
COMPUTATIONAL MODELING OF CARDIAC DYSFUNCTIONS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

EZGİ BERBEROĞLU YILMAZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

CIVIL ENGINEERING

FEBRUARY 2014





Approval of the thesis:

COMPUTATIONAL MODELING OF CARDIAC DYSFUNCTIONS

submitted by EZGİ BERBEROĞLU YILMAZ in partial fulfillment of the
requirements for the degree of Master of Science in Civil Engineering De-
partment, Middle East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Ahmet Cevdet Yalçıner
Head of Department, Civil Engineering

Assist. Prof. Dr. Serdar Göktepe
Supervisor, Civil Engineering Department, METU

Examining Committee Members:

Prof. Dr. İsmail Özgür Yaman
Civil Engineering Department, METU

Assist. Prof. Dr. Serdar Göktepe
Civil Engineering Department, METU

Assoc. Prof. Dr. Afşin Sarıtaş
Civil Engineering Department, METU

Assist. Prof. Dr. Ercan Gürses
Aerospace Engineering Department, METU

Inst. Dr. Onur Pekcan
Civil Engineering Department, METU

Date:



I hereby declare that all information in this document has been ob-
tained and presented in accordance with academic rules and ethical
conduct. I also declare that, as required by these rules and conduct,
I have fully cited and referenced all material and results that are not
original to this work.

Name, Last Name: EZGİ BERBEROĞLU YILMAZ

Signature :

iv



ABSTRACT

COMPUTATIONAL MODELING OF CARDIAC DYSFUNCTIONS

Berberoğlu Yılmaz, Ezgi

M.S., Department of Civil Engineering

Supervisor : Assist. Prof. Dr. Serdar Göktepe

February 2014, 76 pages

Computational modeling of the cardiovascular system has improved remarkably

with the advances in the computer technology and mathematical modeling. The

cardiac models can play a crucial role in understanding the major electromechan-

ical, biophysical, and biochemical processes for the both healthy and pathological

cases. The capability of heart models to capture the real physiological behavior

depends on physiologically sound constitutive models accounting for the intrin-

sically non-linear, electromechanically coupled response of anisotropic cardiac

tissue. It is also necessary to incorporate the efficient, robust, and stable numer-

ical algorithms into these models. To this end, we propose a micro-structurally

based, unified implicit finite element approach to the fully coupled problem of

cardiac electromechanics incorporating cardiac dysfunctions. In this thesis, we

formulate the coupled problem of cardiac electromechanics through the conser-

vation of linear momentum and the excitation equation in the Eulerian setting.

These equations are solved monolithically through an entirely finite element-

based implicit algorithm. Different from the existing literature, the deformation
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gradient is multiplicatively decomposed into active and passive parts in addition

to the additive split of the free energy function to model the electromechanical

coupling. This framework allows us to combine the advantages of the active-

stress and the active-strain approaches. The left ventricular pressure evolution

is modeled by incorporating a Windkessel-like model. The proposed model is

then employed to investigate different pathological cases that cover myocardial

infarction, eccentric and concentric hypertrophy. The computational results are

shown to be in agreement with the clinical symptoms observed in the associated

dysfunction.

Keywords: Coupled Cardiac Electromechanics, Cardiac Diseases, Pressure-Volume

Curves, Finite Element Method

vi



ÖZ

KALP HASTALIKLARININ HESAPLAMALI OLARAK MODELLENMESİ

Berberoğlu Yılmaz, Ezgi

Yüksek Lisans, İnşaat Mühendisliği Bölümü

Tez Yöneticisi : Assist. Prof. Dr. Serdar Göktepe

Şubat 2014 , 76 sayfa

Kardiyovasküler sistemin hesaplamalı nicel modellenmesinde; bilgisayar tekno-

lojisi ve matematiksel modellemedeki gelişmelerle birlikte, önemli yol katedil-

miştir. Kalp modelleri; sağlıklı ve patolojik durumlarda, başlıca elektromekanik,

biyofiziksel ve biyokimyasal süreçlerin anlaşılmasında önemli rol oynamaktadır.

Kalp modellerinin gerçek fizyolojik davranışı yakalayabilmesi, eşyönsüz kalp do-

kusunun doğrusal olmayan, bağlaşık elektromekanik etkiyi dikkate alan sağlam

bünye denklemlerine dayanmasına bağlıdır. Ayrıca, verimli, sağlam ve kararlı al-

goritmaların da bu modellere tamamlayıcı olarak eşlik etmeleri gerekmektedir.

Bu amaç ışığında; eldeki tez çalışmasında, kalpteki işlevsel bozuklukların ben-

zetimi için kalbin tamamen bağlaşık elektromekaniksel davranışının modellen-

mesinde mikro-yapıya dayanan tamamen kapalı adımlı sonlu elemanlar yöntemi

önerilmektedir. Bu çalışmada, kalbin bağlaşık elektromekaniksel modellenmesi,

doğrusal momentumun korunumu ve elektriksel uyarılma denklemleri ile oluştu-

rulmuştur. İlgili denklemler tamamen sonlu elemanlar esaslı kapalı adımlı algo-
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ritmalar kullanılarak monolitik olarak çözülmüştür. Literatürden farklı olarak,

elektromekanik bağlaşıklığın modellenmesinde, şekil değiştirme gradyanı aktif ve

pasif bileşenlerine çarpımsal olarak ayrılmış ve serbest enerji fonksiyonu toplam-

sal olarak parçalanmıştır. Böylece, aktif-gerilme ve aktif birim şekil değiştirmeye

dayanan yaklaşımların avantajları tek bir modelde birleştirilmiştir. Sol karıncığın

basınç oluşumu Windkessel benzeri bir modelle hesaplanmıştır. Önerilen model,

miyokard enfarktüsü, dış merkezli ve eş merkezli hipertrofi (aşırı büyüme) has-

talıklarının araştırılması için kullanılmıştır. Hesaplamalı benzetim sonuçlarının

ilgili hastalıklar için gözlemlenmiş klinik bulgularla uyuştuğu gösterilmiştir.

Anahtar Kelimeler: Bağlaşık Kalp Elektromekaniği, Kalp Hastalıkları, Basınç-

Hacim Eğrileri, Sonlu Elemanlar Yöntemi
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CHAPTER 1

INTRODUCTION

In this thesis, it is aimed to develop a mathematical model to simulate the cardiac

pressure-volume curves for both the healthy and dysfunctional cases. For this

purpose, the three-dimensional coupled problem of cardiac electromechanics is

solved and the potential of our model in simulating cardiac diseases, covering the

myocardial infarction, eccentric hypertrophy, and the concentric hypertrophy, is

demonstrated.

This chapter gives an overview of the present study. After a brief motivation

part, the basic concepts about the cardiovascular system are explained. The

mechanical and electrical events taking place during the contraction of the heart

are elucidated and the previous studies on the topic are addressed. Pressure-

volume curve, one of the most commonly used diagnostic tools for the detection

of several cardiac disorders, is also introduced and explained in detail.

1.1 Motivation

Recent improvements in computer science and also the experimental techniques

in biology have increased the number of studies on the modeling of physiological

systems, providing a way to explain the physiological processes in the math-

ematical setting. Lately, as the research on computational modeling of these

systems has increased, more realistic models have been developed to simulate

the complex processes within the human body, necessitating a sound knowledge

of advanced mathematics and biology.
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Computational modeling of the cardiovascular system is one of the popular

research areas, on which extensive studies have been conducted over several

decades. The motivation behind the modeling is to understand the underlying

working principles of the cardiovascular system both in the healthy and dys-

functional cases. This will allow the researchers to come up with new diagnostic

and therapeutic techniques in collaboration with medical doctors.

Among many other physiological systems, one of the reasons for the cardiovas-

cular system to become a popular research topic is the high rate of deaths and

morbidity stemming from the cardiovascular diseases. According to the World

Health Organization (WHO) statistics, cardiovascular diseases are the leading

cause of death when compared to other disease-related mortalities [8]. Almost

17.3 million people died from cardiac-related problems in 2008 [9]. In the United

States alone, cardiovascular diseases cause the death of more than 600,000 peo-

ple annually, 25% of total deaths [2]. The situation in European countries is not

much different. Cardiovascular diseases are still the number one killer, causing

the death of 4 million people in Europe and 1.9 million people in the Euro-

pean Union annually, constituting 47% and 40% of total deaths, respectively

[1]. When the number of deaths in different countries is considered according

to their level of income, it is seen that 80% of the deaths from cardiovascular

diseases is observed in the developing countries [8]. Unfortunately, the number

of annual deaths from the heart disease and stroke is expected to increase to

23.3 million by 2030 [59].

The cardiovascular disease is not only the cause of loss of lives, but it also leads

to a huge amount of financial cost. In the U.S., the total cost of heart diseases is

about $273 billion [40] while it is $196 billion for the European Union a year [1].

As it is expected that the number of people suffering from cardiovascular diseases

will increase, it is certain that the medical cost will also be scaled accordingly.

According to the American Health Association report, the total direct medical

costs will be three times of what it is today, in the next 20 years [40].

Several factors can trigger a cardiac disorder. These may include high blood

pressure and cholesterol, smoking, obesity, physical inactivity, unhealthy diet,
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and genetics. However, cardiovascular diseases are generally preventable. It is

possible to reduce the risk factors to decrease the effects of the cardiac diseases.

At that point, early diagnosis and advanced treatment procedures increase the

probability to save the patient’s life and increase the life quality.

There have been significant advances in computational cardiology recently to

improve the existing medical techniques. It is expected that the mechanical

changes within the diseased heart can be better assessed with the mathematical

models developed. Together with these models, developments in data acqui-

sition techniques, especially the cardiac imaging, provide the researchers with

patient-specific heart models [81]. Individualization of the models offers more

accurate diagnostic and therapeutic options in a shorter time. To diagnose the

cardiac disease, the commonly used clinical tools are the electrocardiograms and

pressure-volume curves, on which several diseases cause certain changes. There-

fore, electrical and mechanical disorders in the heart can be clearly observed in

these two clinical measurements. However, the existing invasive and non-invasive

methods are still not enough to measure some of the biological quantities that

directly reflect cardiac disorders [77]. At this stage, cardiac modeling, espe-

cially the patient-specific models, gain importance to design and develop new

therapeutic methods and also to test the new treatment options.

1.2 Anatomy of the Human Heart

The heart, a muscular organ behind the sternum between the lungs, can be con-

sidered to be the center of the cardiovascular system. The heart is composed of

a network of blood vessels. It functions to pump blood through a coordinated

contraction of both the upper and lower chambers for the purpose of keeping the

amount of life-sustaining liquids such as hormones, electrolytes etc. at a physi-

ologically appropriate level. It provides the circulation of the blood throughout

the body, thereby supplying the organs and the peripheral tissue with oxygen

and nutrients, vital to maintain the metabolic functions.
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Figure 1.1: The anatomy of the human heart [5].

In Figure 1.1, the anatomy of the human heart is depicted. The heart consists of

four chambers; right atrium, left atrium, right ventricle, and left ventricle. The

right and left atria, upper chambers of the heart, are divided by the interatrial

septum and have the role of a reservoir; that is, to collect blood from the body.

The right atrium receives deoxygenated blood from the body and the heart

muscle, then, directs it to the right ventricle. On the other hand, the left atrium,

having a thicker wall compared to the right atrium, collects oxygenated blood

through the pulmonary veins from the lungs and directs it to the left ventricle.

Blood flow from the atria to the ventricles is maintained by the atrioventricular

valves, namely the tricuspid valve (right atrioventricular valve) and bicuspid

valve (mitral or left atrioventricular valve). The lower chambers of the heart,

right and left ventricles, are divided by the interventricular septum. The right

ventricle carries blood to the lungs through the pulmonary arteries while the left

ventricle, having a thicker wall, pumps the blood to the body through the aorta,

the main artery in the body. Unidirectional blood flow through the ventricles

to the lungs and to the body is provided by the semilunar valves, namely the

pulmonary and aortic valves, respectively.
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1.3 Electrophysiology of the Heart

The heart achieves its primary function, pumping, as the myocardial fibers con-

tract and relax rhythmically. The coordination between the contraction of the

ventricles is maintained by the electrical system within the heart, generating the

impulses and conducting them throughout the heart [78]. Similar to the other

muscle cells in the body, the cardiac myocytes have the property of getting ex-

cited and conducting the electrical signals. At the cellular level, the contraction

of the cardiac cells is triggered by a change in the transmembrane potential giv-

ing rise to the mechanical contraction of the myocytes. The generation of the

action potential is generally achieved as the cardiac cells are excited by the open-

ing and closing of the ion channels, changing the membrane potential through

the ion fluxes.

