

MIXED-MODEL ASSEMBLY LINE DESIGN AND SEQUENCING IN A CAR

BODY SHOP

ÖZGÜN AKKOL

JANUARY 2014

MIXED-MODEL ASSEMBLY LINE DESIGN AND SEQUENCING IN A CAR

BODY SHOP

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

ÖZGÜN AKKOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

INDUSTRIAL ENGINEERING

JANUARY 2014

iii

Approval of the thesis:

MIXED-MODEL ASSEMBLY LINE DESIGN AND SEQUENCING IN A CAR

BODY SHOP

submitted by ÖZGÜN AKKOL in partial fulfillment of the requirements for the

degree of Master of Science in Industrial Engineering Department, Middle East

Technical University by,

Prof. Dr. Canan Özgen

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Murat Köksalan

Head of Department, Industrial Engineering

Assoc. Prof. Dr. Sedef Meral

Supervisor, Industrial Engineering Department, METU

Examining Committee Members

Assoc. Prof. Dr. Canan Sepil

Industrial Engineering Department, METU

Assoc. Prof. Dr. Sedef Meral

Industrial Engineering Department, METU

Assoc. Prof. Dr. Ferda Can Çetinkaya

Industrial Engineering Department, Çankaya U.

Assist. Prof. Dr. Sakine Batun

Industrial Engineering Department, METU

Şakir Karakaya (M.S.)

Ministry of Science, Industry and Technology

Date:

iv

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

 Name, Last name: Özgün AKKOL

 Signature :

v

ABSTRACT

MIXED-MODEL ASSEMBLY LINE DESIGN AND SEQUENCING

 IN A CAR BODY SHOP

Akkol, Özgün

M.Sc., Department of Industrial Engineering

Supervisor: Assoc. Prof. Dr. Sedef Meral

January 2014, 118 pages

Car manufacturing is usually in the form an assembly line composed of three

consecutive shops: body welding and construction, painting and finally the final

assembly shop. The first stage in car manufacturing that is the body shop consists of

several assembly lines in parallel each of which may have several sub-lines feeding

them. Assembly line design and sequencing is therefore the heart of manufacturing

a car which may have several models. Our approach mainly consists of two phases:

the design phase and the sequencing phase. In the design phase of the approach, we

propose an integer-programming-formulation-based robust optimization model

considering the mixed-model nature of the lines. The objective of the model is the

minimization of the sum of the investment and variable costs of all the assembly

lines in the design and operation of the car body shop only, over the life cycle of the

reference car, given the forecasted annual demand of the car and its several models,

the corresponding tact time, and the available types of stations making up the lines.

We obtain the optimum designs of the lines via the robust optimization model using

the software GAMS, which is an extension of a single model case of the same

vi

environment. We observe lower total costs for all the lines than the total costs

obtained for the single-model approach.

In the second phase of our approach, we develop a genetic algorithm for the

sequencing problem. The objective of mixed-model sequencing in the genetic

algorithm is to have a smooth line, thus to have level utilization rates over time. The

genetic algorithm provides the best fitness value for several test problems in very

short computational times, when compared against the solutions obtained by the total

enumeration method.

Keywords: car body manufacturing, mixed-model sequencing, robust optimization,

genetic algorithms

vii

ÖZ

OTOMOBİL GÖVDE ÜRETİM HATLARINDA KARIŞIK MODEL HAT

TASARIMI VE ÇİZELGELEMESİ

Akkol, Özgün

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Sedef Meral

Ocak 2014, 118 sayfa

Otomobil üretimi, genellikle ardışık üç atölyeden oluşan montaj hattı şeklindedir:

gövde kaynak ve yapımı, boyahane ve son olarak da nihai montaj hattı. Otomobil

üretiminde gövde atölyesi olan birinci aşama birçok parallel montaj hattından oluşur

ve herbir montaj hattını besleyen alt-montaj hatları vardır. Bundan dolayı montaj

hattı tasarımı ve model sıralama, birçok modeli olan bir otomobilin üretiminin

candamarıdır. Yaklaşımımız temel olarak iki evreden oluşur: tasarım evresi ve

sıralama evresi. Yaklaşımın tasarım evresinde, hatların karışık-modelli doğasını

dikkate alarak, tamsayılı programlama esaslı bir “dayanıklı optimizasyon” modeli

önermekteyiz. Modelin amacı; hatları oluşturacak uygun istasyon tipleri, referans bir

otomobil ve onun değişik modelleri için yıllık talep tahmini ile yıllık talebe karşılık

gelen takt süresinin verili olduğu durumda, otomobilin sadece gövde üretim

hatlarında yaşam dönemi boyunca oluşacak yatırım ve işletme maliyetlerinin

toplamını minimize etmektir. Hatların optimal tasarımlarını; aynı üretim çevresinde

tek-modelli durumun devamı niteliğinde olan ve GAMS yazılımı ile kodlanan

dayanıklı optimizasyon modeli ile elde etmekteyiz. Tüm hatlar için, tek-modelli

viii

yaklaşıma göre daha düşük toplam maliyetli sonuçlar elde ettiğimizi

gözlemlemekteyiz.

Yaklaşımımızın ikinci evresinde ise sıralama problemi için bir genetik algoritma

önermekteyiz. Genetik algoritmadaki karışık-model sıralamanın amacı; zaman içinde

düzgün bir hat ile çalışabilmek, ve böylece hattı oluşturan istasyonlarda eş kullanım

oranlarına ulaşabilmektir. Genetik algoritma; çeşitli test problemleri için, toplam

birerleme yöntemi ile elde edilen sonuçlar ile karşılaştırıldığında, en iyi uygunluk

değerini çok kısa çözüm sürelerinde sağlamaktadır.

Anahtar Kelimeler: otomobil gövde üretimi, karışık-model sıralama, sağlam

optimizasyon, genetic algoritmalar

 ix

To my mom…

 x

ACKNOWLEDGEMENTS

I would like to thank my supervisor Asst. Prof. Dr. Sedef Meral for all her help,

support, time and her smiling face. Without her, this thesis could have never

completed. She had a solution in her sleeve whenever an impossible situation

occurred. Her friendly attitude never diminished and it was a joy to sit and work with

her.

I would like to thank Ignacio Grima a lot, for not saying no and helping me with the

coding of the genetic algorithm with his experience in coding, in a time of need.

Thanks to Deniz Erbaş for introducing me to him.

Thanks to Mustafa Savaşgan, Aras Bayram, Emre Oruç, Burak Bahçeci, Gökhan

Çiftçioğlu, Fulya Erdem and Hüseyin Sever for opening their houses to me.

Thanks to Cansu Çiftarslan for believing in me.

And finally, thanks to my mom Sibel Akkol for all her support, to my father Ismail

Akkol for his patience and to my sister Öykü Akkol for motivating me.

 xi

TABLE OF CONTENTS

ABSTRACT ... v

ÖZ .. vii

ACKNOWLEDGEMENTS ... x

TABLE OF CONTENTS .. xi

LIST OF TABLES .. xiii

LIST OF FIGURES .. xiv

CHAPTERS

1 INTRODUCTION ... 1

2 PROBLEM DEFINITION ... 5

3 LITERATURE REVIEW .. 9

3.1 Assembly Line Design .. 9

3.2 Robotic Assembly Line Related Literature .. 17

3.3 Genetic Algorithms for Mixed Model Sequencing 18

4 AN APPROACH FOR THE ROBUST DESIGN OF THE MIXED MODEL

ASSEMBLY LINES .. 23

4.1 Introduction... 23

4.2 The Case of the Car Body Shop ... 24

4.3 Robust Optimization Model ... 26

4.4 Model Formulation ... 30

 4.4.1 Notation of the Model .. 30

 4.4.2 Integer Programming Model.. 36

 4.4.3 Inputs of the Model .. 44

4.5 Discussion of the Results: Single Model vs. Mixed Model 47

 xii

5 A GENETIC ALGORTIHM PROPOSED FOR THE MIXED-MODEL

SEQUENCING PROBLEM .. 57

5.1 Fundamentals of Genetic Algorithms ... 58

5.2 The Proposed Genetic Algorithm ... 60

 5.2.1 Chromosome Representation .. 60

 5.2.2 Initial Population Generation .. 61

 5.2.3 Fitness Function Evaluation .. 62

 5.2.4 Genetic Operators and Techniques ... 63

 5.2.4.1 Parent selection .. 63

 5.2.4.2 Crossover Operator .. 65

 5.2.4.3 Mutation ... 68

 5.2.4.4 Replacement ... 69

 5.2.4.5 Termination .. 70

 5.2.5 Parameter Determination .. 71

 5.2.5.1 The Tuning of the Mutation and Crossover Rates 72

 5.2.6 The Overall Algorithm .. 73

5.3 Discussion of the Results .. 77

6 CONCLUSION AND FURTHER RESEARCH ISSUES 85

REFERENCES ... 87

APPENDICES

 A The solution sheet of the dashboard pool .. 93

 B The code of GA ... 97

 xiii

LIST OF TABLES

TABLES

Table 1 Objective criteria for the assembly line problems .. 10

Table 2 Example Excel Sheet for ‘Back Floor’ Station Grouping............................. 45

Table 3 Example Excel Sheet for ‘Back Floor’ Tasks ... 45

Table 4 Sample Capability Excel Sheet for ‘Back Floor’ .. 46

Table 5 Sample Excel Sheet of Task Durations for ‘Back Floor’.............................. 47

Table 6 Sample Excel Sheet of Strategic Decisions for ‘Back Floor’ 47

Table 7 Sample Solution excel sheet for the ‘right shroud’ by the robust optimization

 .. 48

Table 8 Stations for the ‘right shroud’ by the robust optimization 49

Table 9 Combined solution sheets for the subassembly ‘dashboard pool’ 50

Table 10 Single model line stations for the ‘dashboard pool’ 51

Table 11 Mixed model line stations for the ‘dashboard pool’ 51

Table 12 Combined solution sheets of the subassembly ‘back stop riser’ 52

Table 13 Single model line stations for the ‘back stop riser’ 53

Table 14 Mixed model line stations for the ‘back stop riser’ 53

Table 15 a Summary of the results for the subassemblies: instrument sheet, back stop

riser and outside panel sheet .. 54

Table 15 b Summary of the results for the subassemblies: right shroud, dashboard

pool and left shroud .. 54

Table 15 c Summary of the results for the subassemblies: inside framework back

shroud, side panel and inside right framework .. 55

Table 16 Tries for crossover & mutation rates... 72

Table 17 Test of the GA ... 79

 xiv

Table 18 The sequences for the car body shop .. 82

Table 19 The assembly time for three products on four robots 83

Table A.1 The Solution Excel Page Costs and Important Information 93

Table A.2 The Solution Excel Page Inputs Reminder ... 94

Table A.3 The Solution Excel Page Important Information of Stations 95

Table A.4 The Solution Excel Page Task Assignments ... 96

 xv

LIST OF FIGURES

FIGURES

Figure 1 A Two-Point Crossover Operator .. 66

Figure 2 An order crossover ... 67

Figure 3 The Order crossover modified for our needs ... 68

Figure 4 The inversion mutation .. 69

Figure 5 Flowchart of the GA algorithm.. 75

Gantt Chart for the Makespan test problem with the best sequence 2-1-1-2-2-2-3-2-3-

3 .. 84

 xvi

1

CHAPTER 1

INTRODUCTION

Assembly line design and sequencing is the heart of manufacturing a car. Even a

slight decrease in the cost of manufacturing may account for much more, given the

high number of cars to be manufactured. In the light of this information, many

concepts were thought of and analyzed. The major difference between today’s

assembly lines and the assembly lines that were first built is that nowadays lots of

options are selectable by the buyer (like manual or automatic shift, sunroof or no).

Considering these several options, even millions of different models of a certain car

are produced. To cope with this highly diversified product portfolio without

jeopardizing the benefits of an efficient flow-production, the so-called mixed-model

assembly lines are utilized in car manufacturing.

Our problem of line design is more involved than a simple assembly line balancing.

We address the assembly line design problem in the car body shop so as to obtain the

lines that will result in the minimum total cost of manufacturing, including the

investment and installation costs, over the whole life cycle of the reference car.

Setup times and therefore costs should have been reduced significantly in a mixed-

model assembly line by the use of flexible machines and workers, justifying the

assembly of several models of the same product in batches of one unit only. However

using the mixed-model lines, the problem of model sequencing arises, since the

2

sequence of several models of the product assembled should be determined in a

planning horizon, like a shift or a day.

There are three stages of the car manufacturing process: main body construction,

painting and lastly final assembly. Usually the main body production is the stage that

causes most of the bottlenecks in car manufacturing. This is one of the motivations

why we focus on the main body production in this study.

As the lives of products decrease and new models are introduced faster to the market,

it is clear that a reconfigurable line is needed to deal with many kinds of models and

product variety. Because of this, and more importantly, workers’ health and safety

considerations, hybrid lines consisting of both robotic and manual stations are

increasingly utilized in car industry. That is why the use of robots is increasing in

stages like the main body welding and construction. However, there is still work to

be done in utilizing the robots in stations in an assembly line in order to be more cost

effective, safer in some deleterious tasks, and more responsive to demand changes as

well.

Main car body production consists of assembly areas that are connected

automatically to each other. The assembly areas, usually arranged in lines, consist of

stations where a number of robots and/or workers work together simultaneously on a

subassembly of the body to assemble many parts/components together.

The assembly line design problem consists of the following sub-problems:

 The number of stations and their types (robotic/manual) for each subassembly

line separately

 The assignment of tasks to stations

3

 The placement of safety spaces and buffer spaces on the whole line,

considering all sub-lines and assembly lines

We focus on the first two sub-problems in the line design part of our study.

In a car body shop, there are several assembly lines feeding the main assembly line

where the car body is fully erected and then transferred to the painting shop. We

obtain the best line designs for the subassemblies separately in the body shop with

reference to a domestic car manufacturing company. We extend the mathematical

programming model that was already developed for the single-model case for the car

manufacturing company, so as to take into account the mixed-model nature of the

assembly lines. The mathematical model we propose is an integer programming

based robust optimization model which is coded in GAMS. By means of this model,

we intend to obtain a robust design for the car body shop considering all the models

of a certain light commercial vehicle. We obtain line designs with less total costs

than the single-model approach.

After the design problem is solved, we consider the problem of sequencing the

models of the car in the car body shop. Sequencing in a mixed-model assembly line

is an NP-hard problem. In this study, we attempt to solve our mixed-model

sequencing problem in the car body shop using a Genetic Algorithm approach that

aims to minimize the differences of utilizations of work stations over time. The

proposed genetic algorithm (GA) provides the optimum sequence for most of the test

problem instances the optimum sequences of which could have been obtained via a

total enumeration method.

In the following chapters, the details of our study are presented, following the below

outline.

4

Chapter 2 defines our problem and introduces our approach to the problem.

In Chapter 3, a review of literature on assembly line design is given, starting with the

classification of the objectives of assembly lines. After the review of assembly line

design studies, mixed-model sequencing literature is reviewed in the second part of

Chapter 3; while in the third part of the chapter, we discuss the literature on robotic

lines. In the fourth part of the chapter, GA literature is discussed since we solve the

sequencing problem with a GA approach.

In Chapter 4, our robust optimization approach to the line design problem is

presented. The environment of the problem, the integer programming model, its

parameters, variables and constraints are explained in detail. Solutions obtained are

discussed finally in this chapter.

In Chapter 5, we continue with the second phase of our solution approach which is

the sequencing problem. Since we solve the sequencing problem with a GA, Genetic

Algorithms are discussed in detail. After the review of some possible choices for the

chromosome representation, initial population generation, crossover and mutation

operators, replacement strategy, termination criteria, and some additional procedures

like elitism, the reasons of our own choices are given. Our GA algorithm is discussed

presenting its pseudo code. Then tuning of the GA parameters is explained. The test

problems generated for the GA approach are defined. The performance of our GA

approach is evaluated based on the results of the test problems.

Chapter 6 concludes the study by the highlights of the study and gives some

suggestions for further research.

5

CHAPTER 2

PROBLEM DEFINITION

Our problem is in the context of manufacturing a car body in an efficient way using

both robotic stations and manual stations together in a shop. Car manufacturing

consists of three main stages in succession: body assembly, painting and then final

assembly. However, most of the bottlenecks in car manufacturing occur in body

shops rather than the paint and the final assembly stages; and bottlenecks increase the

cost of manufacturing considerably, hence we focus on the body shop that is the first

stage in car manufacturing.

