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ABSTRACT 

 

 

ANALYSIS AND MODELLING FOR RISK MANAGEMENT FOR 

UNDERGROUND COAL MINES’ SAFETY 

 

 

 

Eratak, Özlem Deniz 

Ph.D, Department of Mining Engineering 

Supervisor: Prof. Dr Celal Karpuz 

            January, 2014, 156 pages 

 

Safety in underground coal mining has become an important issue because of 

increasing number of accidents. There are many different hazards may cause these 

accidents and the most efficient method for coping with risks is the use of risk 

management techniques.    

 

In this thesis, accident data including workday losses, age of the injured, organ 

affected by accident, season, shift and reason of the accident was collected from TKI 

mines (ELI- Soma Eynez and GLI Tuncbilek) and TTK mines. Those variables were 

initially analysed by using basic statistics to have the general information about the 

most hazardous conditions. Comparison was made between these mines. Then, a risk 

analysis study was performed using severity, probability and exposure components. 

Risk matrices were developed and the most hazardous places were determined 

together with comparison of those three mines.  Probability analysis was performed 

to understand the expected accident frequencies in each mine and reliability in a time 

period between accidents.  

 

The study was also targeted to develop a model for severity component using three 

different methods which are regression, neural network and fuzzy logic techniques. 

These techniques applied to every mines data and decision analysis was made to 

choose the most suitable technique by comparing the results. Finally, future accident 
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estimation models were developed with regression and neural network techniques 

based on the data such as number of accidents, deaths, injured, total working hours, 

total workers and total raw coal production of those mines. 

 

Key Words: Risk analysis, risk management, coal mining, neural network, 

regression, fuzzy logic  
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ÖZ 

 

 

YERALTI KÖMÜR MADENCİLİĞİNDE GÜVENLİK İÇİN RİSK 

YÖNETİMDE ANALİZ VE MODELLEME  

 

 

 

Eratak, Özlem Deniz 

Doktora, Maden Mühendisliği Bölümü 

 Tez Yöneticisi: Prof. Dr Celal Karpuz 

            Ocak, 2014, 156 sayfa 

 

Yeraltı kömür madenciliğinde iş güvenliği; kaza sayılarının artmasıyla birlikte 

oldukça önemli bir konu haline gelmiştir. Bu kazalara bir çok değişik tehlike neden 

olmakla birlikte, riskler ile başedebilmenin en etkili yolu risk yönetimi teknikleridir.  

 

Bu tezde, iş günü kayıpları, kazaya uğrayan kişinin yaşı ve hangi organının 

etkilendiği, kazanın gerçekleştiği mevsim, vardiya ve kazanın nedeni gibi kaza 

verileri, TKI madenleri (ELI-Soma Eynez ve GLI Tuncbilek) ile TTK madenlerinden 

toplanmıştır. İlk olarak, değişkenler basit istatistik yöntemleriyle analiz edilip en 

tehlikeli durumlar hakkında genel bilgi edinilmiştir. Daha sonra risk analizi çalışması 

yapılmış olup, çalışmada kazaların şiddeti, olasılığı ve maruziyet bileşenleri dikkate 

alınmıştır. Buna istinaden risk matrisleri oluşturulmuş ve en tehlikeli alanlar, üç 

madenin de karşılaştırılmasıyla belirlenmiştir. Her bir madendeki beklenen kaza 

sıklığı ve kazalar arasında geçen zaman belirlenmek üzere olasılık analizi 

gerçekleştirilmiştir.  

 

Ayrıca çalışma, şiddet bileşenini belirlemek için regresyon, sinir ağları ve bulanık 

mantık teknikleriyle model oluşturmayı hedeflemiştir. Bu teknikler, bütün maden 

verileri üzerinde uygulanarak, karşılaştırma analiziyle en uygun teknik belirlenmiştir. 

Son olarak, gelecek kaza tahmin modeli regresyon ve sinir ağları teknikleriyle, her 
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bir madene ait kaza sayıları, ölümler, yaralı sayıları, toplam çalışma saatleri ve 

toplam ham kömür üretimi verileriyle gerçekleştirilmiştir.  

 

Anahtar Kelimeler: Risk analizi, risk yönetimi kömür madenciliği, sinir ağları, 

regresyon, bulanık mantık 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

Though the history of coal extraction dates back to at least 287 B.C. (Oleson, 2008), 

its consumption increased very rapidly in 18
th

 century because of its requirement in 

steam engines during industrial revolution.  As a result of this increasing demand 

pressure, more and more mining sites were getting developed for commercial 

purpose, and new machines were also invented and used for coal extraction 

.Underground mining is relatively more sophisticated as compared to surface mining, 

as it can be used to recover coal from much deeper layers of earth. This method was 

being developed during industrial revolution, and was found to be more hazardous 

than conventional surface mining method (Langton, 1979). All these resulted in poor 

working conditions for industry labours and the scenario further worsened after the 

discovery of assembly line manufacturing process. Such methods resulted in 

improved production at the expense of labours working in dangerous working 

conditions for long hours, and increased frequency of such accidents (Karmis, 2001).  

 

Several authors have described accidents since industrial revolution. For instance, 

(Richards, 2007) provided details on nine coal mine accidents in Pennsylvania States. 

There are numerous latest examples of major coal-mine accidents as well. For 

example, an accident as recent as that of December 2009, Sebnem, 2009 reported the 

accident of an explosion in underground coal mine due to build-up of methane gas, 

which caused a fire claiming the lives of 19 workers in Bursa, Turkey. This was 

followed by implementation of tighter rules and safety regulations for industrial 

labours of Turkey (Gozuyilmaz, 2003). This benefitted underground coal mines, 

where death rates were more than that in any other sector employing industrial 

labours. 
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These industrial developments and underground coal mine accidents motivated the 

research work for discovery and identification of methods to remove them.  There 

are several approaches of analysing the reasons of such accidents. Ericson (2005) 

explained how safety risks are related to accidents, and suggested several types of 

hazard analysis techniques, including both qualitative and quantitative methods. 

Qualitative methods are used for exploration and identification purpose, but 

quantitative methods provide further insights on other aspects, such as relative effect 

of accidents on causes. Some past research works on quantitative methods include 

that statistical analysis for development of a relationship between such accidents and 

causes, and the analysis of the extent to which they affect the probability of accident.  

(McDonald et.al. 1980) Major technical improvements and research work done on 

similar projects since 1980 have opened up opportunities for statistical analysis and 

modelling of underground coal mines using new and sophisticated methods. 

1.1 Scope of the Study 

Understanding risk is a general difficulty in mining sector and it is very important to 

foresee the accidents using the previous accident statistics. 

 

Since risk is derived from severity, probability and exposure of accidents (or a 

combination of both), physical quantities representing these two may be considered 

as the “result quantities” of statistical analysis. For instance, probability may be 

represented by number of accidents corresponding to a particular parameter. 

Similarly, severity may be represented by damage in the form of number of 

workdays lost, injuries, deaths or disability cases per accident, and the product of 

severity and frequency may be represented by cumulative results, such as overall 

number of injuries, deaths or disability cases throughout the history. These all may 

be considered as output parameters while the cause of accident may be linked to a 

reason of accident or type of hazard. However, there are several other parameters 

directly or indirectly affecting the outputs, such as organ affected by accident, 

working shift (day/evening/night), time of the year or even age of worker. Some 
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inputs like reason of damage and affected organ directly affect the injured person 

while the effects of age, time of year or work shift may be assumed to affect them 

indirectly.  

 

The general aim of the study is to develop a relationship between accidents and their 

consequences in two lignite mines of TKI (ELI-Eynez and GLI-Tuncbilek) and some 

TTK underground  hard coal mines using different methods together with various 

factors responsible for it, so that appropriate measures are taken to prevent or 

minimize them. 

 

 

This aim will be achieved through the following objectives: 

 

 Providing the basic statistics of accident data related to the lignite and hard 

coal mines 

 Study of quantitative risk analysis technique for coal mining industry 

 Probability analysis of accidents with the previous accident data 

 Quantitative and semi-quantitative analysis of the given data for 

establishment of a relation between accidents and the expected causes,  using 

the three methods -  regression (Ordinary Least Square and improved), neural 

networks and fuzzy logic. 

 Future accident estimation using regression and neural network techniques. 

1.2. Organization of Thesis 

Thesis is organized as follows. Basic definitions, reasons, identifications, theories 

and analyses in risk assessment are provided in Chapter 2. This chapter discusses the 

theory of hazards, mine risk management and accidents in Turkey and also explains 

the manner in which safety hazards are related to accidents.  

 

Chapter 3 describes risk assessment techniques commonly used in mines which show 

the way of the study. This chapter includes; informal techniques, basic formal 
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techniques and advanced formal techniques. Chapter 3 covers those factors which 

affect the performance of implementation of safety factors and previous risk 

assessment studies. 

 

Chapter 4 reviews the literature on modelling methodologies which are Poisson 

distribution, regression analysis, parsimonious regression analysis, neural networks 

and fuzzy logic techniques. In the chapter previous studies on these modelling are 

also mentioned. 

 

In Chapter 5, data collection and basic data analysis were done with accident data of 

ELI, GLI and TTK mines and a comparison was made between TKI and TTK mines 

according to simple statistics. 

 

In Chapter 6, a risk analysis methodology is introduced; the probabilities, severities 

and frequencies are calculated considering accident reason, affected organs, shifts, 

seasons and age of the workers using probability, severity and frequency of the 

accidents. 

  

Chapter 7 gives a brief description about statistical methodologies with pre-

processing of data. In the chapter probability and severity components are discussed.  

The Poisson distribution, regression analysis, neural network and fuzzy logic are 

introduced in detail and modelling and analysis are performed.  

 

In Chapter 8, Future accident estimation modelling technique is presented by using 

number of workers, number of working hours and total raw production of each mine.  

 

Chapter 9 presents the results and discussions on the study, comparison of 

methodologies. Finally, Chapter 10 gives the conclusion and recommendations of the 

study. 
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CHAPTER 2 

 

 

RISK AND RISK MANAGEMENT 

 

 

 

2.1. Definitions  

This section explains various definitions and technical terms covered in the thesis. 

Most of the definitions might be used differently under different contexts, so the 

most relevant one chosen. Definitions in quotes are adopted from (Ericson, 2005) 

unless otherwise stated. 

 

1. Accident is defined as “Unexpected event that culminates in the death or 

injury of personnel, system loss, or damage to property, equipment, or the 

environment.” In the current context, accident will be frequently replaced by 

‘incident’, and the definition also gets slightly modified to the following. An 

incident is called as an accident if it causes some loss of input expected from 

worker. Such a loss could be in the form of either loss of efficiency, or loss of 

hours or days. 

2. Hazard is defined as “Any real or potential condition that can cause injury, 

illness, or death to personnel; damage to or loss of a system, equipment, or 

property; or damage to the environment.” For this study, it can be better 

defined as ‘any real or potential condition resulting in undesirable change in 

properties of accidents, such as increased workday loss per accident, or 

increased severity of accidents. For example, lack of awareness in workers 

about safety methods is an example of hazard. In this work, hazard has the 

same meaning as causes of accidents. 
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3. Failure Rate is defined as the reciprocal of amount of time required for 

63.2% probability of mishap. The derivation of this will be discussed under 

the subject of hazard theory. 

4. Risk is defined as “measure of expected loss presented by a potential event, 

such as a financial failure event, a schedule failure event, or a mishap event. 

In system safety it refers to mishap risk, where risk = probability * intensity 

of damage”. According to this definition, risk is maximum when probability 

of occurrence of the event is 100%, which counters the definition provided by 

Singhal and Malhotra (2000), as a measure of uncertainty of event. This 

definition may be considered analogous to ‘expected outcome’, as defined by 

(Heizer, Rajashekhar and Render, 2009) in terms of operations management 

in the same manner. In other words, in the current context, risk is defined as a 

measure of expected undesirable effect of a hazard. 

5. Risk Assessment is defined as “Process of determining the risk presented by 

the identified hazards.” In current context, this description can be extended to 

a complete package of risk determination, risk treatment, risk monitoring & 

review, and risk related communication & consultation. Thus, it contains all 

steps of risk management after hazards have been identified. 

6. Risk Management is defined as a combination of processes of identification 

of risky factors, assessment of risk associated with them and continual 

repetition of this process. 

7. System. This is defined as “Composite, at any level of complexity, of 

personnel, procedures, materials, tools, equipment, facilities, and software. 

The elements of this composite entity are used together in the intended 

operational or support environment to perform a given task or achieve a 

specific purpose, support, or mission requirement.” For instance, for a mine, 

the system might consists of persons like miners, supervisors, management, 

plus processes like movement of material, extraction, loading/unloading, 

communication et cetra. 
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2.2. Hazard Theory 

Risk assessment of activities is a fairly subjective research area, and so, no ideal 

technique can be defined for it. Ericson (2005) proposed twenty two techniques of 

hazard analysis. Iannacchione, Brady and Varley (2008) provided for three broad 

types of classification for such techniques. 

 

The definition of risk can be further extended with the help of a decision tree 

diagram, given in Figure 1. The first factor is task output, which can be divided in 

two or three parts. For instance, whether it is worth the efforts to start extraction 

operations in a coal mine, considering the fact that some mishaps might claim lives 

of workers or not.  Risky operations should be initiated only if they are found 

profitable enough to cover up for that possibility of danger. This decision is beyond 

the scope of this research, because it is decided that the work is to be executed. Only 

thing which can be assumed is that work can have hazards only if some minimum 

return criteria are met. Second factor is hazard probability. Out of the various cases 

of return, the one with higher returns might be considered for relatively higher 

hazard probability, but the one with the lowest returns out of accepted (say average, 

if high & average were selected) will have a stricter selection criteria. Next factor is 

severity, which comes to picture if the combined effects of two factors neither 

approves nor rejects the situation. Since output is directly related to the three factors 

(frequency, probability and severity), risk is analogous to a product of output which 

is probability and severity. However where output is not considered, risk can simply 

be quantified as risk = probability * severity of accident. 
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Figure 1. Decision tree diagram for risk (Yuan, 1995) 

 

To reduce system risk, it is necessary to understand the root cause of such risks. 

According to definitions, risks are the expected outcomes of hazards – directly 

related to severity and probability. Thus, there are only two ways of reducing risks – 

(i) Reduction of severity of accidents, and (ii) Reduction of probability of accidents. 

In this work, the qualitative analysis deals with general methods which eliminate 

both (i) and (ii), both of whom require removal or reduction of hazards.  

 

Since risk is a product of probability and severity, it is the one which governs the 

transformation of hazard to mishap. Risks originate from hazardous component, as 

will be discussed later in this chapter. Figure 2 shows transition of hazards to 

mishaps. 

 

According to Figure 2, if the odds of risk factors associated with the system are in 

favour of mishaps, hazard components create mishaps. In other words, hazard is an 

‘initial and continuous’ state of system, with some finite non-zero probability of 
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transition to mishaps, which is an instantaneous event. The transition is immediate, 

though two things are not sure (i) Chances of occurrence (ii) Time of occurrence. 

 

 

 

Figure 2. Transition from Hazard to Mishap (Ericson, 2005) 

 

2.3. Mine Risk Management 

This part covers the importance of risk management techniques, current scenario of 

mine industry and methods of identification. It also discusses the classification of 

hazard factors to internal and external.  

 

Occupational Safety and Health Administration (OSHA, 2002) provides information 

on common hazards in industries, and the methods of controlling them. It also 

discusses on an analysis technique called job hazard analysis, according to which 

focusing on job task is a method of hazard identification. Thus, it attempts to link 

each worker to its tools, allocated task and the working environment. For instance, if 

a metal forming industry is considered, the method would focus on tasks like 

welding, cutting, shaping and drilling. For a driller, hazardous element could be 

drilling machine or the work piece itself, but for a cutting workman, hazardous 

element could be sharp edges of the tool itself. 

 

OSHA (2002) also discusses the relevance and application of job hazard analysis. It 

could be summarized as (i) high injury rate jobs – ones where probability of hazards 

is high (ii) new jobs, or jobs with no previous records of accidents – high safety risk 

is expected from such jobs because unlike jobs with mishap history, new jobs are not 
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prepared with safety measures (iii) jobs where process and procedures have changed 

very recently – for the same reason (iv) severe injury jobs – jobs with even low 

mishap probabilities require job hazard analysis, if mishaps are expected to result in 

very severe injuries because  risk is a product of probability and severity (v) jobs 

where mishaps may result in severe financial damage (vi) Complex jobs – even if the 

work involves very small risk, it is possible that the employees make mistakes while 

taking instructions, such that in spite of being harmless, the accidents interfere with 

the normal working of the process. 

 

OSHA (2002), further lists and describes several common hazards expected in 

production sector, as shown in Table 1.  

 

Underground coal mining is an industry with the maximum hazard rate. For instance, 

a chemical hazard may result in fires (Stellman, 1998) and even explosion (Fesak, 

1985). Stellman (1998) lists many other hazards associated with underground coal 

mining industry, such as extreme temperatures, poor visibility, weather and even 

ionization hazards. Similarly, there are hazards from mechanical sources (falling, 

transportation etc.).  Thus, it can be said that coal mining industry involves most of 

the hazards listed in Table 1. This identification will be further used for quantitative 

analysis for establishment of relationship between reasons of accidents (hazards) and 

accidents. However, only a few factors will be chosen from the list for this analysis. 
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Table 1. Types of common job hazards and their descriptions (OSHA - 2002) 

Chemical 

(Toxic) 

A chemical that exposes the worker by absorption 

through the skin, inhalation, or through the blood stream, 

resulting in illness, disease, or death. The level (amount) 

of chemical exposure is critical in determining hazardous 

effects.  

Chemical 

(Flammable) 

A chemical that results in combustion when exposed to a 

heat ignition source. Typically, it is considered more 

flammable when it has lower flash point and boiling 

point.  

Chemical 

(Corrosive) 

A chemical that causes damage when it comes into 

contact with skin, metal, or other materials. Chemicals 

with extreme pH values (acids/bases) are common 

corrosives 

Explosion 

(Chemical 

Reaction) 

Self-explanatory. 

Explosion 

(Over 

Pressurization) 

Sudden and violent release of large amounts of gas (or 

energy) due to pressure difference between components 

and surroundings. Some examples are - rupture in a boiler 

/ compressed gas cylinder. 

Electrical 

(Shock/ 

Short Circuit) 

Contact with exposed conductors or an incorrectly / 

inadvertently grounded device. For example, when a 

metal beam/ladder comes into contact with power lines. 

Even 60Hz alternating current (common house current) is 

dangerous enough because it can stop the heart. 

Electrical (Fire) 

Use of electrical power, resulting in electrical overheating 

/ arcing to the point of combustion, ignition of 

flammables or electrical component damage. 
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Table 1 (continued) 

Electrical 

(Static/ESD) 

The movement or rubbing of wool, nylon other synthetic 

fibers against even flowing liquids can generate oppositely 

charged ions, resulting in static electricity. This ionized 

material surface may discharge (spark) to the ground, 

which may result in ignition/combustion of flammables, 

damage to electronics, or even damage to body’s nervous 

system. 

Electrical 

(Loss of Power) 

Failure of safety-critical equipment itself, due to loss of 

power. 

Ergonomics 

(Strain) 

Damage of tissues due to repetitive motion or overexertion 

(strains and sprains). 

Ergonomics 

(Human Error) 

An error-provocative system design, procedure, or 

equipment. (For example, a switch going up to turn on/off 

something). 

Excavation 

(Collapse) 

Soil collapse in an excavation or trench as a result of 

improper / inadequate shoring. Soil type is critical in 

determining the hazard. 

