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submitted by NURGÜL GÖKGÖZ in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in Department of Scientific Computing, Middle
East Technical University by,

Prof. Dr. Bülent Karasözen
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ABSTRACT

MODELING STOCHASTIC HYBRID SYSTEMS WITH MEMORY WITH AN
APPLICATION TO IMMUNE RESPONSE OF CANCER DYNAMICS

Gökgöz, Nurgül

Ph.D., Department of Scientific Computing

Supervisor : Assoc. Prof. Dr. Hakan Öktem

Co-Supervisor : Assoc. Prof. Dr. Carla Piazza

February 2014, 78 pages

Dynamics of cancer involve some complex interactions like immune system responses.
Many different models of immune response to tumor growth exist in the literature.
Most of the available models are first principles models which have problems in deter-
mining the model parameters. For potential use in treatment planning, a model should
be able to adopt to subject by subject variability and unknown factors. However, such
an approach for a complicated problem like cancer dynamics has some drawbacks.
First of all, there exist some unknown factors. Secondly, models with fixed parameters
do not allow considering subject-by-subject variability. An alternative approach to this
problem is inferring the parameters and determining system behaviour from empirical
observation. In inferential modeling case, we first select a model class and infer the
parameters from the observations. For this purpose, we used hybrid systems that are
suitable for inferential modeling due to their analytical and computational advances.
For many biological and physiological systems, the behaviour of system and its re-
sponses depend on whole history rather than a combination of historical events. We
utilize and further develop hybrid systems with memory to have a more realistic rep-
resentation. Finally, we also incorporate stochastic calculus in our model to include
uncertainities and random perturbation.

Keywords : stochastic hybrid systems, hybrid systems with memory, memory hybrid
automata, tumor-immune dynamics, mathematical modeling
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ÖZ

HAFIZALI STOKASTİK HİBRİT SİSTEMLERİN MODELLENMESİ VE
BAĞIŞIKLIK SİSTEMİNİN KANSER DİNAMİKLERİNE TEPKİSİNE

UYGULAMASI

Gökgöz, Nurgül

Doktora, Bilimsel Hesaplama Bölümü

Tez Yöneticisi : Doç. Dr. Hakan Öktem

Ortak Tez Yöneticisi : Doç. Dr. Carla Piazza

Şubat 2014, 78 sayfa

Bulaşıcı hastalıklarda hastalığın yayılmasını kontrol etmek için kullanılan eşik değer
dinamiği matematiksel epidemiolojide büyük bir öneme ve ilgiye sahiptir. En bi-
linen eşik değerlerinden biri, esas çoğalma oranı olan R0’dır. Bulaşı hastalıkların
temel sorunlarından biri de onun formüllenmesi ve hesaplanmasıdır. Kanser dinamik-
leri bağışıklık sistemi tepkileri gibi bazı karışık etkileşimler içerir. Literatürde tümör
büyümesine bağışıklık tepkisinin pek çok değişik modeli bulunmaktadır. Kullanılabilir
modellerin pek çoğu, model parametrelerinin karar verilmesinde problemleri olan ilk
ilkeler modelleridir. Tedavi planlamasının potensiyel kullanımı için bir model, birey-
den bireye değiş- kenliği ve bilinmeyen faktörleri benimsemelidir. Fakat, kanser di-
namikleri gibi karmaşık bir problem için böylesi bir yaklaşımın bazı sakıncalara sahip-
tir. Öncelikle, bazı bilinmeyen faktörler bulunmaktadır. İkinci olarak, sabit parame-
treli modeller süje-süje çeşitliliğini göz önünde bulundurmaya izin vermez. Bu prob-
leme alternatif bir çözüm deneysel gözlemlerden parametreleri çıkarmak ve sistem
davranışına karar vermektir. Çıkarımsal modelleme durumunda, ilk önce bir model
sınıfı seçeriz ve parametreleri gözlemlerden çıkarırız. Bu amaçla, analitik ve hesaplama
avantajları olan hibrit sistemleri kullandık. Çoğu biyolojik ve fizyolojik sistem için,
sistemin davranışı ve tepkisi geçmiş olayların kombinasyonundan ziyade tüm geçmişe
dayanır. Daha gerçekçi bir gösterim elde ede bilmek için, hafızlı hibrit sistemden fay-
dalandık ve daha da geliştirdik. Son olarak, belirsizlikleri ve rastgele pertürbasyonları
dahil edebilmek için, stokastik kalkülüsü de modelimizle birleştirdik.
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committee members, professor Münevver Tezer-Sezgin, professor Erkan Mumcuoğlu,
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CHAPTER 1

INTRODUCTION

1.1 Introduction of the Work

Modeling a dynamical system mathematically is crucial for understanding and control-
ling many scientific and engineering problems. If a mathematical model is developed
for a dynamical system, the observation of the dynamical system under various con-
ditions can be done and the dynamical system’s future behavior with different initial
conditions can be analyzed. This information can be used to come up with strategies
which can carry the system to a desired state.

The developments in different areas of science and technology have increased the im-
portance of mathematical modeling of dynamical systems. Hybrid systems provide a
promising area in mathematical modeling of many biological and physiological sys-
tems by combining Boolean and continuous variables and allowing them to regulate
each other [48], [57], [78], [65]. This property provides various advantages in mod-
eling complex processes and designing control systems. A control application can be
thought as the first use of hybrid systems. By the study of engineering systems which
contain relays and/or hysteresis, 1950’s can be thought of the years of the start of hy-
brid system research [64]. Later in 1990’s, hybrid systems started to take attention
people’s attention due to the vast development and implementation of digital micro
controllers and embedded devices [64]. Their use increased with the developments
of control applications like robotics, air traffic control, etc.. During the last decade,
many researchers from various disciplines such as computer science, control systems
engineering, and mathematics [6], [85] have performed considerable research activities
on hybrid systems. Modeling [4], [11], [12], [92], reachability analysis [4], [5] ,[10],
stability and stabilization [32], [51], [54], [62], [63], [95], observability and control-
lability [14], [92], [96] and optimal control [13], [104] are the mostly studied issues
[64] of this phenomena. Today, hybrid systems serve as an important device for in-
vestigating various modeling [38], [40], [78], [65] and theoretical problems [39], [78],
[65] in nature and science. Moreover, some dynamical systems that have threshold
phenomena can be best formalized by hybrid systems.

Multi-stationarity is the existence of multiple stationary steady states in a dynamical
system. Since Delbrück’s [33] suggestion stating ”Epigenetic differentiation reflects
multi-stationary”, it is widely considered in modeling of complex systems. Hybrid
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systems are essentially useful in modeling multi-stationary processes.

By piecewise linear systems, a subclass of hybrid systems, complex nonlinear dynam-
ical systems can be approximated as a combination of piecewise analytically solvable
systems, except the ones that are chaotic. Many different formalizations of hybrid sys-
tems are used in various fields. In this work, we focus on the state space representation
and hybrid automata representation.

Since many dynamical systems depend on history [27], [58], mathematical models
with memory has taken attention to mimic this property. Hybrid systems with mem-
ory are investigated in this work, because of the profits and advanced features of hybrid
systems. The future behavior of the system depends on both the state transition and the
memory which is updated at the state transitions. In this work, we propose that, mem-
ory can be thought as a ”functional memory” not an ”initial condition memory”. The
history dependent behavior appears in many biological systems. One of the obvious
one is immune response which is also investigated in this work.

1.2 Aim and Importance of the Work

The dynamics of cancer involve some complex interactions like immune system re-
sponses. Many different approaches to model immune response to tumor growth exist
in the literature. Most of the available models are first principles models which have
problems in determining the model parameters. For potential use in treatment plan-
ning, a model with capability of adopting to subject by subject variability and unknown
factors has an advantage of suggesting the best choice for each case. A common so-
lution to this problem is inferring the parameters and determining the system behavior
from empirical observation. In inferential modeling case we first select a model class
and infer the parameters from the observations. In this case, hybrid systems are suit-
able for use in inferential modeling due to their analytical and computational advances.
By hybrid systems with memory phenomena, the representation of factors which may
depend on the whole history, rather than a combination of historical events, can be
efficiently modeled. Including stochastic calculus in the model, more accurate results
can be obtained.

In this work, we build a hybrid system with memory to use in an inferential model.
We propose Stochastic Hybrid Systems with Memory (SHSM), and apply this for-
malization to tumor-immune dynamics with two different approaches. One model is
piecewise linear and the other model is nonlinear. For the one which is nonlinear,
we choose Kuznetsov’s very well known model and improve it. Such a model can be
trained with the initial data from each case and then it can be used in a personalized
planning. The memory has been used according to the different stopping times since
the model has acted with different dynamics due to the nature of cancer. That has led
us to the conclusion that the model has memorized some aspects of immune dynamics.

In order to find the parameters of the piecewise linear model, we use SDE Toolbox and
simulated the model. We find parameter values for every state of the piecewise model.
To obtain more realistic values, we use the data from the literature. It is very important
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how we choose the data. According to the data we work on, mainly two different
group of mice are investigated under IL1-α effect. One group is able to defend the
host against tumor growth with immune system variables , and the other group fails in
this process. Their defense mechanism and cancer growth differs widely. This shows
us that memorization capability of immune system is very important for the organism.
We investigate Memory Hybrid Automata in the logic sense and by doing this we
provide a research area if Hybrid Systems with Memory formalization is reachable
and decidable.

1.3 Explanation of the Work

Outline of the thesis is as follows: In Chapter 2, we give a brief description of the
related mathematical tools. In Chapter 3, we give tumor-immune dynamics, especially
the ones we used in the application part, and we mention some important mathemat-
ical models which are used to model tumor-immune system dynamics. In Chapter 4,
an introduction to deterministic and stochastic hybrid systems with memory, or shortly
DHSM and SHSM respectively, is given. In Chapter 5, a brief mathematical descrip-
tion of stochastic hybrid systems is given, two applications on tumor-immune dynam-
ics is done. One model is piecewise linear and the other one is a developed version of
Kuznetsov’s model. In Chapter 6, Memory Hybrid Automata is introduced, some basic
definitions on Memory Hybrid Automata are given and a few theorems are represented
and proved. Finally in Chapter 7, we will sum up the work and mention some future
progress.
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CHAPTER 2

HYBRID SYSTEMS

In this chapter, some basic information about dynamical systems, hybrid dynamical
systems, hybrid automata, graph theory, stochastic hybrid systems and stochastic hy-
brid automata will be given.

As we start, the concepts of dynamics must be carefully explained. The theory of
dynamics is the subjectthat deal with change, with systems that evolve in time [94].
The solutions of such a system may settle down to an equilibrium, keep repeating in
cycles, or do something more complicated. This is how the dynamical systems keeps
dealing with the analysis.

2.1 Examples of Dynamical Systems

We, now give some classical examples of dynamical systems. For a detailed discussion
of these examples please see [19], [94], [102]. The exponential growth of a population
of organisms is one of the typical examples of dynamical systems. This system is given
by the first-order equation

ẋ = rx, (2.1)

where x is the population at time t and r is the growth rate. This system is described
by only one variable, at the initial value of the population x is enough to determine the
population at any later time. Moreover, this is a linear system because the differential
equation (2.1) is linear in x.

Another example can be thought as the Lotka-Volterra equations, also known as the
predator-prey equations which are mostly used to explain the dynamics of biological
systems. Two species interact each other where one is prey and the other is predator.
Their population change in time according to the pair of equations [61], [94], [101]:

dx

dt
= x(α− βy), (2.2)

dy

dt
= −y(γ − δx), (2.3)
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where x is the population of prey, y is the population of some predator, dx
dt
, dy
dt

are the
growth rates of the two populations over time. The values α, β, γ and δ are parameters
describing the interaction of the two species.

First equation refers to the prey population. Assuming that the prey have an unlimited
food supply, the exponential growth of the prey is given by the term αx. The rate of
predation of the prey which is assumed to be proportional to the rate of the meeting of
the predator and theprey is represented above by βxy.

Second equation in the system refers to the predator population. In this equation, δxy
represents the growth of the predator population. The term, γy describes the loss rate
of the predators because of their natural death or emigration. Therefore, the equation
gives the change of predator population by the growth causing from the food supply
and the loss from natural death [61], [94], [101].

2.1.1 An example

An illustration of the predator-prey model can be given by two species of animals, a
rabbit (prey) and a fox (predator). If the initial conditions are 80 rabbits and 40 foxes,
one can plot the progression of the two species over time. The choice of time interval
is arbitrary. you may see the Figure 2.1

Figure 2.1: An example of population dynamics of prey and predators. Initial condi-
tions were set to prey=80 and predator=40.
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2.2 Hybrid Systems

A hybrid system is a special kind of dynamical systems that is formed by both con-
tinuous and Boolean variables regulating each other [48], [57], [65], [78]. In hybrid
system formulation, the governing differential equations of continuous variables and
Boolean state of a discrete variable can regulate each other.

One may find the typical examples of hybrid systems in nature and technology. Two
main examples are those including real physical switches and those referring dynami-
cal systems with threshold phenomena. The continuous traffic flow regulated by traffic
lights, which is discrete, and an electrical circuit protected by a fuse and the temper-
ature controlled by a thermostat can be given as examples for the first group. For the
second group of hybrid systems, the dynamical systems which are switching when-
ever a threshold surpassed is considered. The bouncing ball and also the activation or
the inhibition of a gene when a corresponding protein surpass a threshold are famous
examples for this group.

The representation of hybrid systems differs because of its use in different fields such
as control engineering, computer engineering, logistics, automation and dynamical
systems theory. Hybrid automata can be considered as a general representation for
hybrid systems. We will give some detailed information about hybrid automata later
but as a start we may give a representation of a hybrid system basically as follows;

dy

dt
= fs(y(t), xe(t)),

s(t) = (sk, sx) if y(t) ∈ Uk,

where U1, U2, . . . , Un are subspaces of the state space Y of y and sx is an external state
input.

