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ABSTRACT 

 

 

MAGNETIC RESONANCE CONDUCTIVITY TENSOR IMAGING  (MRCTI) AT 3 

TESLA 

 

 

 

Sadighi, Mehdi 

MSc. Departement of Electrical and Electronics Engineering 

                       Supervisor          : Prof. Dr. Murat Eyüboğlu 

February 2014, 101 pages 

 

 

Electrical conductivity of biological tissues changes with physiological and pathological 

state of tissue. Therefore, recognizing the changes of the conductivity distribution inside 

human body, provides unique information about the pathological conditions of internal 

organs which is not available from other imaging modalities. Magnetic Resonance 

Electrical Impedance Tomography (MREIT) is an imaging technique to reconstruct the 

isotropic conductivity distribution of the biological tissues. But most of the biological 

structures and tissues have anisotropic conductivity. Therefore, Magnetic Resonance 

Conductivity Tensor Imaging (MRCTI) is proposed to image the anisotropic conductivity 

distribution. Similar to MREIT technique, MRCTI reconstruction algorithms are grouped 

into B-based and J-based algorithms.  The aim of this study is implementing the MRCTI 



 
 

vi 

 

J-based algorithms to reconstruct the experimental data obtained using a 3 Tesla Magnetic 

Resonance Imaging (MRI) system. An experimental phantom is designed and 

manufactured with special properties according to needs of the experiments and the 

resulted conductivity distributions are compared. Furthermore, a novel hybrid J-based 

reconstruction algorithm namely, the Anisotropic Hybrid Equipotential Projection 

(AHEPP) is proposed, and the related simulations and experimental results are given. In 

addition, performance of the four J-based MRCTI algorithms in reconstruction of the 

experimental data is evaluated using error measures.  

 

Keywords: Magnetic resonance, electrical impedance, tomography, anisotropic 

conductivity, reconstruction, imaging.  
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ÖZ 

 

 

3 TESLADA MANYETİK REZONANS İLETKENLİK TENSÖRÜ  GÖRÜNTÜLEME 

(MRİTG) 

 

 

 

 

Sadighi, Mehdi 

Master, Elektrik ve Elektronik Mühendisliği Bölümü 

                        Danışmanı          : Prof. Dr. Murat Eyüboğlu 

Şubat 2014, 101 sayfa 

 

 

Biyolojik dokuların elektriksel iletkenlikleri fizyolojik ve patolojik durumlarına göre 

değişiklik göstermektedir. Bu nedenle, insan vücudundaki iletkenlik dağılımının 

değişimlerini teşhis etmek iç organların patolojik durumları hakkında diğer görüntüleme 

metotlarının yetersiz kaldığı yerde özgün bilgiler sağlar. Eşyönlü iletkenlik dağılımını 

görüntülemek için kullanılan tekniklerlerden biri Manyetik Rezonans Elektriksel 

Empedans Tomografisidir (MREET). Ancak insan vücudundaki çoğu doku ve yapıda 

iletkenlik dağılımı eşyönsözdür. Bu nedenle, eşyönsüz iletkelik dağılımını görüntülemek 

için Manyetik Rezonans İletkenlik Tensörü Görüntülemesi (MRİTG) önerilmiştir. 

MREET tekniğindekine benzer şekilde, MRİTG geriçatım algoritmaları B-tabanlı ve J-

tabanlı olarak gruplandırılmaktadır. Bu çalışmanın amacı, 3 Tesla Manyetik Rezonans 

Görüntüleme sisteminde elde edilen deneysel verilerin J-tabanlı algoritmalar kullanılarak 
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iletkenlik görüntülerinin oluşturulmasıdır. Deneysel çalışmaya uygun özellikte fantom 

tasarımı ve üretimi yapılıp elde edilen iletkenlik dağılımları karşılaştırılmıştır. Ayrıca, 

Eşyönsüz Hibrit Eşpotansiyel İzdüşümü (EHEİ) diye adlandırılan J-tabanlı özgün hibrit 

bir algoritma önerilmiş ve buna dair simülasyon ve deneysel sonuçlar verilmiştir. Bunlara 

ek olarak, deneysel veriler kullanılarak dört farklı J-tabanlı MRİTG geriçatım 

algoritmasının performansı hata hesapları gözetilip değerlendirilmiştir.  

 

Anahtar Kelimeler: Manyetik Rezonans, elektriksel empedans, tomografi, eşyönsüz 

iletkenlik, geriçatım, görüntüleme. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1   Electrical Properties of Tissues 

 
Electrical properties of biological tissues may vary with physiological state of the tissue. 

This can be useful in identifying and monitoring the probability of an illness or presence 

of abnormalities [1]. These properties determine the current flow pathways through 

different organs. Knowledge of these properties can be useful in a variety of biomedical 

applications such as, modeling tissues to investigate action potential propagations, 

estimating therapeutic current distribution during electrical stimulation and monitoring 

physiological functions [2].  

Among these properties, “the electrical conductivity of a biological tissue is affected by 

its composition, structure, concentration and mobility of ions in intra- and extra-cellular 

fluids, amounts of those fluids, temperature and other factors” [3]. Therefore, the 

conductivity value of the various biological materials is different. Recognizing these 

differences by obtaining the conductivity map of the biological tissues inside the body 

can provide significant information about pathological conditions of internal organs, 

which is not available from other imaging modalities.  
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For instance, “tumors generally have higher water content than normal cells because of 

cellular necrosis but also, irregular and fenestrated vascularization. In addition, 

differences may exist in the membrane structure. Although an increased conductivity may 

be used to identify the presence of tumors” [2].  

 

1.1.2   Anisotropy of Tissues 

 
Electrical anisotropy which is observed in some biological materials such as bones, 

myocardial fiber, skeletal muscles, ligaments or blood vessels is related to presence of 

different fibers that are folded together in their structure [4]. These fibers are actually the 

very long cells. For instance in the case of skeletal muscle, fibers are wrapped together 

densely, and the electrical conduction in the longitudinal direction of fibers is much more 

than the transversal route. Because the transversal route is actually the extra cellular 

region and is less conductive than the cell inside [2]. On the other hand, the anisotropy is 

a frequency-dependent phenomenon that can be disappeared by increasing the injected 

current frequency. For instance in the case of muscle tissue and for frequencies beyond 

several MHz the anisotropy disappears. Then this property should be evaluated in a 

specific range of frequencies related to that biological material. 

 

1.2   Electrical Impedance Tomography 
 

Electrical Impedance Tomography (EIT) is an imaging technique to produce cross-

sectional conductivity images from a conductive distribution and was proposed first by 

Henderson and Webster [5]. In this technique, current patterns are injected to the 

conductive region by using a set of surface electrodes and simultaneous measurements of 

currents and voltages are performed in the boundary. This data is used by EIT 

reconstruction algorithms to determine the conductivity distribution inside the volume 

conductor [6]. Brown and Barber [7] published the first EIT tomographic images. 
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But, this technique suffers from many practical and theoretical drawbacks like “errors in 

boundary shape and electrode positions, high and uncontrollable contact impedance of 

skin” [5] along with poor and space dependent spatial resolution of the reconstructed 

images due to the limited number of electrodes placed on the boundary. Another problem 

in this technique is the low sensitivity of the measured data at the boundary to conductivity 

variations inside the object. This inherent insensitivity of the boundary data to internal 

conductivity changes even worsens with distance from the surface. In other words, the 

spatial resolution differs for inner regions, and regions close to the boundary. 

Theoretically, this can be solved by voltage measurements directly from inner regions of 

the object, but this cannot be achieved non-invasively  [8]. Highly non-uniform sensitivity 

and ill-posedness of the EIT inverse problem along with the poor spatial resolution, make 

conventional EIT unfeasible for clinical applications.  

 

 

1.3   Magnetic Resonance Electrical Impedance Tomography  

 
To overcome the EIT’s main problems namely the space-dependent spatial resolution and 

the low sensitivity of the measured data at the boundary to conductivity perturbations 

inside the object, Scott and Joy [9] proposed using the Magnetic Resonance Imaging 

(MRI) to measure internal current density. In this technique, the currents are injected 

externally to the object using surface electrodes, consonant with a conventional MRI spin-

echo pulse sequence. In this way, the magnetic field due to the injected currents is 

obtained by extraction from the resultant MRI phase images. Then by using the Ampere’s 

law given in (1.1), 

𝐽 =  
𝛻 × 𝐵

𝜇0
                                                             (1.1) 

Current density data inside the object is obtained. This technique is named as Magnetic 

Resonance Current Density Imaging (MRCDI). 
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In (1.1), 𝑱 = (𝐽𝑥, 𝐽𝑦, 𝐽𝑧), 𝑩 = (𝐵𝑥, 𝐵𝑦, 𝐵𝑧)  and µ˳ is magnetic permeability of free 

space. 

To have all three components of B and consequently J, an object rotation inside the main 

magnet is needed, because only the magnetic field component which is aligned with the z 

direction of the main magnet can be calculated using MRI. 

By using this current density data which is obtained from MRCDI technique and applying 

the relevant algorithms, the absolute conductivity images of the object can be obtained 

with high resolution and uniform sensitivity. This technique is named as Magnetic 

Resonance Electrical Impedance Tomography (MREIT) and proposed first by Zhang [10] 

and Woo et al [11]. 

Zhang [10] indeed, combined the two EIT and CDI techniques to obtain the conductivity 

distribution inside the object by using several boundary voltage measurements of EIT and 

internal current density distribution measurements of CDI. The relation between potential 

differences on the surface points (∆𝜑) and the current density J, is as given in (1.2). 

∆𝜑 =  ∫𝜌 𝐽 . 𝑑𝑙⃗⃗⃗⃗
𝑙

                                                        (1.2) 

Where, 𝜌 is the resistivity of the object distribution and l is any contour for line integral 

which connects two surface measurement points. 

In numerical implementation, if the imaging region is discretized to M pixels, each with 

constant conductivity, for N boundary voltage measurements the equation (1.2) is reduced 

to a linear system of equations as given in (1.3): 

∆𝜑𝑁×1 = 𝐺𝑁×𝑀 𝜌𝑀×1 + 𝑛𝑁×1                                          (1.3) 
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Where, G is the internal current density data matrix, 𝜌 is the unknown resistivity 

distribution vector and n is the noise data vector, for M pixels and N boundary voltage 

measurements. 

The solution of this linear system of equations gives the unknown resistivity 

(conductivity) values on the imaging region. Despite this, the technique suffers from the 

need for many boundary voltage measurements to result a solution with a high spatial 

resolution. 

Woo et al [11], proposed a new method based on minimizing an error function in terms 

of resistivity distribution, which models difference between measured current density data 

using CDI technique and the current density which is obtained from computer simulation 

model using the Finite Element Method (FEM). Beside the advantages, this technique 

suffers from low spatial resolution and poor convergence to true resistivity values because 

of non-effective usage of inside current density data. 

Another method was proposed by Ider and Birgül [12], which is based on calculation of 

a sensitivity matrix relating the measured magnetic field due to the injected currents, to 

the conductivity distribution of the object using FEM and Biot-Savart law. In this 

technique, it is claimed that conductivity perturbations inside the imaging object causes a 

change in the magnetic field distribution due to the changes in the injected current. As it 

is possible to measure these magnetic field alternations with equal sensitivity throughout 

the entire region using MRI, the conductivity distribution map of the object can be 

obtained with uniform spatial resolution by applying the reconstruction algorithms [13, 

14]. 

Eyüboğlu et al [15] and Özdemir et al [16], proposed a technique that uses the current 

density distribution measured by MRCDI, along with surface potential measurements of 

EIT, to reconstruct absolute conductivity images with high and space independent spatial 
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resolution. The principle of this method is based on the fact that the current density vectors 

are perpendicular to the equipotential lines in any pixel of the imaging object in an 

isotropic distribution. In this way, by using the current density data, it is possible to project 

the measured surface potentials, into the imaging region and assign a potential value to 

each pixel and calculate the potential gradient. Then for imaging region (𝑥, 𝑦) ∈ S, by 

using the measured current density data J, and the calculated potential gradient 𝛻𝜑, the 

conductivity distribution can be obtained using (1.4). 

𝜎(𝑥, 𝑦) =  
|𝐽(𝑥, 𝑦)|

|∇𝜑(𝑥, 𝑦)|
                                                 (1.4)  

In 2002, another reconstruction algorithm was proposed by Kwon et al [17] to produce 

cross-sectional static conductivity images of a resistive distribution. The method is indeed 

an iterative algorithm which relates numerically, the conductivity of the object 

distribution to the current density data which is due to the injected currents. They called 

this method as J substitution algorithm. In this procedure, a cost functional is introduced 

according to the solution of the following boundary value problem (BVP) given in (1.5). 

∇. (
1

𝜌
 ∇𝑉𝜌) = 0          𝑖𝑛  Ω                                             (1.5) 

This BVP is solved for a given conductivity distribution  𝜎 (=
1

𝜌
), and the Neumann 

boundary condition which is given in (1.6) and for the mathematical body model Ω. 

1

𝜌
 
𝜕𝑉𝜌

𝜕𝑛
=  𝐽𝑖           𝑜𝑛   𝜕Ω                                              (1.6) 

In the above equations, 𝐽𝑖 represents the current density at the boundary 𝜕𝛺, and n denotes 

the normal unit vector outward on 𝜕𝛺. 
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By minimizing the cost functional in (1.7), an update equation is resulted to use in the 

iterative method. 

𝛹 (𝜌)  ∶= ∫ | 𝐽(𝑟) − 
1

𝜌(𝑟)
  𝐸𝜌|

2

𝑑𝑟                                      (1.7)

Ω𝑠

 

In the equation (1.7),  𝐽(𝑟) represents the magnitude of the measured current density, 𝐸𝜌 is 

the magnitude of the electric field strength obtained from solving the equation (1.5) under 

the constraint of (1.6) by using the FEM. 

It is also claimed that, to reconstruction of absolute conductivity value at least two current 

injection patterns is needed along with the one surface potential measurement. The 

injected current patterns should not be parallel to each other. Namely, the currents satisfy 

the inequality which is given in (1.8). 

|𝐽1 × 𝐽2| ≠ 0                                                         (1.8) 

 

In a later study, Khang et al [18] represented phantom experiments for static resistivity 

imaging by J substitution algorithm, using a 0.3 Tesla MRI scanner and saline phantoms. 

Boyacıoğlu and Eyüboğlu [19] proposed another J substitution algorithm which is 

actually the combination of two MREIT reconstruction algorithms namely, the 

equipotential projection (EPP) and the J substitution algorithms. This hybrid algorithm 

uses the EPP’s resultant conductivity distribution as the initial conductivity value for the 

J substitution algorithm. 

