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ABSTRACT

LYAPUNOV TYPE INEQUALITIES AND THEIR APPLICATIONS FOR
LINEAR AND NONLINEAR SYSTEMS UNDER IMPULSE EFFECT

Kayar, Zeynep

Ph.D., Department of Mathematics

Supervisor : Prof. Dr. Ağacık Zafer

February 2014, 159 pages

In this thesis, Lyapunov type inequalities and their applications for impulsive systems
of linear/nonlinear differential equations are studied. Since systems under impulse
effect are one of the fundamental problems in most branches of applied mathemat-
ics, science and technology, investigation of their theory has developed rapidly in the
last three decades. In addition, Lyapunov type inequalities have become a popular
research area in recent years due to the fact that they provide not only better under-
standing of the qualitative nature of the solutions of ordinary and impulsive systems,
for instance oscillation, disconjugacy, stability and asymptotic behavior of solutions,
but also deeper analysis for boundary and eigenvalue problems.

This thesis consists of 7 chapters. Chapter 1 is introductory and contains detailed
literature review, and brief information about the linear systems of impulsive dif-
ferential equations and Hamiltonian systems. The main contributions of the thesis,
which are presented in the second and third chapters, are to derive Lyapunov type
inequalities for the linear 2n × 2n Hamiltonian system with impulsive perturbations
and to prove the existence and uniqueness criteria for the solutions of inhomogenous
boundary value problems to such systems, respectively. Since changing the impul-
sive perturbation or assuming different conditions on the impulses leads to different
inequalities, presence of the impulse effect provides various Lyapunov type inequal-
ities. This shows that the systems of impulsive equations is richer and more fruitful
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in the applications than the systems of ordinary differential equations and that is why
we are interested in these systems. Besides, the obtained inequalities are new even in
the nonimpulsive case and therefore they improve and generalize the previous ones
existing in the literature. In Chapter 3, the connection, which has not been noticed
even for the nonimpulsive case, between Lyapunov type inequalities and boundary
value problems has been revealed for the first time and two existence and uniqueness
criteria for the solutions of inhomogenous BVPs are proved by using the Lyapunov
type inequalities obtained in the previous chapter. Furthermore, the unique solution
of inhomogenous BVPs is expressed in terms of Green’s function (pair) and the prop-
erties of Green’s function (pair) are listed. Chapter 4 is devoted to the stability theory,
which is the application of Lyapunov type inequalities, for the linear planar Hamilto-
nian systems with impulsive perturbations. Two pairs of stability criteria are obtained,
one of which is the generalization of the results obtained for systems of ordinary dif-
ferential equations to the impulsive case and the latter is new and alternative to the
former. In Chapter 5 and 6, we establish several Lyapunov type inequalites, some of
which are generalizations of the nonimpulsive case while the others are new for non-
linear and quasilinear impulsive systems, respectively. As an application of Lyapunov
type inequalities, we investigate disconjugacy intervals and study the asymptotic be-
haviour of oscillatory solutions for the systems under considerations and find a lower
bound for the eigenvalues of the associated eigenvalue problems. The last chapter
serves as a conclusion and is a summary of our findings.

Keywords: Lyapunov Type Inequalities, Impulsive Differential Equations, Boundary
Value Problems, Stability
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ÖZ

İMPALS ETKİSİ ALTINDAKİ LİNEER VE LİNEER OLMAYAN SİSTEMLER
İÇİN LYAPUNOV TİPİ EŞİTSİZLİKLER VE UYGULAMALARI

Kayar, Zeynep

Doktora, Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Ağacık Zafer

Şubat 2014 , 159 sayfa

Bu tezde impalsif lineer/lineer olmayan diferansiyel denklem sistemleri için Lyapu-
nov tipi eşitsizlikler ve uygulamaları çalışılmıştır. İmpals etkisi altındaki sistemler
uygulamalı matematik, bilim ve teknolojinin çoğu dalının temel problemlerinden ol-
dukları için, son otuz yılda bu sistemlerin teorisinin incelenmesi hızlı bir şekilde ge-
lişmiştir. Lyapunov tipi eşitsizlikler ise sadece adi ve impalsif denklem sistemlerinin
çözümlerinin salınım, konjuge olmama (diskonjuge), kararlılık, asimptotik davranış
gibi niteliksel yapılarının daha iyi anlaşılmasını değil aynı zamanda da sınır ve özde-
ğer problemlerinin daha derin analiz edilmesini sağladıkları için son yıllarda popüler
araştırma alanı haline gelmişlerdir.

Bu tez 7 bölümden oluşmaktadır. Birinci bölüm giriş niteliğinde olup detaylı literatür
taraması ve impalsif lineer diferansiyel denklem sistemleri ve Hamiltonian sistemler
hakkında kısa bilgiler içermektedir. Bu tezin temel katkıları, ikinci ve üçüncü bö-
lümde sunulan, sırasıyla, impalsif perturbasyonlu lineer 2n×2n Hamiltonian sistem-
ler için Lyapunov tipi eşitsizlikler elde etmek ve bu sistemlere karşılık gelen homo-
jen olmayan sınır değer problemlerinin çözümlerinin varlık teklik kriterlerini ispat-
lamaktır. İmpalsif perturbasyonun değiştirilmesi ya da impals üzerinde farklı koşul-
ların kabul edilmesi muhtelif eşitsizliklere sebep olduğu için impals etkisinin varlığı
çeşitli Lyapunov tipi eşitsizlikler vermektedir. Bu ise impalsif diferansiyel denklem
sistemlerinin uygulamalarda adi diferansiyel denklem sistemlerinden daha zengin ve
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daha verimli olduğunu ve neden bu sistemlerle ilgilendiğimizi göstermektedir. Üste-
lik elde edilen bu eşitsizlikler impals olmayan durumda bile yenidirler ve bu yüzden
literatürde var olan eski eşitsizlikleri geliştirmiş ve genelleştirmişlerdir. 3. bölümde
Lyapunov tipi eşitsizlikler ve sınır değer problemleri arasındaki impals olmayan du-
rumda bile fark edilmeyen bağlantı ilk kez ortaya çıkarılmış ve homojen olmayan
sınır değer problemleri için önceki bölümde elde edilen Lyapunov tipi eşitsizlikler
kullanılarak iki tane varlık teklik kriteri ispat edilmiştir. Ayrıca homojen olmayan sı-
nır değer probleminin tek çözümü Green’s fonksiyonu (çifti) cinsinden ifade edilmiş
ve Green’s fonksiyonunun (çiftinin) özellikleri listelenmiştir. 4. bölüm Lyapunov tipi
eşitsizliklerin uygulaması olan kararlılık teorisine ayrılmıştır. Birinci çifti adi diferan-
siyel denklem sistemleri için elde edilen sonuçların impals içeren duruma iki farklı
şekilde genelleştirilmesi ve ikinci çifti yeni ve birinciye alternatif olan iki çift kararlı-
lık kriteri elde edilmiştir. 5. ve 6. bölümde, sırasıyla, lineer olmayan ve yarı lineer (qu-
asilineer) impalsif sistemler için bazısı impals olmayan durumların genelleştirilmesi
iken diğerleri yeni olan çeşitli Lyapunov tipi eşitsizlikler oluşturulmuştur. Lyapunov
tipi eşitsizliklerin uygulaması olarak, ele alınan sistemlerin konjuge olmama aralık-
ları incelenmiş, salınımlı çözümlerin asimptotik davranışı çalışılmış ve ilgili özdeğer
probleminin özdeğerleri için bir alt sınır bulunmuştur. Son bölüm sonuç niteliğinde
olup bu tezde yaptıklarımızın özeti şeklindedir.

Anahtar Kelimeler: Lyapunov Tipi Eşitsizlikler, İmpalsif Diferansiyel Denklemler,
Sınır Değer Problemleri, Kararlılık
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CHAPTER 1

INTRODUCTION

Describing the evolution processes of several real world problems, which have a sud-

den change in their states, by using ordinary differential equations is not adequate due

to the fact that they are subject to short time perturbation (harvesting, diseases, wars,

etc.) whose duration is negligible in comparison with the duration of the whole pro-

cess. Therefore, in the mathematical simulation of such processes it is convenient to

assume that this change takes place momentarily or the perturbations occur immedi-

ately as impulses and the processes change their states by jump. For instance, when a

hammer hits a string which is already oscillating, it experiences a rapid change of ve-

locity [107]; a pendulum of a clock undergoes a sudden change of momentum when

it crosses its equilibruim position [107]; in a real evolutionary process of the popula-

tion of a given species, since the perturbation or the influence from outside occurs at

certain moments as impulses, not continuosly, the population has some jumps at these

moments and these jumps follow a specific pattern [70]; when the configuration space

of the system collapses instantaneously because of an inelastic collision, the system

suffers a sudden change of kinetic energy [28]; when passing from one optical media

to another, a ray of light splits into reflected and refracted rays [28].

Since discontinuity is defined as an instantenous interruption at anytime of a contin-

uous process, in order to analyse dynamical systems with discontinous trajectories,

or with impulse effect, it becomes necessary to introduce impulsive differential equa-

tions, or sometimes differential equations under impulse effect, arising from the real

world phenomena and describing the dynamics of processes in which sudden, discon-

tinuous jumps occur at the points of impulses or jumps.
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Impulsive differential equations have attracted a great deal of attention and the the-

ory of it has developed rapidly in the last three decades because they are appropriate

description of simulation processes and various phenomena encountered in mechani-

cal systems with impact [90, 37], biological systems such as heart beats, blood flows

[3, 5], population dynamics [32, 122, 31], theoretical physics [65, 20, 92], mathe-

matical economy [121, 94], electrical technology [62, 61], ecology [72, 123], biology

[73, 53], epidemiology [97, 111], chemistry [75], engineering [30, 17], control theory

[96, 52], medicine [48, 74], networks (such as food webs, communication networks,

social networks, power grids, cellular networks, World Wide Web, metabolic systems,

disease transmission networks, neural networks) [71] and chaos synchronization (for

example secure communication, parallel image processing) [66, 23]. Moreover it has

been recognized that impulsive differential equations not only generalize the corre-

sponding theory of ordinary differential equations [25, 45, 44, 76] but also provide

more mathematical description for many real world phenomena. Therefore, impul-

sive differential equations are richer and more fruitful in applications compared to

the corresponding theory of ordinary differential equations. However, the dynamic

behaviour of systems under impulse effects is more complex than the behaviour of

dynamical systems without impulsive effects. Although there is a large body of liter-

ature on impulsive differential equations that we can not cover completely, we want to

mention the seminal books of Lakshmikantham, Baı̆nov and Simeonov [60], Baı̆nov

and Simeonov [10, 9], and Samoı̆lenko and Perestyuk [93] in which the qualitative

theory such as existence and uniqueness theorems for solutions, comparison theory,

stability, periodicity are investigated. In the book of Akhmet [4] in addition to the

fundamental theory, the new concepts B-equivalence and chaos teory of impulsive

differential equations are introduced as well.

1.1 Structure of the Thesis

The thesis is organized as follows:

In the present chapter, we provide related literature review for Lyapunov type inequal-

ities, boundary value problems and stability and summarize the previous results ob-

tained for the special cases of systems that we will study. Then we outline some facts
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about systems of impulsive differential equations and introduce Hamiltonian systems.

The main result of the thesis presented in Chapter 2 is to obtain new Lyapunov type

inequalities for linear 2n × 2n Hamiltonian systems under impulse effect. As appli-

cations, these inequalities are used to derive disconjugacy criteria and to find lower

bounds for associated eigenvalue problems. In Chapter 3, we consider inhomogenous

boundary value problems (BVPs) to the linear 2n × 2n Hamiltonian systems un-

der impulse effect and establish the existence and uniquness criteria for such BVPs.

Moreover we express the unique solution of the considered BVPs in terms of Green’s

function (pair) and properties of Green’s function (pair) is listed. Chapter 4 is devoted

to derive the stability criteria for the linear planar Hamiltonian systems under impulse

effect by using the connection between stability theory and Lyapunov type inequali-

ties. In Chapter 5 and Chapter 6, we consider nonlinear and quasilinear systems with

impulsive perturbations, respectively. For such systems Lyapunov type inequalities

are obtained and their applications in studying qualitative nature of the solutions such

as disconjugacy criteria, lower bounds for associated eigenvalue problems, bounded-

ness and asymptotic behaviour of oscillatory solutions are demonstrated. Finally, in

Chapter 7, we summarize our findings in this thesis.

1.2 Literature Review

Since we are interested in different subjects or different systems in each chapter, the

detailed literature review for all chapters is given in this section. In the sequel we

assume m+(t) = max{m(t), 0}, m+
i = max{mi, 0}, i ∈ N.

1.2.1 Lyapunov Type Inequalities For Linear Hamiltonian Systems Under Im-

pulse Effect

Now we want to give a related literature review for Lyapunov type inequalities ob-

tained for linear equations and systems with or without impulses.

Let us consider the following second order ordinary differential equation

x′′ + q(t)x = 0. (1.1)
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In a celebrated paper of 1893, Lyapunov [69] prove the following result for (1.1) in

attemp to find sufficient conditions for the stability of the related periodic equation to

(1.1).

Theorem 1.2.1 ([69]) Let

q(t) ≥ 0, q(t) 6≡ 0.

If x(t) is a nontrivial solution of (1.1) with x(t1) = 0 = x(t2), where t1, t2 ∈ R

with t1 < t2 are consecutive zeros, i.e x(t) 6= 0 for t ∈ (t1, t2), then the so-called

Lyapunov inequality

(t2 − t1)
∫ t2

t1

q(t)dt > 4, (1.2)

holds.

Inequality (1.2) is the best possible in the sense that if the constant 4 in (1.2) is re-

placed by any larger constant, then there exists an example of (1.1) for which (1.2)

no longer holds, see [54, 13]. After the initiated work of Lyapunov [69], many au-

thors have paid a considerable attention to Lyapunov type inequalities and various

proofs and generalizations or improvements have appeared in the literature such as

[13, 114, 46, 79, 57, 80, 45, 47, 36, 64, 26, 34, 59, 14]. For a comprehensive exibition

of these results we refer two surveys [24, 104] and references therein. We should also

mention the following theorems to clarify the main generalizations or improvements

of Lyapunov type inequalities.

When analyzing stability of the related periodic equation to (1.1), Borg [13] changed

the nonnegativity condition of q(t) by nonnegative integral of q(t) and improved in-

equality (1.2).

Theorem 1.2.2 ([13]) Let ∫ t2

t1

q(t)dt ≥ 0, q(t) 6≡ 0.

If x(t) is a nontrivial solution of (1.1) with x(t1) = 0 = x(t2), where t1, t2 ∈ R with

t1 < t2 and x(t) 6= 0 for t ∈ (t1, t2), then we have the Lyapunov type inequality∫ t2

t1

|q(t)|dt > 4

t2 − t1
. (1.3)
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Wintner [114] used the same conditions of Theorem 1.2.2 and obtained the following

better inequality by replacing |q(t)| by q+(t) = max{q(t), 0} whereas Krein [57] es-

tablished the same result as in [114] while studying the stability of the related periodic

equation to (1.1).

Theorem 1.2.3 ([114, 57]) Let∫ t2

t1

q(t)dt ≥ 0, q(t) 6≡ 0.

If x(t) is a nontrivial solution of (1.1) with x(t1) = 0 = x(t2), where t1, t2 ∈ R with

t1 < t2 and x(t) 6= 0 for t ∈ (t1, t2), then we have the Lyapunov type inequality∫ t2

t1

q+(t)dt >
4

t2 − t1
.

Hartman [45] has generalized the classical Lyapunov inequality for the linear differ-

ential equation

(p(t)x′)′ + q(t)x = 0. (1.4)

as follows.

Theorem 1.2.4 ([45]) Let p(t) > 0. If x(t) is a nontrivial solution of (1.4) with

x(t1) = 0 = x(t2), where t1, t2 ∈ R with t1 < t2 and x(t) 6= 0 for t ∈ (t1, t2),

then we have the Lyapunov type inequality∫ t2

t1

q+(t)dt >
4∫ t2

t1

p−1(t)dt

.

The results for (1.1) in [59, 14] are worth mentioning due to their contribution to these

subject. In [59] it is shown that∫ t0

t1

q+(t)dt >
1

t0 − t1
,

∫ t2

t0

q+(t)dt >
1

t2 − t0
,

where t0 ∈ (t1, t2) such that y′(t0) = 0. Hence∫ t2

t1

q+(t)dt >
1

t0 − t1
+

1

t2 − t0
=

t2 − t1
(t0 − t1)(t2 − t0)

≥ 4

t2 − t1
.

In [14] the authors obtained ∣∣∣∣∫ t2

t1

q(t)dt

∣∣∣∣ > 4

t2 − t1
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which implies (1.3).

Although Lyapunov-type inequalities are well developed for ordinary differential

equations (ODEs) after the appearance of Lyapunov’s well-known inequality, the im-

pulsive version of it has not been studied until 2008. The second-order differential

equations under impulse effect

(p(t)x′)′ + q(t)x = 0, t 6= τi

x(τ+i ) = kix(τ−i ), (px′)(τ+i ) = −lix(τ−i ) + ki(px
′)(τ−i ), i ∈ N.

(1.5)

was considered first in [43] and the extended Lyapunov-type inequality is given therein.

Theorem 1.2.5 ([43]) Let p(t) > 0 and ki 6= 0 for i ∈ N. If x(t) is a nontrivial

solution of (1.5) with x(t+1 ) = 0 = x(t−2 ), where t1, t2 ∈ R with t1 < t2 and x(t) 6= 0

for t ∈ (t1, t2), then we have the Lyapunov type inequality[∫ t2

t1

1

p(t)
dt

]∫ t2

t1

q+(t)dt+
∑

τi∈[t1,t2)

(
li
ki

)+
 > 4.

To the best of our knowledge, the first result concerning Hamiltonian system

x′ = A(t)x+B(t)u, u′ = −C(t)x− AT (t)u, (1.6)

is due to Krein [58]. While investigating the stability criterion for the related periodic

system to the system (1.6), Krein proved a Lyapunov type inequality. When n = 1,

i.e., for

x′ = a(t)x+ b(t)u, u′ = −c(t)x− a(t)u (1.7)

this inequality is reduced to the following one.

Theorem 1.2.6 ([58]) Let b(t) ≥ 0 and c(t) ≥ 0. If system (1.7) has a solution

(x(t), u(t)) with x(t1) = x(t2) = 0, x(t) 6≡ 0 on (t1, t2), then∫ t2

t1

|a(t)|dt+

(∫ t2

t1

b(t)dt

)1/2(∫ t2

t1

c(t)dt

)1/2

≥ 2.

Since the conditions are weakened, the improved version of Theorem 1.2.6 is as fol-

lows.
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Theorem 1.2.7 ([41]) Let b(t) ≥ 0. If system (1.7) has a solution y(t) = (x(t), u(t))

with x(t1) = x(t2) = 0, x(t) 6≡ 0, then∫ t2

t1

|a(t)|dt+

(∫ t2

t1

b(t)dt

)1/2(∫ t2

t1

c+(t)dt

)1/2

≥ 2. (1.8)

While studying the stability for the periodic case, Wang derived the following Lya-

punov type inequality as an alternative to (1.8).

Theorem 1.2.8 ([112]) Let b(t) ≥ 0. If system (1.7) has a solution (x(t), u(t)) with

x(t) 6≡ 0 on (t1, t2), then for some t0 ∈ (t1, t2),[∫ t2

t1

b(t) exp

(
−2

∫ t

t0

a(s)ds

)
dt

](∫ t2

t1

c+(t)dt

)
≥ 4. (1.9)

Theorem 1.2.7 and Theorem 1.2.8 have been extended to impulsive system

x′ = a(t)x+ b(t)u, u′ = −c(t)x− a(t)u, t 6= τi

x(τ+i ) = kix(τ−i ), u(τ+i ) = −lix(τ−i ) + kiu(τ−i ), i ∈ N
(1.10)

in the next two theorems, respectively.

Theorem 1.2.9 ([42]) Let b(t) > 0 and ki 6= 0 for i ∈ Z. If the impulsive system

(1.10) has a solution (x(t), u(t)) with x(t+1 ) = x(t−2 ) = 0, x(t) 6= 0 on (t1, t2), then

∫ t2

t1

|a(t)|dt+

(∫ t2

t1

b(t)dt

)1/2
(∫ t2

t1

c+(t)dt+
∑

t1≤τi<t2

(
li
ki

)+
)1/2

≥ 2.

Theorem 1.2.10 ([55]) Let b(t) > 0 and ki 6= 0 for i ∈ Z. If the impulsive system

(1.10) has a solution (x(t), u(t)) with x(t+1 ) = x(t−2 ) = 0, x(t) 6= 0 on (t1, t2), then

for some t0 ∈ (t1, t2),[∫ t2

t1

b(t) exp

(
−2

∫ t

t0

a(s)ds

)
dt

][∫ t2

t1

c+(t)dt+
∑

t1≤τi<t2

(
li
ki

)+
]
≥ 4.

More recently, Tang and Zhang [99] improved and generalized the Lyapunov type

inequalities (1.8) and (1.9) to the general 2n × 2n system (1.6). To state their main

result, the following conventions should be made.
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For any x ∈ Rn andA ∈ Rn×n (the space of real n×nmatrices), denote the Euclidean

norm of vectors and the matrix norm of matrices as

|x| = xTx, |A| = max
|x|=1
|Ax|,

respectively.

Definition 1.2.1 Let Rn×n
s be the space of all real n × n symmetric matrices. By

B ≥ 0, we mean xTB(t)x ≥ 0 for all x ∈ Rn and say that B is semi positive definite.

More generally, by B1 ≥ B2 it is meant that B1 −B2 ≥ 0.

Theorem 1.2.11 ([99]) Let B and C be symmetric matrices and B(t) ≥ 0. If system

(1.6) has a solution y(t) = (x(t), u(t)) with x(t1) = x(t2) = 0, x(t) 6= 0 on (t1, t2),

then

exp

(∫ t1

t2

|A(s)|ds
)(∫ t2

t1

|B(t)|dt
)(∫ t2

t1

|C+(t)|dt
)
≥ 4, (1.11)

where C+(t) is the matrix obtained from C by replacing the diagonal elements cii by

max {0, cii} for i = 1, 2, . . . , 2n.

Since 2 exp(−x/2) ≥ 2− x for all x ∈ R, inequality (1.11) implies∫ t1

t2

|A(s)|ds+

(∫ t2

t1

|B(t)|dt
)1/2(∫ t2

t1

|C+(t)|dt
)1/2

≥ 2,

and so all the previous results are also recovered by Theorem 1.2.11. As a special

case of Theorem 1.2.11 one also has the following result, which gives improvements

of Theorem 1.2.7 and Theorem 1.2.8.

Theorem 1.2.12 ([99], n = 1) Let b(t) ≥ 0. If system (1.7) has a solution (x(t), u(t))

with x(t1) = x(t2) = 0, x(t) 6= 0 on (t1, t2), then

exp

(∫ t1

t2

|a(s)|ds
)(∫ t2

t1

b(t)dt

)(∫ t2

t1

c+(t)dt

)
≥ 4. (1.12)

1.2.2 Boundary Value Problems For Linear Hamiltonian Systems Under Im-

pulse Effect

To the best of our knowledge although many results have been obtained for linear

impulsive boundary value problems by using different techiques, there is little known
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for the linear 2n × 2n Hamiltonian system under impulse effect. The first order im-

pulsive differential equations are considered in [81] and [67] and the existence and

uniqueness criteria for linear constant coefficient impulsive boundary value problem

are shown by using Green’s function of the equation. Moreover the authors presented

the expression of Green’s functions of the related linear operator in the space of piece-

wise continuous functions and obtained the existence and uniqueness criteria for the

nonlinear equations. The variable coefficient case is considered in [83] and [82] and

Green’s function of linear equations is obtained. By using the operator theory and

Schaefer’s fixed-point theorem, the solvability and the existence of solutions of non-

linear problem are given. After defining Green’s function, some comparison results

and presentation of the upper and lower solution method and the monotone iterative

scheme are given in [39, 38, 2]. In [84], the authors obtained the explicit representa-

tion of the solution by providing the expression of the corresponding Green’s function

and by using this expression, they deduce sufficient conditions for the existence of so-

lutions with constant sign for the boundary value problem.

Green’s function of second order linear differential equations subject to linear impulse

conditions at the one impulse point and periodic boundary conditions is obtained and

its sign properties are investigated in [49]. Since the study of the existence of a solu-

tion of linear differential equations has an important role in the analysis of nonlinear

problems, the integral representation of the general solution of second order linear

impulsive boundary value problems is obtained by employing Green’s function and

by using this representation and monotone iterative method, which is based on find-

ing upper and lower solutions of the equations, the uniqueness and the existence of

solutions of nonlinear problem are obtained in [16, 29, 22, 110]. By defining integral

representation of solution of nonlinear second order impulsive boundary value prob-

lems, which is obtained by using Green’s function for linear problem, as an operator,

and by using the operator theory and some fixed point theorems such as Contraction

Mapping Theorem (or Banach Fixed Point Theorem), Schauder Fixed Point Thereom,

Schaefer’s Fixed Point Thereom and Krasnolesskii’s Fixed Point Thereom, the exis-

tence and uniquness of solutions of nonlinear second order impulsive boundary value

problems are investigated in [68, 8, 103, 102, 120, 50, 51].

The higher order linear impulsive boundary value problems are considered in [15,
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108]. In [15], the solvability of linear impulsive equations with constant coefficient

are investigated by making use of Green’s function and the integral representation

of the general solution. Then the nonlinear problem is considered and the existence

criteria for such equations is derived by employing the method of upper and lower

solution coupled with the monotone iterative technique. The theory of higher order

linear impulsive boundary value problems, which is the generalization of nonimpul-

sive case given in [25, 77, 76], can be found in [108] or [107] in detail. In this work,

Green’s formula is defined and properties of Green’s function are introduced. Since

higher order linear differential equations can be written as a system of first order

equations as long as the leading coefficient of the equation is different from zero,

these results can be generealized to system of n first order equations.

The boundary value problem of system of ordinary differential equations are consid-

ered in [11] and references cited therein. In this paper adjoint form of the system

of boundary value problem is introduced and the relation of solutions of the original

system and its adjoint is proved. Similar to the ordinary diferential equations, it is ob-

tained that the nonexistence of nontrivial solution of the corresponding homogenous

system implies the uniqueness of the solution of nonhomogenous boundary value

problem.

A boundary value problem for impulsive system is studied in [35, 12, 21, 85]. In

[35], the method of upper and lower solutions is employed to obtain the existence of

solutions of nonlinear impulsive boundary value problem. The necessary and suffi-

cient conditions of the solvability of the linear nonhomogenous impulsive system is

given in [12]. In [21], new results are obtained for the existence of solutions to an

impulsive first-order nonlinear ordinary differential system with periodic boundary

conditions by defining a suitable integral operator whose fixed-points are the solu-

tions of the considered system. In [85], the existence and uniqueness of solutions of

the nonlinear first–order impulsive differential system are considered and new results

are obtained for different right hand side of the equation which may grow linearly, or

sub– or super–linearly in its second argument.
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1.2.3 Stability of Linear Planar Hamiltonian Systems Under Impulse Effect

As is well known, stability is not only one of the major problems encountered in

theory of differential equations, but also it has attracted considerable attention due

to its important role in applications. Although there is an extensive literature on this

topic, we restrict ourselves on obtaining sufficient conditions for the boundedness of

solutions on R of periodic linear equations and systems with or without impulses.

As far as we know, stability analysis of linear Hamiltonian systems with periodic

coefficients goes back to Lyapunov [69]. The first stability criterion for the following

second order T − periodic ordinary differential equation

y′′ + q(t)y = 0. (1.13)

is obtained by Lyapunov [69].

Theorem 1.2.13 ([69]) Let q(t+ T ) = q(t). If

q(t) ≥ 0, q(t) 6≡ 0;∫ T

0

q(t)dt ≤ 4

T
, (1.14)

then equation (1.13) is stable.

The alternative proof of Theorem 1.2.13 can be found in the monograph [1].

Remark 1.2.1 The condition (1.14) is the best possible in the sense that if it is re-

placed by
∫ T

0

q(t)dt <
4

T
+ ε, then the conclusion of Theorem 1.2.13 is no longer

true, see [54, 13].

Then Borg [13] changed the conditions of the Theorem 1.2.13 and obtained improved

result for equation (1.13) by using different technique in the proof. In his result the

nonnegativity condition of q(t) is replaced by the nonnegativity integral of q(t).

Theorem 1.2.14 ([13]) Let q(t+ T ) = q(t). If∫ T

0

q(t)dt ≥ 0, q(t) 6≡ 0;
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∫ T

0

|q(t)|dt ≤ 4

T
,

then equation (1.13) is stable.

Krein [57] make an improvement on the above results for the equation (1.13) by

replacing the condition of Borg’s theorem by a weaker condition, i.e |q(t)| by q+(t) =

max{q(t), 0}.

Theorem 1.2.15 ([57]) Let q(t+ T ) = q(t). If∫ T

0

q(t)dt ≥ 0, q(t) 6≡ 0;

∫ T

0

q+(t)dt ≤ 4

T
,

then equation (1.13) is stable.

The impulsive version of Theorem 1.2.15 is proven in the next theorem for the im-

pulsive equation (1.5).

Theorem 1.2.16 ([43]) Let equation (1.5) be (T, r)− periodic. If

p(t) > 0, ki 6= 0 for i ∈ Z;

r∏
i=1

k2i = 1;

∫ T

0

q(t)dt+
r∑
i=1

li
ki
≥ 0, either q(t) 6≡ 0 on [0, T ]\ {τ1, . . . , τr}

or li 6= 0 some i ∈ {1, . . . , r} ;[∫ T

0

1

p(t)
dt

]∫ T

0

q+(t)dt+
∑

τi∈[0,T )

(
li
ki

)+
 ≤ 4,

then equation (1.5) is stable.

To the best of our knowledge, the first result carried over for 2n−dimensional Hamil-

tonian system (1.6) is due to Krein whose main objective is to generalize Lyapunov’s

theorem 1.2.13 to the general case, see [56]. When n = 1, i.e., for system (1.7),

Krein’s second result is reduced to the following theorem.
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Theorem 1.2.17 ([58]) Let system (1.7) be T − periodic. If

b(t) ≥ 0, c(t) ≥ 0, b(t)c(t)− a2(t) ≥ 0;∫ T

0

b(t)dt

∫ T

0

c(t)dt−
[∫ T

0

a(t)

]2
> 0;

∫ T

0

|a(t)|dt+

[∫ T

0

b(t)dt

∫ T

0

c(t)dt

]1/2
< 2,

then system (1.7) is stable.

After the inspired work of Krein, many works have been devoted to stability of Hamil-

tonian systems [95, 27, 40, 118, 116, 117].

An improved version of Theorem 1.2.17 is obtained by assuming weaker conditions

on the coefficient functions, a, b, c, and by using Floquet Theory in the proof of the

stability theorem for the first time.

Theorem 1.2.18 ([41]) Let system (1.7) be T − periodic. If

b(t) > 0, c(t) ≥ 0, b(t)c(t)− a2(t) ≥ 0;

b(t)c(t)− a2(t) 6≡ 0;∫ T

0

|a(t)|dt+

[∫ T

0

b(t) dt

∫ T

0

c(t)dt

]1/2
< 2,

then system (1.7) is stable.

Since Theorem 1.2.17 and Theorem 1.2.18 have limitations, in other words they are

not applicable in the case
∫ T

0

|a(t)| dt > 2 or
[∫ T

0

b(t) dt

∫ T

0

c(t) dt

]1/2
> 2, an

alternative stability criterion to these theorems, which can be used in either of such

cases, is obtained by Wang [112].

Theorem 1.2.19 ([112]) Let system (1.7) be T − periodic. If∫ T

0

[
c(t)− a2(t)

b(t)

]
dt > 0;

exp

(∫ T

0

|a(u)| du
)[∫ T

0

b(t)dt

] 1
2
[∫ T

0

c+(t)dt

] 1
2

≤ 2,

then system (1.7) is stable.
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In [42] and [55], the extended versions of Theorem 1.2.18 and Theorem 1.2.19 to

system (1.10) are obtained by the following two theorems, respectively.

Theorem 1.2.20 ([42]) Let system (1.10) be (T, r)− periodic. If

r∏
i=1

k2i = 1;

∫ T

0

[
c(t)− a2(t)

b(t)

]
dt+

r∑
i=1

li
ki
> 0;

∫ T

0

|a(t)|dt+

[∫ T

0

b(t)dt

]1/2 [∫ T

0

c+(t)dt+
r∑
i=1

(
li
ki

)+
]1/2
≤ 2,

then impulsive system (1.10) is stable.

Theorem 1.2.21 ([55]) Let system (4.3) be (T, r)− periodic. If

r∏
i=1

k2i = 1;

∫ T

0

[
c(t)− a2(t)

b(t)

]
dt+

r∑
i=1

li
ki
> 0;

exp

(∫ T

0

|a(t)| dt
)[∫ T

0

b(t)dt

] 1
2

[∫ T

0

c+(t)dt+
r∑
i=1

(
li
ki

)+
] 1

2

≤ 2,

then impulsive system (1.10) is stable.

Remark 1.2.2 With or without impulse effect, Theorem 1.2.20 and Theorem 1.2.21

are alternative to each other. Let x =

∫ T

0

|a(t)| dt. If we compare the functions

f(x) = 2 − x and g(x) = 2 exp(−x), it can be seen that g(x) < f(x) if 0 < x <

1.594, therefore Theorem 1.2.21 is better than Theorem 1.2.20. When 1.594 < x < 2,

then f(x) < g(x) and so, Theorem 1.2.20 is better than Theorem 1.2.21. For x > 2,

Theorem 1.2.20 can not be used whereas Theorem 1.2.21 can.

More recently, Tang and Zhang [99] improved the stability criterion for the system

(1.7) in the sense that |a(t)| is replaced by
|a(t)|

2
.
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Theorem 1.2.22 ([99]) Let system (1.7) be T − periodic. If∫ T

0

[
c(t)− a2(t)

b(t)

]
dt > 0;

exp

(
1

2

∫ T

0

|a(t)| dt
)[∫ T

0

b(t)dt

] 1
2
[∫ T

0

c+(t)dt

] 1
2

≤ 2,

then system (1.7) is stable.

Remark 1.2.3 Let
∫ T

0

|a(t)| dt = x. Since 2 exp(−x/2) ≥ 2 − x for all x ∈ R, all

the previous results are also recovered by Theorem 1.2.22.

1.2.4 Lyapunov Type Inequalities For Nonlinear Impulsive Systems

Since Lyapunov type inequalities are important tools in many applications such as

oscillation theory, stability criteria for periodic differential equations, estimates for

intervals of disconjugacy, asymptotic behaviour of solutions, boundary and eigen-

value problems, it is necessary to generalize Lyapunov’s inequality (1.2), which is

obtained for linear equation (1.1), to the nonlinear equations and systems with or

without impulses.

In 1974, Eliason [34] has generalized the Lyapunov inequality for differential equa-

tions of the form

(r(t)y′)′ + p(t)f(y(t)) = 0 (1.15)

y′′ +m(t)y + n(t)f(y(t)) = 0 (1.16)

as follows.

Theorem 1.2.23 ([34]) If the equation (1.15) has a real nontrivial solution y such

that y(a) = y(b) = 0, a, b ∈ R with a < b are consecutive zeros, then we have the

following Lyapunov type inequality

42 < f 2
1 (y(c))S2(a, b; p)

(∫ b

a

1

r(t)
dt

)2

,

where f1(y) = f(y)
y
, y′(c) = 0 with c ∈ (a, b) and S(a, b; p) = sup

a≤u≤v≤b

∫ v

u

p(s)ds.
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Theorem 1.2.24 ([34]) If the equation (1.16) has a real nontrivial solution y such

that y(a) = y(b) = 0, a, b ∈ R with a < b are consecutive zeros, then we have the

following Lyapunov type inequality

42 < (b− a)2Q2 exp ([S(a, b;m)− I(a, b;m)])

(∫ b

a

η+(t)dt

)2

,

where Q = max{f1(y(c1)), f1(y(c2))} with a < c1 ≤ c2 < b such that y′(c1) =

y′(c2) = 0, I(a, b; p) = inf
a≤u≤v≤b

∫ v

u

p(s)ds and f1, S are defined as in previous theo-

rem.

Besides the works [86, 87] on higher order differential equations, Pachpatte consider

the second order nonlinear differential equations and obtained generalized Lyapunov

type inequality for the following equations.

(r(t)|y′|α−1y′)′ + p(t)y′ + q(t)y + f(t, y) = 0 (1.17)

(r(t)|y|β|y′|γ−2y′)′ + p(t)y′ + q(t)y + f(t, y) = 0 (1.18)

(r(t)|y′|α−1y′)′ + q(t)|y|β−1y = 0 (1.19)

(r(t)|y|p|y′|k−2y′)′ + q(t)|y|p+k−2y = 0 (1.20)

Theorem 1.2.25 ([88]) Let α ≥ 1. If the equation (1.17) has a real nontrivial solu-

tion y such that y(a) = y(b) = 0, a, b ∈ R with a < b are consecutive zeros, then we

have the following Lyapunov type inequality

2α+1 ≤
(∫ b

a

r
−1
α (t)dt

)α(
M1−α

∫ b

a

∣∣∣∣q(t)− p′(t)

2

∣∣∣∣ dt+M−α
∫ b

a

w(t,M)dt

)
,

where M = max{|y(t)| : a < t < b} and f(t, y) ≤ w(t, |y|).