Figure 1.2: Comparison of action potentials within a nerve cell and a cardiac
myocyte [52]. The difference in their action potential durations and the shapes
is clearly indicated.

When compared to action potentials generated by the neurons, cardiac action

potentials have significant differences. As shown in Figure 1.2, while the duration

of the action potential of a nerve cell is only about 1 millisecond (ms), the action

potentials generated at the ventricular myocytes have different phases that are

significantly separated by each other and last for about 200 to 400 ms [52].

Moreover, the type of the ionic currents generating the depolarizing waves for
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the neural and ventricular muscle cells also differs.

Although there are several types of ions within the cell membrane, Cl−, Ca2+,

and K+ are the primary ions determining the transmembrane potential in car-

diac cells [52]. The intracellular and extracellular concentrations of the ions con-

trolling the membrane potential can be calculated by the Nernst and Goldman-

Hodgkin-Katz equations. When the effect of only one ion on the equilibrium

potential is considered, the potential is calculated by the Nernst equation, given

as

φm =
RT

zF
ln

Pce
Pci

, (1.1)

where φm is the cell membrane potential in V olts, R is the universal gas constant

8.315J/(molK), T the absolute temperature in Kelvin, z is the valence of the

particular ion, F is the Faraday constant, P is the permeability of the ion, and

ce and ci are the extracellular and intracellular ionic activities, respectively. For

the detailed derivation of the Nernst equation, the reader is referred to [26].

However, it is not accurate to calculate the membrane potential considering the

activity of only one ion. Better estimates for the membrane potential can be

obtained by using the Goldman-Hodgkin-Katz equation

φm =
RT

zF
ln

(

PK

cKe

cKi

+ PNa

cNae

cNai

+ PCl

cCle

cCli

)

. (1.2)

In the above equation, the effects of primary ionic currents within the cell mem-

brane are taken into account to calculate the resting membrane potential. Look-

ing at both the Nernst equation (1.1) and the Goldman-Hodgkin-Katz equation

(1.2), it can be said that the intracellular and extracellular ionic concentrations

and the permeability of the cell membrane to the ions are the main factors

determining the membrane potential.

Action potentials within the heart are generated by the electrical waves as the

intracellular and extracellular ionic concentrations change within the cell mem-

brane, triggering the movement of the ions. However, not every electrical wave

generates the action potentials. In order to have the cell membrane depolarized,
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the depolarization threshold should be exceeded. Otherwise, there is only local

depolarizations within the cell [45].

The shape of the action potentials generated through the heart changes as the

function of the cardiac cells differs from each other. It is possible to classify

the action potentials in the heart into two general groups: pacemaker and non-

pacemaker action potentials. As it is explained in the next section, the electrical

conduction system in the heart has several components taking place in the gen-

eration and the propagation of the action potentials. While there are nodal cells

that show pacemaker activity, atrial and ventricular muscle cells have the only

property to get excited when stimulated by an electrical impulse. The pacemaker

cells control the rate of heartbeat by generating action potentials autonomously,

however, non-pacemaker cells need to be excited by the adjacent cells. All these

differences in the electrophysiological behavior result in significant changes in

the action potentials. For further information on the action potential of cardiac

cell types, we refer to [46].
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Figure 1.3: Action potentials in the pacemaker (left) and nonpacemaker (right)
cells.

Pacemaker Action Potentials: Pacemaker cells in the heart have the prop-

erty of automatically generating action potentials that can be divided into three

phases, Figure 1.3 (left). When the membrane is depolarized to the threshold

in Phase 4, called as pacemaker potential, the membrane potential starts to in-

crease as the calcium ions flow into the cell (Phase 0). When the voltage-gated

potassium channels open, the membrane potential decreases, that is the repolar-

ization (Phase 3). During Phase 3, the resting potential is not stable, allowing

7



the cell membrane to get excited again. The ionic currents, primarily the slow

sodium currents, cause Phase 3 to be unstable.

Non-pacemaker Action Potentials: Non-pacemaker action potentials are

observed in the atrial and ventricular muscle cells and Purkinje fibers. These

are also named as fast response action potentials due to a sharp increase in the

depolarization phase, see Figure 1.3 (right). These cardiac cells are depolarized

when stimulated by adjacent cells as the sodium ions enter the cell membrane

[20]. Depolarization of one cell is transfered to the adjacent cells through gap

junctions, thereby making the electrical impulses to propagate [76]. The inward

sodium flux into the cell membrane increases the transmembrane potential by

the positive charges carried. The cardiac cell is said to be depolarized when the

depolarization threshold is exceeded, that is called Phase 0 in Figure 1.3 (right).

Next, K+ channels open, starting the repolarization of the cell membrane that

corresponds to Phase 1. Meanwhile, opening of Ca2+ channels results in a

plateau phase, called Phase 2. The Ca2+ channels start to close while the

potassium current increases, resulting in a decrease in the membrane potential.

This initiate the repolarization phase (Phase 3). Then, the membrane stays at

its resting potential that is about the K+ equilibrium potential (Phase 4).

Development of the mathematical models for the action potential in the cardiac

cells is still an active research area today. Although there have been numerous

studies on that topic since 1960s, there are still some difficulties involved in de-

termining the behavior of the cardiac cells. The biggest problem is the variety

of the cardiac cell types and ionic channels, increasing the complexity to model

the electrophysiology of the cell [46]. The first quantitative formulation describ-

ing the electrophysiological behavior at the cellular level was proposed by Alan

Hodgkin and Andrew Huxley in 1950s [41], explaining how the electrical signals

are propagated in a squid giant axon. In their experiments, voltage clamp tech-

nique is utilized to formulate the change in the ionic currents as mathematical

models. They defined the evolution of the transmembrane voltage, that is the

difference between extracellular and intracellular potentials in the monodomain
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setting, using the circuit model given in Figure 1.4 as

Cm

dφ
dt

+ Iion = Iapp (1.3)

where Cm, Iion, and Iapp represent the membrane capacity, the summation of

the transmembrane currents, and the externally applied current, respectively.

C RNa RK Rl

−−
− ++

+

φ

Figure 1.4: Electric circuit diagram for the Hodgkin-Huxley model.

Within the cell membrane, the transmembrane potential can be represented as

the summation of the primary ionic currents

Iion = INa + IK + Il (1.4)

where the effects of the sodium cuurent INa, potassium current IK , and leakage

current Il are considered. These ionic currents depend on the conductances,

transmembrane potential, and the equilibrium voltages through the equations

INa = gNa(φ− φNa),

IK = gK(φ− φK),

Il = gl(φ− φl),

(1.5)

where gNa, gK , and gl stand for the ionic conductances and φNa, φK , and φl

are the equilibrium potentials for the corresponding ions. The ionic currents,

iion = gion(φ − φion), depend on the conductance of the membrane to the ion
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gion and electromotive force that drives the ion across the membrane, that is

(φ−φion), difference between the actual transmembrane potential and the equi-

librium potential for the ion [45].

The sodium and potassium conductances depend on both time and voltage. The

Hodgkin Huxley model assumes that there are three m gates and one h gate in

a Na+ channel. These gates may change their states during depolarization

and repolarization of the cell membrane. It is possible to describe the sodium

conductance as gNa = ḡNam
3h, where ḡNa is the maximum sodium conductance

and m and h are the sodium activation and inactivation variables. In this

equation, m3h represents the fraction of open Na+ channels knowing that the

states of the gates are independent of each other. The potassium channels,

however, assumed to have four n gates that are open during the potassium flow.

Similarly, the potassium conductance can be formulated as gK = ḡKn
4 where

ḡK represents the maximum potassium conductance and n is the potassium

activation variable while n4 is the open K+ channel fraction [46]. The evolution

of the variables m,h, and n is governed by the following first-order ordinary

differential equations

dm
dt

= αm(φ)(1−m)− βm(φ)m,

dh
dt

= αh(φ)(1− h)− βh(φ)h,

dn
dt

= αn(φ)(1− n)− βn(φ)n.

(1.6)

The evolutions of the transmembrane potential and the gating variables are

depicted in Figure 1.5 (left) and Figure 1.5 (right), respectively.

FitzHugh-Nagumo Model: The reduced form of the Hodgkin Huxley model

to a two-parameter system is called the FitzHugh-Nagumo model [29, 30], that

approximates the electrophysiological behavior of the cell membrane in terms of

one fast and one slow variable. As the evolutions of the action potential (Figure

1.5, (left)) and gating variables (Figure 1.5, (right)) are observed, it is clear that

the action potential follows the same pattern with the sodium activation m.

Moreover, the sum of the potassium activation n and the sodium inactivation h

is almost constant, that is n+ h ≈ 0.8 at any time during the action potential.

[46]. The main advantage of decreasing the number of variables is to better
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Figure 1.5: Evolution of the action potential (left) and the gating variables, m,
n, and h (right) calculated using the four-variable Hodgkin-Huxley model.

understand the behavior of the model by analyzing it on the phase plane. More

detailed information on the Fitzhugh-Nagumo equations, used in this study, is

introduced in the next chapter.

Although Hodgkin-Huxley and Fitzhugh-Nagumo equations were initially de-

veloped for the nerve cells [30, 63], the electrophysiological processes within the

cardiac cells can also be expressed based on these models. In the literature,

there are also studies on making the action potential duration longer [17, 32] to

mimic the behavior of the cardiac cells. The cardiac action potential was first

modeled for the Purkinje fibers [69] by modifying the Hodgkin-Huxley equa-

tions. Although the model, developed by Noble, was successful at simulating

the Purkinje fiber action potentials, the theory behind the modeling approach

does not reflect the real physiological processes within the Purkinje fiber cells.

The main reason is that the measurement of ionic currents within the cardiac

cell membrane was achieved later [25], in 1964. This model was further devel-

oped by McAllister, Noble, and Tsien in 1951, see [60]. Having the data on the

ionic currents obtained from the voltage-clamp technique, the action potentials

for the ventricular cells were modeled [14], that was further improved by Luo

and Rudy [58]. Later, the action potential models for the pacemaker cells, e.g.,

the sinoatrial node, were developed. The one that is widely used was proposed

by Yanagihara et al. in 1980 [91]. There are also studies on modeling the elec-

trophysiology of the atrial cells [23]. The reader is referred to [88] for modeling

the electrical behavior of different cardiac cells.
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1.4 Electrical Conduction System within the Heart

The electrical activity of the heart is automatically started at the Sinoatrial

(SA) Node, the natural pacemaker of the heart located at the wall of the right

atrium, see Figure 1.6. The heart rate is determined by the number of pulses

generated by the SA node per minute. As the right atrium is filled with blood

by the vena cavae, the SA Node fires the impulses that are conducted through-

out the atria at a velocity of 0.5 m/s causing the atria to contract. Squeezing

the atria gives rise to the opening of the atrioventricular valves and pushes the

blood into the ventricles. Then, the signal moves thorough the atrioventricular

(AV) Node, a specialized tissue at the interatrial septum. The speed of the im-

pulses decreases here approximately to 0.05 m/s to allow the atria to depolarize,

contract, and empty the blood into the ventricles completely. This property is

of vital importance for the heart to function properly. If the delivery of the

electrical signal is not delayed at the AV Node, ventricles and the atria may

contract simultaneously, causing the blood to flow backwards.

Figure 1.6: Electrical conduction system within the heart [70].
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Then, the signal is transmitted through the His Bundle that is divided into two

branches on the interventricular septum. On these branches, the speed of the

impulses is almost 2 m/s. The right and left bundle branches split into a network

of Purkinje fibers on which the impulses reach the highest velocity, about 4

m/s. The cell-to-cell conduction is completed as the impulses arrive at the

ventricular myocytes, the final point where the Purkinje fibers are connected to.