Car body manufacturing is a flow shop type manufacturing with several assembly

lines laid out in parallel feeding the final body assembly line where the car body is

installed. Each assembly line corresponds to a certain subassembly of the car body.

The assembly lines are fed at some stations of the line by some sub-assembly lines

that produce some parts of the subassembly.

The assembly charts for all the parts and subassemblies making up the car body are

known at the design stage of the car body shop. Based on the assembly charts, the

precedence relationship diagrams of the parts and subassemblies’ tasks are generated

which are the main inputs at the design stage of the shop. The tasks are mostly spot

welding operations in the body shop, while only a few tasks are of other types, like

6

tucker, nut assembly and pasting. The tasks which are not welding are defined in

terms of the equivalent number of spot welds.

The available types of robots and other equipment needed in all tasks in the assembly

of the car body are also known in advance at the design phase of the shop. Similarly,

the capabilities of the robots are known; that is, a robot can perform a certain set of

tasks in known standard times. There are some precedence relations among the robot

types in their successive ordering on the assembly line which are also known at the

design phase.

The objective in the design of the car body shop is the minimization of the

discounted total cost of manufacturing at the rate of the yearly demand assumed over

the expected lifetime of the car (which is a lightweight commercial car in our case).

The total cost consists of the investment cost that includes the purchasing cost and

installation cost of all robots and equipment used at the stations plus the cost of

manufacturing with the exception of material cost.

In this study, we propose an approach for the design of a car body shop with

reference to a real life case which is the manufacturing of a lightweight commercial

car in a local car manufacturing company. The lightweight commercial car under

consideration is manufactured in two different models in the car body shop.

In 2011 a research team at METU-IE had developed an approach for the design of

the car body shop for the specific lightweight commercial car under consideration

which is based on an integer programming formulation (Barutçuoğlu et al., 2011). In

their formulation the mixed-model nature of the shop was ignored; and the lines in

the car body shop were all designed taking into account the model with the higher

work content in terms of tasks, as if the line being designed were of a single-model

type. In this study we address the same problem of the car body shop design, taking

7

into account the mixed-model nature of the shop. Hence we extend the former

approach of the METU-IE research team to the mixed-model case so as to obtain a

robust design for the body shop. In the robust design approach we propose, we try to

minimize the difference between the cost of producing the car model on the line

specifically designed for it and the cost of producing the car model on the line

designed to produce all models of the car; and this difference is defined as the

‘regret’ function. We demonstrate our design approach for the reference lightweight

commercial car and the body shop where its body is constructed.

Having obtained the car body shop design for the car under consideration, we then

propose an approach for sequencing the several models of the car in the shop. But in

sequencing the models of the car in the body shop, we do not consider the other

following stage of car manufacturing, which is painting. Hence, the sequencing

problem we address in this study is not specific to car body manufacturing; it is a

generic mixed-model sequencing problem. Therefore the approach we develop can

be adopted in any mixed-model assembly environment with the objective of

minimizing the variations in stations’ utilizations over time.

8

9

CHAPTER 3

LITERATURE REVIEW

3.1 Assembly Line Design and Balancing

Ghosh and Gagnon (1989), in their review paper, present the table below (Table 1)

for the classification and objectives of the assembly line problems, as studied in the

literature.

SMD and SMS are single model lines with deterministic and stochastic task times,

respectively; while MMD and MMS are mixed model lines with deterministic and

stochastic task times, respectively.

For mixed model deterministic (MMD) problems, mostly priority ranking and

assignment methods are used. The heuristic techniques of Nottingham University

Line Sequencing Program (NULISP), Computer Method for Sequencing Operations

for Assembly Lines (COMSOAL) and Computer Aided Line Balancing (CALB),

address many of the factors of any ALB software available and, in all practicality,

remain the most versatile, computationally reasonable (and user-friendly) techniques

available for practical use. Although numerous improvements in optimization

techniques and computational capabilities have been made over the 30 years of ALB

research and still continue, heuristic-based programs such as COMSOAL, CALB,

Mixed Model Assembly Line Balancing (MALB), NULISP and Multiple Solutions

10

Technique (MUST) appear to offer the only computationally efficient and versatile

means for addressing real-world ALB situations.

Table 1 Objective criteria for the assembly line problems

We use an integer programming approach to design the assembly line since our

conditions warrant a deterministic case and our objective is cost minimization given

the tact time or the cycle time. Our problem is modeled using an economic objective

criterion rather than a technical criterion. However, there are fewer papers using the

11

economic objective criteria, although cost seems to be the most important criterion to

address most of the time.

Since we deal with mixed-model situations rather than single model situations, we

look for the relevant articles on this topic. This approach aims at avoiding/

minimizing sequence-dependent work overload based on a detailed scheduling which

explicitly takes operation times, worker movements, station borders and other

operational characteristics of the line into account.

Thomopoulos (1967) aims to minimize the total inefficiency costs. If a penalty cost

per minute is associated with each inefficiency at each station, it is possible to

compute the total cost of inefficiencies resulting from scheduling a unit of a given

model in the sequence. He models the problem of balancing and sequencing and

illustrates it by using data from the automotive industry. He observes that single

model line balancing techniques are adaptable to mixed model schedules. Also,

sequencing can be used to increase the efficiency of mixed model assembly lines.

Even though optimality is not assured, their analysis indicates that the results are

close to optimum.

In their article, Gökçen and Erel (1997) consider a goal programming approach with

different goals and different priority levels which makes the proposed model have a

considerable amount of flexibility for the decision maker, since several conflicting

goals can be simultaneously considered. They develop their model considering a

single model ALB approach. Their model is the first multiple criteria decision

making approach to the mixed model problem. They find that the solution time is

highly sensitive to the `number of stations` goal.

12

Bukchin (1998), in his article, examines which measures work better for throughput

of a mixed model assembly line in a JIT environment: `Smoothed station’ measure,

`Minimum idle time’ measure, `Station CV’ measure, `Bottleneck’ measure or

`Model variability’ measure. In `smoothed station` measure, the objective of the

balancing procedure is to minimize the fluctuation of assembly times required by

each model at different stations during the shift. In `minimum idle time` measure, the

objective of the balancing procedure is to decrease total idle time during a shift. In

`station CV` measure, the objective function is to minimize the sum of each station’s

coefficient of variation, as a performance measure for throughput. `Bottleneck`

measure deals with an approximation of line cycle time for a CONWIP (CONstant

WIP) controlled production system. The approximation is based on the distribution

of the maximum assembly time over all stations. The `model variability measure` is a

weighted sum of the variabilities of models. This study is needed, because an

objective is not always clear and it is important to know the validity of the

performance criterion used. As a result, the `bottleneck’ measure is found to perform

better than the other measures in 12 of the 15 cases. Since each case represents a

combination of line configuration and operating environment, the conclusion is that

the relative quality of the ‘bottleneck’ measure is fairly robust to changes in these

factors. ‘Model variability’ and ‘smoothed station’ yield the next best results. He also

finds out that the absolute quality of all the measures examined decreases with an

increase of line length.

Amen (1998) makes a survey of heuristic methods for cost-oriented assembly line

balancing. He also presents a new priority rule called ‘best change of idle costs’. This

priority rule differs from the existent priority rules, because it is the only one which

considers that production cost is the result of both production time and cost rates.

Furthermore a new sophisticated method called ‘exact solution of sliding problem

windows’ is presented.

13

Amen (2000) proposes an exact method for cost-oriented assembly line balancing.

He shows that by loading the stations maximally the cost-oriented optimum can be

missed. Using a variety of dominance criteria an exact backtracking method is

presented. The dominance criteria are the global lower bound for the costs per

product unit, the last station (if the sum of the durations of the unassigned tasks is not

longer than the cycle time, the considered station is the last one), the establishment of

a station with no idle costs, the two stations rule (a new station cannot be established

if the sum of the durations of the operations in the current and the foregoing station

does not exceed the cycle time), the potential dominance (a new station cannot be

established if there exists an assignable task with a cost rate not higher than the

calculated cost rate of the station under current consideration), the local lower bound

for the costs per product unit and costs of all assigned tasks (a new station cannot be

established if the costs per product unit of the current partial solution (i.e. the set of

all assigned tasks) are not lower than those of the same set of tasks allocated to

stations in a different manner earlier in the enumeration process). The backtracking

method with these dominance criteria works well for small and medium-sized

problem instances as it finds optimal solutions within an acceptable run time.

Bradley and Blossom (2002) consider a make-to-order (MTO) assembly line using

product-mix flexibility. They propose a process to increase product mix flexibility on

the assembly line through which the current demands of the marketplace can be

satisfied. They also compute an upper bound on the amount of additional capacity

that is required to implement MTO production. They show that MTO production and

quick fulfillment are feasible in an automotive assembly plant although efficiency

and cost degrade only slightly.

14

In their article, Rekiek et al. (2002) deal with assembly line design. They consider

both cases of the given cycle times (SALBP-1) and the fixed number of workstations

(SALBP-2). They see that exact methods are mainly based on branch and bound

(B&B) algorithms. They notice that, despite the large number of works on assembly

line design and balancing, algorithms in the literature are not heavily used by

industrial companies, since, despite their effectiveness and the ease of their use, they

use little data and suffer from substantial loss of information, and hence solving

fictitious rather than industrial problems.

Spieckermann et al. (2004) consider a sequential ordering problem (SOP) in

automotive paint shops which resembles our problem, since they are also trying to

sequence car models. However, there is more than one lane that they consider, so the

problem differs from ours. They attempt to find a method to find the best lane to

direct a new arriving car. They show that important aspects of the problem can be

modelled as the well-known SOP, and a branch and bound solution approach that

exploits the main problem characteristics works well.

In their article Emde et al. (2008) try different objectives to see which of the

smoothing objectives work better averaged over all problem instances. There are

three alternatives to integrate the line balancing and sequencing problems.

Successive planning, by executing the planning in two independent steps;

simultaneous planning, by going back and forth between the two stages and adjusting

accordingly; and anticipation, which aims at smoothing the workload per station over

all models by using the forecasts for the models. Their first conclusion is that

(irrespective of the specific criterion applied) workload smoothing considerably

reduces short-term work overload compared to successive planning, where ALB

disregards smoothing aspects. They find out that no criterion delivers the best

performance all the time. However, they can give some clear guidelines. Vertical

15

balancing, while still effective, is consistently less well suited to lowering work

overloads than horizontal balancing. Concerning distance measures, exceedance

criterion seems to be just a bit better than Manhattan and Euclidian distances which

in turn is considerably better than maximum divergence. Finally they find out that

both increasing product variety and forecast errors enlarge short-term work overload

which is quite intuitive.

Boysen et al. (2009) survey articles about mixed model sequencing, car sequencing

and level scheduling which are three major planning approaches in manufacturing.

Mixed model sequencing aims at avoiding/minimizing sequence-dependent work

overload based on detailed scheduling. Car sequencing is used when it is hard to

collect much data. Level scheduling is used to find sequences in line with the JIT-

philosophy. A hierarchical classification scheme is developed, which covers all

proposed problem extensions in a systematic manner. The classification provides

insights in the status quo of research in each field, also allows a comparison of the

different approaches with regard to the level of planning detail and the actual

problem characteristics considered. They conclude that there is a need for both

theoretical and empirical results concerning the relationship among the three

approaches and the resulting consequences for business practice.

In their article, Rajput et al. (2010) aim to minimize the average costs of holding,

ordering, setup and backordering; while their second objective is to keep the constant

consumption of each part in the assembly line. They present a cost model and

compare flexible assembly line (FAL) and mixed-model assembly line (MMAL).

This is the first study to compare FAL and MMAL. They find that merits go to

MMAL, because MMAL is not dependent on setup time and more models produce

on one single line. They also observe that the best sequence pattern and its job order,

depends on production and demand quantities. The best sequence yields a continued

16

consumption of parts and minimize the overall cost. Maximum cycle time is also a

factor for higher cost. Constant demand and random demand were both set in

separate occasions, according to the planning horizon. It is also notified that constant

demand induces for higher cost than random demand.

In their article, Gujjula et al. (2011) aim to minimize utility work which is the

amount of unfinished work caused by the moving conveyor belt. They propose a

heuristic that is derived from Vogel’s approximation method for transportation

planning. The heuristic is able to handle large and supposedly difficult problem

instances. In the end they show that the proposed heuristic significantly outperforms

priority rule-based methods and requires only reasonable computational effort.

However, it remains an open question whether performance can be retained if the

heuristic is applied to sequencing problems with different or multiple objectives or if

it can be adopted to solve related sequencing problems such as level scheduling or

sequencing models on a line with limited flexibility.

Since our assembly lines have both manual and robotic stations, and thus our line

designs include robots as well, we review some articles regarding robotic assembly

line design.

We use an integer programming approach to design the assembly line since our

conditions warrant a deterministic case and our objective is cost minimization given

the cycle time. Our problem is modeled using an economic objective criteria rather

than a technical criterion. However, there are fewer papers using the economic

objective criteria, although cost is the most important criterion to address most of the

time.

17

Since we deal with mixed-model situations rather than single model situations, we

look at the relevant articles on this topic. This approach aims at avoiding/minimizing

sequence-dependent work overload based on a detailed scheduling which explicitly

takes operation times, worker movements, station borders and other operational

characteristics of the line into account.

3.2 Robotic Assembly Lines

Some of the previous mentioned articles also used robotic assembly lines but the

followings are the ones we examined solely to elaborate more on the robotic

assembly lines.

Nicosia et al. (2002) consider the problem of assigning tasks to an ordered sequence

of non-identical workstations under the constraints of precedence relations and a

given cycle time. The objective is to minimize the cost of the workstations. This

formulation is very similar to the robotic assembly line balancing (rALB) problem. A

dynamic programming algorithm is developed for the problem, where several

fathoming rules are used to reduce the number of states. The authors classify

instances of the problem that are polynomially solvable. They show that minimizing

the number of robots does not necessarily minimize the cost. Their model gives an

efficient way to meet production requirements by taking into account the trade-off

between cost of robots and performance. They show that the most significant

algorithmic improvements made for assembly line balancing problem in the past 30

years can be extended to deal with assembly line design problem. Even if for general

precedence graphs the problem is NP-complete, they show that a DP algorithm finds

an optimal solution in polynomial time when the assembly graph width is fixed.

18

In their article, Kim and Park (2007) develop an integer programming formulation

for robotic assembly line balancing problem and a strong cutting plane algorithm to

solve it. They have special constraints because of the robotic assembly line like the

limited space to store the parts and the tool capacity of robots. Moreover, the

procedure gives a lower bound on the optimal solution against which the quality of

the current best solution can be measured.

We use a genetic algorithm approach to solve our assembly line sequencing problem,

hence we review the related literature for the genetic algorithms for mixed model

sequencing below.

3.3 Genetic Algorithms for Mixed Model Sequencing

In their article Akgündüz and Tunalı (2011) review current applications of genetic

algorithms in mixed model assembly line sequencing. They observe that more than

half of the articles surveyed deal with the mixed model assembly line sequencing

problem only, assuming that the line balancing problem was already solved. The

general tendency to generate the initial population is observed to be randomization.

The majority of the articles (i.e. 10 out of 13) have used elitist strategies to preserve

the best individuals. As crossover and mutation operators, the majority of the

researchers have preferred order crossover and inversion, respectively. When used

together, these two operators have been shown to work successfully for mixed model

assembly line sequencing.

Norman and Bean (1994) give an example of a genetic algorithm for scheduling

problems. They provide the algorithm for an environment where there are ready

times, due dates, multiple non-identical machines, routing flexibility for jobs,

sequence dependent setup times, tooling constraints and has a job shop or open shop

19

structure. Their aim is to minimize a combination of tardiness and makespan. They

present their c code and show all the steps of a genetic algorithm and give basic

definitions. They set their parameters and decide on their crossover and mutation

techniques. They also give an example on how to solve a problem.

Levitin et al. (2004) propose a genetic algorithm for robotic assembly line balancing.

They are trying to allocate equal amounts of work to the stations on the line while

assigning the most efficient robot type from the given set of available robots to each

workstation. They introduce both a recursive and a consecutive assignment

procedure. They use the fragment reordering crossover and swap mutation operator.

The consecutive assignment procedure finds better solutions but runs longer. The GA

developed is shown to be consistent and robust. It achieves solutions of higher

quality than a Branch and Bound algorithm, and solves large and complex problems

very efficiently.