Theorem 1.2.26 ([88]) Let β ≥ 0, γ ≥ 2. If the equation (1.18) has a real nontrivial

solution y such that y(a) = y(b) = 0, a, b ∈ R with a < b are consecutive zeros, then

we have the following Lyapunov type inequality

1 ≤
(∫ b

a

r
−1
γ−1 (t)dt

)γ−1(
M2−β−γ

∫ b

a

∣∣∣∣q(t)− p′(t)

2

∣∣∣∣ dt+M1−β−γ
∫ b

a

w(t,M)dt

)
,

where M and w are defined as in previous theorem.
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Theorem 1.2.27 ([89]) Let α ≥ 1 and β ≥ 1. If the equation (1.19) has a real

nontrivial solution y such that y(a) = y(b) = 0, a, b ∈ R with a < b are consecutive

zeros, then we have the following Lyapunov type inequalities

1 ≤Mβ−α
(∫ b

a

r
−1
α (t)dt

)α ∫ b

a

|q(t)|dt,

1 ≤Mβ−α2α+1

(∫ c

a

r
−1
α (t)dt

)α ∫ c

a

|q(t)|dt,

1 ≤Mβ−α2α+1

(∫ b

c

r
−1
α (t)dt

)α ∫ b

c

|q(t)|dt,

where M = max{|y(t)| : a < t < b} = |y(c)| with c ∈ (a, b).

Theorem 1.2.28 ([89]) Let p ≥ 0 and k ≥ 2. If the equation (1.20) has a real non-

trivial solution y such that y(a) = y(b) = 0, a, b ∈ R with a < b are consecutive

zeros, then we have the following Lyapunov type inequalities

1 ≤
(∫ b

a

r
−1
k (t)dt

)k ∫ b

a

|q(t)|dt,

1 ≤ 2k
(∫ c

a

r
−1
k−1 (t)dt

)k−1 ∫ c

a

|q(t)|dt,

1 ≤ 2k
(∫ b

c

r
−1
k−1 (t)dt

)k−1 ∫ b

c

|q(t)|dt.

Although there is extensive literature on linear and nonlinear equations, there is not

much done for the following nonlinear system.

x′ = α1(t)x+ β1(t)|u|γ−2u, u′ = −α1(t)u− β2(t)|x|β−2x, (1.21)

Note that if γ = β = 2, the system (1.21) is reduced to system of 2-linear first order

differential equations (1.7). The first result for system (1.21) is obtained in [106].

Theorem 1.2.29 ([106]) Let γ ≥ 2 and β ≥ 2. If the system (1.21) has a real non-

trivial solution y = (x, u) such that x(a) = x(b) = 0, and x is not identically zero on

[a, b], where a, b ∈ R with a < b are consecutive zeros, then we have the following

Lyapunov type inequalities

2 ≤
∫ b

a

|α1(t)|dt+M
β
α
−1
(∫ b

a

β1(t)dt

) 1
γ
(∫ b

a

β+
2 (t)dt

) 1
α

,
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1 ≤Mβ−α
(∫ τ

a

β1(t)dt

)α−1 ∫ τ

a

β+
2 (t)dt,

1 ≤Mβ−α
(∫ b

τ

β1(t)dt

)α−1 ∫ b

τ

β+
2 (t)dt,

2α ≤Mβ−α
(∫ b

a

β1(t)dt

)α−1 ∫ b

a

β+
2 (t)dt,

where 1
α

+ 1
γ

= 1 and M = max{|x(t)| : a < t < b} = |x(τ)| with τ ∈ (a, b).

The better and alternative results to previous theorem are derived in [100, 105], re-

spectively for system (1.21). Like the above results, these works also include Lya-

punov type inequalities which relate the points where the first component of the so-

lution (x(t), u(t)) of system (1.21) has consecutive zeros but also the point where the

first component of the solution (x(t), u(t)) of system (1.21) is maximized.

For convenience the following definitions are made in [100, 105].

ha(t) =

∫ t

a

β1(w) exp

(
γ

∫ t

w

α1(s)ds

)
dw

hb(t) =

∫ b

t

β1(w) exp

(
γ

∫ t

w

α1(s)ds

)
dw.

(1.22)

Theorem 1.2.30 ([100]) Let γ ≥ 2 and β ≥ 2. If the system (1.21) has a real non-

trivial solution y = (x, u) such that x(a) = x(b) = 0, and x is not identically zero on

[a, b], where a, b ∈ R with a < b are consecutive zeros, then we have the following

Lyapunov type inequalities

1 ≤
∫ b

a

hβ−1a (t)hβ−1b (t)

hβ−1a (t) + hβ−1b (t)
β+
2 (t)dt,

2 ≤ exp

(
1

2

∫ b

a

α1(t)dt

)(∫ b

a

β1(t)dt

) 1
γ
(∫ b

a

β+
2 (t)dt

) 1
β

where 1
β

+ 1
γ

= 1.

Theorem 1.2.31 ([105]) Let γ ≥ 2 and β ≥ 2. If the system (1.21) has a real non-

trivial solution y = (x, u) such that x(a) = x(b) = 0, and x is not identically zero on
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[a, b], where a, b ∈ R with a < b are consecutive zeros, then we have the following

Lyapunov type inequalities

1 ≤
∫ b

a

β+
2 (t)

h1−αa (t) + h1−αb (t)
dt,

22−α ≤
∫ b

a

(
1

ha(t)
+

1

hb(t)

)1−α

β+
2 (t)dt

h1−αa (τ) + h1−αb (τ) ≤Mβ−α
∫ b

a

β+
2 (t)dt

22−α
(

1

ha(t)
+

1

hb(t)

)α−1
≤Mβ−α

∫ b

a

β+
2 (t)dt

2α ≤Mβ−α
(∫ b

a

β1(t) exp

(∫ τ

t

α1(t)dt

)
dt

)α−1(∫ b

a

β+
2 (t)dt

)
where 1

α
+ 1

γ
= 1 and M = max{|x(t)| : a < t < b} = |x(τ)| with τ ∈ (a, b).

1.2.5 Lyapunov Type Inequalities For Quasilinear Impulsive Systems

Due to the fact that Lyapunov type inequalities are useful tools in oscillation theory,

disconjugacy, stability and boundary and eigenvalue problems, after the pioneering

work of Lyapunov in [69], many papers have followed to extend Lyapunov inequality

to half linear equations and in general to quasilinear systems. The second order half

linear equations (sometimes it is called differential equations with the one dimen-

sional α-Laplacian) can be defined as

(r(t)|y′|α−2y′)′ + p(t)|y′|α−2y′ + q(t)|y|α−2y = 0, (1.23)

where r(t) > 0, α > 1 and ϕ(u) = |u|α−2u is α-Laplacian operator. Recall that

solution space of equation (1.23) is homogenous but not additive. Since half linear

equations describe various physical, biological and chemical phenomena, qualitative

nature of solutions of these equations have been investigated and half linear counter-

parts of Lyapunov inequlity have been established by many authors.

Theorem 1.2.32 ([91]) Let r(t) = 1, p(t) = 0, q(t) > 0. If the equation (1.23) has

a real nontrivial solution y such that y(a) = y(b) = 0, a, b ∈ R with a < b are

consecutive zeros, then we have the following Lyapunov type inequalities(
1

c− a

)α
β

≤
∫ c

a

q(t)dt,

(
1

b− c

)α
β

≤
∫ b

c

q(t)dt
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and

2α ≤ (b− a)α−1
∫ b

a

q(t)dt,

where c ∈ (a, b) such that y(c) = max{|y(t)| : a < t < b} and
1

α
+

1

β
= 1.

Theorem 1.2.33 ([63]) Let r(t) = 1, p(t) = 0. If the equation (1.23) has a real

nontrivial solution y such that y(a) = y(b) = 0, a, b ∈ R with a < b are consecutive

zeros, then we have the following Lyapunov type inequalities(
1

c− a

)α
β

≤
∫ c

a

q+(t)dt,

(
1

b− c

)α
β

≤
∫ b

c

q+(t)dt

where c ∈ (a, b) such that y(c) = max{|y(t)| : a < t < b} and
1

α
+

1

β
= 1.

Theorem 1.2.34 ([119, 33, 113]) Let p(t) = 0. If the equation (1.23) has a real non-

trivial solution y such that y(a) = y(b) = 0, a, b ∈ R with a < b are consecutive

zeros, then we have the following Lyapunov type inequalities

2α ≤
(∫ b

a

r1−β(t)dt

)α−1 ∫ b

a

q+(t)dt,

where
1

α
+

1

β
= 1.

Theorem 1.2.35 ([63]) Let r(t) = 1. If the equation (1.23) has a real nontrivial

solution y such that y(a) = y(b) = 0, a, b ∈ R with a < b are consecutive zeros, then

we have the following Lyapunov type inequalities.

(i) If α ≥ 2, then

4 < exp

(∫ b

a

|p(t)|dt
)

(b− a)α−1
∫ b

a

q+(t)dt,

4 < 4

∫ b

a

|p(t)|dt+ (b− a)α−1
∫ b

a

q+(t)dt.

(ii) If 1 < α ≤ 2, then

2α < exp

(∫ b

a

|p(t)|dt
)

(b− a)α−1
∫ b

a

q+(t)dt,

2α < 2α
∫ b

a

|p(t)|dt+ (b− a)α−1
∫ b

a

q+(t)dt.
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Theorem 1.2.36 ([113]) Let r(t) = 1. If the equation (1.23) has a real nontrivial

solution y such that y(a) = y(b) = 0, a, b ∈ R with a < b are consecutive zeros, then

we have the following Lyapunov type inequality

2α < exp

(
1

2

∫ b

a

|p(t)|dt
)

(b− a)α−1
∫ b

a

q+(t)dt.

The quasilinear elliptic system of partial differential equations can be reduced to the

following one dimensional system of two ordinary differential equations (it is called

(p, q)-Laplacian operators)

−
(
h(t) |u′|p−2 u′

)′
= f(t) |u|α−2 u |v|β ,

−
(
m(t) |v′|q−2 v′

)′
= g(t) |u|θ |v|γ−2 v,

(1.24)

and to its generalization (p1, p2, . . . , pn)-Laplacian operators

− (rk(t)φpk(u
′
k))
′
= fk(t)φqkk(uk)

n∏
j=1(j 6=k)

ψqkj(uj), (1.25)

where h(t),m(t), rk(t) > 0 and p, q, pk > 1 for k = 1, . . . , n, and α, β, θ, γ, qkj > 0

for k, j = 1, 2, . . . , n and φp(z) = |z|p−2z, ψq(z) = |z|q.

Because of the usefulness of Lyapunov type inequalities in investigating the quali-

tative behaviour of solutions of differential equations, such as oscillation, disconju-

gacy and stability and utility of such inequalities in studying boundary and eigenvalue

problems, many authors generalize the pioneering work of Lyapunov in [69] to quasi-

linear systems (1.24) and (1.25) in order to analysis the properties of solutions of such

systems.

Theorem 1.2.37 ([78]) Let h(t) = m(t) = 1, f(t), g(t) > 0, α = θ, β = γ,
α

p
+
β

q
= 1, and p′ and q′ be conjugate numbers for p and q, respectively. If the

system (1.24) has a real nontrivial solution (u(t), v(t)) such that u(a) = u(b) =

v(a) = v(b) = 0, a, b ∈ R with a < b are consecutive zeros, and u, v are not

identically zero on [a, b], then we have the following Lyapunov type inequality

2α+β ≤ (b− a)
α
p′+

β
q′

(∫ b

a

f(t)dt

)α
p
(∫ b

a

g(t)dt

)β
q

.
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Theorem 1.2.38 ([19, 98, 7]) Let
α

p
+
β

q
= 1,

θ

p
+
γ

q
= 1, and p′ and q′ be conjugate

numbers for p and q, respectively. If the system (1.24) has a real solution (u(t), v(t))

such that u(a) = u(b) = v(a) = v(b) = 0, a, b ∈ R with a < b are consecutive zeros,

and u, v are not identically zero on [a, b], then we have the following Lyapunov type

inequality

2θ+β ≤
(∫ b

a

h1−p
′
(t)dt

) θ
p′
(∫ b

a

m1−q′(t)

) β
q′
(∫ b

a

f+(t)dt

) θ
p
(∫ b

a

g+(t)dt

)β
q

.

The generalization of Lyapunov inequality to system of (p1, p2, . . . , pn)-Laplacian

operators is made as in the following theorems.

Theorem 1.2.39 ([18, 98]) Let rk(t) = 1, qkj = qjj for k, j = 1, 2, . . . , n and
n∑
j=1

qjj
pj

= 1 and p′j be the conjugate number for pj for j = 1, 2, . . . , n. If the system

(1.25) has a real solution (u1(t), u2(t), . . . , un(t)) such that uk(a) = uk(b) = 0 for

k = 1, 2, . . . , n and a, b ∈ R with a < b are consecutive zeros and u1, u2, . . . , un are

not identically zero on [a, b], then we have the following Lyapunov type inequality

2

n∑
j=1

qjj

≤ (b− a)

−1+

n∑
j=1

qjj n∏
j=1

(∫ b

a

f+
j (t)dt

) qjj
pj

.
(1.26)

Theorem 1.2.40 ([7]) Let qkj = qjj for k, j = 1, 2, . . . , n and
n∑
j=1

qjj
pj

= 1 and p′j

be the conjugate number for pj for j = 1, 2, . . . , n. If the system (1.25) has a real

solution (u1(t), u2(t), . . . , un(t)) such that uk(a) = uk(b) = 0 for k = 1, 2, . . . , n

and a, b ∈ R with a < b are consecutive zeros and u1, u2, . . . , un are not identically

zero on [a, b], then we have the following Lyapunov type inequality

2

n∑
j=1

qjj

≤
n∏
j=1

(∫ b

a

r
1−p′j
j (t)dt

) qjj

p′
j

(∫ b

a

f+
j (t)dt

) qjj
pj

.
(1.27)

Theorem 1.2.41 ([6]) Let qkj = qjk for k, j = 1, 2, . . . , n. If the system (1.25)

has a real solution (u1(t), u2(t), . . . , un(t)) such that uk(a) = uk(b) = 0 for k =
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1, 2, . . . , n and a, b ∈ R with a < b are consecutive zeros and u1, u2, . . . , un are not

identically zero on [a, b], then the following Lyapunov type inequality

2

n∑
j=1

pjej

≤
n∏
k=1

(∫ b

a

r
1

1−pk
k (t)dt

)ek(pk−1)(∫ b

a

f+
k (t)dt

)ek
holds for k = 1, 2, . . . , n where (e1, e2, . . . , en) is nontrivial solution of the homoge-

nous system

ek

(
1− qkk

pk

)
−

n∑
j=1(j 6=k)

qjk
pk
ej = 0 (1.28)

where ek ≥ 0 for k = 1, 2, . . . , n and
n∑
j=1

e2j > 0.

Theorem 1.2.42 ([115]) If the quasilinear system (1.25) has a real solution

(u1(t), u2(t), . . . , un(t)) such that uk(a) = uk(b) = 0 for k = 1, 2, . . . , n and

a, b ∈ R with a < b are consecutive zeros and u1, u2, . . . , un are not identically zero

on [a, b], then the following Lyapunov type inequality

2

n∑
j=1

pjej

≤
n∏
k=1

(∫ b

a

r
1

1−pk
k (t)dt

)ek(pk−1)(∫ b

a

f+
k (t)dt

)ek
holds for k = 1, 2, . . . , n where (e1, e2, . . . , en) is nontrivial solution of the homoge-

nous system (1.28).

1.3 Linear System of Impulsive Differential Equations

The theory of impulsive differential equations has become an important object of in-

vestigation because of its wide applicability in biology, medicine, mechanics, control

and in more fields mentioned at the begining of Chapter 1. The impulse condition

is the appropriate model for describing physical phenomena if the system changes its

state rapidly at certain moments. In this case system can not be modeled by traditional

ways, i.e by ordinary differential equations.

In this section we outline some basic facts about linear system of impulsive differen-

tial equations with fixed moments, for details and for systems with variable moments

of impulses, see [60, 10, 9, 93, 4] and the references therein.
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For any interval J of R, let τi be the given strictly increasing sequence of impulse

points in J , i.e τi < τi+1. If J is a bounded interval of R, then τi is a finite sequence,

otherwise, that is if J is an infinite interval, then the sequence τi may be infinite and

lim
i→∞

τi =∞ because this sequence have no finite accumulation points.

Let J ⊂ R and the sequence τi be fixed in J. We denote by PLC(J) the space of all

piecewise left continuous functions ω : J → R having discontinuities of the first kind

at τi ∈ J, i ∈ Z. As usual, by PLC1(J) we mean the set of functions ω : J → R

such that ω, ω′ ∈ PLC(J).

Linear system of impulsive equations can be described by three components: a con-

tinuous time ordinary differential equation, which governs the state of the system

between impulses; an impulse equation, which models an impulsive jump defined by

a jump function at the instant an impulse occurs; and a jump criterion, which defines a

set of jump points τi at which the impulse equation is active. Mathematically a linear

system of impulsive differential equation takes the form

ω′ = A(t)ω, t 6= τi

∆ω|t=τi = Biω, i ∈ Z.
(1.29)

where A(t) is an n × n matrix with entries aij ∈ PLC(J), Bi is an n × n constant

matrix, i.e Bi ∈ Rn×n for all i ∈ Z and ∆ω denotes the jump operator at t = τi

defined as

∆ω|t=τi = ω(τ+i )− ω(τ−i )

such that ω(τ±i ) = lim
h→0+

ω(τi ± h).

By a solution of system (1.29), we mean a vector valued function ω defined for t ∈ R

such that ω ∈ PLC(J) and system (1.29) is fulfilled for all t ∈ R.

The main result for the existence and uniquness of the solutions of homogenous sys-

tem (1.29) is the following.

Theorem 1.3.1 ([93]) Let A(t) ∈ PLC(J) and Bi ∈ Rn×n for all i ∈ Z. Then for

any t0 ∈ J and δ = [δ1, δ2, . . . , δn], there exists a unique solution ω(t) = ω(t, t0, δ) of

system (1.29) on J satisfying the initial condition ω(t0) = δ provided det(I+Bi) 6= 0

for all i ∈ Z.
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Remark 1.3.1 The condition det(I +Bi) 6= 0, i ∈ Z provides the existence, unique-

ness and continuability of solutions of system (1.29) throughout J.

Clearly, ω(t) = 0 for all J is a solution of system (1.29). Therefore the solution

ω(t) ≡ 0 is called trivial solution of the system (1.29).

Theorem 1.3.2 ([93, 107]) The set Ωn of all the solutions of the n−dimensional ho-

mogenous system (1.29) defined on J is a n−dimensional vector space.

Theorem 1.3.3 ([93, 107]) If φ(t) = {φ1(t), φ2(t), . . . , φn(t)} is any set of n linearly

independent solutions of system (1.29) on J , then the set φ(t), which is a basis in the

space Ωn, is called a fundamental set of solutions of system (1.29) and the n × n

matrix Φ = [φ1 φ2 . . . φn] is called fundamental matrix of system (1.29). Every

solution of system (1.29) is a linear combination of solutions of the fundamental set,

i.e any solution ω(t) of system (1.29) can be written in this form:

ω(t) = Φ(t)c = c1φ1(t) + c2φ2(t) + . . .+ cnφn(t)

where c = [c1, c2, . . . cn]T is any column vector.

In the sequel, it is convenient to use the notation

Φ = [φ1 φ2 . . . φn] =


φ11 φ12 . . . φ1 n

φ21 φ22 . . . φ2 n

...
...

...
...

φn1 φn2 . . . φn n

 (1.30)

Theorem 1.3.4 ([93]) The determinant of Φ(t) is called WronskianW (t) of solutions

of system (1.29) and it is computed as

W (t) = det Φ(t) = det Φ(t0) exp

(∫ t

t0

trace(A(s))ds

) k+1∏
υ=1

det(Bj−υ−1) (1.31)

for τj−1 ≤ t0 ≤ τj < τj+k < t ≤ τj+k+1.
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1.4 Hamiltonian Systems

In this section, we introduce conservative dynamical systems which were first studied

in mechanics and contain no energy dissipating elements, namely Hamiltonian sys-

tems, see [76, 101]. Hamiltonian mechanics arising from Lagrangian mechanics, a

previous re-formulation of classical mechanics, is a re-formulation of classical me-

chanics that was introduced in 1833 by Irish mathematician William Rowan Hamil-

ton. The Hamiltonian method differs from the Lagrangian method in that instead

of expressing second-order differential constraints on an n-dimensional coordinate

space, it expresses first-order constraints on a 2n-dimensional phase space. Therefore

the number of degrees of freedom of a Hamiltonian system is n but the dimension of

the phase space is 2n. LetH(p, q) be Hamiltonian function with n degrees of freedom

where q = [q1, q2, . . . , qn]T and p = [p1, p2, . . . , pn]T denote n generalized position

coordinates and n generalized momentum coordinates, respectively. H(p, q) has the

form that H(p, q) = T (q, q′) + W (q), where T denotes the kinetic energy and W

denotes the potential energy of the system. These energy terms are obtained from the

path independent line integrals

T (q, q′) =

∫ q′

0

p(q, ξ)Tdξ =

∫ q′

0

n∑
i=1

pi(q, ξ)dξi, (1.32)

W (q) =

∫ q

0

fT (η)dη =

∫ q

0

n∑
i=1

fTi (η)dηi, (1.33)

where fi, i = 1, 2, . . . , n denote generalized potential forces. Integrals (1.32) and

(1.33) are path independent if and only if

∂pi(q, q
′)

∂q′j
=
∂pj(q, q

′)

∂q′i
, i, j = 1, 2, . . . , n.

Conservative dynamical systems are described by the system of 2n ordinary differen-

tial equations

q′i =
∂H

∂pi
(p, q), p′i = −∂H

∂qi
(p, q), i = 1, . . . , n. (1.34)
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Note that along the solutions qi(t), pi(t), i = 1, . . . , n the derivative of H(p, q) can be

computed by employing chain rule as

dH

dt
(p(t), q(t)) =

n∑
i=1

∂H

∂pi
(p, q)p′i +

n∑
i=1

∂H

∂qi
(p, q)q′i

=
n∑
i=1

−∂H
∂pi

(p, q)
∂H

∂qi
(p, q) +

n∑
i=1

∂H

∂qi
(p, q)

∂H

∂pi
(p, q)

= −
n∑
i=1

∂H

∂pi
(p, q)

∂H

∂qi
(p, q) +

n∑
i=1

∂H

∂qi
(p, q)

∂H

∂pi
(p, q) = 0.

In other words, in a conservative system (1.34) the Hamiltonian, i.e the total energy

will be constant along the solutions of system (1.34). This constant is determined by

the initial data p(0), q(0).

If the Hamiltoian function H is of quadratic form

H(p, q) =
1

2
(pT qT )H(t)

p(t)
q(t)


where H(t) is symmetric matrix, then by replacing p(t) and q(t) by x(t) and u(t),

respectively, and setting the function y(t) as y = (x, u), one can rewrite system (1.34)

as a single vector differential equation

dy

dt
= JH(t)y (1.35)

which is a standart form of the Hamiltonian systems, where J is a symplectic identity

defined as J =

 0 In

−In 0

.

In general the Hamiltonian system of 2n-linear first-order equations has the form of

(1.35), where y ∈ R2n×1,H is a 2n×2n symmetric matrix with piece-wise continuous

real-valued entries, and J is defined as above. Letting y = (x, u)T and

H(t) =

C(t) AT (t)

A(t) B(t)


we may rewrite the Hamiltonian system in an alternative way

x′ = A(t)x+B(t)u, u′ = −C(t)x− AT (t)u. (1.36)
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Definition 1.4.1 The matrix M is Hamiltonian if it satisfies

MT (t)J + JM(t) = 0, for all t.

In our case M = JH(t).

Definition 1.4.2 The matrix H(t) is symplectic matrix if it satisfies

HT (t)JH(t) = J.

In this case the Hamiltonian system is of symplectic structure.
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CHAPTER 2

LYAPUNOV TYPE INEQUALITIES FOR 2N × 2N LINEAR

HAMILTONIAN SYSTEMS WITH IMPULSIVE

PERTURBATIONS

2.1 Introduction

As is defined in Chapter 1 by (1.35) or (1.36), the Hamiltonian system of 2n-linear

first-order equations has the form

y′ = JH(t)y, t ∈ R,

or

x′ = A(t)x+B(t)u, u′ = −C(t)x− AT (t)u. (2.1)

With regard to Definition 1.4.2, we want to remark that if

AT (t)C(t) = C(t)A(t), −B(t)C(t) + A(t)A(t) = −In,
B(t)AT (t) = A(t)B(t), −AT (t)AT (t) + C(t)B(t) = In,

then system (2.1) is of symplectic structure and therefore our results are also valid for

symplectic systems under impulse effect.

In the present chapter we consider (2.1) under impulse effect, that is,

x′ = A(t)x+B(t)u, u′ = −C(t)x− AT (t)u, t ≥ t0, t 6= τi

x(τ+i ) = Kix(τ−i ), u(τ+i ) = −Lix(τ−i ) +Kiu(τ−i ), i ∈ N = {1, 2, . . .}.
(2.2)

where

(i) {τi} is a strictly increasing sequence of real numbers,
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(ii) A, B, and C are n × n matrices with entries left continuous on each interval

(τi, τi+1) and two-sided limits at the point τi, i ∈ N exist, and B = BT and

C = CT ,

(iii) {Ki} and {Li} are sequences of n×nmatrices such that eachKi has an inverse

for i ∈ N.

By a solution of system (2.2), we mean a vector valued function y(t) = (x(t), u(t))

defined for t ≥ t0 such that y ∈ PLC(Γ) and system (2.2) is fulfilled for all t ≥ t0,

where the set PLC(Γ) is defined by

PLC(Γ) = {ω : Γ = [t0,∞) → R is continuous on each interval (τi, τi+1), the

limits w(τ±i ) exist and w(τ−i ) = w(τi) for i ∈ N}.

Note that the second-order impulsive system

x′′ + C(t)x = 0, t ≥ t0, t 6= τi

x(τ+i ) = Kix(τ−i ), x′(τ+i ) = −Lix(τ−i ) +Kix
′(τ−i ), i ∈ N

(2.3)

is equivalent to (2.2) with A = 0, B = I and u(t) = x′(t). In particular, choosing

n = 1 in system (2.2) yields the following planar Hamiltonian system under impulse

effect

x′ = a(t)x+ b(t)u, u′ = −c(t)x− a(t)u, t ≥ t0 t 6= τi

x(τ+i ) = kix(τ−i ), u(τ+i ) = −lix(τ−i ) + kiu(τ−i ), i ∈ N
(2.4)

where a, b, c ∈ PLC(Γ) and ki, li are real sequences for i ∈ N. It is worth mentioning

that system (2.4) is of symplectic structure if b(t)c(t) − a2(t) = 1. Note that when

b(t) > 0 if we take a(t) ≡ 0, b(t) = 1/p(t), c(t) = q(t) and u(t) = p(t)x′(t), then

we obtain the special case of (2.2), the impulsive second-order differential equations

of the form

(p(t)x′)′ + q(t)x = 0, t ≥ t0 t 6= τi

x(τ+i ) = kix(τ−i ), (px′)(τ+i ) = −lix(τ−i ) + ki(px
′)(τ−i ), i ∈ N.

(2.5)

The next definition is adapted from [76].

Definition 2.1.1 (Dini derivative for piece-wise continuos functions) Let f ∈ PLC(Γ).

Then the upper right Dini derivative D+f is defined by

D+f(t) = lim sup
h→0+

x(t+ h)− x(t)

h
, t 6= τi.
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Similarly, the upper left Dini derivative, lower right Dini derivative and lower left

Dini derivative are defined as follows, respectively.

D−f(t) = lim sup
h→0−

x(t+ h)− x(t)

h
, t 6= τi

D+f(t) = lim sup
h→0+

x(t+ h)− x(t)

h
, t 6= τi

and

D−f(t) = lim sup
h→0−

x(t+ h)− x(t)

h
, t 6= τi.

For impulsive differential equations or systems, in general for piece-wise continuos

functions, the concept of a zero of a function is replaced by a so-called generalized

zero.

Definition 2.1.2 ([45, 43, 42]) A real number c is called a zero (generalized zero) of

a function f if and only if f(c−) = 0 or f(c+) = 0. If f is continuous function at c,

then c becomes a real zero.

Now we give the definition of disconjugacy which is about the zeros of the solutions

of differential equations or systems.

Definition 2.1.3 ([45, 43]) Equation (2.5) is called disconjugate on an interval [t1, t2]

if and only if all solutions of equation (2.5) have at most one zero (generalized zero)

on an interval [t1, t2].

We generalize the definition of disconjugacy given in [45, 43].

Definition 2.1.4 ([45, 42]) System (2.2) (or (2.3), (2.4)) is called disconjugate (rela-

tively disconjugate with respect to x) on an interval [t1, t2] if and only if there is no

real solution (x(t), u(t)) of system (2.2) (or (2.3), (2.4)) with a nontrivial x having

two or more zeros (generalized zeros) on [t1, t2].

Our aim in this chapter, which constitutes for the main part of the thesis, is to improve

and extend Theorem 1.2.11 to the more general impulsive system (2.2), that is to

obtain Lyapunov type inequalities sharper than all the results existing in the literature.
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It is of great importance to obtain Lyapunov type inequalities since they are useful

tools not only in boundary value problems but also in oscillation theory, asymptotic

behaviour of solutions, disconjugacy, stability theory and eigenvalue problems. It

turns out that there is more than one way to approach the problem due to impulses.

Note that since changing the impulsive perturbation or assuming different condition

on the impulses leads to variety of inequalities, presence of impulse effect yields

different and new inequalities. This shows that systems with impulses are richer

and more fruitful than systems without impulses. Besides, we are able to improve

Theorem 1.2.11 in the special cases when the impulses are absent.

This chapter of the thesis is organized as follows. Similar to [99], the proof of the

theorems are based on estimating the involved fundamental matrices by using matrix

measure. Therefore, in the next section, we mention some properties of matrices and

prove an auxiliary lemma providing an estimation for fundamental matrix of homoge-

nous impulsive system. By the help of the lemmas presented in Section 2.2, we derive

new Lyapunov type inequalities in Section 2.3. As applications of Lyapunov type in-

equalities, we present disconjugacy criteria and find lower bounds for the eigenvalues

of the related eigenvalue problems in the last section.

2.2 Matrix measure and fundamental matrices

For x ∈ Rn and A ∈ Rn×n, |x| = xTx and |A| =
√
λmax(ATA) denote the Euclidean

norm and induced matrix norm, respectively. Let B1, B2 ∈ Rn×n
s . Then the property

B1 ≥ B2 is defined as in Definition 1.2.1 and Bi has a unique square root B1/2
i ∈

Rn×n
s such that B1/2

i ≥ 0, and (B
1/2
i )2 = Bi, i = 1, 2.

Now, we give some elementary inequalities for norms.

Lemma 2.2.1 ([99]) (a) Let C ∈ Rn×n
s . Then for any C∗ ∈ Rn×n

s with C∗ ≥ C,

one has

xTCx ≤ |C∗||x|2, x ∈ Rn (2.6)

(b) Let P ∈ Rn×n and Q ∈ Rn×n
s with Q ≥ 0. One has

|PQx| ≤ |Q1/2P TPQ1/2|1/2(xTQx)1/2, x ∈ Rn (2.7)
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Proof.

(a) Let C ∈ Rn×n
s . By definition we have

xTCx ≤ xTC∗x ≤ |x||C∗x| ≤ |x||C∗||x| = |C∗||x|2.

(b) Let P ∈ Rn×n and Q ∈ Rn×n
s with Q ≥ 0. Then

|PQx|2 = xTQP TPQx = (Q1/2x)TQ1/2P TPQ1/2(Q1/2x)

≤
∣∣Q1/2x

∣∣ ∣∣Q1/2P TPQ1/2
∣∣ ∣∣Q1/2x

∣∣
=
∣∣Q1/2P TPQ1/2

∣∣ (Q1/2x)T (Q1/2x) =
∣∣Q1/2P TPQ1/2

∣∣xTQx.
�

First we want to define the concept of matrix measure and show the relationship of

it with fundamental matrices of system of ordinary differential equations. Then this

relationship will be obtained for fundamental matrices of the impulsive systems.

Lemma 2.2.2 ([109]) For a matrix A ∈ Rn×n, the matrix measure µ(A) ∈ R is

defined by

µ(A) = lim
h→0

|I + hA| − 1

h
.

Trivially, for any matrix norm one has

− |A| ≤ −µ(−A) ≤ <(λi(A)) ≤ µ(A) ≤ |A| (2.8)

where<(λi(A)) denotes the real part of eigenvalue λi(A) of matrixA for i = 1, . . . , n.

Remark 2.2.1 The matrix measure of a matrix A can also be written as follows:

µ(A) =
λmax(A

T + A)

2
. (2.9)

The importance of the matrix measure in making estimations for fundamental matrix

solutions of ordinary differential equations is presented in the next lemma.

Lemma 2.2.3 ([99]) If Z(t, s) is a fundamental matrix (state transition matrix) for

x′ = A(t)x (2.10)
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satisfying Z(s, s) = I , then

|Z(t, s)| ≤ exp

(∫ t

s

µ(A(r))dr

)
, t ≥ s (2.11)

and

|Z(s, t)| ≤ exp

(∫ t

s

µ(−A(r))dr

)
, t ≥ s. (2.12)

The main contribution of this section, which is to derive estimations similarly to

(2.11) and (2.12) for the following impulsive systems,

x′ = A(t)x, t 6= τi,

x(τ+i ) = Kix(τ−i ), i ∈ N.
(2.13)

can be given as in the next lemma.

Lemma 2.2.4 Let (i)-(iii) hold and denote by X(t, s), X(s, s) = I , the fundamental

matrix of (2.13). Then we have the estimates:

|X(t, s)| ≤ exp

(∫ t

s

µ(A(r))dr

) ∏
s≤τi<t

|Ki|, t ≥ s. (2.14)

and

|X(s, t)| ≤ exp

(∫ t

s

µ(−A(r))dr

) ∏
s≤τi<t

|Ki|, t ≥ s. (2.15)

Proof. Consider the initial value problem

x′ = A(t)x, t 6= τi,

x(τ+i ) = Kix(τ−i ),

x(s) = x0.

(2.16)

For t 6= τi, we may write that

A(t)x =
x(t+ h)− x(t)

h
+ η(h), lim

h→0+
η(h) = 0.

After some manipulations and taking the norms of the both sides, we get

|x(t+ h)| ≤ |hA(t) + I| |x(t)|+ h |η(h)| , t 6= τi,

or

|x(t+ h)| − |x(t)|
h

≤
(
|hA(t) + I| − 1

)
|x(t)|

h
+ |η(h)|, t 6= τi. (2.17)
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By taking limsup of both sides of (2.17) as t→ 0+, we have

D+|x(t)| ≤ µ(A(t))|x(t)|, t 6= τi,

whereD+|x(t)| denotes the upper right Dini derivative of |x(t)|. Setting u(t) = |x(t)|
and using (2.16), we obtain

D+u ≤ µ(A(t))u, t 6= τi,

u(τ+i ) ≤ |Ki|u(τ−i ),

u(s) = |x0|.

(2.18)

From the classical comparison theory [76, 60], we know that any solution u(t) of

equation (2.18) for t ≥ s is not greater than the maximal solution vM(t) of

v′ = µ(A(t))v, t 6= τi,

v(τ+i ) = |Ki|v(τ−i ),

v(s) = |x0|.

(2.19)

Since (2.19) has the unique solution as

v(t) = |x0| exp

(∫ t

s

µ(A(r))dr

) ∏
s≤τi<t

|Ki|, t ≥ s,

for the solution of (2.18) we have

u(t) ≤ |x0| exp

(∫ t

s

µ(A(r))dr

) ∏
s≤τi<t

|Ki|, t ≥ s. (2.20)

It follows that the counterpart of (2.11) is

|X(t, s)| ≤ exp

(∫ t

s

µ(A(r))dr

) ∏
s≤τi<t

|Ki|, t ≥ s,

as desired.

To show that the estimate (2.15) holds as well, we start with the adjoint system of the

impulsive system (2.13), which reads, see [93], as

y′ = −AT (t)y, t 6= τi,

y(τ+i )− y(τ−i ) = −
[
I + (Ki − I)T

]−1
(Ki − I)Ty(τ−i ) = (Ki − I) y(τ−i ).