The contraction of the ventricles pushes the blood to the lungs and the body as

the pulmonary and aortic valves open, respectively. As the depolarization of the

ventricles is completed, they relax to fill with blood. These phases are repeated

as the SA node fires, a process named as the cardiac cycle. The above-mentioned

components of the electrical conduction system are indicated in Figure 1.6.

1.5 Cardiac Cycle

A cardiac cycle is composed of two main phases, systole and diastole in which the

cardiac muscles contract and relax, respectively, see Figure 1.7. These phases

are further subdivided into two more phases that are isovolumic contraction

and ejection phases for systole and filling and isovolumic relaxation phases for

diastole.

Figure 1.7: The main phases of the cardiac cycle, diastolic and systolic phases
are shown. Direction of the blood flow for these two phases are indicated with
the red arrows [52].
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In Figure 1.8, the change in left ventricular pressure (LVP) and left ventricular

volume (LVV) are depicted during a cardiac cycle. The cardiac cycle is assumed

to start at the end of Phase a, where the isovolumic contraction begins. Starting

from that point, the cardiomyocytes are depolarized by the electrical impulses

propagating through the heart and the left ventricular pressure increases as

the contraction continues. In this phase (Phase b), both the mitral and aortic

valves are closed because the left ventricular pressure lies between the left atrial

pressure and the aortic pressure. Therefore, there is no blood flow through these

valves and the ventricular volume is kept constant.

Figure 1.8: The change of left ventricular (lv) pressure (top) and lv volume
(bottom) during a complete cardiac cycle indicating the phases of a complete
heartbeat. The isovolumic contraction, ejection, isovolumic relaxation and filling
phases are represented with the letters, b,c,d, and a, respectively. End-diastolic
volume (EDV) and end-systolic volume (ESV) are also indicated [52].

As the ventricular pressure reaches the aortic pressure, the aortic valve opens

with an accompanying decrease in the ventricular volume as the blood flows

into the aorta and the ejection phase begins (Phase c). During this phase,

the left ventricular volume decreases until it reaches the left ventricular end-

systolic volume, where the ventricular volume is minimum. Next, the isovolumic

relaxation phase (Phase d) begins as the ventricular pressure falls below the
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aortic pressure. In this phase, the ventricular volume does not change because

the mitral and aortic valves are closed. There is a decrease in ventricular pressure

until it is lower than the pressure in the left atrium which causes mitral valve to

open. Then, the filling phase (Phase a) begins and the left ventricular volume

increases as there is blood flow from the left atrium into the left ventricle.

1.6 Pressure Volume Curves

As explained in the previous section, with each cardiac cycle, the ventricular

pressure changes depending on a change in the ventricular volume, varying the

mechanical properties of the ventricular muscles. In practice, it is more mean-

ingful to observe the mechanical changes within the ventricles in the pressure-

volume curves. Cardiac pressure-volume curves help the interpreter to assess the

mechanical activities within the heart under normal and pathological conditions.

These mechanical changes within the chambers initiate the blood movement

through the valves. Real pressure-volume curves, used to assess the ventricular

functionality, are obtained by plotting the ventricular pressure with respect to

the ventricular volume at any time during a cardiac cycle using a conductance

catherer. It is a commonly used diagnostic tool for the detection of several

cardiac disorders.

In Figure 1.9, the real pressure-length loops are introduced [57]. These loops

are obtained during a control period for an acute volume overload. This figure

clearly demonstrates the relation between the left-ventricular pressure and ante-

rior segment length whose variation can be related with the change in ventricular

volume.

Pressure-volume curves clearly indicate the phases of a cardiac cycle that are ex-

plained above. Transition between these phases are determined by the pressure

gradients within the heart that cause the opening and closing of the heart valves.

The pressure-volume curves start with the end-diastolic pressure-volume rela-

tionship and continue with the isovolumic contraction phase in a couterclockwise

direction.
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Figure 1.9: Pressure-length loops for a dog heart [57]. The one represented
with the open circles stands for the control period. The others represent the
pressure-length relation after 40 seconds, 2 minutes and 10 minutes under an
acute volume load, resulting in an increase in ventricular pressure.

In Figure 1.10, Point A is the starting point and the ventricular pressure in-

creases while the volume is kept constant in the interval A-B (isovolumic con-

traction). Then, the ejection phase (B-C) starts with a decrease in the ven-

tricular volume until the end-systolic pressure-volume relationship is reached at

Point C. At that point, the ventricular volume is minimum. The interval C-

D corresponds to the isovolumic relaxation phase where the pressure decreases

without a change in ventricular volume. Point D is where the filling begins as

the blood moves into the ventricles until Point A, where the ventricular volume

is maximum. The pressure-volume relationship obtained for a cycle is repeated

with each heartbeat. Although the cardiac phases are explained for the left ven-

tricle, the right ventricular mechanics is similar. Compared to the left ventricle,

the right ventricle has major differences both in its anatomy and functions. The

left ventricle has thicker walls because it pumps blood through the body, ne-

cessitating higher pressures compared to pulmonary circulation. For the right

and left ventricles, cardiac phases order are similar to each other although the

pressure-volume curve of the right ventricle has lower values than that of the

left ventricle.
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Figure 1.10: Left ventricular pressure-volume loop is shown with the solid line.
The four main cardiac phases, isovolumic contraction, ejection, isovolumic re-
laxation and filling, are indicated on the figure, following each other in counter-
clockwise direction. The clinical metrics, end-systolic pressure-volume relation-
ship (ESPVR) and the end-diastolic pressure-volume relationship (EDPVR) are
shown by dashed curves. Stroke volume (SV) is defined as the difference between
the end-diastolic volume (EDV) and the end-systolic volume (ESV).

Pressure-volume curves not only reveal the instantaneous pressure-volume rela-

tion within the ventricle, but it is also possible to retrieve several hemodynamic

parameters that have physiological importance such as stroke volume, ejection

fraction, end-diastolic and end-systolic pressure volume relationships. These pa-

rameters are of clinical importance because they reveal the cardiac performance

allowing the medician to diagnose several pathologies such as ventricular wall

thickening, dilated cardiomyopathy, and myocardial infarction.

1.7 Aim of the Thesis

The aim of this thesis is to model the electromechanical behavior of the heart

incorporating dysfunctional cases using a generic three-dimensional heart model.

In this contribution, pressure-volume curves are simulated for different patho-

logical cases that are most commonly observed among the patients. These cases
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include the myocardial infarction, concentric hypertrophy and eccentric hyper-

trophy, all of which have several damages on both the electrical conduction and

mechanical system of the heart. Most of the time, these diseases may result in

the loss the patient’s life if not diagnosed timely.

Pressure-volume curves, one of the non-invasive clinical tools commonly used for

the diagnostic purposes, provide the interpreter with the cardiac performance

by indicating some clinical metrics such as stroke volume, end-diastolic and end-

systolic pressure-volume relationships. In this thesis, the changes observed in

these metrics for the pathological cases are compared with the clinical findings

to demonstrate the potential of our model in simulating diseases.

1.8 Scope and Outline

In Chapter 1, we define the basic terms used in the thesis and introduced the

previous research carried on the computational cardiology. In Chapter 2, the

three-dimensional continuous formulation of the coupled initial boundary-value

problem of cardiac electromechanics is introduced. For this purpose, two fun-

damental differential equations, namely the balance of linear momentum and a

reaction-diffusion type equation of excitation are introduced. Before going into

details of the formulation, non-linear continuum mechanics is briefly explained

to describe the deformation that the heart undergoes. Additionally, the essential

and natural boundary conditions are given to complete the mathematical formu-

lation of the problem. Then, the equations describing the constitutive relations

are explained in detail. Chapter 3 is on the finite element formulation of the

equations described in Chapter 2. After deriving the weak forms of the governing

equations, they are linearized and discretized both in time and space. Chapter

4 is devoted to the mathematical models used to simulate the pressure-volume

curves in this study. Two models, the Signorini model and the three-element

Windkessel model, are explained in detail. In Chapter 5, the numerical ex-

amples for the simulation of the pressure-volume curves are introduced. After

obtaining the pressure-volume curves for the healthy heart, the cardiac dysfunc-

tions are modelled. In this contribution, three cases; the myocardial infarction,
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concentric hypertrophy, and eccentric hypertrophy are investigated. The simu-

lation results are compared with the clinical data and it is shown that our model

can simulate the specific properties of the dysfunctions in the pressure-volume

curves.
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CHAPTER 2

CONTINUOUS FORMULATION OF THE COUPLED

CARDIAC ELECTROMECHANICS

The aim of this chapter is to introduce the governing differential equations of

the coupled boundary-value problem of cardiac electromechanics, referring to

the model developed by Göktepe and Kuhl [36]. After introducing some basic

concepts of continuum mechanics, strong forms of the field equations are intro-

duced with the corresponding boundary conditions. The constitutive model is

introduced to complete the mathematical formulation.

2.1 Kinematics

Assuming the heart to be a material body composed of infinitely many points

X in the reference configuration B ⊂ R
3 at time t ∈ R+, the deformed config-

uration of that point can be represented by x in the current domain S ⊂ R
3.

As indicated in Figure 2.1, the motion of the material body in the Euclidean

space is described by the non-linear deformation map x = ϕt(x) : B → S, that

relates the material points X ∈ B with the deformed ones x ∈ S in the current

domain at time t ∈ R+. The deformation gradient, F := Gradϕt(X) : B → S

measures the large deformations that the body is subjected to, an it maps the

tangential reference vectors onto the spatial ones in the current configuration.

The operator Grad[•] is defined as the gradient with respect to material co-

ordinates X. Moreover, the reference volume elements are mapped onto their

spatial counterparts through the determinant of the deformation gradient, that
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is J := det(F ) > 0.

ϕt(X)

F = ∇Xϕt(X)

F a
F e

X x

B S

Ba

Figure 2.1: Motion of an excitable and deformable solid body in the Euclidean
space R

3 through the non-linear deformation map ϕt(X) at time t. The de-
formation gradient F = Gradϕt(X) describes the tangent map between the
respective tangent spaces. The deformation gradient F is multiplicatively de-
composed into the passive part F e and the active part F a with Ba denoting the
fictitious, incompatible intermediate vector space.

Referring to the research carried by Cherubini et al. [19], the multiplicative

decomposition of the deformation gradient is utilized to model the electro-

mechanical behavior of the cardiac myocytes,

F = F eF a (2.1)

where, F e and F a represent the passive and active parts of the deformation

gradient F . In addition to the total deformation gradient, the use of the active

part of the deformation gradient F a makes it possible to account for the active

contraction. Through second-order structural tensors Am,An, and Ak, the ac-

tive part of the deformation gradient reflects the anisotropic architecture of the

cardiac tissue. Therefore, it is appropriate to write the relation

F a = F̂ a(Φ,Am,An,Ak). (2.2)

The passive part of the deformation gradient F e is obtained from the equality

(2.1) as F e = FF a−1. As it is indicated in Figure 2.1, the decomposition of the
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deformation gradient introduces a new fictious configuration, Ba, other than B

and S. It should be noted that contrary to the definition of F , the active and

passive parts of the deformation gradient cannot be defined as the gradient of

any deformation map.

For an orthotropic material, active part of the deformation gradient can be

formulated as

F a = 1+ (λa
m − 1)Am + (λa

n − 1)An + (λa
k − 1)Ak (2.3)

where λa
m, λa

n, and λa
k are the functions of the action potential and represent the

active stretches in the preferred directions.

2.2 Governing Differential Equations of Cardiac Electromechanics

The coupling due to excitation-induced contraction and the deformation-induced

current generation can be formulated by two primary variables that are the place-

ment ϕ(X, t) defined in the previous section as the deformation map, and the

action potential Φ(X, t). In the monodomain model of cardiac electrophysiology,

the action potential is the same as the transmembrane potential, the difference

between the extracellular and intracellular membrane potentials. The evolu-

tion of the mechanical field is governed by the conservation of linear momentum

equation. Its local spatial form describing the quasi-static stress equilibrium is

written as

J div[J−1τ̂ ] +B = 0 in B (2.4)

where τ̂ is a second order tensor field representing the Eulerian Kirchhoff stress

tensor and B is the body force per unit reference volume. The operator div[•]

is defined as the divergence with respect to spatial coordinates x. In order to

complete the definition of the mechanical problem, the essential and natural

boundary conditions,

ϕ = ϕ̄ on ∂Sϕ and t = t̄ on ∂St, (2.5)

that are geometrically shown in Figure 2.2 (left) are introduced.
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Figure 2.2: Illustration of the mechanical (left) and electrophysiological (right)
natural and essential boundary conditions.