A relatively simpler hybrid system model suitable for gene networks and similar pro-
cesses is obtained by partitioning the state space by a single threshold intersecting each
axis(variable). This limitation of threshold conditions is sufficiently realistic for prob-
lems investigated and it simplifies handling effects of delays which are very important
in biological regulatory systems. The delay between the interaction of variables intro-
duces difficulties in analysis and simulations but supplies the system by the capability
to memorize functions rather than values. In other words, states are functions instead
of initial values. Therefore, an adaptation of the above system for delayed case can be
given as follows;

dy

dt
= fs(y(t), xe(t)),

s(t) = FB(Q(y(t)), s(t− τ), sx(t)),

Qi(y(t)) =

{
1 if yi(t) > hi
0 if yi(t) ≤ hi,

where
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• fs : Y ×Xe → Rn is a switching function determined by the state vector s(t),

• y is an n dimensional vector of continuous variables,

• xe is a vector representing the continuous external inputs,

• s(t) : R→ [0, 1]m is the state vector,

• FB : [0, 1]n+m+k → [0, 1]m is a Boolean function,

• sx(t) is a vector representing the Boolean external inputs,

• Q(.) is the quantization operation, and

• τ is the delay.

By this representation the delay is covered by the piecewise constant part.

2.2.1 Example (Bouncing Ball)

We now consider a classical example of hybrid systems in order to illustrate the formu-
lation above. Think of a ball which is released from its center with height x(t0) = x0
at time t = t0 without any initial velocity i.e. v(t0) = 0. The ball will accelerate
downwards until the time when it hits to the ground with velocity

v(t) = v(t0)− gt
and position

x(t) = x(t0)−
1

2
gt2.

Here g is the acceleration due to gravity. For simplicity, nonelastic collision is consid-
ered and mechanical properties of the ball are ignored. Let r be the radius of the ball.
The ball hits to the ground when x(t) = r. After the hit, the ball compresses and all
the kinetic energy will turn into compression until the ball stops, i.e. v(t) = 0 where it
will decelerates by

dv

dt
= k.

After the compression the ball will start to accelerate upwards with

dv

dt
= ρk,

where 0 < ρ < k.

In this example, different states of the system can be given as;

s1 = x(t) > r,

s2 = (x(t) ≤ r) ∧ (v(t) ≤ 0),

s3 = (x(t) ≤ r) ∧ (v(t) > 0),
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where ∧ is the logical AND conjunction. Here, the state is 1 if the binary relation
between the terms is true and 0 otherwise. The state representation of the bouncing
ball is given by

dx

dt
= v,

dv

dt
= −(s(t) = s1)g + (s(t) = s2)k + (s(t) = s3)ρk,

s1 = x(t) > r,

s2 = (x(t) ≤ r) ∧ (v(t) ≤ 0),

s3 = (x(t) ≤ r) ∧ (v(t) > 0),

For a detailed discussion of this example see [78], and [65] and for different examples
of dynamical systems with state space representation see [81].

2.3 An Overview of The Graph Theory

A hybrid system can also be represented by a graph. In such a representation, the nodes
correspond to different states of the system and the edges correspond to possible state
transitions of the system. We now give basic definitions of the graph theory that will
be useful to explain our work in the following chapters.

Definition 2.1. A graph G is a finite nonempty set V (G) of vertices (also called points
or nodes) and a set E(G) of edges also called or lines. The set V (G) is called the
vertex set and E(G) its edge set [26].

Let u and v be two vertices of a graph G. If e = uv is an edge of G, then we say that
u and v are adjacent in G, and that e joins u and v. For example, a graph G is defined
by the sets

V (G) = {u, v, w, x, y, z}
and

E(G) = {uv, uw,wx, xy, xz} .
If more than one edge join a pair of vertices in a graph, then this graph is called
multigraph. Two or more edges that join the same pair of vertices are called paralleledges.
An edge that join itself is a loop [26].

Definition 2.2. A network G = (V,E) is a directed graph in which every edge e is
assigned an initial vertex and a terminal vertex [78], [65].

Graphs or networks have lots of benefits in the sense of formalizing the systems that
have interconnected elements such as dynamical systems, artificial intelligence tools,
traffic, fluid flow, social interactions, networks of computers, chemical bonds and lin-
guistics. Practical and useful information can be obtained in the case of complex net-
works, by the analysis of the network of the system.
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There are two main ways of describing a dynamical system by a graph representation.
First way is the state space representation [81] as illustrated in the previous section.
Second way is to display the cause-effect relation [65], [78], [88], [98], [99]. A plus
sign on the edge corresponds to the activation and a minus sign corresponds to the
repression. For flows, weighted graphs can be introduced.

Gene regulatory systems have various models in mathematical biology and bioinfor-
matics. Genes regulate the metabolism by activating or repressing protein synthesis.
The mechanism in a cellular system can be well understood by the regulatory relations
in a gene network. When illustrating gene networks in graph representation, nodes cor-
respond to the genes and directed edges to their relations such that a positive directed
edge from a gene to the other means the activation, whereas a negative directed edge
means the repression [93], [88]. The knowledge on the relations in gene networks are
limited because of the complexity of these networks [40].

Boolean approach is the generally used modeling technique in gene networks. Depend-
ing on the activity level of the gene there exist two different states: active or inactive
respectively, 1 or 0 [98], [99]. There are some different approaches such that NK
model which can be used for modeling gene regulatory networks as Kauffman used
[88]. In this system, connectivity can be thought as K and the nodes can be thought as
N .

2.4 Discrete Event Systems

In this section, we give some basic information on discrete event systems and some
related material that will be useful in the following chapters.

2.4.1 Automaton (State Machine)

Definition 2.3. A state machine or an automaton M = (Q, q0, V, I, E) is a tuple with
5 components which consist of [78],[65]

• a finite set of locations Q,

• an initial location q0 ∈ Q,

• a finite set of variable V , which defines the set TV of all possible values of V ,

• an initial set of values to the variables I ⊆ TV , and

• a set of edges E, where an edge e = (q1, q2, g, a) ∈ E consists of

– the source location q1 ∈ Q,

– the destination location q2 ∈ Q,

– the guard g ⊂ TV of an edge
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– the action part of the edge a : TV → TV , where the action a can happen
when V ∈ g

The state space of M is
∑

= Q× TV . An automaton M is a hybrid automaton if V
includes continuous variables.

The automatons (state machines) can be represented by directed graphs. In such a
representation, the vertices (nodes) correspond to the states and the edges correspond
to the possible transitions from one state to another.

2.4.2 Regular Languages

The following definitions are collected from [65] and [78].

Definition 2.4. A regular language is the set of all orderings of events which can hap-
pen in a system. An alphabet A is a finite nonempty set of events. A trace (string,
word) is a finite sequence of events from an alphabet.

Assuming A∗ denotes the set of all finite traces of A including the empty string a
language L over A is defined as

L ⊆ A∗.

A formal language is a language marked by an automaton.

2.4.3 Hybrid Automata

A hybrid automata is a formal representation of hybrid systems. A hybrid automa-
ton is an automaton that includes continuous variables in V as mentioned in the state
machine. Hybrid automata have been used to model and analyze a variety of systems
including embedded systems, systems biology, air traffic control systems.

Definition 2.5. A hybrid automaton is defined as H = {Q, Y, Init, f, Inv, E,G,R}
consisting of [17], [58], [66], [83]

• a set of discrete states Q = {q1, q2, . . . , qm} also called locations,

• a space of continuous variables Y = Rn,

• a set of initial conditions Init ⊆ Q× Y ,

• a vector field f : Q× Y → Y governing the continuous evolution,

• an invariant set (domain, subspace) for each q ∈ Q, Inv : Q → P (Y ) where
P (.) denotes the power set. Each state’s governing dynamics is valid within its
invariant set.

• A set of edges (state transitions) E ⊂ Q×Q,

11



• guard conditions for each edge G : E → P (Y ),

• a reset map for each combination of edges and continuous states R : E × Y →
P (Y ). A reset map represents possible jumps in the values of the continuous
variables which takes place with a state transition.

2.4.3.1 Hybrid Time Sets

Definition 2.6. A hybrid time set is a finite or infinite sequence of intervals τ = Ii
N
i=0

such that

• Ii = [τi, τ
′
i ] for all i < N ;

• if N <∞ then either IN = [τN , τ
′
N ] or IN = [τN , τ

′
N); and

• τi ≤ τ
′
i = τ

′
i+1 for all i.

2.4.3.2 Hybrid Trajectory

The solutions of the state variables of hybrid systems are defined by hybrid trajectories.

Definition 2.7. A hybrid trajectory is a triple (τ, q, y) which consists of τ = {T0, T1, . . . , TN},
q = {q0, . . . , qN}, y = {y0, . . . , yN} , where qi : Ti → Q and yi : Ti → Rn [65],[78].

2.4.3.3 Executions

Definition 2.8. A hybrid trajectory (τ, q, y) is an execution of a hybrid automaton H if
the following conditions hold [78],[65]:

• Initial condition: (q0(0), y0(0)) ∈ Init.
• Discrete evolution:

–
(
qi(τ

′
i ), qi+1(τi+1)

)
∈ E

– yi(τ
′
i ) ∈ G

(
qi(τ

′
i ), qi+1(τi+1)

)
– yi+1(τi+1) ∈ R

(
qi(τ

′
i ), qi+1(τi+1), yi(τ

′
i )
)
.

• Continuous evolution: qi : Ti → Q is constant over t ∈ Ti, yi : Ti → Rn is the
solution of the differential equation

– dyi
dt

(t) = fqi(t)(yi(t))

and for all t ∈
[
τi, τ

′
i

)
, yi ∈ Inv(qi).

If τ is a finite sequence and the last interval in τ is closed, then the execution is finite.
If τ is an infinite sequence, or the sum of the time intervals is infinite then it’s infinite.
If it is infinite where the sum of time intervals τN − τ0 <∞, then it is called zeno.
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dx/dt = v

dv/dt = −g

x > r

dx/dt = v

dv/dt = ρk

x < r

v > 0

dx/dt = v

dv/dt = k

x < r

v < 0

v = 0

x = r

x = r

Figure 2.2: Hybrid automaton representation of bouncing ball example [78], [65].

2.4.4 An Example: Bouncing Ball

If the bouncing ball example considered, there exist three locations depending on the
states. x = r, v = 0 and x = r are the guard conditions for the states from first
to second, from second to third and from third to one, respectively (see Figure 2.2).
Assuming k >> g, only one state is obtained. The guard condition makes the system
show a jump behavior (see Figure 2.3). For a detailed discussion see [65] and [78].

2.5 Piecewise Linear Dynamical Systems

Let F be a functional which maps the input variable x(t) to the output function of the
variable y(t) and let x1, x2 be two input variables of F with output function of variables
y1, y2 respectively. More precisely, we have

y1(t) = F (x1),

y2(t) = F (x2).

The system above F is called linear if the following condition holds [72], [75]:

α1y1(t) + α2y2(t) = F (α1x1(t) + α2x2(t)).

Linear systems have many advantages in mathematical modeling [78], [88]. For ex-
ample, the linear system,

dy

dt
= My,
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dx/dt = v

dv/dt = −g
x > r

x = r v = ρv

Figure 2.3: Bouncing ball representation where k >> g [78], [65].

has the solution
y(t) = y0(t)exp(t− t0)M,

where y0, t0 are the initial values. For nonlinear systems, piecewise linear models can
be considered for suitable approximations because of their simplicity.

Suppose that the state space of a dynamical system be formed by k disjoint subspaces.
More precisely [78]

U = U1 ∪ U2 ∪ . . . ∪ Uk
and

Ui ∩ Uj = Ø where i 6= j.

Let y0, y1, y2 ∈ Ui, where
y2 − y0 = r (y1 − y0) .

Assume that y0(t), y1(t), y2(t) respectively indicates that if the system starts with the
initial state y(t0) = y0, then the function representing its temporal evolution for t > t0
is denoted by y0(t). The system is called piecewise linear in Ui if for all t0 < t < ti,

y2 [t0, ti]− y [t0, ti] = M (y1 [t0, ti]− y [t0, ti]) ,

where
y0(t), y1(t), y2(t) ∈ Ui

and M is a constant matrix.

The system is called piecewise linear if it is piecewise linear in all subspaces of its state
space. To represent a piecewise linear system, as the switching differential equations
the following representation is used [78]

dy

dt
= Ms(t)y(t) +Ns(t)xe(t) + ks(t),
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s(t) = si if y(t) ∈ Ui,
where

• y(t) ∈ Rn is a column vector denoting the continuous variables,

• s(t) ∈ {1, 2, . . . , p} is a variable denoting the state of the system,

• M : s → Rn×n is a switching matrix and the elements are determined by the
state of the system,

• k : s → Rn is a switching vector and the elements are determined by the state
of the system,

• U ⊂ Rn is a subspace of the system’s state space.

In this representation, subscript i denotes the ith element of the corresponding vector.

Systems that exhibit nonlinear behavior can be approximated by piecewise linear sys-
tems including threshold phenomena. Critical measures, approximation accuracy and
physical interpretation make piecewise linear systems useful.

2.6 Stochastic Hybrid Systems and Stochastic Automata

Deterministic and non-deterministic hybrid systems have taken attention the interest of
researchers in the recent years. They both have some limitations and to observe random
failures because of unexpected transitions from one state to another, or random task
execution times which decide the time of the system in different modes, studies have
been trended towards a wider area of hybrid systems. To overcome these difficulties
and to model these randomness more realistically, Stochastic Hybrid Systems (SHS)
have been studied, developed and applied to several areas, such as power industry [30],
flexible manufacturing, and fault tolerant control [43].

According to different application areas, different types of Stochastic Hybrid Models
have been developed. Models have differences mainly at the entrance of the stochastic-
ity the process [89]. For example, continuous evolution described as stochastic hybrid
systems, transitions may happen randomly, the destinations of discrete transitions may
be handled by probability kernels on the state space, etc.

Various classes of stochastic hybrid processes have been developed for different kinds
of problems, e.g. e.g., counting processes with diffusion intensity [69, 89], diffusion
processes with Markovian switching parameters [70, 103], Markov decision drift pro-
cesses [89], piecewise deterministic Markov processes [28, 29, 53], controlled switch-
ing diffusions [15, 42, 43], and more recent stochastic hybrid systems of [52, 84].
Subject to different kinds of problems they have been developed for, they have various
degrees of modeling power.