Fall 

(Slip, Trip) 

Conditions that result in falls (or slips) from heights or 

irregular walking surfaces (such as slippery floors, uneven 

walking floors, exposed ledges, poor housekeeping etc.) 

Fire/Heat 
Temperatures that can cause skin burns or damage to other 

organs. Heat source, fuel, and oxygen are required 

Mechanical/ 

Vibration 

Damage to nerve endings due to vibration, or safety-critical 

failure because of material.  

Mechanical 

Failure 

Self-explanatory; typically occurs when device exceeds 

design capacity, or is not maintained properly. 

Mechanical 

Skin, muscle, or any other body part exposed to cutting, 

tearing, crushing, caught-between, shearing items or 

equipment. 
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Table 1 (continued) 

Noise 

High noise levels (>85 dBA 8 hr TWA) resulting in 

hearing damage and/or inability to communicate safety-

critical information. 

Radiation 

(Ionizing) 

Alpha, Beta, Gamma or X rays, neutral particles that cause 

injury (such as tissue damage) by ionization of cellular 

components. 

Radiation 

(Non-Ionizing) 

Ultraviolet, visible light, infrared or microwaves that cause 

tissue injury by thermal / photochemical means. 

Struck By 

(Mass 

Acceleration) 

Accelerated mass striking the body, causing injury or 

death. (For example, falling stones and projectiles.) 

Struck Against 

Injury caused to a body part, as a result of coming into 

contact with a surface on which action was 

initiated/performed by the person. (An example is when a 

screwdriver slips during the work.) 

Temperature 

Extreme 

(Heat/Cold) 

High temperatures result in heat stress or exhaustion, and 

low temperatures cause metabolic slow down such as 

hypothermia. 

Visibility 
Lack of lighting or obstruction in vision, resulting in an 

error or damage. 

Weather Phenomena 

(Snow/Rain/Wind/Ice) 
Self-explanatory. 

 

As per the types of jobs suggested by OSHA (2002) for job hazard analysis, 

underground coal mining job falls in high injury rate, high mishap severity and high 

complexity work. Also, there are more works stating that underground mining 

industry is riskier than other similar industries, and even to the extent that workers in 

the business should be paid a premium for taking up the risk. (Epp et.al., 1977).  
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Apart from OSHA (2002), Stellman (1998) and Fesak et.al. (1985), Iannacchione et. 

al. (2008) also throws light on the importance of risk management, and various 

factors affecting the risks in mining sector which also states various forms of 

damages due to lack of risk management besides these Güyaguler (2000) noted that 

there are two major categories of cost resulting from accidents, usually referred as 

direct and indirect costs. 

 

 mismanagement problems due to workers getting killed by accidents 

 loss of work and delays in critical projects 

 compensations and medical expenses 

 damage to properties and  infrastructure 

 

For quantitative analysis, data segmentation and consolidation is required to ensure 

that the size of database, in terms of number of variables is not too large to handle. 

One way to segment it is on the basis of riskiness associated with the reason, based 

on preliminary analysis. OSHA (2002) listed a number of possible hazards in 

production type industries, but did not cover that much on their relative significance 

or riskiness. However, work done by Iannacchione et.al. (2008) discusses the types 

of hazards which were responsible for fatal mishaps on multiple occasions in US 

Minerals Industry. 

 

Table 2, adopted from Iannacchione et.al. (2008), lists those hazard types, along with 

the number of death accidents associated with them. Such frequent and severe 

hazards might be considered as relatively more critical for risk analysis. 
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Table 2.Hazards associated with multiple fatalities in the US Minerals Industry 

(Iannacchione et.al. 2008) 

Hazard Type Events Fatalities 

Strata Instabilities (Struck by/against) 8 21 

Explosions (Chemical) 4 33 

Powered Haulage (Electrical) 2 4 

Fire (fire/heat) 1 2 

Equipment Failure (Mechanical) 1 2 

Heat Strain (Ergonomic) 1 2 

Slip or Fall of Person (Fall) 1 3 

 

It can be seen that the data covers several types of job hazards given in Table 1 as 

well, but there are two differences. First, data grouping has been done on the basis of 

broad classification of hazard type. For instance, Strata instabilities can be 

considered as that of the following type: struck by, struck against. Similarly, power 

haulage can be put as ‘Electrical’. This classification is appropriate for this situation, 

if it is assumed that the dataset is exclusive – that is, the table does not contain more 

observation than the ones given. Second, it consists of only selected types of 

common hazards. 

 

So far, some of the factors were identified, combined and grouped as well, but there 

is another basis which requires segregation – level of control. On other words, 

analysis of only those hazards is significant which can be controlled or eliminated. 

For example, rain is an initiating mechanism for hazards in a cement industry.  

Indirect methods can be used to eliminate the threat mechanism, but rain itself cannot 

be eliminated. In contrast, fire hazard can be eliminated by changing, say, working 

conditions. 

2.3.1 External and Internal Factors 

The report of NIOSH’s review committee (2007), defines external factors as those 

which cannot be controlled because either it is impossible to do so, or are beyond the 
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scope of the committee’s research, but still affect the results. In contrast, internal 

factors are those which are supposed to be analysed, and on the basis of them, some 

methods might be recommended to modify or eliminate the effects of such factors. 

Similar definition applies for this work as well, and the factors will be dealt with 

accordingly.  

 

This completes the classification of hazards on two grounds – physical nature and 

level of control. However, there could be another basis of classification – that based 

on the type of management levels. Frankel, Hommel and Rudolf (2005) explained; 

 

 Operational Risk – This can be defined as a type of risk where the mishap 

may result in damage to process. For example: workday loss because of 

injury to worker, or inefficiency due to malfunctioning of some machine. 

 Financial Risk – A type of risk in which loss is more of financial in nature. 

For example, damage to machinery because of initiation of fire. 

 Strategic Risk – This type of risk affects working at higher levels. For 

example, if a report gets damaged due to loss of electricity.  

 

The main focus will be on operational risks, since it is much more concrete and 

analysable using quantitative methods.  

2.4. Risk Assessment  

After the identification of risk factors, the next task is that of risk analysis, followed 

by risk evaluation, risk treatment, monitoring and review, and communication & 

consultation. All these factors constitute risk assessment, which is a part of risk 

management. Figure 3 shows the seven basic steps of risk assessment – (i) 

establishment of context, (ii) identification of risks, (iii) risk analysis, (iv) risk 

evaluation (v) risk treatment (vi) monitoring and review (vii) communication and 

consultation (BCI, 2007) 
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Figure 3. Seven basics steps of risk assessment (BCI, 2007) 

 

Out of these steps, context has already been provided, so the remaining steps will be 

discussed here. The goal of risk assessment cycle is to minimize the risk to the level 

as low as possible.  

2.4.1 Identifying the Risk 

First step is risk identification – which means identification of hazards with high 

probability and severity. It has two parts: 

 

 Descriptive – This method deals with risk identification through a 

comprehensive analysis of the entire system. This is done by the processes of 

(i) checking alignment between objectives at each level (ii) checking 

integration of levels against the ones immediately above/below them (iii) 

Measurement of partial impact of that particular level on overall system, and 

the effect on all stakeholders taken together. This is more suited for a system 

which is a part of a larger organization. 

 Creative – In this method, the system is broken to several smaller units, 

which are then analysed separately. These units, known as key elements, 

ensure that all issues related to risk identification are properly covered.  
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Both methods are important for risk identification, and play their role simultaneously 

to ensure that the final result is optimum. Since risk identification is a complex 

process, efforts need to be made to simplify it. This simplification can be achieved 

either through checklist construction, or through a brain-storming session.  The 

former is effective if all possible sources of risks (hazards) related to the system are 

known in advance.  It assumes that the behaviour of the system is known, and is 

expected to remain as per that throughout. It has two disadvantages because of that 

assumption. First, system may not be known at all. Second, it does not consider the 

case of system behaviour going beyond the expectation. Second approach, brain-

storming is usually preferred because it uses the power of creativity to come up with 

new and emerging sources of risk. It works on several levels, such as structured 

workshops, interviews, surveys etc. However, the downside is that it is unable to 

make very effective use of prior knowledge, because the method functions when all 

sources of prior knowledge are excluded from the session. 

2.4.2 Risk Analysis 

Once risk sources are identified, they are required to be analysed for quantification 

and attainment of relative picture of risks. Since severity and probability completely 

define a risk, the goal of analysis is to estimate the values of these two quantities 

associated with risks.  

 

The method appears straight forward if it is assumed that it is possible to estimate 

both quantities, but there are several reasons why complications may still arise, and 

how they are required to be dealt with: 

 

 If analysis is done by a group of individuals, their estimated values should be 

considered as a dataset for data analysis problem, from which some measure 

of central tendency (such as mean, median or mode) would provide the best 

set of values for the two. In case some non-central estimate is required (such 

as, worst case analysis), extreme values might be taken. For instance, if some 
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floor of a room is left wet, it is the person working in that room who would 

be affected, and it is his experience which matters the most 

 If analysis involves a complex risk, it might often be broken down to multiple 

risks. For example, if an electrician working on open wire slips off and dies, a 

new hazard might arise – open wires inviting new accidents. However, the 

two risks are inter-related and require a relatively complex analysis for value 

estimates 

2.4.3. Risk Evaluation 

This is the third step, and might be considered as a post-processing one for risk 

analysis. This is required for data adjustments and conversions, and involves steps 

like (i) re-processing of unexpected/incomplete/extreme data, (ii) compilation of data 

- continuous removal of risk factors rated too low (till the number of factors left is 

manageable for further analysis), and grouping of data, if required (iii) Adjustment of 

data according to the required tools, if any. 

2.4.4 Risk Treatment 

Once risks are identified, analysed and evaluated, they are finally required to be 

treated, meaning some suitable remedial action is suggested for them. For instance, if 

it is found that an immediate action of increasing temperature results in gas 

accumulation in boiler, one of the risk treatment measures suggested for the problem 

is to reduce the maximum allowed temperature for treating the risk. 

2.4.5 Monitoring and Review 

Risk assessment steps are complete at this point. However, to keep the system 

working at its full potential, the previous steps should be continuously monitored to 

ensure they are working as expected, and reviewed to take care of possibility of 

changing environment with time. For instance, one such change could be discovery 

of a more effective method of analysis, implementing which could result in enhanced 

performance.  This means the system might not be optimized even if all five steps are 

working properly, and hence, monitoring & review step is required. 



20 

 

2.4.6 Communication and Consultation 

Communication and consultation is also a parallel and continuous process like 

monitoring and review. Since risk management does not affect everyone directly in 

the same manner, effective communication is required to make sure that everyone is 

aware of hazards involved with the system, and the types of preventive or remedial 

measures to be taken to avoid it. Also, it is required to ensure that the safety needs of 

all stakeholders are addressed during risk identification step of risk assessment. 

 

 

Figure 4. Risk Management Chart, (Iannacchione et.al., 2008) 

2.5. Accidents in Turkey 

According to statistics of labour, accidents in coal mining has a high trend comparing 

with the other sectors. In the last 5 years; 30 154 accidents happened in this sector. In 

Turkey; this number has the 8% of total accidents. It is expected that this rate is even 

higher considering lack of data collection and large number of unregistered workers. 

 

Table 3, 4 and 5 presents basic data of coal mining, metallurgy, construction, textile 

and other industries in 2011, 2010 and 2009. (Social Security Institute, Yearly 

Statistics). Corresponding distributions are given in Figures 5, 6, 7 
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Table 3. Accident Statistics of 2011 (Social Security Institute Yearly Statistics) 

Sector 

Number of 

Workers 

Number of 

Accidents 

Number of 

Deaths 

Coal Mining 51662 9217 55 

Metal Works 515932 12540 90 

Construction 1630851 7749 570 

Textile 392550 3239 22 

Other 

Industries 8439944 36482 973 

Total 11 030 939 69 227 1710 

 

Table 4. Accident Statistics of 2010 (Social Security Institute Yearly Statistics) 

Sector 

Number of 

Workers 

Number of 

Accidents 

Number of 

Deaths 

Coal Mining 50143 8150 86 

Metal Works 468665 11539 67 

Construction 1450211 6437 475 

Textile 356477 3474 16 

Other 

Industries 7705314 33303 800 

Total 10 030 810 62 903 1444 
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Table 5. Accident Statistics of 2009 (Social Security Yearly Statistics) 

Sector 

Number of 

Workers Number of Accidents 

Number of 

Deaths 

Coal Mining 51975 8193 3 

Metal Works 442865 12133 13 

Construction 1227698 6867 156 

Textile 331438 3771 12 

Other 

Industries 6976226 33352 987 

Total 9 030 202 64 316 1171 

 

As it is seen from the tables even though the number of workers in coal mining 

sector is relatively lower than the other sectors, the number of accidents is quite 

higher.  

 

 

Figure 5. Distribution of percentages of workers 
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Figure 6. Distribution of percentages of accidents 

 

 

Figure 7. Distribution of percentages of deaths 

 

When comparison comes to the number of deaths it is quite similar to metal industry 

while the number of workers quite higher than coal mining sector. Surface mining 

activities which are also less hazardous are included in the figures. 

 

13.01120919 

18.43356444 

10.71694002 
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52.50145078 
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These figures show the accident rate and risk level of coal mining industry. 

 

Table 6. Comparison of sectors for accidents and deaths per worker according 

to acerage numbers of 2009, 2010 and 2011 

Sector 
Accidents per 

worker 

Deaths per 

worker 

Coal Mining 0.166211471 0.000936403 

Metal Works 0.025368101 0.000119092 

Construction 0.004886093 0.000278734 

Textile 0.00970323 4.62764E-05 

Other 

Industries 0.004460657 0.00011937 

 

Sarı and Karpuz (2001) studied about international comparison of Turkish coal 

mining industry safety performance. According to the study, Turkey has the highest 

fatality accident rates over other countries. The fatality rate in Turkey is 130 times 

more than the one in Australia. On the other hand, Turkish lignite coal data presents 

better rates.  
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CHAPTER 3 

 

 

RISK ASSESSMENT TECHNIQUES IN MINES 

 

 

 

There are several risk assessment techniques, but Iannacchione et.al.(2008) describe 

a broader classification for such techniques based on the levels of complexity 

involved. Going from simpler to sophisticated, they are (i) Informal Risk Assessment 

Techniques, (ii) Basic Formal Risk Assessment Techniques and (iii) Advanced 

Formal Risk Assessment Techniques. 

3.1. Informal Risk Assessment Techniques 

Such techniques just require worker to look for possible hazards, determine the risk 

carried by it and take suitable action to minimize it. A few examples are as follows: 

 

 SLAM (Stop-Look-Analyse-Manage) – it requires workers to halt the work, 

and examine and analyse the process, and ask for risk treatment if required 

 Take-Two for Safety – requires the worker to think for two minutes before 

resuming work 

 Five-Point Safety System  - requires that workers themselves take up the 

responsibility for processes within their scope 

 Take Time, Take Charge – requires workers to them to respond to hazards, if 

required. 

3.2. Basic-Formal Risk Assessment Techniques  

These techniques require adherence to a set of rules and procedures to be followed 

prior to performing high-risk activities. So, they also include a requirement 

documentation and subsequent monitoring of activities. Being formal, such 
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techniques are less simple than informal ones. However, they do not use 

sophisticated methods. 

 

An example of most commonly used technique of this type is Job Safety Analysis 

(JSA). This is very similar to Job Hazard Analysis (JHA) by OSHA (2002), and is 

also used for processes prone to high risks, but JSA uses Standard Operating 

Procedures (SOP) for documentation. Other examples of Basic Formal Risk 

Assessment Techniques are CTA (Critical Task Analysis) and JHB (Job Hazard 

Breakdown). 

3.3 Advanced-formal risk assessment techniques 

They are used when Basic Formal Techniques do not suffice for analysis purpose. 

These techniques require structured approach with document, but in addition, they 

also incorporate applications of some risk analysis tools, such as Workplace Risk 

Assessment and Control (WRAC), Preliminary Hazard Analysis (PHA), Failure 

Modes, Effects and Analysis (FMEA), Fault/Logic Tree Analysis (FTA / LTA), 

Hazard and Operability Studies (HAZOP), Bow-Tie, as will be discussed next. If one 

analysis does not suffice for analysis purpose, a combination of techniques might be 

applied. Such a combination should be carefully selected because each technique 

requires more time and effort than Informal and Basic Techniques. 

 

Workplace Risk Assessment and Control (WRAC) 

This techniques work by breaking down the system by parts of mine involving 

different types of processes, and then ranking them on the basis of risk rating. Risk 

was earlier defined as a product of Likelihood (probability) and Consequence 

(severity), but some other risk function (r = f (l,c)) can be used. The procedure goes 

as follows: 

 

i. Divide the system to parts, note down the potential unwanted event related to 

that particular part, and lay them down in the form of matrix. 

ii. Calculate consequence and likelihood columns of the matrix. 
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iii. Compute r = f (l, c), and rank the parts on the basis of values of r. 

For the above procedure, consequence may be computed based on the cost of 

equipment at site, and the effective cost of loss of workday, death insurance, damage 

to goodwill etc. wherever required. Some typical methods of calculating the 

likelihood of mishap are (i) Previous History (ii) Average Estimate (iii) Worst Case 

Estimate.  

 

Preliminary Hazard Analysis (PHA) 

This method is very similar to that of WRAC because it ranks the potential 

hazardous events, but there are two differences (i) it focuses on all events of the 

system, instead of parts of the system, and (ii) It only performs analysis on the most 

likely consequence, instead of average consequence. The format includes total 

exposure which is not exists in WRAC. 

 

Failure Modes, Effects and Analysis (FMEA) 

This method focuses on failure modes, its effect on the current item, and the system 

as a whole; instead of just events and affected item. Also, the final result is a control 

measure in response to the level of criticality (risk). In other words, the analysis of a 

particular item is absolute and exclusive from other items. The advantage of this 

method is that the extent to which risk will be treated depends on criticality more 

than on rank. However, on the downside, it does not consider the priorities. Table 7 

shows how FMEA is implemented. 

 

Table 7. FMEA implementation (Ericsson, 2005) 

Item 
Failure 

Mode 

Effects on 

Likelihood Consequence Risk 

Control 

Other 

items 
System 

(L) (C) (LxC) 
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The algorithm can be defined as follows: 

 

i. List the types of failure modes possible, and their effects on the system. 

ii. Calculate risk using method described in algorithm for WRAC. 

 

Fault/Logic Tree Analysis (FTA/LTA)  

This type of analysis is useful for situations involving events with multiple possible 

consequences, and the effect of probability of all of them is required to be 

considered. FTA is similar to LTA except that the former focuses on finding the most 

unwanted one (also called ‘fault’), whereas LTA emphasis on finding the most 

wanted one.   

 

Fault Tree model is preferred, but LTA may also use the logic-gates model, where 

each gate represents some binary operation, and the result is a set of hazards with 

risks worth consideration. However, both the methods require probabilities of events 

to be known beforehand. 

 

Hazard and Operability Studies (HAZOP) 

HAZOP is used in situations where small deviations in a process may lead to big 

hazards, and it is possible to analyse this beforehand to a reasonable extent. The main 

sector which uses this type of assessment   is chemical industry. It involves 

performing of what-if analysis through an instrumentation process, and can be used 

for modelling and projection of various types of properties, such as fluid flow, 

temperature, pressure, concentration and so on.  

 

Bow Tie Analysis 

In this type of analysis, the entire problem is arranged in the form of a bow. 

