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ABSTRACT 

 

FUNCTIONAL MOCKUP UNIT ADAPTATION FOR HLA-COMPLIANT 

DISTRIBUTED SIMULATION 

 

Yılmaz, Faruk 

M. Sc., Department of Computer Engineering 

Supervisor: Assoc. Prof. Dr. Halit Oğuztüzün 

Co-Advisor: Dr. Umut Durak 

January 2014, 76 Pages 

 

Conceptual design of systems require aggregate level simulations of the designed 

system in its operational setting. Thus, performance of the system and its interactions 

with the other entities in its environment can be evaluated. The complex and 

heterogeneous nature of these simulations often requires distributed execution. IEEE 

1516 High Level Architecture (HLA) is a widely accepted standard architecture for 

distributed aggregate level simulations. Functional Mock-up Interface (FMI) is a 

recent standardization effort that leads to a tool independent systems simulation 

interface enabling model reuse and co-simulation. This thesis aims to present a 

method for adapting FMI-compliant units to HLA. The presented method enables a 

Functional Mock-up Unit to join an HLA-compliant federation as a member.   

Keywords: Functional Mockup Interface; High Level Architecture; Distributed 

Simulation  
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ÖZ 

 

HLA UYUMLU DAĞITIK SİMÜLASYON ORTAMI İÇİN İŞLEVSEL 

MODEL ARAYÜZÜNÜN UYARLANMASI 

 

Yılmaz, Faruk 

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Halit Oğuztüzün 

Ortak Tez Yöneticisi: Dr. Umut Durak 

Ocak 2014, 76 Sayfa 

 

Sistemlerin kavramsal tasarımı işlevsel ortamda tasarlanan sistemin birleştirilmiş 

düzey benzetimlerini gerektirir. Bu şekilde, sistemlerin performansları ve çevresi ile 

olan etkileşimleri değerlendirilebilir. Karmaşık doğası gereği bu benzetimler 

genellikle dağıtık simülasyon ortamlarına ihtiyaç duyar. IEEE 1516 Yüksek Seviye 

Mimari (HLA) dağıtık simülasyonlar için geliştirilmiş ve geniş ölçüde kabul edilmiş 

standart mimaridir.  İşlevsel Model Arayüzü (FMI) yakın zamanda geliştirilmiş 

model yeniden kullanılabilirliği ve araç bağımsız sistem simülasyon ara yüzü sunan 

bir standart çabadır. Bu tez FMI kullanan HLA uyumlu bir federasyon geliştirme 

yöntemini sunmayı hedeflemektedir. Bu yöntem bir İşlevsel Model Birimi 

(FMU)’nin HLA uyumlu bir federasyon ortamına bir üye olarak katılmasına imkân 

sağlar. 

Anahtar Kelimeler: İşlevsel Model Arayüzü; Yüksek Seviye Mimari; Dağıtık 

Simülasyon 
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CHAPTER 1 

INTRODUCTION 

This chapter introduces the motivation and scope of the study, summarizes the 

related works and further outlines the organization of the thesis. 

1.1 Aim and Scope of the Study 

Systems development process starts with conceptual design phase in which designers 

create concepts and conduct trade off analysis. Modeling and simulation have always 

been essential tools for conceptual design. Early stage systems modeling aims to 

identify the system requirements and its interactions with its operating environment. 

Effect based models, integrated in a large scale operational settings are used to 

evaluate the performance of the system concerning the accomplishment of its 

mission. Simulation of the mission space of a system requires modeling large number 

of entities, and their simulation often requires a distributed environment. To integrate 

the models of the individual simulations of entities on mission space IEEE 1516 

High Level Architecture (HLA) standard [1] [2] [3] is commonly used. 

The Functional Mock-up Interface (FMI) is a newly developed, tool-independent 

model interface standard [4] [5]. Its main purpose is model reuse between various 

modeling tools and environments throughout the systems development phases. A 

simulation component conforming to FMI is called a Functional Mock-up Unit 

(FMU), whose contents include a model description file, user defined libraries, 

source codes, model icons and documentation.  

There is a potential for utilizing this simulation tool and environment independent 

standard for developing HLA federates. By this way, FMI can also serve as a model 

interface for distributed simulation entities in the concept of design phase. Here in 

this study, we introduce a method to develop Functional Mockup Unit Federates 

(FMUFd) from FMUs. Thus, we will enable to simulate system model as a part of an 

aggregate simulation of its operational settings. Moreover, this study promotes a high 

level of reusability of system models supporting FMI.  
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There are some other works carried out to join models in a distributed simulation. 

MatlabHLA-Toolbox [8] and HLA Blockset [9] are two different toolboxes offering 

HLA communication feature to the Matlab. In [10], the author introduces a concept 

for using HLA RTI as a FMI Co-simulation master. This concept defines how to use 

HLA RTI services as a master. In [12], the author states a simulation environment for 

developing a missile where a hardware-in-the-loop (HIL) simulation system, based 

on high Level Architecture (HLA) and Modelica  language, are used. In [13], the 

author declares the SPRINT project which is a corporation of six European 

companies. The goal of the project is to simplify collaborative systems engineering 

across tools and platforms and to validate the systems including physical devices 

based on distributed real time simulation using HLA and FMI. 

1.2 Organization of the Thesis 

The preceding sections of this chapter introduce the motivation and scope of the 

study, present the summary of the thesis application and the related works. The 

remaining chapters are branched as follows: 

 Chapter 2 provides related literature and background information required for 

easy understanding of the subsequent chapters. The HLA and FMI (especially 

FMI for Co-simulation concept) is briefly explained in this section. 

Additionally, programming for HLA and FMI is exemplified in this section. 

 Chapter 3 explains the related works in details and discusses the works with 

our thesis work. 

 Chapter 4 explains the details of FMU federate architecture. This section, 

firstly, presents details of mapping an FMU into the FMUFd architecture. 

Then, it explains how an FMUFd can connect to a federation as a federate. 

Further, it mentions mapping between FMI and HLA object classes. 

Moreover, this section informs about the implementation details of the 

FMUFd.  Furthermore, this section evaluates the capabilities of FMUFd in 

terms of HLA services. Finally, this section lists the limitations of FMUFd. 
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 Chapter 5 explains a demonstration for the usage of the FMUFd in a 

simulation environment. In the demonstration, there are three nodes together 

with two FMUFd applications and one third party application.  

 Finally, Chapter 6 discusses the accomplishments and draws conclusions. 
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CHAPTER 2 

BACKGROUND 

2.1 High Level Architecture (HLA) 

The High Level Architecture (HLA) is a common framework for distributed 

simulation systems. HLA promotes interoperability between simulations and 

supports the reuse of models in different contexts. HLA provides communicating 

data and synchronized actions between simulation computers regardless of the 

computing platforms [1]. 

HLA combines simulations (federates) into a larger simulation (federation), where 

federates are components and federations are component based applications. The 

HLA requires runtime infrastructure (RTI) software to support the operation of a 

federation execution. RTI provides a set of services and by using these services a 

federate can interact with the federation during runtime. How a federate can reach 

the services are defined by the Federate Interface Specification [1]. 

2.1.1 History 

Before 1988 there were so many military simulations; however, they provided a 

limited scope for simulation and they had little interoperability. Interest in distributed 

simulation, in 1988 DARPA’s SIMNET (Simulator Network) Program was adverted. 

In 1991, development of Distributed interactive simulation (DIS) was initiated in a 

series of "Workshops DIS" in the Interactive Network simulation training 

symposium, organized by the University of Central Florida Institute for Simulation 

and Training (IST). After 1994, it was recognized that DIS did not provide a solution 

for the requirement of distributed simulation, like time management. In 1995, the 

Executive Council for Modeling and Simulation (EXCIMS) decided to establish an 

Architecture Management Group (AMG) to develop the High Level Architecture 

(HLA) and on 06 September 1996, the baseline HLA was developed [14]. 
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The first complete version of the standard, published in 1998 was known as HLA 

1.3.  After the year 2000, the HLA specifications are moved as IEEE standards with 

IEEE 1516 series. These series of standards are listed below [14]: 

 IEEE 1516–2000 – Standard for Modeling and Simulation High Level 

Architecture – Framework and Rules 

 IEEE 1516.1–2000 – Standard for Modeling and Simulation High Level 

Architecture – Federate Interface Specification 

 IEEE 1516.2-2000 – Standard for Modeling and Simulation High Level 

Architecture – Object Model Template (OMT) Specification 

 IEEE 1516–2010 – Standard for Modeling and Simulation High Level 

Architecture – Framework and Rules 

 IEEE 1516.1–2010 – Standard for Modeling and Simulation High Level 

Architecture – Federate Interface Specification 

 IEEE 1516.2-2010 – Standard for Modeling and Simulation High Level 

Architecture – Object Model Template (OMT) Specification 

 IEEE 1516.3-2003 – Recommended Practice for High Level Architecture 

Federation Development and Execution Process (FEDEP) 

 IEEE 1516.4-2007 – Recommended Practice for Verification, Validation, and 

Accreditation of a Federation an Overlay to the High Level Architecture 

Federation Development and Execution Process 

2.1.2 Definitions 

Object Model Template (OMT) 

OMT is the Object Model Template that provides a mechanism for specifying data 

exchange within a federation. OMT defines the format and syntax for HLA object 

models. It also provides a mechanism for describing the capabilities of federate, like 

objects and interactions managed by a federate or visible outside the federate. OMT 
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facilitates interoperability among simulations and enhances reuse of simulation 

components. OMT defines the Federation Object Model (FOM), Simulation Object 

Model (SOM) and Management Object Model (MOM) [2]. 

