

FUNCTIONAL MOCKUP UNIT ADAPTATION FOR HLA-COMPLIANT

DISTRIBUTED SIMULATION

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

FARUK YILMAZ

IN PARTIAL FULFILLMENT OF REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

JANUARY 2014

Approval of the thesis:

FUNCTIONAL MOCKUP UNIT ADAPTATION FOR HLA-

COMPLIANT DISTRIBUTED SIMULATION

submitted by FARUK YILMAZ in partial fulfillment of the requirements for the degree of

Master of Science in Computer Engineering Department, Middle East Technical
University by,

Prof. Dr. Canan Özgen

Dean, Graduate School of Natural and Applied Sciences _______________

Prof. Dr. Adnan Yazıcı

Head of Department, Computer Engineering _______________

Assoc. Prof. Dr. Halit Oğuztüzün

Supervisor, Computer Engineering Dept., METU _______________

Dr. Umut Durak

Co-supervisor, Game Technologies, METU _______________

Examining Committee Members:

Prof. Dr. Veysi İşler

Computer Engineering Dept., METU _____________________

Assoc. Prof. Dr. Halit Oğuztüzün

Computer Engineering Dept., METU _____________________

Assist. Prof. Dr. Selim Temizer

Computer Engineering Dept., METU _____________________

Dr. Attila Özgit

Computer Engineering Dept., METU _____________________

Assoc. Prof. Dr. Ece Güran Schmidt

Electrical and Electronics Engineering Dept., METU _____________________

 Date: 17.01.2014

iv

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

 Name, Last name: Faruk Yılmaz

Signature :

v

ABSTRACT

FUNCTIONAL MOCKUP UNIT ADAPTATION FOR HLA-COMPLIANT

DISTRIBUTED SIMULATION

Yılmaz, Faruk

M. Sc., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Halit Oğuztüzün

Co-Advisor: Dr. Umut Durak

January 2014, 76 Pages

Conceptual design of systems require aggregate level simulations of the designed

system in its operational setting. Thus, performance of the system and its interactions

with the other entities in its environment can be evaluated. The complex and

heterogeneous nature of these simulations often requires distributed execution. IEEE

1516 High Level Architecture (HLA) is a widely accepted standard architecture for

distributed aggregate level simulations. Functional Mock-up Interface (FMI) is a

recent standardization effort that leads to a tool independent systems simulation

interface enabling model reuse and co-simulation. This thesis aims to present a

method for adapting FMI-compliant units to HLA. The presented method enables a

Functional Mock-up Unit to join an HLA-compliant federation as a member.

Keywords: Functional Mockup Interface; High Level Architecture; Distributed

Simulation

vi

ÖZ

HLA UYUMLU DAĞITIK SİMÜLASYON ORTAMI İÇİN İŞLEVSEL

MODEL ARAYÜZÜNÜN UYARLANMASI

Yılmaz, Faruk

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Halit Oğuztüzün

Ortak Tez Yöneticisi: Dr. Umut Durak

Ocak 2014, 76 Sayfa

Sistemlerin kavramsal tasarımı işlevsel ortamda tasarlanan sistemin birleştirilmiş

düzey benzetimlerini gerektirir. Bu şekilde, sistemlerin performansları ve çevresi ile

olan etkileşimleri değerlendirilebilir. Karmaşık doğası gereği bu benzetimler

genellikle dağıtık simülasyon ortamlarına ihtiyaç duyar. IEEE 1516 Yüksek Seviye

Mimari (HLA) dağıtık simülasyonlar için geliştirilmiş ve geniş ölçüde kabul edilmiş

standart mimaridir. İşlevsel Model Arayüzü (FMI) yakın zamanda geliştirilmiş

model yeniden kullanılabilirliği ve araç bağımsız sistem simülasyon ara yüzü sunan

bir standart çabadır. Bu tez FMI kullanan HLA uyumlu bir federasyon geliştirme

yöntemini sunmayı hedeflemektedir. Bu yöntem bir İşlevsel Model Birimi

(FMU)’nin HLA uyumlu bir federasyon ortamına bir üye olarak katılmasına imkân

sağlar.

Anahtar Kelimeler: İşlevsel Model Arayüzü; Yüksek Seviye Mimari; Dağıtık

Simülasyon

vii

OLEDGMENTS

To My Family

viii

ACKNOWLEDGEMENTS

I would like to thank my supervisor Assoc. Prof. Dr. Halit Oğuztüzün for his

guidance, advice, criticism, encouragements and insight throughout this research.

I also wish to thank a lot to my co-advisor Dr. Umut Durak for all the valuable

knowledge, technical support, academic assistance, innovative ideas and making us

feel that he is always there ready for help in case we needed.

I also wish to thank a lot to my leader Koray Taylan for all the valuable efforts to

ease the procedural processes, to find financial contribution, to provide moral

support, to enhance the quality of this thesis work.

I also would like to thank a lot to Assoc. Prof. Dr. Ece Schmidt for all the valuables

comments and criticism for both thesis and demonstration work.

I also wish to thank a lot to Gökhan Bircan and Koray Küçük for all their valuable

efforts on model and simulation environment development.

I would like to thank to gratefully acknowledge Memduha Aslan and Başak Akgün

for their comments and helps on technical writing for this research.

I would like to thank to Turkish Ministry of National Defense, Undersecretariat for

Defense Industries which gave the team financial and moral support [Project Name:

MOKA].

At last, but the most, my special thanks are due to my wife Tuba Yılmaz for her

endless patience.

ix

TABLE OF CONTENTS

ABSTRACT ... v

ÖZ ... vi

ACKNOWLEDGEMENTS .. viii

TABLE OF CONTENTS .. ix

LIST OF TABLES ... xii

LIST OF FIGURES .. xiii

lıst of LISTINGS ... xiv

LIST OF ABBREVIATIONS .. xv

CHAPTERS

1. INTRODUCTION ... 1

1.1 Aim and Scope of the Study .. 1

1.2 Organization of the Thesis .. 2

2. BACKGROUND ... 5

2.1 High Level Architecture (HLA) .. 5

2.1.1 History .. 5

2.1.2 Definitions .. 6

2.1.3 HLA Rules ... 7

2.1.4 HLA Services ... 9

2.1.5 HLA Object Model .. 10

2.2 HLA Programming in C++.. 11

2.2.1 Interface Classes... 11

2.2.2 Initialization ... 12

2.2.3 Declaration of Objects.. 13

x

2.2.4 Information Exchange .. 15

2.2.5 Terminating execution .. 17

2.3 Functional Mockup Interface (FMI) .. 17

2.3.1 History .. 18

2.3.2 Definitions .. 18

2.3.3 FMI for Co-simulation ... 22

2.3.4 Computational Flow ... 23

2.4 FMI for Co-simulation Programming in C .. 24

3. RELATED WORKS .. 29

4. FUNCTIONAL MOCKUP UNIT FEDERATE DESIGN..................................... 31

4.1 Loading an FMU ... 34

4.2 FMU as an HLA Federate ... 35

4.2.1 Connect to the HLA Federation Execution .. 35

4.2.2 Create Object Instances .. 36

4.2.3 Update/Reflect Object Class Attributes ... 37

4.3 Running the Federate ... 38

4.4 Implementation Details .. 39

4.4.1 The Layers of Application .. 39

4.4.2 Application Sequence Diagrams .. 42

4.5 FMUFd Capabilities .. 45

4.6 Limitations ... 46

5. DEMONSTRATION WITH AN EXAMPLE FEDERATION 47

5.1 Simulation Setup.. 47

5.2 Simulation Run & Result ... 49

6. CONCLUSION .. 51

6.1 Prospects for Future Research ... 51

xi

REFERENCES ... 53

APPENDICES

HLA DATA TYPE PADDING RULES .. 57

FMUFD CONFIGURATION DIRECTORY STRUCTURE 61

MISSILEFMUFD CONFIGURATION DIRECTORY ... 67

TARGETFMUFD CONFIGURATION DIRECTORY ... 73

xii

LIST OF TABLES

TABLES

Table 1 – Basic Datatype Boundary Values ... 57

xiii

LIST OF FIGURES

FIGURES

Figure 1 – Generating FMU from different tools... 18

Figure 2 – The content of the FMU zip file ... 19

Figure 3 – Data flow between the environment and an FMU for Model Exchange [5]

 .. 20

Figure 4 – Data flow between the environment and an FMU for Co-simulation at

communication points [6] .. 21

Figure 5 – Model description XML file structure [3] .. 22

Figure 6 – The computational flow of the FMU for Co-simulation [5] 23

Figure 7 – The conventional design of Functional Mockup Unit Federate 32

Figure 8 – FMUFd Activity Diagram .. 33

Figure 9 – The top level structure of FMUFd .. 39

Figure 10 – The user interface of the FMUFd ... 40

Figure 11 – Simulation layer class diagram ... 41

Figure 12 – Communication layer class diagram ... 42

Figure 13 – Simulation initialization sequence diagram .. 43

Figure 14 – Simulation running sequence diagram.. 44

Figure 15 – The Deployment View Diagram of Simulation Environment 48

Figure 16 – The FMUFd Configuration Directory Structure 61

Figure 17 – MissileFMUFd Configuration Directory Structure 67

Figure 18 – AircraftFMUFd Configuration Directory Structure 73

xiv

LIST OF LISTINGS

LISTINGS

Listing 1 – Code snapshot for creating a HLA federation ... 12

Listing 2 – Code snapshot for joining a HLA federation as a federate 13

Listing 3 – Code snapshot for declaring HLA objects to RTI to list the attributes to

be published .. 14

Listing 4 – Code snapshot for declaring HLA objects to RTI to list the attributes to

be subscribed .. 14

Listing 5 – Code snapshot for declaring HLA interactions to RTI, by then the

federate can publish this kind of interaction later. ... 15

Listing 6 – Code snapshot for declaring HLA interactions to RTI, by then the

federate can subscribe this kind of interaction later. .. 15

Listing 7 – Code snapshot for updating attribute values over HLA federation 16

Listing 8 – Code snapshot for sending an interaction over HLA federation.............. 16