In 2007, Değirmenci and Eyüboğlu [20] proposed a novel MREIT reconstruction 

algorithm using equipotential projection to image anisotropic conductivity distributions 

without any surface voltage measurements and gave the simulation results. Before that, 
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almost all of the studies in the field of MREIT reconstruction algorithms assumed 

isotropic conductivity distribution, which is actually may not be realistic for some of the 

biological tissues. Because as it is mentioned in [1] and [2] most of the pathological 

materials and biological tissues have anisotropic conductivities. In this study, the 

anisotropic conductivity is taken as a tensor 𝜎 which is defined in two dimensions as given 

in (1.9), instead of the one dimensional scalar conductivity value σ as it is considered in 

the isotropic MREIT reconstruction algorithms. 

𝜎 = [
𝜎𝑥𝑥 𝜎𝑥𝑦

𝜎𝑦𝑥 𝜎𝑦𝑦
]                                                        (1.9) 

Therefore, the boundary value problem in (1.5) and (1.6) which is also the forward 

problem of the MREIT changes to (1.10). 

∇. (𝜎 ∇𝜑)(𝑥, 𝑦) = 0          (𝑥, 𝑦) ∈ 𝑆                                 (1.10) 

𝜎 
𝜕𝜑

𝜕𝑛
=  {

    𝐽𝑖                  𝑎𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒
−𝐽𝑖                𝑎𝑡 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒
    0                  𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒                                       

              (1.11) 

 In (1.10), S is the imaging region. In the case of anisotropic conductivity it is known that 

the equipotential lines are not perpendicular to the current density vectors. The calculation 

of the angle between the current density data and the equipotential lines in each pixel is 

given in 3.1.2.   

In 2009, Değirmenci and Eyüboğlu [21] proposed the anisotropic J-substitution and 

anisotropic hybrid J-substitution algorithms to reconstruction of the anisotropic 

conductivity distribution, in a simulation study. 

These studies gave birth to a slightly different MREIT reconstruction algorithms called 

Magnetic Resonance Conductivity Tensor Imaging (MRCTI), which is explained in [22] 
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as a simulation study. [23] Includes the practical realization and the phantom experiments 

of MRCDI. 

In general, MREIT and MRCTI conductivity reconstruction algorithms can be divided 

into, two main groups: 

1. The algorithms that use current density data or J-based algorithms, which need 

object rotation in the main magnet to obtain all three components of current density.  

2. The algorithms which use the induced magnetic flux density due to the injected 

currents directly, or B-based algorithms. The exclusivity of the B-based algorithms is, not 

requiring object rotation because the related reconstruction algorithms use only the z 

component of the induced magnetic flux density in conductivity reconstruction procedure. 

This property of the B-based algorithms reduces the total imaging time and measurement 

errors due to object rotation, but causes different errors in the reconstructed images. 

All of the algorithms which are explained and implemented in this thesis are current 

density based reconstruction algorithms. 

In 2008, Kim et al [3] performed an in vivo animal imaging experiment of a canine brain 

using a 3T MRI system with home-built STR RF coil and implementing isotropic 

Harmonic Bz algorithm of CoReHA program [24] and injecting 5 mA current pulses. They 

reported that the white matter of the imaged canine brain appeared more conductive than 

the gray matter for equivalent isotropic conductivity images as the result. 

In another study, Kim et al [25] proposed the first in vivo human experiment in this field 

which was the high resolution conductivity imaging of the human leg using Harmonic 𝐵𝑧 

algorithm of the isotropic MREIT [26, 27]. In the study like the previous one a 3T MRI 

scanner device is used to measure the internal magnetic flux density due to the externally 

injected currents to the imaging region. Carbone-hydrogel electrodes with thin and large 

surface area are used to inject 9mA current pulses with 15ms durations in harmony with 
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the proper spin-echo pulse sequence. They reported that the reconstructed conductivity 

images show quite different and unique contrast information in comparison to the 

conventional MRI magnitude images. In addition, because of the electrical safety 

considerations, the lower extremity of the human body is chosen as the imaging region. 

Similar studies are performed in [28] and [29] on the canine male pelvis and canine brain 

to evaluate ischemia and abscess using 3T magnetic resonance system and CoReHA 

MREIT package software. Kim et al [30], performed another experiments to support the 

clinical significance of the MREIT reconstructed conductivity images and showing the 

fact that this method can provide meaningful diagnostic information that is not available 

from other imaging modalities. 

Kim Y T [31] proposed a new multi-echo pulse sequence (Explained in Section 2.2) to 

obtain the conductivity images of the human lower extremity using CoReHA MREIT 

package software and injecting 3mA current pulses. In addition, the chemical shift artifact 

correction method is explained and implemented in this study to increase the quality of 

the reconstructed conductivity images. 

Woo E J [32] showed the capability of the MREIT techniques to reconstruct the 

conductivity images with 1mm pixel size, by applying currents less than 1mA using a 3T 

MRI scanner and utilization of the previously introduced multi-echo ICNE pulse sequence 

along with using the high performance RF coils. The experimental results also are given 

in the same study. 

Oh T I [33] proposed another application of the conductivity images in detection of 

internal temperature distribution in radiofrequency ablation or hyperthermia via 

recovering electrical conductivity by MREIT to control their outputs and diagnose 

(recognize) the treatment effect. 
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In a recent study, Meng Z J [34] proposed numerical simulations of MREIT conductivity 

imaging for brain tumor detection using realistic three-dimensional head model and 

adding realistic noise levels which are obtained from the used 3T MRI system and 

reported “that tumor-like anomalies with 200% conductivity contrast can 

straightforwardly be both detected and imaged by an existing 3T system using total 

acquisition times below 30 minutes.” [34] 

 

 

1.4 Objectives of the Thesis 

 
As it is mentioned in the previous section, conductivity imaging of the biological tissues 

can provide meaningful diagnostic information that is not available from other imaging 

modalities. Furthermore, it is mentioned that some of the biological materials have 

anisotropic conductivity which cannot be reconstructed truly using the isotropic 

reconstruction algorithms. Therefore, the anisotropic conductivity reconstruction 

algorithms in MREIT named as MRCTI are proposed by Değimenci and Eyüboğlu [20, 

21, 22]. The phantom experiments of the MRCTI technique using the 0.15T METU-EE 

MRI System, is given in [23].  

As the experimental results reported by Değirmenci and Eyüboğlu [23] are obtained using 

an MRI device with a low field strength, the main objective of this thesis is performing 

the MRCTI experiments using 3T UMRAM MRI System. Furthermore, a novel 

anisotropic hybrid reconstruction algorithm namely, the Anisotropic Hybrid Equipotential 

Projection (AHEPP) Algorithm is proposed in Section 2.4.4 and the related experimental 

results are given in Chapter 4. In addition, an error formula is defined to evaluate the 

accuracy of the reconstruction algorithms in phantom experiments.  Also, a scaling 

method is proposed and implemented to obtain the scaled version of conductivity 

distribution, from the reconstructed relative conductivity images of the simulation models 

and phantom experiments, to use in error calculation. 
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1.5 Outline of the Thesis 

 
In Chapter 2, the theory and methodology of the current density imaging (MRCDI) and 

the related formulations along with phase unwrapping concept is given in detail. 

Thereafter, forward and inverse problems of the anisotropic conductivity imaging 

(MRCTI) is explained comprehensively.  

In Chapter 3, the used experimental setup during this thesis which consists of the MRI 

device, current source and the experimental phantom, are introduced and explained. 

Chapter 4, covers the experimental results which are obtained from the phantom 

experiments, along with the simulation results and the related discussions for each case. 

Furthermore, the reconstructed conductivities are evaluated using error measures. In 

addition, an SNR level is attributed to the experiments of this thesis and a method for 

scaling the relative reconstructed conductivity is given in detail. 

Chapter 5, includes the final conclusions of this study and future work. 
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CHAPTER 2 

 

 

METHODOLOGY OF CURRENT DENSITY AND 

ANISOTROPIC CONUCTIVITY IMAGING USING 

MAGNETIC RESONANCE IMAGING SYSTEM 

 

 

 

2.1 Introduction 

 
In this chapter, the theory behind the conductivity imaging using magnetic resonance 

system is given in detail. From one perspective, the whole procedure of conductivity 

imaging using the MRI  system can be divided into two main steps. Firstly, extraction of 

the magnetic flux density due to the injected currents to the imaging region from the MR 

complex or phase images. This can be considered also as the forward problem of the 

conductivity imaging and in the case of calculating current density data from the obtained 

magnetic flux density it is known as the Magnetic Resonance Current Density Imaging 

(MRCDI). Secondly, the inverse problem namely, the Magnetic Resonance Electrical 

Impedance Tomography (MREIT) which can be divided into forward and inverse 

problems itself. Section 2.2, explains the MRCDI procedure and the related formulations. 

Section 2.2.1, gives a definition of phase wrap and a general explanation about the 

unwrapping algorithm.   
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 In Section 2.3, the forward problem of the anisotropic MREIT is introduced and 

explained.The inverse problem of anisotropic MREITconsists of the reconstruction 

algorithms and will be explained comprehensively in Section 2.4.  

 

2.2 Magnetic Resonance Current Density Imaging (MRCDI) 

 
Generally, the purpose of MRCDI technique is to extract the current density distribution 

inside the imaging object, using the MRI phase images. Magnetic flux density is 

introduced to the MR phase images by injecting or inducing currents in to the imaging 

region in synchrony with an appropriate MRI pulse sequence. This data can be used 

directly in the B-based MREIT reconstruction algorithms or can be utilized in calculation 

of the current density using Ampere’s law (1.1), to use in the J-based MREIT algorithms. 

Here, it is important to note that only the magnetic flux density component which is 

parallel to the MR main magnetic field can be measured by MRI system. But as it is 

illustrated in (2.1) for calculation of x and y components of the current density (𝐽𝑥, 𝐽𝑦), all 

three components of the magnetic flux density are needed. 

𝐽𝑥 =
1

𝜇0
(
𝜕𝐵𝑧

𝜕𝑦
−

𝜕𝐵𝑦

𝜕𝑧
) 

      (2.1) 

𝐽𝑦 =
1

𝜇0
(
𝜕𝐵𝑥

𝜕𝑧
−

𝜕𝐵𝑧

𝜕𝑥
)                                                              

Where, 𝐵𝑧 , 𝐵𝑥 and 𝐵𝑦 are the induced magnetic flux density components due to the 

injected currents to the object in z, x and y directions respectively. 

Therefore, an object rotation should be done to align the two other orientations of the 

object with the z direction of the main magnet. 
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A conventional spin echo pulse sequence (without current pulse line) is shown for one 

TR, in Figure 2.1. Acquired MRI signal using this pulse sequence is given in (2.2). 

𝑆(𝑘𝑥, 𝑘𝑦, 𝑡) =  ∫∫𝑀(𝑥, 𝑦)𝑒{𝑗[𝛾𝐵(𝑥,𝑦)𝑡+𝜃𝑐+𝑘𝑥𝑥+𝑘𝑦𝑦]}𝑑𝑦𝑑𝑥

𝑦𝑥

                 (2.2) 

Where, 𝑀(𝑥, 𝑦) represents the transverse magnetization, 𝛾 is the gyromagnetic ratio of 

hydrogen, 𝐵(𝑥, 𝑦) is the component due to the main magnetic field inhomogeneity and 𝜃𝑐 

is a constant phase which is added to spin echo MR signal because of instrumentation and 

receiver circuits. Also 𝑘𝑥 is equal to 𝛾𝐺𝑥(𝑡 − 𝑇𝐸) for echo signals where, 𝐺𝑥 represents 

the frequency-encoding gradient which maps a time signal to a k-space signal, t is 

acquisition period and 𝑇𝐸 is the echo time of signal. Similarly, 𝑘𝑦 = 𝛾𝐺𝑦𝑇𝑝𝑒 where, 𝐺𝑦 

represents the phase-encoding gradient and 𝑇𝑝𝑒 stands for phase encoding gradient pulse 

duration [35]. 

By taking Fourier transform from (2.2) with respect to 𝑘𝑥 and 𝑘𝑦 the magnetization 

density can be obtained and the MR complex image including magnitude and phase data 

can be expressed as (2.3). 

𝑀𝑟(𝑥, 𝑦) =  𝑀(𝑥, 𝑦)𝑒𝑗[𝛾𝐵(𝑥,𝑦)𝑡+𝜃𝑐]                                      (2.3) 

By applying currents to the imaging region in synchrony with the spin-echo pulse 

sequence in Figure 2.1, the applied current produces magnetic flux density components 

in all directions, but only the component which is parallel to the main magnetic field 

direction, causes a phase accumulation in the acquired MR signal, as it is given in (2.4). 

𝑆(𝑘𝑥, 𝑘𝑦 , 𝑡) =  ∫ ∫𝑀(𝑥, 𝑦)𝑒{𝑗[𝛾𝐵(𝑥,𝑦)𝑡+𝜃𝑐+𝛾𝐵𝐽.  𝑧(𝑥,𝑦)𝑇𝑐+𝑘𝑥𝑥+𝑘𝑦𝑦]}𝑑𝑦𝑑𝑥

𝑦𝑥

          (2.4) 
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In (2.4), the phase term 𝛾𝐵𝐽.  𝑧(𝑥, 𝑦)𝑇𝑐  is due to the applied current to the conductor object 

and 𝐵𝐽.  𝑧(𝑥, 𝑦) is the component of the magnetic flux density which is parallel with the 

main magnetic field. Also, 𝑇𝑐   represents the duration of current injection or induction. 

Like (2.3), by taking the Fourier transform of (2.4) the expression in (2.5) is resulted. 

𝑀𝑟,𝐽(𝑥, 𝑦) =  𝑀(𝑥, 𝑦)𝑒𝑗[𝛾𝐵(𝑥,𝑦)𝑡+𝛾𝐵𝐽.  𝑧(𝑥,𝑦)𝑇𝑐+𝜃𝑐]                           (2.5) 

Here, the subscription J in 𝑀𝑟,𝐽(𝑥, 𝑦) shows the current application. 

