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ABSTRACT 

 

 

THE APPLICATION OF MICRO DOPPLER FEATURES IN TARGET 

CLASSIFICATION 

 

 

 

TOPUZ ALEMDAROĞLU, Özge 

 

M. Sc., Department of Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. Çağatay CANDAN 

Co-Supervisor: Prof. Dr. Sencer KOÇ 

 

January 2014, 158 pages 

 

This study aims to experimentally investigate the feasibility of 

discriminating human motions with the help of micro Doppler features by using 

radar. In this work, the human walking simulator by V. Chen is examined and is 

modified according to requirements of the study. Then, the time-frequency 

distributions to obtain the spectrograms of human motions are examined and the 

Wigner Ville Distribution and Short Time Fourier Transform (STFT) are chosen for 

the application. After the simulation studies, experimental data is collected by using 

a ground surveillance radar. The first part of the experimental data consists of 

walking data with 7 realizations for the ranges of 150 meters and 1000 meters. The 

second part of the experimental data consists of 3 human subjects with 7 

realizations for different human motions as walking, running, crawling, creeping 

and for different walking azimuth angles of 0°, 30°, 60°. After the collection of the 

experimental data, the sequence of signal processing steps, which are matched 

filtering, MTI filtering, windowing, FFT and CFAR are applied to the data to obtain 

the target range information. After that the micro Doppler feature extraction process 

is started. A high pass filter is designed and applied to the matched filtered matrix. 



vi 

After windowing on the high pass filtered output, the ranges with target are 

extracted. Then, STFT is applied to the range columns of the target to get the 

spectrogram. Some feature extraction methods are discussed and a set of features is 

chosen. Six features, which are torso frequency, bandwidth of the signal, offset of 

the signal, bandwidth without micro Dopplers, the standard deviation of the signal 

strength, the period of the arms or legs motions are extracted from the spectrograms 

of running, crawling, creeping and walking with azimuth angles of 0°, 30°, 60°. 

Lastly, a simple neural network based classifier is constructed. The classification 

performances of different human motions by neural network classification are 

examined.  

Keywords: Micro Doppler, Human Motion Classification, Feature Extraction, 

Neural Network Classification 
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ÖZ 

 

 

MİKRO DOPPLER ÖZELLİKLERİN HEDEF SINIFLANDIRMASINDAKİ 

UYGULAMASI  

 

 

 

TOPUZ ALEMDAROĞLU, Özge 

 

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Çağatay CANDAN 

Ortak Tez Yöneticisi: Prof. Dr. Sencer KOÇ 

 

Ocak 2014, 158 sayfa 

 

Bu yüksek lisans tezinde, radar sistemlerinde mikro Doppler özelliklerin 

kullanımının insan hareketlerinin sınıflandırılmasına uygunluğu deneysel olarak 

araştırılmıştır. Bu çalışmada, V. Chen’e ait insan yürüme simülatörü incelenmiş ve 

simulatör bu tezin gereksinimleri doğrultusunda geliştirilmiştir. Ardından, insanın 

hareket spektrogramlarını oluşturmak için kullanılan zaman frekans dönüşümleri 

incelenmiştir ve insan yürüme simülatörü üzerine STFT (Short Time Fourier 

Transform) ve WVD (Wigner Ville Distribution) yöntemleri uygulanmıştır. 

Simülasyon çalışmalarından sonra, bir kara gözetleme radarı kullanılarak deneysel 

veri toplanmıştır. Deneysel verilerin ilk kısmı 150 metre ve 1000 metre 

mesafelerden 7’şer tekrar olacak şekilde yürüme verilerinden oluşmaktadır. 

Deneysel verilerin ikinci kısmı ise 3 farklı insana ait 7’şer tekrara sahip yürüme, 

koşma, emekleme, sürünme hareketlerinin verilerini ve 0, 30 ve 60 derece yanca 

açılarındaki yürüme verilerini içermektedir. Deneysel veri toplama işlemi 

tamamlandıktan sonra, uyumlu filtreden geçirme, hareketli algılama filtresinden 

geçirme, pencereleme yapma, FFT ve CFAR tekniklerini uygulama gibi sinyal 
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işleme adımları uygulanarak hedefin menzili bulunmuştur. Daha sonra mikro 

Doppler özellik çıkarma işlemlerine geçilmiştir. Bir yüksek geçirgen filtre 

tasarlanmış ve eşleştirilmiş filtre sonrasındaki matrise uygulanmıştır. Pencereleme 

yapıldıktan sonra da hedef menzillerinin bulunduğu sütunlar matrislerden çekilip 

birleştirilmiştir. Hedef menzillerinden oluşturulmuş matrisin üzerine STFT yöntemi 

uygulanarak spektrogram elde edilmiştir. Bazı özellik çıkartma yöntemleri 

incelenmiş ve bir kısım özellikler seçilmiştir. Altı adet özellik spektrogramlardan 

çıkartılmıştır; insan gövdesi frekansı, sinyalin bant genişliği, sinyalin ofseti, mikro 

etkiler olmayan sinyalin bant genişliği, sinyal gücünün standart sapması ve uzuvlara 

ait periyot değeri bu altı özelliği oluşturmaktadır. Bu özellikler koşma, emekleme, 

sürünme, 0°, 30°, 60° yanca açılarıyla ile yürüme spektrogramlarından 

çıkartılmıştır. Son olarak, sinir ağına dayalı basit bir sınıflandırıcı oluşturulmuştur. 

Sinir ağı sınıflandırmasının insan hareketlerini sınıflandırma başarımları 

incelenmiştir.   

Anahtar Kelimeler: Mikro Doppler, İnsan Hareketi Sınıflandırması, Özellik 

Çıkarımı, Sinir Ağı Sınıflandırması  
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CHAPTER 1  

 

INTRODUCTION 

1.1 Statement of the Problem 

Radar has some important advantages over other sensors for detecting 

human motion. First of all, radar can work in both daytime and nighttime with full 

performance, because it does not depend on additional external light sources for its 

operation. Furthermore, radar is affected only slightly by weather conditions such as 

smoke, dust and fog, and radar can operate behind walls or at very long distances 

from the targets. These features make the radar usage superior for security and 

surveillance in many applications. 

Classifying human motions by using radars has become an important 

emerging research field for both civilian and military applications. Although it is a 

quite new research area, the developments on this field are remarkably fast. It can 

be noted that the first studies on this issue are published in 2005, and until today, 

literature has expanded significantly.  

Classifying human activities by using radar sensors have a broad scope of 

applications such as physical security, urban military operations and law 

enforcement. Human intention can be anticipated from the motions, therefore, the 

classification of human motions can be important in several security applications. 

Discriminating the human motions and detecting abnormal activities by radar can 

be potentially useful for many applications. 

1.2 Scope of Thesis 

The primary purpose of the thesis is classifying different human motions 

from the radar echos. The thesis work has developed in a number of phases. 
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Initially, the human walking simulator of V. Chen is examined. Moreover, 

time-frequency transformations are examined and Short Time Fourier Transform 

(STFT) and Wigner Ville Distribution (WVD) are applied to the human walking 

simulator and the efficiencies of these transformations in terms of distinguishing 

features and clearness of the spectrograms are compared. In addition, the feature 

extraction methods are examined and applied to the spectrogram of the human 

walking simulator.  

The real radar data is collected by field experiments. The collected data is 

processed through the radar signal processing steps of matched filtering, moving 

target indicator filtering, windowing, Fast Fourier Transform and Constant False 

Alarm Rate. 

The micro Doppler feature extraction process is implemented. A high pass 

filter is designed and applied to suppress the clutter. After that windowing is 

applied, and the range columns of the Range-Doppler matrix containing target are 

selected. By applying the STFT on the range columns of the target, the spectrogram 

is obtained. Finally, the feature extraction methods are applied to the spectrograms 

to obtain the features for different types of motions. 

A simple neural network is implemented to examine the success of human 

motion classification.   

1.3 Organization of Thesis 

In the introduction part of the thesis, the aim of the study and the importance 

of the task (classification of human motions by radar) is discussed.  

In Chapter 2, some basic information of Doppler effects of radars is 

presented. In addition, the studies based on micro Doppler features in radar 

literature are examined. The connections with the time-frequency transformations, 

feature extraction methods, classification types and literature survey results for 

micro Doppler studies are presented.   
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In Chapter 3, the human walking simulator is examined and feature 

extraction methods on the simulator are explained. In addition, the theoretical 

aspects of experimental human data collection, signal processing, feature extraction 

and classification subjects are presented in this chapter. 

In Chapter 4, the experimental results and discussions about the results are 

given. Comparison of the simulator to the experimental results, analysis of 

spectrograms and extracted features of each motion, the comparison between them, 

the classification results of motion types are presented. 

The last chapter presents the conclusions on the human motion classification 

by using radar. In addition, outlines of further research directions that can be 

explored are given. 
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CHAPTER 2  

 

BACKGROUND  

In this chapter, background information on Doppler effects of radars is 

presented. In addition, several topics, such as time-frequency transformations, 

feature extraction methods and classification types, related to the micro Doppler 

features are examined.   

2.1 Background on Doppler Effect in Radar 

Radar (Radio Detection and Ranging) is an electromagnetic device, which 

transmits electromagnetic signal to the environment and calculates range and 

velocity of object from the returned signal. Range calculation is made by using the 

time delay of the signal. The velocity of the target is obtained by using Doppler 

effect. It is known that for the stationary objects, the phase difference of the 

transmitted signal and the returned signal does not change in time; however, the 

phase difference changes for the moving objects. The change of the phase depends 

on the radial velocity of the target because of the physical phenomenon of Doppler 

effect. The Doppler frequency shift formulation is given as following: 

     
   
 

   (2-1) 

where 

  fd : Doppler frequency shift 

ft : Transmitted frequency 

vr : Radial speed of the target 

c : Speed of the light 
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While the target is approaching to the radar, the radial velocity and the 

Doppler shift of the target are positive. The situation is the opposite for moving 

away targets.  

It is seen from Equation (2-1) that Doppler frequency shift depends on the 

radial velocity of the target. In addition, it should be noted that some targets can 

have several moving parts with different velocities such as helicopters with rotating 

propellers or a walking man with swinging arms and legs. Each moving component 

of the target produces a different Doppler shift because of their different velocities. 

Different motion characteristics are obtained with the help of various Doppler shifts 

from the different parts of the target and classification of the targets can be made by 

using these characteristics. 

2.2 Background on Micro Doppler Classification for Radar  

The repetitive motions of different parts of an object besides the motion of 

the entire object such as rotating blades of an helicopter, flapping wings of a bird, 

swinging arms and legs of a human walking is named as micro motion [1]. Human 

motions, which consist of micro motions of limbs, are studied with the time-

frequency transformations to obtain the spectrogram of the motion, and efficiently 

distinguish and classify them from noisy input. 

2.2.1 Time-Frequency Distributions 

The main purpose of time-frequency analysis is to examine the distribution 

of energy in both time and frequency domains [2]. One of the most well-known 

transformation is the Fourier Transform, which basically decomposes a signal into 

basic sinusoid functions with different frequencies [3]. The analysis equation of the 

Fourier Transform for time signal, s(t), can be given as (2-2): 

                       
 

  
                         (2-2) 

Although the Fourier Transform is a very efficient transformation for 

stationary signals, it is not appropriate for the signals with varying frequency 
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components in time. Therefore, for the time varying signals, use of joint time-

frequency transformations is more convenient than the Fourier Transform. One of 

the most widely used joint time-frequency transformations is Short-Time Fourier 

Transform (STFT) which is the windowed version of the Fourier Transform [3]. 

STFT formulation is derivated from the Fourier Transform formulation by applying 

windowing with w(t), and the STFT of the time signal s(t) can be expressed as: 

                                       
 

  
                        (2-3) 

The Wigner Ville Distribution (WVD) is a quadratic time-frequency 

transformation that can also be used to obtain human motion spectrograms. WVD is 

an effective indicator to view the energy of the signal as a function of time and 

frequency, because it both satisfies the time and frequency marginal conditions. In 

addition, WVD provides a high resolution among all time-frequency 

transformations. On the other hand, it can cause cross term interferences for 

multicomponent signals [3]. WVD is defined as follows: 

                
 

 

 

      
 

 

 

               
 

  
                    (2-4) 

Furthermore, the Cohen's Class of time-frequency distributions is general 

form of bilinear time frequency transformation with different alternatives by 

changing defining kernels [3]. The general form of Cohen's Class is written as: 

              
 

 

 

      
 

 

 

                           
 

  
         (2-5) 

In addition to the well known joint time-frequency transformations, some 

other time-frequency transformations which are especially important in the micro 

Doppler analysis are proposed. Hilbert Huang Transform (HHT) is a time-

frequency transform which decomposes signal into intrinsic mode functions (IMFs). 

It is indicated that Cohen's Class transforms use kernels like a smoothing function 

to attenuate cross terms; however, these kernels reduce the time-frequency 

resolution; on the other hand, HHT does not use kernels and the resolution of HHT 

is high enough for the time-frequency demonstrations. In addition, it is pointed out 
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that the Cohen's Class Transforms have limitations on window lengths because of 

predefined kernel; however, Hilbert transform does not have such limitations. 

Moreover, it is stated that the Hilbert transform with EMD beforehand extracts 

micro Doppler signature from the contaminated signals easier than the Cohen's 

Class transforms with the help of the reduction of the noise and backscattering 

interference. Furthermore, it is emphasized that the small frequencies of a vibrating 

object causes lack of the resolution by the Cohen's Class transform; however, the 

sinusoidal frequency modulation for small frequency deviations could be plot by 

using the Hilbert Huang Transform. In brief, it is deduced that HHT is more 

effective than Cohen's Class transforms [4]. 

Another time-frequency procedure, which is named as Hermite-S method 

(multi-window S-method), is also suggested to classify the human motions. S-

Method can be formulated as Equation 2-6, where STFT is the short time Fourier 

transform and P(θ) represents the frequency domain window [5]:  

             θ          θ           θ  θ
 

  
                    (2-6) 

 Hermite-S method is the convolution of Hermite based STFT. Hermite S-

Method can be formulated as Equation (2-7), where STFTk is the STFT of k
th

 order 

Hermite function [5]: 

               θ           θ      
      θ  θ   

           (2-7) 

It is claimed that this method provides more noise reduction and has a better 

representation with higher resolution than S-Method [5]. 

Finally, it is noted that some arrangements on the STFT are required to get 

spectrogram. One of the arrangements is to take the square of the STFT. Squared 

STFT can be formulated as Equation 2-8, where h(t) is the frequency smoothing 

window [6]: 

                                   
 

  
                          (2-8) 
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It is stated that this method always provides positive values and the cross 

terms are not occurred for this method [6]. 

2.2.2 Feature Extraction 

Feature extraction is one of the most important aspect of classification, 

because classification success depends on the selection of the features. For this 

reason, different features are suitable for different applications.  

In [7], Youngwook et al. propose methods to classify seven different human 

motions. These human activities are sitting, boxing, crawling, walking, running, 

boxing while walking, walking without moving arms. In order to differentiate these 

human activities, six features are selected as the torso frequency, the bandwidth of 

the signal, the offset of the signal, the bandwidth without micro Dopplers, the 

standard deviation of the signal strength, the period of the arms and legs. These 

features are extracted from the spectrograms. The spectrograms of human motions 

are given in Figure 2.1. The strongest radar return comes from torso; therefore, the 

average of peak signals over time bins gives the first feature as the torso frequency. 

Bandwidth is calculated as the difference between the largest point of the high 

envelope and the smallest point of the low envelope. Offset is calculated as taking 

the average value of the mean frequency value of the high envelope and the mean 

frequency value of low envelope. Bandwidth without micro Dopplers is calculated 

as the difference between the smallest point of the high envelope and the largest 

point of the low envelope. Standard deviation is the standard deviation of the signal 

strength over noise divided to mean of the signal to normalize it. Lastly, the period 

represents the period of limb motions and is calculated as the time difference 

between peaks. 
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(a) Running (b) Walking 

  

(c) Walking w/o moving arms (d) Boxing moving forward 

 
 

(e) Crawling (f) Sitting with slight motion 

  

Figure 2.1 Spectrograms of different human motions [7] 

 

 

In [8], Kim et al. examine feature extraction methods in detail with an 

experimental data obtained from 12 human subjects for the activities such as 

walking, boxing, running, crawling, walking with a stick, boxing while walking 

forward and sitting. The data is obtained by a Doppler radar. STFT is applied to 

obtain spectrograms, and noise is eliminated by setting a threshold and setting 

everything to zero that are under that threshold. The six discussed features, which 

are the torso frequency, the BW of the signal, the offset of the signal, the BW 
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without micro Dopplers, the standard deviation of the signal strength, the period of 

the arms and legs, are then extracted. The classification performance of the features 

is listed from the least important one to the most important one as the torso 

frequency, BW without micro Dopplers, the BW of the signal, the offset of the 

signal, the standard deviation of the signal strength and the period. In addition, it is 

stated that torso frequency alone is successful 70%, while the standard deviation 

and period achieve only 30%. 

In [9], Tahmoush et al. propose other feature extraction methods from the 

micro Doppler signatures for a human at long ranges. Initially, the returned signals 

from the head, knees, hands, shoulder, etc. are simulated. After that, the real radar 

signals which are returned from the torso, the legs, the arms are collected and Short-

Time Fourier Transform is applied to get the spectrograms. The stride rate, which is 

used as biometric, is extracted as feature from the spectrograms. The torso is 

extracted from the spectrogram with the isolation of the maximum signals at each 

time. In order to reduce the noise effect, a median filter is used. Data from two 

people are examined and when only the stride rate is used as the feature of 

classification, its performance is poor. Then, data from eight people is studied and a 

signature database is created. By using this database, the correlation matrix of 

range, Doppler and time is calculated. With the help of the distance function and by 

using nearest neighbor classification, 80% success is achieved for the test. It is also 

noted that the change of the azimuth angle of the target reduced the accuracy of the 

classification; on the other hand the elevation angle does not significantly affect the 

accuracy like azimuth angle. 

In [10], Otero proposes several features to obtain the information of the 

presence of a human target. The experimental human data is collected by using a 

CW radar which operates at 10.525 GHz. On the spectrograms, FFT is applied for 

every Doppler bins on the vertical axis. By this way, cadence frequency is estimated 

on the horizontal axis. The x-axis of the spectrograms demonstrates the frequency 

of the moving parts, the velocities is showed on the y-axis, the RCS values are on 

the z-axis. The first feature is accepted as stride which is the division of velocity to 
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the cadence frequency. Second feature is defined as appendage/torso ratio is which 

is the division of the summation of the RCS of the arms and legs to the RCS of the 

torso. By using these features, the classification is applied to decide whether there 

exists a person or not. The classification performance with the stride-velocity 

feature and appendage/torso ratio-velocity feature is 88%.  

In [5],  Orovic et al. propose features for classification of arm movements. 

These extraction methods from the envelopes of the arms are used for the 

classification of a human as two (free) arm motion (FAM), partial (one) arm motion 

(PAM), no arm motion (NAM). Experiments are done with a radar which has center 

frequency of 2.4 GHz, transmitter power of 5 dBm, the BW of 70 kHz and the 

sampling frequency of 1 kHz, and NAM, PAM and FAM data with angles of 0 

degree and 30 degree to the line of sight (LOS) of the radar are collected. The first 

feature is accepted as mean square error, which is assumed as the total variations of 

the swinging arms with respect to the main motion, and the decision rule is the 

comparison of the mean square error with a predefined threshold. This feature is 

applied to the collected data and with the help of this feature, classification of NAM 

or PAM/FAM is made with 3.54% probability of error. The second feature is 

defined as time differences of the local minimum and maximum of the envelope 

functions, the motion is classified as PAM or FAM with only 0.22% probability of 

error by using this feature. 

In [11], Ram et al. investigate the other specifications of human motions 

which can be seen from the simulated and experimental data. The simulation 

method is proposed to obtain micro Doppler signatures from the computer 

animation data for the human motions like walking, crawling and running. Initially, 

three dimensional positions of each bones are formed by using the computer 

animation data. Then, the radar returns of the human body parts for each time 

instant are calculated by considering radar cross section (RCS) of these parts, STFT 

is applied to get the spectrograms and interpolations are performed to get sufficient 

Doppler BW. By using these techniques, the simulated radar returns are obtained 

for the walking, running and crawling human. It is observed that the feet and lower 
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legs have the highest frequencies, forward/backward swing is visible for running 

model, Doppler signatures for torso and legs are higher for running than walking 

model, and the torso has nearly zero Doppler for crawling. After that, an experiment 

is conducted by using a 2.4 GHz radar in a laboratory and data for walking, running 

and crawling human is collected. It is observed that experimental results has good 

correspondence with the simulated results for all walking, running and crawling 

motions. Moreover, simulated data for 12 GHz radar is also generated and it is 

demonstrated that higher frequency provided a more detailed spectrogram. Lastly, 

the position of the radar is changed on the simulator and it is observed that different 

view angles give different results.  