Federation Object Model (FOM) 

FOM is the HLA Federation Object Model that describes all of the object classes and 

interactions, attributes of object classes and parameters of interactions for the 

federation. Also, FOM establishes the information model contract which governs the 

simulation [2] . 

Simulation Object Model (SOM) 

SOM is the HLA Simulation Object Model that describes the object classes and 

interactions, attributes of object classes and parameters of interactions information 

which are exposed or consumed by a federate [2].  

Management Object Model (MOM) 

MOM is the HLA Management Object Model that provides a predefined set of 

information elements to be included in the FOM related with federation management 

[2].  

Run-Time Infrastructure (RTI) 

RTI is the Run-Time Infrastructure that is a software layer providing common 

services to the federates for synchronization and data exchange.  RTI specifications 

define the interfaces that federates should use to obtain services and to interact with 

other federates in a federation [1]. 

2.1.3 HLA Rules 

These rules are extracted from IEEE Standard for Modeling and Simulation (M&S) 

High Level Architecture (HLA) — Framework and Rules [1]. HLA rules define the 

behavior and capabilities of federates and federations.  There are a total of ten rules; 

five rules for federation and five rules for federates. 
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Federation Rules 

 ―Federations shall have an HLA Federation Object Model (FOM), 

documented in accordance with the HLA Object Model Template (OMT).‖ 

 ―In a federation, all representation of objects in the FOM shall be in federates, 

not in the run-time infrastructure (RTI).‖ 

 ―During a federation execution, all exchange of FOM data among federates 

shall occur via the RTI.‖ 

 ―During a federation execution, federates shall interact with the run-time 

infrastructure (RTI) in accordance with the HLA interface specification.‖ 

 ―During a federation execution, an attribute of an instance of an object shall 

be owned by only one federate at any given time.‖ 

Federate Rules 

 ―Federates shall have an HLA Simulation Object Model (SOM), documented 

in accordance with the HLA Object Model Template (OMT).‖ 

 ―Federates shall be able to update and/or reflect any attributes of objects in 

their SOM and send and/or receive SOM interactions externally, as specified 

in their SOM.‖ 

 ―Federates shall be able to transfer and/or accept the ownership of an attribute 

dynamically during a federation execution, as specified in their SOM.‖ 

 ―Federates shall be able to vary the conditions under which they provide 

updates of attributes of objects, as specified in their SOM.‖ 

 ―Federates shall be able to manage local time in a way that will allow them to 

coordinate data exchange with other members of a federation.‖ 
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2.1.4 HLA Services 

HLA provides six groups of services to enable distributed simulation in an aggregate 

level. Those are summarized below [1]. 

Federation Management 

Federation Management service defines how a federate can connect to the RTI. It 

also describes how to create, join, resign and manage federations, save and restore 

federation states.  

Declaration Management 

Declaration Management service defines the publishing and subscription of objects 

and attributes. The object class and object instance declarations are made inside 

FOM.  

Object Management 

Object Management service defines how to register new instance of object class or 

interaction, update the attributes, receive interactions, discover new instances and 

receive updates of attributes.   

Ownership Management 

Object management service defines acquisition of ownership of the registered object. 

This service allows updating an instance of object models with different federates. 

Time Management 

Time management service defines how a federate can advance its logical time with 

other federates and how to deliver the time-stamped events ensuring that a federate 

can never receive an event with logical times less than federates logical time. This 

service also affects other services like object/interaction updates and federate saves.  

Data distribution management 
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Data distribution management defines the production and consumption of data for 

binding the relevance of communication data among federates. As a result, RTI can 

recognize the irrelevant data and prevent its delivery to consumers. 

2.1.5 HLA Object Model 

HLA provides object classes and interactions as the object models, which are used to 

publish/subscribe the data over distributed simulation environment. Providing the 

data exchanges among federates are one of the responsibilities of the RTI. 

An object class can be derived from another object class. HLAobjectRoot is the base 

class of the all object classes. Each object class can contain one or many attributes. 

Derived classes also inherit base class attributes. Attributes have data types. A 

federate will publish/subscribe only interested attributes of an object class; it does 

not have to deal with all the attributes in an object class. 

An interaction can be derived from another interaction. HLAinteractionRoot is the 

base class of the all interactions. Each interaction contains one or many object 

parameters. Derived interactions take base interaction parameters also. Parameters 

have data types. A federate should fill all the parameters of an interaction to publish 

it. 

HLA provides six different data types where a user can create variety of data 

structures by using those data types. The published/subscribed values are stored in 

these data structures. The details of data types are given below [3]: 

 Basic Datatype: Basic data refers to a predefined set of data representations. 

Following data types should be defined by any OMT:  

{HLAinteger16BE, HLAinteger32BE, HLAinteger64BE, HLAfloat32BE, 

HLAfloat64BE, HLAoctetPairBE, HLAinteger16LE, HLAinteger32LE, 

HLAinteger64LE, HLAfloat32LE, HLAfloat64LE, HLAoctetPairLE, 

HLAoctet}. 

 Simple Datatype: The simple data type table refers to simple, scalar data 

items. Following data types should be defined by any OMT:  
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{HLAASCIIchar, HLAunicodeChar, and HLAbyte}.  

 Enumerated Datatype: The enumerated data type refers to data elements 

that can take on a finite discrete set of possible values. Following data type 

should be defined by any OMT:  

{HLAboolean}. 

 Array Datatype: The array data type table refers to indexed homogenous 

collections of data types; these constructs are also known as arrays or 

sequences. Following data types should be defined by any OMT:  

{HLAASCIIstring, HLAunicodeString, and HLAopaqueData}.  

 Fixed Record Datatype:  The fixed record data type table refers to 

heterogeneous collections of types; these constructs are also known as 

records or structures. This allows users to build structures of data according 

to the needs of their federate or federation. 

 Variant Record Datatype: The variant record data type table refers to 

discriminated unions of types; these constructs are also known as variant or 

choice records. 

2.2 HLA Programming in C++ 

HLA can be programmed in many different programming languages, like C++ and 

Java.  This section will briefly inform about the programming HLA federate by using 

C++.  

Some parts of the information, which will be represented in this section, are extracted 

from MAK RTI Users Guide [16]. 

2.2.1 Interface Classes 

There are two main C++ interface classes to provide communication between HLA 

RTI and a federate, namely FederateAmbassador and RTIAmbassador. The 

FederateAmbassador creates an interface through which the RTI can callback the 

events to the federate. The MAK RTI provides a base class, namely 

NULLFederateAmbassador, which has empty implementations of all the callback 
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methods of FederateAmbassador. A federate developer can simply drive a class from 

NULLFederateAmbassador and overrides the interested callbacks. By using 

RTIAmbassador, a federate can call the RTI methods. A developer can get derived 

class of RTIAmbassador by using RTIambassadorFactory class. All communication 

between the federate and the RTI must proceed through the FederateAmbassador 

and the RTIAmbassador. 

2.2.2 Initialization 

The initialization process takes two steps: creating a federation (if it doesn’t exist) 

and joining to the federation. 

Create a Federation Execution 

The Create Federation Execution service takes a federation name and a FOM file 

path as the arguments. The name of the federation will be used as key to federates 

while joining the federation. The only way of controlling the existence of a 

federation is using a try-catch block and checking whether RTI throws 

FederationExecutionAlreadyExists exception. 

 
Listing 1 – Code snapshot for creating a HLA federation 
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Join the Federation Execution 

Every federate should connect to a federation to be a part of the simulation. 

joinFederationExecution service takes three arguments; the first parameter is a label 

for defining federate, the second parameter is the name of federation, the third 

parameter is a class reference derived from the FederateAmbassador interface. 

 

 
Listing 2 – Code snapshot for joining a HLA federation as a federate 

2.2.3 Declaration of Objects 

Before using objects or interactions, a federate informs the RTI about the interested 

objects with attributes or interactions with parameters. RTI has a handle for every 

object class, attributes interaction and parameter. While declaring the objects, those 

handles are used to inform RTI. 

The declaration of object process takes four steps: Publishing the object classes, 

subscribing the object classes, publishing interactions and subscribing the 

interactions. 

