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ABSTRACT 

COMPRESSIVE SENSING FOR RADAR TARGET DETECTION 

Çağlıyan, Firuze 
M.S., Department of Electrical and Electronics Engineering 

 Supervisor: Assoc. Prof. Dr. Ali Özgür Yılmaz  
 

 
February 2014, 64 pages 

Compressive sampling, also known as compressive sensing and sparse recovery, is a new 
type of sampling theory, which predicts that sparse signals and images can be reconstructed 
from far less amount of data than what was traditionally considered necessary (i.e. 
Nyquist/Shannon sampling theory). The theory has many applications such as design of new 
imaging systems, cameras, sensor networks and analog to digital converters. Several 
algorithms have been proposed for the measurement and recovery process of the theory. The 
theory uses only a small amount of measurements which are linear, nonadaptive and suitably 
designed. The reconstruction process is nonlinear and simply depends on searching for the 
sparsest vector that is coherent with the measurements. The compressive sensing theory and 
its key points are explained in detail. 

In this thesis, compressive sensing (CS) is used to reconstruct the target scene of a radar. The 
target scene is discretized so that a total of N possible target locations exist. The number of 
targets K is assumed to be small (i.e., K<<N) meaning that the target scene is sparsely 
populated. A theoretical lower bound on the number of measurements M depending on the 
sparsity K and the total number of data N is presented based on the results in the literature. 
The target scene reconstruction results for different noise levels are compared. Three 
different compressive sensing reconstruction methods are described and their performances 
are compared. The compressive sensing radar target detection and the classical radar 
detection performance difference is investigated. The change in probability of detection due 
to SNR variation under constant false alarm rate (FAR) is analyzed. Finally, the effect of 
Doppler to the compressive sensing radar target detection is analyzed. When the number of 
measurements is limited, i.e., M<N, there is an SNR loss in detection performance. The CS 
method roughly attains the performance of classical detection when received SNR is boosted 
by M/N either with higher power at the transmitter or lower noise figure at the receiver. 

Keywords: Compressive sensing, sparsity, radar target scene, detection 
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ÖZ 

RADAR HEDEF TESPİTİNDE SIKIŞTIRILMIŞ ÖRNEKLEME 

Çağlıyan, Firuze 
Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 

     Tez Yöneticisi: Doç. Dr. Ali Özgür Yılmaz 
 

 
Şubat 2014, 64 sayfa 

Yeni bir çeşit örnekleme teorisi olan Sıkıştırılmış Örnekleme sıkıştırılabilir (seyrek) 
sinyallerin gerekli olduğu düşünülenden (Nyquist/Shannon örnekleme teorilerinde belirtilen) 
çok daha az sayıda örnek ile tekrar elde edilebileceğini öngörmektedir. Bu teorinin yeni 
görüntü sistemleri, kameralar, sensör ağları, örnekselden sayısala dönüştürücü dizaynı gibi 
birçok uygulama alanı bulunmaktadır. Ölçüm ve geri alma aşamaları için geliştirilmiş çeşitli 
algoritmalar mevcuttur. Teori, doğrusal ve uyarlanabilir olmayan ölçümlerden az sayıda, 
uygun şekilde tasarlanmış olanları kullanmaktadır. Geri alma işlemi ise doğrusal olmamakla 
birlikte, temel olarak ölçümlerle uyumlu olan en seyrek vektörü bulmayı amaçlamaktadır. Bu 
çalışmada, sıkıştırılmış algılama teorisi önemli noktaları ile birlikte detaylı bir şekilde 
açıklanmıştır. 

Bu tezde, sıkıştırılmış algılama metodu kullanılarak bir radarın hedef sahnesinin yeniden 
oluşturulması ele alınmıştır. Hedef sahnesi, toplamda N sayıda hedef yeri olacak şekilde 
ayrıştırılmıştır. Hedef sayısının (K) N’ye göre çok az oldugu varsayılmıştır (K<<N), bu 
durumda hedef sahnesi seyrek nüfusludur. Literatürdeki sonuçlar kullanılarak, ölçüm sayısı 
M için hedef sayısı K ve toplam veri sayısı N’ye bağlı teorik bir alt sınır belirtilmiştir. 
Gürültü seviyesindeki değişimler karşısında hedef sahnesinin yeniden oluşturulması 
durumlarının karşılaştırılması grafiklerle sunulmuştur. Farklı sıkıştırılmış algılama metodları 
tanımlanmış ve bu metodların performansları karşılaştırılmıştır. Sıkıştırılmış algılama ile 
radar hedef tespiti ve klasik radar hedef tespiti performans farkları incelenmiştir. Hatalı 
alarm olasılığı (FAR) sabit tutularak SNR değişimine karşılık hedef tespit olasılığının 
değişimi durumları incelenmiştir. Son olarak, Doppler’in sıkıştırılmış algılama ile radar 
hedef tespitine etkisi incelenmiştir. Ölçüm sayısı az olduğunda, öyle ki M<N, hedef tespit 
performansında SNR kaybı oluşmaktadır. Alınan SNR vericide daha fazla güç ya da alıcıda 
daha düşük gürültü seviyesi kullanılarak M/N oranında artırıldığında Sıkıştırılmış Algılama 
metodu klasik tespit metodu ile yaklaşık olarak aynı tespit sonuçlarını vermektedir. 

Anahtar Kelimeler: Sıkıştırılmış algılama, seyreklik, radar hedef sahnesi, tespit 
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CHAPTER 1 

1 INTRODUCTION 

 Compressive Sensing 1.1

The common knowledge in data acquisition is the usage of Nyquist/Shannon sampling 
theorem. This theorem states that the number of samples needed to reconstruct a signal with 
no error is determined by its bandwidth. In other words, the sampling rate of the signal 
should be at least twice of its bandwidth, the so called Nyquist rate [4]. In the last nine years 
or so, an alternative sensing/sampling theory to the common knowledge in data 
reconstruction has emerged. This theory, called “compressive sensing”, states that super-
resolved signals and images can be reconstructed from far fewer data/measurements than 
what is usually considered necessary.  

The key point is that in real-world, many signals have sparsity or compressibility property. 
In other words, they have a sparse representation in a fixed basis. Therefore, there is no need 
to acquire the full signal, compute all transform coefficients, and then take only the largest 
coefficients while discarding all others. Since it is known that the most of the acquired data 
will be discarded, the effort of acquiring all data is unnecessarry. This raises the question of 
whether it is possible to directly measure the part of the data that will not end up being 
thrown away. Compressive sensing theory shows that this is possible [8]. 

Compressive sensing theory has two key points: sparse representation and incoherent 
measurements of the signal to extract the maximum amount of information by taking 
minimum number of measurements. In this theory, reconstruction of the full signal from the 
small amount of collected incomplete data is done by numerical optimization.  

 Contributions and Motivation 1.2

Our study is centered on the application of the CS theory to the radar target detection 
problem. For using the CS approach for radar target detection there are some key points to 
be aware of: First, the target scene should be sparsely populated. Second, the transmitted 
signal should be incoherent. Finally, a matched filter is not used in this approach. [18]  

A 1-dimensional, monostatic, far-field radar system is used in this study.  

In general, the target scene of a radar is sparsely populated since the number of targets in the 
target scene is so small compared to the number of possible target locations in the target 
scene. Therefore, the sparsity condition is achieved. The transmitted signal should be chosen 
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properly so that the incoherence property is satisfied. A random signal is incoherent with 
any fixed basis with high probability, so a random signal can be chosen as the transmitted 
signal to satisfy this condition [6]. Since these two key points of CS can be easily applied to 
radar target detection process, the CS theory can be used for radar target detection.   

CS theory states that, under certain conditions, radar target detection using compressive 
sensing achieves better target detection performance than classical detection approach. 
Exact reconstruction of the target scene can be achieved by taking far less number of 
measurements than that of the classical detection. The detection performance of the CS is as 
good as the classical approach when the SNR loss which is proportional with the M/N ratio 
is compensated. 

 Organization of the Thesis 1.3

The rest of the thesis is organized as follows: Chapter 2 gives relevant information about 
compressing sensing theory and key points of this theory, which are sparse and 
compressible signals, incoherence and the Restricted Isometry Property. Chapter 3 describes 
three CS reconstruction algorithms; �1 minimization, OMP and BAOMP. In Chapter 4, 
classical radar target detection method and compressive sensing radar target detection 
methods are explained. In Chapter 5, simulation results and their evaluation are presented. 
Finally, Chapter 6 includes a conclusion and discussion for future work. 
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CHAPTER 2 

2 RELATED WORK ON COMPRESSIVE SENSING 

Compressive sensing (CS), also called compressive sampling, is a novel data acquisition 
approach for finding solutions to underdetermined linear systems. CS theory states that 
recovery of certain signals and images is possible by taking far fewer measurements or 
samples than traditional methods use if sparsity and incoherence conditions are satisfied. 

In this chapter, we first describe sparse and compressible signals. In Section 2.2, 
incoherence and the Restricted Isometry Property will be discussed. In the last section, CS 
theory will be explained in detail. 