Listing 9 – Code snapshot for enabling time regulating/constraint and requesting time

advance over HLA federation .. 17

Listing 10 – Code snapshot for resigning from a federation and destroying a

federation execution ... 17

Listing 11 – Code snapshot for instantiating an FMU ... 25

Listing 12 – Code snapshot for initializing an FMU .. 26

Listing 13 – Code snapshot for setting scalar variables values, getting values of the

scalar variables and stepping FMU over time .. 26

Listing 14 – Code snapshot for terminating simulation and cleaning the used memory

 .. 27

Listing 15 – The base condition code snapshot for calculating the padding bytes 37

Listing 16 – The base condition code snapshot for encoding/decoding the attribute

values. ... 38

xv

LIST OF ABBREVIATIONS

CENG Computer Engineering

DDS Data Distribution Service

DIS Distributed Interactive Simulation

DoD Department of Defense

EXCIMS Executive Council for Modeling and Simulation

FEDEP Federation Execution Process

FMI Functional Mockup Interface

FMU Functional Mockup Unit

FMUFd Functional Mockup Unit Federate

FOM Federation Object Model

HIL Hardware in the Loop

HLA High Level Architecture

ITEA Information Technology for European Advancement

MAP Modelica Association Project

MDE Model-Driven Engineering

METU Middle East Technical University

MOM Management Object Model

OMT Object Management Template

PLM Product Lifecycle Management

https://www.modelica.org/projects

xvi

SISO Simulation Interoperability Standards Organization

SOM Simulation Object Model

TRADT Time Representation Abstract Data Type

1

CHAPTER 1

INTRODUCTION

This chapter introduces the motivation and scope of the study, summarizes the

related works and further outlines the organization of the thesis.

1.1 Aim and Scope of the Study

Systems development process starts with conceptual design phase in which designers

create concepts and conduct trade off analysis. Modeling and simulation have always

been essential tools for conceptual design. Early stage systems modeling aims to

identify the system requirements and its interactions with its operating environment.

Effect based models, integrated in a large scale operational settings are used to

evaluate the performance of the system concerning the accomplishment of its

mission. Simulation of the mission space of a system requires modeling large number

of entities, and their simulation often requires a distributed environment. To integrate

the models of the individual simulations of entities on mission space IEEE 1516

High Level Architecture (HLA) standard [1] [2] [3] is commonly used.

The Functional Mock-up Interface (FMI) is a newly developed, tool-independent

model interface standard [4] [5]. Its main purpose is model reuse between various

modeling tools and environments throughout the systems development phases. A

simulation component conforming to FMI is called a Functional Mock-up Unit

(FMU), whose contents include a model description file, user defined libraries,

source codes, model icons and documentation.

There is a potential for utilizing this simulation tool and environment independent

standard for developing HLA federates. By this way, FMI can also serve as a model

interface for distributed simulation entities in the concept of design phase. Here in

this study, we introduce a method to develop Functional Mockup Unit Federates

(FMUFd) from FMUs. Thus, we will enable to simulate system model as a part of an

aggregate simulation of its operational settings. Moreover, this study promotes a high

level of reusability of system models supporting FMI.

2

There are some other works carried out to join models in a distributed simulation.

MatlabHLA-Toolbox [8] and HLA Blockset [9] are two different toolboxes offering

HLA communication feature to the Matlab. In [10], the author introduces a concept

for using HLA RTI as a FMI Co-simulation master. This concept defines how to use

HLA RTI services as a master. In [12], the author states a simulation environment for

developing a missile where a hardware-in-the-loop (HIL) simulation system, based

on high Level Architecture (HLA) and Modelica language, are used. In [13], the

author declares the SPRINT project which is a corporation of six European

companies. The goal of the project is to simplify collaborative systems engineering

across tools and platforms and to validate the systems including physical devices

based on distributed real time simulation using HLA and FMI.

1.2 Organization of the Thesis

The preceding sections of this chapter introduce the motivation and scope of the

study, present the summary of the thesis application and the related works. The

remaining chapters are branched as follows:

 Chapter 2 provides related literature and background information required for

easy understanding of the subsequent chapters. The HLA and FMI (especially

FMI for Co-simulation concept) is briefly explained in this section.

Additionally, programming for HLA and FMI is exemplified in this section.

 Chapter 3 explains the related works in details and discusses the works with

our thesis work.

 Chapter 4 explains the details of FMU federate architecture. This section,

firstly, presents details of mapping an FMU into the FMUFd architecture.

Then, it explains how an FMUFd can connect to a federation as a federate.

Further, it mentions mapping between FMI and HLA object classes.

Moreover, this section informs about the implementation details of the

FMUFd. Furthermore, this section evaluates the capabilities of FMUFd in

terms of HLA services. Finally, this section lists the limitations of FMUFd.

3

 Chapter 5 explains a demonstration for the usage of the FMUFd in a

simulation environment. In the demonstration, there are three nodes together

with two FMUFd applications and one third party application.

 Finally, Chapter 6 discusses the accomplishments and draws conclusions.

4

5

CHAPTER 2

BACKGROUND

2.1 High Level Architecture (HLA)

The High Level Architecture (HLA) is a common framework for distributed

simulation systems. HLA promotes interoperability between simulations and

supports the reuse of models in different contexts. HLA provides communicating

data and synchronized actions between simulation computers regardless of the

computing platforms [1].

HLA combines simulations (federates) into a larger simulation (federation), where

federates are components and federations are component based applications. The

HLA requires runtime infrastructure (RTI) software to support the operation of a

federation execution. RTI provides a set of services and by using these services a

federate can interact with the federation during runtime. How a federate can reach

the services are defined by the Federate Interface Specification [1].

2.1.1 History

Before 1988 there were so many military simulations; however, they provided a

limited scope for simulation and they had little interoperability. Interest in distributed

simulation, in 1988 DARPA’s SIMNET (Simulator Network) Program was adverted.

In 1991, development of Distributed interactive simulation (DIS) was initiated in a

series of "Workshops DIS" in the Interactive Network simulation training

symposium, organized by the University of Central Florida Institute for Simulation

and Training (IST). After 1994, it was recognized that DIS did not provide a solution

for the requirement of distributed simulation, like time management. In 1995, the

Executive Council for Modeling and Simulation (EXCIMS) decided to establish an

Architecture Management Group (AMG) to develop the High Level Architecture

(HLA) and on 06 September 1996, the baseline HLA was developed [14].

6

The first complete version of the standard, published in 1998 was known as HLA

1.3. After the year 2000, the HLA specifications are moved as IEEE standards with

IEEE 1516 series. These series of standards are listed below [14]:

 IEEE 1516–2000 – Standard for Modeling and Simulation High Level

Architecture – Framework and Rules

 IEEE 1516.1–2000 – Standard for Modeling and Simulation High Level

Architecture – Federate Interface Specification

 IEEE 1516.2-2000 – Standard for Modeling and Simulation High Level

Architecture – Object Model Template (OMT) Specification

 IEEE 1516–2010 – Standard for Modeling and Simulation High Level

Architecture – Framework and Rules

 IEEE 1516.1–2010 – Standard for Modeling and Simulation High Level

Architecture – Federate Interface Specification

 IEEE 1516.2-2010 – Standard for Modeling and Simulation High Level

Architecture – Object Model Template (OMT) Specification

 IEEE 1516.3-2003 – Recommended Practice for High Level Architecture

Federation Development and Execution Process (FEDEP)

 IEEE 1516.4-2007 – Recommended Practice for Verification, Validation, and

Accreditation of a Federation an Overlay to the High Level Architecture

Federation Development and Execution Process

2.1.2 Definitions

Object Model Template (OMT)

OMT is the Object Model Template that provides a mechanism for specifying data

exchange within a federation. OMT defines the format and syntax for HLA object

models. It also provides a mechanism for describing the capabilities of federate, like

objects and interactions managed by a federate or visible outside the federate. OMT

7

facilitates interoperability among simulations and enhances reuse of simulation

components. OMT defines the Federation Object Model (FOM), Simulation Object

Model (SOM) and Management Object Model (MOM) [2].

Federation Object Model (FOM)

FOM is the HLA Federation Object Model that describes all of the object classes and

interactions, attributes of object classes and parameters of interactions for the

federation. Also, FOM establishes the information model contract which governs the

simulation [2] .

Simulation Object Model (SOM)

SOM is the HLA Simulation Object Model that describes the object classes and

interactions, attributes of object classes and parameters of interactions information

which are exposed or consumed by a federate [2].

Management Object Model (MOM)

MOM is the HLA Management Object Model that provides a predefined set of

information elements to be included in the FOM related with federation management

[2].

Run-Time Infrastructure (RTI)

RTI is the Run-Time Infrastructure that is a software layer providing common

services to the federates for synchronization and data exchange. RTI specifications

define the interfaces that federates should use to obtain services and to interact with

other federates in a federation [1].

2.1.3 HLA Rules

These rules are extracted from IEEE Standard for Modeling and Simulation (M&S)

High Level Architecture (HLA) — Framework and Rules [1]. HLA rules define the

behavior and capabilities of federates and federations. There are a total of ten rules;

five rules for federation and five rules for federates.

8

Federation Rules

 ―Federations shall have an HLA Federation Object Model (FOM),

documented in accordance with the HLA Object Model Template (OMT).‖

 ―In a federation, all representation of objects in the FOM shall be in federates,

not in the run-time infrastructure (RTI).‖

 ―During a federation execution, all exchange of FOM data among federates

shall occur via the RTI.‖

 ―During a federation execution, federates shall interact with the run-time

infrastructure (RTI) in accordance with the HLA interface specification.‖

 ―During a federation execution, an attribute of an instance of an object shall

be owned by only one federate at any given time.‖

Federate Rules

 ―Federates shall have an HLA Simulation Object Model (SOM), documented

in accordance with the HLA Object Model Template (OMT).‖

 ―Federates shall be able to update and/or reflect any attributes of objects in

their SOM and send and/or receive SOM interactions externally, as specified

in their SOM.‖

 ―Federates shall be able to transfer and/or accept the ownership of an attribute

dynamically during a federation execution, as specified in their SOM.‖

 ―Federates shall be able to vary the conditions under which they provide

updates of attributes of objects, as specified in their SOM.‖

 ―Federates shall be able to manage local time in a way that will allow them to

coordinate data exchange with other members of a federation.‖

9

2.1.4 HLA Services

HLA provides six groups of services to enable distributed simulation in an aggregate

level. Those are summarized below [1].