By comparing (2.3) and (2.5), it is inferred that, difference between the two equations 

arises from an exponential term, 𝑒𝛾𝐵𝐽.  𝑧(𝑥,𝑦)𝑇𝑐. Now by dividing the complex images with 

and without current injection the all phase components due to phase inhomogeneities and 

other artifacts are canceled and only the phase term 𝛾𝐵𝐽 ,   𝑧(𝑥, 𝑦)𝑇𝑐 remains. In other 

words, by performing two MRI scans with and without current flow and dividing them, 

the inherent phase shifts due to the magnetic field imperfections are eliminated [36]. In 

practical application of the method in this study and using the 3T Siemens MRI scanner, 

the MR phase images are available individually, and the procedure is done by subtracting 

the obtained two phase images directly. This way, the magnetic flux density is extracted 

as given in (2.6). 

𝐵𝐽 ,   𝑧(𝑥, 𝑦) =
𝜃𝐽𝑁(𝑥, 𝑦)

𝛾𝑇𝑐
                                               (2.6) 

In (2.6), 𝜃𝐽𝑁(𝑥, 𝑦) represents the normalized phase image [9]. In other words,  𝜃𝐽𝑁(𝑥, 𝑦) 

is the resultant phase image obtained, after unwrapping the image with current injection 

and subtracting it from the other phase image, which is obtained without current injection. 

It is seen from (2.6), that the magnetic flux density which is extracted from normalized 

phase images, has a linear relation with the accumulated phase in the related MR phase 
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image. In other words, by increasing the injected current the phase accumulation in the 

MR phase image and consequently 𝜃𝐽𝑁(𝑥, 𝑦) increases. But increasing the amplitude of 

the current is not preferred in human applications. There are other ways, to increase the 

obtained phase without increasing current amplitude like, using other types of pulse 

sequences. For instance, using the lately suggested multi-echo based MREIT pulse 

sequence” to utilize a remaining time after the first echo within one TR to obtain more 

echo signals and also to prolong the total current injection time” [31, 37, 38]. Another 

way, is using two opposite current injection strategy like what is done in this study. For 

doing so, instead of obtaining with and without current flow phase images and subtracting 

them, it is useful to obtain two MR images due to current application in two opposite 

polarities, unwrapping both of them and then subtracting them to obtain (2.7). 

𝐵𝐽 ,   𝑧(𝑥, 𝑦) =
𝜃𝐽𝑁(𝑥, 𝑦)

2𝛾𝑇𝑐
                                              (2.7) 

As it is seen from (2.7), by using this strategy the extracted magnetic field and 

consequently obtained current density is increased as twice.                                                                                                                                                                                                   

As it is mentioned before, in MREIT J-based reconstruction algorithms the current density 

distribution data is needed, then by considering the Amperes law in (1.1) the extended 

form of the obtained current density is calculated as it is given in (2.8). 

𝐽 =
1

𝜇0
[(

𝜕𝐵𝑧

𝜕𝑦
−

𝜕𝐵𝑦

𝜕𝑧
) �̂�𝑥 + (

𝜕𝐵𝑥

𝜕𝑧
−

𝜕𝐵𝑧

𝜕𝑥
) �̂�𝑦 + (

𝜕𝐵𝑦

𝜕𝑥
−

𝜕𝐵𝑥

𝜕𝑦
) �̂�𝑧]          (2.8) 

Also by considering equations in (2.1) it is seen that, to calculate the 𝑥 component of the 

current density 𝐽𝑥, the derivative of 𝐵𝑧 with respect to y (𝜕𝐵𝑧 / 𝜕𝑦) and the derivative of 

𝐵𝑦 with respect to z (𝜕𝐵𝑦/𝜕𝑧)  is are needed. Since, 𝐵𝑧 component of the magnetic flux 

density is obtained by aligning the z axis of the imaging object with the main magnetic 
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field, then 𝐵𝑧 includes the information of magnetic flux density distribution in x-y plane. 

Therefore (𝜕𝐵𝑧 / 𝜕𝑦) can be calculated using the Sobel operator as it is given in (2.9). 

𝜕𝐵𝑧

𝜕𝑦
=  

1

8∆𝑦
 𝐵𝑧 ∗∗  |

  1     2      1
  0     0     0
−1 − 2 − 1

|                                    (2.9) 

In (2.9), ∗∗  denotes the 2D convolution and ∆𝑦 represents the pixel side length in y 

direction. Fairly complete description about Sobel operators is given in Section 3.1.2. 

But, in order to calculate the (𝜕𝐵𝑦/𝜕𝑧) the image processing techniques cannot be applied. 

The reason is that, the extracted 𝐵𝑦 which is obtained by aligning the y axis of the imaging 

object with the main magnetic field has information of magnetic flux density distribution 

as a function of x and y but not z. Therefor, (𝜕𝐵𝑦/𝜕𝑧) cannot be calculated using Sobel 

operators. For calculation of (𝜕𝐵𝑦/𝜕𝑧) the definition of derivative is used as given in 

(2.10). 

𝜕𝐵𝑦(𝑥, 𝑦, 𝑧)

𝜕𝑧
=  

𝜕𝐵𝑦(𝑥, 𝑦, 𝑧1) − 𝜕𝐵𝑦(𝑥, 𝑦, 𝑧2)

|𝑑|
                          (2.10) 

In (2.10), 𝐵𝑦(𝑥, 𝑦, 𝑧1) and 𝐵𝑦(𝑥, 𝑦, 𝑧2) denote the two 𝐵𝑦 images with the distance d apart 

from each other in z direction. Similar expressions can be attributed to the calculation 

of 𝜕𝐵𝑥/𝜕𝑧. 
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Figure 2.1: Spin Echo pulse sequence with current pulse line (MRCDI pulse sequence) 

 

As it is seen from Figure 2.1, the current pulse polarity is reversed after the 180º RF pulse 

to preserve the previously accumulated phase due to the injected current between 90º and 

180º RF pulses. If the polarity does not change, the accumulated phase before 180º RF 

pulse is canceled by the phase accumulation after it. 

 

 

2.2.1 Phase Unwrapping 

 
The concept of phase unwrapping can be explained by starting from the meaning of the 

phase wrap. In general, “the phase of a complex function is uniquely defined only in the 

principal value range” [39]. In the case of the MRI system, the obtained MR phase images 

are uniquely defined in the range value between –π and π. Any phase value which is not 

in this interval is wrapped to (– 𝜋, 𝜋]. This phenomenon causes a discontinuity in the 
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obtained MR phase images and should be resolved to obtain correct outcome, because as 

it is explained in Section 2.2 the extracted magnetic flux density has a linear and 

proportional relation with the created actual phase image. 

 The all procedures which are used to remove this wrapping effect are named as 

unwrapping algorithms. A simple general illustration of phase wrap and the relevant 

unwrapped sample is shown in Figure 2.2. 

 

    
                                  (a)                                                               (b) 

Figure 2.2: Demonstration of unwrapping: (a) Phase diagram before unwrapping (b) after 

unwrapping 

 

Figure 2.2, demonstrates the phase response of a modified order 4 elliptic function 

lowpass filter cutting off at 𝑓𝑠/4. This phase response provides a simple example of the 

phase wrap concept. Figure 2.2(a), has phase wrap for the phase values smaller than -3.14 

(𝜋 rad) which causes a discountinuity in the related plot, that is resolved in the unwraped 

continuos phase plot in Figure 2.2(b)  

Figure 2.3, illustrates phase wrap in an MR phase image. This wapped image is related to 

the z component of the magnetic flux density, which is created due to the current injection 
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to the experimental phantom. Figure 2.3 (a) shows a phase wrap in the obtaiend phase 

image and (b) represents the unwrapped case. 

 

              

                              (a)                                                                     (b) 

Figure 2.3: Phase wrap in an MR phase image: (a) wrapped phase image (b) unwrapped 

phase image. 

 

As it is seen from Figure 2.3, the wrapped phase image is confined between –𝜋 and 𝜋. By 

using a proper unwrapping algorithm the unwrapped image is resulted. 

In this study, the phase unwrapping algrithm which is proposed by Liang [40] and 

implemented by Birgül [41] is used. 

2.3   The Forward Problem of the Anisotropic MREIT 

 
As it is stated before, the anisotropic MREIT technique can be considered as the inverse 

problem of the conductivity imaging using MRI system. The anisotropic MREIT 

individually can be expressed as forward and inverse problems. The inverse problem of 

the anisotropic MREIT consists of anisotropic reconstruction algorithms which will be 

explained completely in detail in Chapter3. Here, the forward problem is explained and 
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formulated. Generally, calculation of the magnetic flux density distribution using Biot-

Savart law and surface potential calculation, by knowing the anisotropic conductivity 

distribution and boundary conditions are stated as anisotropic MREIT forward problem. 

The use of forward problem is in implementation of reconstruction algorithms like what 

is done in the anisotropic J-substitution algorithm in construction of cost functional as it 

is explained in Section 2.4.2. Another usage of forward problem, is in generation of 

simulation data. The start point of the forward problem is the poison’s equation in (1.5) 

with boundary condition in (1.6). The slightly modified form of the equation (1.5) and 

(1.6) for anisotrpic conductivity cases is given in (2.11) and (2.12). 

𝛻. (�̿�𝛻𝜑)(𝑥, 𝑦) = 0          (𝑥, 𝑦) ∈ 𝑆                                  (2.11) 

 

−𝜎
𝜕𝜑

𝜕𝑛
= {

𝐽   𝑜𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒

−𝐽  𝑜𝑛 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑢𝑢𝑟𝑒𝑛𝑡 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒   
0                                          𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

                       (2.12) 

In (2.11) and (2.12), 𝜎 is the conductivity tensor for 2D object distributions S, and equals 

to [
𝜎𝑥𝑥 𝜎𝑥𝑦

𝜎𝑦𝑥 𝜎𝑦𝑦
] and 𝜑 represents the electrical potential.  

By solving the boundary value problem in (2.11) and (2.12) and obtaining the potential 

field distribution in the in the imaging region the electric field distribution can be 

expressed as (2.13). 

𝐸 = −𝛻𝜑                                                         (2.13) 

Using the generalized form of the Ohm’s law, x and y components of the current density 

can be obtained as  it is given in (2.14). 
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𝐽 =  𝜎�⃗⃗� = [
𝜎𝑥𝑥 𝜎𝑥𝑦

𝜎𝑦𝑥 𝜎𝑦𝑦
] . [

𝛻𝜑𝑥

𝛻𝜑𝑦
]                                      (2.14) 

Using Biot-Savart relation in (2.15), the magnetic flux density generated due to the current 

density distribution  𝐽⃗⃗⃗⃗ (𝑥, 𝑦), can be calculated as it is given in (2.15). 

𝐵(𝑥, 𝑦, 𝑧) =  
𝜇0

4𝜋
 ∫

𝐽(𝑥, 𝑦)𝑑𝑆 × �̂�𝑅

𝑅2
                                  (2.15) 

In (2.15), 𝜇0 is the permeability of the free space, R denotes the vector from source point 

(𝑥′, 𝑦′, 𝑧′) to the field point (𝑥, 𝑦, 𝑧) and �̂�𝑅 is the unit vector in that direction. 

The inverse problem of the anisotropic MREIT namely, the reconstruction algorithms are 

explained in detail in the next Section. 

 

2.4 Inverse problem of MRCTI  

 
2.4.1 Equipotential Projection Algorithm For Anisotropic Conductivity 

Reconstruction 

 

2.4.1.1 Introduction 

 

Anisotropic equipotential projection algorithm is based on the equipotential projection 

algorithm proposed by Eyüboğlu et al [15] and practically realised for the isotropic 

conductivity distributions by Özdemir et al [16].  In this technique, the current density 

which is calculated from the extracted magnetic flux density from MRI phase images, is 

used to reconstruct the anisotropic conductivity in a relative scale. To have true 

conductivity values at least one potential measurement at the object boundary is required 

to scale the resultant conductivity distribution. Magnetic flux density extraction and 

current density calculation are described in detail in Section 2.2. Generally, this method 

is an iterative algorithm, based on constructing equipotential lines in the imaging region 
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at each iteration. The algorithm starts with an initial conductivity distribution which is 

calculated previously and then, the difference between the calculated and the measured 

current density is minimized using a residual function, iteratively. The resultant 

conductivity data in each step is fed in to the algorithm as initial conductivity distribution 

for the next iteration. 

 

 

2.4.1.2 Anisotropic Equipotential Projection (AEPP) Algorithm 

 
The key point in anisotropic conductivity reconstruction is obtaining potential gradients 

in x and y directions in the field of view for 2D model. By knowing the potential gradients 

and possessing the internal current density distribution, the anisotropic conductivity can 

be calculated. By rearranging equation (2.14), 𝛻𝜑𝑥  and 𝛻𝜑𝑦    can be obtained as given in 

(3.1-3.2) 

  𝛻𝜑𝑥 = 
𝐽𝑥 𝜎𝑦𝑦 − 𝐽𝑦 𝜎𝑥𝑦

𝜎𝑥𝑦𝜎𝑦𝑥 − 𝜎𝑥𝑥𝜎𝑦𝑦
                                           (2.16)  

𝛻𝜑𝑦 = 
𝐽𝑦 𝜎𝑥𝑥 − 𝐽𝑥 𝜎𝑦𝑥

𝜎𝑥𝑦𝜎𝑦𝑥 − 𝜎𝑥𝑥𝜎𝑦𝑦
                                            (2.17) 

Where, 𝛻𝜑𝑥  and 𝛻𝜑𝑦    are the potential gradients in any pixel in the imaging region, in x 

and y directions. Similarly 𝐽𝑥 and 𝐽𝑦 are x and y components of the current density and 𝜎 

values are the anisotropic conductivity components for the specified directions in any 

pixel. It is possible to calculate potential gradients throughout the object boundaries using 

equations (2.16) and (2.17). For doing this, conductivity values in the boundary columns 

are needed. In the experimental phantom, it is possible by assigning known conductivity 

values to the boundary pixels. In this way, by obtaining potential gradients along all 

boundaries, potential values of each boundary pixels can be determined by assigning a 
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value to one pixel. These potential values likely are not true potentials but satisfying the 

correct potential gradient distribution. That is why; the reconstructed conductivity images 

have relative scaling.  

As it is mentioned in Section 1.3, in the case of anisotropic conductivity the current 

density vectors are not perpendicular to the equipotential lines. To calculate the angle 

between these two vectors the conductivity anisotropy at the crossing point is needed. 