 Sparse and Compressible Signals 2.1

Let � be a one-dimensional, finite-length, discrete time signal of length N in ℂN. We regard 
� as an Nx1 column vector, and call it the information vector. Any signal � in ℂN can be 
represented in terms of a basis matrix � which is an NxN matrix with the vectors {ψ	}	
�

�  as 
its columns and assume that the basis is orthonormal. This signal � can be written in � 
domain as  

� = �         or         � = � s	 ψ	

�

	
�
.                               (1) 

We can say that � and  are equivalent representations of the signal [1]. If  is an Nx1 
coefficient vector and has only K nonzero values for K<<N, then we say that the signal � is 
K-sparse.  

Many natural signals are not strictly sparse but can be approximated as sparse. Signals 
which have a few large coefficients and many small coefficients are called compressible. In 
other words, a compressible signal � has coefficients s� decreasing rapidly in magnitude 
according to a power law. Compressible signals can be approximated by K-sparse signals 
due to this rapid decay by keeping just the K-largest coefficients of �. Keeping just the K-
largest (in magnitude) coefficients of � is the best approximation to a sparse signal [2]. 

According to these definitions, we can say that the information content of a 
sparse/compressible signal � resides in at most K dimensions rather than N [3]. So that, 
throwing away a large part of the coefficients is possible without much loss and CS theory 
mainly uses this fact. 
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 Incoherence and the Restricted Isometry Property 2.2

Definition 1 (Coherence) Let (�, �) be a pair of bases in ℂn. The coherence between � 
and � is defined as  

μ(�, �) = √n  max ���,	��  �〈φ�, ψ	〉� .                              (2) 

From this definition, we can say that coherence equals to the largest correlation between any 
two elements of � and �. When the bases � and � are orthonormal, it follows that the 
coherence is 1 ≤ μ(�, �) ≤ √n [4]. The correlated elements of � and � determine how 
coherent the bases are. For example, when � = �, the bases are fully coherent and μ = √n. 
The bases are called ‘incoherent’ when μ ≅ 1 which means they are nearly independent on 
the dimension n.  

Compressive sensing theory is mainly interested in largely incoherent pairs as it will be 
described in Section 2.3. For example, when � is the identity basis and � is the Fourier 
basis, maximal incoherence is obtained and μ = 1. Also, a random matrix � has very small 
coherence with any fixed basis �. When we choose � uniformly at random as an 
orthonormal basis, then the coherence between � and any fixed basis � is about  �2 log(n) 
with high probability [4, 5] which is smaller than √n.   

Definition 2 (Restricted Isometry Property) Let K be an integer and � be a K-sparse 
vector. For all such �, a matrix � satisfies the Restricted Isometry Property (RIP) with 
parameter δ� ≥ 0, called the restricted isometry constant, as the smallest value such that  

1 − δ� ≤ ‖�!‖"
"

‖!‖"
" ≤ 1 + δ�                                       (3) 

The matrix � is said to have the RIP of order K if δ� is not too close to 1. Restricted 
isometry constants are a measure of how much the length/Euclidean norm of a K-sparse 
vector can be changed by transformation described by � [2, 6]. A random matrix � satisfies 
the RIP with high probability. 

 Compressive Sensing Theory 2.3

Compressive Sensing is a technique which finds sparse solutions to underdetermined linear 
systems. Generally, an underdetermined linear system has infinite number of solutions since 
it has more unknowns than equations. However, if an underdetermined linear system has a 
unique sparse solution, CS theory states that recovery of that solution is possible. In the CS 
technique, measurements are a weighted linear combination of samples and taken in a basis 
different from the basis of the sparse signal where the two bases are incoherent. The main 
advantage of CS theory is that the number of these measurements can be small and they can 
still contain all the useful information. Thus, the probability of recovering the unique sparse 
signal is very high.  
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Consider a length N signal � which is K-sparse in basis �, as defined in Section 2.1. In the 
classical sampling approach, this Nx1 sparse signal x is multiplied by the measurement 
matrix �, where the measurement matrix is an NxN identity matrix. So, an Nx1 observation 
matrix is obtained by taking N measuremets as shown in the figure below. 

 
Figure 2-1 The Classical sampling approach [22] 

However, in the CS approach, the measurement matrix � is MxN, where M is the number 
of measurements and M ≪ N. So only M measurements are taken and an Mx1 observation 
matrix is obtained as shown in Figure 2-2. In the CS, the aim is to reconstruct the Nx1 
sparse signal x from these M measurements.  

 
Figure 2-2 The CS approach [22] 

In the CS approach, the signal � is measured by sampling it with respect to �. Let φ� for           
1 ≤ i ≤ M be the rows of the measurement matrix �. The measurement process computes 
observations y�, inner products of � with φ�, as in y� = 〈φ�, �〉. The observation vector $ can 
be written in matrix notation as  

                   $ = �� = �� = %.                                (4) 

It has been shown that when x is sparse and the measurement matrix � satisfies the RIP, the 
solution �& to  

�& = argmin ‖�'‖*-        such that        ��' = $                (5) 

recovers x exactly with a very high probability [23]. 
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The focus in the theory is the case where x is sparse. So, it is reasonable to try to find the 
sparsest solution of  ��' = $ by solving 

�& = argmin ‖�'‖*/        such that        ��' = $                (6) 

However, solving this problem is numerically unstable and hard. Researches show that the 
�3 and �� problems give equivalent solutions if the measurement matrix satisfies the RIP, as 
explained in [23] and [24]. As a result, there is no need to resort to �3 optimization. Instead 
of �3, a much easier �� optimization which is based on linear programming techniques can 
be used [25].  

In CS theory, there are two key points: 

1) Designing the measurement matrix �: � should be designed so that rows of � are 
incoherent with the columns of � and % satisfies the RIP. This makes the 
measurement process non-adaptive, which means � is fixed and does not depend on 
the signal � [1]. Incoherence is important for the number of measurements needed. 
When � and � have large coherence, then each row of � only gives information 
about how much of one particular basis element 46 is present in the signal, and thus 
we would need to make all N measurements to reconstruct the signal � correctly [5]. 
When � and � are incoherent, the information in the K-sparse signal is not lost by 
the dimensionality reduction from N to M. For example, when the elements of � 
are independent and identically distributed (iid) Gaussian random variables, then � 
is incoherent with any fixed basis � with high probability (universality) [6].  

2) Choosing the reconstruction algorithm: Most of the existing studies in the literature 
are using optimization based methods for reconstruction, especially ��-
minimization. Other methods used for reconstruction are Greedy reconstruction 
algorithms, like Matching Pursuit (MP). These algorithms will be explained in 
detail in the following chapters. 

An MxN iid, Gaussian measurement matrix � satisfies the incoherence and RIP with high 

probability when M ≥  cK log(N/K) with c ≥ 1. Therefore, only M ≥  cK log 9�
�

: or more 
basically M ≥  O(K log(N)) random measurements are needed to exactly recover a K-
sparse signal � of length-N. [7, 8, 9] One may observe that O(K log(N)) is much smaller 
than O(N). We can say that the parameter K is for determination of the amplitudes of the K-
nonzero coefficients, and log (N) is for determination of the locations of the nonzero 
coefficients. 

Eqn. (4) is for noiseless case. When there is noise, the equation becomes 

                         $ = �� + ; = �� + ; = % + ;                             (7) 

for an Mx1 noise vector ;. Throughout this thesis, the noise vector ; is taken as iid 
Gaussian noise. In the noisy case, the number of measurements needed to exactly recover 
the signal � is somewhat larger than the noiseless case since the observation vector $ 
contains noise added observations [8, 9].   
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CHAPTER 3 

3 COMPRESSIVE SENSING RECONSTRUCTION ALGORITHMS 

 

As mentioned in the previous chapter, there are different reconstruction algorithms used in 
Compressive Sensing. In this chapter, some of these methods will be explained in detail. 
First, the classical optimization-based reconstruction algorithm, called <> minimization will 
be described. Then, two Greedy reconstruction algorithms, Orthogonal Matching Pursuit 
(OMP) and Backtracking-based Adaptive Orthogonal Matching Pursuit (BAOMP) will be 
explained.  

 Classical Reconstruction Algorithm (<> minimization) 3.1

Suppose we have a K-sparse signal � of length N, in basis �. The MxN measurement 
matrix � is designed such that it is incoherent with �. We have the observation vector $ as 
defined in Eqn. (4). Also, the matrix % = �� satisfies the RIP. As CS theory states, the 
signal � can be recovered by making only M (M ≥ O(K log(N)) ≪ N) random 
measurements out of N. Under these conditions, exact recovery of � (or  equivalently) is 
possible by using �� minimization algorithm for reconstruction.  

�� minimization algorithm recover the signal by solving the convex optimization problem of 
finding  

                            & = argmin ‖'‖*-        such that        %' = $                        (8) 

where  ‖‖*- ≝  ∑ |si|N
i=1 . The solution & will give the most sparse and exact vector  with 

very high probability [7, 10]. 

For the noisy case, the observation vector $ is as defined in Eqn. (5) and the �� minimization 
problem becomes as defined below: 

                  & = argmin ‖'‖*-        such that        ‖$ − %'‖*"
A ≤ βA                (9) 

where �A-norm, ‖‖*" ≝  C∑ s�
A�

�
�  , forces the residual term ($ − %') to be small [11]. 

Solving the �� minimization problem through convex optimization has some computational 
complexity. There are some Matlab packages that solve convex optimization problems so as 
to find the minimum ��-norm solution under given constraints. Two of these packages used 
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in this thesis work are CVX: Matlab Software for Disciplined Convex Programming [12] 
and ��-magic [13]. 