Undesirable event, which is the result of other elements, is kept at the centre of the 

bow. Threats, their causes, and corresponding control measures occupy the left side 

of the tie bow (also known as prevention side).  Consequences, recovery measures to 

deal with them, and the potential outcome take the right hand side of the bow (also 
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known as recovery side). The entire bow signifies the following: Lack of preventive 

measures result in unwanted events, and those events result in consequences. The 

entire picture is demonstrated in Figure 8. 

 

 

Figure 8. Bow Tie analysis method (Iannacchione et.al. 2008) 

3.4 Factors Affecting Safety Performance in Mines 

This section discusses those factors which affect the implementation of safety 

performance in mines. Sari (2002) discussed and elaborated on a few of them: 

 

 Depth of mining field (deep/shallow) – it is possible that safety measures 

found to make significant improvement for underground mining may not 

work (or be required for surface mining) 

 Concentration of employees – if the system’s employee base is huge and 

complicated, it is possible that some of them are unable to utilize some 

standards due to lack of information 
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 Amount of automation - high automation might make it difficult to explain 

and implement safety standards. On the other hand, if larger part of process is 

by hand, workers get aware of safety practices by experience as well 

 Size of mining establishment – similar to that of concentration of employees, 

if the size of establishment itself is huge, some safety measures may not be 

implemented due to information getting lost in communication. 

 Mining method and type of coal used – if mining methods are too 

complicated for employees to understand, rate of error becomes high and 

thus, safety methods become ineffective. 

 

Overall, coal mine safety is influenced by many factors, that is to say, coal 

production systems is a system composed of personnel, machinery, equipment and 

extremely complex space. (Yang, 2010) Table 8 shows the coal mine safety 

evaluation with effecting factors. 

 

Table 8. Coal Mine Safety Evaluation Index System (Yang, 2010) 

Overall Target Sub-targets 

 

 

Coal Mine  

Safety Evaluation System 

Mine geological factors 

Mine disaster factors 

Mine hazard factors 

Environmental condition factor 

Production staff quality 

Factors of production equipment 

Management factors 

3.5 Previous Risk Assessment Studies 

In the past years many scientists conducted studies about hazard identification and 

occupational safety risk assessments in various sectors. Sarı (2002) made a risk 

assessment approach on underground coal mine safety analysis and he determined 

the risks in ELI-Eynez and GLI-Tuncbilek mines by statistical analysis of past 

accident/injury experience data. Sarı (2002) designed the methodology for 
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aforementioned mines considering the data of 1996 and 2000 covering 5 year period 

accidents. In the study of Sarı (2002), the methodology developed according to 

following steps. 

 

- Identification of accidents in the mine 

- Evaluation of probability of accident occurrences 

- Determination of magnitude of accidents by establishing possible 

consequences or severity. 

- Compilation of probability and consequence (severity) under a risk 

formulation 

- Establishment of risk  levels based on severity and probability 

- Setting an acceptable risk level 

- Risk management and control methods 

 

In his research first the accidents were identified and the magnitude of harmful effect 

was determined by finding the frequency of different type of accidents.  Risk levels 

were determined and the risk classification matrix was proposed. 

 

Table 9. Risk classification matrix (Sarı, 2002) 

 

Severity 

Probability 1 - 10 10 - 100 100 - 1000 1000 - 10000 

0.75 - 1.00 Moderate High Very High Severe 

0.50 - 0.75 Low Moderate High Very High 

0.25 - 0.50 Very Low Low Moderate High 

0.00 - 0.25 Very Low Very Low Low Moderate 

 

Fine and Kinney, 1976 found a practical methodology for safety risk of naval sector. 

According to them; the risk imposed by some particular hazard can be taken as 

increasing (1) with the likelihood that the hazardous event will actually occur, (2) 
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with exposure to that event, and (3) with possible consequences of that event. For 

risk calculations, numerical values are assigned to each of these three factors. 

 

Marhavilas (2009) conducted a study about risk estimation in construction works 

considering Fine and Kinney (1976) methodology, according to Marhavilas (2009); 

Risk can be quantified and can be measured by a mathematical relation which is; 

 

R = P.S.E                  (3.1) 

where: 

R: the Risk 

P: the Probability Index 

S: the Severity Harm Index 

F: the Exposure Index 

Table 10, 11 and 12 give the description of undesirable event for probability, severity 

and frequency.  

 

Table 10. Gradation of the Probability Index in association with the undesirable 

event (Marhavillas, 2009) 

Probability Index (P) Description of Undesirable Event 

10 Unavoidable 

9 Almost assured  

8 Very Probable  

7 Probable  

6 Probability slightly greater than 50%  

5 Probability 50%  

4 Probability slightly less than 50%  

3 Almost improbable  

2 Very improbable  

1 Improbable  
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Table 11. Gradation of the Severity of Harm Index in association with the 

undesirable event (Marhavillas, 2009) 

Severity of Harm Index (S) Description of Undesirable Event 

10 Death 

9 Permanent total inefficiency  

8 Permanent serious inefficiency  

7 Permanent slight inefficiency  

6 Absence from the work >3 weeks, and return 

with health problems  

5 Absence from the work >3 weeks, and return 

after full recovery  

4 Absence from the work >3 days and <3 

weeks, and return after full recovery  

3 Absence from the work <3 days, and return 

after full recovery  

2 Slight injuring without absence from the 

work, and with full recovery  

1 No one human injury  
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Table 12. Gradation of the Frequency Index in association with the undesirable 

event (Marhavillas, 2009) 

Exposure  Index (F) Description of Undesirable Event 

10 Permanent presence of damage  

9 Presence of damage every 30 sec  

8 Presence of damage every 1 min  

7 Presence of damage every 30 min  

6 Presence of damage every 1 hr  

5 Presence of damage every 8 hr  

4 Presence of damage every 1 week  

3 Presence of damage every 1 month  

2 Presence of damage every 1 year  

1 Presence of damage every 5 years  

 

Table 13. Gradation of the Risk Value in association with the urgency level of 

required actions (Marhavillas, 2009) 

Risk Value (R) Urgency level of required actions  

800-100 Immediate action  

600 - 800  Action during 7 days 

400 - 600  Action during 1month  

200 - 400  Action during 1 year 

<200 Immediate action is not necessary but it is 

required the event surveillance  

 

The Probability Index is calculated for accidents of specific for the group by using 

the corresponding number of accidents and the equation is; 

 

P = (Number of accidents / Total number of accidents) x 10            (3.2) 
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The severity index is estimated for the worst case of the specific accident using loss 

workday cases and comparing with the table. The Frequency Index (F) shows the 

number of accidents during a definite time period. In order to calculate the accidents’ 

frequency (per day), data for 10 year time period (assumed  50 working weeks and 

each working week with 7 working days) in the relation: 

 

F= Number of accidents / (50x7x10)               (3.3) 

 

Radosavljević (2009) used the methodology which is originally found by Fine and 

Kinney (1976) using qualitative information combined with quantitive analysis. 

 

According to Radosavljevic (2009), the sources of information for the subject 

analysis are; 

 

- The experience of following the process of the coal processing functioning, 

- Interviews with subjects who are either direct or indirect participants within 

the working process, 

- Testing the collected data, 

- The history of casualties connected with the process of coal processing 

- Management expert meetings, (the available data), 

- Notes from scientific gatherings and symposiums whose subject was the risks 

and safety in mining/the process of coal processing and 

- Experts’ assessments and suggestions connected with the problems of the risk 

analysis. 

 

Besides these, many scientists used risk assessment approach in different sectors and 

measuring different risks apart from safety risks. For example Arda (2008) used risk 

assessment technique for analysing the risks of a textile plant. Bu-Quammaz (2007) 

used the methodology for analysing economical risks in international construction 

projects similarly Karadas (2007) made risk analysis in defence industry to use in the 

business development phase.  
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CHAPTER 4 

 

 

LITERATURE ABOUT MODELLING METHODOLOGIES 

 

 

4.1 Regression Analysis 

Regression is using to find the equation of a single line in the given input parameters 

which fit the given data. (Lind, D.  A. ,  Marchal, W.G. and Wathen, S.A. , 2005). 

This is the simplest method, since if all values of input parameters and corresponding 

output values are available in continuous form for the given dataset. 

 

The regression equation can be written, in its simplest form, as follows: 

 

Y = R * X + C                  (4.1) 

 

where 

 

R = Corresponding regression coefficient for that variable – this is the quantity to be 

found from regression, which produces the best fit for the line. 

X = Value corresponding to that point (or 0/1 for dummy variable for the 

corresponding state) 

C = Value of constant term 

Y = output values for regression 

 

Since dataset has more than one input parameters, the regression form to be used will 

be ‘multivariate regression’. Accordingly, the quantity X will be a 2-dimensional 

matrix, with columns representing input quantities, and R will be a vertical matrix 

(now replaced by β). Equation can now be modified as follows: 
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          (4.2)  

 

One of the best and most commonly used estimate method, suggested by Lind et.al. 

(2005) is least squares method. In this method, the line parameters are computed 

such that the sum of squares of distances between data-points and the line is 

minimized.  In other words, 

 

(δ/δx)∑{ ∑(Xj - Xji)
2
 + (Y-Yi)

2
} = 0 

(δ/δx)∑{ ∑(Xj - Xji)
2
 + (Y-Yi)

2
} = 0 

 

where i,j represent points and input variables respectively, and other  symbols have 

usual meanings. 

 

On solving, it comes out to the following: 

 

                  (4.3) 

 

This result can easily be found using some engineering or data analysis tools. For 

example, if Matlab is used for programming, the function ‘regress’ accepts matrix 

forms (as given in equation 4.3) of input and output variables, to produce various 

statistical quantities, such as regression equation, correlation coefficients, errors and 

so on. However, as already stated, it is difficult to analyse the set of parameters as 

given in Table 14 because the set contains both continuous and discrete variables.  

Numbers related to such ‘discrete’ values are ordinal, and do not represent any 

relationship. For example, it will be wrong to state that shift two is twice of shift one, 

and so on.  So, it is necessary that such quantities are converted to some other format 

which makes them look like continuous.  
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One such format was suggested by Hardy (1993), who explained the method of using 

dummy variables for regression analysis. As per the method, if variables are 

represented by a set of binary quantities, they can be made to behave like continuous 

variables. In the previous example, the behaviour of ‘shift’ can be made continuous, 

if three shifts are represented as given in Table 14, by variables V1, V2 and V3, such 

that V1 represents (S1,0,0) and so on. Thus, continuous variables V1, V2 and V3 will 

take the required shift coefficients for states S1, S2 and S3 respectively. For instance, 

coefficients of (V1, V2, V3) = (1, 3, 7) represent the values 1 if state = (S1, 0, 0) ,or 

simply state  S1 = True. Similarly, value becomes 3 for if state = S2, and 7 if state = 

S3. Thus, each parameter generates the number of variables equal to the number of 

discrete values it may take.  

  

Table 14. Representation of shift through three dummy variables (S1, S2, S3) 

Shift V 1 V 2 V3 

S1 1 0 0 

S2 0 1 0 

S3 0 0 1 

 

There are inbuilt functions to convert the variables to the format described in Table 

14. For instance, function ‘dummyvar’ in matlab converts a discrete variable carrying 

values 1-n to dummy variables. However, unless states are already provided in 

natural numbers format (1, 2, 3), the mapping of states with natural numbers need to 

be done through implementation of logic through a code or manually. 

 

As will be established through regression is easiest to design, implement and get 

processed by machine, but it is not used too often because it is found that some other 

methods produce better results. 

4.2. Parsimonious Regression Analysis 

Some recent researches suggest that ordinary least squares regression can be 

significantly improved if some parameters, which do not correlate well enough 



40 

 

against the given outputs, are removed (Sonmez et.al. 2007). This can be verified by 

analysing whether a parameter acts as an ‘outlier’, as per some distribution which 

represents the data. Most commonly used distribution is a ‘normal’ distribution, 

which can be assumed if the data set has more than 30 points (Lind et. al. 2005). So, 

under that assumption, a majority of points should lie close to the mean value, which 

should be true for each independent parameter’s relationship against the dependent 

parameter. If y depends on (x1, x2, x3….), and the value of Pearson coefficient 

(measurer of the extent of fit for some xi against y on the basis of fit of x1,x2…xn 

against y) of some xi’s against y is higher than the pre-decided threshold value, the 

parameter xi could be acting as an outlier, and can be removed. Then, the regression 

for the remaining set is performed. This method is slower than one-step regression, 

but sometimes produces better results. 

4.3. Neural Networks 

This method was first discussed by Gurney and Gurney (1997). It works in a way 

similar to regression, but uses past available values, or ‘learning system’ for analysis, 

instead of one-time method like least squares. It initially creates a hidden layer of 

neurons, pre-decided and unalterable parameters. The structure becomes similar to 

Figure 9. The layers input and output contains the information provided in training 

set, whereas the hidden layer contains information on weights of regression 

coefficient, which get modified after each cycle.  
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Figure 9. Demonstration of a typical Neural Network 

 

Once weights are obtained through training, given system uses those weight values to 

get actual results from its database. For regression analysis type problem, a part of 

the given observation set itself acts as a training set and the remaining as a testing 

set. A particular percentage of points (10-20) is also used for validation of result 

quality. Matlab’s Neural Network toolbox uses for analysis, by default allocates 

random 70% of the available data points for training. Out of the remaining, half 

(15% of total) of the points are chosen for data validation (validation set), and the 

remaining for testing the method (testing set). 

The entire algorithm, as provided in the help sections and topics of Matlab’s neural 

network method, goes as follows: 

i. Prepare the inputs in the same way as those for regression. 

ii. Select a random seed for process initiation, to ensure that the results do not 

vary with the experiments (this value cannot be changed by user). 

iii. Prepare the network according to first (or nth) value of number of neurons. 

iv. Get initial estimates of coefficient values, and calculate the error value I. 

Choose some learning value (a) 
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v. Modify all weights such wi = wi – e*a*xi, and calculate new error values 

according to the new weights. 

vi. Keep repeating till the desired learning level is achieved. 

vii. Apply the network to the set of points allocated for testing. 

viii. Validate the method efficiency by applying the network to the validation set. 

 

The functions require data in the form of matrices of inputs and outputs on which 

analysis is required to be done. Such a conversion may be achieved through a set of 

software codes or by excel programming. 

4.4. Fuzzy Logic 

Zadeh (1965) has introduced fuzzy set theory as a mathematical useful tool for 

modelling uncertain (imprecise) and vague data in real situations. The essential 

assumption of fuzzy set is that many sets in real world do not have precisely defined 

bounds and each element has degree of belonging to some sets called as membership. 

(Song, 2005) 

 

Fuzzy Logic method is frequently used to model the data when either the results are 

qualitative, or the number of variables is huge. The advantage of this method lies in 

the fact that it exploits the power of intuitions and common sense to come up with 

the expected results. On the other hand, it requires human intelligence and creativity 

for writing rules well-enough or else, the method may fail.  

 

The basic idea behind the method is that related to flexible and uncertain reasoning, 

that every apparently binary system may take any values between 0 and 1. For 

instance, a two-value logic analysis might allocate the values 0 or 1, to say, some 

fluid when it is hot or cold respectively. In contrast the same liquid might take either 

of the following values under fuzzy logic – 0.5 for moderate, 0.25 for hot, 0.75 for 

cold, 0.9 for freezing, and 1 for minimum possible temperature. The user might 

define certain actions depending on the state. (Ross, 2009) This example is 

elaborated in Table 15. 
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Table 15. An example of fuzzy logic implementation for variable ‘Temperature’ 

 

From Table 15, it can be seen that some actions have been decided based on 

temperature values. Such a perspective enables decision making depending on 

whether the given value is closest to the given condition. For instance, if binary value 

corresponding to the temperature approaches 0.89, it might mean that the heater’s 

maximum capacity is about to reach, and it needs to be shut down. This example 

involved some precise and continuous measurable quantity (temperature), but there 

could be systems having no such quantity. For example, satisfaction level of 

customers cannot be directly measured, but management might come up with the 

similar set of rules using its intuitions, skills and experience. 

 

Similarly, for current situation, it can be said that the measurable quantity contains a 

combination of contribution of fuzzy values corresponding to values of its inputs. For 

instance, if the quantity is cumulative financial loss, it would be related to the sum of 

fuzzy values of inputs to cumulative financial loss, such as reason of accident or the 

organ of the injured affected by it. On contrary, the problem is related to 

measurement of such individual efforts based on the given data. Also, the result of 

the efforts (y) for a particular accident might have a purely random value, which is 

nowhere related to the values of inputs.  

Binary Value Definition Condition Action 

0.25 T ~ 400 Hot Start the Air Cooler 

0.5 T ~ 298 Moderate Do Nothing 

0.75 T ~ 210 Cold Start the Heater 

0.9 T ~ 70 Freezing 

Set the Heater 

Temperature  to 

Maximum Value 

1 T ~ 0 Absolute Freeze 

Condition Impossible – 

Examine the measuring 

devices 
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Fortunately, for huge number of data points, it can be safely assumed that an 

experiment set corresponding to one value of a variable is complete, and covers all 

possible combination of effects of other variables. For example, if the entire dataset 

available for second shift is considered, it can be said that the mean value of all such 

observations should be different from a similar set for third shift exclusively because 

of the difference in shift values. This difference in effects of outputs for different 

states can be measured in several ways – one of them is average value of experiment. 

This concept can be slightly modified for continuous variable by using class groups 

instead of discrete states, such as, average output values for weights of workers in the 

range 50-60. In other words, the weight contributions of all those observations whose 

weight values fall in the range 50-60 will carry this value. Similar values may be 

computed for other variables, such as reason, affected organ etcetera.  

 

Once all values are calculated, a ‘rules’ set needs to be written corresponding to all 

possibilities. For example, what is the most probable effect on a worker aged 35-40 

and weight 60-70 kg who is hit by a piece of scrap falling on his foot? The number of 

similar cases would be the product of number of values (or classes) each variable 

may take. For instance, if there are 2 classes for weight, 3 for age and 5 possible 

reasons of injury, there could be a maximum of 30 rules. After these rules are 

written, they have to be segmented to blocks such that fuzzy function can be applied 

on them.  For each segmentation, there would be one function. If there are only 3 

classes (say, output = high, medium or low), there will be one function 

corresponding to low, one to medium and one to high. Low function will be 

characterized by having low value when function’s value is high and so on. 

4.5. Previous Studies 

Regression analysis is one of the basic modelling methodologies used in many 

studies. Mustakim, et al (2008) developed a traffic accident prediction model using 

multiple linear regression his study involves the identification of accident blackspot 

locations, establishment of general patterns of accident, analysis of the factor 
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involved, site studies, and development of an accident prediction model using 

Multiple Linear Regression. 

 

Sonmez (2004) used the model for conceptual cost estimation of building projects. 

He used parsimonious model which can be defined as a model that fits the data 

adequately without using any unnecessary parameters. He developed a backward 

elimination method in which all of the independent variables were considered in the 

initial regression model and variables that were not contributing to the model were 

eliminated one at a time. 

 

Sonmez (2004) used also neural network in his study and compared both regression 

and neural network models.Comparing the models he used Mean Squared Error 

(MSE). 

 

 

Moghaddam,et al. (2010) used artificial neural network for predicting of accident 

severity in highways. He developed multilayer perceptron (MLP) that is a feed 

forward network in which information flow from input side and pass through the 

hidden layers to the output layer to produce outputs. Besides the study of 

Moghaddam (2010) neural network was used in many traffic safety modellings by 

Hashemi (1995), Chong (2004), Sando (2005).   