Haq et al. (2004) introduce a hybrid genetic algorithm approach to mixed-model

assembly line balancing. They obtain an initial solution by using the modified ranked

positional weight method and include it in the initial population of the genetic

algorithm. Using this approach, they aim to reduce the search space, thereby

reducing the search time. They observe that the hybrid algorithm finds the solution

faster than the pure GA.

In their article Yu et al. (2005) use a multi objective genetic algorithm to schedule an

assembly line. They propose a multi-objective genetic algorithm (MOGA), to

research the dispatching problem with two goals: leveling the part usage rates and

minimizing the makespan, and solving the multi-product dispatching problem of

assembly systems. They use a pareto filtering mechanism within the genetic

algorithm to eliminate non-dominate chromosomes. They use order crossover to

20

avoid meaningless solutions and inverse mutation operator (INV operator). They find

that the proposed MOGA works well through an example.

In their article, Guo et al. (2006) propose a genetic algorithm based algorithm for

scheduling flexible assembly lines. They use a bi-level genetic algorithm with

modified crossover and mutation operators. GA-1 generates the optimal operation

assignment in three different scheduling statuses of the two-order scheduling

problem, where GA-2 determines the optimal starting time of each scheduling status

on the basis of the operation assignment from GA-1. Their Experimental results

demonstrate that the algorithm can solve the two-order scheduling problem

effectively.

Kleeman and Lamont (2007) show how to solve flow-shop, job-shop, and combined

scheduling problems using multi-objective evolutionary algorithm with fixed and

variable length chromosomes. They introduce a new category of scheduling

problems that is quite common in real world problems that is a mixture of flow-shop

and job-shop which they call the multi-component scheduling problem and present

examples of the problem. Then they solve one of these examples, the engine

maintenance scheduling problem. Also, chromosome representations and various

crossover and mutation operators are presented. A variable length chromosome is

devised in an effort to reduce the search space and is observed to perform much

better than the baseline when the search space is large.

Wang et al. (2008) propose a hybrid algorithm to schedule mixed-model assembly

lines with cost objectives. They use a genetic algorithm based approach. The

modified order crossover (modOX) operator and INV mutation operator are used.

The computational results show that the hybrid algorithm can always converge to the

21

final stable state within a smaller number of generations than the GA and also the

solution quality is better, especially in the case of large-sized problems.

In their article, Gao et al. (2009) present a type II robotic assembly line balancing

(rALB-II) problem, in which the assembly tasks have to be assigned to workstations,

and each workstation needs to select one of the available robots to process the

assigned tasks with the objective of minimum cycle time. An innovative genetic

algorithm (GA) hybridized with local search is proposed for the problem. They use a

mixed order crossover which consists of two different crossover methods: Order

Crossover (OX) and Partial-Mapped Crossover (PMX). They employ an allele-based

mutation system. They conclude that the hybrid algorithm works better in especially

large-size problems.

In their article Hwang and Katayama (2010) aim to maximize the line efficiency and

minimize the variance of workload which is minimizing the distance between

average and actual workload. They integrate the procedure of balancing and

sequencing in mixed-model assembly lines. They develop an amelioration structure

with genetic algorithm (ASGA). They use a weight mapping crossover (WMX) and

swap mutation operator. They find out that ASGA is working better than a standard

GA. Moreover, they conclude that a U-shaped assembly line works better than a

straight assembly line.

Deep and Mebrahtu (2011) consider new variations of order crossover for travelling

salesman problem. The travelling salesman problem is the most common problem

the genetic algorithms are trying to solve. Probably because of that, new ideas are

first directed to the travelling salesman problem. They propose three new variations

to the OX operator and find that the existing variations work worse than the new

22

variants and encourage the use of the new variations in the future works in genetic

problems.

23

CHAPTER 4

AN APPROACH FOR THE ROBUST DESIGN OF THE MIXED MODEL

ASSEMBLY LINES

4.1 Introduction

In this study we address two problems in the manufacture of the car bodies in the

automotive industry. The first problem is the design of the car body shop at the

strategical level, while the second (following) problem is the sequencing of several

models of the car body on the production/assembly lines at the operational level that

is discussed in Chapter 5.

In this chapter, we discuss the first problem -strategical one- and propose the solution

approach specifically developed based on the real life case of a local car

manufacturer. The car body shop being designed and studied in the development of

our solution approach is dedicated to a certain light commercial car which has two

types of models at the car body level.

24

4.2 The Case of the Car Body Shop

Currently the car body shop of the light commercial car has already been designed.

In the car body shop we refer to in our study and in many of the car body shops as

well; many sub-lines each making up a different subassembly, like sides, floor, roof,

mobile parts (doors, etc.) for the car body, are matched to make up the whole car

body. Hence many parallel sub-lines are connected to the final body assembly line

where the whole body is constructed and then sent to the paint shop.

The car body shop is therefore a flow shop but with many parallel sub-lines feeding

the final body assembly line just before the paint shop. A sub-line is also a flow line

with several short lines connected to some stations of the sub-line. Each line in the

body shop (either an assembly line or a sub-line) is in fact an assembly area; and

these assembly areas are connected to each other mostly by automatic materials

handling systems or by manual handling carried out by the workers. An assembly

area is an area which contains several robotic or manual cells called stations, while a

station includes usually more than one worker or robot plus some tooling that work

simultaneously on a part or a subassembly of the car body.

In the stations in the car body shop, several parts/components are assembled together

by several welding operations (tasks) which are manual or robotic spot welding and

gas metal arc welding. Spot welds are grouped based on their position on the car

body and the grouped spot welds are made one by one in succession by a single

welding robot. Basically there are two types of spot welds: spot welds for attaching

a new part on the subassembly and densification type spot welds that are also called

respots. In densification type spot welding spot welds are made on the existing

geometry of the subassembly; a new part is not attached onto the existing

subassembly, the aim of respots is just to make the assembly stronger in the joining

of parts together. A worker or a robot completes a group or groups of spot welds or

25

densification spot welds in one cycle. In addition to spot welding there are other

tasks carried out at the stations either by the workers manually or by robots which are

basically tucker, nut , screw welding and paste operations. These operations require

additional tooling that is to be held at the station like some special guns.

In the design phase of the car body shop lines, the basic technological information

needed and that can be provided at this phase is as follows:

o The available types of robots and equipment that can be installed at a

station and their capabilities both in performing the tasks and

transferring the pieces worked on to the succeeding station on the line

o The other characteristics of the available types of robots like the area

they cover, their purchasing costs and variable operating costs

o The restrictions on predecessor/successor relationships among the

types of robots, if any, in the location and zoning of the them on the

line

o The precedence relationships among the tasks of a subassembly or a

part that are not exactly known but can be obtained from the

assembly charts of the new designed car

o The capabilities or availabilities of the workers in performing the tasks

Currently two different models of the light commercial car’s body are produced in

the body shop in different demand ratios in accordance with the annual demand

forecasts. The light commercial car under consideration is assumed to have a certain

expected lifetime.

26

4.3 Robust Optimization Model

An integer programming model has already been developed for the design of the car

body shop by a research team at METU-IE (Barutçuoğlu et al., 2001). However, this

integer programming model developed by the team is for the design of a single-

model car body and does not consider the mixed-model nature of the

production/assembly lines at the car body shop. Their single-model integer

programming model thus developed considers the model of the car body among

others which has the highest work content in the design of each assembly line.

In our study, we extend their integer programming model so as to take into account

several models that are produced on the lines. Hence, we call the extended model as

a robust optimization model, and the line design of the mixed-model

assembly/production line thus designed as a robust design.

We intend to have a cost effective shop design such that we take into account both

the first-time costs like the purchasing and installation costs of the lines plus the

variable and fixed operating costs over the whole lifetime of the car under

consideration.

The robust optimization model that we propose in this study is an integer

programming model that minimizes the present value of the total cost of designing

and installing (investment cost) plus the operating cost of the production/assembly

lines in the car body shop for a planning horizon as long as the expected lifetime of

the car under consideration. The solution of the robust optimization model provides

the lines with the robotic and manual stations selected together with the equipment

required. The whole shop is therefore designed with all its lines together with the

transfer robots where necessary but with the exception of the WIP and buffer spaces

27

in the shop. In the design of the shop the tasks are meanwhile assigned to the

stations as well.

Several models of the car (in our case two models only) are considered in the design

of the several assembly lines in the shop. While minimizing the costs, a robust

approach is selected, because a line having the least effect from a change of the

production quantities of the car models is intended. To achieve this, minimization of

the maximum regret is aimed at; that is, the cost of producing a given production

volume of model A car in the line developed only for it is calculated and similarly

the same calculation is made for model B, and then an assembly line is designed to

produce both models while minimizing the difference of costs between the new line

and the line developed specifically for the individual models. In the robust model,

optimum number of stations and their types are selected from a set of available

station types together with the optimum assignment of tasks to the stations. Since the

model developed has an economic objective function that is cost minimization the

line balancing in the assignment of tasks to the stations is not the main concern.

In the reference body shop, there are two different models of the car which are called

‘combi’ and ‘cargo’. The parameters which are called as strategical parameters by

the company are assumed to be like the following: working hours for a day is 21

hours, production lifetime of the car is 8 years; yearly production of combi model of

car is 100,000, yearly production of cargo model is 65,000 and thus the total

production is 165,000 cars yearly and the worker fee is 7,5 €/hour.

We try to minimize the maximum regret in terms of total cost which is the maximum

of the two differences (i) and (ii): (i) difference between the cost of producing a

combi model of the car in a line designed just for itself and the cost of producing a

combi model of the car in a line designed for both models, and (ii) difference

between the cost of producing a cargo model of the car in a line designed just for

28

itself and the cost of producing a cargo model of the car in a line designed for both

models. Then the maximum regret value indicates this maximum of the two regret

values ((i) and (ii) above). We find the cost of producing a cargo model of the car in

a line designed just for it by using the single line version of the integer programming

model (Barutçuoğlu et al., 2011). We find the cost of producing a cargo model of the

car in annual volume of 165,000 cars over 8 years’ time in a line designed just for it

by using the single line version of the integer programming model. We do the same

thing for combi model of cars also. Then we use these total cost values as z_cargo*

for cargo model and z_combi* for combi model.

In the development of our robust optimization model, we make the additional

assumptions based on the reference body shop.

Assumptions

o The point in time when the body shop is designed is approximately the 30th

month before the lifetime of the new car begins; in other words, it

corresponds to the CAD-Phase 3 of the new car design.

o The body shop has the following characteristics: manual and robotic

stations mixed on the lines; asynchronous lines that are working based on

the push-and-wait principle; mixed-model type lines.

o The parts and subassemblies to be manufactured in house are determined;

so make/buy decisions have already been made.

o The parts/subassemblies and/or tasks that are to be certainly made

manually or by robots are known.

o Each part/subassembly is sellable; hence each part/subassembly has to have

a dedicated independent line designed for itself only.

o A task is defined and determined as the smallest rational group of

operations that cannot be decomposed to smaller tasks any further.

29

o Task durations depend on the type of the station (either a robot or a worker)

and they are deterministic.

o The first and the last stations on a line have the capabilities of taking and

leaving the base subassembly that will be processed on the line.

o The number of workers or robots at a station differs with respect to the

station type.

o The time loss at the stations with more than one worker or robot due to

waiting is taken into account based on the number of workers/robots at the

station.

o There is an unavoidable time loss at each station’s cycle time depending on

the number of workers/robots at the station. This time loss is called the

“constant time” which includes the waiting time for the transfer of the

completed part from the station, waiting time for the take-over of the next

base part to the station, loading the new part onto the station, changing the

gripper or tool, if the station is a robotic station.

o In manual stations, in addition to the constant time as in the robotic

stations, durations for some non-value-add operations like constant times

for hanging the completed part on the hanger, and part placement are

deducted from the total cycle time of the station. .

o Efficiency rate is 88% and 81% for the manual and robotic stations

respectively.

o Total time of a station that can be used for the tasks assigned is determined

as: efficiency rate x cycle time x number of workers or robots in the

station.

o Total time of a station can then be used for the value-add tasks like spot

welding, and non-value-add operations like the constant times, waiting

time of workers due to simultaneous work on the same part, loading new

parts on the manual station and the like.

30

o Lifetime of the reference light commercial car is taken as 8 years.

o The installation cost for a robotic station is 35% of the investment cost.

o Number of shifts=3/day; working hours=21 hours/day; working hours for

payment to the workers=22.5 hours/day; working days/year=270 days.

4.4 Model Formulation

4.4.1 Notation of the Model

Indexes

g task; gєG

i station; iєI

t station type; tєT

Sets

I integers upto the highest numbered station for the line

T all station types (T=T1T2)

T1 manual station types

T2 non-manual –robotic– station types (T2=T3T4)

T3 robotic station types without transfer line

T4 robotic station types with transfer line

T5 robotic stations without transfer line that require an arrangement of

their constant time when more than two pieces attached

T6 robotic stations with transfer line that require an arrangement of their

constant time when more than two pieces attached

G all spot welding tasks (G=G1G2)

G1 all spot welding tasks except the densification spot welding tasks

31

G2 densification spot welding tasks

G3 all spot welding tasks except the densification spot welding tasks

(G1=G3)

G4 spot welding tasks for attaching

G5 tucker welding tasks

G6 nut welding tasks

G7 gas metal arc welding tasks

G8 liquid paste tasks

G9 screw welding tasks

G20 tasks to be done in the same station

Parameters

CT cycle time

budget fixed investment budget

t_space upper limit for the area of the line considered

max_wrkr upper limit for the number of workers for the line considered

v_m assumed efficiency rate in manual stations (88% unless

otherwise stated)

v_r assumed efficiency rate in robotic stations (81% unless

otherwise stated)

max_prt maximum number of new parts that can be attached in the

station considered

prec(g,h) pairwise precedence relationships between tasks (if task g

precedes task h, it is equal to 1, otherwise 0)

k(t) netted (corrected) number of workers working together in t type

station after the deduction of unavoidable delays due to

simultaneous working in the station, and multiplied by the

percent of productivity

32

wrkr(t) number of workers working together in a t type station

s(g,t) processing time for task g in t type station (seconds)

cap(g,t) capability of t-typed station for task g (if task g can be done by

t-typed station, it is equal to 1, otherwise 0.)

mpy(g) time to place a new part manually for task g in any station; or

time to take/drop the gun in the tasks like paste or bolt pin

mpy_t(g) time it takes to place a new part manually by the conveyor

worker in a robotic station in task g

eq_spt(g) equivalent number of spot welds for each task g with added

value (used for calculating variable costs for tasks and line

automation level)

space(t) area required for the t type station (m2)

ct(t) constant time like the hanging time for the t type station

(seconds)

cht constant hanging time for the first manual station in the line

under consideration (seconds)

ctt constant hanging time increasing for every manual station in the

line under consideration (seconds)

adj(u,t) matching matrix for the two stations that are next to each other

in the line (if type t can come right after type g, it takes the

value of 1, otherwise 0)

Cost Parameters

F1(t) the present value of the total fixed cost of a t type station

calculated over 8 years (=fixed operating cost + fixed

investment cost)

F2(t) the fixed investment cost of type t station consisting of

purchasing and installation costs

33

v_co(g,t) the present value of total variable operating (energy + welding

electrode) cost of combi type cars calculated over 8 years when

task g is done in a t type station

v_ca(g,t) the present value of total variable operating (energy + welding

electrode) cost of cargo type cars calculated over 8 years when

task g is done in a t type station

c_space(t) the cost of the area that a type t station covers (measured as

opportunity cost)

c_bg the cost of purchasing a bolt gun

c_tckrg the cost of purchasing a tucker gun

c_pg the cost of purchasing a pin gun

c_aweld the cost of purchasing a gas metal arc welding equipment

c_pstg the cost of purchasing a paste gun

c_c_wrkr the present value of the total wages of a conveyor worker over 8

years

z_combi* the total cost of producing combi model cars in the line

designed only for combi model cars

z_cargo* the total cost of producing cargo model cars in the line designed

only for cargo model cars

Decision Variables - 0-1 variables

xgit if a task g is done in t type ith station, takes a value of 1,

otherwise takes a value of 0 (defined for all tasks other than

densification spots tasks)

yit if the type of the ith station is t, takes the value of 1, otherwise

takes the value of 0

34

zgi if some or all of the task g consisting of densification spots is

done in station i, takes the value of 1, otherwise takes the value

of 0 (defined for only densification spots tasks)

tckrgi if a tucker gun is needed in station i, takes the value of 1,

otherwise takes the value of 0

pgi if a pin gun is needed in station i, takes the value of 1, otherwise

takes the value of 0

pstgi if a paste gun is needed in station i, takes the value of 1,

otherwise takes the value of 0

bgi if a bolt gun is needed in station i, takes the value of 1,

otherwise takes the value of 0

aweldi if gas metal arc welding equipment is needed in station i, takes

the value of 1, otherwise takes the value of 0

active1it if there is a part being attached in a t type ith station, takes the

value of 1, otherwise takes the value of 0 (0-1 variable helping

in modeling)

active2it if there are 3 or 4 parts being attached in a t type ith station takes

the value of 1, otherwise takes the value of 0 (0-1 variable

helping in modeling)