Now, we give the definition of Stochastic Hybrid Systems (SHS) from Hespana [22],
[50].
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Definition 2.9. The following differential equation defines Stochastic Hybrid Systems

x = f(q, x, t)

, a family of m discrete transition (reset) maps

(q, x) = φ`(q
−, x−, t), ` ∈ {1, ...,m},

and a family of m transition intensities

λ`(q, x, t), ` ∈ {1, ...,m},

where Q denotes a (typically finite) set and f : Q×Rn× [0,∞)→ Rn, φ` : Q×Rn×
[0,∞) → Q ×Rn λ` : Q ×Rn × [0,∞) → [0,∞) ∀` ∈ 1, ...,m. A SHS represents
a jump process q : Ω × [0,∞] → Q called the discrete state; a stochastic process
x : Ω × [0,∞) → Rn with piecewise continuous sample paths called the continuous
state; and m stochastic counters N` : Ω× [0,∞)→ N>0 called the transition counters.

2.6.1 Example of Stochastic Hybrid Model

A stochastic hybrid system can be shown by a directed graph as in Figure 2.4 [50],
[22]. Within this representation scheme each node corresponds to a discrete mode
and each edge to a transition between discrete modes. The nodes represents both the
corresponding discrete mode and the vector fields that determines the evolution of the
continuous state in the mode they belong to. The start of each edge is represented by
the corresponding transition intensity and the end is represented by the reset map.

q = q3

ẋ = f(q3, x, t)

λ(q3, x, t) (q3, x, t) → φ(q3, x, t)

λ(q1, x, t) (q1, x) → φ(q1, x, t)

q = q2

ẋ = f(q2, x, t)

q = q1

ẋ = f(q1, x, t)

Figure 2.4: Graphical representation of a Stochastic hybrid system [22], [50]

For a mathematically precise characterization of Stochastic Hybrid Systems, Hespana
assumes that for every (q0, x0, t0) ∈ Q × Rn × [0,∞) there exists a unique global
solution ϕ(.; t0, q0, x0) → Rn to x = f(q, x, t) with initial condition x(t0) = x0 and
q(t0) = q0. The µ`k, ` ∈ {1, ...,m}, k ∈ N denote independent random variables all
uniformly distributed in the interval [0, 1]. Those are transition triggers. By assuming
an initial condition (q0, x0, t0) ∈ Q×Rn × [0,∞) and for a given ω ∈ Ω, the sample
paths of q(ω, .) : [t0,∞)→ Q, x(ω, .) : [t0,∞)→ Rn and all theN`(ω, .) : [t0,∞)→
N is constructed as follows [22]:

1. Set t0(ω) = t0, q(ω, 0) = 0,, x(ω, 0) = 0, N`(ω, 0) = 0, ∀`.
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2. Let t1(ω) be the largest time on (t0(ω),∞] for which

exp{−
∫ t

t0(ω)

λ`(q(ω, t0(ω)), ϕ(s; t0(ω)), q(ω, t0(ω)), x(ω, t0(ω)), s)ds} > µ`0(ω)

∀t ∈ [t0(ω), t1(ω)), ` ∈ 1, ...,m

3. On the interval [t0(ω), t1(ω)), the sample paths of q(ω, .) and all the counters
N`(ω, .) remain constant, whereas the sample path of x(ω, .) equals
ϕ(.; t0(ω), q(ω, t0(ω)), x(ω, t0(ω))).

4. Denoting by `ω ∈ 1, 2, , , , ,m the index for which (4) is violated at time t =
t1(ω), the counter N`1(ω)(ω) is incremented by one and

(q(ω, t1(ω)), x(ω, t1(ω))) = φ`1(ω)(q
−(ω, t1(ω)), x−(ω, t1(ω))).

5. In case t1(ω) < ∞, repeat the construction from the step 2 above with t0(ω),
µ`0(ω), t1(ω), `1(ω) replaced by tk(ω), µ`k(ω), tk+1(ω), `k+1(ω).

2.6.2 Stopping Time, Hitting Time and Number of Visits

In this subsection, we give some basic information and definitions on stopping time,
hitting time and number of visits. Following material can be found in [9], [18], [55].

Definition 2.10. Let X = {Xn : n ≥ 0} be a stochastic process. A stopping time with
respect to X is a random time such that for each n ≥ 0, the event τ = n is completely
determined by (at most) the total information known up to time n, {X0, ..., Xn}.
Definition 2.11. Suppose Xt is a stochastic process and S is a set. The hitting time is
the first time Xt hits S.

τ = min{t|Xt ∈ S}

A hitting time can be thought as a stopping time due to the fact that at time t, for s ≤ t
one knows all the values Xs, therefore one can decide whether Xs ∈ S for some s ≤ t.
In the case of modeling optimal decision problems related to stochastic process Xt,
stopping times may serve an option.
Consider that X0, X1, ... is a Markov chain with state space S where the initial proba-
bility distribution is φ, and transition probabilities matrix is P . Define the first passage
time from state i to state j as the number Tij of steps taken by the chain until it arrives
for the first time at state j given that X0 = i. Probability distribution function can be
given by;

h
(n)
ij = P (Tij = n) = P (Xn = j,Xn−1 6= j, ..., X1 6= j)|X0 = i

The first passage times can be found as the following: h(n)ij = pij and, for n ≥ 2,

h
(n)
ij =

∑
k∈S−j

pikh
(n−1)
kj .

17



Let Hn denote the matrix with entries h(n)ij and H(n)
0 the same matrix except that the

diagonal entries are set equal to 0. Then H(1) = P and one can calculate;

H(n) = PH
(n−1)
0 .

Assume that hij is the reaching probability from state i to j, in other words the proba-
bility if the state j is ever reached from the state i. Then

hij = P (Tij <∞) =
∞∑
n=1

P (Tij = n) =
∞∑
n=1

hnij.

Moreover, one define the hitting time, TA, of a subset A ⊆ S as the first time(possibly
infinite) that Xn ∈ A. The probability starting from i that Xn ever hits A is then

hiA = P (TA <∞|X0 = i) = P (TiA).

Number of Visits
Given X0 = i, one can count the number of visits to state j over a period of time as the
following. Let the function Iij(n) to be 1 ifXn = j given thatX0 = i, and 0 otherwise.
The number of visits to state j, starting at state i, by time n can be represented as

Nij(n) =
n∑
k=1

Iij(k).

The initial passage time from i to j is distributed according to h(n)ij and all the subse-
quent return times to j follow the distribution h(n)jj . If the chain is presently in a given
state, the first time it will visit state j is a stopping time.

A counting process is a random process N(t), t ≥ 0, such that

1. N(t) is nonnegative integer for each t;

2. N(t) is nondecreasing in t; and

3. N(t) is right-continuous.

One can say that, N(t)−N(s) represents the number of events in (s, t].
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CHAPTER 3

TUMOR-IMMUNE DYNAMICS AND MODELS FROM
LITERATURE

In the modern world, cancer is a leading cause of death. Thus, improving treatment of
cancer is an important objective. Surgery, chemotherapy and radiotherapy are the most
developed and clinically used methods in cancer treatment. However, there are many
cases where these methods do not develop a cure. Even though it is not clinically veri-
fied, immunotherapy is a promising alternative or complementary approach for the mo-
ment. It is obvious that understanding of tumor-immune dynamics and modeling this
dynamic realistically is a crucial requirement for development of immunotherapatic
methods. but in some cases they do not develop a cure. Although tumor regression can
be observed for a period of time, a tumor growth can be observed later. Immunotherapy
is an attracting and important treatment method and in that sense, the understanding
of tumor-immune dynamics and modeling these dynamics realistically plays a crucial
role. In this chapter, we will give necessary information about the tumor-immune dy-
namics and we provide several variables immune variables that affect tumor growth
and we will mention important mathematical models of tumor-immune dynamics.

3.1 Tumor-Immune Interaction

Tumor growth and immune response dynamics are complex and are not very well un-
derstood. Spontaneously growing tumors have low immunogenicity. In other words,
tumors provoke an immune response at a very low level. As a result they diffuse un-
controllably in a host. In a process called cancer immunosurveillance, the immune
system can identify and destroy emerging tumor cells and this process operates an im-
portant defense against cancer. Tumor growth exhibits different strategies for escaping
from immune surveillance. Some are listed as follows [60]:

• the selection of tumor clones resistant to cytolytic mechanisms, the loss or mask-
ing of tumor antigens,

• the loss of major histocompatibility complex class I molecules,

• tumor induced disorders in immunoregulation [20, 73, 97].
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However, immune system is able to attack and kill cancer cells, and immune response
of tumor growth is crucial and powerful to inhibit tumor in the host [47, 49].

There are three main roles of immune system for cancer prevention [100].Firstly, the
host may be guarded by the immune system from virus-induced tumors by defating the
viral infections. Secondly, there are two major factors which can prevent the establish-
ment of an inflammatory environment causing tumorigenesis. One factor is the timely
elimination of pathogens and the other one is its prompt resolution. Finally, tumor cells
can be detected and destroyed in some specific tissues by immune system which ex-
press tumor-specific antigens. The third role is also named as immunosurveillance and
in this case immune system realizes transformed cancer cells and defeats them before
they become malignant. For a detailed description of the tumor- immune dynamics,
you may see Figure 3.1 and for a detailed explanation of natural innate and adaptive
immunity of cancer, one may see [100].

Healthy Tissue

Transformed Cells

Elimination Equilibrium Escape
(Cancer Progression)(Cancer Immunosurveillance) (Cancer Persistence/Dormancy)

Protection Genetic Instability and
immuno selection

Chronic Inflamation

Innate and
adaptive
immunity

Figure 3.1: Tumor-immune system dynamics. For a detailed version see [100].

3.1.1 Immune System Variables

The adaptive immune system which is a powerful immune response as much as im-
munological memory, is antigen specific and requires the recognition of specific ”non-
self” antigens during a process called antigen presentation [80]. A signature antigen
identifies and remembers each pathogen [80].

Antigen specificity allows for the creation of responses and these responses is provided
by ”memory cells” in the host. The ability to assemble these responses is maintained
in the body by ”memory cells”. Once the host is infected by a pathogen, these specific
memory cells identify and destroy it.

Long-term active memory is obtained by activation of B and T cells. By immunization
which is to introduce an antigen from a pathogen in order to stimulate the immune
system and develop specific immunity against that particular particular pathogen with-
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out causing disease associated with that organism , active immunity can be obtained
artificially [2]. Immunization is successful because it exploits the natural specificity of
the immune system.

3.1.1.1 IL-1α

Interleukin-1 alpha (IL− 1α) is a protein of the interleukin-1 family where in humans
is encoded by the IL1A gene [68, 74]. In general, Interleukin 1 is responsible for the
production of inflammation, as well as the promotion of fever and sepsis. IL− 1α is a
cytokine of the interleukin-1 family. Cytokine is a group of soluble proteins, peptides,
or glycoproteins which acts as hormonal regulators or signaling molecules and help
in cell signaling. IL − 1α inhibitors are being produced to prevent inflammation, as
well as the promotion of fever and sepsis, so that they treat diseases. It possesses
metabolic, physiological, haematopoietic activities, and plays one of the central roles
in the regulation of the immune responses. For detailed information on IL − 1α, one
may see the following works [7, 8, 16, 34, 67, 71, 90]

3.1.1.2 Effector Cells and Their Role In Immune System

Effector cell is basically a lymphocyte (as a T cell) that has been induced to differenti-
ate into a form (as a cytotoxic T cell) capable of mounting a specific immune response-
called also effector lymphocyte [100]. Tumor escape can result from changes that oc-
cur at the level of the tumor by directly inhibiting tumor recognition or cytolysis by
immune effector cells. Effector immune cells employ extremely diverse mechanisms
to control tumor targets including the induction of tumor cell death by mitochondrial
and cell death receptor pathways, and thus evasion of immunosurveillance is often re-
ferred to as the seventh hallmark of cancer [36, 105]. In combination, these diverse
intrinsic and extrinsic tumor-suppressor mechanisms, which are related to each other,
are remarkably effective and specific.

3.1.1.3 Tumor-Immune System Experiments Observing IL1-αAnd Effector Cell
Effect

This part includes a summary of the work [37] which is used in the application of the
model in Chapter 5.

As mentioned before, IL1-α is essential for the immune system and effective on the
growth of tumor size. In the work of Dvorkin et al. [37], this effect has been in-
vestigated by some experiments on different mice groups. They have investigated
where anti-tumor immune responses were assessed in comparative studies using spleen
cells from mice injected with an IL1-α -positive (Clone 2) cell line or a non-IL1-α -
expressing (Clone 5) fibrosarcoma cell line. All IL1-α-positive fibrosarcoma clones
induced regressing tumors when injected mice; initially, cells started to grow for 10-15
days and subsequently regressed within 20-40 days (see Figure 5.2). On the contrary,
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cells of non-IL1-α-expressing clones grew progressively and resulted in the death of
tumor-bearing mice [37]. Both types of cell lines (IL1-α-positive and -negative) show
similar growth patterns. In these experiments, two clones-the IL1-α-positive Clone 2
and the non-IL1-α-expressing Clone 5-were assessed in a comparative manner in stud-
ies on the immune mechanisms, which are activated by tumor cell-associated IL1-α,
which subsequently leads to tumor regression. Violent cells of Clone 5 induce early
and transient anti-tumor T cell-mediated responses, which are insufficient to induce tu-
mor regression. This work states the role of tumor cell-associated IL1-α in the induc-
tion of specific immune responses against epitopes on the malignant cells, ultimately
leading to tumor regression and the development of an immune memory, which pro-
tects the mice from a challenge with the violent tumor cells. The data, different levels
of tumor size according to different Clones and S.I. values can be seen from Figures
5.2, 5.3 and 5.4.

In Dvorkin’s work, Stimulator Index(S.I.) has been formulated as S.I.=optical density
(OD; effector cells+stimulator cells)/OD (effector cells).

0 10 20 30 40

10

20

30

Tumor size (mm)

Days

Clone 2

Clone 5

Figure 3.2: Clone 2 and Clone 5 tumor growth according to days [37].

