
 

 

 

 

MIXED-MODEL ASSEMBLY LINE DESIGN AND SEQUENCING IN A CAR 

BODY SHOP  

 

 

 

 

 

 

 

 

 

 

 

 

ÖZGÜN AKKOL 

 

 

 

 

 

 

 

 

 

 

 

JANUARY 2014 





 

 

MIXED-MODEL ASSEMBLY LINE DESIGN AND SEQUENCING IN A CAR 

BODY SHOP 

 

 

 

 

 

A THESIS SUBMITTED TO 

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 

MIDDLE EAST TECHNICAL UNIVERSITY 

 

 

 

 

 

BY 

 

 

 

 

 

ÖZGÜN AKKOL 

 

 

 

 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS  

FOR  

THE DEGREE OF MASTER OF SCIENCE 

IN 

INDUSTRIAL ENGINEERING 

 

 

 

 

 

JANUARY 2014 



 

 

 



 

iii 

 
 

Approval of the thesis: 

 

 

MIXED-MODEL ASSEMBLY LINE DESIGN AND SEQUENCING IN A CAR 

BODY SHOP 

 

 

submitted by ÖZGÜN AKKOL in partial fulfillment of the requirements for the 

degree of Master of Science in Industrial Engineering Department, Middle East 

Technical University by, 

 

Prof. Dr. Canan Özgen 

Dean, Graduate School of Natural and Applied Sciences 

 

Prof. Dr. Murat Köksalan  

Head of Department, Industrial Engineering 

 

Assoc. Prof. Dr. Sedef Meral 

Supervisor, Industrial Engineering Department, METU 

 

Examining Committee Members  

 

Assoc. Prof. Dr. Canan Sepil   

Industrial Engineering Department, METU 

 

Assoc. Prof. Dr. Sedef Meral             

Industrial Engineering Department, METU 

 

Assoc. Prof. Dr. Ferda Can Çetinkaya  

Industrial Engineering Department, Çankaya U. 

 

Assist. Prof. Dr. Sakine Batun   

Industrial Engineering Department, METU 

 

Şakir Karakaya (M.S.)            

Ministry of Science, Industry and Technology 

 

 

 

Date: 

 

 



 

iv 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I hereby declare that all information in this document has been obtained and 

presented in accordance with academic rules and ethical conduct. I also declare 

that, as required by these rules and conduct, I have fully cited and referenced 

all material and results that are not original to this work. 

 

 

 

                Name, Last name: Özgün AKKOL 

       

                Signature              : 

 

 



 

v 

 
 

 

 

ABSTRACT 

 

 

MIXED-MODEL ASSEMBLY LINE DESIGN AND SEQUENCING 

 IN A CAR BODY SHOP 

 

 

 

Akkol, Özgün 

M.Sc., Department of Industrial Engineering 

Supervisor: Assoc. Prof. Dr. Sedef Meral 

 

January 2014, 118 pages 

 

Car manufacturing is usually in the form an assembly line composed of three 

consecutive shops: body welding and construction, painting and finally the final 

assembly shop. The first stage in car manufacturing that is the body shop consists of 

several assembly lines in parallel each of which may have several sub-lines feeding 

them.   Assembly line design and sequencing is therefore the heart of manufacturing 

a car which may have several models. Our approach mainly consists of two phases: 

the design phase and the sequencing phase. In the design phase of the approach, we 

propose an integer-programming-formulation-based robust optimization model 

considering the mixed-model nature of the lines. The objective of the model is the 

minimization of the sum of the investment and variable costs of all the assembly 

lines in the design and operation of the car body shop only, over the life cycle of the 

reference car, given the forecasted annual demand of the car and its several models, 

the corresponding tact time, and the available types of stations making up the lines.  

We obtain the optimum designs of the lines via the robust optimization model using 

the software GAMS, which is an extension of a single model case of the same 
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environment. We observe lower total costs for all the lines than the total costs 

obtained for the single-model approach. 

In the second phase of our approach, we develop a genetic algorithm for the 

sequencing problem. The objective of mixed-model sequencing in the genetic 

algorithm is to have a smooth line, thus to have level utilization rates over time. The 

genetic algorithm provides the best fitness value for several test problems in very 

short computational times, when compared against the solutions obtained by the total 

enumeration method.  

 

Keywords: car body manufacturing, mixed-model sequencing, robust optimization, 

genetic algorithms 

 

 

 

 

 



 

vii 

 
 

 

 

ÖZ 

 

 

OTOMOBİL GÖVDE ÜRETİM HATLARINDA KARIŞIK MODEL HAT 

TASARIMI VE ÇİZELGELEMESİ 

 

 

 

Akkol, Özgün 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Sedef Meral 

 

Ocak 2014, 118 sayfa 

 

Otomobil üretimi, genellikle ardışık üç atölyeden oluşan montaj hattı şeklindedir: 

gövde kaynak ve yapımı, boyahane ve son olarak da nihai montaj hattı. Otomobil 

üretiminde gövde atölyesi olan birinci aşama birçok parallel montaj hattından oluşur 

ve herbir montaj hattını besleyen alt-montaj hatları vardır.  Bundan dolayı montaj 

hattı tasarımı ve model sıralama, birçok modeli olan bir otomobilin üretiminin 

candamarıdır.  Yaklaşımımız temel olarak iki evreden oluşur: tasarım evresi ve 

sıralama evresi. Yaklaşımın tasarım evresinde, hatların karışık-modelli doğasını 

dikkate alarak, tamsayılı programlama esaslı bir “dayanıklı optimizasyon” modeli 

önermekteyiz.  Modelin amacı; hatları oluşturacak uygun istasyon tipleri, referans bir 

otomobil ve onun değişik modelleri için yıllık talep tahmini ile yıllık talebe karşılık 

gelen takt süresinin verili olduğu durumda, otomobilin sadece gövde üretim 

hatlarında yaşam dönemi boyunca oluşacak yatırım ve işletme maliyetlerinin 

toplamını minimize etmektir.    Hatların optimal tasarımlarını; aynı üretim çevresinde 

tek-modelli durumun devamı niteliğinde olan ve GAMS yazılımı ile kodlanan 

dayanıklı optimizasyon modeli ile elde etmekteyiz. Tüm hatlar için, tek-modelli 



 

viii 

 
 

yaklaşıma göre daha düşük toplam maliyetli sonuçlar elde ettiğimizi 

gözlemlemekteyiz. 

 

Yaklaşımımızın ikinci evresinde ise sıralama problemi için bir genetik algoritma 

önermekteyiz. Genetik algoritmadaki karışık-model sıralamanın amacı; zaman içinde 

düzgün bir hat ile çalışabilmek, ve böylece hattı oluşturan istasyonlarda eş kullanım 

oranlarına ulaşabilmektir. Genetik algoritma; çeşitli test problemleri için, toplam 

birerleme yöntemi ile elde edilen sonuçlar ile karşılaştırıldığında, en iyi uygunluk 

değerini çok kısa çözüm sürelerinde sağlamaktadır.      

 

Anahtar Kelimeler: otomobil gövde üretimi, karışık-model sıralama, sağlam 

optimizasyon, genetic algoritmalar 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

Assembly line design and sequencing is the heart of manufacturing a car. Even a 

slight decrease in the cost of manufacturing may account for much more, given the 

high number of cars to be manufactured. In the light of this information, many 

concepts were thought of and analyzed.  The major difference between today’s 

assembly lines and the assembly lines that were first built is that nowadays lots of 

options are selectable by the buyer (like manual or automatic shift, sunroof or no). 

Considering these several options, even millions of different models of a certain car 

are produced. To cope with this highly diversified product portfolio without 

jeopardizing the benefits of an efficient flow-production, the so-called mixed-model 

assembly lines are utilized in car manufacturing.  

 

Our problem of line design is more involved than a simple assembly line balancing. 

We address the assembly line design problem in the car body shop so as to obtain the 

lines that will result in the minimum total cost of manufacturing, including the 

investment and installation costs, over the whole life cycle of the reference car. 

 

Setup times and therefore costs should have been reduced significantly in a mixed-

model assembly line by the use of flexible machines and workers, justifying the 

assembly of several models of the same product in batches of one unit only. However 

using the mixed-model lines, the problem of model sequencing arises, since the 
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sequence of several models of the product assembled should be determined in a 

planning horizon, like a shift or a day. 

 

There are three stages of the car manufacturing process: main body construction, 

painting and lastly final assembly. Usually the main body production is the stage that 

causes most of the bottlenecks in car manufacturing. This is one of the motivations 

why we focus on the main body production in this study.  

 

As the lives of products decrease and new models are introduced faster to the market, 

it is clear that a reconfigurable line is needed to deal with many kinds of models and 

product variety. Because of this, and more importantly, workers’ health and safety 

considerations, hybrid lines consisting of both robotic and manual stations are 

increasingly utilized in car industry. That is why the use of robots is increasing in 

stages like the main body welding and construction. However, there is still work to 

be done in utilizing the robots in stations in an assembly line in order to be more cost 

effective, safer in some deleterious tasks, and more responsive to demand changes as 

well.  

 

Main car body production consists of assembly areas that are connected 

automatically to each other. The assembly areas, usually arranged in lines, consist of 

stations where a number of robots and/or workers work together simultaneously on a 

subassembly of the body to assemble many parts/components together. 

 

The assembly line design problem consists of the following sub-problems: 

 The number of stations and their types (robotic/manual) for each subassembly 

line separately 

 The assignment of tasks to stations  
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 The placement of safety spaces and buffer spaces on the whole line, 

considering all sub-lines and assembly lines 

 

We focus on the first two sub-problems in the line design part of our study. 

 

In a car body shop, there are several assembly lines feeding the main assembly line 

where the car body is fully erected and then transferred to the painting shop. We 

obtain the best line designs for the subassemblies separately in the body shop with 

reference to a domestic car manufacturing company. We extend the mathematical 

programming model that was already developed for the single-model case for the car 

manufacturing company, so as to take into account the mixed-model nature of the 

assembly lines. The mathematical model we propose is an integer programming 

based robust optimization model which is coded in GAMS. By means of this model, 

we intend to obtain a robust design for the car body shop considering all the models 

of a certain light commercial vehicle. We obtain line designs with less total costs 

than the single-model approach. 

 

After the design problem is solved, we consider the problem of sequencing the 

models of the car in the car body shop. Sequencing in a mixed-model assembly line 

is an NP-hard problem. In this study, we attempt to solve our mixed-model 

sequencing problem in the car body shop using a Genetic Algorithm approach that 

aims to minimize the differences of utilizations of work stations over time. The 

proposed genetic algorithm (GA) provides the optimum sequence for most of the test 

problem instances the optimum sequences of which could have been obtained via a 

total enumeration method. 

 

In the following chapters, the details of our study are presented, following the below 

outline. 
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Chapter 2 defines our problem and introduces our approach to the problem. 

 

In Chapter 3, a review of literature on assembly line design is given, starting with the 

classification of the objectives of assembly lines. After the review of assembly line 

design studies, mixed-model sequencing literature is reviewed in the second part of 

Chapter 3; while in the third part of the chapter, we discuss the literature on robotic 

lines. In the fourth part of the chapter, GA literature is discussed since we solve the 

sequencing problem with a GA approach. 

 

In Chapter 4, our robust optimization approach to the line design problem is 

presented. The environment of the problem, the integer programming model, its 

parameters, variables and constraints are explained in detail. Solutions obtained are 

discussed finally in this chapter. 

 

In Chapter 5, we continue with the second phase of our solution approach which is 

the sequencing problem. Since we solve the sequencing problem with a GA, Genetic 

Algorithms are discussed in detail. After the review of some possible choices for the 

chromosome representation, initial population generation, crossover and mutation 

operators, replacement strategy, termination criteria, and some additional procedures 

like elitism, the reasons of our own choices are given. Our GA algorithm is discussed 

presenting its pseudo code. Then tuning of the GA parameters is explained. The test 

problems generated for the GA approach are defined. The performance of our GA 

approach is evaluated based on the results of the test problems. 

 

Chapter 6 concludes the study by the highlights of the study and gives some 

suggestions for further research. 
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CHAPTER 2 

 

 

 

PROBLEM DEFINITION 

 

 

Our problem is in the context of manufacturing a car body in an efficient way using 

both robotic stations and manual stations together in a shop. Car manufacturing 

consists of three main stages in succession: body assembly, painting and then final 

assembly. However, most of the bottlenecks in car manufacturing occur in body 

shops rather than the paint and the final assembly stages; and bottlenecks increase the 

cost of manufacturing considerably, hence we focus on the body shop that is the first 

stage in car manufacturing.  

 

Car body manufacturing is a flow shop type manufacturing with several assembly 

lines laid out in parallel feeding the final body assembly line where the car body is 

installed.  Each assembly line corresponds to a certain subassembly of the car body. 

The assembly lines are fed at some stations of the line by some sub-assembly lines 

that produce some parts of the subassembly.  

 

The assembly charts for all the parts and subassemblies making up the car body are 

known at the design stage of the car body shop. Based on the assembly charts, the 

precedence relationship diagrams of the parts and subassemblies’ tasks are generated 

which are the main inputs at the design stage of the shop. The tasks are mostly spot 

welding operations in the body shop, while only a few tasks are of other types, like 
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tucker, nut assembly and pasting. The tasks which are not welding are defined in 

terms of the equivalent number of spot welds.   

The available types of robots and other equipment needed in all tasks in the assembly 

of the car body are also known in advance at the design phase of the shop. Similarly, 

the capabilities of the robots are known; that is, a robot can perform a certain set of 

tasks in known standard times. There are some precedence relations among the robot 

types in their successive ordering on the assembly line which are also known at the 

design phase. 

 

The objective in the design of the car body shop is the minimization of the 

discounted total cost of manufacturing at the rate of the yearly demand assumed over 

the expected lifetime of the car (which is a lightweight commercial car in our case).  

The total cost consists of the investment cost that includes the purchasing cost and 

installation cost of all robots and equipment used at the stations plus the cost of 

manufacturing with the exception of material cost.  

 

In this study, we propose an approach for the design of a car body shop with 

reference to a real life case which is the manufacturing of a lightweight commercial 

car in a local car manufacturing company. The lightweight commercial car under 

consideration is manufactured in two different models in the car body shop.  

 

In 2011 a research team at METU-IE had developed an approach for the design of 

the car body shop for the specific lightweight commercial car under consideration 

which is based on an integer programming formulation (Barutçuoğlu et al., 2011).  In 

their formulation the mixed-model nature of the shop was ignored; and the lines in 

the car body shop were all designed taking into account the model with the higher 

work content in terms of tasks, as if the line being designed were of a single-model 

type.  In this study we address the same problem of the car body shop design, taking 
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into account the mixed-model nature of the shop.  Hence we extend the former 

approach of the METU-IE research team to the mixed-model case so as to obtain a 

robust design for the body shop. In the robust design approach we propose, we try to 

minimize the difference between the cost of producing the car model on the line 

specifically designed for it and the cost of producing the car model on the line 

designed to produce all models of the car; and this difference is defined as the 

‘regret’ function. We demonstrate our design approach for the reference lightweight 

commercial car and the body shop where its body is constructed. 