(2.21)
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In this case, we have

D+|y(t)| ≤ µ(−A(t))|y(t)|, t 6= τi,

|y(τ+i )| ≤ |Ki||y(τ−i )|.
(2.22)

Hence, if Y (t, s) is the fundamental matrix of the adjoint system (2.21) with Y (s, s) =

I , then in a similar manner of (2.20), from (2.22) one has

|y(t)| ≤ |y(s)| exp

(∫ t

s

µ(−A(r))dr

) ∏
s≤τi<t

|Ki|, t ≥ s,

and hence

|Y (t, s)| ≤ exp

(∫ t

s

µ(−A(r))dr

) ∏
s≤τi<t

|Ki|, t ≥ s. (2.23)

Using Y T (t, s)X(t, s) = I gives Y (t, s) = X−T (t, s) = XT (s, t) and so from (2.23),

the estimate (2.15) is obtained. �

2.3 Lyapunov Type Inequalities

In this section we focus on obtaining different Lyapunov type inequalities for sys-

tem (2.2) and for its particular cases, (2.3), (2.4) and (2.5). These inequalities are so

important due to the fact that they are used to prove disconjugacy criterion for the

solutions of systems, to show the uniqueness of the solutions of associated inhomo-

geneous BVP, to study the stability of the solutions of planar periodic systems, to find

lower bounds for the eigenvalues of the associated eigenvalue problems and to anal-

yse the asymptotic behaviour of solutions of systems. Variety of the conditions on

Ki yields applying different techniques in the proofs and establishing new Lyapunov

type inequalities.

In what follows, let α(t) = max
{
µ+(A(t)), µ+(−A(t))

}
,where µ(A(t)) and µ(−A(t))

are matrix measures of the matrices A(t) and −A(t), respectively, and

m+(t) := max{m(t), 0}. Note that in view of (2.8) we have

α(t) ≤ |A(t)|. (2.24)

It is easy to see that if A is a diagonal, then α(t) = |A(t)|, but the inequality (2.24) is

in general strict, which can be verified through (2.9) by examples.

36



Theorem 2.3.1 Suppose that the matrices A, AT , B, and C all commute with Ki for

all i ∈ N such that

B(t) ≥ 0,

∫ t2

t1

|B(t)| dt > 0. (2.25)

If system (2.2) has a solution y(t) = (x(t), u(t)) with nontrivial x such that

x(t+1 ) = x(t−2 ) = 0, x(t) 6= 0 on (t1, t2), then for any C∗(t) ≥ C(t) we have the

Lyapunov type inequality

exp

(∫ t2

t1

α(t)dt

)(∫ t2

t1

|B(t)|dt
)(∫ t2

t1

|C∗(t)|dt+
∑

t1≤τi<t2

|Si|

)
≥ 4, (2.26)

where Si = K−11 K−12 . . . K−1i LiKi−1 . . . K1, i = 2, 3 . . . .

Proof. Define

M0 = I , and Mi = KiKi−1 . . . K1 for i = 1, 2, . . . ,m.

Let for each i = 1, 2, . . . ,m,

Miz(t) = x(t), Miv(t) = u(t), t ∈ (τi, τi+1).

where we put t1 = τ0 and t2 = τm+1.

It is easy to see that with the above transformation system (2.2) becomes the following

system.

z′ = A(t)z +B(t)v, v′ = −C(t)y − AT (t)v, t 6= τi

z(τ+i ) = z(τ−i ), v(τ+i ) = v(τ−i )− Siz(τ−i ), i = 0, 1, 2 . . . ,m.
(2.27)

where Si = M−1
i LiMi−1. Since z(τi) = z(τ−i ) = z(τ+i ), z is continuous on [t1, t2]

and z(t1) = z(t2) = 0, and z(t) 6= 0 on (t1, t2). Let t0 ∈ (t1, t2) be such that

|z(t0)| = max
t∈[t1,t2]

|z(t)| .

Let Z(t, s) be the fundamental matrix of (2.10). Then from the first equation of

system (2.27) we may write that

z(t) = Z(t, ξ)z(ξ) +

∫ t

ξ

Z(t, s)B(s)v(s)ds. (2.28)

Putting t = t0 and replacing ξ by t1 and t2 in (2.28), we have

z(t0) =

∫ t0

t1

Z(t0, s)B(s)v(s)ds (2.29)
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and

z(t0) = −
∫ t2

t0

Z(t0, s)B(s)v(s)ds. (2.30)

From (2.7), (2.11) and (2.29), we obtain

|z(t0)| ≤
∫ t0

t1

exp

(∫ t0

s

µ(A(r))dr

)
|B(s)|1/2

[
vT (s)B(s)v(s)

]1/2
ds. (2.31)

Applying the Cauchy-Schwarz inequality to the square of inequality (2.31), we get

|z(t0)|2 ≤
[∫ t0

t1

exp

(
2

∫ t0

s

µ(A(r))dr

)
|B(s)|ds

] [∫ t0

t1

vT (s)B(s)v(s)ds

]
≤ exp

(
2

∫ t0

t1

µ+(A(r))dr

)∫ t0

t1

|B(s)|ds
∫ t0

t1

vT (s)B(s)v(s)ds

≤ exp

(
2

∫ t0

t1

α(r)dr

)∫ t0

t1

|B(s)|ds
∫ t0

t1

vT (s)B(s)v(s)ds,

which yields

Λ2
1 =

|z(t0)|2

exp

(
2

∫ t0

t1

α(r)dr

) ≤ ∫ t0

t1

|B(s)|ds
∫ t0

t1

vT (s)B(s)v(s)ds. (2.32)

Similarly from (2.7),(2.12) and (2.30), we obtain

|z(t0)|2 ≤ exp

(
2

∫ t2

t0

µ+(−A(r))dr

)∫ t2

t0

|B(s)|ds
∫ t2

t0

vT (s)B(s)v(s)ds

≤ exp

(
2

∫ t2

t0

α(r)dr

)∫ t2

t0

|B(s)|ds
∫ t2

t0

vT (s)B(s)v(s)ds

or

Λ2
2 =

|z(t0)|2

exp

(
2

∫ t2

t0

α(r)dr

) ≤ ∫ t2

t0

|B(s)|ds
∫ t2

t0

vT (s)B(s)v(s)ds. (2.33)

On the other hand, it is easy to see that

(zT (t)v(t))′ = −zT (t)C(t)z(t) + vT (t)B(t)v(t), t 6= τi (2.34)

∆(zT (τi)v(τi)) = zT (τi)v(τ+i )− zT (τi)v(τ−i ) = −zT (τi)Siz(τi). (2.35)

Integrating (2.34) from t1 to t2 and using (2.35), we have∫ t2

t1

vT (t)B(t)v(t)dt =

∫ t2

t1

zT (t)C(t)z(t)dt+
∑

t1≤τi<t2

zT (τi)Siz(τi).
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Since C∗(t) ≥ C(t) and |z(t)| ≤ |z(t0)| for t ∈ [t1, t2] and by employing (2.6), we

can estimate the right-hand side of the previous inequality as∫ t2

t1

vT (t)B(t)v(t)dt ≤
∫ t2

t1

zT (t)C∗(t)z(t)dt+
∑

t1≤τi<t2

zT (τi)Siz(τi)

≤ |z(t0)|2
(∫ t2

t1

|C∗(t)|dt+
∑

t1≤τi<t2

|Si|

)
. (2.36)

By using inequalities (2.32) and (2.33), we see from (2.36) that

|z(t0)|2
(∫ t2

t1

|B(t)|dt
)(∫ t2

t1

|C∗(t)|dt+
∑

t1≤τi<t2

|Si|

)

≥
|z(t0)|2

∫ t2

t1

|B(t)|dt

exp

(
2

∫ t0

t1

α(s)ds

)∫ t0

t1

|B(t)|dt
+

|z(t0)|2
∫ t2

t1

|B(t)|dt

exp

(
2

∫ t2

t0

α(s)ds

)∫ t2

t0

|B(t)|dt

≥ Λ2
1

q1
+

Λ2
2

q2
,

(2.37)

where

q1 =

∫ t0

t1

|B(t)|dt∫ t2

t1

|B(t)|dt
, q2 =

∫ t2

t0

|B(t)|dt∫ t2

t1

|B(t)|dt
.

As q1 + q2 = 1, we have
Λ2

1

q1
+

Λ2
2

q2
≥ 4Λ1Λ2. (2.38)

Therefore, from (2.37) we obtain(∫ t2

t1

|B(t)|dt
)(∫ t2

t1

|C∗(t)|dt+
∑

t1≤τi<t2

|Si|

)
≥ 4 exp

(
−
∫ t2

t1

α(t)dt

)
.

�

An alternative Lyapunov inequality is possible by using (2.14) and (2.15) instead of

(2.11) and (2.12), respectively.

Theorem 2.3.2 Suppose that KT
i Ki = I for all i ∈ N and (2.25) holds. If system

(2.2) has a solution y(t) = (x(t), u(t)) with nontrivial x such that x(t+1 ) = x(t−2 ) =
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0, x(t) 6= 0 on (t1, t2), then for any C∗(t) ≥ C(t) we have the Lyapunov type inequal-

ity

exp

(∫ t2

t1

α(t)dt

)( ∏
t1≤τi<t2

|Ki|2
)(∫ t2

t1

|B(t)|dt
)

×

[∫ t2

t1

|C∗(t)|dt+
∑

t1≤τi<t2

|KT
i Li|

]
≥ 4.

(2.39)

Proof. Let X(t, s) be the fundamental matrix of (2.13) given in Lemma 2.2.4. We

can write from system (2.2) that

x(t) = X(t, ξ)x(ξ) +

∫ t

ξ

X(t, s)B(s)u(s)ds.

Letting ξ → t+1 and ξ → t−2 , and if t = t0, we get

x(t0) =

∫ t0

t1

X(t0, s)B(s)u(s)ds (2.40)

and

x(t0) = −
∫ t2

t0

X(t0, s)B(s)u(s)dr, (2.41)

where t0 ∈ (t1, t2) is a point such that

|x(t0)| = sup
t∈(t1,t2)

|x(t)|.

In view of (2.14) and (2.40), (2.15) and (2.41), proceeding along the similar lines as

in the proof of Theorem 2.3.1, we have

|x(t0)| ≤
∫ t0

t1

exp

(∫ t0

s

µ(A(w))dw

) ∏
s≤τi<t0

|Ki||B(s)|1/2
[
uT (s)B(s)u(s)

]1/2
ds

and

|x(t0)| ≤
∫ t2

t0

exp

(∫ s

t0

µ(−A(w))dw

) ∏
t0≤τi<s

|Ki||B(s)|1/2
[
uT (s)B(s)u(s)

]1/2
ds.

and hence by applying Cauchy-Schwarz inequality to the square of the above inequal-

ities and similarly to the proof of Theorem 2.3.1, we obtain

|x(t0)|2 ≤ exp

(
2

∫ t0

t1

α(t)dt

) ∏
t1≤τi<t0

|Ki|2
[∫ t0

t1

|B(s)|ds
] [∫ t0

t1

uT (s)B(s)u(s)ds

]
and

|x(t0)|2 ≤ exp

(
2

∫ t2

t0

α(t)dt

) ∏
t0≤τi<t2

|Ki|2
[∫ t2

t0

|B(s)|ds
] [∫ t2

t0

uT (s)B(s)u(s)ds

]
.
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Thus, we have

Q1 ≤
[∫ t0

t1

|B(s)|ds
] [∫ t0

t1

uT (s)B(s)u(s)ds

]
(2.42)

and

Q2 ≤
[∫ t2

t0

|B(s)|ds
] [∫ t2

t0

uT (s)B(s)u(s)ds

]
, (2.43)

whereQ1 =
|x(t0)|

exp

(∫ t0

t1

α(s)ds

) ∏
t1≤τi<t0

|Ki|
, Q2 =

|x(t0)|

exp

(∫ t2

t0

α(s)ds

) ∏
t0≤τi<t2

|Ki|
.

On the other hand, in view of

∆(xT (τi)u(τi)) = −xT (τi)K
T
i Lix(τi),

by integrating

(xT (t)u(t))′ = −xT (t)C(t)x(t) + uT (t)B(t)u(t), t 6= τi

from s1 to s2, and then letting s1 → t+1 and s2 → t−2 , we get∫ t2

t1

uT (t)B(t)u(t)dt =

∫ t2

t1

xT (t)C(t)x(t)dt+
∑

t1≤τi<t2

xT (τi)K
T
i Lix(τi).

Since C∗(t) ≥ C(t) and |x(t)| ≤ |x(t0)| for t ∈ [t1, t2] and from (2.6), we have∫ t2

t1

uT (t)B(t)u(t)dt ≤ |x(t0)|2
[∫ t2

t1

|C∗(s)|ds+
∑

t1≤τi<t2

|KT
i Li|

]
. (2.44)

By using inequalities (2.42), (2.43) and (2.44), we obtain[∫ t2

t1

|B(t)|dt
]
|x(t0)|2

[∫ t2

t1

|C∗(s)|ds+
∑

t1≤τi<t2

|KT
i Li|

]
≥
[∫ t2

t1

|B(t)|dt
] [∫ t2

t1

uT (t)B(t)u(t)dt

]
=

[∫ t2

t1

|B(t)|dt
] [∫ t0

t1

uT (t)B(t)u(t)dt+

∫ t2

t0

uT (t)B(t)u(t)dt

]
.

(2.45)

By employing (2.38) in (2.45) with Q1, Q2 which are defined as above and with the

same q1, q2 defined as in Theorem 2.3.1, we arrive at the desired Lyapunov inequality

(2.39). �

Remark 2.3.1 Since α(t) ≤ |A(t)|, Theorem 2.3.1 and Theorem 2.3.2 improve and

generalize all the results existing in the literature, in particular Theorem 1.2.11, [99,
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Theorem 2.4]. Therefore, our results are new and alternative to each other. If there is

no impulse, i.e Ki = I, Li = 0 for all i ∈ N, then Theorem 2.3.1 and Theorem 2.3.2

coincide but still improve [99, Theorem 2.4], which implies that Theorem 2.3.1 and

Theorem 2.3.2 are new even for the nonimpulsive case.

Remark 2.3.2 Let us consider the special cases of the matrix C∗(t). If C∗(t) is taken

as C+(t) or C+(t) in (2.26) and (2.39), where C+(t) is defined as in Theorem 1.2.11

and C+(t) is defined by C+(t) = 1
2
{C(t) + [C(t)CT (t)]1/2}, then the condition

C∗(t) ≥ C(t) is satisfied. Thus C∗(t) can be replaced by C+(t) or C+(t).

Remark 2.3.3 In view of (2.24), we may replace the Lyapunov type inequalities

(2.26) and (2.39), respectively, by

exp

(∫ t2

t1

|A(t)|dt
)(∫ t2

t1

|B(t)|dt
)(∫ t2

t1

|C∗(t)|dt+
∑

t1≤τi<t2

|Si|

)
≥ 4, (2.46)

and

exp

(∫ t2

t1

|A(t)|dt
)( ∏

t1≤τi<t2

|Ki|2
)[∫ t2

t1

|B(s)|ds
]

×

[∫ t2

t1

|C∗(s)|ds+
∑

t1≤τi<t2

|KT
i Li|

]
≥ 4.

(2.47)

Since inequalities (2.26), (2.39) and (2.46), (2.47) are obtained due to assuming dif-

ferent conditions on the impulses, changing the conditions of the coefficient functions

appearing on the impulse effect or choosing different impulsive perturbation yields

more various inequalities than we present. Therefore existence of impulse effect pro-

vides new Lyapunov type inequalities. That is why we are interested in system of

impulsive differential equations than system of ordinary differential equations. In the

absence of impulse, inequalities (2.46), (2.47) and inequality (2.22) in [99] coincide.

The following results are obtained from Theorem 2.3.1 and Theorem 2.3.2 for the

second-order impulsive system (2.3).

Corollary 2.3.1 Suppose that C commutes with Ki for all i ∈ N. If system (2.3) has

a nontrivial solution x(t) such that x(t+1 ) = x(t−2 ) = 0, x(t) 6= 0 on (t1, t2), then for
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any C∗(t) ≥ C(t) we have the Lyapunov type inequality∫ t2

t1

|C∗(t)|dt+
∑

t1≤τi<t2

|Si| ≥
4

t2 − t1
,

where Si = K−11 K−12 . . . K−1i LiKi−1 . . . K1, i = 1, 2, . . . .

Corollary 2.3.2 Suppose that KT
i Ki = I for all i ∈ N. If system (2.3) has a non-

trivial solution x(t) such that x(t+1 ) = x(t−2 ) = 0, x(t) 6= 0 on (t1, t2), then for any

C∗(t) ≥ C(t) we have the Lyapunov type inequality( ∏
t1≤τi<t2

|Ki|2
)[∫ t2

t1

|C∗(s)|ds+
∑

t1≤τi<t2

|KT
i Li|

]
≥ 4

t2 − t1
.

In the case n = 1, or for system (2.4), the commutativity of the coefficient functions

a, b, c with ki for all i ∈ N is satisfied automatically, α(t) = |a(t)| and Si = li/ki.

Besides, if c+(t) is the function which satisfies the condition c+(t) ≥ c(t), then

Theorem 2.3.1 is reduced to the following corollary under the following version of

condition (2.25)

b(t) ≥ 0,

∫ t2

t1

b(t)dt > 0. (2.48)

Corollary 2.3.3 Assume (2.48) holds. If system (2.4) has a solution y(t) = (x(t), u(t))

with nontrivial x such that x(t+1 ) = x(t−2 ) = 0, x(t) 6= 0 on (t1, t2), then we have the

Lyapunov type inequality

exp

(∫ t2

t1

|a(t)|dt
)[∫ t2

t1

b(t)dt

] [∫ t2

t1

c+(t)dt+
∑

t1≤τi<t2

(
li
ki

)+
]
≥ 4. (2.49)

Theorem 2.3.2 is adapted to system (2.4) as follows: The condition KT
i Ki = I for

all i ∈ N turns out to be k2i = 1 for all i ∈ N. Therefore we have two cases due

to the given ki. Let us consider the case that ki = 1 for all i ∈ N which implies

the continuity of x(t) for all t ≥ t0. Hence there is impulse condition only on u(t)

and Theorem 2.3.1 and Theorem 2.3.2 coincide. In the latter case, i.e there exists an

i0 ∈ N such that ki0 = −1, system (2.4) has an impulse effect on both x(t) and u(t)

and Theorem 2.3.2 is reduced to following corollary.
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Corollary 2.3.4 Let k2i = 1 for all i ∈ N. Suppose that (2.48) holds. If system

(2.4) has a solution y(t) = (x(t), u(t)) with nontrivial x such that x(t+1 ) = x(t−2 ) =

0, x(t) 6= 0 on (t1, t2), then we have the Lyapunov type inequality

exp

(∫ t2

t1

|a(t)|dt
)[∫ t2

t1

b(t)dt

][∫ t2

t1

c+(t)dt+
∑

t1≤τi<t2

(liki)
+

]
≥ 4. (2.50)

Remark 2.3.4 Inequalities (2.49) and (2.50) generalize all the results obtained for

planar Hamiltonian systems without impulse effect. In particular, Corollary 2.3.3 is

an extension of [99, Theorem 2.4] while Corollary 2.3.4 is new and alternative to

Corollary 2.3.3.

The following corollaries are obtained directly from Theorem 2.3.1 and Theorem

2.3.2 for equation (2.5).

Corollary 2.3.5 If equation (2.5) has a nontrivial solution x(t) such that x(t+1 ) =

x(t−2 ) = 0, x(t) 6= 0 on (t1, t2), then we have the Lyapunov type inequality[∫ t2

t1

1

p(t)
dt

][∫ t2

t1

q+(t)dt+
∑

t1≤τi<t2

(
li
ki

)+
]
≥ 4. (2.51)

Corollary 2.3.6 Let k2i = 1 for all i ∈ N. If equation (2.5) has a nontrivial solution

x(t) such that x(t+1 ) = x(t−2 ) = 0, x(t) 6= 0 on (t1, t2), then we have the Lyapunov

type inequality [∫ t2

t1

1

p(t)
dt

][∫ t2

t1

q+(t)dt+
∑

t1≤τi<t2

(liki)
+

]
≥ 4.

Remark 2.3.5 Corollary 2.3.5 and Corollary 2.3.6 provide the same result as and

alternative result to [43, Theorem 4.5], respectively, for the case of the second order

impulsive differential equations (2.5). Moreover if there is no impulse effect, they give

the same result of Wintner, Hartman and Krein [114, 45, 57].

2.4 Applications

In this section we give some applications of Lyapunov type inequalities which are

used as a handy tool in studying of the qualitative nature of solutions. By making use
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of Lyapunov type inequalities, we prove disconjugacy criteria and find lower bounds

for the eigenvalues of the related eigenvalue problems to systems (2.2), (2.3), (2.4)

and to equation (2.5).

2.4.1 Disconjugacy

Since Lyapunov type inequality leads immediately to disconjugacy criteria, in this

section we prove disconjugacy criteria for systems (2.2), (2.3), (2.4) and equation

(2.5).

Note that if B ≡ 0, system (2.2) is already disconjugate.

Theorem 2.4.1 Suppose that the matrices A, AT , B, and C all commute with Ki for

all i ∈ N such that (2.25) holds. If for some C∗(t) ≥ C(t)

exp

(∫ t2

t1

α(t)dt

)(∫ t2

t1

|B(t)|dt
)(∫ t2

t1

|C∗(t)|dt+
∑

t1≤τi<t2

|Si|

)
< 4, (2.52)

then system (2.2) is disconjugate on [t1, t2], where α(t) and Si are defined as in The-

orem 2.3.1.

Proof. Suppose on the contrary that there is a real solution y(t) = (x(t), u(t)) with

nontrivial x(t) having two zeros s1, s2 ∈ [t1, t2] (s1 < s2) such that x(t) 6= 0 for all

t ∈ (s1, s2). Applying Theorem 2.3.1 we see that

4 ≤ exp

(∫ s2

s1

α(t)dt

)(∫ s2

s1

|B(t)|dt
)(∫ s2

s1

|C∗(t)|dt+
∑

s1≤τi<s2

|Si|

)

≤ exp

(∫ t2

t1

α(t)dt

)(∫ t2

t1

|B(t)|dt
)(∫ t2

t1

|C∗(t)|dt+
∑

t1≤τi<t2

|Si|

)
.

Clearly, the last inequality contradicts (2.52). The proof is complete. �

Since the proof of the following theorem is exactly same as the proof of Theorem

2.4.1, it is omitted.

Theorem 2.4.2 Suppose that KT
i Ki = I for all i ∈ N and (2.25) holds. If for some
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C∗(t) ≥ C(t)

exp

(∫ t2

t1

α(t)dt

)( ∏
t1≤τi<t2

|Ki|2
)[∫ t2

t1

|B(s)|ds
]

×

[∫ t2

t1

|C∗(s)|ds+
∑

t1≤τi<t2

|KT
i Li|

]
< 4,

then system (2.2) is disconjugate on [t1, t2], where α(t) is defined as in Theorem 2.3.1.

Remark 2.4.1 Disconjugacy on [t1, t2] is equivalent to nonexistence of a nontrivial

solution of system (2.2) satisfying x(t1) = x(t2) = 0. This gives a sufficient condi-

tion for the uniqueness of solutions of the corresponding nonhomogeneous boundary

problem which is studied in the next chapter.

We have the following corollaries, which are obtained direcly from Theorem 2.4.1

and 2.4.2 for system (2.3) and system (2.4), whose proofs are exactly the same as the

proof of Theorem 2.4.1, and so, omitted.

Corollary 2.4.1 Suppose that the matrices C commutes with Ki for all i ∈ N. If for

some C∗(t) ≥ C(t) (∫ t2

t1

|C∗(t)|dt+
∑

t1≤τi<t2

|Si|

)
<

4

t2 − t1
, (2.53)

then system (2.3) is disconjugate on [t1, t2], where Si is defined as in Theorem 2.3.1.

Corollary 2.4.2 Suppose that KT
i Ki = I for all i ∈ N. If for some C∗(t) ≥ C(t)( ∏

t1≤τi<t2

|Ki|2
)[∫ t2

t1

|C∗(s)|ds+
∑

t1≤τi<t2

|KT
i Li|

]
<

4

t2 − t1
,

then system (2.3) is disconjugate on [t1, t2].

Corollary 2.4.3 Assume (2.48) holds. If

exp

(∫ t2

t1

|a(t)|dt
)[∫ t2

t1

b(t)dt

][∫ t2

t1

c+(t)dt+
∑

t1≤τi<t2

(
li
ki

)+
]
< 4,

then system (2.4) is disconjugate on [t1, t2].
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Corollary 2.4.4 Let k2i = 1 for all i ∈ N. Assume (2.48) holds. If

exp

(∫ t2

t1

|a(t)|dt
)[∫ t2

t1

b(t)dt

][∫ t2

t1

c+(t)dt+
∑

t1≤τi<t2

(liki)
+

]
< 4,

then system (2.4) is disconjugate on [t1, t2].

The next two corollaries are direct consequences of Corollary 2.4.3 and Corollary

2.4.4, respectively, in the case b(t) > 0.

Corollary 2.4.5 If

[∫ t2

t1

1

p(t)
dt

] [∫ t2

t1

q+(t)dt+
∑

t1≤τi<t2

(
li
ki

)+
]
< 4, (2.54)

then equation (2.5) is disconjugate on [t1, t2].

Proof. Suppose on the contrary that there is a real solution x(t) 6≡ 0 having two zeros

s1, s2 ∈ [t1, t2] (s1 < s2) such that x(t) 6= 0 for all t ∈ (s1, s2). Applying Corollary

2.3.5 we see that

4 ≤
[∫ s2

s1

1

p(t)
dt

][∫ s2

s1

q+(t)dt+
∑

s1≤τi<s2

(
li
ki

)+
]

≤
[∫ t2

t1

1

p(t)
dt

] [∫ t2

t1

q+(t)dt+
∑

t1≤τi<t2

(
li
ki

)+
]
.

Clearly, the last inequality contradicts (2.54). The proof is complete. �

Since the proof of the last corollary is the same as the proof of Corollary 2.4.5, it is

omitted.

Corollary 2.4.6 Let k2i = 1 for all i ∈ N. If

[∫ t2

t1

1

p(t)
dt

][∫ t2

t1

q+(t)dt+
∑

t1≤τi<t2

(liki)
+

]
< 4,

then equation (2.5) is disconjugate on [t1, t2].
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2.4.2 Lower Bounds on Eigenvalues

Another application of Lyapunov type inequalities is that it can be used to provide

lower bounds for the eigenvalues of the associated eigenvalue problems. The proofs

of the following theorems and corollaries are based on the Lyapunov type inequalities

derived in Section 2.3.

Consider the following impulsive eigenvalue problems

x′ = A(t)x+B(t)u, u′ = −λC(t)x− AT (t)u, t ∈ (t1, t2)\{τ1, τ1, . . . , τm},

x(τ+i ) = Kix(τ−i ), u(τ+i ) = −µLix(τ−i ) +Kiu(τ−i ), i = 1, 2, . . . ,m,

x(t1) = x(t2) = 0

(2.55)

and
x′′ + λC(t)x = 0, t ∈ (t1, t2)\{τ1, τ1, . . . , τm},

x(τ+i ) = Kix(τ−i ),

x′(τ+i ) = −µLix(τ−i ) +Kix
′(τ−i ), i = 1, 2, . . . ,m,

x(t1) = x(t2) = 0

(2.56)

where λ, µ ∈ R.

Definition 2.4.1 A pair (λ, µ) is called an eigenvalue of (2.55) if there is a corre-

sponding solution (x, u) such that x(t) 6≡ 0 on (t1, t2).

Definition 2.4.2 A pair (λ, µ) is called an eigenvalue of (2.56) if there is a corre-

sponding nontrivial solution x on (t1, t2).

Theorem 2.4.3 Suppose that the matrices A, AT , B, and C all commute with Ki for

all i ∈ N such that (2.25) holds. If (λ, µ) is a positive eigenvalue pair of (2.55), then

λ ≥ 4

exp

(∫ t2

t1

α(t)dt

)(∫ t2

t1

|B(t)|dt
)(∫ t2

t1

|C∗(t)|dt+ η

m∑
i=1

|Si|

) ,
for any C∗(t) ≥ C(t), where η = µ/λ and α(t), Si are defined as in Theorem 2.3.1.

Proof. Let (λ, µ) be a positive eigenvalue and (x, u) be the corresponding eigenfunc-

tions of the system (2.55). If we apply Lyapunov type inequality obtained in Theorem
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2.3.1 for system (2.55), we get

4 ≤ exp

(∫ t2

t1

α(t)dt

)(∫ t2

t1

|B(t)|dt
)(

λ

∫ t2

t1

|C∗(t)|dt+ µ
∑

t1≤τi<t2

|Si|

)

Then for the eigenvalue λ we can find the desired lower bound. �

Since the proofs of the following theorem and corollaries are same as the proof of

Theorem 2.4.3, we skip them.

Theorem 2.4.4 Suppose that KT
i Ki = I for all i ∈ N and (2.25) holds. If (λ, µ) is a

positive eigenvalue pair of (2.55), then

λ ≥ 4

exp

(∫ t2

t1

α(t)dt

)( m∏
i=1

|Ki|2
)[∫ t2

t1

|B(t)|dt
] [∫ t2

t1

|C∗(t)|dt+ η
m∑
i=1

|KT
i Li|

] ,

for any C∗(t) ≥ C(t), where η = µ/λ and α(t) is defined as in Theorem 2.3.1.

For the eigenvalue problem (2.56), the above theorems take the following simpler

forms.

Corollary 2.4.7 Suppose that C commute with Ki for all i ∈ N. If (λ, µ) is a positive

eigenvalue pair of (2.56), then

λ ≥ 4[∫ t2

t1

|C∗(t)|dt+ η

m∑
i=1

|Si|

]
(t2 − t1)

,

for any C∗(t) ≥ C(t), where η = µ/λ and Si is defined as in Theorem 2.3.1.

Corollary 2.4.8 Suppose that KT
i Ki = I for all i ∈ N. If (λ, µ) is a positive eigen-

value pair of (2.56), then

λ ≥ 4(
m∏
i=1

|Ki|2
)[∫ t2

t1

|C∗(t)|dt+ η

m∑
i=1

|KT
i Li|

]
(t2 − t1)

,

for any C∗(t) ≥ C(t), where η = µ/λ.
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In system (2.55) if n = 1, then the planar eigenvalue problem can be obtained as

follows.

x′ = a(t)x+ b(t)u, u′ = −λ c(t)x− a(t)u, t ∈ (t1, t2)\{τ1, τ1, . . . , τm},

x(τ+i ) = kix(τ−i ), u(τ+i ) = −µ lix(τ−i ) + kiu(τ−i ), i = 1, 2, . . . ,m,

x(t1) = x(t2) = 0.

(2.57)

where λ, µ ∈ R.

Definition 2.4.3 A pair (λ, µ) is called an eigenvalue of (2.57) if there is a corre-

sponding solution (x, u) such that x(t) 6≡ 0 on (t1, t2).

Then Theorem 2.4.3 and Theorem 2.4.4 are reduced to the following corollaries.

Corollary 2.4.9 Assume (2.48) holds. If (λ, µ) is a positive eigenvalue pair of (2.57),

then

λ ≥ 4

exp

(∫ t2

t1

|a(t)|dt
)[∫ t2

t1

b(t)dt

][∫ t2

t1

c+(t)dt+ η
m∑
i=1

(
li
ki

)+
] ,

where η = µ/λ.

Corollary 2.4.10 Let k2i = 1 for all i ∈ N. Assume (2.48) holds. If (λ, µ) is a positive

eigenvalue pair of (2.57), then

λ ≥ 4

exp

(∫ t2

t1

|a(t)|dt
)[∫ t2

t1

b(t)dt

][∫ t2

t1

c+(t)dt+ η

m∑
i=1

(kili)
+

] ,
where η = µ/λ.

By taking a(t) ≡ 0, b(t) = 1/p(t), c(t) = q(t) and u(t) = p(t)x′(t), we obtain the

special case of (2.57), the impulsive second-order eigenvalue problem, which has the

form

(p(t)x′)′ + λq(t)x = 0, t 6= τi

x(τ+i ) = kix(τ−i ), (px′)(τ+i ) = −µlix(τ−i ) + ki(px
′)(τ−i ), i = 1, 2, . . . ,m,

x(t1) = x(t2) = 0

(2.58)
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where λ, µ ∈ R.

Definition 2.4.4 A pair (λ, µ) is called an eigenvalue of (2.58) if there is a corre-

sponding nontrivial solution x on (t1, t2).

Theorem 2.4.3 and Theorem 2.4.4 lead to the following corollaries which are the final

results of the present chapter.

Corollary 2.4.11 If (λ, µ) is a positive eigenvalue pair of (2.58), then

λ ≥ 4[∫ t2

t1

1

p(t)
dt

][∫ t2

t1

q+(t)dt+ η

m∑
i=1

(
li
ki

)+
] ,

where η = µ/λ.

Corollary 2.4.12 Let k2i = 1 for all i ∈ N. If (λ, µ) is a positive eigenvalue pair of

(2.58), then

λ ≥ 4[∫ t2

t1

1

p(t)
dt

][∫ t2

t1

q+(t)dt+ η
m∑
i=1

(kili)
+

] ,
where η = µ/λ.

51



52



CHAPTER 3

BOUNDARY VALUE PROBLEMS FOR 2N -DIMENSIONAL

LINEAR HAMILTONIAN SYSTEMS WITH IMPULSIVE

PERTURBATIONS

3.1 Introduction

In the present chapter our main aim is to prove an existence and uniqueness theorem

for solutions of the related BVP of (2.2), which is called as inhomogeneous Hamilto-

nian system under impulse effect, of the form

x′ = A(t)x+B(t)u+ f(t), u′ = −C(t)x− AT (t)u+ g(t), t 6= τi (3.1a)

x(τ+i ) = Kix(τ−i ) + ai, u(τ+i ) = −Lix(τ−i ) +Kiu(τ−i ) + bi, (3.1b)

x(t1) = ξ, x(t2) = ζ, (3.1c)

where

(i) The entries of the given n × n matrices A and symmetric matrices B,C and

of the given n× 1 vectors f, g are real valued and left continuous functions on

each interval (τi, τi+1) having finite limit from both sides at τi;

(ii) {Ki} , {Li} are given sequence of n×nmatrices {ai} , {bi} are given sequence

of n × 1 vectors, {τi} is a real sequence of numbers for i = 1, 2, . . . , p with

t1 = τ0 < τ1 < τ2 < . . . < τp < τp+1 = t2;

(iii) B(t) ≥ 0 for t ∈ (t1, t2) in the sense that xTB(t)x ≥ 0 for all x ∈ Rn and K−1i
exists for all i = 1, 2, . . . , p; ξ and ζ are given n× 1 vectors.
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By a solution of system (3.1), we mean a vector valued function y(t) = (x(t), u(t))

defined on J = [t1, t2] such that y ∈ PLC(J) and system (3.1) is fulfilled for all

t ∈ J, where PLC(J) = {ω : J → R is continuous on each interval (τi, τi+1), the

limits w(τ±i ) exist and w(τ−i ) = w(τi) for i ∈ N}.

The corresponding homogeneous BVP of system (3.1) takes the form

x′ = A(t)x+B(t)u, u′ = −C(t)x− ATu, t ∈ (t1, t2)\{τi} (3.2a)

x(τ+i ) = Kix(τ−i ), u(τ+i ) = −Lix(τ−i ) +Kiu(τ−i ), (3.2b)

x(t1) = 0, x(t2) = 0, (3.2c)

If y = (x, u), system (3.2a)-(3.2a) can be written in the form of

y′ = JH(t)y t 6= τi (3.3a)

y(τ+i ) = Biy(τ−i ), i = 1, 2, . . . , p (3.3b)

where

J =

 0 In

−In 0

 , H(t) =

C(t) AT (t)

A(t) B(t)

 , Bi =

 Ki 0

−Li Ki

 .
The impulse condition (3.3b) (or (3.2b)) can be written in another form by using delta

operator as

∆y|t=τi = y(τ+i )− y(τ−i ) = (Bi − I)y(τ−i ) = Ciy(τ−i ) (3.4)

Let us recall the following definition. With regard to Definition 1.4.2, we want to

remark that if

AT (t)C(t) = C(t)A(t), −B(t)C(t) + A(t)A(t) = −In,
B(t)AT (t) = A(t)B(t), −AT (t)AT (t) + C(t)B(t) = In,

then system (3.2a) is of symplectic structure and therefore our results are also valid

for symplectic systems under impulse effect.