In [12], Tahmoush et al. proposed optimal radar characteristics which 

provide estimation of human walking parameters. The outdoor experimental data of 

a walking human is obtained by using a radar with the operating frequency of 17 

GHz, the range resolution of 2 m and the Doppler ambiguity of 10.45 m/s. When 

high PRF (about 2400 Hz) is used, the limbs of the human are observed clearly. 

When the PRF is decreased, it is observed that decrease in the PRF makes the 

discrimination of the limbs worse, and for the values less than 400 Hz, the 

spectrogram loses clearness. In addition, when data is taken by changing the 

azimuth angle of the human as 0°, 45°, 90°, it is observed that the micro Doppler 

effects become imperceptible for the values approaching perpendicular to the radar. 

The effect of azimuth angle on the spectrogram can be seen in Figure 2.2. 

Moreover, the elevation effect is also investigated on the micro Doppler signatures 

with data for elevation angles of 15°, 30°, 60°. It is observed that the elevation does 

not affect the micro Doppler spectrograms significantly. Lastly, an experiment is 

conducted by illuminating the parts of the body such as legs instead of illuminating 

the whole body, and it is concluded that it is useful to distinct the micro Doppler 

signatures of the human parts separately, because the interference of the other parts 

are suppressed with this method. 
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(a) Azimuth Angle of 0° (b) Azimuth Angle of 45° (c) Azimuth Angle of 90° 

Figure 2.2 Doppler signatures with different azimuth angles [12] 

 

 

In [13], Van Drop et al. propose a feature based method for estimation of the 

global Boulic parameters for walking human. The walking model is constructed by 

extracting average velocity of the human, torso and legs velocity and the 

personalization parameters such as frequency, amplitude, phase of the torso and leg. 

It is assumed that the torso and legs had sinusoidal characteristic and the torso and 

leg parameters are calculated from the upper, center, lower velocities of the 

spectrograms. The velocity lines are used to get the repetition frequency. The 

spectrogram and radial velocity lines are shown in Figure 2.3. By using these 

features, a realistic walking model is obtained. The experimental data of walking, 

jogging, running person in the terrain is collected by using a FMCW radar with 9.68 

GHz of operating frequency. The detection, percentiles and correlation methods are 

applied on the experimental data for the feature based model and it is observed that 

all methods give similar results; however, the percentile method is more efficient. 

Lastly, the feature-based and the model-based approaches are compared and it is 

concluded that although the feature based model has deviations from the estimation 

values for some parameters, their accuracies are equivalent and also the feature-

based model is a faster approach. 
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(a) Spectrogram (b) Radial speed (c ) Spectrogram+ Radial speed 

   
(d) Torso (e) Upper arms (f) Lower arms 

   (g) Upper legs (h) Lower legs (i) Feet 

 

Figure 2.3 Walking spectrogram with radial velocities of Boulic model [13] 

 

 

In [14], the micro Doppler characteristics of human walking are examined to 

find out the distinctive signatures. Data from 20 men and 20 women are collected 

by using motion capture program and animations are made from the collected data 

and micro Doppler signatures are extracted from the animation. Simulated 

spectrograms are made for all parts of the body, which can be seen in Figure 2.4. 

When the measured and the simulated spectrograms of body parts are compared, it 

is seen that there are some mismatch between them. In addition, when the aspect 

angle is changed, the Doppler signatures become invisible after 45°. Moreover, 
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variations are made on the simulations by changing the gender and the effects of 

sway, bounce, hop, and draw spectrograms are examined to understand the 

differences between spectrograms. In addition, it is seen that the gender type could 

not be easily distinguished from radar data. 

 

 

 

Figure 2.4 Doppler signature of each part of a walking man [14] 

 

 

In [15], the issue of distinguishing genders is examined in detail. Data from 

20 men and 20 women are collected by using motion capture program and 

animations are made from the collected data and extracted micro Doppler signatures 

from the animation. It is stated that there are small differences in the footfall, the 

shapes of torso line and hands on the spectrograms; in other words, spectrograms of 

men and women seem very similar but have slight differences, which can be 

distinguished with modern measurement methods. 

In [16], Tan et al. propose the usage of a Ka-band radar for the detection of 

the individuals and groups of people. Firstly, data from a walking man and a 

running man is collected to investigate the characteristic of walking and running 

human motion and observed that there was not an important difference between 
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them when using FFT. In addition, the orientation of the target is focused on, and 

data is collected for depression angles of 15°, 30°, 60° and azimuth angles of 0°, 

45°, 90°. It is also observed that high depression angle made lower RCS value. 

Moreover, the effect of the number of people on the Doppler spectrum is 

investigated and data is collected from 2 men and 5 men. From this data, it is 

deduced that the micro-Doppler signature for 5 men is more distorted than 2 men 

but has greater SCR for the group data. Lastly, distinguishing a man with a rocket 

propelled grenade launcher (RPG) from one without is examined, and data is 

collected for walking and running man with RPG. The paper emphasizes that the 

distinction of person with RPG is difficult by using FFT spectrogram [16]. In order 

to obtain a successful feature extraction process, the time-frequency representation 

is important. The usage of inappropriate time-frequency transforms causes the 

spectrogram to be blurred and the feature extraction results on blurred spectrograms 

are not good enough. For example in [16], Tan et al. use FFT, which is not 

appropriate for human walking because of time-varying nature of the motion, to get 

the spectrograms; therefore, while their results are being examined, this fact should 

be taken into consideration.   

In [17], feature extraction methods for vibrating, coning, tumbling are 

examined. A new feature extraction method is proposed for micro Doppler 

classification of the simulated radar data. For the simulation of tumbling, coning, 

rotating and vibrating models, Chen's models are used and simulated data is created 

for point scatters. Pattern recognition is defined for the classification, as first, 

extracting features from the time-frequency distributions, then creating different 

patterns for each micro-Doppler signatures, and finally matching the unknown 

signal with one of the patterns. The time-frequency distributions of 4 dynamics are 

examined and it is observed that there is no middle line for vibration; there is a 

middle line for rotation and also the other scatterers of rotating object make 

symmetric sinusoids around the middle line; there is a middle line for coning 

however the other scatterers of coning object are not symmetric; the middle line and 

the symmetry exist for tumbling however the middle line has a slope. With the help 
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of these features, the patterns are extracted such as the existence of middle line, 

symmetry and the slope and it is seen that these patterns are efficient for 

classification. It is concluded that the success of the classification depends on the 

good description of the feature vectors and the small size of the feature set.  

In [18], it is stated that micro Doppler signatures of vibrating and rotating 

structures are time varying; therefore, the time-frequency transformations of these 

structures give frequency changes according to time and this feature is used for 

classification. For the vibrating objects, vibrating is seen from time samples. 

Swinging arms are distinctive for human walking on the time-frequency signature. 

For the rotating objects, an helicopter with rotors is modeled and when the time-

frequency transform are applied to the signals, the returns from the helicopter body 

and the blades become distinctive. 

In [19], features are extracted from human gait, by using time-frequency 

analysis and high range resolution. Initially, 2D imaging space is made with the 

combination of the time frequency analysis and the high range resolution analysis. 

Data of a pedestrian while walking or running, with or without the motions of arms, 

with the angles of 0°, 45° and 90° to the LOS of the radar is collected by using a 

high resolution radar. For the simulation data, a motion capture program which 

provides data files with 3-dimensional coordinates for the markers on a 

walking/running human model is used. STFT is applied as the time-frequency 

transform, and movie analysis is used to get the positions of reflectors relatively. 

First, the time-frequency analysis and range-Doppler analysis are applied on the 

simulation of walking data and on the experimental data. Second, this procedure is 

repeated for the running data. It is concluded that the experimental results are 

consistent with the simulation results. With the help of high range resolution, the 

parts of the body are distinctive on the range-Doppler graphs and for the 

walking/running examples, the stance and the swing phases of feet are different. 

In [20], human detection and identification is also analyzed with the 

synthetic aperture radar (SAR). Human targets are discriminated from other targets 
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with slow motion by examining the features on the spectrograms. By applying SAR 

techniques such as pulse compression, range migration correction, quadratic phase 

error correction and Doppler compression, the Range-Doppler map is obtained, and 

after that, by taking slice of the range of the target and applying STFT, the 

spectrogram is obtained. On the spectrogram, Otero [10]’s cadence frequency is 

taken as the first feature. It is stated that peak of zero cadency gives torso 

frequency, which is directly related with walking speed. In addition, the next peak 

gives the fundamental frequency which gives the stride length. Moreover, 

subsequent peaks give the arms and legs motion and by using amplitudes of these 

peaks, the RCS value of appendages is calculated. By dividing RCS value of 

appendages to RCS of the torso gives the appendage torso ratio (AppTorR) which is 

the third feature. As the fourth feature, height of thigh (HT) is computed by 

parameters of Thalmann’s kinetic model. It is emphasized that the target velocity 

and AppTorR can be useful for the discrimination of human from animals. Finally, 

it is concluded that estimates of these features from cadence frequency becomes 

unreliable if data length is not sufficient for FFT. 

In [21], different classification methods are applied to same data and their 

efficiency is compared to each other. Firstly, statistical classification methods are 

studied on simulated data which are point scatter model and RCS model. The target 

is modeled as a cylinder with 1 m length and 0.125 m radius and the radar is 

modeled as a X-Band pulsed radar. The spectrograms of coning, tumbling, rotating 

and vibrating for both simulations are obtained. One of the differences between 

RCS model and scatter model is that for rotation and tumbling, there are vertical 

lines which occur because of the strong reflections for certain aspect angles at RCS 

model. For vibration and coning, there are no such vertical lines. In addition, the 

performance of Principal Component Analysis (PCA) and Independent Component 

Analysis (ICA) is the same for the point scatter model; however, for the RCS 

model, PCA works better than ICA because the length is an important parameter for 

the cylindrical target. 
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In [22], Gabor feature extraction methods is used to discriminate vibration, 

rotation, coning and tumbling,. Eight Gabor functions are derived as the feature 

extraction methods and only the scale factor is chosen to use as the classification 

feature because of computational efficiency. 

In [23], a new algorithm named as empirical mode decomposition (EMD) 

which provides an efficient way of extracting micro Doppler signatures is proposed 

in addition to the known feature algorithms. EMD is described as the decomposition 

of the signal into its intrinsic oscillatory components according to the local 

characteristics of time scale. The simulated data with vibration frequency of 20 Hz 

is obtained to test the EMD method. Seven intrinsic mode functions (IMFs) and 

residue are extracted from the data. When the frequency representation for each 

IMFs and the residue are obtained, it is observed that the micro Doppler signature 

can be obtained from IMF2; hence, the other components are redundant. A truck 

with vibrating engine is used as the experimental data. EMD method is applied on 

the truck engine data and extracted one IMF and residue from the data are extracted 

and after STFT is applied. It is observed that the micro Doppler signatures of IMF1 

are at ±30 Hz. When the mean value is subtracted from the spectrogram of the 

original data, the micro Doppler effect could not be discriminated sufficiently; on 

the other hand, the result of the EMD demonstrates the micro Doppler signatures 

clearly. 

Extraction of micro Doppler features from vehicles is investigated in [24]. 

Initially, a homodyne radar which provides in-phase and quadrature components of 

Doppler signatures is designed and an experiment is conducted with a truck. A 

vibrating reflector on the top of the truck is placed and data is collected while the 

truck is moving towards the radar. Short-Time Fourier Transformation (STFT) is 

applied to get spectrograms. The spectrogram of reflector at 5 Hz on stationary 

truck and the spectrograms of moving truck with 5 Hz and 20 Hz oscillating 

reflector and Gabor filtered applied spectrograms of moving truck with 5 Hz are 

obtained and the Doppler signatures are investigated from the spectrograms. Two 

straight lines are seen for stationary truck and reflector; two concave lines are seen 
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for moving truck with reflector at 20 Hz; two nested concave lines for reflector at 5 

Hz; however, it should be emphasized that they are not very clear spectrograms. 

In [6], different kinds of time-frequency transforms are studied to classify 

animate or inanimate urban objects. For the first experiment, a fan whose blade is 

covered with aluminum foil is used as a target and a Doppler radar which operates 

at 906 MHz is used. The second experiment is conducted with a metallic sphere 

with the diameter of 12’’ by accelerating the sphere from the radar, and then 

decelerated to the sphere. As the third experiment, the radar is placed 4 ft from a 

thick wall and at the other side of the wall, a person with a corner reflector is 

walked through the wall and turned back within 20 feet of range. STFT is applied 

for the data of the fan, WVD is applied for the data of the linear positioner, B-

distribution is used for the data of the walking person and it is emphasized that the 

choice of time-frequency transformation is important for the urban sensing 

applications. It is concluded that the inanimate objects rotate, vibrate or oscillate but 

do not translate; therefore, inanimate objects have only zero Doppler component at 

the time-frequency graphs. On the other hand, because the animate objects translate, 

they both have the zero Doppler and micro Doppler parts. 

2.2.3 Classification Methods 

There are many different methods for classification. In this section, some of 

them are examined to evaluate their efficiency. 

Neural network is one of the classification methods for micro motions. In 

[7], seven human activities which are sitting, boxing, crawling, walking, running, 

boxing while walking, walking without moving arms are differentiated by using an 

artifical neural network (ANN) method using the micro Doppler signatures. For the 

experimental data, a Doppler radar which operates at 2.4 GHz is used. Data from 

twelve people is collected in a laboratory. Short time Fourier transform (STFT) 

which has 0.25 seconds time-window is applied on to the experimental data. After 

the feature extraction, ANN is applied for classification. In the ANN, 8 subjects are 
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used for training, 4 subjects are used for testing set. The results of the validation test 

demonstrated that the classification accuracy is 87.8%. It is stressed that walking 

and walking without arms classes have the most misclassification. 

In [8], the support vector machine (SVM) is proposed as the classification 

method. The experimental data from 12 human subjects for the activities such as 

walking, boxing, running, crawling, walking with a stick, boxing while walking 

forward and sitting for 12 realizations is collected by using a Doppler radar. For the 

classification, a decision tree classifier which consists of support vector machines 

(SVMs) is applied to the data. The classification error for SVM is about 8% and the 

accuracy is 92%. The classification of the combination of the activities is also 

studied and it is observed that there are misclassifications on the transition parts. 

Moreover, the effect of the aspect angle on the classification is investigated with 

experimental data for angle of 30°, and it is observed that the classification accuracy 

is not affected much for the small angles. Finally, a through wall experiment is 

conducted and it is observed that micro Doppler effects are hardly identified 

because of the reduction of the SNR because of the wall. 

In [25], Bayesian classification is used for micro motions. A Bayesian 

formulation which simply makes classification on only the number of micro 

Doppler signals on the returned radar signal is proposed. Experiments with a human 

and a vehicle are conducted by using a scanning-beam continuous wave (CW) radar 

which operates at the frequency of 36 GHz, has long dwell times which provides 

the classification of multiple targets. The experiment is repeated and it is seen that 

the probabilities of a human and a vehicle changed according to probabilistic 

formula. For the evaluation of the tests, Pd (probability of detection), accuracy, Pfa 

(probability of false alarm) are calculated according to the value of N (the number 

of event). When N is less than 8, Pfa is still applicable; however, Pd value changes 

between 0.54-0.67 which is too low for the classification. When N is equal to 10, Pd 

changes between 0.79-0.92 and Pfa is between 0.01-0.15 for the all values of 

probability of threshold, and these parameters can be the optimal solutions for the 

Bayesian applications. 
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In [26], there are different approaches to increase the efficiency of the 

known classification methods for micro Doppler signatures of human motion. In 

this work, Short-Time Fourier Transform (STFT) is used as a time-frequency 

transformation to get spectrogram from the signal. In order to extract features for 

micro Doppler classification, two-directional two dimensional Principal Component 

Analysis (2D2-PCA) and two directional two dimensional Linear Discriminant 

Analysis (2D2-LCA), which is the novel part of their approach, are applied to the 

spectrograms. The last part of their approach is to use the support vector machine 

(SVM) to classify the feature vectors. Their new approach is applied to differentiate 

two arm motion, one arm motion and no arm motion. In order to understand the 

efficiency of the new approach, it is compared with one-directional Principal 

Component Analysis (1D-PCA) and combination of Discrete Fourier Transform 

(DFT) and PCA. The classification accuracy rates are 91.9% for 2D2-PCA, 75.2% 

for 2D2-LDA, 92.1% for 1D PCA, 65.4% for DFT+PCA. Although it is seen that 

classification accuracy is higher for 1D PCA, the covariance matrix for 2D2-PCA is 

smaller than 1D-PCA which provides efficient computation. In brief, the new 

approach provides efficient classification.  

In [27], there is an approach that using a speech processing technique for 

micro Doppler classification. Dynamic time warping (DTW) which is normally 

used as a speech processing technique is used with radar signal for the micro 

Doppler classification. The speech signals are varying in time and the classification 

of these signals rely on probabilistic models. Because of the similarity between the 

speech signals and the radar signals, a probabilistic model was chosen as classifier. 

First, a reference data series which are obtained from the wheeled, tracked, 

personnel classes with time durations of 8, 16, 32, 48, 64 msec are generated. The 

duration of the series and the decorrelation time are chosen and confusion matrices 

for the time duration, the decorrelation and the classification type are made. The 

results of the tests demonstrate that DTW classifies personnel correctly with the 

percentage of 75% and vehicles correctly with the percentage of 98%; on the other 
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hand, DTW differentiates wheeled vehicles from the tracked vehicles for only the 

percentage of 28%. 

 In [28], efficiency of multiperspective data is compared with 

monoperspective data by using the dynamic time warping classification. The 

monoperspective data is obtained by Thales MSTAR which operates at Ku-band for 

wheeled, tracked vehicles and personnel and for different azimuth angles. The 

multiperspective data of wheeled vehicle, personnel and bicycle is obtained from 3 

nodes on an arc by using NETRAD which operates at 2.4 GHz. Zero Doppler is 

removed, the range bins related with the target is selected, the signal of the bi-static 

path is formatted, micro Doppler signature is analyzed, the signal is separated into 

shorter frames and lastly data sets are created as the post processing of the 

multiperspective data. Because of the low transmit power, pulses are integrated to 

observe the micro Doppler effect. Monoperspective classification and 

multiperspective classification are applied. The multiperspective one is a better 

classification; on the other hand, working with complex pre-processing procedure 

and higher dimensionalities of the data are the disadvantages of it. Moreover, 

probability of correct classification is 0.95 for monoperspective; 0.97 for 

multiperspective; however, probability of generalization, which is the measure of 

giving the same class as output for each run, is 0.70 for monoperspective and 0.24 

for multiperspective. Therefore, it is concluded that the monoperspective 

classification is efficient; however, it is emphasized that the multiperspective 

classification could be better by using extra information. 

In [21], the classification methods are applied to same data and their 

efficiency is compared. Statistical classification methods are studied on simulated 

data which are point scatter model and RCS model. A cylinder with 1 m length and 

0.125 m radius and a X-Band pulsed radar are modeled and radar return for coning, 

tumbling, rotating and vibrating are obtained for both point scatterer and RCS 

model. The classification types, support vector machine (SVM), Bayes, k-nearest 

neighbour (k-NN) or linear discrimination classifier (LDC) are applied on these 

models. The test results demonstrated that for the point scatter model SVM has 
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7.5% error which is the lowest error, and k-NN gives 2.5% error which is the best 

result for the RCS model. 

In [22], the classification methods are compared by means of efficiency. 

Firstly, 20-30 point scatters are simulated and 200 micro Doppler signatures are 

collected for each of tumbling, vibrating, rotating and coning motions; the 

classification methods are applied on this simulated data. Pattern Recognition 

Toolbox of Matlab are used to compare different classifiers such as Bayes linear, k-

nearest neighboor (k-NN) and support vector machine (SVM) to make micro 

Doppler classification. The results demonstrated that the success rate of the 

classification is between 38% and 78% for Bayes linear, 42% and 84% for k-NN, 

44% and 92% for SVM classifier. It is concluded that SVM which makes 

maximization of the boundries of the classes has the best performance.  