 

Having obtained the car body shop design for the car under consideration, we then 

propose an approach for sequencing the several models of the car in the shop. But in 

sequencing the models of the car in the body shop, we do not consider the other 

following stage of car manufacturing, which is painting.  Hence, the sequencing 

problem we address in this study is not specific to car body manufacturing; it is a 

generic mixed-model sequencing problem.  Therefore the approach we develop can 

be adopted in any mixed-model assembly environment with the objective of 

minimizing the variations in stations’ utilizations over time.  
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CHAPTER 3 

 

 

LITERATURE REVIEW 

 

 

 

3.1 Assembly Line Design and Balancing 

Ghosh and Gagnon (1989), in their review paper, present the table below (Table 1) 

for the classification and objectives of the assembly line problems, as studied in the 

literature. 

 

SMD and SMS are single model lines with deterministic and stochastic task times, 

respectively; while MMD and MMS are mixed model lines with deterministic and 

stochastic task times, respectively.  

 

For mixed model deterministic (MMD) problems, mostly priority ranking and 

assignment methods are used. The heuristic techniques of Nottingham University 

Line Sequencing Program (NULISP), Computer Method for Sequencing Operations 

for Assembly Lines (COMSOAL) and Computer Aided Line Balancing (CALB), 

address many of the factors of any ALB software available and, in all practicality, 

remain the most versatile, computationally reasonable (and user-friendly) techniques 

available for practical use. Although numerous improvements in optimization 

techniques and computational capabilities have been made over the 30 years of ALB 

research and still continue, heuristic-based programs such as COMSOAL, CALB, 

Mixed Model Assembly Line Balancing (MALB), NULISP and Multiple Solutions 
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Technique (MUST) appear to offer the only computationally efficient and versatile 

means for addressing real-world ALB situations. 

 

Table 1 Objective criteria for the assembly line problems 

 

 

We use an integer programming approach to design the assembly line since our 

conditions warrant a deterministic case and our objective is cost minimization given 

the tact time or the cycle time. Our problem is modeled using an economic objective 

criterion rather than a technical criterion. However, there are fewer papers using the 
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economic objective criteria, although cost seems to be the most important criterion to 

address most of the time. 

 

Since we deal with mixed-model situations rather than single model situations, we 

look for the relevant articles on this topic. This approach aims at avoiding/ 

minimizing sequence-dependent work overload based on a detailed scheduling which 

explicitly takes operation times, worker movements, station borders and other 

operational characteristics of the line into account. 

 

Thomopoulos (1967) aims to minimize the total inefficiency costs. If a penalty cost 

per minute is associated with each inefficiency at each station, it is possible to 

compute the total cost of inefficiencies resulting from scheduling a unit of a given 

model in the sequence. He models the problem of balancing and sequencing and 

illustrates it by using data from the automotive industry. He observes that single 

model line balancing techniques are adaptable to mixed model schedules. Also, 

sequencing can be used to increase the efficiency of mixed model assembly lines. 

Even though optimality is not assured, their analysis indicates that the results are 

close to optimum. 

 

In their article, Gökçen and Erel (1997) consider a goal programming approach with 

different goals and different priority levels which makes the proposed model have a 

considerable amount of flexibility for the decision maker, since several conflicting 

goals can be simultaneously considered. They develop their model considering a 

single model ALB approach. Their model is the first multiple criteria decision 

making approach to the mixed model problem. They find that the solution time is 

highly sensitive to the `number of stations` goal. 
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Bukchin (1998), in his article, examines which measures work better for throughput 

of a mixed model assembly line in a JIT environment: `Smoothed station’ measure, 

`Minimum idle time’ measure, `Station CV’ measure, `Bottleneck’ measure or 

`Model variability’ measure. In `smoothed station` measure, the objective of the 

balancing procedure is to minimize the fluctuation of assembly times required by 

each model at different stations during the shift. In `minimum idle time` measure, the 

objective of the balancing procedure is to decrease total idle time during a shift. In 

`station CV` measure, the objective function is to minimize the sum of each station’s 

coefficient of variation, as a performance measure for throughput. `Bottleneck` 

measure deals with an approximation of line cycle time for a CONWIP (CONstant 

WIP) controlled production system. The approximation is based on the distribution 

of the maximum assembly time over all stations. The `model variability measure` is a 

weighted sum of the variabilities of models. This study is needed, because an 

objective is not always clear and it is important to know the validity of the 

performance criterion used. As a result, the `bottleneck’ measure is found to perform 

better than the other measures in 12 of the 15 cases. Since each case represents a 

combination of line configuration and operating environment, the conclusion is that 

the relative quality of the ‘bottleneck’ measure is fairly robust to changes in these 

factors. ‘Model variability’ and ‘smoothed station’ yield the next best results. He also 

finds out that the absolute quality of all the measures examined decreases with an 

increase of line length. 

 

Amen (1998) makes a survey of heuristic methods for cost-oriented assembly line 

balancing. He also presents a new priority rule called ‘best change of idle costs’. This 

priority rule differs from the existent priority rules, because it is the only one which 

considers that production cost is the result of both production time and cost rates. 

Furthermore a new sophisticated method called ‘exact solution of sliding problem 

windows’ is presented.  
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Amen (2000) proposes an exact method for cost-oriented assembly line balancing. 

He shows that by loading the stations maximally the cost-oriented optimum can be 

missed. Using a variety of dominance criteria an exact backtracking method is 

presented. The dominance criteria are the global lower bound for the costs per 

product unit, the last station (if the sum of the durations of the unassigned tasks is not 

longer than the cycle time, the considered station is the last one), the establishment of 

a station with no idle costs, the two stations rule (a new station cannot be established 

if the sum of the durations of the operations in the current and the foregoing station 

does not exceed the cycle time), the potential dominance (a new station cannot be 

established if there exists an assignable task with a cost rate not higher than the 

calculated cost rate of the station under current consideration), the local lower bound 

for the costs per product unit and costs of all assigned tasks (a new station cannot be 

established if the costs per product unit of the current partial solution (i.e. the set of 

all assigned tasks) are not lower than those of the same set of tasks allocated to 

stations in a different manner earlier in the enumeration process). The backtracking 

method with these dominance criteria works well for small and medium-sized 

problem instances as it finds optimal solutions within an acceptable run time. 

 

Bradley and Blossom (2002) consider a make-to-order (MTO) assembly line using 

product-mix flexibility. They propose a process to increase product mix flexibility on 

the assembly line through which the current demands of the marketplace can be 

satisfied. They also compute an upper bound on the amount of additional capacity 

that is required to implement MTO production. They show that MTO production and 

quick fulfillment are feasible in an automotive assembly plant although efficiency 

and cost degrade only slightly. 
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In their article, Rekiek et al. (2002) deal with assembly line design. They consider 

both cases of the given cycle times (SALBP-1) and the fixed number of workstations 

(SALBP-2). They see that exact methods are mainly based on branch and bound 

(B&B) algorithms. They notice that, despite the large number of works on assembly 

line design and balancing, algorithms in the literature are not heavily used by 

industrial companies, since, despite their effectiveness and the ease of their use, they 

use little data and suffer from substantial loss of information, and hence solving 

fictitious rather than industrial problems. 

 

Spieckermann et al. (2004) consider a sequential ordering problem (SOP) in 

automotive paint shops which resembles our problem, since they are also trying to 

sequence car models. However, there is more than one lane that they consider, so the 

problem differs from ours. They attempt to find a method to find the best lane to 

direct a new arriving car. They show that important aspects of the problem can be 

modelled as the well-known SOP, and a branch and bound solution approach that 

exploits the main problem characteristics works well. 

 

In their article Emde et al. (2008) try different objectives to see which of the 

smoothing objectives work better averaged over all problem instances. There are 

three alternatives to integrate the line balancing and sequencing problems. 

Successive planning, by executing the planning in two independent steps; 

simultaneous planning, by going back and forth between the two stages and adjusting 

accordingly; and anticipation, which aims at smoothing the workload per station over 

all models by using the forecasts for the models. Their first conclusion is that 

(irrespective of the specific criterion applied) workload smoothing considerably 

reduces short-term work overload compared to successive planning, where ALB 

disregards smoothing aspects. They find out that no criterion delivers the best 

performance all the time. However, they can give some clear guidelines. Vertical 
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balancing, while still effective, is consistently less well suited to lowering work 

overloads than horizontal balancing. Concerning distance measures, exceedance 

criterion seems to be just a bit better than Manhattan and Euclidian distances which 

in turn is considerably better than maximum divergence. Finally they find out that 

both increasing product variety and forecast errors enlarge short-term work overload 

which is quite intuitive.  

 

Boysen et al. (2009) survey articles about mixed model sequencing, car sequencing 

and level scheduling which are three major planning approaches in manufacturing. 

Mixed model sequencing aims at avoiding/minimizing sequence-dependent work 

overload based on detailed scheduling. Car sequencing is used when it is hard to 

collect much data. Level scheduling is used to find sequences in line with the JIT-

philosophy. A hierarchical classification scheme is developed, which covers all 

proposed problem extensions in a systematic manner. The classification provides 

insights in the status quo of research in each field, also allows a comparison of the 

different approaches with regard to the level of planning detail and the actual 

problem characteristics considered. They conclude that there is a need for both 

theoretical and empirical results concerning the relationship among the three 

approaches and the resulting consequences for business practice. 

 

In their article, Rajput et al. (2010) aim to minimize the average costs of holding, 

ordering, setup and backordering; while their second objective is to keep the constant 

consumption of each part in the assembly line. They present a cost model and 

compare flexible assembly line (FAL) and mixed-model assembly line (MMAL). 

This is the first study to compare FAL and MMAL. They find that merits go to 

MMAL, because MMAL is not dependent on setup time and more models produce 

on one single line. They also observe that the best sequence pattern and its job order, 

depends on production and demand quantities. The best sequence yields a continued 
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consumption of parts and minimize the overall cost. Maximum cycle time is also a 

factor for higher cost. Constant demand and random demand were both set in 

separate occasions, according to the planning horizon. It is also notified that constant 

demand induces for higher cost than random demand. 

 

In their article, Gujjula et al. (2011) aim to minimize utility work which is the 

amount of unfinished work caused by the moving conveyor belt. They propose a 

heuristic that is derived from Vogel’s approximation method for transportation 

planning. The heuristic is able to handle large and supposedly difficult problem 

instances.  In the end they show that the proposed heuristic significantly outperforms 

priority rule-based methods and requires only reasonable computational effort. 

However, it remains an open question whether performance can be retained if the 

heuristic is applied to sequencing problems with different or multiple objectives or if 

it can be adopted to solve related sequencing problems such as level scheduling or 

sequencing models on a line with limited flexibility. 

 

Since our assembly lines have both manual and robotic stations, and thus our line 

designs include robots as well, we review some articles regarding robotic assembly 

line design. 

 

We use an integer programming approach to design the assembly line since our 

conditions warrant a deterministic case and our objective is cost minimization given 

the cycle time. Our problem is modeled using an economic objective criteria rather 

than a technical criterion. However, there are fewer papers using the economic 

objective criteria, although cost is the most important criterion to address most of the 

time. 
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Since we deal with mixed-model situations rather than single model situations, we 

look at the relevant articles on this topic. This approach aims at avoiding/minimizing 

sequence-dependent work overload based on a detailed scheduling which explicitly 

takes operation times, worker movements, station borders and other operational 

characteristics of the line into account. 

 

3.2 Robotic Assembly Lines  

 

Some of the previous mentioned articles also used robotic assembly lines but the 

followings are the ones we examined solely to elaborate more on the robotic 

assembly lines.  

 

Nicosia et al. (2002) consider the problem of assigning tasks to an ordered sequence 

of non-identical workstations under the constraints of precedence relations and a 

given cycle time. The objective is to minimize the cost of the workstations. This 

formulation is very similar to the robotic assembly line balancing (rALB) problem. A 

dynamic programming algorithm is developed for the problem, where several 

fathoming rules are used to reduce the number of states. The authors classify 

instances of the problem that are polynomially solvable. They show that minimizing 

the number of robots does not necessarily minimize the cost. Their model gives an 

efficient way to meet production requirements by taking into account the trade-off 

between cost of robots and performance. They show that the most significant 

algorithmic improvements made for assembly line balancing problem in the past 30 

years can be extended to deal with assembly line design problem. Even if for general 

precedence graphs the problem is NP-complete, they show that a DP algorithm finds 

an optimal solution in polynomial time when the assembly graph width is fixed. 
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In their article, Kim and Park (2007) develop an integer programming formulation 

for robotic assembly line balancing problem and a strong cutting plane algorithm to 

solve it. They have special constraints because of the robotic assembly line like the 

limited space to store the parts and the tool capacity of robots. Moreover, the 

procedure gives a lower bound on the optimal solution against which the quality of 

the current best solution can be measured. 

 

We use a genetic algorithm approach to solve our assembly line sequencing problem, 

hence we review the related literature for the genetic algorithms for mixed model 

sequencing below. 

 

3.3 Genetic Algorithms for Mixed Model Sequencing  

  

In their article Akgündüz and Tunalı (2011) review current applications of genetic 

algorithms in mixed model assembly line sequencing. They observe that more than 

half of the articles surveyed deal with the mixed model assembly line sequencing 

problem only, assuming that the line balancing problem was already solved. The 

general tendency to generate the initial population is observed to be randomization. 

The majority of the articles (i.e. 10 out of 13) have used elitist strategies to preserve 

the best individuals. As crossover and mutation operators, the majority of the 

researchers have preferred order crossover and inversion, respectively. When used 

together, these two operators have been shown to work successfully for mixed model 

assembly line sequencing. 

 

Norman and Bean (1994) give an example of a genetic algorithm for scheduling 

problems. They provide the algorithm for an environment where there are ready 

times, due dates, multiple non-identical machines, routing flexibility for jobs, 

sequence dependent setup times, tooling constraints and has a job shop or open shop 
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structure. Their aim is to minimize a combination of tardiness and makespan. They 

present their c code and show all the steps of a genetic algorithm and give basic 

definitions. They set their parameters and decide on their crossover and mutation 

techniques. They also give an example on how to solve a problem.  

 

Levitin et al. (2004) propose a genetic algorithm for robotic assembly line balancing. 

They are trying to allocate equal amounts of work to the stations on the line while 

assigning the most efficient robot type from the given set of available robots to each 

workstation. They introduce both a recursive and a consecutive assignment 

procedure. They use the fragment reordering crossover and swap mutation operator. 

The consecutive assignment procedure finds better solutions but runs longer. The GA 

developed is shown to be consistent and robust. It achieves solutions of higher 

quality than a Branch and Bound algorithm, and solves large and complex problems 

very efficiently. 

 

Haq et al. (2004) introduce a hybrid genetic algorithm approach to mixed-model 

assembly line balancing. They obtain an initial solution by using the modified ranked 

positional weight method and include it in the initial population of the genetic 

algorithm. Using this approach, they aim to reduce the search space, thereby 

reducing the search time. They observe that the hybrid algorithm finds the solution 

faster than the pure GA. 

 

In their article Yu et al. (2005) use a multi objective genetic algorithm to schedule an 

assembly line. They propose a multi-objective genetic algorithm (MOGA), to 

research the dispatching problem with two goals: leveling the part usage rates and 

minimizing the makespan, and solving the multi-product dispatching problem of 

assembly systems. They use a pareto filtering mechanism within the genetic 

algorithm to eliminate non-dominate chromosomes. They use order crossover to 
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avoid meaningless solutions and inverse mutation operator (INV operator). They find 

that the proposed MOGA works well through an example. 