Federation Management

Federation Management service defines how a federate can connect to the RTI. It

also describes how to create, join, resign and manage federations, save and restore

federation states.

Declaration Management

Declaration Management service defines the publishing and subscription of objects

and attributes. The object class and object instance declarations are made inside

FOM.

Object Management

Object Management service defines how to register new instance of object class or

interaction, update the attributes, receive interactions, discover new instances and

receive updates of attributes.

Ownership Management

Object management service defines acquisition of ownership of the registered object.

This service allows updating an instance of object models with different federates.

Time Management

Time management service defines how a federate can advance its logical time with

other federates and how to deliver the time-stamped events ensuring that a federate

can never receive an event with logical times less than federates logical time. This

service also affects other services like object/interaction updates and federate saves.

Data distribution management

10

Data distribution management defines the production and consumption of data for

binding the relevance of communication data among federates. As a result, RTI can

recognize the irrelevant data and prevent its delivery to consumers.

2.1.5 HLA Object Model

HLA provides object classes and interactions as the object models, which are used to

publish/subscribe the data over distributed simulation environment. Providing the

data exchanges among federates are one of the responsibilities of the RTI.

An object class can be derived from another object class. HLAobjectRoot is the base

class of the all object classes. Each object class can contain one or many attributes.

Derived classes also inherit base class attributes. Attributes have data types. A

federate will publish/subscribe only interested attributes of an object class; it does

not have to deal with all the attributes in an object class.

An interaction can be derived from another interaction. HLAinteractionRoot is the

base class of the all interactions. Each interaction contains one or many object

parameters. Derived interactions take base interaction parameters also. Parameters

have data types. A federate should fill all the parameters of an interaction to publish

it.

HLA provides six different data types where a user can create variety of data

structures by using those data types. The published/subscribed values are stored in

these data structures. The details of data types are given below [3]:

 Basic Datatype: Basic data refers to a predefined set of data representations.

Following data types should be defined by any OMT:

{HLAinteger16BE, HLAinteger32BE, HLAinteger64BE, HLAfloat32BE,

HLAfloat64BE, HLAoctetPairBE, HLAinteger16LE, HLAinteger32LE,

HLAinteger64LE, HLAfloat32LE, HLAfloat64LE, HLAoctetPairLE,

HLAoctet}.

 Simple Datatype: The simple data type table refers to simple, scalar data

items. Following data types should be defined by any OMT:

11

{HLAASCIIchar, HLAunicodeChar, and HLAbyte}.

 Enumerated Datatype: The enumerated data type refers to data elements

that can take on a finite discrete set of possible values. Following data type

should be defined by any OMT:

{HLAboolean}.

 Array Datatype: The array data type table refers to indexed homogenous

collections of data types; these constructs are also known as arrays or

sequences. Following data types should be defined by any OMT:

{HLAASCIIstring, HLAunicodeString, and HLAopaqueData}.

 Fixed Record Datatype: The fixed record data type table refers to

heterogeneous collections of types; these constructs are also known as

records or structures. This allows users to build structures of data according

to the needs of their federate or federation.

 Variant Record Datatype: The variant record data type table refers to

discriminated unions of types; these constructs are also known as variant or

choice records.

2.2 HLA Programming in C++

HLA can be programmed in many different programming languages, like C++ and

Java. This section will briefly inform about the programming HLA federate by using

C++.

Some parts of the information, which will be represented in this section, are extracted

from MAK RTI Users Guide [16].

2.2.1 Interface Classes

There are two main C++ interface classes to provide communication between HLA

RTI and a federate, namely FederateAmbassador and RTIAmbassador. The

FederateAmbassador creates an interface through which the RTI can callback the

events to the federate. The MAK RTI provides a base class, namely

NULLFederateAmbassador, which has empty implementations of all the callback

12

methods of FederateAmbassador. A federate developer can simply drive a class from

NULLFederateAmbassador and overrides the interested callbacks. By using

RTIAmbassador, a federate can call the RTI methods. A developer can get derived

class of RTIAmbassador by using RTIambassadorFactory class. All communication

between the federate and the RTI must proceed through the FederateAmbassador

and the RTIAmbassador.

2.2.2 Initialization

The initialization process takes two steps: creating a federation (if it doesn’t exist)

and joining to the federation.

Create a Federation Execution

The Create Federation Execution service takes a federation name and a FOM file

path as the arguments. The name of the federation will be used as key to federates

while joining the federation. The only way of controlling the existence of a

federation is using a try-catch block and checking whether RTI throws

FederationExecutionAlreadyExists exception.

Listing 1 – Code snapshot for creating a HLA federation

13

Join the Federation Execution

Every federate should connect to a federation to be a part of the simulation.

joinFederationExecution service takes three arguments; the first parameter is a label

for defining federate, the second parameter is the name of federation, the third

parameter is a class reference derived from the FederateAmbassador interface.

Listing 2 – Code snapshot for joining a HLA federation as a federate

2.2.3 Declaration of Objects

Before using objects or interactions, a federate informs the RTI about the interested

objects with attributes or interactions with parameters. RTI has a handle for every

object class, attributes interaction and parameter. While declaring the objects, those

handles are used to inform RTI.

The declaration of object process takes four steps: Publishing the object classes,

subscribing the object classes, publishing interactions and subscribing the

interactions.

Publish the Object Class

The federate gives a list of attribute handles to the RTI. This list means that the

federate is only interested with the listed attributes to publish even object class

declaration can have more attributes.

14

Listing 3 – Code snapshot for declaring HLA objects to RTI to list the attributes to

be published

Subscribe the Object Class

The federate gives a list of attribute handles to the RTI. This list means that the

federate is only interested with the listed attributes to subscribe even object class

declaration could have more attributes.

Listing 4 – Code snapshot for declaring HLA objects to RTI to list the attributes to

be subscribed

Publish the Interaction

The federate gives the handle of the interaction class to RTI to declare which

interactions can be published by this federate.

15

Listing 5 – Code snapshot for declaring HLA interactions to RTI, by then the

federate can publish this kind of interaction later.

Subscribe the Interaction

The federate gives the handle of the interaction class to RTI to declare which

interactions can be subscribed by this federate.

Listing 6 – Code snapshot for declaring HLA interactions to RTI, by then the

federate can subscribe this kind of interaction later.

2.2.4 Information Exchange

Information exchange contains following steps: update/reflect attribute values,

send/receive interaction and time management (time advance request and time

advance grant). The reflect attributes values receive interaction and time advance

grant methods are obtained from FederateAmbassador callback methods.

Update Attribute Values

Any attribute value can be updated individually from the federate. The attributes that

will be updated are listed with their values into AttributeHandleValueMap.

16

Listing 7 – Code snapshot for updating attribute values over HLA federation

Send Interactions

The parameters that will be sent are listed with their values into

ParameterHandleValueMap. The parameter list of the interaction should be filled

completely.

Listing 8 – Code snapshot for sending an interaction over HLA federation

17

Time Advance Request

Listing 9 – Code snapshot for enabling time regulating/constraint and requesting time

advance over HLA federation

2.2.5 Terminating execution

Termination execution involves two steps, namely, resigning from a federation

execution and destroying the federation execution if there are no other federates

joined to the federation.

Listing 10 – Code snapshot for resigning from a federation and destroying a

federation execution

2.3 Functional Mockup Interface (FMI)

Functional Mockup Interface provides an interface specification for simulation

components called Functional Mockup Units. FMI provides two standard interfaces,

namely, FMI for Co-simulation and FMI for Model Exchange [3] [4].

While FMI for Model Exchange specifies the interface for callers with explicit or

implicit integrators, FMI for Co-simulation specifies the interface for simulation

runnables that possess their solvers in them. As we can define HLA Federates as

standalone simulation runnables, this effort utilizes FMI-Co-simulation interface as

the basis for federate development.

18

As shown in Figure 1, FMU can be generated from different tools and for different

systems/subsystem according to existent requirements.

JModelica

Matlab Simulink

FMU

Model
FMI

xml

h
cpp

Generated Code for Model Usage

Code Generation

SimulationX

Dymola

S
ilv

e
r

C
a

ti
a

Figure 1 – Generating FMU from different tools

2.3.1 History

The FMI standardized interface was developed as one of the products of

MODELISAR project. MODELISAR was an Information Technology for European

Advancement (ITEA) project aiming to improve the design of systems and of

embedded software in vehicles. The project was started in 2008 and finished in 2011.

After it ended, FMI was managed and developed as a Modelica Association Project

(MAP). On Jan. 2010, the version 1.0 of "FMI for Model Exchange‖, On Oct. 12,

2010, the version 1.0 of ―FMI for Co-Simulation‖ and on Mar. 31, 2011, the version

1.0 of ―FMI for PLM‖ were released [17].

In this thesis, the version 1.0 of ―FMI for Co-simulation‖ is used as a reference FMI

standard.

2.3.2 Definitions

Functional Mockup Interface

The FMI defines a standardized interface to be used in computer simulations for

developing complex cyber-physical systems. FMI provides three aspects of creating

models as listed below:

 FMI for model exchange,

https://www.modelica.org/projects
https://www.modelica.org/projects

19

 FMI for Co-simulation

 FMI for PLM

Functional Mockup Unit

A component implementing the FMI is called Functional Mock-up Unit (FMU).

FMU is crated as a zip file. This file should contain a model description file. Besides,

this zip file can also contain libraries, source codes, a model icon and documentation.

The content of this zip file is shown at Figure 2.

FMU Zip File

Model.png (opt.)modelDescription.xml Sources(0pt.)

modelCodes.c

Binaries(0pt.)

win32(0pt.) win64(0pt.) linux32(0pt.)

<modelIdentifier>.dll <modelIdentifier>.dll <modelIdentifier>.so

Documentation(opt.)

İndex.html

Figure 2 – The content of the FMU zip file

FMI for Model Exchange

FMI for model exchange is a standard interface that is a solution for the Ordinary

Differential Equations of the models. The intention is to exchange of model among

different modeling environments. A modeling environment can generate C-Code of a

20

dynamic system model that can be utilized by other modeling and simulation

environments. As shown in Figure 3, the solver is not a part of the model, but it is a

part of the environment that uses the FMU [3].

