyl phosphonates with enol ether

Demir et al.®® have published the first hetero Diels-Alder reactions of acyl
phosphonates with electron rich dienes where the acyl phosphonate serves as
dienophile (Scheme 1.28). Glycosyl type phosphonates were obtained as the HDA
product in good yields. Two types of electron rich dienes were used i.e. Danishefsky
and Brassard’s dienes. The former was activated easily by temperature, the later was
promoted by alLewis acid to afford glycosyl type phosphonates. Glycosyl phosphates

are biological glycosyl donors and participate in the glycosylation process.*
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Scheme 1.28 First HDA reactions of acyl phosphonates 125 as dienophile

1.7 The aim of the work

a-Hydroxy phosphonate derivatives have shown to be very important enzyme
inhibitors such as they are inhibitors of renin or human immunodeficiency virus
(HIV) protease and polymerase. Besides, they also show antivirus and anticancer
activities. Because of their diverse biological activities, a-hydroxy phosphonates
have attracted significant attention. In the first part of this dissertation, our goal was
to develop a new method for the synthesis of a-hydroxy phosphonates by using

either commercial or non-commercial organoaluminum reagents.

Recently, our group reported the first hetero Diels-Alder reactions of acyl
phosphonates used as dienophiles with electron rich dienes to form glycosyl type
phosphonates. In the second part of this dissertation, we aimed to extend the scope
of hetero Diels-Alder reactions of acyl phosphonates and investigate the HDA

reactions of acyl phosphonates with unactivated dienes.
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CHAPTER 2

RESULTS AND DISCUSSION

2.1 Addition of trialkylaluminium reagent to acyl phosphonate

a-Hydroxy phosphonates was obtained by simple addition of organoaluminum
reagents to acyl phosphonates. Acyl phosphonates were synthesized according to the
literature procedure.? The addition of trialkyl phosphite to acyl chlorides at 0 °C led
to formation of desired acyl phosphonates. A proposed reaction mechanism for the
addition of organoaluminum reagents to acyl phosphonates is shown in (Scheme
2.1).

R3 RS
/7 N AR ¥ AI-R
:0: Lo Rs=AlTR; oh
R “P(OR,) s RA 0 /}\
1 3 2)2 — = Ry P(OR
o) R;”™ “P(ORy); Rs 6( 22
o]
H,0
R,= alkyl or aryl
R,= Me, Et R..FH
3
R3= Alkyl and Alkyny!l Ry IFI’(ORZ)Z
o]

Scheme 2.1 Proposed mechanism for the addition of organoaluminum reagents to

acyl phosphonates

Our first attempt was the addition of commercially available trimethylaluminum to
benzoyl phosphonate 130 in order to obtain compound 131 as a reference reaction
shown in (Scheme 2.2). Compound 130 was treated with 1.5 equivalent of MesAl at -
78 °C in toluene, but no product formation was observed. Then we gradually

increased the reaction temperature. Finally at 0 °C product formation was observed.
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To have optimum reaction condition, we have screened the following organic
solvents; THF, toluene, CH,Cl,, and hexane at 0 °C . Among these solvents, toluene
gave the best results in terms of chemical yield. Secondly, we have screened the
number of equivalents of the MesAl reagent. We found that three equivalents of
MesAl reagent were necessary to give the desired compound 131 in good yield. After
work-up the crude product was purified by flash column chromatography and

identified by NMR spectroscopy (Figures 2.1 and 2.2).

o}
toluene, 0 °C, Ar Me oH
p-OCHs3 _OCHg
|~ OCH; Me3Al P~0CH,
o o}
130 131

Scheme 2.2 Addition of Me3Al to benzoyl phosphonate 130

Both *H and **C NMR strongly confirmed the formation of the product 131. From
13C NMR the first identifier is the peak of quartenary carbon atom which is directly
attached to the phosphorus atom. This carbon showed a peak at 73.6 ppm as a
doublet. The coupling constant Jc.p was found as 159.1 Hz which is typical for this
type of a C-P bond. In *"H NMR, the doublet at 4.4 ppm (J = 4.7 Hz) for one proton
clearly indicated the presence of the “OH” group. The doublet at 1.75 ppm (Ju-p)
represents the methyl group. In the *'P NMR the compound also gave a characteristic
singlet peak at 26.18 ppm.
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Figure 2.1 *C NMR spectrum of 131
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Figure 2.2 'H NMR spectrum of 131
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Maeda et al.*? have utilized the addition of Grignard and organolithium reagents to
acyl phosphonate 130 for the synthesis of a-hydroxy phosphonate 131. Compound
131 was obtained by the addition of MeMgBr in around 44% yield while the addition
of MeLi resulted in 20% yield. The reactions of both Grignard and organolithium
reagents with benzoyl phosphonate 130 gave the desired products, but in low yield.
Grignard and organolithium reagents are good source of carbon-based nucleophiles

but in this case they found to be very reactive that lowers the yield. Comparing our



results with their findings, organoaluminum reagents are mild nucleophilic sources

for the synthesis of a-hydroxy phosphonates in better chemical yields.

After optimizing the reaction conditions and characterizing our reference compound
131 we extended our investigation of the 1,2-addition reactions of
trimethylaluminum reagents with a variety of acyl phosphonates having aryl and

alkyl groups at acyl unit (R;) (Scheme 2.3). The results were summarized in Table 1.

j]\ OMe Me3A| Me;\H
- _OMe
R Tome toluene, 0 °C, A RC P ome
O ’ ’ r O
132 133

Rq= alkyl or aryl

Scheme 2.3 General reaction scheme for addition of MesAl to acyl phosphonates

As seen in Table 1, when the electron donating groups (-CH3; and -OCH3) were
introduced to the aromatic unit of benzoyl phosphonate at para position, the
reactivity was reduced and the yields were lower (entries 2 and 3) as compared to the
unsubstituted substrate 130. Benzoyl phosphonates 138 and 140 containing floride
and chloride atoms at the para position gave the desired product 139 and 141 in 72
and 64% vyields, respectively. It was expected that electronegative halides increase
the reactivity of acyl carbonyl; therefore better yields could have been obtained.
However, the yields were even lower that the substrates having electron donating
groups. When the position of chloride changed from para (140) to meta (142) and
ortho (144) yields increased (64, 73, and 77% respectively). Highest yield was
obtained in the case of ortho-chlorobenzoyl phosphonates. This may result by the
coordination of aluminum both to carbonyl oxygen and chloride at ortho position.

Clearly no steric effect was observed for the ortho substituted benzoyl phosphonate
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142. The reactions of MesAl with alkyl phosphonates 146 and 148 (entries 8 and 9)
proceeded efficiently to afford the compounds 147 and 149 in 78 and 63% yields.

Table 1. Addition of trimethylaluminium to acyl phosphonates

Entry Acyl phosphonate Product Yield® (%)
O OH
. 85
L P(OMe), P(OMe),
e} o
130 131

'S 2
=
1]
O
O
@] O::_q
O=-1 (@)
< 5
“(-'D' [ %]
%]
=
4]
O ;
i O=-1u
O-1 o)
O =
= AL
@ =
(%]
| [#)s]
| ]

136 137
o) OH
4 /[:i:J/ﬂ\PUDMeb /J:::f;;\PUDMeb 72
F © F
138 139
0 OH
s /O)L P(OMe), /@XP(OMF)E 64
cl cl
140 141
o) OH
] Cl P(OMe), Cl P(OMe), 73
0 0
142 143
cl O Cl OH
77
7 P(OMe), P(OMe),
0
144 145
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Table 1 (continued)

Entry Acyl phosphonate Product Yield® (%)
@) OH
] P(OMe), P(OMe), '8
0 o)
146 147
O OH
A Ok 63
P(OMe), P(OMe),
? ) O
148 149

*Yields refer to purified compounds

Encouraged by the results obtained from the addition reactions of MesAl to acyl
phosphonates, we continued our research and investigated addition of EtsAl reagent
as an ethyl donor to acyl phosphonates. However under the same reaction condition
mentioned above, the addition of Et3Al to benzoyl phosphonate 130 at 0 °C only
afforded the hydride addition product 150 in 75% vyield (Scheme 2.4). Structure of
compound 150 was confirmed by *H and **C NMR spectra (Figures 2.3 and 2.4).

OH
o Ha OMe
p-OMe EtgAl ©>l\ P~OMe
L"OMe  toluene, 0°C, Ar o
0 150

Scheme 2.4 Addition of Et;Al to benzoyl phosphonate 130 at 0 °C

The first characteristic peak for identification of compound 150 is the H; proton
which appeared as a doublet at 5.03 ppm due to coupling with phosphorus atom (Jc-4
10.9 Hz). Besides, the proton of OH-group appeared as a broad singlet at around 4.40
ppm. In C NMR, the tertiary carbon atom which is directly attached to both
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phosphorus and OH-group appeared as a doublet at 70.7 ppm. (Jcp =159.1 Hz). In
addition to *H and *C NMR, *'P NMR also showed expected signal at 22.92 ppm.

4 =
Ef

L
o

ppm (t1)

Figure 2.3 'H NMR spectrum of 150
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Figure 2.4 **C NMR spectrum of 150
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In order to obtain secondary a-hydroxy phosphonates we decided to continue the
addition reactions of EtsAl to different acyl phosphonates at 0 °C (Scheme 2.5). The

experimental results are presented in Table 2.

Q OH
R)J\P/OMe EA 9. ome
! 6\0Me toluene, 0 °C, Ar R1 lﬁ\OMe
O
132 151

Rq= alkyl or aryl

Scheme 2.5 General reaction scheme for hydride addition

A proposed mechanism for the formation of hydride addition product is shown in

(Scheme 2.6).

HoC
chﬁ CH3 CH3 3 \l CH3
N\ A— . H Al—/
)OL. chVAL&H o
CHs EtzAl +or
R;" P(OMe), _— &o\’ : —_— RH\P(OMe)2
O Ry “P(OMe), Hg
o
H,0
., OH
R1>I\P(O|\/|e)2
o

Scheme 2.6 Proposed mechanism for hydride addition to acyl phosphonates
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Table 2. Addition of triethylaluminum to acyl phosphonates at 0 °C

Entry Acyl phosphonate Product Yield*(%)
0 q OH
| P(OMe), P(OMe),
o O 75
130 150
@] OH
5 P(OMe), P(OMe), _
< O 0O 81
134 152
@] Y OH
P(OMe), P(OMe),
3 o) 80
MeO MeO
136 153
O H OH
4 Q)LIF’(OMe)Z /@?(OMe)g
56
E O £ (0] 5
138 154
O H OH
/@A P(OMe), /©)L P(OMe),
i 1 L1} i 8
Cl © Cl ©
140 155
O q OH
. P(OMe), P(OMe),
? o) o) 85
146 156
0] OH
L
P(OMe), P(OMe), /
7 o o) 48
148 157

*Yields refer to purified compounds

In all cases (Table 2), we have obtained secondary a-hydroxy phosphonate
derivatives in moderate to good yields. When electron donating -CH3z and -OMe,
groups were present as a substituent on benzene ring (entries 2 and 3, Table 2) better

yields were obtained than the unsubstituted benzoyl phosphonate. When halide
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substituted benzoyl phosphonates (entries 4 and 5) were tried yields were lower than
that of unsubstituted one. Moderate chemical yields were observed in both cases with
56 and 58% vyields respectively. Highest yield (85%) was obtained with the
cyclohexyl substituted (146) case (entry 6). Another alkyl substituent (148) formed
the product in lowest yield (48%) (entry 7).

Our efforts to add EtzAl to acyl phosphonates continued by changing the reaction
temperature. By decreasing the temperature from 0 °C to -100 °C, the expected ethyl
addition product 158 was obtained in 44% vyield (Scheme 2.7). The structure of
compound 158 was confirmed by using NMR spectroscopy (Figures 2.5 and 2.6).

O Et OH
ID/OMe EtzAl _OMe
I OMe Iﬁ\OMe
(0] toluene, -100 °C, Ar o)
130 158

Scheme 2.7 Addition of EtzAl to benzoyl phosphonate 130 at -100 °C

In 3C NMR, the quaternary carbon atom gave a signal at 76.9 ppm (Jcp = 157.0
Hz). This result was consistent with our earlier addition reactions. In *H NMR, we
identified the ethyl peak (triplet at around 0.71 ppm for CHj; protons and multiplet at
around 2.05-2.3 ppm for CH, protons). In addition, *P NMR spectrum also showed
expected peak at 26.23 ppm.
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Figure 2.5 **C NMR spectrum of 158
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Figure 2.6 'H NMR spectrum of 158

After characterizing the compound 158 by NMR, we extended the reactions of Et;Al

addition at -100 °C to other substrates to see the applicability (Scheme 2.8). Results

of these studies were presented in Table 3.
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o OH

)L _OMe EtzAl Et>]\ _OMe

R X
! 6 OMe toluene, -100 °C, Ar R1 E\OMe
132 159

Scheme 2.8 General reaction scheme for addition of EtsAl to acyl phosphonates

Table 3. Addition of triethylaluminum to acyl phosphonates at -100 °C

Enftry  Acyl phosphonate Product Yield® (%)
O OH
. [i:j/ﬂngJMeh P(OMe), 44
0]
130 158
9 OH
/QAP(OME)Z P(OMe); 35
2 © 0
134 160
0 OH
/@A P(OMe), P(OMe), 10
3k 0 - o
138 161
Q OH
Cl Cl
p(OMe); POMe), 3,
4 o o
142 162
\j\ \gcﬂ_‘
5 P(OMe), P(OMe), 9
O O
148 163

Yields refer to purified compounds
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As shown in Table 3, yields were not high. Substrate 134 including electron donating
CHgs group, formed the product in 35% which was reasonably lower than the
unsubstituted substrate 130. With the substrate having floride at para position yield
was 10% (entry 3). We believe that the carbonyl group of acyl phosphonate was
highly deactivated through the resonance effect of —F atom. Similar result was also
observed with alkyl substituent (entry 4). Due to low yield, no further study was

done related to this reaction.

2.2 Addition of trialkynylaluminum reagents to acyl phosphonates

Investigation of the addition of trialkynylaluminum reagents to acyl phosphonates
was started by the preparation of trialkynylaluminium reagents 165. They were
prepared by following a literature procedure (Scheme 2.9).% Three equivalents of
commercialy available Grignard reagents 164 were reacted with one equivalent of
AICI; in DCM at 0 °C to afford the trialkynylaluminum reagents 165. In each trial,

organoaluminum reagents were prepared freshly.

A|C|3! Ar ,CH2C|2
R3———MgBr Al /: R3>
0 °C, overnight \ 3
164 165

Rs= H, Me, Ph

Scheme 2.9 Synthesis of trialkynylaluminum reagents from Grignard reagents

Our first attempt was to investigate the addition reactions of acyl phosphonates with
triethynylaluminum reagent. We have chosen benzoyl phosphonate 166 as first
substrate for this reaction. Following the similar procedure used for alkyl addition
reaction, acyl phosphonate 166 was reacted with 3 equivalents of

triethynylaluminum in tolune at 0 °C to afford tertiary o-hydroxy propargylic
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phosphonate 167 in a short reaction time (10-15 minutes) (Scheme 2.10). Formation
of compound 167 was confirmed with the help of NMR spectroscopy (Figures 2.7
and 2.8)

o AI%H > OH
3 _OEt

p/OEt ﬁ\OEt
| ~N
6 OFt toluene, 0 °C, Ar | | O

H
167

166

Scheme 2.10 Addition of triethynylaluminum to benzoyl phosphonate 166

The first identifier is the quaternary carbon peak at *C NMR. The quaternary carbon
which has a direct attachment with phosphate and hydroxyl groups showed a doublet
peak at 71 ppm with a large coupling constant of Jcp = 166.4 Hz. The proton
connected to the triple bond appeared as a doublet at 2.82 ppm in *H NMR with a
coupling contant of 5.3 Hz. Proton of the hydroxyl group appeared as a doublet at

3.89 ppm. Compound 167 also showed a characteristic **P NMR peak at 16.49 ppm.

OH
IS

ccu

R

T T T T T T T T T T T
100 50 0

ppm (t1)

Figure 2.7 *C NMR spectrum of 167
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Figure 2.8 'H NMR spectrum of 167

After optimizing the reaction conditions and identifying the compound 167 properly,

we extended the addition of triethynylaluminum reagent to a variety of acyl

phosphonates (Scheme 2.11). The results of these studies were summarized in Table

4.

(@) A|%H > OH
3 OR
L or, . _OR,

I "OR, toluene, 0 °C, Ar

R;=alkyl oraryl R,=Et, Me

Scheme 2.11 General reaction scheme for the addition of triethynylaluminum to acyl

phosphonates.
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Table 4. Alkynylation of acyl phosphonates with triethynylaluminum reagent

Enfry Acyl phosphonates Products Yields(%)*

o) OH
. P(OEt), P(OEt), o7
e! | ©
166 167
0 OH
2 57
P(OEt), P(OEt)
170 171
0 OH
3 /Q)LP(OEUZ ﬁmoab 22
MeO © MeO ‘ ‘ ©
172 173
o) OH
4 /O)LP(OEt)z P(OE), 4
Cl © Cl Il
174 175
0 OH
. P(OMe), ~P(OMe), >3
o) liKe
130 176
F O F  OH
6 P(OMe), ~P(OMe), 14
o) | ©
177 178
cl O
Decomposition

P(OMe),

ot

179




Table 4 (Continued)

Entry  Acyl phosphonates Products

Yields(%)®

) OH

5 POMe), P(OMe),
O | o

180 181
O
9 P(OMe), Decomposition
o
182

*Yields refer to purified compounds

As seen in Table 4, electron donating groups attached to the benzene ring formed the
product in lower yields (entry 2 and 3) than the unsubstituted substrate (entry 1). In
the case of strong electron withdrawing floride at ortho position of benzoyl group,
product was isolated in lowest yield (entry 6). When bulky groups were present at
ortho position of the benzene ring (entries 7 and 9) we did not observe expected
tertiary a-hydroxy phosphonates. The reason might be the bulky groups which
introduced steric effect at ortho position and destabilized the intermediate. As a result,

rearrangements took place to give complex mixture of unidentified compounds after

quenching with water.

