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ABSTRACT

MODELING STOCHASTIC HYBRID SYSTEMS WITH MEMORY WITH AN
APPLICATION TO IMMUNE RESPONSE OF CANCER DYNAMICS

Gokgoz, Nurgiil
Ph.D., Department of Scientific Computing
Supervisor : Assoc. Prof. Dr. Hakan Oktem

Co-Supervisor : Assoc. Prof. Dr. Carla Piazza

February 2014, [78| pages

Dynamics of cancer involve some complex interactions like immune system responses.
Many different models of immune response to tumor growth exist in the literature.
Most of the available models are first principles models which have problems in deter-
mining the model parameters. For potential use in treatment planning, a model should
be able to adopt to subject by subject variability and unknown factors. However, such
an approach for a complicated problem like cancer dynamics has some drawbacks.
First of all, there exist some unknown factors. Secondly, models with fixed parameters
do not allow considering subject-by-subject variability. An alternative approach to this
problem is inferring the parameters and determining system behaviour from empirical
observation. In inferential modeling case, we first select a model class and infer the
parameters from the observations. For this purpose, we used hybrid systems that are
suitable for inferential modeling due to their analytical and computational advances.
For many biological and physiological systems, the behaviour of system and its re-
sponses depend on whole history rather than a combination of historical events. We
utilize and further develop hybrid systems with memory to have a more realistic rep-
resentation. Finally, we also incorporate stochastic calculus in our model to include
uncertainities and random perturbation.

Keywords : stochastic hybrid systems, hybrid systems with memory, memory hybrid
automata, tumor-immune dynamics, mathematical modeling
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HAFIZALI STOKASTiK I—HBRiT SiSTEMLERiN MODELLENMEsi VE
BAGISIKLIK SISTEMININ KANSER DINAMIKLERINE TEPKISINE
UYGULAMASI

Gokgoz, Nurgiil
Doktora, Bilimsel Hesaplama Boliimii
Tez Yoneticisi : Do¢. Dr. Hakan Oktem
Ortak Tez Yoneticisi : Doc. Dr. Carla Piazza

Subat 2014, [78|sayfa

Bulagict hastaliklarda hastalifin yayilmasimi kontrol etmek i¢in kullanilan esik deger
dinamigi matematiksel epidemiolojide biiyiik bir oneme ve ilgiye sahiptir. En bi-
linen esik degerlerinden biri, esas ¢ogalma orami olan Ry’dir. Bulagi hastaliklarin
temel sorunlarindan biri de onun formiillenmesi ve hesaplanmasidir. Kanser dinamik-
leri bagisiklik sistemi tepkileri gibi bazi karisik etkilesimler igerir. Literatiirde timor
biiylimesine bagisiklik tepkisinin pek ¢ok degisik modeli bulunmaktadir. Kullanilabilir
modellerin pek ¢ogu, model parametrelerinin karar verilmesinde problemleri olan ilk
ilkeler modelleridir. Tedavi planlamasinin potensiyel kullanimi i¢in bir model, birey-
den bireye degis- kenligi ve bilinmeyen faktorleri benimsemelidir. Fakat, kanser di-
namikleri gibi karmasik bir problem icin bdylesi bir yaklasimin bazi sakincalara sahip-
tir. Oncelikle, baz1 bilinmeyen faktorler bulunmaktadir. Ikinci olarak, sabit parame-
treli modeller siije-siije ¢esitliligini goz oniinde bulundurmaya izin vermez. Bu prob-
leme alternatif bir ¢oziim deneysel gozlemlerden parametreleri ¢cikarmak ve sistem
davranigina karar vermektir. Cikarimsal modelleme durumunda, ilk once bir model
sinifi segeriz ve parametreleri gozlemlerden ¢ikaririz. Bu amagla, analitik ve hesaplama
avantajlar1 olan hibrit sistemleri kullandik. Cogu biyolojik ve fizyolojik sistem ig¢in,
sistemin davranis1 ve tepkisi gecmis olaylarin kombinasyonundan ziyade tiim ge¢cmise
dayanir. Daha gercek¢i bir gosterim elde ede bilmek i¢in, hafizli hibrit sistemden fay-
dalandik ve daha da gelistirdik. Son olarak, belirsizlikleri ve rastgele pertiirbasyonlari
dahil edebilmek i¢in, stokastik kalkiiliisii de modelimizle birlestirdik.
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CHAPTER 1