The vector, t̄ stands for the spatial surface traction vector and is defined through

the Cauchy stress theorem as t̄ := J−1τ ·n where n is the unit surface normal.

Here, the Eulerian surface domain is represented by ∂S composed of the surface

subdomains ∂Sϕ and ∂St satisfying the criteria ∂S = ∂Sϕ ∪ ∂St and ∂Sϕ ∩

∂St = ∅. The governing differential equation used for the evolution of the action

potential is

Φ̇− J div[J−1q̂]− Îφ = 0 in B (2.6)

where div[J−1q̂] and Îφ represent the diffusion term and the nonlinear current

source, respectively. The material time derivative of the action potential field is

introduced by the notation Φ̇. The definition of the electrophysiological problem

is completed by the boundary conditions and the initial condition. The essential

and natural boundary conditions are

Φ = Φ̄ on ∂Sφ and h = h̄ on ∂Sh (2.7)

defined on the surface domain ∂S that includes ∂Sφ and ∂Sh, satisfying ∂Sφ ∩

∂Sh = ∅ and ∂S = ∂Sφ ∪ ∂Sh. In (2.7), h̄ is the electrical surface flux term that

depends on the spatial flux vector q̂ by the relation h̄ := J−1q̂ · n where n is

the spatial surface normal. Also, the initial boundary condition is introduced at

t = t0 as

Φ0(X) = Φ(X, t0) in B . (2.8)
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2.3 Constitutive Equations

Having defined the governing differential equations and boundary conditions

necessary to complete the definition of the strong forms of the equations, the

solution of this system of equations necessitates the specification of the consti-

tutive model, from which the electromechanical coupling arises. Moreover, the

description of the variables reflecting the material properties should reflect the

micro-structure of the cardiac cells and account for both the geometrical and

material nonlinearities.

For the mechanical problem, the conservation of linear momentum equation

(2.4) depends on the Kirchhoff stress tensor τ̂ . Moreover, the potential flux q̂

and the current source Îφ that are included in the excitation equation have not

been defined yet. In this section, the equations describing these three quantities

are explained in detail. After introducing the approach followed in modeling

the stress response, the spatial potential flux, and the current source term are

elucidated.

2.3.1 Modeling the Stress Response

The two main approaches followed in modeling the stress response of the ven-

tricular myocardium are the active-strain and active-stress based models. In

the active-strain based approach, the deformation gradient is multiplicatively

decomposed into the active and passive parts. The stress response is derived

from a free energy function that is a function of only the passive part of the

deformation gradient [19, 64]. However, in the active-stress based models, the

stress response of the material is additively divided into passive and active com-

ponents. Formulation of the passive stress response accounts only for the de-

formation, while the active part is dependent on the transmembrane potential

[65, 71, 66, 47, 68, 36, 56, 28, 27].

In this study, similar to the active-strain models, the deformation gradient is

multiplicatively decomposed into the active and passive parts. Different from the

existing approaches in the literature, [19, 13], however, the free energy function
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is additively split into its active Ψ̂a and passive parts Ψ̂p, see [37],

Ψ = Ψ̂p(g;F ) + Ψ̂a(g;F e) . (2.9)

Writing the free energy function in a decomposed form (2.9) allows also for the

decomposition of the Kirchhoff stress tensor τ̂ as

τ = τ̂ p(g;F ) + τ̂ a(g;F e) (2.10)

that is calculated using the Doyle-Ericksen formula τ := 2∂gΨ. The specific

forms of the passive and active response are set out in the subsequent sections.

2.3.1.1 Passive Stress Response

When the architecture of the ventricular myocardium is investigated, three dis-

tinct planes with varying material properties are observed. As depicted in Figure

2.3, there are three axes that are mutually orthogonal to each other, that are

f 0, s0, and n0. These are the unit vectors representing the orientation of the

muscle fibers, sheet directions, and the one that is normal to both the sheet and

fiber directions, respectively. The identification of the three-dimensional struc-

tural properties of the myocardium is fundamental to assess both the mechanical

and electrophysiological behavior of the cardiac tissue. The contraction and re-

laxation of the myocytes in the one-dimensional space give rise to the overall

pumping and twisting function of the heart. Therefore, it is necessary to define

all the constitutive equations describing the material properties of the cardiac

cells in terms of this set of orthogonal basis vectors.

For the passive response of the myocardium, the orthotropic hyperelasticity

model, proposed by Holzapfel and Ogden [42], is utilized. The following free en-

ergy function is used to represent the passive response in terms of the volumetric

part U(J) and the orthotropic part Ψ̃(I1, I4m, I4n, I4k)

Ψ̂p(g;F ) = U(J) + Ψ̃(I1, I4m, I4n, I4k) (2.11)
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where

Ψ̃ =
a1
2b1

exp[b(I1−3)]+
∑

i=m,n

ai
2bi

{exp[bi(I4i−1)2]−1}+
ak
2bk

[exp(bkI
2
4k)−1] (2.12)

is a function of the material parameters a1, b1, am, bm, an, bn, ak, bk and the in-

variants I1, I4m, I4n, and I4k given below

I1 := g : b, I4m := g : m, I4n := g : n, I4k := g : k (2.13)

where m,n, and k are defined as

m := FMF T , n := FNF T , k := FKF T .

Figure 2.3: Anisotropic architecture of the myocardium. The orthogonal unit
vectors f0 and s0 designate the preferred fiber and sheet directions in the unde-
formed configuration, respectively. The third direction n0 is orthogonal to the
latter by its definition n0 := (f0 × s0)/|f0 × s0|.

The passive response accounts for the anisotropic microstructure through its

dependence on the Eulerian structural tensors m,n, and k given above. Their

Lagrangean counterparts depend on the preferred fiber and sheet directions in

the reference configuration through the following relationships

M := f 0 ⊗ f 0, N := s0 ⊗ s0, K := sym(f 0 ⊗ s0)

Having defined the free energy function, the passive Kirchhoff stress tensor τ̂ p

can be obtained through the Doyle-Ericksen formula as

τ̂ p(g;F ) = Jp̂ g−1 + τ̃ p(g;F ). (2.14)
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In this equation, the orthotropic part of the passive stress is defined as τ̃ p(g;F ) :=

2∂
g
Ψ̃ and p̂ := U ′(J) = dU/dJ . The explicit form of the orthotropic part of

passive Kirchhoff stress tensor in terms of the invariants (2.13) is

τ̃ p(g;F ) = 2Ψ1 b+ 2Ψ4m m+ 2Ψ4n n+ 2Ψ4k k (2.15)

where b := FG−1F T is the left Cauchy-Green tensor and Ψ1,Ψ4m,Ψ4n, and Ψ4k

are the scalar derivatives of the passive free energy (2.12) with respect to the

invariants given as

Ψ1 := ∂I1Ψ̃ =
a1
2
exp[b1(I1 − 3)] ,

Ψ4m := ∂I4mΨ̃ = am(I4m − 1) exp[bm(I4m − 1)2] ,

Ψ4n := ∂I4nΨ̃ = an(I4n − 1) exp[bn(I4n − 1)2] ,

Ψ4k := ∂I4kΨ̃ = akI4k exp[bkI
2
4k] .

(2.16)

2.3.1.2 Active Stress Response and Active Contraction

The active stress response is again obtained from the Doyle-Ericksen formula

τ̂ a(g;F e,M ) := 2∂
g
Ψ̃a where the active part of the free energy function is

assumed to be transversely isotropic

Ψ̃a(g;F e,M ) =
1

2
η(I4m − 1)2. (2.17)

Then, the active part of the Kirchhoff stress tensor is found as

τ̂ a(g;F e,M ) = 2∂
g
[
1

2
η(Ie4m − 1)2]

= 2η(Ie4m − 1)me

(2.18)

where Ie4m := g : me is the invariant and me is defined as me := F eMF eT that

necessitates the calculation of the elastic part of the deformation gradient. As it

is explained in Chapter 1, the active contraction of myocytes is triggered by the

electrical activation of the cardiac cells. In microcellular level, the cardiomy-

ocytes get excited when there is a calcium flux from the sarcoplasmic reticulum.

Therefore, there is a strong coupling between the calcium release and the active

contraction. The active stretch λ̂a is formulated as

λ̂a(c̄) =
ξ

1 + f(c̄)(ξ − 1)
λa
max (2.19)
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in terms of the normalized calcium concentration c̄ [72]. In this equation, ξ and

f(c̄), a kind of switch function, are defined as

f(c̄) :=
1

2
+

1

π
arctan(β ln c̄) ,

ξ :=
f(c̄0)− 1

f(c̄0)− λa
max

.

(2.20)

2.3.2 Spatial Potential Flux

The reaction-diffusion type equation of excitation depends on the potential flux

q̂ described by the following equation

q̂ = D̂(g;F ) · gradΦ (2.21)

where gradΦ and D̂(g;F ) stand for the spatial potential gradient and the con-

duction tensor, respectively. D̂(g;F ) is a second-order tensor field that controls

the conduction speed of the excitation waves. In our model, we decompose it to

account for the isotropic and anisotropic conduction of the depolarization waves

as

D = diso g−1 + dani m (2.22)

with diso and dani, the scalar conduction coefficients, where the latter accounts

for the faster conduction along the myofiber directions.

2.3.3 Electrical Source Term

Referring to the FitzHugh-Nagumo model [30, 63], the term Îφ is the current

source responsible for the evolution of the electrical field with the recovery vari-

able r during a complete cardiac cycle. In our model, the current source term

depends solely on the electrical field when the primary fields are considered,

meaning that the deformation-induced current generation [53, 65, 36] is not

taken into account. Moreover, the dependency of Îφ on r characterizes the

properties of the action potential during repolarization of the cardiac cells. As

proposed in the recent work by Göktepe & Kuhl [35], owing to the change in the
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repolarization response throughout the heart, the recovery variable is considered

to be a local variable specific to each cardiac cell. The evolution of the recov-

ery variable is described by the first order differential equation (2.23)2. In this

thesis, we based our model on one of the two-variable phenomenological models,

namely the Aliev-Panfilov model [11] whose equations are given in terms of one

fast and one slow variable as follows

∂τφ = îφ(φ, r)=c φ (φ− α)(1− φ)− r φ ,

∂τr = îr(φ, r)=ǫ̂(φ, r) [−r − c φ (φ− b− 1)].
(2.23)

where a, b, and c denotes the material parameters and ǫ̂(φ, r) controls the resti-

tution properties of the action potential depending on the variables γ, µ1 and

µ2 through the equation ǫ̂(φ, r) := γ + µ1r/(µ2 + φ). In these equations the

transmembrane potential Φ and the time, t, are introduced to be dimensionless

as φ and τ , respectively. The conversion between the dimensionless potential

and the physical potential is provided by the factor βφ and potential difference

δφ that are in units of millivolts. Similarly, the physical time t is obtained by

multiplying the dimensionless time τ by the factor βt.

Φ = βφφ− δφ and t = βtτ . (2.24)

Îφ =
βφ

βt

îφ . (2.25)

Moreover, the relation between the normalized source term îφ and the physical

source term Îφ is given in (2.25).

As explained in Chapter 1, the main advantage of a two-variable model is to

be able to analyze the behavior of the system on the phase plane. Having

the system of equations (2.23) dependent on the dimensionless transmembrane

potential φ and the recovery variable r the particular solutions are depicted in

the two dimensional phase space in Figure 2.4 . The distinct initial values of φ0

and r0 are shown with the filed circles and the dashed lines denote the nullclines

for îφ = 0 or îr = 0. As shown on the phase diagram, it is observed that the

30



solution converges to the stable equilibrium point although it is perturbed from

the steady state.