 Orthogonal Matching Pursuit (OMP) 3.2

Algorithms based on convex optimization, like �� minimization, are computationally 
intractable and complex. This results in finding alternative algorithms that are not based on 
convex optimization, like Greedy pursuit algorithms. Greedy pursuit algorithms use iterative 
search mechanisms and they are usually faster and simpler than optimization based 
methods. 

In OMP, the estimate of the signal � is initialized as x& = 0 and nonzero components of � are 
recovered sequentially at each iteration [14].   

Similar to the scenario in �� minimization algorithm, suppose we have a K-sparse signal � of 
length N, and MxN measurement matrix �. The columns of � are denoted as φ	, j =
1, … , N. M-dimensional observation vector $ = ��. Since the signal � has only K-nonzero 
components, we can say that the observation vector $ is a linear combination of K columns 
of the measurement matrix �. For reconstruction of �, determination of the columns of � 
which participate in the observation vector $ is necessary. In OMP algorithm, most strongly 
correlated column of � with $ is chosen first. Then, its contribution to y is subtracted and 
the same procedure is applied to the residual iteratively. The algorithm states that; after K 
iterations, the correct set of columns (φ	′s) will be identified. The OMP algorithm is 
explained in detail in Algorithm 1 [15]. 

Algorithm 1 (Orthogonal Matching Pursuit) 

INPUT: 

� �: An MxN measurement matrix  
� $: An M-dimensional observation vector  
� K: Sparsity level of the signal � 
� t: Iteration counter 

OUTPUT: 

� �&: Estimate of the signal � 
� EF: An index set of K elements from {1, … , N} 
� �G: The matrix of chosen columns 
� HF: An M-dimensional approximation of the observation data $ 
� IF = ($ − HF) : An M-dimensional residual vector 

INITIALIZATION: 

� IJ = $ 
� EF = ∅ 
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� t = 1 
� �J = ∅ 

ITERATION: 

1. Find the index λQ that solves the following optimization problem. λQ gives the 
column of � which is most strongly correlated with the residual IGR>. 

                 λQ = argmax	
�,…,� �〈IGR>, φ	〉�                          (10) 
2. Augment the index set.  

                      EG = EGR> ∪ {λQ}                                              (11) 
3. Augment the matrix of chosen columns. 

                       �G = [�GR>     φTU]                                           (12) 
4. Obtain a new signal estimate by solving a least squares problem. 

                                       �G = argmin!& ‖$ − �G�&‖*A                                 (13) 
5. Calculate the new approximation of the observation data. 

                             HG = �G�G                                                      (14) 
 

6. Calculate the new residual. 
                            IG = $ − HG                                                    (15) 

7. If  t < W , increment t by one and return to Step 1 to continue with a new iteration. 

The residual IG is always orthogonal to columns of the matrix �G. At every new iteration (t), 
when the residual of the previous iteration (t − 1) is nonzero, a new column of � is chosen 
and the matrix �G has full column rank (it has independent columns). Therefore, the signal 
estimate �G, solution to the least squares problem in Step 4, is unique. Also, the 
approximation HG and the residual IG are unique [15]. 

At the end of the algorithm, the estimate �& of the signal � has nonzero entries at the 
components listed in the index set  EG =  EF, since t=K at last iteration.  

 Backtracking-Based Adaptive Orthogonal Matching Pursuit (BAOMP) 3.3

BAOMP algorithm is a Greedy pursuit algorithm like the OMP algorithm. The BAOMP 
algorithm is an extended version of the OMP algorithm. In the BAOMP algorithm, unlike 
OMP, more than one atoms (columns of the measurement matrix) can be chosen at each 
iteration. Additionally, at each iteration, the BAOMP algorithm uses a backtracking 
technique to detect the reliability of the previously chosen atoms and deletes unreliable 
atoms. Another extension of the BAOMP algorithm is that this algorithm does not require 
the sparsity level K of the signal � to be known a priori. These modifications make 
performance of the BAOMP algorithm much better than the OMP and �� minimization 
algorithms. 

We have the same scenario as defined in Section 3.2. We aim to reconstruct the K-sparse, 
length N signal � from length M observation vector $ = �� by using BAOMP. The 
BAOMP algorithm is explained in detail in Algorithm 2 [16]. 



10 
 

Algorithm 2 (Backtracking-based Adaptive Orthogonal Matching Pursuit) 

INPUT: 

� �: An MxN measurement matrix  
� $: An M-dimensional observation vector  
� μ�: A preset atom-adding constant threshold in [0,1] 
� μA: A preset atom-deleting constant threshold in [0,1] 
� ε: Convergence threshold to stop the iteratons 
� t: Iteration counter 
� tYZ!: maximum number of iterations allowed 

OUTPUT: 

� �G: Estimate of the signal � 
� E: Estimated support set 
� \G: Candidate set 
� Ĝ: Atom-deleting set 
� IG: An M-dimensional residual vector 
� �_: A matrix of chosen columns (indices listed in the set _) of � 

INITIALIZATION: 

� �J = 0 
� E = ∅ 
� \J = ∅ 
� Ĵ = ∅ 
� IJ = $ 
� t = 1 
� �J = ∅ 

ITERATION: 

1 Find the candidate set \G that consist of the atoms solving the following optimization 
problem. \G contains the columns φ	’s of �, , which are most strongly correlated 
with the residual IGR> and satisfy the following inequalities. 

   �〈IGR>, φ`U〉� ≥ μ�  .  max	
�,…,� �〈IGR>, φ	〉�  with cardinality   |\G| ≤ M − |E|         (16) 

2 Obtain a signal estimate by solving the following equation where T sign means matrix 
transpose.  

         �E∪\G
G = �E∪\G

b  . $                                                    (17) 

3 Find atom-deleting set ΓQ that consist of the atoms satisfying the following inequality. 
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               ��E∪\G
G �  <  μA . max ��\G

G �    where     �\G
G = �\G

b  . $                   (18) 

4 Update the support set. 

                E = {E ∪ \G} \ Ĝ                                                   (19) 

5 Calculate the new signal estimate. 

                                         �E
G = �E

b . $                                                        (20) 

 
6 Calculate the new residual. 

                                    IG = $ − �E . �E
G                                                    (21) 

7 If  ‖IG‖*A < f  or  t = tYZ! , quit the iteration. If not, increment t by one and return to 
Step 1 to continue with a new iteration. 

In BAOMP, first a candidate set is found by adaptively choosing several atoms at each 
iteration. The adaptive decision of how many atoms are chosen at each iteration is made by 
a pre-defined constant μ�. When μ� = 1, only the most strongly correlated atom is chosen at 
each iteration, like the OMP method. When μ� = 0, all N atoms, which means the full 
measurement matrix, are chosen. Choosing μ� smaller speeds up the algorithm but increases 
complexity. There is a constraint |\G| ≤ M − |E| for the candidate set to guarantee the 
existence of the inverse matrix of �E∪\G, since the measurement matrix is MxN. Then, an 
atom-deleting set is found by choosing the atoms whose estimated coefficients �E∪\G

G  are 
smaller than a pre-defined constant, μA times the maximum amplitude of the coefficients �\G

G  
in the current candidate set \G. Also, the pre-defined constant μA controls the adaptive 
decision of how many atoms are deleted at each iteration. Ideally, the estimated coefficients 
of recently chosen atoms are expected to be smaller than that of the previously chosen 
atoms. If the estimated coefficients of recently chosen atoms are larger than that of the 
previously chosen atoms, those previously chosen atoms were chosen wrongly with high 
probability. This backtracking step removes the previously chosen atoms with smaller 
estimated coefficients than the recently chosen atoms, so it corrects the previous wrong 
decisions. The support set is updated by deletion of the atoms in the atom-deleting set from 
the support set. Then, a new signal estimate and a new residual is found by using this 
support set. Iterations of the BAOMP method will stop when the maximum number of 
iterations allowed is reached, or when �A-norm of the residual is less than a threshold value, 
f [16].   
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CHAPTER 4 

4 COMPRESSIVE SENSING RADAR 

In radar, detection is one of the most basic functions. A radar signal processor performs 
detection of the presence of targets in the target scene of interest. The main difficulty is 
analyzing whether the received signal contains a real target echo, if so, finding its range, 
angle and velocity, or it contains only the effects of interference; such as noise and clutter. 
In the simplest case, detection decisions are made for each range bin (fast-time sample) for 
each pulse to decide the presence of a target at the range of the corresponding range bin and 
the spatial angle of the antenna pointing direction for the corresponding pulse. This results 
in the need of making millions of detection decisions per second, because of the existence of 
thousands of range bins and high PRFs (Pulse Repetition Frequency) of multiple kilohertz. 
The optimal solution to this detection decision problem is the technique of threshold 
detection. In this method, the amplitude of each sample of the received radar echo signal is 
compared to a predefined threshold value. If the signal amplitude is above this threshold, it 
is assumed that a target is present. If it is below the threshold, the echo is assumed to be due 
to interference only and no target is present [17]. 