Figure 3 – Data flow between the environment and an FMU for Model Exchange [5]

FMI for Co-simulation

FMI for Co-simulation is a standard interface for the model output where the output

contains its solver inside. Therefore, the FMU generated from FMI for co-simulation

interface is acting as a black box for the user of the model. That is, the user does not

need know which integration method is actually applied to solve the model. The user

only feeds the model with inputs and gets the outputs from model in discrete time

steps. Figure 4 shows the direction of the data in the FMI for Co-simulation standard

[4].

21

Figure 4 – Data flow between the environment and an FMU for Co-simulation at

communication points [6]

FMI for PLM

FMI for Product Lifecycle Management (PLM) is an interface standard for supplying

a generic way to manage the integration of FMI models and related data in product

life-cycle management [17]. This management includes followings data:

 FMU data for documentation, simulation and validation

 Co-simulation data for documentation, simulation and result management

 Result validation data for post-processing, analysis, report FMU data

Model Description

Model description is an XML file which contains the static information of the FMU

except the model equations. This file contains the model scalar variables and their

attributes with such as name, unit, and default initial value etc. Model description

XML structure is figured out in Figure 5 [3].

22

Figure 5 – Model description XML file structure [3]

2.3.3 FMI for Co-simulation

As mentioned above, FMI for Co-simulation is a standard interface for the model

output containing its solver inside. Therefore, the user does not need to know which

integration method is actually applied to solve the ordinary differential equations

within the model.

For each of the FMU in a co-simulation environment, the communication capabilities

are configured in a model specific XML file, namely ModelDescription.xml file.

Communication with an FMU can only be done in a discrete communication point,

which is a sampling point or a synchronization point of the FMU [4].

23

2.3.4 Computational Flow

As show in Figure 6, FMU co-simulation computational flow has three main states,

namely Instantiation and Initialization, Running and Termination.

R
u

n
n

in
g

 P
h

a
s
e

Instantiation & Initialization

fmiDoSet(...)

fmiGetXXX(...)
fmiSetXXX(...)

Termination Phase

Figure 6 – The computational flow of the FMU for Co-simulation [5]

Instantiation and Initialization

A new FMU instance is created and initiated to be ready to run. Memory allocations

and initial value setting for the FMU parameters are done within this phase.

Running

In this phase, FMU model is executed via calling doStep() method. Intuitively, before

running a step, FMU input parameters values are set by calling FMUSetXXX(…) and

after the completion of this step the model output parameter values are consumed by

the master via calling fmiGetXXX(…).

Termination

The model component is unloaded and the memory is cleaned in this phase.

24

2.4 FMI for Co-simulation Programming in C

FMI for Co-simulation provides an interface for using FMU. This section briefly

summarizes the calling of this interface.

Some parts of the information, which will be presented in this section, are extracted

from FMI SDK [18].

Instantiate a Model Instance

FMU uses callback functions to utilize resources from the environment and to

callback the function logs to the master application.

25

Listing 11 – Code snapshot for instantiating an FMU

Initialize a Model Instance

After instantiating the FMU, it needs to be initialized. In this section, the initial

values of model are set inside the model.

26

Listing 12 – Code snapshot for initializing an FMU

Stepping

For every cycle, model can be stepped. By convention, before stepping the model,

the input values of model is set and after step function is finished, the model output

values are consumed by caller application.

Listing 13 – Code snapshot for setting scalar variables values, getting values of the

scalar variables and stepping FMU over time

27

Ending Simulation

Whenever the simulation is completed, FMU is terminated and the allocated

resources are freed into the memory.

Listing 14 – Code snapshot for terminating simulation and cleaning the used memory

28

29

CHAPTER 3

RELATED WORKS

As model based development of engineering systems are getting more and more

popular, connecting engineering models to the distributed simulation environments is

also becoming an important issue of concern [6] [7]. There have been some attempts

for developing such tools and methodologies. Closely related to our work, there exist

four particular efforts providing a mechanism for connecting models to HLA

environments.

MatlabHLA-Toolbox [8] and HLA Blockset [9] are available toolboxes for offering

HLA communication feature to the Matlab. With these toolboxes, modelers can

create a federate, join a federation and start the publishing and subscribing entities

and events. However, these solutions can only work on Matlab.

In [10], the author introduces a concept to use HLA RTI as a FMI Co-simulation

master. This concept defines how to use HLA RTI services as a master. These

services are used as follows:

 Object Management: Only one HLA object class is enough to represent all

FMUs. Each FMU (or hosting application) creates an instance of that object

class and publishes related attributes. Likewise, it subscribes related attributes

of the object class.

 Declaration Management: Hosting code can perform publishing and

subscription generically, if some more directives are added into model-

description file. These directives should guide the code about the place and

role of each variable in the federation.

 Ownership Management: In normal cases, there is no need for ownership

management; however, if more than one federate has the right to publish and

30

update a specific attribute, then there should be a separate module or FMU to

overcome that scenario.

 Time management: RTI time management services can be used to

synchronize the FMUs. The FMU can run a step between two time advances.

The effort does not provide a specific way to connect FMU to the HLA simulation

environment. Our work, on the other hand, supplies a solution to connect FMU to the

HLA environment with details. Moreover, the paper offers a special distributed

simulation environment in which the FOM file is specialized for the FMUs. Our

work; however, does not need a special simulation environment. Instead, it offers to

connect any HLA distributed simulation environment with any FOM file.

In [12], the author states a simulation environment to develop a missile where a

hardware-in-the-loop (HIL) simulation system based on high Level Architecture

(HLA) and Modelica language are used. Although the concept is defined in paper,

there is no detailed information about implementation of the simulation environment.

Also, the work specifically focuses on developing a missile.

In [13], the author declares the SPRINT project which is a corporation of six

European companies. The goal of the project is to simplify collaborative systems

engineering across tools and platforms and validate the systems including physical

devices based on distributed real time simulation using HLA and FMI. Although

author states the goal of the project, there is no evidence of the status of the project.

31

CHAPTER 4

FUNCTIONAL MOCKUP UNIT FEDERATE DESIGN

FMI for Co-simulation standard does not provide a specification for connecting

FMUs to an HLA federation. There is no convenient way to convert FMU scalar

variables to HLA object class attributes, since FMI Co-simulation only supports the

following primitive types: real, integer, string, Boolean and Enumeration. On the

other hand, HLA attributes can represent any data type structure, from basic data

types to the complex data type structures. Since FMI Co-simulation scalar variables

can only map to HLA basic data types, a simulation environment using complex data

types cannot be directly supported by FMI Co-simulation. Moreover, FMI Co-

simulation does not have suitable interface to consume HLA services as listed in

section 2.1.4. FMU, instead, only supports some form of functions with primitive

event.

Hence, there is a need for a wrapper connecting FMU that connects the FMI Co-

simulation to the HLA distributed simulation environment. The work conducted

handles the problem by designing a Functional Mockup Unit Federate (FMUFd).

FMUFd has the following responsibilities:

 Instantiating, initializing, stepping and terminating a FMU model.

 Providing the communication of distributed environment with services by

using HLA standard interface.

 Converting FMU model outputs to compatible HLA data types and sending

them as HLA object updates.

 Receiving model inputs from HLA objects and converting them to

compatible FMU types.

32

Functional Mockup Unit

FMU

Model
FMI

Model

Description.xml

FMU Shared

Library

FMI-HLA

MAP

Configuration

Functional Mockup Unit Federate

HLA

RTI

Other

Federates

FOM

HLA

Configuration SOM

Figure 7 – The conventional design of Functional Mockup Unit Federate

The top level structure of FMUFd that satisfies these requirements is depicted in

Figure 7. The FMUFd is composed of the FMU model, FMI-HLA Map

configurations and HLA connection configuration. FMI-HLA Map Configuration is

used to inform FMUFd about HLA FMI relation. For each FMU, using this structure

an FMUFd is needed to be configured. HLA connection configuration is related with

the federation and FOM information of distributed simulation environment. By using

these data, FMUFd runs with stepwise activities. As shown in Figure 8, these

activities can be grouped into four main phases, namely, initialization, object

discovery, stepping and termination.

33

T
E

R
M

IN
A

T
IO

N

O
B

JE
C

T
 R

E
F

L
E

C
T

IO
N

S
T

E
P

P
IN

G

IN
IT

IA
L

IZ
A

T
IO

N

Read and Execute Configurations

Load and Instantiate FMU

Connect HLA Federation as a Federate

Publish/Subscribe Oject Class Declerations to RTI

Create Object Instances for Publish

Discover Object Instance

Reflect Attributes of Subscribed Object Instance

Create New Object Instance for Subscribe

Set Input Values From Subscribed Object Instances

Step FMU over One Step Time

Reflect FMU Outputs to Published Object Instances

Update Published Object Instances over RTI

Terminate FMU

Resign From Federation

Free Used Memories

Yes

No terminated

Query Current RTI Time

Enable Time Regulating and Time Constraint

Request RTI to Advance the Time

Figure 8 – FMUFd Activity Diagram

34

In initialization phase, FMUFd loads and initializes the FMU and then connects the

HLA federation as a federate with related HLA services and declares interested

object classes for publishing and subscribing.

In object reflection phase, the subscribed object class instances are discovered and

their values are reflected.

The stepping phase is the main phase of the simulation. In this phase, FMU input

variables are reflected from related HLA objects, FMU runs one time step, and then,

FMU output values are reflected to the related HLA objects.

In termination phase, FMUFd terminates and unloads FMU, resigns from

federation, frees allocated memory and finally stops.

The details of these steps with the process of connecting FMU to the HLA simulation

environment will be described in the proceeding sections. Following that, the

FMUFd capabilities in terms of the HLA services and FMUFd limitations will be

mentioned briefly.

4.1 Loading an FMU

The loading of FMU takes two phases; in the first phase, the model description file is

parsed, while the FMU is loaded and initialized in the second phase. FMU Model

description file provides the static information of all exposed variables and model

related data. FMUFd uses model description file to identify scalar variables with data

types and value reference, Globally Unique Identifier (GUID) and the model name.