In particular, choosing n = 1 in system (3.1) yields the following inhomogenous BVP

for planar Hamiltonian system under impulse effect

x′ = a(t)x+ b(t)u+ f(t), u′ = −c(t)x− a(t)u+ g(t), t 6= τi (3.5a)

x(τ+i ) = kix(τ−i ) + ai, u(τ+i ) = −lix(τ−i ) + kiu(τ−i ) + bi, (3.5b)

x(t1) = ξ, x(t2) = ζ, (3.5c)
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where a, b, c, f, g are real valued piece-wise left continous functions having disconti-

nuities at the points τi and ki, li, ai, bi are real sequences for i = 1, 2, . . . , p and ξ and

ζ are given real numbers. The associated homogenous BVP is obtained for system

(3.5) if f(t) = g(t) = 0, t ∈ J, ai = bi = 0, i = 1, 2, . . . , p and ξ = ζ = 0, i.e

x′ = a(t)x+ b(t)u, u′ = −c(t)x− a(t)u, t 6= τi (3.6a)

x(τ+i ) = kix(τ−i ), u(τ+i ) = −lix(τ−i ) + kiu(τ−i ), (3.6b)

x(t1) = 0, x(t2) = 0, (3.6c)

Note that when b(t) > 0, if we take a(t) ≡ 0, b(t) = 1/p(t), c(t) = q(t), f(t) ≡ 0

and u(t) = p(t)x′(t), then we obtain the following impulsive BVP for second-order

differential equations, as a special case of (3.5), that is,

(p(t)x′)′ + q(t)x = g(t), t ∈ (t1, t2)\{τi} (3.7a)

x(τ+i ) = kix(τ−i ) + ai, (px′)(τ+i ) = −lix(τ−i ) + ki(px
′)(τ−i ) + bi, (3.7b)

x(t1) = ξ, x(t2) = ζ. (3.7c)

The following BVP represents the associated homogenous BVP of (3.7).

(p(t)x′)′ + q(t)x = 0, t ∈ (t1, t2)\{τi} (3.8a)

x(τ+i ) = kix(τ−i ), (px′)(τ+i ) = −lix(τ−i ) + ki(px
′)(τ−i ), (3.8b)

x(t1) = 0, x(t2) = 0. (3.8c)

This chapter of the thesis is organized as follows. The proof of our result is based on

establishing Lyapunov type inequalities for linear Hamiltonian system under impulse

effect. Therefore after defining inhomogenous impulsive BVPs of 2n−dimensional

Hamiltonian systems, planar systems and second order equations as well as their ho-

mogenous counterparts, in Section 3.2 we restate Lyapunov type inequalities obtained

in Section 2.3 to show nonexistence of nontrivial solutions of systems (3.2), (3.6) and

equation (3.8). Then in Section 3.3 we present fundamental theorems about homoge-

nous and nonhomogenous system of impulsive differential equations and give the

relationship between solutions of them. Section 3.4 is divided into subsections to

mention the properties of impulsive BVPs in detail. After introducing inhomogenous

BVP and defining Green’s function, the derivation of Green’s function is shown and

integral representation of unique solution of system (3.1) is expressed by Green’s
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function. Then the properties of Green’s function is given. After that system (3.5)

and equation (3.7) is considered as a special case of system (3.1) and their Green’s

functions are written in terms of the solutions of corresponding homogenous system

and equation. Section 3.5 contains the main results of the present chapter and is de-

voted to the existence and uniqueness criteria of solutions to (3.1), (3.5) and equation

(3.7). Since the proofs of the theorems are based on Lyapunov type inequalities, two

different inequalities for each system (3.2), (3.6) and for equation (3.8) yield two

alternative criteria for the uniquness of the solutions of systems (3.1), (3.5) and equa-

tion (3.7). To the best of our knowledge, our approach is quite new and our result is

the first work which gives the relation between existence and uniqueness theory of

boundary value problems and Lyapunov type inequalities. This relation has not been

noted even for the ordinary differential equations case.

3.2 Lyapunov type inequality for homogeneous problems

The following theorems are obtained in Section 2.3 to derive Lyapunov type inequali-

ties for systems (3.2), (3.6) and equation (3.8). The importance of these inequalities in

showing the uniqueness of the solutions of inhomogeneous BVP (3.1), (3.5) and (3.7)

is the main result of this chapter and presented in the last section. Before concern-

ing the connection between Lyapunov type inequalities and inhomogeneous BVP, we

want to remind these inequalities obtained for system (3.2), (3.6) and equation (3.8).

In the sequel, |A| =
√
λmax(ATA) and µ(A) = λmax(A

T + A)/2, which are defined

as in Chapter 2, denote the induced matrix norm and matrix measure of a matrix A,

respectively, m+(t) = max{m(t), 0} and m+
i = max{mi, 0}. The first two theorems

are the main results which yield Lyapunov type inequalities for system (3.2).

Theorem 3.2.1 Suppose that the matrices A, AT , B, and C all commute with Ki for

all i ∈ N such that

B(t) ≥ 0,

∫ t2

t1

|B(t)| dt > 0. (3.9)

If the homomogeneous BVP (3.2) has a real solution (x(t), u(t)) such that x(t) 6≡ 0
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on (t1, t2), then for any C∗(t) ≥ C(t), we have the Lyapunov type inequality

exp

(∫ t2

t1

α(t)dt

)[∫ t2

t1

|B(t)|dt
] [∫ t2

t1

|C∗(t)|dt+
∑

t1≤τi<t2

|Si|

]
≥ 4 (3.10)

where Si = K−11 K−12 . . . K−1i LiKi−1 . . . K1, i = 2, 3 . . . , p, and

α(t) = max
{
µ+(A(t)), µ+(−A(t))

}
.

Theorem 3.2.2 Suppose that KT
i Ki = I for all i ∈ N and (3.9) holds. If the homo-

mogeneous BVP (3.2) has a real solution (x(t), u(t)) such that x(t) 6≡ 0 on (t1, t2),

then for any C∗(t) ≥ C(t) we have the Lyapunov type inequality

exp

(∫ t2

t1

α(t)dt

)[ ∏
t1≤τi<t2

|Ki|2
] [∫ t2

t1

|B(s)|ds
]

×

[∫ t2

t1

|C∗(s)|ds+
∑

t1≤τi<t2

|KT
i Li|

]
≥ 4,

(3.11)

where α(t) is defined as in Theorem 3.2.1.

The next two theorems, which are corollaries of the above theorems, provide different

Lyapunov type inequalities for system (3.6).

Theorem 3.2.3 Suppose that

b(t) ≥ 0,

∫ t2

t1

b(t)dt > 0. (3.12)

If the homomogeneous BVP of (3.6) has a real solution (x(t), u(t)) such that x(t) 6≡ 0

on (t1, t2), then we have the Lyapunov type inequality

exp

(∫ t2

t1

|a(t)|dt
)[∫ t2

t1

b(t)dt

] [∫ t2

t1

c+(t)dt+
∑

t1≤τi<t2

(
li
ki

)+
]
≥ 4. (3.13)

Theorem 3.2.4 Suppose (3.12) holds. If the homomogeneous BVP of (3.6) has a real

solution (x(t), u(t)) such that x(t) 6≡ 0 on (t1, t2), then we have the Lyapunov type

inequality

exp

(∫ t2

t1

|a(t)|dt
)[∫ t2

t1

b(t)dt

][∫ t2

t1

c+(t)dt+
∑

t1≤τi<t2

(liki)
+

]
≥ 4. (3.14)
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Finally, we have the next two theorems giving Lyapunov type inequalities for equation

(3.8).

Theorem 3.2.5 If the homomogeneous BVP of (3.8) has a real solution x(t) such

that x(t) 6≡ 0 on (t1, t2), then we have the Lyapunov type inequality[∫ t2

t1

1

p(t)
dt

][∫ t2

t1

q+(t)dt+
∑

t1≤τi<t2

(
li
ki

)+
]
≥ 4. (3.15)

Theorem 3.2.6 If the homomogeneous BVP of (3.8) has a real solution x(t) such

that x(t) 6≡ 0 on (t1, t2), then we have the Lyapunov type inequality[∫ t2

t1

1

p(t)
dt

][∫ t2

t1

q+(t)dt+
∑

t1≤τi<t2

(liki)
+

]
≥ 4. (3.16)

3.3 System of Linear Homogenous and Nonhomogenous Impulsive Differential

Equations

Before considering impulsive inhomogeneous BVP (3.1), we will give fundamental

properties of system of linear impulsive equations (IDEs) of homogenous type (3.2a)-

(3.2b) (or equivalently (3.3)). These properties are similar to that of in system of

ordinary differential equations, see [25, 45, 76] and can be found in detail in [60, 9,

93, 107]. A nonhomogenous system of impulsive differential equations (3.1a)-(3.1b)

can be defined similar to the theory of nonhomogenous system of ordinary differential

equations and can also be written in the form

y′ = JH(t)y + h(t) t 6= τi (3.17a)

y(τ+i ) = Biy(τ−i ) + ci, i = 1, 2, . . . , p, (3.17b)

where J,H(t), Bi are defined as in system (3.3) and

h(t) =

 f(t)

g(t)

 , ci =

 ai

bi

 .
The fundamental matrix of homogenous system (3.3) (or (3.2a)-(3.2b)) has the fol-

lowing property due to the Theorem 1.3.4.
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Remark 3.3.1 ([42]) Let Φ(t) be the fundamental matrix of system (3.3) satisfying

det Φ(0) = I . Since trace(JH(s)) = 0, then Wronskian W (t) of solutions of system

(3.3) is

W (t) = det Φ(t) =

p∏
i=1

detBi =

p∏
i=1

K2
i

for t1 = τ0 < τ1 < . . . < τp < τp+1 = t2.

After defining the solution of homogenous system (3.3), now we are ready to give the

particular solution, general solution and unique solution of nonhomogenous system

(3.17). The relationship between the solutions of nonhomogenous system (3.17) and

the associated homogenous system (3.3) can be given in the next theorem.

Theorem 3.3.1 ([93, 107]) If ϕ(t) and ψ(t) are the solutions of homogenous system

(3.3) and nonhomogenous system (3.17), respectively, then ϕ(t) + ψ(t) is again a

solution of system (3.17). Conversely, if ψ1(t), ψ2(t) are solutions of nonhomogenous

system (3.17), then the difference ψ1(t) − ψ2(t) is a solution of homogenous system

(3.3).

We find the general solution of nonhomogenous system (3.17) in terms of the solu-

tions of homogenous system (3.3) by using Variation of Parameters Formula.

Theorem 3.3.2 ([93, 107]) (Variation of Parameters Formula) Let Φ(t) be a funda-

mental matrix solution of system (3.3). Then the general solution y of nonhomogenous

system (3.17) is of the form

y(t) = Φ(t)c+

∫ t

t0

Φ(t, s)h(s)ds+
∑

t0≤τi<t

Φ(t, τ+i )ci, t ≥ t0, (3.18)

y(t) = Φ(t)c+

∫ t

t0

Φ(t, s)h(s)ds+
∑

t0≤τi<t

Φ(t, τ+i )ci, t ≤ t0,

where c is the column vector defined as c = [c1, c2, . . . , cn]T . The unique solution

y(t, t0) of nonhomogenous system (3.17) satisfying the initial condition y(t0) = δ is

of the following form

y(t, t0) = Φ(t, t0)δ +

∫ t

t0

Φ(t, s)h(s)ds+
∑

t0≤τi<t

Φ(t, τ+i )ci, t ≥ t0,
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and

y(t, t0) = Φ(t, t0)δ +

∫ t

t0

Φ(t, s)h(s)ds−
∑

t≤τi<t0

Φ(t, τ+i )ci, t ≤ t0,

where Φ(t, s) = Φ(t)Φ−1(s).

The previous theorem states that like linear system of ordinary differential equations,

the general solution y of linear nonhomogenous system (3.17) can be written as a sum

of complementary solution yh(t) = Φ(t)c of homogenous system (3.3) and particular

solution yp(t) =

∫ t

t0

Φ(t, s)h(t)+
∑

t0≤τi<t

Φ(t, τ+i )ci of nonhomogenous system (3.17),

i.e y(t) = yh(t) + yp(t), see [93, 107].

3.4 Boundary Value Problems For 2n-dimensional Impulsive Systems

Throughout this section, we consider impulsive BVP (3.1) and present the unique so-

lution of this system. By using the connection between the solutions of homogenous

systems (3.2) and inhomogenous BVP’s (3.1), we introduce Green’s function as well

as its properties. In contrast to system of ODEs, there is a pair of Green’s function

which has discontinuities at the jump points due to the impulses. We also remark the

importance of Green’s function in obtaining the representation of unique solution of

inhomogenous BVP (3.1). Moreover for the special cases of impulsive BVP (3.1),

system (3.5) and equation (3.7), Green’s function (pair) and representation of unique

solution are obtained as an application.

3.4.1 Inhomogenous Boundary Value Problems

In this subsection, we are interested in inhomogenous BVP, system (3.1). If y(t) =

(x(t), u(t)), then system (3.1) can be rewritten in the form of 2n-dimensional Hamil-

tonian system with impulsive perturbation as

y′ = JH(t)y + h(t) t 6= τi (3.19a)

y(τ+i ) = Biy(τ−i ) + ci, i = 1, 2, . . . , p (3.19b)

U(y) = My(t1) +Ny(t2) = η, (3.19c)
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where J,H(t), Bi are defined as in Section 3.1 and h(t), ci is defined as in Section

3.3 and M =

In 0

0 0

 , N =

 0 0

In 0

 , and η =

 ξ

ζ

 .
Here, U(y) is called a boundary form and in general it is defined as follows

Uν(y) =
2n∑
j=1

Mνjyj(t1) +Nνjyj(t2), ν = 1, 2, . . . , 2n.

Remark 3.4.1 ([107]) The vector boundary formU has rankm ifUυ, υ = 1, 2, . . . ,m,

are linearly independent boundary forms. In other words, the vector boundary form

U has rank m if and only if rank(M : N) = m, where the matrix (M : N) is defined

by

(M : N) =


M11 . . . M12n N11 . . . N12n

...
...

...
...

...
...

M2n1 . . . M2n2n N2n1 . . . N2n2n

 .
Remark 3.4.2 In our case, by definition of M and N , it is easy to see that rank(M :

N) = 2n. Therefore Uυ, υ = 1, 2, . . . , 2n, is linearly independent boundary form.

As in the theory of system of ordinary differential equations, the uniqueness of solu-

tion of inhomogenous system (3.1) (or (3.19)) depends on the nonexistence of non-

trivial solution of homogenous system (3.2). The next theorem stating this fact is the

main argument to show the uniqueness of solution of inhomogenous system (3.1).

Theorem 3.4.1 ([107]) Since the rank of the vector boundary form U is equal to the

dimension of system (3.1), that is rank(M : N) = 2n, if the homogenous system (3.2)

has only trivial solution, then the inhomogenous system (3.1) has a unique solution.

3.4.2 Derivation of Green’s Function

In the next theorem with regard of Theorem 3.4.1, by assuming that the homogenous

system (3.2) has only trivial solution, we show that the unique solution of inhomoge-

nous system (3.1) can be given in terms of Green’s Function. To find Green’s func-

tion, firstly we need to write the general solution of inhomogenous system (3.1) by
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using Variation Parameters Formula on the interval J = [t1, t2]. The next theorem

provides the detailed derivation and explicit formula for Green’s function.

Theorem 3.4.2 Let (i)–(iii) hold. Assume that the homogenous system (3.2) has only

trivial solution. Then the unique solution y = (x(t), u(t)) of the inhomogenous sys-

tem (3.1) is expressible as

y(t) = w(t) +

∫ t2

t1

G(t, s)h(s)ds+
∑

t1≤τi<t2

G̃(t, τ+i )ci (3.20)

where

w(t) = Φ(t) [MΦ(t1) +NΦ(t2)]
−1 η,

and the Green’s function pair is given by

G(t, s) =

 Φ(t)(I +K)Φ−1(s), s < t

Φ(t)KΦ−1(s), s ≥ t
(3.21)

and

G̃(t, τ+i ) =

 Φ(t)(I +K)Φ−1(τ+i ), τi < t

Φ(t)KΦ−1(τ+i ), τi ≥ t.
(3.22)

Proof. We start with the variation of parameters formula (3.18) and write the general

solution of system (3.1a), (3.1b) as

y(t) = Φ(t)c+ Φ(t)

[∫ t

t1

Φ−1(s)h(s) +
∑

t1≤τi<t

Φ−1(τ+i )ci

]
, (3.23)

where c is a constant column vector which will be determined from the boundary

conditions (3.1c). Now, imposing the vector boundary conditions (3.1c) on (3.23)

yields

[MΦ(t1) +NΦ(t2)] c = η −NΦ(t2)

[∫ t2

t1

Φ−1(s)h(s) +
∑

t1≤τi<t2

Φ−1(τ+i )ci

]
.

(3.24)

Since the homogenous system (3.2) has only trivial solution, the matrix MΦ(t1) +

NΦ(t2) has an inverse. Observe that y(t) = Φ(t)d is a general solution of homoge-

nous system (3.2) where d is a constant column vector. The homogenous boundary

conditions satisfy if [MΦ(t1) +NΦ(t2)] d = 0. If the matrix MΦ(t1) + NΦ(t2) did

not have an inverse, then d would be different than zero and the homogenous system
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(3.2) would have other solutions than the trivial one. This contradiction leads us that

the matrix MΦ(t1) +NΦ(t2) has an inverse and we have the uniqueness of solutions

of inhomogenous system (3.1). Setting

K = − [MΦ(t1) +NΦ(t2)]
−1NΦ(t2),

we may solve c as

c = [MΦ(t1) +NΦ(t2)]
−1 η +K

[∫ t2

t1

Φ−1(s)h(s)ds+
∑

t1≤τi<t2

Φ−1(τ+i )ci

]
.

Hence,

y(t) = Φ(t) [MΦ(t1) +NΦ(t2)]
−1 η

+ Φ(t)(I +K)

[∫ t

t1

Φ−1(s)h(s)ds+
∑

t1≤τi<t

Φ−1(τ+i )ci

]

+ Φ(t)K

[∫ t2

t

Φ−1(s)h(s)ds+
∑

t≤τi<t2

Φ−1(τ+i )ci

]
.

Therefore the unique solution of the BVP (3.1a)–(3.1c) can be expressed as

y(t) = w(t) +

∫ t2

t1

G(t, s)h(s)ds+
∑

t1≤τi<t2

G̃(t, τ+i )ci.

where the pair of functions (3.21) and (3.22) constitutes the Green’s function for (3.1).

�

3.4.3 Properties of Green’s Function

Similar to the theory of system of ordinary differential equations, Green’s fuction

(pair) have some continuity and differenbility properties. Compared with the nonim-

pulsive case, Green’s function (pair) G(t, s) and G̃(t, τ+i ), i = 1, 2, . . . , p of linear

impulsive system (3.1) are left continuous functions having discontinuities of the first

kind at the jump points τi, i = 1, 2, . . . , p . To obtain more properties, we need to set

up the following rectangles, see [107],

R11 = [t1, τ1]× [t1, τ1],

Ri1 = (τi−1, τi]× [t1, τ1], i = 2, 3, . . . , p+ 1

R1j = [t1, τ1]× (τj−1, τj], j = 2, 3, . . . , p+ 1

Rij = (τi−1, τi]× (τj−1, τj], i, j = 2, 3, . . . , p+ 1
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and triangles

T u = {(t, s) ∈ [t1, t2]× [t1, t2] : s > t}
T l = {(t, s) ∈ [t1, t2]× [t1, t2] : s < t}
T uii = {(t, s) ∈ Rii : s > t} , i = 1, 2, 3, . . . , p+ 1

T lii = {(t, s) ∈ Rii : s < t} , i = 1, 2, 3, . . . , p+ 1.

as we construct for system of ordinary differential equations, see [25, 76]. In the

impulsive case, since instead of one interval [a, b], there are p subintervals which are

in the form of (τi, τi+1), i = 0, 1, . . . , p, the only difference between continous and

discontinous case occurs at τi, the points of discontinuities. We can summarized the

mentioned properties of Green’s function (pair) and give more of them in the next

theorem.

Theorem 3.4.3 ([107]) Let Green’s function (pair) be defined as (3.21) and (3.22)

for system (3.1). Then we have the following properties.

(G1) G(t, s) is continuous and bounded for (t, s) on the rectangles Rij,

i, j = 1, 2 . . . , p+ 1.

(G2)
∂G(t, s)

∂t
is continuous and bounded on the rectangles Rij with i 6= j and on

the triangles T uii and T lii, i.e at the points t = s and t = τi, i = 1, 2, 3, . . . , p,

G(t, s) fails to be continous and bounded.

(G3) At the points t = s and t = τi, i = 1, 2, 3, . . . , p, G(t, s) satisfies the following

jump conditions;

(a) G(s+, s)−G(s−, s) = I, s 6= τi

(b) G(τ+i , τi)−BiG(τ−i , τi) = Bi

(c)
∂G(s+, s)

∂t
− ∂G(s−, s)

∂t
= JH(s), s 6= τi

(G4) G(t, s), considered as a function of t, is left continuous and satisfies

y′ = JH(t)y, t ∈ Js\ {τi}
y(τi+) = Biy(τ−i ), i ∈ {i : τi ∈ Js}
My(t1) +Ny(t2) = 0

(3.25)

where Js is any of the intervals [t1, s) or (s, t2]
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(G5) ∆|t=τiG̃(t, τ+i ) = G̃(τ+i , τ
+
i )− G̃(τ−i , τ

+
i ) = (Bi − I)G̃(τ−i , τ

+
i )

(G6) G̃(t,s), considered as a function of t, is left continuous and satisfies (3.25).

Proof. The proofs of (G1) and (G2) are similar to the that of in ordinary differential

equations. Let us consider (G3).

(a) To see (a), we write for s 6= τi,

G(s+, s)−G(s−, s) = Φ(s+)(I +K)Φ−1(s)− Φ(s−)KΦ−1(s)

= Φ(s−)(I +K)Φ−1(s)− Φ(s−)KΦ−1(s) = I.

(b) (b) follows from

G(τ+i , τi)−BiG(τ−i , τi) =
[
Φ(τ+i )(I +K)−BiΦ(τ−i )K

]
Φ−1(τi)

=
[
BiΦ(τ−i )(I +K)−BiΦ(τ−i )K

]
Φ−1(τi) = Bi.

(c) For (c), let t 6= τi, then

∂G(t, s)

∂t
=

 Φ′(t)(I +K)Φ−1(s) = JH(t)Φ(t)(I +K)Φ−1(s), s < t

Φ′(t)KΦ−1(s) = JH(t)Φ(t)KΦ−1(s), s ≥ t

and since s 6= τi,

∂G(s+, s)

∂t
− ∂G(s−, s)

∂t
= J [H(s+)Φ(s+)(I +K)−H(s−)Φ(s−)K] Φ−1(s)

= JH(s).

Next, we consider (G4). By definition, it is easy to see that G(t, s) is left

continuous function at t = τi. Let us consider the interval [t1, s). The latter

is similar. The first equation in (3.25) is a direct consequences of (c) and the

definition of G(t, s). Clearly,

G(τ+i , s) = Φ(τ+i )KΦ−1(s) = BiΦ(τ−i )KΦ−1(s) = BiG(τ−i , s)

and

MG(t1, s) +NG(t2, s) = MΦ(t1)KΦ−1(s) +NΦ(t2)(I +K)Φ−1(s)

=
{

[MΦ(t1) +NΦ(t2)]K +NΦ(t2)(I +K)
}

Φ−1(s) = 0.

The proofs of (G5) and (G6) are similar to (b) and (G4), respectively. �

The following theorem is adapted from [107] and is presented to introduce the method

of finding Green’s function G(t, s).
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Theorem 3.4.4 ([107]) If the homogenous system (3.2) has only trivial solution, then

the properties (G1)-(G3) uniquely determine the Green’s function G(t, s).

Proof. Since G(t, s) satisfies the first two homogenous equation of (3.25), it can be

written as

G(t, s) =

 Φ(t)c(s), s < t

Φ(t)d(s), s > t

for t ∈ [t1, t2], where Φ(t) is the fundamental matrix solution of

y′ = JH(t)y, t ∈ Js\ {τi}
y(τi+) = Biy(τ−i ), i ∈ {i : τi ∈ Js} .

In view of (a) of (G2), if s 6= τi, i = 1, 2, . . . , p, then

I = G(s+, s)−G(s−, s) = Φ(s+)c(s)− Φ(s−)d(s) = Φ(s−)[c(s)− d(s)].

Therefore we have

c(s)− d(s) = Φ−1(s), s 6= τi.

In the case s = τi, i ∈ {1, 2, . . . , p}, from (b) one has that

Bi = G(τ+i , τi)−BiG(τ−i , τi) = Φ(τ+i )c(τi)−BiΦ(τ−i )d(τi)

= BiΦ(τ−i )c(τi)−BiΦ(τ−i )d(τi)

which implies

c(τi)− d(τi) = Φ−1(τi), i ∈ {1, 2, . . . , p}.

Therefore, for all s ∈ [t1, t2],

c(s)− d(s) = Φ−1(s). (3.26)

Due to the fact that the boundary condition U(y) = 0 must be satisfied by G(t, s),

which is considered as a function of t, one can obtain

0 = MG(t1, s) +NG(t2, s) = MΦ(t1)d(s) +NΦ(t2)c(s).

By using the relation in (3.26), we have

0 = MΦ(t1)d(s)+NΦ(t2)(d(s)+Φ−1(s)) = [MΦ(t1)+NΦ(t2)]d(s)+NΦ(t2)Φ
−1(s).
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Because of the argument used in Theorem 3.4.2, the matrix MΦ(t1) +NΦ(t2) has as

inverse, which yields

d(s) = KΦ−1(s), c(s) = (I +K)Φ−1(s), s ∈ [t1, t2].

Hence

G(t, s) =

 Φ(t)(I +K)Φ−1(s), s < t

Φ(t)KΦ−1(s), s ≥ t

exists and uniquely determined as a result of the left continuity of G(t, s). �

3.4.4 Green’s Function For Planar System

Since system (3.5) is 2-dimensional, we can present its Green’s function explicitly.

Let

Φ(t) =

x1(t) x2(t)

u1(t) u2(t)

 , Φ(0) = I

be a fundamental matrix for (3.6a)-(3.6b) (or equivalently (3.3), n = 1). Define

M =

1 0

0 0

 and N =

0 0

1 0

.
For impulsive differential system (3.6a)-(3.6b) (or equivalently (3.3), n = 1), it is

known from Remark 3.3.1 that

det Φ(t) =

p∏
i=1

detBi =

p∏
i=1

k2i .

Therefore

Φ−1(t) =
1

det Φ(t)

 u2(t) −x2(t)
−u1(t) x1(t)

 =

p∏
i=1

k−2i

 u2(t) −x2(t)
−u1(t) x1(t)

 .
The matrices K and I +K can be computed as the following, respectively.

K = − [MΦ(t1) +NΦ(t2)]
−1NΦ(t2)

=
1

x1(t1)x2(t2)− x1(t2)x2(t1)

 x1(t2)x2(t1) x2(t1)x2(t2)

−x1(t1)x1(t2) −x1(t1)x2(t2)


=

1

x1(t1)x2(t2)− x1(t2)x2(t1)

x2(t1) 0

0 x1(t1)

 x1(t2) x2(t2)

−x1(t2) −x2(t2)

 ,
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and

I +K =
1

x1(t1)x2(t2)− x1(t2)x2(t1)

 x1(t1)x2(t2) x2(t1)x2(t2)

−x1(t1)x1(t2) −x1(t2)x2(t1)


=

1

x1(t1)x2(t2)− x1(t2)x2(t1)

x2(t2) 0

0 x1(t2)

 x1(t1) x2(t1)

−x1(t1) −x2(t1)

 .
Now, we are ready to rewrite the Green’s function (pair) in terms of the solutions of

system (3.6a)-(3.6b) (or equivalently (3.3), n = 1) as follows

G(t, s) = S

 M1(t)N1(s), s < t

M2(t)N1(s), s ≥ t
(3.27)

G̃(t, τ+i ) = S

 M1(t)N1(τ
+
i ), τi < t

M2(t)N1(τ
+
i ), τi ≥ t

(3.28)

where S =

p∏
i=1

k−2i

x1(t2)x2(t1)− x1(t1)x2(t2)

M1(t) =


x1(t1) [x1(t)x2(t2)− x2(t)x1(t2)] x2(t1) [x1(t)x2(t2)− x2(t)x1(t2)]

x1(t1) [u1(t)x2(t2)− u2(t)x1(t2)] x2(t1) [u1(t)x2(t2)− u2(t)x1(t2)]


and

M2(t) =


x1(t2) [x1(t)x2(t1)− x2(t)x1(t1)] x2(t2) [x1(t)x2(t1)− x2(t)x1(t1)]

x1(t2) [u1(t)x2(t1)− u2(t)x1(t1)] x2(t2) [u1(t)x2(t1)− u2(t)x1(t1)]



and

N1(s) =

 u2(s) −x2(s)
−u1(s) x1(s)



3.4.5 Green’s Function For Second Order Equation

Since the case of impulsive differential equations are slightly different than impulsive

differential systems, before introducing Green’s function of equation (3.7), we need
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to present Variation of Parameters Formula and state and prove a theorem about the

uniqueness of solution of equation (3.7).

Let {ψ1, ψ2} be the fundamental set of solutions of corresponding homogenous equa-

tion (3.8a)-(3.8b). Then ψ(t) = [ψ1, ψ2] is the first row of the (Wronskian) matrix

Ψ(t) =

ψ1(t) ψ2(t)

ψ′1(t) ψ′2(t)

 .

Theorem 3.4.5 ([107]) (Variation of Parameters Formula) Let ψ(t) = [ψ1, ψ2] be

row vector of fundamental solutions of (3.8a)-(3.8b), then any solution of (3.7a)-

(3.7b) is of the form

x(t) = ψ(t)

[
c+

∫ t

t0

Ψ−1(s)
g(s)

p(s)
e2ds+

∑
t0≤τi<t

Ψ−1(τ+i )ci

]
, t ≥ t0

and

x(t) = ψ(t)

[
c+

∫ t

t0

Ψ−1(s)
g(s)

p(s)
e2ds−

∑
t≤τi<t0

Ψ−1(τ+i )ci

]
, t ≤ t0,

where ci = [ai, bi]
T . In particular

x(t) = ψ(t)

[
Ψ−1(t0)δ +

∫ t

t0

Ψ−1(s)
g(s)

p(s)
e2ds+

∑
t0≤τi<t

Ψ−1(τ+i )ci

]
, t ≥ t0

satisfies the initial condition

x(t0) = δ1, x
′(t0) = δ2,

where the column vector δ is δ = [δ1, δ2]
T . A similar result holds for t0 ≥ t.

Our proof is again based on the fact that if the homogenous BVP (3.8) has only trivial

solution then associated inhomogenous BVP (3.7) has a unique solution.

Corollary 3.4.1 Suppose that p, c ∈ PLC(J), p(t) > 0, and αi 6= 0 for i =

1, 2, . . . , p. Assume that the homogenous system (3.8) has only trivial solution. Then

the unique solution x(t) of the inhomogenous system (3.7) is expressible as

x(t) = w(t) +

∫ t2

t1

G(t, s)g(s)ds+
∑

t1≤τi<t2

G̃(t, τ+i )ci (3.29)
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where

w(t) = ψ(t) [MΨ(t1) +NΨ(t2)]
−1 η,

and the Green’s function pair is given by

G(t, s) =

 ψ(t)(I +K)Ψ−1(s) 1
p(s)

e2, s < t

ψ(t)KΨ−1(s) 1
p(s)

e2, s ≥ t
(3.30)

and

G̃(t, τ+i ) =

 ψ(t)(I +K)Ψ−1(τ+i ), τi < t

ψ(t)KΨ−1(τ+i ), τi ≥ t,
(3.31)

where K = − [MΨ(t1) +NΨ(t2)]
−1NΨ(t2), and e2 = [0, 1]T .

Proof. We start with the variation of parameters formula (3.4.5) and write the general

solution of equation (3.7a)-(3.7b) as

x(t) = ψ(t)

[
c+

∫ t

t1

Ψ−1(s)
g(s)

p(s)
e2ds+

∑
t1≤τi<t

Ψ−1(τ+i )ci

]
, t ≥ t1, (3.32)

where c is a constant column vector which will be determined from the boundary

conditions (3.7c). Now, imposing the boundary conditions (3.7c) on (3.32) yields

x(t1) = ξ = ψ(t1)c

x(t2) = ζ = ψ(t2)c+ ψ(t2)

[∫ t2

t1

Ψ−1(s)
g(s)

p(s)
e2ds+

∑
t1≤τi<t2

Ψ−1(τ+i )ci

]
.

Therefore we obtain linear system of algebraic equationsψ1(t1) ψ2(t1)

ψ1(t2) ψ2(t2)

c1
c2

 =

 ξ

ζ − ψ(t2)

(∫ t2

t1

Ψ−1(s)
g(s)

p(s)
e2ds+

∑
t1≤τi<t2

Ψ−1(τ+i )ci

)
which has a unique solution, c1, c2 if detP 6= 0 where P =

ψ1(t1) ψ2(t1)

ψ1(t2) ψ2(t2)

 .
Since the homogenous equation (3.8) has only trivial solution, the matrix P has an

inverse. Observe that x(t) = ψ(t)d = d1ψ1(t) + d2ψ2(t) is a general solution of

homogenous system (3.8) where d = [d1 d2]
T is a constant column vector. The

homogenous boundary conditions satisfy if

x(t1) = ψ(t1)d = d1ψ1(t1) + d2ψ2(t1) = 0

x(t2) = ψ(t2)d = d1ψ1(t2) + d2ψ2(t2) = 0
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If the matrix P did not have an inverse, then d would be different than zero and

the homogenous system (3.8) would have other solutions than the trivial one. This

contradiction leads us that the matrix P has an inverse and we have the uniqueness of

solutions of inhomogenous system (3.7).

After applying the same steps of proof of Theorem 3.4.2, it is not difficult see that the

corresponding Green’s function (pair) becomes as (3.30) and (3.31). �

Let W (ψ1, ψ2)(t) be Wronskian of the fundamental solutions of the corresponding

homogenous equation (3.8a)-(3.8b) and

(p(t)W (t))′ = (p(t)ψ′1ψ2 − p(t)ψ′2ψ1)
′ = 0, t 6= τi

p(τ+i )W (τ+i ) = kip(τ
−
i )W (τ−i )

implies that p(t)W (ψ1, ψ2)(t) = Ci, t ∈ (τi, τi+1], Ci ∈ R, is piecewise constant

function for t ∈ J. Therefore one can obtain inverse of the matrix Ψ(t) as

Ψ−1(t) =
1

W (ψ1, ψ2)(t)

 ψ′2(t) −ψ2(t)

−ψ′1(t) ψ1(t)

 =
1

W (ψ1, ψ2)(t)

 ψ′2(t) −ψ2(t)

−ψ′1(t) ψ1(t)

 .
Note that the matrices K and I +K can be computed as the following, respectively.

K = − [MΨ(t1) +NΨ(t2)]
−1NΨ(t2)

=
1

ψ1(t1)ψ2(t2)− ψ1(t2)ψ2(t1)

 ψ1(t2)ψ2(t1) ψ2(t1)ψ2(t2)

−ψ1(t1)ψ1(t2) −ψ1(t1)ψ2(t2)


=

1

ψ1(t1)ψ2(t2)− ψ1(t2)ψ2(t1)

ψ2(t1) 0

0 ψ1(t1)

 ψ1(t2) ψ2(t2)

−ψ1(t2) −ψ2(t2)

 ,
and

I +K =
1

ψ1(t1)ψ2(t2)− ψ1(t2)ψ2(t1)

 ψ1(t1)ψ2(t2) ψ2(t1)ψ2(t2)

−ψ1(t1)x1(t2) −ψ1(t2)x2(t1)


=

1

ψ1(t1)ψ2(t2)− ψ1(t2)ψ2(t1)

ψ2(t2) 0

0 ψ1(t2)

 ψ1(t1) ψ2(t1)

−ψ1(t1) −ψ2(t1)

 .
Now, we are ready to rewrite the Green’s function (pair) in terms of the solutions of

system (3.8a)-(3.8b) as follows

G(t, s) = S1

 [ψ1(t)ψ2(t2)− ψ2(t)ψ1(t2)] [−ψ2(s)ψ1(t1) + ψ1(s)ψ2(t1)] , s < t

[ψ1(t)ψ2(t1)− ψ2(t)ψ1(t1)] [−ψ2(s)ψ1(t2) + ψ1(s)ψ2(t2)] , s ≥ t
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and

G̃(t, τ+i ) = S2

 [ψ1(t)ψ2(t2) ψ2(t)ψ1(t2)]M3, s < t

[ψ1(t)ψ2(t1) ψ2(t)ψ1(t1)]M4, s ≥ t

where

S1 =
1

ψ2(t1)ψ1(t2)− ψ1(t1)ψ2(t2)

1

p(s)W (ψ1(s), ψ2(s))
,

M3 =

 ψ1(t1)ψ
′
2(τ

+
i )− ψ2(t1)ψ

′
1(τ

+
i ) −ψ1(t1)ψ2(τ

+
i ) + ψ2(t1)ψ1(τ

+
i )

−ψ1(t1)ψ
′
2(τ

+
i ) + ψ2(t1)ψ

′
1(τ

+
i ) ψ1(t1)ψ2(τ

+
i )− ψ2(t1)ψ1(τ

+
i )

 ,
M4 =

 ψ1(t2)ψ
′
2(τ

+
i )− ψ2(t2)ψ

′
1(τ

+
i ) −ψ1(t2)ψ2(τ

+
i ) + ψ2(t2)ψ1(τ

+
i )

−ψ1(t2)ψ
′
2(τ

+
i ) + ψ2(t2)ψ

′
1(τ

+
i ) ψ1(t2)ψ2(τ

+
i )− ψ2(t2)ψ1(τ

+
i )

 ,
and

S2 =
1

ψ2(t1)ψ1(t2)− ψ1(t1)ψ2(t2)

1

W (ψ1(τ
+
i ), ψ2(τ

+
i ))

.