3.2 Tumor-Immune Mathematical Models

Advances in cancer immunology and developments in immunotherapy propose that
the immune system has an important role to defense the host against tumor, and they
could be benefited for preventing or curing tumor growth. Although theoretical and
experimental studies of tumor-immune system dynamics have a long history, there are
still many unanswered questions about the complex interaction mechanisms between
the immune system and a growing tumor. Indeed, the multidimensional nature of these
complex interactions requires cross-disciplinary approaches to capture more realistic
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Figure 3.3: Clone 2 S.I. and tumor growth according to days [37].
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Figure 3.4: Clone 5 S.I. and tumor growth data according to days [37].
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dynamics of the essential biology. Such approaches include combining cancer im-
munology with mathematics. There exist different approaches to model tumor-immune
dynamics. To mention some of them, we can list kinematic approaches, diffusion pro-
cesses, predator-prey approach [1]. A variety of mathematical models including the
dynamics of the immune system and growing tumor have been researched [60], [1].
Thorough these models, important parameters have been obtained and some predic-
tions have been done [60]. One of the most effective models has been introduced by
Kuznetsov [60] An interesting source of complexity of the competitive interaction is
the ability of living systems to hide themselves when chased and to learn from the sur-
rounding environment, where they operate. The learning is an intrinsic characteristic
of some system and contributes to refine the expression of its individual strategy.

Cattani& Ciancio have modeled hiding-learning dynamics in a Hybrid two scales
mathematical tools for active particles modeling complex systems with learning hiding
dynamics in 2007 [24].

In 2008 D’Onofrio proposed meta-modeling tumor-immune system interaction, tumor
evasion and immunotherapy [35] Bellomo introduced hiding-learning dynamics with
respect to stochastic game theory in 2010 [25]. In 2010 Cattani, Ciancio and d’Onofrio
proposed meta-modeling of the learning-hiding competition between tumors and the
immune system [25]. For more detailed analysis of the models in the literature, you
may see [1].

In the following section, you may find his model and a brief description of the devel-
opments of his model.

3.2.1 Kuznetsov’s Model

Kuznetsov’s model can be formulated as the following[60];

dE

dt
=s+ F (C, T )− d1E − k1ET + (k−1 + k2)C, (3.1)

dT

dt
=aT (1− bTtot)− k1ET + (k−1 + k3)C, (3.2)

dC

dt
=k1ET − (k−1 + k2 + k3)C, (3.3)

dE∗

dt
=k3C − d2E∗, (3.4)

dT ∗

dt
=k3C − d3T ∗, (3.5)

where E, T , C are the local concentrations of effector cells, tumor cells, effector cell-
tumor cell conjugates, and E∗,T ∗ are inactivated effector cells, and lethally hit TC
cells, respectively as described in [60].

The complexity and competitive structure of tumor-immune system dynamics can be
modeled by a nonlinear system in a way that to consider the immune system cells and
tumor cells as interacting populations would be the simplest way of modeling. The
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dynamical system of tumor-immune dynamics, proposed by D’Onofrio, considers the
following assumptions

• is a Lotka-Volterra like model,

• there exist a tumor free equilibrium,

• the number of tumor cells may tend asymptotically to either infinity or to a finite
value,

• there exist an equilibrium state compatible with a finite small value of the tumor
cells,

• for any time t, none of the variables take negative values,

• the influx of lymphocytes is a function of the tumor cells.

The following model, which is proposed by D’Onofrio [23], considers the evolution of
the number of cells belonging to the two competing populations:

dn1

dt
= c1n1F (n1)− c2φ(n1)n1n2, (3.6)

dn2

dt
= c3n1ϕ(n1)n2 + c4β(t)q(n1) + Ω(t), (3.7)

where n1 is the numerical density of tumor cells, n2 the numerical density of lympho
cyte population, under conditions n1 ≥ 0 and n2 ≥ 0, while F (n1);φ(n1);ϕ(n1) and
q(n1) are deterministic functions of n1.

By combining the previous ideas Cattani et al. [25] proposed the following model of
tumor-immune dynamics:

x′ = x(F (x)− φ(x; a(t))y),

y′ = P (x, y; b(t))y − µ(x)y + q(x; c(t)),

where a(t), b(t) and c(t) are three positive time-varying continuous parameters through
which the t the process of increase of the parameters is far faster learning-hiding pro-
cesses express themselves; the rates φ(x; a(t)), P (x, y; b(t)) and q(x; c(t)) are mono-
tone increasing functions of a(t), b(t) and c(t), respectively. By the following assump-
tions, Cattani and Ciancio improved the previous model by including learning, hiding
parameters:

• The learning of immune system of the presence of tumor cells, which is a fast
process;

• The learning of tumor cells in evading from the immune control which is very
slow.
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CHAPTER 4

DETERMINISTIC AND STOCHASTIC HYBRID SYSTEMS
WITH MEMORY

In this chapter, hybrid systems with memory are introduced and illustrated by several
examples. In order to observe the dependence of behavior on history, we include a
memory set in the definition. For a wide range of switching systems in nature and
technology, the system’s behavior and response to external inputs are determined not
only by the initial values but by the whole history [76], [79]. Especially, for systems
requiring history memorization capabilities like many biological systems, this is a re-
quirement [76], [79].

4.1 Definition

The state of a hybrid system is defined by the values of the continuous variables and
a discrete control mode. More precisely, we have the following definition for hybrid
systems with memory.

Definition 4.1. A Hybrid system with memory H is a collection

H = {Q, X, U, T, Init, M, f, Inv, E, G, R}
consisting of [76]

• a set of discrete states Q = {q1, . . . , qm} also called locations,

• a space of continuous variables X = Rn,

• a set of initial conditions Init ⊆ Q×X ×M ,

• a space of inputs U = Rz (control, disturbance or both),

• a space of independent variables T = Rk, typically the time T = [t0,∞),

• a vector field f : Q×X × U ×M −→ X, governing the continuous evolution,

• an invariant set (domain, subspace) for each q ∈ Q, Inv : Q −→ P (Y ) where
P (.) denotes the power set. Each state’s governing dynamics is valid within its
invariant set.
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• A set of edges (state transitions) E ⊂ Q×Q,

• guard conditions for each edge G : E ×M −→ P (X),

• a reset map for each edge R : E ×X × U −→ P (X),

– For verifiability analysis R : E ×G −→ X, can be considered.

• M(t) ∈M is a growing memory of past state transitions such that

– M(0) = {M0} = {(t0, x0, q0)},
– ifM(t;−) = {M0,M1, . . . ,Mi} and x(tj) ∈ g{q(t), q ∈ Q} thenM(t; +) =
{M(t;−),Mi+1},

– Mi+1 = {tj, x(tj−), q(tj−)}

With this definition the prior evolution of the system is sampled at state transitions
containing the time and the values of variables before and after the state transition. In
this definition, M(t) is piecewise constant between state transitions.

A typical subclass is the piecewise linear hybrid system with memory with a state
space description as follows [76]:

dx

dt
= Aq(t),M(t) x(t) +Bq(t),M(t) u(t) + kq(t),M(t),

x(0) = x0, q(0) = q0, i = 1, 2, . . . , n,

q(t) = qj if x(t) ∈ Xj.

If x(t0−) ∈ Xj , x(t0+) /∈ Xj and M(t0−) = {M1, . . . ,Mk} then,

M(t0+) = {M(t0−),Mk+1},
Mk+1 = {t0, x(t0−), x(t0+)}.

4.2 Examples

In order to illustrate the use of hybrid systems with memory, we now give the following
examples. The first example has different trajectories according to the subspace in
which the initial value appears. The second example illustrates an example in which the
initial value affects the speed by which the trajectory is traversed. Following examples
can be found also in [46].
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4.2.1 Example 1

Let us consider Q = {q1, q2, q3, q4}, a set of discrete states. We choose a space of
continuous variables Y = R2 with the following subspaces:

Inv(q1) = {y1 ≤ 1, y2 ≤ 1} ,
Inv(q2) = {y1 > 1, y2 ≤ 1} ,
Inv(q3) = {y1 ≤ 1, y2 > 1} ,
Inv(q4) = {y1 > 1, y2 > 1} .

For simplicity let us denote these by Ii = Inv(qi) for each 1 ≤ i ≤ 4. A simple hybrid
system with memory model can be obtained by the following governing equations

dy

dt
= Aq(t),M(t) y(t) + kq(t),M(t),

A(0,0),0 = A(0,1),0 = A(1,0),0 = A(1,1),0 =

(
−1 0
0 −1

)
,

k(1,1),0 =

(
5
4

)
,

y1 = y2 = 1.

From this we obtain the following system of linear ordinary differential equations:

dy1
dt

= −y1 + 5,

dy2
dt

= −y2 + 4.

This has the solution

y1(t) = 5− (5− y1(0)) e−t,

y2(t) = 4− (4− y2(0)) e−t.

As time varies, this solution produces points on the line ` : 4y1(t) − 5y2(t) = 0. In
particular as time goes to infinity, we approach to the point (5, 4).

Recall that the space Y is partitioned into four subspaces by the threshold values. Let
us start with an initial point in the subspace I1. In other words y1(t) ≤ 1 and y2(t) ≤ 1.
(See Figure 4.1.)

Observe that the line ` : 4y1 − 5y2 = 0 divide I1 into two subspaces. Trajectories
will approach to the point (5, 4). If the initial point is below (respectively above) this
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Figure 4.1: State space representation of Example 1.

line, then the trajectory will cross y2 = 1 (respectively y1 = 1). According to these
two possibilities, two different rounding trajectories occur. Initially, the memory set is
equal to M(t) = m0. As the trajectory crosses threshold, the memory determines the
direction of the trajectory.

Case A: (Below the line)

When a trajectory crosses y2 = 1, the memory set will be equal to m1 ∈ M(t). The
conditions m1 ∈ M(t) and y2(t1+) = y2(t1−) = 1 identify this case. The governing
system of differential equations according to state space partitions is given as:

dy

dt
= Aq(t),M(t) y(t) + kq(t),M(t),

A(0,0),1 = A(0,1),1 = A(1,0),1 = A(1,1),1 =

(
−1 0
0 −1

)
,

k((0,0),1) =

(
−2
6

)
, k((0,1),1) =

(
4
4

)
, k((1,0),1) =

(
−1
−2

)
,

k((1,1),1) =

(
2
−1

)
.

Suppose that the initial point is (0.1, 0.5). As the trajectory starts to move, it will cross
threshold y2(t) = 1 and initial focal point will change as it enters subspace I2. The
governing differential equation of this subspace is
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dy

dt
= A(0,1),1 y(t) + k(0,1),1,(

dy1
dt
dy2
dt

)
=

(
−1 0
0 −1

) (
y1
y2

)
+

(
4
4

)
,

with solution (
y1
y2

)
=

(
4− (4− y1(0)) e−t

4− (4− y2(0)) e−t

)
.

As the trajectory passes from I1 to I2, the focal point changes from (5, 4) to (4, 4). Dur-
ing this movement, the trajectory will cross the threshold y1 = 1 and enters subspace
I4 eventually. The governing differential equation of subspace I4 is

dy

dt
= A(1,1),1 y(t) + k(1,1),1,(

dy1
dt
dy2
dt

)
=

(
−1 0
0 −1

) (
y1
y2

)
+

(
2
−1

)
,

with solution (
y1
y2

)
=

(
2− (2− y1(0)) e−t

−1− ((−1)− y2(0)) e−t

)
.

When the trajectory passes through the subspace I4, it moves towards (2,−1) and
crosses the threshold y2 = 1. Thus it enters the subspace I3 for which the governing
equations are as follows:

dy

dt
= A(1,0),1 y(t) + k(1,0),1,(

dy1
dt
dy2
dt

)
=

(
−1 0
0 −1

) (
y1
y2

)
+

(
−1
−2

)
,

with solution (
y1
y2

)
=

(
−1− ((−1)− y1(0)) e−t

−2− ((−2)− y2(0)) e−t

)
.

The trajectory moves toward (−1,−2) when it is in subspace I3 and crosses y1 = 1.
Then it enters the subspace I1. The governing differential equation of subspace I is

dy

dt
= A(1,0),1 y(t) + k(1,0),1,(

dy1
dt
dy2
dt

)
=

(
−1 0
0 −1

) (
y1
y2

)
+

(
−2
6

)
,

with (
y1
y2

)
=

(
−2− ((−2)− y1(0)) e−t

6− (6− y2(0)) e−t

)
.
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Figure 4.2: Rounding trajectories with initial values (0.1, 0.5).
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The representation of Case A according to initial point (0.1, 0.5) is shown by the Figure
4.2. In this case the rounding trajectories are counter clockwise.

Case B Above the line:

Suppose that the initial point is chosen as (0.5, 0.5). Note that this is a point above the
line ` : 4y1 − 5y2 = 0. When the trajectory crosses y1 = 1, the memory set will be
equal to m1 ∈ M(t). Conditions m1 ∈ M(t) and y1(t1+) = y1(t1−) = 1 identify this
case. The governing differential equations according to state space partitions are given
as

dy

dt
= Aq(t),M(t) y(t) + kq(t),M(t),

A((0,0),1) = A((0,1),1) = A(1,0),1 = A((1,1),1) =

(
−1 0
0 −1

)
,

k((0,0),1) =

(
2
−1

)
, k((0,1),1) =

(
−1
−2

)
, k((1,0),1) =

(
4
4

)
,

k((1,1),1) =

(
−2
6

)
.

The focal points are different in each transition state; in other words because of the
memory. As the trajectory starts to move, it will cross the threshold y1(t) = 1 and
the initial focal point will change, and according to the partitioning of the space it will
enter subspace I3.

The governing differential equation of subspace I3 is

dy

dt
= A(1,0),1 y(t) + k(1,0),1,(

dy1
dt
dy2
dt

)
=

(
−1 0
0 −1

) (
y1
y2

)
+

(
4
4

)
,

with solution (
y1
y2

)
=

(
4− (4− y1(0)) e−t

4− (4− y2(0)) e−t

)
.

All trajectories in space I2 will converge to the corresponding focal point (4, 4). During
this movement, the point will cross threshold y2 = 1 and will enter subspace 4. The
governing differential equation of subspace I4 is

dy

dt
= A(1,1),1 y(t) + k(1,1),1,(

dy1
dt
dy2
dt

)
=

(
−1 0
0 −1

) (
y1
y2

)
+

(
−2
6

)
,

with solution (
y1
y2

)
=

(
−2− ((−2)− y1(0)) e−t

6− (6− y2(0)) e−t

)
.

33



All trajectories in subspace I4 will converge to (−2, 6). Then the trajectory will cross
y1 = 1 and enter subspace I2. The governing differential equation of subspace I2 is

dy

dt
= A(0,1),1 y(t) + k(0,1),1,(

dy1
dt
dy2
dt

)
=

(
−1 0
0 −1

) (
y1
y2

)
+

(
−1
−2

)
,

with solution (
y1
y2

)
=

(
−1− ((−1)− y1(0)) e−t

−2− ((−2)− y2(0)) e−t

)
.