Threshold detection decisions are the result of a statistical process, so the probability of a 
wrong decision is not zero and there could be false alarms, i.e., a false target declaration. In 
real-world systems, interference statistics are not known a priori, so they cannot be used to 
compute a predefined threshold value. Instead, the threshold is estimated using interference 
statistics estimated from the data itself, by keeping FAR (False Alarm Rate) constant [17]. 

In this thesis, a 1-dimensional, monostatic, far-field, single-pulse radar system is used. 
Monostatic means the transmitter and the receiver are colocated. The far-field property 
allows modelling of targets as point sources. We assume that the targets are radially aligned 
with the transmitter and receiver, so only the range and velocity of targets will be of concern 
[18]. 

 Classical Radar Detection 4.1

The cross-ambiguity function of τ, ω ∈ ℝ for two finite energy functions f, g ∈ LA(ℝ) is 

defined as [19] 

                     Az,~(τ, ω) = ∫ f 9t + �
A
: g(t − τ/2)�������������eRA���Q dtℝ                            (22) 

where   .  ��� denotes complex-conjugate of the function.  
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The (self) ambiguity function is obtained when f = g in (20), and denoted as Az(τ, ω).   

Definition 3 (Radar Uncertainty Principle) For some support set U ⊆ ℝA and ϵ ≥ 0, if  

                                     ∬ �Af,g(τ, ω)�2
� dτ dω ≥ (1 − ϵ)‖f‖l2

2 ‖g‖l2
2                         (23) 

then the area  |U| ≥ (1 − ϵ) [20]. 

The radar uncertainty principle states that, in classical radar detection, the ability to detect 
two close targets in the time-frequency plane is limited by the support of the ambiguity 
function Az(τ, ω). Therefore, the ambiguity function of f is fundamental in determining the 
resolution between targets [21]. 

For our radar model, suppose there is a target at distance x moving with velocity v. The 
reflection coefficient of the target is s!� . The transmitted signal is f(t) and the received 
signal is r(t). r(t) is defined as 

                                        r(t) = s!�f(t − τ!)e2πiωvt                                             (24) 

where τ! = 2x/c is the round trip time of flight, c is the speed of light, ω� ≅ −2ω3v/c is 
the Doppler shift, and ω3 is the carrier frequency. Thus, the time-frequency shift (τ!, ω�) of 
the transmitted signal is used to gather range-velocity (x, v) information of the target. 

In classical detection, a matched filter is used at the receiver which corresponds to 
correlation of the received signal r(t) with a time-frequency shifted version of the 
transmitted signal f. This correlation equals the cross-ambiguity function: 

                               A�,z(τ, ω) = ∫ r(t)f(t − τ)����������eRA���Q dtℝ                                       (25) 

                                                 = s!�Az(τ − τ!, ω − ωv)                                          (26) 

From (24), we can say that the ambiguity region of f with its center at target’s location 
(τ!, ωv) and scaled by its reflection coefficient |s!�| is included in the time-frequency 
plane. Targets that are close to each other can have overlapping ambiguity regions. This 
results in problems like detection of two or more targets as a single target, or inability to 
detect the exact location of a target [18]. 

 Compressive Sensing Radar Detection 4.2

Radar target detection using CS can have better detection performance than classical 
detection under appropriate conditions for CS. As mentioned in Section 2.3, the CS method 
is based on two conditions: sparsity and incoherence. Therefore, these conditions should be 
satisfied in order to use CS in radar target detection. In CS radar detection, when 
incoherency increases, the number of measurements needed for detection decreases. Also, 
the CS method does not use a matched filter in radar target detection. 
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Assume that there exists K targets in the time-frequency plane. All targets have unknown 
range, velocity and reflection coefficients. We discretize the time-frequency plane, the target 
scene, such that the total number of points is equal to N. If K ≪ N, we can say that the target 
scene is sparsely populated, so it can be represented as a K-sparse vector of length N. Each 
point on the target scene represents a possible target location, meaning a unique time-
frequency shift, �� with a related reflection coefficient, x�. Assume that �� is an 
orthonormal basis for ℂN and consider that � is an unknown matrix  in ℂN. If the target 
scene is represented by a matrix �, and the transmitted signal is �, then the observation 
vector $ is defined as 

                                                         � = ∑ x� ��
�
�
�                                                       (27) 

                                       $ = �� = ∑ x� ��
�
�
� � = ∑ x� �� =�

�
� ��                            (28) 

In Eqn.(26), ��’s are the columns of the measurement matrix � and defined as �� = ���. 
Also, x is the Nx1 coefficient vector defined as � = [x�, xA, … , x�]� in ℂN where T denotes 
transpose. If x is sparse, the target scene of the radar can be reconstructed by solving the 
underdetermined system of equations in Eqn.(26) with the CS method. [3] 

After sparsity, the second condition that the CS is based on; incoherence, should also be 
satisfied. To satisfy the incoherence property of measurement matrix �, the transmitted 
signal � should be chosen appropriately. The transmitted signal should be chosen such that 
it is incoherent with a fixed basis ��. Some deterministic signals, like Alltop sequence are 
incoherent [18]. But, as mentioned in Section 2.3, random signals, which are uniform iid 
Gaussian distributed, satisfy incoherence property with any fixed basis. Therefore, we prefer 
to use random signals in most of the simulations in this thesis. After choosing the 
transmitted signal, the measurement matrix should be designed so that it satisfies the RIP.   

In this study, for forming the measurement matrix, a convolution matrix A is generated from 
the transmitted signal first. The convolution matrix is generated as an (N+L-1)xN matrix 
and its columns are formed by the transmitted signal p.  

If we take the transmitted signal p as a length L column vector as � = [p�, pA, … , p�]�, the 
form of the convolution matrix is as shown below: 

_ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
p�
pA
⋮

p�

0
p�
pA
⋮

0
0

p�
0

⋯

0
0
0
⋮
0
0

    

0
0
0
⋮
0
0

⋮   ⋮ ⋱ ⋮
0 0
0 0
⋮
0
0

⋮
0
0

⋯

p�
pA
⋮

p�
0

    

0
p�
pA
⋮

p�⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
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After forming this convolution matrix, the measurement matrix is generated by taking M 
rows of the matrix A randomly.  

The choice of these M rows affects the performance of the CS algorithm since, together with 
the transmitted signal, the incoherence and the RIP of the measurement matrix is also 
depends on this choice. When incoherence of the measurement matrix increases, the amount 
of information extracted by the measurements gets larger. Together with this, the number of 
measurements needed to be taken gets smaller. Therefore, we can extract the maximum 
amount of information by taking minimum number of measurements with a fully incoherent 
measurement matrix. 

Since we take only M measurements out of N, our observation vector y is a length M vector 
consisting of noise added measurements. From this observation vector, the target scene of 
the radar is reconstructed by using the CS theory. Reconstruction performance analyses of a 
radar target scene for different noise levels, when Doppler is present, with different 
transmitted signals and reconstruction algorithms are given in the following chapter. 
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CHAPTER 5 

5                        RESULTS AND EVALUATION 

 Simulation Model 5.1

In this thesis, a 1-dimensional, monostatic, far-field radar system is used for simulations as 
details are given in Chapter 4. The target scene is discretized such that the total number of 
points is equal to N where each point on the target scene represents a possible target 
location. We have K targets and F ≪  , so that the target scene is sparsely populated, and it 
is represented as a K-sparse vector of length N. 

Assume that the radar transmitter transmits a signal of length L where L<N. An NxN 
convolution matrix is generated by using the transmitted signal as a column vector. M rows 
of this convolution matrix are randomly chosen which means taking M measurements out of 
N, and an MxN measurement matrix is constructed with these rows. 

For all scenarios in which noise is present, indepedent and identically distributed (iid) 
proper complex Gaussian noise is used. 

Signal to noise ratio (SNR) is defined as the ratio of the received signal energy to noise 
variance. Therefore, the length L of the transmitted signal is taken into account while 
choosing the transmitted signal. Transmitted signal power and target amplitudes are 
normalized to obtain a received signal energy of 1 (dB). Also, the noise power is set to 
1/SNR (dB) in order to reach the SNR (dB). 

In the simulation results, the label ‘real data’ means the targets in the target scene. 

5.1.1 Classical Detection Model 

The Classical method for radar target detection is described in Section 4.1. In our simulation 
model, radar receives a random signal with an unknown phase and the matched filter used at 
the receiver is an ideal matched filter. In this case, when the absolute received signal phase 
is unknown, the magnitude of the signal is used and the structure of optimal detector is as 
shown below in Figure 5-1. The magnitude of the matched filter output is taken and then the 
result is compared to a threshold [17]. 
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Figure 5-1 Optimal detector when the absolute signal phase is unknown 

For this case, the probability of detection is defined as [17] 

                                      Pd = Q¥(√2. SNR, √−2. ln FAR)                                       (29) 

where Pd is probability of detection, SNR is signal to noise ratio, FAR is false alarm rate and 

Q¥ is the Marcum-Q function defined as Q¥(a, b) = ∫ texp ¨− Q"©Z"

A
ª I3(at) dt¬

  where I3 is 

the modified Bessel function of the first kind defined as I3(z) = �
�

(∫ e±zcosθ dθ)�
3 .   

Unlike the CS method, measurements are taken for all range bins in the target scene for the 
classical model. This results in N measurements for a vectorized target scene of length N. 
However, the CS method takes only M measurements which correspond to a number much 
less than N. While graphs including SNR are plotted, this SNR loss in CS method is 
compensated. 