After observing relatively positive results with triethynylaluminum reagent, we
planned to extend our scope of addition reactions to some other trialkynylaluminum
reagents. We initially investigated the addition of tris-(propynyl)aluminum reagent to
acyl phosphonate 166. Tris-(propynyl)aluminum reagent was prepared first by
following the procedure mentioned in Scheme 2.9. For the addition reaction we

applied the same conditions and obtained compound 183 in 56% yield (Scheme

2.12).
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OH
O Al%Me)
_OEt 3 P:OEt
}|3\ I "OEt
(_') OFEt toluene, 0 °C, Ar | | S
166 Me
183

Scheme 2.12 Addition of tris-(propynyl)aluminum to benzoyl phosphonate 166

We characterized compound 183 as of our desired product by analyzing its proton
and carbon NMR spectra (Figures 2.9 and 2.10).

The most important signal that indicates the formation of compound 183 is the
quaternary carbon atom which appeared as a doublet at 71.2 ppm with a coupling
constant of Jc.p = 167.4 Hz. Protons of the methyl group attached to the triple bond
appeared at 1.97 ppm as a doublet (Jyp = 5.1). Proton of the hydroxy group showed
a doublet at 3.66 ppm with a coupling constant Jy.p = 8.5 Hz. The compound also
gave a characteristic *P NMR peak at 17.36 ppm.

OH

P(OED,
Il o

A |

I T T T T T T T T T T T T T T T
100 50 0

ppm (t1)

Figure 2.9 *C NMR spectrum of 183
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ppm (t1)

Figure 2.10 'H NMR spectrum of 183

The addition reactions were then repeated with different acyl phosphonates to show
the applicability. In all cases, tertiary propargylic alcohols were obtained without the
cleavage of C-P bond in moderate to good yields (Scheme 2.13). Results were
presented in Table 5.

0 AI%Me) OH

I "OR toluene, 0 °C, A Il "OR
o) 2 r | | o) 2
184 Me
R,=alkyl or aryl  R,= Et, Me 185

Scheme 2.13 General reaction scheme for the addition of tris-(propynyl)aluminum to

acyl phosphonates
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Table 5. Alkynylation of acyl phosphonates with  tris-(propynyl)

aluminum reagent

Entry Acyl phosphonate Product Yield (%)*

Q.
St

P(OEt), g(OEt)Z 56
166 183
° OH
P(OEt) Il f(OEY: <2
2 8 O 53
170 186
o OH
P(OEt), ‘ ‘ P(OEY); +n
3 \CI) (0] s
187 188
o OH
P(OEL), P(OEt)
4 o MeO II's H
MeO
172 189
o OH
@AE’“’E% &
o)
5 F o] E
190 191
F  OH
F O
P(OE) | f (OE02 .
6 o) O

192 193




Table 5 (Continued)

Entry Acyl phosphonate

Product

P(OEt),
o}

~1
T
; O
T
g—o
T
O=
=)
n

194

Q

P(QEt),
Cl ©
174
cl O
P(OEt),
9 6
197
O
Cl
P(QEt);
0 \@)LIO
199
]
P(OEt),
11 0

FaC
201

P(OEt),
1
O

203

o
io

P(OEt),

195
OH
P(OEY),

o Il & 61

196
Cl OH
P(OEt),

Il & 49

198

Cl
P(OEt),
i

Q, o]
I
0]
=)
2

200

P(CEt),

i
FaC o 7

2,

202
OH

P(OEt),
Il
I8

98]
2

=

204

49

Yield (%)



Table 5 (Continued)

Entry  Acyl phosphonate Product Yield (%)*
o OH
P(OEt) I  (OF2 38
13 le) O u
205 206

*Yields refer to purified compounds

We checked the effect of electron donating and electron withdrawing groups on the
acyl phosphonates in terms of yields. When —CH3; and —OMe are placed at the para
position (entries 2 and 4) yield were lower compared to unsubstituted case (entry 1).
Strong electron withdrawing —CF3 group gave compound 202 in highest yield (75%).
Electron withdrawing F and CI at para position also activated the acyl phosphonates
and good chemical yields were obtained (entries 5 and 8). Alkyl substituents were

also tested, unfortunately products were isolated in low yields.

Next attempt was to apply tris-(phenylethynyl)aluminum reagent in alkynylation of
acyl phosphonates. The reaction of benzoyl phosphonate 166 with freshly prepared
tris-(phenylethynyl) aluminum gave compound 207 in 61% yield (Scheme 2.14). The
structure of compound 207 was easily confirmed by using spectroscopic technique
(Figures 2.11 and 2.12).

OH
o AI%Ph) OFt
_OEt 3 pl
II:)\ I "OEt
6 OFt toluene, 0 °C, Ar | | o

166 Ph
207

Scheme 2.14 Addition of tris-(phenylethynyl) aluminum to benzoyl phosphonate 166
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One of the important identifier of compound 207 is the quaternary carbon that
appeared as a doublet at 70.5 ppm with a coupling constant of Jcp = 166.9 Hz
(Figure 2.11). Besides, in *H NMR, the —OH proton showed a broad singlet in the
range of 4.4-4.6 ppm. The characteristic **P NMR peak was observed at 16.13 ppm.

OH 10
@ﬂw\ﬁ‘“‘” 1 L

Ph L L L ) L O B N
1350 1300 125.0

ppm (t1)

i HM’ S

Figure 2.11 *C NMR spectrum of 207

OH

R(OEY,
Il o

Ph

8.0 7.0 6.0 50 40 30 20 10 00
ppm (t1)

Figure 2.12 *H NMR spectrum of 207
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Compound 207 was also synthesized by direct addition of organolithium reagent
PhC=CLi to benzoyl phosphonate 166. This was reported by Zbiral et al.** But their

chemical yield was lower than ours.

In order to the applicability of this reaction tris-(phenylethynyl) aluminum reagent
was also added to different acyl phosphonates (Scheme 2.15). The results of these
studies were summarized in Table 6. The related propargylic alcohols were obtained

in moderate to good yields.

OH
o) AI%Ph) oR
)L _OR, 3 pl 2

Rl ~N
Ry P2 lOR
! L OR, toluene, 0 °C, Ar | | ’
184 Ph 208

Ri=alkyl oraryl R,=Et

Scheme 2.15 General reaction scheme for the addition of tris-(phenylethynyl)
aluminum to acyl phosphonates

As seen in Table 6, similar trends observed for the previous reaction were operating
here. Electron donating groups —CH3; and —OCH3; formed products in lower yields
than the unsubstituted benzoyl phosphonate (entries 2-4). Phosphonates with the
activating electron withdrawing groups F, Cl, CF3 (entries 5-9) afforded the desired

propargylic alcohols in good yields.
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Table 6. Alkynylation of acyl phosphonates with tris-(phenylethynyl)aluminum

reagent
Entry Acyl phosphonate Product Yield (%)*
) OH
| @AP(OEUQ P(OEN), 61
O I1re!
166 oh
207
O OH
’ /OAP(OEUZ P(OEt) 5
o (e
170 Ph
209
o] OH
3 é/k P(OEt), P(OEt) 30
© 8
187 Ph
210
@ CH
! QAS“’E‘” [
MeO MeO o
172 Ph
211
o OH
) /Q/LLP(OEUZ P(OEt), 68
F O F H @]
190 Ph
212
F O F  OH
6 @AL P(OEt), P(OEt) 79
o &
192 Ph
213
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Table 6 (Continued)

Entry Acyl phosphonate Product Yield (%)
(@] OH
F F
7 ﬁ(OEt)Z I|T-’(OE|I)2 72
o Il o
194 Ph
214
O OH
| J@)LE‘OE”Q |5 @
cl Cl ©
174 Ph
215
O OH
FaC FaC ©
201 Ph
216

*Yields refer to purified compounds

Over all better chemical yields were obtained with tris-(phenylethynyl)aluminum

when compared to tris-(propynyl)aluminum probably due to the stability of the

resulting propargylic phosphonates.

2.3 Hetero-Diels-Alder reactions of acyl

butadiene

The first hetero Diels-Alder reactions of acyl phosphonates with electron rich dienes
where the acyl phosphonates serves as dienophile have already been published by
our group (Scheme 1.28).%° As a continuation of our research on extension of acyl

phosphonate chemistry, we have planned to used unactivated dienes for HDA

reactions of acyl phosphonates.
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In our first trial, we used an unactivated diene in HDA reaction. 2,3-Dimethyl-1,3-
butadiene was chosen as of our unactive diene because it is easily available and very
easy to handle. HDA reaction between benzoyl phosphonate 166 and 2,3-dimethyl-
1,3-butadiene was carried out by using different Lewis acids to activate the reaction

(Scheme 2.16). The results were shown in Table 7.

As seen in Table 7, only AICI; was very active Lewis acid to promote the reaction
by forming compound 218. Other aluminum based Lewis acids Et,AlCI, Et3Al,
MesAl (entries 6, 7 and 8) gave addition product rather than HDA product. In the
presence of different Lewis acids (entries 1-5) mostly decomposition of the starting
material was observed. In all cases, we used DCM as the reaction solvent based on

our previous experience and maintained the same reaction condition in each trial.
o}
/7
(EtO),PR

O
_OEt LA O
Lo s )
O Solvent
217 166

218

Scheme 2.16 HDA reaction of 2,3-dimethyl-1,3-butadiene with acyl phosphonate
166

Table 7. Lewis Acid screening for HDA reaction of 2.3-Dimethyl-1,3-

butadine.
Entry LA (-78 °C, 0 °C to rt in DCM) Result

1 SnCl, (0.25 eq.) Decomposition

2 Bi(OTY), (0.1 eq.) Decomposition

3 In(OTf), (0.1eq.) Decomposition

4 Zn(0TH), Decomposition

5 ZnCl; (1.1 eq) No Reaction, (SM)

6 EtAICI (1.1 eq) Hydride addition product
7 Et;Al (1.1 eq) Hydride addition product
8 MesAl (1.1 eq) Methyl addition product
9 AlCI; (1.1 eq) HDA product (40%)
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HDA product 218 was purified by flash column chromatography and was
characterized by *H and *C NMR (Figures 2.13 and 2.14).

The important characteristics peaks that we observed for this compound were two
methyl peaks appearing at 1.28 and 1.63 ppm. Another characteristic signal was
observed for the quaternary carbon at 77.1 ppm with a coupling constant of Jc.p =

170.1 Hz. *'P NMR spectrum also showed expected peak at 21.31 ppm.

o
4
EOF o

SO

T T T T T [ T T T T
7.0 6.0 5.0

==
ol
E

f— -

T T T T T T
100 50

ppm (t1)

Figure 2.14 *C NMR spectrum of 218
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In order to prove the structure of HDA cycloadduct, structurally simple compound
220 was synthesized (Table 9, entry 2) and its full analysis (COSY, DEPT, HSQC,
see: Appendix, pages 208 and 209) was performed. From this analysis, the HSQC
spectrum (Figure 2.15) showed the cross peaks of two CH, carbons with their
diastereotopic hydrogens. Protons of C-5 (32.5 ppm) showed two signals as doublet
and triplet at 2.60 and 2.89 ppm. The protons of other CH; carbon (C-2, 64.4 ppm)
appeared as doublet at 3.84 ppm.

OMe

CH3 CH3
Ak i _J
LT S L f ppm

- -20

CH3 |
CH3 — 0 - 20
CH2 |

- 40

OMe_||
CH2 _| - 60

100

-120

| Il Nl
T

—-140

- 160

180

A
Figure 2.15 HSQC NMR spectrum of 220
In order to find the best reaction conditions, we have done solvent screening studies.

For this purpose tolune, hexane, DCM and THF were used. The best results was
obtained in DCM (Table 8).
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Table 8. Solvent screening for had reaction of 2,3-dimethyl-1,3-butadine

Entry Solvent Result Reaction Conditions
1 Toluene 22% AlCl; (1.1 eq.) and diene (2 eq.)
2 Hexane 9% AlCl; (1.1 eq.) and diene (2 eq.)
3 DCM 40% AlCl; (1.1 eq.) and diene (2 eq.)
4 THF No reaction and AlCl; (1.1 eq.) and diene (2 eq.)
SM was
recoverd

In order to show the applicability of this reaction HDA reactions were repeated under
optimized conditions with different acyl phosphonates. Over all HDA products i.e.
glycosyl type phosphonates were obtained in moderate to good yields (Scheme 2.17).

The results of HDA reactions were presented in Table 9.

o) R
DCM, AICl5(2eq) 1
+ M or, p<ORz
Ry "PC | I OR>
5OR2 0°Ctort, Ar O o
217 168 219

R,= alkyl or aryl R,= Et, Me
Scheme 2.17 General reaction scheme for HDA reactions of acyl phosphonates

Once again introducing electron donating groups, i.e. -CH3z and —OCHj3 at para
position of benzoyl phosphonates (entries 3 and 4), compounds 221 and 222 were

isolated in lower yields compared to unsubstituted benzoyl phosphonate (entry 1).
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Table 9. HDA reactions of 2.3-Dimethyl-1,3 butadiene with acyl phosphonates

Enfry Acyl phosphonate Product Yield(%)®

o) IS
(E1O),P, o
| P(OEY), 6
S =
166
218
o
P(OMe), 10

130

()
; O
@]
2
@
o
IYU?:
\ O

P(OEY),

'S
; O
o]
@]
\
o

170

P(OEt),
MeO

.
; O
O

=

]

@]
@]

\
U\DJ

172

P(OE
P(OEt), "

vyl
-
O
c::E
-
[
O
%]
o,
o
N\ O

190

P(OEt),
o)

192

24

=
-n
o
[
O
(V]
U
T =3
\ o

224




Table 9 (Continued)

Entry Acyl phosphonate Product Yield(%)*
@] //O
EtO).P,
P(OEt), (EORR o
7 & 49
cl Z
174 Cl
225

[R]
h

cl o 0
(MeOLR, o
q P(OMe),
0 —
179 cl 126
o 0
(EORF o
P(OEt),
9 5 79
FsC
201 F3C

_
227
0

(@] P
F (EIORR o
0 pZ
194
8

F
22

@] //O
c — (EtORR. o
11 3 P 42
199

Cl
229
O 0O

)LP(OEU EOR_o
17 5 2
12 3 P 44
230
231

*Yields refer to purified compounds

All halogenated aryl phosphonates formed the products in moderate yields such as
44, 49, 56, and 42% (entries 5, 7, 10, and 11). However, ortho halogenated aryl

phophonates formed the product in lowest yields due to steric effect on the reaction
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site. Highest yield (79%) was observed with very strong electron withdrawing group
present at para position on the benzoyl phosphonate (entry 9). As the alkyl
substituted phosphonate only acetyl phosphonate 230 was tried which formed HDA
product 231 in 44% yield.
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CHAPTER 3

EXPERIMENTAL

Both *H NMR and **C NMR spectra were recorded on a Bruker DPX 400. *H NMR
chemical shifts were reported in ppm using CDClI; as solvent and tetramethylsilane
was used as an internal reference. *C NMR chemical shifts were reported in ppm
and the chloroform solvent signals (CDCl3 at 77.0 ppm) were used as an internal
reference. Data are presented as (s = singlet, d = doublet, t = triplet, g = quartet, m =
multiplet). Coupling constant(s) were expressed in Hz. HPLC grade DCM was
freshly distilled from calcium hydride. THF, toluene and other solvents were distilled
following standard procedures. Flash column chromatography was performed using
230-400 mesh silica gel using ethyl acetate/hexane mixture as eluting solvent.

Melting points are uncorrected and were determined on a hot stage microscope.

3.1 Synthesis of Secondary and Tertiary a-hydroxy Phosphonates

All commercially available reagents were used as received without further
purification. Benzoyl and alkanoyl phosphonates were synthesized according to
literature procedure.?® The progress of all reactions was monitored by TLC, which
was carried out on silica gel plates with fluorescent indicator. TLC plates were
initially visualized by UV light source, and then dipped into an ethanolic solution of
phosphomolybdic acid.
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3.1.1 General Procedure for the Addition of Trimethylaluminum to Acyl

Phosphonates

To a solution of acyl phosphonate (100 mg, 1 equiv) in dry toluene (0.5 M) at 0 °C
under argon atmosphere was added trimethylaluminum (3 equiv, 2 M solution in
heptane) dropwise. After stirring for 10 min at the same temperature, the reaction
mixture was cautiously hydrolyzed with water (warning: these hydrolysis are
exothermic and are accompanied by gas evolution). The reaction mixture was
filtrated over Celite and washed with ethyl acetate. After evaporation of solvent in
vacuo, the crude product was purified by flash column chromatography on silica gel

using ethyl acetate as the eluting solvent.

3.1.1.1 Characterization of 131

OH

P(OMe),
0]

Dimethyl 1-hydroxy-1-phenylethylphosphonate: Yield 92 mg (85%), crystalline
white solid (mp: 142-143 °C ); *H NMR (CDCls, 400 MHz): 6 1.75 (3H, d, J=15.7
Hz, -CHj3), 3.56 (3H, d, J=10.3 Hz, (CH30),P), 3.66 (3H, d, J=10.2 Hz, (CH30),P),
4.40 (1H, d, J=4.7 Hz,-OH), 7.17-7.21 (1H, m), 7.27 (2H, t, J=7.5 Hz), 7.51-7.54
(2H, m); *C NMR (CDCls, 100 MHz): & 25.8 (d, Jc.p=3.8 Hz, -CHs), 53.7 (d, Jc.
p=7.8 Hz, (CH30),P), 54.1 (d, Jc.p=7.3 Hz, (CH30),P), 73.6 (d, Jc.p=159.1 Hz,
quaternary C-atom in -C(OH)), 125.8 (d, Jc.p=4.4 Hz), 127.4 (d, Jcp=2.9 HZz), 128.0
(d, Jcp=2.3 Hz), 141.0 (d, Jcp=0.9 Hz); **P NMR (CDCls, 161 MHz): & 26.18; IR
(ATR technique, cm™): 3278, 2980, 1447, 1225, 1202, 1186, 1055, 1023; HRMS:
calculated for CyoH1504P [M+Na]* 253.0606 and found 253.0613.
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3.1.1.2 Characterization of 135

OH

IFI)(OMG)Z
O

Dimethyl 1-hydroxy-1-p-tolylethylphosphonate: Yield 89 mg (83%), crystalline
white solid (mp: 156-157 °C ); *H NMR (CDCls, 400 MHz): 5 1.73 (3H, d, J=15.5
Hz), 2.28 (3H, s), 3.54 (3H, d, J=10.2 Hz), 3.67 (3H, d, J=10.2 Hz), 7.10 (2H, d,
J=8.2 Hz), 7.40 (2H, dd, J=2.2, 8.2 Hz); °C NMR (CDCls, 100 MHz) & 21.1, 25.9
(d, J=3.8 Hz), 53.7 (d, J=7.6 Hz), 54.0 (d, J=8.0 Hz), 73.6 (d, J=159.6 Hz), 125.7 (d,
J=4.4 Hz), 128.8, 137.0, 138.0 (d, J=8.4 Hz); *'P NMR (CDCls, 161 MHz): § 26.38;
IR (ATR technique, cm™): 3265, 2980, 1451,1410, 1224, 1203, 1185, 1124, 1099,
1017; HRMS: calculated for C1;H1704P [M+Na]" 267.0762 and found 267.0763.