Therefore, the ratio given in (2.18), 

𝛻𝜑𝑦

𝛻𝜑𝑥
 =

𝐽𝑦 𝜎𝑥𝑥 − 𝐽𝑥 𝜎𝑦𝑥

𝐽𝑥 𝜎𝑦𝑦 − 𝐽𝑦 𝜎𝑥𝑦
                                             (2.18) 

gives the tangent of  𝛻𝜑 at any point (𝑥 , 𝑦) ϵ S for each pixel in the imaging region, with 

specified current density and anisotropic conductivity values. Then the angle of 𝛻𝜑 at this 

point is:  

𝛼𝛻𝜑|(𝑥,𝑦)
 = tan−1 (

𝐽𝑦 𝜎𝑥𝑥 − 𝐽𝑥 𝜎𝑦𝑥

𝐽𝑥 𝜎𝑦𝑦 − 𝐽𝑦 𝜎𝑥𝑦
)|

(𝑥,𝑦)∈𝑆

                          (2.19)  

On the other hand, it is obvious that the equipotential lines are prependicular to 𝛻𝜑 lines, 

then the angle 𝛼 can express the angles of equipotential lines truly.  

Since, the conductivity distribution in calculation of the initial conductivity is not known, 

then this procedure to find angle 𝛼, cannot be performed at first iteration. Therefore, in 

calculation of initial conductivity distribution the current density vectors are assumed 

perpendicular to the equipotential lines. By obtaining the angles for the entire field of 

view the potential values through the boundary columns which were calculated 

previously, are projected to the field of view using the current density distribution data 

and observance of the angle 𝛼 through the equipotential lines which are constructed on 

the entire imaging slice. It is notable that there may be more than one equipotential line 
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starting from different points of same boundary pixel. However due to  the definite angle 

between the current density vector in a pixel and the equipotential lines starting from that 

one, the lines follow parallel but different paths [42]. 

In the case of passing more than one equipotential line from a pixel in the imaging slice, 

the pixel’s potential value can be determined as a weighted sum of the potential 

contributions of those equipotential lines to that pixel, as given in (2.20), 

𝜑𝑛 = 
∑ 𝑑𝑖𝑒𝑖

𝑁
𝚤=1

∑ 𝑑𝑖
𝑁
𝚤=1

                                                     (2.20) 

where,  𝜑𝑛  gives the pixel’s potential value, N is the number of equipotential lines passing 

through the pixel,  𝑑𝑖   is the length of  𝑖𝑡ℎ  equipotential line in that pixel, and  𝑒𝑖    

represents the potential value of the 𝑖𝑡ℎ  equipotential line. 

In the case of pixels with no equipotential line passing through them, the mean potential 

value of the eight nonzero neighbouring pixels is assigned as the potential value of that 

pixel.   

As it is mentioned before, the obtained  𝜑𝑛  is a relative value and can be used in the 

applications where the true values of potential and conductivity distributions are not 

needed. To obtain the true values, at least one potential measurement is performed most 

of the time from the object boundary. 

By obtaining the potential values of all pixels in the imaging region, it is possible to 

calculate the directional potential gradients (𝛻𝜑𝑥 and 𝛻𝜑𝑦) for each pixel in the imaging 

region, by using the concept of Sobel operators, as given in (2.21). 
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𝛻𝜑𝑥(𝑥, 𝑦) = 
1

8∆𝑥
|
−1    0    1
−2    0    2
−1   0    1

| ∗∗ 𝜑(𝑥, 𝑦) 

            (2.21) 

𝛻𝜑𝑦(𝑥, 𝑦) = 
1

8∆𝑦
|
 1     2      1
 0     0     0

−1 − 2 − 1
| ∗∗ 𝜑(𝑥, 𝑦) 

 

In (2.21),  ∆𝑥 𝑎𝑛𝑑 ∆𝑦 represent the pixel length in x and y directions.  

The Sobel operator actually is a kind of differential operators which performs a 2D spatial 

gradient on the obtained 𝜑(𝑥, 𝑦) in the imaging region, and calculates the potential 

gradients in x and y directions. The operator consists of two 3×3 convolution kernels 

(filters), which are actually 90° rotated form of each other. Using the large convolution 

kernels makes filter less sensitive to noise and produce more smooth outputs, but increases 

the computational cost. 

By obtaining the potential gradients  𝛻𝜑  for each pixel in the imaging slice as explained 

and having the internal current density J measured from MRCDI technique the residual 

function in the imaging region S can be stated as in (2.22) 

R=∫ ‖−𝜎 . ∇𝜑 − 𝐽‖
2
𝑑𝑠

𝑆
                                          (2.22) 

where, ‖ . ‖ represents the L2 norm. 

The surface integral (2.22) can be expressed as a summation over the pixel elements as 

given in (2.23). 

R=∑ ∫ ‖−�̿�𝑗. ∇𝜑 − 𝐽‖
2
𝑑𝑠

𝑆𝑗
𝑗                                        (2.23) 
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In (2.23),  j is the element index, and thus 𝑆𝑗 and 𝜎𝑗   are the surface and conductivity of 

the  𝑗𝑡ℎ   element, respectively. 

As it is mentioned in Section 2.4.1.1, the residual function is minimized at each iteration 

with respect to 𝜎𝑗 by setting the condition in (2.24). 

𝜕𝑅

𝜕𝜎𝑗
= 0                                                          (2.24) 

By minimizing the residual function R, with respect to all 𝜎𝑗 elements separately the 

system of equations can be obtained as given in (2.25). 

𝐽𝑥
𝑗
= 𝜎𝑥𝑥

𝑗
∇𝜑𝑥

𝑗
+ 𝜎𝑥𝑦

𝑗
∇𝜑𝑦

𝑗
 

(2.25) 

𝐽𝑦
𝑗
= 𝜎𝑦𝑥

𝑗
∇𝜑𝑥

𝑗
+ 𝜎𝑦𝑦

𝑗
∇𝜑𝑦

𝑗
 

 

In (2.25), 𝐽𝑥 and 𝐽𝑦 represent the current density components of the  𝑗𝑡ℎ element, which 

has anisotropic conductivities 𝜎𝑥𝑥
𝑗

 , 𝜎𝑥𝑦 
𝑗

, 𝜎𝑦𝑥 
𝑗

,  𝜎𝑦𝑦
𝑗

 and potential gradients ∇𝜑𝑥
𝑗
 and ∇𝜑𝑦

𝑗
  

in x and y directions. 

Equation (2.25) is obtained for one current injection pattern and be seen that, there are 

two equations with four unknown conductivities, therefore this system of equations 

cannot be solved, because at least four equations are needed to solve this equation set. To 

overcome this problem at least two different current injection patterns are needed to obtain 

four independent equations. 

The internal current density 𝐽 in (2.23) is a measured distribution. If the obtained potential 

values and consequently the resultant potential gradients in the imaging region are scaled 

with a scaling factor to obtain true values, then the system of four independent equations 
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will have a unique solution. Otherwise, a relative distribution is obtained which is not 

unique. In this study the four and six current injection profiles are examined to obtain 

better conductivity distribution. 

Totally for N different current injection patterns in the whole imaging region S, the system 

of equations can be expressed as it is given in (2.26) 

𝐽𝑥
1 = 𝜎𝑥𝑥∇𝜑𝑥

1 + 𝜎𝑥𝑦∇𝜑𝑦
1 

𝐽𝑥
2 = 𝜎𝑥𝑥∇𝜑𝑥

2 + 𝜎𝑥𝑦∇𝜑𝑦
2 

. 

. 

𝐽𝑥
𝑁 = 𝜎𝑥𝑥∇𝜑𝑥

𝑁 + 𝜎𝑥𝑦∇𝜑𝑦
𝑁 

(2.26) 

𝐽𝑦
1 = 𝜎𝑦𝑥∇𝜑𝑥

1 + 𝜎𝑦𝑦∇𝜑𝑦
1 

𝐽𝑦
2 = 𝜎𝑦𝑥∇𝜑𝑥

2 + 𝜎𝑦𝑦∇𝜑𝑦
2 

. 

. 

𝐽𝑦
𝑁 = 𝜎𝑦𝑥∇𝜑𝑥

𝑁 + 𝜎𝑦𝑦∇𝜑𝑦
𝑁 

The matrix-vector form of the equation system in (2.26) can be expressed as (2.27). 

[
 
 
 
 
𝐽𝑥
1

𝐽𝑥
2

.

.
𝐽𝑥
𝑁]
 
 
 
 

 = 

[
 
 
 
 
 
∇𝜑𝑥

1    ∇𝜑𝑦
1

∇𝜑𝑥
2    ∇𝜑𝑦

2

.

.
∇𝜑𝑥

𝑁    ∇𝜑𝑦
𝑁]
 
 
 
 
 

 .[
𝜎𝑥𝑥

𝜎𝑥𝑦
]    ,     

[
 
 
 
 
 
𝐽𝑦
1

𝐽𝑦
2

.

.
𝐽𝑦
𝑁]
 
 
 
 
 

 = 

[
 
 
 
 
 
∇𝜑𝑥

1    ∇𝜑𝑦
1

∇𝜑𝑥
2    ∇𝜑𝑦

2

.

.
∇𝜑𝑥

𝑁    ∇𝜑𝑦
𝑁]
 
 
 
 
 

 .[
𝜎𝑦𝑥

𝜎𝑦𝑦
]               (2.27) 
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Utilizing (2.26-2.27), anisotropic conductivity values can be calculated as shown in 

(2.28). 

   

[
𝜎𝑥𝑥

𝜎𝑥𝑦
] = 

[
 
 
 
 
 
∇𝜑𝑥

1    ∇𝜑𝑦
1

∇𝜑𝑥
2    ∇𝜑𝑦

2

.

.
∇𝜑𝑥

𝑁    ∇𝜑𝑦
𝑁]
 
 
 
 
 
−1

.   

[
 
 
 
 
𝐽𝑥
1

𝐽𝑥
2

.

.
𝐽𝑥
𝑁]
 
 
 
 

      ,   [
𝜎𝑦𝑥

𝜎𝑦𝑦
] = 

[
 
 
 
 
 
∇𝜑𝑥

1    ∇𝜑𝑦
1

∇𝜑𝑥
2    ∇𝜑𝑦

2

.

.
∇𝜑𝑥

𝑁    ∇𝜑𝑦
𝑁]
 
 
 
 
 
−1

.   

[
 
 
 
 
 
𝐽𝑦
1

𝐽𝑦
2

.

.
𝐽𝑦
𝑁]
 
 
 
 
 

          (2.28) 

 

As it is seen from (2.28), the matrix including gradient values is not square. Therefore, 

the direct inverse of the matrix cannot be calculated. Instead, the singular value 

decomposition (SVD) method is used in the inversion procedure without truncation since, 

the matrix has only the two Eigen values. [42] 

As it is mentioned in this chapter, this algorithm is an iterative one, and the procedure 

which is described in this section is iteratively repeated to result the best outcome for 

anisotropic distribution. 

 

2.4.2 Anisotropic J-Substitution (AJS) Algorithm 

 

2.4.2.1 Introduction 

J-substitution algorithm which is proposed by Kwon et al [17] in 2002, is another current 

density based isotropic conductivity reconstruction algorithm for the solution of MREIT 

inverse problem.  

In this method, to image resistivity a constructive map {𝐼, 𝐽} → 𝜌 is found inside the 2D 

cross section of an electrically conducting body Ω. In this constructive map, I represents 

the injected current to the region, J is the magnitude of the current density due to the 

injected currents and 𝜌 is the resistivity of the region to be imaged. The method is an 
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iterative algorithm and the procedure is somehow similar to what was done in the 

equipotential projection based algorithm in minimizing the residual sum obtained from 

cost functional. The main difference between these two reconstruction algorithms is in 

the calculation of internal potential field inside the body which is performed in EPP by 

constructing equipotential lines in each iteration and projecting the boundary potentials 

through them in the imaging region, while in the J-substitution algorithm the internal 

potential distribution is obtained by solving a boundary value problem using Finite 

Element Method (FEM), in the entire imaging region. 

Değirmenci and Eyüboğlu [21] proposed an extended version of the previously presented 

J-substitution algorithm, to reconstruct the anisotropic conductivities and called this 

method as anisotropic J-substitution algorithm, which is used in this thesis and is 

explained in detail in Section 2.4.2.2.  

 

 

2.4.2.2 Anisotropic J-substitution algorithm  

 

This anisotropic algorithm can be explained by using the concept of the isotropic 

procedure like what is done by Kwon et al [17] and then it can be extended to the 

anisotropic case.  

A boundary value problem (BVP) is the starting point for the problem definition of this 

algorithm. For an electrically conducting body Ω with resistivity 𝜌, the corresponding 

voltage 𝑉𝜌 satisfies the following BVP: 

∇. (
1

𝜌
∇𝑉𝜌 ) = 0          in 𝛺                                             (2.29) 

1

𝜌

𝜕𝑉𝜌 

𝜕𝑛
= 𝐽𝐼           on ∂𝛺                                             (2.30) 
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According to (2.29) and (2.30) a cost functional can be considered as given in (2.31). 

𝛹(𝜌) ∶= ∫ |𝐽∗(𝑟) − 
1

𝜌(𝑟)
 𝐸𝜌(𝑟)|

2

Ω

                                    (2.31) 

In (2.31), 𝐽∗(𝑟) represents the magnitude of the internal measured current density. On the 

other hand: 

𝐸𝜌(𝑟) ∶= |𝛻𝑉𝜌(𝑟)|                                             (2.32) 

𝐸𝜌(𝑟) represents the internal electric field intensity calculated for given 𝜌 and by solving 

(2.29) and (2.30).  

By discretizing the mathematical body model Ω, into N distict elements (pixels) all with 

the same area  Ωk, and by considering (2.31) the following squared residual sum R is 

obtained as given in (2.33).                                                                             

𝑅(𝜎0, … , 𝜎𝑁−1) ∶= ∑ ∫|𝐽∗(𝑟) − 𝜎𝑘𝐸𝜌(𝑟)|
2
𝑑𝑟                       (2.33)

Ω𝑘

𝑁−1

𝑘=0

 

 Here, 𝜎𝑘 = 
1

𝜌𝑘
  is the conductivity of the kth element Ωk, which is assumed to be constant 

in a pixel area. In addition, the electric field intensity 𝐸𝜌(𝑟) in (2.33), is a function of 

(𝜎0, … , 𝜎𝑁−1). 