Finally in [17], the specifications of classifiers are investigated. Five 

classifiers, Bayes linear classifier (ldc) and quadratic classifier (qdc), support vector 

classifier (svc), k-nearest neighboor rule classifier (k-nn), neural network classifier 

(nnc) are applied on the simulated data for four different motion dynamics, 

tumbling, coning, rotating and vibrating. It is observed that nnc classifier has 

classification error rate of 12.31%, the others' classification errors are 0%. The 

evaluations of the classifiers can be summarized such that quadratic classifier 

makes the separation of the classes better, neural network classifier has 

uncertainties which can cause wrong classification, Bayes linear classifier sets 

boundaries only on the distribution probabilities, support vector classifier puts 

maximum margins, k-nn is not strictly linear which makes the boundaries zigzag 

shape. 
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CHAPTER 3  

 

PROCESSING, FEATURE EXTRACTION AND CLASSIFICATION 

This study investigates the possibility of discriminating human motions by 

using radar; therefore, processing of radar returned signals, generating spectrograms 

from signals, extracting features from spectrograms and classification are all part of 

this study. In the light of these requirements, a human walking simulator is initially 

examined and suitable feature extraction methods using this simulator data are 

investigated in this chapter. In addition, the collection of experimental human data, 

processing this signal, feature extraction and classification methods are presented in 

this chapter. 

Signal processing, feature extraction and classification algorithms are 

developed by using MATLAB. In addition, signal processing toolbox, neural 

network toolbox and filter builder toolbox of MATLAB are also used for this study. 

3.1 Data Processing and Feature Extraction on Human Walking Simulator 

Output 

In this section, V. Chen’s human walking simulator is examined and the 

modifications which are required for this study are explained. In addition, feature 

extraction methods on the spectrogram of human walking simulator are presented. 

Moreover, the feasibility of applying a different time-frequency transformations for 

obtaining the human walking spectrograms is investigated.   

3.1.1 Processing Human Walking Simulator Output 

Human walking is a periodic motion with determined positions of foot 

according to each other, periodically swinging arms and legs and bobbing motion of 
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human which makes body gravity up and down. Although human walking has a 

general form, there are different characteristics for individuals [1]. Identifying 

human walking is an important issue, therefore, there are studies which model 

human walking. One of these studies is V. Chen’s and his human walking simulator 

is one of the widely used tools for human walking studies, because he constructs the 

simulator very similar to real data with the help of empirical human segmentation 

and an empirical walking model. 
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Figure 3.1 Processes of human walking simulator by Chen  

 

 

In this work, the output of human walking simulator which is developed in 

Matlab by Chen is examined in order to visualize radar return of human walking. 

The processes of extracting spectrogram of human walking are explained as shown 

in Figure 3.1. Boulic, Thalmann, and Thalmman’s empirical mathematical 

parameterization is used at Chen’s simulator as the kinematic parameters of body 

segments. By this way, human segmentation of the simulator is defined. Human 

model segments of the simulator is given in Figure 3.2. Then, the human model is 

made to walk, by using human walking model of Boulic, Thalmann, and 
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Thalmman. Then, the radar returns from each part of human are computed. It is 

assumed that the radar signal is transmitted to the human and signals are returned 

from each body part such as head, torso, arms, legs and the returned radar signal 

contains all these parts. At the last stage, STFT is applied to the radar returned 

signal and spectrogram of human walking is obtained. The spectrogram of human 

walking simulator can be seen in Figure 3.3. The human walking simulator is very 

similar to real human walking data. The detailed information on the similarities of 

the simulator to the real walking data is given in Chapter 4.4. 

 

 

 

 

Figure 3.2 Human Walking Model of Chen [1] 
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Figure 3.3 Spectrogram of human walking simulator by STFT [1] 

 

 

3.1.2 Feature Extraction 

In this section, feature extraction methods on the literature are examined and 

applicable micro Doppler features on the spectrograms are determined. At one of 

the articles, six Doppler features, which are the torso Doppler frequency, the total 

bandwidth of the Doppler signal, the offset of the total Doppler, the bandwidth 

without micro Doppler, the normalized standard deviation of the Doppler signal 

strength, and the period of the limb motions are defined to characterize the micro 

Doppler signatures [7]. These Doppler features seem applicable and feasible for the 

classification of different human motions, because the successful applications of 

classifying different human motions by using features are explained in only these 

articles. Therefore, these  feature extraction method is applied on the spectrogram 

which is obtained from the human walking simulator. These features are presented 

on the spectrogram of human walking simulator in Figure 3.4. 
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Figure 3.4 Micro Doppler features, the torso Doppler frequency, the bandwidth, the 

offset, the bandwidth without micro Doppler, the standard deviation, and the period, 

on the spectrogram of human walking simulator 

 

 

Initially, discrimination of Doppler signal from noise is required; therefore, 

the lowest power level of the signal histogram is used as the noise threshold. In 

Figure 3.4, dark blue area corresponds to the noise and the minimum value of the 

signal histogram is found as 72.3933 dB. The signal strength values higher than this 

threshold is accepted as signal.  

First feature is the torso Doppler frequency which can be described as the 

average frequency of the peak signal over the time bins. It is known that the torso 

produces the strongest return in the spectrogram, while arm and leg movements 

modulate the torso frequency with the periodic micro-Doppler modulations. 

Therefore, the strongest frequencies is extracted from the spectrogram. In order to 

determine the distribution of the strongest signals, a high signal strength threshold is 

assigned. An empirical threshold of torso frequency is determined as 5 dB less of 

the maximum signal strength, which means that the signals whose strength is higher 

this threshold is accepted as torso return signals. For Figure 3.4, maximum signal 
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strength is 117.2858 dB and the threshold for the torso frequency is calculated as 

112.2858 dB. The signal strengths higher than this threshold is kept in an array; 

number of time bins of these signals are also counted. When the summation of these 

peak signal strengths is divided to the total number of time bins; the torso frequency 

is obtained. This value is calculated as 144.6971 Hz for Figure 3.4. 

In order to extract of 2
nd

, 3
rd

 and 6
th

 features, which are bandwidth, offset 

and limb period, primarily two envelopes are identified. For identification of 

envelopes, the signal histogram discrimination threshold, which is 72.3933 dB for 

Figure 3.4, is used. The method of extracting envelope is that comparing the signal 

strengths of each bin with the threshold and if the signal strength is greater than or 

equal to the threshold, this data is within low and high envelopes. The difference 

between high and low envelopes is the starting point and the direction of the 

comparison. For the high envelope, the comparison is started from the highest 

frequency value of the each time bin of the spectrogram and the frequency values 

are decreased as the signal strength becomes greater than or equal to the threshold; 

as a result, the calculated high envelope for Figure 3.4 is given in Figure 3.5. The 

low envelope is the lowest frequency in which the signal strength exceeds the noise 

threshold in a time bin, and the calculated low envelope is shown in Figure 3.6. 

. 
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Figure 3.5 High envelope of the spectrogram 

 

 

 

 

Figure 3.6 Low envelope of the spectrogram 
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The second feature is described as the total bandwidth of Doppler signal. In 

order to obtain the total bandwidth, the largest frequencies of the high envelope, and 

the smallest frequencies of the low envelope are calculated as shown in Figure 3.7. 

The difference between the largest frequencies of the high envelope and the 

smallest frequencies of the low envelope gives the total bandwidth. For instance, the 

largest frequency of the high envelope is 486.4 Hz, the smallest frequency of low 

envelope is -11.5613 Hz; thus, 497.9613 Hz is total bandwidth for Figure 3.7. 

 

 

  
(a) High envelope (b) Low envelope 

Figure 3.7 The largest points of the high envelope and the smallest points of low 

envelope  

 

 

The third feature is described as the offset of the total Doppler signal. In 

order to obtain the offset, the mean frequency values of the high envelope, and the 

mean frequency values of the low envelope are calculated as shown in Figure 3.8. 

The difference between the mean frequencies of the high envelope and the mean 

frequencies of the low envelope gives the offset. For instance, the mean frequency 

of the high envelope is 310.1729 Hz, the mean frequency of low envelope is 

29.3326 Hz; thus, the mean of these two means is 169.7528 Hz, which is the offset 

value for the human walking simulator as shown in Figure 3.8. 
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(a) High envelope (b) Low envelope 

Figure 3.8 The mean points of the high envelope and the mean points of low 

envelope 

 

 

The fourth feature for classification is the bandwidth without micro Doppler. 

It is known that the torso produces the strongest return in the spectrogram, the 

micro-Doppler modulations are limbs returns; therefore, bandwidth without micro 

Doppler is the bandwidth of torso only. Therefore, the high and low envelopes of 

the strongest Doppler frequencies from the spectrogram is extracted, by using the 

empirical threshold of torso frequency. After high and low envelopes of torso are 

extracted, the maximum frequency value for the high torso envelope and the 

minimum frequency value for the low torso envelope are calculated. The difference 

between the maximum of high torso envelope and the minimum of low torso 

envelope gives the bandwidth of torso, in other words bandwidth without micro 

Dopplers. For instance, the maximum frequency of the high torso envelope is 

283.2516 Hz and the minimum frequency of low envelope is 55.3290 Hz; thus, the 

bandwidth without micro Doppler is 227.9226 Hz for human walking simulator. 

The fifth feature is taken as the standard deviation of the total Doppler 

signal. In order to obtain this feature, the standard deviation of the signal strength of 

all the above-noise Doppler signals in the spectrogram is calculated. The standard 

deviation formula at (3-1) is used for this calculation; where µ represents the mean 
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value of the signal strength, xi is used as the samples of the signal, N is the number 

of samples and σ represents the standard deviation.  

   
 

 
         

                                                             (3-1) 

By applying this formula to the Doppler spectrograms, the standard 

deviation value is calculated. For example, for the above human walking example, 

the standard deviation value is calculated as 7,2021. 

The sixth feature is the period of the limb motions. In order to obtain the 

period, the time values for the maximum frequency values of the high envelope are 

calculated as shown in Figure 3.7. The difference between the time value of first 

peak and the time value for the last peak is calculated. The total peak numbers are 

counted and the number of time interval is 1 less than the number of peaks. By 

dividing the time difference between first and last peak to the number of time 

intervals gives the period. For instance, the time value for the first peak value is 

0.29 seconds; the time for the last peak is 2.79 seconds; the time difference is 2.5 

seconds. The peak values are counted as 6; therefore, the time value is divided to 5 

and the period for the human walking simulator is calculated as 0.5 seconds as can 

be seen from Figure 3.7. 

3.1.3 Applying Wigner Ville Distribution on Human Walking Simulator 

Output 

It is explained in 2.2.1 that for time varying signals like human walking, use 

of joint time-frequency transformations is more convenient than Fourier Transform. 

STFT (Short Time Fourier Transform) is examined as explained in 3.1.1; and it is 

seen that STFT is an efficient TFT for micro Doppler signatures. In addition to 

STFT, the effectiveness of another time-frequency transformation is examined. 

Wigner Ville Distribution (WVD) transform is implemented in Matlab and is 

applied to the human walking simulator. The WVD applied human walking 

simulator is demonstrated at Figure 3.9. 
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Figure 3.9 Spectrogram of human walking simulator by WVD 

 

 

When Figure 3.9 is examined and it is seen that there are interferences on 

the signal histogram. In addition, when the spectrogram of human walking 

simulator by WVD in Figure 3.9 and STFT in Figure 3.3 are compared, it is seen 

that the envelope of the spectrogram with WVD is similar to the envelope of STFT; 

on the other hand, there are interferences on the spectrogram of WVD. It is an 

understandable result that the nature of the WVD causes cross term interferences 

because radar return signal of human walking is a multicomponent signal which 

contains torso, limb motions. Because the micro Doppler signatures of torso, and 

human limbs have intersections; when WVD is applied to the human walking 

spectrogram, cross terms make the graph complicated. 

In order to compare WVD and STFT results of human walking simulator by 

means of micro Doppler features quantitively, the extracted feature values of WVD 

and STFT are listed at Table 3.1. 
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Table 3.1 Micro Doppler features of human walking simulator with STFT and 

WVD  

 

  

Comparison between STFT and WVD 

Torso 

Frequency 

(Hz) 

Bandwidth 

(Hz) 

Offset 

(Hz) 

Bandwidth 

w/o Micro 

Doppler 

(Hz) 

Standard 

Deviation 

Period 

(sec) 

 Human 

Walking 

Simulator 

with STFT   

144,6971 497,9613 169,7528 227,9226 7,2021 0,5000 

Human 

Walking 

Simulator 

with WVD  

185,4587 552,4645 207,1810 225,4452 10,2521 0,5000 

 

 

When Table 3.1 is taken into consideration, it can be seen that the results of 

WVD are similar to STFT. On the other hand, because of the interferences of 

WVD, the spectrogram is more spread and the bandwidth values are bigger than 

STFT. 

Although the extracted features of WVD are similar to STFT, cross-term 

interferences of WVD smear spectrograms and it is not possible to discriminate the 

human limbs from the torso. Therefore, use of STFT seems more appropriate and it 

is used as the time frequency transform throughout this thesis. 

3.2 Signal Processing, Feature Extraction and Classification on Experimental 

Human Data 

Human motion classification from experimental human data requires the 

following steps shown in Figure 3.10. 
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Figure 3.10 Block scheme of human motion classification 

 

 

Experimental data is collected at an outdoor test facility by using a ground 

surveillance radar. Details about data acquisition is given in section 3.2.1. 

The decimated and down converted data is pre-processed to make it suitable 

for signal processing. Then, each pulse repetition interval (PRI) is processed by 

matched filtering. After a number of PRIs are accumulated MTI filtering, 

windowing, and FFT is performed on the data for the same range bin. The range 

and velocity of the targets are obtained using CFAR algorithm. Details about these 

signal processing steps are presented in section 3.2.2. 

The matched filtered data is passed through the high pass filter and then a 

window. After windowing, the columns of target range are extracted from 

windowed matrix and STFT is applied to obtain the spectrogram of human data. 

Features are extracted from these spectrograms. Details about these processes are 

given in section 3.2.3. 

After extracting micro Doppler features, neural network classification is 

applied to classify the human motions by means of micro Doppler features. Details 

about micro Doppler classification is presented in section 3.2.4. 
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3.2.1 Data Collection 

Experimental human data is collected in an outdoor test facility, by using a 

ground surveillance radar. It is a pulsed Doppler radar operating at Ku-band. For the 

data collection, fixed antenna position mode of radar is used, in which radar 

operates at selected azimuth angle without rotation. The test facility can be 

described as a concrete, rectangular area, whose dimensions are approximately 200 

meters of length, 150 meters of width, and is surrounded by steppe.  

The experimental data collection procedure at the field can be summarized 

as follows: Initially, radar is positioned at the middle of one of the long edges of the 

area, and target’s exact position is determined by using a binocular which calculates 

the distance. The direction of the target is determined and a line which has 0° aspect 

angle to the line of sight of the radar is drawn on the road to guarantee the use of 

same path for each motion. In addition, other paths are also drawn which have 30° 

and 60° aspect angles to the line of sight of the radar. When the directions of the 

target are determined, radar is switched on and the parameters are selected. The 

radar antenna is then pointed to the direction of the target with the help of the 

optical sight of the radar. Data recording equipment is made ready. Further, related 

range bins are calculated and according to these range bins, recording message 

which is sent from radar is prepared. The target is then requested to start walking by 

using walkie talkies and recording is started on both the radar and the recording 

device at the same time. After 30 seconds walk, recording is stopped and controlled 

whether the recording is done successfully or not, and then, the format of the 

recording is converted to .txt from .dump format by using a conversion program. 

This procedure is repeated for all test cases for different human motions and for all 

test subjects.  

In order to define the list of the required data, important points are taken into 

consideration to limit the data types. The crucial issues can be listed as what the 

effects of using different pulse widths could be on the spectrograms; what the micro 
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Doppler characteristics of human walking, running, crawling and creeping are and 

how various orientations of walking human affect the spectrograms.  

Data collection is carried out in two steps. Initially, the use of different pulse 

widths are examined as the radar is capable of using different pulse widths. If there 

are only SNR differences between different pulse widths and not any other 

differences on the characteristics of the spectrograms, it would be reasonable to 

collect data at only a single pulse width. Therefore, as the first step of data 

collection, data is collected from human subjects who walk towards the radar with 

0° angle using two different pulse widths. 1
st
 data set consists of the first person 

walking at 150 meters towards the radar with the short PW1. 2
nd

 data set consists of 

the second person walking at the range of 1000 meters towards the radar with the 

long radar pulse width. 1
st 

data set and 2
nd

 data set are processed and the results, 

which are explained in detail in section 4.1, are obtained. Spectrograms obtained for 

different pulse widths show that they have nearly same characteristics with only 

SNR and clutter differences. Therefore, at the end of the first part of the data 

collection, it is decidto use the short pulse length for collecting data for different 

motions and different angles. 

Data of human walking towards the radar with aspect angle of 0° is 

collected and saved as Data Set-1. To examine the effects of various orientations of 

human walking, aspect angle of subject to the line of sight of the radar is arranged 

as 30° and 60°, data for 30° and 60° are saved as Data Set-2 and Data Set-3, 

respectively. In order to extract the micro Doppler characteristics of different types 

of human motion, running, crawling and creeping data is collected from the same 

person. Running data is saved as Data Set-4, crawling data is saved as Data Set-5 

and creeping data is saved as Data Set-6. In order to get more accurate results and 

prevent dependency on one motion of the person, each motion is repeated for 7 

times. If the results are different than others, the majority becomes important; 

therefore, data repetition number is decided to be more than 5 and so 7 is chose.   
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Collecting data from same person can avoid generalization for feature 

extraction. Therefore, data collection is repeated for two different people. 2
nd

 

person’s walking data with 0° is collected and saved as Data Set-7, walking data 

with 30° as Data Set-8, walking data with 60° as Data Set-9, running as Data Set-

10, crawling as Data Set-11, creeping as Data Set-12. Lastly, another person repeats 

all motions and angles; 3
rd

 person’s walking data with 0°,  30°, 60°, running, 

crawling and creeping data saved as Data Set-13, Data Set-14, Data Set-15, Data 

Set-16, Data Set-17, and Data Set-18, respectively.  

The list of the collected data is given in Table 3.2. Because each motion is 

repeated 7 times for each data set, 140 files are obtained in total. The results of each 

data file are presented in Chapter 4. 
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Table 3.2 The list of collected data 

Part 

Number 

Number of 

Data Set 
Target 

Pulse 

Width 

Average 

Range of 

Target 

(meter) 

Target 

Motion 

Type 

Azimuth 

Angles 

(degree) 

Part-1 Data Set-1 1
st
 man 1 150 Walking 0° 

Part-1 Data Set-2 2
nd

 man 2 1000 Walking 0° 

Part-2 Data Set-1 1
st
 man 1 150 Walking 0° 

Part-2 Data Set-2 1
st
 man 1 150 Walking 30° 

Part-2 Data Set-3 1
st
 man 1 150 Walking 60° 

Part-2 Data Set-4 1
st
 man 1 150 Running 0° 

Part-2 Data Set-5 1
st
 man 1 150 Crawling 0° 

Part-2 Data Set-6 1
st
 man 1 150 Creeping 0° 

Part-2 Data Set-7 2
nd

 man 1 150 Walking 0° 

Part-2 Data Set-8 2
nd

 man 1 150 Walking 30° 

Part-2 Data Set-9 2
nd

 man 1 150 Walking 60° 

Part-2 Data Set-10 2
nd

 man 1 150 Running 0° 

Part-2 Data Set-11 2
nd

 man 1 150 Crawling 0° 

Part-2 Data Set-12 2
nd

 man 1 150 Creeping 0° 

Part-2 Data Set-13 3
rd

 man 1 150 Walking 0° 

Part-2 Data Set-14 3
rd

 man 1 150 Walking 30° 

Part-2 Data Set-15 3
rd

 man 1 150 Walking 60° 

Part-2 Data Set-16 3
rd

 man 1 150 Running 0° 

Part-2 Data Set-17 3
rd

 man 1 150 Crawling 0° 

Part-2 Data Set-18 3
rd

 man 1 150 Creeping 0° 
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3.2.2 Processing of Experimental Human Data 

3.2.2.1 Generation of Signals 

The radar transmits the pulses, the returned signals are received through the 

antenna and the received analog signal in intermediate frequency (IF) is sampled 

with an analog-to-digital converter (ADC). The sampled signal is passed through 

digital down converter (DDC) which generates generating in-phase (I) and 

quadrature (Q) signals. These I and Q signals are passed through low pass filter, and 

decimated to obtain complex base band signals which are recorded in the data files 

mentioned in the section 3.2.1.   

3.2.2.2 Signal Processing of Experimental Human Data  

The recorded experimental data is processed by matched filtering, MTI 

filtering, windowing. After windowing, FFT is performed and by using an 

experimental CFAR, the range and velocity of the target are obtained as is shown in 

Figure 3.11. 
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Figure 3.11 Block scheme of signal processing 
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3.2.2.2.1 Matched Filtering 

The processing block which maximizes the output peak signal-to-noise ratio 

of a radar receiver to increase the detectability of a target is defined as a matched 

filter [29].  

There are different polyphase codes of radar with different code lengths 

which are matched with different pulse widths; therefore, while data is being 

recorded at the field, the pulse width is noted. The first part of processing of the 

signals is pulse compression, which is done on the complex signals by convolving 

the signal with appropriate polyphase codes. At the end of matched filtering 

process, Pulse-Range Matrix which has data of range bins as its x component, pulse 

numbers as its y component, matched filtered output as its z component is obtained. 