We should remark that G̃(t, τ+i ) is a row vector whereas G(t, s) is a scalar function.

3.5 The Main Result

The main result of the present chapter is the following two theorems and corollar-

ies. By employing Lyapunov type inequalities given in Section 3.2, we can prove

the uniqueness of solutions of inhomogenous system (3.1), (3.5) and equation (3.7).

We should remark that Lyapunov type inequalities are obtained for homogenous sys-

tem (3.2), (3.6) and equation (3.8). Since for each system (3.2), (3.6) and equation

(3.8), two different Lyapunov type inequalities are derived and corresponding to each

Lyapunov type inequality there is one uniqueness criterion, we obtain two unique-

ness criteria which are alternative to each other for each system (3.1), (3.5) and for

equation (3.7).

Theorem 3.5.1 Let (i)–(iii) hold. Suppose that the matrices A, AT , B, and C all

commute with Ki for all i ∈ N such that (3.9) holds. If for any C∗(t) ≥ C(t)

exp

(∫ t2

t1

α(t)dt

)[∫ t2

t1

|B(t)|dt
][∫ t2

t1

|C∗(t)|dt+
∑

t1≤τi<t2

|Si|

]
< 4, (3.33)

then there exist a unique solution y(t) = (x(t), u(t)) of BVP (3.1) which can be

expressed as (3.20) where α(t) and Si are defined as in Theorem 3.2.1.
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Proof. In order to prove the uniqueness of solutions of BVP (3.1), it suffices to show

that the homogeneous BVP (3.2a)–(3.2c) has only the trivial solution. Suppose to

the contrary that x(t) 6≡ 0 on (t1, t2). By Theorem 3.2.1, we see that Lyapunov type

inequality (3.10) holds contradicting the inequality (3.33). Thus x(t) = 0 for all

t ∈ [t1, t2]. Moreover, by (3.1a) we have

b(t)u = 0, t 6= τi,

which results in u(t) = 0 for t 6= τi. Taking limit we see that u(τ±i ) = 0. As a result

we obtain (x(t), u(t)) = (0, 0) for all t ∈ [t1, t2]. This completes the uniqueness of

the solutions. Since the form of unique solution of BVP (3.1) is given in Theorem

3.4.2 as (3.20), the proof is completed. �

The next theorem can be used when Theorem 3.5.1 is not applicable, i.e in the case

(3.33) fails. Since the proofs of following theorem and corollaries are exactly same

as the proof of Theorem 3.5.1, they are omitted.

Theorem 3.5.2 Let (i)–(iii) hold. Suppose that KT
i Ki = I for all i ∈ N and (3.9)

holds. If for any C∗(t) ≥ C(t)

exp

(∫ t2

t1

α(t)dt

)[ ∏
t1≤τi<t2

|Ki|2
][∫ t2

t1

|B(s)|ds
]

×

[∫ t2

t1

|C∗(s)|ds+
∑

t1≤τi<t2

|KT
i Li|

]
< 4,

(3.34)

then there exist a unique solution y(t) = (x(t), u(t)) of BVP (3.1) which can be

expressed as (3.20) where α(t) is defined as in Theorem 3.2.2.

Corollary 3.5.1 Suppose (3.12) holds. If

exp

(∫ t2

t1

|a(t)|dt
)[∫ t2

t1

b(t)dt

][∫ t2

t1

c+(t)dt+
∑

t1≤τi<t2

(
li
ki

)+
]
< 4, (3.35)

then there exist a unique solution y(t) = (x(t), u(t)) of BVP (3.5) which can be

expressed as (3.20).

In case (3.35) does not hold, we have the following alternative for Corollary 4.30.

73



Corollary 3.5.2 Suppose (3.12) holds. If

exp

(∫ t2

t1

|a(t)|dt
)[∫ t2

t1

b(t)dt

][∫ t2

t1

c+(t)dt+
∑

t1≤τi<t2

(liki)
+

]
< 4, (3.36)

then there exist a unique solution y(t) = (x(t), u(t)) of BVP (3.5) which can be

expressed as (3.20).

Corollary 3.5.3 If[∫ t2

t1

1

p(t)
dt

][∫ t2

t1

q+(t)dt+
∑

t1≤τi<t2

(
li
ki

)+
]
< 4, (3.37)

then there exist a unique solution x(t) of BVP (3.7) which can be expressed as (3.29).

When (3.37) is not satisfed, one can use the following alternative criterion for Corol-

lary 3.5.3.

Corollary 3.5.4 If[∫ t2

t1

1

p(t)
dt

][∫ t2

t1

q+(t)dt+
∑

t1≤τi<t2

(liki)
+

]
< 4, (3.38)

then there exist a unique solution x(t) of BVP (3.7) which can be expressed as (3.29).

Remark 3.5.1 Note that there are two criteria providing the unique solution of sys-

tems (3.1), (3.5) and equation (3.7). These criteria are not only new but also alterna-

tive to each other. Since changing the impulsive perturbation or assuming different

condition on the impulses leads to variety of inequalities, presence of impulse effect

yields different uniqueness criteria.
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CHAPTER 4

STABILITY OF LINEAR PERIODIC PLANAR

HAMILTONIAN SYSTEMS UNDER IMPULSE EFFECT

4.1 Introduction

The planar Hamiltonian system has the form

y′ = JH(t)y, t ∈ R, (4.1)

where

H(t) =

c(t) a(t)

a(t) b(t)


is a symmetric matrix with piece-wice continuous real-valued entries, and

J =

 0 1

−1 0


is the so called symplectic identity. Setting y1(t) = x(t) and y2(t) = u(t), we may

rewrite system (4.1) in a more convenient way, i.e as a system of 2-linear first-order

equations

x′ = a(t)x+ b(t)u, u′ = −c(t)x− a(t)u. (4.2)

With regard to Definition 1.4.2, we want to remark that if b(t)c(t)−a2(t) = 1, t ∈ R,

then system (4.2) is of symplectic structure and therefore our results are also valid for

symplectic systems under impulse effect.

In this chapter we establish stability criteria for a special case of system (2.2), which
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is the following 2× 2 linear periodic Hamiltonian systems under impulse effect

x′ = a(t)x+ b(t)u, u′ = −c(t)x− a(t)u, t 6= τi

x(τ+i ) = kix(τ−i ), u(τ+i ) = lix(τ−i ) + kiu(τ−i ), i ∈ Z.
(4.3)

Unless otherwise stated, we assume that

(i) {τi} is a strictly increasing sequence of real numbers,

(ii) a, b, c ∈ PLC(−∞,∞) = {ω : (−∞,∞)→ R is continuous on each interval

(τi, τi+1), the limits w(τ±i ) exist and w(τ−i ) = w(τi) for i ∈ Z}, and

b(t) ≥ 0,

∫ t2

t1

b(t)dt > 0, (4.4)

(iii) ki, li are sequence of real numbers such that ki 6= 0 for i ∈ Z.

By a solution of system (4.3), we mean a vector valued function y(t) = (x(t), u(t))

defined for t ∈ R such that y ∈ PLC(−∞,∞) and system (4.3) is fulfilled for all

t ∈ R.

Note that if b(t) > 0, then the second-order impulsive differential equation

(p(t)x′)′ + q(t)x = 0, t 6= τi

x(τ+i ) = kix(τ−i ), x′(τ+i ) = −lix(τ−i ) + ki(px
′)(τ−i ), i ∈ Z

(4.5)

is equivalent to system (4.3) with a(t) = 0, b(t) = 1/p(t) and c(t) = q(t).

Periodicity of impulsive system (4.3) is defined as in the next theorem. It can be seen

that periodicity conditions depend not only on the periodicity of coefficient functions,

a, b, c but also on the periodicity of the constants appearing as an impulse conditions,

ki, li and on the periodicity of the impulse points τi, as expected.

Definition 4.1.1 ([93]) A linear impulsive system (4.3) is (T, r)− periodic if

a(t+ T ) = a(t), b(t+ T ) = b(t), c(t+ T ) = c(t)

ki+r = ki, li+r = li

τi+r = τi + T

(4.6)
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Since system (4.3) is linear, stability of the system is equivalent to boundedness of the

all solutions of the system. Moreover periodicity of the system suggest that stability

of system on R+ = (0,∞) implies stability on R. Therefore we have the following

definition.

Definition 4.1.2 ([58, 42]) System (4.3) is said to be stable if all solutions are bounded

on R, unstable if all nontrivial solutions are unbounded on R, and conditionally sta-

ble if there exits a nontrivial solution bounded on R.

For impulsive differential equations or systems, in general for piece-wise continuos

functions, the concept of a zero of a function is replaced by a so-called generalized

zero.

Definition 4.1.3 ([45, 43, 42]) A real number c is called a zero (generalized zero) of

a function f if and only if f(c−) = 0 or f(c+) = 0. If f is continuous function at c,

then c becomes a real zero.

In this chapter our aim is to establish sufficient conditions for the stability of system

(4.3) by extending some continuous results from system of ordinary differential equa-

tions to system of impulsive differential equations and by deriving new results. The

proofs of the obtained stability theorems are based on both Floquet Theory due to the

periodicity and Lyapunov type inequalities which are given in Section 2.3. Therefore

the present chapter of the thesis is organized as follows. In the next section Lyapunov

type inequalities, which are derived in Section 2.3 and are the main arguments of the

proofs of stability theorems, are reminded. In Section 4.3 we outline the basic facts

about Floquet Theory whose detailed information can be found in [9, 93] in the pres-

ence of impulse and in [25, 76] for equations without impulse. Section 4.4 is devoted

to two auxiliary lemmas which are essential for the proofs of stability theorems. The

main results of the paper, four stability criteria and their proofs and corollaries and

some remarks are given in the last section.
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4.2 Lyapunov Type Inequality

As far as Lyapunov type inequality is concerned, system (4.3) and equation (4.5) need

not to be periodic. So the periodicity conditions are not necessary. In the sequel, we

assume that m+(t) = max {m(t), 0} and m+
i = max{mi, 0}.

For system (4.3), let us recall Lyapunov type inequalities obtained in Corollary 2.3.3

and Corollary 2.3.4.

Theorem 4.2.1 If system (4.3) has a solution y(t) = (x(t), u(t)) with nontrivial x

such that x(t+1 ) = x(t−2 ) = 0, x(t) 6= 0 on (t1, t2), then we have the Lyapunov type

inequality

4 ≤ exp

(∫ t2

t1

|a(t)|dt
)[∫ t2

t1

b(t)dt

][∫ t2

t1

c+(t)dt+
∑

t1≤τi<t2

(
li
ki

)+
]
. (4.7)

Theorem 4.2.2 If system (4.3) has a solution y(t) = (x(t), u(t)) with nontrivial x

such that x(t+1 ) = x(t−2 ) = 0, x(t) 6= 0 on (t1, t2), then we have the Lyapunov type

inequality

4 ≤ exp

(∫ t2

t1

|a(t)|dt
)[∫ t2

t1

b(t)dt

][∫ t2

t1

c+(t)dt+
∑

t1≤τi<t2

(liki)
+

]
. (4.8)

Lyapunov type inequalities for equation (4.5) are obtained in Corollary 2.3.5 and

Corollary 2.3.6 as follows.

Theorem 4.2.3 If equation (4.5) has a nontrivial solution x such that

x(t+1 ) = x(t−2 ) = 0, x(t) 6= 0 on (t1, t2), then we have the Lyapunov type inequality

4 ≤
[∫ t2

t1

1

p(t)
dt

] [∫ t2

t1

q+(t)dt+
∑

t1≤τi<t2

(
li
ki

)+
]
. (4.9)

Theorem 4.2.4 If equation (4.5) has a nontrivial solution x such that

x(t+1 ) = x(t−2 ) = 0, x(t) 6= 0 on (t1, t2), then we have the Lyapunov type inequality

4 ≤
[∫ t2

t1

1

p(t)
dt

][∫ t2

t1

q+(t)dt+
∑

t1≤τi<t2

(liki)
+

]
. (4.10)
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4.3 Floquet Theory

Floquet theory for periodic impulsive system (4.3) can be summarized as follows. Let

X(t) =

 x1(t) x2(t)

u1(t) u2(t)

 , X(0) = I2

be a fundamental matrix solution of system (4.3). Since the coefficients of linear

system (4.3) are real, the components of solutions (x1(t), u1(t)) and (x2(t), u2(t))

can be taken real-valued. Since system (4.3) is periodic, it is easy to see that

X(t + T ) = X(t)X(T ) is also fundamental matrix and the matrix X(T ) is called

monodromy matrix of the system (4.3). The Floquet multipliers (real or complex) of

system (4.3) are the eigenvalues of the monodromy matrix and they are the roots of

det(ρI2 −X(T )) = 0,

which is equivalent to

ρ2 − Aρ+B = 0,

where

A = x1(T ) + u2(T ) = ρ1 + ρ2, B =
r∏
i=1

k2i = ρ1ρ2.

Theorem 4.3.1 ([93]) For any multiplier ρ there exists a nontrivial solution

y(t) = (x(t), u(t)), which satisfies y(t + T ) = ρy(t) of periodic impulsive system

(4.3). Conversely, if for a nontrivial solution y(t) and some number ρ relation

y(t+ T ) = ρy(t) holds, then ρ is a multiplier of this system.

In view of Theorem 4.3.1 we easily obtain that y(t + mT ) = ρm y(t), m ∈ Z.

Since |ρ| 6= 1 implies that y(t) is an unbounded solution of system (4.3), |ρ| = 1

is necessary condition in order to have stability. It follows that if
r∏
i=1

k2i 6= 1 then

B = ρ1ρ2 6= 1 and so at least one of the multipliers will have modulus different from

1. Therefore system (4.3) cannot be stable unless B = 1. Clearly, if B = 1 then (4.3)

becomes

ρ2 − Aρ+ 1 = 0

and |A| determines the stability criteria.

79



Lemma 4.3.1 Assume that B = 1. Then system (4.3) is unstable if |A| > 2, and

stable if |A| < 2.

Proof. The roots of the quadratic equation (4.3) is given as ρ1,2 =
A+
√
A2 − 4

2
.

Therefore the two roots ρ1 and ρ2 of (4.3) are distinct if A2 − 4 6= 0. We may assume

without any loss of generality that |ρ1| ≥ |ρ2|. It follows that system (4.3) has two

linearly independent solutions ψ1(t) and ψ2(t) such that for all t ∈ R\{τi : i ∈ Z},

ψ1(t+ T ) = ρ1 ψ1(t), ψ2(t+ T ) = ρ2 ψ2(t)

and the general solution of system (4.3) can be written as y(t) = c1ψ1(t) + c2ψ2(t).

Hence for all m ∈ Z,

y(t+mT ) = c1ψ1(t+mT ) + c2ψ2(t+mT ) = c1ρ
m
1 ψ1(t) + c2ρ

m
2 ψ2(t) (4.11)

Now let us consider the case |A| > 2. Then the numbers ρ1 and ρ2 are real. Since

ρ1ρ2 = 1, we see that |ρ1| > 1 and |ρ2| < 1. Fixing t and letting m → ∞ in

(4.11) yield ρ1 → ∞ and ρ2 → 0 but letting m → −∞ implies ρ1 → 0 and ρ2 →
∞. Therefore we see that one solution of system (4.3) becomes unbounded on R,

implying that system (4.3) is unstable.

If |A| < 2 then ρ1 and ρ2 are complex conjugate with |ρ1| = |ρ2| = 1. In this case we

have

|ψ1(t+ T )| = |ψ1(t)|, |ψ2(t+ T )| = |ψ2(t)|, t ∈ R\{τi : i ∈ Z},

which implies that both ψ1(t) and ψ2(t) are bounded on R, and hence system (4.3) is

stable. �

Remark 4.3.1 If |A| = 2 then system (4.3) is stable when u1(T ) = x2(T ) = 0; but

conditionally stable and not stable otherwise.

4.4 Preparatory Lemmas

In this section we give the following lemmas which are used to prove stability criteria

for (T, r)−periodic impulsive system (4.3) and in particular for (T, r)−periodic im-

pulsive equation (4.5). Although these lemmas are stated and proved in [42], we give

them and their proofs for completeness of the thesis.
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Lemma 4.4.1 ([42]) Let system (4.3) be (T, r) periodic. Suppose that

r∏
i=1

k2i = 1 (4.12)

and ∫ T

0

[
c(t)− a2(t)

b(t)

]
dt+

r∑
i=1

li
ki
> 0 (4.13)

hold. If

A2 ≥ 4, (4.14)

then system (4.3) has a nontrivial solution y(t) = (x(t), u(t)) with x(t1) = x(t2) = 0

x(t) 6= 0 for all t1 < t < t2 such that 0 ≤ t1 ≤ T, t2 > t1, t2 − t1 ≤ T.

Proof. Since A2 ≥ 4 by (4.14), it follows from Theorem 4.3.1 that system (4.3) has a

nontrivial solution y(t) = (x(t), u(t)) having the property that

y(t+ T ) = ρy(t) for all t ∈ R \ {τi : i ∈ Z}, (4.15)

where ρ is a nonzero real number. Since system (4.3) is linear and its coefficients are

real, we may assume without loss of generality that the components x(t) and u(t) of

y(t) are real.

Firstly, our aim is to show the existence of a zero of x(t) on [0, T ]. Suppose not, then

x(t) 6= 0 for all t ∈ R. Define

w(t) =
u(t)

x(t)
, t ∈ [0, T ].

and by (4.15) we have

w(0) = w(T ). (4.16)

From system (4.3) it is easy to see that

w′ = −c(t) +
a2(t)

b(t)
−

[√
b(t)w +

a(t)√
b(t)

]2
, t 6= τi, (4.17)

w(τi+)− w(τi−) = −βi
αi
. (4.18)

In view of (4.18) and (4.16), integrating (4.17) over [0, T ] we get∫ T

0

[
c(t)− a2(t)

b(t)

]
dt+

r∑
i=1

li
ki

= −
∫ T

0

[√
b(t)w +

a(t)√
b(t)

]2
dt ≤ 0, (4.19)
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which contradicts (4.13). Thus x(t) must have a zero at a point t1 ∈ [0, T ].

From (4.15) we see that x(t) has also a zero at t1 + T . It is easy to show that on

the segment [t1, t1 + T ], x(t) may have only finitely many zeros. Denote by t2 the

smallest zero of x(t) lying to right of t1 and different from t1. Clearly t2 ≤ t1 + T ,

t2 > t1, and x(t) 6= 0 for all t ∈ (t1, t2). Thus the lemma is proved. �

Lemma 4.4.2 ([42]) Suppose that (4.12), (4.14) hold, a/b ∈ C[0, T ], and∫ T

0

[
c(t)− a2(t)

b(t)

]
dt+

r∑
i=1

li
ki

= 0. (4.20)

If either

there exist i ∈ N r
1 = {1, 2, . . . , r} such that li 6= 0, (4.21)

or

a/b /∈ PLC1[0, T ] and li = 0 for all i ∈ N r
1 , (4.22)

or

a/b ∈ PLC1[0, T ],
(a
b

)′
− c(t) +

a2(t)

b(t)
6≡ 0 and li = 0 for all i ∈ N r

1 , (4.23)

holds true then the conclusion of Lemma 4.4.1 remains valid.

Proof. We proceed as in the proof of the previous lemma until (4.19). Using (4.20)

in (4.19) we have √
b(t)w +

a(t)√
b(t)

= 0, t ∈ [0, T ],

which is equivalent to

b(t)u+ a(t)x = 0, t ∈ [0, T ]. (4.24)

In view of the first equation in (4.3) and (4.24) we see that

x(t) = ci, t ∈ (τi, τi+1), i ∈ N r
0 ≡ {0, 1, . . . , r}, (4.25)

where ci is a constant and we put τ0 = 0 and τr+1 = T . Then by (4.24) we obtain

u(t) = −a(t)

b(t)
ci, t ∈ (τi, τi+1), i ∈ N r

0 . (4.26)
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Since x(t) has no zero by our assumption, we have that ci 6= 0 for any i ∈ N r
1 .

From the impulse conditions in (4.3) we also have, taking into account that a/b is

continuous on [0, T ],

ci = kici−1, i ∈ N r
1 ;

a(t)

b(t)
(−ci + kici−1) = −lici−1, i ∈ N r

1

which implies

lici−1 = 0, i ∈ N r
1 . (4.27)

Now under the condition (4.21), (4.27) gives a contradiction because ci 6= 0 for any

i ∈ N r
1 . (4.26) contradicts condition (4.22) since u(t) belongs to PLC1[0, T ] as

solution of system (4.3). Finally, under the condition (4.23) substituting (4.25) and

(4.26) into the second equation in (4.3), we get[(
a(t)

b(t)

)′
− c(t) +

a2(t)

b(t)

]
ci = 0, t ∈ (τi, τi+1), i ∈ N r

0 .

But this contradicts (4.23). The remainder of the proof is exactly the same as that of

the previous lemma after (4.19) therein. �

4.5 Stability Criteria

The following theorems and corollaries are the main results of the present chapter

providing the sufficient conditions for the stability of system (4.3) and equation (4.5).

Since there are two different Lyapunov type inequalities obtained for system (4.3), we

derived two different and new stability criteria for such systems. Moreover we prove

the alternative results to those criteria in the case they are not applicable. Therefore

we have four new stability criteria which can be used in place of each other. Besides

our results generalize the previous ones to the impulsive case.

Theorem 4.5.1 Assume that (4.12), (4.13) and

exp

(∫ T

0

|a(t)|dt
)[∫ T

0

b(t)dt

][∫ T

0

c+(t)dt+
∑

0≤τi<T

(
li
ki

)+
]
< 4. (4.28)

Then impulsive system (4.3) is stable.
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Proof. In virtue of Lemma 4.3.1 in order to prove the stability, it is sufficient to show

that A2 < 4. Assume on the contrary that A2 ≥ 4. From Lemma 4.4.1, the conditions

(4.12), (4.13) and A2 ≥ 4 imply that x(t), the first component of the solution y(t) =

(x(t), u(t)), has two zeros at some points s1, s2 with s1 ∈ [0, T ], s1 < s2 ≤ s1 + T.

Then applying Theorem 4.2.1 by using these zeros of x(t), i.e employing Lyapunov

type inequality, we see that

4 ≤ exp

(∫ s2

s1

|a(t)|dt
)[∫ s2

s1

b(t)dt

][∫ s2

s1

c+(t)dt+
∑

s1≤τi<s2

(
li
ki

)+
]

≤ exp

(∫ s1+T

s1

|a(t)|dt
)[∫ s1+T

s1

b(t)dt

][∫ s1+T

s1

c+(t)dt+
∑

s1≤τi<s1+T

(
li
ki

)+
]
.

For T − periodic function f, it is known that
∫ s1+T

s1

f(t)dt =

∫ T

0

f(t)dt. Similarly

by using periodicity conditions given in Definition 4.1.1 it can be seen that∑
s1≤τi<s1+T

ai =
∑

s1≤τi<s1+T

ai +
∑

0≤τi<s1

ai −
∑

0≤τi<s1

ai

=
∑

0≤τi<s1+T

ai −
∑

T≤τi+T<s1+T

ai =
∑

0≤τi<s1+T

ai −
∑

T≤τi+r<s1+T

ai

=
∑

0≤τi<s1+T

ai −
∑

T≤τi<s1+T

ai+r =
∑

0≤τi<s1+T

ai −
∑

T≤τi<s1+T

ai

=
∑

0≤τi<T

ai

Hence we obtain

4 ≤ exp

(∫ T

0

|a(t)|(t)dt
)[∫ T

0

b(t)dt

][∫ T

0

c+(t)dt+
∑

0≤τi<T

(
li
ki

)+
]
,

which contradicts condition (4.28). Thus A2 < 4 and hence system (4.3) is stable.

This completes the proof. �

The next theorem can be used when Theorem 4.5.1 is not applicable, i.e in the case

(4.28) fails. Since the proofs of the following theorems are exactly the same as the

proof of Theorem 4.5.1, they are skipped.

Theorem 4.5.2 Assume that (4.12), (4.13) and

exp

(∫ T

0

|a(t)|(t)dt
)[∫ T

0

b(t)dt

][∫ T

0

c+(t)dt+
∑

0≤τi<T

(liki)
+

]
< 4. (4.29)

Then impulsive system (4.3) is stable.
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In case (4.13) fails we have the following alternative for Theorem 4.5.1.

Theorem 4.5.3 Assume that (4.12), (4.28) hold and a/b ∈ C(0, T ). If (4.20) and

either (4.21) or (4.22) or (4.23), then impulsive system (4.3) is stable.

If (4.13) and (4.28) do not hold, the following alternative stability criteria can be used.

Theorem 4.5.4 Assume that (4.12), (4.29) hold and a/b ∈ C(0, T ). If (4.20) and

either (4.21) or (4.22) or (4.23), then impulsive system (4.3) is stable.

Remark 4.5.1 As it is seen above, we have possibility to use four different stability

criteria two of which are new and alternative to the other two. Since in the absence of

impulse Theorem 4.5.1 and Theorem 4.5.2 coincide, we can conclude that existence

of impulse effect provides new inequalities, such as (4.28) and (4.29). This shows that

systems with impulses are richer and more fruitful than systems without impulses.

The next two corollaries can be given in the absence of impulse effect, i.e ki = 1

and li = 0 for i ∈ Z. Since they are immediate consequences of Theorem 4.5.1 and

Theorem 4.5.3, their proofs are omitted.

Corollary 4.5.1 Assume that∫ T

0

[
c(t)− a2(t)

b(t)

]
dt > 0, (4.30)

exp

(∫ T

0

|a(t)|dt
)[∫ T

0

b(t)dt

] [∫ T

0

c+(t)dt

]
< 4. (4.31)

Then system (4.3) is stable.

Corollary 4.5.2 Assume that (4.31) holds and a/b ∈ C(0, T ). If either∫ T

0

[
c(t)− a2(t)

b(t)

]
dt = 0

or

a/b /∈ PLC1[0, T ],
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or

a/b ∈ PLC1[0, T ],
(a
b

)′
− c(t) +

a2(t)

b(t)
6≡ 0,

then system (4.3) is stable.

Remark 4.5.2 For the nonimpulsive case Theorem 4.5.1 and Theorem 4.5.2 are re-

duced to Corollary 4.5.1, which is the same as Theorem 1.2.22. Besides Corollary

4.5.2 can be used in the place of Corollary 4.5.1 when (4.30) does not hold.

When b(t) > 0, we can set a(t) ≡ 0, b(t) = 1/p(t), and c(t) = q(t) in Theorem 4.5.1

and Theorem 4.5.2 and obtained the following corollaries whose proofs are exactly

the same as the proof of Theorem 4.5.1 and so, they are skipped.

Corollary 4.5.3 Assume that (4.12) holds. If∫ T

0

q(t)dt+
r∑
i=1

li
ki
≥ 0, either q(t) 6≡ 0 on [0, T ]\ {τ1, . . . , τr}

or li 6= 0 some i ∈ {1, . . . , r} ;[ ∫ T

0

dt

p(t)

][ ∫ T

0

q+(t)dt+
r∑
i=1

(
li
ki

)+ ]
≤ 4.

Then equation (4.5) is stable.

The alternative result for Corollary 4.5.3 is obtained as follows.

Corollary 4.5.4 Assume that (4.12) holds. If∫ T

0

q(t)dt+
r∑
i=1

li
ki
≥ 0, either q(t) 6≡ 0 on [0, T ]\ {τ1, . . . , τr}

or li 6= 0 some i ∈ {1, . . . , r} ;[ ∫ T

0

dt

p(t)

][ ∫ T

0

q+(t)dt+
r∑
i=1

(liki)
+

]
≤ 4.

Then equation (4.5) is stable.

Remark 4.5.3 Corollary 4.5.3 coincides with Theorem 1.2.16 while Corollary 4.5.4

yields an alternative result for them.
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CHAPTER 5

LYAPUNOV TYPE INEQUALITIES AND APPLICATIONS

FOR NONLINEAR IMPULSIVE SYSTEMS

5.1 Lyapunov Type Inequalities For The First Order Nonlinear Impulsive Sys-

tems

In this chapter we are interested in obtaining Lyapunov type inequalities for the non-

linear impulsive systems of the form

x′ = α1(t)x+ β1(t)|u|γ−2u, u′ = −α1(t)u− β2(t)|x|β−2x, t 6= τi

x(τ+i ) = ξix(τ−i ), u(τ+i ) = ξiu(τ−i )− ηi|x(τ−i )|β−2x(τ−i ),

t ≥ t0, i ∈ N := {1, 2, . . .}

(5.1)

where γ > 1, β > 1 are real constants and without further mention we assume that

(i) α1, β1, β2 ∈ PLC[t0,∞) = {ω : [t0,∞) → R is continuous on each interval

(τi, τi+1), the limits w(τ±i ) exist and w(τ−i ) = w(τi) for i ∈ N}, β1(t) > 0,

(ii) {τi} is a strictly increasing sequence of real numbers,

(iii) ξi, ηi are sequence of real numbers such that ξi 6= 0 for i = 1, 2, . . ..

By a solution of system (5.1), we mean x, u ∈ PLC[t0,∞) satisfying system (5.1) for

t ≥ t0. Such a solution is said to be proper if sup{|x(s)| + |u(s)| : t ≤ s <∞} > 0

for any t ≥ t0.
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In the special case, α1(t) = 0, system (5.1) reduces to

x′ = β1(t)|u|γ−2u, u′ = −β2(t)|x|β−2x, t 6= τi

x(τ+i ) = ξix(τ−i ), u(τ+i ) = ξiu(τ−i )− ηi|x(τ−i )|β−2x(τ−i )

t ≥ t0, i ∈ N

(5.2)

which can be written in the form of the following impulsive Emden-Fowler type dif-

ferential equations by using the transformation u(t) = p(t)|x′|α−2x′,

(p(t)|x′|α−2x′)′ + q(t)|x|β−2x = 0, t 6= τi,

x(τ+i ) = ξi x(τ−i ),

p(τ+i )|x′(τ+i )|α−2x′(τ+i ) = ξi p(τ
−
i )|x′(τ−i )|α−2x′(τ−i )− ηi|x(τ−i )|β−2x(τ−i )

t ≥ t0, i ∈ N

(5.3)

with
1

γ
+

1

α
= 1, β1(t) = p1−γ(t), β2(t) = q(t). (5.4)

Equation (5.3) becomes half-linear if α = β, i.e.,

(p(t)|x′|β−2x′)′ + q(t)|x|β−2x = 0, t 6= τi,

x(τ+i ) = ξi x(τ−i ),

p(τ+i )|x′(τ+i )|β−2x′(τ+i ) = ξi p(τ
−
i )|x′(τ−i )|β−2x′(τ−i )− ηi|x(τ−i )|β−2x(τ−i )

t ≥ t0, i ∈ N,

(5.5)

which is equivalent to (5.2) with u(t) = p(t)|x′|β−2x′ and α replaced by β in (5.4).

Impulsive Emden-Fowler equation (5.3) is called super-half linear if β > α and sub-

half-linear if β < α, see [105].

For convenience let us define a piece-wise constant function k as

k(t) =

 ξ1ξ2 . . . ξj, t ∈ (τj, τj+1], j ∈ N,

1, t ∈ [t0, τ1]
(5.6)

and the sequence {kj} as

kj =

 ξ1ξ2 . . . ξj, j ≥ 1

1, j ≤ 0.
(5.7)

For impulsive differential equations or systems, in general for piece-wise continuos

functions, the concept of a zero of a function is replaced by a so-called generalized

zero.
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Definition 5.1.1 ([45, 42]) A real number c is called a zero (generalized zero) of a

function f if and only if f(c−) = 0 or f(c+) = 0. If f is continuous function at c,

then c becomes a real zero.

Now we give the definition of disconjugacy which is about the zeros of the solutions

of differential equations or systems.

Definition 5.1.2 ([45, 43]) Equation (5.3) (equation (5.5)) is called disconjugate on

an interval [t1, t2] if and only if all solutions of equation (5.3) (equation (5.5)) have

at most one (generalized) zero on an interval [t1, t2].

We generalize the definition of disconjugacy given in [45, 42].

Definition 5.1.3 ([45, 42]) System (5.1) is called disconjugate (relatively disconju-

gate with respect to x) on an interval [t1, t2] if and only if there is no real solution

(x(t), u(t)) of system (5.1) with a nontrivial x having two or more zeros (generalized

zeros) on [t1, t2].

We will make use of the following definitions.

Definition 5.1.4 A proper solution y(t) = (x(t), u(t)) of system (5.1) is said to be

weakly oscillatory if x(t) has arbitrarily large (generalized) zeros. This solution is

said to be oscillatory if both components of y have arbitrarily large (generalized) ze-

ros. If both components (at least one component) of y are different from zero for large

t, then the solution y of system (5.1) is called nonoscillatory (weakly nonoscillatory).

System (5.1) is said to be oscillatory if all the solutions are oscillatory.

Definition 5.1.5 A proper solution y(t) = (x(t), u(t)) of system (5.1) is said to be

weakly bounded if x(t)/k(t) is bounded on [t0,∞). The solution y is said to be

bounded if both x(t)/k(t) and u(t)/k(t) are bounded on [t0,∞). If both x(t)/k(t)

and u(t)/k(t) (at least one of them) are not bounded on [t0,∞), then the solution y

of system (5.1) is called unbounded on [t0,∞).

Since we restrict ourselves to establish Lyapunov type inequalities for system (5.1),

we tacitly assume that system (5.1) has proper solutions. Although there is an ex-
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tensive literature on the Lyapunov type inequalities mentioned in Chapter 1, there is

not much done for nonlinear systems with or without impulse [106, 100, 105]. The

present chapter which stems from [106, 105] is about nonlinear impulsive systems

(5.1) whose special cases are linear Hamiltonian systems under impulse effect (4.3),

impulsive Emden-Fowler type equations (5.3), impulsive half linear equations (5.5)

and impulsive linear equations (1.5). The main objective of this chapter is to estab-

lish several Lyapunov type inequalities, which are generalization of the existing ones

in the literature, for system (5.1) and its particular cases. Our results relate not only

points where the first component of the solution (x(t), u(t)) of system (5.1) has con-

secutive zeros but also the point at which
∣∣∣∣x(t)

k(t)

∣∣∣∣ has supremum where k(t) is defined

as in equation (5.6).

5.1.1 Lyapunov Type Inequality

In this chapter, although the proofs of the theorems are based on the same argument,

by using different well-known inequalities we obtain several Lyapunov type inequal-

ities. Throughout this section, we define

ht1(t) =

∫ t

t1

β1(w)|k(w)|γ−2 exp

(
γ

∫ t

w

α1(s)ds

)
dw

ht2(t) =

∫ t2

t

β1(w)|k(w)|γ−2 exp

(
γ

∫ t

w

α1(s)ds

)
dw.

(5.8)

Recall that the numbers p1, p2 > 1 are said to be conjugate if

1

p1
+

1

p2
= 1.

In the sequel, we denote m+(t) = max{m(t), 0} and m+
i = max{mi, 0}.

Theorem 5.1.1 Let α be the conjugate of γ. If system (5.1) has a solution

y(t) = (x(t), u(t)) with nontrivial x such that x(t+1 ) = x(t−2 ) = 0, x(t) 6= 0 on

(t1, t2), then we have the following Lyapunov type inequality

h1−αt1
(τ) + h1−αt2

(τ) ≤Mβ−α

[∫ t2

t1

β+
2 (t)|k(t)|β−2dt+

∑
t1≤τi<t2

(ηi/ξi)
+|ki−1|β−2

]
,

(5.9)

where

M = sup
t∈(t1,t2)

∣∣∣∣x(t)

k(t)

∣∣∣∣ =

∣∣∣∣x(τ)

k(τ)

∣∣∣∣ (5.10)
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and ht1(τ), ht2(τ), k(t) and ki are defined as in equation (5.8), (5.6) and (5.7), re-

spectively.

Proof. Let us define

z(t) =
x(t)

k(t)
, v(t) =

u(t)

k(t)
, t ≥ t0.

It is easy to see that with the above transformation system (5.1) becomes as

z′ = α1(t)z + β1(t)|k(t)|γ−2|v|γ−2v, v′ = −α1(t)v − β2(t)|k(t)|β−2|z|β−2z, t 6= τi

z(τ+i ) = z(τ−i ), v(τ+i ) = v(τ−i )− (ηi/ξi)|ki−1|β−2|z(τ−i )|β−2z(τ−i ),

t ≥ t0, i ∈ N.
(5.11)

Because of the definition of z, it is obvious that z ∈ PLC[t0,∞). Therefore z(t) is

continuous on [t1, t2]. Thus, z(t1) = z(t2) = 0 and z(t) 6= 0 for all t ∈ (t1, t2). Since

z(t) is continuous, we can choose τ ∈ (t1, t2) such that

|z(τ)| = max
t∈(t1,t2)

|z(t)| = M > 0.