Decision variables – continuous variables

wgit the ratio of task g consisting of densification spots, done in t

type ith station

w2git the number of finished spots of task g consisting of

densification spots, done in t type ith station

occupi the occupancy of station i: the total processing times of all tasks

done in the station plus the times of the station used up without

any added value (seconds)

35

availti the available time in station i after subtracting the productivity

loss (seconds)

occup_pi the occupancy percentage in station i: 100*(occupancy rate /

available time in station)

autom_n the equivalent number of spots done by robots in the considered

assembly

autom_d the equivalent number of spots for all tasks in the considered

assembly

autom_p the automation percentage for the considered assembly

c_wrkri the number of conveyor-workers needed in station i for loading

the components assembled in station i

fxd_invst the total fixed investment cost in the solution (for the line under

consideration)

fxd_oprt the present value of fixed operating costs occurring in the 8

years life cycle

var_oprt the present value of variable operating costs occurring in the 8

years life cycle

z_cargo’ the present value of the total cost (investment + operating) in

the 8 years life cycle of the cargo model for the considered

robust line designed, using a 2% real interest rate (€)

z_combi’ the present value of the total cost (investment + operating) in

the 8 years life cycle of the combi model for the considered

robust line designed, using a 2% real interest rate (€)

z the maximum regret between the total costs of a car model in

the solution and in the line designed only for itself

operating_ca the present value of total fixed and variable operating costs

occurring in the 8 years life cycle of cargo model

36

operating_co the present value of total fixed and variable operating costs

occurring in the 8 years life cycle of combi model

space_c the cost of total space used in the solution

used_space the total space used in the solution

4.4.2 Integer Programming Model

(1) * z_cargoz_cargo'z

(0) * z_combiz_combi'z

:s.to

z min





 

 

(3)
tckrg (c_tckrg)

aweld (c_aweld)bg (c_bg)pg (c_pg)pstg (c_pstg)

c_wrkr (c_c_wrkr) wt)v_ca(g,

x t)v_ca(g,y c_space(t)F1(t)z_cargo'

(2)
tckrg (c_tckrg)

aweld (c_aweld)bg (c_bg)pg (c_pg)pstg (c_pstg)

c_wrkr (c_c_wrkr) wt)v_co(g,

x t)v_co(g,y c_space(t)F1(t)z_combi'

i

iiii

Ii

i

Ii

git

TtIiG2g

git

TtIiG1g

it

TtIi

i

iiii

Ii

i

Ii

git

TtIiG2g

git

TtIiG1g

it

TtIi



























































(4) G1g 1 x
Ii

0t)cap(g,
 Tt

git
 






37

(5) G2g 1 w
Ii

0t) cap(g,
 Tt

git  





(6) 0xgit

TtI i G2 g




(7) G g 0 x
Ii

0t)cap(g,
 T t

git  





(8) G g 0 w
Ii

0t)cap(g,
 Tt

git  





(9) 1) hg, prec(G3h G1,g x k xj
Ik Tt

hkt

Ij Tt

gjt 
  

 

   

 

(13) Tt I,i active2*2active1*2x

(12) R4t I,i 2*active2* 14- ct(t) - CT k(t)y wt) s(g,x t) s(g,

(11) Ii ctt i- cht- ct(t) - CT k(t) yw t)s(g,x mpy(g)t)s(g,

(10) Ii ct(t)- CT k(t) y wt) s(g, x t) s(g,

G4g

ititgit

itit

G2g

git

G1g

git

it

T1t

git

T1tG2g

git

T1tG1g

T2t

it

G2g T2t

git

G1g T2t

git















  







  

 

(16) Ii 0;t)cap(g, Tt G1,g y x

(15) Ii 1y

(14) R20t I,i ct(t) - CT* v_r*0.85*2y x t) s(g,

itgit

Tt

it

it

G8g

git















38

(18) Ii G2,g z w

(17) Ii 0;t)cap(g, Tt G2,g y w

gigit

Tt

itgit








(19) 1g)prec(h, Ii G2,h G1,g xj z i1)(z I
Tt

gjt

Ij

hihi  


 (21) Tt I,i G2,g eq_spt(g)* ww2

(20) 1h)prec(g, Ii G2,h G1,g xj z i)z-(1 I

gitgit

Tt

gjt

Ij

hihi



 


   

   

(25))w(x eq_spt(g)autom_n

(24) Ii)availt / (occup* 100occup_p

(23) Ii y CT wrkr(t)(v_m)y CT wrkr(t)(v_r)availt

(22) Ii y CT k(t)- wrkr(t)(v_r)y CT k(t)- wrkr(t)(v_m)

x mpy(g)y ctt) icht(ct(t) wt)s(g,

x t)s(g,y ct(t) wt)s(g,x t)s(g,occup

gitgit

T2tIiGg

iii

it

T1t

it

T2t

i

it

T2t

it

T1t

git

T1tG1g

it

T1t

git

T1tG2g

git

T1tG1g

it

T2t

git

T2tG2g

git

T2tG1g

i

































(28) I i i y y

(27))autom_d(autom_n* 100autom_p

(26))wx (eq_spt(g)autom_d

Tt

t i

Tt

t 1,i

gitgit

TtIiGg

















39

 

(30) Ii pg G6x

(29) Ii tckr G5x

T1t

igit

G6g

M8-T1t

igit

G5g













(33) Ii bgG9x

(32) Ii pstg G8x

(31) Ii aweld G7x

T1t

igit

G9g

T1t

igit

G8g

M10M8,M1,t

igit

G7g



















  (39)c_wrkr (c_c_wrkr)y F2(t)-F1(t)fxd_oprt

(38)pstg (c_pstg)aweld (c_aweld)

tckr (m_tckr)bg (c_bg)pg (c_pg)y F2(t)fxd_invst

(37) Ii CT c_wrkrx mpy_t(g)

(36) y space(t)used_space

(35) t_spacey space(t)

(34) budgetpstg (c_pstg)aweld (c_aweld)

 tckr (c_tckr)pg (c_pg)bg (c_bg)y F2(t)

 }

 }

{

}

{

i

Ii

it

Ii Tt

ii

iii

Ii

it

Ii Tt

igit

T2tG4g

it

TtIi

it

TtIi

ii

iii

Ii

it

TtIi













 

 

























40

(42) fxd_oprtovar_oprt_ccooperating_

(41) wt)v(g,x t)v_ca(g,avar_oprt_c

(40) wt)v(g,x t)v_co(g,ovar_oprt_c

git

G2g Ii Tt

git

G1g Ii Tt

git

G2g Ii Tt

git

G1g Ii Tt











    

    

(45) Ii max_prtx

(44) y c_space(t)space_c

 (43) fxd_oprtavar_oprt_ccaoperating_

Tt

git

G4g

it

Ii Tt













 

(49) 0y

(48) IiT,t G20,hg, x x

(47) 0 y

(46) Iit, 1t))adj(u,(1 yy

it

T2tIi

hitgit

Ii
max_isgrnisgrn(t)

 Tt

it

Tu

u ,1-iit











 












41

 

 

 

 

 

 0 used_space space_c,

0z transform, var_oprt, fxd_oprt, fxd_invst,

 0 autom_p autom_d, autom_n,

i 0c_wrkr ,availt ,occup ,occup_p

ti,g, 0w2,w

ti, 1 0,active2,active1

i 1 0,tckr,bg,pstg,aweld,pg

 ig, 1 0,z

ti,g, 1 0,x

 (50) ti, 1 0,y

iiii

gitgit

itit

iiiii

gi

git

it





















In the below section, all the constraints of the model are explained:

(0) Makes the regret bigger than it is for the combi type cars.

(1) Makes the regret bigger than it is for the cargo type cars.

(2) Provides the present value calculated using a 2% real interest of the total cost

(investment + operating) in the 8 years life cycle for the line considered in the

solution for combi cars (€)

(3) Provides the present value calculated using a 2% real interest of the total cost

(investment + operating) in the 8 years life cycle for the line considered in the

solution for cargo cars (€)

(4) All the tasks except the densification spot welding tasks are assigned to only

one station-type pair.

(5) Makes it possible for the densification spot welding tasks to be assigned to

one or more station-type pairs, by dividing them among stations if needed.

(6) xgit is defined for every task, but since it is only valid for the tasks except the

densification spot welding tasks, its value is zeroed for those tasks.

(7) A task is not assigned to a station-type pair if it cannot be done there.

42

(8) A densification spot welding task is not assigned to a station-type pair if it

cannot be done there.

(9) Makes the tasks get assigned according to their precedence relationships.

(10) For the tasks that are assigned to a robotic station, their total time should not

exceed the net working time of all the workers in a cycle after subtracting

productivity loss and non-value-add time.

(11) For the tasks that are assigned to a manual station, their total time and loading

of new parts, should not exceed the net working time of all the workers in a

cycle after subtracting productivity loss and non-value-add time.

(12) There may be some “cycle time” related special constraints caused by

equipment features (like number of robots > number of grippers).

(13) Makes the aktif2i variable, which is a 0-1 variable take the value 1 when 3 or

4 parts are added to the subassembly at station i.

(14) In the robotic station coded R20, since there are 3 workers but 2 paste guns,

makes total available time for paste be calculated by using 2 workers.

(15) A station can only have one type.

(16) Every task apart from the densification spot welding tasks can be assigned to

an open station that is of the capable type.

(17) Densification spot welding tasks can be assigned to an open station that is of

the capable type.

(18) Makes the zgi variable, which is a 0-1 variable, take the value 1 when a

densification spot welding task is assigned to the respective station.

(19) Makes the task that comes after the densification spot welding tasks, be done

in the station where the densification spot welding task is finished or the

stations coming after that, according to the precedence relationships.

(20) Makes a densification spot welding task be done in the station where the task

just before it is finished according to the precedence relationships.

43

(21) Makes a densification spot welding task be divided in two or more stations

and save the value of how much of it is done.

(22) Provides the total time which is the total of assigned task times plus the non-

value-add times in a station.

(23) Provides the available time of a station.

(24) Provides the occupancy percentage (used time/available time) of a station.

(25) Provides the spot-weld equivalent of all tasks done in a robotic station.

(26) Provides the spot-weld equivalent of all tasks done in a robotic or a manual

station.

(27) Provides the automation percentage of the line considered.

(28) Station i+1 cannot be opened before station i is opened in a line.

(29) Makes the tckri variable take the value 1, if a tucker task is assigned to a

manual station apart from station type M8.

(30) Makes the smni variable take the value 1, if a nut task is assigned to the

manual station.

(31) Makes the gzlti variable take the value 1, if a gas metal arc welding task is

assigned to the station types M1, M8 and M10.

(32) Makes the mcni variable to take the value 1, if a paste task is assigned to the

manual station.

(33) Makes the vdi variable to take the value 1, if a bolt task is assigned to the

manual station.

(34) Makes the total fixed investment cost be lower than the budget.

(35) Makes the area for the line stay lower than the upper limit set in m2s.

(36) Provides the area needed for the line in m2s.

(37) If a new part is loaded in a robotic station, the number of conveyor workers

needed is calculated by using the necessary time to load the parts.

(38) Provides the total fixed investment cost to install the considered line.

44

(39) Provides the present value of fixed operating costs occurring in the 8 years

life cycle.

(40) Provides the present value of variable operating costs for combi type cars

occurring in the 8 years life cycle.

(41) Provides the present value of variable operating costs for cargo type cars

occurring in the 8 years life cycle.

(42) Provides the present value of total fixed and variable operating costs for combi

type cars occurring in the 8 years life cycle.

(43) Provides the present value of total fixed and variable operating costs for cargo

type cars occurring in the 8 years life cycle.

(44) Provides the cost of the area used by the line considered.

(45) Guarantees that the new parts added in a station does not exceed the maximum

value set.

(46) Makes the stations next to each other in the line considered be consistent.

(47) Guarantees that the maximum number of workers allowed per station for the

line considered is not exceeded.

(48) Guarantees that two tasks to be done in the same station are done in the same

station.

(49) As a special extra constraint, makes it impossible to choose a robotic station in

the line considered.

(50) Variables are continuous or 0-1 variables.

4.4.3 Inputs of the Model

We prepare excel sheets for the GAMS model to obtain the inputs from. First, we

have the grouping of the similar station types. Table 2 is an example excerpt from the

‘back floor’ excel sheet where ‘M#’, ‘R#’, and ‘T#’ stand for manual station types,

robotic station types without transfer line, and robotic station types with transfer line.

45

For example, in the table, column T1 includes the manual stations for the back floor

line.

Table 2 Example Excel Sheet for ‘Back Floor’ Station Grouping

T1 T2 T3 T4 T5 T6

M1 R1 R1 T1 R4 T5

M2 R2 R2 T2 R7 T6

M3 R3 R3 T3 R11 T7

M4 R4 R4 T4 T8

M5 R5 R5 T5

M6 R6 R6 T6

M8 R7 R7 T7

M10 R8 R8 T8

Then, we group the similar tasks together in another excel sheet. Table 3 shows an

excerpt from the ‘back floor’ excel sheet. For example, in the table, column G2

includes the spot welding tasks for the back floor line.

Table 3 Example Excel Sheet for ‘Back Floor’ Tasks

G1 G2 G3 G4

5Y01 5S01 5Y01 5T01

5Y02 5S02 5Y02 5T02

5Y03 5S03 5Y03 5T03

5Y04 5Y04 5T04

5Ms01 5Ms01 5T05

5T01 5T01 5T06

46

Table 4 is a part of the excel sheet that shows which station type can do which tasks.

‘1’indicates that the station can do the corresponding task, while ‘0’ indicates that the

station cannot do the corresponding task.

Table 4 Sample Capability Excel Sheet for ‘Back Floor’

 M1 M2 M3 M4 M5 M6 M8 R1 R2 R3 R4 R5 R6

5Y01 1 1 1 1 1 1 1 0 0 0 0 0 0

5Y02 1 1 1 1 1 1 1 0 0 0 0 0 0

5Y03 1 1 1 1 1 1 1 0 0 0 0 0 0

5Y04 1 1 1 1 1 1 1 0 0 0 0 0 0

5Ms01 1 1 1 1 0 1 0 0 0 0 0 0 0

5T01 1 1 1 1 0 1 0 0 1 0 1 1 0

5T02 1 1 1 1 0 1 0 0 1 0 1 1 0

5D01 1 1 1 1 1 1 0 1 1 1 1 1 1

5D02 1 1 1 1 1 1 0 1 1 1 1 1 1

5S01 1 1 1 1 0 1 0 1 1 1 1 1 1

Table 5 is part of the excel sheet that shows task durations.

Table 6 shows the strategic decisions like how much of a model is to be produced, and

the cycle time derived from that.

47

Table 5 Sample Excel Sheet of Task Durations for ‘Back Floor’

 M5 M6 M8 R1 R2 R3

5S01 476 476 476 322 322 322

5T03 50.4 50.4 50.4 31.2 31.2 31.2

5T04 50.4 50.4 50.4 31.2 31.2 31.2

5Ms02 4.638 4.638 4.638 2.68 2.68 2.68

5Ms03 4.638 4.638 4.638 2.68 2.68 2.68

5T05 25.2 25.2 25.2 15.6 15.6 15.6

5T06 25.2 25.2 25.2 15.6 15.6 15.6

Table 6 Sample Excel Sheet of Strategic Decisions for ‘Back Floor’

Cycle Time (sec.) 124

Budget (€) 100,000,000

Total Space (m2) 1,000,000

Number of Maximum Workers for a station 4

Number of Years of Production 8

Production per Year 165,000

Combi Production per Year 100,000

Cargo Production per Year 65,000

4.5 Discussion on the Results: Single Model vs. Mixed Model

We solve our model for all subassemblies/parts of the car body that the single model

line is designed for. The results are then compared and discussed.