−0.5

0.5

1.5

1

2.5

3

0.2 0.4 0.6 0.8 1

0

0

0.2

0.4

0.6

0.8

1

1

0 0 20 40 60 80 100

φ [−]

r
[−

]
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Figure 2.4: The Aliev-Panfilov model with α = 0.01, γ = 0.002, b = 0.15, c =

8, µ1 = 0.2, µ2 = 0.3. The phase portrait depicts trajectories for distinct initial
values φ0 and r0 (filled circles) converging to a stable equilibrium point (left).
Non-oscillatory normalized time plot of the non-dimensional action potential φ
and the recovery variable r (right).
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CHAPTER 3

FINITE ELEMENT FORMULATION

In this chapter, continuous forms obtained for the governing differential equa-

tions of the cardiac electromechanics (2.4) and (2.6) are transformed into their

discretized forms. For this purpose, the weak forms of these equations are ob-

tained by following the conventional Galerkin procedure. Then, these weak in-

tegral forms are consistently linearized to be monolithically solved for the nodal

degrees of freedom after they are discretized spatio-temporally.

3.1 Weak Formulation of the Field Equations

It is aimed to introduce the weak integral forms of the primary field equations

in this section. For this purpose, the conventional Galerkin method is utilized

to convert the differential forms into their weak integral counterparts. The first

step is to write the residual form of the balance of linear momentum equation

that is called as the strong form, given as follows

Rϕ = −J div(J−1τ )−B. (3.1)

Multiplying the residual equation by a square integrable weight function, satis-

fying (2.5)1, gives the weak formulation of the residual as

Gϕ(δϕ,ϕ, φ) =

∫

B

δϕ · (−J div(J−1τ )−B)dV (3.2)
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The weighted residual equation found above is integrated over the solid volume

to obtain the following weak form

Gϕ(δϕ,ϕ,Φ) = Gϕ
int(δϕ,ϕ,Φ)−Gϕ

ext(δϕ) = 0 (3.3)

Using the integration by parts, Gϕ(δϕ,ϕ,Φ) can be written as

Gϕ(δϕ,ϕ,Φ) =

∫

B

δϕ · (−J div(J−1τ ))dV −

∫

B

δϕ ·BdV

=

∫

B

δϕ · (−J div(σ))dV −

∫

B

δϕ ·BdV

=

∫

S

δϕ · (− div(σ))dv −

∫

B

δϕ ·BdV

=

∫

S

(− div(δϕ · σ))dv +

∫

S

grad(δϕ) : τdv −

∫

B

δϕ ·BdV

= −

∫

∂St

δϕ · t̄da+

∫

B

grad(δϕ) : τdV −

∫

B

δϕ ·BdV

(3.4)

where
Gϕ

int(δϕ,ϕ,Φ) :=
∫

B

grad(δϕ) : τdV ,

Gϕ
ext(δϕ) :=

∫

B

grad(δϕ) ·BdV +
∫

∂St

δϕ · t̄da

(3.5)

and the operator grad[•] is defined as the gradient with respect to spatial co-

ordinates x. Following the above described procedure for the electric field, the

strong form of the residual for the reaction-diffusion type equation of excitation

is given as

Rφ = Φ̇− J div(J−1q)− Îφ. (3.6)
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Multiplication of the residual equation by a square-integrable weight function

satisfying (2.7)1 gives the weak formulation of the residual as

Gφ(δΦ,ϕ,Φ) =

∫

B

δΦ(Φ̇− J div(J−1q)− Îφ)dV. (3.7)

Again, (3.7) is integrated over the same domain to be written in the following

form

Gφ(δΦ,ϕ,Φ) = Gφ
int(δΦ,ϕ,Φ)−Gφ

ext(δΦ,ϕ,Φ) = 0 (3.8)

Integrating by parts, Gφ(δΦ,ϕ,Φ) can be written as

Gφ(δΦ,ϕ,Φ) =

∫

B

δΦΦ̇dV −

∫

B

δΦJ div[J−1q]dV −

∫

B

δΦÎφdV

=

∫

B

δΦΦ̇dV −

∫

S

δΦdiv[J−1q]dv −

∫

B

δΦÎφdV

=

∫

B

δΦΦ̇dV −

∫

S

div(δΦJ−1q)dv −

∫

S

grad(δΦ) · J−1qdv −

∫

B

δΦÎφdV

=

∫

B

δΦΦ̇dV −

∫

∂Sh

δΦh̄da−

∫

B

grad δΦ · qdV −

∫

B

gradΦÎφdV

(3.9)

where

Gφ
int(δΦ,ϕ,Φ) :=

∫

B

δΦΦ̇ + grad(δΦ) · q̄dV ,

Gφ
ext(δΦ) :=

∫

B

δΦÎφdV +
∫

∂Sh

δΦh̄da

(3.10)

Having the weak forms of the weighted residual equations at hand, these equa-

tions can be solved for the primary field variables. However, the nonlinear terms

due to spatial gradient operators and the constitutive equations, present in the

weak formulation makes it is necessary to linearize the weighted residuals about

ϕ = ϕ̃ and Φ = Φ̃.

LinGϕ(δϕ,ϕ,Φ) |
ϕ̃,Φ̃ := Gϕ(δϕ, ϕ̃, Φ̃) + ∆Gϕ(δϕ, ϕ̃, Φ̃;∆ϕ,∆Φ)

:= Gϕ(δϕ, ϕ̃, Φ̃) + ∆Gϕ

int −∆Gϕ

ext

(3.11)
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∆Gϕ
int(δϕ,ϕ,Φ) =

∫

B

∆(grad δϕ) : τdV +

∫

B

grad(δϕ) : ∆τdV

=

∫

B

grad(δϕ) : Cϕϕ : (g grad(∆ϕ))dV

+

∫

B

grad(δϕ) : (grad(∆ϕ)τ̃ )dV +

∫

B

grad(δϕ) : Cϕφ∆ΦdV.

(3.12)

where C
ϕϕ := 2∂gτ (g;F ,Φ) and Cϕφ := ∂Φτ (g;F ,Φ). In (3.12), some of the

terms may be further explained as

∆(grad(δϕ)) = Grad(δϕ)δϕF
−1 = Grad(δϕ)(−F−1 grad δϕ)

= − grad(δϕ) · grad(∆ϕ)
(3.13)

where the operator Grad[•] stands for the gradient with respect to material

coordinates X. Assuming that the Kirchhoff stress tensor τ depends both on

the deformation and the action potential fields, it is linearized with respect to

these two variables. Linearization of the electrical internal term, ∆Gφ
int yields

∆Gφ
int :=

∫

B

(δΦ
1

∆t
∆Φ+∆(grad(δΦ)) · q + grad(δΦ) · q)dV (3.14)

Substituting

∆(grad(δΦ)) = − grad(δΦ) grad(∆ϕ),

∆(gradΦ) = grad(∆Φ)− gradΦ grad(∆ϕ)

and
∆q = L∆ϕq + grad(∆ϕq) + ∂gradΦq grad(∆Φ)

= Cφϕ : (q grad(∆ϕ)) +Cφφ grad(∆Φ) + grad(∆ϕ)q

into (3.14) gives the following form of the linearized internal electrical term

∆G
φ
int =

∫

B

(

δΦ
1

∆t
∆Φ+ grad(δΦ) ·Cφφ · grad(∆Φ)

)

dV

+

∫

B

grad(δΦ) ·Cφϕ : (g grad(∆ϕ))dV.

(3.15)
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where Cφϕ := 2∂gq(g;F ,Φ) and Cφφ := ∂gradΦq(g;F ,Φ).

Linearization of the external current, that depends on both the primary fields,

ϕ and Φ is as follows

∆Gφ
ext :=

∫

B

δΦ∆ÎφdV. (3.16)

Substituting ∆Îφ = 2∂g Î
φ : (g grad(∆ϕ)) + ∂ΦÎ

φ∆Φ yields

∆Gφ
ext :=

∫

B

δΦ∂ΦÎ
φ∆ΦdV +

∫

B

δΦ2∂g Î
φ : (g grad(∆ϕ)dV. (3.17)

3.2 Spatial Discretization

In this section, the field variables, ϕ and Φ and the related weight functions, δϕ

and δΦ are converted into their discretized forms. For this purpose, conventional

isoparametric Galerkin procedure is utilized to find an approximate solution

in the solution domain B discretized into subdomains Bh
e for each element,

satisfying the relation B =
nel
⋃

e=1

Bh
e where nel stands for the number of elements.

Following relations are used for discretization

ϕh
e =

nen
∑

i=1

N ixe
i ,

Φh
e =

nen
∑

j=1

N jΦe
j

δϕh
e =

nen
∑

k=1

Nkδxe
k,

δΦh
e =

nen
∑

l=1

N lδΦe
l .

(3.18)

where Nα for α = i, j, k, l are C0 shape functions and nen represents the number

of nodes per elements. It is also necessary to introduce the spatial gradient of
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the weight functions and the incremental fields

grad(δϕh
e ) =

nen
∑

i=1

δxe
i ⊗ gradN i,

grad(δΦh
e ) =

nen
∑

j=1

δΦe
j ⊗ gradN j,

grad(∆ϕh
e ) =

nen
∑

k=1

∆xe
k ⊗ gradNk,

grad(∆Φh
e ) =

nen
∑

l=1

∆Φe
l ⊗ gradN l.

(3.19)

Discretization of (3.3) and (3.8) is found by substituting the appropriate defini-

tions above

R
ϕ
I =

nel

A
e=1

{

∫

Bh
e

gradN i · τdV −

∫

Bh
e

N iBdV −

∫

∂Se
t

N it̄da
}

= 0, (3.20)

R
φ
J =

nel

A
e=1

{

∫

Bh
e

(N jΦ− Φn

∆t
+ gradN j · q)dV −

∫

Bh
e

N j ÎφdV −

∫

∂Se
h

N jh̄da
}

= 0.

(3.21)

The set of coupled equations obtained through the discretization of the primary

fields, placement ϕ(X, t) and electrical potential Φ(X, t), is solved monoloth-

ically.
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CHAPTER 4

MODELING OF PRESSURE-VOLUME CURVES

This chapter outlines the mathematical model utilized in the left ventricular

pressure-volume curve simulation. After introducing the equations describing

the pressure-volume relation within the left ventricle, their physiological inter-

pretations are briefly discussed.

4.1 Left Ventricular Pressure Calculation

As explained before, a cardiac cycle is composed of four different phases. More

detailed information about these phases is introduced in Section 1.5, however,

they are briefly recalled here to understand the physiological meaning of the

models used. As shown in Figure 1.10, the cardiac cycle starts with the isovo-

lumic conraction phase and continues in the counter-clockwise direction in the

order of ejection, isovolumic relaxation, and filling phases. The mechanical prop-

erties of the ventricular muscle cells change continuously during a cycle, resulting

in an alternating pressure-volume relationship within the ventricle. Assuming

that V (t) represents the ventricular cavity volume at time t and q(t) = V̇ (t) is

the blood flow, it can be said that V̇ (t) = 0 for the isovolumic phases, where

the ventricular volume is unaltered. Mathematical models used to simulate the

pressure-volume relation are chosen to be different for ejection and the other

phases. In order to obtain more accurate results for the ejection phase, an itera-

tive approach is followed to calculate the ventricular pressure. In the literature,

Windkessel-type models are widely used to represent the ventricular pressure

in the ejection phase, see [77, 27, 28]. In this thesis, three-element Windkessel
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model is utilized for the ejection phase while isovolumic relaxation, isovolumic

contraction and filling phases are simulated by using the Signorini model [77].

4.1.1 Windkessel-Type Models

A Windkessel-type model, a kind of lumped parameter model, was introduced

by the German physiologist Otto Frank in 1899 [31]. However, the origin of

the lumped models goes back to 1700s [39]. He proposed to model the heart

and the systemic arterial system analogous to a hydraulic circuit composed of

a water pump and a chamber which contains water and an air pocket. The

pumping of water into the chamber not only cause the water to move outwards

but it also applies a pressure on the air pocket. Using the hydraulic circuit

analogy, the physiological terms, arterial compliance and peripheral resistance

can be explained. The behavior of the air pocket when squeezed by the water

represents the elasticity of the arteries as the blood is ejected out of the heart;

that is, the arterial compliance. Moreover, the force applied to the water while

moving through the circuit is similar to the blood movement through the veins.