Publish the Object Class 

The federate gives a list of attribute handles to the RTI. This list means that the 

federate is only interested with the listed attributes to publish even object class 

declaration can have more attributes. 
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Listing 3 – Code snapshot for declaring HLA objects to RTI to list the attributes to 

be published 

Subscribe the Object Class 

The federate gives a list of attribute handles to the RTI. This list means that the 

federate is only interested with the listed attributes to subscribe even object class 

declaration could have more attributes. 

 

Listing 4 – Code snapshot for declaring HLA objects to RTI to list the attributes to 

be subscribed 

Publish the Interaction 

The federate gives the handle of the interaction class to RTI to declare which 

interactions can be published by this federate. 
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Listing 5 – Code snapshot for declaring HLA interactions to RTI, by then the 

federate can publish this kind of interaction later. 

Subscribe the Interaction 

The federate gives the handle of the interaction class to RTI to declare which 

interactions can be subscribed by this federate. 

 

Listing 6 – Code snapshot for declaring HLA interactions to RTI, by then the 

federate can subscribe this kind of interaction later. 

2.2.4 Information Exchange 

Information exchange contains following steps: update/reflect attribute values, 

send/receive interaction and time management (time advance request and time 

advance grant). The reflect attributes values receive interaction and time advance 

grant methods are obtained from FederateAmbassador callback methods. 

Update Attribute Values 

Any attribute value can be updated individually from the federate. The attributes that 

will be updated are listed with their values into AttributeHandleValueMap. 
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Listing 7 – Code snapshot for updating attribute values over HLA federation 

Send Interactions 

The parameters that will be sent are listed with their values into 

ParameterHandleValueMap. The parameter list of the interaction should be filled 

completely. 

 

Listing 8 – Code snapshot for sending an interaction over HLA federation 
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Time Advance Request 

 

Listing 9 – Code snapshot for enabling time regulating/constraint and requesting time 

advance over HLA federation 

2.2.5 Terminating execution 

Termination execution involves two steps, namely, resigning from a federation 

execution and destroying the federation execution if there are no other federates 

joined to the federation. 

 

Listing 10 – Code snapshot for resigning from a federation and destroying a 

federation execution 

2.3 Functional Mockup Interface (FMI) 

Functional Mockup Interface provides an interface specification for simulation 

components called Functional Mockup Units. FMI provides two standard interfaces, 

namely, FMI for Co-simulation and FMI for Model Exchange [3] [4]. 

While FMI for Model Exchange specifies the interface for callers with explicit or 

implicit integrators, FMI for Co-simulation specifies the interface for simulation 

runnables that possess their solvers in them. As we can define HLA Federates as 

standalone simulation runnables, this effort utilizes FMI-Co-simulation interface as 

the basis for federate development.  
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As shown in Figure 1, FMU can be generated from different tools and for different 

systems/subsystem according to existent requirements. 
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Figure 1 – Generating FMU from different tools 

2.3.1 History 

The FMI standardized interface was developed as one of the products of 

MODELISAR project.  MODELISAR was an Information Technology for European 

Advancement (ITEA) project aiming to improve the design of systems and of 

embedded software in vehicles. The project was started in 2008 and finished in 2011. 

After it ended, FMI was managed and developed as a Modelica Association Project 

(MAP). On Jan. 2010, the version 1.0 of "FMI for Model Exchange‖, On Oct. 12, 

2010, the version 1.0 of ―FMI for Co-Simulation‖ and on Mar. 31, 2011, the version 

1.0 of ―FMI for PLM‖ were released [17].  

In this thesis, the version 1.0 of ―FMI for Co-simulation‖ is used as a reference FMI 

standard. 

2.3.2 Definitions 

Functional Mockup Interface 

The FMI defines a standardized interface to be used in computer simulations for 

developing complex cyber-physical systems. FMI provides three aspects of creating 

models as listed below: 

 FMI for model exchange, 

https://www.modelica.org/projects
https://www.modelica.org/projects
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 FMI for Co-simulation 

 FMI for PLM 

Functional Mockup Unit 

A component implementing the FMI is called Functional Mock-up Unit (FMU). 

FMU is crated as a zip file. This file should contain a model description file. Besides, 

this zip file can also contain libraries, source codes, a model icon and documentation.  

The content of this zip file is shown at Figure 2.  

FMU Zip File

Model.png (opt.)modelDescription.xml Sources(0pt.)

modelCodes.c

Binaries(0pt.)

win32(0pt.) win64(0pt.) linux32(0pt.)

<modelIdentifier>.dll <modelIdentifier>.dll <modelIdentifier>.so

Documentation(opt.)

İndex.html

 

Figure 2 – The content of the FMU zip file 

FMI for Model Exchange 

FMI for model exchange is a standard interface that is a solution for the Ordinary 

Differential Equations of the models. The intention is to exchange of model among 

different modeling environments. A modeling environment can generate C-Code of a 
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dynamic system model that can be utilized by other modeling and simulation 

environments. As shown in Figure 3, the solver is not a part of the model, but it is a 

part of the environment that uses the FMU [3]. 

 

Figure 3 – Data flow between the environment and an FMU for Model Exchange [5] 

FMI for Co-simulation 

FMI for Co-simulation is a standard interface for the model output where the output 

contains its solver inside. Therefore, the FMU generated from FMI for co-simulation 

interface is acting as a black box for the user of the model. That is, the user does not 

need know which integration method is actually applied to solve the model. The user 

only feeds the model with inputs and gets the outputs from model in discrete time 

steps. Figure 4  shows the direction of the data in the FMI for Co-simulation standard 

[4]. 
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Figure 4 – Data flow between the environment and an FMU for Co-simulation at 

communication points [6] 

FMI for PLM 

FMI for Product Lifecycle Management (PLM) is an interface standard for supplying 

a generic way to manage the integration of FMI models and related data in product 

life-cycle management [17]. This management includes followings data: 

 FMU data for documentation, simulation and validation 

 Co-simulation data for documentation, simulation and result management 

 Result validation data for post-processing, analysis, report FMU data  

Model Description  

Model description is an XML file which contains the static information of the FMU 

except the model equations. This file contains the model scalar variables and their 

attributes with such as name, unit, and default initial value etc. Model description 

XML structure is figured out in Figure 5 [3]. 
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Figure 5 – Model description XML file structure [3] 

2.3.3 FMI for Co-simulation 

As mentioned above, FMI for Co-simulation is a standard interface for the model 

output containing its solver inside. Therefore, the user does not need to know which 

integration method is actually applied to solve the ordinary differential equations 

within the model. 

For each of the FMU in a co-simulation environment, the communication capabilities 

are configured in a model specific XML file, namely ModelDescription.xml file. 

Communication with an FMU can only be done in a discrete communication point, 

which is a sampling point or a synchronization point of the FMU [4]. 
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2.3.4 Computational Flow 

As show in Figure 6, FMU co-simulation computational flow has three main states, 

namely Instantiation and Initialization, Running and Termination.  

R
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a
s
e

Instantiation & Initialization

fmiDoSet(...)

fmiGetXXX(...)
fmiSetXXX(...)

Termination Phase

 

Figure 6 – The computational flow of the FMU for Co-simulation [5] 

Instantiation and Initialization  

A new FMU instance is created and initiated to be ready to run. Memory allocations 

and initial value setting for the FMU parameters are done within this phase. 

  

Running  

In this phase, FMU model is executed via calling doStep() method. Intuitively, before 

running a step, FMU input parameters values are set by calling FMUSetXXX(…) and 

after the completion of this step the model output parameter values are consumed by 

the master via calling fmiGetXXX(…). 

 

Termination  

The model component is unloaded and the memory is cleaned in this phase. 



24 

2.4 FMI for Co-simulation Programming in C 

FMI for Co-simulation provides an interface for using FMU. This section briefly 

summarizes the calling of this interface. 

Some parts of the information, which will be presented in this section, are extracted 

from FMI SDK [18]. 

Instantiate a Model Instance 

FMU uses callback functions to utilize resources from the environment and to 

callback the function logs to the master application. 
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Listing 11 – Code snapshot for instantiating an FMU 

Initialize a Model Instance 

After instantiating the FMU, it needs to be initialized. In this section, the initial 

values of model are set inside the model. 
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Listing 12 – Code snapshot for initializing an FMU  

Stepping 

For every cycle, model can be stepped. By convention, before stepping the model, 

the input values of model is set and after step function is finished, the model output 

values are consumed by caller application. 

 

Listing 13 – Code snapshot for setting scalar variables values, getting values of the 

scalar variables and stepping FMU over time 
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Ending Simulation 

Whenever the simulation is completed, FMU is terminated and the allocated 

resources are freed into the memory. 