2
nd

 data of single dwell from Data Set-1 is chosen as one example, and its output of 

the matched filtering is demonstrated in Figure 3.12. 

 

 

  
(a) View of 3 dimension (b) View of upper side 

Figure 3.12  One example for the output of matched filtering 
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3.2.2.2.2 MTI Filtering 

MTI processing is a linear filter, which is applied to the slow-time (same 

range-bins of successive pulses) data sequence to suppress the clutter [30]. For the 

experimental setup, two pulse MTI canceller is chosen. The logic behind two pulse 

MTI canceller is that the clutter is identical for all pulses, while the phase of moving 

targets change due to changing range and velocity. Therefore, subtracting 

successive pulses cancel the clutter components.   

After matched filtering, MTI filtering is applied to the experimental data. 

MTI filtering after applied to the example in Section 3.2.2.2.1 is shown in Figure 

3.13. It is seen that the clutters which are seen in red colour in Figure 3.12 are 

suppressed, and only the target remains. 

 

 

  

(a) View of 3 dimension (b) View of upper side 

Figure 3.13 One example for the output of MTI filtering after matched filtering 
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3.2.2.2.3 Windowing 

By taking an infinite impulse response and superimposing a rectangular 

frame, data captures the shape of the window. There are windowing options like 

Hamming, Hanning, Boxcar, Blackman and Kaiser. The Hamming window is the 

raised cosine function, and it is a preferred window because it consists of two 

parameters. The Hanning window is similar to Hamming; however, it has zero at 

the end points. The Blackman is the modulated version of Hanning. Kaiser is a 

complex window which requires arrangement of some parameters [31]. Because of 

the simplicity, Hamming window is preferred as the window. The formulation of 

Hamming window is given for k values from 0 to (N-1): 

                  
   

   
                                                         (3-2) 

Hamming window applied to output of matched filter. Hamming window 

applied to the example in Section 3.2.2.2.2. is shown in Figure 3.14. It is seen that 

the matrix takes the shape of Hamming window and the edge parts are suppressed. 

 

 

  
(a) View of 3 dimension (b) View of upper side 

Figure 3.14 One example for the output of windowing after matched filtering and 

MTI filtering 
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3.2.2.2.4 FFT 

Detailed information about Fast Fourier Transform (FFT) is given in Section 

2.2.1. It is mentioned that FFT is one of the most preferred time-frequency 

transformations, and basically aims to decompose any signal into orthogonal 

sinusoid functions with different frequencies [3].  

FFT is applied to the windowed matrix to obtain the final range-Doppler 

matrix. FFT applied to example in Section 3.2.2.2.3. is in Figure 3.15. It is seen that 

the target can be identified from the range-Doppler matrix very clearly.  

 

 

  
(a) View of 3 dimension (b) View of front side 

Figure 3.15 One example for the output of FFT after matched filtering, MTI 

filtering and windowing 

 

 

3.2.2.2.5 CFAR 

Constant False Alarm Rate (CFAR) is defined as a set of techniques provide 

predictable detection and false alarm behaviour under clutter and other 

interferences. Cell Averaging CFAR (CA-CFAR) sets a threshold for each cell by 

averaging strength of the neighbouring cells. If neighbouring cells contain both 
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interference and some other statistics, it can be said that there is a potential target 

and if neighbouring cells only have interference, this cell does not contain a target 

[30]. The threshold value T for each bin is calculated according to Equation 3-3 

where α is the multiplier which is a function of probability of false alarm, xi is the 

testing cell, N is the number of averaging cells [30]: 

  
α

 
   

 
                                                                                   (3-3) 

CFAR is applied to the range-Doppler matrix and the points which are 

above the threshold are assumed as target candidates and the point which has the 

highest signal strength is accepted as the target. CFAR applied to example in 

section 3.2.2.2.4. is shown in Figure 3.16. The points which are above the detection 

threshold are demonstrated with little black circles. The sides of the peaks are also 

very high; therefore, they also occur as candidate of targets. The candidate point 

which has the highest signal strength is defined as the target. The range and the 

Doppler bins of this point become the range bin and the Doppler bin of the target. In 

brief, at the end of this step, the range and Doppler bins of the target are obtained. 

 

 

  
(a) View of 3 dimension (b) View of front side 

 

Figure 3.16 One example for the output of CFAR 
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3.2.3 Feature Extraction on Experimental Human Data 

The matched filtered matrix of the data is passed through the high pass filter 

and then windowed. After windowing, the columns of target range are extracted 

from windowed matrix and STFT is applied to obtain the spectrogram of human 

data. Features are extracted from spectrograms. 
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Figure 3.17 Block Scheme of micro Doppler processing part 

 

 

3.2.3.1 High Pass Filtering  

The background objects and environment cause strong clutter on the 

experimental data. To extract the useful data from the experimental data, this clutter 

must be suppressed. Radar returns for stationary objects are usually near zero mean 

Doppler and have very small bandwidths; therefore by using a notch filter, the 

clutter can be suppressed. The depth and width are the important parameters for 

designing notch filter to suppress the clutter efficiently [1]. 
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In order to suppress the clutter, a high pass filter is designed with Matlab 

filter builder tool. Sampling frequency is chosen as 2000 Hz; stop frequency, which 

is the frequency at the edge of the end of the stop band, is entered as 10 Hz, pass 

frequency, which is the frequency at the edge of the start of the pass band, is chosen 

as 20 Hz. Moreover, amplitude attenuation in stop band is entered as 3 dB and 

amplitude of ripples allow in the pass band is chosen as 1 dB. These values are 

empirical values and the magnitude response of the designed high pass filter is seen 

in Figure 3.18. The phase response of this high pass filter is seen in Figure 3.19. 

This filter is a Direct-Form FIR (Finite Impulse Response) filter with 70 taps. It is 

capable of suppressing the clutter efficiently. The efficiency of this filter can be 

seen in Chapter 4 by examining the spectrograms before and after this high pass 

filter, such as Figure 4.3 which is spectrogram of human walking simulator with 

long radar pulse width before suppression and Figure 4.4 after suppression clutter. 

 

 

 

Figure 3.18 The magnitude response of the high pass filter to suppress the clutter 
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Figure 3.19 The phase response of the high pass filter to suppress the clutter 

 

 

3.2.3.2 Windowing  

The information about windowing is given in detail in section of 3.2.2.2.3. 

As mentioned in 3.2.2.2.3, Hamming window is used for windowing. For micro 

Doppler processing part, the same Hamming window is used after high pass filter.   

3.2.3.3 Generating Matrix from Target Range Columns  

It is known that at the end of matched filtering process, Pulse-Range Matrix 

which has data of range bins as its x component, pulse numbers as its y component, 

CPI numbers as its z component is obtained. For micro Doppler processing part, the 

matched filtered matrix is taken, high pass filter is applied to this matrix as 

explained in 3.2.3.1 and then windowing is applied as the section of 3.2.3.2. In 

addition, the output of section 3.2.2.2.5 which is the information of target range bin 

is taken. The range bins of the target are the only related information for each CPI. 

Therefore, the range column of target for each CPI is extracted and put side by side. 
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By this way, only the related range columns are separated from irrelevant part for 

human motions. 

3.2.3.4 STFT 

After the related range column matrix is obtained, the spectrogram should be 

obtained. As explained in 3.1.3, usage of STFT seems more appropriate than WVD 

to get the spectrogram of human motions and it is decided to be used as the time 

frequency transform. 

STFT, which is explained in detail in 2.2.1, is applied to the related range 

columns matrix. In order to apply the STFT, the spectrogram function of MATLAB 

signal processing toolbox is used. The parameters of this function are chosen 

according to the requirements. The window is chosen as a Hamming window of 

length 256. The number of overlapping segments is adjusted to zero; overlapping 

segments are not preferred because of the test setup. NFFT is chosen as 256 and 

sampling frequency is adjusted to 1000 Hz. STFT is applied through the range 

columns. At the end of this step, the spectrogram of human motion is obtained. 

3.2.3.5 Feature Extraction 

Feature extraction methods and extracted features are explained in detail 

under the section of 3.1.2. In addition, micro Doppler features on the spectrogram 

of human walking is given in Figure 3.4. 

The same feature extraction method, which is explained in section 3.1.2, is 

applied to the experimental data. The same six features, which are the torso Doppler 

frequency, the total bandwidth of the Doppler signal, the offset of the total Doppler, 

the bandwidth without micro Doppler, the normalized standard deviation of the 

Doppler signal strength, and the period of the limb motions are extracted from 

experimental spectrograms by using the same procedure. These features are 

extracted from the experimental data can be seen from Figure 3.20.   
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Figure 3.20 Demonstration of features on the experimental spectrogram 

 

 

3.2.4 Micro Doppler Classification of Experimental Human Data Using Neural 

Network Classification 

Neural network for classification can be viewed as a mapping function F: 

R
d
→R

m
, where d is the dimension of the input, m is the dimension of output.  The 

network is typically constructed such that an overall error measure is minimized. 

The input x is submitted to the neural network, the classification decision is made 

according to the neural network. For a two-class problem, the neural network 

classifier can be formulated as: 

                                                                                         (3-4) 

 

The discriminating rule for classification between two classes of w1 and w2 

is like assigning x to w1 if g(x)> 0 or w2 if g(x) < 0. Monotone increasing function 

of the posterior probability can be applied to replace the posterior probability in the 
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formula to form a different discriminant function but essentially the same 

classification rule [17].  

For more classes, the network classifier can be formed as [32]: 

                 
                  
                    

                                                 (3-5) 

 

For the human motion classification problem, the input has 6 dimensions 

because feature extraction process requires 6 different features, which are torso 

frequency, bandwidth, offset, bandwidth without micro Dopplers, standard 

deviation and period. Each motion is repeated 7 times for 3 people; therefore, 21 

samples are obtained for each motion. 9 samples of each motion are used as the 

training samples of the neural network. Neural network is constituted with 9 

samples of each motion by using toolbox. The other 12 samples of each motion are 

entered as the input, which has 12x6 dimension, to the neural network. The output 

of the toolbox is the classes of the input motions. The results are presented in 

section 4.5. 

It should be emphasized that classification is only made to get an idea about 

the possibility of discriminating human motions by a classifier. This classification 

part can be assumed as a preliminary for future studies. 

By using the neural network toolbox of MATLAB, neural network classifier 

is applied to the extracted features to obtain an example performance.  
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CHAPTER 4  

 

EXPERIMENTAL RESULTS 

In the experimental part of the study, the basic issues which are examined 

can be listed as the effects of using different pulse widths, the effects of various 

forms of human walking, micro Doppler characteristics of human walking, running, 

crawling and creeping and the classification of human motions from micro Doppler 

signatures. In order to investigate these issues, an experimental data is collected 

from 5 different people by using a ground surveillance radar. For the analysis of 

effects of pulse widths on micro Doppler features, data is collected from 2 people; 

therefore, 14 data sets are collected in this part. In the second part of data collection, 

different human motions such as walking, running, crawling, creeping and various 

orientations of walking such as 0°, 30°, 60° are focused on and the data is collected 

from 3 different persons.  

The recorded data is processed with the methods explained in Chapter 3. In 

this chapter, experimental results and discussions on the data characteristics are 

given and the analysis of each motion, the comparison between them, the 

classification results of motion types are presented. 

4.1 Analysis of Effects of Using Different Pulse Widths of Radar 

The radar system utilized for data acquisition can use variant pulse 

compression codes with different lengths. The use of different pulse compression 

codes with different pulse widths provides several options for working with 

different blind ranges. In order to examine the effects of range and pulse width on 

the spectrograms of human walking, the radar data is collected at two different 

ranges with two different pulse widths. 
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The range of the 1
st
 target, who has 1.74 m height and 95 kg weight, is 

approximately 150 meters from the radar and the smallest pulse width (PW1) is 

chosen to utilize the smallest blind range. The target is asked to walk towards the 

radar and the radar data is recorded. Then, the experiment is repeated 7 times. After 

the raw data is processed as explained in Chapter 3, the human walking 

spectrograms for PW1 are calculated and one of the spectrograms of human 

walking towards the radar with the radar pulse width of PW1 is given in Figure 4.1. 

When Figure 4.1 is examined, a strip is seen at the frequency band of -50 Hz 

and 50 Hz. The reason for this strip is ground clutter and in order to suppress the 

clutter effect on the spectrogram a high pass filter is designed and applied to the 

data as explained at Chapter 3. By filtering the experimental data with the designed 

high bass filter, the clutter effects on the spectrograms are diminished. The 

spectrograms of walking with radar pulse width of PW1 after suppression clutter is 

given in Figure 4.2; the other spectrograms of walking with radar pulse width of 

PW1 without clutter are given at Appendix A, Figure A.1. 

After spectrograms of human walking with the radar pulse width PW1 

without clutter are obtained, feature extraction process is applied on these 

spectrograms to observe the micro Doppler features of walking motion obtained 

with PW1. Feature extraction results of the spectrograms of human walking for the 

radar pulse width of PW1 for 7 data samples are listed at Table 4.1. 

When Table 4.1 is inspected, it is seen that the average feature values of 

PW1 are calculated as torso frequency of 150,0045 Hz; bandwidth of 496,3697 Hz; 

offset of 161,9928 Hz; bandwidth without micro Doppler of 215,8521 Hz; standard 

deviation of 7,3275 and period of 0,5008 sec. These average values are used as the 

extracted features of walking with the radar pulse width of PW1. 
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Figure 4.1 Spectrogram of human walking with radar pulse width of PW1 before 

clutter suppression 

 

 

 

Figure 4.2 Spectrogram of human walking with radar pulse width of PW1 after 

clutter suppression 
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Table 4.1 Extracted micro Doppler features of human walking for PW1 

 

PW1 

Extracted Classification Features 

Torso 

Frequency 

(Hz) 

Bandwidth 

(Hz) 

Offset 

(Hz) 

Bandwidth 

w/o Micro 

Doppler 

(Hz) 

Standard 

Deviation 

Period 

(sec) 

Sample-1 123,8969 451,2008 139,1031 217,9275 7,0347 0,4854 

Sample-2 141,7595 479,4008 152,3379 197,4183 6,9329 0,5204 

Sample-3 159,6973 511,8736 161,4346 223,9093 7,6562 0,5339 

Sample-4 171,1331 531,5282 174,7912 245,2730 7,4759 0,5272 

Sample-5 131,1299 479,4008 177,4467 209,3820 6,7807 0,4621 

Sample-6 166,0107 525,5463 170,7598 211,9456 7,5393 0,4911 

Sample-7 156,4041 495,6372 158,0762 205,1093 7,8727 0,4858 

 

 

Secondly, the range of the 2
nd

 target, who has 1.89 m height and 75 kg 

weight, is approximately 1000 meters from the radar and the PW2, which is 

approximately 5 times of PW1, is selected. The target is walked towards the radar. 

The data is recorded. The experiment is repeated this motion for 7 times. After raw 

data of human walking is processed as explained in Chapter 3, human walking 

spectrograms for PW2 are calculated and an example for the spectrograms is given 

in Figure 4.3.  

When Figure 4.3 is examined, a strip corresponding to clutter is again seen 

at the frequency band of -50 Hz and 50 Hz. With high pass filtering, the clutter is 

depressed and shown in Figure 4.4; the other spectrograms of walking with radar 

pulse width of PW2 with clutter suppressed are given at Appendix-A, Figure A.2. 

Feature extraction results of the spectrograms of human walking for PW2 are listed 

at Table 4.2. 
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When Table 4.2 is inspected, it is seen that the average values of PW2 

features are calculated as torso frequency of 171,7264 Hz; bandwidth of 468,5359 

Hz; offset of 182,0902 Hz; bandwidth without micro Doppler of 183,8912 Hz; 

standard deviation of 7,4390 and period of 0,4206 sec. These average values are 

used as the extracted features of walking with the radar pulse width of PW2. 

In order to make comparison between PW1 and PW2 by means of micro 

Doppler features, averages of extracted feature values for PW1 and PW2 are listed 

at Table 4.3. 

 

 

Table 4.2 Extracted Micro Doppler features of human walking for PW2 

 

PW2 

Extracted Classification Features 

Torso 

Frequency 

(Hz) 

Bandwidth 

(Hz) 

Offset 

(Hz) 

Bandwidth 

w/o Micro 

Doppler 

(Hz) 

Standard 

Deviation 

Period 

(sec) 

Sample-1 157,2665 497,3463 173,4687 206,1283 7,5194 0,3794 

Sample-2 171,6486 499,0554 182,2150 190,5820 7,4938 0,4195 

Sample-3 178,0418 520,4190 198,8082 173,4910 7,2233 0,4437 

Sample-4 180,2862 489,6554 186,1246 169,2183 7,5111 0,4457 

Sample-5 171,3685 405,9098 174,4643 175,2001 7,3953 0,4343 

Sample-6 175,5712 392,2370 180,6747 188,8729 7,3620 0,4087 

Sample-7 167,9020 475,1281 178,8759 183,7456 7,5683 0,4130 
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Figure 4.3 Spectrogram of human walking with radar pulse width of PW2 before 

clutter suppression 

 

 

 

 

Figure 4.4 Spectrogram of human walking with radar pulse width of PW2 after 

clutter suppression 
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Table 4.3 Comparison between PW1 and PW2 by means of micro Doppler features 

 

  

Comparison of PW1 and PW2 

Torso 

Frequency 

(Hz) 

Bandwidth 

(Hz) 

Offset 

(Hz) 

Bandwidth 

w/o Micro 

Doppler 

(Hz) 

Standard 

Deviation 

Period 

(sec) 

Average 

Values for 

PW1 

150,0045 496,3697 161,9928 215,8521 7,3275 0,5008 

Average 

Values for 

PW2 

171,7264 468,5359 182,0902 183,8912 7,4390 0,4206 

 

 

When extracted features of PW1 and PW2 are compared, it can be seen that 

the results are very similar to each other quantitively, which means that human 

walking at different ranges with different pulse widths provide similar feature 

values. The small differences between two pulse widths can be caused by having 

different physical characteristics and different walking signatures of two different 

target persons.  

The range of the target to the radar and the change of the pulse lengths result 

in differences in SNR values. The possible reduction in SNR value can be 

calculated by using radar range Equation 4-1 [29]. For the first case, signal to noise 

ratio is abbreviated as (S/N)1 and number of integrated pulses is demonstrated as n1 

and its range is 150 m. For the second case, the signal to noise ratio is abbreviated 

as (S/N)2 and its pulse numbers is known as approximately 5 times of the pulse 

numbers of PW1 and given as 5.n1 and its range is 1000 m. It should be considered 

that because the spectrograms of PW1 and PW2 belong to 2 different targets and 

their RCS values are different, the calculation result can give an approximate result.   
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where 

  Pav : Average transmit power, W 

G : Antenna gain 

A : Antenna area, m
2
 

ρa : Antenna aperture efficiency 

σ : Radar cross section, m
2 

n : Number of pulses integrated 

Ei(n) : Integration efficiency 

F
4 

: Propagation factor 

α : Attenuation coefficient, nepers per unit distance 

k : Boltzmann’s constant,1.38x10
-23

 J/deg 

T0 : Standard temperature, 290 K 

Fn : Noise figure of receiver 

B : Bandwidth, Hz 

τ : Pulse width, s 

fp : Pulse repetition frequency, Hz 

Lf : Fluctuation loss 

Ls : System loss 
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The ratio of the Equations 4-2 and 4-3 gives the result that:
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The increase of the range from 150 meters to 1000 meters and changing 

pulse width from PW1 to PW2 causes -25.9 dB reduction on the signal to noise 

ratio according to radar range equation. On the other hand, because the targets for 

two cases are different and their RCS values are different, there occurred deviation 

from the calculated value of 25.9 dB reduction.  

The spectrograms of Figure 4.2 and Figure 4.4 are examined and it is seen 

from the spectrograms that maximum SNR value of PW1 is 115 dB and maximum 

SNR value of PW2 is 95 dB; which means that PW2 has approximately 20 dB 

smaller SNR values than PW1. This value is roughly consistent with the calculated 

SNR reduction. 

4.2 Comparison between Simulated Human Walking Model and Experimental 

Human Walking Result 

In Chapter 3, Chen's human walking simulator is examined and the 

simulator is modified according to the requirements of this thesis. The spectrogram 

of developed human walking simulator by using STFT is demonstrated at Figure 

4.5. In addition to the simulated spectrogram of human walking, one of the 

spectrograms of experimental human walking with the azimuth angle of 0° and with 

the pulse width of PW1 is given in Figure 4.6 to make a comparison between the 

simulated and experimental results.  

When Figure 4.5 and Figure 4.6 are examined, two spectrograms seem quite 

similar. The lines of the spectrogram of experimental human walking are more 

spread than the ones of simulator; this is expected because radar returns are 
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calculated from 17 points in the simulator; however, the spectrogram of 

experimental human walking is obtained from the return signal of all human body 

parts.  