The scalar variables are used in data flow between FMUFd and FMU model. GUID

is used for validating concrete coded FMU with model description file. Model name

is used to load shared object and FMI functions. The dynamic link library is designed

to have the same name with model name and shared object FMI functions should

also take the model name as a prefix to their functions [4].

The FMU related operations are developed based on the FMU SDK [18]. By using

these operations, FMUFd can load and use the FMU. The shared library, inside the

FMU file should supply FMI Co-simulation interface implementations. FMUFd

35

loads those implementations automatically and then instantiates the model and gets

the model instance. By then, FMU is ready to run steps over time.

4.2 FMU as an HLA Federate

This section describes how the FMUFd can join a federation execution as a member

federate.

4.2.1 Connect to the HLA Federation Execution

HLA Federation is a named set of federate applications and a common Federation

Object Model (FOM) that are used as a whole to achieve some specific objective.

The Federation execution is, on the other hand, the actual operation, over time, of a

set of joined federates that are interconnected by a RTI.

The FOM file contains all data exchange related information of HLA Federation,

including object classes and object class attributes. By parsing this file, the FMUFd

identifies the structure of each object class with attributes and data types.

The parsing process of a FOM takes two steps. First of all, the data types are parsed

and stored in a map. For each type of the data, different parsing procedure is applied

as each type has its special fields. For example, the size and endian information is set

only for basic data types. Then, the object classes are parsed with their attributes and

the data type of each attribute is retrieved from the map. If a class is derived, then its

inherited attributes are obtained from its ancestors.

After parsing the FOM file, FMUFd tries to connect the federation. The federation

information is provided by the user through a configuration file. The FMUFd reads

this file to get the federation name, path of FOM file and the name of its own

federate. Then, FMUFd tries to create a federation if it has not been created yet.

Finally, it joins the federation.

After joining the federation, FMUFd declares RTI that object classes with which

attributes will be published and/or subscribed. This information is provided by the

user with a SOM file. The FMUFd reads the file and identifies the

published/subscribed objects and informs the RTI.

36

4.2.2 Create Object Instances

HLA Object instance is a unique instantiation of an object class that is independent

of all other instances of that object class.

There are two scenarios for creating the object instances. At the beginning of the

simulation, after declaring the object classes, the FMUFd creates the object class

instances for publishing the FMU output parameters. The initial values of this object

can be assigned by user by using the configuration files. Then, whenever an object

class is discovered (new object instance is subscribed), the FMUFd creates an

instance of the discovered object class.

Each object contains both object class metadata and attributes. Each attribute

allocates the memory with the same size as its data type size. While calculating the

size of a data type the padding rules are used as described in APPENDIX A - HLA

DATA TYPE PADDING RULES. Although there are some existing rules, still it

may not be straightforward to find the exact size of the data type. For example, fixed

record data type can contain another fixed record data type and a dynamic array data

type. In this case, it is not possible to find exact size of the data type without filling

the exact data. Therefore, for every update, the size of the data type should be

recalculated. This recalculation may cause a problem regarding the performance of

an application. To address this issue, the FMUFd has been designed with two

restrictions:

 The array data type with dynamic cardinality is not supported by FMUFd,

 The discriminant value of the variant record data type is explicitly defined in

configuration file and cannot be changed in runtime.

With these restrictions, the FMUFd calculates the size of each attribute at the

beginning of the simulation and uses this size throughout the simulation. As the data

can contain different data types in it, the calculation may be performed through

recursion. The basic data type is the only type with a known size. Whenever the

recursion reaches a basic data type, the padding rules are applied. The base case of

the recursion could be the code segment given in Listing 15. The currentOffset value

37

is passed into recursion which holds the previously calculated offset. After recursion

is finished, currentOffset will hold the size of the root data type.

Listing 15 – The base condition code snapshot for calculating the padding bytes

4.2.3 Update/Reflect Object Class Attributes

Update/reflect object instance means invoking the Update/Reflect Attribute Values

services of RTI for one or more instance attributes. By doing that, the attribute values

can be updated from its owner federate and can be reflected by other federates.

The attribute contains values inside its data type. A complex data type can contain

both big endian and little endian data types in it, independent from application

computer’s endian type. Therefore, before updating the object class attribute, the

attribute values should be encoded to the right type of endian. Likewise, after

reflecting the attribute, the value should be decoded to the computer endian type. The

FMUFd always keeps the data with the same encoding of computer. By doing that, it

becomes easier to use the data in an application. Whenever an attribute is needed to

be updated, the attribute is encoded prior to the call of update operation. Likewise,

whenever an attribute is reflected, the value of that attribute is decoded first and kept

in decoded form in memory.

The encode/decode operation is also executed with recursion. The basic data type is

the only type with known endian type. Whenever the recursion reaches to the basic

data type, the swapping operation is applied. The base case of the recursion could be

the code segment given in Listing 16. The returnValue and rowData are the void*

data type values, with the same size of attribute. If the recursion is used for updating

the attribute operation than rowData refers to the current value of the attribute,

otherwise, it refers to the reflected value of the attribute. The returnValue refers to

the encoded (or decoded) value of the attribute.

38

Listing 16 – The base condition code snapshot for encoding/decoding the attribute

values.

4.3 Running the Federate

After introducing how HLA data is de-marshaled, the next step is mapping FMU

scalar variables to HLA basic data types. This mapping is performed through user

configuration files. These files inform the FMUFd about which data from HLA will

be set to FMU and which data from FMU will be published to HLA.

After mapping between FMU scalar variables and the HLA attributes, the stepping

function can be executed.

Before running a step of FMU, the FMUFd updates each input variable of the model.

The input values are obtained from an instance of related object class. If there is no

instance for related object class then the FMUFd will wait for the creation of an

instance of that related object.

39

After running a step of FMU, the FMUFd updates related attributes of the HLA

objects by retrieving the values from related FMU scalar variables. Therefore, FMU

output values can be mapped to different HLA objects, which are controlled by the

FMUFd. After value updates are finished, the FMUFd will request the RTI to publish

those attributes.

4.4 Implementation Details

The FMUFd is implemented as an application. This application can be run either as a

terminal application or a desktop application.

The implementation details of the application are explained in the following sections.

4.4.1 The Layers of Application

Inspired from ―Layered Simulation Architecture‖ paper [19], the application is

constructed with three base layers as shown in Figure 9.

Functional Mockup Federate

Presentation

Layer

Simulation

Layer

Communication

Layer

«uses»«uses»

Figure 9 – The top level structure of FMUFd

4.4.1.1 Presentation Layer

The presentation layer is the user interface of the application. This layer provides

presentation of application, input and interaction with the user as shown Figure 10.

The plot in the figure shows the change of some parameters of the missile and target

over time. By using this layer, a user can load the necessary configurations to

FMUFd and observe scalar variables’ value changes in real time.

40

Figure 10 – The user interface of the FMUFd

4.4.1.2 Simulation Layer

The simulation layer processes the application. It includes the computation of FMI

simulation and federate specific HLA object classes. Its purpose is to run FMU and

generate the federate behavior.

Simulation layer is responsible for running the simulation. This layer initializes the

FMU, supplies necessary inputs for FMU from HLA class instances, runs the model

and publishes the model outputs over HLA distributed environment.

One of the key features of the simulation layer is to create HLA object class structure

dynamically. That is, without having the real structure, simulation layer can create a

void data with the same size of the structure by using FOM XML file. Then

simulation layer can edit this void data parts with the same position of any object

class attribute fields.

41

As shown in Figure 11, simulation layer is mainly composed of two packages:

Simulation Manager and FMIWrapper.

Simulation Manager FMIWrapper«uses»

FMI Model

Description Parser

«uses» «uses»

HLA FOM

Parser

Figure 11 – Simulation layer class diagram

Simulation Manager Layer is the core simulation layer. This layer is responsible for

controlling the simulation flow. This layer also loads the FMIWrapper layer and uses

this layer to reach FMU. In addition, this layer is responsible for loading and using

communication layer to communicate with HLA federation. Finally, this layer

provides the feedback of the FMI scalar variable values over time to the presentation

layer.

FMIWrapper layer is responsible for loading the FMU model instance and supplying

the necessary interface functions to run FMU. FMUWrapper supplies necessary

header files (namely, fmifunctions.h and fmiPlatformTypes.h) to provide the

necessary platform information to the FMU. Also, FMIWrapper provides FMUs with

the necessary memory allocation and de-allocation functions.

4.4.1.3 Communication Layer

The communication layer deals with the RTI communication in order to access the

object classes and interactions exchanged in the federation execution. RTI is the

42

middleware that manages the federation execution and object exchange through a

federation execution. In addition to data exchange, communication layer also

supports time management service.

The basic structure of communication layer is represented in Figure 12. The

MAKHLACommunicator class is responsible for connecting the federation and

publishing the HLA object classes. The MAKHLAFederateAmbassador class is

responsible for discovering the class instances and receiving the updates. The

HLAClassContainer is the container of object classes for both classes.

Figure 12 – Communication layer class diagram

4.4.2 Application Sequence Diagrams

Basically, there are two main phases of application: Initialization Phase and

Simulation Phase. The initialization phase can be defined as a couple of operations

run prior to the start of simulation. In the simulation phase, on the other hand, the

application is run.

43

4.4.2.1 Initialization Sequence Diagram

As shown in Figure 13, simulation manager manages the application to the main

simulation. First, simulation manager reads and interprets the configuration files.

Second, helping with FMIWrapper package, it loads FMU and instantiates that

model. Last, helping with HLACommunicator package, it connects a federation as a

federate.

Figure 13 – Simulation initialization sequence diagram

4.4.2.2 Simulation Running Sequence Diagram

As represented in Figure 14, there is a loop for each step of simulation. In this loop,

first, simulation manager feeds the FMU model inputs from related HLA object class

attribute fields. Then, FMU runs for one step. After then, simulation manager, feeds

related HLA object class attribute fields from FMU outputs and publishes those

44

changes over federation. Lastly, application requests the RTI to update simulation

time and waits until request is fulfilled.

Figure 14 – Simulation running sequence diagram

45

4.5 FMUFd Capabilities

Here in this section, FMUFd capabilities are expressed in terms of HLA interface

services. Data distribution management and ownership management are not used in

our current implementation.