3.1.1.3 Characterization of 137

OH
/©>kp(ow|e)2
o)
MeO

Dimethyl 1-hydroxy-1-(4-methoxyphenyl) ethylphosphonate: Yield 82 mg (77%),
crystalline white solid (mp: 172-173 °C ); *H NMR (CDCls, 400 MHz): & 1.72 (3H,
d, J=15.5 Hz), 3.25 (1H, d (broad), J=5.4 Hz), 3.54 (3H, d, J=10.2 Hz), 3.66 (3H, d,
J=10.2 Hz), 3.74 (3H, s), 6.81 (2H, d, J=9.0 Hz), 7.43 (2H, dd, J=2.3 and 9.0 Hz);
3C NMR (CDCls;, 100 MHz): § 25.8 (d, J=4.5 Hz), 53.9 (t, J=7.4 Hz), 55.2, 73.4 (d,
J=160.0 Hz), 113.5 (d, J=2.1 Hz), 127.0 (d, J=4.5 Hz), 132.7, 159.0 (d, J=2.7 Hz);
31 NMR (CDCls, 161 MHz): § 26.46; IR (ATR technique,cm™): 3283, 2993, 1580,
1455, 1438, 1250, 1205, 1172, 1068, 1045, 1019; HRMS: calculated for C1;H;70sP
[M+Na]" 283.0711 and found 283.0706.
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3.1.1.4 Characterization of 139

OH

(@)
F

Dimethyl1-(4-fluorophenyl)-1-hydroxyethylphosphonate: Yield 77 mg (72%),
crystalline white solid (mp: 157-158 °C ); *H NMR (CDCls, 400 MHz): § 1.82 (3H,
d, J=5.6 Hz), 3.66 (3H, d, J=10.3 Hz),3.75 (3H, d, J=10.3 Hz), 4.44 (1H, d, J=4.8
Hz), 7.03 (2H, t, J=9.0 Hz), 7.59 (1H, ddd, J=9.0, 5.2, and 2.3 Hz); *C NMR
(CDCls, 100 MHz): 6 25.9 (d, J=4.2 Hz), 53.8 (d, J=7.6 Hz), 54.2 (d, J=7.3 HZz), 73.3
(d, J=160.4 Hz), 114.8 (dd, J=21.4 and 2.3 Hz), 127.6 (dd, J=8.1 and 4.4 Hz),136.7
(d, J=2.7 Hz),160.9 (dd, J=246.3 and 3.2 Hz); *'P NMR (CDCls, 161 MHz): & 25.96;
IR (ATR technique, cm™): 3283, 2984, 1507, 1452, 1411, 1223, 1201, 1161, 1128,
1080, 1064, 1030; HRMS: calculated for C1oH14FO4P [M+Na]* 271.0511 and found
271.0513.

3.1.1.5 Characterization of 141

OH

0]
Cl

Dimethyl 1-(4-chlorophenyl)-1-hydroxyethylphosphonate: Yield 68 mg (64%),
crystalline white solid (mp: 161-162 °C ); *H NMR (CDCls, 400 MHz): § 1.73 (3H,
d, J=15.6 Hz), 3.60 (3H, d, J=10.2 Hz), 3.68 (3H, d, J=10.2 Hz), 4.44 (1H, s
(broad)), 7.25 (2H, d, J=8.5 Hz), 7.46 (2H, dd, J=2.3 and 8.5 Hz); *C NMR (CDCls,
100 MHz): & 25.9 (d, J=3.8 Hz), 53.7 (d, J=7.9 Hz), 54.3 (d, J=7.0 Hz), 73.4 (d,
J=159.8 Hz), 127.3 (d, J=4.3 Hz), 128.2 (d, J=2.4 Hz), 133.5 (d, J=3.3 Hz), 139.6;
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31p NMR (CDCls, 161 MHz): & 25.64; IR (ATR technique, cm™): 3266, 2950,1489,
1225, 1203, 1182, 1090, 1071, 1030; HRMS: calculated for C1oH14CIO4P (35 CI-
isotope) [M+Na]* 287.0216 and found 287.0211.

3.1.1.6 Characterization of 143

OH

° P(OMe);
@)

Dimethyl 1-(3-chlorophenyl)-1-hydroxyethylphosphonate: Yield 78 mg (73%),
crystalline white solid (mp: 136-137 °C ); *H NMR (CDCls, 400MHz): & 1.73 (3H,
d, J=15.7 Hz), 3.63 (3H, d, J=10.3 Hz), 3.69 (3H, d, J=10.0 Hz), 7.17-7.23 (2H, m),
7.38-7.41 (1H, m), 7.54-7.56 (1H, m); *C NMR (CDCls, 100MHz): & 25.84, 53.8 (d,
J=7.9 Hz), 53.4 (d, J=7.8 Hz), 73.4 (d, J=159.9 Hz), 124.1 (d, J=4.1 Hz), 126.1 (d,
J=4.4 Hz), 127.6 (d, J=1.9 Hz), 129.2 (d, J=2.1 Hz), 134.2, 143.3; *'P NMR (CDCls,
161 MHz): 6 25.51; IR (ATR technique, cm'l): 3260, 2954, 1456, 1423, 1228, 1194,
1122, 1084, 1049; HRMS: calculated for CioH14CIO4P (35 Cl-isotope) [M+Na]®
287.0216 and found 287.0219.

3.1.1.7 Characterization of 145

Cl OH

P(OMe),
@)

Dimethyl 1-(2-chlorophenyl)-1-hydroxyethylphosphonate: Yield 82 mg (77%),
crystalline white solid (mp: 143-144 °C ); *H NMR (CDCl;,400 MHz): & 1.93 (3H,
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d, J=15.5 Hz), 3.64 (3H, d, J=10.3 Hz), 3.70 (3H,d, J=10.3 Hz), 7.12-7.22 (2H, m),
7.29 (1H, dd, J=1.1 and 7.6 Hz), 7.70 (1H, td, J=7.9, 2.0 Hz); *C NMR (CDCls,
100MHz): & 25.0, 54.0 (t, J=5.9 Hz, -C=0OPO(OCH3)2, both -OMe groups are
overlapping), 75.1 (d, J=160.9 Hz), 126.7 (d, J=1.8 Hz), 129.0 (d, J=2.3 Hz), 129.7
(d, J=4.5 Hz), 131.8 (d, J=1.7 Hz), 132.0 (d, J=5.8 Hz), 137.7 (d, J=3.3 Hz); *'P
NMR (CDCls, 161 MHz): & 25.44; IR (ATR technique, cm™): 3260, 2954, 1456,
1423, 1228, 1194, 1122, 1084, 1049, 1021; HRMS: calculated for C1oH14CIO4P (35
Cl-isotope) [M+Na]* 287.0216 and found 287.0220.

3.1.1.8 Characterization of 147

OH

P(OMe),
O

Dimethyl 1-cyclohexyl-1-hydroxyethylphoshonate: Yield 84 mg (78%), crystalline
white solid (mp: 82-83 °C ); *H NMR (CDCls, 400 MHz): & 0.97-1.17 (5H, m), 1.26
(3H, d, J=16.0 Hz), 1.60-1.90 (6H, m), 3.74 (6H, dt, J=1.6 and 10.1 Hz); *C NMR
(CDCls, 100 MHz): 8 19.2 (d, J=4.2 Hz), 26.0 (d, J=8.2 Hz), 26.4 (d, J=4.0 Hz),
26.5, 27.8 (d, J=2.6 Hz), 44.5 (d, J=5.4 Hz), 53.0 (d, J=7.9 Hz), 53.6 (d, J=7.4 Hz),
75.3 (d, J=157.1 Hz); *'P NMR (CDCls, 161 MHz): & 26.46; IR (ATR technique, cm’
1): 3319, 2994, 2849, 1146, 1224, 1190, 1077, 1054, 1028; HRMS: calculated for
C10H2104P [M+Na]" 259.1075 and found 259.1070.
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3.1.1.9 Characterization of 149

OH
\>I\EJ(0Me)2

o

Dimethyl 2-hydroxybutan-2-yl phosphonate: Yield 69 mg (63%), colorless oil; *H
NMR (CDCls, 400 MHz): § 0.93 (3H, t, J=7.5 Hz), 1.30 (3H, d, J=16.0 Hz), 1.57-
1.68 (1H, m), 1.71-1.84 (1H, m), 3.73 (3H, d, J=10.1 Hz), 3.72 (3H, d, J=10.1 Hz),
4.45 (1H, s (broad)); *C NMR (CDCls, 100 MHz): & 6.8 (d, J=8.6 Hz), 21.1 (d,
J=4.7 Hz), 29.8 (d, J=5.3 Hz), 53.3 (t, J=6.2 Hz), 72.0 (d, J=161.0 Hz); *'P NMR
(CDCls, 161 MHz): & 30.03; IR (ATR technique, cm™): 3311, 2956, 1460,
1226,1167,1131,1023; HRMS: calculated for CgHisO4P [M+Na]* 205.0606 and
found 205.0599.

3.1.2 General Procedure for hydride addition to Acyl Phosphonates

To a solution of acyl phosphonate (100 mg, 1 equiv) in dry toluene (0.5 M) at 0 °C
under argon atmosphere was added triethylaluminum (3 equiv, 1 M solution in
heptane) dropwise. After the completion of reaction in 10 min, which was monitored
by a TLC plate, the reaction mixture was cautiously hydrolyzed with water. The
reaction mixture was filtrated over Celite and washed with ethyl acetate. After
evaporation of solvent in vacuo, the crude product was purified by flash column

chromatography on silica gel using ethyl acetate as the eluting solvent.
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3.1.2.1 Characterization of 150

OH

H
P(OMe),
(@]

Dimethyl hydroxy(phenyl)methylphosphonate: Yield 76 mg (75%), crystalline
white solid (mp: 106-107 °C ); *H NMR (CDCls, 400 MHz):  3.66 (3H, d, J=10.3
Hz), 3.70 (3H, d, J=10.3 Hz), 5.03 (1H, d, J=10.9 Hz), 7.28-7.37 (3H, m), 7.47-7.48
(2H, m); *C NMR (CDCls, 100 MHz): & 53.5 (d, J=7.5 Hz), 53.9 (d, J=6.4 Hz), 70.7
(d, J=159.1 Hz), 127.1 (d, J=5.9 Hz), 128.2 (d, J=2.8 Hz), 128.4 (d, J=2.1 Hz),
136.5; *'P NMR (CDCls, 161 MHz): 6 22.92; IR (ATR technique, cm™): 3258, 2956,
1192, 1049, 1023, 774; HRMS: calculated for CgH1304P [M+Na]® 239.0449 and
found 239.0445.

3.1.2.2 Characterization of 152

OH

H
P(OMe),
0

Dimethyl hydroxy(p-tolyl)methylphosphonate: Yield 82 mg (81%), crystalline
white solid (mp: 102-103 °C ); *H NMR (CDCls, 400 MHz): & 2.35 (3H, d, J=1.7
Hz), 3.66 (3H, d, J=10.3 Hz), 3.71 (3H, dd, J=10.3 Hz), 4.16 (1H, dd, J=8.7 and 5.7
Hz), 4.98 (1H, dd, J=10.5 and 5.1 Hz), 7.16 (2H, J=8.0 Hz), 7.35 (2H, dd, J=8.0 and
2.1 Hz); *C NMR (CDCls, 100 MHz): § 21.0, 53.4 (d, J=7.3 Hz), 53.7 (d, J=6.7 Hz),
70.1 (d, J=161.1 Hz), 126.9 (d, J=6.0 Hz), 128.8 (d, J=2.2 Hz), 133.5, 137.6 (d,
J=3.3 Hz); P NMR (CDCls, 161 MHz): § 23.91; IR (ATR technique, cm™): 3258,
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2957, 1204, 1046, 1022, 818; HRMS: calculated for C1oH1504P [M+Na]* 253.0606
and found 253.0606.

3.1.2.3 Characterization of 153

OH
H
/©)‘\P(0Me)2
o)
MeO

Dimethyl hydroxy(4-methoxyphenyl)methylphosphonate: Yield 81 mg (80%),
crystalline white solid (mp: 94-95 °C ); *H NMR (CDCls, 400MHz): & 3.58 (3H, d,
J=10.3 Hz), 3.63 (3H, d, J=10.3 Hz), 3.73 (3H, s), 4.90 (1H, d, J=10.2 Hz), 6.81 (2H,
d, J=8.5 Hz), 7.33 (2H, dd, J=8.5 and 2.1 Hz); *C NMR (CDCls, 100MHz): & 53.5
(d, J=7.3 Hz), 53.8 (d, J=7.1 Hz), 55.1, 70.1 (d, J=162.0 Hz), 113.8 (d, J=1.5 Hz),
128.4 (d, J=6.2 Hz), 128.5 (d, J=1.0 Hz), 159.5 (d, J=1.0 Hz); *'P NMR (CDCls, 161
MHz): § 24.06; IR (ATR technique, cm™): 3258, 2956, 1205, 1190, 1047, 1022, 833,
774: HRMS: calculated for C1oH150sP [M+Na]* 269.0555 and found 269.0556.

3.1.2.4 Characterization of 154

Dimethyl (4-fluorophenyl)(hydroxy)methylphosphonate: Yield 56 mg (56%),
crystalline white solid (mp: 97-98 °C ); *H NMR (CDCl3,400MHz): & 3.17 (1H, dd,
J=9.2 and 4.6 Hz), 3.69 (3H, d, J=10.4 Hz), 3.72 (3H, d, J=10.4 Hz), 5.03 (1H, dd,
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J=10.2 and 3.8 Hz), 7.06 (2H, t, J=8.4 Hz), 7.45-7.49 (2H, m); *C NMR (CDCls,
100MHz): & 53.5 (d, J=7.4 Hz), 54.0 (d, J=6.9 Hz), 69.9 (d, J=161.0 Hz), 115.3 (d,
J=2.3 Hz), 128.8 (d, J=6.0 Hz), 128.9 (d, J=6.0 Hz), 132.4, 160.6 (dd, J=246.6 and
3.5 Hz); *'P NMR (CDCl;,161MHz): & 23.25; IR (ATR technique, cm™ ): 3258,
2956, 1205, 1047, 1022, 833, 790; HRMS: calculated for CgHi,FO,P [M+Na]*
257.0355 and found 257.0352.

3.1.2.5 Characterization of 155

H
Cl °

Dimethyl (4-chlorophenyl)(hydroxy)methylphosphonate: Yield 58 mg (58%),
crystalline white solid (mp: 104-105 °C ); *"H NMR (CDCls, 400MHz): § 3.63 (3H,
d, J=10.3 Hz), 3.64 (3H, d, J=10.3 Hz), 4.95 (1H, d, J=11.0 Hz), 7.25 (2H, d, J=8.3
Hz), 7.34 (2H, dd, J=8.3 and 2.2 Hz); *C NMR (CDCl;, 100MHz): & 53.6 (d, J=7.4
Hz), 54.1 (d, J=7.1 Hz), 69.9 (d, J=160.0 Hz), 128.4 (d, J=5.8 Hz), 128.5 (d, J=2.5
Hz), 134.0 (d, J=3.7 Hz), 135.1 (d, J=1.2 Hz); *'P NMR (CDCls, 161MHz): § 22.58;
IR (ATR technique, cm™): 3258, 2956, 1204, 1191, 1047, 1022, 833, 773; HRMS:
calculated for CgH1,ClO4P [M+Na]* 273.0059 and found 273.0056.

3.1.2.6 Characterization of 156

OH

H
IFI)(OMe)Z
o
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Dimethy! cyclohexanecarbonylphosphonate: Yield 86 mg (85%), colorless oil; *H
NMR (CDCls, 400 MHz): & 1.04-1.27 (5H, m), 1.58-1.69 (5H, m), 1.93 (1H, d
(broad), J=11.8 Hz), 3.11 (1H, s (broad)), 3.63 (1H, d (broad), J=5.2 Hz), 3.72 (3H,
d, J=3.0 Hz), 3.75 (3H, d, J=3.0 Hz); **C NMR (CDCls, 100 MHz): & 26.0, 26.2 (d,
J=2.7 Hz), 27.8 (d, J=7.4 Hz), 29.8 (d, J=8.8 Hz), 39.7 (d, J=1.9 Hz), 52.9 (d, J=6.9
Hz), 53.1 (d, J=7.3 Hz), 72.4 (d, J=156.0 Hz); *'P NMR (CDCls, 161 MHz): § 25.58;
IR (ATR technique, cm™): 3262, 2923, 2851,1210, 832; HRMS: calculated for
CoH1004P [M+Na]* 245.0919 and found 245.0921.

3.1.2.7 Characterization of 157

OH
NN
P(OMe),

O

Dimethyl 1-hydroxypropylphosphonate: Yield 49 mg (48%), colorless oil; *H
NMR (CDCls, 400 MHz): 5 1.02 (3H, t, J=7.4 Hz), 1.60-1.80 (2H, m), 3.73 (3H, d,
J=10.3 Hz), 3.74 (3H, d, J=10.3 Hz), 4.46 (1H, dd, J=6.7 and 2.9 Hz); *C NMR
(CDCls, 100 MHz): & 10.3(d, J=13.6 Hz), 24.7 (d, J=1.2 Hz), 53.0 (d, J=7.3 Hz),
53.2 (d, J=7.2 Hz), 69.0 (1H, d, J=160.0 Hz); P NMR (CDCls, 161 MHz): 5 27.71;
IR (ATR technique, cm™): 3259, 2956, 1205, 1046, 1022, 833, 774; HRMS:
calculated for CsH1304P [M+Na]* 191.0449 and found 191.0446.