To better compare the simulated and experimental results by means of body 

parts of the human spectrograms, Figure 4.7 is prepared. In Figure 4.7, the shape of 

swinging foot is very consistent with simulated and experimental data. The shape 

and the amount of extension of fixed foot are also similar on both spectrograms. 

Even the torso seems spread in the experimental data, the general form and position 

of torso resembles the torso part of the simulator. Although knee has a distinctive 

shape on the spectrogram of the simulator, it is hard to discriminate knee from the 

experimental spectrogram. However, when it is examined in detail, the position and 

the shape of knee are again similar in both spectrograms. In brief, the simulated 

results resemble the experimental spectrogram quite closely in a qualitative sense. 

In order to see the effectiveness of the simulator in the generation of selected 

micro Doppler features quantitively, the extracted feature values of human walking 

simulator by STFT and the average values of experimental human walking with 

PW1 are listed at Table 4.4. 
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Figure 4.5 Spectrogram of human walking simulator by using STFT 

  

 

 
 

Figure 4.6 Spectrogram of experimental human walking with azimuth angle of 0° 
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(a) Spectrogram of human walking 

simulator 

(b) Spectrogram of experimental human 

walking 

 

Figure 4.7 Spectrograms of human walking 

 

 

Table 4.4 Comparison between human walking simulator by STFT and 

experimental human walking result by means of micro Doppler features 

 

 

Comparison of Simulator and Experimental Human Walking 

Torso 

Frequency 

(Hz) 

Bandwidth 

(Hz) 

Offset 

(Hz) 

Bandwidth 

w/o Micro 

Doppler 

(Hz) 

Standard 

Deviation 

Period 

(sec) 

Human 

Walking 

Simulator 

with STFT 

144,6971 497,9613 169,7528 227,9226 7,2021 0,5000 

Experimental 

Human 

Walking 

with 

Azimuth 

Angle of 0° 

150,0045 492,5445 168,0948 183,6850 7,4290 0,4594 

 

Torso

 
 

Fixed Foot 

Knee 

Swinging Foot 
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When extracted features are investigated, it can be seen that the results of 

human walking simulator by using STFT is very similar to experimental human 

walking with azimuth angle of 0°. After the observation of spectrograms 

qualitatively and the examination of extracted features quantitively, it can be 

concluded that human walking simulator provides very similar results to 

experimental data; therefore, the given simulator is a beneficial tool to study human 

characteristics on radar.  

4.3 Analysis of Different Types of Human Motions 

Data for different human motions such as walking, running, crawling and 

creeping is collected. The collected data is processed and some features are 

extracted from the spectrograms as explained in Chapter 3. In addition, to 

understand the dependence of observed motion characteristics on the target, data is 

collected from 3 different persons for each type of motion. Moreover, to examine 

the effects of various orientations of human walking, the aspect angle of human to 

the line of sight of the radar is arranged as 0°, 30° and 60° and spectrograms for 

walking motions are obtained for these aspect angles. For all motions, the range of 

the target is adjusted to 150 meters from the radar and the smallest pulse width 

(PW1) is chosen to get the shortest blind range. Furthermore, in order to get more 

accurate results and prevent dependency on one motion of a human, each 

experiment is repeated for 7 times. In brief, the motion types of walking, running, 

crawling, creeping and walking aspect angles of 0°, 30°, 60° are analyzed by using 

3 data sets from 3 persons with 7 repeats for each types of motion. 

4.3.1 Walking 

In order to characterize the micro Doppler response of human walking with 

respect to azimuth angle, the azimuth angles of the human target are arranged to 0°, 

30°, 60° and data is collected and analyzed for these angles.  
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4.3.1.1 Walking with Azimuth Angle of 0° 

The target azimuth angle is set to 0°. The range of the 1
st
 person, who has 

1.73 m height and 70 kg weight, is adjusted to approximately 150 meters from the 

radar and the shortest pulse width (PW1) is chosen to get the shortest blind range. 

1
st
 person is asked to walk towards the radar and this motion is repeated 7 times and 

raw data is recorded. After the raw data is processed as explained in Chapter 3, 1
st
 

person’s walking spectrograms with the azimuth angle of 0° are obtained; one of 

these spectrograms and the spectrogram after clutter filtering are shown in Figure 

4.8, and in Figure 4.9, respectively. The other spectrograms of 1
st
 person's walking 

with the azimuth angle of 0° with clutter suppression are given at Appendix-B, 

Figure B.1.  

After spectrograms of 1
st
 person's walking with the azimuth angle of 0° with 

clutter suppressed are obtained, the feature extraction process is applied on these 

spectrograms to observe the micro Doppler features of 1
st
 person's walking with the 

azimuth angle of 0°. Feature extraction results of the spectrograms of 1
st
 person's 

walking with the azimuth angle of 0° are listed at Table 4.5. 

When Table 4.5 is taken into consideration, it is seen that the average feature 

values of 1
st
  person's walking with the azimuth angle of 0° are calculated as torso 

frequency of 188,6218 Hz; bandwidth of 557,5308 Hz; offset of 196,2589 Hz; 

bandwidth without micro Doppler of 235,0184 Hz; standard deviation of 7,3275 

and period of 0,4607 sec. These average values are used as the extracted features of 

1
st
 person's walking with the azimuth angle of 0°. 
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Figure 4.8 Spectrogram of 1
st
 person's walking with azimuth angle of 0° before 

clutter suppression 

 

 

 

 

Figure 4.9 Spectrogram of 1
st
 person's walking with azimuth angle of 0° after 

clutter suppression by using high pass filter 
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Table 4.5 Extracted micro Doppler features of 1
st
 person's walking with 0° 

 

1
st
 

Person's 

Walking 

with 

Azimuth 

Angle of 

0° 

Extracted Classification Features 

Torso 

Frequency 

(Hz) 

BW (Hz) 
Offset 

(Hz) 

BW w/o 

Micro 

Doppler 

(Hz) 

STD 
Period 

(sec) 

Sample-1 188,3185 564,0009 196,1783 249,5457 7,0347 0,4045 

Sample-2 208,3793 579,3828 202,8096 233,3093 6,9329 0,478 

Sample-3 199,6267 583,6555 203,4719 245,273 7,6562 0,4632 

Sample-4 191,4516 549,4736 196,1356 252,9639 7,4759 0,413 

Sample-5 176,7542 532,3827 187,8401 170,0728 6,7807 0,5607 

Sample-6 173,6054 549,4736 192,7238 252,1093 7,5393 0,4251 

Sample-7 182,2167 544,3464 194,653 241,8548 7,8727 0,4806 

 

 

The range of the 2
nd

 person, who has 1.83 m height and 90 kg weight, is 

adjusted to approximately 150 meters from the radar and the smallest pulse width 

(PW1) is chosen to get the smallest blind range. 2
nd

 person is asked to repeat the 

same motion. 

The spectrogram of 2
nd

 person before and after clutter suppression is given 

in Figure 4.10 and Figure 4.11, respectively. 
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Figure 4.10 Spectrogram of 2
nd

 person's walking with azimuth angle of 0° before 

clutter suppression 

 

 

 

 

Figure 4.11 Spectrogram of 2
nd

 person's walking with azimuth angle of 0° after 

clutter suppression 
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Table 4.6 Extracted micro Doppler features of 2
nd

 person's walking with the 

azimuth angle of 0° 

 

2
nd

 

Person's 

Walking 

with 

Azimuth 

Angle of 

0° 

Extracted Classification Features 

Torso 

Frequency 

(Hz) 

BW (Hz) 
Offset 

(Hz) 

BW w/o 

Micro 

Doppler 

(Hz) 

STD 
Period 

(sec) 

Sample-1 171,9112 508,4554 184,6569 211,0911 7,5183 0,478 

Sample-2 177,2271 568,2737 206,9243 217,9275 7,4109 0,4681 

Sample-3 183,9676 543,4918 191,85 223,9093 7,8277 0,478 

Sample-4 173,1720 540,0736 190,5426 198,2729 7,3794 0,4702 

Sample-5 175,3219 526,4009 189,6966 215,3638 7,5487 0,4597 

Sample-6 180,4487 573,401 193,3348 208,5275 7,3041 0,4623 

Sample-7 179,3123 574,2555 199,15 204,2547 7,9367 0,4806 

 

 

Table 4.6 shows the features generated for the 2
nd

 person. From Table 4.6, it 

is seen that the average feature values of 2
nd

 person's walking with the azimuth 

angle of 0° are calculated as torso frequency of 177,3373 Hz; bandwidth of 

547,7646 Hz; offset of 193,7365 Hz; bandwidth without micro Doppler of 211,3353 

Hz; standard deviation of 7,5608 and period of 0,4710 sec. These average values are 

used as the extracted features of 2
nd 
person's walking with the azimuth angle of 0°. 

The results for the 3
rd

 person, who has 1.89 m height and 78 kg weight, is 

given in Figure 4.12 and Figure 4.13. Feature extraction results of the spectrograms 

of 3
rd

 person's walking are listed at Table 4.7. 
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Table 4.7 Extracted micro Doppler features of 3
rd

 person's walking with the 

azimuth angle of 0° 

 

3
rd

 

Person's 

Walking 

with 

Azimuth 

Angle of 

0° 

Extracted Classification Features 

Torso 

Frequency 

(Hz) 

BW (Hz) 
Offset 

(Hz) 

BW w/o 

Micro 

Doppler 

(Hz) 

STD 
Period 

(sec) 

Sample-1 205,2249 516,1463 207,9518 184,6001 7,8826 0,4698 

Sample-2 219,9559 519,5645 212,0152 185,4547 8,0547 0,5015 

Sample-3 225,4603 541,7827 221,9365 224,7638 8,1985 0,4989 

Sample-4 224,8918 573,401 227,4142 190,582 7,8192 0,5818 

Sample-5 231,4513 552,0373 225,4914 167,5092 7,7426 0,5272 

Sample-6 234,4791 497,3463 224,936 176,0547 7,6555 0,4411 

Sample-7 224,6487 501,619 217,527 172,6365 8,0687 0,4649 

 

 

When features Table 4.7 for 3
rd 

person, it is seen that the average feature 

values of 3
rd

 person's walking with the azimuth angle of 0° are calculated as torso 

frequency of 223,7303 Hz; bandwidth of 528,8424 Hz; offset of 219,6103 Hz; 

bandwidth without micro Doppler of 185,9430 Hz; standard deviation of 7,9174 

and period of 0,4979 sec. These average values are used as the extracted features of 

3
rd

 person's walking with the azimuth angle of 0°. 
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Figure 4.12 Spectrogram of 3
rd

 person's walking with azimuth angle of 0° before 

clutter suppression  

 

 

 

 

Figure 4.13 Spectrogram of 3
rd

 person's walking with azimuth angle of 0° after 

clutter suppression  



77 

Table 4.8 Micro Doppler features of walking of 1
st
 person, 2

nd
 person and 3

rd
 

person 

 

Walking 

with 

Azimuth 

Angle of 

0° 

Characteristics of 3 Persons' Walking with 0° 

Torso 

Frequency 

(Hz) 

BW (Hz) 
Offset 

(Hz) 

BW w/o 

Micro 

Doppler (Hz) 

STD 
Period 

(sec) 

Average 

Values 

for 1
st
 

Person  

188,6218 557,5308 196,2589 235,0184 7,3275 0,4607 

Average 

Values 

for 2
nd

 

Person  

177,3373 547,7646 193,7365 211,3353 7,5608 0,4710 

Average 

Values 

for 3
rd

 

Person  

223,7303 528,8424 219,6103 185,9430 7,9174 0,4979 

 

 

In order to see whether every person has different walking characteristics 

and can be distinguished by using micro Doppler features, extracted feature values 

of 1
st
 person's, 2

nd
 person's and 3

rd
 person's walking spectrograms are listed at Table 

4.8. The followings can be extracted from Table 4.8: 

 3
rd 

person has the largest torso frequency, which means that this person 

has the largest speed of walking.  

 1
st
 person has the largest BW value, which can be explained that this 

person has the highest velocity of limb motions of walking.  

 3
rd 

person has the largest offset value, which can be deduced that the 

forward and backward limb motions are more asymmetric than other 

persons’ limb motions while walking.  
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 1
st 

person has the largest bandwidth without micro Doppler value, which 

can be concluded that this person has the largest bobbing motion of torso 

while walking.  

 3
rd 

person has the largest standard deviation value, which means that 

dynamic range of the motion is bigger than others’; in other words, the 

signal strength bar consists of larger range of numbers.  

 3
rd

 person has the largest period values, which means that the swing rate 

of limbs is smaller than others’, which means that this person swings 

arms slowly.  

In brief, when extracted features of walking spectrograms of the targets are 

taken into consideration, it is seen that each person has distinctive walking features, 

in other words each person has signatures of walking and identification of walking 

person could be done by looking at the walking spectrograms. In general, the 

extracted values of 3 person’s walking are close to each other. It means that it is 

possible to group these values to obtain the features of walking with azimuth angle 

of 0°. By using the values at Table 4.8, the average values of 3 person's walking 

features are calculated as torso frequency of 196,5631 Hz; bandwidth of 544,7126 

Hz; offset of 203,2019 Hz; bandwidth without micro Doppler of 210,7656 Hz; 

standard deviation of 7,6019 and period of 0,4765 sec. These average values are 

used as the extracted features of human walking with the azimuth angle of 0°. 

4.3.1.2 Walking with Azimuth Angle of 30° 

In order to arrange the azimuth angle of the target to the line of sight of the 

radar to 30°, walking path is calculated and marked on the field as seen in Figure 

4.14. 
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Figure 4.14 Walking path for the azimuth angle of 30°  

 

 

1
st
 person is asked to walk on the walking path which has azimuth angle of 

30° to  the radar and repeat this motion for 7 times to record raw data of human 

walking. After the raw data of human walking is processed as explained in Chapter 

3, 1
st
 person’s walking spectrograms with the azimuth angle of 30° are obtained; 

one of these spectrograms is demonstrated at Figure 4.15. The clutter removed 

version is given in Figure 4.16. Feature extraction results of the spectrograms of 1
st
 

person's walking with the azimuth angle of 30° are listed at Table 4.9. 
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Figure 4.15  Spectrogram of 1
st
 person's walking with azimuth angle of 30° before 

clutter suppression 

 

 

 

 

Figure 4.16 Spectrogram of 1
st
 person's walking with azimuth angle of 30° after 

clutter suppression 
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When feature table (Table 4.9) is taken into consideration, it is seen that the 

average feature values of 1
st
 person's walking with the azimuth angle of 30° are 

calculated as torso frequency of 146,5138 Hz; bandwidth of 483,0631 Hz; offset of 

164,2824 Hz; bandwidth without micro Doppler of 209,5678 Hz; standard deviation 

of 7,1936 and period of 0,4397 sec. These average values are used as the extracted 

features of 1
st
 person's walking with the azimuth angle of 30°. 

 

 

Table 4.9 Extracted micro Doppler features of 1
st
 person's walking with 30° 

 

1
st 

Person's 

Walking 

with 

Azimuth 

Angle of 

30° 

Extracted Classification Features 

Torso 

Frequency 

(Hz) 

BW (Hz) 
Offset 

(Hz) 

BW w/o 

Micro 

Doppler 

(Hz) 

STD 
Period 

(sec) 

Sample-1 147,2549 492,219 171,5716 198,2729 7,2605 0,4274 

Sample-2 151,7410   500,7645 165,5343 199,1274 7,1377 0,4258 

Sample-3 142,6220 456,328 156,9461 212,2002 6,701 0,4519 

Sample-4 153,2238 486,2372 167,9227 207,2366 7,4809 0,4473 

Sample-5 141,7923 473,419 158,2279 201,4644 7,0022 0,4336 

Sample-6 151,1185 488,8008 164,5409 219,6366 7,189 0,4597 

Sample-7 137,8443 483,6735 165,233 229,0366 7,5839 0,432 

 

 

The same experiment is repeated for 2
nd

 and 3
rd

 persons and results are given 

in Figure 4.17, Figure 4.18, Figure 4.19, and Figure 4.20. Feature extraction results 

for 2
nd

 person and 3
rd

 person are given in Table 4.10, and Table 4.11, respectively.  
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Figure 4.17 Spectrogram of 2
nd

 person's walking with azimuth angle of 30° before 

clutter suppression 

 

 

 
 

Figure 4.18 Spectrogram of 2
nd

 person's walking with azimuth angle of 30° after 

clutter suppression 
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Figure 4.19 Spectrogram of 3
rd

 person's walking with azimuth angle of 30° before 

clutter suppression 

 

 

 

 

Figure 4.20 Spectrogram of 3
rd

 person's walking with azimuth angle of 30° after 

clutter suppression 
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Table 4.10 Extracted micro Doppler features of 2
nd

 person's walking with 30° 

 

2
nd

 Person's 

Walking 

with 30° 

Extracted Classification Features 

Torso 

Frequency 

(Hz) 

BW (Hz) 
Offset 

(Hz) 

BW w/o 

Micro 

Doppler 

(Hz) 

STD 
Period 

(sec) 

Sample-1 132,1308 457,1826 160,345 184,6001 7,6182 0,4681 

Sample-2 131,8223 455,4735 164,5345 190,582 7,227 0,4656 

Sample-3 129,6449 467,4371 162,3297 196,5638 7,2676 0,4672 

Sample-4 137,0601 455,4735 167,269 183,7456 7,5437 0,4806 

Sample-5 134,9041 478,5463 166,7819 181,6821 7,6145 0,478 

Sample-6 145,1232 517,0009 164,5494 182,891 7,8533 0,4583 

Sample-7 149,2950 538,3645 143,663 161,0183 7,5784 0,4795 

 

 

Table 4.11 Extracted micro Doppler features of 3
rd

 person's walking 30° 

 

3
rd

 Person's 

Walking with 

30° 

Extracted Classification Features 

Torso 

Frequency 

(Hz) 

BW (Hz) 
Offset 

(Hz) 

BW w/o 

Micro 

Doppler 

(Hz) 

STD 
Period 

(sec) 

Sample-1 162,3580 507,6008 167,472 166,6547 7,7491 0,4422 

Sample-2 168,3669 482,819 175,1757 168,3638 7,5866 0,4608 

Sample-3 177,6670 518,71 187,6051 151,2728 7,7774 0,4571 

Sample-4 185,7152 541,7827 179,739 146,1455 7,3417 0,4641 

Sample-5 166,3749 485,3826 178,7883 144,4364 7,2722 0,4676 

Sample-6 174,2694 531,5282 183,6678 171,7819 7,5521 0,5333 

Sample-7 175,6928 524,6918 178,0949 160,6728 7,6724 0,4473 
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Table 4.12 Micro Doppler features of 1
st
 person’s, 2

nd
 person’s and 3

rd
 person’s 

walking with the azimuth angle of 30° 

 

Walking 

with 

Azimuth 

Angle of 30° 

Characteristics of 3 Persons' Walking with 30° 

Torso 

Frequency 

(Hz) 

BW (Hz) 
Offset 

(Hz) 

BW w/o 

Micro 

Doppler (Hz) 

STD 
Period 

(sec) 

Average 

Values for 1
st
 

Person  

146,5138 483,0631 164,2824 209,5678 7,1936 0,4397 

Average 

Values for 

2
nd

 Person  

137,1401 481,3541 161,3532 183,0118 7,5290 0,4710 

Average 

Values for 

3
rd

 Person  

172,9206 513,2164 178,6490 158,4754 7,5645 0,4675 

 

 

In order to analyze whether every person has different walking 

characteristics and can be distinguished by using micro Doppler features, extracted 

feature values of 1
st
 person's, 2

nd
 person's and 3

rd
 person's walking spectrograms are 

listed at Table 4.12. The followings can be extracted from Table 4.12: 

 3
rd

 person has the largest torso frequency, which means that this person 

has the largest speed of walking at 30° approach angle. 

 3
rd

 person has the largest BW value, which can be explained that this 

person has the highest velocity of limb motions of walking. 

 3
rd

 person has the largest offset value, which can be deduced that the 

forward and backward limb motions are more asymmetric than other 

persons’ limb motions while walking.  

 1
st 

person has the largest bandwidth without micro Doppler value, which 

can be concluded that this person has the largest bobbing motion of torso 

while walking.  
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 2
nd 

person has the largest standard deviation value, which means that 

dynamic range of the motion is bigger than others’; in other words, the 

signal strength bar consists of larger range of numbers.  

 2
nd

 person has the largest period values, which means that the swing rate 

of limbs is smaller than others’, which means that this person swings 

arms slowly.  