INTRODUCTION

1.1 Introduction of the Work

Modeling a dynamical system mathematically is crucial for understanding and control-
ling many scientific and engineering problems. If a mathematical model is developed
for a dynamical system, the observation of the dynamical system under various con-
ditions can be done and the dynamical system’s future behavior with different initial
conditions can be analyzed. This information can be used to come up with strategies
which can carry the system to a desired state.

The developments in different areas of science and technology have increased the im-
portance of mathematical modeling of dynamical systems. Hybrid systems provide a
promising area in mathematical modeling of many biological and physiological sys-
tems by combining Boolean and continuous variables and allowing them to regulate
each other [48]], [S7], [78]], [65]. This property provides various advantages in mod-
eling complex processes and designing control systems. A control application can be
thought as the first use of hybrid systems. By the study of engineering systems which
contain relays and/or hysteresis, 1950’s can be thought of the years of the start of hy-
brid system research [64]]. Later in 1990’s, hybrid systems started to take attention
people’s attention due to the vast development and implementation of digital micro
controllers and embedded devices [64]. Their use increased with the developments
of control applications like robotics, air traffic control, etc.. During the last decade,
many researchers from various disciplines such as computer science, control systems
engineering, and mathematics [6], [85] have performed considerable research activities
on hybrid systems. Modeling [4], [11], [12], [92], reachability analysis [4], [S] ,[10],
stability and stabilization [32], [S1]], [54], [62], [63], [95], observability and control-
lability [14], [92], [96] and optimal control [13]], [104] are the mostly studied issues
[64] of this phenomena. Today, hybrid systems serve as an important device for in-
vestigating various modeling [38], [40], [78], [65] and theoretical problems [39], 78],
[65] in nature and science. Moreover, some dynamical systems that have threshold
phenomena can be best formalized by hybrid systems.

Multi-stationarity is the existence of multiple stationary steady states in a dynamical
system. Since Delbriick’s [33] suggestion stating "Epigenetic differentiation reflects
multi-stationary”, it is widely considered in modeling of complex systems. Hybrid
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systems are essentially useful in modeling multi-stationary processes.

By piecewise linear systems, a subclass of hybrid systems, complex nonlinear dynam-
ical systems can be approximated as a combination of piecewise analytically solvable
systems, except the ones that are chaotic. Many different formalizations of hybrid sys-
tems are used in various fields. In this work, we focus on the state space representation
and hybrid automata representation.

Since many dynamical systems depend on history [27], [58], mathematical models
with memory has taken attention to mimic this property. Hybrid systems with mem-
ory are investigated in this work, because of the profits and advanced features of hybrid
systems. The future behavior of the system depends on both the state transition and the
memory which is updated at the state transitions. In this work, we propose that, mem-
ory can be thought as a ”functional memory” not an “initial condition memory”. The
history dependent behavior appears in many biological systems. One of the obvious
one is immune response which is also investigated in this work.

1.2 Aim and Importance of the Work

The dynamics of cancer involve some complex interactions like immune system re-
sponses. Many different approaches to model immune response to tumor growth exist
in the literature. Most of the available models are first principles models which have
problems in determining the model parameters. For potential use in treatment plan-
ning, a model with capability of adopting to subject by subject variability and unknown
factors has an advantage of suggesting the best choice for each case. A common so-
lution to this problem is inferring the parameters and determining the system behavior
from empirical observation. In inferential modeling case we first select a model class
and infer the parameters from the observations. In this case, hybrid systems are suit-
able for use in inferential modeling due to their analytical and computational advances.
By hybrid systems with memory phenomena, the representation of factors which may
depend on the whole history, rather than a combination of historical events, can be
efficiently modeled. Including stochastic calculus in the model, more accurate results
can be obtained.