3.1.3 General Procedure for the Addition of Triethylaluminum to Acyl

Phosphonates

To a solution of acyl phosphonate (100 mg, 1 equiv) in dry toluene (0.5 M) at -100
°C under argon atmosphere was added triethylaluminum (3 equiv, 1 M solution in
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heptane) dropwise. After stirring for 10 min at the same temperature, the reaction
mixture was cautiously hydrolyzed with water. The reaction mixture was filtrated
over Celite and washed with ethyl acetate. After evaporation of solvent in vacuo, the
crude product was purified by flash column chromatography on silica gel using ethyl

acetate as the eluting solvent.

3.1.3.1 Characterization of 158

OH

P(OMe),
O

Dimethyl 1-hydroxy-1-phenylpropylphosphonate: Yield 50 mg (44%), crystalline
white solid (mp: 120-121 °C ); *H NMR (CDCls, 400 MHz): § 0.71 (3H, t, J=7.4
Hz), 2.05-2.62 (2H, m), 3.48 (3H, d, J=10.2 Hz), 3.68 (3H, d, J=10.2 Hz), 7.20-7.24
(1H, m), 7.29 (2H, t (broad), J=8.1 Hz), 7.48-7.51 (2H, m); *C NMR (CDCls, 100
MHz): § 6.2 (d, J=11.0 Hz), 30.4 (d, J=4.5 Hz), 53.7 (d, J=7.4 Hz), 54.0 (d, J=7.6
Hz), 76.9 (d, J=157.0 Hz), 126.1 (d, J=4.5 Hz), 127.4 (d, J=3.0 Hz), 128.1 (d, J=2.6
Hz), 138.1; *'P NMR (CDCls, 161 MHz): § 26.23; IR (ATR technique, cm™): 3283,
2968, 2938, 1220, 1058, 1020, 833; HRMS: calculated for Ci3H:7,04P [M+Na]*
267.0762 and found 267.0756.

3.1.3.2 Characterization of 160

OH

P(OMe)2
O

74



Dimethyl 1-hydroxy-1-p-tolylpropylphosphonate: Yield 40 mg (35%), crystalline
white solid (mp: 114-115 °C ); *H NMR (CDCls, 400MHz): § 0.77 (3H, t, J=7.4 Hz),
2.11-2.31 (2H, m), 2.34 (d, J=1.7 Hz, 3H), 3.05 (1H, d, J=5.8 Hz), 3.55 (3H, d,
J=10.2 Hz), 3.74 (3H, d, J=10.2 Hz), 7.18 (2H, d, J=8.3 Hz), 7.45 (2H, dd, J=8.3, 2.3
Hz); *C NMR (CDCls, 100 MHz): & 6.1 (d, J=11.0 Hz), 21.0, 30.1 (d, J=4.3 Hz),
53.7 (d, J=7.6 Hz), 53.9 (d, J=7.6 Hz), 76.7 (d, J=157.7 Hz), 126.0 (d, J=4.6 Hz),
128.8 (d, J=2.4Hz), 135.1, 136.9 (d, J=3.3 Hz); *'P NMR (CDCl;, 161 MHz): &
26.32; IR (ATR technique, cm'l): 3253, 2977, 2951, 1220, 1054, 1022; HRMS:
calculated for C1,H1904P [M+Na]* 281.0919 and found 281.0912.

3.1.3.3 Characterization of 161

OH
P(OMe),

Dimethyl 1-(4-fluorophenyl)-1-hydroxypropylphosphonate: Yield 11 mg (10%),
crystalline white solid (mp: 153-155 °C ); *H NMR (CDCls, 400MHz): & 0.77 (3H,
d, J=7.3 Hz), 2.28-2.09 (2H, m), 3.0 (1H, d, J=5.3 Hz), 3.56 (3H, d, J=10.2 Hz), 3.75
(3H, d, J=10.2Hz), 7.04 (2H, t, J=8.4 Hz), 7.54 (2H, dtd, J=7.8, 5.3, 2.7 Hz); °C
NMR (CDCls, 100MHz): 6 6.2 (d, J=10.8 Hz), 30.5 (d, J=4.9 Hz), 53.8 (d, J=7.4
Hz), 53.9 (d, J=7.6 Hz), 76.5 (d, J=146.9 Hz),114.9 (dd, J=21.3, 2.7 Hz),128.0 (dd,
J=7.8, 4.6 Hz), 134.0 (d, J=3.2 Hz), 162.2 (d, J=250.0 Hz); *P NMR (CDCls,
161MHz): 6 25.96; IR (ATR technique, cm'l): 3246, 2956, 2923, 1507, 1221, 1047,
1012, 812; HRMS: calculated for Ci;HigFO4P [M+Na]® 285.0668 and found
285.0662.
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3.1.3.4 Characterization of 162

OH

Cl
P(OMG)Z

O

Dimethyl 1-(3-chlorophenyl)-1-hydroxypropylphosphonate: Yield 36 mg (32%),
crystalline white solid (mp: 129-130 °C ); *H NMR (CDCls, 400 MHz): & 0.74 (3H,
t, J=7.4 Hz), 2.13-2.24 (2H, m), 3.67 (3H, d, J=10.3 Hz), 3.76 (3H, d, J=10.2 Hz),
4.16 (1H, d, J=2.2 Hz), 7.27-7.23 (2H, m), 7.43 (1H, ddd, J=7.5, 4.0, 2.0 Hz), 7.58
(1H, dd, J=4.0, 2.0 Hz); *C NMR (CDCls;, 100MHz): 6.2 (d, J=11.5 Hz), 30.2 (d,
J=4.1 Hz), 53.8 (d, J=7.7 Hz), 54.1 (d, J=7.7 Hz), 75.7, 124.4 (d, J=4.2 Hz), 126.6
(d, J=4.6 Hz), 127.4 (d, J=2.9 Hz), 129.2 (d, J=2.7 Hz), 134.3 (d, J=2.7 Hz), 141.0;
P NMR (CDCls, 161MHz): 6 25.42; IR (ATR technique, cm™): 3241, 2956, 1413,
1223, 1189, 1058, 1026, 777, HRMS: calculated for CyH1sClIOsP [M+Na]*
301.0372 and found 301.0369.

3.1.3.5 Characterization of 163

3
P(OMe);

@)

Dimethyl 3-hydroxypentan-3-ylphosphonate: Yield 11 mg (9%), colorless oil; *H
NMR (CDCls, 400 MHz): § 0.89 (6H, t, J=7.5 Hz), 1.62-1.78 (4H, m), 2.30 (1H, d,
J=3.7 Hz), 3.74 (6H, d, J=10.2 Hz); *C NMR (CDCls, 100 MHz): § 7.3 (d, J=5.6
Hz), 27.2 (d, J=4.8 Hz), 53.2 (d, J=5.7 Hz), 75.4 (d, J=157.3 Hz); *'P NMR (CDCls,
161 MHz): & 30.03; IR (ATR technique, cm™): 3309, 2981, 2955, 1460, 1219, 1027,
823; HRMS: calculated for C;H1704P [M+Na]" 219.0762 and found 219.0765.
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3.2 Synthesis of Propargylic Phosphonates

Triethynylaluminum tris-(phenylethynyl) aluminum and tris-(propynyl) aluminum
reagents were prepared by following the literature procedure.” Benzoyl and alkanoyl
phosphonates were also synthesized according to standard literature procedure.?®

3.2.1 General Procedure for the Addition of Triethynylaluminum to Acyl

Phosphonates

Freshly prepared triethynylaluminum reagent (3 equiv) was added to a solution of
acyl phosphonate (100 mg, 1 equiv) in dry toluene (0.25 M) at 0 °C. After stirring for
15-30 min, the reaction mixture was carefully quenched with water and then filtrated
over Celite. The solvent was evaporated and crude product was purified by flash

column chromatography to afford corresponding a-hydroxy phosphonates.

3.2.1.1 Characterization of 167

OH

Il

Diethyl 1-hydroxy-1-phenylprop-2-ynylphosphonate: Yield 74 mg (67%),
crystalline white solid (mp: 112-113 °C ); *H NMR (CDCls, 400 MHz): § 1.24 (3H,
dt, J=5.6 and 0.6 Hz), 1.28 (3H, dt, J=5.6 and 0.6 Hz), 2.82 (1H, d, J=5.3 Hz), 3.89
(1H, d, J=8.5 Hz), 4.16-4.01 (4H, m), 7.40-7.30 (3H, m), 7.74-7.71 (2H, m);
BCNMR (CDCl3,100 MHz): § 16.3 (d, J=2.5 Hz), 16.4 (d, J=2.7 Hz), 64.6 (t, J=6.3
Hz), 71.0 (d, J=166.4 Hz), 76.5 (d, J=9.2 Hz), 82.1 (d, J=1.7 Hz), 126.7 (d, J=4.0
Hz), 127.9 (d, J=2.5 Hz), 128.4 (d, J=2.9 Hz), 136.9 (d, J=3.8 Hz); P NMR
(CDCl3, 161 MHz): & 16.49; IR (ATR technique, cm™): 3246, 3188, 2993, 1234,
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1004, 972, 950, 699; HRMS: calculated for C13H;1704P [M+Na]" 291.0762 and found
291.0757.

3.2.1.2 Characterization of 171

OH

Il o

Diethyl 1-hydroxy-1-p-tolylprop-2-ynylphosphonate: Yield 63 mg (57%),
crystalline white solid (mp: 96-98 °C ); *H NMR (CDCls, 400MHz): & 1.17 (3H, t,
J=7.0 Hz), 1.22 (3H, t, J=7.0Hz), 2.29 (3H, d, J=1.6Hz), 2.72 (1H, d, J=5.3 Hz),
4.09-3.96 (4H, m), 4.13 (1H, d, J=8.1 Hz), 7.09 (2H, d, J=8.3 Hz), 7.51 (2H, dd,
J=2.2 and 8.3 Hz); *C NMR (CDCls, 100MHz): § 16.36 (d, J=2.8 Hz), 16.4 (d,
J=2.6 Hz), 21.0, 64.4 (d, J=7.3 Hz), 70.8 (d, J=167.2 Hz), 76.3 (d, J=9.2 Hz), 82.2,
126.6 (d, J=4.0 Hz), 128.6 (d, J=2.4 Hz), 134.0 (d, J=3.8 Hz), 138.0 (d, J=3.8 Hz);
' NMR (CDCls, 161MHz): 6 16.72; IR (ATR technique, cm™): 3275, 3255, 3214,
2961, 2925, 1073, 1011, 961, 799; HRMS: calculated for Ci4H1904P [M+Na]”
305.0919 and found 305.0919.

3.2.1.3 Characterization of 175

OH

o Il
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Diethyl 1-(4-chlorophenyl)-1-hydroxyprop-2-ynylphosphonate: Yield 48 mg
(44%), crystalline white solid (mp: 105-107 °C ); *H NMR (CDCls;, 400 MHz): &
1.19 (6H, q (broad), J=7.4 Hz), 2.74 (1H, d, J=5.3 HZz), 4.12-4.00 (4H, m), 4.29 (1H,
d (broad), J=7.0 Hz), 7.27 (2H, d, J=8.4 Hz), 7.58 (2H, dd, J=8.4 and 2.3 Hz); *°C
NMR (CDCls, 100 MHz): & 16.29 (d, J=3.7 Hz), 16.3 (d, J=3.6 Hz), 64.7 (d, J=7.4
Hz), 70.6 (d, J=166.7 Hz), 76.8 (d, J=9.1 Hz), 81.6 (d, J=1.2 Hz), 128.1 (d, J=2.6
Hz), 128.2, 134.4 (d, J=4.0 Hz), 135.6 (d, J=3.4 Hz); *'P NMR (CDCls,161 MHz): &
16.09; IR (ATR technique, cm™): 3289, 3212, 2924, 1236, 1006, 946; HRMS:
calculated for Cy3H16CIO4P [M+Na]* 325.0372 and found 325.0369.

3.2.2 General Procedure for the Addition of tris-(propynyl) aluminum reagent

to Acyl Phosphonates

To a solution of acyl phosphonate (100 mg, 1 equiv.) in dry toluene (0.5 M) at 0 °C
under argon atmosphere was added tris-(propynyl) aluminum reagent (3 equiv., 0.23
M solution) dropwise. The resultant mixture was stirred at 0 °C , and warmed to
room temperature. After the completion of reaction in 2-3 hours, which was
monitored by a TLC plate, the reaction mixture was cautiously hydrolyzed with
water. The reaction mixture was filtrated over celite and washed with ethyl acetate.
The organic layer was then dried over anhydrous MgSOQ,, filtered again and
concentrated under reduced pressure. The crude product was purified by flash

column chromatography using hexane-EtOAc mixtures.

3.2.2.1 Characterization of 183

OH

P(OEY),
0
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Diethyl 1-hydroxy-1-phenylbut-2-ynylphosphonate: Yield 65 mg (56%),
crystalline white solid (mp: 157-158 °C ); *H NMR (CDCls, 400 MHz): & 1.25 (6H,
dt, J=7.0 and 2.9 Hz, OCH,CH3), 1.97 (3H, d, J=5.1 Hz, C=C-CHjs), 3.66 (1H, d,
J=8.5 Hz, -OH), 3.90-4.22 (4H, m, OCH,CHj3), 7.27-7.42 (m, 3H), 7.69-7.77 (2H,
m); **C NMR (CDCls, 100 MHz): & 4.0 (d, Jc.p=2.7 Hz, C=C-CH3), 16.4 (t, Jc.p= 4.0
Hz, OCH,CHj3), 64.4 (dd, Jc.p=73.5 and 4.0 Hz, OCH,CHs), 71.2 (d, Jc.»=167.4 Hz,
quaternary C atom), 77.5 (d, Jc.p=2.3 Hz, C=C-CH3; ) 85.0 (d, Jc.p=8.8 Hz, C=C-CH3;
), 126.7 (d, Jc.p=4.2 Hz), 127.8, (d, Jcp=2.6 Hz), 128.1 (d, Jc.=3.0 Hz) 137.8 (d, Jc.
=3.0 Hz); *'P NMR (CDCls,161 MHz): & 17.36; IR (ATR technique, cm™): 3241,
2988, 1228, 1015, 972, 757, 703, 577; HRMS: calculated for C14H1604P [M+H]"
283.1099 and found 283.1129.

3.2.2.2 Characterization of 186

OH

P(OEY),
0]

Diethyl 1-hydroxy-1-p-tolylbut-2-ynylphosphonate: Yield 61 mg (53%),
crystalline white solid (mp: 127-128 °C ); '"H NMR (CDCls, 400 MHz): & 1.25 (6H, t,
Jep=7.1 Hz, OCH,CHj3), 1.96 (3H, d, Jcp=5.1 Hz, C=C-CHj3), 2.34 (3H, d, Jcp=1.3
Hz, CH3), 3.66 (1H, t,-OH, Jc.p=12.2 Hz), 3.90-4.30 (4H, m, OCH,CHj), 7.16 (2H,
d, Jc.p=8.0 Hz), 7.60 (2H, dd, Jc.,=8.3 and 2.2 Hz); *C NMR (CDCl;, 100 MHz): &
4.0 (d, Jcp=2.4 Hz, C=C-CH3), 16.4 (t, Jc.p=4.0 Hz, OCH,CHs), 21.0 (s, -CHs),
64.3 (d, Jc.p=7.4 Hz, OCH,CHg), 71.1 (d, Jcp=168.3 Hz, quaternary C atom), 77.6,
84.9 (d, Jc.p=8.4 Hz), 126.6 (d, Jcp=4.2 Hz), 128.6 (d, Jc.p=4.2 Hz) 128.6 (d, Jc.
p=2.4 Hz), 134.9, 137.9 (d, Jc.p= 2.8 Hz); P NMR (CDCl;,161 MHz): § 17.52; IR
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(ATR technique, cm™): 3238, 2986, 1231, 1017, 970, 573; HRMS: calculated for
C15H2104P [M+H]" 297.1255 and found 297.1289.

3.2.2.3 Characterization of 188

OH

P(OEt),
O

Diethyl 1-hydroxy-1-o-tolylbut-2-ynylphosphonate: Yield 37 mg (32%),
crystalline white solid (mp: 104-105 °C ); *H NMR (CDCls, 400 MHz): & 1.21 (3H,
t, Jcp=7.1 Hz, OCH,CHj3), 1.29 (3H, t, Jcp=7.1 Hz, OCH,CH3), 1.95 (3H, d, Jc.
p=5.2 Hz, C=C-CHj3), 2.69 (3H, d, Jc.p=1.5 Hz, CH3), 3.25 (1H, d, OH, Jcp=8.0
Hz), 3.80-4.30 (4H, m, OCH,CHz), 7.12-7.23 (3H, m), 7.72-7.82 (1H, m); *C NMR
(CDCl3, 100 MHz): 6 4.0 (d, Jcp=2.5 Hz, C=C-CH3), 16.4 (dd, Jc-p=9.3 and 5.5 Hz,
OCH,CHj3), 21.9 (-CHj3), 64.2 (t, Jcp=8.3 Hz, OCH,CHj3), 71.6 (d, Jc.p=167.5 Hz,
quaternary C atom), 77.6 , (d, Jc.p=2.2 Hz), 85.7 (d, Jcp=9.0 Hz) 125.4 (d, Jcp=2.3
Hz), 127.7 (d, Jcp=4.2 Hz) , 128.2 (d, Jc-p=2.7 HZ), 132.3 (d, Jcp=2.3 Hz), 134.8 (d,
Jep=1.5 Hz), 137.4 (d, Jc.p=4.8 Hz); *'P NMR (CDCls,161 MHz): § 18.00; IR (ATR
technique, cm™): 3246, 2982, 1229, 1015, 970; HRMS: calculated for CisHyO4P
[M-H]" 295.1099 and found 295.1152.