In brief, when extracted features of walking with 30° spectrograms of the 

targets are taken into consideration, it is seen that each person has distinctive 

walking features, in other words each person has signatures of walking and 

identification of walking person could be done by looking at the walking with 30° 

spectrograms. On the other hand, the extracted values of 3 persons’ walking with 

30° are close to each other. It means that it is possible to group these values to 

obtain the features of walking with azimuth angle of 30°. By using the values at 

Table 4.12, the average values of 3 persons’ walking features are calculated as torso 

frequency of 152,1915 Hz; bandwidth of 492,5445 Hz; offset of 168,0948 Hz; 

bandwidth without micro Doppler of 183,6850 Hz; standard deviation of 7,4290 

and period of 0,4594 sec. These average values are used as the extracted features of 

human walking with the azimuth angle of 30°. 

4.3.1.3 Walking with Azimuth Angle of 60° 

The experiment is repeated for the azimuth angle of 60°. Data is obtained 

from the same targets. Walking path is calculated and marked on the field as seen in 

Figure 4.21.  
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Figure 4.21 Walking path for the azimuth angle of 60° 

 

 

The results for each target are given in Figure 4.22 and Figure 4.23 for 1
st
 

person; Figure 4.24 and Figure 4.25 for 2
nd

 person; Figure 4.26 and Figure 4.27 for 

3
rd

 person. Feature extraction results of 1
st
 person, 2

nd
 person and 3

rd
 person are 

given in Table 4.13, Table 4.14 and Table 4.15, respectively. 
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Figure 4.22 Spectrogram of 1
st
 person's walking with azimuth angle of 60° before 

clutter suppression 

 

 

 

 

Figure 4.23 Spectrogram of 1
st
 person's walking with azimuth angle of 60° after 

clutter suppression 
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Figure 4.24 Spectrogram of 2
nd

 person's walking with azimuth angle of 60° before 

clutter suppression 

 

 

 

 

Figure 4.25 Spectrogram of 2
nd

 person's walking with azimuth angle of 60° after 

clutter suppression 
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Figure 4.26 Spectrogram of 3
rd

 person's walking with azimuth angle of 60° before 

clutter suppression 

 

 

 

 

Figure 4.27 Spectrogram of 3
rd

 person's walking with azimuth angle of 60° after 

clutter suppression 
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Table 4.13 Extracted micro Doppler features of 1
st
 person's walking with 60° 

 

1
st
 

Person's 

Walking 

with 60° 

Extracted Classification Features 

Torso 

Frequency 

(Hz) 

BW (Hz) 
Offset 

(Hz) 

BW w/o 

Micro 

Doppler 

(Hz) 

STD 
Period 

(sec) 

Sample-1 119,0730 392,237 92,5496 194,8547 7,5912 0,4434 

Sample-2 110,3708   397,3643 114,6668 174,3456 7,3232 0,4632 

Sample-3 104,7302 350,3642 110,962 165,8001 7,0711 0,4114 

Sample-4 100,4464 351,2188 90,6375 179,982 6,7544 0,512 

Sample-5 105,0493   355,4915 96,2668 185,4547 6,6828 0,448 

Sample-6 98,9502 358,9097 98,0635 147,0001 7,2408 0,4713 

Sample-7 98,0547 360,6188 102,834 185,0002 7,4075 0,4588 

 

 

Table 4.14 Extracted micro Doppler features of 2
nd

 person's walking with the 

azimuth angle of 60° 

 

2
nd

 

Person's 

Walking 

with 60° 

Extracted Classification Features 

Torso 

Frequency 

(Hz) 

BW (Hz) 
Offset 

(Hz) 

BW w/o 

Micro 

Doppler 

(Hz) 

STD 
Period 

(sec) 

Sample-1 61,3783 194,8367 47,3846 151,2728 7,2711 0,4583 

Sample-2 56,5033 200,8185 43,0264 167,5092 7,5757 0,4414 

Sample-3 75,6878 223,8913 67,0776 173,491 6,8928 0,4109 

Sample-4 79,3837 222,1822 65,8599 178,6183 7,0575 0,4486 

Sample-5 81,4528 225,6004 71,7206 150,4183 6,9013 0,4461 

Sample-6 69,7646 223,0367 65,0054 178,2729 7,5179 0,4195 

Sample-7 74,6386 232,4368 68,5601 156,4001 7,2664 0,4251 
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Table 4.15 Extracted micro Doppler features of 3
rd

 person's walking with the 

azimuth angle of 60° 

 

3
rd 

Person's 

Walking 

with 60° 

Extracted Classification Features 

Torso 

Frequency 

(Hz) 

BW (Hz) 
Offset 

(Hz) 

BW w/o 

Micro 

Doppler 

(Hz) 

STD 
Period 

(sec) 

Sample-1 77,1432 232,4368 64,8715 141,9817 7,0939 0,4109 

Sample-2 81,9553 282,855 83,0983 123,9273 7,3159 0,4195 

Sample-3 98,8749 269,1823 84,6925 162,7819 7,3851 0,4274 

Sample-4 93,6406 266,6186 77,4964 142,7273 7,3873 0,4486 

Sample-5 84,5033 282,855 70,9559 146,1635 7,2593 0,4242 

Sample-6 80,9279 264,9095 80,5539 153,1456 6,8993 0,4457 

Sample-7 97,3234 234,1458 74,4793 147,4673 6,6513 0,4127 

 

 

Table 4.16  Micro Doppler features of 1
st
 person’s, 2

nd
 person’s and 3

rd
 person’s 

walking with the azimuth angle of 60° 

 

Walking with 

Azimuth Angle 

of 60° 

Characteristics of 3 Persons' Walking with 60° 

Torso 

Frequency 

(Hz) 

BW (Hz) 
Offset 

(Hz) 

BW w/o 

Micro 

Doppler 

(Hz) 

STD 
Period 

(sec) 

Average 

Values for 1
st
 

Person  

105,2392 366,6006 100,8543 176,0625 7,1530 0,4583 

Average 

Values for 2
nd

 

Person  

71,2584 217,5432 61,2335 165,1404 7,2118 0,4357 

Average 

Values for 3
rd

 

Person  

87,7669 261,8576 76,5925 145,4564 7,1417 0,4270 
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In order to analyze whether each person has different walking characteristics 

and can be distinguished by using micro Doppler features, the features of 1
st
 

person's, 2
nd

 person's and 3
rd

 person's walking spectrograms are given in Table 4.16. 

The followings can be extracted from Table 4.16: 

 1
st
 person has the largest torso frequency, which means that this person 

has the largest speed of walking with 60°. 

 1
st
 person has the largest BW value, which can be explained that this 

person has the highest velocity of limb motions of walking.  

 1
st 

person has the largest offset value, which can be deduced that the 

forward and backward limb motions are more asymmetric than other 

persons’ limb motions while walking.  

 1
st 

person has the largest bandwidth without micro Doppler value, which 

can be concluded that this person has the largest bobbing motion of torso 

while walking.  

 2
nd 

person has the largest standard deviation value, which means that 

dynamic range of the motion is bigger than others’; in other words, the 

signal strength bar consists of larger range of numbers.  

 1
st
 person has the largest period values, which means that the swing rate 

of limbs is smaller than others’, which means that this person swings 

arms slowly. 

 1
st 

person has the largest value for 5 features, it can be caused that 2
nd 

and 3
rd 

persons’ spectrograms are not clear enough as 1
st 
person’s 

spectrogram.  

When the extracted features of walking with 60° spectrograms of the targets 

are taken into consideration, it is seen that each person has distinctive walking 

features, in other words each person has signatures of walking and identification of 

walking person could be done by looking at the walking with 60° spectrograms. On 

the other hand, the extracted values of 3 persons’ walking with 60° are close to each 

other. It means that it is possible to group these values to obtain the features of 
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walking with azimuth angle of 60°. By using the values at Table 4.16, the average 

values of 3 person's walking features are calculated as torso frequency of 88,0882 

Hz; bandwidth of 282,0005 Hz; offset of 79,5601 Hz; bandwidth without micro 

Doppler of 162,2197 Hz; standard deviation of 7,1688 and period of 0,4403 sec. 

These average values are used as the extracted features of human walking with the 

azimuth angle of 60°. 

4.3.1.4 Comparison of Different Azimuth Angles 

Figure 4.28 shows the spectrograms of a target walking at three different 

azimuth angles.  

 

 

   

(a) Azimuth angle of  0° (b) Azimuth angle of  30° (c) Azimuth angle of  60° 

 

Figure 4.28 One of the spectrograms of azimuth angles of 0°, 30°, 60° 

 

 

It can be seen clearly in Figure 4.28 that when azimuth angle increases from 

0° to 60°, the resolution of the limb motions on the spectrograms decreases. The 

limb motions that are very clear for the azimuth angle of 0° are blurred for the 

azimuth angle of 60°. In addition, where the walking person is outside the azimuth 

beam width, signal is not received with a proper SNR and walking signature is not 

formed at these parts of the spectrograms. Moreover, at the transition parts, where 

the person starts walking into the coverage of the azimuth beam width of the radar, 

the human motions on the spectrograms seem unclear as can be seen from Figure 
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4.28 (c). For example, at the spectrogram of the azimuth angle of 60°, the time 

intervals 0-2 sec and 6-7 sec can be assumed as transition parts and the walking 

signature is blurry for these time intervals. Further, as can be seen from Figure 4.28 

that the Doppler spread and the torso frequency of the walking spectrograms 

decrease while the azimuth angle increases from 0° to 60°. Detailed analysis on the 

extracted features is given after presenting some numerical values of the features. 

In order to compare the azimuth angles of 0°, 30°, 60° in terms of their 

micro Doppler features quantitively, the extracted feature values of human walking 

with 0°, 30°, 60° are listed at Table 4.17. 

 

 

Table 4.17 Average values of the spectrograms of azimuth angles of 0°, 30°, 60° 

 

  

Comparison of azimuth angles 

Torso 

Frequency 

(Hz) 

BW (Hz) 
Offset 

(Hz) 

BW w/o 

Micro 

Doppler 

(Hz) 

STD 
Period 

(sec) 

Average 

Values 

for 0° 

196,5631 544,7126 203,2019 210,7656 7,6019 0,4765 

Average 

Values 

for 30° 

152,1915 492,5445 168,0948 183,6850 7,4290 0,4594 

Average 

Values 

for 60° 

88,0882 282,0005 79,5601 162,2197 7,1688 0,4403 

 

 

The numerical results of the extracted features are consistent with the 

comments of spectrograms. Torso frequency is 196.6 Hz for the azimuth angle of 

0°, it is 152.2 Hz for 30° and it is approximately 88 Hz for 60°; it means that the 

torso frequency, which depends on the human speed, decreases with the increasing 
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azimuth angles. It is known that if the azimuth angle is bigger than 0°, the human 

speed according to the radar becomes the radial component of the human speed. 

Therefore, it is reasonable that human speed becomes smaller for bigger azimuth 

angles than 0° and this makes the torso frequency values decrease while azimuth 

angles are increasing. Moreover, as can be seen from Table 4.17 that the bandwidth, 

which is related with the speed of the limbs, of the spectrograms decrease from 

544,7 Hz to 282 Hz while the azimuth angles increases from 0° to 60°. It is 

reasonable because if there is an azimuth angle bigger than 0°, the limbs speed 

according to the radar is calculated as the radial components of the limbs speed; 

therefore, for the larger azimuth angles, smaller bandwidth values are obtained. 

Further, it is known that offset values depend on the symmetry of the limbs swings; 

because forward and backward limbs motions are symmetric while walking, offset 

values are very close to torso frequency values; therefore, the offset values are 

decreased from 210,8 Hz to 79,5 Hz as the azimuth angle increases from 0° to 60°; 

this decrease is resembling to the decrease of torso frequency. When the bandwidth 

without micro Doppler values are taken into consideration and it is seen that the 

values decrease from 274,5 Hz to 183,7 Hz and to 162,2 Hz, as the azimuth angle 

increases from 0° to 30° and then to 60°, respectively. The bandwidth without micro 

Doppler values depends only on the bandwidth of torso. The bobbing of torso can 

be seen partially; therefore, the bandwidth without micro Doppler value decreases, 

as the azimuth angle increases from 0° to 60°. Furthermore, when the standard 

deviation values are compared, it is seen that the standard deviations decrease as the 

azimuth angles increase from 0° to 60°; because the dynamic range of the walking 

spectrograms decreases as azimuth angle increases. When walking spectrograms 

with azimuth angles of 0°, 30°, 60° of one of the persons are examined such as 

Figure B.1, Figure B.4, Figure B.7, it is seen that the dynamic range values 

decreases from 0° to 60°; in other words the signal strength bar consists of smaller 

range of numbers while azimuth angle values are increasing from 0° to 60°. Finally, 

the period values are compared and it is seen that the period with the azimuth angle 

of 0° is 0,4765 sec; the period with the azimuth angle of 30° is 0,4594 sec; the 

period with the azimuth angle of 60° is 0,4403 sec. The period depends on the time 
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periods of limbs micro Doppler motions; and period values decrease as the azimuth 

angles are increasing. Even there seems a tendency of decreasing of period values 

while azimuth angles are increasing, the period values are very close to each other 

and it is not an efficient discriminative feature for azimuth angles of walking. 

4.3.2 Running 

The walking experiment is repeated for running. The same set targets are 

utilized. The results for each target are given in Figure 4.29 and Figure 4.30 for 1
st
 

person; Figure 4.31 and Figure 4.32 for 2
nd

 person; Figure 4.33 and Figure 4.34 for 

3
rd

 person. Feature extraction results are given in Table 4.18 for 1
st
 person,Table 

4.19 for 2
nd

 person, and Table 4.20 for 3
rd

 person. 
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Figure 4.29 Spectrogram of 1
st
 person's running before clutter suppression  

 

 

 

Figure 4.30 Spectrogram of 1
st
 person's running after clutter suppression 
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Figure 4.31 Spectrogram of 2
nd

 person's running before clutter suppression  

 

 

 

 

Figure 4.32 Spectrogram of 2
nd

 person's running after clutter suppression  
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Figure 4.33 Spectrogram of 3
rd

 person's running before clutter suppression  

 

 

 

 

Figure 4.34 Spectrogram of 3
rd

 person's running after clutter suppression  
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Table 4.18 Extracted micro Doppler features of 1
st
 person's running 

 

1
st
 

Person's 

Running 

Extracted Classification Features 

Torso 

Frequency 

(Hz) 

BW (Hz) 
Offset 

(Hz) 

BW w/o 

Micro 

Doppler 

(Hz) 

STD 
Period 

(sec) 

Sample-1 380,1706 902,4015 398,9338 255,5275 7,8702 0,2834 

Sample-2 389,4716 935,7288 383,1035 233,3093 7,4923 0,2487 

Sample-3 383,9130 911,8015 387,8289 239,2911 7,2425 0,2121 

Sample-4 431,9843 940,8561 435,5609 258,9457 7,5138 0,3023 

Sample-5 407,1131 937,4379 426,1481 259,8003 7,6994 0,2454 

Sample-6 381,0525 919,1102 374,7611 281,182 7,0521 0,2873 

Sample-7 368,6651 928,0559 382,1771 294,0002 7,8338 0,1933 

 

 

Table 4.19 Extracted micro Doppler features of 2
nd

 person's running 

 

2
nd

 

Person's 

Running 

Extracted Classification Features 

Torso 

Frequency 

(Hz) 

BW (Hz) 
Offset 

(Hz) 

BW w/o 

Micro 

Doppler 

(Hz) 

STD 
Period 

(sec) 

Sample-1 410,8075 797,2922 436,8638 253,1456 8,377 0,2438 

Sample-2 390,2012 787,8922 424,0245 255,1093 8,3113 0,3474 

Sample-3 394,5899 804,1286 416,4435 259,382 8,216 0,3545 

Sample-4 418,9271 859,6742 459,6701 272,6365 8,2526 0,1371 

Sample-5 411,9509 843,4378 445,2105 288,8729 8,2111 0,416 

Sample-6 377,4104 759,6922 411,8874 242,2002 8,6447 0,2438 

Sample-7 388,9918 731,4921 401,0532 240,4911 8,4513 0,3047 
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Table 4.20 Extracted micro Doppler features of 3
rd

 person's running 

 

3
rd

 

Person's 

Running 

Extracted Classification Features 

Torso 

Frequency 

(Hz) 

BW (Hz) 
Offset 

(Hz) 

BW w/o 

Micro 

Doppler 

(Hz) 

STD 
Period 

(sec) 

Sample-1 456,0340 1181,838 485,0442 267,9275 7,4403 0,1536 

Sample-2 451,6142 1075,875 454,4413 257,6729 7,1775 0,2294 

Sample-3 480,4244 938,2925 499,0046 250,2365 7,5323 0,2057 

Sample-4 433,9976 931,4741 466,058 243,1456 7,8137 0,2194 

Sample-5 489,8894 940,0016 502,2197 225,6184 7,4507 0,1567 

Sample-6 441,7595 1079,293 463,3675 217,9275 8,1102 0,3218 

Sample-7 504,1508 1079,275 540,9536 246,9821 7,6958 0,3474 

 

 

In order to analyze whether every person has different running 

characteristics and can be distinguished by using micro Doppler features, extracted 

average feature values of 1
st
 person's, 2

nd
 person's and 3

rd
 person's running 

spectrograms are listed at Table 4.21. The followings can be extracted from Table 

4.21: 

 3
rd

 person has the largest torso frequency, which means that this person 

has the largest speed of running.  

 3
rd

 person has the largest BW value, which can be explained that this 

person has the highest velocity of limb motions of running.  

 3
rd

 person has the largest offset value, which can be deduced that the 

forward and backward limb motions are more asymmetric than other 

persons’ limb motions while running.  

 1
st
 person has the largest bandwidth without micro Doppler value, which 

can be concluded that this person has the largest bobbing motion of torso 

while running.  
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 2
nd

 person has the largest standard deviation value, which means that 

dynamic range of the motion is bigger than others’; in other words, the 

signal strength bar consists of larger range of numbers.  

 2
nd

 person has the largest period values, which means that the swing rate 

of limbs is smaller than others’, which means that this person swings 

arms slowly. 

 

 

Table 4.21 Micro Doppler features of 1
st
 person's, 2

nd
 person's and 3

rd
 person's 

running 

 

Running 

Characteristics of 3 Persons' Running 

Torso 

Frequency 

(Hz) 

BW (Hz) 
Offset 

(Hz) 

BW w/o 

Micro 

Doppler 

(Hz) 

STD 
Period 

(sec) 

Average 

Values 

for 1
st
 

Person  

391,7672 925,0560 398,3591 260,2937 7,5292 0,2532 

Average 

Values 

for 2
nd

 

Person  

398,9827 797,6585 427,8790 258,8339 8,3520 0,2925 

Average 

Values 

for 3
rd

 

Person  

465,41 1032,2926 487,2984 244,2158 7,6029 0,2334 

 

 

When extracted features of running spectrograms of the targets are 

taken into consideration, it is seen that each person has distinctive running 

features, in other words each person has signatures of running and 

identification of running person could be done by looking at the running 

spectrograms. On the other hand, the extracted values of all people’s 
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running are close to each other. It means that it is possible to group these 

values to obtain the features of running. By using the values at Table 4.21, 

the average values of 3 persons’ running features are calculated as torso 

frequency of 418,7199 Hz; bandwidth of 918,3357 Hz; offset of 437,8455 

Hz; bandwidth without micro Doppler of 254,4478 Hz; standard deviation 

of 7,8280 and period of 0,2597 sec. These average values are used as the 

extracted features of human running. 

4.3.3 Crawling 

The experiment is repeated for crawling. The same set targets are utilized. 