 

Listing 14 – Code snapshot for terminating simulation and cleaning the used memory  
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CHAPTER 3 

RELATED WORKS 

As model based development of engineering systems are getting more and more 

popular, connecting engineering models to the distributed simulation environments is 

also becoming an important issue of concern [6] [7]. There have been some attempts 

for developing such tools and methodologies. Closely related to our work, there exist 

four particular efforts providing a mechanism for connecting models to HLA 

environments. 

MatlabHLA-Toolbox [8] and HLA Blockset [9] are available toolboxes for offering 

HLA communication feature to the Matlab. With these toolboxes, modelers can 

create a federate, join a federation and start the publishing and subscribing entities 

and events. However, these solutions can only work on Matlab. 

In [10], the author introduces a concept to use HLA RTI as a FMI Co-simulation 

master. This concept defines how to use HLA RTI services as a master. These 

services are used as follows: 

 Object Management: Only one HLA object class is enough to represent all 

FMUs. Each FMU (or hosting application) creates an instance of that object 

class and publishes related attributes. Likewise, it subscribes related attributes 

of the object class. 

 Declaration Management: Hosting code can perform publishing and 

subscription generically, if some more directives are added into model-

description file. These directives should guide the code about the place and 

role of each variable in the federation. 

 Ownership Management: In normal cases, there is no need for ownership 

management; however, if more than one federate has the right to publish and 
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update a specific attribute, then there should be a separate module or FMU to 

overcome that scenario.  

 Time management: RTI time management services can be used to 

synchronize the FMUs. The FMU can run a step between two time advances. 

The effort does not provide a specific way to connect FMU to the HLA simulation 

environment. Our work, on the other hand, supplies a solution to connect FMU to the 

HLA environment with details. Moreover, the paper offers a special distributed 

simulation environment in which the FOM file is specialized for the FMUs. Our 

work; however, does not need a special simulation environment. Instead, it offers to 

connect any HLA distributed simulation environment with any FOM file. 

In [12], the author states a simulation environment to develop a missile where a 

hardware-in-the-loop (HIL) simulation system based on high Level Architecture 

(HLA) and Modelica  language are used. Although the concept is defined in paper, 

there is no detailed information about implementation of the simulation environment. 

Also, the work specifically focuses on developing a missile.  

In [13], the author declares the SPRINT project which is a corporation of six 

European companies. The goal of the project is to simplify collaborative systems 

engineering across tools and platforms and validate the systems including physical 

devices based on distributed real time simulation using HLA and FMI. Although 

author states the goal of the project, there is no evidence of the status of the project. 
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CHAPTER 4 

FUNCTIONAL MOCKUP UNIT FEDERATE DESIGN 

FMI for Co-simulation standard does not provide a specification for connecting 

FMUs to an HLA federation. There is no convenient way to convert FMU scalar 

variables to HLA object class attributes, since FMI Co-simulation only supports the 

following primitive types: real, integer, string, Boolean and Enumeration. On the 

other hand, HLA attributes can represent any data type structure, from basic data 

types to the complex data type structures. Since FMI Co-simulation scalar variables 

can only map to HLA basic data types, a simulation environment using complex data 

types cannot be directly supported by FMI Co-simulation. Moreover, FMI Co-

simulation does not have suitable interface to consume HLA services as listed in 

section 2.1.4. FMU, instead, only supports some form of functions with primitive 

event.  

Hence, there is a need for a wrapper connecting FMU that connects the FMI Co-

simulation to the HLA distributed simulation environment. The work conducted 

handles the problem by designing a Functional Mockup Unit Federate (FMUFd). 

FMUFd has the following responsibilities: 

 Instantiating, initializing, stepping and terminating a FMU model.  

 Providing the communication of distributed environment with services by 

using HLA standard interface. 

 Converting FMU model outputs to compatible HLA data types and sending 

them as HLA object updates. 

 Receiving model inputs from HLA objects and converting them to 

compatible FMU types.  
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Functional Mockup Unit

FMU
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FMI
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Library

FMI-HLA

MAP

Configuration

Functional Mockup Unit Federate

HLA

RTI

Other 

Federates

FOM

HLA 

Configuration SOM

Figure 7 – The conventional design of Functional Mockup Unit Federate 

The top level structure of FMUFd that satisfies these requirements is depicted in 

Figure 7. The FMUFd is composed of the FMU model, FMI-HLA Map 

configurations and HLA connection configuration. FMI-HLA Map Configuration is 

used to inform FMUFd about HLA FMI relation. For each FMU, using this structure 

an FMUFd is needed to be configured. HLA connection configuration is related with 

the federation and FOM information of distributed simulation environment. By using 

these data, FMUFd runs with stepwise activities. As shown in Figure 8, these 

activities can be grouped into four main phases, namely, initialization, object 

discovery, stepping and termination. 
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Figure 8 – FMUFd Activity Diagram  
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In initialization phase, FMUFd loads and initializes the FMU and then connects the 

HLA federation as a federate with related HLA services and declares interested 

object classes for publishing and subscribing.  

In object reflection phase, the subscribed object class instances are discovered and 

their values are reflected. 

The stepping phase is the main phase of the simulation. In this phase, FMU input 

variables are reflected from related HLA objects, FMU runs one time step, and then, 

FMU output values are reflected to the related HLA objects. 

In termination phase, FMUFd terminates and unloads FMU, resigns from 

federation, frees allocated memory and finally stops. 

The details of these steps with the process of connecting FMU to the HLA simulation 

environment will be described in the proceeding sections. Following that, the 

FMUFd capabilities in terms of the HLA services and FMUFd limitations will be 

mentioned briefly.  

4.1 Loading an FMU 

The loading of FMU takes two phases; in the first phase, the model description file is 

parsed, while the FMU is loaded and initialized in the second phase. FMU Model 

description file provides the static information of all exposed variables and model 

related data. FMUFd uses model description file to identify scalar variables with data 

types and value reference, Globally Unique Identifier (GUID) and the model name. 

The scalar variables are used in data flow between FMUFd and FMU model. GUID 

is used for validating concrete coded FMU with model description file. Model name 

is used to load shared object and FMI functions. The dynamic link library is designed 

to have the same name with model name and shared object FMI functions should 

also take the model name as a prefix to their functions [4].  

The FMU related operations are developed based on the FMU SDK [18]. By using 

these operations, FMUFd can load and use the FMU. The shared library, inside the 

FMU file should supply FMI Co-simulation interface implementations. FMUFd 
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loads those implementations automatically and then instantiates the model and gets 

the model instance. By then, FMU is ready to run steps over time.  

4.2 FMU as an HLA Federate 

This section describes how the FMUFd can join a federation execution as a member 

federate.  

4.2.1 Connect to the HLA Federation Execution 

HLA Federation is a named set of federate applications and a common Federation 

Object Model (FOM) that are used as a whole to achieve some specific objective. 

The Federation execution is, on the other hand, the actual operation, over time, of a 

set of joined federates that are interconnected by a RTI. 

The FOM file contains all data exchange related information of HLA Federation, 

including object classes and object class attributes. By parsing this file, the FMUFd 

identifies the structure of each object class with attributes and data types. 

The parsing process of a FOM takes two steps. First of all, the data types are parsed 

and stored in a map. For each type of the data, different parsing procedure is applied 

as each type has its special fields. For example, the size and endian information is set 

only for basic data types. Then, the object classes are parsed with their attributes and 

the data type of each attribute is retrieved from the map. If a class is derived, then its 

inherited attributes are obtained from its ancestors. 

After parsing the FOM file, FMUFd tries to connect the federation. The federation 

information is provided by the user through a configuration file. The FMUFd reads 

this file to get the federation name, path of FOM file and the name of its own 

federate. Then, FMUFd tries to create a federation if it has not been created yet. 

Finally, it joins the federation.  

After joining the federation, FMUFd declares RTI that object classes with which 

attributes will be published and/or subscribed. This information is provided by the 

user with a SOM file. The FMUFd reads the file and identifies the 

published/subscribed objects and informs the RTI. 
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4.2.2 Create Object Instances 

HLA Object instance is a unique instantiation of an object class that is independent 

of all other instances of that object class.  

There are two scenarios for creating the object instances. At the beginning of the 

simulation, after declaring the object classes, the FMUFd creates the object class 

instances for publishing the FMU output parameters. The initial values of this object 

can be assigned by user by using the configuration files. Then, whenever an object 

class is discovered (new object instance is subscribed), the FMUFd creates an 

instance of the discovered object class.  

Each object contains both object class metadata and attributes. Each attribute 

allocates the memory with the same size as its data type size. While calculating the 

size of a data type the padding rules are used as described in APPENDIX A - HLA 

DATA TYPE PADDING RULES. Although there are some existing rules, still it 

may not be straightforward to find the exact size of the data type. For example, fixed 

record data type can contain another fixed record data type and a dynamic array data 

type. In this case, it is not possible to find exact size of the data type without filling 

the exact data. Therefore, for every update, the size of the data type should be 

recalculated. This recalculation may cause a problem regarding the performance of 

an application. To address this issue, the FMUFd has been designed with two 

restrictions: 

 The array data type with dynamic cardinality is not supported by FMUFd, 

 The discriminant value of the variant record data type is explicitly defined in 

configuration file and cannot be changed in runtime.  