Then, to update the resistivity from the zero gradient argument for the minimization of 

the squared residual sum a differentitian is performed over (2.33) with respect to 𝜎𝑚 for 

m = 0,...,N-1 as shown in (2.34). 
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0 =
𝜕𝑅

𝜕𝜎𝑚
= 2 ∫𝐸𝜌(𝑟)

Ω𝑚

(𝜎𝑚𝐸𝜌(𝑟) − 𝐽∗(𝑟))𝑑𝑟 + 

2 ∑ ∫𝜎𝑘

𝜕𝐸𝜌(𝑟)

𝜕𝜎𝑚
Ω𝑘

𝑁−1

𝑘=0

 (𝜎𝑘𝐸𝜌(𝑟) − 𝐽∗(𝑟))𝑑𝑟           (2.34) 

For m = 0,...,N-1, if  rk be the center point of the element Ωk, using the quadrature rule for 

approximating the integral in the first part of (2.34), the following equation is resulted: 

0 ≈  𝐸𝜌(𝑟𝑚)(𝜎𝑚𝐸𝜌(𝑟𝑚) − 𝐽∗(𝑟𝑚)) + 

∑ 𝜎𝑘

𝜕𝐸𝜌(𝑟𝑘)

𝜕𝜎𝑚

𝑁−1

𝑘=0

(𝜎𝑘𝐸𝜌(𝑟𝑘) − 𝐽∗(𝑟𝑘))                       (2.35) 

Now, the updating strategy to minimize the residual sum in (2.33) for isotropic 

conductivity cases is calculated for m = 0, …, N-1 as given in (2.35). 

1

�̅�𝑚
= 𝜎𝑚 ∶=  

𝐽∗(𝑟𝑚)

𝐸𝜌(𝑟𝑚)
                                            (2.35) 

In (2.35),  𝜎𝑚 is the newly calculated conductivity value for the body model element Ωm, 

by using the 𝐸𝜌(𝑟𝑚) value, which was calculated at the center point of the Ωm using the 

conductivity distribution in the previous iteration. 

Now, to generalize the  procedure to anisotropic conductivity problems, the scalar 

conductivity value 𝜎 in (2.35) should be replaced by a 2×2 conductivity tensor 𝜎 = 

[
𝜎𝑥𝑥 𝜎𝑥𝑦

𝜎𝑦𝑥 𝜎𝑦𝑦
]  for a 2D body model. 

Similar to AEPP algorithm no initial conductivity distribution is existed at the beginning. 

Therefore, an isotropic, homogeneous conductivity distribution is fed to the algorithm to 
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utilise in FEM structure construction, as a starting point. Also similar to the AEPP 

algorithm, to find an updating equation, residual sum in (2.33) is constructed for 

anisotropic case and is differentiated for minimization. By minimizing the residual 

function R, with respect to all 𝜎𝑗 elements separately the system of equations can be 

obtained for one current profile injection as given in (2.36). 

𝐽𝑥
𝑗
= 𝜎𝑥𝑥

𝑗
∇𝜑𝑥

𝑗
+ 𝜎𝑥𝑦

𝑗
∇𝜑𝑦

𝑗
 

(2.36) 

𝐽𝑦
𝑗
= 𝜎𝑦𝑥

𝑗
∇𝜑𝑥

𝑗
+ 𝜎𝑦𝑦

𝑗
∇𝜑𝑦

𝑗
 

 

In (2.36), 𝐽𝑥 and 𝐽𝑦 represent the current density components of the  𝑗𝑡ℎ element, which 

has anisotropic conductivities 𝜎𝑥𝑥
𝑗

, 𝜎𝑥𝑦
𝑗

, 𝜎𝑦𝑥
𝑗

, 𝜎𝑦𝑦
𝑗

 and potential gradients ∇𝜑𝑥
𝑗
 and ∇𝜑𝑦

𝑗
  in 

x and y directions. 

Similar to what was mentioned before in Section 2.4.1.2, the equation (2.36), is obtained 

for one current injection pattern and it is seen that, there is two equations with four 

unknown conductivities. Therefore, this system of equations cannot be solved, since at 

least four equations are needed to solve this equation set. To overcome this problem at 

least two different current injection patterns are needed to obtain four independent 

equations. 

Totally for N different current injection patterns in the whole imaging region S, the system 

of equations can be expressed as given in (2.37). 
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𝐽𝑥
1 = 𝜎𝑥𝑥∇𝜑𝑥

1 + 𝜎𝑥𝑦∇𝜑𝑦
1 

𝐽𝑥
2 = 𝜎𝑥𝑥∇𝜑𝑥

2 + 𝜎𝑥𝑦∇𝜑𝑦
2 

. 

. 

𝐽𝑥
𝑁 = 𝜎𝑥𝑥∇𝜑𝑥

𝑁 + 𝜎𝑥𝑦∇𝜑𝑦
𝑁 

(2.37) 

𝐽𝑦
1 = 𝜎𝑦𝑥∇𝜑𝑥

1 + 𝜎𝑦𝑦∇𝜑𝑦
1 

𝐽𝑦
2 = 𝜎𝑦𝑥∇𝜑𝑥

2 + 𝜎𝑦𝑦∇𝜑𝑦
2 

. 

. 

𝐽𝑦
𝑁 = 𝜎𝑦𝑥∇𝜑𝑥

𝑁 + 𝜎𝑦𝑦∇𝜑𝑦
𝑁 

 

The matrix-vector form of the system equation in (2.37) can be expressed as given in 

(2.38). 

[
 
 
 
 
𝐽𝑥
1

𝐽𝑥
2

.

.
𝐽𝑥
𝑁]
 
 
 
 

 = 

[
 
 
 
 
 
∇𝜑𝑥

1    ∇𝜑𝑦
1

∇𝜑𝑥
2    ∇𝜑𝑦

2

.

.
∇𝜑𝑥

𝑁    ∇𝜑𝑦
𝑁]
 
 
 
 
 

 .[
𝜎𝑥𝑥

𝜎𝑥𝑦
]      ,       

[
 
 
 
 
 
𝐽𝑦
1

𝐽𝑦
2

.

.
𝐽𝑦
𝑁]
 
 
 
 
 

 = 

[
 
 
 
 
 
∇𝜑𝑥

1    ∇𝜑𝑦
1

∇𝜑𝑥
2    ∇𝜑𝑦

2

.

.
∇𝜑𝑥

𝑁    ∇𝜑𝑦
𝑁]
 
 
 
 
 

 .[
𝜎𝑦𝑥

𝜎𝑦𝑦
]             (2.38) 

 

Using (2.37-2.38), anisotropic conductivity values can be calculated as shown in (2.39). 
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[
𝜎𝑥𝑥

𝜎𝑥𝑦
] = 

[
 
 
 
 
 
∇𝜑𝑥

1    ∇𝜑𝑦
1

∇𝜑𝑥
2    ∇𝜑𝑦

2

.

.
∇𝜑𝑥

𝑁    ∇𝜑𝑦
𝑁]
 
 
 
 
 
−1

.   

[
 
 
 
 
𝐽𝑥
1

𝐽𝑥
2

.

.
𝐽𝑥
𝑁]
 
 
 
 

       ,     [
𝜎𝑦𝑥

𝜎𝑦𝑦
] = 

[
 
 
 
 
 
∇𝜑𝑥

1    ∇𝜑𝑦
1

∇𝜑𝑥
2    ∇𝜑𝑦

2

.

.
∇𝜑𝑥

𝑁    ∇𝜑𝑦
𝑁]
 
 
 
 
 
−1

.   

[
 
 
 
 
 
𝐽𝑦
1

𝐽𝑦
2

.

.
𝐽𝑦
𝑁]
 
 
 
 
 

      (2.39) 

 

As it is deduced from (2.39), the matrix including gradient values is not square. Therefore, 

the direct inverse of matrix cannot be calculated. Instead, the singular value 

decomposition (SVD) method is used in inversion procedure without truncation, because 

the matrix has only the two Eigen-values. 

Further, in this algorithm as well as the AEPP, at least one potential measurement is 

needed to obtain true conductivity values.  

 

 

2.4.3 Anisotropic Hybrid J-Substitution (AHJS) Algorithm 

 
Actually this algorithm is not an independent method. However, it is a beneficial 

combination of two previously explained algorithms, AEPP and AJS. In this method 

which is mainly based on the anisotropic J-substitution algorithm, the  initial conductivity 

distribution which was asuumed to be homogenous and isotropic in the starting point of 

AJS, is considered to be the final best result of conductivity distribution obtained from 

the AEPP algorithm for the same imaging region with anisotropic conductivity [21]. The 

purpose of this combination is to obtain a faster convergence and to gain the positive sides 

of both algorithms. However, the algorithm is highly dependent on the outcome of the 

AEPP algorithm as the initial conductivity. Hence, any undesirable AEPP result damages 

the AHJS algorithm as well, which can be the weak point of this algorithm. 
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2.4.4 Anisotropic Hybrid Equipotential Projection (AHEPP) Algorithm 

 

One of the drawbacks of the Anisotropic Equipotential Projection algorithm (AEPP) is in 

calculation of the initial conductivity distribution. As it is explained in Section 2.4.1.2, in 

this algorithm, to project the obtained boundary potential values in to the imaging region 

the equipotential lines are constructed in the imaging region at each iteration. These 

equipotential lines are constructed, using the current density distribution data and 

observing the defined angle in equation (2.19) between the current density vectors and the 

equipotential lines. By considering the equation (2.19) it is obvious that, to obtain the 

mentioned angle the conductivity distribution in all anisotropic directions in 2D 

(𝜎𝑥𝑥, 𝜎𝑥𝑦, 𝜎𝑦𝑥, 𝜎𝑦𝑦) is needed. 

However, in the first iteration of the algorithm the conductivity distribution inside the 

imaging region is not known. Therefore, an isotropic distribution is assumed for the first 

step, because as it is mentioned before in Section 1.3, in the case of isotropic conductivity 

distribution the equipotential lines in each pixel are perpendicular to the current density 

vector on that pixel. This initial assumption, can cause an undesirable erroneous result for 

the initial conductivity distribution. When this weakness of the algorithm is associated 

with inherent vulnerability of the AEPP algorithm to the experimental data noise, the 

resultant reconstructed image could not contain any valuable information about the 

anisotropic conductivity distribution in the imaging region. A phenomenon that despite 

the expectations is not corrected by applying more iterations, but rather even worsens by 

increasing the number of iterations. 

For improvement of this drawback, an alternative way is considered in this thesis. Instead 

of calculating an erroneous initial conductivity by isotropic assumptions, it is possible to 

assign the obtained anisotropic conductivity distribution from the J-substitution 

algorithm, as the initial conductivity to obtain an acceptable relative contrast image. 

Another reason for using this method, is the high speed performance of the AEPP in 
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comparison with the J-substitution algorithm. Normally, performing 20 iterations using 

the J-substitution algorithm to obtain the desired result gets about 36 minutes using Intel 

Core i7 CPU at 2.8 GHz and 4 GB of RAM, whereas performing the same number of 

iterations using AEPP algorithm lasts only 1.5 minutes. Therefore, by performing one 

iteration in J-substitution algorithm and passing the results to the AEPP algorithm as the 

initial conductivity distribution, the entire reconstruction time does not exceeded 3 

minutes. 

The performance of the four explained anisotropic J-based algorithms is examined using 

the 3 Tesla magnetic resonance system in this study (Chapter 4) by reconstructing the 

conductivity distribution of the experimental phantom to scrutiny the efficiency of each 

algorithm and finding the strengths and weaknesses of them. In addition, the simulation 

models are prepared based on the experimental phantom properties to be used in 

experimental data error calculation procedure.  
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CHAPTER 3 

 

 

EXPERIMENTAL SETUP FOR MRCTI AT 3 TESLA 

MRI SYSTEM 

 

 

 

3.1 Introduction 

 
In this chapter, the experimental setup which is used in data aquision for the MRCTI 

experiments, is introduced and explained briefly. 

Hardware of almost all of the conventional MREIT experiments consist of these three 

major parts: 

1. Magnetic Resonance Imaging system,  

2. Controllable Current Source 

3. Experimental Phantoms. 

 

Among these three, the Magnetic Resonance Imaging (MRI) system is a completely 

separate imaging modality which is used to obtain magnitude and phase images from the 

experimental phantom. A controllable current source produces bipolar current pulses 

during specific time intervals, in synchrony with a proper spin echo pulse sequence.  
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 The MRI scanner which is used in this study is a device manufactured by Siemens® 

(Figure 3.1). The MRI system has a 3T main magnetic field intensity, 70cm bore size and 

45mT/m gradient strength [43]. The data collection is performed using the embedded 

single channel body coil of the MR scanner. 

 

 

Figure 3.1: The 3 Tesla MRI scanner used in this thesis located at National Magnetic 

Resonance Research Center (UMRAM) at Bilkent University 

 

3.2 Pulse Sequence Generation 

The spin echo pulse sequence and the additional triggers are prepared by using the 

Siemens pulse sequence programing software IDEA® (Integrated Development 

Environment for Application). Using this program, different parameters of the pulse 

sequence can be adjusted by user, considering the software and hardware limitations of 

the scanner. RF and gradient pulses, readout events, external triggers, required gradient 
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amplitude and phase encoding parameters along with entire sequence timing procedure 

and many other parameters can be designated using this program. Furthermore, a unit test 

option is assigned to test the new designed pulse sequences whether it is applicable to the 

scanner. After the unit test successes, the sequence is compiled with a proper compiler in 

order to use in the scanner.  

 

3.3 Current Source 
 

Current pulse generation is the starting point of the conventional MREIT experiments. As 

it is mentioned in Chapter 2, the injected currents to the electrically conductive phantom 

produce magnetic field in all directions. But only the component of this magnetic field 

which is parallel with the MR main magnetic field direction can be measured by the 

magnetic resonance imaging methods because, only this component of the magnetic field 

produces a phase accumulation in the related MR phase image. By extracting this phase, 

like what is done in Section2.2, the current density distribution is obtained in the imaging 

region.   

The current source which is used in the Anisotropic MREIT experiments of this study is 

designed and manufactured in [44]. This current source has several features like, constant 

and load independent current injection capability, MR compatible structure to avoid RF 

noise, being programmable to inject currents in synchrony with the MRI pulse sequence, 

and multi-channel current injection. The schematic diagram of the current source is given 

in Figure 3.2. 
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Figure 3.2: Schematic diagram of the used current source [44] 

 

As it is mentioned above, the current source is programmable to work in a synchronized 

manner with the used pulse sequence. Figure 3.3, demonstrates a conventional spin-echo 

sequence with the injected current pulse, along with an additional line to demonstrate 

timing strategy of the triggers which are required in data acquisition. These triggers, are 

added to the pulse sequence using IDEA® software as optic signals with 1ms duration. 

These optical signals are converted to 3.3V analog triggers to activate the microcontroller 

unit of the current source for determination of the current injection instant, duration, 

amplitude and polarity as it is specified in Figure 3.3. 
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Figure 3.3: Spin-echo pulse sequence for MREIT experimental data acquisition. 