 Simulation Results 5.2

Simulations in this section are mainly based on the simulation model explained in Section 
5.1.  

During our work on Compressive Sensing, we utilized various algorithms. These algorithms 
are the �1 minimization algorithm, the OMP algorithm and the BAOMP algorithm. We 
started with the �1 minimization algorithm then, we moved to the OMP and the BAOMP 
algorithms, chronologically. The reason for this change is that we read about the usage of 
some different algorithms during our literature survey. Comparisons of these algorithms will 
be given in following sections of this chapter. When we compare these algorithms, we see 
that the BAOMP algorithm is the best with its performance and complexity features as 
explained in Chapter 3. Depending on these results, the BAOMP algorithm is used for most 
of the analysis in this thesis. 

5.2.1 <>  Minimization Simulations for Different Transmitted Signals 

The choice of the transmitted signal is an important factor in the CS. As mentioned before, 
the transmitted signal should satisfy the incoherence property. As an example, random 
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signals satisfy this property. In this section, �1 minimization algorithm is run with different 
transmitted signals which satisfy incoherence property. These signals are the Alltop 
sequence, Barker Code, P4 Code and Random signal. The simulations are done with �1 
minimization algorithm because this study is performed at early times of our work, so we 
were using �1 minimization algorithm. As a result, it is seen that there is no major difference 
in the performance of the CS, so random signals will be used as the transmitted signal from 
now on. 

In simulations below, the Alltop sequence with length-M is used as transmitted signal which 
is written into the columns of MxN Measurement matrix. Simulations are performed for 
noiseless and noisy case. It is seen that, with the Alltop sequence, exact recovery is also 
possible even when iid Gaussian noise is added: 

 

Figure 5-2 N=2209, M=47, K=10 for noiseless case 

 
Figure 5-3 N=2209, M=47, K=10 for SNR=15dB 

In simulations below, the Barker Code of length-13 is used as transmitted signal which is 
written into the columns of MxN Measurement matrix. Simulations are performed for 
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noiseless and noisy case. When iid Gaussian noise is added, the performance of the 
algorithm decreases as expected. When Barker Code is used as the transmitted signal, the 
number of measurements needed for exact recovery is larger than that when the transmitted 
signal is random or Alltop sequence. When SNR=15dB, three of the targets can not be 
detected. As a result, the Barker Code is not a good choice for the transmitted signal in CS 
theory. 

 

 
Figure 5-4 N=2209, M=47, K=10 for noiseless case 

 

Figure 5-5 N=2209, M=47, K=10 for SNR=15dB 
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As the third case, the P4 Code of length-60 is used as transmitted signal which is written 
into the columns of MxN Measurement matrix. Simulations are performed for noiseless and 
noisy case. It is seen that, similar to the Alltop sequence, exact recovery is also possible 
with the P4 Code even when iid Gaussian noise is added as shown below: 

 

 
Figure 5-6 N=1000, M=300, K=10 for noiseless case 

 
Figure 5-7 N=1000, M=300, K=10 for SNR=15dB 
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5.2.2 Choice of Transmitted Signal 

As mentioned before, random codes of length 60 is used as transmitted signal in 
simulations. The transmitted signal affects the reconstruction performance of the CS. 
Simulations show that a scenario which results in a bad detection performance can have a 
good detection performance when the transmitted random signal is changed. In this section, 
autocorrelation functions and Restricted Isometry Properties of different transmitted signals 
are analyzed as shown below. Different random codes and measurement matrices are 
generated for 100 times. For each of these, the algorithm is run for no target, only noise is 
present case. Then, a detection threshold value is determined for constant False Alarm Rate 
(FAR)=10-3 for each. Using this threshold value, the algorithm is run 100 times for each 
measurement matrix for N=1000, M=200, K=1 and SNR=10dB to obtain the probability of 
detection (Pd) for each case. A signal is called a ‘good signal’ if when used, the 
reconstruction performance of the BAOMP algorithm is good, meaning Pd is large. 
Similarly, a signal is called a ‘bad signal’ if when used, the reconstruction performance of 
the BAOMP algorithm is bad, meaning Pd is small. Simulations show that autocorrelation 
function is not a measure of a good signal or a bad signal. The measure of a good signal or a 
bad signal is the RIP. This means that together with the transmitted signal, the chosen rows 
of the measurement matrix are also important. If the measurement matrix has smaller 
restricted isometry constant, the performance of the BAOMP algorithm is better. When 
restricted isometry constant becomes closer to 1, the performance gets worse. These results 
are shown in below simulations: 
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a) Good signal: 

Restricted isometry constant is found as 0.5612. Pd is found as 0.78.

 
Figure 5-8 Autocorrelation function of the good signal 

 
Figure 5-9 The BAOMP detection result of the good signal, SNR=10dB 
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b) Bad signal: 

Restricted isometry constant is found as 0.8402. Pd is found as 0.03. 

 
Figure 5-10 Autocorrelation function of the bad signal 

 
Figure 5-11 The BAOMP detection result of the bad signal, SNR=10dB 
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5.2.3 OMP - BAOMP Comparisons 

As denoted at the beginning of Section 5.2, when we compare some of the algorithms used 
in the CS, the BAOMP algorithm is found to be the best with its performance and 
complexity features. This section gives results of one of these comparisons; detection 
performances of the OMP and the BAOMP algorithms are compared. The OMP and the 
BAOMP algorithms are executed with same N, M and K values for noiseless case. Targets 
have amplitude equal to 1 and random phase. The transmitted signal is random code of 
length-60 with unit energy. Graphs are drawn using absolute values. Exact recovery is 
achieved in both algorithms as shown below, but the number of iterations needed to achieve 
exact reconstruction is different. The OMP algorithm finds the solution at 10 iterations 
whereas the BAOMP algorithm finds the solution only at 2 iterations. This result is not 
surprising since in the BAOMP algorithm, more than one atom can be chosen at each 
iteration. However, in the OMP algorithm, only one atom is chosen at each iteration. The 
number of iterations of the BAOMP is smaller, but one can say that the BAOMP is more 
complex because of choosing more than one atom at each iteration and the backtracking 
step. When the CPU times of these two algorithms are analyzed for the case above, CPU 
time of the OMP is found as 13.3438 whereas CPU time of the BAOMP is found as 0.9376. 
We can say that the BAOMP is more advantageous also in terms of the CPU times. 

 

 
Figure 5-12 OMP&BAOMP for N=256, M=100, K=10 with no noise 
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When there is noise, the results are similar. The result below is achieved by 10 iterations of 
the OMP, and by only 1 iteration of the BAOMP for SNR=20dB.  

 

 
Figure 5-13 OMP&BAOMP for N=256, M=100, K=10 with SNR=20dB 

 

Also, the reconstruction performance of the BAOMP algorithm is better than the OMP as 
expected, because of the backtracking step in the BAOMP algorithm. An example of this is 
shown in below figure. All targets are detected with the BAOMP, but the OMP algorithm 
cannot detect 1 target and makes 1 wrong detection. The number of iterations used is 5 in 
the BAOMP and 10 in the OMP. 
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Figure 5-14 OMP&BAOMP for N=256, M=100, K=10 with SNR=15dB 

 

5.2.4 BAOMP Simulations 

Scenario 1: All data is complex. The good signal, random code of length 60, found in 
Section 5.2.2 is used as transmitted signal, iid Gaussian noise added for noisy case, N=1000, 
M=200, K=2 and SNR=20dB. 
 
Reconstruction results of the BAOMP algorithm for Scenario 1 are given below for different 
values of the convergence threshold f. The convergence threshold value is one of the 
determining factors for the number of iterations in BAOMP. When �2-norm of the residual 
vector is smaller than f before reaching the maximum number of iterations allowed, the 
iterations stop. Choosing f large means performing a smaller number of iterations. f = α ∗
N ∗ var(noise) [16], where α is a chosen constant. The choice of ² effects the performance 
of the BAOMP algorithm. This effect is analyzed in this section.  

Every simulation is repeated 100 times for each convergence threshold value. 
Reconstruction performances are compared by using the terms defined below: 

correct1: The first target is reconstructed at correct position with an amplitude greater than 
a predefined threshold value 
correct2: The second target is reconstructed at correct position with an amplitude greater 
than a predefined threshold value 
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false: Number of detections which are at neither first nor second target’s position 
falsebig: Number of detections which are at neither first nor second target’s position with an 
amplitude greater than a predefined threshold value 

After 100 run, we can say that the target scene is reconstructed exactly when correct1 and 
correct2 are equal to 100 and falsebig is equal to zero. The threshold value is taken as 8dB 
at simulations. 