48

The solution sheet shows the total cost of producing the cars and the cost of

producing them if all car bodies produced were combi or cargo. The solution also

gives us the automation percentage which is the proportion of tasks completed by

robotic stations to all the tasks done for the subassembly or part on the designed line,

in terms of the number of spot welds. The number of stations are given and it is

shown if they are robotic or manual. Also the number of workers are shown since

more than one worker can work at a station. In Table 7, we have the first portion of

the sample solution excel sheet of ‘right shroud’.

Table 7 Sample Solution excel sheet for the ‘right shroud’ by the robust optimization

max regret (€) 393,562.9

Total investment and operating cost(€) 2,229,418

Total investment and operating cost(€) for combi 1,944,433

Total investment and operating cost(€) for cargo 1,706,793

Total investment cost(€) 454,500

Operating cost combi(€) 1,445,833

Operating cost cargo(€) 1,208,193

Total Operating cost(€) 1,774,918

Automation % 51

Number of Robotic stations 1

Number of Manual stations 1

Number of stations 2

Number of robots 1

Number of workers 2

Number of workers + robots 3

In Table 8, the stations of the solution in the excel sheet can be seen. In the first line,

the type of the station is given.

49

Table 8 Stations for the ‘right shroud’ by the robust optimization

 1st 2nd

Type of the station M2 R18

Number of workers 2 1

Time used (sec) 212.8728 69.86

Time without added value (sec) 125.2728 18

Time of tasks (sec) 87.6 51.86

Usable time (sec) 217.728 100.2044

Station utilization (%) 97.77006 69.71752

Work done in terms of spot welds 22.5 23.47

If we search for the differences between mixed model lines and single model lines,

‘dashboard pool’ and ‘back stop riser’ are the most extreme examples in terms of the

maximum regret values. In Table 9, the example is the ‘dashboard pool’. We show

the combined solution sheets for the two different lines: single-model line and

mixed-model line. Here we have a total cost difference of nearly 700,000 €. It is

interesting to note that the lines designed are completely different: while the single

model line is fully manual, the mixed model line is mostly robotic. Because of this,

the investment cost of the mixed model line is 500,000 € more. But the design

obtained with the mixed model approach more than makes up for this extra

investment cost in the operating cost portion. In Tables 10 and 11, we list the stations

of both the single model line and the mixed model line.

50

Table 9 Combined solution sheets for the subassembly ‘dashboard pool’

single

model line

mixed model

line

max regret(€) 550,446

Total investment and operating cost(€) 5,772,341.2 5,059,433

Total investment and operating cost(€)combi 3,940,308

Total investment and operating cost(€)cargo 3,678,134

Total investment cost(€) 577,250 1,066,000

 Operating cost combi(€) 2,744,333

 Operating cost cargo(€) 2,482,159

 Total Operating cost(€) 5,195,091 3,993,433

Automation % 0 74.8

Number of Robotic stations 0 4

Number of Manual stations 4 1

Number of stations 4 5

Number of Robots 0 4

Number of workers 6 2

Number of workers + robots 6 6

51

Table 10 Single model line stations for the ‘dashboard pool’

Station type M2 M2 M1 M10

Number of workers 2 2 1 1

Time used (sec) 157.6 159.7 77.9 71.1

Time without added value

(sec) 102.4 98.4 47.6 23.1

Time of tasks (sec) 55.2 61.3 30.3 48.0

Usable time (sec) 159.7 159.7 79.8 79.8

Station utilization (%) 98.7 100.0 97.6 89.0

Work done in terms of bolts 13.5 15.9 12.1 12.1

Table 11 Mixed model line stations for the ‘dashboard pool’

 M2 R15 R2 R35 R17

Number of workers 2 1 1 1 1

Time used (sec) 159.6 18 69.4 66.2 50.12

Time without added

value (sec) 104.4 18 46 36.1 18

Time of tasks (sec) 55.2 18.0 23.4 66.2 32.12

Usable time (sec) 159.7 73.5 73.5 73.5 73.5

Station utilization (%) 99.94 24.5 94.4 92.6 68.2

Work done in terms of

spot welds 13.5 3 9 8.5 20.6

52

On the contrary, we obtain some line designs for which the total costs obtained by

the single model and the mixed model approaches are very close. In Table 12, we

have such an example which is the ‘back stop riser’.

Table 12 Combined solution sheets of the subassembly ‘back stop riser’

Mixed

model line

Single

model line

max regret(€) 190,524

Total investment and operating cost(€) 1,872,860 2,067,594

Total investment and operating cost(€)combi 1,296,083

Total investment and operating cost(€)cargo 1,861,836

Total investment cost(€) 326,750 326,750

Operating cost combi(€) 929,732

Operating cost cargo(€) 1,495,486

Total operating cost(€) 1,546,110 1,740,844

Automation % 41,2 46,7

Number of Robotic stations 1 1

Number of Manual stations 1 1

Number of stations 2 2

Number of Robots 1 1

Number of workers 2 2

Number of workers + robots 3 3

We can see here that the difference between total costs by the two lines is nearly

200,000 €. In Tables 13 and 14 below, we look at the details of the solution sheet.

53

Table 13 Single model line stations for the ‘back stop riser’

Station type M2 R16

Number of workers 2 1

Time used (sec) 179.4 50.2

Time without added value (sec) 112.2 18

Time of tasks (sec) 67.2 32.2

Usable time (sec) 217.7 100.2

Station utilitization (%) 82.4 50.1

Work done in terms of spot welds 16 14

Table 14 Mixed model line stations for the ‘back stop riser’

Station type M2 R16

Number of workers 2 1

Time used (sec) 150.2 34.1

Time without added value (sec) 108.2 18

Time of tasks(sec) 42 16,1

Usable time (sec) 217.7 100.2

Station utilization (%) 69 34

Work done in terms of spot welds 10 7

As we observe here, the lines obtained by the two approaches (single model and

mixed model) are exactly the same. The cost difference comes from the assumption

of the single model line case where it is thought like all the cars produced were the

model of the car with the largest work content. The differences of work done in

terms of spot welds and station utilizations are exactly because of the same reason.

54

Table 15a, 15b and 15c are the tables showing a summary of the costs, number of

stations and the automation percentage for all the lines in the car body shop obtained

by the two approaches.

The solution sheet of the ‘dashboard pool’ of the car is given as a sample output in

Appendix A.

Table 15a Summary of the results for the subassemblies: instrument sheet, back stop

riser and outside panel sheet

instrument sheet back stop riser outside panel sheet

single mixed single mixed single mixed

Total Cost (€) 8,438,149 7,351,256 2,067,594 1,872,860 4,644,363 3,476,298

Operating Cost (€) 5,903,899 5,046,256 1,740,844 1,546,110 4,118,612 2,950,548

Investment Cost (€) 2,534,250 2,305,000 326,750 326,750 525,750 525,750

of stations 8 9 2 2 3 3

Automation % 94 98 47 41 31 31

Table 15b Summary of the results for the subassemblies: right shroud, dashboard

pool and left shroud

right shroud dashboard pool left shroud

single mixed single mixed single mixed

Total Cost (€) 2,268,704 2,229,418 5,772,341 5,059,433 2,122,462 2,059,838

Operating Cost (€) 1,814,204 1,774,918 5,195,091 3,993,433 1,339,962 1,722,088

Investment Cost (€) 454,500 454,500 577,250 1,066,000 782,500 937,750

of stations 2 2 4 5 3 3

Automation % 51 51 0 75 100 100

55

Table 15c Summary of the results for the subassemblies: inside framework back

shroud, side panel and inside right framework

inside framework

back shroud side panel

inside right

framework

single mixed single mixed single mixed

Total Cost (€) 4,105,274 3,269,381 9,050,540 7,372,591 5,657,023 4,472,073

Operating Cost (€) 3,631,524 2,795,631 6,069,540 5,187,591 4,981,523 3,796,573

Investment Cost (€) 473,750 473,750 2,981,000 2,185,000 675,500 675,500

of stations 3 3 7 6 4 4

Automation % 36 36 100 100 44 31

56

57

CHAPTER 5

A GENETIC ALGORTIHM PROPOSED FOR THE MIXED-MODEL

SEQUENCING PROBLEM

In the first phase of our approach, a strategic problem is addressed, that is, car body

shop is designed taking into account the mixed model nature of the lines. Now in the

second phase of our approach, an operational problem is addressed. We intend to

develop mixed-model sequences of the car models so as to utilize the lines in the

most efficient and effective way in meeting the expected average annual demands of

several models over the life cycle of the car.

Car sequencing with several models takes into account the constraints imposed by

the paint shop and is known to be an NP-hard problem in the strong sense (Kis,

2004).

Actually considering the three stages in car manufacturing as car body shop, paint

shop and the final assembly, car sequencing problem is a more critical problem in the

final assembly stage of car manufacturing where the model variety is highest in car

manufacturing. However, in car body shop where the chassis of the cars are

manufactured, the model variety is at the lowest level, for example: 2-3 models of a

certain car. Having reviewed the relevant literature on mixed-model sequencing

problem, we propose a GA-based method to solve the general mixed-model

sequencing problem that is not specific to car sequencing problem.

58

In this chapter, we first discuss the fundamentals of the genetic algorithm. Then we

present our GA method for the mixed-model sequencing problem with all its

technicalities. Finally we conclude with the results and their discussion.

5.1 Fundamentals of Genetic Algorithms

Genetic algorithms are search methods inspired from the genetic processes of the

nature. They were first introduced by Holland and his colleagues at Michigan

University and the basic principles were first published in Holland (1975). Genetic

Algorithm (GA)-based optimization techniques are effective and have been applied

widely to find the global optimum region due to its global perspective and inherent

parallelism (Goldberg, 1989). They are widely used for NP-hard problems, since

they are difficult to solve by the use of mathematical modeling. The fundamentals of

GA can be summarized as:

 The starting points of GAs are chromosomes, which are made up of genes

that have the basic information of the decision variables in the solution. The

chromosomes, that are individuals of the population, then, are solutions for

the problem which can be represented in various ways. These individuals,

like in the nature, compete to reproduce and survive. As the evolution theory

states, better individuals have more chance to pass their genes to the next

generations.

 The probability of survival and reproduction in the nature is based on how

good the genetic material of the individual is. In the GA, ‘how good an

individual’ is calculated, since it is the objective function value of the

solution the chromosome gives and is called the fitness of the chromosome.

 An initial population is generated at the beginning, having some number of

individuals with different genetic characteristics. Through generations the

59

population evolves like the processes in the nature. There is a reproduction

process that determines the genetic characteristics which would be passed on

to the next generation out of all the individuals of the population. Crossover

operator is used to select two parents and make a number of off-springs from

them. Mutation operator is used to mutate a chromosome and add the mutated

chromosome to the population. Each population updated by any number of

new chromosomes is called a generation.

 The genetic process evolves without knowing the problem it is trying to

solve, like it is in the nature. However, to make its job easier, more suitable

crossover and mutation operators can be chosen from a number of options

using problem specific information. This approach helps to get better

solutions faster.

Genetic algorithms can be used to solve many kinds of problems. Since it is a general

framework to work with, some key components should be decided beforehand. These

may be called the fundamentals of genetic algorithms and are presented below:

 To define what the genes and the chromosome stand for

 To create an initial population

 To define the fitness function

 To identify the parent selection technique

 To find the appropriate crossover and mutation operators

 To define the replacement strategy: who the new generation would consist of

after the crossover and mutation

 To decide on parameters like the population size, crossover and mutation

rates

60

 To decide how the program ends, like the maximum number of generations

specified or the specified maximum number of generations where the

population fitness (the fittest chromosome in the population) does not

improve any more

 If to use additional procedures like elitism or not; and if so, their size

5.2 The Proposed Genetic Algorithm

In this section, the GA terminology and how the different aspects discussed above

are decided in our approach are explained.

5.2.1 Chromosome Representation

Chromosome representation is one of the most critical aspects of the GA approach. It

must represent any possible solution to the problem and it should be clear from the

chromosome how to calculate the fitness of the chromosome.

The important question is whether a binary or an integer representation should be

used. Using a binary representation is easier, but an integer representation can

contain more information and more complex information.

Different from most of the sequencing chromosomes where the jobs are ordered, in

our problem, different models of the car would be ordered. An example chromosome

for the ordered jobs is:

3 1 2 5 4

61

where the third job is done first, followed by job 1, and so on. The chromosome for

our mixed-model sequencing problem with two models would look like the

following:

where model A car comes first, followed by model B car and so on. There are two

different models of the car in the example, but it can contain as many different

models as required in it. Both examples have five genes, and if needed, as many as

needed, can be added.

5.2.2 Initial Population Generation

The initial population is where the search for the solution starts. It is one of the first

things the algorithm executes and goes on from. It is important to have a wide range

of individual characteristics in the initial population in order to improve faster.

The most common method to generate an initial population is to randomly generate

it. It is done easily and quite fast, even though some control schemes are invented to

generate a better population, i.e., a population that has a wider range of individuals to

better cover the solution space. These control routines are mostly used with non-

binary chromosomes.

In our problem, basically making the population bigger can work easily if we want to

minimize the chance of getting trapped in a certain region of the solution space, since

our genes are straightforward.

A B A A B

62

5.2.3 Fitness Function Evaluation

The purpose of the fitness function in our GA approach is to have a sequence that

minimizes the workload fluctuations of stations through time so as to have a smooth

line even though the car models in the sequence are changing over time. This can

also be expressed as the fluctuations in the utilizations of the stations. After

reviewing the relevant literature, we decide on our fitness function as: maximization

of the total of the immediate differences of utilizations of stations over time. We

define the fitness function below in (1).

Notation:

n: Number of jobs

m: Number of stations

i: Station index

j,h: Job position index

ti [j]: Processing time of the job in position [j] on station i

si: cycle time of station i

Ui [j]: utilization of station i having processed the job in position [j]

z: fitness function value

      
m

i

n

j jiji UUz
1 1 1 - max

with

     jisjtU i

j

h hiji , /
1  

 (1)

For example, consider station 1 with three models to be processed on the line and

s1=10 seconds; models A, B, and C have processing times of 8, 4 and 6 seconds,

respectively; and the sequence is A-B-C. Then U1[1] = 8/10; U1[2] = (8+4) / (10+10).

63

So U1[2] -U1[1] = 1/5 (in absolute value). Then we add all the (Ui [j] - Ui [j-1]) values for

all stations over all positions on the stations and this is the fitness of the

chromosome. For this example, sequence ABCABC has a fitness of 3/10 and

sequence ABCCAB has a fitness of 7/25. Hence, the bigger the fitness (total of the

difference of utilizations), the better the sequence is.

Based on this fitness function, if a station uses less time for a model, the next model

has to be a more time consuming one to even the workload of the station.

5.2.4 Genetic Operators and Techniques

These are playing the key role in the GA as they may be the sole determinants on

how the algorithm will perform.

5.2.4.1 Parent Selection

This is how the parents will be chosen from the population to make an offspring. The

offspring will carry the characteristics of the parents as it is in the nature. From the

early times of the GA literature until now, many different methods have been

introduced, from random selection like the roulette wheel selection to more complex

methods like the tournament selection. The techniques are described in three

headings below:

Roulette Wheel Selection. First we calculate the fitness values of the individuals.

Then parents are selected according to their fitness values. The better the fitness

value of the individual, the more the chance for it to be chosen for being a parent. It

works like this:

 We add all the fitnesses of the individuals together.

64

 We create a random number from 0 to the sum found in the first step.

 We then start to add the fitness of the chromosomes together until we reach

the random number from the second step and the first chromosome after we

exceed that number is our parent chromosome.

This is really an easy technique to use, but it has some drawbacks. Even though it is

easy for the better individuals to shine in the early generations, when the difference

between the chromosomes gets smaller, the generations do not grow well. Also, if

the difference between the better chromosome and others are too big, the probability

of selecting other chromosomes but the dominant chromosome to be the parent is

small. However, these are not important drawbacks for our problem, since we do not

have time issues and there cannot be a big difference among the fitnesses of the

chromosomes.

Rank Selection. In this technique, we rank the chromosomes according to their

fitness. The worst fitness gets a new fitness of 1 and the second worst 2, and this

process goes on like this to the best fitness having the number that is the population

size. This process can be modified, of course, to suit the user’s needs. Thus, this

small interference arranges that the worst chromosomes have a bigger chance of

being selected and hence not getting stuck with the best chromosomes. The drawback

of this technique is that it requires more computation, and since the differences in the

chromosomes are made less, it takes a longer time to converge.