 

In their article, Guo et al. (2006) propose a genetic algorithm based algorithm for 

scheduling flexible assembly lines. They use a bi-level genetic algorithm with 

modified crossover and mutation operators. GA-1 generates the optimal operation 

assignment in three different scheduling statuses of the two-order scheduling 

problem, where GA-2 determines the optimal starting time of each scheduling status 

on the basis of the operation assignment from GA-1. Their Experimental results 

demonstrate that the algorithm can solve the two-order scheduling problem 

effectively. 

 

Kleeman and Lamont (2007) show how to solve flow-shop, job-shop, and combined 

scheduling problems using multi-objective evolutionary algorithm with fixed and 

variable length chromosomes. They introduce a new category of scheduling 

problems that is quite common in real world problems that is a mixture of flow-shop 

and job-shop which they call the multi-component scheduling problem and present 

examples of the problem. Then they solve one of these examples, the engine 

maintenance scheduling problem. Also, chromosome representations and various 

crossover and mutation operators are presented. A variable length chromosome is 

devised in an effort to reduce the search space and is observed to perform much 

better than the baseline when the search space is large. 

 

Wang et al. (2008) propose a hybrid algorithm to schedule mixed-model assembly 

lines with cost objectives. They use a genetic algorithm based approach. The 

modified order crossover (modOX) operator and INV mutation operator are used. 

The computational results show that the hybrid algorithm can always converge to the 
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final stable state within a smaller number of generations than the GA and also the 

solution quality is better, especially in the case of large-sized problems.  

 

In their article, Gao et al. (2009) present a type II robotic assembly line balancing 

(rALB-II) problem, in which the assembly tasks have to be assigned to workstations, 

and each workstation needs to select one of the available robots to process the 

assigned tasks with the objective of minimum cycle time. An innovative genetic 

algorithm (GA) hybridized with local search is proposed for the problem. They use a 

mixed order crossover which consists of two different crossover methods: Order 

Crossover (OX) and Partial-Mapped Crossover (PMX). They employ an allele-based 

mutation system. They conclude that the hybrid algorithm works better in especially 

large-size problems. 

 

In their article Hwang and Katayama (2010) aim to maximize the line efficiency and 

minimize the variance of workload which is minimizing the distance between 

average and actual workload. They integrate the procedure of balancing and 

sequencing in mixed-model assembly lines. They develop an amelioration structure 

with genetic algorithm (ASGA). They use a weight mapping crossover (WMX) and 

swap mutation operator. They find out that ASGA is working better than a standard 

GA. Moreover, they conclude that a U-shaped assembly line works better than a 

straight assembly line. 

 

Deep and Mebrahtu (2011) consider new variations of order crossover for travelling 

salesman problem. The travelling salesman problem is the most common problem 

the genetic algorithms are trying to solve. Probably because of that, new ideas are 

first directed to the travelling salesman problem. They propose three new variations 

to the OX operator and find that the existing variations work worse than the new 
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variants and encourage the use of the new variations in the future works in genetic 

problems.  
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CHAPTER 4 

 

 

 

AN APPROACH FOR THE ROBUST DESIGN OF THE MIXED MODEL 

ASSEMBLY LINES  

 

 

4.1 Introduction 

In this study we address two problems in the manufacture of the car bodies in the 

automotive industry. The first problem is the design of the car body shop at the 

strategical level, while the second (following) problem is the sequencing of several 

models of the car body on the production/assembly lines at the operational level that 

is discussed in Chapter 5. 

In this chapter, we discuss the first problem -strategical one- and propose the solution 

approach specifically developed based on the real life case of a local car 

manufacturer. The car body shop being designed and studied in the development of 

our solution approach is dedicated to a certain light commercial car which has two 

types of models at the car body level. 
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4.2 The Case of the Car Body Shop 

Currently the car body shop of the light commercial car has already been designed. 

In the car body shop we refer to in our study and in many of the car body shops as 

well; many sub-lines each making up a different subassembly, like sides, floor, roof, 

mobile parts (doors, etc.) for the car body, are matched to make up the whole car 

body. Hence many parallel sub-lines are connected to the final body assembly line 

where the whole body is constructed and then sent to the paint shop.  

The car body shop is therefore a flow shop but with many parallel sub-lines feeding 

the final body assembly line just before the paint shop. A sub-line is also a flow line 

with several short lines connected to some stations of the sub-line.  Each line in the 

body shop (either an assembly line or a sub-line) is in fact an assembly area; and 

these assembly areas are connected to each other mostly by automatic materials 

handling systems or by manual handling carried out by the workers. An assembly 

area is an area which contains several robotic or manual cells called stations, while a 

station includes usually more than one worker or robot plus some tooling that work 

simultaneously on a part or a subassembly of the car body.  

In the stations in the car body shop, several parts/components are assembled together 

by several welding operations (tasks) which are manual or robotic spot welding and 

gas metal arc welding.  Spot welds are grouped based on their position on the car 

body and the grouped spot welds are made one by one in succession by a single 

welding robot.  Basically there are two types of spot welds: spot welds for attaching 

a new part on the subassembly and densification type spot welds that are also called 

respots. In densification type spot welding spot welds are made on the existing 

geometry of the subassembly; a new part is not attached onto the existing 

subassembly, the aim of respots is just to make the assembly stronger in the joining 

of parts together. A worker or a robot completes a group or groups of spot welds or 
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densification spot welds in one cycle. In addition to spot welding there are other 

tasks carried out at the stations either by the workers manually or by robots which are 

basically tucker, nut , screw welding and paste operations. These operations require 

additional tooling that is to be held at the station like some special guns. 

In the design phase of the car body shop lines, the basic technological information 

needed and that can be provided at this phase is as follows: 

o The available types of robots and equipment that can be installed at a 

station and their capabilities both in performing the tasks and 

transferring the pieces worked on to the succeeding station on the line 

o The other characteristics of the available types of robots like the area 

they cover, their purchasing costs and variable operating costs 

o The restrictions on predecessor/successor relationships among the 

types of robots, if any, in the location and zoning of the them on the 

line   

o The precedence relationships among the tasks of a subassembly or a 

part that are not exactly known but can be obtained from the 

assembly charts of the new designed car   

o The capabilities or availabilities of the workers in performing the tasks  

Currently two different models of the light commercial car’s body are produced in 

the body shop in different demand ratios in accordance with the annual demand 

forecasts. The light commercial car under consideration is assumed to have a certain 

expected lifetime.  
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4.3 Robust Optimization Model 

An integer programming model has already been developed for the design of the car 

body shop by a research team at METU-IE (Barutçuoğlu et al., 2001). However, this 

integer programming model developed by the team is for the design of a single-

model car body and does not consider the mixed-model nature of the 

production/assembly lines at the car body shop. Their single-model integer 

programming model thus developed considers the model of the car body among 

others which has the highest work content in the design of each assembly line.    

In our study, we extend their integer programming model so as to take into account 

several models that are produced on the lines. Hence, we call the extended model as 

a robust optimization model, and the line design of the mixed-model 

assembly/production line thus designed as a robust design. 

We intend to have a cost effective shop design such that we take into account both 

the first-time costs like the purchasing and installation costs of the lines plus the 

variable and fixed operating costs over the whole lifetime of the car under 

consideration.  

The robust optimization model that we propose in this study is an integer 

programming model that minimizes the present value of the total cost of designing 

and installing (investment cost) plus the operating cost of the production/assembly 

lines in the car body shop for a planning horizon as long as the expected lifetime of 

the car under consideration. The solution of the robust optimization model provides 

the lines with the robotic and manual stations selected together with the equipment 

required. The whole shop is therefore designed with all its lines together with the 

transfer robots where necessary but with the exception of the WIP and buffer spaces 
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in the shop.  In the design of the shop the tasks are meanwhile assigned to the 

stations as well. 

Several models of the car (in our case two models only) are considered in the design 

of the several assembly lines in the shop. While minimizing the costs, a robust 

approach is selected, because a line having the least effect from a change of the 

production quantities of the car models is intended. To achieve this, minimization of 

the maximum regret is aimed at; that is, the cost of producing a given production 

volume of model A car in the line developed only for it is calculated and similarly 

the same calculation is made for model B, and then an assembly line is designed to 

produce both models while minimizing the difference of costs between the new line 

and the line developed specifically for the individual models. In the robust model, 

optimum number of stations and their types are selected from a set of available 

station types together with the optimum assignment of tasks to the stations. Since the 

model developed has an economic objective function that is cost minimization the 

line balancing in the assignment of tasks to the stations is not the main concern.   

In the reference body shop, there are two different models of the car which are called 

‘combi’ and ‘cargo’. The parameters which are called as strategical parameters by 

the company are assumed to be like the following: working hours for a day is 21 

hours, production lifetime of the car is 8 years; yearly production of combi model of 

car is 100,000, yearly production of cargo model is 65,000 and thus the total 

production is 165,000 cars yearly and the worker fee is 7,5 €/hour.  

We try to minimize the maximum regret in terms of total cost which is the maximum 

of the two differences (i) and (ii):  (i) difference between the cost of producing a 

combi model of the car in a line designed just for itself and the cost of producing a 

combi model of the car in a line designed for both models, and (ii) difference 

between the cost of producing a cargo model of the car in a line designed just for 
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itself and the cost of producing a cargo model of the car in a line designed for both 

models. Then the maximum regret value indicates this maximum of the two regret 

values ((i) and (ii) above). We find the cost of producing a cargo model of the car in 

a line designed just for it by using the single line version of the integer programming 

model (Barutçuoğlu et al., 2011). We find the cost of producing a cargo model of the 

car in annual volume of 165,000 cars over 8 years’ time in a line designed just for it 

by using the single line version of the integer programming model. We do the same 

thing for combi model of cars also. Then we use these total cost values as z_cargo* 

for cargo model and z_combi* for combi model.  

In the development of our robust optimization model, we make the additional 

assumptions based on the reference body shop. 

Assumptions 

o The point in time when the body shop is designed is approximately the 30th 

month before the lifetime of the new car begins; in other words, it 

corresponds to the CAD-Phase 3 of the new car design. 

o The body shop has the following characteristics: manual and robotic 

stations mixed on the lines; asynchronous lines that are working based on 

the push-and-wait principle;  mixed-model type lines. 

o The parts and subassemblies to be manufactured in house are determined; 

so make/buy decisions have already been made. 

o The parts/subassemblies and/or tasks that are to be certainly made 

manually or by robots are known. 

o Each part/subassembly is sellable; hence each part/subassembly has to have 

a dedicated independent line designed for itself only.    

o A task is defined and determined as the smallest rational group of 

operations that cannot be decomposed to smaller tasks any further. 



 

29 

 

o Task durations depend on the type of the station (either a robot or a worker) 

and they are deterministic.  

o The first and the last stations on a line have the capabilities of taking and 

leaving the base subassembly that will be processed on the line.  

o The number of workers or robots at a station differs with respect to the 

station type.    

o The time loss at the stations with more than one worker or robot due to 

waiting is taken into account based on the number of workers/robots at the 

station.  

o There is an unavoidable time loss at each station’s cycle time depending on 

the number of workers/robots at the station. This time loss is called the 

“constant time” which includes the waiting time for the transfer of the 

completed part from the station, waiting time for the take-over of the next 

base part to the station, loading the new part onto the station, changing the 

gripper or tool, if the station is a robotic station.  

o In manual stations, in addition to the constant time as in the robotic 

stations, durations for some non-value-add operations like constant times 

for hanging the completed part on the hanger, and part placement are 

deducted from the total cycle time of the station.  . 

o Efficiency rate is 88% and 81% for the manual and robotic stations 

respectively. 

o Total time of a station that can be used for the tasks assigned is determined 

as:  efficiency rate x cycle time x number of workers or robots in the 

station.   

o Total time of a station can then be used for the value-add tasks like spot 

welding, and non-value-add operations like the constant times, waiting 

time of workers due to simultaneous work on the same part, loading new 

parts on the manual station and the like. 
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o Lifetime of the reference light commercial car is taken as 8 years.  

o The installation cost for a robotic station is 35% of the investment cost. 

o Number of shifts=3/day; working hours=21 hours/day; working hours for 

payment to the workers=22.5 hours/day; working days/year=270 days. 

 

4.4 Model Formulation 

 

4.4.1 Notation of the Model 

 

Indexes 

g task; gєG 

i station; iєI 

t station type; tєT 

Sets 

I integers upto the highest numbered station for the line 

T all station types (T=T1T2) 

T1 manual station types 

T2 non-manual –robotic– station types (T2=T3T4) 

T3 robotic station types without transfer line  

T4 robotic station types with transfer line 

T5 robotic stations without transfer line that require an arrangement of 

their constant time when more than two pieces attached 

T6 robotic stations with transfer line that require an arrangement of their 

constant time when more than two pieces attached 

G all spot welding tasks (G=G1G2) 

G1 all spot welding tasks except the densification spot welding tasks  
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G2 densification spot welding tasks 

G3 all spot welding tasks except the densification spot welding tasks 

(G1=G3) 

G4 spot welding tasks for attaching 

G5 tucker welding tasks 

G6 nut welding tasks 

G7 gas metal arc welding tasks 

G8 liquid paste tasks 

G9 screw welding tasks 

G20 tasks to be done in the same station 

 

Parameters 

CT  cycle time 

budget  fixed investment budget 

t_space upper limit for the area of the line considered  

max_wrkr upper limit for the number of workers for the line considered 

v_m assumed efficiency rate in manual stations (88% unless 

otherwise stated) 

v_r assumed efficiency rate in robotic stations (81% unless 

otherwise stated) 

max_prt maximum number of new parts that can be attached in the 

station considered 

prec(g,h) pairwise precedence relationships between tasks (if task g 

precedes task h, it is equal to 1, otherwise 0) 

k(t) netted (corrected) number of workers working together in t type 

station after the deduction of unavoidable delays due to 

simultaneous working in the station, and multiplied by the 

percent of productivity  
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wrkr(t) number of workers working together in a t type station 

s(g,t)  processing time for task g in t type station (seconds) 

cap(g,t)  capability of t-typed station for task g (if task g can be done by 

t-typed station, it is equal to 1, otherwise 0.) 

mpy(g) time to place a new part manually for task g in any station; or 

time to take/drop the gun in the tasks like paste or bolt pin  

mpy_t(g) time it takes to place a new part manually by the conveyor 

worker in a robotic station in task g 

eq_spt(g) equivalent number of spot welds for each task g with added 

value (used for calculating variable costs for tasks and line 

automation level) 

space(t)  area required for the t type station (m2) 

ct(t) constant time like the hanging time for the t type station 

(seconds) 

cht constant hanging time for the first manual station in the line 

under consideration (seconds) 

ctt constant hanging time increasing for every manual station in the 

line under consideration (seconds) 

adj(u,t) matching matrix for the two stations that are next to each other 

in the line (if type t can come right after type g, it takes the 

value of 1, otherwise 0) 

Cost Parameters 

F1(t) the present value of the total fixed cost of a t type station 

calculated over 8 years (=fixed operating cost + fixed 

investment cost) 

F2(t) the fixed investment cost of type t station consisting of 

purchasing and installation costs 
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v_co(g,t) the present value of total variable operating (energy + welding 

electrode) cost of combi type cars calculated over 8 years when 

task g is done in a t type station  

v_ca(g,t) the present value of total variable operating (energy + welding 

electrode) cost of cargo type cars calculated over 8 years when 

task g is done in a t type station  

c_space(t) the cost of the area that a type t station covers (measured as 

opportunity cost) 

c_bg the cost of purchasing a bolt gun 

c_tckrg the cost of purchasing a tucker gun 

c_pg the cost of purchasing a pin gun 

c_aweld the cost of purchasing a gas metal arc welding equipment 

c_pstg the cost of purchasing a paste gun 

c_c_wrkr the present value of the total wages of a conveyor worker over 8 

years 

z_combi* the total cost of producing combi model cars in the line 

designed only for combi model cars  

z_cargo* the total cost of producing cargo model cars in the line designed 

only for cargo model cars 

 