Changing α effects the performance of BAOMP algorithm as shown in the following 
figures. When α is greater than 0.05, exact recovery is observed. 

a) α = 0.0001: correct1=53, correct2=53, false=77, falsebig=0 

 
Figure 5-15 BAOMP Simulations for N=1000, M=200, K=2, SNR=20dB and ³ = J. JJJ> 
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b) α = 0.007: correct1=54, correct2=54, false=64, falsebig=0 

 
Figure 5-16 BAOMP Simulations for N=1000, M=200, K=2, SNR=20dB and ³ = J. JJ´ 

c) α = 0.05: correct1=100, correct2=99, false=0, falsebig=0 

 
Figure 5-17 BAOMP Simulations for N=1000, M=200, K=2, SNR=20dB and ³ = J. J¶ 
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d) α = {0.01, 0.02, 0.1, 1}: correct1=100, correct2=100, false=0, falsebig=0 

 
Figure 5-18 BAOMP Simulations for N=1000, M=200, K=2, SNR=20dB and ³ ≥ J. J> 

5.2.5 Classical – <> Minimization – BAOMP Comparison 

Comparison of detection performances of the classical method (MF), the �1 minimization 
method with �1 Magic and the BAOMP method for same transmitted signal and target scene 
is given in this section. The three algorithms are executed with the same N, M and K values. 
Targets have amplitudes equal to 1 and random phase. The transmitted signal is random 
code of length-60 with unit energy. Graphs are drawn using absolute values.  

Comparison for noiseless case is given in below figures. The CS method (both �1 
minimization and BAOMP algorithm) gives better reconstruction results than the classical 
method, even by using less number of measurements. Classical method cannot detect the 
exact target position and detects false alarms around the target position, in other words has 
larger side-lobes compared to CS result. There exist false detections in �1 minimization 
simulation but their amplitudes are very small compared to the target amplitude, so they 
cannot be called as false alarm. In the BAOMP simulation, exact reconstruction is observed. 
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Figure 5-19 <> minimization simulation for N=1000, M=200, K=2 with no noise  

 
Figure 5-20 MF simulation for N=1000, M=200, K=2 with no noise 
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Figure 5-21 BAOMP simulation for N=1000, M=200, K=2 with no noise 

Comparison for noise added case is given in below figures. SNR=20dB in all simulations. 
The CS method (both �1 minimization and BAOMP algorithm) gives better reconstruction 
results than the classical method, even when noise is present. Similarly, classical method 
cannot detect the exact target position and detects false alarms around the target position. 
There exist false detections in the �1 minimization simulation with amplitudes greater than 
those in the noiseless case but their amplitudes are still very small compared to the target 
amplitude, so they cannot be called as false alarm. Again, in the BAOMP simulation, exact 
reconstruction is observed. 
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Figure 5-22 <> minimization simulation for N=1000, M=200, K=2 with SNR=20dB 

 
Figure 5-23 MF simulation for N=1000, M=200, K=2 with SNR=20dB 



34 
 

 
Figure 5-24 BAOMP simulation for N=1000, M=200, K=2 with SNR=20dB 

5.2.6 Detection of Close Targets 

Performance of the CS at detection of close targets is analyzed in this section. The detection 
performance of the BAOMP method when there are close targets is compared with that of 
the classical method for noiseless case. Targets have amplitude equal to 1 and random 
phase. The transmitted signal is a random code of length-60 with unit energy. Graphs are 
drawn using absolute values.There exists three targets in the target scene, at 910, 915 and 
917th range bins. The CS with the BAOMP algorithm detects targets at exactly correct 
positions as shown in below figures. However, the classical method cannot detect the exact 
target positions. 
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Figure 5-25 The BAOMP result for N=1000, M=200, K=3 with no noise 

 
Figure 5-26 Closer view of the BAOMP result 
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Figure 5-27 The MF result for N=1000, M=200, K=3 with no noise 

5.2.7 FAR Calculations 

In this section, FAR is calculated for different α values and constant predefined detection 
threshold value using the BAOMP algorithm. The scenario is the same as Scenario 1, except 
there is no target, only noise is present, meaning K=0. For calculating FAR, there should be 
only noise no targets in the target scene. FAR is calculated for different f (meaning different 
α) values. The threshold value is taken as 8dB in simulations. As a result, for α ≥ 0.05, the 
BAOMP method detects no false alarms above the detection threshold, so FAR=0. 
Therefore, choosing ² value greater than 0.05 is a good choice for the BAOMP algorithm. 
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a) α = 0.007:  FAR = 0.1238: 

 
Figure 5-28 BAOMP simulation for N=1000, M=200, no target and ³ = J. JJ´ 

b) α = 0.01:  FAR = 0.0059: 

 
Figure 5-29 BAOMP simulation for N=1000, M=200, no target and ³ = J. J> 
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c) α = 0.05:  FAR = 0: 

 

 
Figure 5-30 BAOMP simulation for N=1000, M=200, no target and ³ = J. J¶ 

d) α = 0.1:  FAR = 0: 

 
Figure 5-31 BAOMP simulation for N=1000, M=200, no target and ³ = J. > 
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5.2.8 Detection Threshold Calculations for Constant FAR 

In this section, detection threshold values are calculated for constant FAR and different 
convergence threshold values, using the BAOMP algorithm. Depending on these results, the 
detection threshold that will be used for Pd calculations will be chosen indirectly, since the 
convergence threshold value that will be used in the simulations is chosen first, and then the 
corresponding detection threshold value is used for Pd calculations. These analyses show 
the change in the detection threshold by the change in the convergence threshold. The 
scenario is same as the Scenario 1, except there is no target, only noise is present, meaning 
K=0. The algorithm is run 100 times for each f value with the same transmitted signal, but 
with different measurement matrices. At every run, the M rows of the measurement matrix 
are randomly chosen from N rows. For calculating threshold, there should be only noise no 
targets at the target scene. Threshold values are calculated for different f values. The FAR is 
kept constant, FAR = 10Rº. Since N = 1000 and the algorithm is run 100 times for each f 
value, FAR = �33

�333∗�33
= 10Rº. This means that we should have 100 detections above the 

threshold. Threshold values are calculated by this way for each f. 

Simulations are done for 16 different α values randomly distributed between 10Rº and 10�, 
and threshold values are determined for each. As a result, threshold vs α graph is obtained 
as shown in Figure 5-31. From the figure, we can say that the threshold value is stabilized at 
about 13.5dB when α ≥ 0.0316. That means choosing α greater than this value does not 
affect the threshold value so much. When α is smaller than that value, the detection 
threshold values are unstabil and become very high which means there are many false 
detections with large magnitudes. Therefore, we can say that the performance of the 
BAOMP algorithm is not good when α is smaller than 0.0316. The threshold values found 
for α ≥ 0.0316 is meaningful when we think of the threshold value in the classical method. 
It is defined as Threshold = �−EβAln (P¿À)  where E is the signal energy, βA is noise 
power and P¿À is false alarm probability which is equal to FAR [17]. Depending on this 
simulation result, we can say that it is better to choose α ≥ 0.0316. 
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Figure 5-32 Detection threshold vs ³ for constant FAR 
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5.2.9  Probability of Detection vs Convergence Threshold 

In this section, by using the threshold values found in Section 5.2.9 for constant FAR=10-3, 
the probability of detection is calculated for each f. The BAOMP algorithm is executed 100 
times for Scenario 1, with N=1000, M=200, K=1 and SNR=20dB for each f. The threshold 
values found for each f are used to calculate the probability of detection for each f.  

For example, for α = 0.01, we have the detections as shown in Figure 5-32. The threshold 
value found for α = 0.01 is 1.035. The number of detections at target’s correct position with 
an amplitude greater than the threshold value is 72. This means that the probability of 
detection is 0.72 for this α value. 

 

 
Figure 5-33 BAOMP simulation for N=1000, M=200, K=1 with SNR=20dB and ³ = J. J> 

The probability of detection values are calculated like the example for α = 0.01 for each α. 
Then, probability of detection vs α graph is obtained as shown in Figure 5-33. We can say 
that, exact recovery of the target scene is achieved when α ≥ 0.02 since Pd=1. 
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Figure 5-34 Pd vs ³ for SNR=20dB 

Figure 5-33 is for SNR=20dB. The same procedure is repeated for different SNR values by 

keeping everything else the same as SNR=20dB case. Then, probability of detection vs α 

graph is obtained as shown in Figure 5-34 below. We can say that, for different SNR values, 

maximum reconstruction performance is achieved when α ≥ 0.0316. Choosing α bigger 

decreases the number of iterations, so we decided to choose α larger than this value.  

 

 
Figure 5-35 Pd vs ³ for SNR values 
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Probability of Detection vs Convergence Threshold graph is also obtained only with a 

different transmitted signal to see whether the performance of the BAOMP algorithm gets 

better. The transmitted signal is generated by using 8 PSK. Probability of detection values 

are not better than the previous case. Therefore, the choice of using a random signal as the 

transmitted signal is still applicable. 

 

 
Figure 5-36 Pd vs ³ for SNR values with 8 PSK transmitted signal 
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5.2.10  Probability of Detection (Pd) vs SNR 

From Figure 5-34, the α value that is the best to be used in the BAOMP algorithm for this 
transmitted signal is chosen as 0.6105. With this value, Probability of Detection vs SNR 
graph together with the classical detection result is obtained as shown below. Since we use 
N=1000 and M=200 in the BAOMP algorithm, this results in a SNR loss of 200/1000=1/5 
which is equal to 10log10(1/5)=-7dB. Therefore, when comparing Pd vs SNR graphs of the 
CS and the classical method, the graph obtained for the CS is shifted as -7dB. This shift is 
included in Pd vs SNR graphs. 

Scenario 2: All data is complex. A random code of length 60 is used as transmitted signal, 
iid Gaussian noise added for noisy case, N=1000, M=200, K=1 and SNR=10dB. 