 

Apart from accident severity estimation models, neural network gives opportunity to 

use in other elements. Karacan (2007) used the models for development and 

application of reservoir models and optimizing ventilation air requirements in 

development mining of coal seams.  Ruilin (2010) used for prediction of coal and gas 

outbursts using Chinese coal mines statistics and Hong (2010) applied the model for 

gas warning system. 
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Yang (2010) used neural network for coal mine safety evaluation with V-fold cross-

validation. According to Yang (2010) the neural network process is shown in Figure 

10. 

 

  

Figure 10. Flow chart of BP neural network training process. (Yang, 2010) 

 

Fuzzy logic is also used in many prediction techniques. Gurcanli (2005) applied the 

technique in hazard assessment on construction sites. By this approach historical 

accident data in the industry are incorporated into the method. These inputs, 

subjective judgments of the experts and the current safety level of a construction site 

are combined by the utilization of fuzzy rule based system. 

 

Sii and Wang (2004) used fuzzy logic for safety assessment in maritime engineering 

applications. According to Sii and Wang (2004) there are five steps in the fuzzy 

inference process. 

 

- Step 1. Fuzzification of input variables - The first step is to transform the 

inputs into degrees of match with linguistic values via membership functions.  

- Step 2. Application of fuzzy operations (AND or OR) in antecedents. This 

value will then be applied to the output function. The input to the fuzzy 

operator may have two or more membership values from fuzzified input 

variables. The output is a single truth value.  
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- Step 3. Implication from antecedent to consequent - The single truth value of 

a rule is determined by AND operator of the rule antecedents. With AND 

operator, rule evaluation then determines the smallest (minimum) rule 

antecedent, which is taken to be the truth value of the rule.  

- Step 4. Aggregation of consequent across the rules - The output of each rule 

is combined into a single fuzzy set through the aggregation process.  

- Step 5. Defuzzification - Finally, defuzzification process transforms the fuzzy 

results (i.e. a range of output values from the aggregation process) into a crisp 

output.  

 

Mancini and Masi (2012) used fuzzy logic for environmental hazard assessments and 

Han (2005) developed fuzzy model for estimation of cost overrun risks in 

international projects.  
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CHAPTER 5 

 

 

DATA COLLECTION AND BASIC STATISTICS 

 

 

 

Data utilized in the study was provided from two underground lignite mines of 

Turkish Coal Enterprises which are GLI Tuncbilek Underground Lignite Mine and 

ELI Soma Underground  Lignite Mine besides these  ; Turkish Hard Coal 

Establishment  (Zonguldak) coal mines accident data  was collected and the 

comparison was made between three different areas. 

 

Turkish Coal Enterprise’s data is covered 14 year period of time from the years of 

1997 to 2011 and TTK  data covers 4 year period from 2008 to 2011. 

5.1 ELI Soma-Eynez Underground Lignite Data Analysis 

ELI Soma – Eynez coal mine is one of the oldest and biggest lignite mine which is 

located in Manisa. 

 

Total 1033 accident data of January 1997 – December 2011 was used in the studies. 

The data covers, workday loses, affected organs, reason of the accident, shift, date of 

accident (season) and age of the victim.  

 

The basic statistical analyses results presented in Figures 11 to 15. 
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Figure 11. Distribution of accidents according to age group for ELI mine 

 

Accident dsitribution according to age group is illustrated in Figure 11. Age group of 

45-55 is dominantly higher than other ages but especially the accidents are much 

more higher  in 50-55 of age group.  

 

It can be seen from Figure 12 that most of the accidents in ELI mines happened 

because of equipment related dominantly machinery (43%) and other equipment 

related accidents with manual handling works follows it. 

 

Most of the accidents happened at first shift (08-16) may probably due to the fact that 

all maintenance related works carried out in this shift in addition to the usual 

production work. Hence the number of workers are more and the probability of the 

accident is more. 

 

The most affected organs due to accidents is the hands, 28%, foot with a 25 % and 

follows them body with 21%.  

 

According to Figure 15, it can be seen that most of the accidents occur at spring time 

summer and autumn follows it. Winter has very low effect on accidents which is 
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unexpected due to heavy weather conditions could effect on working conditions, but 

it can be explained that maybe the production rate is lower at winter time  which is 

directly related with accident rate.  

 

 

Figure 12. Distribution of reason of accident for ELI mine 

 

 

Figure 13. Distribution of accident according to shifts for ELI mine 

0

5

10

15

20

25

30

35

A
cc

id
e

n
ts

, %
 

0

100

200

300

400

500

600

700

08-16 16-24 24-08

N
u

m
b

e
r 

o
f 

A
cc

id
e

n
t 

Shift 



52 

 

 

Figure 14. Distribution of accidents according to affected organ for ELI mine 

 

 

Figure 15. Distribution of accidents according to season for ELI mine 

5.2. GLI Tuncbilek Underground Coal Mine Statistics 

GLI Tuncbilek coal mine is one of the lignite reserves which is located in the west of 

Turkey in the region of Kütahya. There are some open pit lignite mines beside 

underground mines in the area.  Conventional and fully mechanized longwall mining 

methods are used in the mine. 
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Total 1053 accident data of January 1997 – December 2011 was used in the study. 

The data covers, again workday loses, affected organs, reason of the accident, shift, 

date of accident (season) and age of the victim. 

 

The analyses results presented in Figures 16 to 20. 

According to descriptive statistics; especially workers age of 45-55 has a high trend 

in the accidents.Figure 16 shows the number of accidents according to age group. 

 

It can be seen from Figure 17 that most of the accidents in GLI mines happened 

because of manual handling, falling rocks and equipment related items respectively. 

Figure 18 shows that most of the accidents in GLI mines happened at  08-16 shift, 

this figure is  similar to GLI mines. 

 

The most affected organs due to accidents is the hands, 26%, foot with a 24 % and 

follows them body with 21% which of those are very similar to ELI mine statistics. 

 

Figure 19 explains that the most affected organ due to accidents is the hands with 25 

% and foot with a 25 %. 

 

Finally the season effect of accidents on GLI mine is similar to ELI mine. Spring has 

the highest effect which Summer and Autumn follows respectively.   
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Figure 16. Distribution of accidents according to age group for GLI mine 

 

 

Figure 17. Distribution of reason of accident for GLI mine 
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Figure 18. Distribution of accident according to shifts for GLI mine 

 

                                             

. 

Figure 19. Distribution of accidents according to affected organ for GLI mine 
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Figure 20. Distribution of accidents according to season for GLI mine 

5.3. TTK Zonguldak Underground Coal Mines Statistics 

TTK – Zonguldak is the only area producing hard coal in Turkey. The geological 

conditions are difficult and mechanized production is not possible in the mines. 

Generally conventional shortwall/longwall mining applied in the area.  Due to the 

high content of methane in the coal makes the production more hazardous.  

Total 8532 accident data of January 2008 – December 2011 was used in the study. 

The data covers, again workday loses, affected organs, reason of the accident, shift, 

date of accident (season) and age of the victim. 

 

According to Figure 21;  workers age of 30-35 has a high trend in the accidents 

which is quite different with GLI and ELI  mines, and dominantly younger workers 

are working in TTK mines.  
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Figure 21. Distribution of accidents according to age group for TTK mines 

 

 

Figure 22. Distribution of reason of accident for TTK mines 
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It can be seen from Figure 22  that most of the accidents in TTK  mines happened 

because of blasting and gas-dust explosion. This figure also shows that there maybe 

no record in the organization about minor accidents. 

 

Most of the accidents in TTK mines also happened at  08-16 shift. This is also 

similar with other mine statistics as shown in Figure 23. 

 

The the most affected organ due to accidents is arms and head with 30 % and 28 % 

respectively as shown in Figure 24.  

 

Effect of season on accidents is similar to ELI and GLI mines but the only difference 

is summer with spring season has a high effect on accidents. 

 

 

Figure 23. Distribution of accident according to shifts for TTK mines 
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Figure 24. Distribution of accidents according to affected organ for TTK mines 

 

 

Figure 25. Distribution of accidents according to season  for TTK mine 

5.4. Comparison of Basic Statistics of TKI and TTK mines 

When basic statistics are compared between TKI mines which are producing lignite 

and TTK mines which are producing hard coal, the figures are quite different which 

may related to  complexity of the geology and the production method. 
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Table 16. Comparison of three mines according to age group of injuries 

  Accidents, % 

Age Group ELI GLI TTK 

18-25 0.10 0.09 0.01 

25-30 0.87 0.19 29.60 

30-35 1.55 0.95 39.73 

35-40 6.20 1.42 18.13 

40-45 6.58 3.80 8.58 

45-50 31.56 22.89 2.53 

50-55 38.14 53.66 1.37 

55-60 12.39 15.76 0.05 

60+ 2.61 1.23 0.00 

 

Considering the effect of the age groups on accidents; in TKK mines, workers 

between 25 and 35 were observed as they involved accidents much more. In 

particular, the accident rate between 30 and 35 was 40% of the total accidents. 

However, in ELI mines there are more accidents between 45 and 55 ages and in GLI 

more accidents occur between 50 and 55 ages. In ELI and GLI mines, older workers 

have more accident rate comparing to TTK. In this case, it can be said that younger 

workers are employed in TKK mines. 

 

In terms of all causes of accidents, gas explosion and blasting related accidents are 

much higher than TKI mines which are the basic result of geological conditions, 

nature of the hard coal and applied mining method. In Zonguldak region, the area is 

highly tectonised, hard coal is steeply dipping till 60

 and having high amount of  

methane, for the coal production the  fragmentation method is drilling and blasting 

and the more blasting is carried out than lignite mines and probability of accident 

occurrence is high. 
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Table 17. Comparison of three mines according to reason of accident 

  Accidents, % 

Reason ELI GLI TTK 

Gas Suffocation Or Poisoning 0.00 0.00 0.26 

Gas Or Dust Explosion 0.00 0.00 35.19 

Falling Rocks 6.49 16.71 0.23 

Support Failure 2.32 6.84 1.00 

Struck by Object 1.16 5.60 11.69 

Blasting 0.00 0.00 47.70 

Manual Handling 13.55 18.23 3.54 

Mechanical Transportation 2.13 3.51 0.02 

Traffic Accidents 5.71 2.66 0.38 

Electrical 0.39 0.95 0.00 

Equipment 10.55 12.82 0.00 

Machinery 32.24 11.11 0.00 

Hand Tools 7.55 4.75 0.00 

All Other Injuries 17.91 16.81 0.00 

 

Table 18. Comparison of three mines according to shift of the accident 

  Accidents, % 

Shift  ELI GLI TTK 

08:00-16.00 62.34 59.07 54.41 

16.00-24.00 26.14 25.93 24.18 

24.00-08.00 11.52 15.00 21.40 

 

According to Table 18; most of the accident occurrence time is the same and mostly 

accidents happen in shift 08.00-16.00 in all mines. 
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Table 19. Comparison of three mines according to affected organ 

  Accidents, % 

Affected 

Organ ELI GLI TTK 

Head 11.71 14.53 23.15 

Hands 27.49 26.21 4.47 

Foot 24.88 23.55 8.52 

Arm 6.10 4.46 29.42 

Leg 7.94 4.46 14.28 

Body 21.49 21.37 2.31 

Various 0.39 5.41 17.85 

 

When it is compared to affected organ at accidents in TTK mines the dominant 

organs are arms and head injuries while foots and hands are dominant in lignite 

mines. High and steep faces in TTK mines can cause first head and arms.  

 

Table 20. Comparison of three mines according to season of the accident 

  Accidents, % 

Season  ELI GLI TTK 

Spring 39.82 36.97 31.38 

Summer 26.43 27.45 31.05 

Autumn 21.10 25.07 26.24 

Winter 12.65 10.51 11.32 

 

In all mines spring season has a higher effect on accidents. In summer and autumn 

time there are also accidents, but there are no comments can be made from the 

results. Detail research should be made in future.    
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CHAPTER 6 

 

 

RISK ANALYSIS AND RISK MODELLING 

 

 

 

In this chapter a risk analysis is performed by a quantitative method and past 

accident data is used as input. From the previous studies and researches, it is seen 

that a quantitative risk analysis methodology can be applied to the set of data. In the 

study a wider range of 14 years data is used including 4 year TTK hard coal mine 

data.  The high number of data is very important for risk analysis studies due to 

understanding the effect of accidents.  It is also very important to analyse the past 

accidents with more sampling to show the way of how studies in the workplace will 

trend.  

 

From the guidance of the study of Sarı (2002) and Fine and Kinney (1976) Risk 

assessment methodology which Marhavilas (2009) used in the study about risk 

estimation in construction works adopted for  ELI, GLI and TTK mines.  

 

According to Marhavilas (2009); Risk can be quantified and be measured by a 

mathematical relation which is; 

 

R = P.S.F                  (6.1) 

where: 

R: the Risk 

P: the Probability Index 

S: the Severity Harm Index 

F: the Frequency Index 

Fine and Kinney (1976), proposed the method with determining the possible 

consequences as; catasphoric, disaster, very serious, serious, important and 
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noticeable while Marhavillas (2009) used gradation of severity of harm index using 

deaths, permanent incapabilities, absence from work, etc.  The current data used in 

this research has no evidence about the the consequences of the accidents like 

Marhavillas (2009) defined so the severity gradation for the research changed using 

absence from work as defined in  Table 21. 

 

 Table 21. Gradation of the Severity of Harm Index in association with the 

undesirable event with the current data 

Severity of Harm 

Index (S) 

Description of Undesirable Event 

10 More than 120 days absence from the work 

9 Absence from work 90 days to 119 days  

8 Absence from work 60 days to 89 days 

7 Absence from work 30 days to 59 days 

6 Absence from work 21 days to 29 days 

5 Absence from work 15 days to 20 days 

4 Absence from work 10 days to 14 days 

3 Absence from work 5 days to 9 days 

2 Absence from work 2 days to 5 days 

1 Absence from work 1 day or no absence. 
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The Frequency Index (F) shows the number of accidents during a definite time 

period. In order to calculate the accidents’ frequency (per day), data for 10 year time 

period (assumed  50 working weeks and each working week with7 working days) in 

the relation: 

 

F= Number of accidents / (50x7x10)              (6.2) 

 

The equation 6.3 is used for ELI and GLI mines for availability of 10 year data and it 

is changed as follows for TTK mines due to availability of 4 year data. 

 

F = Number of accidents / (50x7x4) 

 

Using the above equation 6.1. The Risk values of  ELI, GLI and TTK mines are 

calculated in Table 22 to 33 

 

The Probability Index which Marhavillas (2009) proposed for calculation of 

accidents for specific for the group by using the corresponding number of accidents 

and the equation is; 

 

P = (Number of accidents for specific group / Total number of accidents) x 10    (6.3) 

 

The Risk Estimation Results considering reason of the accident, shift when the 

accident happened, age of the injured person and affected organ for ELI, GLI and 

TTK mines are presented below.  The severity index is estimated for the worst case 

of the specific accident using loss workday cases and comparing with the Table 21. 
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Table 22. Risk Estimation of ELI mine considering Reason of the accident 

  

Number of 

Accidents 

Probability 

Index (P) 

Severity 

Index (S) 

Frequency 

Index (F) 

Risk Value 

(R) 

Gas Suffocation 

Or Poisoning 0 0 0 0 0 

Gas Or Dust 

Explosion 0 0 0 0 0 

Falling Rocks 67 0.648596321 9 

0.0191428

6 0.111743881 

Support Failure 24 0.232333011 7 

0.0068571

4 0.011151985 

Struck 

By/Against 

Object 12 0.116166505 4 

0.0034285

7 0.001593141 

Blasting 0 0 0 0 0 

Manual 

Handling 140 1.355275895 9 0.04 0.487899322 

Mechanical 

Transportation 22 0.212971926 8 

0.0062857

1 0.010709445 

Traffic 

Accidents 59 0.571151985 10 

0.0168571

4 0.096279906 

Electrical 4 0.038722168 4 

0.0011428

6 0.000177016 

Equipment 109 1.05517909 8 

0.0311428

6 0.262890333 

Machinery  333 3.223620523 10 

0.0951428

6 3.067044669 

Hand Tools 78 0.755082285 8 

0.0222857

1 0.134620384 

All Other 

Injuries 185 1.79090029 10 

0.0528571

4 0.946618725 

Total Injury 1033 10 - - - 

 

 



67 

 

Table 23. Risk Estimation of ELI mine considering working shifts which 

accident happened. 

Shift 

Number of 

Accidents 

Probability 

Index (P) 

Severity 

Index (S) 

Frequency 

Index (F) 

Risk Value 

(R) 

1 644 6.234269119 10 0.184 11.47105518 

2 270 2.61374637 10 0.07714285 2.016318628 

3 119 1.151984511 10 0.034 0.391674734 

Total 1033 - - - - 

 

Table 24. Risk Estimation of ELI mine considering age of the injured. 

Age 

Number 

of 

Accidents 

Probability 

Index (P) 

Severity 

Index 

(S) 

Frequency 

Index (F) 

Risk Value 

(R) 

18-25 1 0.009680542 1 0.000285714 2.76587E-06 

25-35 25 0.242013553 9 0.007142857 0.015558014 

35-45 132 1.277831559 10 0.037714286 0.481925045 

45-55 720 6.969990319 10 0.205714286 14.3382658 

55+ 155 1.500484027 10 0.044285714 0.664500069 

Total 1033 - - - - 
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Table 25. Risk Estimation of ELI mine considering affected organ. 

Affected 

Organ 

Number of 

Accidents 

Probability 

Index (P) 

Severity 

Index 

(S) 

Frequency 

Index (F) 

Risk Value 

(R) 

Head 121 1.171345595 8 0.034571429 0.323960725 

Hands 284 2.749273959 9 0.081142857 2.007755497 

Foot 257 2.487899322 10 0.073428571 1.826828931 

Arm 63 0.609874153 10 0.018 0.109777348 

Leg 82 0.793804453 10 0.023428571 0.185977043 

Body 222 2.149080348 10 0.063428571 1.363130964 

Various 4 0.038722168 8 0.001142857 0.000354031 

 

As seen in Table 22 machinery, manual handling and equipment related other 

injuries and falling rocks are highest risk order comparing other reasons. These 

numbers are quite similar to the study of Sarı (2002). The only difference can be seen 

with machinery which can be classified as new risk in the mine.  

 

The first shift (8-16) has the highest risk which is also obvious from simple statistics. 

Older employees (45-55) are trend to have a much more risk than the others. This 

can also be explained that the workplace has high number of older workers. 

 

The highest risks of affected organ are hands, foot and body which are completely 

same with the risk assessment of Sarı (2002).  
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Table 26. Risk Estimation of GLI mine considering Reason of the accident 

  

Number of 

Accidents 

Probability 

Index (P) 

Severity 

Index 

(S) 

Frequency 

Index (F) 

Risk Value 

(R) 

Gas Suffocation 

Or Poisoning 0 0 0 0 0 

Gas Or Dust 

Explosion 0 0 0 0 0 

Falling Rocks 176 1.671415005 10 0.050285714 0.840482974 

Support Failure 72 0.683760684 10 0.020571429 0.140659341 

Struck By/Against 

Object 59 0.560303894 10 0.016857143 0.094451228 

Blasting 0 0 0 0 0 

Manual Handling 192 1.823361823 9 0.054857143 0.90021978 

Mechanical 

Transportation 37 0.351377018 10 0.010571429 0.03714557 

Traffic Accidents 28 0.265906933 9 0.008 0.019145299 

Electrical 10 0.094966762 4 0.002857143 0.001085334 

Equipment 135 1.282051282 10 0.038571429 0.494505495 

Machinery 117 1.111111111 10 0.033428571 0.371428571 

Hand Tools 50 0.474833808 7 0.014285714 0.047483381 

All Other Injuries 177 1.680911681 10 0.050571429 0.85006105 

 

Table 27. Risk Estimation of GLI mine considering working shifts which 

accident happened. 