The blood flow encounters resistive forces appearing due to the geometrical

changes in the veins, called the peripheral resistance. The most basic form of

the Windkessel model can be defined through the two-element model whose

electrical circuit analog is depicted in Figure 4.1. Following Kirchhoff’s Laws,

the circuit in Figure 4.1 (left) can be described through the first order differential

equation

I(t) =
P (t)

R
+ C

dP (t)

dt
, (4.1)

where I(t), P (t), C and R are the time-dependent current, electrical potential,

capacitance and the resistance, respectively. In physiological terms, the associ-

ated circuit is given in Figure 4.1 (right) where q(t) represents the blood flow

into the arteries, plv(t) is the blood pressure, Cap is the arterial compliance and

Rp is the peripheral resistance. The differential equation describing the relation
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between the blood pressure and flow is

q(t) =
plv(t)

Rp

+ Cap
dplv(t)

dt
. (4.2)

The two-element Windkessel model can be modified to include the contribution

of other factors such as the valve resistances and inertia of the blood. The three-

element Windkessel model is obtained by adding one more resistive element into

the circuit to represent the resistance due to valves. In this thesis, the left

ventricular pressure in the ejection phase is simulated using a three-element

model. Thus, it is discussed in detail in the next section. Besides the resistive

element, an inductor can be added to the three-element Windkessel model to

consider the effect of the inertia of blood in the simulation. The reader is referred

to [79] for further information on 4-element Windkessel models.

C R

I(t)

I(t)

P (t) plv(t)

q(t)

q(t)

RpCap

Figure 4.1: Electrical Circuit Analog for the Two-Element Windkessel Model
with the time dependent current I(t), electrical potential P (t), capacitance C,
and resistance R (left) while the same circuit is drawn with the physiological
parameters; blood flow q(t), blood pressure plv(t), arterial compliance Cap, and
peripheral resistance Rp (right).

4.2 Three-Element Windkessel Model

Three-element Windkessel model is an improved version of the two-element

Windkessel model to simulate the blood pressure more accurately. It is de-
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scribed in the article written by Ph. Broemser and Otto Frank in 1930 [18].

The electrical circuit analog for the 3-element Windkessel model is depicted in

Figure 4.2. It is an RCR circuit that includes one more resistance compared to

the two-element one. Kirchhoff’s Laws yields the following relation to describe

the electrical circuit depicted in Figure 4.2 (left)

(

1 +
R1

R2

)

I(t) + CR1
dI(t)
dt

=
P (t)

R2

+ C
dP (t)

dt
(4.3)

where the terms P (t), I(t), and C have the same meaning as in the two-element

model while R1 and R2 are the resistive terms. Figure 4.2 (right) represents the

same electrical circuit with the physiological terms plv(t), q(t), and Cap defined

for the two-element model. Rc and Rp stand for the resistance to blood flow due

to the aortic or pulmonary valve and the peripheral resistance, respectively.

C

R1

R2

I(t)

I(t)

P (t) Cap

Rc

Rp

q(t)

q(t)

plv(t)

Figure 4.2: Electrical Circuit Analog for the Three-Element Windkessel Model
with the time dependent current I(t), electrical potential P (t), capacitance C,
and resistances R1 and R2 (left) while the same circuit is drawn with the phys-
iological parameters; blood flow q(t), blood pressure plv(t), arterial compliance
Cap, peripheral resistance Rp, and resistance due to aortic or pulmonary valves
Rc (right).

The blood pressure and flow relation for the three-element model is described

through the relation
(

1 +
Rc

Rp

)

q(t) + CapRc
dq(t)
dt

=
plv(t)

Rp

+ Cap
dplv(t)

dt
. (4.4)
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The reader is referred to [89, 83] for the studies on three-element Windkessel

model to simulate the pressure.

In our model, following update equation is utilized to find the current pressure

plv(t+ 1) = plv(t) + ∆tṗlv(t)

= plv(t) + ∆t

[

1

Cap

(

1 +
Rc

Rp

)

q(t) +Rcq̇(t)−
plv(t)

CapRp

]

.
(4.5)

The numerical values used for the parameters, Rc, Rp, and Cap are introduced

in Table 5.2.

4.3 Signorini Model

In this study, blood pressure for isovolumic relaxation, isovolumic contraction,

and filling phases are simulated using the Signorini model. In the isovolumic

phases, the left ventricular pressure lies between the atrial and arterial pressures

because both the mitral and aortic valves are closed. Therefore, there is no

change in the ventricular volume, that is V̇ = 0. However, in the filling phase,

left ventricular pressure becomes equal to the atrial pressure as the mitral valve

opens and the ventricular volume starts to increase, thereby, V̇ ≥ 0. Referring

to [77], the change in ventricular volume q is written as a function of pressure.

Following relations are satisfied for the cardiac phases, assuming that the relation

q = − ˙V (t) holds.

q =























1
mat

(plv − pat), if plv ≤ pat

1
mp

(plv − pat), if pat ≤ plv ≤ par

1
mar

(plv − par) +
1
mp

(par − pat), if plv ≥ par

(4.6)

In (4.6), pat, par, and plv are the atrial, arterial and left ventricular pressures,

respectively. The blood flow q(t) is a linear function of plv and depends on the

variables mat,mar and mp that represent the valve properties. mat and mar are

physiologically related to the functioning of valves whose states change in the
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filling and ejection phases. The numerical values assigned to mat and mar are

given in Table 5.2. mp is chosen to be a very large number to satisfy the relation

q = 0 in isovolumic phases.

Plv

q

Pat Par

Figure 4.3: Blood Flow as a Function of Pressure.

In (4.6), flux is calculated for a known ventricular pressure, however, for the

purpose of pressure simulation, flux must be known to calculate the pressure.

Therefore, an inverse relation for (4.6) should be considered. The equation

proposed for the Signorini model to simulate the ventricular pressure is as follows

plv := p̂0 + (p̂∞ − p̂0) exp[− exp(−χq̃)] (4.7)

where p0 and p∞ are linear functions of the flux given as

p̂0(q̃) := pat +mat q̃ and p̂∞(q̃) := par +mar q̃, (4.8)

While p0 is found just inverting the corresponding equation in (4.6), in the

derivation of p∞, the term m−1
p is neglected and its contribution is modeled by

the variable ξ that behaves like a switching term. As depicted in Figure 4.4,

it provides an abrupt pressure change in isovolumic phases. In Figure 4.4, the

behavior of the Signorini model (4.7) is depicted using the same values with the

material parameters introduced in Table 5.2.
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Figure 4.4: Left ventricular pressure as a function of blood flow, simulated using
the Signorini Model (4.7)

An inverse procedure can be followed just for the purpose of showing the poten-

tial of the Signorini model to simulate the ventricular pressure. Medical tools

used today allow to measure the ventricular pressure. Having the clinical pres-

sure data at hand, if our model is correct, we can find the corresponding fluxes,

thereby, the ventricular volume. However, the calculation procedure gets more

complex due to the nonlinearity involved in finding the root of (4.7), necessitat-

ing an iterative solver, namely the Newton-Raphson method.

The first step is to write the residual as

R := plv − [p̂0 + (p̂∞ − p̂0) exp(− exp(−χq̃))]. (4.9)

Linearization of (4.9) yields the following

LinR |q=qi= R(qi) +
∂r

∂q
(q − qi). (4.10)

Then, the flux term is updated to find its current value using the equation

qi+1 = qi −

(

∂r

∂q

)−1

R. (4.11)

If the norm of the residual is found to be greater than a pre-defined tolerance,

these steps are repeated from (4.9). However, if the convergence criterion is

satisfied, using the updated value of the flux, volume change is computed and

the ventricular volume is updated, that is mathematically shown as follows

Vi+1 = Vi − q∆t. (4.12)
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For the clinical pressure data, depicted in Figure 4.5, associated pressure-volume

curve is given in Figure 4.6 using the Newton-Raphson algorithm. By the way,

it is important to mention that, for the both models, the ventricular volume is

computed by generating tetrahedrons inside the ventricles. Knowing the posi-

tion of each node and their connectivities, the total ventricular volume is the

summation of the tetrahedron volumes having one of their vertexes at the origin

of the coordinate system.
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Figure 4.5: Clinical pressure data plotted with respect to time.
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Figure 4.6: Pressure-volume loop for the real pressure data.
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CHAPTER 5

VIRTUAL HEART MODELS INCORPORATING

SELECTED CARDIAC DYSFUNCTIONS

This chapter is devoted to the numerical examples demonstrating the capability

of our model in simulating the left ventricular pressure-volume relationship for

the healthy and dysfunctional cases. First, the general properties of the pro-

posed heart model are introduced. Then, the simulation of the pressure-volume

curves for the healthy heart is explained along with the modeling approach fol-

lowed. Additionally, three dysfunctional cases; myocardial infarction, concentric

hypertrophy, and eccentric hypertrophy are investigated. Before introducing the

numerical examples related to these three cases, the modeling of the related dis-

order is explained in detail. In addition to the pressure-volume curves, the cross-

sectional snapshots taken during the contraction and relaxation of the heart are

presented. These illustrative examples provide a way to observe the geometrical

changes within the ventricles during a cardiac cycle. They also give a chance

to appreciate the difference in the deformation patterns between healthy and

dysfunctional models. Finally, the performance of our model is demonstrated

by comparing the analysis results with the clinical findings.

5.1 General Properties of the Heart Model

For the analysis of the coupled problem of cardiac electromechanics, a generic

three-dimensional heart model is utilized. In Figure 5.1 (top), the mathematical

heart model is shown. The left and right ventricles can be considered as two
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truncated ellipsoids whose geometrical properties are different from each other.

Assuming that a,b, and c are the dimensions corresponding to x, y, and z axes in

the Cartesian coordinate system, these ellipsoids are constructed in accordance

with the standard ellipsoid equation given below.

x2

a2
+

y2

b2
+

z2

c2
= 0. (5.1)

f
0

s
0

x

y

z

51

30

60

70

6

12

Figure 5.1: The geometry and discretization of a generic heart model gener-
ated by truncated ellipsoids. All dimensions are in millimeters (top). The
position-dependent orientation of the myofibers f 0(X) (bottom left) and the
sheets s0(X) (bottom right) in B.

The heart model is discretized into 13348 four-node tetrahedral elements con-

nected at 3059 nodes. The geometrical properties of the both ventricles are

clearly depicted in Figure 5.1 (top). Although they do not exactly reflect the
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real heart dimensions, the model proposed here is sufficient to demonstrate its

capability in simulating the pressure volume curves. The left ventricle has a wall

thickness of 12 mm and a height of 70 mm while the ventricular cavity has a

height of 58 mm and a radius of 18 mm. However, the right ventricle has a more

complex geometry, that is not like an ellipsoid, but has a crescent-like shape

when looked at transversely. Also it has smaller dimensions that are physiologi-

cal when compared to the left ventricle. The right ventricle has a wall thickness

of 6 mm, that is half of the thickness of the left ventricle, and a height of 60

mm. The mechanical and electrophysiological natural and essential boundary

conditions are described in Figure 2.2. The displacements at the top surface

of the heart are restrained to prevent the heart from moving in all directions.

Also, the outer surface of the heart is assumed to be electrically flux-free. As

it is stated in Chapter 2, the transient term involved in the formulation of the

electrophysiological model necessitates an initial boundary condition. At the

beginning, the transmembrane potential at all the nodes is assigned to the rest-

ing potential Φ0 = −80 mV except for the ones at the top of the septum. These

nodes are set to a potential of Φ0 = −10 mV to initiate the electrical excitation.

In order to achieve the dimensionless conversion introduced in (2.24) and (2.25),

the conversion factors are assigned as follows: βφ = 100 mV, δφ = −80 mV and

βt = 12.9 ms. Distribution of the myofiber and sheet directions are worth to

mentioning due to the dependence of our model on the anisotropic structure

of the heart. In Figure 5.1 (left) and (right), myofiber directions f 0 and sheet

directions s0 are depicted. They agree with the distribution of the myofiber and

sheet orientation in the real human heart. The fiber direction ranges from −70 ◦

in the epicardium to +70 ◦ in the endocardium.