Decision Variables - 0-1 variables 

xgit if a task g is done in t type ith station, takes a value of 1, 

otherwise takes a value of 0 (defined for all tasks other than 

densification spots tasks) 

yit if the type of the ith station is t, takes the value of 1, otherwise 

takes the value of 0 
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zgi if some or all of the task g consisting of densification spots is 

done in station i, takes the value of 1, otherwise takes the value 

of 0 (defined for only densification spots tasks) 

tckrgi  if a tucker gun is needed in station i, takes the value of 1, 

otherwise takes the value of 0 

pgi  if a pin gun is needed in station i, takes the value of 1, otherwise 

takes the value of 0 

pstgi  if a paste gun is needed in station i, takes the value of 1, 

otherwise takes the value of 0 

bgi  if a bolt gun is needed in station i, takes the value of 1, 

otherwise takes the value of 0 

aweldi  if gas metal arc welding equipment is needed in station i, takes 

the value of 1, otherwise takes the value of 0 

active1it  if there is a part being attached in a t type ith station, takes the 

value of 1, otherwise takes the value of 0 (0-1 variable helping 

in modeling) 

active2it if there are 3 or 4 parts being attached in a t type ith station takes 

the value of 1, otherwise takes the value of 0 (0-1 variable 

helping in modeling) 

 

Decision variables – continuous variables  

wgit the ratio of task g consisting of densification spots, done in t 

type ith station 

w2git the number of finished spots of task g consisting of 

densification spots, done in t type ith station 

occupi the occupancy of station i: the total processing times of all tasks 

done in the station plus the times of the station used up without 

any added value (seconds) 
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availti the available time in station i after subtracting the productivity 

loss (seconds) 

occup_pi the occupancy percentage in station i: 100*(occupancy rate / 

available time in station) 

autom_n the equivalent number of spots done by robots in the considered 

assembly 

autom_d the equivalent number of spots for all tasks in the considered 

assembly 

autom_p  the automation percentage for the considered assembly 

c_wrkri the number of conveyor-workers needed in station i for loading 

the components assembled in station i 

fxd_invst the total fixed investment cost in the solution (for the line under 

consideration) 

fxd_oprt  the present value of fixed operating costs occurring in the 8 

years life cycle 

var_oprt  the present value of variable operating costs occurring in the 8 

years life cycle 

z_cargo’ the present value of the total cost (investment + operating) in 

the 8 years life cycle of the cargo model for the considered 

robust line designed, using a 2% real interest rate (€) 

z_combi’ the present value of the total cost (investment + operating) in 

the 8 years life cycle of the combi model for the considered 

robust line designed, using a 2% real interest rate (€) 

z the maximum regret between the total costs of a car model in 

the solution and in the line designed only for itself 

operating_ca the present value of total fixed and variable operating costs 

occurring in the 8 years life cycle of cargo model 
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operating_co the present value of total fixed and variable operating costs 

occurring in the 8 years life cycle of combi model 

space_c the cost of total space used in the solution 

used_space the total space used in the solution 

 

4.4.2 Integer Programming Model 
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In the below section, all the constraints of the model are explained: 

(0) Makes the regret bigger than it is for the combi type cars. 

(1) Makes the regret bigger than it is for the cargo type cars. 

(2) Provides the present value calculated using a 2% real interest of the total cost 

(investment + operating) in the 8 years life cycle for the line considered in the 

solution  for combi cars (€) 

(3) Provides the present value calculated using a 2% real interest of the total cost 

(investment + operating) in the 8 years life cycle for the line considered in the 

solution  for cargo cars (€) 

(4) All the tasks except the densification spot welding tasks are assigned to only 

one station-type pair. 

(5) Makes it possible for the densification spot welding tasks to be assigned to 

one or more station-type pairs, by dividing them among stations if needed. 

(6) xgit is defined for every task, but since it is only valid for the tasks except the 

densification spot welding tasks, its value is zeroed for those tasks. 

(7) A task is not assigned to a station-type pair if it cannot be done there. 
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(8) A densification spot welding task is not assigned to a station-type pair if it 

cannot be done there. 

(9) Makes the tasks get assigned according to their precedence relationships. 

(10) For the tasks that are assigned to a robotic station, their total time should not 

exceed the net working time of all the workers in a cycle after subtracting 

productivity loss and non-value-add time. 

(11) For the tasks that are assigned to a manual station, their total time and loading 

of new parts, should not exceed the net working time of all the workers in a 

cycle after subtracting productivity loss and non-value-add time. 

(12) There may be some “cycle time” related special constraints caused by 

equipment features (like number of robots > number of grippers).  

(13) Makes the aktif2i variable, which is a 0-1 variable take the value 1 when 3 or 

4 parts are added to the subassembly at station i. 

(14) In the robotic station coded R20, since there are 3 workers but 2 paste guns, 

makes total available time for paste be calculated by using 2 workers. 

(15) A station can only have one type. 

(16) Every task apart from the densification spot welding tasks can be assigned to 

an open station that is of the capable type. 

(17) Densification spot welding tasks can be assigned to an open station that is of 

the capable type. 

(18) Makes the zgi variable, which is a 0-1 variable, take the value 1 when a 

densification spot welding task is assigned to the respective station. 

(19) Makes the task that comes after the densification spot welding tasks, be done 

in the station where the densification spot welding task is finished or the 

stations coming after that, according to the precedence relationships. 

(20) Makes a densification spot welding task be done in the station where the task 

just before it is finished according to the precedence relationships. 
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(21) Makes a densification spot welding task be divided in two or more stations 

and save the value of how much of it is done. 

(22) Provides the total time which is the total of assigned task times plus the non-

value-add times in a station. 

(23) Provides the available time of a station. 

(24) Provides the occupancy percentage (used time/available time) of a station. 

(25) Provides the spot-weld equivalent of all tasks done in a robotic station. 

(26) Provides the spot-weld equivalent of all tasks done in a robotic or a manual 

station. 

(27) Provides the automation percentage of the line considered. 

(28) Station i+1 cannot be opened before station i is opened in a line. 

(29) Makes the tckri variable take the value 1, if a tucker task is assigned to a 

manual station apart from station type M8. 

(30) Makes the smni variable take the value 1, if a nut task is assigned to the 

manual station. 

(31) Makes the gzlti variable take the value 1, if a gas metal arc welding task is 

assigned to the station types M1, M8 and M10. 

(32) Makes the mcni variable to take the value 1, if a paste task is assigned to the 

manual station. 

(33) Makes the vdi variable to take the value 1, if a bolt task is assigned to the 

manual station. 

(34) Makes the total fixed investment cost be lower than the budget.  

(35) Makes the area for the line stay lower than the upper limit set in m2s. 

(36) Provides the area needed for the line in m2s. 

(37) If a new part is loaded in a robotic station, the number of conveyor workers 

needed is calculated by using the necessary time to load the parts. 

(38) Provides the total fixed investment cost to install the considered line. 
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(39) Provides the present value of fixed operating costs occurring in the 8 years 

life cycle. 

(40) Provides the present value of variable operating costs for combi type cars 

occurring in the 8 years life cycle. 

(41) Provides the present value of variable operating costs for cargo type cars 

occurring in the 8 years life cycle.  

(42) Provides the present value of total fixed and variable operating costs for combi 

type cars occurring in the 8 years life cycle. 

(43) Provides the present value of total fixed and variable operating costs for cargo 

type cars occurring in the 8 years life cycle. 

(44) Provides the cost of the area used by the line considered. 

(45) Guarantees that the new parts added in a station does not exceed the maximum 

value set. 

(46) Makes the stations next to each other in the line considered be consistent. 

(47) Guarantees that the maximum number of workers allowed per station for the 

line considered is not exceeded. 

(48) Guarantees that two tasks to be done in the same station are done in the same 

station. 

(49) As a special extra constraint, makes it impossible to choose a robotic station in 

the line considered.  

(50) Variables are continuous or 0-1 variables.  

 

4.4.3 Inputs of the Model 

 

We prepare excel sheets for the GAMS model to obtain the inputs from.  First, we 

have the grouping of the similar station types. Table 2 is an example excerpt from the 

‘back floor’ excel sheet where ‘M#’, ‘R#’, and ‘T#’ stand for manual station types, 

robotic station types without transfer line, and robotic station types with transfer line.  
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For example, in the table, column T1 includes the manual stations for the back floor 

line. 

 

Table 2 Example Excel Sheet for ‘Back Floor’ Station Grouping 

T1 T2 T3 T4 T5 T6 

M1 R1 R1 T1 R4 T5 

M2 R2 R2 T2 R7 T6 

M3 R3 R3 T3 R11 T7 

M4 R4 R4 T4  T8 

M5 R5 R5 T5   

M6 R6 R6 T6   

M8 R7 R7 T7   

M10 R8 R8 T8   

 

Then, we group the similar tasks together in another excel sheet. Table 3 shows an 

excerpt from the ‘back floor’ excel sheet. For example, in the table, column G2 

includes the spot welding tasks for the back floor line. 

 

Table 3 Example Excel Sheet for ‘Back Floor’ Tasks 

G1 G2 G3 G4 

5Y01 5S01 5Y01 5T01 

5Y02 5S02 5Y02 5T02 

5Y03 5S03 5Y03 5T03 

5Y04  5Y04 5T04 

5Ms01  5Ms01 5T05 

5T01  5T01 5T06 
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Table 4 is a part of the excel sheet that shows which station type can do which tasks. 

‘1’indicates that the station can do the corresponding task, while ‘0’ indicates that the 

station cannot do the corresponding task. 

 

Table 4 Sample Capability Excel Sheet for ‘Back Floor’ 

  M1 M2 M3 M4 M5 M6 M8 R1 R2 R3 R4 R5 R6 

5Y01 1 1 1 1 1 1 1 0 0 0 0 0 0 

5Y02 1 1 1 1 1 1 1 0 0 0 0 0 0 

5Y03 1 1 1 1 1 1 1 0 0 0 0 0 0 

5Y04 1 1 1 1 1 1 1 0 0 0 0 0 0 

5Ms01 1 1 1 1 0 1 0 0 0 0 0 0 0 

5T01 1 1 1 1 0 1 0 0 1 0 1 1 0 

5T02 1 1 1 1 0 1 0 0 1 0 1 1 0 

5D01 1 1 1 1 1 1 0 1 1 1 1 1 1 

5D02 1 1 1 1 1 1 0 1 1 1 1 1 1 

5S01 1 1 1 1 0 1 0 1 1 1 1 1 1 

 

Table 5 is part of the excel sheet that shows task durations. 

 

Table 6 shows the strategic decisions like how much of a model is to be produced, and 

the cycle time derived from that. 
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Table 5 Sample Excel Sheet of Task Durations for ‘Back Floor’  

 M5 M6 M8 R1 R2 R3 

5S01 476  476  476  322  322  322  

5T03 50.4  50.4  50.4  31.2  31.2  31.2  

5T04 50.4  50.4  50.4  31.2  31.2  31.2  

5Ms02 4.638  4.638  4.638  2.68  2.68  2.68  

5Ms03 4.638  4.638  4.638  2.68  2.68  2.68  

5T05 25.2  25.2  25.2  15.6  15.6  15.6  

5T06 25.2  25.2  25.2  15.6  15.6  15.6  

 

Table 6 Sample Excel Sheet of Strategic Decisions for ‘Back Floor’  

Cycle Time (sec.) 124  

Budget (€) 100,000,000  

Total Space (m2) 1,000,000  

Number of Maximum Workers for a station  4  

Number of Years of Production  8  

Production per Year  165,000  

Combi Production per Year  100,000  

Cargo Production per Year  65,000  

 

4.5 Discussion on the Results: Single Model vs. Mixed Model 

 

We solve our model for all subassemblies/parts of the car body that the single model 

line is designed for. The results are then compared and discussed.  
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The solution sheet shows the total cost of producing the cars and the cost of 

producing them if all car bodies produced were combi or cargo. The solution also 

gives us the automation percentage which is the proportion of tasks completed by 

robotic stations to all the tasks done for the subassembly or part on the designed line, 

in terms of the number of spot welds. The number of stations are given and it is 

shown if they are robotic or manual. Also the number of workers are shown since 

more than one worker can work at a station. In Table 7, we have the first portion of 

the sample solution excel sheet of ‘right shroud’. 

 

Table 7 Sample Solution excel sheet for the ‘right shroud’ by the robust optimization 

 

max regret (€) 393,562.9 

Total investment and operating cost(€) 2,229,418 

Total investment and operating cost(€) for combi 1,944,433 

Total investment and operating cost(€) for cargo 1,706,793 

Total investment cost(€) 454,500 

Operating cost combi(€) 1,445,833 

Operating cost cargo(€) 1,208,193 

Total Operating cost(€) 1,774,918 

Automation % 51 

Number of Robotic stations  1 

Number of Manual stations  1 

Number of stations 2 

Number of robots 1 

Number of workers 2 

Number of workers + robots 3 

 

In Table 8, the stations of the solution in the excel sheet can be seen. In the first line, 

the type of the station is given.  
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Table 8 Stations for the ‘right shroud’ by the robust optimization 

  1st 2nd 

Type of the station M2 R18 

Number of workers 2 1 

Time used (sec) 212.8728 69.86 

Time without added value (sec) 125.2728 18 

Time of tasks (sec) 87.6 51.86 

Usable time (sec) 217.728 100.2044 

Station utilization (%) 97.77006 69.71752 

Work done in terms of spot welds 22.5 23.47 

 

If we search for the differences between mixed model lines and single model lines, 

‘dashboard pool’ and ‘back stop riser’ are the most extreme examples in terms of the 

maximum regret values. In Table 9, the example is the ‘dashboard pool’. We show 

the combined solution sheets for the two different lines: single-model line and 

mixed-model line. Here we have a total cost difference of nearly 700,000 €. It is 

interesting to note that the lines designed are completely different: while the single 

model line is fully manual, the mixed model line is mostly robotic. Because of this, 

the investment cost of the mixed model line is 500,000 € more. But the design 

obtained with the mixed model approach more than makes up for this extra 

investment cost in the operating cost portion. In Tables 10 and 11, we list the stations 

of both the single model line and the mixed model line. 