To find a more precise solution, the BAOMP algorithm is run 100 times for Scenario 2 with 
α = 0.6105. The probability of detection value for SNR=10dB is calculated for each 
transmitted signal. The signal which gives the best probability of detection value is chosen 
as the transmitted signal. Threshold value is found as 13.3290 dB for constant FAR=10-3. 
Then, by using this transmitted signal and α value, Pd vs SNR graph together with the 
classical detection result is obtained as shown below. We have the same performance with 
the classical method when SNR ≥ 10dB. When SNR < 10ÂÃ, the performance of the CS 
with the BAOMP algorithm is slightly worse than the classical method. 

 

 
Figure 5-37 Pd vs SNR by choosing the transmitted signal as the signal which gives the best Pd for 

SNR=10dB, FAR=10-3 

We choose SNR=10dB in the previous simulation and the performance of the BAOMP 
algorithm is found to be same as the classical method for SNR ≥ 10dB. We repeat the same 
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procedure by changing the chosen SNR value to see whether this result is a coincidence. 
When Scenario 2 is run 100 times for SNR=5dB instead of 10dB and the same procedure in 
the previous case is applied with α = 0.6105, Pd vs SNR graph together with the classical 
detection result is obtained as shown below in Figure 5-37. The detection performance of 
CS method is now about 1dB worse than that of the classical method. A different result is 
obtained with SNR=5dB compared to SNR=10dB. That means there is no relation between 
the performance of the BAOMP algorithm being same as the classical method and the 
choice of the SNR value at the beginning of the procedure. 

 

 
Figure 5-38 Pd vs SNR by choosing the transmitted signal as the signal which gives the best Pd for 

SNR=5dB, FAR=10-3 

5.2.11  False Detections Around the Target Position 

This section analyzes whether the BAOMP algorithm makes false detections around the 
correct target position. For example, if there exists a target at 915th range bin, instead of 
looking at 915th range bin, we look at the 914th and 916th range bins, which we call 
‘1_shifted’, to see whether there are any wrong detections. As a second case, we look at the 
913, 914, 916 and 917th range bins, which we call ‘2_shifted’. Probability of Detection vs 
SNR graphs for 1_shifted and 2_shifted cases are obtained with the same data used to obtain 
Figure 5-36. The graphs are added to the graph in Figure 5-36 as shown below in Figure 5-
38. The Pd values for 1_shifted and 2_shifted cases are so close to zero, so we can say that 
the BAOMP algorithm does not make many wrong detections around the correct target 
position which is a good property. 
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Figure 5-39 Pd vs SNR graphs for classical, exact target position, 1_shifted target position and 2_shifted 

target position cases, FAR=10-3 

5.2.12  Doppler Effect 

The effect of Doppler to the performance of CS method is analyzed in this section. 

Doppler effect is applied by adding the Doppler frequency shift to the transmitted signal. 
This means multiplication of the transmitted signal by e	A�zÄÅÆÇ where PRI is pulse 
repetition interval and fi’s are Doppler frequencies. We define PRF = 10000 Hz and 

PRI = �
ÅÆ¿

= �
�3333

= 10RÉ second  and f� = i. 9ÅÆ¿
�Ê

: = i. 9�3333
�Ê

:  for i = 0,1,2, … ,15 for 

16 Doppler case. For 32 Doppler frequencies, we have f� = i. 9ÅÆ¿
ºA

: = i. 9�3333
ºA

:  for i =
0,1,2, … ,31. 

Scenario 3: Random Code of length 10 is used as transmitted signal which are the columns 
of NxN convolution matrix A, iid Gaussian noise added for noisy case, N=100, M=20, K=1. 
16 pulses are transmitted. We have the NxN convolution matrix A formed by shifting the 
transmitted signal once at each column. This convolution matrix is multiplied by the term 
e	A�zÄÅÆÇ for Doppler frequency shift. Since we have 16 pulses and 16 Doppler frequencies, 
a 16Nx16N matrix will be formed. First N rows are for the first transmitted pulse, second N 
rows (from (N+1) to (2N)th row) are for the second pulse, etc. First N columns are for the 
first Doppler frequency, second N columns are for the second Doppler frequency, etc. In our 
scenario, this means a 1600x1600 matrix, and out of these 1600 rows 16M=320 rows will be 
randomly chosen. This results in a 16Mx16N = 320x1600 Measurement matrix. The form of 
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the 1600x1600 matrix in terms of the convolution matrix A is shown below. The 16Mx16N 
measurement matrix is formed by randomly choosing 16M rows of this 1600x1600 matrix. 

⎣
⎢
⎢
⎢
⎡

_ _
_e	A�z-ÅÆÇ _e	A�z"ÅÆÇ ⋯ _ _

_e	A�zÄËÅÆÇ _e	A�zÄÌÅÆÇ

⋮ ⋱ ⋮
_e	�É.A�z-ÅÆÇ _e	�É.A�z"ÅÆÇ

_e	�Í.A�z-ÅÆÇ _e	�Í.A�z"ÅÆÇ ⋯ _e	�É.A�z-ËÅÆÇ _e	�É.A�z-ÌÅÆÇ

_e	�Í.A�z-ËÅÆÇ _e	�Í.A�z-ÌÅÆÇ⎦
⎥
⎥
⎥
⎤
 

The SNR loss of -7dB explained in Section 5.2.10 is still exists here. Additionally, a 
processing gain of 10log10(16)=12dB exists because of the transmission of 16 pulses. 
Therefore, when comparing Pd vs SNR graphs of the CS and the classical method for 16/32 
Doppler and 16 pulse cases, the graph obtained for the CS is shifted 12-7=5dB. This shift is 
included in Pd vs SNR graphs only. In other simulations below, this SNR shift is not 
included. 

16 Doppler, 16 Pulse Simulations: Scenario 3 is run 100 times for 16 Doppler frequencies 
and 16 transmitted pulses. 

1) One target is present at 90th bin at frequency=f1= 0 (90th range bin, 1th Doppler 
bin). Detection results for different SNR values are given below. For all of three 
SNR values used in the simulations, the detection probability is so close to 1. 

 
Figure 5-40 One target at 90th bin, 16 Doppler, 16 pulse, N=100, M=20, K=1 with SNR=22dB 
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Figure 5-41 One target at 90th bin, 16 Doppler, 16 pulse, N=100, M=20, K=1 with SNR=17dB 

 
Figure 5-42 One target at 90th bin, 16 Doppler, 16 pulse, N=100, M=20, K=1 with SNR=12dB 
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2) One target is present at 750th bin at frequency=f8=4375 Hz (50th range bin, 8th 
Doppler bin): For constant FAR = 10Rº, threshold is found as 0.8948 and the 
probability of detection for the detection result in Figure 5-42 is found as 0.86. 
When SNR is increased to 15dB, the detection result is obtained as in Figure 5-
43 and Pd=1. 

 

 
Figure 5-43 One target at 750th bin, 16 Doppler, 16 pulse, N=100, M=20, K=1 with SNR=10dB 

 
Figure 5-44 One target at 750th bin, 16 Doppler, 16 pulse, N=100, M=20, K=1 with SNR=15dB 
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Pd vs SNR for 16 Doppler, 16 Pulses: Probability of detection vs SNR graph together with 
the classical detection result is obtained for 16 Doppler, 16 pulse case as shown in Figure 5-
44. The performance of CS method is about 2,5dB worse than the classical detection result.  

 

 
Figure 5-45 Pd vs SNR comparison for 16 Doppler, 16 pulses, FAR=10-3 

Threshold Determination: The threshold value changes for every run of BAOMP 
algorithm for the same transmitted signal. To find a generalized threshold value; no target, 
only noise present case is run 10000 times for 16 Doppler 16 Pulse case, and the threshold 
value is found as 1.1768 for constant FAR = 10Rº. Similarly, for 32 Doppler 16 Pulse case, 
the threshold value is found as 1.6116 for constant FAR = 10Rº. 
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32 Doppler, 16 Pulse Simulations: Simulations performed for 16 Doppler, 16 pulse case 
are also performed for 32 Doppler, 16 pulse case. Scenario 3 is run 100 times for 32 
Doppler frequencies and 16 transmitted pulses. Since we have 16 pulses and 32 Doppler 
frequencies, a 16Nx32N matrix will be formed. In our scenario, this means a 1600x3200 
matrix, and out of these 1600 rows 16M=320 rows will be randomly chosen. This results in 
a 16Mx32N = 320x3200 Measurement matrix. 

1) One target is present at 2601th bin at frequency=f27= 8125 Hz (1th range bin, 
27th Doppler bin). Detection result for SNR=10dB is given below. Probability 
of detection is found as 0.63. 