All points in subspace I2 will converge to (−1,−2). Then the trajectory will cross
y2 = 1 and enter the subspace I1. The governing differential equation of subspace I1
is

dy

dt
= A(0,0),1 y(t) + k(0,0),1,(

dy1
dt
dy2
dt

)
=

(
−1 0
0 −1

) (
y1
y2

)
+

(
2
−1

)
,

with solution (
y1
y2

)
=

(
2− (2− y1(0)) e−t

−1− ((−1)− y2(0)) e−t

)
.

The representation of Case B according to initial point (0.5, 0.5) is shown by the Figure
4.3. In this case the rounding trajectories will be clockwise.

4.2.2 Example 2

In this example, we illustrate how the state transitions of a piecewise linear model can
get slower because of its dependence on the memory. For simplicity, we again consider
the following equation:

dy

dt
= Aq(t),M(t) y(t) + kq(t),M(t).

The solution of this system is given by

ym(t) = ym0 (t) e(t−t0)A
m

+ (e(t−t0)A
m − 1) (Am)−1 km,

where m is the mth component of the corresponding variable and Am yields the mth

eigenvalue of matrix A. This equation can be rewritten as

ymn+1 = h = eTnA
m

(ymn + (Am)−1 km)− (Am)−1 km,
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Figure 4.3: Rounding trajectories with initial values (0.5, 0.5).
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where n indicates the nth state transition and h is the corresponding threshold value.
By rearranging, we obtain

eTnA
m

=
h+ (Am)−1 km

ymn + (Am)−1 km
,

so that the state transition time of the nth state can be calculated from this equation:

Tn =

[
ln

h+ (Am)−1 km

ymn + (Am)−1 km

]
/Am.

In this example, the focal points do not change but according to the subspace of the ini-
tial values the trajectories behave faster or slower. In order to satisfy these conditions,
we can consider the following governing differential equations:

dy

dt
= bAq(t),M(t) y(t) +

1

b
kq(t),M(t),

where 0 < b < 1.

Then this system has solutions

ym(t) = ym0 (t) e(t−t0) bA
m

+ (e(t−t0) bA
m − 1) (Am)−1 km,

with state transition time of the nth state;

T ∗n =

[
ln

h+ (Am)−1 km

ymn + (Am)−1 km

]
/b(Am).

Obviously, Tn < T ∗n , since 0 < b < 1 and 1 < 1
b
< ∞. Again, assume a system that

has a periodic solution

A(0,0),0 = A(0,1),0 = A(1,0),0 = A((1,1),0) =

(
−1 0
0 −1

)
,

with threshold values
y1 = y2 = 1

and focal points

k((0,0),0) =

(
0
0

)
, k((0,1),0) =

(
2
0

)
, k((1,0),0) =

(
0
2

)
, k((1,1),0) =

(
2
2

)
.

Let us choose b = 1
2

and let us consider Q = {q1, q2, q3, q4}, a set of discrete states.
We choose a space of continuous variables Y = R2 with the following subspaces:

Inv(q1) = {y1 ≤ 1, y2 > 1} ,
Inv(q2) = {y1 > 1, y2 > 1} ,
Inv(q3) = {y1 ≤ 1, y2 ≤ 1} ,
Inv(q4) = {y1 > 1, y2 ≤ 1} .
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For simplicity let us denote these by Ii = Inv(qi) for each 1 ≤ i ≤ 4. Our initial set is
Init = {q = q1, y1, y2 ∈ R}. If M(t) = m0, then the governing differential equations
for the subspace I4 are:

dy

dt
= A(1,0),0 y(t) + k(1,0),0,(

dy1
dt
dy2
dt

)
=

(
−1 0
0 −1

) (
y1
y2

)
+

(
0
0

)
,

with solution (
y1
y2

)
=

(
y1(0) e−t

y2(0) e−t

)
.

All trajectories in that region approach to (0, 0). Then the trajectory will cross y1 = 1
and enter subspace I3 for which the governing differential equations are

dy

dt
= A(0,0),0 y(t) + k(0,0),0,(

dy1
dt
dy2
dt

)
=

(
−1 0
0 −1

) (
y1
y2

)
+

(
0
2

)
,

with solution (
y1
y2

)
=

(
y1(0) e−t

2− (2− y2(0)) e−t

)
.

All trajectories in that region will approach to (0, 2). Then the point will cross y2 = 1
and enter subspace I1. The governing differential equations of subspace I1 are

dy

dt
= A(1,1),0 y(t) + k(1,1),0,(

dy1
dt
dy2
dt

)
=

(
−1 0
0 −1

) (
y1
y2

)
+

(
2
2

)
,

with solution (
y1
y2

)
=

(
2− (2− y1(0)) e−t

2− (2− y2(0)) e−t

)
.

All trajectories in that region will approach to (2, 2). Then the trajectory will cross
y1 = 1 and enter subspace I2. The governing differential equations of subspace I2 are

dy

dt
= A(0,1),0 y(t) + k(0,1),0,(

dy1
dt
dy2
dt

)
=

(
−1 0
0 −1

) (
y1
y2

)
+

(
2
0

)
,
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Figure 4.4: State space representation of Example 2

with solution (
y1
y2

)
=

(
2− (2− y1(0)) e−t

y2(0) e−t

)
.

All trajectories in that region will approach to (2, 0).

Case A: If m1 ∈M(t) and y1(m1) = y1(t1+) = y1(t1−) = 1 and y2(t1+) = y2(t1−) <
1 or if m2 ∈ M(t) and y1(m2) = y1(t2+) = y1(t2−) = 1 and y2(t2+) = y2(t2−) < 1,
the governing dynamics of the system do not change.

Case B: If m1 ∈M(t) and y1(m1) = y1(t1+) = y1(t1−) = 1 and y2(t1+) = y2(t1−) ≥
1 or if m2 ∈ M(t) and y1(m2) = y1(t2+) = y1(t2−) = 1 and y2(t2+) = y2(t2−) ≥ 1,
the differential equations for the subspace I3 that govern the system look as follows:

dy

dt
= bA(0,0),0 y(t) +

1

b
k(0,0),0,(

dy1
dt
dy2
dt

)
=

1

2

(
−1 0
0 −1

) (
y1
y2

)
+ 2

(
0
2

)
,

with solution (
y1
y2

)
=

(
y1(0) e−

1
2
t

2− (2− y2(0)) e−
1
2
t

)
.

As time goes to infinity, all trajectories in region I3 will approach to (0, 2). Then,
the trajectory will cross y1 = 1 and enter the subspace I1. The governing system of
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differential equations of subspace I1 are

dy

dt
= bA(0,1),1 y(t) +

1

b
k(1,1),1,(

dy1
dt
dy2
dt

)
=

1

2

(
−1 0
0 −1

) (
y1
y2

)
+ 2

(
2
2

)
,

with solution (
y1
y2

)
=

(
2− (2− y1(0)) e−

1
2
t

2− (2− y1(0)) e−
1
2
t

)
.

All trajectories in that region will approach to (2, 2). Then, the trajectory will cross
y2 = 1 and enter subspace I2. The governing differential equations of subspace I4 are

dy

dt
= bA(1,1),1 y(t) +

1

b
k(1,1),1,(

dy1
dt
dy2
dt

)
=

1

2

(
−1 0
0 −1

) (
y1
y2

)
+ 2

(
2
0

)
,

with solution (
y1
y2

)
=

(
2− (2− y1(0)) e−

1
2
t

y2(0) e−
1
2
t

)
.

All trajectories in that region exponentially approach to (2, 0). Then the trajectory will
cross y1 = 1 and enter subspace I4. The governing differential equations of subspace
I4 are

dy

dt
= bA(1,0),0 y(t) +

1

b
k(1,0),0,(

dy1
dt
dy2
dt

)
=

1

2

(
−1 0
0 −1

) (
y1
y2

)
+ 2

(
0
0

)
,

with solution (
y1
y2

)
=

(
y1(0) e−

1
2
t

y2(0) e−
1
2
t

)
.

In this case the focal points don’t change but the state transition times are slower in the
second case, since[

ln
1 + (−1)−1 km

ymn + (Am)−1 km

]
/(−1) <

[
ln

1 + (−1)−1 km

ymn + (Am)−1 km

]
/(−1/2).
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4.3 Stochastic Hybrid Systems with Memory

Previously, the deterministic case of hybrid systems with memory is explained and
applied. In deterministic case, the first transitions are determined by a partition of
the initial set of variables and the future behavior of these variables are determined
accordingly. However, in nature and science, there exists random behaviors. With a
deterministic approach, this randomness cannot be investigated properly. For a more
realistic model, stochastic hybrid systems with memory [76] should be developed. In
such a model, the first behavior of variable or variables, can be thought as random
until the boundary is hit or until the state transition occurs. After hitting one of the
boundaries, the system exhibits a differentiation depending on which boundary is hit or
which state transition is occurred. This property characterizes the effect of the memory
on the system. Depending on the memory, the system may have different solutions with
different distributions, mean and variance values.

If such a model, in which memory is contained, can be constructed then the history
of the system can be investigated by analyzing the distributional behavior, mean or
variance values of the system. The future behavior of the system can be arranged by
the control variables, so that the system can exhibit the desired behavior. To illus-
trate this, we consider the system with dimension n = 1 and the initial set Y (t0) ∈
Inv(q(t0),m(t0)) where (q(t0),m(t0)) is the initial state of the system, the governing
dynamics of the system until it hits one of the boundaries can be expressed by [76]

dYt = σ0YtdWt, (4.1)
Y0 = y0,∀y0 ∈ (b1, b2), (4.2)

where b1, b2 are the boundaries of the initial set. According to the boundary it hits the
system exhibits different behaviors such that

dYt =

{
−a2[Yt − c2]dt+ σ2dWt, if τ ∗ = τ2,
−a1[Yt − c1]dt+ σ1dWt, if τ ∗ = τ1,

This type of modeling allows us to construct models for the systems which shows
random behavior in the memory. Moreover, if the model is constructed properly, then
the possible effects of different conditions on the behavior of system can be measured
by computer simulations without any need of real experiments.

In addition, the control mechanism of the system can be investigated by the external
input variables. For example, in biological systems, drug effect can be investigated.

4.3.1 An Example of SHSM

For an illustration of stochastic hybrid systems with memory, we can start with in-
vestigating the stochastic predator-prey type equation. We have chosen this type of
equation as an example because of its wide usage in several areas of science. In this
type of equation, two species interact each other where one is prey and the other is
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predator. Since these type of equations describe the general win-loss relations, they
can be used in the tumor cell-immune system interactions. The predator-prey type
equation can be given as the follows [3]:

dX = X(a10 − a12Y )dt+
√
a10XdW1 −

√
a12Y dW2, (4.3)

dY = Y (a21X − a20)dt+
√
a21XY dW3 −

√
a20Y dW4, (4.4)

where Y (t0), X(t0) ∈ Inv(q(t0),m(t0)) and (q(t0),m(t0)) is the initial state of the
system, the governing dynamics of the system until the trajectory hits one of the bound-
aries.

When we add the memory phenomena, we enable the system to behave differently
depending on the boundary which is hit. More precisely we have the following:

dX = X(b10 − b12Y )dt+
√
b10XdW1 −

√
b12Y dW2,

dY = Y (b21X − b20)dt+
√
b21XY dW3 −

√
b20Y dW4,

if τ ∗ = τ1
dXt = X(c10 − c12Y )dt+

√
c10XdW1 −

√
c12Y dW2,

dYt = Y (c21X − c20)dt+
√
c21XY dW3 −

√
c20Y dW4,

if τ ∗ = τ2

The boundaries will be determined by the hitting time probabilities. The probabilities
have been given in the table [3]. Let Z = (X, Y ) be the random variable. According
to these hitting times, we can determine the hitting time probabilities. We choose the
threshold according to the hitting time probability.

i Change,(∆Z)i Probability, pi
1 (1,0) a10X∆t
2 (-1,0) a12XY∆t
3 (0,1) a21XY∆t
4 (0,-1) a20Y∆t

Table 4.1: Probabilities according to changes.

4.3.2 Another example of SHSM

Another example of stochastic hybrid systems with memory can be given as follows
[76]. Let Q = {q0,q1, q2}, Y = R, Init = {q = q0, y0 ∈ (b1, b2)}, Inv(q0) = y0 ∈
(b1, b2).

The system evolution at initial state q = q0 is

dyt = σ0YtdWt

until it hits one of the boundaries of the initial set b1 or b2.
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The system above is a classical example of a stochastic system known as Geometric
Brownian Motion without drift and its solution is given by

yt = y0 exp{σ0Wt −
1

2
σ2t}.

The hitting time of each barriers is defined by stopping times:

τ1 = inf{t ∈ R+ : Yt ≥ b2}, (4.5)
τ2 = inf{t ∈ R+ : Yt ≤ b1}. (4.6)

Here, τ1 and τ2 are random variables. Thus, in each run, the first transition occur by
hitting b1 or b2 is totally random. We take τ ∗ = min{τ1, τ2} as the first transition time
and therefore the memory set will be

M = {m0, (τ
∗, b)} =

{
(τ ∗, b1), if yτ∗ = b1,
(τ ∗, b2), if yτ∗ = b2,

After hitting one of the boundaries, the system experiences a different behavior de-
pending on the barrier which is hit.

q(t) =

{
q1, if b = b1,
q2, if b = b2,

(4.7)

dYt =

{
−a1 [Yt − c1] dt+ σ1dWt, if q(t) = q1,
−a2 [Yt − c2] dt+ σ2dWt, if q(t) = q2,

(4.8)

Thus, our system can adopt two different behaviors and as a result it has two different
asymptotic distributions depending on its memory set. Such, stochastic systems are
known as the Ornstein-Uhlenbeck process and widely used because of its mean rever-
sion property. Additionally, unlike the Brownian Motions, it has a stationary proba-
bility distribution. Thus, our system can evolve according to two different stationary
probability distributions and revert to two different means. The solution of the model
is

Yt =

{
y0e
−a1t + c1 (1− e−a1t) +

∫ t
0
σ1e

a1(s−t)dWs, if q(t) = q1,

y0e
−a2t + c2 (1− e−a2t) +

∫ t
0
σ2e

a2(s−t)dWs, if q(t) = q2,

where y0 is assumed to be a constant from the initial set. Thus the distribution of
the system after differentiation is apparently a Gaussian distribution with possibly two
distinct mean and variance values. The systems behavior will be

E(Yt) = y0e
−ait + ci

(
1− e−ait

)
,

V(Yt) =
σ2
i

2ai

(
1− e−2ai,t

)
where i = 1 if b1 is reached first and i = 2 else.
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CHAPTER 5

THE STOCHASTIC HYBRID SYSTEMS WITH MEMORY
MODEL AND THE APPLICATION ON TUMOR GROWTH

The dynamical system of IL1-α response to tumor growth is deeply explained in Chap-
ter 3. According to the work of Dvorkin et al. [37], this system demonstrates different
levels of tumor growth and includes immune system variables according to different
levels of IL1-α injection.