 

 

 

 



 

50 

 

Table 9 Combined solution sheets for the subassembly ‘dashboard pool’ 

  

single 

model line 

mixed model 

line 

max regret(€)   550,446 

Total investment and operating cost(€) 5,772,341.2 5,059,433 

Total investment and operating cost(€)combi   3,940,308 

Total investment and operating cost(€)cargo   3,678,134 

Total investment cost(€) 577,250 1,066,000 

   Operating cost combi(€)   2,744,333 

   Operating cost cargo(€)   2,482,159 

   Total Operating cost(€) 5,195,091 3,993,433 

Automation % 0 74.8 

Number of Robotic stations  0 4 

Number of Manual stations  4 1 

Number of stations 4 5 

Number of Robots 0 4 

Number of workers 6 2 

Number of workers + robots 6 6 
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Table 10 Single model line stations for the ‘dashboard pool’ 

Station type M2 M2 M1 M10 

Number of workers 2 2 1 1 

Time used (sec) 157.6 159.7 77.9 71.1 

Time without added value 

(sec) 102.4 98.4 47.6 23.1 

Time of tasks (sec) 55.2 61.3 30.3 48.0 

Usable time (sec) 159.7 159.7 79.8 79.8 

Station utilization (%) 98.7 100.0 97.6 89.0 

Work done in terms of bolts 13.5 15.9 12.1 12.1 

 

Table 11 Mixed model line stations for the ‘dashboard pool’ 

  M2 R15 R2 R35 R17 

Number of workers 2 1 1 1 1 

Time used (sec) 159.6 18 69.4 66.2 50.12 

Time without added 

value (sec) 104.4 18 46 36.1 18 

Time of tasks (sec) 55.2 18.0 23.4 66.2 32.12 

Usable time (sec) 159.7 73.5 73.5 73.5 73.5 

Station utilization (%) 99.94 24.5 94.4 92.6 68.2 

Work done in terms of 

spot welds 13.5 3 9 8.5 20.6 
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On the contrary, we obtain some line designs for which the total costs obtained by 

the single model and the mixed model approaches are very close. In Table 12, we 

have such an example which is the ‘back stop riser’.  

 

Table 12 Combined solution sheets of the subassembly ‘back stop riser’ 

  

Mixed 

model line  

Single 

model line 

max regret(€) 190,524   

Total investment and operating cost(€) 1,872,860 2,067,594 

Total investment and operating cost(€)combi 1,296,083   

Total investment and operating cost(€)cargo 1,861,836   

Total investment cost(€) 326,750 326,750 

Operating cost combi(€) 929,732   

Operating cost cargo(€) 1,495,486   

Total operating cost(€) 1,546,110 1,740,844 

Automation % 41,2 46,7 

Number of Robotic stations  1 1 

Number of Manual stations  1 1 

Number of stations 2 2 

Number of Robots 1 1 

Number of workers 2 2 

Number of workers + robots 3 3 

 

We can see here that the difference between total costs by the two lines is nearly 

200,000 €. In Tables 13 and 14 below, we look at the details of the solution sheet. 
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Table 13 Single model line stations for the ‘back stop riser’ 

Station type M2 R16 

Number of workers 2 1 

Time used (sec) 179.4 50.2 

Time without added value (sec) 112.2 18 

Time of tasks (sec) 67.2 32.2 

Usable time (sec) 217.7 100.2 

Station utilitization (%) 82.4 50.1 

Work done in terms of spot welds 16 14 

 

Table 14 Mixed model line stations for the ‘back stop riser’ 

Station type M2 R16 

Number of workers 2 1 

Time used (sec) 150.2 34.1 

Time without added value (sec) 108.2 18 

Time of tasks(sec) 42 16,1 

Usable time (sec) 217.7 100.2 

Station utilization (%) 69 34 

Work done in terms of spot welds 10 7 

 

As we observe here, the lines obtained by the two approaches (single model and 

mixed model) are exactly the same. The cost difference comes from the assumption 

of the single model line case where it is thought like all the cars produced were the 

model of the car with the largest work content. The differences of work done in 

terms of spot welds and station utilizations are exactly because of the same reason.  
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Table 15a, 15b and 15c are the tables showing a summary of the costs, number of 

stations and the automation percentage for all the lines in the car body shop obtained 

by the two approaches.  

 

The solution sheet of the ‘dashboard pool’ of the car is given as a sample output in 

Appendix A. 

 

Table 15a Summary of the results for the subassemblies: instrument sheet, back stop 

riser and outside panel sheet 

  

instrument sheet back stop riser outside panel sheet 

single mixed single mixed single mixed 

Total Cost (€) 8,438,149    7,351,256 2,067,594    1,872,860    4,644,363    3,476,298    

Operating Cost (€) 5,903,899 5,046,256 1,740,844 1,546,110 4,118,612 2,950,548 

Investment Cost (€) 2,534,250 2,305,000 326,750 326,750 525,750 525,750 

# of stations 8 9 2 2 3 3 

Automation % 94 98 47 41 31 31 

 

Table 15b Summary of the results for the subassemblies: right shroud, dashboard 

pool and left shroud 

  

right shroud dashboard pool left shroud 

single  mixed single  mixed single  mixed 

Total Cost (€) 2,268,704 2,229,418 5,772,341 5,059,433 2,122,462 2,059,838 

Operating Cost (€) 1,814,204 1,774,918 5,195,091 3,993,433 1,339,962 1,722,088 

Investment Cost (€) 454,500 454,500 577,250 1,066,000 782,500 937,750 

# of stations 2 2 4 5 3 3 

Automation % 51 51 0 75 100 100 
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Table 15c Summary of the results for the subassemblies: inside framework back 

shroud, side panel and inside right framework 

  

inside framework 

back shroud side panel 

inside right 

framework 

single mixed single mixed single mixed 

Total Cost (€) 4,105,274    3,269,381    9,050,540    7,372,591    5,657,023    4,472,073    

Operating Cost (€) 3,631,524 2,795,631 6,069,540 5,187,591 4,981,523 3,796,573 

Investment Cost (€) 473,750 473,750 2,981,000 2,185,000 675,500 675,500 

# of stations 3 3 7 6 4 4 

Automation % 36 36 100 100 44 31 
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CHAPTER 5 

 

 

A GENETIC ALGORTIHM PROPOSED FOR THE MIXED-MODEL 

SEQUENCING PROBLEM 

  

 

 

In the first phase of our approach, a strategic problem is addressed, that is, car body 

shop is designed taking into account the mixed model nature of the lines. Now in the 

second phase of our approach, an operational problem is addressed. We intend to 

develop mixed-model sequences of the car models so as to utilize the lines in the 

most efficient and effective way in meeting the expected average annual demands of 

several models over the life cycle of the car.  

 

Car sequencing with several models takes into account the constraints imposed by 

the paint shop and is known to be an NP-hard problem in the strong sense (Kis, 

2004). 

 

Actually considering the three stages in car manufacturing as car body shop, paint 

shop and the final assembly, car sequencing problem is a more critical problem in the 

final assembly stage of car manufacturing where the model variety is highest in car 

manufacturing. However, in car body shop where the chassis of the cars are 

manufactured, the model variety is at the lowest level, for example: 2-3 models of a 

certain car. Having reviewed the relevant literature on mixed-model sequencing 

problem, we propose a GA-based method to solve the general mixed-model 

sequencing problem that is not specific to car sequencing problem. 
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In this chapter, we first discuss the fundamentals of the genetic algorithm. Then we 

present our GA method for the mixed-model sequencing problem with all its 

technicalities. Finally we conclude with the results and their discussion. 

 

5.1 Fundamentals of Genetic Algorithms 

 

Genetic algorithms are search methods inspired from the genetic processes of the 

nature. They were first introduced by Holland and his colleagues at Michigan 

University and the basic principles were first published in Holland (1975). Genetic 

Algorithm (GA)-based optimization techniques are effective and have been applied 

widely to find the global optimum region due to its global perspective and inherent 

parallelism (Goldberg, 1989). They are widely used for NP-hard problems, since 

they are difficult to solve by the use of mathematical modeling. The fundamentals of 

GA can be summarized as:  

 The starting points of GAs are chromosomes, which are made up of genes 

that have the basic information of the decision variables in the solution. The 

chromosomes, that are individuals of the population, then, are solutions for 

the problem which can be represented in various ways. These individuals, 

like in the nature, compete to reproduce and survive. As the evolution theory 

states, better individuals have more chance to pass their genes to the next 

generations.  

 The probability of survival and reproduction in the nature is based on how 

good the genetic material of the individual is. In the GA, ‘how good an 

individual’ is calculated, since it is the objective function value of the 

solution the chromosome gives and is called the fitness of the chromosome.  

 An initial population is generated at the beginning, having some number of 

individuals with different genetic characteristics. Through generations the 
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population evolves like the processes in the nature. There is a reproduction 

process that determines the genetic characteristics which would be passed on 

to the next generation out of all the individuals of the population. Crossover 

operator is used to select two parents and make a number of off-springs from 

them. Mutation operator is used to mutate a chromosome and add the mutated 

chromosome to the population. Each population updated by any number of 

new chromosomes is called a generation. 

 The genetic process evolves without knowing the problem it is trying to 

solve, like it is in the nature. However, to make its job easier, more suitable 

crossover and mutation operators can be chosen from a number of options 

using problem specific information. This approach helps to get better 

solutions faster. 

 

Genetic algorithms can be used to solve many kinds of problems. Since it is a general 

framework to work with, some key components should be decided beforehand. These 

may be called the fundamentals of genetic algorithms and are presented below: 

  

 To define what the genes and the chromosome stand for 

 To create an initial population 

 To define the fitness function 

 To identify the parent selection technique 

 To find the appropriate crossover and mutation operators 

 To define the replacement strategy: who the new generation would consist of 

after the crossover and mutation  

 To decide on parameters like the population size, crossover and mutation 

rates 
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 To decide how the program ends, like the maximum number of generations 

specified or the specified maximum number of generations where the 

population fitness (the fittest chromosome in the population) does not 

improve any more 

 If to use additional procedures like elitism or not; and if so, their size 

 

5.2 The Proposed Genetic Algorithm  

 

In this section, the GA terminology and how the different aspects discussed above 

are decided in our approach are explained. 

 

5.2.1 Chromosome Representation 

 

Chromosome representation is one of the most critical aspects of the GA approach. It 

must represent any possible solution to the problem and it should be clear from the 

chromosome how to calculate the fitness of the chromosome.  

 

The important question is whether a binary or an integer representation should be 

used. Using a binary representation is easier, but an integer representation can 

contain more information and more complex information. 

 

Different from most of the sequencing chromosomes where the jobs are ordered, in 

our problem, different models of the car would be ordered. An example chromosome 

for the ordered jobs is: 

 

 

3 1 2 5 4 
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where the third job is done first, followed by job 1, and so on. The chromosome for 

our mixed-model sequencing problem with two models would look like the 

following:  

 

 

where model A car comes first, followed by model B car and so on. There are two 

different models of the car in the example, but it can contain as many different 

models as required in it. Both examples have five genes, and if needed, as many as 

needed, can be added.  

 

5.2.2 Initial Population Generation 

 

The initial population is where the search for the solution starts. It is one of the first 

things the algorithm executes and goes on from. It is important to have a wide range 

of individual characteristics in the initial population in order to improve faster.  

 

The most common method to generate an initial population is to randomly generate 

it. It is done easily and quite fast, even though some control schemes are invented to 

generate a better population, i.e., a population that has a wider range of individuals to 

better cover the solution space. These control routines are mostly used with non-

binary chromosomes.  

 

In our problem, basically making the population bigger can work easily if we want to 

minimize the chance of getting trapped in a certain region of the solution space, since 

our genes are straightforward.  

 

 

 

A B A A B 
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5.2.3 Fitness Function Evaluation 

 

The purpose of the fitness function in our GA approach is to have a sequence that 

minimizes the workload fluctuations of stations through time so as to have a smooth 

line even though the car models in the sequence are changing over time. This can 

also be expressed as the fluctuations in the utilizations of the stations. After 

reviewing the relevant literature, we decide on our fitness function as: maximization 

of the total of the immediate differences of utilizations of stations over time. We 

define the fitness function below in (1). 

 

Notation: 

n: Number of jobs  

m: Number of stations  

i: Station index  

j,h: Job position index  

ti [j]: Processing time of the job in position [ j] on station i  

si: cycle time of station i 

Ui [j]: utilization of station i having processed the job in position [j] 

z: fitness function value 

 

      
m

i

n

j jiji UUz
1 1 1   - max  

with 

     jisjtU i

j

h hiji ,      /
1  

           (1) 

 

For example, consider station 1 with three models to be processed on the line and 

s1=10 seconds; models A, B, and C have processing times of 8, 4 and 6 seconds, 

respectively; and the sequence is A-B-C. Then U1[1] = 8/10; U1[2] = (8+4) / (10+10). 
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So U1[2] -U1[1] = 1/5 (in absolute value). Then we add all the (Ui [j] - Ui [j-1]) values for 

all stations over all positions on the stations and this is the fitness of the 

chromosome. For this example, sequence ABCABC has a fitness of 3/10 and 

sequence ABCCAB has a fitness of 7/25. Hence, the bigger the fitness (total of the 

difference of utilizations), the better the sequence is. 

 

Based on this fitness function, if a station uses less time for a model, the next model 

has to be a more time consuming one to even the workload of the station. 

 

5.2.4 Genetic Operators and Techniques 

 

These are playing the key role in the GA as they may be the sole determinants on 

how the algorithm will perform. 

 

5.2.4.1 Parent Selection     

 

This is how the parents will be chosen from the population to make an offspring. The 

offspring will carry the characteristics of the parents as it is in the nature. From the 

early times of the GA literature until now, many different methods have been 

introduced, from random selection like the roulette wheel selection to more complex 

methods like the tournament selection. The techniques are described in three 

headings below: 

 

Roulette Wheel Selection. First we calculate the fitness values of the individuals. 

Then parents are selected according to their fitness values. The better the fitness 

value of the individual, the more the chance for it to be chosen for being a parent. It 

works like this:  

 We add all the fitnesses of the individuals together. 
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 We create a random number from 0 to the sum found in the first step. 

 We then start to add the fitness of the chromosomes together until we reach 

the random number from the second step and the first chromosome after we 

exceed that number is our parent chromosome. 

 

This is really an easy technique to use, but it has some drawbacks. Even though it is 

easy for the better individuals to shine in the early generations, when the difference 

between the chromosomes gets smaller, the generations do not grow well. Also, if 

the difference between the better chromosome and others are too big, the probability 

of selecting other chromosomes but the dominant chromosome to be the parent is 

small. However, these are not important drawbacks for our problem, since we do not 

have time issues and there cannot be a big difference among the fitnesses of the 

chromosomes. 

 

Rank Selection. In this technique, we rank the chromosomes according to their 

fitness. The worst fitness gets a new fitness of 1 and the second worst 2, and this 

process goes on like this to the best fitness having the number that is the population 

size. This process can be modified, of course, to suit the user’s needs. Thus, this 

small interference arranges that the worst chromosomes have a bigger chance of 

being selected and hence not getting stuck with the best chromosomes. The drawback 

of this technique is that it requires more computation, and since the differences in the 

chromosomes are made less, it takes a longer time to converge. 

 

Tournament selection. This technique chooses two or more individuals in the 

population and selects the fittest one as a parent. There are deterministic and 

probabilistic versions of this method. In the deterministic version, the fittest one is 

chosen for sure, whereas in the probabilistic version, a probability is attached to see 
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what portion of the time the fittest one is chosen. Its computational effort is not 

much, since it only needs a preference in a small set of chosen individuals, so this 

idea is one of the new popular ideas.  

 

Elitism. There is not so small a chance that when a new generation is entered, the 

best chromosome from the old generation will be lost. To prevent this problem, the 

idea of elitism is introduced. When it is used, a number of elite (the chromosomes 

with the best fitness values) individuals from the last generation are saved for the 

next generation. Elitism can very rapidly increase the performance of GA, because it 

prevents losing the best found solution. 

 

The pros and cons of the selection techniques are explained above and when the 

literature is examined, the problems like ours mostly choose the roulette wheel 

selection. Since elitism is an easy concept to use, we decide to use the roulette wheel 

technique with elitism.  