In this work, we build a hybrid system with memory to use in an inferential model.
We propose Stochastic Hybrid Systems with Memory (SHSM), and apply this for-
malization to tumor-immune dynamics with two different approaches. One model is
piecewise linear and the other model is nonlinear. For the one which is nonlinear,
we choose Kuznetsov’s very well known model and improve it. Such a model can be
trained with the initial data from each case and then it can be used in a personalized
planning. The memory has been used according to the different stopping times since
the model has acted with different dynamics due to the nature of cancer. That has led
us to the conclusion that the model has memorized some aspects of immune dynamics.

In order to find the parameters of the piecewise linear model, we use SDE Toolbox and
simulated the model. We find parameter values for every state of the piecewise model.
To obtain more realistic values, we use the data from the literature. It is very important
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how we choose the data. According to the data we work on, mainly two different
group of mice are investigated under IL1-« effect. One group is able to defend the
host against tumor growth with immune system variables , and the other group fails in
this process. Their defense mechanism and cancer growth differs widely. This shows
us that memorization capability of immune system is very important for the organism.
We investigate Memory Hybrid Automata in the logic sense and by doing this we
provide a research area if Hybrid Systems with Memory formalization is reachable
and decidable.

1.3 Explanation of the Work

Outline of the thesis is as follows: In Chapter 2, we give a brief description of the
related mathematical tools. In Chapter 3, we give tumor-immune dynamics, especially
the ones we used in the application part, and we mention some important mathemat-
ical models which are used to model tumor-immune system dynamics. In Chapter 4,
an introduction to deterministic and stochastic hybrid systems with memory, or shortly
DHSM and SHSM respectively, is given. In Chapter 5, a brief mathematical descrip-
tion of stochastic hybrid systems is given, two applications on tumor-immune dynam-
ics is done. One model is piecewise linear and the other one is a developed version of
Kuznetsov’s model. In Chapter 6, Memory Hybrid Automata is introduced, some basic
definitions on Memory Hybrid Automata are given and a few theorems are represented
and proved. Finally in Chapter 7, we will sum up the work and mention some future
progress.






CHAPTER 2

HYBRID SYSTEMS

In this chapter, some basic information about dynamical systems, hybrid dynamical
systems, hybrid automata, graph theory, stochastic hybrid systems and stochastic hy-
brid automata will be given.

As we start, the concepts of dynamics must be carefully explained. The theory of
dynamics is the subjectthat deal with change, with systems that evolve in time [94].
The solutions of such a system may settle down to an equilibrium, keep repeating in
cycles, or do something more complicated. This is how the dynamical systems keeps
dealing with the analysis.

2.1 Examples of Dynamical Systems

We, now give some classical examples of dynamical systems. For a detailed discussion
of these examples please see [19], [94], [102]. The exponential growth of a population
of organisms is one of the typical examples of dynamical systems. This system is given
by the first-order equation

T =r, 2.1)

where x is the population at time ¢ and 7 is the growth rate. This system is described
by only one variable, at the initial value of the population x is enough to determine the
population at any later time. Moreover, this is a linear system because the differential
equation is linear in x.

Another example can be thought as the Lotka-Volterra equations, also known as the
predator-prey equations which are mostly used to explain the dynamics of biological
systems. Two species interact each other where one is prey and the other is predator.
Their population change in time according to the pair of equations [61], [94], [101]:

dz

= = (o= By), (2.2)
gy

i y(y — dx), (2.3)



where x is the population of prey, y is the population of some predator, <7, =% are the

growth rates of the two populations over time. The values a, 3, v and § are parameters
describing the interaction of the two species.