5.2 Healthy Heart Model

Using the model described above, the coupled problem of cardiac electrome-

chanics is solved for the healthy heart with the material parameters described

in Table 5.1. Their numerical values can be found in Table 5.2 . The pressure-

volume curve obtained after the finite element analysis is shown in Figure 5.2.
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As it is seen, pressure-volume curve obtained after we run the simulation has

a similar shape with the one introduced as a generic pressure-volume curve in

Figure 1.10. The simulated pressure-volume curve clearly indicates the four car-

diac phases. Starting from Point A, it goes in the counter-clockwise direction.

At first, the left ventricular pressure is about 20 mmHg, that is the end-diastolic

pressure where the ventricular volume is the largest. As the ventricles contract,

the pressure inside increases and an abrupt jump is observed at this point, that

is the isovolumic contraction phase. As it is explained previously, there is no

volume change during this phase. When the ventricular pressure reaches the

aortic pressure, Point B, that is about par = 80 mmHg, the ejection phase be-

gins. Modeling this phase with three-element Windkessel model gives a smooth

curve that is important while observing the changes in case of a dysfunction.

At Point C, the end-systolic pressure-volume relationship is reached, meaning

that the ventricular volume has its smallest value here. Then, the ventricles

relax while the volume is kept constant and the filling phase begins at Point D.

One cardiac cycle is completed at Point A as the ventricular volume resumes its

initial value.

Table5.1: Material parameters of the specific model

Parameter Description Equation

a1, b1 Isotropic passive stress response (2.12)

am, bm, an,

bn, ak, bk
Anisotropic passive stress response (2.12)

η Active stress response (2.18)

q, k, β, λa
max Evolution of active contraction (2.19,2.20)

α, b, c Dynamics of the AP model (2.23)

γ, µ1, µ2 Restitution properties (2.23)

diso, dani Conduction speed (2.22)

q̄,mat,mar,

χ, pat, par
Pressure evolution (Signorini) (4.7,4.8)

Cap, Rc, Rp Pressure evolution (Windkessel) (4.5)

Having the pressure-volume curve simulated, we can discuss some of the physi-

ological metrics that are commonly used to assess the performance of the heart.

Because our model has not the geometrical properties of a real heart, it is not
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Table5.2: Values of the material parameters used for the healthy heart

Stress response a1 = 0.496 kPa , b1 = 7.209 [−]

am = 15.193 kPa , bm = 20.417 [−]

an = 3.283 kPa , bn = 11.176 [−]

ak = 0.662 kPa , bk = 9.466 [−]

η = 100 kPa

Active Contraction q = 0.1 [−] , k = 0.07 [−]

β = 3 [−] , λa
max = 0.4 [−]

Excitation α = 0.01 [−], b = 0.15 [−], c = 8 [−]

γ = 0.002 [−], µ1 = 0.2 [−], µ2 = 0.3 [−]

Conduction diso = 1 mm2/ms, dani = 0.1 mm2/ms

Pressure Evolution q̄ = 228 mm3/s, χ = 1 ms/mm3

(Signorini) pat = 20 mmHg, par = 80 mmHg

mat = 5 · 10−3 mmHg ·ms/mm3

mar = 8 · 10−2 mmHg ·ms/mm3

Pressure Evolution Cap = 950 mm3/mmHg

(Windkessel) Rc = 10−3 mmHg ·ms/mm3

Rp = 1 mmHg ·ms/mm3

meaningful to compare the end-systolic and end-diastolic volumes with the clini-

cal findings although they are utilized as an indicator to know about the ventric-

ular functioning. However, they are proportionally in good agreement with each

other, meaning that their proportion can be compared with the clinical data.

The most commonly used metric for this purpose is the ejection fraction (EF),

that is the division of the difference between the end-diastolic volume (EDV)

and the end-systolic volume (ESV) by the end-diastolic volume. A physiological

value for the ejection fraction measured for the healthy heart is greater than or

equal to 55% [52].

For our simulation, the ejection fraction for the healthy heart is found as follows,

EF =
EDV − ESV

EDV
=

0.34083 · 105 − 0.18332 · 105

0.34083 · 105
= 46%. (5.2)
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Figure 5.2: The simulated left ventricular pressure-volume curve of the generic
heart model for the healthy heart.

5.3 Modeling of Cardiac Diseases

Cardiovascular diseases are the leading cause of death in industrialized nations.

According to 2011 statistics published by WHO [7], the first two causes of death

are cardiac-related disorders, see Figure 5.3. Over the last five decades, there

have been a significant development in the clinical research carried on the car-

diovascular system, resulting in a noticeable decrease in the death rate and an

improvement in the diagnostic and therapeutic techniques. In addition, people

are informed about the prevention methods and the importance of early action

in case of a disease indicator.

Moreover, the existing medical technology has the capability to treat both the

electrophysiological and mechanical disorders with less effort and in a shorter

time. For example, in case of a heart rhythm disorder, the infarcted region of the

heart can be ablated to prevent the uncoordinated contraction of the heart or

the negative effects of the tachycardia. If the patient has a serious life-threating

rhythm disturbance and he/she does not respond to existing medical options,

the cardiac resynchronization therapy (CRT) can be applied.
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Figure 5.3: Top 10 leading causes of the death in 2011 according to WHO
statistics [7].

In CRT, the simultaneous contraction of the ventricles is provided by the im-

plantation of a small electronic device with a surgical operation. Furthermore,

when there is a problem with the pumping ability of the heart, a mechanical

assist device may be implanted to sustain the blood circulation and restore the

mechanical performance of the ventricles. For further information on treatment

options, the reader is referred to [10].

Although these techniques are currently in use and look promising as different

treatment options, they are not completely reliable. To exemplify, in the ablation

procedure, several problems may be faced, such as damaging the healthy tissue,

stroke, pulmonary vein stenosis, even the death of the patient [90]. Moreover,

CRT may have some complications, in particular concerning the device imple-

mentations that necessitate a careful monitoring period after the operation [80].

Mechanical assist devices, similar to the others, may cause serious complications.

These may include the rejection of the device, bleeding, formation of blood clots,

and heart stroke [44]. Among the others, the heart transplantation is consid-

ered to be a long-term solution for the patients whose diseases are almost at

the end-stage. Although it saves the life of the patient, it is known that it may

53



result in early morbidity and mortality [62]. Perhaps, the biggest problem with

the heart transplantation is the difficulty in finding the appropriate donor for

the transplantation. Even it is found, there may be several complications during

the post-transplantation period [21].

Although it is important to improve and widen the usage of the clinical tools

used in the diagnosis and treatment of cardiovascular diseases, it is apparent

that there will be several risks involved in these procedures. These may result

from the insufficiency of the medical technology concerning the measurement

of relevant quantities and the stresses developed in the cardiac tissue that play

a crucial role in the determination of cardiac disorders [77]. At this stage,

computational modeling provides a way to understand the mechanical changes

in case of pathologies and to test and develop novel therapeutic methods and

new drugs.

In the literature, there is an extensive research on cardiac disorders related with

electrophysiological problems. These studies generally include the simulation

of the action potentials and the electrocardiogram, used as an indicator for the

rhythm disorders, myocardial infarction, and electrical conduction problems [16].

For the modeling of ECGs for healthy and pathological cases, we refer to [54, 43].

Moreover, there are several models on fibrillation for both the atria and the

ventricles [38, 84], rhythm disorders [87, 73, 74], left bundle block [51], cardiac

ischemia [75], and defibrillation [85, 24]. Compared the electrophysiological

models, there is a limited number of studies on the coupled electromechanical

behavior of the diseased heart. For the simulation of the pressure-volume curves

incorporating the cardiac dysfunctions, the reader is referred to [50, 51].

5.3.1 Myocardial Infarction

Myocardial infarction (MI), commonly known as the heart attack, is the primary

cause of the mortality and morbiditiy in the world [82]. It is the reason for the

death of more than a million people in the U.S. each year [6]. The primary reason

for the MI is the blockage of the blood flow in the heart that is caused generally

by a blood clot. Cardiac muscle cells, similar to the skeletal and smooth muscles,
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need oxygen and nutrients for proper functioning. In the heart, the main blood

supplier is the aorta, that is the main artery in the body. It branches into the

right and left coronary arteries that are composed of a network of smaller arter-

ies, carrying oxygen-rich blood. In case of a blockage, the heart cannot be sup-

plied with the enough oxygen and nutrients, resulting in the death of the cardiac

cells. In Figure 5.4, the infarcted tissue is shown with the brownish region on a

lateral slice of the ventricle. In order to prevent the possibility of the disability

Figure 5.4: The transverse heart section with the infarcted region shown in
brownish color [3].

or death of the patient, it should be treated immediately. If the signs of the dis-

ease are not taken seriously, the healthy cells may be damaged because they have

to work much more to maintain the normal functioning of the heart. One of the

diagnostic tools, commonly used for the diagnosis of MI, is the pressure-volume

curves. As indicated in Section 1.6, pressure-volume curves inform about the

hemodynamic parameters, used as clinical metrics to determine the abnormality

in the cardiac functioning. These are end-diastolic pressure-volume relationship,

end-systolic pressure-volume relationship, and stroke volume, shown in Figure

1.10. In case of MI, the end-systolic pressure value becomes smaller during the

ejection phase because the amount of blood ejected into the aorta decreases. In

the pressure-volume curves, this symptom can be observed as a reduced SV and

a more compliant ESPVR.

In this thesis, to model the MI, two different models with different sizes of

infarcted regions are considered, so that,the effect of the infarction size on the
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cardiac electromechanical activity can be observed. In Figure 5.5, the infarcted

hearts (bottom) and slices are shown. The infarcted regions are shown in red,

while the healthy one is represented in the blue color. The small-sized infarction

extends from θ = 120 ◦ to θ = 150◦, while it is from θ = 110◦ to θ = 160◦ for

the model with the larger infarcted region. For both cases, the height of the

infarcted region is 30 mm.

InfarctedInfarcted

30
30 50

(30	) (50	)

Figure 5.5: The locations of the lateral and longitudinal cross-sectional slices,
used to generate the snapshots in Figures 5.6 and 5.7. The positions and di-
mensions of the infarcted regions (bottom). Two sizes of infarction have been
considered. The smaller infarction (30◦) extends from θ=120◦ to θ=150◦ and
the large one (50◦) is situated between θ=110◦ and θ=160◦. The height of both
measures 30 mm.

In order to model the infarction, some of the material parameters given in Table

5.2 are modified to simulate the effect of MI; that is, to have the infarcted

region stiffer. Therefore, the bulk modulus is multiplied by ten, and the values

of the isotropic modulus a1 and the maximum contraction λa
max are assigned

to be a1 = 496kPa and λa
max = 1. After the electomechanical finite element

analysis of the healthy and infarcted heart models, the effect of the decreased
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contractility is observed in both the cross-sectional slices of the heart models

and the pressure-volume curves obtained [15].

Figure 5.6: The lateral snapshots taken during a cardiac cycle for the healthy

and infarcted hearts. The first row is for the demonstration of the change in

the cross-sectional slice of a healthy heart during systolic and diastolic phases

while the second and third ones represent the models with the small and large

infarcted regions, respectively.

In Figures 5.6 and 5.7, the lateral and longitudinal snapshots are introduced for

different phases of a cardiac cycle. The location of the longitudinal and lateral

slices are introduced in Figure 5.5. In Figures 5.6 and 5.7, the first row stands

for the healthy heart while the second and third rows represent the snapshots

of the infarcted hearts with the infarcted regions of angle θ = 30◦ and θ = 50◦,

respectively. In Figure 5.6, the physiological thickening of the ventricular walls

and the twisting motion of the heart can be observed during the systolic phase

(columns 1-3). The resulting decrease in the ventricular cavity volume and
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the upward motion of the apex can be clearly observed in the snapshots taken

longitudinally in Figure 5.7. For both Figure 5.6 and Figure 5.7 (columns 3-6),

the heart is in the diastolic phase and ventricular volume continues increasing

while the apex moves downward until it reaches its initial state again. The

cross-sectional snapshots of the infarcted hearts are given in the second and

third rows of Figures 5.6 and 5.7. Compared to the healthy heart, it is apparent

that the contractile ability of the cardiac tissue is decreased for the infarcted

case. Therefore, ventricular walls thicken less, thereby decreasing the pumping

efficiency of the heart. In the most contracted state (Figures 5.6 and 5.7, Column

3), sharp strain gradients are observed at the tissues between the healthy and

infarcted regions.