 

5.2.4.2 Crossover Operator 

 

Employing effective crossover operators is important for combining existing 

solutions with new ones and for generating diversity. The former can be 

implemented by a good crossover operator, and the latter can be implemented by the 

mutation operator. The crossover operator takes the genetic material from the parents 

and makes one or two offsprings with it. The type of the operator is important in 

establishing which information will be gained from which parent and how it is put 

into the offspring. 
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The operator can be used easily to put in problem specific information. Nevertheless, 

the most commonly used operators are single-point crossover and two-point 

crossover operators which do not consider any problem characteristics. 

 

A two-point crossover operator can be seen in the figure below: 

 

Parent 1  A B A A B 

Parent 2 B A B A A 

Child 1          A A B A B 

Child 2     B B A A A 

 

Figure 1 A Two-Point Crossover Operator 

 

As the GA literature advanced, more crossover operators were introduced. Uniform 

operator is one of them, where the offspring will have half the genes of the first 

parent and half the genes of the second parent if the mixing ratio is 0.5. Crossover 

points are randomly chosen. This approach seems poor, but evidence suggests that it 

is a more exploratory approach than the traditional approaches.  

 

There is also the order crossover (OX) which is getting more and more common in 

the last years. Many of the articles we studied use this crossover method. 

 

It starts by randomly choosing two cut points on the parent chromosomes. In order to 

create an offspring, the string between the two cut points in the first parent is first 

copied to the offspring. Then, the remaining positions are filled by considering the 

sequence of jobs in the second parent, starting after the second cut point (when the 
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end of the chromosome is reached, the sequence continues at position 1). The 

example of a job sequencing in this chromosome type looks like this: 

 

 

parent 1 : 2 7 | 1 3 4 | 5 8 6 

parent 2 : 1 8 | 2 5 6 | 3 7 4 

_________________________________________ 

offspring 

(step 1) : - -  1 3 4 -  -  - 

(step 2) : 2 5 1 3 4 6 7 8 

 

Figure 2 An order crossover 

 

In the figure above, after copying jobs 1, 3 and 4 to the offspring, jobs 2, 5 and 6 are 

put into the offspring starting from the beginning. Then, jobs 3, 7 and 4 are tried, but 

since jobs 3 and 4 were already in the offspring, only job 7 could be entered. Lastly, 

job 8 was entered to the last place in the chromosome.  

 

Since we decided to use the OX operator, we saw that it did not fit exactly with our 

chromosome structure. Actually none of the operators do. Thus, we had to modify it 

to support our needs.  It starts the same way as the OX operator, but since we do not 

have different numbers for all the places in the chromosome, we had to decide what 

to do when an overlap occurs. We solved this problem by looking at the chosen part 

of the first parent and eliminating them in the second parent starting from the 

beginning. Then the other genes are put in like in the order crossover modifier. An 

example for sequencing of three models, A, B and C is shown below: 
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parent 1 : A B | A C B | A B C 

parent 2 : C B | A B A | C A B 

_________________________________________ 

offspring 

(step 1) : -   -  A C B  -  -  - 

  (step 2) : B A A C B C A B 

 

Figure 3 The Order crossover modified for our needs 

 

5.2.4.3 Mutation   

 

To maintain diversity, a mutation operator should be used. If a mutation operator is 

not used, it is highly likely that the GA converges to a local optimum. To avoid this 

entrapment, we have to randomly change some chromosomes, and thus maintain 

diversity.  

 

The most common mutation operator in the literature from the early stages of the GA 

literature is the perturbation mutation operator which is a probabilistic operator. So, 

it randomly chooses a chromosome and one or more genes from it. Then it basically 

interchanges its value, 0 to 1 and 1 to 0 in a binary chromosome or any value to any 

other working value in a non-binary one.  

 

An interesting alternative mutation operator is the boundary mutation operator. It 

changes a randomly chosen non-binary gene to the upper or lower bound (also 

chosen randomly).  

 

The uniform mutation operator is just like the boundary mutation operator, but the 

user specifies the upper and the lower bounds she likes to work with. The non-
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uniform mutation operator works in the same way. The only difference is that 

probability of the amount of mutation is more in the early stages of the algorithm and 

it drops towards the end. This way, it lets the algorithm fine-tune in the late stages. 

 

The inversion mutation is getting more popular in the last years. We choose to use 

the inversion mutation in our GA. It works by choosing a chromosome and two cut 

points. It then inverts what is between the cut points, like this: 

 

Original chromosome: 2 7 | 1 3 4 | 5 8 6 

After the mutation operator: 2 7 | 4 3 1 | 5 8 6 

 

Figure 4 The inversion mutation 

 

5.2.4.4 Replacement 

 

Replacement strategy is used to determine which chromosomes will be used to make 

up the next generation. Since we are trying to improve the best solution in the 

population, there are various strategies to update the population. One important 

factor is the generation gap, which is the proportion of the individuals to be replaced 

in every generation.  

 

There are two strategies to decide on the generation gap in the literature. The first 

strategy is to use the generation gap as ‘1’, which means to replace the whole 

population. This strategy is called the generational or non-overlapping replacement. 

Elitism is especially used in this strategy to eliminate the loss of fit individuals when 

passing on to the next generation. 
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The second strategy is called the steady-state or overlapping replacement. While 

inserting some individuals into the population, it is important to decide on the 

individuals of the population that will be replaced with the new ones. To decide on 

this, there is a number of different methods like replacing randomly chosen ones, 

replacing the worst ones, replacing the oldest ones, replacing the parents or choosing 

by the Kill Tournament. Smith and Vavak (1999) make a comparative study on these 

alternatives and state the benefits, deficiencies and how much computational effort is 

needed for each of these methods. They make exact Markov models for some and 

appropriate Markov models for other replacement strategies; and with the help of 

simulations, general conclusions for different strategies are drawn.  

 

There is no evidence in literature about one strategy being better than another one. 

Since we are using elitism, we find it fit appropriate use the generational strategy. 

That way, we are not losing the best individuals, while letting new fit individuals in 

the population immediately.  

 

5.2.4.5 Termination 

 

In most GA applications, a stopping criterion is designed based on convergence. 

After calculating through a specific number of iterations, the algorithm terminates. In 

GA terms, we stop after a satisfactory number of generations. In our study, we have 

two stopping criteria which are stopping after 400 generations or stopping if the same 

chromosome stays fit after 50 consecutive generations. These numbers can be 

changed if needed, but are found to be satisfactory as they give the best fitness in 

every test. 
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5.2.5 Parameter Determination 

 

There are important parameters that affect the performance of the algorithm. These 

are population size, crossover and mutation rates. They go hand in hand with each 

other, so we have to decide on all of them simultaneously.  

 

The population size is the number of individuals generated and it is the same 

throughout all generations. The crossover and the mutation rates show how 

frequently a chromosome would be updated using those operators. 

 

To decide on the population size, the first factor used is the length of the 

chromosomes. There are some ideas for how the length of the chromosomes should 

affect the population size. There are linear and exponential calculations to help 

decide. When the length of the chromosome gets longer, the exponential relations do 

not tend to work well. They result in impractically large population sizes. One of the 

most basic and most supported ideas is for a chromosome length of n, to use a 

population size in the range from n to 2n. 

 

The drawback of a small population is the possibility of it converging too quickly 

without sufficient exploration and the drawback of a large population is that the time 

to find the solution can get too long. To balance these, higher crossover and mutation 

rates are advised for small populations and lower rates are advised for large 

populations. Also, larger populations are better if “replace worst” or “steady state 

replacement” options or big percentage for the elitism option are chosen, since there 

may be premature convergence with these options. 
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5.2.5.1 The Tuning of the Mutation and Crossover Rates 

 

Here the goal will be to find the best parameter values to get the best possible 

performance from the algorithm. We can safely fix the population size to 2n where 

the chromosome length is n. Then we try different crossover and mutation rates to 

see which ones perform better. Here is a table showing the fitness values for different 

mutation and crossover rates. Here we are running the algorithm for 800 generations 

or until a chromosome is the fittest for 200 generations. Table 16 shows these 

different trials for the crossover and mutation rates. 

 

Table 16 Tries for crossover & mutation rates 

product mix for 3 

models 44-33-23 32-9-9 12-7-6 12-5-3 

crossover, 

mutation rates  fitness  fitness  fitness  fitness 

0.7, 0.01 2.09632 1.71446 1.49118 1.07667 

0.8, 0.01 2.09457 1.71533 1.49078 1.07667 

0.6, 0.01 2.09780 1.71199 1.49188 1.07667 

0.5, 0.01 2.09863 1.71737 1.49103 1.07667 

0.4, 0.01 2.09754 1.71743 1.49017 1.07667 

0.55, 0.01 2.09880 1.71804 1.49196 1.07667 

0.55, 0.02 2.09878 1.71783 1.49073 1.07667 

0.55, 0.03 2.09657 1.71732 1.49037 1.07667 

0.55, 0.05 2.09514 1.71694 1.49001 1.07667 

 

Since we know that a bigger fitness is a better one, we can say that a crossover rate 

of 0.55 is working best, whatever the size of the problem is. After that, since we 
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know the best crossover rate, using that, we look at the mutation rates and it is 

clearly seen that 0.01 is the best mutation rate. Thus, in our computations with GA, 

we use a crossover rate of 0.55 and a mutation rate of 0.01. 

 

5.2.6 The Overall Algorithm 

 

Above, the decisions of the GA model are explained in detail. Basically our genetic 

algorithm consists of the following four steps: 

 

Step 1. Examine the input data  

Step 2. (Randomly) Generate the initial population 

Step 3. Interpret each chromosome in the initial population and evaluate the fitness 

function for each (finding the fittest chromosome in the process) 

Step 4. Calculate the population statistics 

 4-a Find the best fitness 

 4-b Sort the chromosomes according to their fitness 

 4-c Find the elite members of the current generation to make them part of the 

next generation as well. 

4-d Sort the chromosomes according to their fitness 

Step 5. Until the generation limit is reached or the generation fitness does not 

increase for the predetermined number of generations: 

5-a Select parents from the population using roulette wheel selection, 

5-b Apply the genetic operators (i.e. crossover the selected parents and 

mutate the offspring according to the mutation rate), 

5-c Create the new population, 

5-d Update the best fitness, 

5-e Update termination statistics (generation limit and the number of 

generations the fitness does not increase), 
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5-e Check for termination, if not return to 4-a 

 

The flowchart of the algorithm is provided in figure 5 below. 

 

The algorithm is coded in C++. The whole code is given in Appendix B in detail. 

 

The pseudo code which is the basis of the code of the algorithm is presented below. 

The main flow is given as a whole composed of small procedures. 
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Figure 5 Flowchart of the GA algorithm 

Read problem data 

 
Generate the initial population 

randomly without duplicates 

Read all the individuals in the initial population 

and calculate fitness values for each 

Select two parents 

Apply crossover 

Apply mutation to the offspring 

Max. Generation allowed reached? 

the same chromosome stayed the 

fittest for the required number of 

generations? 

Stop and Display the best result 

NO YES 

Calculate population statistics 

Create the new population using 

elitism and increase the generation 

counter by one 
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The Main Body of the Algorithm 

 

Procedure SeedRandomNumberGenerator 

Procedure ReadData //this is not a procedure, it's directly on the main, but it could be 

on a procedure,, and it's actually not important where you put it 

Procedure CreateRandomPopulation 

While ((no chromosome has stayed as the fittest long enough) AND 

(NumberOfGeneration <= MaximumGeneration)) do 

   Procedure AssignFitnessToChromosomesAndFindFittest 

   Display the current fittest chromosome 

   if (the fittest chromosome prevailed for the required ammount of generations){ 

      Display "The same chromosome has prevailed as the fittest for 

GEN_REQUIRED_AS_FITTEST generations!" 

      Display Fittest and its fitness 

      Set While loop exit condition 

   } 

   if (NumberOfGeneration <= MaximumGeneration){ 

       

      Display "The maximum number of allowed generations has been reached. The 

current fittest chromosome is the following:" 

      Display Fittest and its fitness 

      Display "And it has stayed as the fittest chromosome for the last genAsFittest 

generations" 

      Set While loop exit condition 

   } 

   Procedure Elitism 

   While (chromosomes missing to fill population) do 

      firstParent = Procedure Roulette 
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      secondParent = Procedure Roulette 

      Procedure Crossover 

      Procedure Mutate(firstChild) 

 

      Procedure Mutate(secondChild) 

      Add children to population 

   endWhile 

endWhile 

End of Main Body 

 

5.3 Discussion of the Results  

 

Here, the results for the proposed genetic algorithm are discussed. The GA is tested 

against the optimum solution found by total enumeration. We generate the problem 

instances in order to test our algorithm, since there are no test problems to test it, and 

researchers generate their own test problems by considering the nature of their 

problem, to the best of our knowledge. A problem instance is defined by these 

attributes: 

- Number of models to be sequenced 

- Sequence length 

- Units of each model to be sequenced in the sequence of a certain length 

(model mix) 

- Number of stations making up the assembly line 

 

In our GA approach we assume the cycle time is given and we calculate all statistics 

according to the given cycle time. 
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We show how much time it takes to solve these problems by our GA and total 

enumeration (TE) and if the GA provides the optimum or not. “y” indicates that the 

solution found is optimal, and leaving the cell empty means we could not test it since 

the TE could not solve the problem instance in more than the time shown in the 

“time to solve” column.  We present the computational results in Table 17. 

 

Both the Genetic Algorithm and the total enumeration give the same fitness value, 

however, the sequences obtained may be different. For example, the optimal 

solutions found for the first problem instance were different even though the fitness 

value is the same. The sequence of the GA is 3121213121 and the sequence of the 

total enumeration is 1321211321. These chromosomes are very similar. Only a swap 

in two places between model 1 and model 3 makes the difference.  This is because 

there are alternative optimal solutions stemming from the nature of the objective 

function and the chromosomes, but there is no need to try to prevent this.   

 

It is easily seen that the computational time the genetic algorithm takes is much less. 

Since the time limit by which the genetic algorithm terminates is defined by the user, 

it could take more time, but in all these problem instances it did not prove necessary 

to increase the number of generations to run.  We see some hard problem instances 

which the total enumeration could not solve in a long time like 9 days. Hence we 

could not test the GA for some larger and harder problem instances as seen in the 

results table, namely problem instances 3, 14, 16, 17, 18, 19. 
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Table 17 Test of the GA 

Problem 

instance  

# of 

Stations 

# of 

models 

Seq 

length model mix 

time to solve 

opt? GA TE 

1 3 3 10 5-3-2 1 sec 1 sec y 

2 5 5 20 8-5-4-2-1 2 sec 6 hours y 

3 3 3 40 20-15-5 2 sec >2 days   

4 3 3 20 10--6--4 1 sec 25 min y 

5 3 3 15 7-5-3 1 sec 2 sec y 

6 5 3 10 5-3-2 1 sec 1 sec y 

7 5 5 12 4-3-2-2-1 1 sec 5 sec y 

8 4 4 16 6-5-3-2 1 sec 10 min y 

9 4 4 16 4-4-4-4 3 sec 1 day y 

10 3 4 15 4-4-4-3 1 sec 5 sec y 

11 3 4 15 9-3-2-1 1 sec 5 min y 

12 4 4 16 9-4-2-1 1 sec 1 min y 

13 4 4 16 10-3-2-1 1 sec 1min y 

14 3 8 20 4-3-3-2-2-2-2-2-2 5 sec >5 days   

15 4 4 20 14-3-2-1 1 sec 7 min y 

16 4 4 20 5-5-5-5 1 sec >3 days   

17 3 10 20 2-2-2-2-2-2-2-2-2-2 5 sec > 5 days   

18 5 5 20 4-4-4-4-4 5 sec > 4 days   

19 3 5 40 12-10-8-6-4 5 sec > 9 days   

20 30 3 20 10-6-4 1 sec 2 hours y 

21 30 4 20 14-3-2-1 1 sec 7 min y 

22 30 4 20 12-4-2-2 3 sec 8 hours y 

23 30 3 10 5-3-2 1 sec 1 sec y 

24 30 4 16 6-5-3-2 1 sec 10 min y 
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Sequence length has a significant effect on the time total enumeration takes to solve. 