 

In this experimental setup, the programmed triggers with the specified duration come from 

the MRI scanner via an optic fiber in the form of a red optic signal which turns off when 

the trigger existed and turns on rest of the time. The optic receiver which is used in this 

setup to conversion of optic signals to 0 and 3.3V analog voltages is HFBR-2528Z 

Receiver [45].  Recommended receiver application circuit of the HFBR-2528Z is given 

in Figure 3.4. 
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Figure 3.4: Fiber optic receiver circuit (Avago HFBR-2528Z) 

 

After activation of the microcontroller unit by the trigger pulses, this unit sends a start 

pulse to boost converter to produce required high voltage. Simultaneously, an 8-bit digital 

signal is sent to the digital to analog converter (DAC) unit to determine the amplitude of 

the current which will be injected. This amplitude along with other parameters like 

duration of injection, delay time and the injecting channels are determined by the user 

from a graphical user interface of the microcontroller. Meanwhile, another 8-bit digital 

signal is sent by the microcontroller to solid state relays to determine the user selected 

channels for current injection. 

 

 

3.3.1 Boost Converter 

 
The above mentioned boost converter is a step-up DC-to-DC power electronic converter 

with a nonlinear dynamic behavior that creates a greater output voltage than the source 

voltage. Schematic diagram of boost converter which is used in the structure of the current 

source is given in Figure 3.5.  
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Figure 3.5: Diagram schematic of the step-up DC-DC boost converter [44] 

  

The operating principle of the step-up DC-DC converter is based on the tendency of 

inductor to resist abrupt changes in current by creating and destroying a magnetic field. 

A high voltage capacitor C, in the boost structure is continuously charged by switching 

action of a power MOSFET. Simultaneously, the output voltage of the boost is divided 

over R1 and R2 (Figure 3.5) to obtain a voltage value between 0 and 3.3V across R2. This 

voltage is sent to PIC24 family microcontroller with a hysteresis control feedback. In 

order to perform the switching behavior, microcontroller arranges the duty cycle of the 

generated pulse width modulation (PWM) signal according to the received feedback 

voltage (0-3.3V). Hereby, the desired output voltage is obtained in a sustained manner. 

When continuous conduction mode is assumed, general gain relationship of a step-up DC-

DC converter is as given in (3.1). 

𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
=

1

1 − 𝐷
                                                      (3.1) 

In (3.1), D is the duty cycle of the PWM signal. [46] and [47]. 
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3.3.2 Voltage to Current Converter 

The schematic diagram of the voltage to current converter topology is given in Figure 3.6.  

 

Figure 3.6: Diagram schematic of the Voltage to Current Converter [44] 

 

In Figure 3.6, 𝑅𝑐𝑠 represents the current sensing resistor and VDAC, is the Digital to 

Analog Converter (DAC) output voltage. 

In the above diagram, op-amp drives the power MOSFET and the magnitude of the output 

current 𝐼𝑜𝑢𝑡, can be calculated as it is given in (3.2). 
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 𝐼𝑜𝑢𝑡 =
𝑉𝐷𝐴𝐶

𝑅𝐶𝑆
                                                              (3.2) 

As it is mentioned, the current source which is used in this study has four channels which 

can be determined as source and sink channels independently. Therefore, current steering 

topology is used in the current source which is consist of eight Solid State Relays (four 

sink and four source relays) to determine the direction of the output current. 

During the experiments the current source is outside of the MR scanner room, and the 

potential measurements which are needed to scale the reconstructed conductivities as it is 

mentioned in Section 2.4.1.2, are performed between the current injection ports. 

 

 

3.4 Experimental Phantom 

 
To evaluate the performance of different MREIT algorithms in experimental applications, 

phantoms are used. An experimental phantom in a MREIT measurement consists of a 

container which is filled with different materials to simulate the conductivity of a living 

organ. Materials which are used to fill the phantoms are different according to type of the 

experiment. In isotropic MREIT experiments, conductive and isotropic materials are 

placed in the imaging phantom for evaluation of conductivity reconstruction using the 

various isotropic algorithms. In the case of anisotropic conductivity measurements, the 

material which is placed in the imaging phantom should have the anisotropic conductivity 

itself or such a property must be created by using special arrangements. Moreover, size 

and physical shape of the phantom container depends on purpose of the experiment, used 

algorithms and hardware limitations.  

Generally, the physical material of the phantom container, to use in MREIT experiments 

should have special properties like being nonmagnetic and non MR active because of 

placing in the MRI scanner. Furthermore, the container should be electrically insulator 
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because the current pulses are injected in to the phantom during the experiment using the 

electrodes at the boundary. The phantom, is designed using SOLIDWORKS® software 

and manufactured with specific features. Plexiglas material is used in the structure of the 

phantom body because of the reasons mentioned above and the transparency of Plexiglas 

which enables the user to see inside area of the phantom. The used phantom is constructed 

in the form of cube to create square slices in 2D, which is proportionate to the 

implemented algorithms. On the other hand, dimensions of the phantom container should 

fit with the internal size of the used MR coil. In addition, these dimensions have been 

designated carefully to provide the required number of pixels in the imaging region. In 

this study, the internal dimensions of the used phantom is designed to be 8 cm × 8 cm× 

8 cm, to provide 40×40 pixels in the imaging slice in 2D, each with 2mm side length by 

selecting 128mm FOV in x and y directions and 64 base resolution. To eliminate the signal 

loss due to the high current density under the current injecting electrodes and also MRI 

signal void around the cupper sheet electrodes due to RF signal blocking [2] near the 

electrodes, the recessed structure is used in electrode placement as it is shown in Figure 

3.7.  
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Figure 3.7: 2D representation of the experimental phantom filled with conductive 

solution. 

 

The interior structure which is used in the experimental phantom to produce anisotropic 

conductivity behavior in macroscopic scale has a special design [42] as it is shown in 

Figure 3.8. It can be stated that, preparing micro scale anisotropy in the physical phantoms 

is almost impossible [23]. As it can be inferred from the physical shape of the current 

steering structure in Figure 3.9(a) and (b) the injected currents to this imaging slice in 

vertical path, flow through different directions due to the specific style of placing holes 

on the plates Figure 3.9 (c). In this way, the anisotropic ratio could be controlled according 

to the position. The horizontal path can be considered as fully conductive as it is illustrated 

in Figure 3.9 (d). The background part of the experimental phantom is filled by a solution 

with conductivity of 0.2 𝑆/𝑚, in order to simulate the blood conductivity [42]. 
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To prepare this solution, 0.1gr CuSo4 and 0.145gr NaCl are dissolved in 100ml pure water 

and mixed for 10 minutes. 

 

 

Figure 3.8: Illustration of the current steering structure in the four electrode experimental 

phantom.  
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                                  (a)                                                                  (b) 

 

                        

                                  (c)                                                                  (d) 

Figure 3.9: Illustration of current flow inside the phantom slice in presence of the current 

steering structure which is used to create macro-scale anisotropy in the background 

material conductivity. (a) Vertical view (b) Horizontal view (c) Vertical current injection 

profile (d) Horizontal current injection profile 

 

In Figure 3.10, the experimental phantom is displayed. The figure shows a phantom with 

four recessed electrodes which are placed in the middle point of the container side walls. 

The current injection strategy using this phantom is shown in Figure 3.11. One vertical, 

one horizontal and four adjacent current injection profiles are performed using this 

phantom to image the conductivity distribution.  
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Figure 3.10: The experimental four electrode phantom 

 

As it is explained in 2.4.1.2 and 2.4.2.2 at least two current injection profiles are needed 

to reconstruct the anisotropic conductivity distribution using the MRCTI algorithms. But 

it is useful to know that, performing more current injection profiles causes gathering more 

data from the imaging region and thereupon a fast convergence to the desirable 

conductivity with more accuracy. But using more current profiles on the other hand, 

causes increasing in computational operations and consequently requires high memory 

space and more time to data acquisition and reconstruction procedures. Therefore, a 

tradeoff is existed between the number of the current profiles and the memory and time 

consumption.  
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                              (a)                                                                    (b) 

           
                              (c)                                                                     (d) 

 

Figure 3.11: The six current injection profiles using the phantom in Figure 3.10 

(a) Vertical (b) Horizontal (c) First adjacent (up and right) (d) Second adjacent (left and 

down) (e) Third adjacent (up and right) (f) Fourth adjacent (left and down), current 

injecting profiles. 
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                                (e)                                                                    (f) 

 

Figure 3.11: (continued) 

The performed simulations showed that, using the phantom in Figure 3.10 with current 

steering structure shown in Figure 3.8, results in increased errors in the four corners of 

the obtained reconstructed conductivity images. These errors arise from the fact that the 

injected currents, in some certain current injection profiles does not reach to the points 

near the corners of the phantom and causes reconstruction of pixel conductivities with no 

current. This phenomena, increases the calculated error at the corners and even spreads to 

the neighboring pixels in the next iterations in AEPP and AJS algorithms. The obtained 

conductivity distributions from experimental data using this phantom (Chapter 4) 

confirmed this claim in the experimental application as well. Another important point 

should be considered in experimental data collection is, that the current cables always 

should be placed parallel to the main magnetic field direction. In this way, the induced 

magnetic field to the imaging region due to the current cables is in the perpendicular plane 
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to the MR main magnetic field. Therefore, the accumulated phase due to this magnetic 

flux density is not measured by MR system. If the position of cables toward the imaging 

phantom is not considered carefully, the magnetic flux density due to the currents in cables 

accumulates undesirable phase inside the imaging slice in the MR main magnetic field 

direction. This phenomenon causes an undesired dephasing in some regions near to the 

current cables, which can be observed in the form of regions with dark shadow in the 

related MR magnitude images.  

 Figure 3.12, shows the experimental phantom in the MR scanner and orientation of the 

current carrying cables toward the phantom. Furthermore, to hold the phantom in center 

of MR bore during the experiment, a phantom holder is designed and manufactured from 

the Plexiglas material. 

 

 

Figure 3.12: Illustration of the experimental phantom inside the MR magnet 
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3.5 Conductivity Cell 

 
In order to measure the conductivity of the materials (solutions) which are filled in the 

phantom as background, the conductivity cell is used. The conductivity cell which is used 

in this study is shown in Figure 3.13, and is made up of a 1cm×10cm×1cm Plexiglas 

container with two current injecting electrodes in two sides and two voltage measurement 

electrodes at the middle, 1cm apart from each other. The liquid material is poured into 

this container and the conductivity is measured using the four electrode conductivity 

measurement method [48]. 

 

 

Figure 3.13: conductivity cell 
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CHAPTER 4 

 

 

RESULTS AND COMPARISONS 

 

 

 

4.1 Introduction 

 
In this chapter, the performance of the four J-based MRCTI reconstruction algorithms 

explained in Chapter 2, is evaluated using the experimental data. An experimental 

phantom is manufactured and prepared for experimental data collection as explained in 

Section 3.4. To measure the SNR level of the experiments, an equation is defined in 

Section 4.2. Furthermore, in order to quantize the accuracy of the reconstructed 

conductivity which is obtained from the experimental data, reconstructed conductivity is 

compared with the true conductivity distribution and an error measure is defined in 

Section 4.3. To scale the relative reconstructed conductivity a scaling factor is needed. A 

scaling  method is introduced and implemented in Section 4.4. The pulse sequence 

parameters along with the parameters of the injected current used during the experiments 

is given in Section 4.5. Simulation results of the proposed AHEPP algorithm are 

illustrated in Section 4.6. Finally, the experimental results obtained from the phantom 

experiments along with the simulation results and error calculations for each case are 

demonstrated in Section 4.7. 
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4.2 SNR Calculation 

In order to attribute an SNR level to the experiments performed in this study, the 

formulation given in (4.1) is used for SNR calculation in 2D. 

𝑆𝑁𝑅 = 𝐾. (
𝐹𝑂𝑉𝑥

𝑁𝑥
 .  

𝐹𝑂𝑉𝑦

𝑁𝑦
 .  ∆𝑧) . √

𝑁𝑥 .  𝑁𝑦 .  𝑁𝐸𝑋

𝐵𝑊
                      (4.1) 

 

In (4.1), K is a constant value which depends on hardware factors of the MRI system such 

as the coil configuration, pre-amp and noise power spectrum, field strength dependent 

factors and also the applied pulse sequence parameters. This constant can be taken as unity 

in approximate calculations of SNR to study the effect of changing other experimental 

parameters like field of view (FOV), slice thickness, number of frequency and phase 

encoding steps, and averaging number. FOVx and FOVy, determine the field of view in 

𝑥 and 𝑦 directions, Nx and  Ny are the number of frequency and phase encoding steps, ∆𝑧 

is the slice thickness, NEX represents the number of averaging and BW stands for the 

receive bandwidth. 

By substituting the experimental parameters used in the data acquisition process during 

this study and taking the constant value K as unity the approximate experimental SNR is 

obtained equal to 26.  

The parameters used during experiments are as given in Table 4.1. 
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Table 4.1: The experimental parameter values used in SNR calculation. 

FOVx 128mm 

FOVy 128mm 

Number of Frequency Encodings (Nx) 64 

Number of Phase Encodings (Ny) 64 

Number of Signal Averaging (NEX) 16 

Slice Thickness (∆𝑧) 6mm 

Band width (BW) 54.528 KHz 

 

The receive bandwidth can be calculated as it is given in (4.2). 

𝐵𝑊 = 𝐹𝑂𝑉. 𝛾. 𝐺                                                                  (4.2) 

In (4.2), 𝛾 is the gyromagnetic constant of hydrogen which is equal to 42.6 𝑀𝐻𝑧/𝑇 and 

G represents the gradient field strength which is taken to be 10 𝑚𝑇/𝑚 in the prepared 

spin-echo pulse sequence using the IDEA pulse sequence programming software. 

As it is inferred from equation (4.1), by enlarging the field of view, increasing the number 

of signal averaging and using wider slice thickness, it is possible to increase the SNR level 

of the experiment. But, it is obvious that the total time of data acquisition procedure 

increases drastically by enlarging the FOV and increasing the number of averaging. In 

addition, the width of the slice thickness is limited by the experimental phantom structure 

and dimensions. In the experiments, the size of FOV in 𝑥 and 𝑦 direction along with the 
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number of frequency and phase encoding steps are taken to be exactly the same values 

given in Table 4.1 in order to obtain desirable 2mm × 2mm pixel size in the imaging 

region as it is given in (4.3). 

∆𝑥 =  
𝐹𝑂𝑉𝑥

𝑁𝑥
                                                                      

   (4.3) 

∆𝑦 =  
𝐹𝑂𝑉𝑦

𝑁𝑦
                                                                      

 

In (4.3), ∆𝑥 and ∆𝑦 represent the image pixel side length in 𝑥 and 𝑦 directions. 