With these restrictions, the FMUFd calculates the size of each attribute at the 

beginning of the simulation and uses this size throughout the simulation. As the data 

can contain different data types in it, the calculation may be performed through 

recursion. The basic data type is the only type with a known size. Whenever the 

recursion reaches a basic data type, the padding rules are applied. The base case of 

the recursion could be the code segment given in Listing 15. The currentOffset value 
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is passed into recursion which holds the previously calculated offset. After recursion 

is finished, currentOffset will hold the size of the root data type. 

 

Listing 15 – The base condition code snapshot for calculating the padding bytes 

4.2.3 Update/Reflect Object Class Attributes 

Update/reflect object instance means invoking the Update/Reflect Attribute Values 

services of RTI for one or more instance attributes. By doing that, the attribute values 

can be updated from its owner federate and can be reflected by other federates. 

The attribute contains values inside its data type. A complex data type can contain 

both big endian and little endian data types in it, independent from application 

computer’s endian type. Therefore, before updating the object class attribute, the 

attribute values should be encoded to the right type of endian. Likewise, after 

reflecting the attribute, the value should be decoded to the computer endian type. The 

FMUFd always keeps the data with the same encoding of computer. By doing that, it 

becomes easier to use the data in an application. Whenever an attribute is needed to 

be updated, the attribute is encoded prior to the call of update operation. Likewise, 

whenever an attribute is reflected, the value of that attribute is decoded first and kept 

in decoded form in memory.  

The encode/decode operation is also executed with recursion. The basic data type is 

the only type with known endian type. Whenever the recursion reaches to the basic 

data type, the swapping operation is applied. The base case of the recursion could be 

the code segment given in Listing 16. The returnValue and rowData are the void* 

data type values, with the same size of attribute. If the recursion is used for updating 

the attribute operation than rowData refers to the current value of the attribute, 

otherwise, it refers to the reflected value of the attribute. The returnValue refers to 

the encoded (or decoded) value of the attribute. 
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Listing 16 – The base condition code snapshot for encoding/decoding the attribute 

values.  

4.3 Running the Federate 

After introducing how HLA data is de-marshaled, the next step is mapping FMU 

scalar variables to HLA basic data types. This mapping is performed through user 

configuration files. These files inform the FMUFd about which data from HLA will 

be set to FMU and which data from FMU will be published to HLA. 

After mapping between FMU scalar variables and the HLA attributes, the stepping 

function can be executed.  

Before running a step of FMU, the FMUFd updates each input variable of the model. 

The input values are obtained from an instance of related object class. If there is no 

instance for related object class then the FMUFd will wait for the creation of an 

instance of that related object. 
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After running a step of FMU, the FMUFd updates related attributes of the HLA 

objects by retrieving the values from related FMU scalar variables. Therefore, FMU 

output values can be mapped to different HLA objects, which are controlled by the 

FMUFd. After value updates are finished, the FMUFd will request the RTI to publish 

those attributes. 

4.4 Implementation Details 

The FMUFd is implemented as an application. This application can be run either as a 

terminal application or a desktop application. 

The implementation details of the application are explained in the following sections. 

4.4.1 The Layers of Application 

Inspired from ―Layered Simulation Architecture‖ paper [19], the application is 

constructed with three base layers as shown in Figure 9.  

Functional Mockup Federate

Presentation 

Layer

Simulation 

Layer

Communication 

Layer

«uses»«uses»

 

Figure 9 – The top level structure of FMUFd 

4.4.1.1 Presentation Layer 

The presentation layer is the user interface of the application. This layer provides 

presentation of application, input and interaction with the user as shown Figure 10. 

The plot in the figure shows the change of some parameters of the missile and target 

over time.  By using this layer, a user can load the necessary configurations to 

FMUFd and observe scalar variables’ value changes in real time. 
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Figure 10 – The user interface of the FMUFd 

4.4.1.2 Simulation Layer 

The simulation layer processes the application. It includes the computation of FMI 

simulation and federate specific HLA object classes. Its purpose is to run FMU and 

generate the federate behavior.  

Simulation layer is responsible for running the simulation. This layer initializes the 

FMU, supplies necessary inputs for FMU from HLA class instances, runs the model 

and publishes the model outputs over HLA distributed environment.  

One of the key features of the simulation layer is to create HLA object class structure 

dynamically. That is, without having the real structure, simulation layer can create a 

void data with the same size of the structure by using FOM XML file. Then 

simulation layer can edit this void data parts with the same position of any object 

class attribute fields. 
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As shown in Figure 11, simulation layer is mainly composed of two packages: 

Simulation Manager and FMIWrapper. 

Simulation Manager FMIWrapper«uses»

FMI Model 

Description Parser

«uses» «uses»

HLA FOM

Parser

 

Figure 11 – Simulation layer class diagram 

Simulation Manager Layer is the core simulation layer. This layer is responsible for 

controlling the simulation flow. This layer also loads the FMIWrapper layer and uses 

this layer to reach FMU. In addition, this layer is responsible for loading and using 

communication layer to communicate with HLA federation. Finally, this layer 

provides the feedback of the FMI scalar variable values over time to the presentation 

layer. 

FMIWrapper layer is responsible for loading the FMU model instance and supplying 

the necessary interface functions to run FMU. FMUWrapper supplies necessary 

header files (namely, fmifunctions.h and fmiPlatformTypes.h) to provide the 

necessary platform information to the FMU. Also, FMIWrapper provides FMUs with 

the necessary memory allocation and de-allocation functions. 

4.4.1.3 Communication Layer 

The communication layer deals with the RTI communication in order to access the 

object classes and interactions exchanged in the federation execution. RTI is the 
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middleware that manages the federation execution and object exchange through a 

federation execution. In addition to data exchange, communication layer also 

supports time management service. 

The basic structure of communication layer is represented in Figure 12. The 

MAKHLACommunicator class is responsible for connecting the federation and 

publishing the HLA object classes. The MAKHLAFederateAmbassador class is 

responsible for discovering the class instances and receiving the updates. The 

HLAClassContainer is the container of object classes for both classes. 

 

Figure 12 – Communication layer class diagram 

4.4.2 Application Sequence Diagrams 

Basically, there are two main phases of application: Initialization Phase and 

Simulation Phase. The initialization phase can be defined as a couple of operations 

run prior to the start of simulation. In the simulation phase, on the other hand, the 

application is run. 
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4.4.2.1 Initialization Sequence Diagram 

As shown in Figure 13, simulation manager manages the application to the main 

simulation. First, simulation manager reads and interprets the configuration files. 

Second, helping with FMIWrapper package, it loads FMU and instantiates that 

model. Last, helping with HLACommunicator package, it connects a federation as a 

federate. 

 

Figure 13 – Simulation initialization sequence diagram 

4.4.2.2 Simulation Running Sequence Diagram 

As represented in Figure 14, there is a loop for each step of simulation. In this loop, 

first, simulation manager feeds the FMU model inputs from related HLA object class 

attribute fields. Then, FMU runs for one step. After then, simulation manager, feeds 

related HLA object class attribute fields from FMU outputs and publishes those 
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changes over federation. Lastly, application requests the RTI to update simulation 

time and waits until request is fulfilled. 

 

Figure 14 – Simulation running sequence diagram 
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4.5 FMUFd Capabilities 

Here in this section, FMUFd capabilities are expressed in terms of HLA interface 

services. Data distribution management and ownership management are not used in 

our current implementation. 

Federation Management 

If the federation has not been created before, the FMUFd creates the federation. Then 

it joins the federation. Similarly, after simulation is finished, the FMUFd resigns 

from the federation and if there is no other federate connected to the federation, it 

destroys the federation. 

Declaration Management 

FMUFd informs the RTI about publishing/subscribing object classes with attributes. 

Object Management 

Whenever new object class instance is discovered, FMUFd keeps the handle for this 

instance and allocates memory for it. Whenever a reflectAttributeValues event is 

raised by RTI, the FMUFd checks whether the object instance is discovered before. 

If it is discovered, FMUFd reflects the attribute values to the allocated memory of the 

object instance, and ignores otherwise. Whenever a removeObjectInstance event is 

raised by RTI, the FMUFd checks whether the object instance is discovered before. 

If it is discovered, FMUFd deletes the handle of instance and frees the related 

allocated memory. 

FMUFd reflects the attribute values to the allocated memory of the object instance, 

and ignores otherwise.   