First equation refers to the prey population. Assuming that the prey have an unlimited
food supply, the exponential growth of the prey is given by the term ax. The rate of
predation of the prey which is assumed to be proportional to the rate of the meeting of
the predator and theprey is represented above by Sxy.

Second equation in the system refers to the predator population. In this equation, dzxy
represents the growth of the predator population. The term, vy describes the loss rate
of the predators because of their natural death or emigration. Therefore, the equation
gives the change of predator population by the growth causing from the food supply
and the loss from natural death [61]], [94]], [1O1]].

2.1.1 An example

An illustration of the predator-prey model can be given by two species of animals, a
rabbit (prey) and a fox (predator). If the initial conditions are 80 rabbits and 40 foxes,
one can plot the progression of the two species over time. The choice of time interval
is arbitrary. you may see the Figure [2.1]

1200 T T T T T T

1000

g0o

600

400

200

Figure 2.1: An example of population dynamics of prey and predators. Initial condi-
tions were set to prey=80 and predator=40.



2.2 Hybrid Systems

A hybrid system is a special kind of dynamical systems that is formed by both con-
tinuous and Boolean variables regulating each other [48], [S7], [65], [78]. In hybrid
system formulation, the governing differential equations of continuous variables and
Boolean state of a discrete variable can regulate each other.

One may find the typical examples of hybrid systems in nature and technology. Two
main examples are those including real physical switches and those referring dynami-
cal systems with threshold phenomena. The continuous traffic flow regulated by traffic
lights, which is discrete, and an electrical circuit protected by a fuse and the temper-
ature controlled by a thermostat can be given as examples for the first group. For the
second group of hybrid systems, the dynamical systems which are switching when-
ever a threshold surpassed is considered. The bouncing ball and also the activation or
the inhibition of a gene when a corresponding protein surpass a threshold are famous
examples for this group.

The representation of hybrid systems differs because of its use in different fields such
as control engineering, computer engineering, logistics, automation and dynamical
systems theory. Hybrid automata can be considered as a general representation for
hybrid systems. We will give some detailed information about hybrid automata later
but as a start we may give a representation of a hybrid system basically as follows;

Y Fy(0) 7 (0),
s(t) = (sk, 85) if y(t) € Uy,

where Uy, Us, . . ., U, are subspaces of the state space Y of y and s, is an external state
input.

A relatively simpler hybrid system model suitable for gene networks and similar pro-
cesses is obtained by partitioning the state space by a single threshold intersecting each
axis(variable). This limitation of threshold conditions is sufficiently realistic for prob-
lems investigated and it simplifies handling effects of delays which are very important
in biological regulatory systems. The delay between the interaction of variables intro-
duces difficulties in analysis and simulations but supplies the system by the capability
to memorize functions rather than values. In other words, states are functions instead
of initial values. Therefore, an adaptation of the above system for delayed case can be
given as follows;

% = fs(y(t)axe(t))7
s(t) = Fp(Q(y(t)), s(t — 1), sa(1)),

o ={ o 4z

where



fs Y x X, — R™is a switching function determined by the state vector s(t),
e y is an n dimensional vector of continuous variables,

e 1. is a vector representing the continuous external inputs,

e s(t) : R — [0,1]™ is the state vector,

o Fy:[0,1]""** —[0,1)™ is a Boolean function,

e s,.(t) is a vector representing the Boolean external inputs,

e ()(.) is the quantization operation, and

e 7 is the delay.

By this representation the delay is covered by the piecewise constant part.

2.2.1 Example (Bouncing Ball)

We now consider a classical example of hybrid systems in order to illustrate the formu-
lation above. Think of a ball which is released from its center with height z(¢y) =
at time ¢ = t; without any initial velocity i.e. v(ty) = 0. The ball will accelerate
downwards until the time when it hits to the ground with velocity

v(t) = v(tg) — gt
and position

x(t) = x(to) — %gt?
Here g is the acceleration due to gravity. For simplicity, nonelastic collision is consid-
ered and mechanical properties of the ball are ignored. Let r be the radius of the ball.
The ball hits to the ground when z(t) = r. After the hit, the ball compresses and all
the kinetic energy will turn into compression until the ball stops, i.e. v(t) = 0 where it
will decelerates by

dv

— =k.
dt
After the compression the ball will start to accelerate upwards with
dv
= — ok
dt p Y

where 0 < p < k.