Figure 5.7: The longitudinal snapshots taken during a cardiac cycle for the

healthy and infarcted hearts. The first row is for the demonstration of the change

in the cross-sectional slice of a healthy heart during systolic and diastolic phases

while the second and third ones represent the models with the small and large

infarcted regions, respectively.
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Although the effect of the infarction size on the pumping efficiency can be qual-

itatively observed on the cross-sectional slices given in Figures 5.6 and 5.7, this

effect is better emphasized in the pressure-volume curves plotted in Figure 5.8

(left). For the modeling purposes, the value of the switch flow parameter q̄ is

changed for the infarcted hearts to calculate the left ventricular pressure. It is

assigned to q̄ = 198 mm3/ms for the model with small infarction (30◦ infarc-

tion) and q̄ = 191 mm3/ms for the model with large infarction (50◦ infarction).

This modification on the flow parameter is needed to model the sudden pressure

change in isovolumic phases. When the pressure-volume curves for the infarcted

cases are compared to the healthy one, it is clear that as the infarcted region

size gets larger, ESPVR becomes more compliant and the ventricular pressure

becomes smaller in the ejection phase. Thereby, the pumping efficiency of the

heart is decreased, that is seen as a reduction in SV in the pressure-volume

curves. In these cases, in addition to the effects of infarction on pressure-volume

curves, the relation between the size of the infarcted region and the pumping

capability of the heart is also demonstrated. The simulated pressure-volume

curves (Figure 5.8, left) are shown to demonstrate the expected changes in case

of an infarction (Figure 5.8, right).
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Figure 5.8: Left ventricular pressure-volume curves of the generic heart model
for healthy and infarcted cases. The curve on the left is obtained through the
electromechanical analysis of the infarcted heart. The expected pressure-volume
curves for the healthy and infarcted hearts are shown on the right with the
dashed and solid lines, respectively [45].
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5.4 Concentric and Eccentric Hypertrophy

5.4.1 Generation of Hypertrophied Heart Models

Before the electromechanical finite element analysis, the concentrically and ec-

centrically hypertrophied heart models are generated for simulating the pressure-

volume curves to observe the effects of maladaptive cardiac growth. Referring to

[33] and [34], in our formulation, the deformation gradient F is decomposed into

the elastic deformation gradient F e and the growth tensor F g, multiplicatively.

Then, F is written as

F = F eF g. (5.3)

The growth tensor F g is represented by the equation

F g = 1+ (ϑg − 1) α0 ⊗α0 (5.4)

where ϑg is the scalar growth field and α0 ∈ TXB stands for the sheet direction

s0 in modeling concentric hypertrophy, while it represents the fiber direction

f 0 in eccentric hypertrophy. The elastic part of the deformation gradient F e is

obtained as

F e = F − (1− 1/ϑg) α⊗α0 (5.5)

in terms of α := Fα0. Following orthotropic free energy function is utilized to

model the passive response

Ψ̂g(g;F e) = Ug(Je) + Ψ̃g(Ie1, I
e
4m, I

e
4n, I

e
4k) (5.6)

in terms of the volumetric part Ug(Je) and the orthotropic part Ψ̃g(Ie1, I
e
4m, I

e
4n, I

e
4k),

where Je := det(F e) and Ie1, I
e
4m, I

e
4n, I

e
4k are the invariants in terms of the pre-

ferred directions that are mapped by the elastic part of the deformation gradient

F e. The growth variable ϑg is considered to be a local variable and its evolution
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is governed by the first order differential equation

ϑ̇g = ĝ(ϑg) ζ , (5.7)

where the growth limit and the speed of the growth evolution are controlled by

the function

ĝ(ϑg) =
1

τ

[

ϑmax − ϑg

ϑmax − 1

]ν

. (5.8)

In this equation, ϑmax is the steady-state growth. Moreover, the rate and nonlin-

earity of the evolution of the growth variable ϑg are governed by the parameters

τ and ν, respectively. In Equation (5.7), the term ζ determines if the growth

parameter evolves or not, meaning that if ζ > 0, the growth variable evolves.

In modeling of the maladaptive growth in the heart, we consider two different

cases in this thesis. There are the pressure overload-driven concentric growth

and the volume overload-driven eccentric growth. We incorporate them into the

model through the variable ζ, given as

ζ = ζ̂(τ ) = tr(τ )− πcrt , ζ = ζ̃(λe) = λe − λcrt , (5.9)

where the stress dependent growth criterion ζ = ζ̂(τ ) is used to model the con-

centric growth through the parameters tr(τ ) = τ : g, the weighted pressure, and

the critical weighted pressure πcrt that determines the activation of the growth.

The stretch-dependent growth criterion ζ = ζ̃(λe) accounts for the overstretch-

ing of myofibers to model the eccentric growth. In this equation, λe :=
√

Ie4f and

λcrt are the elastic fiber stretch and the critical elastic fiber stretch, respectively.

Similar to the former one, λcrt controls the growth activation in modeling the

eccentric growth.

The concentrically grown heart model is generated by replacing the parameter

α0 with s0 given in Equation (5.4) and the growth parameters are assigned to

τ = 0.1 MPa/s, v = 2, ϑmax = 1.5 and πcrt = 0.012 MPa. For the eccentrically

grown model, we set α0 = f 0 with the growth parameters τ = 0.1s−1, v =

2, ϑmax = 1.2 and λcrt = 1.001. The parameters of the free energy function
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used in (5.6) are chosen to be the same for the both models and given in Table

5.2. Then, the left ventricles of the hypertrophied hearts are subjected to a

one-cycle pressure transient, as depicted in Figure 6 of [33]. Simulating the real

case, one-fifth of the pressure is applied to the right ventricle. In Figure 5.9, the

hypertrophied heart models (bottom) are introduced with the healthy one (top),

indicating the contour plots of the growth variable ϑg. Looking at this figure, the

geometrical changes in case of a maladaptive growth can be clearly observed.

Figure 5.10 shows the transverse sections for the healthy and hypertrophies

hearts. For the concentric growth (Figure 5.10 right), in accordance with the

clinical findings, the ventricular walls are relatively thickened and the ventricular

volume is decreased. For the eccentric growth (Figure 5.10 center), there is

almost no change in the ventricular wall thickness while the ventricular volume

is significantly increased, see also Figure 5.12.

ϑg

1 1.1
ϑg

1 1.05

Healthy

Thickened Dilated

Figure 5.9: The healthy (top), concentrically hypertrophied (bottom left), and
eccentrically hypertrophied (bottom right) heart models. The contour plots of
the growth variable ϑg illustrate the distribution of the concentric and eccentric
hypertrophy throughout the heart.
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5.4.2 Pressure-Volume Curve Simulations for the Hypertrophied Heart

Models

The effects of the concentric and eccentric hypertrophy on the cardiac pumping

efficiency is shown by running the fully coupled cardiac electromechanical anal-

ysis and obtaining the related pressure-volume curves [15]. The heart models,

generated to simulate the concentric and eccentric growth, have their compress-

ibility decreased about 33% while all the other parameters given for the healthy

in Table 5.2 heart remain unchanged.

Figure 5.10: Transverse heart sections showing the maladaptive growth of the
heart [12, 55]. The eccentric hypertrophy (center) is the dilation of the ven-
tricles due to volume overload, while the concentric hypertrophy (right) is the
ventricular wall thickening due to pressure overload. The geometrical changes
in the ventricles for both cases can be compared with the normal heart (left).

In Figure 5.11, the lateral cross-sectional slices are shown for the healthy and

the grown heart models. The first row represents the healthy heart while the

second and third rows demonstrate the concentrically and eccentrically grown

hearts, respectively, for a complete heart cycle. When the healthy heart model

is compared to the thickened one, the difference in their initial volumes (EDV)

can be realized. Moreover, the end-systolic volume (ESV) of the thickened heart

is larger than the healthy one. The eccentrically grown heart model, given in

row 3, has its end-diastolic volume (EDV) relatively larger than the healthy one

while its ESV is the greatest one among the others.
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Φ [mV]
−80 −30 20

Figure 5.11: The snapshots of the lateral slices at different phases of the cardiac
cycle are generated by the electromechanical finite element analyses of the nor-
mal heart (first row), the thickened heart (second row), and the dilated heart
(third row). The lateral cross-section is located at z=20 mm as depicted in
Figure 5.5 (top). The contour plots demonstrate the distribution of the trans-
membrane potential Φ throughout the lateral slices.

The pressure-volume curves shown in Figure 5.12 are generated for the healthy

and the hypertrophied heart models. The pressure-volume curve obtained for

the thickened heart shows that the ventricular pressure during the ejection phase

takes higher values and end-systolic pressure is considerably higher compared to

the healthy one. On the other hand, ESV and EDV in the dilated heart model

differs significantly from the healthy one.

The analysis results, shown in Figures 5.11 and 5.12, agree with the clinical

observations on the wall thickening (Figure 5.10,right) and the dilation (Figure

5.10, left), see [52, 45].

64



15 20 25 30 35 40 45 50 ×103
0

20

40

60

80

100

120

LVV [mm3]

LV
P

[m
m

H
g]

Healthy

Thickened

Dilated

Figure 5.12: Left ventricular pressure-volume curves obtained through the elec-
tromechanical finite element analyses of the normal, thickened, and dilated heart
models.

Figure 5.13: Expected clinical observations on the left ventricular pressure-
volume curves for eccentric hypertrophy (left) and concentric hypertrophy
(right). The curve shown with the dashed line represents the pressure-volume
relation for the healthy heart while the solid line stands for the eccentrically
grown heart model [45].
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CHAPTER 6

CONCLUDING REMARKS

In this thesis, we have presented the computational three-dimensional heart

models generated to simulate the left ventricular pressure-volume curve for the

healthy and dysfunctional cases, namely the myocardial infarction, concentric

hypertrophy, and eccentric hypertrophy. The simulation results are shown to

agree with the clinical observations for these pathological cases.

Computational modeling of the cardiovascular system contributes to both the de-

velopment of new therapeutic strategies and improvement of the existing meth-

ods, especially for the treatment of cardiac arrhythmias and pump dysfunctions

[86]. The success of the computational cardiac modeling in developing novel

approaches for the diagnosis and therapy of the diseases depends primarily on

the individualization of the heart models. The advances in the imaging technol-

ogy provides the researchers with more realistic heart geometries. Modeling of

the complex physiological processes within the cardiovascular system with a de-

tailed heart model reveals more about the cardiovascular dysfunctions compared

to the clinical observations. For the current studies on the causes and termina-

tion of the cardiac arrhythmias and the analysis of drug interactions, the reader

is referred to [4]. The success of computational heart models in modeling the

improvement of the ventricular functioning using artificial pacemakers are also

promising. The studies on the optimization of cardiac resynchronization therapy

(CRT) aim to decrease the number of clinical trials for the lead positioning and

to avoid the time-consuming procedures. For the related literature, we refer to

[48, 49, 67, 22]. Also, incorporation of the fluid mechanics of heart valves into
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the cardiac models allows the researchers to optimize the design of heart valves.

This provides the most mechanically appropriate valve design with less number

of in vitro or animal tests [61].

This study has demonstrated the capacity of our models to model the left ventric-

ular pressure for the healthy heart and the change in the ventricular mechanics

in case of a dysfunction through the pressure-volume curve simulations. In the

literature, there are numerous studies on modeling both the electrophysiologi-

cal and coupled behavior of the healthy heart. Additionally, the dysfunctions

related with the electrical conduction problems within the heart have been inves-

tigated by several researchers. However, there are only few studies on modeling

the pressure-volume loops for the myocardial infarction and hypertrophied heart

models utilizing an electromechanically coupled model. Our work can be further

extended to model several cardiac diseases, that also include the electrophysi-

ological disorders. The pressure-volume curves obtained in this thesis may be

supported by the another common diagnostic tool, the electrocardiogram. In

order to achieve more realistic results and use our model to test and develop

new therapies, the next step is to make our model to have the realistic heart

dimensions. Then, it would also be possible to compare several hemodynamic

parameters to show the performance of our model.
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