Time Management 

FMUFd works as a time regulating and time constraining federate. As the nature of 

the time constraint, FMUFd ensures that the subscribed object model instance 

received reflection no less than the currentRTITime. Also, after each running step of 

the model, FMUFd requests to update the federate time.  
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4.6 Limitations 

There are some limitations about FMUFd as listed below: 

 FMUFd does not support array data type with dynamic cardinality.  If 

FMUFd would support this feature, it should have checked the size of 

attribute dynamically on every update. This would create some performance 

issues. Instead, FMUFd statically specifies the size of the attribute at the 

beginning of the simulation 

 Interactions are not supported by FMUFd. 

 As FMI standard does not support the float type, if there is a mapping 

between FMU double and HLA float data type, and then there could be loss 

of precision. 

 As FMI standard does not support the short type, if there is a mapping 

between FMU integer and HLA short data type, then there could be loss of 

precision. 
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CHAPTER 5 

DEMONSTRATION WITH AN EXAMPLE FEDERATION 

To demonstrate the FMUFd usage, a simple distributed simulation environment is 

developed with MAK HLA RTI [15] implementation. For this application, the 

RPR2-D17 FOM file developed by SISO [20] is used as a FOM file.  

5.1 Simulation Setup 

There are three nodes connected over an Ethernet network in this distributed 

simulation environment as shown in Figure 15. In the missile node, the missile co-

simulation FMU (called MissileFMUFd) is connected to the distributed simulation 

environment as the HLA federate by using FMUFd. Similar to missile PC, the 

aircraft co-simulation FMU is also connected to the simulation environment as a 

federate by using FMUFd (called AircraftFMUFd) in the target aircraft PC. The 

synthetic environment node is used to provide other entities in this operational 

setting, such as the missile launch platform, and to visualize the simulation in 2D and 

3D. To this end, Presagis STAGE is used [21].  
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Figure 15 – The Deployment View Diagram of Simulation Environment 

The MissileFMUFd application which will represent the missile FMU in the 

simulation will be run in Missile Node.  To do that it needs a configuration directory 

as mentioned in APPENDIX B. The content of this directory is given in APPENDIX 

C. 

The AircraftFMUFd application which will represent the target FMU model in the 

simulation will be run in Target Aircraft Node. To do that FMUFd needs a 

configuration file as mentioned in APPENDIX B. The content of this directory is 

given in APPENDIX D. 

. 
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In synthetic environment node, federate is supplied by a third party tool named as 

STAGE [21]. This tool has a property of connecting HLA environment and showing 

the object models in 2D and 3D perspectives. We will use this tool to visualize the 

simulation environment. Also, this tool will publish a cultural feature object class to 

represent a launch platform model. Launcher itself does not affect the simulation; it 

will be only used for supplying the some of the input requirements of missile model. 

5.2 Simulation Run & Result 

The FMUFd federates running activities are exactly the same as shown in Figure 8. 

Because of the nature of the distributed simulation, each federate can start working in 

different times. After all the federates are crated, the missile runs towards the aircraft 

and finally it shuts the aircraft. 

1500 simulation steps have been executed on this demonstration and there are two 

measurements calculated from this demonstration. The median time for updating 

FMU parameters from HLA objects for MissileFMUFd is 254 microseconds. 

Likewise, the median time for updating HLA attributes from FMU parameters for 

MissileFMUFd is 356 microseconds. Measurements were taken on a computer with 

Intel Xeon 2.66GHz processor, 4GB DDR3 RAM and Windows 7 Pro 64 bit 

operating system. 

The median time for updating FMU parameters from HLA objects is the consumed 

time in retrieving data from HLA object instances and passing these data to FMU 

input parameters. The median time for updating HLA attributes from FMU 

parameters, on the other hand, is the consumed time in retrieving output parameters 

data from FMU and passing these data to related HLA object instances.  
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CHAPTER 6 

CONCLUSION 

This thesis work represents a study to develop an environment for adapting FMUs 

which implement FMI Co-simulation interface to distributed simulation 

environment, specifically HLA environment. In order to achieve the goal, FMUs are 

wrapped as HLA federate with a particular mapping approach. The mapped FMUs 

are called as Functional Mockup Unit Federate (FMUFd). The wrapping approach to 

generate these FMUFds can be used for FMUs which implement FMI for Co-

simulation version 1. Similarly, FMUFds can join to any HLA federation which 

supports IEEE Std 1516 standard. 

In order to see the FMU wrapping approach in action, a simple distributed simulation 

environment is developed. In demonstration, two FMUFds are generated using the 

wrapping approach, namely MissileFMUFd and AircraftFMUFd, from two FMUs 

which implement FMI for Co-Simulation version 1. These generated FMUFds are 

connected to the distributed simulation environment as the HLA, specifically MAK 

HLA RTI [15].  

With the FMUFd, a system model can be simulated as a part of an aggregate 

simulation of its operational setting. Therefore, the model can be tested, analyzed and 

evaluated from the beginning of development phases to final product. Moreover, this 

promotes a high level of reusability of system models supporting FMI. For example, 

missile model software can be run on the missile and, at the same time, this software 

can be used in a training simulator without any modification needed. 

6.1 Prospects for Future Research 

Although Functional Mockup Interface is a new standard in modeling technology, it 

appears to gather an increasing popularity and usage in many different fields all 

around the world. Distributed simulation environments are one of these areas of 
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usage. At this point, joining FMUs to HLA, which is a distributed simulation 

environment, is required. The work mentioned in this thesis shows that FMUs which 

implements FMI for Co-simulation can be manipulated to be able to join HLA 

environment. The developed approach supports MAK RTI vendor HLAs. 

Considering the expanding generality of the environments, wrapping approaches, 

which provides ability for FMUs to join other RTI vendors, should be developed.  

On the other hand, considering the problem of joining FMUs to distributed 

simulation environments on its own, mapping FMUs to join other different 

distributed simulation environments such as Distributed Interactive Simulation (DIS) 

and Data Distribution Service (DDS) can be an attractive field of study.  

In the work conducted, FMUFd appears as a layer between HLA environment and 

FMU. As an alternative to this approach, instead of layering the wrapping FMUs to 

join distributed simulation environment process, this layer can also be compacted in 

FMU itself. This approach comes up with generating FMUs with a specified system. 

At this point, prior to joining FMUs to HLA environment, a special framework used 

for FMU generation can be developed in order to ease and customize the process of 

FMU generation. 
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APPENDIX A 

HLA DATA TYPE PADDING RULES 

HLA requires that certain types of data start at a particular location. Therefore, 

usually there is a requirement for extra bytes, namely padding bytes, between data 

fields in a structure. To illustrate, consider a structure where the first field is a byte 

and second field is a double. Double must start at a position which is a multiple of 8. 

Therefore, seven bytes of padding is needed between byte field and double field for a 

proper structure.  

The padding rules are used to determine exact positions of the fields of a data type, 

which constructs the data structure of an attribute. These rules for constructed data 

types (arrays, fixed records, and variant records) as described below [2]: 

Base Datatype 

Each base type has a boundary value as provided in Table 1. During the calculation 

of padding, this table is used to calculate structured boundary value. 

 

Table 1 – Basic Datatype Boundary Values  

Basic representation Octet Boundary Value 

HLAoctet 1 

HLAoctetPairBE 2 

HLAinteger16BE 2 

HLAinteger32BE 4 

HLAinteger64BE 8 

HLAfloat32BE 4 

HLAfloat64BE 8 

HLAoctetPairLE 2 
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HLAinteger16LE 2 

HLAinteger32LE 4 

HLAinteger64LE 8 

HLAfloat32LE 4 

HLAfloat64LE 8 

 

Simple Datatype 

Same base data type padding rules also apply for simple datatype. 

Enumerated Datatype 

Same base data type padding rules also apply for enumerated datatype.  

Fixed Record Datatype 

The padding bytes are added to each field when necessary to ensure that the next 

field in the record is properly aligned. After a field, the padding bytes can be 

calculated by using the following formula:  

(                   )             

where         refers to the offset of the i'th field of the record as bytes,        refers 

to the size of the i'th field of the record as bytes and       is the octet boundary value 

of field (i + 1)th of the record. 

Variant Record Datatype 

The HLAvariantRecord encoding shall consist of the discriminant followed by a 

field. This field is chosen by using the value of discriminant. The discriminant is 

placed at offset 0 of the record. The padding bytes   are calculated by using the 

following formula: 

(        )         

where      refers to the size of the discriminant as bytes, and   refers to the 

maximum of the octet boundary values of the alternatives. 
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HLA Array Datatype with Fixed Cardinality 

The padding bytes    between i’th and (i+1)th elements can be calculated by using 

following formula: 

(          )          

where       is the size of the i’th element of the array in bytes, 

  is the octet boundary value of the element type. 