Shift 

Number of 

Accidents 

Probability 

Index (P) 

Severity 

Index 

(S) 

Frequency 

Index (F) 

Risk Value 

(R) 

1 622 5.906932574 10 0.177714286 10.49746303 

2 273 2.592592593 10 0.078 2.022222222 

3 158 1.500474834 10 0.045142857 0.677357211 
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Table 28. Risk Estimation of GLI mine considering age of the injured. 

Age 

Number 

of 

Accidents 

Probability 

Index (P) 

Severity 

Index (S) 

Frequency 

Index (F) 

Risk Value 

(R) 

18-25 1 0.009496676 1 0.000285714 2.71334E-06 

25-35 12 0.113960114 4 0.003428571 0.001562882 

35-45 55 0.522317189 8 0.015714286 0.065662732 

45-55 806 7.654320988 10 0.230285714 17.62680776 

55+ 179 1.699905033 10 0.051142857 0.869380003 

 

Table 29. Risk Estimation of GLI mine considering affected organ. 

Affected 

Organ 

Number 

of 

Accidents 

Probability 

Index (P) 

Severity 

Index 

(S) 

Frequency 

Index (F) 

Risk Value 

(R) 

Head 153 1.452991453 10 0.043714286 0.635164835 

Hands 276 2.621082621 10 0.078857143 2.066910867 

Foot 248 2.355175689 10 0.070857143 1.668810202 

Arm 47 0.44634378 9 0.013428571 0.053943834 

Leg 47 0.44634378 9 0.013428571 0.053943834 

Body 225 2.136752137 10 0.064285714 1.373626374 

Various 56 0.531813865 10 0.016 0.085090218 
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According to Table 26 manual handling and falling rocks are highest risk comparing 

other reasons in GLI.  

 

The first shift (8-16) has the highest risk which is also expected due to high number 

of workers in the shift. Older employees (45-55) trend to have a much more risk than 

the others. This can also be explained that the workplace has high number of older 

workers. 

 

The highest risks of affected organ are hands, foot and body which are completely 

same with the risk assessment of Sarı (2002).  
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Table 30. Risk Estimation of TTK mine considering Reason of the accident 

Reason Number 

of 

Accidents 

Probability 

Index (P) 

Severity 

Index (S) 

Frequency 

Index (F) 

Risk Value (R) 

Gas 

Suffocation or 

Poisoning 

22 0.025788301 4 0.006285714 0.000648392 

Gas Or Dust 

Explosion 

3002 3.518930958 10 0.857714286 30.18237353 

Falling Rocks 20 0.02344391 9 0.005714286 0.001205687 

Support 

Failure 

85 0.099636619 9 0.024285714 0.021777718 

Struck 

By/Against 

Object 

997 1.168678936 10 0.284857143 3.329065425 

Blasting 4069 4.76966358 10 1.162571429 55.45074602 

Manual 

Handling 

302 0.354003048 9 0.086285714 0.274908652 

Mechanical 

Transportation 

2 0.002344391 0 0.000571429 0 

Traffic 

Accidents 

32 0.037510257 7 0.009142857 0.002400656 

Electrical 0 0 0 0 0 

Equipment 0 0 0 0 0 

Machinery 0 0 0 0 0 

Hand Tools 0 0 0 0 0 

All Other 

Injuries 

0 0 0 0 0 
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Table 31. Risk Estimation of TTK mine considering working shifts which 

accident happened. 

Shift 

Number of 

Accidents 

Probability 

Index (P) 

Severity 

Index (S) 

Frequency 

Index (F) 

Risk Value 

(R) 

1 4642 5.441331614 10 3.315714286 180.4190097 

2 2063 2.418239362 10 1.473571429 35.63448432 

3 1826 2.140429024 10 1.304285714 27.91730998 

 

Table 32. Risk Estimation of TTK mine considering age of the injured. 

Age 

Number 

of 

Accidents 

Probability 

Index (P) 

Severity 

Index (S) 

Frequency 

Index (F) 

Risk Value 

(R) 

18-25 1 0.001172196 0 0.000285714 0 

25-35 5914 6.932364318 10 1.689714286 117.1371502 

35-45 2279 2.671433595 10 0.651142857 17.39484904 

45-55 333 0.390341109 9 0.095142857 0.334243515 

55+ 4 0.004688782 10 0.001142857 5.35861E-05 

 

Table 33. Risk Estimation of TTK mine considering affected organ. 

Affected 

Organ 

Number 

of 

Accidents 

Probability 

Index (P) 

Severity 

Index 

(S) 

Frequency 

Index (F) 

Risk Value 

(R) 

Head 558 2.249093108 10 0.159428571 3.585697012 

Hands 108 0.435308343 10 0.030857143 0.134323717 

Foot 196 0.790004031 10 0.056 0.442402257 

Arm 748 3.014913341 10 0.213714286 6.443300512 

Leg 374 1.507456671 10 0.106857143 1.610825128 

Body 57 0.22974607 7 0.016285714 0.026191052 

Various 374 1.507456671 10 0.106857143 1.610825128 

Death  66 0.266021765 10 0.018857143 0.050164104 
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According to Table 30 TTK risk reasons are quite different with GLI and ELI. 

Gas/dust explosions and blasting materials accidents have a huge risk in the mine 

which is expected because of the nature of the mines. The first shift (8-16) has the 

highest risk which is also similar with the other mines. In TTK, younger employees 

(25-35) are trend to have a much more risk than the others which can be defined that 

most of the workers are between these ages. Arms and head are the most affected 

organs in TTK.  

 

The results of risk assessment are quite similar with ELI and GLI which is expected 

because of the production methodology and similarities of the area with same 

management. 

Table 34. Comparison of risk assessment between mines 

Variable ELI GLI TTK 

Reason  Machinery Manual Handling Blasting 

Age 45-55 45-55 25-35 

Shift 1 1 1 

Affected Organ Hands Hands Arms 

 

TTK risk analysis results are quite different comparing with lignite mines. When 

items are analysed separately, blasting and gas/dust explosions have a huge impact 

on risks. These reasons are not present in ELI and GLI mines. This risk can be a 

result of a single accident which has a high severity impact with many deaths and 

injuries. Considering the geological conditions and type of coal (hard coal with high 

methane content), it is an expected risk. Although, the risk level is quite low and 

shown as immediate action is not necessary according to Table 13 which is 

Gradation of the Risk Value in association with the urgency level of required actions, 

the consequences of such event has a high impact on injuries and equipment loses. 

The management of mine should take severe precautions on the risk. 
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CHAPTER 7 

 

 

METHODOLOGY 

 

 

7.1 Pre-Processing of Data 

A set of coal/lignite files was prepared, which contained the tabulated data for 

workday loss due to accidents in a coal mine, and the corresponding values of six 

mutually independent parameters affecting it for each of the three mines (GLI, ELI 

and TTK), which is shown in Table 35. Data was qualitative analysed and processed 

to be made ready for the next step, quantitative analysis. Following quantities were 

recorded against workday loss: Date of Birth (Injured), Date of Accident, Time of 

Accident (Shift), Reason of Accident, Affected Organ, Loss of Workday - in six 

columns. Statistics were available for a total of around thousand points each for first 

ELİ and GLİ and 8,500 points for TTK.  It could be verified that all cause variables 

(hereafter mentioned as x) are independent of one another. However, the data needs 

to satisfy certain conditions, before it is fit for further processing: 

 

1. A variable is continuous, provided that (i) its points should be related to each 

other by ‘interval scale’,(ii) it should contain some (at least 4) distinct values, 

because such values act as points for curve-fitting.  

 

2. A variable is discrete, provided that (i) all its points should be mutually 

independent from one another, and (ii) there should be at least 30 instances of 

occurrences for each of its values. All such discrete variables need to be 

converted to another form before methods can be implemented on them 

 

As per the conditions, reason, affected organ and shift could be classified as discrete 

variables. Date of birth cannot be related by interval scale, but if converted to age (in 
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years), it becomes a continuous variable. Similarly, it is very likely that there would 

be less than 30 accidents for a given date of accident, but the problem gets resolved 

when this date is converted to season instead. Hereafter, age, season, shift, reason, 

affected organ will also be referred to, by ‘x1’, ‘x2’, ‘x3’, ‘x4’ & ‘x5’ respectively, 

and workday loss, a continuous variable which is the result of x1-x5, will also be 

referred to, by ‘y’. This can be summarized, as given in Table 35. 

 

Table 35. Pre-processing analysis of input data 

 

Field/Variable 

Type of Variable  

Conversion 

 

Dependent / 

Independent 

Continous/

Discrete 

Date of Birth 

(Age) 

Independent Continuous Date of birth was converted to 

Age (number of years) 

Date of 

accident 

(season) 

Independent Discrete Date was converted to season for 

classification purpose 

Time of 

Accident 

(Shift) 

Independent Discrete Data already provided in classified 

form 

Reason of 

Accident 

Independent Discrete Though provided in classified 

form, some sub-classes were 

grouped to single class 

Affected 

Organ 

Independent Discrete Already provided in classified 

form 

Workday Loss Dependent Continuous Result of all independent factors – 

already provided in a processable 

format (number of days) 

 

For discrete data as per the new set of variables, a final conversion was required to 

convert everything in a format similar to continuous data, so that regression and 
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neural network methods could be implemented. One such method of doing that is to 

convert the data to dummy binary variables. 

 

The converted data was placed on an excel-sheet as given in Table 36.  

 

Table 36. Set of variables provided on sheet 

Age (Injured) Reason (1-14) 

Season of Accident (1-4) Affected Organ (1-8) 

Time of Accident (Shift : 1-3) Workday Loss 

 

For regression and neural network analysis, dummy variables could be combined 

with continuous ones to obtain a single equation/correlation coefficient. For fuzzy 

logic, they have to be analysed in their numbered form (As per table 37) because 

they cannot be converted to dummy variables and combined with continuous ones. 

Also, since there is only one continuous variable, fuzzy logic analysis will be done 

only for discrete variables.  

 

Table 37. Number of variables for sites (highest value in database) 

Mine Age 

(cont.) 

Season Shift Reason Affected 

Organ 

Total 

ELI 1 4 3 14 7(9) 28 (31) 

GLI 1 4 3 14 8(9) 29 (31) 

TTK 1 4 3 9(14) 9 25(31) 

 

Then the data of the total number of variables produces; number of continuous 

parameter + Highest value of season in database +Highest value of shifts + Highest 

value of reason +  Highest value of affected organ, which comes at 28 for ELI, and 

29 for GLI, and 25 for TTK. Maximum possible number of variables = 1+4+3+14+9 

=31 
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7.2 Probability Analysis of Three Mines 

Hazard Rate, : According to past accidents this rate explains the number of 

accidents expected in a time. 

 

When ELI mine considered; 

 

(week) = 4.64 means rate of expected accidents in 1 week. 

 

(day) = 0.66 means rate of expected accidents in 1 day. 

Reliability: The probability of mine’s accident-free operation for a desired period (t) 

is named as reliability of safety. This value can be derived from equation 5.1 as 

putting in x=0 and remaining part of the equation e
-t

 is equal to the probability of 

zero accident.  

 

According to this definition; 

 

Zero accident probability for 1 week is calculated as (t=1) = e
-t 

= e
-066x7

 = 0.0098 

Zero accident probability for 1 day is calculated as (t=1) = e
-t 

= e
-066x1

 = 0.516 

 

Risk of the probability of at least one accident in a time is equals to 1- e
-t 

 

 

Then, 

 

The probability of at least one accident in a week is 1-0098 = 0.9902 

The probability of at least one accident in a day is 1-0516 = 0.484 

 

Mean time between accidents, : It is defined as the expected time between accidents 

and equals to 1/ = 1/0.66 = 1.515 days  
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Using this systematic approach, probability analysis are made for all mines and 

comparison is given in Table 38. 

  

Table 38. Comparison of three mines according to hazard indices 

Indices ELI GLI TTK 

Hazard Rate, l (accident/day) 0.66 0.32 5.85 

Reliability in one day 0.516 0.726 0.0028 

Reliability in one week 0.0098 0.106 0 

Risk in one day 0.484 0.274 0.9972 

Risk in one week 0.9902 0.894 1 

Expected time between accidents 

(days) 1.515 3.125 0.17 

 

According to the probability analysis; TTK mine which produces hard coal has a 

very high hazard rate compared to ELI and GLI mines which produces lignite. This 

can also be explained with production methods and capacity, complexity in 

geological conditions number of workers in the operations, difference in the 

production techniques. 

 

As seen in Table 38 reliability in one day is 0.516 in ELI mine, 0.726 in GLI mine 

and 0.0028 in TTK mine which means accident probability is much higher in TTK 

mine and there are accidents every day.  

 

Similarly in all mines there is a risk of accident every week but in TTK this risk is 

present every day.  

 

In TTK mine every 4 hours there is an expected risk while this number is 36 hours in 

ELI and 75 hours in GLI mines. 
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This analysis only shows the probability of accidents and some part is related with 

the risk but to get a precise result, the important factor is the severity of the accident. 

On the other hand frequency is one other factor effecting risk in many calculations. 

7.3 Quantitative Analysis using Regression 

The first method to be used for quantitative analysis is ordinary least squares (OLS) 

regression. This method deals with simply fitting a line which ‘best relates’ the given 

set of variables (continuous + dummy) linearly. 

 

The analysis involves the following assumptions: 

 

- The dependent variables have no mutual dependence against one another, and 

errors are random. 

- The three mines provide similar conditions for experimentation. This means 

the difference in coefficients due to the three mines would be random. 

 

The regression equation was obtained through Matlab program, which was done by 

first reading the matrix from file, converted the required discrete variables to 

dummy, and then using the ‘regress’ function to get the equation. Constant term was 

obtained by appending a unit column to the final data. 

 

Table 39. Regression equation for ELI which has a regression value of 0.031. 

Y = Lost 

Workday 

0.0802*A  Age 

- 2.637*S2 – 2.935*S3 Season 

+ 1.103*T1+0.145*T2  Shift 

+ 5.671*R3 + 9.628*R4 + 0.3872*R5 + 8.407 *R(7) + 12.18*R(8) + 

11.64 * R9 + 3.091 * R11 + 7.664*R12 + 5.553*R13 + 8.141*R14  

Reason 

- 20.95*O1 - 14.08 * O2 - 13.45 *O3 - 15.54*O4 -16.01*O5 - 

18.21*O6+30.36 

Organ 

(Affected) 
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Table 40. Regression equation for GLI which has a regression value of 0.054 

Y =  Lost 

Workday 

0.1050*A  Age 

- 3.655*S1 - 4.960*S2 - 4.064 * S3  Season 

-1.655*T1 + 2.228 * T2  Shift 

+ 8.156*R3 + 10.978 * R4 + 11.459*R5 + 6.227*R7 + 10.166*R8 + 

8.419*R9 + 10.633*R11 + 10.408*R12 + 2.75*R13 + 8.158*R14  

Reason 

- 0.6671*O1 + 8.152*O2 + 12.248*O3 + 4.782*O4 + 5.355*O5 + 

1.636*O6 + 16.481 *O7  

 

Organ 

(Affected) 

 

Table 41. Regression equation for TTK which has a regression value of 0.028.  

Y =  Lost 

Workday 

 0.400*A Age 

- 0.545*S1-0.993*S2 Season 

- 15.249*T1 -12.823*T2-13.473*T3 Shift 

+ 5.907*R2 + 21.076*R3 + 5.709*R4 + 6.043*R5 + 6.488*R6 + 

9.238*R8+ 4.963*R9 

Reason 

+ 14.827*O1 + 6.075*O2 + 11.172*O3 + 13.525*O4 + 7.118*O5 + 

10.755*O7 + 3.357*O8 + 4.171 *O9 

Organ 

(Affected) 

where, 

A = Age 

Si = ith season 

Ti = ith shift of time 

Ri = ith reason 

Oi = ith organ affected 

Y = workday loss per accident 
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The meanings of corresponding codings which are used in regression analysis are 

presented in Table 42. 

 

Table 42. The meanings corresponding to codes 

Season 

of 

Accident 

Code 
Shift/Time 

of Accident  
Code     Reason Code 

Affected 

Organ          
Code 

Spring 1 08:00-16.00 1 

Gas 

Suffocation 

Or Poisoning 

1 Head 1 

Summer 2 16.00-24.00 2 
Gas Or Dust 

Explosion 
2 Hands 2 

Autumn 3 24.00-08.00 3 Falling Rocks 3 Foot 3 

Winter  4     
Support 

failure 
4 Arm 4 

        
Struck by 

Object 
5 Leg 5 

        Blasting 6 Body 6 

        
Manual 

Handling 
7 Various 7 

        
Mechanical 

Transportation 
8 Death 8 

        
Traffic 

Accidents 
9     

        Electrical 10     

        Equipment 11     

        Machinery 12     

        Hand Tools 13     

        
All Other 

Injuries 
14     
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Variables states with no accidents associated with them, or those having negligibly 

small coefficients, are both marked as zero. So, it cannot be assumed that absence 

from the equation is due to zero coefficients. In the above multi-linear regression 

equations for all mines, it should be noted that only the coefficients of continuous 

variable (age) represents the strength of correlation of that variable with the equation.  

 

The value of regression (R
2
) was found to be 0.031 for ELI, 0.054 for GLI and 0.028 

for TTK which shows that the obtained equations are not strongly correlated against 

the given dataset. This is expected, owing to fact that the number of variables in the 

equation is large. However, if compared to number of values in dataset, it can be said 

that on an average, there are more than 30 values for each variable. This proves that 

the data accuracy can be enhanced using some other methods, as discussed in neural 

network and fuzzy logic sections. 

 

In spite of its poor accuracy, a few inferences may be drawn from the equation 

generated by the method. The analysis of the equation is performed as follows: 

 

- For continuous variable (Age), the effect can be determined by the sign of 

variable, negative for decreasing and positive for increasing effect. It was 

found that the coefficient for age had different signs for different mines. 

Equation from TTK showed a strong correlation of loss with age, but this 

dependence cannot be established only on the basis of only TTK mine data. 

By and large, it cannot be said that there exist any relation between age and 

workday loss according to regression analysis. 

 

- For seasons, it can be said that the coefficient for spring in GLI is certainly 

higher than the other three seasons for ELI and TTK. It has zero coefficients 

for ELI and TTK, because it shows 0 values, and has a reasonably large 

number of observations corresponding to it. For site GLI also, its value is 

higher than that of others. This means that workday loss is higher (per 

accident) in spring season than other seasons.  
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- The results for ‘reason’ were not strong enough, but some reasons like 

Manual Handling (7) were found to have high values for all the three sites, 

and can therefore, be claimed to be enhancing workday loss per incidence. 

Other results for reason are not too commendable with regression analysis. 

 

- ‘Affected Organ’ has provided some good results. It is clearly evident that 

workday loss gets minimized for head injuries (1) since this column has 

lowest values for ELI, GLI and TTK mines. Similarly, foot injury (3) has 

highest & arm injury (4) has comes after that for both mines, which proves 

that workday loss is higher for foot and arm injury, as compared to other 

injuries. 

 

- For shift, one result could be obtained which is as follows. For second shift, 

the correlation value was found to be either highest (ELI or TTK) or second 

highest (GLI). This proves that second shift causes more workday loss than 

the other two shifts. 

 

The results can be summarized as shown in Table 43. 