Federation Management

If the federation has not been created before, the FMUFd creates the federation. Then

it joins the federation. Similarly, after simulation is finished, the FMUFd resigns

from the federation and if there is no other federate connected to the federation, it

destroys the federation.

Declaration Management

FMUFd informs the RTI about publishing/subscribing object classes with attributes.

Object Management

Whenever new object class instance is discovered, FMUFd keeps the handle for this

instance and allocates memory for it. Whenever a reflectAttributeValues event is

raised by RTI, the FMUFd checks whether the object instance is discovered before.

If it is discovered, FMUFd reflects the attribute values to the allocated memory of the

object instance, and ignores otherwise. Whenever a removeObjectInstance event is

raised by RTI, the FMUFd checks whether the object instance is discovered before.

If it is discovered, FMUFd deletes the handle of instance and frees the related

allocated memory.

FMUFd reflects the attribute values to the allocated memory of the object instance,

and ignores otherwise.

Time Management

FMUFd works as a time regulating and time constraining federate. As the nature of

the time constraint, FMUFd ensures that the subscribed object model instance

received reflection no less than the currentRTITime. Also, after each running step of

the model, FMUFd requests to update the federate time.

46

4.6 Limitations

There are some limitations about FMUFd as listed below:

 FMUFd does not support array data type with dynamic cardinality. If

FMUFd would support this feature, it should have checked the size of

attribute dynamically on every update. This would create some performance

issues. Instead, FMUFd statically specifies the size of the attribute at the

beginning of the simulation

 Interactions are not supported by FMUFd.

 As FMI standard does not support the float type, if there is a mapping

between FMU double and HLA float data type, and then there could be loss

of precision.

 As FMI standard does not support the short type, if there is a mapping

between FMU integer and HLA short data type, then there could be loss of

precision.

47

CHAPTER 5

DEMONSTRATION WITH AN EXAMPLE FEDERATION

To demonstrate the FMUFd usage, a simple distributed simulation environment is

developed with MAK HLA RTI [15] implementation. For this application, the

RPR2-D17 FOM file developed by SISO [20] is used as a FOM file.

5.1 Simulation Setup

There are three nodes connected over an Ethernet network in this distributed

simulation environment as shown in Figure 15. In the missile node, the missile co-

simulation FMU (called MissileFMUFd) is connected to the distributed simulation

environment as the HLA federate by using FMUFd. Similar to missile PC, the

aircraft co-simulation FMU is also connected to the simulation environment as a

federate by using FMUFd (called AircraftFMUFd) in the target aircraft PC. The

synthetic environment node is used to provide other entities in this operational

setting, such as the missile launch platform, and to visualize the simulation in 2D and

3D. To this end, Presagis STAGE is used [21].

48

Figure 15 – The Deployment View Diagram of Simulation Environment

The MissileFMUFd application which will represent the missile FMU in the

simulation will be run in Missile Node. To do that it needs a configuration directory

as mentioned in APPENDIX B. The content of this directory is given in APPENDIX

C.

The AircraftFMUFd application which will represent the target FMU model in the

simulation will be run in Target Aircraft Node. To do that FMUFd needs a

configuration file as mentioned in APPENDIX B. The content of this directory is

given in APPENDIX D.

.

49

In synthetic environment node, federate is supplied by a third party tool named as

STAGE [21]. This tool has a property of connecting HLA environment and showing

the object models in 2D and 3D perspectives. We will use this tool to visualize the

simulation environment. Also, this tool will publish a cultural feature object class to

represent a launch platform model. Launcher itself does not affect the simulation; it

will be only used for supplying the some of the input requirements of missile model.

5.2 Simulation Run & Result

The FMUFd federates running activities are exactly the same as shown in Figure 8.

Because of the nature of the distributed simulation, each federate can start working in

different times. After all the federates are crated, the missile runs towards the aircraft

and finally it shuts the aircraft.

1500 simulation steps have been executed on this demonstration and there are two

measurements calculated from this demonstration. The median time for updating

FMU parameters from HLA objects for MissileFMUFd is 254 microseconds.

Likewise, the median time for updating HLA attributes from FMU parameters for

MissileFMUFd is 356 microseconds. Measurements were taken on a computer with

Intel Xeon 2.66GHz processor, 4GB DDR3 RAM and Windows 7 Pro 64 bit

operating system.

The median time for updating FMU parameters from HLA objects is the consumed

time in retrieving data from HLA object instances and passing these data to FMU

input parameters. The median time for updating HLA attributes from FMU

parameters, on the other hand, is the consumed time in retrieving output parameters

data from FMU and passing these data to related HLA object instances.

50

51

CHAPTER 6

CONCLUSION

This thesis work represents a study to develop an environment for adapting FMUs

which implement FMI Co-simulation interface to distributed simulation

environment, specifically HLA environment. In order to achieve the goal, FMUs are

wrapped as HLA federate with a particular mapping approach. The mapped FMUs

are called as Functional Mockup Unit Federate (FMUFd). The wrapping approach to

generate these FMUFds can be used for FMUs which implement FMI for Co-

simulation version 1. Similarly, FMUFds can join to any HLA federation which

supports IEEE Std 1516 standard.

In order to see the FMU wrapping approach in action, a simple distributed simulation

environment is developed. In demonstration, two FMUFds are generated using the

wrapping approach, namely MissileFMUFd and AircraftFMUFd, from two FMUs

which implement FMI for Co-Simulation version 1. These generated FMUFds are

connected to the distributed simulation environment as the HLA, specifically MAK

HLA RTI [15].

With the FMUFd, a system model can be simulated as a part of an aggregate

simulation of its operational setting. Therefore, the model can be tested, analyzed and

evaluated from the beginning of development phases to final product. Moreover, this

promotes a high level of reusability of system models supporting FMI. For example,

missile model software can be run on the missile and, at the same time, this software

can be used in a training simulator without any modification needed.

6.1 Prospects for Future Research

Although Functional Mockup Interface is a new standard in modeling technology, it

appears to gather an increasing popularity and usage in many different fields all

around the world. Distributed simulation environments are one of these areas of

52

usage. At this point, joining FMUs to HLA, which is a distributed simulation

environment, is required. The work mentioned in this thesis shows that FMUs which

implements FMI for Co-simulation can be manipulated to be able to join HLA

environment. The developed approach supports MAK RTI vendor HLAs.

Considering the expanding generality of the environments, wrapping approaches,

which provides ability for FMUs to join other RTI vendors, should be developed.

On the other hand, considering the problem of joining FMUs to distributed

simulation environments on its own, mapping FMUs to join other different

distributed simulation environments such as Distributed Interactive Simulation (DIS)

and Data Distribution Service (DDS) can be an attractive field of study.

In the work conducted, FMUFd appears as a layer between HLA environment and

FMU. As an alternative to this approach, instead of layering the wrapping FMUs to

join distributed simulation environment process, this layer can also be compacted in

FMU itself. This approach comes up with generating FMUs with a specified system.

At this point, prior to joining FMUs to HLA environment, a special framework used

for FMU generation can be developed in order to ease and customize the process of

FMU generation.

53

REFERENCES

[1] IEEE Standards Association. (2000). 1516-2000 IEEE Standard for Modeling

and Simulation (M&S) High Level Architecture (HLA) - Framework and

Rules.

[2] IEEE Standards Association. (2000). 1516-2000 IEEE Standard for Modeling

and Simulation (M&S) High Level Architecture (HLA) - Federate Interface

Specification.

[3] IEEE Standards Association. (2000). 1516-2000 IEEE Standard for Modeling

and Simulation (M&S) High Level Architecture (HLA) - Object Model

Template (OMT) Specification.

[4] MODELISAR Consortium. (2010, January). Functional Mock-up Interface

for Model Exchange Version 1.0. Retrieved from www.fmi-standard.org.

[5] MODELISAR Consortium. (2010, October). Functional Mock-up Interface

for Co-Simulation Version 1.0. Retrieved from www.fmi-standard.org.

[6] Stenzel, C. (2008). Distributed Simulation in Technical Applications. Paper

presented at X International PhD Workshop, OWD 2008, Conference

Archives PETiS, Vol. Gliwice, Poland, 513-518.

[7] Lasnier, G., Cardoso, J., Siron, P., Pagetti, C. and Derler, P. (2013, October

30 – November 01). Distributed Simulation of Heterogeneous and Real-time

Systems. Paper presented at 17th IEEE/ACM International Symposium on

Distributed Simulation and Real Time Applications - IEEE/ACM DS-RT.

Delft, Netherlands.

[8] Stenzel, C., Pawletta, S. (2008). CERTI - Bindings to Matlab and Fortran.

Retrieved from http://www.mb.hs-

wismar.de/~stenzel/software/MatlabHLA.html

http://www.fmi-standard.org/
http://www.fmi-standard.org/
http://www.mb.hs-wismar.de/~stenzel/software/MatlabHLA.html
http://www.mb.hs-wismar.de/~stenzel/software/MatlabHLA.html

54

[9] HLA Toolbox™. The MATLAB® Interface to HLA. Retrieved from

http://www.forwardsim.com

[10] Awais, M. U., Palensky, P., Elsheikh, Widl, A., E, Matthias, S. (2013,

October). The High Level Architecture RTI as a master to the Functional

Mock-up Interface components. Vienna, AUSTRIA.

[11] Hollenbach, J. W. (2009). Inconsistency, Neglect, and Confusion; A

Historical Review of DoD Distributed Simulation Architecture Policies.

Florida, USA

[12] Bao, J., Feng, H., Wu, D., Lin, Y. (2011). Research on Hardware-In-the-Loop

Missile Weapon System Simulation Based on HLA and Modelica. CHINA.

[13] Aronsson, P., Hedberg, D., Tronarp, O. (2012, October). A Collaborative

Platform for Systems Engineering tools over the Internet. Retrieved from

www.wolframmathcore.com.

[14] Saunders, R. (2000 to present). 1516 WG - HLA Evolved Working Group.

Retrieved from http://standards.ieee.org/develop/wg/1516_WG.html

[15] MAK Technologies (2013). MAK RTI User’s Guide

[16] MODELISAR Consortium (2012). Functional Mock-up Interface for Model

Exchange and Co-simulation Version 2.0 Beta 4. Retrieved from www.fmi-

standard.org

[17] MODELISAR Consortium (2011). FMI PLM Interface Version 1.0.