3.2.2.4 Characterization of 189

OH

P(OEY),
MeO O
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Diethyl 1-hydroxy-1-(4-methoxyphenyl)but-2-ynylphosphonate: Yield 47 mg
(41%), crystalline white solid (mp: 111-112 °C ); *H NMR (CDCls, 400 MHz): &
1.26 (6H, dt, Jcp=7.0 and 3.7 Hz, OCH,CHj3), 1.97 (3H, d, Jcp=5.1 Hz, C=C-CHj3),
3.38 (1H, d,-OH, Jcp= 9.0 Hz), 3.81 (3H, s, OCH3), 3.92-4.20 (4H, m, OCH,CH3),
6.90 (2H, d, Jc.p=8.7 Hz), 7.64 (2H, m); **C NMR (CDCls, 100 MHz): & 4.0 (d, Jc.
p=2.6 Hz, C=C-CHj3), 16.4 (dd, Jc.p=5.2 and 3.6 Hz, OCH,CH3), 55.3 (OCH3), 64.3
(dd, Jcp=7.3 and 3.5 Hz, OCH,CHj3), 70.9 (d, Jc.p=169.4 Hz, quaternary C atom),
77.5, 85.1 (d, Jc.p=8.8 Hz), 113.3 (d, Jc-p=2.3 Hz) 128.1 (d, Jc.p=4.0 Hz), 129.7 (d,
Jep=3.4 Hz), 159.6 (d, Jc.p=2.5 Hz); *'P NMR (CDCls,161 MHz): § 17.58; IR (ATR
technique, cm™): 3240, 2980, 1225, 1019, 970; HRMS: calculated for Ci5HyOsP
[M+H]" 313.1205 and found 313.1247.

3.2.2.5 Characterization of 191

OH

P(OEY),
F o

Diethyl 1-(4-fluorophenyl)-1-hydroxybut-2-ynylphosphonate: Yield 81 mg
(70%), crystalline white solid (mp: 160-161 °C ); *H NMR (CDCls, 400 MHz): &
1.26 (6H, t, Jc.p=7.1 Hz, OCH,CHs), 1.97 (3H, d, Jc.p=5.2 Hz, C=C-CHj3), 3.96-4.22
(5H, m, OCH,CHs and OH), 7.04 (2H, t, J=8.6 Hz), 7.65-7.75 (2H, m); *C NMR
(CDCl3, 100 MHz): 8 4.0 (d, Jc-p=2.3 Hz, C=C-CH3), 16.4 (dd, Jc-p=5.2 and Jcp=4.1
Hz, OCH,CHj3), 64.4 (d, Jcp=7.4 Hz, OCH,CH3), 70.7 (d, J=168.9 Hz, quaternary C
atom), 77.2, 85.2 (d, Jcp=8.9 Hz), 114.7 (dd, Jcr=21.7 Hz and Jc.p=2.6 Hz)
128.7(dd, Jc-r=8.2 Hz and Jc.p= 4.2 HZz), 133.8 (t, Jc.r=3.0 Hz) 162.6 (dd, Jc.r=250.0
and Jc.p=3.3 Hz); *!P NMR (CDCls,161 MHz): § 16.42; IR (ATR technique, cm™):
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3233, 1231, 1021, 971,804, 572; HRMS: calculated for Ci4H1gFO4P [M+H]"
301.1005 and found 301.1045.

3.2.2.6 Characterization of 193

P(OEt),
o

Diethyl 1-(2-fluorophenyl)-1-hydroxybut-2-ynylphosphonate: Yield 70 mg
(61%), crystalline white solid (mp: 145-146 °C ); *H NMR (CDCls, 400 MHz): &
1.23 (3H, t, Jcp=7.0 Hz, OCH,CHg), 1.31 (3H, t, Jcp=7.1 Hz, OCH,CHg), 1.97 (3H,
d, Jcp=5.1 Hz, C=C-CHg), 4.04 (1H, s (broad), OH), 4.08-4.32 (4H, m, OCH,CH3),
7.05 (1H, dd, Jc,=11.9 and Jc.p=8.2 Hz), 7.15 (1H, t, Jc¢=7.6 Hz), 7.25-7.35 (1H,
m), 7.74 (1H, tt, Jc.==8.0 and Jc.p = 2.0 Hz); *C NMR (CDCls, 100 MHz): 5 4.0 (d,
Jcp=2.5 Hz, C=C-CHj3), 16.3 (d, Jc.p=5.5 Hz, OCH,CHp3), 64.6 (dd, Jc.r=7.2 and Jc.
p=5.1 Hz, OCH,CHj3), 79.6 (d, Jc.p=168.6 Hz, quaternary C atom), 69.6 (dd, Jc.
p=168.6 and Jc.r=2.0 Hz), 76.0 (d, Jcp=3.8 Hz), 85.3 (dd, Jc.,=8.8 and Jc.¢=1.9 Hz),
116.3 (dd, Jc.F=23.0 and Jc.p=2.3 Hz), 123.7 (t, J=2.3 Hz), 125.1(dd, Jcr=9.2 and Jc.
p=2.0 Hz), 129.3 (dd, Jc.r=8.7 and Jc.p=2.7 Hz), 160.2 (dd, Jc.r=250.3 and Jc.p=4.3
Hz); *'P NMR (CDCls,161 MHz): & 16.42; IR (ATR technique, cm™):3229, 2983,
1235, 1028, 974, 774, 580; HRMS: calculated for C14H:sFO4P [M+H]* 301.1005 and
found 301.1040.
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3.2.2.7 Characterization of 195

OH

P(OEY),
o)

Diethyl 1-(3-fluorophenyl)-1-hydroxybut-2-ynylphosphonate: Yield 74 mg
(65%), crystalline white solid (mp: 152-153 °C ); 'H NMR (CDCls, 400 MHz): &
1.27 (6H, dt, Jcp=7.0 Hz and Jc.r=5.8 Hz, OCH,CHj3), 1.97 (3H, d, Jc.p=5.2 Hz,
C=C-CHzy), 4.03-4.23 (4H, m, OCH,CHj3), 4.37 (1H, d, Jc.p=7.5 Hz, OH), 6.96-7.05
(1H, m), 7.32 (1H, dt, Jc.r=8.0 and 6.10 Hz), 7.45 (1H, ddd, J=10.4, 4.2 and 2.3 Hz),
7.51 (1H, td, J=7.9 and 2.4 Hz); *C NMR (CDCls, 100 MHz): & 4.0 (Jc.p=4.2 Hz,
C=C-CHs), 16.4 (t, Jc.p=4.2 Hz, OCH,CHj3), 64.5 (dd, Jc.p=7.4 and Jc.£=2.0 Hz,
OCH,CHj3), 70.8 (dd, Jcp=167.9 and Jc.r=1.8 Hz, quaternary C atom), 85.2 (d, Jc.
p=8.8 HZz), 114.1 (dd, Jc.p=4.0 and Jc.=23.9 Hz), 114.9 (dd, Jc.r=21.2 and Jc.p=2.8
Hz), 122.6 (t, J= 3.5 Hz) ,129.2 (dd, Jc¢=8.1 and Jcp=2.7 Hz), 140.8 (dd, Jc=7.4
and Jcp=3.1 Hz), 162.4 (dd, Jc.F=247.8 and Jc.p=2.9 Hz); *P NMR (CDCl3,161
MHz): & 16.75; IR (ATR technique, cm™): 3229, 1228, 1018, 977, 798; HRMS:
calculated for C14H1sFO4P [M+H]" 301.1005 and found 301.1055.

3.2.2.8 Characterization of 196

OH

P(OEt),
AN S
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Diethyl 1-(4-chlorophenyl)-1-hydroxybut-2-ynylphosphonate: Yield 70 mg
(61%), crystalline white solid (mp: 124-125 °C ); *H NMR (CDCls, 400 MHz): &
1.26 (6H, dt, Jcp=7.0 and Jc.p=1.2 Hz, OCH,CHj3), 1.96 (3H, d, Jcp=5.2 Hz, C=C-
CHs), 3.95-4.22 (4H, m, OCH,CHs), 4.26 (1H, d, OH, Jc.p=7.6 Hz), 7.33 (2H, d, Jc.
c=8.6 Hz), 7.66 (2H, dd, Jc.c=8.7 and Jc.p= 2.2 Hz); *C NMR (CDCls, 100 MHz): §
4.0 (d, Jcp=2.2 Hz, C=C-CH3), 16.4 (t, Jc.p= 4.5 Hz, OCH,CH3), 64.4 (dd, Jc.p=7.3
and 4.2 Hz, OCH,CHg), 70.7 (d, Jcp=168.5 Hz, quaternary C atom), 85.3 (d, Jc-
p=8.8 Hz), 127.9 (d, Jc.p=2.7 Hz), 128.3 (d, Jcp= 4.2 Hz) 134.0 (d, Jcp=3.7 Hz),
136.7 (d, Jc.p=3.0 Hz); *'P NMR (CDCls,161 MHz): & 16.16; IR (ATR technique,
cm™): 3229, 2986, 1230, 1013, 974; HRMS: calculated for Ci4H1sClIO4P [M+H]
317.0709 and found 317.0751.

3.2.2.9 Characterization of 198

Cl OH

P(OEt),
o)

Diethyl 1-(2-chlorophenyl)-1-hydroxybut-2-ynylphosphonate: Yield 56 mg
(49%), crystalline white solid (mp: 137-138 °C ); *H NMR (CDCls, 400 MHz): &
1.24 (3H, t, Jc.p=7.04 Hz, OCH,CHj3), 1.31 (3H, t, Jc.p=7.1 Hz, C=C-CHs), 1.96 (3H,
d, Jc.p= 5.2 Hz), 4.07 (1H, d, -OH, Jc.p=7.7 Hz), 4.08-4.32 (4H, m, OCH,CHz), 7.20-
7.33 (2H, m), 7.38 (1H, dd, J=7.5 and 1.5 Hz), 7.91 (1H, td, J= 7.8 and 2.1 Hz); *C
NMR (CDCl;, 100MHz): & 4.0 (d, J=2.4 Hz, C=C-CH3), 6.4 (t, Jcp= 5.8 Hz,
OCH,CH3), 64.5 (dd, Jcp=7.6 and 1.5 H, OCH,CHj3), 71.3 (d, Jcp=167.9 Hz,
quaternary C atom), 76.3 (d, Jcp=4.6 Hz), 86.2 (d, Jc.p=9.0 Hz), 126.5 (d, Jc.p=2.1
Hz), 129.4 (d, Jc.p=2.3 Hz), 129.9 (d, Jc.p=4.1 Hz), 131.5 (d, Jc»=2.0 Hz), 132.4 (d,
Jep=5.3 Hz), 134.7; *'P NMR (CDCls,161 MHz): & 16.79; IR (ATR technique, cm’
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1): 3221, 2983, 1231, 1022, 972; HRMS: calculated for Ci4H1sCIOP [M+H]'
317.0709 and found 317.0774.

3.2.2.10 Characterization of 200

OH

cl
P(OEt),

O

Diethyl 1-(3-chlorophenyl)-1-hydroxybut-2-ynylphosphonate: Yield 71 mg
(62%), crystalline white solid (mp: 168-169 °C ); *H NMR (CDCls, 400 MHz): &
1.27 (6H, t, Jc-p=7.1 Hz, OCH,CHj3), 1.98 (3H, d, Jc.p=5.2 Hz, C=C-CH3), 3.80 (1H,
d, Jcp=7.8 Hz, -OH), 4.0-4.23 (4H, m, OCH,CH3), 7.3 (2H, d, Jc.p=4.8 Hz), 7.55-
7.65 (1H, m), 7.71 (1H, d, J=1.5 Hz); *C NMR (CDCls, 100 MHz): § 4.0 (d, Jc.
p=2.4 Hz, C=C-CHj3), 16.4 (t, J= 4.9 Hz, CH,CH3), 64.5 (dd, Jc.p=7.4 and 2.6 Hz,
OCH,CHj3), 70.8 (d, Jc.p=167.8 Hz, quaternary C atom), 77.0, 85.5 (d, Jc.p=8.8 Hz),
125.1 (d, Jcp=3.9 Hz), 127.0 (d, Jc.p=4.0 Hz), 128.3 (d, Jc.p=2.9 Hz), 129.1 (d, Jc.
p=2.8 Hz), 133.8 (d, Jc.p=3.0 Hz), 140.1(d, Jc.p=3.2 Hz); P NMR (CDCls,161
MHz): § 16.64; IR (ATR technique, cm™): 3233, 2981, 1231, 1016, 975, 797, 695;
HRMS: calculated for C14H13CIO4P [M+H]" 317.0709 and found 317.0765.

3.2.2.11 Characterization of 202

OH

P(OE),
FaC ©
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Diethyl 1-(4-(trifluoromethyl)phenyl)-1-hydroxybut-2-ynylphosphonate: Yield
85 mg (75%), crystalline white solid (mp: 119-120 °C ); *"H NMR (CDCls, 400
MHz): 6 1.26 (6H, dt, Jc.p=7.0 and Jcp=5.5 Hz, OCH,CHj3), 1.97 (3H, d, Jc.p=5.2
Hz, C=C-CHa), 4.0-4.26 (4H, m, OCH,CHs), 4.62 (1H, d, OH, Jc»=6.8 Hz), 7.61
(2H, d, Jc.p=8.6 Hz), 7.85 (2H, dd, J=1.5 and J= 8.3 Hz); *C NMR (CDCls, 100
MHz): 3 3.9 (d, Jcp=2.2 Hz, C=C-CHpg), 16.3 (t, Jc.p=4.9 Hz, OCH,CHj3), 64.5 (t, Jc-
p=7.6 Hz, OCH,CHj3), 70.9 (d, Jc.p=167.3 Hz, quaternary C atom), 77.2, 85.4 (d, Jc.
p=8.9 Hz), 124.7 (t, Jc.r=6.7), 124.1 (d, Jc.r=271.2 Hz), 127.2 (d, Jcp=3.8 Hz), 129.8
(9, Jc.¢=32.2 Hz, CF3), 142.3 (d, Jc.r=1.7 Hz); *'P NMR (CDCl3,161 MHz): 5 15.84;
IR (ATR technique, cm™): 3220, 1238, 1016, 972,883; HRMS: calculated for
C15H18F304P [M+H]" 351.0973 and found 351.1018.

3.2.2.12 Characterization of 204

OH

P(OEt),
o)

Diethyl 3-hydroxy-2-methylhex-4-yn-3-ylphosphonate: Yield 38 mg (32%),
crystalline white solid (mp: 68-69 °C ); *H NMR (CDCls, 400 MHz): & 1.09 (6H, d,
J=6.7 Hz, CH3), 1.36 (6H, t, J=7.1 Hz, OCH,CH3), 1.91 (3H, d, Jc.p=5.2 Hz, C=C-
CHj3), 2.08-2.12 (1H, m, CH), 2.85 (1H, d, OH, Jcp=4.7 Hz), 4.10- 4.33 (4H, m,
OCH,CHs); *C NMR (CDCls, 100MHz): 3.8 (d, Jc.p =2.6 Hz, C=C-CH3), 16.5 (d,
Je-p =5.2 Hz, OCH,CHj3), 17.0 (d, Jcp =9.5 Hz), 18.4 (d, Jcp=1.9 Hz), 34.5 (d, Jc-
p=1.0 Hz), 63.8 (dd, Jcp=20.4 and 7.4 Hz) 73.4 (d, Jcp =168.7 Hz, quaternary C
atom), 75.2, 85.0 (d, Jc.p=9.6 Hz); *'P NMR (CDCl;,161 MHz): 5 20.92; IR (ATR
technique, cm™): 3270, 2986, 1228, 1021, 962; HRMS: calculated for Ci1H»O4P
[M+H]" 249.1256 and found 249.1300.
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3.2.2.13 Characterization of 206

OH

P(OEt),
0]

Diethyl 1-cyclohexyl-1-hydroxybut-2-ynylphosphonate: Yield 44 mg (38%),
crystalline white solid (mp: 62-63 °C ); *H NMR (CDCls, 400 MHz): § 1.08-1.30
(5H, m), 1.36 (6H, t, Jcp=7.0 Hz, OCH,CHg), 1.66 (1H, d, J=10.3 Hz), 1.72-1.88
(3H, m), 1.91 (3H, d, Jcp=5.3 Hz, C=C-CH3), 2.04 (2H, t, J=9.3 Hz), 2.72 (1H, s
(broad), -OH), 4.18-4.32 (4H, m, OCH,CHs); *C NMR (CDCls, 100 MHz): & 3.9 (d,
Jcp=2.8 Hz, C=C-CHg3), 16.5 (d, Jc.p=5.5 Hz, OCH,CHg), 26.2 (d, Jcp=9.5 Hz,
CHy), 26.5 (d, Jc.p=8.6 Hz, CH,), 28.1 (d, Jcp=2.1 Hz, CH,), 44.2, 63.8 (dd, Jc.
p=17.1 and 7.5 Hz, OCH,CHj3), 72.9 (d, Jc.p=167.8 Hz, quaternary C atom), 75.8,
84.9 (d, Jc.,=9.5 Hz); *'P NMR (CDCls3,161 MHz): § 20.71; IR (ATR technique, cm”
1): 3263, 2921, 1224, 1017, 983,939; HRMS: calculated for CisHps04P [M+H]*
289.1569 and found 289.1630.

3.2.3 General Procedure for the Addition of tris-(phenylethynyl) aluminum
reagent to Acyl Phosphonates

To a solution of acyl phosphonate (100 mg, 1 equiv.) in dry toluene (0.5 M) at 0 °C
under argon atmosphere was added tris-(phenylethynyl) aluminum reagent (3 equiv.,
0.23 M solution) dropwise. The resultant mixture was stirred at 0 °C , and warmed to
room temperature. After the completion of reaction in 2-3 hours, which was
monitored by a TLC plate, the reaction mixture was cautiously hydrolyzed with
water. The reaction mixture was filtrated over Celite and washed with ethyl acetate.
The organic layer was then dried over anhydrous MgSO4, filtered again and
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concentrated under reduced pressure. The crude product was purified by flash

column chromatography using hexane-EtOAc mixtures.