From (5.11), one can obtain

(vz)′ = β1(t)|k(t)|γ−2|v(t)|γ − β2(t)|k(t)|β−2|z(t)|β, t 6= τi

(vz)(τ+i )− (vz)(τ−i ) = −(ηi/ξi)|ki−1|β−2|z(τi)|β.
(5.12)

Integrating the first equation of (5.12) from t1 to t2 and using β+
2 (t) = max {β2(t), 0}

and (ηi/ξi)
+ = max {ηi/ξi, 0} yields,∫ t2

t1

β1(t)|k(t)|γ−2|v(t)|γdt ≤
∫ t2

t1

β+
2 (t)|k(t)|β−2|z(t)|βdt

+
∑

t1≤τi<t2

(ηi/ξi)
+|ki−1|β−2|z(τi)|β.

(5.13)

From the first equation in (5.11), we have[
z(t) exp

(
−
∫ t

t1

α1(s)ds

)]′
= β1(t)|k(t)|γ−2|v(t)|γ−2v(t) exp

(
−
∫ t

t1

α1(s)ds

)
(5.14)

and[
z(t) exp

(∫ t2

t

α1(s)ds

)]′
= β1(t)|k(t)|γ−2|v(t)|γ−2v(t) exp

(∫ t2

t

α1(s)ds

)
.

(5.15)
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Integrating (5.14) from t1 to t implies

z(t) =

∫ t

t1

β1(w)|k(w)|γ−2|v(w)|γ−2v(w) exp

(∫ t

w

α1(s)ds

)
dw

Taking absolute values of both sides and applying Hölder inequality with indices γ

and α, we get

|z(t)| ≤
∫ t

t1

β1(w)|k(w)|γ−2|v(w)|γ−1 exp

(∫ t

w

α1(s)ds

)
dw

≤
[∫ t

t1

β1(w)|k(w)|γ−2 exp

(
γ

∫ t

w

α1(s)ds

)
dw

] 1
γ

×
[∫ t

t1

β1(w)|k(w)|γ−2|v(w)|γdw
] 1
α

= h
1
γ

t1(t)

[∫ t

t1

β1(w)|k(w)|γ−2|v(w)|γdw
] 1
α

.

Taking α-th power of both sides yields

|z(t)|αh1−αt1
(t) ≤

∫ t

t1

β1(w)|k(w)|γ−2|v(w)|γdw. (5.16)

Similarly, if the above procedure is followed for equation (5.15) on the interval [t, t2]

then one can obtain

|z(t)|αh1−αt2
(t) ≤

∫ t2

t

β1(w)|k(w)|γ−2|v(w)|γdw. (5.17)

Adding (5.16) and (5.17) and replacing t by τ in the resulting inequality and using

inequality (5.13) yield

|z(τ)|α
[
h1−αt1

(τ) + h1−αt2
(τ)
]
≤
∫ t2

t1

β1(t)|k(t)|γ−2|v(t)|γdt

≤
∫ t2

t1

β+
2 (t)|k(t)|β−2|z(t)|βdt

+
∑

t1≤τi<t2

(
ηi
ξi

)+

|ki−1|β−2|z(τi)|β.

(5.18)

Since |z(τ)| ≥ |z(t)| for t ∈ [t1, t2], we obtain from inequality (5.18) that

|z(τ)|α
[
h1−αt1

(τ) + h1−αt2
(τ)
]
≤ |z(τ)|β

[∫ t2

t1

β+
2 (t)|k(t)|β−2dt

+
∑

t1≤τi<t2

(ηi/ξi)
+|ki−1|β−2

]
.

Finally, if we use (5.10) in the last inequality the desired inequality (5.9) can be

obtained. �
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Theorem 5.1.2 Let α be the conjugate of γ. If system (5.1) has a solution

y(t) = (x(t), u(t)) with nontrivial x such that x(t+1 ) = x(t−2 ) = 0, x(t) 6= 0 on

(t1, t2), then we have the following Lyapunov type inequality

22−α
[

1

ht1(τ)
+

1

ht2(τ)

]α−1
≤Mβ−α

[∫ t2

t1

β+
2 (t)|k(t)|β−2dt

+
∑

t1≤τi<t2

(ηi/ξi)
+|ki−1|β−2

]
,

(5.19)

where ht1(τ), ht2(τ),M, k(t) and ki are defined as in equation (5.8), (5.10), (5.6) and

(5.7), respectively.

Proof. After following the same steps of the proof of Theorem 5.1.1 and arriv-

ing inequalities (5.16) and (5.17), one can observe that ht1(t1) = ht2(t2) = 0 and

ht1(t2) > 0, ht2(t1) > 0. Since ht1(t) and ht2(t) are continous functions, there exist

c ∈ (t1, t2) such that ht1(c) = ht2(c) > 0. Hence, for t ∈ [t1, c], ht1(t) ≤ ht2(t) and

for t ∈ [c, t2], ht2(t) ≤ ht1(t). Moreover, it is obvious that

ht1(t) ≤
2ht1(t)ht2(t)

ht1(t) + ht2(t)
, t ∈ [t1, c] (5.20)

and

ht2(t) ≤
2ht1(t)ht2(t)

ht1(t) + ht2(t)
, t ∈ [c, t2] (5.21)

Adding (5.16) and (5.17) and using (5.20) and (5.21) lead to

2|z(t)|α ≤
[

2ht1(t)ht2(t)

ht1(t) + ht2(t)

]α−1 [∫ t2

t1

β1(w)|k(w)|γ−2|v(w)|γdw
]
. (5.22)

Replacing t by τ in inequality (5.22), using (5.13) and employing z(τ) ≥ |z(t)| for

t ∈ [t1, t2] result in

22−α
[

1

ht1(τ)
+

1

ht2(τ)

]α−1
|z(τ)|α ≤ |z(τ)|β

[∫ t2

t1

β+
2 (t)|k(t)|β−2dt

+
∑

t1≤τi<t2

(ηi/ξi)
+|ki−1|β−2

]
.

Finally, if we use (5.10) in the last inequality the desired inequality (5.19) holds. �

Theorem 5.1.3 Let α be the conjugate of γ. If system (5.1) has a solution
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y(t) = (x(t), u(t)) with nontrivial x such that x(t+1 ) = x(t−2 ) = 0, x(t) 6= 0 on

(t1, t2), then for some τ ∈ (t1, t2) we have the following Lyapunov type inequality

2α ≤Mβ−α
[∫ t2

t1

β1(t)|k(t)|γ−2 exp

(
γ

∫ τ

t

α1(s)ds

)
dt

]α−1
×

[∫ t2

t1

β+
2 (t)|k(t)|β−2dt+

∑
t1≤τi<t2

(ηi/ξi)
+|ki−1|β−2

]
,

(5.23)

where M,k(t) and ki are defined as in equation (5.10), (5.6) and (5.7), respectively.

Proof. Since h(t) = t1−α is a convex function for t > 0 and α > 1, Jensen inequality

h
(
µ+ξ
2

)
≤ 1

2
[h(µ) + h(ξ)] with µ = ht1(τ) and ξ = ht2(τ) and inequality (5.9) yield[
ht1(τ) + ht2(τ)

2

]1−α
≤ 1

2

[
h1−αt1

(τ) + h1−αt2
(τ)
]

≤ 1

2
Mβ−α

[∫ t2

t1

β+
2 (t)|k(t)|β−2dt

+
∑

t1≤τi<t2

(ηi/ξi)
+|ki−1|β−2

]
.

By using the definition of ht1(τ) and ht2(τ), one can obtain the desired result. �

The next theorem differs from the previous ones for the reason that the point τ where

|x(t)/k(t)| has supremum disappears in the Lyapunov type inequality. It is the main

result of the present chapter and is the generalization of all the existing results men-

tioned in the literature review in Section 1.2.4.

Theorem 5.1.4 Let α be the conjugate of γ. If system (5.1) has a solution

y(t) = (x(t), u(t)) with nontrivial x such that x(t+1 ) = x(t−2 ) = 0, x(t) 6= 0 on

(t1, t2), then we have the following Lyapunov type inequality

2α ≤Mβ−α exp

(
α

2

∫ t2

t1

|α1(t)|dt
)[∫ t2

t1

β1(t)|k(t)|γ−2dt
]α−1

×

[∫ t2

t1

β+
2 (t)|k(t)|β−2dt+

∑
t1≤τi<t2

(ηi/ξi)
+|ki−1|β−2

] (5.24)

where M,k(t) and ki are defined as in equation (5.10), (5.6) and (5.7), respectively.

Proof. Proceeding exactly as in the proof of Theorem 5.1.1 we arrive at (5.15). Then

integrating (5.14) from t1 to τ , we get

z(τ) =

∫ τ

t1

β1(t)|k(t)|γ−2|v(t)|γ−2v(t) exp

(∫ τ

t

α1(w)dw

)
dt,
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which implies

|z(τ)| ≤ exp

(∫ τ

t1

|α1(t)|dt
)∫ τ

t1

β1(t)|k(t)|γ−2|v(t)|γ−1dt. (5.25)

Similarly, by integrating (5.15) from τ to t2, we have

|z(τ)| ≤ exp

(∫ t2

τ

|α1(t)|dt
)∫ t2

τ

β1(t)|k(t)|γ−2|v(t)|γ−1dt. (5.26)

Let us define Q1 =
|z(τ)|

exp

(∫ τ

t1

|α1(t)|dt
) and Q2 =

|z(τ)|

exp

(∫ t2

τ

|α1(t)|dt
) .

Observe that

|z(τ)|α/2

exp

(
α
4

∫ t2

t1

|α1(t)|dt
) =

|z(τ)|α/4|z(τ)|α/4

exp

(
α
4

∫ τ

t1

|α1(t)|dt
)

exp

(
α
4

∫ t2

τ

|α1(t)|dt
)

= (Q1Q2)
α/4 ≤

(
Q1 +Q2

2

)α/2
,

where we have used the well known inequality ab ≤
(
a+ b

2

)2

. Therefore, from

(5.25) and (5.26) we have

|z(τ)|α/2

exp

(
α

4

∫ t2

t1

|α1(t)|dt
) ≤

 |z(τ)|

2 exp

(∫ τ

t1

|α1(t)|dt
) +

|z(τ)|

2 exp

(∫ t2

τ

|α1(t)|dt
)

α
2

≤ 2α/2
[∫ t2

t1

β1(t)|k(t)|γ−2|v(t)|γ−1dt
]α

2

,

which implies

2α/2|z(τ)|α/2

exp

(
α

4

∫ t2

t1

|α1(t)|dt
) ≤ [∫ t2

t1

β1(t)|k(t)|γ−2|v(t)|γ−1dt
]α

2

.
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Taking
2

α
-th power, applying Hölder inequality with indices γ and α and using (5.13),

we obtain

2|z(τ)|

exp

(
1

2

∫ t2

t1

|α1(t)|dt
) ≤ ∫ t2

t1

β1(t)|k(t)|γ−2|v(t)|γ−1dt

≤
[∫ t2

t1

β1(t)|k(t)|γ−2dt
] 1
γ
[∫ t2

t1

β1(t)|k(t)|γ−2|v(t)|γdt
] 1
α

≤
[∫ t2

t1

β1(t)|k(t)|γ−2dt
] 1
γ

×
[∫ t2

t1

β+
2 (t)|k(t)|β−2|z(t)|βdt

+
∑

t1≤τi<t2

(ηi/ξi)
+|ki−1|β−2|z(τi)|β

] 1
α

.

Since |z(τ)| ≥ |z(t)| for all t ∈ [t1, t2], we obtain from the above inequality that

2|z(τ)|

exp

(
1

2

∫ t2

t1

|α1(t)|dt
) ≤ |z(τ)|

β
α

[∫ t2

t1

β1(t)|k(t)|γ−2dt
] 1
γ

×

[∫ t2

t1

β+
2 (t)|k(t)|β−2dt+

∑
t1≤τi<t2

(ηi/ξi)
+|ki−1|β−2

] 1
α

.

Finally, we use (5.10) in the last inequality and take α-th power of both sides to see

that (5.24) holds. �

Remark 5.1.1 When α1(t) = 0, Theorem 5.1.3 and Theorem 5.1.4 coincide.

In the special case when β and γ are conjugates, (α = β), then M disappears and we

have the following theorems.

Theorem 5.1.5 Let β be the conjugate of γ. If system (5.1) has a solution

y(t) = (x(t), u(t)) with nontrivial x such that x(t+1 ) = x(t−2 ) = 0, x(t) 6= 0 on

(t1, t2), then we have the following Lyapunov type inequality

h1−βt1 (τ) + h1−βt2 (τ) ≤

[∫ t2

t1

β+
2 (t)|k(t)|β−2dt+

∑
t1≤τi<t2

(ηi/ξi)
+|ki−1|β−2

]
,

where ht1(τ), ht2(τ), k(t) and ki are defined as in equation (5.8), (5.6) and (5.7),

respectively.
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Theorem 5.1.6 Let β be the conjugate of γ. If system (5.1) has a solution

y(t) = (x(t), u(t)) with nontrivial x such that x(t+1 ) = x(t−2 ) = 0, x(t) 6= 0 on

(t1, t2), then we have the following Lyapunov type inequality

22−β
[

1

ht1(τ)
+

1

ht2(τ)

]β−1
≤

[∫ t2

t1

β+
2 (t)|k(t)|β−2dt+

∑
t1≤τi<t2

(ηi/ξi)
+|ki−1|β−2

]
,

where ht1(τ), ht2(τ), k(t) and ki are defined as in equation (5.8), (5.6) and (5.7),

respectively.

Theorem 5.1.7 Let β be the conjugate of γ. If system (5.1) has a solution

y(t) = (x(t), u(t)) with nontrivial x such that x(t+1 ) = x(t−2 ) = 0, x(t) 6= 0 on

(t1, t2), then we have the following Lyapunov type inequality

2β ≤
[∫ t2

t1

β1(t)|k(t)|γ−2 exp

(
γ

∫ τ

t

α1(s)ds

)
dt

]β−1
×

[∫ t2

t1

β+
2 (t)|k(t)|β−2dt+

∑
t1≤τi<t2

(ηi/ξi)
+|ki−1|β−2

]
,

(5.27)

where k(t) and ki are defined as in equation (5.6) and (5.7), respectively.

Theorem 5.1.8 Let β be the conjugate of γ. If system (5.1) has a solution

y(t) = (x(t), u(t)) with nontrivial x such that x(t+1 ) = x(t−2 ) = 0, x(t) 6= 0 on

(t1, t2), then we have the following Lyapunov type inequality

2β ≤ exp

(
β

2

∫ t2

t1

|α1(t)|dt
)[∫ t2

t1

β1(t)|k(t)|γ−2dt
]β−1

×

[∫ t2

t1

β+
2 (t)|k(t)|β−2dt+

∑
t1≤τi<t2

(ηi/ξi)
+|ki−1|β−2

]
,

where k(t) and ki are defined as in equation (5.6) and (5.7), respectively.

The following corollaries obtained for second-order impulsive Emden-Fowler differ-

ential equations (5.3) and impulsive half linear equations (5.5) are immediate from

the previous theorems. In this case since α1(t) = 0, the results of Theorem 5.1.3 and

Theorem 5.1.4 coincide, hence they provide the same corollary.
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Corollary 5.1.1 Let α be the conjugate of γ. If the impulsive Emden-Fowler equation

(5.3) has a real nontrivial solution x such that x(t+1 ) = x(t−2 ) = 0, x(t) 6= 0 on

(t1, t2), then we have the following Lyapunov type inequality

h1−αt1
(τ) + h1−αt2

(τ) ≤Mβ−α

[∫ t2

t1

q+(t)|k(t)|β−2dt+
∑

t1≤τi<t2

(ηi/ξi)
+|ki−1|β−2

]
,

(5.28)

where

M = sup
t∈(t1,t2)

∣∣∣∣x(t)

k(t)

∣∣∣∣ =

∣∣∣∣x(τ)

k(τ)

∣∣∣∣ , (5.29)

ht1(t) =

∫ t

t1

p1−γ(w)|k(w)|γ−2dw,

ht2(t) =

∫ t2

t

p1−γ(w)|k(w)|γ−2dw,
(5.30)

and k(t) and ki are defined as in equation (5.6) and in equation (5.7), respectively.

Corollary 5.1.2 Let α be the conjugate of γ. If the impulsive Emden-Fowler equation

(5.3) has a real nontrivial solution x such that x(t+1 ) = x(t−2 ) = 0, x(t) 6= 0 on

(t1, t2), then we have the following Lyapunov type inequality

22−α
[

1

ht1(τ)
+

1

ht2(τ)

]α−1
≤Mβ−α

[∫ t2

t1

q+(t)|k(t)|β−2dt

+
∑

t1≤τi<t2

(ηi/ξi)
+|ki−1|β−2

]
,

(5.31)

where ht1(t), ht1(t),M, k(t) and ki are defined as in equation (5.30), (5.29), (5.6)

and in equation (5.7), respectively.

Corollary 5.1.3 Let α be the conjugate of γ. If the impulsive Emden-Fowler equation

(5.3) has a real nontrivial solution x such that x(t+1 ) = x(t−2 ) = 0, x(t) 6= 0 on

(t1, t2), then we have the following Lyapunov type inequality

2α ≤Mβ−α
[∫ t2

t1

p1−γ(t)|k(t)|γ−2dt
]α−1

×

[∫ t2

t1

q+(t)|k(t)|β−2dt+
∑

t1≤τi<t2

(ηi/ξi)
+|ki−1|β−2

]
,

(5.32)

where M,k(t) and ki are defined as in equation (5.29), (5.6) and in equation (5.7),

respectively.
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Corollary 5.1.4 Let β be the conjugate of γ. If the impulsive Emden-Fowler equation

(5.5) has a real nontrivial solution x such that x(t+1 ) = x(t−2 ) = 0, x(t) 6= 0 on

(t1, t2), then we have the following Lyapunov type inequality

h1−βt1 (τ) + h1−βt2 (τ) ≤

[∫ t2

t1

q+(t)|k(t)|β−2dt+
∑

t1≤τi<t2

(ηi/ξi)
+|ki−1|β−2

]
,

(5.33)

where ht1(t), ht2(t), k(t) and ki are defined as in equation (5.30), (5.6) and in equa-

tion (5.7), respectively.

Corollary 5.1.5 Let β be the conjugate of γ. If the impulsive Emden-Fowler equation

(5.5) has a real nontrivial solution x such that x(t+1 ) = x(t−2 ) = 0, x(t) 6= 0 on

(t1, t2), then we have the following Lyapunov type inequality

22−β
[

1

ht1(τ)
+

1

ht2(τ)

]β−1
≤

[∫ t2

t1

q+(t)|k(t)|β−2dt+
∑

t1≤τi<t2

(ηi/ξi)
+|ki−1|β−2

]

where ht1(t), ht2(t), k(t) and ki are defined as in equation (5.30), (5.6) and in equa-

tion (5.7), respectively.

Corollary 5.1.6 Let β be the conjugate of γ. If the impulsive half-linear equation

(5.5) has a real nontrivial solution x such that x(t+1 ) = x(t−2 ) = 0, x(t) 6= 0 on

(t1, t2), then we have the following Lyapunov type inequality

2β ≤
[∫ t2

t1

p1−γ(t)|k(t)|γ−2dt
]β−1

×

[∫ t2

t1

q+(t)|k(t)|β−2dt+
∑

t1≤τi<t2

(ηi/ξi)
+|ki−1(t)|β−2

]
.

(5.34)

where k(t) and ki are defined as in equation (5.30), (5.6) and in equation (5.7), re-

spectively.

The next theorems contain new Lyapunov type inequalities given in the subintervals

[a, τ ] and [τ, b] where τ is the point at which |x(t)/k(t)| has supremum. When τ is

an impulsive point, additional term occurs in Lyapunov type inequality. Therefore, in

the next results the location of τ is important.

99



Theorem 5.1.9 Let α be the conjugate of γ and M be given by (5.29). If the impul-

sive Emden-Fowler equation (5.3) has a real nontrivial solution x such that x(t+1 ) =

x(t−2 ) = 0, x(t) 6= 0 on (t1, t2), then there exists τ ∈ (t1, t2) such that the following

inequalities hold:

(i) If τ ∈ (τn−1, τn) for some n, then

1 ≤Mβ−α
[∫ τ

t1

p1−γ(t)|k(t)|γ−2dt
]α−1

×

[∫ τ

t1

q+(t)|k(t)|β−2dt+
∑

t1≤τi<τ

(ηi/ξi)
+|ki−1|β−2

]

and

1 ≤Mβ−α
[∫ t2

τ

p1−γ(t)|k(t)|γ−2dt
]α−1

×

[∫ t2

τ

q+(t)|k(t)|β−2dt+
∑

τ≤τi<t2

(ηi/ξi)
+|ki−1|β−2

]
.

(ii) If τ = τn, then

1 ≤Mβ−α
[∫ τ

t1

p1−γ(t)|k(t)|γ−2dt
]α−1

×

[∫ τ

t1

q+(t)|k(t)|β−2dt+
∑

t1≤τi<τ

(ηi/ξi)
+|ki−1|β−2

+ max
i=1,2,...,m

(ηi/ξi)
+|ki−1|β−2

]
and

1 ≤Mβ−α
[∫ t2

τ

p1−γ(t)|k(t)|γ−2dt
]α−1

×

[∫ t2

τ

q+(t)|k(t)|β−2dt+
∑

τ≤τi<t2

(ηi/ξi)
+|ki−1|β−2

]
.

Proof. (i) The proof is obtained by applying the proof of the Theorem 5.1.4 step by

step for the intervals (t1, τ) and (τ, t2) separately and using z′(τ) = 0 which implies

v(τ) = 0.

(ii) Let τ = τn and τn < s < τn+1. We set

β1 = p1−γ(t), β2(t) = q(t).
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If we repeat the same procedure of the proof of Theorem 2.1, for the interval (t1, s),

we get

|z(s)| ≤
[∫ s

t1

β1(t)|k(t)|γ−2dt
] 1
γ
[∫ s

t1

β1(t)|k(t)|γ−2|v(t)|γdt
] 1
α

. (5.35)

On the other hand, one can show that∫ s

t1

(vz)′dt = z(s)v(s−) +
∑

t1≤τi<s

(ηi/ξi)|ki−1|β−2|z(τi)|β

=

∫ s

t1

β1(t)|k(t)|γ−2|v(t)|γdt−
∫ s

t1

β2(t)|k(t)|β−2|z(t)|βdt.
(5.36)

Substituting (5.36) into (5.35), we have

|z(s)| ≤
[∫ s

t1

β1(t)|k(t)|γ−2dt
] 1
γ

×

[∫ s

t1

β2(t)|k(t)|β−2|z(t)|βdt+
∑

t1≤τi<s

(ηi/ξi)|ki−1|β−2|z(τi)|β + z(s)v(s−)

] 1
α

.

Now, letting s→ τ+,

|z(τ)| ≤
[∫ τ

t1

β1(t)|k(t)|γ−2dt
] 1
γ

×

∫ τ

t1

β2(t)|k(t)|β−2|z(t)|βdt+
∑

t1≤τi<τ+
(ηi/ξi)|ki−1|β−2|z(τi)|β + z(τ)v(τ+)

 1
α

.

Note that z(τ)v(τ+) ≤ 0 and z(τ)v(τ−) ≥ 0. Therefore,

|z(τ)| ≤ |z(τ)|
β
α

[∫ τ

t1

β1(t)|k(t)|γ−2dt
] 1
γ

×

[∫ τ

t1

β2(t)|k(t)|β−2dt+
∑

t1≤τi<τ

(ηi/ξi)|ki−1|β−2 +
ηn
ξn
|kn−1|β−2

] 1
α

.

Finally, by using |z(t)| ≤ |z(τ)| for all t ∈ [t1, t2] and taking α-th power of both

sides, we obtain the desired inequality

1 ≤Mβ−α
[∫ τ

t1

β1(t)|k(t)|γ−2dt
]α−1

×

[∫ τ

t1

β+
2 (t)|k(t)|β−2dt+

∑
t1≤τi<τ

(ηi/ξi)
+|ki−1|β−2 + max

i=1,2,...,m
(ηi/ξi)

+|ki−1|β−2
]
.
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Now, let τ = τn and s < τn < τn+1. By the same procedure applied on (s, t2), we get

|z(s)| ≤
[∫ t2

s

β1(t)|k(t)|γ−2dt
] 1
γ
[∫ t2

s

β1(t)|k(t)|γ−2|v(t)|γdt
] 1
α

,

which in a similar manner above leads to

|z(s)| ≤
[∫ t2

s

β1(t)|k(t)|γ−2dt
] 1
γ

×

[∫ t2

s

β2(t)|k(t)|β−2|z(t)|βdt+
∑

s≤τi<t2

(ηi/ξi)|ki−1|β−2|z(τi)|β − z(s)v(s+)

] 1
α

and so, as s→ τ−, we obtain

|z(τ)| ≤
[∫ t2

τ

β1(t)|k(t)|γ−2dt
] 1
γ

×

[∫ t2

τ

β2(t)|k(t)|β−2|z(t)|βdt+
∑

τ≤τi<t2

(ηi/ξi)|ki−1|β−2|z(τi)|β − z(τ)v(τ−)

] 1
α

,

which yields

1 ≤Mβ−α
[∫ t2

τ

β1(t)|k(t)|γ−2dt
]α−1

×

[∫ t2

τ

β+
2 (t)|k(t)|β−2dt+

∑
τ≤τi<t2

(ηi/ξi)
+|ki−1|β−2

]
.

�

Theorem 5.1.10 Let β be the conjugate of γ. If the impulsive half-linear equation

(5.5) has a real nontrivial solution x such that x(t+1 ) = x(t−2 ) = 0, x(t) 6= 0 on

(t1, t2), then there exists τ ∈ (t1, t2) such that the following inequalities hold:

(i) If τ ∈ (τn−1, τn), for some n = 1, 2, . . . ,m, then

1 ≤
[∫ τ

t1

p1−γ(t)|k(t)|γ−2dt
]β−1 [∫ τ

t1

q+(t)|k(t)|β−2dt+
∑

t1≤τi<τ

(ηi/ξi)
+|ki−1|β−2

]

and

1 ≤
[∫ t2

τ

p1−γ(t)|k(t)|γ−2dt
]β−1 [∫ t2

τ

q+(t)|k(t)|β−2dt+
∑

τ≤τi<t2

(ηi/ξi)
+|ki−1|β−2

]
.
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(ii) If τ = τn, then

1 ≤
[∫ τ

t1

p1−γ(t)|k(t)|γ−2dt
]β−1

×

[∫ τ

t1

q+(t)|k(t)|β−2dt+
∑

t1≤τi<τ

(ηi/ξi)
+|ki−1|β−2 + max

i=1,2,...,m
(ηi/ξi)

+|ki−1|β−2
]

and

1 ≤
[∫ t2

τ

p1−γ(t)|k(t)|γ−2dt
]β−1 [∫ t2

τ

q+(t)|k(t)|β−2dt+
∑

τ≤τi<t2

(ηi/ξi)
+|ki−1|β−2

]
.

Remark 5.1.2 Our results generalize all the previous results obtained for nonlinear

systems, nonlinear equations, linear systems and linear equations without impulse

effect.

Remark 5.1.3 If there is no impulse effect, i.e ξi = 1 and ηi = 0 for all i ∈ N,

then inequality (5.9) and (5.19) coincide with inequalities (2.27) and (2.34) of [105],

respectively. Theorem 5.1.3 yields the same result as [105, Corollary 2.3]. Moreover,

it is the generalization of [112] from the case α = β = γ = 2 to the nonlinear system

(5.1). Besides, inequality (5.24) gives the same inequality as in Tiryaki and et al.

[106, Theorem 1]. Furtermore Theorem 5.1.9 is reduced to Theorem 3 of the same

work.

Remark 5.1.4 Let α = β = γ = 2. Then system (5.1) is reduced to linear system of

two first order impulsive differential equations which is considered in [55] and [42].

It can be observed that Theorem 5.1.3 gives the same result as [55, Theorem 5.1].

Let x =

∫ t2

t1

α1(t)dt. Since 2 exp(−x/2) ≥ 2− x, Theorem 5.1.4 is better than [42,

Theorem 5.1]. In the absence of impulse effect, inequality (5.24) in Theorem 5.1.4 is

sharper than the results obtained in [58], [41] while it coincides with [99, Theorem

2.4] for the case n = 1.

Remark 5.1.5 Let α1(t) = 0. Then system (5.1) can be written in the form of equa-

tion (5.3). Therefore Corollary 5.1.1, Corollary 5.1.2 and Corollary 5.1.4, Corollary

5.1.5 provide new inequalities for impulsive Emden-Fowler equations (5.3) and im-

pulsive half linear equations (5.5) for α = β, respectively. Furthermore, Corollary
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5.1.3, Theorem 5.1.9 and Corollary 5.1.6, Theorem 5.1.10 generalize [106, Theorem

3] and [106, Corollary 4], respectively. If there is no impulse effect and α = β, then

Corollary 5.1.6 reduces to [33, Theorem 5.1.1] for half-linear differential equation.

Moreover, since the restricted condition, i.e. a bounded positive function, on the func-

tion r (in our case it is q(t) = β2(t)) in [91, Theorem 2.3] is dropped, Corollary 5.1.6

improves [91, Theorem 2.3]. In this case Theorem 5.1.10 coincides with [63, Lemma

1].

Remark 5.1.6 When α1(t) = 0 and α = β = γ = 2, Corollary 5.1.6 provides the

same result as [43, Theorem 4.5] for the case of the second order impulsive differen-

tial equations. Moreover if there is no impulse effect, then the same result of Krein

[57] is obtained.

5.2 Applications

This section is devoted to show the applicability of Lyapunov type inequalities, ob-

tained in Section 5.1.1, to investigate the asymptotic behaviour of solutions of system

(5.1). We are concerned with disconjugacy, finding lower bounds for the eigenvalues

of the associated eigenvalue problems and boundedness of weakly oscillatory as well

as weakly bounded solutions.

5.2.1 Disconjugacy

In this section by using the inequalities derived in Theorem 5.1.3, Theorem 5.1.4,

Theorem 5.1.7, Theorem 5.1.8, Corollary 5.1.3 and Corollary 5.1.6, we establish

some disconjugacy results.

Theorem 5.2.1 Let α be the conjugate number of γ and M , k(t) and ki be defined

as in equations (5.10), (5.6) and (5.7), respectively. If for every τ ∈ (t1, t2)

2α > Mβ−α
[∫ t2

t1

β1(t)|k(t)|γ−2 exp

(
γ

∫ τ

t

α1(s)ds

)
dt

]α−1
×

[∫ t2

t1

β+
2 (t)|k(t)|β−2dt+

∑
t1≤τi<t2

(ηi/ξi)
+|ki−1|β−2

] (5.37)
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holds, then system (5.1) is disconjugate on [t1, t2].

Proof. Suppose on the contrary that there is a real solution y(t) = (x(t), u(t)) with

nontrivial x having two zeros s1, s2 ∈ [t1, t2] (s1 < s2) such that x(t) 6= 0 for all

t ∈ (s1, s2). Applying Theorem 5.1.3 we see that

2α ≤Mβ−α
[∫ s2

s1

β1(t)|k(t)|γ−2 exp

(
γ

∫ τ

t

α1(s)ds

)
dt

]α−1
×

[∫ s2

s1

β+
2 (t)|k(t)|β−2dt+

∑
s1≤τi<s2

(ηi/ξi)
+|ki−1|β−2

]

≤Mβ−α
[∫ t2

t1

β1(t)|k(t)|γ−2 exp

(
γ

∫ τ

t

α1(s)ds

)
dt

]α−1
×

[∫ t2

t1

β+
2 (t)|k(t)|β−2dt+

∑
t1≤τi<t2

(ηi/ξi)
+|ki−1|β−2

]
.

Clearly, the last inequality contradicts (5.37). The proof is complete. �

Since the proofs of the following theorems are exactly the same as proof of the The-

orem 5.2.1, we omit them.

Theorem 5.2.2 Let β be the conjugate number of γ and M , k(t) and ki be defined as

in equations (5.10), (5.6) and (5.7), respectively. If for every τ ∈ (t1, t2)

2β >

[∫ t2

t1

β1(t)|k(t)|γ−2 exp

(
γ

∫ τ

t

α1(s)ds

)
dt

]β−1
×

[∫ t2

t1

β+
2 (t)|k(t)|β−2dt+

∑
t1≤τi<t2

(ηi/ξi)
+|ki−1|β−2

]

holds, then system (5.1) is disconjugate on [t1, t2].

Theorem 5.2.3 Let α be the conjugate number of γ and M , k(t) and ki be defined

as in equations (5.10), (5.6) and (5.7), respectively. If

2α > Mβ−α exp

(
α

2

∫ t2

t1

|α1(t)|dt
)[∫ t2

t1

β1(t)|k(t)|γ−2dt
]α−1

×

[∫ t2

t1

β+
2 (t)|k(t)|β−2dt+

∑
t1≤τi<t2

(ηi/ξi)
+|ki−1|β−2

]

holds, then system (5.1) is disconjugate on [t1, t2].
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Theorem 5.2.4 Let β be the conjugate of γ and k(t) and ki be defined as in equations

(5.6) and (5.7), respectively. If

2β > exp

(
β

2

∫ t2

t1

|α1(t)|dt
)[∫ t2

t1

β1(t)|k(t)|γ−2dt
]β−1

×

[∫ t2

t1

β+
2 (t)|k(t)|β−2dt+

∑
t1≤τi<t2

(ηi/ξi)
+|ki−1|β−2

]

holds, then system (5.1) is disconjugate on [t1, t2].

Again, we have the corresponding corollaries.

Corollary 5.2.1 Let α be the conjugate of γ and M , k(t) and ki be defined as in

equations (5.29), (5.6) and (5.7), respectively. If

2α > Mβ−α
[∫ t2

t1

p1−γ(t)|k(t)|γ−2dt
]α−1

×

[∫ t2

t1

q+(t)|k(t)|β−2dt+
∑

t1≤τi<t2

(ηi/ξi)
+|ki−1|β−2

] (5.38)

holds, then equation (5.3) is disconjugate on [t1, t2].

Proof. Suppose on the contrary that there is a real nontrivial solution x of eqution

(5.3) having two zeros s1, s2 ∈ [t1, t2] (s1 < s2) such that x(t) 6= 0 for all t ∈ (s1, s2).

Applying Corollary 5.1.3 we see that

2α ≤Mβ−α
[∫ s2

s1

p1−γ(t)|k(t)|γ−2dt
]α−1

×

[∫ s2

s1

q+(t)|k(t)|β−2dt+
∑

s1≤τi<s2

(ηi/ξi)
+|ki−1|β−2

]

≤Mβ−α
[∫ t2

t1

p1−γ(t)|k(t)|γ−2dt
]α−1

×

[∫ t2

t1

q+(t)|k(t)|β−2dt+
∑

t1≤τi<t2

(ηi/ξi)
+|ki−1|β−2

]
.

Clearly, the last inequality contradicts (5.38). The proof is complete. �

Since the proof of the following corollary is exactly the same as proof of the Corollary

5.2.1, we omit it.
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Corollary 5.2.2 Let β be the conjugate of γ and k(t) and ki be defined as in equa-

tions (5.6) and (5.7), respectively. If

2β >

[∫ t2

t1

p1−γ(t)|k(t)|γ−2dt
]β−1 [∫ t2

t1

q+(t)|k(t)|β−2dt+
∑

t1≤τi<t2

(ηi/ξi)
+|ki−1|β−2

]
holds, then equation (5.5) is disconjugate on [t1, t2].

5.2.2 Eigenvalue Problems

Now, we present an application of the obtained Lyapunov-type inequalities for system

(5.1) and equations (5.3) and (5.5). The proofs of the following theorems are based

on the Lyapunov type inequalities derived in Theorem 5.1.3 and Theorem 5.1.4 and

Corollary 5.1.3 and Corollary 5.1.6.

Consider the system of impulsive eigenvalue problem

x′ = α1(t)x+ β1(t)|u|γ−2u, u′ = −α1(t)u− λβ2(t)|x|β−2x, t 6= τi

x(τ+i ) = ξix(τ−i ), u(τ+i ) = ξiu(τ−i )− µηi|x(τ−i )|β−2x(τ−i ),

x(t1) = x(t2) = 0

(5.39)

and the impulsive Emden-Fowler type eigenvalue problem

(p(t)|x′|α−2x′)′ + λq(t)|x|β−2x = 0, t 6= τi,

x(τ+i ) = ξi x(τ−i ),

p(τ+i )|x′(τ+i )|α−2x′(τ+i ) = ξi p(τ
−
i )|x′(τ−i )|α−2x′(τ−i )− µηi|x(τ−i )|β−2x(τ−i )

x(t1) = x(t2) = 0

(5.40)

where λ, µ ∈ R.

If α = β in (5.40), then impulsive Emden-Fowler type eigenvalue problem (5.40)

becomes impulsive half linear eigenvalue problem.

Definition 5.2.1 A pair (λ, µ) is called an eigenvalue of (5.39) if there is a corre-

sponding solution (x, u) such that x(t) 6≡ 0 on (t1, t2).