The results for each target are given in Figure 4.35 and Figure 4.36 for 1
st
 person; 

Figure 4.37 and Figure 4.38 for 2
nd

 person; Figure 4.39 and Figure 4.40 for 3
rd

 

person. Feature extraction results of 1
st
 person, 2

nd
 person, 3

rd 
person are given in 

Table 4.22, Table 4.23 and Table 4.24, respectively. 
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Figure 4.35 Spectrogram of 1
st
 person's crawling before clutter suppression 

 

 

 

 

Figure 4.36 Spectrogram of 1
st
 person's crawling after clutter suppression 
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Figure 4.37 Spectrogram of 2
nd

 person's crawling before clutter suppression 

 

 

 

 

Figure 4.38 Spectrogram of 2
nd

 person's crawling after clutter suppression 
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Figure 4.39 Spectrogram of 3
rd

 person's crawling before clutter suppression 

 

 

 

 

Figure 4.40 Spectrogram of 3
rd

 person's crawling after clutter suppression 
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Table 4.22 Extracted micro Doppler features of 1
st
 person's crawling 

 

1
st
 

Person's 

Crawling 

Extracted Classification Features 

Torso 

Frequency 

(Hz) 

BW (Hz) 
Offset 

(Hz) 

BW w/o 

Micro 

Doppler 

(Hz) 

STD 
Period 

(sec) 

Sample-1 62,6724 264,055 66,8662 92,6547 7,015 0,909 

Sample-2 69,8983 280,2914 68,3424 87,6728 6,7213 0,8822 

Sample-3 83,5910 337,546 76,1679 89,2728 7,1406 0,9769 

Sample-4 63,2807 372,5824 74,0572 80,0909 7,0911 0,9935 

Sample-5 83,8523 296,5278 70,263 78,6183 6,7773 0,9089 

Sample-6 74,6322 316,1823 72,0404 84,1092 7,24 0,9038 

Sample-7 84,7743 291,4005 68,9213 80,2001 6,8395 0,8672 

 

 

Table 4.23 Extracted micro Doppler features of 2
nd

 person's crawling 

 

2
nd

 

Person's 

Crawling 

Extracted Classification Features 

Torso 

Frequency 

(Hz) 

BW (Hz) 
Offset 

(Hz) 

BW w/o 

Micro 

Doppler 

(Hz) 

STD 
Period 

(sec) 

Sample-1 58,7334 333,2733 107,4999 123,4729 7,0616 0,413 

Sample-2 66,5104 303,3641 102,9943 129,0366 7,8635 0,3772 

Sample-3 80,2157 308,4914 115,3766 110,2365 7,6741 0,4754 

Sample-4 78,2368 358,9097 119,3012 105,9638 6,5781 0,473 

Sample-5 88,3823 316,1823 104,5154 113,6547 7,2161 0,4559 

Sample-6 72,8886 290,5459 106,7115 115,8284 7,217 0,473 

Sample-7 81,4562 249,5277 98,76 129,8911 6,7545 0,5067 
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Table 4.24 Extracted micro Doppler features of 3
rd

 person's crawling 

 

3
rd

 Person's 

Crawling 

Extracted Classification Features 

Torso 

Frequenc

y (Hz) 

BW (Hz) 
Offset 

(Hz) 

BW w/o 

Micro 

Doppler 

(Hz) 

STD 
Period 

(sec) 

Sample-1 89,4666 358,9097 94,2843 96,491 6,9856 0,9752 

Sample-2 82,4535 468,2917 106,4958 83,7456 7,5897 1,1032 

Sample-3 73,4464 372,5824 89,0908 77,7638 7,3514 0,9926 

Sample-4 74,6322 358,9097 96,7411 74,7092 7,5496 0,9142 

Sample-5 78,3997 440,9462 93,684 76,9092 7,4892 0,9264 

Sample-6 76,8136 372,5824 98,0785 65,8001 7,0236 0,9769 

Sample-7 65,4024 406,7643 95,9336 64,9456 6,9475 0,9926 

 

 

In order to analyze whether each person has different crawling 

characteristics and can be distinguished by using micro Doppler features, extracted 

feature values of 1
st
 person's, 2

nd
 person's and 3

rd
 person's crawling spectrograms are 

listed at Table 4.25. The followings can be extracted from Table 4.25: 

 3
rd

 person has the largest torso frequency, which means that this person 

has the largest speed of crawling. 

 3
rd 

person has the largest BW value, which can be explained that this 

person has the highest velocity of limb motions of crawling; the fact that 

3
rd

 person has the largest BW can also be realized by looking at the 

spectrograms. 

 2
nd

 person has the largest offset value, which can be deduced that the 

forward and backward limb motions are more asymmetric than other 

persons’ limb motions while crawling.  
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 2
nd

 person has the largest bandwidth without micro Doppler value, 

which can be concluded that this person has the largest bobbing motion 

of torso while crawling.  

 3
rd

 person has the largest standard deviation value, which means that 

dynamic range of the motion is bigger than others’; in other words, the 

signal strength bar consists of larger range of numbers.  

 3
rd

 person has the largest period values, which means that the swing rate 

of limbs is smaller than others’, which means that this person’s arm 

movements are slowly.  

 

 

Table 4.25 Micro Doppler features of 1
st
 person's, 2

nd
 person's and 3

rd
 person's 

crawling  

 

Crawling 

Characteristics of 3 Persons' Crawling 

Torso 

Frequency 

(Hz) 

BW (Hz) 
Offset 

(Hz) 

BW w/o 

Micro 

Doppler 

(Hz) 

STD 
Period 

(sec) 

Average 

Values 

for 1
st 

Person  

74,6716 308,3693 70,9512 84,6598 6,9750 0,9202 

Average 

Values 

for 2
nd

 

Person  

75,2033 308,6135 107,8798 118,2977 7,1950 0,4535 

Average 

Values 

for 3
rd

 

Person  

77,2306 396,9981 96,3297 77,1949 7,2767 0,9830 
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When extracted features of crawling spectrograms of the targets are taken 

into consideration, it is seen that each person has distinctive crawling features, in 

other words each person has signatures of crawling and identification of crawling 

person could be done by looking at the crawling spectrograms. On the other hand, 

the extracted values of 3 persons’ crawling are close to each other. It means that it is 

possible to group these values to obtain the features of crawling. By using the 

values at Table 4.25, the average values of 3 persons’ crawling features are 

calculated as torso frequency of 75,7019 Hz; bandwidth of 337,9936 Hz; offset of 

91,7203 Hz; bandwidth without micro Doppler of 93,3842 Hz; standard deviation 

of 7,1489 and period of 0,7856 sec. These average values are used as the extracted 

features of human crawling. 

4.3.4 Creeping 

The experiment is repeated for creeping. The same set targets are utilized. 

The results for each target are given in Figure 4.41 and Figure 4.42 for 1
st
 person; 

Figure 4.43 and Figure 4.44 for 2
nd

 person; Figure 4.45 and Figure 4.46 for 3
rd

 

person. Feature extraction results of 1
st
 person, 2

nd
 person and 3

rd
 person are given 

in Table 4.26, Table 4.27, and Table 4.28, respectively.  
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Figure 4.41 Spectrogram of 1
st
 person's creeping before clutter suppression 

 

 

 

 

Figure 4.42 Spectrogram of 1
st
 person's creeping after clutter suppression 
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Figure 4.43 Spectrogram of 2
nd

 person's creeping before clutter suppression 

 

 

 

 

Figure 4.44 Spectrogram of 2
nd

 person's creeping after clutter suppression 
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Figure 4.45 Spectrogram of 3
rd

 person's creeping before clutter suppression 

 

 

 

 

Figure 4.46 Spectrogram of 3
rd

 person's creeping after clutter suppression 
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Table 4.26 Extracted micro Doppler features of 1
st
 person's creeping 

 

1
st
 Person's 

Creeping 

Extracted Classification Features 

Torso 

Frequency 

(Hz) 

BW (Hz) 
Offset 

(Hz) 

BW w/o 

Micro 

Doppler 

(Hz) 

STD 
Period 

(sec) 

Sample-1 67,6129 283,7096 49,9376 75,9091 6,7051 0,8986 

Sample-2 68,6207 277,7277 54,6077 51,2728 6,6089 0,8672 

Sample-3 70,6341 324,7278 60,2456 71,7819 7,0318 0,8777 

Sample-4 69,5540 294,8187 57,2696 72,6414 7,0258 0,9665 

Sample-5 65,3213 340,9642 58,9894 44,9273 7,1972 1,0135 

Sample-6 75,9490 260,6368 50,6853 60,6752 6,5627 0,9351 

Sample-7 66,6143   272,6005 55,6844 41,6364 7,3175 0,8881 

 

 

Table 4.27 Extracted micro Doppler features of 2
nd

 person's creeping 

 

2
nd

 

Person's 

Creeping 

Extracted Classification Features 

Torso 

Frequency 

(Hz) 

BW (Hz) 
Offset 

(Hz) 

BW w/o 

Micro 

Doppler 

(Hz) 

STD 
Period 

(sec) 

Sample-1 80,2557 308,4914 98,4523 105,1093 7,1173 0,6483 

Sample-2 79,5086 316,1823 99,8773 101,6911 5,7802 0,5041 

Sample-3 86,3680 338,4006 92,9768 111,9456 6,5426 0,4989 

Sample-4 56,4886 352,9279 97,3585 82,891 7,1851 0,6912 

Sample-5 55,9299 329,8551 102,473 117,9275 7,3003 0,4535 

Sample-6 65,1513 323,0187 91,9022 70,0728 6,804 0,5429 

Sample-7 74,8722 345,2369 94,1668 83,7456 6,4036 0,5067 
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Table 4.28 Extracted micro Doppler features of 3
rd

 person's creeping 

 

3
rd

 

Person's 

Creeping 

Extracted Classification Features 

Torso 

Frequency 

(Hz) 

BW (Hz) 
Offset 

(Hz) 

BW w/o 

Micro 

Doppler 

(Hz) 

STD 
Period 

(sec) 

Sample-1 67,6292 336,6915 86,8946 61,5274 6,873 1,0483 

Sample-2 65,3342 421,2916 79,7869 72,163 7,3855 0,9362 

Sample-3 72,4780 417,8734 77,3386 84,982 7,6252 1,0605 

Sample-4 76,0247 528,11 95,8332 80,5636 7,6743 1,0971 

Sample-5 71,7115 489,6554 88,1508 61,5274 7,19 0,9947 

Sample-6 95,0350 464,8735 71,7777 51,3637 7,2643 1,3409 

Sample-7 84,9409 561,4373 87,7598 58,6182 7,5108 1,2433 

 

 

When the spectrograms crawling and creeping before and after suppression 

clutter are examined, it is seen that high pass filter distorts the spectrograms of these 

motions more than spectrograms of walking and running; it makes sense because 

creeping is a much slower motion than others and the clutter is much more induced 

to the creeping spectrograms than others; therefore, the high pass filter which is 

designed to suppress the clutter causes some distortions on the spectrograms of 

creeping. On the other hand, micro Doppler features can be extracted despite these 

distortions. 
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Table 4.29 Micro Doppler features of 1
st
 person's, 2

nd
 person's and 3

rd
 person's 

creeping  

 

Creeping 

Characteristics of 3 Persons' Creeping 

Torso 

Frequency 

(Hz) 

BW (Hz) 
Offset 

(Hz) 

BW w/o 

Micro 

Doppler 

(Hz) 

STD 
Period 

(sec) 

Average 

Values 

for 1
st
 

Person  

69,1866 293,5979 55,3457 59,8349 6,9213 0,9210 

Average 

Values 

for 2
nd

 

Person  

71,2249 330,5876 96,7438 96,1976 6,7333 0,5494 

Average 

Values 

for 3
rd

 

Person  

76,1648 459,9904 83,9345 67,2493 7,3604 1,1030 

 

 

In order to analyze whether every person has different creeping 

characteristics and can be distinguished by using micro Doppler features, extracted 

feature values of 1
st
 person's, 2

nd
 person's and 3

rd
 person's creeping spectrograms are 

listed at Table 4.29. The followings can be extracted from Table 4.29: 

 3
rd

 person has the largest torso frequency, which means that this person 

has the largest speed of crawling.  

 3
rd

 person has the largest BW value, which can be explained that this 

person has the highest velocity of limb motions of creeping; the fact that 

3rd person has the largest BW can also be realized by looking at the 

spectrograms.  
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 2
nd

 person has the largest offset value, which can be deduced that the 

forward and backward limb motions are more asymmetric than other 

persons’ limb motions while creeping.  

 2
nd

 person has the largest bandwidth without micro Doppler value, 

which can be concluded that this person has the largest bobbing motion 

of torso while creeping.  

 3
rd 

person has the largest standard deviation value, which means that 

dynamic range of the motion is bigger than others’; in other words, the 

signal strength bar consists of larger range of numbers.  

 3
rd

 person has the largest period values, which means that the swing rate 

of limbs is smaller than others’, which means that this person’s arm 

movements are slowly.  

When extracted features of creeping spectrograms of the targets are taken 

into consideration, it is seen that each person has distinctive creeping features, in 

other words each person has signatures of creeping and identification of creeping 

person could be done by looking at the creeping spectrograms. On the other hand, 

the extracted values of 3 persons’ creeping are close to each other. It means that it is 

possible to group these values to obtain the features of creeping. By using the 

values at Table 4.29, the average values of 3 persons’ creeping features are 

calculated as torso frequency of 72,1921 Hz; bandwidth of 361,3919 Hz; offset of 

78,6747 Hz; bandwidth without micro Doppler of 74,4273 Hz; standard deviation 

of 7,0050 and period of 0,8578 sec. These average values are used as the extracted 

features of human. 
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4.4 Analysis of Different Types of Human Motions 

After the spectrograms and extracted micro Doppler features of human 

motions like walking, running, crawling, creeping are analyzed, the comparison of 

the spectrograms and the extracted features is required to comprehend whether 

different motions could be distinguished or not. First of all, in order to make the 

examination of the spectrograms of different motions easy for comparison, one of 

the spectrograms of each motions are given in Figure 4.47. 

It is seen from Figure 4.47 that the spectrograms of human motions such as 

walking, running, crawling and creeping have different motion characteristics. The 

Doppler signatures provide distinguishing the type of motions by only looking at 

them. It is known that the torso produces the strongest return in each spectrogram, 

while arm and leg movements surround the torso with the periodic micro-Doppler 

modulations. Walking and running spectrograms are discriminated from crawling 

and creeping spectrograms at first look because of several reasons. First of all, torso 

frequency of crawling and creeping signatures are positioned around 0 Hz. 

Secondly, due to the fact that there is no back swing in these motions, negative 

Doppler signatures do not occur; therefore, micro Dopplers skew towards the 

positive with respect to the torso frequency. Thirdly, these motions have narrower 

Doppler signal spread. Lastly, the period of these motions are longer. With the help 

of these deductions, crawling and creeping signatures are discriminated from others. 

Even crawling and creeping are very close to each other, they can also be 

distinguished. In crawling, there are two consecutive positive modulations for each 

micro Doppler peak; on the other hand, there is only one positive modulation for 

each micro Doppler peak in creeping. This can be explained with the difference of 

arm and knee motions. In crawling, there are two consecutive positive modulations 

for each peak in the spectrogram; however, in creeping, the arm movements are 

dominant motions, which produce only one positive modulations for each peak. 
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(a) Walking with 0° (b) Walking with 30° 

  
(c) Walking with 60° (d) Running 

  
(e) Crawling (f) Creeping 

Figure 4.47 Spectrogram of different types of human motions 
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Walking and running signatures can be discriminated from the spectrograms 

by using the following method. Firstly, torso frequency of running is positioned 

around 400 Hz, which is higher than the frequency of walking. Secondly, running 

has a wider Doppler spread compared to walking. Lastly, the period of running is 

shorter than walking period. These three features are sufficient to discriminate 

running from walking. In addition, the discrimination methods of walking for three 

different azimuth angles is given are Chapter 4.3.1.4. 

In order to compare different types of human motions quantitively, average 

values for walking with azimuth angles of 0°, 30°, 60°, running, crawling and 

creeping are presented at Table 4.30. 

 

 

Table 4.30 Average values of the spectrograms of different human motions 

 

  

Comparison of Different Human Motions 

Torso 

Frequency 

(Hz) 

BW (Hz) 
Offset 

(Hz) 

BW w/o 

Micro 

Doppler 

(Hz) 

STD 
Period 

(sec) 

Running 418,7199 918,3357 437,8455 254,4478 7,8280 0,2597 

Walking 

with 0° 
196,5631 544,7126 203,2019 210,7656 7,6019 0,4765 

Walking 

with 30° 
152,1915 492,5445 168,0948 183,6850 7,4290 0,4594 

Walking 

with 60° 
88,0882 282,0005 79,5601 162,2197 7,1688 0,4403 

Crawling 75,7019 337,9936 91,7203 93,3842 7,1489 0,7856 

Creeping 72,1921 361,3919 78,6747 74,4273 7,0050 0,8578 
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The numerical results of extracted features of different human motions are 

consistent with the spectrograms. Among all motions running has the largest torso 

frequency of 418.7 Hz; which makes sense because torso frequency depends on the 

human speed and it is obvious that human speed is the highest for running. Torso 

frequency values of walking 196.5 Hz, 152.2 Hz and 88 Hz are lower than running, 

higher than crawling and creeping values as expected; because the human speed is 

lower than running, but higher than crawling and creeping. When the torso 

frequency values of crawling and creeping are compared, it is seen that these values 

are close to each other; which means that average human speed is similar for 

crawling and creeping. The torso frequency of crawling is slightly higher than 

creeping as expected. 

Among all motions, running has the largest bandwidth value of 918,3357 

Hz; which makes sense because bandwidth depends on the limbs speed and it is 

obvious that limbs speed is the highest for running. Bandwidth values of walking 

544,7126 Hz, 492.5445 Hz and 282.0005 Hz are lower than running; because limbs 

speed is lower than running. The bandwidth value for walking with azimuth angle 

of 60° is narrower than bandwidth values of crawling and creeping. In fact, the 

expectation is opposite because walking must have wider bandwidth than crawling 

and creeping; however, when the spectrograms of walking with azimuth angle of 

60° are examined, it is seen that these spectograms are blurred. Therefore, because 

of the unclear spectrograms of walking with 60°, the feature extraction from these 

spectrograms might have some deviations. Moreover, when the bandwidth value of 

crawling of 337.9936 Hz and the bandwidth value of creeping of 361.3919 Hz are 

compared, it is seen that creeping bandwidth value is higher than crawling value; 

while the opposite is expected. Different creeping styles of human subjects can 

cause this result; such as 3
rd

 persons’ creeping spectrograms have very high 

bandwidths. 

It is known that if the motion is symmetric, the offset value converges to the 

torso frequency. Because walking is more symmetric motion than others, the offset 

value of walking of 203 Hz is very close to torso frequency of 196,2088 Hz. It is 

seen that crawling is more asymmetric motion than others, there is approximately 
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20 Hz of difference between the offset value of crawling of 91,7203 Hz and the 

torso frequency of 72,0466 Hz. It is also realized the offset values of walking with 

azimuth angle of 60° of 79,5601 Hz are smaller than the torso frequency of 89,0402 

Hz; the unclear spectrograms of walking with 60°, the feature extraction from these 

spectrograms might cause these deviations. In the light of these explanations, it is 

seen that running has the largest offset value of 437,8455 Hz. After running, 

walking offset values are higher than others, except the walking with 60° because of 

the deviations of features from blurred spectrograms. Lastly, it is seen that crawling 

offset is bigger than creeping value. Actually, creeping is an asymmetric motion and 

it is expected that the offset value is much different than 5.4 Hz; however, it can be 

said that different creeping styles of human subjects may cause this result. 

Among all motions, running has the largest value of bandwidth without 

micro Doppler 254,4478 Hz; which makes sense because this feature depends on 

the bobbing motion of the human and it is obvious that bobbing motion is the 

highest for running. Bandwidth without micro Doppler values of walking of 

210,7656 Hz, 183.6850 Hz and 162.2197 Hz are lower than running, higher than 

crawling and creeping values, as expected; the bobbing motion is smaller than 

running but larger than crawling and creeping. The bandwidth without micro 

Doppler value is 93,3842 Hz for crawling. Among all motions, creeping has the 

smallest bandwidth without micro Doppler value of 74,4273 Hz; which makes sense 

as bobbing motion is very small for the creeping. When the bandwidth without 

micro Doppler values are taken into account, it is seen that these values are disjoint; 

which means that bandwidth without micro Doppler values is one of the efficient 

discriminative features.   

Among all motions, running has the largest standard deviation of 7.828; 

which makes sense because the standard deviation depends on the dynamic range of 

the motion and it is obvious that dynamic range has the highest value for running; in 

other words, the signal strength bar of running consists of largest range of numbers. 

Standard deviation values of walking of 7.6019, 7.4290 and 7.1688 are lower than 

running, and higher than crawling and creeping values as expected; because the 

dynamic range is lower than running but higher than crawling and creeping. The 
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standard deviation value is 7,1489 for crawling. Among all motions, creeping has 

the smallest standard deviation value of 7.0050; which can be seen from the 

spectrograms that creeping has the smallest dynamic range, in other words the 

smallest range numbers for signal strength. When the standard deviation values are 

taken into account, it is seen that the standard deviation values are very close to 

each other; which means that standard deviation is not a very discriminative feature.   

Among all motions, creeping has the longest period of 0,8578 sec; which 

makes sense because period depends on the swing rate of human limbs and it is 

obvious that human subject has the smallest swing rate for creeping. The swing rate 

for crawling is higher than creeping, which makes the period of the crawling as 

0.7856 sec, which is shorter than creeping period. Period values of walking of 

0.4765 sec, 0.4594 sec and 0.4403 sec are shorter than crawling but longer than 

running as expected; the limbs walking swing rate is higher than crawling but 

smaller than running. Running has the shortest period value of 0.2597 sec, which 

makes sense because the swing rate is very high for running. Although there is a 

logic between the period values; the feature of period is not a very efficient feature 

for classification of motions. One reason for this fact is that while searching the 

peaks from the complex spectrograms, there can be errors on the calculation of the 

peak numbers. In addition, the period values are very close to each other; which 

means that period is not a very discriminative feature.   