3.2.3.1 Characterization of 207

OH

P(OEt),
O

Ph

Diethyl 1-hydroxy-1,3-diphenylprop-2-ynylphosphonate: Yield 86 mg (61%),
crystalline white solid (mp: 120-121 °C ); *H NMR (CDCls, 400MHz): & 1.14 (3H, t,
Jep=7.1Hz, OCH,CHs), 1.20 (3H, t, Jc.p=7.1 Hz, OCH,CH3), 4.0-4.14 (4H, m,
OCH,CHa), 4.4-4.6 (1H, s (broad), OH), 7.20-7.36 (6H, m), 7.40-7.46 (2H, dd, J=7.5
and 1.7 Hz), 7.70-7.75 (2H, m); *C NMR (CDCls, 100 MHz): & 15.3 (t, Jc.p=5.6 Hz,
OCH,CHg), 63.6 (dd, Jcp=7.2 and 4.1Hz, OCH,CHj3), 70.5 (d, Jcp=166.9 Hz,
quaternary C atom), 86.2 (d, Jcp=2.1 Hz, C=C-Ph), 87.0 (d, Jcp=9.0 Hz, C=C-Ph),
121.1 (d, Jc-p=3.2 Hz) 125.8 (d, Jcp=3.9 Hz), 126.9 (d, Jcp=2.7 Hz), 127.2 (d, Jc.
p=2.9 Hz), 127.3, 127.9, 130.9 (d, Jc.p=2.8 Hz), 136.7 (d, Jc.»=3.6 Hz); *'P NMR
(CDCl3,161 MHz): & 16.13; IR (ATR technique, cm™): 3187, 2978, 1227, 1049,
1010, 952, 758, 693, 579; HRMS: calculated for C1gH»104P [M+H]" 345.1255 and
found 345.1313.
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3.2.3.2 Characterization of 209

OH

P(OEt),
o)

Ph

Diethyl 1-hydroxy-3-phenyl-1-p-tolylprop-2-ynylphosphonate: Yield 82 mg
(59%), crystalline white solid (mp: 118-119 °C ); 'H NMR (CDCls, 400 MHz): &
1.20 (3H, t, Jcp=7.0 Hz, OCH,CHg), 1.28 (3H, t, Jcp=7.0 Hz, OCH,CHg), 2.35 (3H,
d, Jcp=1.6 Hz, CH3), 4.05-4.22 (4H, m, OCH,CHj3), 4.66 (1H, d, J=7.4 Hz, OH),
7.18 (2H, d, J=8.4 Hz), 7.28-7.38 (3H, m), 7.51 (2H, dd, J=7.5 Hz and 1.9 Hz), 7.68
(2H, dd, Jc.»=8.3 and 2.2 Hz); *C NMR (CDCls, 100 MHz): & 16.4 (t, Jc.s=5.6 Hz,
OCH,CHg), 21.2 (CHs), 64.6 (t, Jc.p=7.5 Hz, OCH,CHs), 71.4 (d, J=167.4 Hz,
quaternary C atom), 87.4, 88.0 (d, Jcp=9.5 Hz), 122.2 (d, Jc.p=3.3 Hz) 126.7 (d, Jc-
p=4.2 Hz), 128.3, 128.7 (d, Jc.p=2.5 Hz), 128.8, 132.0 (d, Jcp=2.6 HZz), 134.7 (d, Jc.
=3.7 Hz), 138.0 (d, Jc.p=3.1 Hz); *'P NMR (CDCl;,161 MHz): § 16.96; IR (ATR
technique, cm™): 3199, 2979, 1225, 1050, 1018, 952, 757, 691, 573; HRMS:
calculated for CoH2304P [M+H]" 359.1412 and found 359.1481.

3.2.3.3 Characterization of 210

OH

P(OEY),
O

Ph
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Diethyl 1-hydroxy-3-phenyl-1-o-tolylprop-2-ynylphosphonate: Yield 42 mg
(30%), crystalline white solid (mp: 111-112 °C ); *H NMR (CDCls, 400 MHz): &
1.25 (6H, dt, Jcp =7.1 Hz and 16.0 Hz, OCH,CHz), 2.76 (3H, d, Jc.p=1.5 Hz, CHj3),
3.65 (1H, unresolved g, OH), 3.92-4.25 (4H, m, OCH,CHj3), 7.12- 7.24 (3H, m),
7.27-7.38 (3H, m), 7.47 (2H, dd, J=7.5 and 1.9 Hz), 7.79 -7.88 (1H, m); *C NMR
(CDCl3, 100 MHz): 6 16.4 (t, Jcp=5.5 Hz, OCH,CHj3), 22.0 (-CH3), 64.5 (dd, Jc-
p=7.5 Hz and 3.9 Hz, OCH,CHj3), 71.8 (d, Jc.p =166.7 Hz), 87.2 (d, Jcp=2.1 H2),
88.7 (d, Jcp=9.5 Hz), 122.2 (d, Jcp=3.4 Hz), 125.5 (d, Jcp=2.3 Hz), 127.6 (d, Jc.
p=3.9 Hz), 128.3 (d, Jc.p=2.8 Hz), 128.4, 128.9, 131.7 (d, Jc-p=2.8 Hz), 132.4 (d, Jc-
p=2.2 Hz), 134.6 (d, Jcp=2.2 Hz), 137.4 (d, Jc.p=5.0 Hz); *P NMR (CDCl3,161
MHz): § 17.43; IR (ATR technique, cm™): 3187, 2979, 1212, 1053, 1012, 947, 758,
694; HRMS: calculated for CoH2304P [M+H]" 359.1412 and found 359.1477.

3.2.3.4 Characterization of 221

OH
P(OEY);,
MeO O
Ph
Diethyl 1-hydroxy-1-(4-methoxyphenyl)-3-phenylprop-2-ynylphosphonate:

Yield 54 mg (39%), crystalline white solid (mp:115-116 °C ); *H NMR (CDCls, 400
MHz): § 1.22 (3H, t, Jc.p=7.0 Hz, OCH,CHj3), 1.28 (3H, t, Jc.p=7.1 Hz, OCH,CHj),
3.81 (3H, s, OCHj3), 4.0-4.22 (4H, m, OCH,CHj), 4.24-4.40 (1H, s (broad), OH),
6.91 (2H, d, J=8.7 Hz), 7.28-7.38 (3H, m), 7.51 (2H, dd, J=7.5 and 1.9 Hz), 7.72
(2H, dd, J= 9.0 and 2.3 Hz); **C NMR (CDCls, 100 MHz): & 16.4 (t, Jc.p=4.2 Hz,
OCH,CHg), 55.3 (OCHj3), 64.5 (dd, Jcp=7.3 and 2.6 Hz, OCH,CH3), 71.2 (d, Jc-
p=168.6 Hz, quaternary C atom), 87.2, 88.1 (d, Jcp=9.1 Hz), 113.4 (d, Jc.p=2.2 H2),
122.1 (d, Jcp=2.9 Hz), 128.2 (d, Jc-p=4.0 Hz), 128.3, 128.9, 129.6, 131.9 (d, Jc.p=2.7
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Hz), 159.6 (d, Jc.p=2.6 Hz); *)P NMR (CDCls,161 MHz): & 17.05; IR (ATR
technique, cm™): 3199, 2980, 1225, 1051, 1015, 953, 758, 573; HRMS: calculated
for CaoH30sP [M+H]* 375.1361 and found 375.1426.

3.2.3.5 Characterization of 212

OH

P(OEY),
P N

Ph

Diethyl 1-(4-fluorophenyl)-1-hydroxy-3-phenylprop-2-ynylphosphonate: Yield
94 mg (68%), crystalline white solid (mp: 115-116 °C ); *H NMR (CDCls, 400
MHz): & 1.17 (3H, t, Jc.p=7.0 Hz, OCH,CHs), 1.27 (3H, t, Jc.p=7.0 Hz, OCH,CHs),
4.04-4.22 (4H, m, OCH,CHa), 5.11 (1H, d, Jc.p=6.3 Hz, OH), 7.05 (2H, t, J=8.6 Hz),
7.28-7.40 (3H, m), 7.51 (2H, dd, J=7.7 and 1.7 Hz), 7.73-7.81 (2H, m); **C NMR
(CDCl3, 100 MHz): 6 16.4 (t, Jc.p=6.3 Hz, OCH,CHg3), 64.6 (dd, Jcp=9.4 and 7.5
Hz, OCH,CHj3), 71.0 (d, J=168.2 Hz, quaternary C atom), 87.0 (d, Jc.p=1.1 Hz), 88.2
(d, Jc-p=9.0 Hz), 114.6 (d, J=2.3 Hz), 114.9.7 (d, J=2.5 Hz), 122.0 (d, J=3.0 Hz),
128.3, 128.8 (dd, Jc.r=8.3 and Jcp=4.1 Hz), 129.0, 132.0 (d, J=2.6 Hz), 133.7 (t,
J=3.3 Hz), 162.0 (dd, Jc.r=249.7 Hz and Jc.p=3.4 Hz); *'P NMR (CDCl3,161 MHz):
8 15.84; IR (ATR technique, cm™): 3203, 2981, 1233, 1050, 1017, 951, 762, 695,
572; HRMS: calculated for C19H20FO4P [M+H]" 363.1161 and found 363.1223.
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3.2.3.6 Characterization of 213

P(OE),
0]

Ph

Diethyl 1-(2-fluorophenyl)-1-hydroxy-3-phenylprop-2-ynylphosphonate: Yield
99 mg (72%), crystalline white solid (mp: 122-123 °C ); *H NMR (CDCls, 400
MHz): 6 1.13 (3H, t, Jc.p=7.0 Hz, OCH,CHj3), 1.32 (3H, t, Jcp=7.1 Hz, OCH,CH3),
4.05-4.22 (2H, m, OCH,CHs), 4.31 (2H, m, J=7.1 Hz, OCH,CH3), 5.2 ( 1H, s
(broad), OH), 7.06 (1H, dd, J=11.7 and 8.2 Hz), 7.16 (1H, t, J=7.6 Hz), 7.22 -7.37
(4H, m), 7.51 (2H, dd, J=7.5 and 1.9 Hz), 7.78-7.87 (1H, m); *C NMR (CDCls, 100
MHz): 6 16.3 (dd, Jc.p=13.8 and 5.8 Hz, OCH,CHj3), 64.9 (dd, Jc.p=12.3 and 7.3 Hz,
-OCH,CHg), 69.3 (dd, Jc.p=168.2 Hz and Jc.£=2.0 Hz, quaternary C atom), 85.8 (d,
Jcp=2.7 Hz), 87.9 (dd, Jc-p=9.3 and Jcr=2.5 Hz), 116.3 (dd, Jc.r.=22.9 and Jcp=2.2
Hz), 122.2 (d, J=3.1 Hz), 123.8 (t, J=2.8 Hz), 125.0 (dd, Jcr=9.3 Hz and Jcp=2.7
Hz) , 128.3, 128.8, 129.1 (dd, Jc.r=4.0 Hz and Jc.r=2.0 Hz), 130.1 (dd, Jc.-=8.6 and
Jep=2.8 Hz), 131.8 (d, J=2.7 Hz), 160.0 (dd, Jc.r=251.0 and Jc.p=4.2 Hz); *'P NMR
(CDCl3,161 MHz): & 16.01; IR (ATR technique, cm™): 3189, 2979, 1224, 1051,
1015, 952, 760, 692; HRMS: calculated for C19H20FO4P [M+H]" 363.1161 and found
363.1227.

3.2.3.7 Characterization of 214

OH

P(OEY),
(s}

Ph
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Diethyl 1-(3-fluorophenyl)-1-hydroxy-3-phenylprop-2-ynylphosphonate: Yield
99 mg (72%), crystalline white solid (mp: 113-114 °C ); *"H NMR (CDCls, 400
MHz): & 1.15 (3H, t, J=7.1 Hz, OCH,CH3), 1.28 (3H, t, J=7.1 Hz, OCH,CHj3), 4.05-
4.27 (4H, m, OCH,CHjs), 5.45-5.60 (1H, s (broad), OH), 7.01 (1H, t, J=8.3 Hz),
7.27-7.40 (4H, m), 7.47-7.63 (4H, m); *C NMR (CDCls, 100 MHz): & 16.4 (dd,
J=10.5 and 5.6 Hz, OCH,CHp3), 64.8 (dd, J=7.4 and 14.4 Hz, OCH,CHg), 71.0 (d, Jc-
p=167.0 Hz, quaternary C atom), 86.8 (d, Jc.p=1.3 Hz) , 88.2 (d, J=9.4 Hz), 114.6 (d,
J=3.8 Hz), 114.3(d, J=4.1 Hz), 114.9 (d, J= 2.7 Hz) 115.1 (d, J=2.9 Hz), 121.9 (d,
J=3.1 Hz), 122.7 (d, J= 3.4 Hz), 128.4, 129.0, 129.3 (dd, Jcr= 8.0 and Jc.p=2.6 Hz),
132.0 (d, J=2.6 Hz), 140.7 (dd, Jc.F=7.5 and Jcp=3.6 Hz), 161.3(dd, Jc.r=242.0 Jc.
»=3.1 Hz); *P NMR (CDCl5,161 MHz): & 16.20; IR (ATR technique, cm™): 3186,
2977, 1226, 1015, 964,759; HRMS: calculated for CigH20FO4P [M+H]" 363.1161
and found 363.1226.

3.2.3.8 Characterization of 215

OH

P(OEY),

cl o
Ph

Diethyl 1-(4-chlorophenyl)-1-hydroxy-3-phenylprop-2-ynylphosphonate: Yield
71 mg (52%), crystalline white solid (mp: 102-103 °C ); *"H NMR (CDCls, 400
MHz): 6 1.15 (3H, t, J=7.0 Hz, OCH,CH3), 1.26 (3H, t, J=7.1 Hz, OCH,CH3), 4.02-
4.24 (4H, m, OCH,CHj3), 5.34 (1H, d, J=5.9 Hz, OH), 7.28-7.40 (5H, m), 7.50 (2H,
dd, J=7.8 and 1.6 Hz), 7.73 (2H, dd, J=8.8 and 2.3 Hz); *C NMR (CDCls, 100
MHz): § 16.4 (dd, Jc.»=8.5 and 5.7 Hz, OCH,CHs), 64.7 (dd, Jcp=14.2 and 7.5 Hz,
OCH,CH3), 71.0 (d, Jcp=167.8 Hz, quaternary C atom), 86.8 (d, Jc.p=1.52 Hz), 88.2
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(d, Jcp=8.9 Hz) 121.9 (d, Jc.s=3.0 Hz), 128.0 (d, Jc.p=2.7 Hz), 128.4, 129.0, 132.0
(d, Jcp=2.8 Hz), 134.1 (d, Jcp=3.5 Hz), 136.6 (d, Jc.r=3.6 Hz); P NMR
(CDCl3,161 MHz): & 15.60; IR (ATR technique, cm™): 3201, 2985, 1230, 1053,
1012, 949, 754, 688; HRMS: calculated for Ci9H2CIO4P [M+H]" 379.0866 and
found 379.0935.

3.2.3.9 Characterization of 216

OH
P(OEY),
FsC O
Ph
Diethyl 1-(4-(trifluoromethyl)phenyl)-1-hydroxy-3-phenylprop-2-

ynylphosphonate: Yield 79 mg (60%), crystalline white solid (mp: 88-89 °C ); *H
NMR (CDCls, 400 MHz):  1.15 (3H, t, J=7.1 Hz, OCH,CHs), 1.28 (3H, t, J=7.1 Hz,
OCH,CHjs), 4.08-4.25 (4H, m, OCH,CHs), 5.59 (1H, d, J=5.5 Hz, OH), 7.3-7.4 (3H,
m), 7.52 (2H, dd, J=7.8 and 1.5 Hz), 7.62 (2H, d, J=8.3 Hz), 7.92 (2H, d, J=8.2 Hz);
B3C NMR (CDCls, 100 MHz): § 16.3 (dd, J=10.5 and 5.5 Hz, OCH,CHs), 64.8 (dd,
J=16.4 and 7.5 Hz, OCH,CHg3), 71.2 (d, J=166.7 Hz, quaternary C atom), 86.6 (d,
Jep=2.1 Hz), 88.3 (d, Jc.p=9.2 Hz), 121.8 (d, Jc.p=3.2 Hz), 121.4 (q, Jc.r=272.0 Hz, -
CFs), 124.8 (t, J=3.2 Hz), 127.3, (d, J=3.8 Hz), 128.3, 129.1, 129.9 (qd, Jc.r=32.2
Hz and Jc.p= 2.9 Hz), 132.0 (d, J=2.8 Hz), 142.2; *P NMR (CDCl;,161 MHz): &
15.30; IR (ATR technique, cm™): 3180, 2988, 1227, 1067, 1018, 952, 755, 687;
HRMS: calculated for CxoHz0F304P [M+H]" 413.1129 and found 413.1226.
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3.3 Synthesis of Glycosyl Phosphonates

All commercially available reagents were used as received. Acyl phosphonates were
easily prepared according to the published procedure and used freshly in the
cycloaddition reactions.

3.3.1 General procedure for the HDA reactions of Acyl phosphonates with 2,3-
Dimethyl-1,3 butadiene

To a solution of acyl phosphonates (100 mg, 1 equiv) in DCM (2 mL) was added
Lewis acid AICI; (2 equiv) at 0 °C under argon atmosphere. After stirring for 10
min, 2,3-Dimethyl-1,3 butadiene (2 equiv) was added to the reaction mixture at the
same temperature. After the completion of reaction in 1-3 hours, which was
monitored by TLC, the reaction mixture was carefully quenched by adding few
drops of water at 0 °C and then filtered and concentrated. The crude product was

purified by flash column chromatography using hexane-EtOAc mixtures.

3.3.1.1 Characterization of 218

(EO2R. 4

=

Diethyl (4,5-dimethyl-2-phenyl-3,6-dihydro-2H-pyran-2-yl)phosphonate: Yield
90 mg (68%), yellow oil; *H NMR (CDCls, 400MHz): & 1.13 (6H, q, Jc.p=7.3 Hz, -
OCH,CHj3), 1.28 (3H, s), 1.63 (3H, s), 2.60 (1H, d, J=17.0 Hz), 2.89 (1H, t, J=13.2
Hz), 3.75-4.04 (6H, m), 7.19-7.23 (1H, m), 7.29 (2H, t, J=7.5 Hz), 7.45-7.42 (2H,
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m); 3C NMR (CDCl;, 100 MHz): 13.7, 16.3 (d, Jc.p =5.5 Hz, -OCH,CHs), 18.6,
32.6, 63.0 (Jc.p =7.3 Hz, -OCH,CHs3), 62.2 (Jcp =7.0 Hz, -OCH,CHs), 64.5 (d, Jc.
p=11.2 Hz, -OCH,-), 77.1 (d, Jc.p=170.1 Hz, quaternary C atom), 120.9 (d, Jc.p=11.1
Hz), 123.5 (d, Jc.p=1.7 Hz), 127.6 (d, Jc.p=3.1 Hz), 127.8 (d, Jc.p=4.9 Hz), 127.9 (d,
Je.p=2.5 Hz), 136.1; P NMR (CDCl3,161 MHz): § 21.11; IR (ATR technique, cm’
): 2986, 1449, 1215, 1021, 747; HRMS: calculated for Ci7H50,P [M+Na]
347.1388 and found 347.1386.