Definition 5.2.2 A pair (λ, µ) is called an eigenvalue of (5.40) if there is a corre-

sponding nontrivial solution x on (t1, t2).
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Theorem 5.2.5 Let α be the conjugate of γ. If (λ, µ) is a positive eigenvalue pair of

(5.39), then

λ ≥ 2α

A

where

A = Mβ−α
[∫ t2

t1

β1(t)|k(t)|γ−2 exp

(
γ

∫ τ

t

α1(s)ds

)
dt

]α−1
×

[∫ t2

t1

β+
2 (w)|k(t)|β−2dt+

µ

λ

∑
t1≤τi<t2

(ηi/ξi)
+|ki−1|β−2

]

and M,k(t) and ki are defined as in equation (5.10), (5.6) and (5.7), respectively.

Proof. Let (λ, µ) be a positive eigenvalue and (x, u) be the corresponding eigenfunc-

tions of the system (5.39). If for some τ ∈ (t1, t2) we apply Lyapunov inequality

obtained in Theorem 5.1.3 for system (5.39), we get

2α ≤Mβ−α
[∫ t2

t1

β1(t)|k(t)|γ−2 exp

(
γ

∫ τ

t

α1(s)ds

)
dt

]α−1
×

[
λ

∫ t2

t1

β+
2 (t)|k(t)|β−2dt+ µ

∑
t1≤τi<t2

(ηi/ξi)
+|ki−1|β−2

]
.

Then for the eigenvalue λ we can find the desired lower bound. �

Since the proofs of the following theorem and corollaries are same as the proof of

Theorem 5.2.5, we skip them.

Theorem 5.2.6 Let α be the conjugate of γ. If (λ, µ) is a positive eigenvalue pair of

(5.39), then

λ ≥ 2α

B

where

B = Mβ−α exp

(
α

2

∫ t2

t1

|α1(t)|dt
)[∫ t2

t1

β1(t)|k(t)|γ−2dt
]α−1

×

[∫ t2

t1

β+
2 (t)|k(t)|β−2dt+

µ

λ

∑
t1≤τi<t2

(ηi/ξi)
+|ki−1|β−2

]

and M,k(t) and ki are defined as in equation (5.10), (5.6) and (5.7), respectively.
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Corollary 5.2.3 Let α be the conjugate of γ. If (λ, µ) is a positive eigenvalue pair of

(5.40) then

λ ≥ 2α

C

where

C = Mβ−α
[∫ t2

t1

p1−γ(t)|k(t)|γ−2dt
]α−1

×

[∫ t2

t1

q+(t)|k(t)|β−2dt+
µ

λ

∑
t1≤τi<t2

(ηi/ξi)
+|ki−1|β−2

]
,

and M,k(t) and ki are defined as in equation (5.29), (5.6) and in equation (5.7),

respectively.

Corollary 5.2.4 Let β be the conjugate of γ. If (λ, µ) is a positive eigenvalue pair of

impulsive half linear eigenvalue problem then

λ ≥ 2β

D

where

D =

[∫ t2

t1

p1−γ(t)|k(t)|γ−2dt
]β−1

×

[∫ t2

t1

q+(t)|k(t)|β−2dt+
µ

λ

∑
t1≤τi<t2

(ηi/ξi)
+|ki−1|β−2

]
,

and k(t) and ki are defined as in equation (5.6) and in equation (5.7), respectively.

5.2.3 Boundedness

In this section, as an application of Lyapunov type inequality given in Section 5.1.1,

we obtain a sufficient condition for the boundedness of weakly oscillatory and weakly

bounded solutions of system (5.1).

Theorem 5.2.7 Suppose that for some τ ∈ (t1, t2)[∫ ∞
β1(t)|k(t)|γ−2 exp

(
γ

∫ τ

t

α1(s)ds

)
dt

]α−1
<∞∫ ∞

β+
2 (t)|k(t)|β−2dt <∞,∑

τi<∞

(ηi/ξi)
+|ki−1|β−2 <∞.

(5.41)

Then the following hold:
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(a) Every weakly oscillatory proper solution (x(t), u(t)) of (5.1) is weakly bounded.

(b) For each weakly oscillatory proper solution (x(t), u(t)) of (5.1), we have

lim
t→∞

x(t)

k(t)
= 0.

Proof. (a) Let (x(t), u(t)) be a weakly oscillatory proper solution of (5.1). Let

z(t) = x(t)/k(t). Suppose on the contrary that z(t) is unbounded. Then given any

positive numberM1, we can find a positive number T = T (M1) such that |z(t)| > M1

for all t > T . Since z is also oscillatory, there exists an interval (t1, t2) with t1 ≥ T

such that z(t1) = z(t2) = 0. Choose τ ∈ (t1, t2) such that

M = |z(τ)| = max{|z(t)| : t1 < t < t2} > M1.

Because of (5.41), one can choose T ≥ t0 large enough so that for every t1 ≥ T ,[∫ t2

t1

β1(t)|k(t)|γ−2 exp

(
γ

∫ τ

t

α1(s)ds

)
dt

]α−1
< M

α−β
α−1 (5.42)

and ∫ ∞
t1

β+
2 (t)|k(t)|β−2dt+

∑
t1≤τi<∞

(ηi/ξi)
+|ki−1|β−2 < 1. (5.43)

In view of (5.42) and (5.43), we see from (5.23) that

2 ≤M
β−α
α M

α−β
α = 1,

which implies a contradiction.

(b) From (a) we know that every weakly oscillatory solution is weakly bounded. Sup-

pose on the contrary that z(t) does not tend to zero as t→∞. Then

lim sup
t→∞

|z(t)| = L > 0.

Since z has arbitrarily large zeros, there exists an interval (t1, t2) with t1 ≥ T , where

T is sufficiently large, such that z(t1) = z(t2) = 0. Choose τ in (t1, t2),

M = |z(τ)| = max{|z(t)| : t ∈ (t1, t2)} > L/2.

The remainder of the proof is similar to that of part (a), hence it is omitted. �
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Theorem 5.2.8 Suppose that

exp

(
α

2

∫ ∞
|α1(t)|dt

)[∫ ∞
β1(t)|k(t)|γ−2dt

]α−1
<∞,∫ ∞

β+
2 (t)|k(t)|β−2dt <∞,∑

τi<∞

(ηi/ξi)
+|ki−1|β−2 <∞.

(5.44)

Then the following hold:

(a) Every weakly oscillatory proper solution (x(t), u(t)) of (5.1) is weakly bounded.

(b) For each weakly oscillatory proper solution (x(t), u(t)) of (5.1), we have

lim
t→∞

x(t)

k(t)
= 0.

Proof. (a) Let (x(t), u(t)) be a weakly oscillatory proper solution of (5.1). Let

z(t) = x(t)/k(t). Suppose on the contrary that z(t) is unbounded. Then given any

positive numberM1 we can find a positive number T = T (M1) such that |z(t)| > M1

for all t > T . Since z is also oscillatory, there exist an interval (t1, t2) with t1 ≥ T

such that z(t1) = z(t2) = 0. Choose τ ∈ (t1, t2) such that

M = |z(τ)| = max{|z(t)| : t1 < t < t2} > M1.

Because of (5.44), one can choose T ≥ t0 large enough so that for every t1 ≥ T ,

exp

(
α

2

∫ t2

t1

|α1(t)|dt
)[∫ t2

t1

β1(t)|k(t)|γ−2dt
]α−1

< M
α−β
α−1 (5.45)

and ∫ t2

t1

β+
2 (t)|k(t)|β−2dt+

∑
t1≤τi<t2

(ηi/ξi)
+|ki−1|β−2 < 1. (5.46)

In view of (5.45) and (5.46), we see from (5.9) that

2 ≤M
β−α
α M

α−β
α = 1,

which implies a contradiction.

(b) From (a) we know that every weakly oscillatory solution is weakly bounded. Sup-

pose on the contrary that z(t) does not tend to zero as t→∞. Then

lim sup
t→∞

|z(t)| = L > 0.
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Since z has arbitrarily large zeros, there exist interval (t1, t2) with t1 ≥ T , where T is

sufficiently large, such that z(t1) = z(t2) = 0. Choose τ in (t1, t2),

M = |z(τ)| = max{|z(t)| : t ∈ (t1, t2)} > L/2.

The remainder of the proof is similar to that of part (a), hence it is omitted. �

Corollary 5.2.5 Let α be the conjugate of γ. Suppose that∫ ∞
p1−γ(t)|k(t)|γ−2 <∞,∫ ∞
q+(t)|k(t)|β−2dt <∞,∑

τi<∞

(ηi/ξi)
+|ki−1|β−2 <∞.

Then every oscillatory solution x(t) of impulsive Emden-Fowler equation (5.3) satis-

fies

lim
t→∞

x(t)

k(t)
= 0.

Remark 5.2.1 Corollary 5.2.5 is valid for solutions of impulsive half-linear equation

(5.5) by taking α = β.

We conclude the paper with a theorem on boundedness of the weakly bounded solu-

tions of (5.1).

Theorem 5.2.9 Suppose that∫ ∞
α1(t)dt > −∞,∫ ∞
|β2(t)||k(t)|β−2 exp

(
−
∫ ∞
t

α1(s)ds

)
dt <∞,∑

τi<∞

|ηi/ξi||ki−1|β−2 exp

(
−
∫ ∞
τi

α1(t)dt

)
<∞.

Then every weakly bounded solution of (5.1) is bounded.

Proof. Given z(t) = x(t)/k(t) is bounded, we only need to show that

v(t) = u(t)/k(t) is bounded as well. We know that

v′ + α1(t)v = −β2(t)|k(t)|β−2|z|β−2z, t 6= τi,

v(τ+i ) = v(τ−i )− (ηi/ξi)|ki−1|β−2|z(τ−i )|β−2z(τ−i ).

112



and hence[
v(t) exp

(∫ t

τ

α1(s)ds

)]′
= − exp

(∫ t

τ

α1(s)ds

)
β2(t)|k(t)|β−2|z|β−2z, t 6= τi,

v(τ+i ) = v(τ−i )− (ηi/ξi)|ki−1|β−2|z(τ−i )|β−2z(τ−i ).

Integrating from τ to t, τ ≤ t ≤ t2, we get

v(t) = v(τ) exp

(
−
∫ t

τ

α1(s)ds

)
−
∫ t

τ

exp

(
−
∫ t

w

α1(s)ds

)
β2(w)|k(w)|β−2|z(w)|β−2z(w)dw

−
∑
τ≤τi≤t

(ηi/ξi)|ki−1|β−2|z(τ−i )|β−2z(τ−i ) exp

(∫ t

τi

−α1(s)ds

)
,

from which we easily obtain that v(t) is bounded. �
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CHAPTER 6

LYAPUNOV TYPE INEQUALITIES AND APPLICATIONS

FOR QUASILINEAR IMPULSIVE SYSTEMS

6.1 Quasilinear Impulsive Systems For (p, q)-Laplacian

In this section we obtain Lyapunov-type inequality for Dirichlet problem associated

with the quasilinear impulsive system involving the (p, q)-Laplacian operator

−
(
h(t) |u′|p−2 u′

)′
= f(t) |u|α−2 u |v|β , t 6= τi,

−
(
m(t) |v′|q−2 v′

)′
= g(t) |u|θ |v|γ−2 v, t 6= τi,

−∆
(
h(t) |u′|p−2 u′

)
= ai |u|α−2 u |v|β , t = τi

−∆
(
m(t) |v′|q−2 v′

)
= bi |u|θ |v|γ−2 v, t = τi

(6.1)

and for its more general form where the solution is not continuous, i.e, the case where

∆u|t=τi 6= 0 and ∆v|t=τi 6= 0 with α = θ and β = γ,

−
(
h(t) |u′|p−2 u′

)′
= f(t) |u|α−2 u |v|β , t 6= τi,

−
(
m(t) |v′|q−2 v′

)′
= g(t) |u|α |v|β−2 v, t 6= τi,

∆u = αiu, ∆v = α̂iv, t = τi,

∆
(
h(t) |u′|p−2 u′

)
= −βi

(
h(t) |u′|p−2 u′

)
+ γi |u|α−2 u |v|β , t = τi,

∆
(
m(t) |v′|q−2 v′

)
= −δi

(
m(t) |v′|q−2 v′

)
+ µi |u|α |v|β−2 v, t = τi.

(6.2)

Throughout this section, we assume that

(ii) p, q > 1 and α, β, γ, θ > 0 are real numbers,
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(iii) {τi} is a strictly increasing sequence of real numbers,

(i) h,m, f, g ∈ PLC[t0,∞) = {ω : [t0,∞) → R is continuous on each interval

(τi, τi+1), the limits w(τ±i ) exist and w(τ−i ) = w(τi) for i ∈ N}, h,m > 0,

(iv) ai, bi, αi, α̂i, βi, γi, δi, µi are sequence of real numbers and αi 6= −1, α̂i 6= −1

for i ∈ N.

Definition 6.1.1 By a solution w(t) = (u(t), v(t)) of system (6.1) on the interval

[t0,∞), we mean a nontrivial pair of continuous functions (u(t), v(t)) defined on

[t0,∞) such that (h |u′|p−2 u′), (m |v′|q−2 v′) ∈ PLC[t0,∞) satisfying (6.1) for t ≥
t0.

Definition 6.1.2 By a solution w(t) = (u(t), v(t)) of system (6.2) on the interval

[t0,∞), we mean a nontrivial pair of functions (u(t), v(t)) defined on [t0,∞) such

that u, v, (h |u′|p−2 u′), (m |v′|q−2 v′) ∈ PLC[t0,∞) satisfying (6.2) for t ≥ t0.

For the sake of brevity, let us define

(α1 + 1)(α2 + 1) . . . (αi + 1) = Mi, i ∈ N (6.3)

and make convention that (α1 + 1)(α2 + 1) . . . (αi + 1) = 1 if i = 0.

For impulsive differential equations or systems, in general for piece-wise continuos

functions, the concept of a zero of a function is replaced by a so-called generalized

zero.

Definition 6.1.3 ([45, 42]) A real number c is called a zero (generalized zero) of a

function f if and only if f(c−) = 0 or f(c+) = 0. If f is continuous function at c,

then c becomes a real zero.

Definition 6.1.4 The solution w(t) = (u(t), v(t)) of system (6.1) (or system (6.2))

has a zero (or generalized zero) at the point c if both components of the solution w

have a zero (or generalized zero) at this point.

We also need the following definitions.
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Definition 6.1.5 System (6.1) (or system (6.2)) is called disconjugate on an interval

[a, b] if and only if there is no real nontrivial solution w(t) = (u(t), v(t)) of system

(6.1) (or system (6.2)) having two or more zeros (or generalized zeros) on [a, b].

Definition 6.1.6 A nontrivial solution w(t) = (u(t), v(t)) of system (6.1) is bounded

on [t0,∞) if both components of w are bounded on [t0,∞). If at least one component

of w is not bounded on [t0,∞), then this solution is called unbounded.

Definition 6.1.7 A nontrivial solutionw(t) = (u(t), v(t)) of system (6.1) is said to be

oscillatory if both components of w are oscillatory on [T0,∞), i.e if for each T > T0

there is a point T1 ∈ (T,∞) such that u(T1) = v(T1) = 0. If either at least one

component of w is not oscillatory or they are oscillatory but they become zero at

different points, this solution is called nonoscillatory.

Definition 6.1.8 A nontrivial solution w(t) = (u(t), v(t)) of system (6.1) tends to

zero as t → ∞ if both components of w tend to zero as t → ∞. If at least one com-

ponent of w does not approach zero as t → ∞, then this solution does not approach

zero as t→∞.

Definition 6.1.9 A nontrivial solution w(t) = (u(t), v(t)) of system (6.2) is said to

be bounded on [t0,∞) if both components of ŵ(t) =

(
u(t)

Mi

,
v(t)

|Mi|p/q

)
are bounded

on [t0,∞), where Mi is defined as in (6.3). If at least one component of ŵ is not

bounded on [t0,∞), then w is called unbounded.

Definition 6.1.10 A nontrivial solution w(t) = (u(t), v(t)) of system (6.2) tends to

zero as t→∞ if both components of ŵ(t) =

(
u(t)

Mi

,
v(t)

|Mi|p/q

)
tend to zero as t→∞,

where Mi is defined as in (6.3). If at least one component of ŵ does not approach

zero as t→∞, then w does not approach zero as t→∞.

Since our main interest is Lyapunov type inequalities for system (6.1) and system

(6.2), we assume the existence of nontrivial solution of these systems. Our main pur-

pose is to establish Lyapunov type inequalities for the impulsive system of differential
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equations (6.1) satisfying Dirichlet boundary conditions. We will also consider a re-

lated problem (6.2) where the solutions are discontinuous. Although our motivation

comes from the papers of [78, 115], our results not only extend the results of such

papers and that of [19, 98, 7] but also generalize them to the impulsive case.

6.1.1 Lyapunov Type Inequality

Recall that the numbers p1, p2 > 1 are said to be conjugate if
1

p1
+

1

p2
= 1.

In the sequel we denote m+(t) = max{m(t), 0} and m+
i = max{mi, 0}.

The main result of this section is the following theorem.

Theorem 6.1.1 Let p′ and q′ be conjugate numbers for p and q, respectively and

(e1, e2) be a nontrivial solution of the homogenous system

e1(α− p) + e2θ = 0

e1β + e2(γ − q) = 0
(6.4)

where ek ≥ 0 for k = 1, 2 and e21 + e22 > 0. If the system (6.1) has a real nontrivial

solution (u(t), v(t)) such that u(a) = u(b) = v(a) = v(b) = 0, a, b ∈ R with a < b

are consecutive zeros, and u, v are not identically zero on [a, b], then we have the

following Lyapunov type inequality

2e1p+e2q ≤
(∫ b

a

h−p
′/p(t)dt

) e1p

p′
(∫ b

a

m−q
′/q(t)dt

) e2q

q′
(∫ b

a

f+(t)dt+
∑
a≤τi<b

a+i

)e1

×

(∫ b

a

g+(t)dt+
∑
a≤τi<b

b+i

)e2

.

(6.5)

Proof. Multiplying the first equation of system (6.1) by u and integrating from a to b,

we have∫ b

a

−
(
h(t)|u′(t)|p−2u′(t)

)′
u(t)dt =

∫ b

a

f(t)|u(t)|α|v(t)|βdt

= −u(t)h(t)|u′(t)|p−2u′(t) |ba +

∫ b

a

h(t)|u′(t)|pdt

+
∑
a≤τi<b

u(τi)∆
(
h(τi)|u′(τi)|p−2u′(τi)

)
.

118



Clearly, using f+(t) = max {f(t), 0} and a+i = max {ai, 0} yield∫ b

a

h(t)|u′(t)|pdt =

∫ b

a

f(t)|u(t)|α|v(t)|βdt+
∑
a≤τi<b

ai|u(τi)|α|v(τi)|β

≤
∫ b

a

f+(t)|u(t)|α|v(t)|βdt+
∑
a≤τi<b

a+i |u(τi)|α|v(τi)|β.
(6.6)

Similarly from the second equation of system (6.1), we get∫ b

a

m(t)|v′(t)|qdt ≤
∫ b

a

g+(t)|u(t)|θ|v(t)|γdt+
∑
a≤τi<b

b+i |u(τi)|θ|v(τi)|γ. (6.7)

On the other hand by employing Hölder inequality with indices p′ and p, one can

obtain

2 |u(c)| =
∣∣∣∣∫ c

a

u′(t)dt

∣∣∣∣+

∣∣∣∣∫ b

c

u′(t)dx

∣∣∣∣ ≤ ∫ b

a

|u′(t)| dt =

∫ b

a

h
−1
p (t)h

1
p (t) |u′(t)| dt

≤
(∫ b

a

h
−p′
p (t)dt

) 1
p′
(∫ b

a

h(t) |u′(t)|p dt
) 1

p

and so, combining with (6.6) implies,

2 |u(c)| ≤
(∫ b

a

h
−p′
p (t)dt

) 1
p′

×

[∫ b

a

f+(t) |u(t)|α |v(t)|β dt+
∑
a≤τi<b

a+i |u(τi)|α |v(τi)|β
] 1
p

.

(6.8)

Let |u(c)| = max
a≤t≤b

u(t) and |v(d)| = max
a≤t≤b

v(t), then from inequality (6.8) we have

2p ≤
(∫ b

a

h
−p′
p (t)dt

) p
p′

|u(c)|α−p |v(d)|β
[∫ b

a

f+(t)dt+
∑
a≤τi<b

a+i

]
. (6.9)

In view of (6.7) repeating the above procedure with

2 |v(d)| =
∣∣∣∣∫ d

a

v′(t)dt

∣∣∣∣+

∣∣∣∣∫ b

d

v′(t)dt

∣∣∣∣ ≤ ∫ b

a

|v′(t)| dt =

∫ b

a

m
−1
q (t)m

1
q (t) |v′(t)| dt

one can obtain the following inequality

2q ≤
(∫ b

a

m
−q′
q (t)dt

) q
q′

|u(c)|θ |v(d)|γ−q
[∫ b

a

g+(t)dt+
∑
a≤τi<b

b+i

]
. (6.10)

Raising inequalities (6.9) and (6.10) by e1 and e2, respectively, then multiplying the

resulting inequalities yield

2pe1+qe2 ≤ |u(c)|(α−p)e1+θe2 |v(d)|βe1+(γ−q)e2
(∫ b

a

h
−p′
p (t)dt

) e1p

p′
(∫ b

a

m
−q′
q (t)dt

) qe2
q′

×

[∫ b

a

f+(t)dt+
∑
a≤τi<b

a+i

]e1 [∫ b

a

g+(t)dt+
∑
a≤τi<b

b+i

]e2
.
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In view of the homogenous system (6.4) we finally arrive at (6.5). �

Remark 6.1.1 Theorem 6.1.1 is an impulsive generalization of [115, Theorem 1] in

the case n = 2. Since system (6.1) is more general than system (20) of [19] and

system (1.16) of [98], Theorem 6.1.1 extends [19, Corollary 2] and [98, Corollary

2.6]. Moreover since no sign condition is assumed for h(x) and k(x), Theorem 6.1.1

improves and generalizes [78, Theorem 1.5].

The following corollaries provide new Lyapunov type inequalities for the particu-

lar cases of system (6.1). Assuming different conditions on the relations between

α, β, θ, γ, p and q yields more inequalities than we will show.

Corollary 6.1.1 Let p′ and q′ be conjugate numbers for p and q, respectively. Assume

that
α + γ = p

β + θ = q
(6.11)

or
α + θ = p

β + γ = q
(6.12)

If system (6.1) has a real solution (u(t), v(t)) such that u(a) = u(b) = v(a) = v(b) =

0, a, b ∈ R with a < b are consecutive zeros and u, v are not identically zero on [a, b],

then we have the following Lyapunov type inequality

2p+q ≤
(∫ b

a

h−p
′/p(t)dt

) p
p′
(∫ b

a

m−q
′/q(t)dt

) q
q′
(∫ b

a

f+(t)dt+
∑
a≤τi<b

a+i

)

×

(∫ b

a

g+(t)dt+
∑
a≤τi<b

b+i

)
.

Proof. From the proof of Theorem 6.1.1, we see that condition (6.11) or (6.12) im-

plies that e1 = e2 = 1 is a nonzero solution of (6.4). Now, Corollary 6.1.1 is a direct

consequence of Theorem 6.1.1. �

Corollary 6.1.2 Let p′ and q′ be conjugate numbers for p and q, respectively. Assume

that
α

p
+
β

q
= 1,

θ

p
+
γ

q
= 1 (6.13)
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If system (6.1) has a real solution (u(t), v(t)) such that u(a) = u(b) = v(a) = v(b) =

0, a, b ∈ R with a < b are consecutive zeros and u, v are not identically zero on [a, b],

then we have the following Lyapunov type inequality

2θ+β ≤
(∫ b

a

h−p
′/p(t)dt

) θ
p′
(∫ b

a

m−q
′/q(t)dt

) β
q′
(∫ b

a

f+(t)dt+
∑
a≤τi<b

a+i

)θ/p

×

(∫ b

a

g+(t)dt+
∑
a≤τi<b

b+i

)β/q

.

Proof. From the proof of Theorem 6.1.1, we see that condition (6.13) implies that

e1 =
θ

p
and e2 =

β

q
is a nonzero solution of (6.4). Now, Corollary 6.1.2 is a direct

consequence of Theorem 6.1.1. �

Remark 6.1.2 In the absence of impulse effect, corollary 6.1.2 gives the same result

in [19, Corollary 2] but it still improves and generalizes [78, Theorem 1.5].

Corollary 6.1.3 Let p′ and q′ be conjugate numbers for p and q, respectively and

α = θ and β = γ. Assume that
α

p
+
β

q
= 1 (6.14)

If system (6.1) has a real solution (u(t), v(t)) such that u(a) = u(b) = v(a) = v(b) =

0, a, b ∈ R with a < b are consecutive zeros and u, v are not identically zero on [a, b],

then we have the following Lyapunov type inequality

2α+β ≤
(∫ b

a

h−p
′/p(t)dt

) α
p′
(∫ b

a

m−q
′/q(t)dt

) β
q′
(∫ b

a

f+(t)dt+
∑
a≤τi<b

a+i

)α/p

×

(∫ b

a

g+(t)dt+
∑
a≤τi<b

b+i

)β/q

.

(6.15)

Proof. From the proof of Theorem 6.1.1, we see that condition (6.14) implies that

e1 =
α

p
and e2 =

β

q
is a nonzero solution of (6.4). Now, Corollary 6.1.3 is a direct

consequence of Theorem 6.1.1. �

Remark 6.1.3 Corollary 6.1.3 recovers [78, Theorem 1.5].
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We next consider system (6.2) which has discontinuos solutions.

Theorem 6.1.2 Let p′ and q′ be conjugate numbers for p and q, respectively, and

(6.14) hold. Suppose that

α̂i = |αi+1|p/q−1, βi = |αi + 1|p−2 (αi+1)−1, δi = |αi + 1|p/q
′
−1, i ∈ N.

If system (6.2) has a real nontrivial solution (u(t), v(t)) such that u(a+) = u(b−) =

v(a+) = v(b−) = 0, a, b ∈ R with a < b are consecutive zeros and u, v are not

identically zero on [a, b], then we have the Lyapunov type inequality

2α+β ≤
(∫ b

a

h−p
′/p(t)dt

) α
p′
[∫ b

a

f+(t)dt+
∑
a≤τi<b

|αi + 1|2−p
(

γi
αi + 1

)+
]α
p

×
(∫ b

a

m−q
′/q(t)dt

) β
q′
(∫ b

a

g+(t)dt+
∑
a≤τi<b

|αi + 1|−p/q
′
µ+
i

)β
q

.

Proof. Let a, b be generalized zeros of u, v, in other words u(a+) = u(b−) = 0 and

v(a+) = v+(b−) = 0 where a = τ0 < τ1 < . . . < τm < b and Mi be given as in

equation (6.3). Define

y(t) =
1

Mi

u(t) z(t) =
1

|Mi|p/q
v(t), t ∈ (τi, τi+1), i = 0, 1, . . . ,m.

where we put a = τ0 and b = τm+1. It is easy to see that with the above transformation

system (6.2) becomes the following system

−
(
h(t) |y′|p−2 y′

)′
= f(t) |y|α−2 y |z|β , t 6= τi

−
(
m(t) |z′|q−2 z′

)′
= g(t) |y|α |z|β−2 z, t 6= τi

∆y = 0, ∆z = 0, t = τi

−∆
(
h(t) |y′|p−2 y′

)
=

γi

|αi + 1|p−2 (αi + 1)
|y|α−2 y |z|β , t = τi

−∆
(
m(t) |z′|q−2 y′

)
=

µi

|αi + 1|p/q′
|y|α |z|β−2 z, t = τi.

(6.16)

Applying Corollary 6.1.3 to system (6.16) with

ai =
γi

|αi + 1|p−2 (αi + 1)
, bi =

µi

|αi + 1|p/q′

we easily obtain the desired result. �

Remark 6.1.4 Since system (6.1), with θ = α and γ = β, is obtained from system

(6.2) by choosing αi = 0 for i ∈ N, Corollary 6.1.3 is generalized by Theorem 6.1.2.
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6.2 Quasilinear Impulsive Systems For (p1, p2, . . . , pn)-Laplacian

Here we consider n-dimensional quasilinear impulsive systems

−
(
hk(t) |u′k|

pk−2 u′k

)′
= fk(t) |uk|qkk−2 uk

n∏
j=1(j 6=k)

|uj|qkj , t 6= τi

−∆
(
hk(t) |u′k|

pk−2 u′k

)
= aik |uk|qkk−2 uk

n∏
j=1(j 6=k)

|uj|qkj , t = τi

(k = 1, 2, . . . , n, i ∈ N)

(6.17)

and its general form in which solutions are not contiuous,

−
(
hk(t) |u′k|

pk−2 u′k

)′
= fk(t) |uk|qk−2 uk

n∏
j=1(j 6=k)

|uj|qj , t 6= τi

∆uk = αikuk, t = τi

−∆
(
hk(t) |u′k|

pk−2 u′k

)
= −βik

(
hk(t) |u′k|

pk−2 u′k

)
+ γik |uk|qk−2 uk

n∏
j=1(j 6=k)

|uj|qj , t = τi

(k = 1, 2, . . . , n, i ∈ N).

(6.18)

Throughout this section, we assume that

(I) fk, hk ∈ PLC[t0,∞) = {ω : [t0,∞) → R is continuous on each interval

(τi, τi+1), the limits w(τ±i ) exist and w(τ−i ) = w(τi) for i ∈ N}, hk > 0 for

k = 1, 2, . . . , n,

(II) pk > 1 and qkj, qk > 0 are real numbers for k, j = 1, 2, . . . , n,

(III) {τi} is a strictly increasing sequence of real numbers,

(IV) aik, αik, βik, γik are sequence of real numbers and αik 6= −1 for k = 1, 2, . . . , n, i ∈
N.

Definition 6.2.1 By a solution (u1(t), u2(t), . . . , un(t)) of system (6.17) on [t0,∞),

we mean an n-tuple of continuous functions (u1(t), u2(t), . . . , un(t)) defined on [t0,∞)

such that (hk |u′k|
pk−2 u′k) ∈ PLC[t0,∞) for k = 1, 2, . . . , n satisfying (6.17) for

t ≥ t0.
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Definition 6.2.2 By a solution (u1(t), u2(t), . . . , un(t)) of system (6.18) on an in-

terval [t0,∞), we mean an n-tuple of functions (u1(t), u2(t), . . . , un(t)) defined on

[t0,∞) such that uk, (hk |u′k|
pk−2 u′k) ∈ PLC[t0,∞) for k = 1, 2, . . . , n satisfying

(6.18) for t ≥ t0.

Since our main interest is Lyapunov type inequalities for system (6.17) and system

(6.18), we assume the existence of nontrivial solution of these systems. Our main pur-

pose is to establish Lyapunov type inequalities for the impulsive system of differential

equations (6.17) satisfying Dirichlet boundary conditions. We will also consider a re-

lated problem (6.18) where the solutions are discontinuous. Although our motivation

comes from the papers of [18, 115], our results not only extend the results of such

papers and that of [98, 7, 6] but also generalize them to the impulsive case.

6.2.1 Lyapunov Type Inequality

The main result of this section is the following theorem which is a generalization of

Theorem 6.1.1 to the systems with n equations.

Theorem 6.2.1 Let p′j be the conjugate number for pj for j = 1, 2, . . . , n. If system

(6.17) has a real solution (u1(t), u2(t), . . . , un(t)) such that uk(a) = uk(b) = 0 for

k = 1, 2, . . . , n and a, b ∈ R with a < b are consecutive zeros and u1, u2, . . . , un are

not identically zero on [a, b], then the following Lyapunov type inequality

2

n∑
j=1

pjej

≤
n∏
k=1

(∫ b

a

h
−p′k
pk
k (t)dt

) ekpk
p′
k

(∫ b

a

f+
k (t)dt+

∑
a≤τi<b

a+ik

)ek
(6.19)

holds for k = 1, 2, . . . , n where (e1, e2, . . . , en) is nontrivial solution of the homoge-

nous system

e1(p1 − q11)− e2q21 − e3q31 − . . .− enqn1 = 0

− e1q12 + e2(p2 − q22)− e3q32 − . . .− enqn2 = 0

...

− e1q1n − e2q2n − e3q3n − . . .− en(pn − qnn) = 0

(6.20)
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where ek ≥ 0 for k = 1, 2, . . . , n and
n∑
j=1

e2j > 0.

Proof. Consider the k-th equation of system (6.17). Since for all k, uk is continous

on the interval [a, b], there exist ck ∈ (a, b) such that |uk(ck)| = max
a≤t≤b

|uk(t)| for k =

1, 2, . . . , n. By multiplying the k-th equation of system (6.17) by uk and integrating

from a to b, we get∫ b

a

(
hk(t) |u′k|

pk−2 u′k

)′
uk(t)dt =

∫ b

a

fk(t)
n∏
j=1

|uj(t)|qkjdt

=

∫ b

a

hk(t)|u′k(t)|pdt−
∑
a≤τi<b

aik

n∏
j=1

|uj(τi)|qkj

which implies∫ b

a

hk(t)|u′k(t)|pdt =

∫ b

a

fk(t)
n∏
j=1

|uj(t)|qkjdt+
∑
a≤τi<b

aik

n∏
j=1

|uj(τi)|qkj

≤
∫ b

a

f+
k (t)

n∏
j=1

|uj(t)|qkjdt+
∑
a≤τi<b

a+ik

n∏
j=1

|uj(τi)|qkj .

Now, it is easy to see that

2 |uk(ck)| =
∣∣∣∣∫ ck

a

u′k(t)dt

∣∣∣∣+

∣∣∣∣∫ b

ck

u′k(t)dt

∣∣∣∣ ≤ ∫ b

a

|u′k(t)| dt

=

∫ b

a

h
−1
pk
k (t)h

1
pk
k (t) |u′k(t)| dt

≤

(∫ b

a

h
−p′k
pk
k (t)dt

) 1
p′
k
(∫ b

a

hk(t) |u′k(t)|
pk

) 1
pk

≤

(∫ b

a

h
−p′k
pk
k (t)dt

) 1
p′
k

×

[∫ b

a

f+
k (t)

n∏
j=1

|uj(t)|qkjdt+
∑
a≤τi<b

a+ik

n∏
j=1

|uj(τi)|qkj
] 1
pk

.

By taking pk − th power of the both sides of the above inequality and by using

|uk(ck)| = max
a≤t≤b

uk(t), we have

2pk |uk(ck)|pk ≤

(∫ b

a

h
−p′k
pk
k (t)dt

) pk
p′
k

n∏
j=1

|uj(cj)|qkj
[∫ b

a

f+
k (t)dt+

∑
a≤τi<b

a+ik

]
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and

2pk |uk(ck)|pk−qkk
n∏

j=1(j 6=k)

|uj(cj)|−qkj ≤

(∫ b

a

h
−p′k
pk
k (t)dt

) pk
p′
k

×

[∫ b

a

f+
k (t)dt+

∑
a≤τi<b

a+ik

]
.

Raising the both sides of the above inequality to the power ek for each k = 1, 2, . . . , n,

respectively, and multiplying the resulting inequalities side by side, we obtain

2

n∑
k=1

pkek n∏
k=1

|uk(ck)|θk ≤
n∏
k=1

(∫ b

a

h
−p′k
pk
k (t)dt

) ekpk
p′
k

[∫ b

a

f+
k (t)dt+

∑
a≤τi<b

a+ik

]ek

where θk = (pk−qkk)ek−
n∑

j=1(k 6=j)

qkjej for k = 1, 2, . . . , n. By assumption, equation

(6.20) has nonzero solutions (e1, e2, . . . , en) such that θk = 0 for k = 1, 2, . . . , n

where ek ≥ 0 for k = 1, 2, . . . , n and at least one ej > 0 for j = 1, 2, . . . , n.

Choosing one of the solutions (e1, e2, . . . , en), we obtain the desired inequality. This

completes the proof of Theorem 6.2.1. �

Remark 6.2.1 Theorem 6.2.1 is the generalization of [115, Theorem 1] to the im-

pulsive case. Morever it is extension and improvement of [7, 6] due to the assuming

weaker conditions on the exponents qkj . Let there be no impulse effect, i.e aik = 0

for k = 1, 2, . . . , n and i ∈ N. Since system (6.17) is more general than system (7)

of Çakmak and Tiryaki [18] and system (1.21) of Tang and He [98] in the sense that

qkj 6= qpj for k 6= p and k, j, p = 1, 2, . . . , n, inequality (6.19) extends inequality (27)

of [18, Corollary 3] and inequality (3.22) of [98, Corollary 3.3].

Remark 6.2.2 Let n = 2. Then inequality (6.19) is reduced to inequality (6.15)

which is the generalization of inequality (42) of Çakmak and Tiryaki [19, Corollary

2] and inequality (2.32) of Tang and He [98, Corollary 2.6] to the impulsive case. If

αkj = αjj for k, j = 1, 2, . . . , n, then Theorem 6.2.1 improves [78, Theorem 1.5].