 

 

4.3 Error Calculation 

 
In order to evaluate the accuracy of the reconstructed conductivity images from the 

experimental data, an error measure is defined as it is given in (4.4). 

𝜀𝜎𝑛 
= √

1

𝑁
∑

(𝜎𝑗𝑡𝑢 − 𝜎𝑗𝑟𝑢)
2

𝜎𝑗𝑡𝑢
2

𝑁

𝑗=1

  × 100%                                   (4.4) 

In (4.4), 𝜎𝑗𝑡𝑢 and 𝜎𝑗𝑟𝑢 are the true and reconstructed conductivity values of the 𝑗𝑡ℎ pixel 

in anisotropic conductivity direction u (𝑥𝑥, 𝑦𝑦) respectively and N is the total number of 

pixels in the conductivity image. 

To obtain a true conductivity distribution of the experimental phantom for the 

measurement of the error value using (4.4), a simulation model is prepared in COMSOL 

software. In the simulation, a 3D numerical model of the experimental phantom is 

constructed with same dimensions, boundary conditions and sub-domain properties of the 

MRCTI experiment and the forward problem of the MRCTI is solved.  As mentioned in 

Section 2.3, one of the applications of the MRCTI forward problem is in generation of 
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simulation data. Therefore, by solving the 3D model using FEM, the potential distribution 

and the current densisty data can be obtained for a known background conductivity 

distribution in the imaging region and specified boundary conditions, in the selected slice. 

By knowing the potential distribution in the selected slice it is possible to calculate the 

directional gradients of potential in x and y directions (∇𝜑𝑥 , ∇𝜑𝑦) for each pixel in the 

simulated imaging region. By rearranging the Ohm’s law in equation (2.14), the 

anisotropic conductivities for each pixel can be calculated as it is given in (4.5). 

 𝜎𝑥𝑥 = − 
𝐽𝑥

∇𝜑𝑥
                                                                       

                    (4.5) 

   𝜎𝑦𝑦 = − 
𝐽𝑦

∇𝜑𝑦
                                                                       

In (4.5), 𝐽𝑥 and 𝐽𝑦 represent the current density components in x and y directions at the 

center point of each pixel. In the same way, ∇𝜑𝑥 and ∇𝜑𝑦 represent the potental gradient 

in x and y directions for each pixel in the imaging region [15], [16]. 

 

 

4.4 Scaling Factor Calculation 

 
As it is mentioned in Section 2.4.1.1, a scaling factor is needed to calculate true 

conductivity values from relative conductivity distribution images obtained from MRCTI 

reconstruction algorithms. Also it was declared in Section 3.3 that a voltage measurement 

is done between the two current injecting electrodes for each current profile to scale the 

reconstructed images. 
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4.4.1 Scaling the relative reconstructed conductivity distribution by calculating the 

potential values in the boundary pixels for an unknown conductivity distribution in 

the imaging region 

 

In this method, by measuring the potential difference between the two current injecting 

electrodes for each current injection profile during the experiment and knowing the 

isotropic conductivity value of the background material in the outermost boundary pixels, 

the scaling factor is calculated prior to obtaining the conductivity distribution in the 

imaging region. 

The procedure is based on calculation of the potential gradients in the boundary pixels, 

by knowing the current density data and the conductivity values on those pixels. As it is 

explained in Section 3.5, a conductivity cell is used to measure the conductivity value of 

the prepared background material. In this study, the background material of the 

experimental phantom is a solution with the specified synthetics as explained in Section 

3.4. In this way, by obtaining the conductivity value of each pixel in the outermost 

boundary rows and columns, and knowing the current density components (𝐽𝑥  and 𝐽𝑦) for 

each boundary pixel the gradient values are calculated. Therefore, for the outermost upper 

and lower boundary pixels of the experimental phantom, potential gradients can be 

calculated using equation (4.6). 

∇𝜑𝑥 = − 
𝐽𝑥
𝜎

                                                        (4.6) 

Similarly, to calculate the potential gradient for each pixel element in the outermost right 

and left boundaries of the experimental phantom the equation (4.7) is used. 

∇𝜑𝑦 = − 
𝐽𝑦

𝜎
                                                        (4.7) 



 

 
 

63 

 

By obtaining the gradient values for all boundary pixels the electrical potential can be 

calculated for each boundary pixel. 

The procedure starts from assigning the measured potential value during the experiment 

to the pixels under the current injecting electrodes. As it is illustrated in Figure 4.1, for 

the measured potential difference V, between the two electrodes during the experiment, 

the source electrode of the prepared model is assigned to possess the voltage value V, 

when the sink electrode is set to zero potential (the sink electrode is taken as reference). 

 

Figure 4.1: Illustration of the boundary pixels along with the assigned voltage values to 

the source and sink electrodes in the vertical path. 

 

To understand the procedure of potential calculation for the entire boundary pixels in a 

specific current injection profile, the potential value is calculated for the pixel number 2 
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and vertical current path as it is illustrated in Figure 4.1. As it is seen from Figure 4.1, the 

pixel number 2 is located next to the last pixel under the current injecting electrode. 

Therefore, potential value of the previous pixel (pixel number 1) is known. In this way, 

potential value of the second pixel can be calculated using the equation (4.8). 

𝜑2 = 𝜑1 +
 ∇𝜑𝑥2

+ ∇𝜑𝑥1

2
 .  ∆𝑥                                       (4.8)  

In (4.8), ∇𝜑𝑥1
 and ∇𝜑𝑥2 are the gradient values of the first and the second pixels 

respectively (Figure 4.3). ∆𝑥 is the pixel side length in x direction and 𝜑1 is the assigned 

potential value for the pixels under the source electrode which equals to V. Similarly, the 

potential value of the third pixel in Figure (4.1) can be calculated, by knowing the 

potential value of the second pixel. In general, equations in (4.9) and (4.10) are used to 

calculate the potential values through the entire boundary pixels. 

 𝜑𝑖+1 = 𝜑𝑖 +
 ∇𝜑𝑥𝑖+1

+ ∇𝜑𝑥𝑖

2
 .  ∆𝑥                              (4.9)      

𝜑𝑖+1 = 𝜑𝑖 +
 ∇𝜑𝑦𝑖+1

+ ∇𝜑𝑦𝑖

2
 .  ∆𝑦                             (4.10)    

Equation (4.9) is used to calculate the potential values of the pixels in the most upper and 

the lower boundaries. In the same way, equation (4.10), is applied for the most right and 

the most left boundaries of the experimental phantom. An example of potential calculation 

in boundary pixels, to scale the relative reconstructed conductivity is given in Figure 4.2.  
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Figure 4.2: The potential value distribution on the boundary pixels of the used 

experimental phantom and measured voltage in vertical current injection profile. 

 

The potential difference measured between the two current injecting electrodes for the 

vertical path (Figure 4.2) during the experiment was equal to 19V.  
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4.5 Pulse Sequence Parameters 

 
The experimental parameters of the applied spin echo pulse sequence along with the 

injected current parameters are given in Table 4.2, and illustrated in Figure 4.3. 

 

Table 4.2: The experimental parameters of the used pulse sequence and the injected 

current 

TR 250ms 

TE 60ms 

Number of Signal Averaging 16 

Duration of the injected current in forward direction 20ms 

Duration of the injected current in inverse direction 20ms 

Forward Delay  5ms 

Inverse  Delay 5ms 

Trigger Duration 1ms 

Current Amplitude 10mA 

 

Furthermore, it is remarkable to note that the TR and TE values which is used in the 

experimental data acquisition, is selected by considering the role of these two factors in 

noise reduction of the obtained current density data and acquiring maximum SNR level 

[37]. 



 

 
 

67 

 

 

Figure 4.3: Timing diagram of the spin echo pulse sequence with current injection 

 

4.6 Simulation Results of the Proposed AHEPP Algorithm 

In order to compare the performance of the proposed AHEPP algorithm with the results 

of the other three J-based MRCTI algorithms in [21, 22, 23], a numerical model the same 

as the simulation models in [42] is prepared using FEM and the related simulation data is 

extracted. 

Briefly, the used numerical model in [42] is a 40 by 40 pixel conductivity image with 

2.25mm pixel length. A conductive object is placed at the center of the image which is in 

the form of a circle with radius 15.75mm in the xx direction and in the form of a square 

in yy direction with side length of 31.5mm. To create anisotropic conductivity condition, 

the conductivity of the circle object is assigned to be 0.4 S/m, where the conductivity of 

the square object is 0.6 S/m. An isotropic conductivity of 0.2 S/m is taken for the 
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background material. Furthermore, the conductivity values in anisotropic directions xy 

and yx are taken as zero (𝜎𝑥𝑦 = 𝜎𝑦𝑥 = 0) [42]. 

 The reconstructed anisotropic conductivity images of the extracted simulation data using 

AHEPP algorithm is illustrated in Figure 4.4. To evaluate the reconstruction accuracy of 

the proposed algorithm, the error in the reconstructed anisotropic conductivity is 

calculated using (4.4). The obtained error values for AHEPP algorithm are compared with 

the calculated errors of the other three J-based algorithms in [42].  

 

        
                            (a)                                                         (b) 

Figure 4.4: Reconstruction results of the simulation model using AHEPP algorithm (SNR 

= ∞). (a) 𝜎𝑥𝑥 (b) 𝜎𝑦𝑦. 
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Table 4.3: Comparing the error values obtained from the four MRCTI algorithms using 

the same numerical model in [42] and for the noise free case. (The error values of the first 

three algorithms are taken from [42]). 

Algorithm 𝜺𝝈𝒙𝒙
 (%) 

Object 

𝜺𝒚𝒚 (%) 

Object 

 

𝜺𝝈𝒙𝒙
 (%) 

Background 

𝜺𝒚𝒚 (%) 

Background 

AEPP 10.58 17.6 8.65 8.51 

AJS 28.89 46.82 8.59 15.33 

AHJS 10.15 17.43 6.35 6.72 

AHEPP 9.8055 17.3948 7.7084 8.1232 

 

As it is seen from the calculated errors in Table 4.3, the reconstruction accuracy of the 

AHEPP algorithm is the same and even better than the other three J-based MRCTI 

algorithms in reconstruction of the simulation data. 
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4.7   Results of the Experimental Phantom 

 
4.7.1 Experimental Results of the Magnetic Flux Density and Current Density  

 

Distributions 

 

The experimental phantom is the previously introduced phantom in Section 3.4 and Figure 

3.10. As it is shown in Figure 3.11, by using this phantom with four electrodes, six current 

injection paths are assumed. One vertical, one horizontal and four adjacent current 

injections are made using this phantom and the magnetic flux density distributions in three 

directions for all six paths along with the related current density distribution data are 

shown in Figures 4.5– 4.16 

Furthermore, to compare the experimentally obtained magnetic flux density with the 

results of the numerical model, the z component of the magnetic flux density due to the 

current injection in the numerical model, is illustrated as an example beside the related 

experimental data for each current injection profile. One magnetic flux density 

distribution is existed for each current injecting profile. On the other hand, to calculate 

derivatives of 𝐵𝑥 and 𝐵𝑦 with respect to z using the definition of derivative in equation 

(2.10), two slices in z direction are selected with distance d. Therefore, two magnetic flux 

density distributions are obtained, as it is illustrated in Figures 4.5-4.16. 
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                                  (a)                                                          (b) 

           
                             (c)                                                                        (d)                

         
                                        (e)                                                                         (f) 

Figure 4.5: The magnetic flux density distribution in all three orientaions for the vertical 

current injection path using the experimental phantom. (a) z component (experimental) 

(b) z component (numerical) (c) x-plus (d) x-minus (e) y-plus (f) y-minus. 
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                                           (a)                                                                        (b) 

   
     (c) 

Figure 4.6: Current density distribution for the vertical current injection path of the 

experimental phantom. (a) 𝐽𝑥 (b) 𝐽𝑦 (c) Total current density distribution. 
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                                 (a)                                                           (b) 

       
                             (c)                                                                      (d)   

        
                                        (e)                                                                       (f) 

Figure 4.7: The magnetic flux density distribution in all three orientaions for the 

horizontal current injection path using the experimental phantom. (a) z component 

(experimental) (b) z component (numerical) (c) x-plus (d) x-minus (e) y-plus (f) y-minus. 
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                                           (a)                                                                        (b) 

 
 (c) 

Figure 4.8: Current density distribution for the horizontal current injection path of the 

experimental phantom. (a) 𝐽𝑥 (b) 𝐽𝑦 (c) Total current density distribution 
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                                  (a)                                                          (b) 

        
                                         (c)                                                                      (d) 

       
                                         (e)                                                                       (f) 

Figure 4.9: The magnetic flux density distribution in all three direction for the first 

adjacent current injection path (up and right electrodes) using the experimental phantom. 

(a) z component(experimental) (b) z component (numerical) (c) x-plus (d) x-minus (e) y-

plus (f) y minus 
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                                            (a)                                                                        (b) 

  
                                                                                  (c) 

Figure 4.10: Current density distribution for first adjacent current injection path (up and 

right electrodes) of the experimental phantom. (a) 𝐽𝑥 (b) 𝐽𝑦 (c) Total current density 

distribution 
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                                  (a)                                                          (b) 

         
                                         (c)                                                                       (d) 

        
                                         (e)                                                                       (f) 

Figure 4.11: The magnetic flux density distribution in all three direction for the second 

adjacent current injection path (left and down electrodes) using the experimental phantom. 

(a) z component(experimental) (b) z component (numerical) (c) x-plus (d) x-minus (e) y-

plus (f) y minus 
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                                        (a)                                                                        (b) 

 
  (c) 

Figure 4.12: Current density distribution for the second adjacent current injection path 

(left and down electrodes) of the experimental phantom. (a) 𝐽𝑥 (b) 𝐽𝑦 (c) Total current 

density distribution 
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                                  (a)                                                         (b) 

        
                                        (c)                                                                       (d) 

          
                                        (e)                                                                         (f) 

Figure 4.13: The magnetic flux density distribution in all three direction for the third 

adjacent current injection path (up and left electrodes) using the experimental phantom. 