Table 43. Effects of parameters on workday loss – results from regression 

Sr. 

No. 

Parameter Effect on workday loss ELI GLI TTK 

1 Age - - - + 

2 Shift (2) 08:00-16:00 (+) + - + 

3 Season (1)Spring (+) + + + 

4 Reason (7) Manual handling (+) + + + 

5 Affected 

Organ 

(1) Head (--), (3) Foot 

(++), (4) Arm (+) 

+ + + 

 

* (--) high decreasing effect, (-) decreasing effect,  (+) enhancing effect, (++) high 

enhancing effec 
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Another result which could be obtained from this method is the ‘intensity of 

replacement within variables’. For example, the coefficient values corresponding to 

seasons (2, 3) for ELI were found to be (-2.63,-2.93) respectively. Replacing one by 

another modifies the final result (workday loss per accident) by (+/-) 0.3. This is 

because dummy variables take the value 1 or 0 for availability or unavailability, 

which means coefficients simply add up for all such existing states. Such a difference 

for GLI was found to be 0.9; there is no significant result for TTK.   

 

Differences in corresponding values for shifts (1, 2) were found to be 0.95, 3.8 and 

0.65 for ELI, GLI and TTK respectively. So, it can be said that the effect of shift 

replacement is stronger than the effect of time replacement. This logic can be 

quantified by taking the median values of the obtained regression coefficients, and 

then comparing them against highest and lowest coefficient values for the same 

parameter. By doing this, it could be established that reason is the most significant 

parameter as per the current method, as it has the highest replacement effect for the 

three areas combined together. This was further verified by neural networks analysis 

as well, as will be discussed later.  

 

When the analyses has no site restriction; another type of comparative analysis, 

which is possible in context of the current study, is the inter-site comparison. In other 

words, are all season/shift/reason/organ affecting workday loss in the same order, in 

all the three sites? To answer this question, one of our earlier assumptions of all sites 

being similar has to be removed. So, it is assumed till this analysis, that different 

sites might be influenced by same factors in different ways. This is explained in the 

following points: 

 

1. Age - Effect of age was found to be most dominant in TTK. So, if aged 

individuals are employed at TTK, their productivity could go down. 

2. Season – For GLI, summer was found to be having the least coefficient. If 

one site is chosen per season, GLI is recommended for summer. 
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3. Shift – For GLI & TTK, shift (0800-1600) was dangerous. However, for ELI, 

shift (2400-0800)  had a higher value.  

4. Reason – For ELI, most of the accidents were found to occur due to blasting. 

Also, struck by object was found to be least effective. In contrast, for GLI, it 

was hand-tools, which was the weakest cause of workday loss. Other than 

that, no concrete interpretations could be found on ‘reason’ factor’. 

5. Affected Organ – Contrary to the ELI and GLI, the coefficient for ‘head’ was 

found to be highest in TTK. Thus, TTK is much more susceptible to head 

injuries, as compared to ELI and GLI, for the same amount of workday loss. 

 

7.3.1 Regression Using Modified Method 

An improvement to the previous regression method was attempted through an 

implementation of a better algorithm – irrelevant variable removal approach. The 

new algorithm accounts for the fact that the removals of those variables which do not 

affect output (lost workdays), enable the remaining ones to produce a better quality 

fit, as explained before. 

 

Its algorithm goes as follows: 

 

1. Calculate p values of normal distribution for all variables included in the 

regression equation. 

2. Check whether there exist at least one variable with the p value greater than 

0.2. If no, stop. If yes, go to step 1. 

3. Remove the variable with the highest p value. 

4. Perform regression using the remaining variables. 
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Table 44. The equation obtained for modified regression for ELI 

Y = Lost 

Workday 

 -2.572*S1 -3.006*S2 Season 

+ 3.725*R7 + 7.247* R8 + 7.166*R9 + 2.743*R12 + 3.441*R14 Reason 

-6.986*O1 -4.166*O6 Organ 

(Affected) 

 

Table 45. The equation obtained for modified regression for GLI   

Y =  Lost 

Workday 

3.960 * T2 Shift 

+ 9.347 * R3 + 11.876 * R4 + 11.853 * R5 + 7.433 * R7 + 10.84 * R8 + 

9.764 * R9 + 11.69*R11 + 11.1 * R12 + 9.558 * R14 

Reason 

+7.193 * O2 + 10.898 * O3 + 14.992 * O7 Organ 

(Affected) 

 

Table 46. The equation obtained for modified regression for TTK 

 

Y =   Lost 

Workday 

0.319 * A Age 

-2.3 * T  Shift 

+14.72 * R Reason 

+10.21 * O1 + 6.53 * O3 + 8.954 * O4 + 2.546 * O5 + 6.114 * O7 

 

Organ 

(Affected) 

 

where coefficients (A, Ti, Ri, Oi, Si) have the same meanings, as provided in 

quantitative analysis using regression section.  Table 47 shows the eliminated P 

values of ELI mine for the regression.  
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The results for modified regression were not found to be better than those for 

ordinary least squares regression in our case (correlation values of 0.025, 0.049 and 

0.026 against 0.031, 0.054 and 0.028 respectively). So, instead of this modified 

method of regression, normal regression would be used for further research and 

analysis. Inter-site comparison is difficult, since most of the coefficients included in 

the three equations are different. 

 

Table 47. P values of eliminated variables for ELI 

Variable Value Variable Value Variable Value 

Age (continuous) 0.417 Reason  Organ  

  

Gas Suffocation 

Or Poisoning S Head  

Season of 

Accident  

Gas Or Dust 

Explosion S Hands 0.597826 

Spring (S1) S Falling Rocks 0.42 Foot 0.23963 

Summer (S2) N Support Failure 0.26 Arm 0.471369 

Autumn (S3) N 

Struck by 

Object 0.98 Leg 0.401461 

Winter (S4) N Blasting S Body N 

Shift/Time of 

Accident   

Manual 

Handling N Various S 

08:00-16.00 (T1) 0.463 

Mechanical 

Transportation N Death A 

16.00-24.00 (T2) 0.952 

Traffic 

Accidents N   

24.00-08.00 (T3) S Electrical S   

  Equipment 0.631   

  Machinery N   

  Hand Tools 0.51   
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* The symbol ‘S’ stands for ‘eliminated by system’, ‘N’ for ‘not eliminated’, A for 

absent. Other quantities are corresponding P values 

7.4 Quantitative Analysis using Neural Networks 

In spite of the simplicity of design and implementation of previous method and its 

good results for several parameters, its effectiveness remains questionable for the 

purpose of study because of the fact that it produced extremely low correlation 

values (0.031, 0.054, 0.028) from all three mines, so a better and more robust method 

was required, which could either improve regression or implements some other 

algorithm to produce results better than Ordinary Least Squares (OLS) regression. 

One such method is Neural Networks which improves the performance of regression 

methods by ‘training’ the function for preparing it for analysis. It does so by iterating 

the function’s outputs and inputs through a hidden layer of neurons., which improves 

the performance of regression methods by putting the desired ‘weights’ for 

processing regression data. Such weights are calculated using the input and output 

values of training set. This training set is developed from the random values from the 

given data. Some values are also used for creating a validation set, for verifying that 

the data is getting improvements with training sets. Remaining values are used for 

testing purpose.  

 

Apart from inputs and outputs, there is a dynamic hidden layer, which contains 

weights of variables. Number of neurons decides the number of variables which store 

this information.  

 

Matlab’s Neural Network tool takes the following inputs: x(causes) ,y(effect) ,n 

(number of neurons), distribution of experiments in training/validation/testing. The 

default value for training/validation/testing could be used for analysis. However, the 

number of neurons needed to be modified considering the huge number of variables 

in the Dataset. Using several possible values of neurons, it was found that the 

regression values could be significantly improved for ELI – from 0.10 to 0.28, as the 

number of neurons was increased from 10 to 100, as shown in Table 48 below. Table 
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48 also proves that the output is maximized when number of neurons ~ number of 

variables, and does not improve further on increasing the number of neurons. 

Increasing the neuron number improves both the efficiency and the processing time, 

but the former diminishes beyond a point. This is because after a certain point, 

equations created due to extra layers are redundant. Table 48 shows that the quality 

of fit improves with the number of neurons, till 20 neurons. However, two huge 

‘number of layer’ values were taken to verify that increasing number of neurons does 

not improve the quality of fit indefinitely. For n = 50, a correlation coefficient value 

of 0.25 was obtained, and for n = 100 this value was 0.23. These two values are 

almost similar, and not too far from the one obtained at n=20 (0.28sw). Best fit is 

achieved with highest regression value. 

 

Table 48. Improvement of regression value with change in number of neurons 

for GLI 

Number of neurons Regression Value 

10 0.10 

12 0.18 

15 0.18 

18 0.19 

20 0.28 

25 0.21 

30 0.26 

50 0.25 

100 0.23 

 

Number of neurons is chosen as 20 according to best fitting regression value and 

used for analysis of all mines.  

  

Using the code, the final regression value was computed. However, it is possible to 

obtain regression value separately for training, validation and testing set, as shown in 

the Figure 26 to 28 for ELI, GLI and  TTK.  
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Figure 26. Regression values for  ELI, 20 neurons (70% training, 15% 

validation, 15% testing conditions) 

 

The method does not generate a unique set of coefficients, since it picks a random 

seed for every iteration.  
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Table 49. A typical set of values of coefficients and equation for ELI 

 

Y = - 0.0434 * A Age 

- 4.716 * S2 - 5.3498 * S3 Season  

- 2.413 * T1 - 0.4559 * T2 Shift 

+ 4.5279 * R3 + 1.0682 * R4 + 1.5412 

* R5 + 0.2593 * R7 + 3.9526 * R8 + 

0.7957 * R9 

+ 3.8772 * R11 + 1.9106 * R12 + 

1.7908 * R13 - 1.6177 * R14 

Reason  

+ 3.1942 * O1 + 1.0054 * O2 + 3.8285 

* O3 + 3.7154 * O4 - 0.4717 * O5 + 

3.4358 * O6 

Organ Affected 

 

Table 50. A typical set of values of coefficients and equation for GLI.        

     

Y = - 0.02481 * A Age 

- 0.06479 * S2 – 1.34419S3 Season  

+8.49 * T1 + 8.732 * T2 + 8.039 T3 Shift 

+ 3.56 * R3 +  0.48 * R4 + 9.5 * R5 + 

2.162 * R7 + 6.314 * R8 + 3.66 * R9 

+ 6.39 * R11 + 4.99 * R12 + 1.519 * 

R13 - 1.96 * R14 

Reason  

-4.87 * O1 + 5.908 * O2 + 8.407 * O3 + 

1.912 * O4 - 0.483 * O5 – 0.439O6 + 

9.348 * O7 

Organ Affected 
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Figure 27. Regression values for  GLI, 20 neurons 
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Figure 28. Regression values for  TTK, 20 neurons 
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Table 51. A typical set of values of coefficients and equation for TTK. 

Y =  0.28819 * A Age 

- 1.6106 * S2 + 0.0243 *S3 Season  

-0.1869 * T1 + 4.463 * T2 + 4.086 T3 Shift 

+1.426 * R2 + 1.227 * R3 -  5.778 * R4 

+ 1.411 * R5 – 0.475 * R6 - 3.974 * R7 

– 0.559 * R9 

Reason  

8.069 * O1 + 5.726 * O2 + 6.056 * O3 

+ 8.035 * O4 + 6.016 * O5 + 6.644 *O7 

+ 2.895 * O8 + 4.088 * O9 

 

Organ Affected 

 

Though neural network method improves regression ( R
2
=0.28) at the expense of 

increased complexity and time required for the machine, its final results will have the 

same limitations as that of regression – the quality deteriorates as the number of 

inputs increase. This is because similar to regression; neural network method also 

relies on finding the best fit solution for all input variables taken simultaneously, and 

minimization of the corresponding error. This algorithm does not fully exploit the 

advantage of having a huge number of points in the database.  

 

Results similar to regression for mines may be found in neural networks method as 

well. However, it is difficult to comment using such results, since the coefficients 

generated by the method depend on seed value, that is, they are random. The 

following are a few results for inter-site comparison for one such run: 

 

1. Age - Since age factor (a continuous variable) has negligible coefficient for 

ELI and GLI, and a significantly high value for TTK, it can be said that 

young individuals should be employed to TTK – this is similar to what was 

found in regression. 
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2. Season – Contrary to regression, summer was found to have the least 

coefficient for TTK. Thus, this method recommends TTK for summers, for 

the same workday loss. 

3. Shift – 0800-1600 shift has effect on workday loses in ELI and GLI but in 

TTK it is 0000-0800 shift which is completely different with regression 

analysis, in regression the effect of shift 0800-1600 was higher for GLI and 

TTK. 

4. Reason – Manual handling was not found to be an enhancing factor for TTK 

but it has major effect in GLI and ELI mines. Thus, if both regression and 

neural networks methods are combined, it can be said that blasting is an 

enhancing factor for TTK. 

5. Affected Organ – Similar to results obtained from regression, head injuries 

resulted in higher number of workday loss as compared to other injuries for 

TTK. Thus, this is a definite result. 

 

This method produced some results in addition to those predicted by simple 

regression. For example, if the files are compared for time effect, it can be seen that 

accidents occurring in shift 0800-1600 have more severe impact than those in shift 

2400-0800 in ELI and TTK but shift 1600-2400 has more effect for accidents in GLI 

comparing to others 

 

Most of the previous results can be validated using this method. For example, the 

effect of manual handling can still be found to be 3rd (ELI) or 4th out of 10 values 

for reasons. This means the given reason definitely results in severe accidents. 

Similarly, for affected organ variable, head injury effect was found to be lower (4/6 – 

ELI) and least severe (GLI). Foot injury effect was confirmed to be highest/second 

highest respectively, and arm injury – second highest respectively. Age (continuous 

parameter) still had different signs for two sites. So the new results can be tabulated 

as provided in Table 52. However, in this case, one more factor could be found in 

addition to manual handling – blasting, whose effect was nearly highest for TTK. 
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Table 52. Results from neural analysis, and their comparison against regression 

method 

Parameter Effect on workday loss 

  ELI GLI TTK 

Age None None 25-35 (+) 

Shift 0800-1600 (+) 0800-1600 (+) 0000-0800 (+) 

Season Spring (+) Spring (+) Summer (+) 

Reason 

Manual Handling 

(+) 

Manual Handling 

(+) 

Blasting Material 

(+) 

Affected 

Organ Foot (++), Arm (+) Foot (++), Arm (+) Foot (++), Arm (+) 

 

Using exactly the same method as that for OLS regression, similar results for 

replacement effects were established for neural networks also. But on this occasion, 

some different weights were used to derive the values, so their intensities do not 

result in direct contribution to workday loss like in regression.  

7.5 Fuzzy Logic Analysis 

The following is a starting premise for formation of rules. First, every result is a 

summation of individual efforts of all the inputs, but the problem lies in measuring 

such individual efforts. Also, the result of the efforts (y) for a particular accident 

might have a purely random value, which is nowhere related to the values of inputs. 

Nevertheless, the following can be said with a very good accuracy: If higher than 

average result was found in presence of a particular state of some discrete variable, it 

is more likely that if a particular observation has that value, it will have higher than 

average workday loss. For example, if most of the accidents corresponding to the 

season ‘spring’ have high values of workday loss, it can be said that spring season is 

responsible for increasing the severity of workday loss. 

 

The above logic can be further extended to assume that the state of variable (such as 

spring season) is responsible to the extent of average of the resultant ‘y’ values of all 
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the accidents where it is present. Fuzzy logic rules can be generated using this logic. 

However, it requires some assumptions, as given below: 

 

 Sufficient number of points exists for every state, such that there is no bias 

due to the non-randomness of the pattern of other variables affecting the 

result whose average is represented by the considered state. Only states with 

more than 30 instances of occurrences will be considered for that variable. 

Such a state will be referred to as ‘significant’ henceforth.  30 are taken here 

because each state sees only four variables around it, but if the numbers of 

other variables were more than 4, or number of states per variable was large, 

this number would increase from 30. 

 There is zero dependence between variables. In other words – the effect on 

the value of state of a particular variable should not be because of some other 

variable influencing it. 

 The distribution of states within the variables should be, to a large extent, 

random.  For example, if most of the cases of severe head injuries were 

removed from the sample, the final results will not be good. 
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Figure 29. Membership function for ‘seasons’ for GLI 

 

Having laid down the assumptions, the algorithm for creating the rules can be 

defined as follows: 

 

 Select the first discrete variable and scan through its states. 

 If the number of accidents including the given state is less than 30, exclude 

the state. If it is greater than 30, compute the corresponding average in the 

corresponding values for workday loss (‘F’). For instance, if season = 1 

corresponding to rows/accidents 4, 5, 19, 24 the corresponding average value 

will be average (F4, F5, F19, F24). 

 Repeat this for all states of all variables to generate a value corresponding to 

each of the ‘significant’ states. 

 Compute highest/lowest/median (H/L/M) values for variables. 
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 Each state will have an objective function of a triangle, defined as (H, V, L), 

where H = highest value for the variable, L = lowest value for the variable 

and V = Value corresponding that state. For such a fuzzy function, value of 

state corresponding to L will decrease from highest (at L) to 0 (at H) as we 

move to state with higher value. It is reasonable to expect this because (i) as 

the contribution of lower values decrease, the value of function increases (ii) 

variable’s value equals to that of a state means the corresponding state’s 

contribution is 100%. So, a state’s fuzzy logic function member is a peak at 

state’s value and two legs at maximum/minimum values.  Figure 29 shows 

the member functions for season variable of GLI. (1) Corresponds to Highest 

value, (2) to Lowest and (3) to Median value. 

 Rules are yet to be decided for result variable (workday loss) which is 

continuous and ungrouped. For doing that, it has to be grouped. The simplest 

way of doing that is to form 3 equal groups according to the order of expected 

values. This grouping is not done according to the actual values, since they 

could be random. So, the values in all groups combined together cover all the 

possible combination of discrete inputs. The rules are presented in Appendix 

1. 

 Similar method may be used for making member function for result also, 

even though it is a continuous variable. However, to adjust for the fact that 

unlike discrete functions, it has a range of values to represent a state instead 

of a single value, a trapezoid type function would be better suited instead of a 

triangle function. The only difference between that and triangle function is 

that it accepts four position instead of 3. Similar to inputs, the extreme values 

for member functions of states are lowest and highest value for low and high 

respectively. However, there are two values for middle functions - lowest 

(VL), and the highest (VH) values from that state. Consequently, the member 

function corresponding to ‘low’ becomes (L, L, VH, H) for ‘high’ it becomes 

(L, VL, H, H) and for medium, it becomes (L, VL, VH, H). So far, the 

membership functions have been defined. 
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 The final task is to formulate the rules using the membership functions of 

inputs and outputs. This is now straight forward, since combinations of inputs 

provide the corresponding output. For example, if workday loss = 2 

(medium) for season = 1, time = 2, organ = 5, reason = 3, this becomes a 

fuzzy rule.   

 Translate all combinations and corresponding values to rules, and generate a 

fuzzy model in Matlab, using those rules. 

 

The implementation of rules was done using excel functions/macros and Matlab 

fuzzy logic toolbox, in the following steps: 

 

1. First, prepare the inputs for fuzzy logic using a Matlab program which 

performs steps (1-3, 6), and provides two types of outputs (i) excel-sheet 

average value matrices corresponding to each variable in separate sheet (ii) 

another excel-sheet containing all combinations of inputs versus output state 

(low/medium/high). 

2. Next, compute the values for member values for inputs and outputs on excel, 

and save them to a new file on fuzzy logic toolbox.  