Retrieved from www.fmi-standard.org

[18] QTronic Company Developer Team (2010). FMU SDK version 1.0.2.

Retrieved from http://www.qtronic.de/en/fmusdk.html

[19] Topçu, O., Oğuztüzün, H. (2012) Layered Simulation Architecture: A

practical approach. Ankara, TURKEY

http://www.forwardsim.com/
http://www.wolframmathcore.com/
http://standards.ieee.org/develop/wg/1516_WG.html
http://www.fmi-standard.org/
http://www.fmi-standard.org/
http://www.fmi-standard.org/
http://www.qtronic.de/en/fmusdk.html

55

[20] Shanks, G. (2003). Real-time Platform Reference Federation Object Model

(RPR FOM) Version 2.0D17, Simulation Interoperability Standards

Organization.

[21] Stage Sales Team. (2013). Stage, A Complete Simulation Development

Environment. Retrieved from http://www.presagis.com

http://www.presagis.com/

56

57

APPENDIX A

HLA DATA TYPE PADDING RULES

HLA requires that certain types of data start at a particular location. Therefore,

usually there is a requirement for extra bytes, namely padding bytes, between data

fields in a structure. To illustrate, consider a structure where the first field is a byte

and second field is a double. Double must start at a position which is a multiple of 8.

Therefore, seven bytes of padding is needed between byte field and double field for a

proper structure.

The padding rules are used to determine exact positions of the fields of a data type,

which constructs the data structure of an attribute. These rules for constructed data

types (arrays, fixed records, and variant records) as described below [2]:

Base Datatype

Each base type has a boundary value as provided in Table 1. During the calculation

of padding, this table is used to calculate structured boundary value.

Table 1 – Basic Datatype Boundary Values

Basic representation Octet Boundary Value

HLAoctet 1

HLAoctetPairBE 2

HLAinteger16BE 2

HLAinteger32BE 4

HLAinteger64BE 8

HLAfloat32BE 4

HLAfloat64BE 8

HLAoctetPairLE 2

58

HLAinteger16LE 2

HLAinteger32LE 4

HLAinteger64LE 8

HLAfloat32LE 4

HLAfloat64LE 8

Simple Datatype

Same base data type padding rules also apply for simple datatype.

Enumerated Datatype

Same base data type padding rules also apply for enumerated datatype.

Fixed Record Datatype

The padding bytes are added to each field when necessary to ensure that the next

field in the record is properly aligned. After a field, the padding bytes can be

calculated by using the following formula:

()

where refers to the offset of the i'th field of the record as bytes, refers

to the size of the i'th field of the record as bytes and is the octet boundary value

of field (i + 1)th of the record.

Variant Record Datatype

The HLAvariantRecord encoding shall consist of the discriminant followed by a

field. This field is chosen by using the value of discriminant. The discriminant is

placed at offset 0 of the record. The padding bytes are calculated by using the

following formula:

()

where refers to the size of the discriminant as bytes, and refers to the

maximum of the octet boundary values of the alternatives.

59

HLA Array Datatype with Fixed Cardinality

The padding bytes between i’th and (i+1)th elements can be calculated by using

following formula:

()

where is the size of the i’th element of the array in bytes,

 is the octet boundary value of the element type.

HLA Array Datatype with Variant Cardinality

The first 4 bytes are used to present the number of the elements in the array. These 4

bytes are encoded as HLAinteger32BE. The padding bytes can be added between the

inform element and the first element of the sequence. The padding bytes can be

found by using following formula:

()

where is the octet boundary value of the element type.

60

61

APPENDIX B

FMUFD CONFIGURATION DIRECTORY STRUCTURE

Base Directory

MapFMIInputHLAObject.txtMapFMIOutputHLAObject.txtfederationInformation SOM

Object1 Object2 Object2Initial Object3InitialObject3

Figure 16 – The FMUFd Configuration Directory Structure

The FMUFd uses a configuration directory structure to map between FMU and

Federation. The directory structure is given at Figure 16. The detail of the

configuration structure is explained in following:

Base Directory

Base directory is the root of the configuration structure and its name can be anything.

It should contain at least 3 files and one folder named as SOM.

FederationInformation

This file is used for informing FMUFd about federation information in which

FMUFd will be connected to. The file should contain following information:

62

federationName = The Name of the fedation

federationFile = The path for the FOM XML file

federateName = The name of the FMUFd in federation

MapFMIInputHLAObject

This file is used for informing FMUFd to map between FMU input variables and

HLA Object class’s attribute’s data type’s sub data types’ until it reaches the basic

data type. The file structure should be given below:

ScalarVariable1 = ObjectClass|Attribute|DataType:DataType

:VariantRecordDataType[discriminant Name]:DataType…

ScalarVariable2 = ObjectClass|Attribute|DataType:DataType:DataType…

The left side of the equation represents the FMU object class name and right side of

the equation represents the HLA object class’s attribute’s data type. The object class,

attribute and data type are spitted with ―|‖ character. A scalar variable can be mapped

with only basic data type. If the datatype is complex then by using ―:‖ character, its

sub data types should be written until reaching the basic data type. If any of the data

type represents the variant record data type, then the name of discriminant should be

written between the square brackets.

Example usage of this file is given below:

Target_Ecef_X =

 Aircraft|Spatial|SpatialStruct:DeadReckoningAlgorithm-A-

Alternatives:SpatialStructDeadReckoningAlgorithm[DRM_FPW]:SpatialFPS

truct

:WorldLocation:WorldLocationStruct:X:HLAfloat64BEmetersperfectalways

:HLAfloat64BE

MapFMIOutputHLAObject

This file is used to inform FMUFd to map between FMU output variables and HLA

Object class attribute’s data type’s sub data types until it reaches the basic data type.

The file structure is given below:

63

ScalarVariable1 = ObjectClass|Attribute|DataType:DataType

:VariantRecordDataType[discriminant Name]:DataType…

ScalarVariable2 = ObjectClass|Attribute|DataType:DataType:DataType…

The left side of the equation represents the FMU object class name and right side of

the equation represents the HLA object class’ attribute’s data type. The object class,

attribute and data type are split with ―|‖ character. A scalar variable can be mapped

with only basic data type. If the datatype is a complex data type then by using ―:‖

character, its sub data types should be written until reaching the basic data type. If

any of the data type represents the variant record data type, then the name of

discriminant should be written between the square brackets.

Example usage of this file is given below:

x = Aircraft|Spatial|SpatialStruct:DeadReckoningAlgorithm-A-

Alternatives

:SpatialStruct-DeadReckoningAlgorithm[DRM_FPW]

:SpatialFPStruct:WorldLocation

:WorldLocationStruct:X:HLAfloat64BEmetersperfectalways:HLAfloat64BE

SOM

The directory named as SOM contains all the object class information as different

files that will be used by FMUFd. By using these files, FMUFd learns which object

class and its which attributes will be subscribed or published.

The SOM directory contains 2 types of files.

One type of the files represents object class. For every object class there should be a

file with the same name with object class. This file’s first line should contain the full

path of the object class as object class can have same base classes. After that line, the

below lines of @Publish or @Subscribe has tags will represent the published or

subscribed attributes of that object class. Those attributes can be written in that class

or its base classes. The file structure is given below:

The full path of the object class

64

@Publish

Attribute1

Attribute2

Attribute4

…

@Subscribe

Attribute2

Attribute3

Attribute5

…

For example, let’s think about the Aircraft object class on RPR2-D17 FOM file

developed by SISO [17]. The file name should be Aircraft and file content can be as

follows:

HLAobjectRoot.BaseEntity.PhysicalEntity.Platform.Aircraft

@Publish

EntityType

EntityIdentifier

Spatial

DamageState

FirePowerDisabled

FlamesPresent

ForceIdentifier

Marking

SmokePlumePresent

@Subscribe

EntityType

EntityIdentifier

Spatial

DamageState

FirePowerDisabled

FlamesPresent

65

ForceIdentifier

Marking

SmokePlumePresent

The SOM has another type of file which is named as object class name with ―Initial‖

postfix. These files are optional and used for initializing the object class instance

values. The structure of file is as follows:

ObjectClass|Attribute|DataType:DataType:VariantRecordDataType[discrimi

nant Name]:DataType… = value1, value2, value3…

The datatype path doesn’t need to go until base datatype. Instead, values can be

given with order of data type fields. For example, Aircraft object class (represented

RPR2-D17 FOM file [17]) initial values file should be named as AircraftInitial and

its contant can be as follows:

EntityType|EntityTypeStruct:EntityKind = 1

EntityType|EntityTypeStruct:Domain = 2

EntityType|EntityTypeStruct:CountryCode = 225

EntityType|EntityTypeStruct:Category = 1

EntityType|EntityTypeStruct:Subcategory = 3

EntityType|EntityTypeStruct:Specific = 3

EntityType|EntityTypeStruct:Extra = 0

EntityIdentifier|EntityIdentifierStruct:FederateIdentifier:FederateIdentifierSt

ruct

:SiteID = 55

EntityIdentifier|EntityIdentifierStruct:FederateIdentifier:FederateIdentifierSt

ruct

:ApplicationID = 65

EntityIdentifier|EntityIdentifierStruct:EntityNumber = 1

Spatial|SpatialStruct:DeadReckoningAlgorithm-A-Alternatives

:SpatialStruct-DeadReckoningAlgorithm[DRM_FPW]

:SpatialFPStruct:WorldLocation:WorldLocationStruct = 6379160, -111423,

3205.25

Spatial|SpatialStruct:DeadReckoningAlgorithm-A-Alternatives

66

:SpatialStruct-

DeadReckoningAlgorithm[DRM_FPW]:SpatialFPStruct:IsFrozen = 0

Spatial|SpatialStruct:DeadReckoningAlgorithm-A-Alternatives

:SpatialStruct-

DeadReckoningAlgorithm[DRM_FPW]:SpatialFPStruct:Orientation

:OrientationStruct = -1.0198171139, 0.0000000347, 2.2236523628

DamageState|DamageStatusEnum32 = 1

FirePowerDisabled|OMT13boolean = 0

FlamesPresent|OMT13boolean = 0

ForceIdentifier|ForceIdentifierEnum8 = 1

Marking|MarkingStruct = 1,'F','-','1','6'