Tournament selection. This technique chooses two or more individuals in the

population and selects the fittest one as a parent. There are deterministic and

probabilistic versions of this method. In the deterministic version, the fittest one is

chosen for sure, whereas in the probabilistic version, a probability is attached to see

65

what portion of the time the fittest one is chosen. Its computational effort is not

much, since it only needs a preference in a small set of chosen individuals, so this

idea is one of the new popular ideas.

Elitism. There is not so small a chance that when a new generation is entered, the

best chromosome from the old generation will be lost. To prevent this problem, the

idea of elitism is introduced. When it is used, a number of elite (the chromosomes

with the best fitness values) individuals from the last generation are saved for the

next generation. Elitism can very rapidly increase the performance of GA, because it

prevents losing the best found solution.

The pros and cons of the selection techniques are explained above and when the

literature is examined, the problems like ours mostly choose the roulette wheel

selection. Since elitism is an easy concept to use, we decide to use the roulette wheel

technique with elitism.

5.2.4.2 Crossover Operator

Employing effective crossover operators is important for combining existing

solutions with new ones and for generating diversity. The former can be

implemented by a good crossover operator, and the latter can be implemented by the

mutation operator. The crossover operator takes the genetic material from the parents

and makes one or two offsprings with it. The type of the operator is important in

establishing which information will be gained from which parent and how it is put

into the offspring.

66

The operator can be used easily to put in problem specific information. Nevertheless,

the most commonly used operators are single-point crossover and two-point

crossover operators which do not consider any problem characteristics.

A two-point crossover operator can be seen in the figure below:

Parent 1 A B A A B

Parent 2 B A B A A

Child 1 A A B A B

Child 2 B B A A A

Figure 1 A Two-Point Crossover Operator

As the GA literature advanced, more crossover operators were introduced. Uniform

operator is one of them, where the offspring will have half the genes of the first

parent and half the genes of the second parent if the mixing ratio is 0.5. Crossover

points are randomly chosen. This approach seems poor, but evidence suggests that it

is a more exploratory approach than the traditional approaches.

There is also the order crossover (OX) which is getting more and more common in

the last years. Many of the articles we studied use this crossover method.

It starts by randomly choosing two cut points on the parent chromosomes. In order to

create an offspring, the string between the two cut points in the first parent is first

copied to the offspring. Then, the remaining positions are filled by considering the

sequence of jobs in the second parent, starting after the second cut point (when the

67

end of the chromosome is reached, the sequence continues at position 1). The

example of a job sequencing in this chromosome type looks like this:

parent 1 : 2 7 | 1 3 4 | 5 8 6

parent 2 : 1 8 | 2 5 6 | 3 7 4

offspring

(step 1) : - - 1 3 4 - - -

(step 2) : 2 5 1 3 4 6 7 8

Figure 2 An order crossover

In the figure above, after copying jobs 1, 3 and 4 to the offspring, jobs 2, 5 and 6 are

put into the offspring starting from the beginning. Then, jobs 3, 7 and 4 are tried, but

since jobs 3 and 4 were already in the offspring, only job 7 could be entered. Lastly,

job 8 was entered to the last place in the chromosome.

Since we decided to use the OX operator, we saw that it did not fit exactly with our

chromosome structure. Actually none of the operators do. Thus, we had to modify it

to support our needs. It starts the same way as the OX operator, but since we do not

have different numbers for all the places in the chromosome, we had to decide what

to do when an overlap occurs. We solved this problem by looking at the chosen part

of the first parent and eliminating them in the second parent starting from the

beginning. Then the other genes are put in like in the order crossover modifier. An

example for sequencing of three models, A, B and C is shown below:

68

parent 1 : A B | A C B | A B C

parent 2 : C B | A B A | C A B

offspring

(step 1) : - - A C B - - -

 (step 2) : B A A C B C A B

Figure 3 The Order crossover modified for our needs

5.2.4.3 Mutation

To maintain diversity, a mutation operator should be used. If a mutation operator is

not used, it is highly likely that the GA converges to a local optimum. To avoid this

entrapment, we have to randomly change some chromosomes, and thus maintain

diversity.

The most common mutation operator in the literature from the early stages of the GA

literature is the perturbation mutation operator which is a probabilistic operator. So,

it randomly chooses a chromosome and one or more genes from it. Then it basically

interchanges its value, 0 to 1 and 1 to 0 in a binary chromosome or any value to any

other working value in a non-binary one.

An interesting alternative mutation operator is the boundary mutation operator. It

changes a randomly chosen non-binary gene to the upper or lower bound (also

chosen randomly).

The uniform mutation operator is just like the boundary mutation operator, but the

user specifies the upper and the lower bounds she likes to work with. The non-

69

uniform mutation operator works in the same way. The only difference is that

probability of the amount of mutation is more in the early stages of the algorithm and

it drops towards the end. This way, it lets the algorithm fine-tune in the late stages.

The inversion mutation is getting more popular in the last years. We choose to use

the inversion mutation in our GA. It works by choosing a chromosome and two cut

points. It then inverts what is between the cut points, like this:

Original chromosome: 2 7 | 1 3 4 | 5 8 6

After the mutation operator: 2 7 | 4 3 1 | 5 8 6

Figure 4 The inversion mutation

5.2.4.4 Replacement

Replacement strategy is used to determine which chromosomes will be used to make

up the next generation. Since we are trying to improve the best solution in the

population, there are various strategies to update the population. One important

factor is the generation gap, which is the proportion of the individuals to be replaced

in every generation.

There are two strategies to decide on the generation gap in the literature. The first

strategy is to use the generation gap as ‘1’, which means to replace the whole

population. This strategy is called the generational or non-overlapping replacement.

Elitism is especially used in this strategy to eliminate the loss of fit individuals when

passing on to the next generation.

70

The second strategy is called the steady-state or overlapping replacement. While

inserting some individuals into the population, it is important to decide on the

individuals of the population that will be replaced with the new ones. To decide on

this, there is a number of different methods like replacing randomly chosen ones,

replacing the worst ones, replacing the oldest ones, replacing the parents or choosing

by the Kill Tournament. Smith and Vavak (1999) make a comparative study on these

alternatives and state the benefits, deficiencies and how much computational effort is

needed for each of these methods. They make exact Markov models for some and

appropriate Markov models for other replacement strategies; and with the help of

simulations, general conclusions for different strategies are drawn.

There is no evidence in literature about one strategy being better than another one.

Since we are using elitism, we find it fit appropriate use the generational strategy.

That way, we are not losing the best individuals, while letting new fit individuals in

the population immediately.

5.2.4.5 Termination

In most GA applications, a stopping criterion is designed based on convergence.

After calculating through a specific number of iterations, the algorithm terminates. In

GA terms, we stop after a satisfactory number of generations. In our study, we have

two stopping criteria which are stopping after 400 generations or stopping if the same

chromosome stays fit after 50 consecutive generations. These numbers can be

changed if needed, but are found to be satisfactory as they give the best fitness in

every test.

71

5.2.5 Parameter Determination

There are important parameters that affect the performance of the algorithm. These

are population size, crossover and mutation rates. They go hand in hand with each

other, so we have to decide on all of them simultaneously.

The population size is the number of individuals generated and it is the same

throughout all generations. The crossover and the mutation rates show how

frequently a chromosome would be updated using those operators.

To decide on the population size, the first factor used is the length of the

chromosomes. There are some ideas for how the length of the chromosomes should

affect the population size. There are linear and exponential calculations to help

decide. When the length of the chromosome gets longer, the exponential relations do

not tend to work well. They result in impractically large population sizes. One of the

most basic and most supported ideas is for a chromosome length of n, to use a

population size in the range from n to 2n.

The drawback of a small population is the possibility of it converging too quickly

without sufficient exploration and the drawback of a large population is that the time

to find the solution can get too long. To balance these, higher crossover and mutation

rates are advised for small populations and lower rates are advised for large

populations. Also, larger populations are better if “replace worst” or “steady state

replacement” options or big percentage for the elitism option are chosen, since there

may be premature convergence with these options.

72

5.2.5.1 The Tuning of the Mutation and Crossover Rates

Here the goal will be to find the best parameter values to get the best possible

performance from the algorithm. We can safely fix the population size to 2n where

the chromosome length is n. Then we try different crossover and mutation rates to

see which ones perform better. Here is a table showing the fitness values for different

mutation and crossover rates. Here we are running the algorithm for 800 generations

or until a chromosome is the fittest for 200 generations. Table 16 shows these

different trials for the crossover and mutation rates.

Table 16 Tries for crossover & mutation rates

product mix for 3

models 44-33-23 32-9-9 12-7-6 12-5-3

crossover,

mutation rates fitness fitness fitness fitness

0.7, 0.01 2.09632 1.71446 1.49118 1.07667

0.8, 0.01 2.09457 1.71533 1.49078 1.07667

0.6, 0.01 2.09780 1.71199 1.49188 1.07667

0.5, 0.01 2.09863 1.71737 1.49103 1.07667

0.4, 0.01 2.09754 1.71743 1.49017 1.07667

0.55, 0.01 2.09880 1.71804 1.49196 1.07667

0.55, 0.02 2.09878 1.71783 1.49073 1.07667

0.55, 0.03 2.09657 1.71732 1.49037 1.07667

0.55, 0.05 2.09514 1.71694 1.49001 1.07667

Since we know that a bigger fitness is a better one, we can say that a crossover rate

of 0.55 is working best, whatever the size of the problem is. After that, since we

73

know the best crossover rate, using that, we look at the mutation rates and it is

clearly seen that 0.01 is the best mutation rate. Thus, in our computations with GA,

we use a crossover rate of 0.55 and a mutation rate of 0.01.

5.2.6 The Overall Algorithm

Above, the decisions of the GA model are explained in detail. Basically our genetic

algorithm consists of the following four steps:

Step 1. Examine the input data

Step 2. (Randomly) Generate the initial population

Step 3. Interpret each chromosome in the initial population and evaluate the fitness

function for each (finding the fittest chromosome in the process)

Step 4. Calculate the population statistics

 4-a Find the best fitness

 4-b Sort the chromosomes according to their fitness

 4-c Find the elite members of the current generation to make them part of the

next generation as well.

4-d Sort the chromosomes according to their fitness

Step 5. Until the generation limit is reached or the generation fitness does not

increase for the predetermined number of generations:

5-a Select parents from the population using roulette wheel selection,

5-b Apply the genetic operators (i.e. crossover the selected parents and

mutate the offspring according to the mutation rate),

5-c Create the new population,

5-d Update the best fitness,

5-e Update termination statistics (generation limit and the number of

generations the fitness does not increase),

74

5-e Check for termination, if not return to 4-a

The flowchart of the algorithm is provided in figure 5 below.

The algorithm is coded in C++. The whole code is given in Appendix B in detail.

The pseudo code which is the basis of the code of the algorithm is presented below.

The main flow is given as a whole composed of small procedures.

75

Figure 5 Flowchart of the GA algorithm

Read problem data

Generate the initial population

randomly without duplicates

Read all the individuals in the initial population

and calculate fitness values for each

Select two parents

Apply crossover

Apply mutation to the offspring

Max. Generation allowed reached?

the same chromosome stayed the

fittest for the required number of

generations?

Stop and Display the best result

NO YES

Calculate population statistics

Create the new population using

elitism and increase the generation

counter by one

76

The Main Body of the Algorithm

Procedure SeedRandomNumberGenerator

Procedure ReadData //this is not a procedure, it's directly on the main, but it could be

on a procedure,, and it's actually not important where you put it

Procedure CreateRandomPopulation

While ((no chromosome has stayed as the fittest long enough) AND

(NumberOfGeneration <= MaximumGeneration)) do

 Procedure AssignFitnessToChromosomesAndFindFittest

 Display the current fittest chromosome

 if (the fittest chromosome prevailed for the required ammount of generations){

 Display "The same chromosome has prevailed as the fittest for

GEN_REQUIRED_AS_FITTEST generations!"

 Display Fittest and its fitness

 Set While loop exit condition

 }

 if (NumberOfGeneration <= MaximumGeneration){

 Display "The maximum number of allowed generations has been reached. The

current fittest chromosome is the following:"

 Display Fittest and its fitness

 Display "And it has stayed as the fittest chromosome for the last genAsFittest

generations"

 Set While loop exit condition

 }

 Procedure Elitism

 While (chromosomes missing to fill population) do

 firstParent = Procedure Roulette

77

 secondParent = Procedure Roulette

 Procedure Crossover

 Procedure Mutate(firstChild)

 Procedure Mutate(secondChild)

 Add children to population

 endWhile

endWhile

End of Main Body

5.3 Discussion of the Results

Here, the results for the proposed genetic algorithm are discussed. The GA is tested

against the optimum solution found by total enumeration. We generate the problem

instances in order to test our algorithm, since there are no test problems to test it, and

researchers generate their own test problems by considering the nature of their

problem, to the best of our knowledge. A problem instance is defined by these

attributes:

- Number of models to be sequenced

- Sequence length

- Units of each model to be sequenced in the sequence of a certain length

(model mix)

- Number of stations making up the assembly line

In our GA approach we assume the cycle time is given and we calculate all statistics

according to the given cycle time.

78

We show how much time it takes to solve these problems by our GA and total

enumeration (TE) and if the GA provides the optimum or not. “y” indicates that the

solution found is optimal, and leaving the cell empty means we could not test it since

the TE could not solve the problem instance in more than the time shown in the

“time to solve” column. We present the computational results in Table 17.

Both the Genetic Algorithm and the total enumeration give the same fitness value,

however, the sequences obtained may be different. For example, the optimal

solutions found for the first problem instance were different even though the fitness

value is the same. The sequence of the GA is 3121213121 and the sequence of the

total enumeration is 1321211321. These chromosomes are very similar. Only a swap

in two places between model 1 and model 3 makes the difference. This is because

there are alternative optimal solutions stemming from the nature of the objective

function and the chromosomes, but there is no need to try to prevent this.

It is easily seen that the computational time the genetic algorithm takes is much less.

Since the time limit by which the genetic algorithm terminates is defined by the user,

it could take more time, but in all these problem instances it did not prove necessary

to increase the number of generations to run. We see some hard problem instances

which the total enumeration could not solve in a long time like 9 days. Hence we

could not test the GA for some larger and harder problem instances as seen in the

results table, namely problem instances 3, 14, 16, 17, 18, 19.

79

Table 17 Test of the GA

Problem

instance

of

Stations

of

models

Seq

length model mix

time to solve

opt? GA TE

1 3 3 10 5-3-2 1 sec 1 sec y

2 5 5 20 8-5-4-2-1 2 sec 6 hours y

3 3 3 40 20-15-5 2 sec >2 days

4 3 3 20 10--6--4 1 sec 25 min y

5 3 3 15 7-5-3 1 sec 2 sec y

6 5 3 10 5-3-2 1 sec 1 sec y

7 5 5 12 4-3-2-2-1 1 sec 5 sec y

8 4 4 16 6-5-3-2 1 sec 10 min y

9 4 4 16 4-4-4-4 3 sec 1 day y

10 3 4 15 4-4-4-3 1 sec 5 sec y

11 3 4 15 9-3-2-1 1 sec 5 min y

12 4 4 16 9-4-2-1 1 sec 1 min y

13 4 4 16 10-3-2-1 1 sec 1min y

14 3 8 20 4-3-3-2-2-2-2-2-2 5 sec >5 days

15 4 4 20 14-3-2-1 1 sec 7 min y

16 4 4 20 5-5-5-5 1 sec >3 days

17 3 10 20 2-2-2-2-2-2-2-2-2-2 5 sec > 5 days

18 5 5 20 4-4-4-4-4 5 sec > 4 days

19 3 5 40 12-10-8-6-4 5 sec > 9 days

20 30 3 20 10-6-4 1 sec 2 hours y

21 30 4 20 14-3-2-1 1 sec 7 min y

22 30 4 20 12-4-2-2 3 sec 8 hours y

23 30 3 10 5-3-2 1 sec 1 sec y

24 30 4 16 6-5-3-2 1 sec 10 min y

80

Sequence length has a significant effect on the time total enumeration takes to solve.