3. Last, feed the rules in the rules section of the toolbox. This immediately 

generates an interface which generates values for the combinations.  

 

Since the results of this method are based on quality attributes, it cannot be 

quantified for comparison, like the other two methods. Also, this estimator produces 

output from the given values using a set of rules, rather than the set of equations. 

This makes the comparison even more difficult. However, the quality of data 

produced by fuzzy logic can be compared to the table by randomly picking the 

sample and applying the rule. For example, for observation 76 (1, 4, 3, 2, 3, 1), actual 

value of the observation was 15, while that predicted by fuzzy logic was 14.3. To a 

large extent, the similar observations apply to the entire dataset. 
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A snapshot of rules, is as shown in figure 30. The four columns on the left represent 

four input variables (Season, time, reason and affected organ) and the column on the 

right represents their result (which is equivalent to a sum of corresponding averages 

as discussed before, but with some fuzzy adjustments). Thin red lines on the inputs 

represent its current average value, which can be changed by moving it to left or 

right.  

 

Apart from rule generation, it also enables users to view the effects of inputs taken 2 

at a time, which can be viewed from ‘surface’. However, no commendable 

observations could be found from surface analysis due to it shows only 2 input 

variables with output. 
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Figure 30. Graphical user interface for matlab’s fuzzy rules for ELI 
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Figure 31. Graphical user interface for matlab’s fuzzy rules for GLI 
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Figure 32. Graphical user interface for matlab’s fuzzy rules for TTK 

 

Figure 33 shows a surface for severity of accidents versus reason and affected organ 

as a sample, the other figures are given in Appendix 6. In the figure, two horizontal 

axes are (i) Affected organ and (ii) Reason, which represent independent variable. 

The result ‘output1’ is the resultant of four parameters, but Figure 33 is drawn 

assuming two of them as constant. Values on x-axis represent the partial effect of the 

two, while those on y-axis represent the overall value of output 
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Figure 33. Surface for output1 (Workday Loss) for GLI versus reason and 

affected organ effect 

 

Fuzzy logic estimator produces output from the given values using a set of rules, 

rather than the set of equations. Since the results of this method are based on quality 

attributes, they cannot be directly quantified for comparison like the other two 

methods.  Also, fuzzy logic produces results ‘expected average results’ for combined 

efforts, instead of precise contribution of each variable/state. Since this is a different 

type of result, it cannot be compared with results obtained from regression. 

 

However, it can be seen that most of the results are close to that predicted by the 

model. For instance, observation 11 for ELI shows the value of workday loss as ‘30’ 

for (spring season, 0800-1600 shift, other injuries and hands), which is much higher 

than median (calculated as ‘9’) value while that for observation 9 shows ‘6’, which is 

much lower than median. Corresponding values predicted by fuzzy logic were also 3, 

1. To a large extent, most of the findings from fuzzy logic matched for the entire 

picture.  Also, this method proves that some results could be directly obtained from 

common sense, and were found to be similar to those obtained by regression. For 
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instance, average value for data corresponding to ‘spring’ was found to be higher 

than for other seasons. This enables spring to have a relatively positive effect as 

compared to other seasons. Similarly, values for head injury were found to be lowest 

for both the sites. Other results found in Table 52 can also be verified by fuzzy logic 

method as well. In addition, there are many more results, such as reason traffic 

accidents (9) may also result in high workday loss. These results cannot be put as 

final results of the study because they could not be verified by either neural network 

or simple regression.  

 

The method of replacement effect for fuzzy logic appears to have the same drawback 

as that for neural network – the values do not represent direct unit contributions from 

variables. Still, analysis of replacement effect can be done in the same way as that for 

regression. This is because a direct relation between output and sum of inputs has 

already been established under our assumptions. By doing the replacement analysis 

in the similar way as in regression, some good results were obtained. It was found 

that the following is the order of influence of parameters: affected organ, reason, 

shift and season. The latter two had opposite trend which is decreasing effect for both 

sites, but shift scored higher overall. This order is slightly different than that found 

by regression or neural networks analysis. 

 

To summarize, it can be said that fuzzy logic produces good outputs for datasets 

having a large number of states, provided that the number of parent variables is not 

too large and the number of observations in dataset is sufficiently large. It is an 

improvement in this regard, over those methods whose accuracy deteriorates with 

increasing data size. However, it is not advisable for datasets having small number of 

discrete variable states. Codes for fuzzy logic may be found in Appendix 3. 
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CHAPTER 8 

 

 

FUTURE ACCIDENT ESTIMATION 

 

 

 

Another approach for estimating number of accidents related with the number of 

workers,  number of working hours, total raw production and type of the coal (lignite 

or hard coal). 

Sari 2002, used regression and time series modelling for projection of mine accidents 

and Regression and neural network models is used to have a comparison of the 

techniques and give a decision to choose the best model for the estimation of number 

of accidents between the study of Sari, 2002 

In regression analysis; two regression statistics, significance level (P value) and 

coefficient of determination (R
2
), were used for determination of variables to be 

eliminated. The P value gives an indication of the significance of the variables 

included in the model, whereas R2 gives a measure of the variability explained by the 

model. (Sonmez, 2004) 

 

In neural network model for future accident estimation; feed-forward model is used. 

The input variables for the estimation of future accidents are; Number of Workers 

(W), Number of Working Hours (H), Total raw coal production (P) and type of coal 

(T) which are the independent variables of the models. The output variable is the 

number of accidents (Y). 

 

MSE (Mean Standard Error) is used for the prediction performance of the models. 

Higher MSE gives the prediction performance poor. 
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                                                        (8.1) 

8.1 ELI Models 

 

Table 53 gives information about yearly number of accidents, number of deaths, 

number of injured, total working hours, total raw coal production and type of coal 

mine. It can be seen that while total raw coal production and working hours decrease, 

number of accidents are decreased. 

 

Table 53. early accident and production in ELI mine 

Year  Accidents Death Injured Total 

Worker 

Number of 

Working hours 

Total raw coal 

production (ton) 

2011 29 1 28 1675 3486312 5424326 

2010 24 1 23 1816 2917520 5424326 

2009 33 1 32 1981 4169376 6204952 

2008 35 0 35 1978 4380672 6204952 

2007 47 1 46 2429 4881072 5708914 

2006 90 0 90 3053 5619296 5467611 

2005 180 1 179 2963 6650016 6570953 

2004 275 0 275 3066 6379400 6849597 

2003 256 0 256 2963 7195776 6849597 

2002 258 0 258 3552 7944416 6849597 

2001 317 0 317 3718 8260656 9436845 

2000 355 0 355 3987 8444088 11131520 

1999 405 4 401 4039 8181280 11105167 

1998 583 2 581 4134 8918280 10868230 

1997 491 2 489 4357 8778344 11335959 
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Regression Analysis 

Y = 0 + 1W + 2H + 3P  

Where; 

x = Constants 

W = Number of Workers 

H = Number of Working Hours 

P = Total raw coal production 

When the analysis is applied for ELI data including all input variables; the equation 

is; 

Y = -376,342 + 0.044 W + 3.6 10
-5

 H + 2.95 10
-5

 P   

Significance level is chosen as 95%. 

Table 54. Elimination of Irrelevant Input Variables in ELI mine 

Model Independent 

Variables 

R
2
 Variable 

corresponding 

to the 

coefficient 

with the 

highest P value 

Significance 

Level (P 

value) 

MSE 

1 W, H, P 0.903 W 0.635  61.927 

2 H,P 0.901 9 0.028 59.671 

 

After calculation of P values which indicates lower P value means the equation is 

more significant. 
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 it is understood that number of workers will not have a significant effect on the 

model therefore it is excluded from the model and the final model is achieved with 2 

input variables which are number of working hours and total raw coal production. 

The final equation is; 

Y = -365.987 + 5.21.10
-5

 H + 3.31. 10
-5

 P 

Table 55. P Values of the Model in ELI 

Independent Variable Significance Level (P value) 

Number of Working Hours (H) 0.007 

Total Raw Coal Production (P) 0.028 

 

Neural Network Analysis 

Table 56. Neural Network Models for ELI Mine 

Model Independent 

Variables 

Number of 

Hidden 

Neurons 

R
2
 MSE 

1 W, H, P 5 0.83481 13776 

2 W, H, P 10 0.922 357.0407 

3 W, H, P 15 0.904 14.11 

4 W, H, P 20 0.951 15.71 

5 H,P 5 0.979 1.609 

6 H,P 10 0.987 0.611 

7 H,P 15 0.964 0.025 

8 H,P 20 0.984 1.626 

 

The neural network model is performed using 3 input variables (number of workers, 

number of working hours and total coal production) and accident number as an 

output and analysed with different number of hidden neurons, for the best prediction 
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it is also performed 2 variables, the most irrelevant from regression analyses is 

excluded from the model.  

 

Similar with regression analysis final model is chosen with 2 variables (number of 

working hours and total raw coal production) with 10 neurons which gives best fit 

(R
2
 = 0.987) and lowest mean standard error.  

 

8.2. GLI Models 

Table 57. Yearly accident and production in GLI mine 

Year Accidents Death Injured Total 

Worker 

Number of 

Working hours 

Total raw coal 

production (ton) 

2011 23 0 23 1739 3715144 5696000 

2010 15 0 15 1756 2827224 3814406 

2009 32 0 32 1900 4455832 3814406 

2008 72 0 72 2051 8145480 3814406 

2007 58 1 57 2505 5215800 2988772 

2006 48 1 47 2585 5500544 3449129 

2005 85 0 85 2815 5893088 3324506 

2004 96 0 96 3209 6638680 3734290 

2003 111 0 111 3402 6960040 3734290 

2002 152 1 151 3779 7608928 3734290 

2001 175 0 175 3777 8004032 3958682 

2000 157 1 156 4077 8276592 4166956 

1999 188 2 186 4162 8815408 3262574 

1998 190 0 190 4236 9008584 3874103 

1997 231 0 231 4426 8348440 4103649 

 

Regression Analysis 

Y = 0 + 1W + 2H + 3P  

Where; 
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x = Constants 

W = Number of Workers 

H = Number of Working Hours 

P = Total raw coal production 

When we apply the analysis for GLI data including all input variables; the equation 

is; 

Y = -156.549 + 0.055 W + 9.02 10
-6

 H + 9.5 10
-6

 P   

Significance level is chosen as 95%. 

Table 58. Elimination of irrelevant input variables in GLI mine 

Model Independent 

Variables 

R
2
 Variable 

corresponding 

to the 

coefficient 

with the 

highest P value 

Significance 

Level (P 

value) 

MSE 

1 W, H, P 0.953 P 0.23 16.86 

2 W,H 0.946 H 0.084 17.25 

 

The final equation is; 

Y = -115.994 + 0.05 W + 8.47. 10
-6

 H 

Similarly with ELI model P values are calculated and for GLI, number of working 

hours and number of workers chosen for the model.  
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Table 59. P Values of the model in GLI 

Independent Variable Significance Level (P value) 

Number of Workers (W) 6.18.10
-5

 

Number of Working Hours (H) 0.084 

 

Neural Network Model 

Table 60. Neural network models for GLI mine 

Model Independent 

Variables 

Number of 

Hidden 

Neurons 

R
2
 MSE 

1 W, H, P 5 0.928 1075.48 

2 W, H, P 10 0.952 158.12 

3 W, H, P 15 0.978 6756.7811 

4 W, H, P 20 0.958 0.495 

5 H,P 5 0.997 33.26 

6 H,P 10 0.982 341.15 

7 H,P 15 0.995 50.97 

8 H,P 20 0.999 39.77 

 

The neural network model is performed using 3 input variables (number of workers, 

number of working hours and total coal production) and accident number as an 

output and analysed with different number of hidden neurons, for the best prediction 

it is also performed 2 variables, the most irrelevant from regression analyses is 

excluded from the model.  

 

Similar with regression analysis final model is chosen with 2 variables (number of 

working hours and number of workers) with 5 neurons which gives best fit (R
2
 = 

0.997) and lowest mean standard error.  
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8.3 TTK Models 

Table 61. Yearly accident and production in TTK mine 

Year  Accidents Death Injured Total 

Worker 

Number of 

Working 

hours 

Total raw coal 

production (ton) 

2011 2809 4 2805 11104 24484320 1592515 

2010 3478 5 3473 11456 25260480 1708844 

2009 3555 7 3548 10979 24208695 1879630 

2008 1526 5 1521 9685 21355425 1586532 

2007 2074 5 2069 10553 23269365 1675373 

2006 1679 3 1676 10611 23397255 1522421 

2005 1850 10 1840 11249 24804045 1665324 

2004 2220 4 2216 12261 27035505 1879411 

2003 2488 7 2481 14062 31006710 2011178 

2002 2664 7 2657 15761 34753005 2244372 

2001 4232 1 4231 18025 39745125 2356865 

2000 4037 1 4036 19151 42227955 2259277 

 

Regression Analysis 

Y = 0 + 1W + 2H + 3P  

Where; 

x = Constants 

W = Number of Workers 

H = Number of Working Hours 

P = Total raw coal production 



117 

 

When the analysis is applied for TTK data including all input variables; the equation 

is; 

Y = -752.209 + W + 4.9 10
-5

 H + 0.0011 P   

Significance level is chosen as 95%. 

Table 62. Elimination of irrelevant input variables in TTK mine 

Model Independent 

Variables 

R
2
 Variable 

corresponding 

to the 

coefficient 

with the 

highest P value 

Significance 

Level (P 

value) 

MSE 

1 W, H, P 0.505 P 0.606 714.28 

2 W,H 0.490 - - 688.23 

 

According to P values, number of working hours as an input is excluded from the 

model. 

  

The final equation is; 

Y = 68.19+ W + 9.31. 10
-5

 H 

Table 63. P Values of the model in TTK 

Independent Variable Significance Level (P value) 

Number of Workers (W)  0 

Number of Working Hours (H)  0 
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Neural Network Model 

Table 64. Neural network models for TTK Mine 

Model Independent 

Variables 

Number of 

Hidden 

Neurons 

R
2
 MSE 

1 W, H, P 5 0.791 240.617 

2 W, H, P 10 0.869 255646 

3 W, H, P 15 0.912 92742 

4 W, H, P 20 0.955 4683 

5 H,P 5 0.621 77620 

6 H,P 10 0.987 533818 

7 H,P 15 0.978 686790 

8 H,P 20 0.990 2421455 

 

The neural network model is performed using 3 input variables (number of workers, 

number of working hours and total coal production) and accident number as an 

output and analysed with different number of hidden neurons, for the best prediction 

it is also performed 2 variables, the most irrelevant from regression analyses is 

excluded from the model.  

 

Similar with regression analysis final model is chosen with 2 variables (number of 

working hours and number of workers) with 10 neurons which gives best fit (R
2
 = 

0.997) and lowest mean standard error.  TTK models the MSE is much higher than 

the other mines, due to the high number of data is used. 
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CHAPTER 9 

 

 

RESULTS AND DISCUSSIONS 

 

 

9.1. Introduction 

 

In this part of the study the results will be presented and comparative analysis 

between the findings will be made. 

 

In the research a risk analysis study was conducted for ELI, GLI and TTK mines. 

After risk analysis; according to workday loses, accident severity estimation models 

were developed using three different methodologies which are regression, neural 

network and fuzzy logic. Future estimation models were also developed using 

regression analysis and neural network with number of total workers, working days 

and production. 

 

Different methods were used for analysis of dataset, because each one has its own set 

of advantages and disadvantages against the others. Also, they could be used to 

validate the results of one another, or overcome the drawbacks of other methods to 

generate some results which could not be detected by other methods. 

 

Apart from the challenge of comparing the effectiveness of various methods 

available for analysis, another challenge arises from interpretation of results. The 

results are in the form of ‘the factor A has a higher workday loss per accident, than 

B’. 
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A comparative analysis for three mines was performed in the current work, and was 

useful in determining the course of action, in case states of categorical variable were 

to be distributed in various sites.  

9.2 Comparison of Researches 

 

Sarı (2002) conducted a risk modelling study for ELI and GLI mines using a 5 year 

period data. The main aim of the study was to develop main risks in lignite mines 

using risk matrix methodology with probability and severity variables. He also made 

a future estimation with regression and time series modelling. 

 

Considering as a starting point of the study of Sarı (2002), the current study is 

expanded using 10 year period data of ELI and GLI mines and including a 4 year 

data of TTK mines which produces hard coal.    

 

Risk assessment methodology was also developed with Fine and Kinney (1976) 

methodology using frequency variable in the risk equation. This method has an 

advantage comparing risk matrix methodology as it divides the failure rate or 

frequency of occurrence into two factors. The method gives one more aspect to 

consider. 

 

When a comparison made between the risk analyses; Sarı (2002) found that manual 

handling and falling rocks has highest risk and struck by falling objects, haulage, 

slip/falls and hand tools follows respectively and the most effected organs were 

found as feet, main body and hands in ELI mine. In the current study; manual 

handling is found as a high risk too but machinery is also another high risk reasons, 

the most effected organs are same with the study of Sarı (2002) the only difference is 

the sequence of high risk organs as hands, feet and main body.  The risk analysis is 

not so different in GLI mines, in the research of Sarı (2002) manual handling and 

struck by falling object has highest risks with the most effected organs as feet and 

main body, in the present study falling rocks has also a high risk in GLI mines with 

including hands affecting organ.  
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Another comparison can be made with the probability component of the studies. Sarı 

(2002) found that the accident has a probability of 0.4 per day in GLI mine and 0.72 

in ELI mine which has changed in the current study as 0.32 in GLI mine and 0.66 in 

ELI mine. This change can be the result of drop of production numbers and decrease 

in the number of workers.  

9.3. Comparison of Regression, Neural Network and Fuzzy Logic Techniques 

 

The current analysis was performed with regression in two forms. Simple regression 

was found to be weak for this study, and modified regression with parsimonious 

approach was found to be even weaker, and did not produce higher correlation for 

any of the TKI and TTK mines. However, one good thing which came up from the 

regression part is a finding - which the method does not work in presence of a large 

number of categorical variables. Similarly, it can be said that parsimonious 

regression model may not produce results better than simple regression in all 

conditions. Even though it did produce some results, it was difficult to say whether 

the relations were correct or co-accidental. Most of them were verified by other 

methods as well, but a few were found to be different/opposite. Neural networks 

method could produce new results, by improving the efficiency of simple regression 

method, by ‘training’ the entire data, instead of removing a few inputs. This 

approach worked and produced significantly better outputs. Fuzzy logic provided 

even better results. 

 

Regression analysis is the simplest and easiest to understand and implement, and 

could be performed by just converting the data to a suitable form, and applying a 

least squares fit line to it. Thus, it is relatively quick & simple for machine to 

process, because it produces results in a single step matrix computation. It is also 

easy for humans to implement, because once the discrete variables of the datasets are 

converted to the desired format, the regress function directly produces the results. 

For regression, results will be same for a given dataset, irrespective of the user or 

software performing it. This is because regression values are precisely defined by a 

straight mathematical expression, and this is not true for neural networks or fuzzy 
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logic method. However, a big disadvantage of this simple regression method is its 

poor accuracy in comparison to other two methods for samples with large number of 

variables (or discrete variable states). It is good enough for samples having small 

number of variables, but performs poorly if the number of states plus continuous 

variables is large.  

 

The problems with regression get reduced to a large extent by using neural networks. 