3.3.1.2 Characterization of 220

(MeO),R’

Dimethyl (4,5-dimethyl-2-phenyl-3,6-dihydro-2H-pyran-2-yl)phosphonate:
Yield 68 mg (49%), yellow oil; *H NMR (CDCls, 400MHz): & 1.27 (3H, s), 1.62
(3H, s), 2.60 (1H, d, J=17.0 Hz), 2.89 (1H, t, J=13.8 Hz), 3.53 (3H, d, J=10.3 Hz, -
OCHgs), 3.61 (3H, d, J=10.4 Hz, -OCHs), 3.77 (1H, d, J=15.7 Hz), 3.84 (1H, d,
J=15.7), 7.19-7.47 (5H, m); *C NMR (CDCls, 100 MHz): 13.6, 18.5, 32.5, 53.8 (Jc.p
=7.3 Hz, -OCH,CHs), 54.0 (Jc.p =7.0 Hz, -OCH,CHj3), 64.4 (d, Jc.p=11.2 Hz, -
OCHjy-), 77.3 (d, Jc-p=171.0 Hz, quaternary C atom), 120.8 (d, Jc.p=11.2 Hz), 123.5
(d, Jc-p=1.1 HZ), 127.7 (d, Jcp=4.7 Hz), 127.8 (d, Jc-p=2.8 HZz), 128.1 (d, Jc.p=3.1
Hz), 129.8, 135.7; *'P NMR (CDCls,161 MHz): § 23.26; IR (ATR technique, cm™):
2986, 1449, 1215, 1021, 747; HRMS: calculated for Cy5H21;04P [M+Na]* 319.1075
and found 319.1078.
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3.3.1.3 Characterization of 221

/7
(EO)R’ 4

=

Diethyl (4,5-dimethyl-2-(p-tolyl)-3,6-dihydro-2H-pyran-2-yl)phosphonate: Yield
57 mg (43%), yellow oil; *H NMR (CDCls, 400MHz): & 1.15 (6H, t, Jc.p=7.0 Hz, -
OCH,CHg), 1.29 (3H, s), 1.63 (3H, s), 2.54 (1H, d, J=16.9 Hz), 2.89 (1H, t, J=12.4
Hz), 3.71 (1H, d, J=15.9 Hz), 3.86-4.03 (5H, m), 6.96 (2H, t, J=8.6 Hz), 7.40 (2H, t,
J=5.7 Hz); *C NMR (CDCls, 100 MHz): 13.7, 16.3 (d, Jc.p =5.5 Hz, -OCH,CHs),
18.6, 21.0, 32.6, 63.0 (Jcp=7.1 Hz, -OCH,CHj3), 63.2 (Jcp=7.0 Hz, -OCH,CHj3),
64.5 (d, Jc.p=11.3 Hz, -OCHj,-), 77.1 (d, Jc.p=171.0 Hz, quaternary C atom), 121.0
(d, Jcp=11.1 Hz), 123.5 (d, Jcp=1.0 Hz), 127.8 (d, Jcp=4.6 Hz), 127.8 (d, Jc.p=4.6
Hz), 128.8 (d, Jc.p=2.2 Hz), 132.9; *'P NMR (CDCl;,161 MHz): § 21.34; IR (ATR
technique, cm™): 2989, 1444, 1215, 1022, 746; HRMS: calculated for CigHy70,4P
[M+Na]" 361.1545 and found 361.1547.

3.3.1.4 Characterization of 222

Z
(EtO)R 4

5
MeO

Diethyl (2-(4-methoxyphenyl)-4,5-dimethyl-3,6-dihydro-2H-pyran-2-
yl)phosphonate: Yield 51 mg (39%), yellow oil; *H NMR (CDCls, 400MHz): § 1.16
(6H, dt, Jc.p =2.3 and 7.1Hz OCH,CHg), 1.28 (3H, s), 1.63 (3H, s), 2.54 (1H, d,
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J=17.0 Hz), 2.86 (1H, t, J=13.0 Hz), 3.73 (3H, s), 3.73-4.00 (4H, m), 6.81 (2H, d,
J=8.7Hz), 7.40 (2H, dd, J=2.3 and 8.7 Hz); *C NMR (CDCls, 100 MHz): 13.7, 16.3
(d, Jcp =5.6 Hz, -OCH,CHs), 18.6, 32.6, 55.1 (-OCHa3), 62.9 (Jcp =7.3 Hz, -
OCH,CHa), 63.1 (Jc.p =7.0 Hz, -OCH,CHj3), 64.4 (d, Jc.p=11.4 Hz, -OCH,-), 76.8
(d, Jc.p=172.4 Hz, quaternary C atom), 113.4 (d, Jcp=2.5 Hz), 120.9 (d, Jc.p=11.0
Hz), 123.6 (d, Jc.p=1.7 Hz), 127.8, 129.2 (d, Jc.p=4.8 Hz), 159. 1 (d, Jc.p=2.9 Hz);
31 NMR (CDCls,161 MHz): 6 22.06; IR (ATR technique, cm™): 2987, 1510, 1243,
1023, 906, 727, 647; HRMS: calculated for C1gH,70sP [M+Na]" 377.1494 and found
377.1503.

3.3.1.5 Characterization of 223

/7
(EO)R’ 4

=

Diethyl (2-(4-fluorophenyl)-4,5-dimethyl-3,6-dihydro-2H-pyran-2-
yl)phosphonate: Yield 57 mg (44%), yellow oil; *H NMR (CDCls;, 400MHz): &
1.15 (6H, dt, Jc.p =1.9 and 7.1 Hz), 1.28 (3H, s), 1.62 (3H, s), 2.53 (1H, d, J=17.0
Hz), 2.88 (1H, t, J=13.7 Hz), 3.70 (1H, d, J=15.8 Hz), 3.85-4.02 (5H, m), 6.94 (2H, t,
J=8.7 Hz), 7.38-7.42 (2H, m); *C NMR (CDCls, 100 MHz): 13.5, 16.1 (d, Jc.p =5.5
Hz, -OCH,CHs), 18.4, 32.6 (-CH3-), 62.8 (Jc.p =7.3 Hz, -OCH,CHj3), 63.0 (Jc.p =7.1
Hz, -OCH,CHg), 64.4 (d, Jcp=11.0 Hz and, -OCH,-), 76.6 (d, Jc.p=171.7 Hz,
quaternary C atom), 114.6 (dd, Jc.r=21.3 and Jc.p=2.6 Hz), 120.7 (d, Jc.p=10.7 Hz),
123.5 (d, Jc-p=1.4 Hz), 129.5 (dd, Jc-p=8.1 and Jc.F=4.9 Hz), 131.9 (d, Jc.r=6.7 Hz),
162.1 (dd, Jc.F=246.7 and Jc.p=3.2 Hz); *'P NMR (CDCls, 161 MHz):  21.41; IR
(ATR technique, cm™): 2985, 2920, 1506, 1241, 1019, 964, 679; HRMS: calculated
for C17H24FO4P [M+Na]* 365.1294 and found 365.1301.
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3.3.1.6 Characterization of 224

Diethyl (2-(2-fluorophenyl)-4,5-dimethyl-3,6-dihydro-2H-pyran-2-
yl)phosphonate: Yield 31 mg (24%), yellow oil; '*H NMR (CDCls, 400MHz):5
1.15-1.93 (6H, m), 1.29 (3H, s), 1.63 (3H, s), 2.1 (1H, d, J=5.3 Hz), 3.78 (1H, d,
J=15.8 Hz), 3.92-4.07 (5H, m), 6.91 (1H, dd, J=12.5 Hz and 8.1 Hz), 7.06 (1H, t,
J=7.7 Hz), 7.17- 7.21 (1H, m), 7.55 (1H, t, J=8.0 Hz); *C NMR (CDCls, 100 MHz):
13.6, 16.2 (d, Jcp =2.8 Hz, -OCH,CH3), 16.3 (d, Jc.p =2.8 Hz, -OCH,CHj3), 18.3,
33.4 (d, Jc-p =10.1 Hz, -CHj3-), 63.1 (d, Jc-p =2.9 Hz, -OCH,CHj3), 63.1 (d, Jcp =3.0
Hz, -OCH,CHy), 65.1 (d, Jc.p=11.1 Hz and, -OCH,-), 75.6 (d, Jc.r=1.2, quaternary C
atom), 116.5 (d, Jcp=22.9 Hz), 122.0 (d, Jcp=11.4 Hz), 122.5 (d, Jcp=11.4 HZ),
123.1 (d, Jc-p=11.4 Hz), 123.6 (t, Jc-p=2.9 Hz), 129.6 (dd, Jc.p=3.0 and Jc.r=8.9
Hz), 131.3 (t, J=3.8 Hz), 160.7 (dd, Jc.r=250.0 and Jc.p=5.2 Hz); *P NMR
(CDCl3,161 MHz): & 20.77; IR (ATR technique, cm™): 2926, 1485, 1249, 1021,
966, 759; HRMS: calculated for Ci;H24FO4P [M+Na]® 365.1294 and found
365.1295.

3.3.1.7 Characterization of 225
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Diethyl (2-(4-chlorophenyl)-4,5-dimethyl-3,6-dihydro-2H-pyran-2-
yl)phosphonate: Yield 63 mg (49%), yellow oil; *H NMR (CDCls, 400MHz): & 1.17
(6H, dt, Jcp =2.1 and 7.0 Hz), 1.29 (3H, s), 1.62 (3H, s), 2.52 (1H, d, J=17.0 Hz),
2.88 (1H, t, J=13.8 Hz), 3.71 (1H, d, J=15.9 Hz), 3.84-4.06 (5H, m), 7.25 (2H, d, Jc.
¢ =8.5 Hz), 7.36 (2H, dd, Jc.c=8.5 and Jc.p=2.3 Hz); *C NMR (CDCls, 100 M Hz):
13.7, 16.4 (d, Jcp =5.6 Hz, -OCH,CHj3), 18.7, 32.8 (-CH,-), 63.2 (d, Jc.p =7.3 Hz, -
OCH,CHg), 63.3 (d, Jcp =7.0 Hz, -OCH,CHj3), 64.7 (d, Jc.p=11.1 Hz, -OCH,-), 76.9
(d, Jc-p=171.1 Hz, quaternary C atom), 120.9 (d, Jcp=10.9 Hz), 123.7 (d, Jcp=1.4
Hz), 128.2 (d, Jc.p=2.5 Hz), 129.3 (d, Jc.p=4.6 Hz), 133.7 (d, Jc.p=3.8 Hz), 135.1;
P NMR (CDCl3,161 MHz): & 21.14; IR (ATR technique, cm™): 2991, 1489, 1443,
1216, 747; HRMS: calculated for Ci7H»4ClIOsP [M+Na]® 381.0998 and found
381.1007.

3.3.1.8 Characterization of 226

O

/7
(MeO)R™ 4

=
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Dimethyl (2-(2-chlorophenyl)-4,5-dimethyl-3,6-dihydro-2H-pyran-2-
yl)phosphonate: Yield 33 mg (25%), yellow oil; *H NMR (CDCls, 400MHz): 1.30
(3H, s), 1.65 (3H, s), 2.94 (1H, t, J=14.8 Hz), 3.25 (1H, d, Jc.p=17.0 Hz), 3.60 (3H,
d, Jcp=10.4 Hz), 3.67 (3H, d, J=10.4 Hz), 3.81 (1H, d, J=15.0 Hz), 3.97 (1H, d,
J=15.8 Hz), 7.11-7.22 (1H, m), 7.18-7.22 (1H, m), 7.29 (1H, d (broad), J=7.79 Hz),
7.56 (1H, td, J=2.0 and 8.0 Hz); **C NMR (CDCl;, 100 MHz): 13.6, 18.3, 33.8 (-
CHy-), 53.7 (d, Jc.p =7.1 Hz, -OCHpg), 53.8 (d, Jc.p =7.1 Hz, -OCHg), 65.3 (d, Jc-
p=11.5 Hz, -OCH,-), 78.7 (d, Jc.p=170.8 Hz, quaternary C atom), 121.5 ((d, Jc.
p=11.2 Hz), 123.2 (d, Jcp=1.4 Hz), 126.5 (d, Jc.p=2.5 Hz), 129.1 (d, Jc.p=2.9 Hz),

101



131.5 (d, Jc.p=4.4 Hz), 132.2 (d, Jc.p=2.6 Hz), 133.2, 133.4 (d, Jc.p=5.3 Hz); *'P
NMR (CDCls,161 MHz): & 23.12; IR (ATR technique,cm™): 2919, 14265, 1250,
1024, 747; HRMS: calculated for CisH»ClIOsP [M+Na]® 353.0685 and found
353.0690.

3.3.1.9 Characterization of 227

(EtO),R”

F3C

Diethyl  (4,5-dimethyl-2-(4-(trifluoromethyl)phenyl)-3,6-dihydro-2H-pyran-2-
yl)- phosphonate: Yield 99 mg (79%), yellow oil; *H NMR (CDCls, 400MHz): &
1.12 (6H, dt, Jc.p =5.1 and 7.1 Hz), 1.25 (3H, s), 1.60 (3H, s), 2.54 (1H, d, J=17.0
Hz), 2.92 (1H, t, J=14.6 Hz), 3.70 (1H, d, J=15.7 Hz), 3.84-4.03 (5H, m), 7. 50 (4H,
t, J=10.4 Hz); ®*C NMR (CDCl;, 100 MHz): 13.6, 16.2 (d, Jc.r =6.0 Hz, -
OCH,CHjs), 18.5, 32.8 (-CH,-), 63.1 (Jc.p =7.3 Hz, -OCH,CHs), 63.2 (Jc.p =7.1 Hz, -
OCH,CHj3), 64.7 (d, Jc.p=11.0 Hz, -OCH,-), 77.0 (d, Jc.p=170.0 Hz, quaternary C
atom), 120.8 (d, Jc.p=10.8 Hz), 123.6 (d, Jc.p=1.3 Hz), 124.8 (t, Jc..=3.3 Hz), 127.3
(dd, Jc.p=3.8 and Jc.r=69.7 Hz), 128.1 (d, Jc.p=4.5 Hz), 129.7 (dq, Jc.p=3.2 and Jc.
£=32.4 Hz), 140.9; *'P NMR (CDCls,161 MHz): § 22.34; IR (ATR technique, cm™):
2956, 2917, 1448, 1325, 1122, 1110, 755; HRMS: calculated for CigH24F304P
[M+Na]" 415.1262 and found 415.1289.
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3.3.1.10 Characterization of 228
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Diethyl (2-(3-fluorophenyl)-4,5-dimethyl-3,6-dihydro-2H-pyran-2-
yl)phosphonate: Yield 73 mg (56%), yellow oil; *H NMR (CDCls, 400MHz): § 1.22
(6H, g, Jc.p =7.1 Hz), 1.37 (3H, s), 1.70 (3H, s), 2.60 (1H, d, J=17.0 Hz), 2.97 (1H, t,
J=13.5 Hz), 3.85 (1H, d, J=15.8 Hz), 3.91-4.15 (5H, m), 6.97 (1H, t, J=9.2 Hz), 7.21-
7.35 (3H, m); *C NMR (CDCls, 100 MHz): 13.6, 16.1 (d, Jc.p =2.6 Hz, -OCH,CHs),
16.2 (d, Jcp =2.5 Hz, -OCH,CH3), 18.5, 32.8 (-CH,-), 63.0 (Jc.p =7.3 Hz, -
OCH,CHg), 63.1 (Jcp =7.1 Hz, -OCH,CHj3), 64.6 (d, Jc.p=11.0 Hz and , -OCH,-),
76.8 (d, Jcp=170.0 Hz and Jc.r=1.2, quaternary C atom), 114.4 (dd, Jc-r=21.1 and
Jep=3.0 Hz), 114.8 (dd, Jc.r=23.2 and Jc.p=4.7 Hz), 120.8 (t, Jc.=10.8 Hz), 123.3
(dd, Jcp=4.4 and Jc¢=2.9 Hz), 123.5 (d, Jcp=1.2 Hz), 129.2 (dd, Jcp=8.0 and Jc.
r=2.6 Hz), 139.4 (d, Jc.r=6.7 Hz), 162.5 (dd, Jc.r=244.8 and Jc.p=3.0 Hz); *'P NMR
(CDCl3,161 MHz): & 20.96; IR (ATR technique, cm™): 2989, 2926, 1442, 1244,
1021, 967, 748; HRMS: calculated for C37H24FO4P [M+Na]* 365.1294 and found
365.1302.

3.3.1.11 Characterization of 229
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Diethyl (2-(3-chlorophenyl)-4,5-dimethyl-3,6-dihydro-2H-pyran-2-
yl)phosphonate: Yield 54 mg (42%), yellow oil; *H NMR (CDCls, 400MHz): & 1.17
(6H, dt, Jc.p =7.1 Hz and 11.9 Hz), 1.30 (3H, s), 1.63 (3H, s), 2.52 (1H, d, J=17.0
Hz), 2.88 (1H, t, J=12.7 Hz), 3.76 (1H, d, J=15.8 Hz), 3.84-4.06 (5H, m), 7.20-7.22
(2H, m), 7.29-7.32 (1H, m), 7.42 (1H, d, J=1.8 Hz); *C NMR (CDCls;, 100 MHz):
13.8, 16.2 (d, Jcp =3.6 Hz, -OCH,CH3), 16.3 (d, Jc.p =3.6 Hz, -OCH,CHj3), 18.7,
32.8 (-CHy-), 63.2 (Jc-p =7.3 Hz, -OCH,CH3), 63.3 (Jc.p =7.1 Hz, -OCH,CH3), 64.7
(d, Jc.p=11.0 Hz and , -OCHy-), 77.0 (d, Jc.p=170.7 Hz, quaternary C atom), 120.9
(d, Jc.p=10.8 Hz), 123.6 (d, Jc.p=1.7 Hz), 126.0 (d, Jc.p=4.8 Hz), 127.9 (d, Jc.p=3.0
Hz), 128.0 (d, Jc.p=4.8 Hz), 129.3 (d, Jc.p=2.7 Hz), 134.0 (d, Jc.p=3.1 Hz), 138.9; 3P
NMR (CDCls,161 MHz): & 20.91; IR (ATR technique, cm™): 2925, 1445, 1241,
1022, 750; HRMS: calculated for Ci7H»4ClIOP [M+Na]® 381.0998 and found
381.1006.