Remark 6.2.3 Let n = 1 and ai1 = 0 for i ∈ N. In this case, Theorem 6.2.1 reduces

to [33, Theorem 5.1.1] and gives the result for half-linear differential equation. More-

over, since the restricted condition, i.e. a bounded positive function, on the function
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r (in our case it is f1(x)) in [91, Theorem 2.3] is dropped, Theorem 6.2.1 improves

[91, Theorem 2.3]. When h1(x) = 1 and p1 = 2, the same result of Krein [57] is

obtained.

Remark 6.2.4 Let n = 1 and p1 = 2. Then Theorem 6.2.1 coincides with [43,

Theorem 4.5] which is obtained for the case of the second order impulsive differential

equations.

Corollary 6.2.1 Let p′j be the conjugate number for pj for j = 1, 2, . . . , n. Assume

n∑
j=1

qjk = pk, k = 1, 2, . . . , n. (6.21)

If system (6.17) has a real solution (u1(t), u2(t), . . . , un(t)) such that uk(a) = uk(b) =

0 for k = 1, 2, . . . , n and a, b ∈ R with a < b are consecutive zeros and u1, u2, . . . , un

are not identically zero on [a, b], then the following Lyapunov inequality

2

n∑
j=1

pj

≤
n∏
k=1

(∫ b

a

h
−p′k
pk
k (t)dt

) pk
p′
k

(∫ b

a

f+
k (t)dt+

∑
a≤τi<b

a+ik

)

holds for k = 1, 2, . . . , n.

Proof. From the proof of Theorem 6.2.1, we see that condition (6.21) implies that

ek = 1 for k = 1, 2, . . . , n is a nonzero solution of (6.20). Now, Corollary 6.2.1 is a

direct consequence of Theorem 6.2.1. �

Remark 6.2.5 Corollary 6.2.1 shows that by choosing different conditions on qjk and

pk for k, j = 1, 2, . . . , n, Theorem 6.2.1 yields several new inequalities which were

obtained in [115] for the nonimpulsive case. Therefore existence of impulse effect

leads to more general result than the result of [115].

Corollary 6.2.2 Let p′j be the conjugate number for pj for j = 1, 2, . . . , n. Assume

qkj = qkk = qk for k, j = 1, 2, . . . , n in system (6.17) and

q1
p1

+
q2
p2

+ · · ·+ qn
pn

= 1 (6.22)
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If system (6.17) has a real solution (u1(t), u2(t), . . . , un(t)) such that uk(a) = uk(b) =

0 for k = 1, 2, . . . , n and a, b ∈ R with a < b are consecutive zeros and u1, u2, . . . , un

are not identically zero on [a, b], then the following Lyapunov inequality

2

n∑
j=1

qj

≤
n∏
k=1

(∫ b

a

h
−p′k
pk
k (t)dt

) qk
p′
k

n∏
k=1

(∫ b

a

f+
k (t)dt+

∑
a≤τi<b

a+ik

) qk
pk

holds for k = 1, 2, . . . , n.

Proof. From the proof of Theorem 6.2.1, we see that condition (6.22) implies that

ek = qk
pk

for k = 1, 2, . . . , n is a nonzero solution of (6.20). Now, Corollary 6.2.2 is a

direct consequence of Theorem 6.2.1. �

Remark 6.2.6 In the absence of impulse effect corollary 6.2.2 gives the same result

of Çakmak and Tiryaki [18, Corollary 3].

We now consider system (6.18), which has discontinuos solutions, similar to (p, q)-

Laplacian case (6.2).

Theorem 6.2.2 Let p′k be conjugate numbers for pk, k = 1, 2, . . . , n and (6.22) hold.

Suppose that

αik = |αi1+1|p1/pk−1, βi1 = |αi1 + 1|p1−2 (αi1+1)−1, βik = |αi1 + 1|
p1
p′
k−1, i ∈ N

and k = 2, 3, . . . , n. If system (6.18) has a real solution (u1(t), u2(t), . . . , un(t))

such that uk(a−) = uk(b
+) = 0 for k = 1, 2, . . . , n and a, b ∈ R with a < b are

consecutive zeros and u1, u2, . . . , un are not identically zero on [a, b], then we have

the following Lyapunov type inequality

2

n∑
j=1

qj

≤

(∫ b

a

h
−p′1
p1

1 (t)dt

) q1
p′1
(∫ b

a

f+
1 (t)dt+

∑
a≤τi<b

(
γi1

αi1 + 1

)+

|αi1 + 1|2−p1
) q1

p1

×
n∏
k=2

(∫ b

a

h
−p′k
pk
k (t)dt

) qk
p′
k

(∫ b

a

f+
k (t)dt+

∑
a≤τi<b

γ+ik |αi1 + 1|−p1/p
′
k

) qk
pk

.
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Proof. Let u+k (a) = uk(b
−) = 0 and a = τ0 < τ1 < . . . < τm < b. Similar to the

proof of Theorem 6.1.2, let us define (α11 + 1)(α21 + 1) . . . (αi1 + 1) = Ni and

y1(t) =
u1(t)

Ni

yk(t) =
uk(t)

|Ni|p1/pk
, t ∈ (τi, τi+1), i = 0, 1, . . . ,m, k = 2, . . . , n.

where we put a = τ0 and b = τm+1 and make convention that (α11 + 1)(α21 +

1) . . . (αi1 + 1) = 1 if i = 0. It is easy to see that with the above transformation,

system (6.18) turns into the following system

−
(
hk(t) |y′k|

pk−2 y′k

)′
= fk(t) |yk|qk−2 yk

n∏
j=1(j 6=k)

|yj|qj , t 6= τi

∆yk = 0, k = 1, 2, . . . , n, t = τi

−∆
(
h1(t) |y′1|

p1−2 y′1

)
=

γi1

|αi1 + 1|p1−2 (αi1 + 1)
|y1|q1−2 y1

n∏
j=2

|yj|qj , t = τi

−∆
(
hk(t) |y′k|

pk−2 y′k

)
=

γik

|αi1 + 1|p1/p
′
k

|yk|qk−2 yk
n∏

j=1(j 6=k)

|yj|qj , t = τi.

(6.23)

Applying Corollary 6.2.2 to system (6.23) with

ai1 =
γi1

|αi1 + 1|p1−2 (αi1 + 1)
, aik =

γik

|αi1 + 1|p1/p
′
k

, k = 2, 3, . . . , n

we easily obtain the desired result. �

6.3 Applications

In this section we give some applications of Lyapunov type inequalities which are

used as a handy tool in studying of the qualitative nature of solutions. Here we only

consider quasilinear systems with (p, q)-Laplacian but all the following results can be

generalized to the quasilinear systems with (p1, . . . , pn)−Laplacian (6.17) considered

in Section 6.2.

6.3.1 Disconjugacy

In this part by using the inequalities obtained in Section 6.1.1, we establish disconju-

gacy criteria for system (6.1) and (6.2).
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Theorem 6.3.1 Let p′ and q′ be conjugate numbers for p and q, respectively and

(e1, e2) be a nontrivial solution of the homogenous system (6.4). If

2e1p+e2q >

(∫ b

a

h−p
′/p(t)dt

) e1p

p′
(∫ b

a

m−q
′/q(t)dt

) e2q

q′
(∫ b

a

f+(t)dt+
∑
a≤τi<b

a+i

)e1

×

(∫ b

a

g+(t)dt+
∑
a≤τi<b

b+i

)e2

(6.24)

holds, then system (6.1) is disconjugate on [a, b].

Proof. Suppose on the contrary that there is a real solution w(t) = (u(t), v(t))

with nontrivial (u(t), v(t)) having two zeros s1, s2 ∈ [a, b] (s1 < s2) such that

(u(t), v(t)) 6= 0 for all t ∈ (s1, s2). Applying Theorem 6.1.1 we see that

2e1p+e2q ≤
(∫ s2

s1

h
−p′
p (t)dt

) e1p

p′
(∫ s2

s1

m
−q′
q (t)dt

) e2q

q′
(∫ s2

s1

f+(t)dt+
∑

s1≤τi<s2

a+i

)e1

×

(∫ s2

s1

g+(t)dt+
∑

s1≤τi<s2

b+i

)e2

≤
(∫ b

a

h
−p′
p (t)dt

) e1p

p′
(∫ b

a

m
−q′
q (t)dt

) e2q

q′
(∫ b

a

f+(t)dt+
∑
a≤τi<b

a+i

)e1

×

(∫ b

a

g+(t)dt+
∑
a≤τi<b

b+i

)e2

.

Clearly, the last inequality contradicts (6.24). The proof is complete. �

Again, we have the corresponding corollaries and theorem whose proofs are the same

as proof of Theorem 6.3.1, hence omitted.

Corollary 6.3.1 Let p′ and q′ be conjugate numbers for p and q, respectively. Assume

that (6.11) or (6.12) holds. If

2p+q >

(∫ b

a

h−p
′/p(t)dt

) p
p′
(∫ b

a

m−q
′/q(t)dt

) q
q′
(∫ b

a

f+(t)dt+
∑
a≤τi<b

a+i

)

×

(∫ b

a

g+(t)dt+
∑
a≤τi<b

b+i

)
.

holds, then system (6.1) is disconjugate on [a, b].
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Corollary 6.3.2 Let p′ and q′ be conjugate numbers for p and q, respectively. Assume

(6.13) holds. If

2θ+β >

(∫ b

a

h−p
′/p(t)dt

) θ
p′
(∫ b

a

m−q
′/q(t)dt

) β
q′
(∫ b

a

f+(t)dt+
∑
a≤τi<b

a+i

)θ/p

×

(∫ b

a

g+(t)dt+
∑
a≤τi<b

b+i

)β/q

holds, then system (6.1) is disconjugate on [a, b].

Corollary 6.3.3 Let p′ and q′ be conjugate numbers for p and q, respectively. Assume

α = θ and β = γ and (6.14) hold. If

2α+β >

(∫ b

a

h−p
′/p(t)dt

) α
p′
(∫ b

a

m−q
′/q(t)dt

) β
q′
(∫ b

a

f+(t)dt+
∑
a≤τi<b

a+i

)α/p

×

(∫ b

a

g+(t)dt+
∑
a≤τi<b

b+i

)β/q

holds, then system (6.1) is disconjugate on [a, b].

We give the next theorem, which is a direct consequence of Theorem 6.3.1, for system

(6.2).

Theorem 6.3.2 Let p′ and q′ be conjugate numbers for p and q, respectively, and

(6.14) hold. Suppose that

α̂i = |αi+1|p/q−1, βi = |αi + 1|p−2 (αi+1)−1, δi = |αi + 1|p/q
′
−1, i ∈ N.

If

2α+β >

(∫ b

a

h−p
′/p(t)dt

) α
p′
(∫ b

a

f+(t)dt+
∑
a≤τi<b

(
γi

αi + 1

)+

|αi + 1|2−p
)α

p

×
(∫ b

a

m−q
′/q(t)dt

) β
q′
(∫ b

a

g+(t)dt+
∑
a≤τi<b

µ+
i |αi + 1|−p/q

′

)β
q

holds, then system (6.2) is disconjugate on [a, b].
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6.3.2 Eigenvalue problems

Now, we present an application of the obtained Lyapunov-type inequalities for system

(6.1) and (6.2). By using techniques similar to the technique in Napoli and Pinasco

[78], we establish the following results which give lower bounds for eigenvalues of the

associated eigenvalue problems of system (6.1) and (6.2). The proofs of the following

theorems are based on the Lyapunov type inequalities derived in Theorem 6.1.1 and

Theorem 6.1.2.

Let f(t) = λαr1(t), g(t) = µβr2(t), ai = λαci1 and bi = µβci2. Then system (6.1)

reduces to the following eigenvalue problem

−
(
h(t) |u′|p−2 u′

)′
= λαr1(t) |u|α−2 u |v|β , t 6= τi

−
(
m(t) |v′|q−2 v′

)′
= µβr2(t) |u|θ |v|γ−2 v, t 6= τi

− ∆
(
h(t) |u′|p−2 u′

)∣∣∣
t=τ−i

= λαci1 |u|α−2 u |v|β , i = 1, 2, . . . ,m

− ∆
(
m(t) |v′|q−2 u′2

)∣∣∣
t=τ−i

= µβci2 |u|θ |v|γ−2 v, i = 1, 2, . . . ,m

u(a) = u(b) = v(a) = v(b) = 0.

(6.25)

Definition 6.3.1 A pair (λ, µ) is called an eigenvalue of (6.25) if there is a corre-

sponding solution (u, v) such that u, v 6≡ 0 on (a, b).

Theorem 6.3.3 Let p′ and q′ be conjugate numbers for p and q, respectively, (e1, e2)

be a nontrivial solution of the homogenous system (6.4) and∫ b

a

rk(t)dt+
∑
a≤τi<b

cik > 0, k = 1, 2. (6.26)

Then there exists a function h(λ) =
1

β

(
CD

(λα)e1

) 1
e2

such that µ ≥ h(λ) for every

positive eigenvalue pair (λ, µ) of the system (6.25) where the constants C and D are

given as

C = 2e1p+e2q
(∫ b

a

h
−p′
p (t)dt

)−e1p
p′
(∫ b

a

m
−q′
q (t)dt

)−e2q
q′

,

D =

(∫ b

a

r1(t)dt+
∑
a≤τi<b

ci1

)−e1 (∫ b

a

r2(t)dt+
∑
a≤τi<b

ci2

)−e2
.
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Proof. Let (λ, µ) be a positive eigenvalue pair and (u, v) be the corresponding eigen-

functions of the system (6.25). If we apply Lyapunov inequality obtained in Theorem

6.1.1 for system (6.25), we get

2e1p+e2q ≤
(∫ b

a

h−p
′/p(t)dt

) e1p

p′
(∫ b

a

λαr1(t)dt+
∑
a≤τi<b

λαci1

)e1

×
(∫ b

a

m−q
′/q(t)dt

) e2q

q′
(∫ b

a

µβr2(t)dt+
∑
a≤τi<b

µβci2

)e2

=

(∫ b

a

h−p
′/p(t)dt

) e1p

p′
(∫ b

a

m−q
′/q(t)dt

) e2q

q′

(λα)e1(µβ)e2

×

(∫ b

a

r1(t)dt+
∑
a≤τi<b

ci1

)e1 (∫ b

a

r2(t)dt+
∑
a≤τi<b

ci2

)e2

.

(6.27)

For the eigenvalue µ we can find the following lower bound as

µβ ≥ 2
e1p+e2q

e2 (λα)
−e1
e2

(∫ b

a

h−p
′/p(t)dt

)−e1p
e2p
′ (∫ b

a

m−q
′/q(t)dt

)−q
q′

×

(∫ b

a

r1(t)dt+
∑
a≤τi<b

ci1

)−e1
e2

(∫ b

a

r2(t)dt+
∑
a≤τi<b

ci2

)−1
.

Also by rearranging terms in (6.27), we obtain

λe1µe2 ≥ CD

αe1βe2
.

�

Since the proofs of following corollaries are the same as that of Theorem 6.3.3, they

are omitted.

Corollary 6.3.4 Let p′ and q′ be conjugate numbers for p and q, respectively, (6.11)

or (6.12) and (6.26) hold. Then there exists a function h1(λ) =
1

β

(
C1D1

λα

)
such that

µ ≥ h1(λ) for every positive eigenvalue pair (λ, µ) of the system (6.25) where the

constants C1 and D1 are given as

C1 = 2p+q
(∫ b

a

h
−p′
p (t)dt

)−p
p′
(∫ b

a

m
−q′
q (t)dt

)−e2q
q′

,

D1 =

(∫ b

a

r1(t)dt+
∑
a≤τi<b

ci1

)−1(∫ b

a

r2(t)dt+
∑
a≤τi<b

ci2

)−1
.
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Corollary 6.3.5 Let p′ and q′ be conjugate numbers for p and q, respectively, (6.13)

and (6.26) hold. Then there exists a function h2(λ) =
1

β

(
C2D2

(λα)
θ
p

) q
β

such that

µ ≥ h2(λ) for every positive eigenvalue pair (λ, µ) of the system (6.25) where the

constants C2 and D2 are given as

C2 = 2θ+β
(∫ b

a

h
−p′
p (t)dt

)−θ
p′
(∫ b

a

m
−q′
q (t)dt

)−β
q′

,

D2 =

(∫ b

a

r1(t)dt+
∑
a≤τi<b

ci1

)−θ
p
(∫ b

a

r2(t)dt+
∑
a≤τi<b

ci2

)−β
q

.

Corollary 6.3.6 Let p′ and q′ be conjugate numbers for p and q, respectively, and

α = θ and β = γ. Assume (6.14) and (6.26) hold. Then there exists a function h3(λ)

such that µ ≥ h3(λ) =
1

β

(
C3D3

(λα)
α
p

) q
β

for every positive eigenvalue pair (λ, µ) of the

system (6.25) where the constants C3 and D3 are given as

C3 = 2α+β
(∫ b

a

h
−p′
p (t)dt

)−α
p′
(∫ b

a

m
−q′
q (t)dt

)−β
q′

,

D3 =

(∫ b

a

r1(t)dt+
∑
a≤τi<b

ci1

)−α
p
(∫ b

a

r2(t)dt+
∑
a≤τi<b

ci2

)−β
q

.

Now we will consider system (6.2) and define an eigenvalue problem associated to

this system. Let f(t) = λαr1(t), g(t) = µβr2(t), γi = λαci1 and µi = µβci2. Then

system (6.2) reduces to the following eigenvalue problem

−
(
h(t) |u′|p−2 u′

)′
= λαr1(t) |u|α−2 u |v|β , t 6= τi

−
(
m(t) |v′|q−2 v′

)′
= µβr2(t) |u|α |v|β−2 v, t 6= τi

∆u|t=τi = αiu, ∆v|t=τi = α̂iv,

− ∆
(
h(t) |u′|p−2 u′

)∣∣∣
t=τ−i

= βi

(
h(t) |u′|p−2 u′

)
− λαci1 |u|α−2 u |v|β ,

− ∆
(
m(t) |v′|q−2 u′2

)∣∣∣
t=τ−i

= δi

(
m(t) |v′|q−2 v′

)
− µβci2 |u|α |v|β−2 v,

u(a+) = u(b−) = v(a+) = v(b−) = 0

(6.28)

where α̂i = |αi + 1|p/q − 1, βi = |αi + 1|p−2 (αi + 1)− 1, δi = |αi + 1|p/q
′
− 1

for i ∈ N.
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Definition 6.3.2 A pair (λ, µ) is called an eigenvalue of (6.28) if there is a corre-

sponding solution (u, v) such that u, v 6≡ 0 on (a, b).

Theorem 6.3.4 Let p′ and q′ be conjugate numbers for p and q, respectively, and∫ b

a

rk(t)dt+
∑
a≤τi<b

ρik > 0, k = 1, 2

where ρi1 = ci1|αi + 1|2−p/(αi + 1) and ρi2 = ci2|αi + 1|−p/q′ . Then there exists a

function h4(λ) =
1

β

(
EF

(λα)
α
p

) q
β

such that µ ≥ h4(λ) for every positive eigenvalue

pair (λ, µ) of the system (6.28) where the constants E and F are given by

E = 2α+β
(∫ b

a

h
−p′
p (t)dt

)−α
p′
(∫ b

a

m
−q′
q (t)dt

)−β
q′

,

F =

(∫ b

a

r1(t)dt+
∑
a≤τi<b

ρi1

)−α
p
(∫ b

a

r2(t)dt+
∑
a≤τi<b

ρi2

)−β
q

,

Proof. Let (λ, µ) be a positive eigenvalue pair and (u, v) be the corresponding eigen-

functions of the system (6.28). If we apply Lyapunov inequality obtained in Theorem

6.1.2 for system (6.28), we get

2α+β ≤
(∫ b

a

h
−p′
p (t)dt

) α
p′
(∫ b

a

λαr1(t)dt+
∑
a≤τi<b

λα
ci1

αi + 1
|αi + 1|2−p

)α
p

×
(∫ b

a

m
−q′
q (t)dt

) β
q′
(∫ b

a

µβr2(t)dt+
∑
a≤τi<b

µβci2|αi + 1|−p/q′
)β

q

= (λα)
α
p

(∫ b

a

h
−p′
p (t)dt

) α
p′
(∫ b

a

r1(t)dt+
∑
a≤τi<b

ci1
αi + 1

|αi + 1|2−p
)α

p

× (µβ)
β
q

(∫ b

a

m
−q′
q (t)dt

) β
q′
(∫ b

a

r2(t)dt+
∑
a≤τi<b

ci2|αi + 1|−p/q′
)β

q

.

For the eigenvalue µ, we can obtain the following lower bound as

µβ ≥
(∫ b

a

h
−p′
p (t)dt

)−qα
βp′
(∫ b

a

r1(t)dt+
∑
a≤τi<b

ci1
αi + 1

|αi + 1|2−p
)−qα

pβ

× 2
q
β
(α+β)(λα)

−qα
βp

(∫ b

a

m
−q′
q (t)dt

)−q
q′
(∫ b

a

r2(t)dt+
∑
a≤τi<b

ci2|αi + 1|−p/q′
)−1

.
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Also by rearranging terms in the above inequality, we obtain

λ
α
p µ

β
q ≥ EF

α
α
p β

β
q

.

�

6.3.3 Asymptotic Behavior of Oscillatory Solutions

In this section as an application of Lyapunov type inequality given in Section 6.1.1,

we establish the following results to study the asymptotic behavior of the oscillatory

solutions of system (6.1) and (6.2).

Theorem 6.3.5 Let p′ and q′ be conjugate numbers for p and q, respectively, and

(e1, e2) be a nontrivial solution of the homogenous system (6.4). Let(∫ ∞
h−p

′/p(t)dt

) e1p

p′
(∫ ∞

m−q
′/q(t)dt

) e2q

q′
(∫ ∞

f+(t)dt+
∑
τi<∞

a+i

)e1

×

(∫ ∞
g+(t)dt+

∑
τi<∞

b+i

)e2

<∞.

Then every oscillatory solution w(t) = (u(t), v(t)) of system (6.1) is bounded and

approaches zero as t→∞.

Proof. First we prove the boundedness of oscillatory solutionw(t) = (u(t), v(t)). Let

us suppose that w(t) is oscillatory but not bounded. Then lim sup
t→∞

|w(t)| =∞. Then

for everyM1, we can find T = T (M1) such that |w(t)| > M1 for all t > T . Sincew is

oscillatory, there exists an interval (t1, t2) with t1 ≥ T such that w(t1) = w(t2) = 0.

By using Lyapunov inequality for t1 ≥ T , we get

2e1p+e2q ≤
(∫ t2

t1

h−p
′/p(t)dt

) e1p

p′
(∫ t2

t1

m−q
′/q(t)dt

) e2q

q′

×

(∫ t2

t1

f+(t)dt+
∑

t1≤τi<t2

a+i

)e1 (∫ t2

t1

g+(t)dt+
∑

t1≤τi<t2

b+i

)e2

≤
(∫ ∞

t1

h−p
′/p(t)dt

) e1p

p′
(∫ ∞

t1

m−q
′/q(t)dt

) e2q

q′

×

(∫ ∞
t1

f+(t)dt+
∑

t1≤τi<∞

a+i

)e1 (∫ ∞
t1

g+(t)dt+
∑

t1≤τi<∞

b+i

)e2

≤ 1
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Then we get e1p + e2q ≤ 0 which implies contradiction. Therefore w is bounded.

Since w is bounded, |w(t)| ≤ N for t > T for any T . If w(t) does not approach zero

as t → ∞, then there exists a constant d > 0 such that 2d ≤ lim sup
t→∞

|w(t)| ≤ N .

Since w has arbitrarily large zeros, there exists an interval (t1, t2) with t1 ≥ T , where

T is sufficiently large, such that w(t1) = w(t2) = 0. The remainder of the proof is

similar to above, hence it is omitted. �

The following corollaries and their proofs follow easily from Theorem 6.3.5 and its

proof, respectively.

Corollary 6.3.7 Let p′ and q′ be conjugate numbers for p and q, respectively, and

(6.11) or (6.12) hold. Let

(∫ ∞
h−p

′/p(t)dt

) p
p′
(∫ ∞

m−q
′/q(t)dt

) q
q′
(∫ ∞

f+(t)dt+
∑
τi<∞

a+i

)

×

(∫ ∞
g+(t)dt+

∑
τi<∞

b+i

)
<∞.

Then every oscillatory solution w(t) = (u(t), v(t)) of system (6.1) is bounded and

approaches zero as t→∞.

Corollary 6.3.8 Let p′ and q′ be conjugate numbers for p and q, respectively, and

(6.13) hold. Let

(∫ ∞
h−p

′/p(t)dt

) θ
p′
(∫ ∞

m−q
′/q(t)dt

) β
q′
(∫ ∞

f+(t)dt+
∑
τi<∞

a+i

) θ
p

×

(∫ ∞
g+(t)dt+

∑
τi<∞

b+i

)β
q

<∞.

Then every oscillatory solution w(t) = (u(t), v(t)) of system (6.1) is bounded and

approaches zero as t→∞.

Corollary 6.3.9 Let p′ and q′ be conjugate numbers for p and q, respectively. Assume
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α = θ and β = γ and (6.14) hold. Let

(∫ ∞
h−p

′/p(t)dt

) α
p′
(∫ ∞

m−q
′/q(t)dt

) β
q′
(∫ ∞

f+(t)dt+
∑
τi<∞

a+i

)α
p

×

(∫ ∞
g+(t)dt+

∑
τi<∞

b+i

)β
q

<∞.

Then every oscillatory solution w(t) = (u(t), v(t)) of system (6.1) is bounded and

approaches zero as t→∞.

Theorem 6.3.6 Let p′ and q′ be conjugate numbers for p and q, respectively. Suppose

that α̂i = |αi + 1|p/q− 1, βi = |αi + 1|p−2 (αi + 1)− 1, δi = |αi + 1|p/q
′
− 1, i ∈ N.

Let

(∫ ∞
h−p

′/p(t)dt

) α
p′
(∫ ∞

f+(t)dt+
∑
τi<∞

(
γi

αi + 1

)+

|αi + 1|2−p
)α

p

×
(∫ ∞

m−q
′/q(t)dt

) β
q′
(∫ ∞

g+(t)dt+
∑
τi<∞

µ+
i |αi + 1|−p/q

′

)β
q

<∞.

Then every oscillatory solution w(t) = (u(t), v(t)) of system (6.2) is bounded and

ŵ(t) =

(
u(t)

Mi

,
v(t)

|Mi|p/q

)
→ 0 as t→∞ where Mi is defined as in equation (6.3).

Proof. Let w(t) = (u(t), v(t)) be an oscillatory solution of (6.2). Let y(t) = u(t)/Mi

and z(t) = v(t)/|Mi|p/q. Suppose on the contrary that ŵ(t) =

(
u(t)

Mi

,
v(t)

|Mi|p/q

)
is unbounded. Then given any positive number M1, we can find a positive number

T = T (M1) such that |ŵ(t)| > M1 for all t > T . Since ŵ is also oscillatory, there

exists an interval (t1, t2) with t1 ≥ T such that ŵ(t1) = ŵ(t2) = 0. Because of
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assumption, one can choose T large enough so that for every t1 ≥ T ,

2α+β ≤
(∫ t2

t1

h−p
′/p(t)dt

) α
p′
(∫ t2

t1

f+(t)dt+
∑

t1≤τi<t2

(
γi

αi + 1

)+

|αi + 1|2−p
)α

p

×
(∫ t2

t1

m−q
′/q(t)dt

) β
q′
(∫ t2

t1

g+(t)dt+
∑

t1≤τi<t2

µ+
i |αi + 1|−p/q

′

)β
q

≤
(∫ ∞

t1

h−p
′/p(t)dt

) α
p′
(∫ ∞

t1

f+(t)dt+
∑

t1≤τi<∞

(
γi

αi + 1

)+

|αi + 1|2−p
)α

p

×
(∫ ∞

t1

m−q
′/q(t)dt

) β
q′
(∫ ∞

t1

g+(t)dt+
∑

t1≤τi<∞

µ+
i |αi + 1|−p/q

′

)β
q

≤ 1.

Then we get α + β ≤ 0 which implies contradiction. Therefore w is bounded. Since

w is bounded, |ŵ(t)| ≤ N for t > T for any T . If ŵ(t) does not approach zero as

t → ∞, then there exist a constant d > 0 such that 2d ≤ lim sup
t→∞

|ŵ(t)| ≤ N . Since

ŵ has arbitrarily large zeros, there exists an interval (t1, t2) with t1 ≥ T , where T is

sufficiently large, such that ŵ(t1) = ŵ(t2) = 0. The remainder of the proof is similar

to above, hence it is omitted. �
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CHAPTER 7

CONCLUSION

This thesis is devoted to obtain Lyapunov type inequalities for linear and nonlin-

ear systems under impulse effect. The importance of Lyapunov type inequalities in

qualitative analysis of solutions of systems under considerations has been shown by

means of applications, for instance by proving disconjugacy criterion, by showing the

uniqueness of the solutions of associated inhomogeneous BVPs, by studying the sta-

bility of planar periodic systems, by finding lower bounds for the eigenvalues of the

associated eigenvalue problems and by analysing asymptotic behaviour of oscillatory

solutions of considered systems. Moreover it has been remarked that theory of system

of impulsive differential equations is richer and more fruitful than the corresponding

theory of system of ordinary differential equations due to the fact that existence of

impulse effet yields various new inequalities.

In Chapter 2 we have established Lyapunov type inequalities, which are generaliza-

tions of the inspired work of Lyapunov [69] on second order linear ordinary differen-

tial equations, for linear 2n× 2n Hamiltonian systems with impulsive perturbations.

Since changing the impulsive perturbation or assuming different conditions on the

impulses leads to variety of inequalities, presence of impulse effect provides different

Lyapunov type inequalities. Moreover our result improve and generalize the previous

ones, in particular Tang and Zhang [99], even in the special case when the impulses

are dropped. As applications of Lyapunov type inequalities, we have found a discon-

jugacy interval and a lower bound for the associated eigenvalue problems for linear

2n−dimensional Hamiltonian systems under impulse effect.

In Chapter 3 we have discussed the existence and uniqueness of solutions of inho-
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mogenous BVPs to linear 2n×2nHamiltonian systems with impulsive perturbations.

The proof of our theorem has based on the fact that if corresponding homogenous

BVP has only trivial solution, the sufficient condition of which is proved by Lya-

punov type inequalities, then inhomogenous BVP has a unique solution. Moreover

the unique solution of inhomogenous BVP has been expressed in terms of Green’s

function (pair) and properties of Green’s function (pair) has been stated. To the best

of our knowledge, our approach is quite new and our criteria are the first results which

give the relation between existence and uniqueness theory of boundary value prob-

lems and Lyapunov type inequalities. This relation has not been noted even for the

ordinary differential equations case.

In Chapter 4 we have dealt with stability problem for linear planar periodic Hamil-

tonian systems with impulsive perturbations. By combining Floquet theory and Lya-

punov type inequalities, we have derived two pairs of stability criteria and each pair

is alternative to the other one. The first pair of the criteria is generalization of Tang

and Zhang [99] while the other one is new and can be used in place of the first one

when it is not applicable. Therefore our results are new for the impulsive case.

In Chapter 5 we have derived several Lyapunov type inequalities for impulsive non-

linear systems and for their special cases, impulsive Emden-Fowler type equations

and impulsive half linear equations. Our results have related not only points where

the first component of the solution (x(t), u(t)) of considered system has consecutive

zeros but also the point where the first component of the solution (x(t), u(t)) of such

system is maximized. As an application we have derived disconjugacy criteria, found

lower bounds for the associated eigenvalue problems and investigated asymptotic be-

havior of oscillatory solutions. Our results generalize the previous one existing in

literature, in particular [105, 106].

In Chapter 6 we have obtained Lyapunov type inequalities for impulsive quasilinear

systems with (p, q)−Laplacian and (p1, p2, . . . , pn)-Laplacian. First we have consid-

ered impulsive systems whose solutions are continous, i.e there is an impulse con-

dition only on derivative of solutions. After establishing Lyapunov type inequalities

for these systems, we have studied the systems with discontinous solutions which can

be transformed to the continuous sytems. Moreover the applications of Lyapunov
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type inequalities such as obtaining disconjugacy criteria, finding lower bounds for the

associated eigenvalue problems and investigating asymptotic behavior of oscillatory

solutions are demonstrated. Our results generalize the result of [78, 19, 98, 7] and

[18, 98, 7, 6, 115] for (p, q)−Laplacian and (p1, p2, . . . , pn)-Laplacian, respectively.

Moreover we have derived new results by assuming different conditions on qjk and

pk for k, j = 1, 2, . . . , n.
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[117] V. A. Yakubovič. On M. G. Krein’s work in the theory of linear periodic hamil-
tonian systems. Ukrainian Mathematical Journal, 46(1-2):133–148, 1994.

[118] V. A. Yakubovich and V. M. Starzhinskii. Linear differential equations with
periodic coefficients. 1, 2. Halsted Press [John Wiley & Sons] New York-
Toronto, Ont., 1975. Translated from Russian by D. Louvish.

[119] X. Yang. On inequalities of Lyapunov type. Appl. Math. Comput., 134(2-
3):293–300, 2003.

[120] M. Yao, A. Zhao, and J. Yan. Periodic boundary value problems of second-
order impulsive differential equations. Nonlinear Anal., 70(1):262–273, 2009.

[121] S. T. Zavalishchin. Impulse dynamic systems and applications to mathematical
economics. Dynam. Systems Appl., 3(3):443–449, 1994.

[122] S. Zhang, L. Dong, and L. Chen. The study of predator-prey system with
defensive ability of prey and impulsive perturbations on the predator. Chaos
Solitons Fractals, 23(2):631–643, 2005.

[123] M. Zhao, X. Wang, H. Yu, and J. Zhu. Dynamics of an ecological model
with impulsive control strategy and distributed time delay. Math. Comput.
Simulation, 82(8):1432–1444, 2012.

153



154



CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Kayar, Zeynep

Nationality: Turkish (TC)

Date and Place of Birth: 31 May 1982, Ankara

Marital Status: Single

Phone: +905052209928

E-mail: zkayar@metu.edu.tr, zykayar@gmail.com

EDUCATION

Degree Institution Year

Visiting Scholar University of Santiago de Compostela, 2012

Department of Mathematical Analysis

B.S. Ankara University 2000-2004

High School Yıldırım Beyazıt Anatolian High School 1997-2000

PROFESSIONAL EXPERIENCE

Year Place Enrollment

2005-present METU, Department of Mathematics Research Assistant

FOREIGN LANGUAGES

English (Advanced), Spanish (Intermediate)

155



RESEARCH INTEREST

• Ordinary Differential Equations

• Impulsive Differential Equations

• Functional (Delay) Differential Equations

• Fractional Differential Equations

• Difference Equations and Calculus on Time Scales

• Computational Methods

SCHOLARSHIPS

Ph.d. Scholarship Program, TUBITAK, 2006-2010

PUBLICATIONS

1) Kayar, Z. and Zafer, A., Stability Criteria for Linear Hamiltonian Systems

Under Impulsive Perturbations, Applied Mathematics and Computation, 230

(2014) 680–686, http://dx.doi.org/10.1016/j.amc.2013.12.128.

2) Kayar, Z. and Zafer, A., Impulsive Boundary Value Problems for Planar Hamil-

tonian Systems, Abstract and Applied Analysis, Volume 2013 (2013), Article

ID 892475, 6 pages, http://dx.doi.org/10.1155/2013/892475.

3) Priya, G. S., Prakash, P., Nieto, J. J. and Kayar, Z., Higher-Order Numerical

Scheme for the Fractional Heat Equation with Dirichlet and Neumann Bound-

ary Conditions, Numerical Heat Transfer Part B: Fundamentals, Volume 63,

Number 6, 1 June 2013 , pp. 540-559.

INTERNATIONAL CONFERENCE PRESENTATIONS

1) Existence and Uniqueness of Solutions of Nonhomogenous Boundary Value

Problem for System of First Order Linear Impulsive Differential Equations,

156



12th International Workshop on Dynamical Systems and Applications (IWDSA

2013), Atılım University, Ankara, Turkey, August 12-15, 2013.

2) Stability Criteria for Linear Hamiltonian Systems Under Impulsive Perturba-

tions, Workshop on Qualitative Theory for Differential Equations, University

of Santiago de Compostela, Santiago de Compostela, Spain, June 13, 2012.

3) Lyapunov Type Inequalities for Quasilinear Impulsive Differential Systems,

8th International ISAAC Congress, Peoples’ Friendship University of Russia,

Moscow, Russia, August 22-27, 2011.

4) Disconjugacy and Stability Criteria For Linear Hamiltonian Systems With Im-

pulse Effect, International Conference on Differential & Difference Equations

and Applications, Azores University, Ponta Delgada, Portugal, July 4 - 8, 2011.

5) Lyapunov Type Inequalities For Nonlinear Impulsive Differential Systems, 7th

International ISAAC Congress, Imperial College, London, England, July 13-

18, 2009.

NATIONAL CONFERENCE PRESENTATIONS

1) 2 Boyutlu Impulsive Hamiltonian Sistemler İçin Sınır Değer Problemleri ve
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