(a) z component(experimental) (b) z component (numerical) (c) x-plus (d) x-minus (e) y-

plus (f) y minus 
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                                            (a)                                                                          (b) 

 
  (c) 

Figure 4.14: Current density distribution for the third adjacent current injection path (up 

and left electrodes) of the experimental phantom. (a) 𝐽𝑥 (b) 𝐽𝑦 (c) Total current density 

distribution 
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                                 (a)                                                          (b) 

        
                                        (c)                                                                      (d) 

       
                                        (e)                                                                      (f) 

Figure 4.15: The magnetic flux density distribution in all three direction for the fourth 

adjacent current injection path (right and down electrodes) using the experimental 

phantom. (a) z component(experimental) (b) z component (numerical) (c) x-plus (d) x-

minus (e) y-plus (f) y minus 
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                                           (a)                                                                         (b) 

 
                 (c) 

Figure 4.16: Current density distribution for the fourth adjacent current injection path 

(left and down electrodes) of the experimental phantom. (a) 𝐽𝑥 (b) 𝐽𝑦 (c) Total current 

density distribution  
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4.7.2 Experimental Results of the Reconstructed Anisotropic Conductivities  

 
In this subsection, the experimental results of the reconstructed anisotropic conductivities 

in xx and yy directions (𝜎𝑥𝑥, 𝜎𝑦𝑦) using the four J-based reconstruction algorithms along 

with the error calculations for each case is given. As it is mentioned in Section 4.3, to 

calculate the error measure a true conductivity distribution is needed. The obtained true 

conductivity distributions using equations in (4.5) is demonstrated in Figure 4.17. 

 

                            
                                     (a)                                                         (b) 

Figure 4.17: True conductivity distributions obtained uing (4.5). (a) 𝜎𝑥𝑥 (b) 𝜎𝑦𝑦 

 

These true conductivity images are illustrated for each case to be compared with the 

reconstructed conductivity image. 

 

4.7.2.1   The Reconstructed Conductivities Using AEPP algorithm 
 

In this section, the two reconstructed conductivity images (𝜎𝑥𝑥 , 𝜎𝑦𝑦) using AEPP 

algorithm is illustrated along with the calculated true conductivity distributions in xx and 

yy directions in Figure 4.18. 
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                                             (a)                                                         (b) 

                         
                                     (c)                                                         (d) 

Figure 4.18: The results of anisotropic conductivity reconstructed using AEPP algorithm 

for the experimental phantom (a) True conductivity 𝜎𝑥𝑥 (b) True conductivity 𝜎𝑦𝑦 (c) 

Reconstructed 𝜎𝑥𝑥 (d) Reconstructed 𝜎𝑦𝑦 

As it is seen from the Figure 4.18, the reconstructed conductivities using AEPP algorithm 

are very erroneous to the extent that cannot be evaluated using error measures. 

 

4.7.2.2    The Reconstructed Conductivities Using AJS algorithm 

 In this section, the two reconstructed conductivity images (𝜎𝑥𝑥, 𝜎𝑦𝑦) using AJS algorithm 

is illustrated along with the calculated true conductivity distributions in xx and yy 

directions in Figure 4.19. 
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                                     (a)                                                          (b) 

                        
                                      (c)                                                           (d) 

Figure 4.19: The results of anisotropic conductivity reconstructed using AJS algorithm 

for the experimental phantom  (a) True conductivity 𝜎𝑥𝑥 (b) True conductivity 𝜎𝑦𝑦 (c) 

Reconstructed 𝜎𝑥𝑥 (d) Reconstructed 𝜎𝑦𝑦 

 

Table 4.4: Percentage error of the reconstructed conductivities in Figure 4.19 

Anisotropic Conductivity 𝝈𝒙𝒙 𝝈𝒚𝒚 

                 Error % 40.04 53.66 
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4.7.2.3    The Reconstructed Conductivities Using AHJS algorithm 

In this section, the two reconstructed conductivity images (𝜎𝑥𝑥, 𝜎𝑦𝑦) using AHJS 

algorithm is illustrated along with the calculated true conductivity distributions in xx and 

yy directions in Figure 4.20. 

                              
                                       (a)                                                        (b) 

                        
                                     (c)                                                            (d) 

Figure 4.20: The results of anisotropic conductivity reconstructed using AHJS algorithm 

for the experimental phantom  (a) True conductivity 𝜎𝑥𝑥 (b) True conductivity 𝜎𝑦𝑦 (c) 

Reconstructed 𝜎𝑥𝑥 (d) Reconstructed 𝜎𝑦𝑦 
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Similar to the results of the AEPP algorithm, the obtained conductivity images for this 

algorithm can not be evaluated using the error measures because of the highly erroneous 

results. 

 4.7.2.4   The Reconstructed Conductivities Using AHEPP algorithm  

In this section, the two reconstructed conductivity images (𝜎𝑥𝑥, 𝜎𝑦𝑦) using AHEPP 

algorithm is illustrated along with the calculated true conductivity distributions in xx and 

yy directions in Figure 4.21.    

                           

                               
                      (a)                                                          (b)                                                                                           

         
                                      (c)                                                          (d) 

Figure 4.21: The results of anisotropic conductivity reconstructed using AHEPP 

algorithm for the experimental phantom  (a) True conductivity 𝜎𝑥𝑥 (b) True conductivity 

𝜎𝑦𝑦 (c) Reconstructed 𝜎𝑥𝑥 (d) Reconstructed 𝜎𝑦𝑦 
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Table 4.5: Percentage error of the reconstructed conductivities in Figure 4.21 

Anisotropic Conductivity 𝝈𝒙𝒙 𝝈𝒚𝒚 

                 Error % 61.56 58.98 

 

 

 

 

4.7.3 Comparisons of the Four J-Based MRCTI Algorithms 

 

As it is explained in Chapter 2, in J-based MRCTI reconstruction algorithms the current 

density distribution inside the imaging region is calculated by taking derivative of the 

magnetic flux density data. The experimentally obtained magnetic flux density 

distribution is a noisy data because in the case of real experiments the SNR level is not 

infinite. Taking derivative from this noisy data causes a huge increase in the noise level 

in the obtained current density distribution. On the other hand, as it is explained in Section 

2.4.1.2, in the case of AEPP algorithm the boundary potentials are projected into the 

imaging region using the equipotential lines. These lines are constructed in the imaging 

region using the current density data and observing the angle calculated in (2.19), at each 

iteration. Using the noisy current density data, results in projecting the boundary 

potentials to the wrong pixels in the imaging region. Subsequently, a wrong potential 

gradient is calculated and the obtained anisotropic conductivity becomes highly 

erroneous. When this phenomena is associated with the isotropic assumption in the first 

iteration of the AEPP algorithm as it is mentioned in Section 2.4.4, results in an extremely 

erroneous image for the conductivity distribution which is shown in Figure 4.18. 

In the case of AJS algorithm, as the potential field in the imaging region is calculated 

using FEM therefore, the calculated potential gradient in the imaging region is 

independent of the noisy current density data. However, in calculation of the reconstructed 
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conductivity using equations in (2.28), the noisy current density data defects the resultant 

conductivity images. That is why, the reconstructed anisotropic conductivities in Figure 

4.19 show better visual results along with reduced calculated errors. The black regions at 

the corners of the reconstructed images shown in Figure 4.19, are actually related to the 

pixels with negative conductivity values in 𝜎𝑦𝑦 image and the very large positive values 

in the 𝜎𝑥𝑥 image. As the negative conductivity value is not meaningful these pixel are 

assigned to possess zero conductivity. Similarly, in the case of very large positive values 

at the corners of 𝜎𝑥𝑥 image, the pixels which have values ten times greater than the 

background conductivity are taken as zero. In the presence of these pixels and under the 

effect of those large values of the image scaling, the conductivity image cannot be 

displayed properly. Furthermore, to calculate the error values in this case the mentioned 

regions in 𝜎𝑥𝑥 and 𝜎𝑦𝑦 are not taken into account. 

The reconstructed conductivities using the AHJS algorithm show similar results with the 

AEPP. As it is explained in 2.4.3, in this algorithm the final best result of the reconstructed 

conductivity using AEPP algorithm is fed to AJS as initial conductivity distribution. But, 

starting the AJS algorithm with an extremely noisy data causes a highly erroneous result 

for this algorithm as well. The anisotropic conductivity images given in Figure 4.20 are 

the proof of this claim. 

The proposed hybrid algorithm namely, the anisotropic hybrid equipotential projection 

(AHEPP) algorithm is explained in Section 4.2.2. In this algorithm, unlike the AHJS 

algorithm, instead of using an extremely erroneous result of the AEPP algorithm as 

starting point for AJS, the final best result of anisotropic conductivity distribution resulted 

from AJS (Figure 4.19) is fed to AEPP algorithm as initial conductivity distribution. This 

procedure can solve the problem of the AEPP algorithm in the case of isotropic 

assumptions in the first iteration. On the other hand, by starting the AEPP algorithm with 

an acceptable conductivity distribution with reduced error a better result is obtained to the 
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extent that to be evaluated using the error measures. Furthermore, as it is explained in 

Section 2.4.4, the entire time which is needed to obtain the desired conductivity 

distribution (Figure 4.21) using this algorithm is about one tenth of the time which is 

needed for the AJS algorithm to reach to the desired conductivity result for the same 

number of iterations (Figure 4.19). 

As the final comparison of the four J-based MRCTI reconstruction algorithms the 

increased error at the corners of the reconstructed conductivity images is discussed. As it 

is expressed in Section 3.4, the current density data in the corner regions of the 

experimental phantom is the minimum (Figure 4.22). Therefore, current density data in 

these points is more sensitive to the experimental noise and these regions in the 

reconstructed conductivity images of the all four algorithms are more erroneous. But, it 

can be inferred from the Figures 4.18-4.21, that this increased error at the corners of the 

reconstructed conductivity images using AJS is the minimum where in the case of AEPP 

algorithm is maximum. Because, the AEPP algorithm is more sensitive to the current 

density noise as explained previously where, the AJS has the least sensitivity to current 

density noise in conductivity calculation, among the four algorithms. The effect of this 

error sensitivity is better visible in the resultant conductivity images from the AHEPP 

algorithm in compare with the AJS in the yy direction (𝜎𝑦𝑦), because a main part of the 

AHEPP is based on the AEPP algorithm. 
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(a) 

Figure 4.22: Illustration of current density minimality in corner pixels of the simulation 

phantom. (a) Total current denisty in horizontal current injection profile (b) x component 

of the total current density along the specified red line in (a). As it is illustrated in the (b) 

the current density along the selected line is minimum for the pixels in corner points. The 

negative picks of current density in the diagram (b) is due to rapid transitions of the current 

lines when leaving the recessed part of the electrode. (c) x component of the total current 

density in the middle line of the simulation phantom (green line).  
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   (b) 

    
     (c) 

Figure 4.22: (continued) 
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At the end of this chapter, performance of the four J-based MRCTI reconstruction 

algorithms in anisotropic conductivity reconstruction is compared from different aspects 

and illustrated using the performance chart Figure 4.23, for the experimental data. The 

information about the simulation reconstruction quality and simulation errors in the chart 

is taken from [42]. 

 

 

Figure 4.23: The performance chart of the four J-based algorithms 

 

As it can be inffered from the performance chart in Figure 4.23, by consideraing all 

aspects of simulation and experimental applications, the proposed AHEPP algorithm 

shows a good overall performance. This algorithm inherts the good performance of the 

AEPP algorithm in simulation model applications along with low time consuption and 

low memory usage, because the main part of this algorithm is the AEPP algorithm. 
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Similarly, the good performance of the AJS algorithm in experimental applications can 

be seen in AHEPP algorithm as well. 

The best performance in the simulation applications belongs to AHEPP algorithm where, 

in the experimental applications  AJS algorithm shows the best results and AHEPP is in 

the second place. 
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CHAPTER 5 

 

 

CONCLUSIONS 

 

 

 

In this thesis, the previously proposed three J-based MRCTI reconstruction algorithms 

namely, the anisotropic equipotential projection (AEPP), the anisotropic J-substitution 

(AJS) and the anisotropic hybrid J-substitution (AHJS) algorithms along with the newly 

proposed J-based algorithm, anisotropic hybrid equipotential projection (AHEPP) are 

used to reconstruct the anisotropic conductivity distribution of the experimental phantom 

using the UMRAM 3 Tesla Magnetic Resonance Imaging (MRI) system. The obtained 

experimental results consist of magnetic flux density distribution, current density data and 

the reconstructed anisotropic conductivities. The reconstructed conductivities are 

evaluated using error measures to obtain the accuracy of the used reconstruction 

algorithms. Furthermore, the scaled version of the relative reconstructed conductivity 

images are obtained by using a scaling procedure. A numerical model is prepared using 

COMSOL to obtain the true conductivity distribution to use in error calculations. The 

SNR level of the performed experiments is calculated as 26, to be used in comparing the 

obtained experimental data in feature works with the experiments of this study. 

An experimental phantom with special properties is designed and manufactured during 

this thesis and the required spin echo pulse sequence is prepared using the Siemens pulse 

sequence programing software (IDEA). 
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The obtained anisotropic conductivity from the experimental data is compared by 

considering the quality of the reconstructed images and the calculated error measures. The 

comparisons of the four algorithms showed that the anisotropic J-substitution algorithm 

shows best performance among the four algorithms and the reconstructed anisotropic 

conductivity using this algorithm has the best quality and a lower noise measure in both 

anisotropic directions (𝜎𝑥𝑥, 𝜎𝑥𝑥). Both of the anisotropic equipotential projection and the 

anisotropic hybrid J-substitution algorithms do not produce meaningful and considerable 

results. Furthermore, these results are not to the extent that to be evaluated by error 

measures. Similar observations have been reported by Değirmenci and Eyüboğlu in [23] 

for the first three J-based algorithms but no error measures were reported. The 

experimental results of this thesis showed that the sensitivity of AEPP and AHJS 

algorithms to the noise of the current density data is to the extent that using an MRI device 

with high main magnetic field intensity and SNR cannot overcome this sensitivity. 

However, the experimental SNR level of the experiments in this thesis is not greater than 

the one in the [23]. 

 To test the performance of the proposed anisotropic hybrid equipotential projection 

algorithm (AHEPP) using the simulation data a numerical model, which is given in [20, 

21, 22 and 42], is prepared similar to the model. The obtained simulation results of 

AHEPP are compared with the results of the other three J-based algorithms in [42]. 

The experimental results reconstructed using AHEPP algorithm show better contrast 

quality than the AEPP and the AHJS algorithms and the noise measure calculated for the 

reconstructed conductivity in yy direction (𝜎𝑦𝑦) of the experimental phantom is near to 

the noise measure of the AJS algorithm for this anisotropic direction as it is given in Table 

4.4 and 4.7. The large difference between the two reconstruction algorithms (AJS and 

AHEPP) is in the reconstruction of the conductivity in xx direction.  
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