However, this method involves several steps, such as creation of training interface, 

iterative translation of output data for improvement of coefficients, and finally 

regression as well. Also, it produces different results for the same dataset. The 

following are the reasons of such variations  

 

 Variation in number of neurons  

 Percentage of points allocated to training, validation and testing set  

 Selection of initial random seed 

 

Even if all conditions are fixed, the method produces different results on different 

runs because of the fact that the value of the initial random ‘seed’ selected by the 

method decided the values of random observations selected by the system at each 

step. Problems due to these factors could be reduced to a considerable extent by 

doing the following  

 

 If results are provided with number of neurons as one of the parameters, 

they can be used as per the neuron requirements for further works – this is 

another reason why number of neurons was kept as a user-defined 

parameter  

 If the percentages of data allocated for training, validation and testing sets 

are kept same for all work (such as the default values of the software), 

some standardization might be achieved - for example, Matlab standards 

of 0.7, 0.15, 0.15 were taken as it is, in this work  
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 If seed value is fixed by the programmer before system picks a random 

seed, the results of two consecutive runs will not vary.  

 

As already explained, another problem with this method is that it carries most of the 

drawbacks of its parent method – regression, because after the processing of data, it 

also uses regression to compute final values. However, values are better because 

inputs and output values are modified before regression. 

 

Third method ‘fuzzy logic’, removes some of the disadvantages from regression, and 

neural networks method because it provides a better quality solution without 

requiring complex iterative methods. However, on the downside, it requires lots of 

human skills, time and efforts for development of rules. Usually, fuzzy rules are 

generated by applying some algorithm to the existing data. Such an algorithm varies 

from problem to problem. Also different developers may come up with different 

approaches because of which, in general, results will also be different. Though 

machine implements the rules exactly in the way expected by the developer, and 

there are no chances of variation on its part, but this variation due to human counters 

the machine variation for neural networks method. Moreover, unlike for neural 

networks method, this is a source of inconsistency which can neither be modified nor 

eliminated. Also, the method is further time consuming because as per that, one set 

of rules cannot be applied for a different set of problem. This problem can be 

partially overcome by implementing a generalized algorithm through a Matlab code 

– the one which reads and processes datasets to generate the rules as long as basic 

format is similar. The code developed for this study was designed for only four 

columns, since both the sites had only four discrete variables (season, affected organ, 

shift and reason of accident), but it could work for two sites where the number of 

‘significant states’ for variables were different, and hence the number of rules also. 

The time and effort required for feeding the rules to fuzzy logic toolbox could still 

not be eliminated.  
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As a summary, simple regression method scores positive human toughness, machine 

complexity, result variation by human/machine. However, intuition suggests that a 

method which produces poor results is not desirable even if it is very simple and 

precise. In other words, the objective of data analysis is to set up a compromise 

between result accuracy and other parameters. Considering all this, it can be said that 

fuzzy logic is better than the other two methods for analysis of the type of data given 

for ELI and GLI. On the other hand, different method could be used if data set were 

of a different type. For instance, if dataset had no discrete variables, neural networks, 

or even regression, could have worked better than fuzzy logic, and even produced 

better results. On the other hand, if dataset were even more qualitative, fuzzy logic 

would have produced even better results. 

 

Although fuzzy logic has a very complex structure and difficult to set the rules; it 

gave very good results for the estimation of workday loss. 
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CHAPTER 10 

 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

 

Risk estimation and analysis techniques are very crucial for managing underground 

coal mine risks due to many fatal accidents and equipment loses which cost millions 

of liras. This study can help mines to ensure their safety with productivity using past 

accident data and can give an estimate for the future. 

 

The reasons of accidents and in more detail the relationship between reasons and 

causes of accidents were analysed using previous accident data covering 14 years of 

TKI and 4 years for TTK mines. Current accident data includes workday losses, 

time, season, reason of the accident and age, affected organ of the injured.  

 

The main conclusions and recommendations can be summarized;  

 

- The findings of the study provide an understanding to use neural network and fuzzy 

logic techniques  for estimation of severity 

- Manual handling is a common risk in all coal mines 

- Hard coal mines are much more hazardous than lignite mines considering 

accidents per day. (The probability of accident is in TTK mines is 18.28 times 

higher in GLI and 8.86 times higher in ELI) 

- Hard coal mines have different risk reasons compared to lignite mines. 

Fatalities are dominantly related to gas/dust explosions, blasting and strata 

problems in hard coal mines while machinery is the main risk in lignite 

mines.  
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- Total raw coal production and number of working hours has a direct impact 

on accident severity which has approximately 0.90 regression value in all 

models.  

- The effect of variables on accidents can be summarized as; 

Age: The effect of the only continuous variable, age, was not found to be 

significant enough based on any of the three methods. It could not be 

established whether increasing age will have an increasing effect or reverse. 

So, age factor can be considered to have a weak or negligible effect. 

Nevertheless, it is true that age was confined in a very narrow range in the 

given dataset. The effects of age could not be measured because of this 

reason. 

Season: Spring found to have significantly higher adverse effect in all 

methods when compared to other seasons. However, other three seasons did 

not have a stronger replacement effect. Overall, season effect was weak, but 

spring is responsible for enhancing the severity of accidents. 

Time: Shift was found to have average effect – first shift (0800-1600) was 

detected as responsible for enhancing the severity of accidents, by neural 

networks method, and was later verified by fuzzy logic. However, overall 

effect of time was found to be weaker than that for season. 

Reason: This was a strong influencer, having maximum 14 states.  State 7 

(Manual Handling) was found to have significantly higher than the median 

value for lignite mines where it had highest value. Thus, it can be claimed 

that manual handling is definitely responsible for enhancing the severity of 

incidences. In lignite mines, falling rocks, equipment related accidents, 

machinery follows respectively. In hard coal mine blasting and gas/dust 

explosions has enhancing effect followed by struck by/against object and 

manual handling. 

Affected Organ: Affected organ was another strong influencer, which had a 

maximum of 8 states. Several results were obtained from this set. They are (i) 

head (1) injuries have reducing effect, and (ii) foot and arm (4) injuries had 

enhancing effects on severity of accidents. Relatively, the effects of (1, 3) 



127 

 

were stronger than that for (4). This completes (i) the understanding of the 

manner in which various causes are related to accidents, and (ii) the effect of 

various states of the given variables (causes) on accidents.  

 

Near miss reporting data were absent. As it is known that near miss reporting is a 

very important tool for accident investigations in a deep extent to prevent accidents.  

In addition to near miss reporting, there were no accidents data related to damage to 

the equipment or machinery.  

 

It is very important to develop a model and make a comparison between each other; 

the data should be in the same form, instead of different types of data collection 

forms in different mines. In the study, a lot effort consumed to make the data in 

compatible to each other using pre-processing. The mines collect the data and must 

form a database including near miss accidents. 

 

The study can be extended to other underground mines by considering the production 

methodologies like conventional or mechanized and comparison between them. 

 

Qualitative risk assessments methodologies specific to each mine must be 

implemented. Hence, a further study can deal with one workplace and applying 

techniques including the judgement of the expert. This kind of study can give much 

more detailed results and can make a comparison between quantitative 

methodologies.  
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APPENDIX A. 

 

 

CODES FOR NORMAL REGRESSION 

 

 

 

 

6.1 main file (master.m) 

function pfm = master (inputfile,outputfile) 

    % x contains independent parameters' columns 

    % y is the response column 

    [x,y,c] = xlinput (inputfile); 

    % all values have 2 states - on/off represented by their... 

    x1 = [x(:,2:5)]; 

    x2 = [x(:,1)]; 

    x3 = dummyvar(x1); 

    dx = [x2 x3 ones(size(x3(:,1)))]; 

    [b,bint,r,rint,stats] = regress (y,dx); % regresses dummy matrix against workday 

loss  o = xloutput (outputfile,b,stats(1),c); 

6.2 xlinput.m 

function [x1,y1,c] = xlinput(file) 

x1 = []; 

y1 = [];  

c = []; 

d1 = xlsread(file, 1, 'A:A'); 

%f1 = findmax(d1'); 

c = [c 1]; % first column is continuous variable 

x1 = [x1 d1]; 

  

d2 = xlsread(file, 1, 'B:B'); 
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f2 = findmax(d2')+1; 

c = [c f2]; 

x1 = [x1 d2]; 

d3 = xlsread(file, 1, 'C:C'); 

f3 = findmax(d3')+f2; 

c = [c f3]; 

x1 = [x1 d3]; 

d4 = xlsread(file, 1, 'D:D'); 

f4 = findmax(d4')+f3; 

c = [c f4]; 

x1 = [x1 d4]; 

d5 = xlsread(file, 1, 'E:E'); 

f5 = findmax(d5')+f4; 

c = [c f5 f5+1]; %column for constant 

x1 = [x1 d5]; 

y1 = [xlsread(file, 1, 'F:F')]; 

6.3: xloutput  

function z = xloutput (file,m,r,c) 

a1 = m(1:c(1)); 

a2 = m(c(1)+1:c(2)); 

a3 = m(c(2)+1:c(3)); 

a4 = m(c(3)+1:c(4)); 

a5 = m(c(4)+1:c(5)); 

a6 = m(c(6)); 

xlswrite(file,a1,'Age'); 

xlswrite(file,a2,'Season'); 

xlswrite(file,a3,'Time'); 

xlswrite(file,a4,'Reason'); 

xlswrite(file,a5,'Affected Organ'); 

xlswrite(file,a6,'Constant'); 

xlswrite(file,r,'R^2');z = 0 
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APPENDIX B 

 

 

CODES FOR MODIFIED REGRESSION 

 

 

 

7.1 main file (master.m) 

 

function pfm = master (inputfile,outputfile) 

    % x contains independent parameters' columns 

    % y is the response column 

    [x,y,c] = xlinput (inputfile); 

    % all values have 2 states - on/off represented by their... 

    % corresponding dummy variables 

    x11 = [x(:,2:5)]; 

    x12 = [x(:,1)]; 

    x13 = dummyvar(x11); 

    %dx = [x12 x13 ones(size(x13(:,1)))]; 

    dx = [x12 x13]; 

    ncol = size (dx,2); 

    [ir,xf] = pregress (dx,y); 

    [m,bint,r,rint,stats] = regress (y,xf); % regresses remaining dummy matrix against 

workday loss 

    o = xloutput (outputfile,m,stats(1),c, ir,ncol); 

 

7.2 pregress.m 

 

function [ir,xf] = pregress (dx,y) 

%[b,dev,stat] = glmfit (x,y,'normal','constant','off'); % x already contains ones 

[b,dev,stat] = glmfit (dx,y,'normal','constant','off'); 
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p = stat.p; 

ir = find(isnan(p)); % create array for NaN elements 

ir = sort(ir'); 

dx(:,ir) = []; %remove columns from x containing NaN elements 

p(ir) = []; % same for p 

p2 = p; 

dx2 = dx; 

nv = []; 

[pmax,pmaxind] = max(p2); 

p20=p2'; 

j1 = 0; 

while (pmax>0.2 && size(dx2,2)>2) 

    dx2(:,pmaxind) = []; % remove column corresponding to pmaxind (dynamix) 

     

    for i=1:numel(ir) 

        i1 = ir(i); 

        p20 = [p20(1:i1-1) 0 p20(i1:numel(p20))]; 

    end 

    % this matrix contains zeros for non-existing locations 

    [pmax0, pmaxind0] = max(p20); % this index value will be appended to ir matrix 

    nt = numel(ir); 

    %ne = numel (ir(ir<pmaxind0)); % number of elements before index value to be 

removed 

    % ir = [ir pmaxind0 find(isnan(p20))]; % accounting for na 

    ir = [ir pmaxind0]; 

    %if (ne<pmaxind0) 

     %   ir = [ir ir(ne+1:nt)]; % inserting 

    %end 

    ir = sort(ir); %sorting matrix 

     

    %[b,dev,stat] = glmfit (dx2,y,'normal'); % fitting again 
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    [b,dev,stat] = glmfit (dx2,y,'normal','constant','off'); 

    p2 = stat.p; % new value of p2 

    p20=p2'; 

    [pmax,pmaxind] = max(p2); % computation of maximum for next verification 

    p2 

    ir 

end 

  

xf = dx2; 

 

7.3 xloutput.m 

function z = xloutput (file,m,r,c,ir,ncol) 

m1 = 1:ncol; 

ins = m1; 

ins(ir) = []; 

m1 = zeros (30,1); 

m1(ins) = m'; 

  

a1 = m1(1:c(1)); 

a2 = m1(c(1)+1:c(2)); 

a3 = m1(c(2)+1:c(3)); 

a4 = m1(c(3)+1:c(4)); 

a5 = m1(c(4)+1:c(5)); 

a6 = m1(c(6)); 

%a6 = m(c(5)+1:c(6)); 

%a7 = m(c(7)); 

xlswrite(file,a1,'Age'); 

xlswrite(file,a2,'Season'); 

xlswrite(file,a3,'Time'); 

xlswrite(file,a4,'Reason'); 

xlswrite(file,a5,'Affected Organ'); 
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%xlswrite(file,a6,'Organ'); 

xlswrite(file,a6,'Constant'); 

xlswrite(file,r,'R^2'); 

z = 0; 

 

7.4 xlinput.m (same as 6.2) 
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APPENDIX C 

 

 

CODES FOR NEURAL NETWORKS 

 

 

 

8.1 main file (master.m) 

function pfm = master (inputfile,nfile,outfile0,outfile,xfile,yfile) 

    % x contains independent parameters' columns 

    % y is the response column 

    [x,y,c] = xlinput (inputfile); 

    % n is the number of layers 

    nmatrix = csvread (nfile); % matrix of n 

    n_e = numel(nmatrix); % no. of elements in n 

    x1 = [x(:,2:5)]; 

    x2 = [x(:,1)]; 

    x3 = dummyvar(x1); 

    dx = [x2 x3 ones(size(x3(:,1)))]; 

     

    xlswrite(xfile,dx'); 

    xlswrite(yfile,y'); 

     

    x1=dx'; 

    y1=y'; 

     

    for k=1:n_e 

    y_new = neural1 (x1,y1,nmatrix(k)); 

    xlswrite(outfile,y_new',2*k-1); 

    [b,bint,r,rint,stats] = regress (y_new',dx); % regression parameters calculated for 

all values 
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    [r1,m1,b1] = regression (y1,y_new,'one'); 

    q = [nmatrix(k) r1]; 

    xlswrite(outfile,q,2*k); 

    if k==ceil(n_e/2) % full equation computed for middle value 

    %o = xloutput (outfile0,b,stats(1),c,nmatrix(k)); 

    m = b; 

    r = stats(1); 

    n = nmatrix(k); 

    %o = xloutput (c); 

     

a1 = m(1); 

a2 = m(2:c(2)); 

a3 = m(c(2)+1:c(3)); 

a4 = m(c(3)+1:c(4)); 

a5 = m(c(4)+1:c(5)); 

a6 = m(c(6)); 

%a6 = m(c(5)+1:c(6)); 

%a7 = m(c(7)); 

xlswrite(outfile0,a1,'Age'); 

xlswrite(outfile0,a2,'Season'); 

xlswrite(outfile0,a3,'Time'); 

xlswrite(outfile0,a4,'Reason'); 

xlswrite(outfile0,a5,'Affected Organ'); 

%xlswrite(file,a6,'Organ'); 

xlswrite(outfile0,a6,'Constant'); 

xlswrite(outfile0,r,'R^2'); 

xlswrite(outfile0,n,'number of layers'); 

    end 

    end 

    pfm = 0; 

8.2 neural1.m 
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function y = neural1 (x,t,n) 

setdemorandstream(689271451) 

net = fitnet (n); 

[net,tr] = train(net,x,t); 

y = net (x); 

 

8.3 xlinput.m (same as 6.2) 

8.4 xloutput (same as 6.3 
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APPENDIX D 

 

 

CODES FOR FUZZY LOGIC 

 

 

 

9.1 main file (master.m) 

function pfm = master (inputfile,rulefile,outputfile) 

    % x contains independent parameters' columns 

    % y is the response column 

    [x,y] = xlinput (inputfile); 

    % matrix obtained 

    % M1 - M4: matrices for average values of y corresponding to parameters 

    % R: matrix for rules 

     M1 = zeros (4,2); 

     M2 = zeros (3,2); 

     M3 = zeros (14,2); 

     M4 = zeros (8,2);     

    %M1 - 4 significant seasons 1,2,3,4 

    j1 = 0; 

    for j=1:4 

    x1 = find (x(:,1)==j); 

    x0 = size(x1,1); 

    if (x0>29) %minimum 30 elements 

        m = mean(y(x1)); 

    M1(j-j1,:) = [m,j]; 

    else 

    M1(j-j1,:) = []; 

    j1=j1+1; 

    end     
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    j1 = 0; 

    %M2 - 3 time shifts 1-3 

    for j=1:3 

    x1 = find (x(:,2)==j); 

    x0 = size(x1,1); 

    if (x0>29) %minimum 30 elements 

    m = mean(y(x1)); 

    M2(j-j1,:) = [m,j]; 

    else 

    M2(j-j1,:) = []; 

    j1=j1+1; 

    end 

    j1 = 0; 

    %M3 - 14 reasons 

    for j=1:14 

    x1 = find (x(:,3)==j); 

    x0 = size(x1,1); 

    if (x0>29) %minimum 30 elements 

    m = mean(y(x1)); 

    M3(j-j1,:) = [m,j]; 

    else 

    M3(j-j1,:) = []; 

    j1=j1+1; 

    end     

    j1 = 0; 

    %M4 - 8 organs 

    for j=1:8 

    x1 = find (x(:,4)==j); 

    x0 = size(x1,1); 

    if (x0>29) %minimum 30 elements 

    m = mean(y(x1)); 
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    M4(j-j1,:) = [m,j]; 

    else 

    M4(j-j1,:) = []; 

    j1=j1+1; 

    end 

    M5 = sumfour (M1,M2,M3,M4); %computes sum of numbers 

    val = M5(:,5); % value column 

    nv = numel(val); 

    val1 = sortrows(val); 

    ne = ceil(nv/3); %no. of elements 

    lo = val1(ne); 

    hi = val1(nv-ne); 

    dec = zeros(nv); 

    for i=1:nv 

        if(val(i)<lo) 

            dec(i) = 1; %low workday loss 

        else 

            if(val(i)>hi) 

                dec(i) = 3; 

            else 

                dec(i) = 2; 

            end      

    M5 = [M5 dec]; %decision appended to M5 

    xlswrite(rulefile,M5,'Fuzzy rules'); 

    xlswrite(outputfile,M1,'1'); 

    xlswrite(outputfile,M2,'2'); 

    xlswrite(outputfile,M3,'3'); 

    xlswrite(outputfile,M4,'4'); 

    pfm = 0; 

9.2 sumfour.m 
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function z = sumfour (a,b,c,d) 

sa = size(a,1); 

sb = size(b,1); 

sc = size(c,1); 

sd = size(d,1); 

z = zeros(sa*sb*sc*sd,5); 

s_r = 1; %row counter 

for p=1:sa 

    for q=1:sb 

        for r=1:sc 

            for s=1:sd 

                z(s_r,1) = a(p,2); 

                z(s_r,2) = b(q,2); 

                z(s_r,3) = c(r,2); 

                z(s_r,4) = d(s,2); 

                z(s_r,5) = a(p,1)+b(q,1)+c(r,1)+d(s,1); 

                s_r=s_r+1; 

                 

            end 

 

9.3 xlinput.m (same as 6.2) 

9.4 xloutput (same as 6.3) 
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APPENDIX E 

 

 

SURFACE GRAPHICS 

 

 

 

1. Surface graphics for ELI mines 
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2. Surface graphics for GLI mines 

 

 



153 

 

 

 

3. Surface graphics for TTK mines 
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