This chapter includes the precise description of stochastic hybrid systems with mem-
ory, an application of SHSM to the dynamical model of IL1-α response to tumor
growth, simulation results and a discussion on Kuznetsov’s model with Stochastic cal-
culus.

In this chapter, we will explain the stochastic hybrid system with memory model
briefly, and modify the model according to the specific problem of IL1-α response
to tumor growth.

5.1 The Stochastic Hybrid Systems with Memory Model

We have mentioned about stochastic hybrid systems with memory in the previous chap-
ter. Now we will give a precise description. There are two stochastic models in the
literature which have taken attention; stochastic hybrid models due to Ghosh [44], and
Bensoussan [15]. We combine these two ideas and add memory to the system by de-
scribing it as a stochastic process where the memory changes the system dynamics as
it accumulates information. We use a similar notation as Bensoussan and Ghosh did as
follows. Construct a Markov process (X(t),M(t)). On some set D, we have

x(ti) = X(x(t−i ),m(t−i ), q(t−i ), ti), (5.1)
m(ti) = M(x(t−i ),m(t−i ), q(t−i ), ti). (5.2)

We also have a sequence of stopping times

τ1 < τ2 < ... < τn < ...,

where the values τn ↑ ∞ are successive stopping times. We propose, x(t−i ) is the
continuous variables, m(t−i ) is the memory, q(t−i ) is the state and ti is the time. For
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Equation 5.4

Equation 5.5

Equation 5.4

Equation 5.5

Equation 5.4

Equation 5.5

q11

∨
q12

q1 qm

q2

q3

Figure 5.1: Representation of the states.

τn < t ≤ τn+1, we have

dX(t) = gmi
(x(t),m(t), q(t))dt+ σmi

(x(t),m(t), q(t))dW (t), (5.3)
P (m(t+ δt = j),m(t) = i,X(s),m(s), s ≤ t) = λij(X(t))δt+ 0(δt), i 6= j,

X(0) = X0,m(0) = 0,

m(t) =
∞∑
i=0

(M(x(ti),m(ti))−m(ti))1ti≤t,

where gmi
, σmi

and λij are suitable functions.

5.2 Application on the Data with SHSM, Parameter Estimation, Simulation Re-
sults

In our work, we will use the data of Dvorkin et al. [37] in order to apply our model.
For instance, we have used the values of data which include Clone 2 and Clone 5 tumor
diameters according to days. Clone 2 has been injected with IL1-α, whereas Clone 5
has not been. As previously mentioned according to different levels of IL1-α, different
levels of tumor growth and effector cells have been observed. These effects can be seen
from the Figures 5.2, 5.3 and 5.4. Moreover the precise values can be seen from the
Table 5.1. In this table S.I. refers the Stimulator Index which is the ratio for immune
cells (the effector cell and stimulator cells) and the tumor size has been measured in
millimeters (mm). By observing the data, one can see that Clone 2 and Clone 5 is
behaving similarly until Day 3. After Day 3, Stimulation Index is decreasing in Clone
5 and after Day 15 tumor size is increasing in Clone 5. For this purpose, we have
designed the system by partitioning the model into 4 main states such as; first state,
namely q1, includes the behavior of both Clone 2 and Clone 5 until day 3, second state,
namely qm, include different behaviors of Clone 2 and Clone 5 until day 15, third and
fourth states, q2 and q3, include complete different behaviors on tumor growth and S.I.
values. You may see the hybrid automata representation of the model in Figure 5.1

For SHSM simulation, we have chosen Ornstein-Uhlenbeck type stochastic differential
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Figure 5.2: Clone 2 and Clone 5 tumor growth according to days [37].
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Figure 5.3: Clone 2 S.I. and tumor growth according to days [37].
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Figure 5.4: Clone 5 S.I. and tumor growth data according to days [37].

Clone 2 Clone 5
Days S.I. Tumor Size(mm) S.I. Tumor Size(mm)
0 1 3.05 1 3.125
3 1.988 3.7 2.129 3.75
7 2.344 4.35 1.443 4
10 2.822 6.35 0.914 5.5
15 3.011 7.345 0.914 8.5
20 3.411 6 0.886 15.125
40 3.266 3.7 0.943 29.125

Table 5.1: S.I. and Tumor Growth data of Clone 2 and Clone 5
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equation and partitioned the system according to our data sets as the following;

dX1(t) = [βqk,mi
11 αqk,mi

1 + βqk,mi
12 αqk,mi

2 − βqk,mi
11 X1

t − βqk,mi
12 Xt

2]dt+ σqk,mi
1 dW 1

t ,
(5.4)

dX2(t) = [βqk,mi
21 αqk,mi

2 + βqk,mi
22 αqk,mi

2 − βqk,mi
21 X1

t − βqk,mi
22 Xt

2]dt+ σqk,mi
1 dW 2

t .
(5.5)

Due to different memory values and different states, we have different parameter val-
ues; βqk,mi

11 , βqk,mi
12 , βqk,mi

21 , βqk,mi
22 , αqk,mi

1 , αqk,mi
2 , σqk,mi

1 , σqk,mi
2 where

qk ∈ {q1, q11, q12, q2, q3} and i = 1, 2, .... Now, let us consider a linear SDE;

dXt = α(t,Xt)dt+ β(t,Xt)dWt, (5.6)

where
α(t,Xt) = a1(t)Xt + a2(t),

β(t,Xt) = b1(t)Xt + b2(t).

For a general piecewise linear form, we will have a similar form, similar to the work
of Gebert [41] and as described in the work of Öktem [77];

α(t+ 1, Xt+1) = M qk,mi
1 Xt + kqk,mi

1 (t),

β(t+ 1, Xt+1) = M qk,mi
2 Xt + kqk,mi

2 (t),

where M s(t)
1 and M s(t)

2 are matrices and k1 and k2 are vectors. Then the above linear
SDE can be written as;

dXt+1 = (M qk,mi
1 Xt + kqk,mi

1 (t))Xt + (M qk,mi
2 Xt + kqk,mi

2 (t))dWt. (5.7)

In this representation parameter values are focal points and thresholds. To find these
parameters, there are works in the literature [87],[77]. For the Ornstein-Uhlenberg
process with memory, we use a similar form done above. By replacing above equations
in the two dimensional Ornstein-Uhlenberg process we obtain;[

dX1

dX2

]
=

[[
βqk,mi

11 βqk,mi

12

βqk,mi

21 βqk,mi

22

] [
αqk,mi

1

αqk,mi

2

]
−
[
βqk,mi

11 βqk,mi

12

βqk,mi

21 βqk,mi

22

] [
X1

X2

]]
dt+

[
σ1dW1

σ2dW2

]
,

(5.8)

or we can write;

dX = (N qk,mi −M qk,miX)dt+ σdW. (5.9)

In the Equation 5.9, the term N qk,mi is the focal point vector and M qk,mi is matrix.

Moreover the memory set will include the first transition in the first state, existence of
IL1-α, time and state conditions. It will include and act according to q11 or q12. The
memory set can be given as;

m = {((X1 < 2.344 ∧X2 < 4) ∨ (X1 ≥ 2.344 ∧X2 ≥ 4)), qm,m(i), θIL1−α, t(i)},
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where i = 1, 2 and θIL1−α indicates the existence of IL1-α variable. For our example,
we have added θIL1−α to the memory set.

For a stochastic process to reach states, let’s say A or B, has been given by the following
procedure according to Allen [3]. If X(t) is a stochastic process, and a solution of the

dX(t) = a(X(t))dt+ b(X(t))dW (t), X(0) = x,

and A < x < B. then the transition probability density function for a linear stochastic
process, defined above, is a solution of the backward Kolmogorov differential equation

∂p(y, x, t)

∂t
= a(x)

∂p(y, x, t)

∂x
+
b2(x)

2

∂2p(y, x, t)

∂x2
. (5.10)

If Q(x, t) is the probability that the process does not reach states, let’s say, A or B in
time [0, t], then we have [3]

Q(x, t) =

∫ B

A

p(y, x, t)dy.

Let T (x) be the random variable referring the time for the stochastic process to reach
states A or B and let pt(x, t) be the probability density function of it. The expected
time can be foundnd by the following integral [3]:

E(T (x)) =

∫ ∞
0

Q(x, t)dt. (5.11)

5.3 Simulation

For simulation and parameter estimation we have used SDE toolbox for MATLAB
[86]. Besides parameter values, we are able to find Monte-Carlo statistics results in-
cluding process mean, process variance, process median, confidence interval for the
trajectories, process skewness, process kurtosis, process moments by using this tool-
box. All of these results exist in the appendix.

Since we find parameter values, the equations for each state can be given. To test the
model we have kept some data values and modeled according to these data values. You
may see the Figures 5.10 and 5.11.
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Figure 5.5: State q1 simulation results for Ornstein-Uhlenberg process. First row gives
the numerical solution over 100 trajectories and observations, empirical mean, 95 per-
cent CI, q1, q3 quartiles of the numerical solution over 100 trajectories from left to
right for X1 and the second row gives the same for X2

Figure 5.6: State q11 simulation results for Ornstein-Uhlenberg process. First row
gives the numerical solution over 100 trajectories and observations, empirical mean,
95 percent CI, q1, q3 quartiles of the numerical solution over 100 trajectories from left
to right for X1 and the second row gives the same for X2
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Figure 5.7: State q12 simulation results for Ornstein-Uhlenberg process. First row
gives the numerical solution over 100 trajectories and observations, empirical mean,
95 percent CI, q1, q3 quartiles of the numerical solution over 100 trajectories from left
to right for X1 and the second row gives the same for X2

Figure 5.8: State q2 simulation results for Ornstein-Uhlenberg process. First row gives
the numerical solution over 100 trajectories and observations, empirical mean, 95 per-
cent CI, q1, q3 quartiles of the numerical solution over 100 trajectories from left to
right for X1 and the second row gives the same for X2
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Figure 5.9: State q3 simulation results for Ornstein-Uhlenberg process. First row gives
the numerical solution over 100 trajectories and observations, empirical mean, 95 per-
cent CI, q1, q3 quartiles of the numerical solution over 100 trajectories from left to
right for X1 and the second row gives the same for X2

Figure 5.10: State q2 test data values. In that state we wait the system t where we wait
the system to behave like Clone 5. Simulation on the left refers to variable X1 and
simulation on the right refers variable X2.

Figure 5.11: State q3 test data values. In that state we wait the system t where we wait
the system to behave like Clone 2. Simulation on the left refers to variable X1 and
simulation on the right refers variable X2.
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5.4 Kuznetsov’s Model and Some Discussions

We continue with the Kuznetsov’s model. His model has been investigated deeply
in the previous chapter. As mentioned before his model is one of the mostly studied
model in literature. Moreover, his model is used to describe the kinetics of growth and
regression of the B-Lymphoma BCLl in the spleen of mice [60]. By comparing his
model with experimental data, numerical estimates of parameters describing processes
that cannot be measured in vivo are derived [60]. We start with his model’s normalized
version [60]:

dx

τ
= σ +

ρxy

η + y
− µxy − δx, (5.12)

dy

τ
= αy(1− βy)− xy. (5.13)

In the paper [60] parameter values are given as the following;

σ = 0.1181, ρ = 1.131, η = 20.19, µ = 0.00311, δ = 0.3743, (5.14)

α = 1.636, β = 2.0x10−3.

The normalized Kuznetsov model shall be turned into a stochastic differential equation
system, firstly:

dX(t) =σ +
ρX(t)Y (t)

η + Y
− µX(t)Y (t)− δX(t) +

√
σdW1(t) (5.15)

+

√
ρX(t)Y (t)

η + Y (t)
dW2(t)−

√
µX(t)Y (t)dW3(t)−

√
δXdW4(t),

dY (t) =αY (t)(1− βY (t))−X(t)Y (t) +
√
αY (t)(1− βY (t))dW5(t)

−
√
X(t)Y (t)dW6(t),

where dW1, dW2, dW3, dW4, dW5 and dW6 are different Wiener processes.

For numerical solutions, Euler-Maruyama method has been applied to Equations 5.15.
The following gives us the numerical representation;

dXn+1 =Xn + σ +
ρXnYn
η + Yn

− µXnYn − δXn +
√
σ∆W1+ (5.16)√

ρXnYn
η + Yn

∆W2 −
√
µXnYn∆W3 −

√
δXn∆W4,

dYn+1 =Yn + αYn(1− βYn)−XnYn +
√
αYn(1− βYn)∆W5 −

√
XnYn∆W6.

(5.17)

As we have simulated the model with Euler-Maruyama method, it is essential to ques-
tion if Euler-Maruyama method is stable for the above equations. One can check this
by considering a nonlinear test equation for SDEs of, e.g., the form

dXt = f(Xt)dt+ σdWt,

52



where f satisfies a one-sided dissipative Lipschitz condition. For the rest of the steps
one can see [21]

As described in the Chapter 4, we can find the transition probabilities as in the follow-
ing;

Prob{∆X(t) = i,∆Y (t) = j|(X(t), Y (t))} = (5.18)

=



ρX(t)Y (t)∆t
η+Y (t)∆t + o(∆t) (i, j) = (1, 0),

µX(t)Y (t)∆t+ δX(t)∆t+ o(∆t) (i, j) = (−1, 0),
αY (t)∆t+ o(∆t) (i, j) = (0, 1),

αY (t)∆t(1− βY (t)∆t) +X(t)Y (t)∆t+ o(∆t) (i, j) = (0,−1),
o(∆t) (i, j) = (0, 0).