HLA Array Datatype with Variant Cardinality 

The first 4 bytes are used to present the number of the elements in the array. These 4 

bytes are encoded as HLAinteger32BE. The padding bytes can be added between the 

inform element and the first element of the sequence. The padding bytes can be 

found by using following formula: 

(     )         

where   is the octet boundary value of the element type. 
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APPENDIX B 

FMUFD CONFIGURATION DIRECTORY STRUCTURE 

Base Directory

MapFMIInputHLAObject.txtMapFMIOutputHLAObject.txtfederationInformation SOM

Object1 Object2 Object2Initial Object3InitialObject3

 

Figure 16 –   The FMUFd Configuration Directory Structure 

The FMUFd uses a configuration directory structure to map between FMU and 

Federation. The directory structure is given at Figure 16.  The detail of the 

configuration structure is explained in following: 

Base Directory 

Base directory is the root of the configuration structure and its name can be anything. 

It should contain at least 3 files and one folder named as SOM. 

FederationInformation 

This file is used for informing FMUFd about federation information in which 

FMUFd will be connected to. The file should contain following information: 
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federationName = The Name of the fedation 

federationFile = The path for the FOM XML file 

federateName = The name of the FMUFd in federation 

 

MapFMIInputHLAObject 

This file is used for informing FMUFd to map between FMU input variables and 

HLA Object class’s attribute’s data type’s sub data types’ until it reaches the basic 

data type. The file structure should be given below: 

ScalarVariable1 = ObjectClass|Attribute|DataType:DataType 

:VariantRecordDataType[discriminant Name]:DataType… 

ScalarVariable2 = ObjectClass|Attribute|DataType:DataType:DataType… 

 

The left side of the equation represents the FMU object class name and right side of 

the equation represents the HLA object class’s attribute’s data type. The object class, 

attribute and data type are spitted with ―|‖ character. A scalar variable can be mapped 

with only basic data type. If the datatype is complex then by using ―:‖ character, its 

sub data types should be written until reaching the basic data type. If any of the data 

type represents the variant record data type, then the name of discriminant should be 

written between the square brackets. 

Example usage of this file is given below: 

Target_Ecef_X =

 Aircraft|Spatial|SpatialStruct:DeadReckoningAlgorithm-A-

Alternatives:SpatialStructDeadReckoningAlgorithm[DRM_FPW]:SpatialFPS

truct 

:WorldLocation:WorldLocationStruct:X:HLAfloat64BEmetersperfectalways 

:HLAfloat64BE 

MapFMIOutputHLAObject 

This file is used to inform FMUFd to map between FMU output variables and HLA 

Object class attribute’s data type’s sub data types until it reaches the basic data type. 

The file structure is given below: 
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ScalarVariable1 = ObjectClass|Attribute|DataType:DataType 

:VariantRecordDataType[discriminant Name]:DataType… 

ScalarVariable2 = ObjectClass|Attribute|DataType:DataType:DataType… 

 

The left side of the equation represents the FMU object class name and right side of 

the equation represents the HLA object class’ attribute’s data type. The object class, 

attribute and data type are split with ―|‖ character. A scalar variable can be mapped 

with only basic data type. If the datatype is a complex data type then by using ―:‖ 

character, its sub data types should be written until reaching the basic data type. If 

any of the data type represents the variant record data type, then the name of 

discriminant should be written between the square brackets. 

Example usage of this file is given below: 

x = Aircraft|Spatial|SpatialStruct:DeadReckoningAlgorithm-A-

Alternatives 

:SpatialStruct-DeadReckoningAlgorithm[DRM_FPW] 

:SpatialFPStruct:WorldLocation 

:WorldLocationStruct:X:HLAfloat64BEmetersperfectalways:HLAfloat64BE 

SOM 

The directory named as SOM contains all the object class information as different 

files that will be used by FMUFd. By using these files, FMUFd learns which object 

class and its which attributes will be subscribed or published. 

The SOM directory contains 2 types of files.  

One type of the files represents object class. For every object class there should be a 

file with the same name with object class. This file’s first line should contain the full 

path of the object class as object class can have same base classes. After that line, the 

below lines of @Publish or @Subscribe has tags will represent the published or 

subscribed attributes of that object class. Those attributes can be written in that class 

or its base classes. The file structure is given below: 

The full path of the object class 
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@Publish 

Attribute1 

Attribute2 

Attribute4 

… 

@Subscribe 

Attribute2 

Attribute3 

Attribute5 

… 

For example, let’s think about the Aircraft object class on RPR2-D17 FOM file 

developed by SISO [17]. The file name should be Aircraft and file content can be as 

follows: 

HLAobjectRoot.BaseEntity.PhysicalEntity.Platform.Aircraft 

@Publish 

EntityType 

EntityIdentifier 

Spatial 

DamageState 

FirePowerDisabled 

FlamesPresent 

ForceIdentifier 

Marking 

SmokePlumePresent 

@Subscribe 

EntityType 

EntityIdentifier 

Spatial 

DamageState 

FirePowerDisabled 

FlamesPresent 
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ForceIdentifier 

Marking 

SmokePlumePresent 

The SOM has another type of file which is named as object class name with ―Initial‖ 

postfix. These files are optional and used for initializing the object class instance 

values. The structure of file is as follows: 

ObjectClass|Attribute|DataType:DataType:VariantRecordDataType[discrimi

nant Name]:DataType… = value1, value2, value3… 

The datatype path doesn’t need to go until base datatype. Instead, values can be 

given with order of data type fields. For example, Aircraft object class (represented 

RPR2-D17 FOM file [17]) initial values file should be named as AircraftInitial and 

its contant can be as follows: 

EntityType|EntityTypeStruct:EntityKind = 1 

EntityType|EntityTypeStruct:Domain = 2 

EntityType|EntityTypeStruct:CountryCode = 225 

EntityType|EntityTypeStruct:Category = 1 

EntityType|EntityTypeStruct:Subcategory = 3 

EntityType|EntityTypeStruct:Specific = 3 

EntityType|EntityTypeStruct:Extra = 0 

EntityIdentifier|EntityIdentifierStruct:FederateIdentifier:FederateIdentifierSt

ruct 

:SiteID = 55 

EntityIdentifier|EntityIdentifierStruct:FederateIdentifier:FederateIdentifierSt

ruct 

:ApplicationID = 65 

EntityIdentifier|EntityIdentifierStruct:EntityNumber = 1 

Spatial|SpatialStruct:DeadReckoningAlgorithm-A-Alternatives 

:SpatialStruct-DeadReckoningAlgorithm[DRM_FPW] 

:SpatialFPStruct:WorldLocation:WorldLocationStruct = 6379160, -111423, 

3205.25 

Spatial|SpatialStruct:DeadReckoningAlgorithm-A-Alternatives 
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:SpatialStruct-

DeadReckoningAlgorithm[DRM_FPW]:SpatialFPStruct:IsFrozen = 0 

Spatial|SpatialStruct:DeadReckoningAlgorithm-A-Alternatives 

:SpatialStruct-

DeadReckoningAlgorithm[DRM_FPW]:SpatialFPStruct:Orientation 

:OrientationStruct = -1.0198171139, 0.0000000347, 2.2236523628 

DamageState|DamageStatusEnum32 = 1 

FirePowerDisabled|OMT13boolean = 0 

FlamesPresent|OMT13boolean = 0 

ForceIdentifier|ForceIdentifierEnum8 = 1 

Marking|MarkingStruct = 1,'F','-','1','6' 

SmokePlumePresent|OMT13boolean = 0 
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APPENDIX C 

MISSILEFMUFD CONFIGURATION DIRECTORY 

MUNITION

MapFMIInputHLAObject.txtMapFMIOutputHLAObject.txtfederationInformation SOM

Aircraft MunitionInitialCulturalFeature Munition

 

Figure 17 – MissileFMUFd Configuration Directory Structure 

FMUFd which will use the directory structure shown in Figure 17 to represent the 

monition of FMU model in distributed simulation environment. The content of this 

configuration structure is given below: 

FederationInformation 

federationName = Battlefield 

federationFile = ../resource/MissileProject/RPR2-D17.xml 

federateName = MunitionFederate 

 

MapFMIInputHLAObject 

Target_Ecef_X = Aircraft|Spatial|SpatialStruct 
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:DeadReckoningAlgorithm-A-Alternatives:SpatialStruct-