 

 
Figure 5-46 One target at 2601th bin, 32 Doppler, 16 pulse, N=100, M=20, K=1 with SNR=10dB 

2) Single runs for SNR=10dB: In Figure 5-45, the scenario is run 100 times and 
the total detection results are observed. To see the distribution of the detections 
in a single run, we run the same scenario once. We observe detections in a 
single run as shown in the figures below. On some runs the target is detected 
correctly, but on some other runs target cannot be detected and false alarms 
arise. False detections in a run are usually at bins close to each other. 
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Figure 5-47 Single run for one target at 2601th bin, 32 Doppler, 16 pulse, N=100, M=20, K=1 with 

SNR=10dB 

 
Figure 5-48 Single run for one target at 2601th bin, 32 Doppler, 16 pulse, N=100, M=20, K=1 with 

SNR=10dB 
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Figure 5-49 Single run for one target at 2601th bin, 32 Doppler, 16 pulse, N=100, M=20, K=1 with 

SNR=10dB 

 
Figure 5-50 Single run for one target at 2601th bin, 32 Doppler, 16 pulse, N=100, M=20, K=1 with 

SNR=10dB 
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3) Same scenario in (1) is run with SNR=15dB. One target is present at 2601th bin 
at frequency=f27= 8125 Hz (1th range bin, 27th Doppler bin). Detection result 
for SNR=15dB is given below. Probability of detection is found as 0.81. 

 

 
Figure 5-51 One target at 2601th bin, 32 Doppler, 16 pulse, N=100, M=20, K=1 with SNR=15dB 
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4) Single runs for SNR=15dB: The same analysis in (2) is done for SNR=15dB. 
At both runs below, the target is detected correctly, with some false detections. 

 

 
Figure 5-52 Single run for one target at 2601th bin, 32 Doppler, 16 pulse, N=100, M=20, K=1 with 

SNR=15dB 

 
Figure 5-53 Single run for one target at 2601th bin, 32 Doppler, 16 pulse, N=100, M=20, K=1 with 

SNR=15dB 



56 
 

Target at an offset Doppler frequency: In all the above simulations in Section 5.2.13, the 
target possesses either zero Doppler frequency or Doppler frequency equal to a multiple of 
PRF/16. Now, a target at a frequency not equal to a multiple of PRF/16 exists. The detection 
performance of the BAOMP algorithm at detecting this target is analyzed. Scenario 3 is run 
100 times for the same case in 32 Doppler, 16 pulse simulations. One target is present at 
380th bin at frequency= 1000 Hz, and SNR=15dB. The probability of detection for the 
detection result in Figure 5-53 is found as 1. This result shows that targets at different 
frequencies, not on a multiple of PRF/16, can also be detected with the BAOMP algorithm. 

 

 
Figure 5-54 One target not at any Doppler frequency, 32 Doppler, 16 pulse, N=100, M=20, K=1 with 

SNR=15dB 
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Pd vs SNR for 32 Doppler, 16 Pulses: Probability of detection vs SNR graph together with 
the classical detection result is obtained as shown below in Figure 5-54 for 32 Doppler, 16 
pulse case. The performance of CS method is about 4dB worse than the classical detection 
result.  

 

 
Figure 5-55 Pd vs SNR comparison for 32 Doppler, 16 pulses, FAR=10-3 
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 Summary of Simulation Results 5.3

The table below gives the summary of the simulations performed with their results. 

 

# Simulation Result 

1 Simulations for different transmitted 
signals (Alltop sequence, Barker Code, P4 
Code and Random signal) 

Among these transmitted signals, 
Barker Code is the worst. Others 
give similar results, so random 
signals are used in this thesis. 

2 Choice of transmitted signal depending on 
the analyses of autocorrelation functions 
and Restricted Isometry Properties of 
different random signals of length-60 

Autocorrelation function is not a 
measure of a good signal or a bad 
signal. The measure is the RIP. If 
the measurement matrix has 
smaller restricted isometry 
constant, the detection 
performance of the BAOMP is 
better. 

3 OMP - BAOMP detection performance 
comparison 

BAOMP finds the solution with a 
smaller number of iterations than 
OMP. CPU time of the BAOMP 
is also smaller than the OMP. The 
detection performance of the 
BAOMP is better than the OMP 
for noisy case. 

4 Choice of α (the constant in the 
convergence threshold equation) 
depending on the analysis of its effect on 
the detection performance of the BAOMP 

When α is greater than 0.05, exact 
recovery is observed. 

5 Classical – <> Minimization – BAOMP 
detection performance comparison 

The CS method (both �1 
minimization and BAOMP 
algorithm) gives better 
reconstruction results than the 
classical method, even by using a 
smaller number of measurements. 
Also, BAOMP has better 
detection performance than �1 
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minimization. 

6 Detection of close targets The CS with the BAOMP 
algorithm detects close targets at 
exactly correct positions. 

7 FAR calculations for constant threshold 
value, no target - only noise present case 
with different convergence threshold 
(meaning different α values) 

For α ≥ 0.05, the BAOMP 
method detects no false alarms 
above the detection threshold, so 
FAR=0. Therefore, choosing α 
value greater than 0.05 is a good 
choice for the BAOMP algorithm. 

8 Detection threshold calculations for 
constant FAR=10=3 with different 
convergence threshold (meaning different 
α) values 

Detection threshold vs α graph is 
obtained for constant FAR. From 
the graph, one can say that the 
threshold value is stabilized at 
about 13.5dB when α ≥ 0.0316, 
so choosing α greater than this 
value is better. 

9 Probability of detection calculations for 
constant FAR=10=3 and different SNR 
values with different convergence 
threshold (meaning different α) values  

Pd vs α graph is obtained for 
constant FAR. The graph shows 
that, for different SNR values, 
maximum reconstruction 
performance is achieved when 
α ≥ 0.0316. Choosing α bigger 
decreases the number of 
iterations, so α is chosen larger 
than this value. 

10 Classical and BAOMP probability of 
detection vs SNR graph comparison for 
constant FAR=10=3 and with SNR loss of 
the CS method (7dB because of taking 
200 measurements out of 1000) included  

CS method with the BAOMP 
algorithm and classical method 
have the same performance when 
SNR ≥ 10dB. When SNR <
10ÂÃ, the performance of the CS 
with the BAOMP algorithm is 
slightly worse than the classical 
method. 

11 False detections around the target position 
when the BAOMP algorithm is used 

The BAOMP algorithm makes 
very few wrong detections around 
the correct target position which is 
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a good property. 

12 The effect of Doppler to the performance 
of the CS 

CS method also works when 
Doppler is present. This method 
can detect targets at an offset 
Doppler frequency. The 
performance of CS method is 
about 2.5dB worse than the 
classical detection result  for 16 
Doppler, 16 pulse case 
(processing gain of 12dB and 
SNR loss of -7dB are included).  

Table 1 Simulation Results Summary 
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CHAPTER 6 

6 CONCLUSION AND FUTURE WORK 

This thesis has mainly focused on the usage of compressive sensing theory for radar target 
detection. First, the general compressive sensing theory is explained in detail. There are two 
conditions that should be satisfied in this theory: The target scene should be sparsely 
populated and the measurement matrix should be incoherent with any fixed basis. If these 
conditions are met, the target scene can be reconstructed by taking far fewer measurements 
or samples than traditional methods use.  

While using the CS theory, there are two key points to consider:  

1) The measurement matrix should be designed so that it satisfies the incoherence 
property. The choice of the transmitted signal is important since it generates the 
columns of the measurement matrix. In this thesis, the Alltop sequence, Barker 
coded, P4 coded and random signals are chosen as the transmitted signal. As a 
result, random signals are decided to be used as the transmitted signal. Also, the 
measurement matrix is chosen as the matrix which gives the best detection result 
out of 100 measurement matrices generated by 100 different transmitted signals.  

2) The reconstruction algorithm to be used should be chosen. Three of the 
reconstruction algorithms; �1 minimization, OMP and BAOMP are described in this 
thesis. When the performances of these algorithms are compared, the best 
reconstruction algorithm is found to be the BAOMP.  

A 1-dimensional, monostatic, far-field radar system is used in the thesis. The classical radar 
target detection procedure is explained. Then, the main aim of this thesis, which is the 
usability of the CS theory for reconstruction of target scene of a radar is explained. Radar 
target detection performance of the CS is better than the classical detection performance 
when appropriate conditions for CS are met. The same detection performance can be 
achieved by taking far less measurements than the classical detection. Also, the matched 
filter used in the classical detection is not used in the CS method.  

In the BAOMP algorithm, there are some predefined constants. One of them is the 
convergence threshold which is one of the determining factors for the number of iterations 
in the BAOMP. The effect of this value on the performance of the BAOMP algorithm is 
analyzed and the convergence threshold value that gives the best detection result is chosen.  

Detection of close targets is a problem in classical detection. In this thesis, CS method with 
the BAOMP algorithm is used to detect close targets. As a result, CS method can detect 
targets which are close to each other correctly. Also, analyses show that the CS method does 
not make false detections around the target position. 
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This thesis also includes the analysis of the detection threshold values under constant FAR 
and different convergence threshold values, using the BAOMP algortihm. With these 
detection threshold values, the probability of detection values are calculated for different 
SNR values. Probability of detection values of the CS for different SNR values are so close 
to that of the classical detection when the SNR loss which is proportional with the M/N ratio 
is compensated.  

Finally, the effect of Doppler to the performance of the CS is analyzed for 16 Doppler, 16 
pulse and 32 Doppler, 16 pulse cases. The results show that the CS method also works when 
Doppler is added. Therefore, when the appropriate conditions for CS are satisfied, CS 
method can be used for radar target detection. 

In this thesis, a 1-dimensional, monostatic, far-field radar system is used. The target scene is 
designed to have maximum 1000 possible target locations. The analysis can be improved by 
using MIMO radars, increasing the maximum number of possible target locations, and 
adding the effects of clutter. 
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