In this example, different states of the system can be given as;

s1 = x(t) >r
so = (z(t) <r)A(v(t) <0),
s = (z(t) <r)A(v(t) > 0),

8



where A is the logical AN D conjunction. Here, the state is 1 if the binary relation
between the terms is true and O otherwise. The state representation of the bouncing
ball is given by

dr

o

= (1) = s)g + (s(0) = s2)k + (5(1) = s3)ok,
s; = x(t) >,

sg = (z(t) <r)A(v(t) <0),

(@(
s3 = (z(t)

For a detailed discussion of this example see [[/8]], and [63] and for different examples
of dynamical systems with state space representation see [81]].

2.3 An Overview of The Graph Theory

A hybrid system can also be represented by a graph. In such a representation, the nodes
correspond to different states of the system and the edges correspond to possible state
transitions of the system. We now give basic definitions of the graph theory that will
be useful to explain our work in the following chapters.

Definition 2.1. A graph G is a finite nonempty set V' (G) of vertices (also called points
or nodes) and a set £(G) of edges also called or lines. The set V' (G) is called the
vertex set and F'(G) its edge set [26].

Let u and v be two vertices of a graph G. If e = uv is an edge of G, then we say that
u and v are adjacent in (&, and that e joins u and v. For example, a graph G is defined
by the sets

V(G) ={u,v,w,z,y, 2}

and
E(G) = {uv,vw,wx,zy, xz} .

If more than one edge join a pair of vertices in a graph, then this graph is called
multigraph. Two or more edges that join the same pair of vertices are called paralleledges.
An edge that join itself is a loop [26].

Definition 2.2. A network G = (V, E) is a directed graph in which every edge e is
assigned an initial vertex and a terminal vertex [78]], [65]].

Graphs or networks have lots of benefits in the sense of formalizing the systems that
have interconnected elements such as dynamical systems, artificial intelligence tools,
traffic, fluid flow, social interactions, networks of computers, chemical bonds and lin-
guistics. Practical and useful information can be obtained in the case of complex net-
works, by the analysis of the network of the system.
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There are two main ways of describing a dynamical system by a graph representation.
First way is the state space representation [81] as illustrated in the previous section.
Second way is to display the cause-effect relation [65], [78], [88], [98]], [99]. A plus
sign on the edge corresponds to the activation and a minus sign corresponds to the
repression. For flows, weighted graphs can be introduced.

Gene regulatory systems have various models in mathematical biology and bioinfor-
matics. Genes regulate the metabolism by activating or repressing protein synthesis.
The mechanism in a cellular system can be well understood by the regulatory relations
in a gene network. When illustrating gene networks in graph representation, nodes cor-
respond to the genes and directed edges to their relations such that a positive directed
edge from a gene to the other means the activation, whereas a negative directed edge
means the repression [93]], [88]. The knowledge on the relations in gene networks are
limited because of the complexity of these networks [40].

Boolean approach is the generally used modeling technique in gene networks. Depend-
ing on the activity level of the gene there exist two different states: active or inactive
respectively, 1 or 0 [98]], [99]. There are some different approaches such that N K
model which can be used for modeling gene regulatory networks as Kauffman used

[88]. In this system, connectivity can be thought as K and the nodes can be thought as
N.

2.4 Discrete Event Systems

In this section, we give some basic information on discrete event systems and some
related material that will be useful in the following chapters.

2.4.1 Automaton (State Machine)

Definition 2.3. A state machine or an automaton M = (Q, qo, V, I, E) is a tuple wi