3.3.1.12 Characterization of 231
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Diethyl (2,4,5-trimethyl-3,6-dihydro-2H-pyran-2-yl)phosphonate: Yield 64 mg
(44%), yellow oil; *H NMR (CDCls, 400MHz): & 1.34 (6H, dt, Jc.p=1.7 and 7.0 Hz),
1.45 (3H, d, Jc.p=15.7 Hz, -CH3), 1.54 (3H, s), 1.67 (3H, s) 1.79 (1H, d, J=16.6 Hz),
2.59 (1H, t, J=13.9 Hz), 3.99 (2H, s), 4.16-4.23 (4H, m); **C NMR (CDCls, 100
MHz): 13.7, 16.4 (d, Jcp =5.3 Hz, -OCH,CHj3), 18.4, 18.8, 35.1 (-CH>-), 62.49 (Jc-p
=2.0 Hz, -OCH,CHj3), 62.54 (Jc.p=2.0 Hz, -OCH,CHy), 64.2 (d, Jc.,=10.3 Hz and , -
OCHjy-), 72.2 (d, Jc.p=173.7 Hz, quaternary C atom), 120.6 (d, Jcp=9.3 Hz), 123.0;
1P NMR (CDCls,161 MHz): 6 24.94; IR (ATR technique, cm™): 2979, 1243, 1020,
957, 790, 631; HRMS: calculated for Ci,H»304,P [M+Na]® 285.1232 and found
285.1237
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CHAPTER 4

CONCLUSIONS

In this dissertation, a new method has been developed for the synthesis of secondary
and tertiary o-hydroxy phosphonates by 1,2-addition reactions of commercially
available trialkylaluminum reagent to a series of substituted benzoyl phosphonates
and alkanoyl phosphonates. All trialkylaluminum reagents used in this part of the
dissertation are commercially available. Desired o-hydroxy phosphonates were
synthesized in moderate to good yields depending on the reaction conditions. In the
trials of trimethylaluminum reagent to acyl phosphonates, tertiary a-hydroxy
phosphonates were attained at 0 °C. The addition of triethylaluminum to acyl
phosphonates at 0 °C led to the formation of hydride addition products. By changing
the temperature from 0 °C to -100 °C , the ethylation of acyl phosphonates gave the
tertiary a-hydroxy phosphonates without the cleavage of C-P bond albeit in low
yields. By this method, we provide a convenient access to secondary and tertiary a-
hydroxy phosphonates in resonable yields and short reaction times. We have also
reported first organoalumnium addition to acyl phosphonate derivatives that yielded

a-hydroxy phosphonates without the C-P bond breakage.

In the second part of this thesis (section 2.2), we extended our research to addition of
trialkynylaluminum reagents to acyl phosphonates. Ttrialkynylaluminum reagents
are not available commercially; for that reason they were prepared and used freshly
prior to each reaction. For the alkynylation of acyl phosphonates, three different
organoaluminum reagents, triethynylaluminum, tris-(propynyl)aluminum, and tris-
(phenylethynyl) aluminum were used. a-Hydroxy propargylic phosphonates having
C-P bond were attained in moderate to good yields. Generally alkynylation reactions
of acyl phosphonates works better with aryl substituted acyl phosphonates than the
alkyl substituted ones. Moreover, the electronic features of the aromatic moiety

affected the chemical yield. Electron-withdrawing group on the phenyl ring gave a
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better chemical yield than electron donating groups.. This route offers a simple and

efficient method for the synthesis of tertiary propargylic phosphonates.

In the last part of this theses (section 2.3), we have studied hetero Diels-Alder
reactions of acyl phosphonates with 2,3-dimethy-1,3-butadine in the presence of a
Lewis acid. Lewis acid screening studies showed that AICI; was the most effective
Lewis acid catalyst for this reaction. From these reactions, glycosyl type

phosphonates were obtained in moderate yields.
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APPENDIX A

NMR AND HRMS SPECTRA OF COMPOUNDS SYNTHESIZED IN THE

FIRST PART
©>Oc{g<0Me)2
—
—
/ { — J

Figure Al. *H NMR spectrum of 131

OH

P(OMe),
o

ccu

T T T T T T T T T T T T T T T T
150 100 50 0
ppm (t1)

Figure A2. **C NMR spectrum of 131
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Figure A3. *'P NMR spectrum of 131
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Figure A4. HRMS of compound 131
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Figure A6. *C NMR spectrum of 135
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Figure A11. *P NMR spectrum of 137
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Figure A24. HRMS of compound 143
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Figure A26. 3C NMR spectrum of 145
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Figure A28. HRMS of compound 145
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Figure A30. *C NMR spectrum of 147
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Figure A32. HRMS of compound 147
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Figure A34. *C NMR spectrum of 149
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Figure A35. *'P NMR spectrum of 149
Elemental Composition Report Page 1

Single Mass Analysis

Tolerance = 5.0 PPM [/ DBE: min = -1.5, max = 100.0
Element prediction: Off

Number of isotope peaks used for i-FIT =3

Monoisotopic Mass, Even Electron lons

51 formula(e) evaluated with 1 results within limits (all results (up to 1000} for each mass)
Elements Used:

C:0-20 H:0-256 0O:0-5 Na:0-1 P:041

5275 ASD
20100902_SPC09_01 96 (0.345) Cm (1:141) - 1: TOF MS ES#+
3.75e+005
205.0599
1001349663 |
|
‘ \
|
1] I
|
% |
| i 409.1597
.
Vo . 10.1693
N [

T wh 4y 2949174 450 3055 |7 507.3206 643.2929 683.4341 825.3672859.5567  948.7670
ol bl Ay T T F ST TR . i L P : S miz
100 200 300 400 500 600 700 800 900 1000

Minimum: -1.5
Maximum: 100.0 5.0 100.0
Mass Calc. Mass mia PPM DBE i-FIT i-FIT (Norm) Formula
205.0598  205.0606 -0.7 -3.4 -0.5 818.9 0.0 C6 HI5 ©4 NWa P
OH
\>k’P(OMe)2
'
0 2i

Figure A36. HRMS of compound 149
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Figure A38. *C NMR spectrum of 150
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Figure A42. 3C NMR spectrum of 152
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Figure A43. 3P NMR spectrum of 152

_«ental Composition Report Page 1

Single Mass Analysis

Tolerance = 10.0 PPM / DBE: min = -1.5, max = 100.0
Element prediction; Off

Number of isotope peaks used for -FIT =3

Monoisotopic Mass, Even Electron lons

51 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass)
Elements Used:

C:0-40 H:0-30 O:0-4 Na:0-1 P:1-1 Fe: 0-1

5394 ASD
20100929_SPC1601_01 241 (0.842) Cm (72:284) 1: TOF MS ES+
2.99e+006
200~ 25,0806
|
\
1
* 1
I 409.1639
143.0461 21:3.0554% ® serosra 101679 551 case 605.3173639-2788 727 4655
P N P ST T e T ST R 8733709 o4r0850
SR — s B g I AR IS e e e e e
100 200 300 400 500 600 700 800 900 1000
Minimum: ~1.5
Maximum: 100.0 10.0 100.0
Mass Calc. Mass mba PPM DBE i-FIT 1-FIT (Norm) Formula
253.0606  253.0606 0.0 0.0 3.5 989.4 1.2 Cl0 HiS 04 Wa
o
253.0630 -2.4 -9.5 6.5 988.5 0.3 €12 Hi4 04 P
OH
H .
F(OMe); _
0 }
2p

Figure A44. HRMS of compound 152
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Figure A47. 3P NMR spectrum of 153

Elemental Composition Report Page 1
Single Mass Analysis
Tolerance = 10.0 PPM / DBE: min = -1.5, max = 100.0
Element prediction; Off
Number of isotope peaks used for i-FIT = 3
Monoisotopic Mass, Even Electron lons
21 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass)
Elements Used: .
C:0-20 H:0-26 0O:1-8 Na: 01 P14
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Figure A48. HRMS of compound 153
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Figure A50. *C NMR spectrum of 154
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Figure A51. *'P NMR spectrum of 154
Elemental Composition Report ~ Page

Single Mass Analysis

Tolerance = 10.0 PPM / DBE: min =-1.5, max = 100.0
Element prediction: Off .

Number of isctope peaks used for i-FiT = 3

Monoisotopic Mass, Even Electron ions

24 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used: :
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Figure A52. HRMS of compound 154
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Figure A54. 3C NMR spectrum of 155
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Figure A55. 3P NMR spectrum of 155
Elemental Composition Report Page 1

Single Mass Analysis

Tolerance = 50.0 PPM / DBE: min =-1.5, max = 100.0
Elerment pradiction: Off

Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron lons

24 formulale) evaluated with 2 results within limits'(all results (up to 1000) for each mass)
Elements Used:
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Figure A56. HRMS of compound 155
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Figure A59. *'P NMR spectrum of 156
Elemental Composition Report Page 1

Single Mass Analysis

Tolerance = 50.0 PPM / DBE: min = -1.5, max = 100.0
Element prediction: Off

Number of isotope peaks used for i-FIT = 3

Monocisctopic Mass, Even Electron lons

21 formula(e} evaluated with 2 results within limits (all results (up te 1000) for each mass)
Elements Used:
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Figure A60. HRMS of compound 156
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Figure A62. *C NMR spectrum of 157
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Figure A63. *'P NMR spectrum of 157

.«1al Composition Report

Single Mass Analysis

Tolerance = 10.0 PPM / DBE: min = -1.5, max = 100.0
Element prediction: Off

Number of isotope peaks used for -FIT = 3

Monoisctopic Mass, Even Electron lons

42 formula(e) evaluated with 1 results within fimits (all results (up to 1000) for each mass)
Elements Used:
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Figure A64. HRMS of compound 157

144

r

Ch  HI3

T

e TWZ
900 1000

i-FIT (Norm) Formuia

Q4 Na P



OH
P(OMe),
5

o o @ 0 © o
IS LN o i =

I l I I I I I I I

8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0

ppm (t1)

Figure A65. 'H NMR spectrum of 158
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Figure A66. *C NMR spectrum of 158

145




OH

P(OMe),
(@]

€292

I |
200 100
ppm (t1)

0 -100 -200

Figure A67. *'P NMR spectrum of 158

Elementai Compaosition Report

Single Mass Analysis

Page 1

Tolerance = 5.0 PPM / DBE: min = -1.5 max = 100.0

Element prediction: Off .
Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron lons

53 formula(e) evaluated with 1 resuits within limits (all results (up to 1000 for each mass)

Elements Used:
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Figure A68. HRMS of compound 158
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Figure A69. 'H NMR spectrum of 160
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Figure A70. *C NMR spectrum of 160
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Figure A71. *P NMR spectrum of 160
Elemental Composition Report Page 1

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0
Element prediction: Off

Number of isotope peaks used for i-FIT =3

Moneisolepic Mass, Even Electron lons

47 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:
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Figure A72. HRMS of compound 160
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Figure A74. *C NMR spectrum of 161
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Elemental Composition Report
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P NMR spectrum of 161

Page 1

Tolerance = 5.0 PPM / DBE: min =-1.5, max = 100.0

Element prediction: Off
Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron lons

52 formula(e) evaluated with 1 resiilts within limits (all results (up to 1000) for each mass)
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Figure A79. *'P NMR spectrum of 162
Elemental Composition Report ‘ Page 1

Single Mass Analysis

Tolerance = 10.0 PPM / DBE: min =-1.5, max = 100.0
Element prediction: Off

Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron lons

24 formulale) evaluated with 2 resuits within limits {all results (up to $000} for each mass)
Elements Used:
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Figure A80. HRMS of compound 162
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Figure A83. *P NMR spectrum of 163
Elemental Composition Report _ Page 1

Single Mass Analysis

Tolerance = 10.0 PPM / DBE: min=-1.5 max = 100.0
Element prediction; Off .

Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Elactron lons

23 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass)
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Figure A84. HRMS of compound 163
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APPENDIX B

NMR AND HRMS SPECTRA OF COMPOUNDS SYNTHESIZED IN THE
SECOND PART
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Figure B1. 'H NMR spectrum of 167
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Figure B2. *C NMR spectrum of 167
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Figure B3. *'P NMR spectrum of 167

Elemental Composition Report

Single Mass Analysis

Tolerance = 50.0 PPM / DBE: min = -1.5, max = 100.0
Element prediction: Off

Number of isotope peaks used for i-FIT = 3

Monoisctopic Mass, Even Electron lons

Page 1

24 formula(e) evaluated with 2 results within fimits (all results (up to 1000) for sach mass)

Elements Used:
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Figure B4. HRMS of compound 167
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Figure B6. *C NMR spectrum of 171

157



OH

5
P(OEY), R
(s
I I I T T
200 100 0 -100 -200
ppm (t1)
: 31
Figure B7. °°P NMR spectrum of 171
Elemental Composition Report Page 1
Single Mass Analysis
Tolerance = 50.0 PPM / DBE: min = -1.5, max = 100.0
Element prediction: Off ‘ .
Number of isotope peaks used for i-FIT =3
Monoisotopic Mass, Even Electron lons
20 formula(e) evaluated with 3 results within limits (ail results (up to 1000) for each mass)
Elements Used:
C:0-20 H:0-25 O:1-5 Na:0-1 P11
5275 ASD :
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Figure B8. HRMS of compound 171

158




OH

< o
s LR

2.01

@%j U@L

5.0
ppm (t1)
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Elementai Composition Report Page 1

Single Mass Analysis

Tolerance = 50.0 PPM / DBE: min =-1.5, max = 100.0
Element prediction: Off )

Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron lans

24 formulale) evaluated with 3 resuits within limits (all results (up to 1000) for each mass)
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Figure B12. HRMS of compound 175
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Figure B13. *H NMR spectrum of 183
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Figure B14. *C NMR spectrum of 183
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Figure B15. *'P NMR spectrum of 183
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Figure B16. HRMS of compound 183
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Figure B17. *H NMR spectrum of 186
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Figure B18. **C NMR spectrum of 186
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Figure B19. *'P NMR spectrum of 186
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Figure B20. HRMS of compound 186

164



(OEt),

o=y

oF

1 | m&u
3 :

5 08 58 b
T3 TR L=t~ R a* B
T ‘ T T T T ‘ T T T T ‘ T T T T ‘ T T T T ‘ T T T T ‘ T T T T ‘ T T T T ‘ T T T T ‘ T T T T
8.0 70 6.0 50 40 30 20 10 00

ppm (t1)

Figure B21. 'H NMR spectrum of 188
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Figure B22. *C NMR spectrum of 188
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Figure B26. *C NMR spectrum of 189
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Figure B27. *'P NMR spectrum of 189
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Figure B28. HRMS of compound 189
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Figure B29. *H NMR spectrum of 191
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Figure B30. **C NMR spectrum of 191
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Figure B31. *'P NMR spectrum of 191
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Figure B32. HRMS of compound 191
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Figure B33. *H NMR spectrum of 193
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Figure B34. **C NMR spectrum of 193
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Figure B36. HRMS of compound 193
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Figure B37. *H NMR spectrum of 195
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Figure B38. 1*C NMR spectrum of 195
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Figure B42. **C NMR spectrum of 196
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Figure B43. *'P NMR spectrum of 196
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Figure B44. HRMS of compound 196
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Figure B46. **C NMR spectrum of 198
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Figure B48. HRMS of compound 198
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Figure B50. **C NMR spectrum of 200
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Figure B54. *C NMR spectrum of 202
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Figure B55. *'P NMR spectrum of 202
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Figure B56. HRMS of compound 202
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Figure B57. 'H NMR spectrum of 204
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Figure B58. *C NMR spectrum of 204
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Figure B59. *'P NMR spectrum of 204

w106 |+ Scan [0.223-0.707 min, 31 scans) 49.d

276 24912936

251
2.25
24
1.75 I
1.5
1.25
14
0,75
0.5 25013375
.25

OH

ploe,

D T - I- 1 1 1 1 - 1 1 = T - 1 1 T T 1 1 T T 1 1 1 - T 1 -
243 244 245 248 247 243 249 250 251 252 253 254 ZBE 256 257 Z5E 2B 260 261 262 263
Counts ws. Mazs-to-Charge [m/z)

Figure B60. HRMS of compound 204
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Figure B62. *C NMR spectrum of 206
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Figure B63. *'P NMR spectrum of 206
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Figure B64. HRMS of compound 206
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Figure B66. *C NMR spectrum of 207
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Figure B67. *'P NMR spectrum of 207
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Figure B70. **C NMR spectrum of 209
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Figure B74. **C NMR spectrum of 210

191



OH

LerLt

P(OEY),
1"
[l
Ph

I I I I I
200 100 0 -100 -200
ppm (t1)

Figure B75. *'P NMR spectrum of 210
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Figure B76. HRMS of compound 210
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Figure B78. *C NMR spectrum of 211
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Figure B79. *'P NMR spectrum of 211
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Figure B80. HRMS of compound 211
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Figure B82. 1*C NMR spectrum of 212
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Figure B84. HRMS of compound 212
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Figure B86. *C NMR spectrum of 213
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Figure B87. *'P NMR spectrum of 213
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Figure B88. HRMS of compound 213
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Figure B91. *'P NMR spectrum of 214
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Figure B94. *C NMR spectrum of 215
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Figure B98. *C NMR spectrum of 216
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Figure B99. *'P NMR spectrum of 216
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#1095 [+ Scan (0.264-0.684 min, 27 scans) sample3.d
114 3E1.15465
1

o
0.9
(EtO),R’

08 o
0.7

06 /@@
0.5

0.4
0.3
0.2
014

] N |

36215738

30 605 81 1.5 362 1625 63 3635 )
Counts [%] we. Mass-to-Charge [mdz]

Figure C16. HRMS of compound 221
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Figure C19. *'P NMR spectrum of 222
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Figure C24. HRMS of compound 223
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Figure C36. HRMS of compound 226
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Figure C51. *P NMR spectrum of 231
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Figure C52. HRMS of compound 231
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