When Table 4.30 is examined, it can be deduced that torso frequency is very 

distinctive feature. For the symmetric motions, offset values are close to torso 

frequency values; therefore, they can be also assumed as distinguishing. The 

bandwidth and bandwidth without micro Doppler features are very separated and 

they can be used as distinguishing features. On the other hand, standard deviation 

and period values are too close to each other for different motion types. 
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Figure 4.48 Clustering with micro Doppler features of torso frequency and BW 

 

 

 

 

Figure 4.49 Clustering with micro Doppler features of torso frequency and BW w/o 

Micro Doppler 
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Figure 4.50 Clustering with micro Doppler features of torso frequency and offset 

 

 

 

 

Figure 4.51 Clustering with micro Doppler features of period and standard 

deviation 

 



127 

In order to visualize the efficiency of extracted features, the experimental 

data for a pair of features is plotted. First, it is decided that torso frequency is the 

most efficient feature; because the separation is more precise for torso frequency, 

except crawling and creeping; however, the crawling and creeping results are too 

close for every features, not only for torso frequency. To examine the efficiency of 

bandwidth, the clustering figure with torso frequency and bandwidth is generated as 

can be seen in Figure 4.48. Bandwidth without micro Doppler affects are 

demonstrated at clustering figure with torso frequency and bandwidth without micro 

Doppler in Figure 4.49. For the efficiency of offset, clustering with torso frequency 

and offset is given in Figure 4.50. Lastly, the clustering figure with standard 

deviation and period is presented in Figure 4.51. When these figures are examined, 

several observations can be made: 

 The crawling and creeping values are mostly the same for every features. 

Walking with 60° features may not be reliable because of the blurred 

spectrograms and it may have similar values with creeping and crawling. 

Therefore, the discrimination of these motions cannot be done with these 

features.  

 The effectiveness of torso frequency is obvious from the first three 

graphs; because running, walking with 0° and 30° can be separated 

easily with the help of their torso frequencies; in short, the most 

discriminative feature is torso frequency.  

 It seems that the offset value is second efficient feature for classification.  

 The bandwidth value can be considered at the third place; because three 

classes mixed too much for this feature.  

 Bandwidth width without micro Doppler has the fourth place in the list 

of classification performance of features.  

 Period is the feature at the fifth place; at least running, group of walking 

and pair of crawling and creeping can be discriminated.  

 The least effective feature seems standard deviation; whose values are 

similar for nearly all classes.   
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4.5 Classification of Human Motions 

It is seen from Table 4.30 Average values of the spectrograms of different 

human motions and clustering figures of Figure 4.48, Figure 4.49, Figure 4.50 and 

Figure 4.51 that classification performance for each class differs. First of all, 

running can be discriminated from other motions easily; because running features 

are more distinctive than others. Second, walking can also be separated from others; 

however, for some data, results of walking with 0° and 30° interfere partially. Third, 

walking with 60° cannot be discriminated from crawling and creeping results. 

Moreover, results of walking with 60° are similar to 30° for some data. Lastly, 

crawling and creeping results are almost the same each other; and cannot be 

discriminated.  

In order to examine these results by using a classification tool, neural 

network is trained. First, although it is known that there are not sufficient amount of 

data to train the neural network effectively; this tool is used to obtain a general 

opinion with the hope that it can be a basic for future work. Three of each person’s 

results for each motion are defined as the training data; in other words, training data 

set consists of 54 data, which comprises 3 data for 6 motion types from 3 persons. 

Neural network is constituted according to this training data set. Four of each 

person’s results for each motion are defined as the test data; in other words, for each 

motion 12 data, which consists of 4 data for each person is used as test data. Firstly, 

12 running test data are entered to the neural network. The output of the neural 

network is obtained that 11 of them are running, 1 of them is walking; they can be 

expressed in percentage as 91.67% of running, 8.33% of walking. Then, 12 walking 

with 0° test data are used. The outputs are like that 10 of them are walking with 0°, 

and 2 of them are walking with 30°; the percentages of output are 83.33% of 

walking with 0°, 16.67% of 30°. After that, 12 walking with 30° test data are 

entered to the neural network. The results show that 9 of them are walking with 30°, 

3 of them are walking with 0°, and can be expressed in percentage as 75% of 

walking with 30°, 25% of 0°. In addition, 12 walking with 60° test data are entered 

to the neural network. The output of the neural network gives that 7 of them are 
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walking with 60°, 1 of them is walking with 30°, 2 of them are crawling, 2 of them 

are creeping; which means that in percentages of 58.33% of walking with 60°, 

8.33% of walking with 30°, 16.67% of crawling and 16.67% of creeping. Moreover, 

12 crawling test data are used. The outputs are 6 of them are crawling, 6 of them are 

creeping; which means that 50% of crawling and 50% of creeping. The result is 

vice versa for creeping is that for 12 creeping test data; which is 50% of creeping 

and 50% of crawling. These results are given at Table 4.31 that Act represents the 

actual motion type and Est represents the estimation of the neural network. 

 

 

Table 4.31 The percentage of neural network classification results for each motion 

 

Est\Act Running 
Walking 

with 0° 

Walking 

with 30° 

Walking 

with 60° 
Crawling Creeping 

Running 91.67 0 0 0 0 0 

Walking 

with 0° 
8.33 83.33 25.00 0 0 0 

Walking 

with 30° 
0 16.67 75.00 8.33 0 0 

Walking 

with 60° 
0 0 0 58.33 0 0 

Crawling 0 0 0 16.67 50.00 50.00 

Creeping 0 0 0 16.67 50.00 50.00 
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The results of Table 4.31 agree with the comments in section 4.5. First, 

running can be classified with the highest performance. Second, classification of 

walking with 0° and 30° is sufficient enough. Third, because of the angular effects, 

walking cannot be distinguished effectively for 60°. Lastly, crawling and creeping 

could not be discriminated from each other with these features. In brief, running, 

walking classes are discriminated from crawling and creeping classes by using 

neural network; however, crawling and creeping results are hard to distinguish from 

extracted features of micro Doppler.  

It should be emphasized that classification by using classifiers is not one of 

the main objects of this thesis. In this thesis, the features from micro Doppler 

signatures are extracted and it is demonstrated that the human motions can be 

distinguishable. Classification is only made to get an idea about the possibility of 

discriminating human motions by a classifier. By using the neural network toolbox 

of MATLAB, neural network classifier is applied to the extracted features to obtain 

an example performance. The real classification performance by using classifiers 

should be studied in more detailed. 
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CHAPTER 5  

 

CONCLUSION 

The classification of human motions from micro Doppler features is 

examined in this thesis. The followings are the conclusions drived from the 

study: 

 The human walking simulator by V. Chen is examined and it is  deduced 

that this simulator is consistent with experimental human walking data.  

 The time-frequency transformations to obtain spectrograms of human 

walking are examined and applied to the human walking simulator. It is 

seen that STFT is a more appropriate time-frequency distribution for 

human walking than WVD. (The cross-terms of difficulties in the 

processing of multicomponent human walking data.) 

 The effects of target range and the pulse compression codes are 

analyzed. It is seen that when the distance of the target person changes 

from 150 meters to 1000 meters and the pulse compression codes are 

changed, the extracted features give very similar results, there occur 

differences only on SNR values on the spectrograms.  

 The effects of azimuth angles on human walking spectrogram are 

analyzed by considering the experimental data of human walking with 

azimuth angles of 0°, 30° and 60°. It is deduced that when azimuth angle 

is approaching to 90°, the micro Doppler effects are hard to discriminate 

from the spectrograms.  

 The feature extraction methods are examined and one of these methods 

is selected and applied to the spectrograms. According to the chosen 

feature extraction method, six features, which are torso frequency, BW 

of the signal, offset of the signal, BW without micro Dopplers, standard 
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deviation of the signal strength, period of the arms or legs, are extracted 

from the spectrograms. These features are extracted from the human 

motions of walking, running, crawling and creeping to comprehend the 

possibility of discriminating these motions. Although each person has 

different feature values, in other words, distinctive signatures for each 

motion, these values can be grouped to obtain the general features of the 

motions. Each feature has different efficiency of classifying human 

motions. When the efficiency of features are ordered, the most 

discriminative feature is torso frequency, the offset value seems that it is 

the second efficient feature for classification, the bandwidth value can be 

considered at the third place, bandwidth width without micro Doppler 

has the fourth place of the list of classification performance of features, 

period is the feature at the fifth place, the least effective feature seems 

standard deviation.   

 Neural network is constituted by using the extracted features from the 

different human motions. When neural network results are examined, it 

is seen that probability of successful classification for different motions 

and different walking azimuth angles are different. If these probabilities 

for different human motions are ordered, it is seen that running can be 

classified with the highest performance by using neural network. 

Secondly, successful classification probability of walking with 0° has the 

second place of the list of classification. Thirdly, probability of walking 

with 30° is sufficient enough. Fourthly, walking with 60° cannot be 

distinguished effectively because the angular effects decrease the 

clearness of the micro Dopplers. Lastly, crawling and creeping could not 

be discriminated from each other by using neural network. In brief, 

running, walking classes are discriminated from crawling and creeping 

classes by using neural network successfully; however, crawling and 

creeping results are hard to distinguish from extracted features of micro 

Doppler. 
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Future work may be considered as the collection of more experimental 

data to increase the efficiency of neural network classification. Each person has 

specific micro Doppler signatures for each motion; therefore, collecting 

experimental data from more human subjects will increase the efficiency of 

motion classification and may even lead to identification of physical attributes of 

the target. In addition, micro Doppler effects for azimuth angles of 0°, 30° and 

60° are investigated; however, data for different azimuth angles such as 120°, 

150° also should be collected to get the idea of changing the micro Doppler 

signatures for all angles. Moreover, extracting different features like stride length 

from the spectrograms will be beneficial, because these features can provide 

human characteristics like human length. Furthermore, acquiring data from 

women will be useful to expand the micro Doppler signatures database and 

increase the diversity of the features.  
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APPENDIX A 

 

 

SPECTROGRAMS WITH DIFFERENT PULSE WIDTHS OF RADAR 

 

 

 

A.1 Spectrograms of Human Walking with PW1 

  

a) 1
st
 Spectrogram of walking with PW1 b) 2

nd
 Spectrogram of walking with PW1 

  

c) 3
rd

 Spectrogram of walking with PW1 d) 4
th

 Spectrogram of walking with PW1 

 
 

e) 5
th

 Spectrogram of walking with PW1 f) 6
th

 Spectrogram of walking with PW1 

Figure A.1 Spectrograms of human walking with PW1 
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A.2 Spectrograms of Human Walking with PW2 

  
a) 1

st
 Spectrogram of walking with PW2 b) 2

nd
 Spectrogram of walking with PW2 

  
c) 3

rd
 Spectrogram of walking with PW2 d) 4

th
 Spectrogram of walking with PW2 

  
e) 5

th
 Spectrogram of walking with PW2 f) 6

th
 Spectrogram of walking with PW2 

  

Figure A.2 Spectrograms of human walking with PW2 
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APPENDIX B 

 

 

SPECTROGRAMS OF DIFFERENT TYPES OF HUMAN MOTIONS 

 

 

 

B.1 Spectrograms of 1
st
 Person’s Walking with Azimuth Angle of 0° 

  

a) 1
st
 spectrogram of 1

st
 person walking with 0°  b) 2

nd
 spectrogram of 1

st
 person walking with 0° 

  

c) 3
rd

 spectrogram of 1
st
 person walking with 0° d) 4

th
 spectrogram of 1

st
 person walking with 0° 

  

e) 5
th

 spectrogram of 1
st
 person walking with 0° f) 6

th
 spectrogram of 1

st
 person walking with 0° 

Figure B.1 Spectrograms of 1
st
 person's human walking with azimuth angle of 0° 
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B.2 Spectrograms of 2
nd

 Person’s Walking with Azimuth Angle of 0° 

  

a) 1
st
 spectrogram of 2

nd
 person walking with 0° b)2

nd
 spectrogram of 2

nd
 person walking with 0° 

  

c) 3
rd

 spectrogram of 2
nd

 person walking with 0° d)4
th

 spectrogram of 2
nd

 person walking with 0° 

  

e) 5
th

 spectrogram of 2
nd

 person walking with 0° f)6
th

 spectrogram of 2
nd

 person walking with 0° 

  

Figure B.2 Spectrograms of 2
nd

 person's walking with azimuth angle of 0° 
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B.3 Spectrograms of 3
rd

 Person’s Walking with Azimuth Angle of 0° 

  

a) 1
st
 spectrogram of 3

rd
 person walking with 0°  b)2

nd
 spectrogram of 3

rd
 person walking with 0° 

  

c) 3
rd

 spectrogram of 3
rd

 person walking with 0° d)4
th

 spectrogram of 3
rd

 person walking with 0° 

  

e) 5
th

 spectrogram of 3
rd

 person walking with 0° f) 6
th

 spectrogram of 3
rd

 person walking with 0° 

  

Figure B.3 Spectrograms of 3
rd

 person's walking with azimuth angle of 0° 
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B.4 Spectrograms of 1
st
 Person’s Walking with Azimuth Angle of 30° 

  

a)1
st
 spectrogram of 1

st
 person walking with 30°  b)2

nd
 spectrogram of 1

st
 person walking with 30° 

  

c)3
rd

 spectrogram of 1
st
 person walking with 30° d)4

th
 spectrogram of 1

st
 person walking with 30° 

  

e)5
th

 spectrogram of 1
st
 person walking with 30° f) 6

th
 spectrogram of 1

st
 person walking with 30° 

  

Figure B.4 Spectrograms of 1
st
 person's walking with azimuth angle of 30° 
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B.5 Spectrograms of 2
nd

 Person’s Walking with Azimuth Angle of 30° 

  

a)1
st
 spectrogram of 2

nd
 person walking with 30°  b)2

nd
 spectrogram of 2

nd
 person walking with 30° 

  

c)3
rd

 spectrogram of 2
nd

 person walking with 30° d)4
th

 spectrogram of 2
nd

 person walking with 30° 

  

e)5
th

 spectrogram of 2
nd

 person walking with 30° f) 6
th

 spectrogram of 2
nd

 person walking with 30° 

  

Figure B.5 Spectrograms of 2
nd

 person's walking with azimuth angle of 30° 
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B.6 Spectrograms of 3
rd

 Person’s Walking with Azimuth Angle of 30° 

  

a)1
st
 spectrogram of 3

rd
 person walking with 30°  b)2

nd
 spectrogram of 3

rd
 person walking with 30° 

  

c)3
rd

 spectrogram of 3
rd

 person walking with 30° d)4
th

 spectrogram of 3
rd

 person walking with 30° 

  

e)5
th

 spectrogram of 3
rd

 person walking with 30° f)6
th

 spectrogram of 3
rd

 person walking with 30° 

  

Figure B.6 Spectrograms of 3
rd

 person's walking with azimuth angle of 30° 
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B.7 Spectrograms of 1
st
 Person’s Walking with Azimuth Angle of 60° 

  

a) 1
st
 spectrogram of 1

st
 person walking with 60°  b) 2

nd
 spectrogram of 1

st
 person walking with 

60° 

  

c) 3
rd

 spectrogram of 1
st
 person walking with 60° d) 4

th
 spectrogram of 1

st
 person walking with 60° 

  

e) 5
th

 spectrogram of 1
st
 person walking with 60° f) 6

th
 spectrogram of 1

st
 person walking with 60° 

  

Figure B.7 Spectrograms of 1
st
 person's walking with azimuth angle of 60° 
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B.8 Spectrograms of 2
nd

 Person’s Walking with Azimuth Angle of 60° 

  

a)1
st
 spectrogram of 2

nd
 person walking with 60°  b)2

nd
 spectrogram of 2

nd
 person walking with 60° 

  

c)3
rd

 spectrogram of 2
nd

 person walking with 60° d)4
th

 spectrogram of 2
nd

 person walking with 60° 

  

e)5
th

 spectrogram of 2
nd

 person walking with 60° f)6
th

 spectrogram of 2
nd

 person walking with 60° 

  

Figure B.8 Spectrograms of 2
nd

 person's walking with azimuth angle of 60° 
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B.9 Spectrograms of 3
rd

 Person’s Walking with Azimuth Angle of 60° 

  

a)1
st
 spectrogram of 3

rd 
person walking with 60°  b)2

nd
 spectrogram of 3

rd
 person walking with 60° 

  

c)3
rd

 spectrogram of 3
rd

 person walking with 60° d)4
th

 spectrogram of 3
rd

 person walking with 60° 

  

e)5
th

 spectrogram of 3
rd

 person walking with 60° f) 6
th

 spectrogram of 3
rd

 person walking with 60° 

  

Figure B.9 Spectrograms of 3
rd

 person's walking with azimuth angle of 60° 
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B.10 Spectrograms of 1
st
 Person’s Running 

  

a) 1
st
 spectrogram of 1

st
 person’s running  b) 2

nd
 spectrogram of 1

st
 person’s running 

  

c) 3
rd

 spectrogram of 1
st
 person's running d) 4

th
 spectrogram of 1

st
 person's running 

  

e) 5
th

 spectrogram of 1
st
 person's running f) 6

th
 spectrogram of 1

st
 person's running 

  

Figure B.10 Spectrograms of 1
st
 person's running 
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B.11 Spectrograms of 2
nd

 Person’s Running 

  

a) 1
st
 spectrogram of 2

nd
 person's running  b) 2

nd
 spectrogram of 2

nd
 person's running 

  

c) 3
rd

 spectrogram of 2
nd

 person's running d) 4
th

 spectrogram of 2
nd

 person's running 

  

e) 5
th

 spectrogram of 2
nd

 person's running f) 6
th

 spectrogram of 2
nd

 person's running 

  

Figure B.11 Spectrograms of 2
nd

 person's running 
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B.12 Spectrograms of 3
rd

 Person’s Running 

  

a) 1
st
 spectrogram of 3

rd
 person's running b) 2

nd
 spectrogram of 3

rd
 person's running 

  

c) 3
rd

 spectrogram of 3
rd

 person's running d) 4
th

 spectrogram of 3
rd

 person's running 

  

e) 5
th

 spectrogram of 3
rd

 person's running f) 6
th

 spectrogram of 3
rd

 person's running 

  

Figure B.12 Spectrograms of 3
rd

 person's running 
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B.13 Spectrograms of 1
st
 Person’s Crawling 

  

a) 1
st
 spectrogram of 1

st
 person’s crawling  b) 2

nd
 spectrogram of 1

st
 person’s crawling 

  

c) 3
rd

 Spectrogram of 1
st
 person's crawling d) 4

th
 Spectrogram of 1

st
 person's crawling 

  

e) 5
th

 Spectrogram of 1
st
 person's crawling f) 6

th
 Spectrogram of 1

st
 person's crawling 

  

Figure B.13 Spectrograms of 1
st
 person's crawling 
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B.14 Spectrograms of 2
nd

 Person’s Crawling 

  

a) 1
st
 spectrogram of 2

nd
 person's crawling  b) 2

nd
 spectrogram of 2

nd
 person's crawling 

  

c) 3
rd

 spectrogram of 2
nd

 person's crawling d) 4
th

 spectrogram of 2
nd

 person's crawling 

  

e) 5
th

 spectrogram of 2
nd

 person's crawling f) 6
th

 spectrogram of 2
nd

 person's crawling 

  

Figure B.14 Spectrograms of 2
nd

 person's crawling 
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B.15 Spectrograms of 3
rd

 Person’s Crawling 

  

a) 1
st
 spectrogram of 3

rd
 person's crawling  (b) 2

nd
 spectrogram of 3

rd
 person's crawling 

  

c) 3
rd

 spectrogram of 3
rd

 person's crawling d) 4
th

 spectrogram of 3
rd

 person's crawling 

  

e) 5
th

 spectrogram of 3
rd

 person's crawling f) 6
th

 spectrogram of 3
rd

 person's crawling 

  

Figure B.15 Spectrograms of 3
rd

 person's crawling 
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B.16 Spectrograms of 1
st
 Person’s Creeping 

  

a) 1
st
 spectrogram of 1

st
 person’s creeping  b) 2

nd
 spectrogram of 1

st
 person’s creeping 

  

c) 3
rd

 spectrogram of 1
st
 person's creeping d) 4

th
 spectrogram of 1

st
 person's creeping 

  

e) 5
th

 spectrogram of 1
st
 person's creeping f) 6

th
 spectrogram of 1

st
 person's creeping 

  

Figure B.16 Spectrograms of 1
st
 person's creeping 
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B.17 Spectrograms of 2
nd

 Person’s Creeping 

  

a) 1
st
 spectrogram of 2

nd
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Figure B.17 Spectrograms of 2
nd

 person's creeping 
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B.18 Spectrograms of 3
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Figure B.18 Spectrograms of 3
rd

 person's creeping 

 