It has an effect on the time the genetic algorithm takes to solve, too, but since it 

concludes in only a few seconds, it may be called an insignificant  effect. Since in the 

real manufacturing environments, the sequence of models can be simplified to 

lengths between 10 and 40, the problem instances are conducted using sequence 

lengths between 10 and 40. We observe that there is a drastic increase in 

computational times between 10 and 40. Hence, using the genetic algorithm and the 

like seems mandatory, especially when experimenting with the parameters. 

 

Also the mix of cars in the sequence affects the computation time drastically. When 

the numbers of models in the mix are very close to each other, like 5-5-5 in a 

sequence of 15 for 3 models, the computational time increases significantly 

especially for the total enumeration method. This is simply because the number of 

combinations the total enumeration method has to check increases with the closer 

number of cars in the sequence. 

  

Since, in the real world, the number of stations in industrial lines is usually 30 or 

even more, we test problem instances with long lines, too. The number of stations 

increases the time the total enumeration takes to solve, too, but not as drastic as the 

other components of the problem. However, we do not have the same observation 

with the genetic algorithm. 

 

Overall it is clear that the genetic algorithm is working well and fast. It reaches the 

optimal sequence no matter how hard the problem instance is and the parameters can 

easily be adjusted to bigger problem instances. 

 

Finally, we obtain the sequence of the two models in our reference car body shop for 

the two different assembly line designs: the single line and the mixed-model line. 
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Table 18 summarizes these results where ‘1’ stands for the cargo model and ‘2’ 

stands for the combi model.  There are 20 cargo models and 13 combi models in a 

sequence length of 33 cars which is a simpler version of their annual production 

volumes which are 100,000 and 65,000, respectively for cargo and combi models. 

 

Having obtained the fitness values for the two cases, namely for the lines designed 

based on single model and mixed model assumptions, respectively, we cannot have a 

conclusive observation as to which line is better in terms of the sequences’ fitness 

values. This is somehow an expected result, because we do not consider the objective 

of leveling the workload at the strategic decision level of mixed-model line deign 

(robust line design) and the single model line design. but the sequences are different. 

We provide the sequences obtained for both lines (single and mixed model lines) in 

Table 18; it can be observed that the sequences obtained for the single and mixed-

model lines are all different.  

 

While we are leveling the workload for the stations, one may asks what happens to 

other possible objective functions. Widely used objective functions like tardiness and 

earliness doesn’t apply to our situation. Another widely used objective function; 

makespan can be calculated for our situation however. When we look at the example 

used in Yu et al. (2005) and sequence it according to our objective criteria and then 

calculate the makespan, we can see how well it behaves for other objective functions, 

makespan in this case. Table 19 shows how long it takes for a job on a station 

(robot). 

 

 

 

 

 



 

82 

 

Table 18 The sequences for the car body shop 

  Fitnesses      

  

Mixed-

model  

Old 

version Old version  Mixed-model version  

Outside panel 

sheet  1.20013 1.5771 

21212121212112211

2212112121111111 

21212112121212121

2121122112111111 

Instrument 

sheet  0.76765 1.48665 

21122121212112112

1211212122111111 

21212112112121211

2121221122111111 

Inside right 

framework  1.29154 0.47573 

21122121212112211

2212112121111111 

21212112121121211

2121212112211111 

Side panel  1.51638 1.77317 

21121121212121221

1221211212111111 

21121121121212121

2121212112211111 

Dashboard 

pool  1.54 2.6 

21122121212112211

2212112121111111 

21212112121212121

2122112211111111 

Back stop 

riser  1.74636 1.45935 

21121211212121212

1121221212111111 

21212122112121121

1212112211211111 

Left shroud  0.76238 0.54761 

21121212211211212

1212121212111111 

21212121212112122

1122121211111111 

Right shroud  0.86 1.39509 

21122121212121211

2122121211111111 

21212122112121211

2121221121111111 

Inside 

framework 

back shroud 3.99 3.395 

21121212212112121

2121221211111111 

21212121212112122

1122121211111111 
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While we level the workload for the stations in sequencing the several models, we 

also check to see the performance of our GA in terms of other possible 

scheduling/sequencing criteria. The commonly used criteria like tardiness and 

earliness are not relevant in our case. However, the makespan criterion seems more 

involved in our case.  As a result of our search in the literature for GA approaches in 

mixed model sequencing, we could only have the chance of comparing our GA 

against the GA study of Yu et al. (2005) that considers the makespan objective in 

sequencing.  The mixed model sequencing problem they address includes 3 product 

models and 4 stations on the line the assembly times of which are given in Table 19.  

We use this test problem and obtain a sequence with our GA method, that is with the 

workload leveling criterion.  The sequence we thus obtain (Figure 6) is found to have 

a makespan of 70 time units, while the GA approach developed by Yu et al. (2005) 

with the makespan criterion ends up with a makespan of 67 time units.   

 

Table 19 The assembly time for three products on four robots 

Product Assembly time (unit time) 

  Robot 1 Robot 2 Robot 3 Robot 4 

1 3 6 5 2 

2 1 2 6 6 

3 3 5 7 4 
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CHAPTER 6 

 

 

CONCLUSION AND FURTHER RESEARCH ISSUES 

 

 

 

In this study, we address two problems: assembly line design which is a strategical 

decision and mixed-model sequencing which is an operational decision. For the 

assembly line design problem we propose a robust optimization model based on 

integer programming which is an extension of a former approach.  We extend the 

former approach that is proposed for the single-model line environment to a mixed-

model environment. In our robust optimization model we try to minimize the 

maximum regret over all models of the car, considering the total of investment and 

operating costs.  We then design all the lines for the car body shop with reference to 

a local car manufacturer.  

 

After designing the mixed model lines in the car body shop, we address the 

operational problem of sequencing on the lines which have a mixed-model nature.  

Since the sequencing problem is an NP-hard problem and hence hard to solve by 

mathematical modeling, we intend to solve it by a genetic algorithm which is fast and 

eligible for sequencing problems. We develop a genetic algorithm and then search 

for its performance through several test problems. We compare the solutions of the 

GA against the optimum solutions obtained by total enumeration. 

 

From the computational work, we also see how the problem size affects the 

computational time of a run. The problem size is determined by the sequence length, 
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combination of models of cars and number of stations. We conclude that our GA 

works well and fast and can be used to find the optimal sequence for any mixed-

model sequencing problem with the objective of workload smoothing over the 

stations over time.   

 

Further analyses can be made on the robust optimization model to see how well it 

reacts to changes in the annual demand and the changes in total cost can be observed 

in the former single line approach and the new mixed-model line approach we 

propose. Similarly, the robust optimization model can be extended so as to take into 

account the dynamic demand over the lifecycle of a car, that is increasing annual 

demand during the first years, and then stable demand for some time, and decaying 

demand during the last years of the life cycle. 

 

Our GA can be tested with other fitness functions. Also, multi objective fitness 

functions can be tried since they are getting increasingly more popular day by day. 

 

Paint shop constraints can be taken into account in the mixed-model sequencing 

algorithm in the car body shop which results in the so-called ‘car sequencing 

problem’ that has got a systemic approach for the model sequencing in the body 

shop.    
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APPENDIX A 

  

 

THE SOLUTION SHEET OF THE DASHBOARD POOL 

 

 

 

Table A.1 The Solution Excel Page Costs and Important Information 

max regret 2363326,281 

Total investment and transformation cost(€) 5059433,47 

Total investment and transformation 

cost(€)combi 3940308,281 

Total investment and transformation 

cost(€)cargo 3678134,639 

Total investment cost(€) 1066000 

    Transformation cost combi(€) 2744333,281 

   Transformation cost cargo(€) 2482159,639 

    Total transformation cost(€) 3993433,47 

Total Cost of Space(€) 129975 

Total Used Space(m2) 173,3 

Automation % 74,83221577 

Number of Robotic stations  4 

Number of Manual stations  1 

Number of stations 5 

Number of Robots 4 

Number of workers 2 

Number of workers + robots 6 
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Table A.2 The Solution Excel Page Inputs Reminder 

Daily working hours 21 

Years of production(years) 8 

Total yearly production 165000 

Total yearly production-combi 100000 

Total yearly production-cargo 65000 

Cost of labor (€/h) 7,5 
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Table A.3 The Solution Excel Page Important Information of Stations 

  1 2 3   

  M2 R15 R2   

Number of workers 2 1 1   

Time used (sec) 159,56672 18 69,4   

Time without 

added value (sec) 104,36672 18 46   

Time of tasks(sec) 55,2   23,4   

Usable time (sec) 159,6672 73,4832 73,4832   

Station utility (%) 99,9370691 24,49539487 94,44335576   

Conveyor worker     0,132275132   

Work done in terms 

of bolts 13,5   9   

          

stations 1 3 4 5 

tasks M2 R2 R35 R17 

8A01 1       

8V01 1       

8T01 1       

8T02 1       

8T03   1     

8T04   1     

8T05   1     

8D01   1     

8K01     1   

8K02     1   

8M01       1 
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Table A.4 The Solution Excel Page Task Assignments 

stations 1 2 3 4 5 

tasks M2 R15 R2 R35 R17 

8A02   1       

8V02 1         

8T06 1         

8T07     1     

8T08     1     

8T09     1     

8D02   1       

8K03       1   

8K04       1   

8M02         1 

8B02   1       

            

stations 4         

tasks R35         

8S01 10         

            

            

stations 3 4       

tasks R2 R35       

8S02 1,775304348 8,224695652       
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APPENDIX B  

 

 

THE CODE OF THE GA 

 

 

#include <string> 

#include <iostream> 

#include <math.h> 

 

using std::string; 

using std::cout; 

using std::cin; 

using std::endl; 

 

#define CROSSOVER_RATE            0.7 

#define MUTATION_RATE             0.01 

#define POP_SIZE                  200         //must be an even number 

#define ELITE_SIZE                  20      //must be smaller than POP_SIZE, and an 

EVEN number 

#define MAX_ALLOWABLE_GENERATIONS   400 

#define GEN_REQUIRED_AS_FITTEST     50 

 

//returns a float between 0 & 1 

#define RANDOM_NUM      ((float)rand()/(RAND_MAX+1)) 

 

//---------------------------------------------------------------------------------------- 
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// 

//   define a data structure which will define a chromosome 

// 

//---------------------------------------------------------------------------------------- 

struct chromo_typ 

{ 

   //the binary bit string is held in a std::string 

   string   bits;   

   float    fitness; 

 

   // if I don't give values, it creates a default chromosome with empty bits and zero 

fitness 

   chromo_typ(): bits(""), fitness(0.0f){}; 

   // otherwise, I assing the given values to it 

   chromo_typ(string bts, float ftns): bits(bts), fitness(ftns){} 

}; 

 

 

/////////////////////////////////prototypes////////////////////////////////////////////// 

string  GetRandomBits(int length, int carsAmmount, int* carProportions); 

float   AssignFitness(string bits, int chromoLength, int stationsAmmount, float* 

AverageTimes, float **CarsTimeByStation); 

string  Roulette(float total_fitness, chromo_typ* Population); 

void    Mutate(string &bits); 

void    Crossover(string &offspring1, string &offspring2, int chromoLength); 

void    Elitism(chromo_typ* Elite, chromo_typ* Population, int eliteSize); 

int     compareChromo(const void* elem1, const void* elem2); //chromosome 

comparison function for qsort, based on fitness 
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float **newMatrix(int rows, int cols); 

void deleteMatrix(float **matrix, int rows); 

void printBits(string &bits, int chromoLenght); 

 

//-------------------------------main-------------------------------------------------- 

// 

//------------------------------------------------------------------------------------- 

int main() 

{ 

    //seed the random number generator 

    srand((int)time(NULL)); 

     

    //chromosome lengh 

    int chromoLength; 

    //storage for our population of chromosomes. 

    chromo_typ Population[POP_SIZE]; 

    // ammount of stations in the factory 

    int stationsAmmount=0; 

    //ammount of car 'models' 

    int carsAmmount=0; 

    //storage for the car proportions in the chromosome 

    int *carProportions; 

    //storage for time taken by each station to work on each type of car 

    float **CarsTimePerStation; 

    //storage for the average desired time per station 

    float *AverageTimeByStation; 

    // best solution of the last generation 

    chromo_typ Fittest; 
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    // number of generations with the same fittest chromosome 

    int genAsFittest = 0; 

    // temporary Integer... sorry, but I need it 

    int tempInt; 

     

    cout << "\nInput the desired sequence lenght: "; 

    cin >> chromoLength; 

     

    while (!(carsAmmount*stationsAmmount)){ 

        //get ammount of stations from user 

        cout << "\nInput the desired stations ammount (greater than 0): "; 

        cin >> stationsAmmount; 

        cout << endl; 

         

        //get ammount of cars 

        cout << "\nInput the desired ammount of car models (greater than 0): "; 

        cin >> carsAmmount; 

        cout << endl; 

    }; 

 

    //allocate memory for the car proportions 

    carProportions = new int[carsAmmount]; 

     

    for (int i=0; i < carsAmmount; i++) 

        carProportions[i] = 0; 

 

    //get car proportions 

    tempInt = 0; 
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    for (int i=0; i < carsAmmount && tempInt < chromoLength; i++) 

    { 

        cout << "\nInput the ammount of cars from model " << (i + 1) << " in the 

sequence: "; 

        cin >> carProportions[i]; 

        if ((tempInt + carProportions[i]) > chromoLength) 

           { 

                cout << "\nGood work! You managed to go beyond the sequence lenght. "; 

                carProportions[i] = chromoLength - tempInt; 

                cout << "The ammount of cars for model " << (i + 1) << " has been set to 

"; 

                cout << carProportions[i] << ". The rest of the models' ammount will be set 

to 0."; 

                cout << endl; 

           } 

        tempInt += carProportions[i]; 

    } 

     

    if (tempInt < chromoLength){ 

       cout << "\nThe car proportions that you entered are not enough to cover the 

sequence lenght."; 

       cout << "\nCar proportion for model " << carsAmmount << " will be set to " << 

(chromoLength - tempInt + carProportions[carsAmmount-1]); 

       carProportions[carsAmmount-1] = chromoLength - tempInt +  

       carProportions[carsAmmount-1]; 

    } 

     

    //allocate memory for the time taken by each station to  
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    //work on each type of car 

    CarsTimePerStation = newMatrix(carsAmmount, stationsAmmount); 

     

    //allocate memory for the average times per station 

    AverageTimeByStation = new float[stationsAmmount]; 

     

    //get times from the user 

    for (int i=0; i < stationsAmmount; i++) 

    { 

        cout << "\nInput the average desired time for station " << (i + 1) << ": "; 

        cin >> AverageTimeByStation[i]; 

    } 

 

    for (int i=0; i < carsAmmount; i++) 

    { 

        for (int j=0; j < stationsAmmount; j++) 