DeadReckoningAlgorithm[DRM_FPW]:SpatialFPStruct:WorldLocation 

:WorldLocationStruct:X:HLAfloat64BEmetersperfectalways:HLAfloat64BE 

Target_Ecef_Y = Aircraft|Spatial|SpatialStruct 

:DeadReckoningAlgorithm-A-Alternatives:SpatialStruct-

DeadReckoningAlgorithm[DRM_FPW]:SpatialFPStruct:WorldLocation 

:WorldLocationStruct:Y:HLAfloat64BEmetersperfectalways:HLAfloat64BE 

Target_Ecef_Z = Aircraft|Spatial|SpatialStruct 

:DeadReckoningAlgorithm-A-Alternatives:SpatialStruct-

DeadReckoningAlgorithm[DRM_FPW]:SpatialFPStruct:WorldLocation 

:WorldLocationStruct:Z:HLAfloat64BEmetersperfectalways:HLAfloat64BE 

Launcher_Ecef_X = CulturalFeature|Spatial|SpatialStruct 

:DeadReckoningAlgorithm-A-Alternatives:SpatialStruct-

DeadReckoningAlgorithm[DRM_FPW]:SpatialFPStruct:WorldLocation 

:WorldLocationStruct:X:HLAfloat64BEmetersperfectalways:HLAfloat64BE 

Launcher_Ecef_Y = CulturalFeature|Spatial|SpatialStruct 

:DeadReckoningAlgorithm-A-Alternatives 

:SpatialStruct-

DeadReckoningAlgorithm[DRM_FPW]:SpatialFPStruct:WorldLocation 

:WorldLocationStruct:Y:HLAfloat64BEmetersperfectalways:HLAfloat64BE 

Launcher_Ecef_Z = CulturalFeature|Spatial|SpatialStruct 

:DeadReckoningAlgorithm-A-Alternatives:SpatialStruct-

DeadReckoningAlgorithm[DRM_FPW]:SpatialFPStruct:WorldLocation 

:WorldLocationStruct:Z:HLAfloat64BEmetersperfectalways:HLAfloat64BE 

MapFMIOutputHLAObject 

Missile_Ecef_X = Munition|Spatial|SpatialStruct 

:DeadReckoningAlgorithm-A-Alternatives 

:SpatialStruct-DeadReckoningAlgorithm[DRM_FPW]:SpatialFPStruct 

:WorldLocation:WorldLocationStruct:X:HLAfloat64BEmetersperfectalways 

:HLAfloat64BE 

Missile_Ecef_Y = Munition|Spatial|SpatialStruct 
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:DeadReckoningAlgorithm-A-Alternatives 

:SpatialStruct-DeadReckoningAlgorithm[DRM_FPW]:SpatialFPStruct 

:WorldLocation:WorldLocationStruct:Y:HLAfloat64BEmetersperfectalways 

:HLAfloat64BE 

Missile_Ecef_Z = Munition|Spatial|SpatialStruct 

:DeadReckoningAlgorithm-A-Alternatives:SpatialStruct-

DeadReckoningAlgorithm[DRM_FPW]:SpatialFPStruct 

:WorldLocation:WorldLocationStruct:Z:HLAfloat64BEmetersperfectalways 

:HLAfloat64BE 

SOM 

Aircraft: 

HLAobjectRoot.BaseEntity.PhysicalEntity.Platform.Aircraft 

@Subscribe 

EntityType 

EntityIdentifier 

Spatial 

DamageState 

FirePowerDisabled 

FlamesPresent 

ForceIdentifier 

Marking 

SmokePlumePresent 

 

CulturalFeature: 

HLAobjectRoot.BaseEntity.PhysicalEntity.CulturalFeature 

@Subscribe 

EntityType 

EntityIdentifier 

Spatial 

Munition: 
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HLAobjectRoot.BaseEntity.PhysicalEntity.Munition 

@Publish 

EntityType 

EntityIdentifier 

Spatial 

DamageState 

FirePowerDisabled 

FlamesPresent 

ForceIdentifier 

Immobilized 

Marking 

SmokePlumePresent 

Munition: 

EntityType|EntityTypeStruct = 2, 1, 225, 1, 1, 13, 186 

EntityIdentifier|EntityIdentifierStruct = 55, 65, 2 

Spatial|SpatialStruct:DeadReckoningAlgorithm-A-Alternatives 

:SpatialStruct-DeadReckoningAlgorithm[DRM_FPW]:SpatialFPStruct 

:WorldLocation:WorldLocationStruct = 6379160, -111423, 3205.25 

Spatial|SpatialStruct:DeadReckoningAlgorithm-A-Alternatives 

:SpatialStruct-

DeadReckoningAlgorithm[DRM_FPW]:SpatialFPStruct:IsFrozen = 0 

Spatial|SpatialStruct:DeadReckoningAlgorithm-A-Alternatives 

:SpatialStruct-DeadReckoningAlgorithm[DRM_FPW]:SpatialFPStruct 

:Orientation:OrientationStruct = -1.0198171139, 0.0000000347, 

2.2236523628 

DamageState|DamageStatusEnum32 = 1 

FirePowerDisabled|OMT13boolean = 0 

FlamesPresent|OMT13boolean = 0 

ForceIdentifier|ForceIdentifierEnum8 = 1 

Immobilized|OMT13boolean = 0 

Marking|MarkingStruct = 1,'f','u','z','e' 
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SmokePlumePresent|OMT13boolean = 0 
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APPENDIX D 

TARGETFMUFD CONFIGURATION DIRECTORY 

TargetFMUFd represents a target aircraft model which is simply flying with constant 

velocity and direction. 

AIRCRAFT

MapFMIInputHLAObject.txtMapFMIOutputHLAObject.txtfederationInformation SOM

CulturalFeature AircraftInitialAircraft

 

Figure 18 – AircraftFMUFd Configuration Directory Structure 

AircraftFMUFd will use the directory structure shown in Figure 18 to represent 

aircraft FMU model in distributed simulation environment. The content of this 

configuration structure is given below: 

FederationInformation 

federationName = Battlefield 

federationFile = ../resource/MissileProject/RPR2-D17.xml 

federateName = TargetFederate 

MapFMIInputHLAObject 

Empty file 
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MapFMIOutputHLAObject 

Ecef_X = Aircraft|Spatial|SpatialStruct 

:DeadReckoningAlgorithm-A-Alternatives:SpatialStruct-

DeadReckoningAlgorithm[DRM_FPW]:SpatialFPStruct 

:WorldLocation:WorldLocationStruct:X:HLAfloat64BEmetersperfectalways 

:HLAfloat64BE 

Ecef_Y = Aircraft|Spatial|SpatialStruct 

:DeadReckoningAlgorithm-A-Alternatives:SpatialStruct-

DeadReckoningAlgorithm[DRM_FPW]:SpatialFPStruc 

t:WorldLocation:WorldLocationStruct:Y:HLAfloat64BEmetersperfectalways 

:HLAfloat64BE 

Ecef_Z = Aircraft|Spatial|SpatialStruct 

:DeadReckoningAlgorithm-A-Alternatives:SpatialStruct-

DeadReckoningAlgorithm[DRM_FPW]:SpatialFPStruct 

:WorldLocation:WorldLocationStruct:Z:HLAfloat64BEmetersperfectalways 

:HLAfloat64BE 

SOM 

Aircraft: 

HLAobjectRoot.BaseEntity.PhysicalEntity.Platform.Aircraft 

@Publish 

EntityType 

EntityIdentifier 

Spatial 

DamageState 

FirePowerDisabled 

FlamesPresent 

ForceIdentifier 

Marking 

SmokePlumePresent 

@Subscribe 
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EntityType 

EntityIdentifier 

Spatial 

DamageState 

FirePowerDisabled 

FlamesPresent 

ForceIdentifier 

Marking 

SmokePlumePresent 

AircraftInitial: 

EntityType|EntityTypeStruct:EntityKind = 1 

EntityType|EntityTypeStruct:Domain = 2 

EntityType|EntityTypeStruct:CountryCode = 225 

EntityType|EntityTypeStruct:Category = 1 

EntityType|EntityTypeStruct:Subcategory = 3 

EntityType|EntityTypeStruct:Specific = 3 

EntityType|EntityTypeStruct:Extra = 0 

EntityIdentifier|EntityIdentifierStruct:FederateIdentifier:FederateIdentifierSt

ruct:SiteID = 55 

EntityIdentifier|EntityIdentifierStruct:FederateIdentifier:FederateIdentifierSt

ruct:ApplicationID = 65 

EntityIdentifier|EntityIdentifierStruct:EntityNumber = 1 

Spatial|SpatialStruct:DeadReckoningAlgorithm-A-Alternatives:SpatialStruct-

DeadReckoningAlgorithm[DRM_FPW]:SpatialFPStruct:WorldLocation:Wor

ldLocationStruct = 6379160, -111423, 3205.25 

Spatial|SpatialStruct:DeadReckoningAlgorithm-A-Alternatives:SpatialStruct-

DeadReckoningAlgorithm[DRM_FPW]:SpatialFPStruct:IsFrozen = 0 

Spatial|SpatialStruct:DeadReckoningAlgorithm-A-Alternatives:SpatialStruct-

DeadReckoningAlgorithm[DRM_FPW]:SpatialFPStruct:Orientation:Orienta

tionStruct = -1.0198171139, 0.0000000347, 2.2236523628 

DamageState|DamageStatusEnum32 = 1 
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FirePowerDisabled|OMT13boolean = 0 

FlamesPresent|OMT13boolean = 0 

ForceIdentifier|ForceIdentifierEnum8 = 1 

Marking|MarkingStruct = 1,'t','a','r','g','e', 't' 

SmokePlumePresent|OMT13boolean = 0 