Also the transition probabilities have been given in the table. Let Z = (X, Y ) is the
random variable.

i Change,(∆Z)i Probability, pi
1 (1,0) ρxy

η+y

2 (-1,0) µxy + δx
3 (0,1) αy
4 (0,-1) αy(1− βy) + xy

Table 5.2: Probabilities according to changes

These transition probabilities give us the probabilities of change in states. When it
comes to the hitting time we propose that some of the transitions will not occur. Ac-
cording to the hitting time probabilities we will have the following stochastic hybrid
system;

If τ ∗ = τ1, then

dX(t) =σ1 +
ρ1X(t)Y (t)

η1 + Y
− µ1X(t)Y (t)− δ1X(t) +

√
σ1dW1(t) (5.19)

+

√
ρ1X(t)Y (t)

η1 + Y (t)
dW2(t)−

√
µ1X(t)Y (t)dW3(t)−

√
δ1XdW4(t),

dY (t) =α1Y (t)(1− β1Y (t))−X(t)Y (t) +
√
α1Y (t)(1− β1Y (t))dW5(t)

−
√
X(t)Y (t)dW6(t).

If τ ∗ = τ2, then

dX(t) =σ2 +
ρ2X(t)Y (t)

η2 + Y
− µ2X(t)Y (t)− δ2X(t) +

√
σ2dW1(t) (5.20)

+

√
ρ2X(t)Y (t)

η2 + Y (t)
dW2(t)−

√
µ2X(t)Y (t)dW3(t)−

√
δ2XdW4(t),

dY (t) =α2Y (t)(1− β2Y (t))−X(t)Y (t) +
√
α2Y (t)(1− β2Y (t))dW5(t)

−
√
X(t)Y (t)dW6(t),
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where dW1, dW2, dW3, dW4, dW5 and dW6 are different Wiener processes.

In our tumor-immune problem we have two different behaviors according to different
hitting times in Kuznetsov’s modified model. For instance, if τ ∗ = τ1, we guess the
system to behave like Clone 2 and then the equations will be;

dX(t) =σ1 − µ1X(t)Y (t)− δ1X(t) +
√
σ1dW1(t)−

√
µ1X(t)Y (t)dW3(t)−

√
δ1XdW4(t),

(5.21)

dY (t) =−X(t)Y (t)−
√
X(t)Y (t)dW6(t).

If τ ∗ = τ2, we guess the system to behave like Clone 5 and then the equations will be;

dX(t) =σ2 +
ρ2X(t)Y (t)

η2 + Y
+
√
σ2dW1(t) +

√
ρ2X(t)Y (t)

η2 + Y (t)
dW2(t), (5.22)

dY (t) =α2Y (t)(1− β2Y (t)) +
√
α2Y (t)(1− β2Y (t))dW5(t).

You may see the graph representation of the states in Figure 5.12. In this model, we

Equation 5.15

Equation 5.21

Equation 5.22

q1

q2

q3

Figure 5.12: Representation of the states for Kuznetsov’s modified model.

will have the memory set as in the following;

m={((X1 < 2.344 ∧X2 < 4) ∨ (X1 ≥ 2.344 ∧X2 ≥ 4)), q1,m(i), θIL1−α, τ},
where τ ∈ {τ1, τ2} and θIL1−α is again a variable controlling the existence of IL1− α

We have also simulated Kuznetsov’s stochastic model. You may see the Figures 5.13
and 5.14.

By the same way as we do in the previous model, we can find the expected hitting
times. If Q(x, t) is the probability that the process does not reach states, let us say, A
or B in time [0, t], then we have [3]

Q(x, t) =

∫ B

A

p(y, x, t)dy
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Figure 5.13: Kuznetsov’s Model with Stochastic Calculus (phase plane)

Figure 5.14: Kuznetsov’s Model with Stochastic Calculus (x and y variables)
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Let T (x) be the random variable referring the time for the stochastic process to reach
states A or B and pt(x, t) is the probability density function of it. Expected time can
be find as follows [3]:

E(T (x)) =

∫ ∞
0

Q(x, t)dt. (5.23)

We have two models with memory. One is piecewise linear and the other one is a
modified model of Kuznetsov. They both model the same tumor-immune dynamics
described in Dvorkin’s paper.
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CHAPTER 6

MEMORY HYBRID AUTOMATA

In this chapter, we will give some basic information about automata theory and observe
memory hybrid automata in the sense of reachability and decidability. This Chapter of
the thesis, is a joint work with Carla Piazza and Alberto Cassagrande.

6.1 Definitions

Given a set S, we write P (S) and Pf (S) to denote the power set of S (i.e., the set of
all subsets of S) and the set of the finite cardinality subsets of S (i.e., Pf (S)

def
= {s|s ∈

P (s)∧|s| ∈ N}), respectively. By using the expression finite power set of S, we mean
the set Pf (S).

We use the notation X and X, respectively, to denote continuous variables and tuples
of continuous variables.

6.1.1 Hybrid Automata

Definition 6.1 (Hybrid Automaton - Syntax). A hybrid automaton of dimension dims(H)
is a tuple H = 〈Q,E,X, T,M,F , Inv ,Act ,Res〉 where:

Q is a finite set of locations

E ⊆ Q× Q is a set of edges

X is a vector of continuous variables whose domain is X = Rdims(H)

T is the time variable. It contains the elapsed time from the begin of the computation
and its domain is T = R≥0

M is the automaton memory and takes values in M ⊆ Pf (T× X× Q)

F : (Q×M) 7→ (X 7→ X) is the dynamics and associates a vector field to each possi-
ble location and memory value
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Inv : (Q×M) 7→ P (X) is the invariant which rules the valid values for the continu-
ous variables in each locations

Act : (E×M) 7→ P (X) is the activation. The automaton are enabled to cross an
edges in a particular memory condition only if the values of continuous vari-
able are included into the region indicated by the activation itself

Res : (E×M) 7→ (X 7→ P (X)) is the reset. By crossing an edge, the continuous
variable values are updated according it.

Let m be the memory value {〈t0, x0, q0〉, . . . , 〈tl, xl, ql〉} where ti−1 ≤ ti for all i ∈
[1, l], we write mi and mi, with i ≤ l, to mean the tuple 〈ti, xi, qi〉 and the set
{〈t0, x0, q0〉, . . . , 〈ti, xi, qi〉}, respectively.

Definition 6.2 (Hybrid Automaton State). A state of H is a point of the state space
S ⊆ Q×M× X× T.

A state 〈q,m, x, t〉, where m = {〈t0, x0, q0〉, . . . , 〈tl, xl, ql〉} and ti−1 ≤ ti for all
i ∈ [1, l], is said to be admissible if

• ti ≤ t for all i ∈ [0, l],

• xl ∈ Act(〈ql, q〉,m) and xi ∈ Act(〈qi, qi+1〉,mi) for all i ∈ [0, l − 1],

• x ∈ Inv(q,m) and xi ∈ Inv(qi,mi) for all i ∈ [0, l].

Since hybrid automata have a double nature, the transition systems defining their se-
mantics contains two different transition relations: the continuous reachability transi-
tion relation and the discrete reachability transition relation.

Definition 6.3 (Hybrid Automaton - Semantics). The continuous reachability transi-
tion relation t−→C between states, with t ≥ 0 denoting the transition elapsed time, is
defined as follows:

〈q,m, x, t〉 δ−→C 〈q′,m′, x′, t′〉 ⇐⇒

q = q′, m = m′, t′ = t + δ, and there
exists a continuos f : [0, δ] 7→ X such
that f(0) = x, f(δ) = x′, ∂f

∂t
(s) =

F(q,m)(f(s)), and f(s) ∈ Inv(q,m)
for all s ∈ dom(f). In such a case, f is
called flow function.

The discrete reachability transition relation e−→D is defined as follows:

〈q,m, x, t〉 e−→D 〈q′,m′, x′, t′〉 ⇐⇒ t = t′, e = 〈q, q′〉 ∈ E, x ∈ Act(e,m),
x′ ∈ e,m(x), and m′ = m ∪ {〈t, x, q〉}

We write `→C `
′ and `→D `′ meaning respectively that there exists a t ∈ T such that

`
t−→C `

′ and that there exists an e ∈ E such that ` e−→D `′.
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Definition 6.4 (Memoryless Hybrid Automaton). A memoryless hybrid automaton is
a hybrid automaton such that F , Act , and Res do not depend on the memory value i.e.,
F(q,m) = F(q,m′), Act(e,m) = Act(e,m′), and e,m = e,m’ for all m,m′ ∈M.

Since memory is not used during the computation of memoryless hybrid automata, we
may define both syntax and semantics of any of them by avoiding the use of memory
in Definitions 6.1, 6.2, and 6.3.

Building upon a combination of both continuous and discrete transitions, we can for-
mulate the notion of reachability.

Definition 6.5 (Hybrid Automata - Reachability). The hybrid automaton H reaches a
state ` from a state `′ if there exists a sequence of admissible states `0, . . . , `n, with
` = `0 and `′ = `n, such that `i−1 → `i holds for each i ∈ [1, n]. In such a case, we
also say that `′ is reachable from ` in H .

The problem of deciding whether a hybrid automaton H reaches a set of states T from
a second set of states S is known as the reachability problem of T from S over H .
There exists (memoryless) hybrid automata over which the reachability problem is not
decidable [4].

6.2 Decidability

Theorem 6.1. Any hybrid automaton H with memory can be encoded into a memory-
less hybrid automaton HM which has the same reachability property.

Proof. Sketch. The memory domain M has the same cardinality of R and there should
exist a bijective function fe : M 7→ R. Hence, we can encode the whole memory into
a single continuous variable. Let us call such a variable XM and let XT be a variable
which stores the time elapsed during the continuous evolutions. Let H be the tuple
〈Q,E,X, T,M,F , Inv ,Act ,Res〉 where X = 〈X1, . . . , Xn〉. The automaton HM is
the tuple 〈Q,E,X′, T,F ′, Inv ′,Act ′,Res ′〉, where:

• X′ = 〈XM , XTX1, . . . , Xdims(H)〉 and X′ = R× Rdims(H),

• F ′(q)(x′) def
= 〈0, 1, f1(xM)(x), . . . , fn(xM))(x)〉 where the two vectors x and x′

are respectively 〈x1, . . . , xn〉 and x′ = 〈xM , xT , x1, . . . , xn〉 and the fi functions
are such that F(q, f−1e (xM)) = 〈f1(xM), . . . , fn(xM)〉 ,

• Inv ′(q)
def
=
⋃
m∈M ({fe(m)} × T× Inv(q,m)),

• Act ′(e)
def
= {〈xM , xT , x1, . . . , xn〉|〈x1, . . . , xn〉 ∈ Act(e, f−1e (xM))}

• Res ′(e)(〈xM , xT , x1, . . . , xn〉) def
= 〈x′M , xT , f1(xM)(x1), . . . , fn(xM)(xn)〉 with

x = 〈x1, . . . , xn〉, e = 〈q, q′〉, e,f−1e (xM) = 〈f1(xM), . . . , fn(xM)〉, and x′M
def
=

fe(f
−1
e (xM) ∪ {〈xT , x, q〉}).

59



The proof can be finished by showing 〈q,m, x, t〉 δ−→C 〈q′,m′, x′, t′〉 in H if and only
if 〈q, x̄, t〉 δ−→C 〈q′, x̄′, t′〉 in HM and 〈q,m, x, t〉 e−→D 〈q′,m′, x′, t′〉 in H if and only
if 〈q, x̄, t〉 e−→D 〈q′, x̄′, t′〉 in HM with x = 〈x1, . . . , xn〉, x′ = 〈x′1, . . . , x′n〉, x̄ =
〈fe(m), t, x1, . . . , xn〉, and x̄′ = 〈fe(m′), t′, x′1, . . . , x′n〉.

We call memoryless encoding any function which encodes hybrid automata into mem-
oryless hybrid automata preserving original reachability properties.

Theorem 6.2. Let D be {−1, 0, 1}. For the class of hybrid automata with the following
properties:

• F(q,m)(x) = 〈0, . . . , 0〉 = ~0,

• Inv(q,m) = Dn,

• Act(e,m) has either the form X = Dn or
∑|m|

j=0 xi,j = 0 where xi,j is the value
of the i-th component of xi and xi is the continuous part of mj ,

• e,m(〈x1, . . . , xn〉) ∈ Dn.

The reachability problem is undecidable.

Proof. Sketch. Reduce halting problem for two counters Turing machines to reachabil-
ity problem for above class. Let C1 and C2 be the two counters that we want to encode
and val(Ci) be the value stored into the counter Ci. Each counter Ci can be encoded
by the memory projection on the one continuous variables Xi. The value val(Ci) is the
sum of all the xi,j’s i.e., val(Ci) =

∑|m|
j=0 xi,j . Let the tuple of continuous variables X

be equal to 〈X1, X2〉. The computation always begins with the continuous assignment
X = 〈0, 0〉. Figures 6.1, 6.2, 6.3, and 6.4 depict the sets of nodes and edges which can
be used to encode the steps of a 2-counter machine. The wanted 2-counter machine
configuration is reached after crossing a dashed edge. Two blocks, A and B, can be
composed by joining a dashed edge of A with the not-dashed edge of B. The obtained
edge has, as reset, the reset of former and, as activation, the activation of the latter. The
location Halt corresponds to the halt state of the 2-counter machine.

Figure 6.1: The automata component which increments the value of C1.
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Figure 6.2: The automata component which decreases the value of C1.

Figure 6.3: The automata component which tests whether C1 is equal to 0.

Figure 6.4: The automata component which decreases the value of C1.
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CHAPTER 7

CONCLUSION

In this work, the theory of hybrid systems with memory is explained and applied.
Moreover, by investigating memory hybrid automata, we research hybrid systems with
memory in the sense of logic. Firstly, a background of the system is explained and de-
tailed by giving examples. Then, we give some preliminary material for tumor-immune
dynamics and mathematical models. Hybrid Systems with memory is explained with
examples both in deterministic and stochastic cases. We applied this formalization
with two different approaches on data found from the literature. Hybrid systems with
memory can be used in modeling dynamical systems which have regulatory processes
and exhibit history dependent behaviors. Modeling gene regulatory networks by in-
vestigating their skill on memory is investigated by the application.

Complex networks, which involve memory can be modeled in a simpler way by using
hybrid system with memory where the dynamics of the system is determined by the
location of the state vector and the memory. The memorization capability of gene reg-
ulatory networks can be mimicked by this approach. Designing the system including
memory and changing the dynamics of the system according to that phenomena, gives
us a simpler analyzing approach.