SmokePlumePresent|OMT13boolean = 0

67

APPENDIX C

MISSILEFMUFD CONFIGURATION DIRECTORY

MUNITION

MapFMIInputHLAObject.txtMapFMIOutputHLAObject.txtfederationInformation SOM

Aircraft MunitionInitialCulturalFeature Munition

Figure 17 – MissileFMUFd Configuration Directory Structure

FMUFd which will use the directory structure shown in Figure 17 to represent the

monition of FMU model in distributed simulation environment. The content of this

configuration structure is given below:

FederationInformation

federationName = Battlefield

federationFile = ../resource/MissileProject/RPR2-D17.xml

federateName = MunitionFederate

MapFMIInputHLAObject

Target_Ecef_X = Aircraft|Spatial|SpatialStruct

68

:DeadReckoningAlgorithm-A-Alternatives:SpatialStruct-

DeadReckoningAlgorithm[DRM_FPW]:SpatialFPStruct:WorldLocation

:WorldLocationStruct:X:HLAfloat64BEmetersperfectalways:HLAfloat64BE

Target_Ecef_Y = Aircraft|Spatial|SpatialStruct

:DeadReckoningAlgorithm-A-Alternatives:SpatialStruct-

DeadReckoningAlgorithm[DRM_FPW]:SpatialFPStruct:WorldLocation

:WorldLocationStruct:Y:HLAfloat64BEmetersperfectalways:HLAfloat64BE

Target_Ecef_Z = Aircraft|Spatial|SpatialStruct

:DeadReckoningAlgorithm-A-Alternatives:SpatialStruct-

DeadReckoningAlgorithm[DRM_FPW]:SpatialFPStruct:WorldLocation

:WorldLocationStruct:Z:HLAfloat64BEmetersperfectalways:HLAfloat64BE

Launcher_Ecef_X = CulturalFeature|Spatial|SpatialStruct

:DeadReckoningAlgorithm-A-Alternatives:SpatialStruct-

DeadReckoningAlgorithm[DRM_FPW]:SpatialFPStruct:WorldLocation

:WorldLocationStruct:X:HLAfloat64BEmetersperfectalways:HLAfloat64BE

Launcher_Ecef_Y = CulturalFeature|Spatial|SpatialStruct

:DeadReckoningAlgorithm-A-Alternatives

:SpatialStruct-

DeadReckoningAlgorithm[DRM_FPW]:SpatialFPStruct:WorldLocation

:WorldLocationStruct:Y:HLAfloat64BEmetersperfectalways:HLAfloat64BE

Launcher_Ecef_Z = CulturalFeature|Spatial|SpatialStruct

:DeadReckoningAlgorithm-A-Alternatives:SpatialStruct-

DeadReckoningAlgorithm[DRM_FPW]:SpatialFPStruct:WorldLocation

:WorldLocationStruct:Z:HLAfloat64BEmetersperfectalways:HLAfloat64BE

MapFMIOutputHLAObject

Missile_Ecef_X = Munition|Spatial|SpatialStruct

:DeadReckoningAlgorithm-A-Alternatives

:SpatialStruct-DeadReckoningAlgorithm[DRM_FPW]:SpatialFPStruct

:WorldLocation:WorldLocationStruct:X:HLAfloat64BEmetersperfectalways

:HLAfloat64BE

Missile_Ecef_Y = Munition|Spatial|SpatialStruct

69

:DeadReckoningAlgorithm-A-Alternatives

:SpatialStruct-DeadReckoningAlgorithm[DRM_FPW]:SpatialFPStruct

:WorldLocation:WorldLocationStruct:Y:HLAfloat64BEmetersperfectalways

:HLAfloat64BE

Missile_Ecef_Z = Munition|Spatial|SpatialStruct

:DeadReckoningAlgorithm-A-Alternatives:SpatialStruct-

DeadReckoningAlgorithm[DRM_FPW]:SpatialFPStruct

:WorldLocation:WorldLocationStruct:Z:HLAfloat64BEmetersperfectalways

:HLAfloat64BE

SOM

Aircraft:

HLAobjectRoot.BaseEntity.PhysicalEntity.Platform.Aircraft

@Subscribe

EntityType

EntityIdentifier

Spatial

DamageState

FirePowerDisabled

FlamesPresent

ForceIdentifier

Marking

SmokePlumePresent

CulturalFeature:

HLAobjectRoot.BaseEntity.PhysicalEntity.CulturalFeature

@Subscribe

EntityType

EntityIdentifier

Spatial

Munition:

70

HLAobjectRoot.BaseEntity.PhysicalEntity.Munition

@Publish

EntityType

EntityIdentifier

Spatial

DamageState

FirePowerDisabled

FlamesPresent

ForceIdentifier

Immobilized

Marking

SmokePlumePresent

Munition:

EntityType|EntityTypeStruct = 2, 1, 225, 1, 1, 13, 186

EntityIdentifier|EntityIdentifierStruct = 55, 65, 2

Spatial|SpatialStruct:DeadReckoningAlgorithm-A-Alternatives

:SpatialStruct-DeadReckoningAlgorithm[DRM_FPW]:SpatialFPStruct

:WorldLocation:WorldLocationStruct = 6379160, -111423, 3205.25

Spatial|SpatialStruct:DeadReckoningAlgorithm-A-Alternatives

:SpatialStruct-

DeadReckoningAlgorithm[DRM_FPW]:SpatialFPStruct:IsFrozen = 0

Spatial|SpatialStruct:DeadReckoningAlgorithm-A-Alternatives

:SpatialStruct-DeadReckoningAlgorithm[DRM_FPW]:SpatialFPStruct

:Orientation:OrientationStruct = -1.0198171139, 0.0000000347,

2.2236523628

DamageState|DamageStatusEnum32 = 1

FirePowerDisabled|OMT13boolean = 0

FlamesPresent|OMT13boolean = 0

ForceIdentifier|ForceIdentifierEnum8 = 1

Immobilized|OMT13boolean = 0

Marking|MarkingStruct = 1,'f','u','z','e'

71

SmokePlumePresent|OMT13boolean = 0

72

73

APPENDIX D

TARGETFMUFD CONFIGURATION DIRECTORY

TargetFMUFd represents a target aircraft model which is simply flying with constant

velocity and direction.

AIRCRAFT

MapFMIInputHLAObject.txtMapFMIOutputHLAObject.txtfederationInformation SOM

CulturalFeature AircraftInitialAircraft

Figure 18 – AircraftFMUFd Configuration Directory Structure

AircraftFMUFd will use the directory structure shown in Figure 18 to represent

aircraft FMU model in distributed simulation environment. The content of this

configuration structure is given below:

FederationInformation

federationName = Battlefield

federationFile = ../resource/MissileProject/RPR2-D17.xml

federateName = TargetFederate

MapFMIInputHLAObject

Empty file

74

MapFMIOutputHLAObject

Ecef_X = Aircraft|Spatial|SpatialStruct

:DeadReckoningAlgorithm-A-Alternatives:SpatialStruct-

DeadReckoningAlgorithm[DRM_FPW]:SpatialFPStruct

:WorldLocation:WorldLocationStruct:X:HLAfloat64BEmetersperfectalways

:HLAfloat64BE

Ecef_Y = Aircraft|Spatial|SpatialStruct

:DeadReckoningAlgorithm-A-Alternatives:SpatialStruct-

DeadReckoningAlgorithm[DRM_FPW]:SpatialFPStruc

t:WorldLocation:WorldLocationStruct:Y:HLAfloat64BEmetersperfectalways

:HLAfloat64BE

Ecef_Z = Aircraft|Spatial|SpatialStruct

:DeadReckoningAlgorithm-A-Alternatives:SpatialStruct-

DeadReckoningAlgorithm[DRM_FPW]:SpatialFPStruct

:WorldLocation:WorldLocationStruct:Z:HLAfloat64BEmetersperfectalways

:HLAfloat64BE

SOM

Aircraft:

HLAobjectRoot.BaseEntity.PhysicalEntity.Platform.Aircraft

@Publish

EntityType

EntityIdentifier

Spatial

DamageState

FirePowerDisabled

FlamesPresent

ForceIdentifier

Marking

SmokePlumePresent

@Subscribe

75

EntityType

EntityIdentifier

Spatial

DamageState

FirePowerDisabled

FlamesPresent

ForceIdentifier

Marking

SmokePlumePresent

AircraftInitial:

EntityType|EntityTypeStruct:EntityKind = 1

EntityType|EntityTypeStruct:Domain = 2

EntityType|EntityTypeStruct:CountryCode = 225

EntityType|EntityTypeStruct:Category = 1

EntityType|EntityTypeStruct:Subcategory = 3

EntityType|EntityTypeStruct:Specific = 3

EntityType|EntityTypeStruct:Extra = 0

EntityIdentifier|EntityIdentifierStruct:FederateIdentifier:FederateIdentifierSt

ruct:SiteID = 55

EntityIdentifier|EntityIdentifierStruct:FederateIdentifier:FederateIdentifierSt

ruct:ApplicationID = 65

EntityIdentifier|EntityIdentifierStruct:EntityNumber = 1

Spatial|SpatialStruct:DeadReckoningAlgorithm-A-Alternatives:SpatialStruct-

DeadReckoningAlgorithm[DRM_FPW]:SpatialFPStruct:WorldLocation:Wor

ldLocationStruct = 6379160, -111423, 3205.25

Spatial|SpatialStruct:DeadReckoningAlgorithm-A-Alternatives:SpatialStruct-

DeadReckoningAlgorithm[DRM_FPW]:SpatialFPStruct:IsFrozen = 0

Spatial|SpatialStruct:DeadReckoningAlgorithm-A-Alternatives:SpatialStruct-

DeadReckoningAlgorithm[DRM_FPW]:SpatialFPStruct:Orientation:Orienta

tionStruct = -1.0198171139, 0.0000000347, 2.2236523628

DamageState|DamageStatusEnum32 = 1

76

FirePowerDisabled|OMT13boolean = 0

FlamesPresent|OMT13boolean = 0

ForceIdentifier|ForceIdentifierEnum8 = 1

Marking|MarkingStruct = 1,'t','a','r','g','e', 't'

SmokePlumePresent|OMT13boolean = 0