It has an effect on the time the genetic algorithm takes to solve, too, but since it

concludes in only a few seconds, it may be called an insignificant effect. Since in the

real manufacturing environments, the sequence of models can be simplified to

lengths between 10 and 40, the problem instances are conducted using sequence

lengths between 10 and 40. We observe that there is a drastic increase in

computational times between 10 and 40. Hence, using the genetic algorithm and the

like seems mandatory, especially when experimenting with the parameters.

Also the mix of cars in the sequence affects the computation time drastically. When

the numbers of models in the mix are very close to each other, like 5-5-5 in a

sequence of 15 for 3 models, the computational time increases significantly

especially for the total enumeration method. This is simply because the number of

combinations the total enumeration method has to check increases with the closer

number of cars in the sequence.

Since, in the real world, the number of stations in industrial lines is usually 30 or

even more, we test problem instances with long lines, too. The number of stations

increases the time the total enumeration takes to solve, too, but not as drastic as the

other components of the problem. However, we do not have the same observation

with the genetic algorithm.

Overall it is clear that the genetic algorithm is working well and fast. It reaches the

optimal sequence no matter how hard the problem instance is and the parameters can

easily be adjusted to bigger problem instances.

Finally, we obtain the sequence of the two models in our reference car body shop for

the two different assembly line designs: the single line and the mixed-model line.

81

Table 18 summarizes these results where ‘1’ stands for the cargo model and ‘2’

stands for the combi model. There are 20 cargo models and 13 combi models in a

sequence length of 33 cars which is a simpler version of their annual production

volumes which are 100,000 and 65,000, respectively for cargo and combi models.

Having obtained the fitness values for the two cases, namely for the lines designed

based on single model and mixed model assumptions, respectively, we cannot have a

conclusive observation as to which line is better in terms of the sequences’ fitness

values. This is somehow an expected result, because we do not consider the objective

of leveling the workload at the strategic decision level of mixed-model line deign

(robust line design) and the single model line design. but the sequences are different.

We provide the sequences obtained for both lines (single and mixed model lines) in

Table 18; it can be observed that the sequences obtained for the single and mixed-

model lines are all different.

While we are leveling the workload for the stations, one may asks what happens to

other possible objective functions. Widely used objective functions like tardiness and

earliness doesn’t apply to our situation. Another widely used objective function;

makespan can be calculated for our situation however. When we look at the example

used in Yu et al. (2005) and sequence it according to our objective criteria and then

calculate the makespan, we can see how well it behaves for other objective functions,

makespan in this case. Table 19 shows how long it takes for a job on a station

(robot).

82

Table 18 The sequences for the car body shop

 Fitnesses

Mixed-

model

Old

version Old version Mixed-model version

Outside panel

sheet 1.20013 1.5771

21212121212112211

2212112121111111

21212112121212121

2121122112111111

Instrument

sheet 0.76765 1.48665

21122121212112112

1211212122111111

21212112112121211

2121221122111111

Inside right

framework 1.29154 0.47573

21122121212112211

2212112121111111

21212112121121211

2121212112211111

Side panel 1.51638 1.77317

21121121212121221

1221211212111111

21121121121212121

2121212112211111

Dashboard

pool 1.54 2.6

21122121212112211

2212112121111111

21212112121212121

2122112211111111

Back stop

riser 1.74636 1.45935

21121211212121212

1121221212111111

21212122112121121

1212112211211111

Left shroud 0.76238 0.54761

21121212211211212

1212121212111111

21212121212112122

1122121211111111

Right shroud 0.86 1.39509

21122121212121211

2122121211111111

21212122112121211

2121221121111111

Inside

framework

back shroud 3.99 3.395

21121212212112121

2121221211111111

21212121212112122

1122121211111111

83

While we level the workload for the stations in sequencing the several models, we

also check to see the performance of our GA in terms of other possible

scheduling/sequencing criteria. The commonly used criteria like tardiness and

earliness are not relevant in our case. However, the makespan criterion seems more

involved in our case. As a result of our search in the literature for GA approaches in

mixed model sequencing, we could only have the chance of comparing our GA

against the GA study of Yu et al. (2005) that considers the makespan objective in

sequencing. The mixed model sequencing problem they address includes 3 product

models and 4 stations on the line the assembly times of which are given in Table 19.

We use this test problem and obtain a sequence with our GA method, that is with the

workload leveling criterion. The sequence we thus obtain (Figure 6) is found to have

a makespan of 70 time units, while the GA approach developed by Yu et al. (2005)

with the makespan criterion ends up with a makespan of 67 time units.

Table 19 The assembly time for three products on four robots

Product Assembly time (unit time)

 Robot 1 Robot 2 Robot 3 Robot 4

1 3 6 5 2

2 1 2 6 6

3 3 5 7 4

84

85

CHAPTER 6

CONCLUSION AND FURTHER RESEARCH ISSUES

In this study, we address two problems: assembly line design which is a strategical

decision and mixed-model sequencing which is an operational decision. For the

assembly line design problem we propose a robust optimization model based on

integer programming which is an extension of a former approach. We extend the

former approach that is proposed for the single-model line environment to a mixed-

model environment. In our robust optimization model we try to minimize the

maximum regret over all models of the car, considering the total of investment and

operating costs. We then design all the lines for the car body shop with reference to

a local car manufacturer.

After designing the mixed model lines in the car body shop, we address the

operational problem of sequencing on the lines which have a mixed-model nature.

Since the sequencing problem is an NP-hard problem and hence hard to solve by

mathematical modeling, we intend to solve it by a genetic algorithm which is fast and

eligible for sequencing problems. We develop a genetic algorithm and then search

for its performance through several test problems. We compare the solutions of the

GA against the optimum solutions obtained by total enumeration.

From the computational work, we also see how the problem size affects the

computational time of a run. The problem size is determined by the sequence length,

86

combination of models of cars and number of stations. We conclude that our GA

works well and fast and can be used to find the optimal sequence for any mixed-

model sequencing problem with the objective of workload smoothing over the

stations over time.

Further analyses can be made on the robust optimization model to see how well it

reacts to changes in the annual demand and the changes in total cost can be observed

in the former single line approach and the new mixed-model line approach we

propose. Similarly, the robust optimization model can be extended so as to take into

account the dynamic demand over the lifecycle of a car, that is increasing annual

demand during the first years, and then stable demand for some time, and decaying

demand during the last years of the life cycle.

Our GA can be tested with other fitness functions. Also, multi objective fitness

functions can be tried since they are getting increasingly more popular day by day.

Paint shop constraints can be taken into account in the mixed-model sequencing

algorithm in the car body shop which results in the so-called ‘car sequencing

problem’ that has got a systemic approach for the model sequencing in the body

shop.

87

REFERENCES

Akgündüz, O., Tunalı, S., 2011: A review of the current applications of genetic

algorithms in mixed-model assembly line sequencing, International Journal of

Production Research 49:15, 4483-4503

Amen, M., 1998. Heuristic methods for cost-oriented assembly line balancing: A

survey, Int. J. Production Economics 68 1-14

Amen, M., 2000. An exact method for cost-oriented assembly line balancing,

International Journal of Production Economics 64 187-195

Barutçuoğlu, A., Kırca, Ö., Meral, S., 2011. Gövde Atölyesi Otomasyon Seviyesi

Optimizasyonu, ODTÜ Endüstri Mühendisliği Bölümü

Boysen, N., Fliedner, M., Scholl, A., 2009. Sequencing mixed-model assembly lines:

Survey, classification and model critique, European Journal of Operational

Research 192 349–373

Bradley, J., 2002. Using Product-Mix Flexibility to Implement a Made-To-Order

Assembly Line

Bukchin, J. 1998. A comparative study of performance measures for throughput of a

mixed model assembly line in a JIT environment, International Journal of

Production Research 36:10, 2669-2685

88

Deep K. and Mebrahtu H., 2011. New Variations of Order Crossover for Travelling

Salesman Problem, International Journal of Combinatorial Optimization Problems

and Informatics 2:1 2-13

Emde, S., Boysen, N., Scholl, A., 2008. Balancing mixed-model assembly lines: A

computational evaluation of objectives to smoothen workload, Working and

Discussion Paper Series School of Economics and Business Administration

Friedrich-Schiller-University Jena ISSN 1864-3108

Gao, J., Sun, L., Wang, L., Gen, M., 2009. An efficient approach for type II robotic

assembly line balancing problems, Computers & Industrial Engineering 56 1065–

1080

Ghosh, S., Gagnon, R., 1989. A comprehensive literature review and analysis of the

design, balancing and scheduling of assembly systems, International Journal of

Production Research 27:4, 637-670

Goldberg, D.E., 1989. Genetic Algorithms in Search, Optimization and Machine

Learning. Addison-Wesley, Boston.

Goldberg, D.E., 1989. Sizing Populations for Serial and Paralel Genetic Algorithms

in Proceedings of the Third International Conferene on Genetic Algorithms by

Schaffer, J. D., Morgan Kaufmann Publishers, San Mateo, 70-79.

Gokcen, H., Erel E., 1997. A goal programming approach to mixed-model assembly

line balancing problem, International Journal of Production Economics 48 177-185

89

Gujjula, R., Werk, S., Günther, H., 2011. A heuristic based on Vogel's approximation

method for sequencing mixed-model assembly lines, International Journal of

Production Research 49:21, 6451-6468

Guo Z., Wong W., Leung S., Fan J. and Chan S., 2006. A genetic-algorithm-based

optimization model for scheduling flexible assembly lines, International Journal of

Advanced Manufacturing Technologies 36, 156–168

Haq A., Jayaprakash J., Rengarajan K., 2004. A hybrid genetic algorithm approach to

mixed-model assembly line balancing, International Journal of Advanced

Manufactoring Technologies 28 337–341

Holland, J.H., 1975. Adaptation in Natural and Artificial Systems. The University of

Michigan Press, Ann Arbor, MI.

Hwang, R., Katayama, H., 2010. Integrated procedure of balancing and sequencing

for mixed-model assembly lines: a multi-objective evolutionary approach,

International Journal of Production Research 48:21, 6417–6441

Kim, H., Park, S., 2007. A strong cutting plane algorithm for the robotic assembly

line balancing problem, International Journal of Production Research 33:8, 2311-

2323

Kis, T. 2004. A On the complexity of the car sequencing problem, Operation

Reserach Letters 32:4, 331-335

http://link.springer.com/journal/11538

90

Kleeman M.P. and Lamont G.B., 2007. Scheduling of Flow-Shop, Job-Shop, and

Combined Scheduling Problems using MOEAs with Fixed and Variable Length

Chromosomes, Studies in Computational Intelligence (SCI) 49, 49–99

Levitin G., Rubinovitz J., Shnits B., 2004. A genetic algorithm for robotic assembly

line balancing, European Journal of Operational Research

Nicosia, G., Pacciarelli, D., Pacifici, A., 2002. Optimally balancing assembly lines

with different workstations, Discrete Applied Mathematics 118 99–113

Norman, B., Bean, J., 1994. A genetic algorithm code for scheduling problems: serial

computing version

Rajput, F.A., Othman, Z., Suhail, A., 2010. Comparative Study between Mixed

Model Assembly Line and Flexible Assembly Line Based on Cost Minimization

Approach, Proceedings of the 2010 International Conference on Industrial

Engineering and Operations Management Dhaka, Bangladesh

Rekiek, B., Doigui, A., Delchambre, A., Bratcu, A., 2002. State of Art of

Optimization Methods for Assembly Line Design, Annual Reviews in Control 26

163-174

Smith, J. and Vavak, F., 1999. Replacement Strategies in Steady State Genetic

Algorithms : Static Environments in Foundations of Genetic Algorithms-5 by

Banzhaf W., Morgan Kaufmann Publishers, San Francisco,219-233.

Spieckermann S., Gutenschwager K. and Vob S., 2004. A sequential ordering

problem in automotive paint shops, Int. J. Prod. Res., 42:9, 1865–1878

91

Thomopoulos, N., 1967. Line Balancing-Sequencing for Mixed-Model Assembly,

Management Science 14:2, 59-75

Wang B., Rao Y., Shao X., and Wang M., 2008. Scheduling Mixed-Model Assembly

Lines with Cost Objectives by a Hybrid Algorithm, ICIRA 2008, Part II, LNAI 5315,

378–387

Yu, J., Yin, Y. and Chen, Z., 2005. Scheduling of an assembly line with a multi-

objective genetic algorithm, International Journal of Advanced Manufacturing

Technologies 28, 551–555

92

93

APPENDIX A

THE SOLUTION SHEET OF THE DASHBOARD POOL

Table A.1 The Solution Excel Page Costs and Important Information

max regret 2363326,281

Total investment and transformation cost(€) 5059433,47

Total investment and transformation

cost(€)combi 3940308,281

Total investment and transformation

cost(€)cargo 3678134,639

Total investment cost(€) 1066000

 Transformation cost combi(€) 2744333,281

 Transformation cost cargo(€) 2482159,639

 Total transformation cost(€) 3993433,47

Total Cost of Space(€) 129975

Total Used Space(m2) 173,3

Automation % 74,83221577

Number of Robotic stations 4

Number of Manual stations 1

Number of stations 5

Number of Robots 4

Number of workers 2

Number of workers + robots 6

94

Table A.2 The Solution Excel Page Inputs Reminder

Daily working hours 21

Years of production(years) 8

Total yearly production 165000

Total yearly production-combi 100000

Total yearly production-cargo 65000

Cost of labor (€/h) 7,5

95

Table A.3 The Solution Excel Page Important Information of Stations

 1 2 3

 M2 R15 R2

Number of workers 2 1 1

Time used (sec) 159,56672 18 69,4

Time without

added value (sec) 104,36672 18 46

Time of tasks(sec) 55,2 23,4

Usable time (sec) 159,6672 73,4832 73,4832

Station utility (%) 99,9370691 24,49539487 94,44335576

Conveyor worker 0,132275132

Work done in terms

of bolts 13,5 9

stations 1 3 4 5

tasks M2 R2 R35 R17

8A01 1

8V01 1

8T01 1

8T02 1

8T03 1

8T04 1

8T05 1

8D01 1

8K01 1

8K02 1

8M01 1

96

Table A.4 The Solution Excel Page Task Assignments

stations 1 2 3 4 5

tasks M2 R15 R2 R35 R17

8A02 1

8V02 1

8T06 1

8T07 1

8T08 1

8T09 1

8D02 1

8K03 1

8K04 1

8M02 1

8B02 1

stations 4

tasks R35

8S01 10

stations 3 4

tasks R2 R35

8S02 1,775304348 8,224695652

97

APPENDIX B

THE CODE OF THE GA

#include <string>

#include <iostream>

#include <math.h>

using std::string;

using std::cout;

using std::cin;

using std::endl;

#define CROSSOVER_RATE 0.7

#define MUTATION_RATE 0.01

#define POP_SIZE 200 //must be an even number

#define ELITE_SIZE 20 //must be smaller than POP_SIZE, and an

EVEN number

#define MAX_ALLOWABLE_GENERATIONS 400

#define GEN_REQUIRED_AS_FITTEST 50

//returns a float between 0 & 1

#define RANDOM_NUM ((float)rand()/(RAND_MAX+1))

//--

98

//

// define a data structure which will define a chromosome

//

//--

struct chromo_typ

{

 //the binary bit string is held in a std::string

 string bits;

 float fitness;

 // if I don't give values, it creates a default chromosome with empty bits and zero

fitness

 chromo_typ(): bits(""), fitness(0.0f){};

 // otherwise, I assing the given values to it

 chromo_typ(string bts, float ftns): bits(bts), fitness(ftns){}

};

/////////////////////////////////prototypes//

string GetRandomBits(int length, int carsAmmount, int* carProportions);

float AssignFitness(string bits, int chromoLength, int stationsAmmount, float*

AverageTimes, float **CarsTimeByStation);

string Roulette(float total_fitness, chromo_typ* Population);

void Mutate(string &bits);

void Crossover(string &offspring1, string &offspring2, int chromoLength);

void Elitism(chromo_typ* Elite, chromo_typ* Population, int eliteSize);

int compareChromo(const void* elem1, const void* elem2); //chromosome

comparison function for qsort, based on fitness

99

float **newMatrix(int rows, int cols);

void deleteMatrix(float **matrix, int rows);

void printBits(string &bits, int chromoLenght);

//-------------------------------main--

//

//---

int main()

{

 //seed the random number generator

 srand((int)time(NULL));

 //chromosome lengh

 int chromoLength;

 //storage for our population of chromosomes.

 chromo_typ Population[POP_SIZE];