In the automata sense, hybrid systems with memory are able to provide solutions, also.

This work, gives us a lot of open questions in tumor-immune dynamics, automata
applications, and in the mathematical aspect which are worth to investigate. Also, it
gives an idea about how one can include memory to the dynamics in a simpler way.
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APPENDIX A

APPENDIX HEADING

A.1 State q1 Monte Carlo Simulation Results

ESTIMATED PARAMETER VALUES AND 95 pct. CONFIDENCE INTERVALS
------------------------------------------------------
free parameter #1): 3.848369e-01 [ NaN, NaN]
free parameter #2): 1.076445e-01 [ NaN, NaN]
free parameter #3): 7.519055e-02 [ NaN, NaN]
free parameter #4): -1.220812e-01 [ NaN, NaN]
free parameter #5): 1.239746e-01 [ NaN, NaN]
free parameter #6): -2.870906e-02 [ NaN, NaN]
free parameter #7): -4.440892e-16 [ NaN, NaN]
free parameter #8): 9.816838e-02 [ NaN, NaN]

CONSTANT PARAMETER VALUES
------------------------------------------------------
constant parameter #1): 1
constant parameter #2): 3.587500e+00

--------------------------------------------------------------------------------------------------
-------------------------- MONTE-CARLO STATISTICS FOR X_T (VARIABLE 1) ---------------------------
--------------------------------------------------------------------------------------------------

Process mean at time 3: 2.030960e+00
Process variance at time 3: 8.687306e-04
Process median at time 3: 2.030960e+00
95 percent confidence interval for the trajectories at time 3: [1.973740e+00, 2.088179e+00]
Process first and third quartiles at time 3: [2.011870e+00, 2.050049e+00]
Process skewness at time 3: -1.556519e-13
Process kurtosis at time 3: 3.014282e+00
Process moment of order 2 at time 3: 8.669931e-04
Process moment of order 3 at time 3: -3.985494e-18
Process moment of order 4 at time 3: 2.274857e-06
Process moment of order 5 at time 3: -1.762772e-20
Process moment of order 6 at time 3: 9.492631e-09
Process moment of order 7 at time 3: -1.037525e-22

--------------------------------------------------------------------------------------------------
-------------------------- MONTE-CARLO STATISTICS FOR X_T (VARIABLE 2) ---------------------------
--------------------------------------------------------------------------------------------------

Process mean at time 3: 3.490043e+00
Process variance at time 3: 3.163216e-02
Process median at time 3: 3.490043e+00
95 percent confidence interval for the trajectories at time 3: [3.143044e+00, 3.837043e+00]
Process first and third quartiles at time 3: [3.365109e+00, 3.614978e+00]
Process skewness at time 3: 1.179298e-14
Process kurtosis at time 3: 2.783211e+00
Process moment of order 2 at time 3: 3.156890e-02
Process moment of order 3 at time 3: 6.634634e-17
Process moment of order 4 at time 3: 2.784863e-03
Process moment of order 5 at time 3: 9.946984e-18
Process moment of order 6 at time 3: 3.724400e-04
Process moment of order 7 at time 3: 1.903168e-18

A.2 State q11 Monte Carlo Simulation Results

ESTIMATED PARAMETER VALUES AND 95 pct. CONFIDENCE INTERVALS
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------------------------------------------------------
free parameter #1): 7.606058e-01 [ 0.76061, 0.76061]
free parameter #2): 3.443907e+00 [ 3.4439, 3.4439]
free parameter #3): 4.863642e-01 [ 0.48636, 0.48636]
free parameter #4): -6.936335e-01 [ -0.69363, -0.69363]
free parameter #5): 2.667027e+00 [ 2.667, 2.667]
free parameter #6): -3.069335e-01 [ -0.53151, -0.082359]
free parameter #7): 1.652102e-01 [ 0.16521, 0.16521]
free parameter #8): 7.763909e-01 [ 0.77639, 0.77639]

CONSTANT PARAMETER VALUES
------------------------------------------------------
constant parameter #1): 2.129000e+00
constant parameter #2): 3.750000e+00

--------------------------------------------------------------------------------------------------
-------------------------- MONTE-CARLO STATISTICS FOR X_T (VARIABLE 1) ---------------------------
--------------------------------------------------------------------------------------------------

Process mean at time 15: -1.414615e+00
Process variance at time 15: 1.491077e+00
Process median at time 15: -1.414615e+00
95 percent confidence interval for the trajectories at time 15: [-3.718877e+00, 8.896466e-01]
Process first and third quartiles at time 15: [-2.189481e+00, -6.397495e-01]
Process skewness at time 15: 1.242962e-16
Process kurtosis at time 15: 2.767709e+00
Process moment of order 2 at time 15: 1.476166e+00
Process moment of order 3 at time 15: 2.263120e-16
Process moment of order 4 at time 15: 6.153472e+00
Process moment of order 5 at time 15: 6.749783e-15
Process moment of order 6 at time 15: 3.639590e+01
Process moment of order 7 at time 15: 1.189753e-13

--------------------------------------------------------------------------------------------------
-------------------------- MONTE-CARLO STATISTICS FOR X_T (VARIABLE 2) ---------------------------
--------------------------------------------------------------------------------------------------

Process mean at time 15: 2.604727e+00
Process variance at time 15: 6.024406e+00
Process median at time 15: 2.604727e+00
95 percent confidence interval for the trajectories at time 15: [-2.146572e+00, 7.356027e+00]
Process first and third quartiles at time 15: [1.020924e+00, 4.188530e+00]
Process skewness at time 15: -1.049841e-15
Process kurtosis at time 15: 2.987087e+00
Process moment of order 2 at time 15: 5.964162e+00
Process moment of order 3 at time 15: -1.552369e-14
Process moment of order 4 at time 15: 1.084118e+02
Process moment of order 5 at time 15: -1.200289e-12
Process moment of order 6 at time 15: 3.004315e+03
Process moment of order 7 at time 15: -7.000996e-11

A.3 State q12 Monte Carlo Simulation Results

ESTIMATED PARAMETER VALUES AND 95 pct. CONFIDENCE INTERVALS
------------------------------------------------------
free parameter #1): 8.584284e-01 [ NaN, NaN]
free parameter #2): -2.027032e+00 [ NaN, NaN]
free parameter #3): 3.187010e+00 [ NaN, NaN]
free parameter #4): -7.508870e-01 [ NaN, NaN]
free parameter #5): 3.803386e+00 [ NaN, NaN]
free parameter #6): -8.999565e-01 [ NaN, NaN]
free parameter #7): 7.105427e-14 [ NaN, NaN]
free parameter #8): 3.083643e-01 [ NaN, NaN]

CONSTANT PARAMETER VALUES
------------------------------------------------------
constant parameter #1): 1.988000e+00
constant parameter #2): 3.700000e+00

--------------------------------------------------------------------------------------------------
-------------------------- MONTE-CARLO STATISTICS FOR X_T (VARIABLE 1) ---------------------------
--------------------------------------------------------------------------------------------------

Process mean at time 15: 2.385032e+00
Process variance at time 15: 1.244122e-01
Process median at time 15: 2.385032e+00
95 percent confidence interval for the trajectories at time 15: [1.707513e+00, 3.062552e+00]
Process first and third quartiles at time 15: [2.119646e+00, 2.650418e+00]
Process skewness at time 15: -2.134269e-15
Process kurtosis at time 15: 2.129957e+00
Process moment of order 2 at time 15: 1.231681e-01
Process moment of order 3 at time 15: -9.365772e-17
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Process moment of order 4 at time 15: 3.296832e-02
Process moment of order 5 at time 15: -3.993984e-17
Process moment of order 6 at time 15: 1.184751e-02
Process moment of order 7 at time 15: -1.997568e-17

--------------------------------------------------------------------------------------------------
-------------------------- MONTE-CARLO STATISTICS FOR X_T (VARIABLE 2) ---------------------------
--------------------------------------------------------------------------------------------------

Process mean at time 15: 4.463245e+00
Process variance at time 15: 2.252225e+00
Process median at time 15: 4.463245e+00
95 percent confidence interval for the trajectories at time 15: [1.551817e+00, 7.374673e+00]
Process first and third quartiles at time 15: [3.305425e+00, 5.621065e+00]
Process skewness at time 15: -1.051096e-15
Process kurtosis at time 15: 2.130050e+00
Process moment of order 2 at time 15: 2.229703e+00
Process moment of order 3 at time 15: -3.552714e-15
Process moment of order 4 at time 15: 1.080472e+01
Process moment of order 5 at time 15: -2.179257e-14
Process moment of order 6 at time 15: 7.062191e+01
Process moment of order 7 at time 15: -9.436271e-14

A.4 State q2 Monte Carlo Simulation Results

ESTIMATED PARAMETER VALUES AND 95 pct. CONFIDENCE INTERVALS
------------------------------------------------------
free parameter #1): -1.285206e+00 [ -1.2852, -1.2852]
free parameter #2): 4.722008e-01 [ -4.3773, 5.3217]
free parameter #3): 1.091098e+00 [ 1.0911, 1.0911]
free parameter #4): 1.119245e-01 [ 0.11192, 0.11192]
free parameter #5): -8.980802e-01 [ -2.3447, 0.54854]
free parameter #6): 1.896609e+00 [ 1.8966, 1.8966]
free parameter #7): 4.863881e-01 [ 0.48639, 0.48639]
free parameter #8): 4.882580e+00 [ 2.1658, 7.5994]

CONSTANT PARAMETER VALUES
------------------------------------------------------
constant parameter #1): 9.140000e-01
constant parameter #2): 8.500000e+00

--------------------------------------------------------------------------------------------------
-------------------------- MONTE-CARLO STATISTICS FOR X_T (VARIABLE 1) ---------------------------
--------------------------------------------------------------------------------------------------

Process mean at time 40: -1.285859e+00
Process variance at time 40: 9.328914e-01
Process median at time 40: -1.285859e+00
95 percent confidence interval for the trajectories at time 40: [-3.009734e+00, 4.380165e-01]
Process first and third quartiles at time 40: [-1.945348e+00, -6.263687e-01]
Process skewness at time 40: -5.199673e-16
Process kurtosis at time 40: 2.291463e+00
Process moment of order 2 at time 40: 9.235625e-01
Process moment of order 3 at time 40: -4.685141e-16
Process moment of order 4 at time 40: 1.994229e+00
Process moment of order 5 at time 40: -1.652567e-15
Process moment of order 6 at time 40: 5.869143e+00
Process moment of order 7 at time 40: -4.516942e-15

--------------------------------------------------------------------------------------------------
-------------------------- MONTE-CARLO STATISTICS FOR X_T (VARIABLE 2) ---------------------------
--------------------------------------------------------------------------------------------------

Process mean at time 40: 4.684024e-01
Process variance at time 40: 6.600899e+01
Process median at time 40: 4.684024e-01
95 percent confidence interval for the trajectories at time 40: [-1.414650e+01, 1.508331e+01]
Process first and third quartiles at time 40: [-4.968686e+00, 5.905490e+00]
Process skewness at time 40: -1.907867e-17
Process kurtosis at time 40: 2.892773e+00
Process moment of order 2 at time 40: 6.534890e+01
Process moment of order 3 at time 40: -1.023182e-14
Process moment of order 4 at time 40: 1.260435e+04
Process moment of order 5 at time 40: -6.977643e-11
Process moment of order 6 at time 40: 4.274414e+06
Process moment of order 7 at time 40: -6.053131e-08
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A.5 State q3 Monte Carlo Simulation Results

ESTIMATED PARAMETER VALUES AND 95 pct. CONFIDENCE INTERVALS
------------------------------------------------------
free parameter #1): 1.724526e+00 [ NaN, NaN]
free parameter #2): 1.853089e+00 [ NaN, NaN]
free parameter #3): 7.469868e-01 [ NaN, NaN]
free parameter #4): 7.085931e-01 [ NaN, NaN]
free parameter #5): 7.309582e-01 [ NaN, NaN]
free parameter #6): 9.813817e-01 [ NaN, NaN]
free parameter #7): 7.105427e-15 [ NaN, NaN]
free parameter #8): 1.119457e+00 [ NaN, NaN]

CONSTANT PARAMETER VALUES
------------------------------------------------------
constant parameter #1): 3.011000e+00
constant parameter #2): 7.375000e+00

--------------------------------------------------------------------------------------------------
-------------------------- MONTE-CARLO STATISTICS FOR X_T (VARIABLE 1) ---------------------------
--------------------------------------------------------------------------------------------------

Process mean at time 40: 1.672971e+00
Process variance at time 40: 1.624704e+00
Process median at time 40: 1.672971e+00
95 percent confidence interval for the trajectories at time 40: [-6.072571e-01, 3.953200e+00]
Process first and third quartiles at time 40: [6.777698e-01, 2.668173e+00]
Process skewness at time 40: -1.356342e-16
Process kurtosis at time 40: 2.676510e+00
Process moment of order 2 at time 40: 1.608457e+00
Process moment of order 3 at time 40: -2.808864e-16
Process moment of order 4 at time 40: 7.065088e+00
Process moment of order 5 at time 40: -7.277512e-15
Process moment of order 6 at time 40: 4.890849e+01
Process moment of order 7 at time 40: -1.303935e-13

--------------------------------------------------------------------------------------------------
-------------------------- MONTE-CARLO STATISTICS FOR X_T (VARIABLE 2) ---------------------------
--------------------------------------------------------------------------------------------------

Process mean at time 40: 1.897599e+00
Process variance at time 40: 1.724602e+00
Process median at time 40: 1.897599e+00
95 percent confidence interval for the trajectories at time 40: [-5.681222e-01, 4.363321e+00]
Process first and third quartiles at time 40: [1.006893e+00, 2.788305e+00]
Process skewness at time 40: -1.300512e-15
Process kurtosis at time 40: 2.555462e+00
Process moment of order 2 at time 40: 1.707356e+00
Process moment of order 3 at time 40: -2.945422e-15
Process moment of order 4 at time 40: 7.600586e+00
Process moment of order 5 at time 40: -1.964762e-14
Process moment of order 6 at time 40: 4.831541e+01
Process moment of order 7 at time 40: -1.743400e-13
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Bursa, 7 – 10 Eylül 2011.
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