        { 

            cout << "\nInput time taken by station " << (j + 1) << " to work on car type " 

<< (i + 1) << ": "; 

            cin >> CarsTimePerStation[i][j]; 

            cout << endl; 

        } 

    } 

      

     //first create a random population, all with zero fitness. 

     for (int i=0; i<POP_SIZE; i++) 

     { 
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        Population[i].bits     = GetRandomBits(chromoLength, carsAmmount, 

carProportions); 

        Population[i].fitness = 0.0f; 

     } 

 

     int GenerationsRequiredToFindASolution = 0; 

 

     //we will set this flag if the best solution is the same for 

GEN_REQUIRED_AS_FITTEST generations 

     bool bFound = false; 

 

     //enter the main GA loop 

     while(!bFound) 

     { 

        //this is used during roulette wheel sampling 

        float TotalFitness = 0.0f; 

 

        // test and update the fitness of every chromosome in the population 

        // AND find the fittest, in the meantime 

        for (int i=0; i<POP_SIZE; i++) 

        { 

           // We assign the fitness to each chromosome 

           Population[i].fitness = AssignFitness(Population[i].bits, chromoLength, 

stationsAmmount, AverageTimeByStation, CarsTimePerStation); 

            

           if (Population[i].fitness > Fittest.fitness) 

           { 

              Fittest.bits = Population[i].bits; 
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              Fittest.fitness = Population[i].fitness; 

              genAsFittest = 0; 

           } 

 

           TotalFitness += Population[i].fitness; 

        } 

 

        // a new generation has just passed, so we increase genAsFittest and 

        // GenerationsRequiredToFindASolution, and check to see if the Fittest 

        // is still the same for the last GEN_REQUIRED_AS_FITTEST generations 

        // or the MAX_ALLOWABLE_GENERATIONS threshold has been reached 

        ++GenerationsRequiredToFindASolution; 

         

        //Let's show the fittest in each round 

        cout << "Best solution in round " << GenerationsRequiredToFindASolution << 

": "; 

        for (int i=0; i < chromoLength; i++) 

            cout << (int)Fittest.bits.at(i) + 1; 

        cout << " | Fitness: " << Fittest.fitness << endl; 

         

        if ((++genAsFittest) == GEN_REQUIRED_AS_FITTEST) 

        { 

            cout << endl << "The same chromosome has prevailed as the fittest for " << 

GEN_REQUIRED_AS_FITTEST << " generations!" << endl; 

             

            cout << "It took " << GenerationsRequiredToFindASolution << " generations 

to get to the following solution:" << endl << endl; 
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            for (int i=0; i < chromoLength; i++) 

                cout << (int)Fittest.bits.at(i) + 1; 

 

            cout << endl << endl << "And its fitness is: "; 

            cout << Fittest.fitness <<endl; 

 

            bFound = true; 

        } 

         

        if (GenerationsRequiredToFindASolution > 

MAX_ALLOWABLE_GENERATIONS) 

        { 

           cout << "The maximum number of allowed generations has been reached. The 

current fittest chromosome is the following:" << endl; 

 

           for (int i=0; i < chromoLength; i++) 

               cout << (int)Fittest.bits.at(i) + 1; 

                

           cout << endl << endl << "Its fitness is: "; 

           cout << Fittest.fitness << endl; 

            

           cout << "And it has stayed as the fittest chromosome for the last "; 

           cout << genAsFittest << " generation"; 

           cout << (genAsFittest > 1 ? "s." : ".") << endl; 

            

           bFound = true; 

        } 
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        // create a new population by first implementing elitism, and then 

        // selecting two parents at a time and creating offspring by applying 

        // crossover and mutation. Do this until the desired number of offspring 

        // have been created.  

         

        //define some temporary storage for the new population we are about to create 

        chromo_typ temp[POP_SIZE]; 

         

        // IMPLEMENT ELITISM HERE TO GET THE BEST SOLUTIONS TO THE 

NEXT GENERATION 

        // ELITE_SIZE is the ammount of chromosomes on the elite. 

        Elitism(temp, Population, ELITE_SIZE); 

 

        //loop until we have created POP_SIZE - ELITE_SIZE new chromosomes 

        int cPop = ELITE_SIZE;         

 

        while (cPop < POP_SIZE) 

        { 

           // we are going to create the rest of the new population by grabbing 

           // members of the old population two at a time via roulette wheel selection. 

           string offspring1 = Roulette(TotalFitness, Population); 

           string offspring2 = Roulette(TotalFitness, Population); 

 

           //add crossover dependent on the crossover rate 

           Crossover(offspring1, offspring2, chromoLength); 

 

           //now mutate dependent on the mutation rate 

           Mutate(offspring1); 
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           Mutate(offspring2); 

            

           //add these offspring to the new population. (assigning zero as their 

           //fitness scores) 

           temp[cPop++] = chromo_typ(offspring1, 0.0f); 

           temp[cPop++] = chromo_typ(offspring2, 0.0f); 

 

        } 

 

        //copy temp population into main population array 

        for (int i=0; i<POP_SIZE; i++) 

        { 

           Population[i] = temp[i]; 

        } 

     } 

 

    cout << "\n\n\n"; 

 

    /* DEBUG: show all list 

    for (int i=0; i<POP_SIZE; i++) 

    { 

        for (int j=0; j < chromoLength; j++) 

            cout << (int)Population[i].bits.at(j); 

        cout << " " << Population[i].fitness << " | "; 

    } 

    cout << "\n\n\n"; 

    */ 
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    // just to see the results 

    string pepe; 

    cout << "Type a letter and press <ENTER>" << endl; 

    cin >> pepe; 

     

    //Memory cleaning 

    delete [] AverageTimeByStation; 

    delete [] carProportions; 

    deleteMatrix(CarsTimePerStation, carsAmmount); 

    return 0; 

} 

       

 

//---------------------------------newMatrix--------------------------- 

//  

// This function dynamically allocates a matrix   

// 

//--------------------------------------------------------------------- 

float **newMatrix(int rows, int cols){ 

    float** storage = new float*[rows]; 

    if (rows) 

    { 

        storage[0] = new float[rows * cols]; 

        for (int i = 1; i < rows; ++i) 

            storage[i] = storage[0] + i * cols; 

    } 

    return storage;         

}; 
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//------------------------------deleteMatrix--------------------------- 

//  

// Take a guess... 

// 

//--------------------------------------------------------------------- 

void deleteMatrix(float **matrix, int rows){ 

    if (rows) delete [] matrix[0]; 

    delete [] matrix; 

}; 

 

//---------------------------------printBits--------------------------- 

//  

// Take another guess... 

// 

//--------------------------------------------------------------------- 

void printBits(string &bits, int chromoLength){ 

   for (int i=0; i < chromoLength; i++) 

       cout << (int)bits.at(i); 

}; 

 

 

//---------------------------------GetRandomBits----------------------------------------- 

// 

//   This function returns a string of random As and Bs of the desired length. 

//   We want the proportion A:B to be MAX_A:MAX_B 

//----------------------------------------------------------------------------------------- 

string GetRandomBits(int length, int carsAmmount, int* carProportions) 
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{ 

   //we're gonna define 'model segment' as the subinterval of [0..1] 

   //which will correspond to a given i model, in the following way: 

   //the model segment for model i, would be 

[(i/carsAmmount)..((i+1)/carsAmmount)] 

   string bits; 

   int *counters; 

   float randomNum; 

   //temporary Float to find the model segment. It's a float to avoid the integer 

   //division in the while (below), since that would always result in 0 otherwise 

   float tempFloat; 

   // temporary Integer for the indexes, since C doesn't like float indexes, and 

   // I don't wanna be casting it all the time 

   int tempInt; 

    

   counters =  new int[carsAmmount]; 

    

   for (int i=0; i<carsAmmount; i++) 

       counters[i] = 0;  

 

   for (int i=0; i<length; i++) 

   { 

       //sorry, but I need to use the random a couple of times, and if I call 

       //RANDOM_NUM every time, it will be a different number, so I have to store it. 

       randomNum = RANDOM_NUM; 

       //no sense to start from 0, since it will be always smaller 

       tempFloat = 1.0f; 

       //search the model segment 
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       while ((tempFloat++/carsAmmount) < randomNum); 

       //the index we look for is the low end of the segment 

       //so we need to decrease the index by one. Also, we need 

       //to decrease it by one more, since the indexes of an array 

       //start with 0, and not with 1 

       tempInt = (int) tempFloat - 2; 

 

       //if I hasn't exceded the proportion, I still can add 

       //that car model, if not, I need to randomly pick the 

       //car model for this chromosome again 

       if (counters[tempInt] < carProportions[tempInt]) 

       { 

           bits += tempInt; 

           counters[tempInt]++; 

       } 

       else 

       { 

           i--; 

       } 

   }; 

    

   //some memory cleaning 

   delete [] counters; 

    

   return bits; 

} 

 

//---------------------------------AssignFitness-------------------------------------- 
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// 

//   given a string of bits, average expected times by station, and times needed 

//   to work on each car by station, this function will calculate the fitness 

//   score for a the given chromosome 

//------------------------------------------------------------------------------------ 

float AssignFitness(string bits, int chromoLength, int stationsAmmount, float* 

AverageTimes, float** CarsTimePerStation) 

{ 

    float fitScore = 0; 

    float **Utility; 

     

    Utility = newMatrix(stationsAmmount,chromoLength); 

     

    ///////////////////////////// 

    // This should go into a function (maybe called calculateUtility) but...  

    // what can we do? There's no time for tidiness this round :) 

     

    // I calculate the first column separatedly to use that after to calculate  

    // the utilities recursivelly 

    // This is done just to avoid intermediate calculations in the next loop 

    for (int i = 0; i < stationsAmmount; i++){ 

        // I'm multiplying by 1.0 just to make sure Utility get's a float 

        Utility[i][0] = (CarsTimePerStation[((int)bits.at(0))][i] * 1.0f) / 

AverageTimes[i]; 

    }; 

     

    for (int i = 0; i < stationsAmmount; i++){ 

        for (int j = 1; j < chromoLength; j++){ 
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            // As C++ indexes start with 0, I will use j and j+1 instead of j-1 and j in the 

formula 

            Utility[i][j] = (Utility[i][j-1] * j / (j+1)) + 

((CarsTimePerStation[(int)bits.at(j)][i] * 1.0f) / (AverageTimes[i] * (j+1))); 

        } 

    } 

    // 

    ///////////////////// 

     

    // Now, the fitness would be the summatory of all the utilities differences 

    for (int i = 0; i < stationsAmmount; i++){ 

        for (int j = 1; j < chromoLength; j++){ 

            fitScore += fabs(Utility[i][j] - Utility[i][j-1]); 

             

        } 

    } 

 

    // some cleaning 

    deleteMatrix(Utility, stationsAmmount); 

     

    return fitScore; 

} 

 

 

//------------------------------------Mutate--------------------------------------- 

// 

//   Mutates a chromosome's bits dependent on the MUTATION_RATE 

//------------------------------------------------------------------------------------- 
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void Mutate(string &bits) 

{ 

   size_t found; 

   //I don't want to calculate this each time I enter the for loop below, and 

   //memory is an elephant :) 

   int bitsLength = bits.length(); 

    

   for (int i=0; i<bitsLength; i++) 

   { 

      if (RANDOM_NUM < MUTATION_RATE) 

      { 

         int j = 0; 

         int swapBit; 

         while (bits.at(j++) == bits.at(i)); 

         swapBit = bits.at(--j); 

         bits.at(j) = bits.at(i); 

         bits.at(i) = swapBit; 

      } 

   } 

}; 

 

//---------------------------------- Crossover --------------------------------------- 

// 

//  Dependent on the CROSSOVER_RATE this function selects random points along 

the  

//  lenghth of the chromosomes and applies an ADAPTED ordered crossover (OX) 

on the parents. 

//------------------------------------------------------------------------------------ 
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void Crossover(string &offspring1, string &offspring2, int chromoLength) 

{ 

  //dependent on the crossover rate 

  if (RANDOM_NUM < CROSSOVER_RATE) 

  { 

    //create random crossover points 

    int crossover1 = (int) (RANDOM_NUM * chromoLength); 

    int crossover2 = (int) (RANDOM_NUM * chromoLength); 

     

    if (crossover2 < crossover1) 

    //swap crossover points with XOR 

    { 

           crossover1 = crossover1 ^ crossover2; 

           crossover2 = crossover1 ^ crossover2; 

           crossover1 = crossover1 ^ crossover2; 

    } 

     

    //take slices 

    string middle1 = offspring1.substr(crossover1, crossover2 - crossover1); 

    string middle2 = offspring2.substr(crossover1, crossover2 - crossover1); 

     

    string tempoff1, tempoff2; 

    string midtemp1 = middle1, midtemp2 = middle2; 

 

    // I'll go through the parent2, checking in order if the gene is in the slice 

    // picked from parent1. If so, I will avoid storing that gene, otherwise it 

    // will be added to the genes that will form part of offspring1 

    tempoff1.clear(); 
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    size_t found; 

    for (int i = 0; i < chromoLength; i++) 

    { 

        found = midtemp1.find(offspring2[i]); 

          if (found!=string::npos) 

          { 

             midtemp1.erase(found,1); 

          } 

          else 

          {  

             tempoff1 += offspring2[i]; 

          } 

    } 

    

    // idem   

    tempoff2.clear(); 

    for (int i = 0; i < chromoLength; i++) 

    { 

        found = midtemp2.find(offspring1[i]); 

          if (found!=string::npos) 

          { 

             midtemp2.erase(found,1); 

          } 

          else 

          {  

             tempoff2 += offspring1[i]; 

          } 

    } 
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    offspring1 = tempoff2.substr(0, crossover1) + middle2 + 

tempoff2.substr(crossover1); 

    offspring2 = tempoff1.substr(0, crossover1) + middle1 + 

tempoff1.substr(crossover1); 

  } 

} 

 

 

//--------------------------------Roulette------------------------------------------- 

// 

//   selects a chromosome from the population via roulette wheel selection 

//------------------------------------------------------------------------------------ 

string Roulette(float total_fitness, chromo_typ* Population) 

{ 

   //generate a random number between 0 & total fitness count 

   float Slice = (float)(RANDOM_NUM * total_fitness); 

    

   //go through the chromosones adding up the fitness so far 

   float FitnessSoFar = 0.0f; 

    

   for (int i=0; i<POP_SIZE; i++) 

   { 

      FitnessSoFar += Population[i].fitness; 

       

      //if the fitness so far > random number return the chromo at this point 

      if (FitnessSoFar >= Slice) 
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         return Population[i].bits; 

   } 

 

   return ""; 

} 

 

//--------------------------------Elitism------------------------------------------- 

// 

//   selects the fitest chromosomes from the Population  

//------------------------------------------------------------------------------------ 

void Elitism(chromo_typ* Elite, chromo_typ* Population, int eliteSize){ 

     qsort(Population, POP_SIZE, sizeof(chromo_typ), compareChromo); 

     for (int i = 0; i < eliteSize; i++) 

         Elite[i] = chromo_typ(Population[i].bits, Population[i].fitness); 

} 

 

//--------------------------------compareChromo------------------------------------------- 

// 

//   chromosome comparison function for qsort, based on fitness 

//------------------------------------------------------------------------------------ 

int compareChromo(const void* elem1, const void* elem2){ 

    if ( ((chromo_typ*)elem1)->fitness > ((chromo_typ*)elem2)->fitness ) 

       return -1; 

    else 

       return 1;         

    } 