 // ammount of stations in the factory

 int stationsAmmount=0;

 //ammount of car 'models'

 int carsAmmount=0;

 //storage for the car proportions in the chromosome

 int *carProportions;

 //storage for time taken by each station to work on each type of car

 float **CarsTimePerStation;

 //storage for the average desired time per station

 float *AverageTimeByStation;

 // best solution of the last generation

 chromo_typ Fittest;

100

 // number of generations with the same fittest chromosome

 int genAsFittest = 0;

 // temporary Integer... sorry, but I need it

 int tempInt;

 cout << "\nInput the desired sequence lenght: ";

 cin >> chromoLength;

 while (!(carsAmmount*stationsAmmount)){

 //get ammount of stations from user

 cout << "\nInput the desired stations ammount (greater than 0): ";

 cin >> stationsAmmount;

 cout << endl;

 //get ammount of cars

 cout << "\nInput the desired ammount of car models (greater than 0): ";

 cin >> carsAmmount;

 cout << endl;

 };

 //allocate memory for the car proportions

 carProportions = new int[carsAmmount];

 for (int i=0; i < carsAmmount; i++)

 carProportions[i] = 0;

 //get car proportions

 tempInt = 0;

101

 for (int i=0; i < carsAmmount && tempInt < chromoLength; i++)

 {

 cout << "\nInput the ammount of cars from model " << (i + 1) << " in the

sequence: ";

 cin >> carProportions[i];

 if ((tempInt + carProportions[i]) > chromoLength)

 {

 cout << "\nGood work! You managed to go beyond the sequence lenght. ";

 carProportions[i] = chromoLength - tempInt;

 cout << "The ammount of cars for model " << (i + 1) << " has been set to

";

 cout << carProportions[i] << ". The rest of the models' ammount will be set

to 0.";

 cout << endl;

 }

 tempInt += carProportions[i];

 }

 if (tempInt < chromoLength){

 cout << "\nThe car proportions that you entered are not enough to cover the

sequence lenght.";

 cout << "\nCar proportion for model " << carsAmmount << " will be set to " <<

(chromoLength - tempInt + carProportions[carsAmmount-1]);

 carProportions[carsAmmount-1] = chromoLength - tempInt +

 carProportions[carsAmmount-1];

 }

 //allocate memory for the time taken by each station to

102

 //work on each type of car

 CarsTimePerStation = newMatrix(carsAmmount, stationsAmmount);

 //allocate memory for the average times per station

 AverageTimeByStation = new float[stationsAmmount];

 //get times from the user

 for (int i=0; i < stationsAmmount; i++)

 {

 cout << "\nInput the average desired time for station " << (i + 1) << ": ";

 cin >> AverageTimeByStation[i];

 }

 for (int i=0; i < carsAmmount; i++)

 {

 for (int j=0; j < stationsAmmount; j++)

 {

 cout << "\nInput time taken by station " << (j + 1) << " to work on car type "

<< (i + 1) << ": ";

 cin >> CarsTimePerStation[i][j];

 cout << endl;

 }

 }

 //first create a random population, all with zero fitness.

 for (int i=0; i<POP_SIZE; i++)

 {

103

 Population[i].bits = GetRandomBits(chromoLength, carsAmmount,

carProportions);

 Population[i].fitness = 0.0f;

 }

 int GenerationsRequiredToFindASolution = 0;

 //we will set this flag if the best solution is the same for

GEN_REQUIRED_AS_FITTEST generations

 bool bFound = false;

 //enter the main GA loop

 while(!bFound)

 {

 //this is used during roulette wheel sampling

 float TotalFitness = 0.0f;

 // test and update the fitness of every chromosome in the population

 // AND find the fittest, in the meantime

 for (int i=0; i<POP_SIZE; i++)

 {

 // We assign the fitness to each chromosome

 Population[i].fitness = AssignFitness(Population[i].bits, chromoLength,

stationsAmmount, AverageTimeByStation, CarsTimePerStation);

 if (Population[i].fitness > Fittest.fitness)

 {

 Fittest.bits = Population[i].bits;

104

 Fittest.fitness = Population[i].fitness;

 genAsFittest = 0;

 }

 TotalFitness += Population[i].fitness;

 }

 // a new generation has just passed, so we increase genAsFittest and

 // GenerationsRequiredToFindASolution, and check to see if the Fittest

 // is still the same for the last GEN_REQUIRED_AS_FITTEST generations

 // or the MAX_ALLOWABLE_GENERATIONS threshold has been reached

 ++GenerationsRequiredToFindASolution;

 //Let's show the fittest in each round

 cout << "Best solution in round " << GenerationsRequiredToFindASolution <<

": ";

 for (int i=0; i < chromoLength; i++)

 cout << (int)Fittest.bits.at(i) + 1;

 cout << " | Fitness: " << Fittest.fitness << endl;

 if ((++genAsFittest) == GEN_REQUIRED_AS_FITTEST)

 {

 cout << endl << "The same chromosome has prevailed as the fittest for " <<

GEN_REQUIRED_AS_FITTEST << " generations!" << endl;

 cout << "It took " << GenerationsRequiredToFindASolution << " generations

to get to the following solution:" << endl << endl;

105

 for (int i=0; i < chromoLength; i++)

 cout << (int)Fittest.bits.at(i) + 1;

 cout << endl << endl << "And its fitness is: ";

 cout << Fittest.fitness <<endl;

 bFound = true;

 }

 if (GenerationsRequiredToFindASolution >

MAX_ALLOWABLE_GENERATIONS)

 {

 cout << "The maximum number of allowed generations has been reached. The

current fittest chromosome is the following:" << endl;

 for (int i=0; i < chromoLength; i++)

 cout << (int)Fittest.bits.at(i) + 1;

 cout << endl << endl << "Its fitness is: ";

 cout << Fittest.fitness << endl;

 cout << "And it has stayed as the fittest chromosome for the last ";

 cout << genAsFittest << " generation";

 cout << (genAsFittest > 1 ? "s." : ".") << endl;

 bFound = true;

 }

106

 // create a new population by first implementing elitism, and then

 // selecting two parents at a time and creating offspring by applying

 // crossover and mutation. Do this until the desired number of offspring

 // have been created.

 //define some temporary storage for the new population we are about to create

 chromo_typ temp[POP_SIZE];

 // IMPLEMENT ELITISM HERE TO GET THE BEST SOLUTIONS TO THE

NEXT GENERATION

 // ELITE_SIZE is the ammount of chromosomes on the elite.

 Elitism(temp, Population, ELITE_SIZE);

 //loop until we have created POP_SIZE - ELITE_SIZE new chromosomes

 int cPop = ELITE_SIZE;

 while (cPop < POP_SIZE)

 {

 // we are going to create the rest of the new population by grabbing

 // members of the old population two at a time via roulette wheel selection.

 string offspring1 = Roulette(TotalFitness, Population);

 string offspring2 = Roulette(TotalFitness, Population);

 //add crossover dependent on the crossover rate

 Crossover(offspring1, offspring2, chromoLength);

 //now mutate dependent on the mutation rate

 Mutate(offspring1);

107

 Mutate(offspring2);

 //add these offspring to the new population. (assigning zero as their

 //fitness scores)

 temp[cPop++] = chromo_typ(offspring1, 0.0f);

 temp[cPop++] = chromo_typ(offspring2, 0.0f);

 }

 //copy temp population into main population array

 for (int i=0; i<POP_SIZE; i++)

 {

 Population[i] = temp[i];

 }

 }

 cout << "\n\n\n";

 /* DEBUG: show all list

 for (int i=0; i<POP_SIZE; i++)

 {

 for (int j=0; j < chromoLength; j++)

 cout << (int)Population[i].bits.at(j);

 cout << " " << Population[i].fitness << " | ";

 }

 cout << "\n\n\n";

 */

108

 // just to see the results

 string pepe;

 cout << "Type a letter and press <ENTER>" << endl;

 cin >> pepe;

 //Memory cleaning

 delete [] AverageTimeByStation;

 delete [] carProportions;

 deleteMatrix(CarsTimePerStation, carsAmmount);

 return 0;

}

//---------------------------------newMatrix---------------------------

//

// This function dynamically allocates a matrix

//

//---

float **newMatrix(int rows, int cols){

 float** storage = new float*[rows];

 if (rows)

 {

 storage[0] = new float[rows * cols];

 for (int i = 1; i < rows; ++i)

 storage[i] = storage[0] + i * cols;

 }

 return storage;

};

109

//------------------------------deleteMatrix---------------------------

//

// Take a guess...

//

//---

void deleteMatrix(float **matrix, int rows){

 if (rows) delete [] matrix[0];

 delete [] matrix;

};

//---------------------------------printBits---------------------------

//

// Take another guess...

//

//---

void printBits(string &bits, int chromoLength){

 for (int i=0; i < chromoLength; i++)

 cout << (int)bits.at(i);

};

//---------------------------------GetRandomBits---

//

// This function returns a string of random As and Bs of the desired length.

// We want the proportion A:B to be MAX_A:MAX_B

//---

string GetRandomBits(int length, int carsAmmount, int* carProportions)

110

{

 //we're gonna define 'model segment' as the subinterval of [0..1]

 //which will correspond to a given i model, in the following way:

 //the model segment for model i, would be

[(i/carsAmmount)..((i+1)/carsAmmount)]

 string bits;

 int *counters;

 float randomNum;

 //temporary Float to find the model segment. It's a float to avoid the integer

 //division in the while (below), since that would always result in 0 otherwise

 float tempFloat;

 // temporary Integer for the indexes, since C doesn't like float indexes, and

 // I don't wanna be casting it all the time

 int tempInt;

 counters = new int[carsAmmount];

 for (int i=0; i<carsAmmount; i++)

 counters[i] = 0;

 for (int i=0; i<length; i++)

 {

 //sorry, but I need to use the random a couple of times, and if I call

 //RANDOM_NUM every time, it will be a different number, so I have to store it.

 randomNum = RANDOM_NUM;

 //no sense to start from 0, since it will be always smaller

 tempFloat = 1.0f;

 //search the model segment

111

 while ((tempFloat++/carsAmmount) < randomNum);

 //the index we look for is the low end of the segment

 //so we need to decrease the index by one. Also, we need

 //to decrease it by one more, since the indexes of an array

 //start with 0, and not with 1

 tempInt = (int) tempFloat - 2;

 //if I hasn't exceded the proportion, I still can add

 //that car model, if not, I need to randomly pick the

 //car model for this chromosome again

 if (counters[tempInt] < carProportions[tempInt])

 {

 bits += tempInt;

 counters[tempInt]++;

 }

 else

 {

 i--;

 }

 };

 //some memory cleaning

 delete [] counters;

 return bits;

}

//---------------------------------AssignFitness--------------------------------------

112

//

// given a string of bits, average expected times by station, and times needed

// to work on each car by station, this function will calculate the fitness

// score for a the given chromosome

//--

float AssignFitness(string bits, int chromoLength, int stationsAmmount, float*

AverageTimes, float** CarsTimePerStation)

{

 float fitScore = 0;

 float **Utility;

 Utility = newMatrix(stationsAmmount,chromoLength);

 /////////////////////////////

 // This should go into a function (maybe called calculateUtility) but...

 // what can we do? There's no time for tidiness this round :)

 // I calculate the first column separatedly to use that after to calculate

 // the utilities recursivelly

 // This is done just to avoid intermediate calculations in the next loop

 for (int i = 0; i < stationsAmmount; i++){

 // I'm multiplying by 1.0 just to make sure Utility get's a float

 Utility[i][0] = (CarsTimePerStation[((int)bits.at(0))][i] * 1.0f) /

AverageTimes[i];

 };

 for (int i = 0; i < stationsAmmount; i++){

 for (int j = 1; j < chromoLength; j++){

113

 // As C++ indexes start with 0, I will use j and j+1 instead of j-1 and j in the

formula

 Utility[i][j] = (Utility[i][j-1] * j / (j+1)) +

((CarsTimePerStation[(int)bits.at(j)][i] * 1.0f) / (AverageTimes[i] * (j+1)));

 }

 }

 //

 /////////////////////

 // Now, the fitness would be the summatory of all the utilities differences

 for (int i = 0; i < stationsAmmount; i++){

 for (int j = 1; j < chromoLength; j++){

 fitScore += fabs(Utility[i][j] - Utility[i][j-1]);

 }

 }

 // some cleaning

 deleteMatrix(Utility, stationsAmmount);

 return fitScore;

}

//------------------------------------Mutate---------------------------------------

//

// Mutates a chromosome's bits dependent on the MUTATION_RATE

//---

114

void Mutate(string &bits)

{

 size_t found;

 //I don't want to calculate this each time I enter the for loop below, and

 //memory is an elephant :)

 int bitsLength = bits.length();

 for (int i=0; i<bitsLength; i++)

 {

 if (RANDOM_NUM < MUTATION_RATE)

 {

 int j = 0;

 int swapBit;

 while (bits.at(j++) == bits.at(i));

 swapBit = bits.at(--j);

 bits.at(j) = bits.at(i);

 bits.at(i) = swapBit;

 }

 }

};

//---------------------------------- Crossover ---------------------------------------

//

// Dependent on the CROSSOVER_RATE this function selects random points along

the

// lenghth of the chromosomes and applies an ADAPTED ordered crossover (OX)

on the parents.

//--

115

void Crossover(string &offspring1, string &offspring2, int chromoLength)

{

 //dependent on the crossover rate

 if (RANDOM_NUM < CROSSOVER_RATE)

 {

 //create random crossover points

 int crossover1 = (int) (RANDOM_NUM * chromoLength);

 int crossover2 = (int) (RANDOM_NUM * chromoLength);

 if (crossover2 < crossover1)

 //swap crossover points with XOR

 {

 crossover1 = crossover1 ^ crossover2;

 crossover2 = crossover1 ^ crossover2;

 crossover1 = crossover1 ^ crossover2;

 }

 //take slices

 string middle1 = offspring1.substr(crossover1, crossover2 - crossover1);

 string middle2 = offspring2.substr(crossover1, crossover2 - crossover1);

 string tempoff1, tempoff2;

 string midtemp1 = middle1, midtemp2 = middle2;

 // I'll go through the parent2, checking in order if the gene is in the slice

 // picked from parent1. If so, I will avoid storing that gene, otherwise it

 // will be added to the genes that will form part of offspring1

 tempoff1.clear();

116

 size_t found;

 for (int i = 0; i < chromoLength; i++)

 {

 found = midtemp1.find(offspring2[i]);

 if (found!=string::npos)

 {

 midtemp1.erase(found,1);

 }

 else

 {

 tempoff1 += offspring2[i];

 }

 }

 // idem

 tempoff2.clear();

 for (int i = 0; i < chromoLength; i++)

 {

 found = midtemp2.find(offspring1[i]);

 if (found!=string::npos)

 {

 midtemp2.erase(found,1);

 }

 else

 {

 tempoff2 += offspring1[i];

 }

 }

117

 offspring1 = tempoff2.substr(0, crossover1) + middle2 +

tempoff2.substr(crossover1);

 offspring2 = tempoff1.substr(0, crossover1) + middle1 +

tempoff1.substr(crossover1);

 }

}

//--------------------------------Roulette---

//

// selects a chromosome from the population via roulette wheel selection

//--

string Roulette(float total_fitness, chromo_typ* Population)

{

 //generate a random number between 0 & total fitness count

 float Slice = (float)(RANDOM_NUM * total_fitness);

 //go through the chromosones adding up the fitness so far

 float FitnessSoFar = 0.0f;

 for (int i=0; i<POP_SIZE; i++)

 {

 FitnessSoFar += Population[i].fitness;

 //if the fitness so far > random number return the chromo at this point

 if (FitnessSoFar >= Slice)

118

 return Population[i].bits;

 }

 return "";

}

//--------------------------------Elitism---

//

// selects the fitest chromosomes from the Population

//--

void Elitism(chromo_typ* Elite, chromo_typ* Population, int eliteSize){

 qsort(Population, POP_SIZE, sizeof(chromo_typ), compareChromo);

 for (int i = 0; i < eliteSize; i++)

 Elite[i] = chromo_typ(Population[i].bits, Population[i].fitness);

}

//--------------------------------compareChromo---

//

// chromosome comparison function for qsort, based on fitness

//--

int compareChromo(const void* elem1, const void* elem2){

 if (((chromo_typ*)elem1)->fitness > ((chromo_typ*)elem2)->fitness)

 return -1;

 else

 return 1;

 }

