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ABSTRACT

WIRELESS NETWORK CODING FOR MULTIPLE UNICAST
TRANSMISSIONS

Tuğcan Aktaş,

Ph.D., Department of Electrical and Electronics Eng.

Supervisor : Assoc. Prof. Dr. Ali Özgür Yılmaz

January 2014, 82 pages

In this work, firstly we propose a practical and effective cooperative communication

technique based on network coding (NC) in order to mitigate the detrimental conse-

quences of fading in wireless channels. We base our formulation on multiple unicast

transmissions which is the natural way of communication in many modern wireless

networks. The proposed technique utilizes spatial diversity through cooperation be-

tween overhearing nodes which carry out distributed encoding operations dictated by

the generator matrices of chosen linear block codes. In order to exemplify the tech-

nique, we make use of greedy codes over the binary field and adapt a Time Division

Multiple Access (TDMA) type use of the channel. We show that arbitrary diversity

orders can be flexibly assigned to the nodes according to the separation vector corre-

sponding to the generator matrix. In addition to the optimal detection rule for deciding

on the information symbols transmitted in the network, we present a novel network

decoder which relies on the sum-product (SP) algorithm running on a Tanner graph

that is constructed for the underlying distributed block code. This network decoder

is shown to be both advantageous in terms of its low-complexity and its performance

v



which is very close to that of the optimal one. We further show asymptotic superi-

ority of NC over a plain Automatic Repeat-reQuest (ARQ) method that utilizes the

wireless channel in a repetitive manner without NC and present related rate-diversity

trade-off curves.

In the second part, we derive approximate average bit-error-rate (BER) expressions

for the proposed network coded system. In order to reach these expressions, we ini-

tially consider the cooperative systems’ instantaneous BER values that are commonly

composed of Q-functions of more than one variable. For evaluating the expectation

integrals involving these Q-functions easily, we investigate the convergence charac-

teristics of the sampling property for integrand functions and generalize this property

to arbitrary functions of multiple variables. Then, we adapt the equivalent channel ap-

proach to the network coded scenario for ease of analysis and propose a correspond-

ing suboptimal network decoder based on the Cooperative-Maximal Ratio Combining

(C-MRC) method. Finally, by combining the sampling property, equivalent channel

assumption and C-MRC technique, we reach closed form average BER expressions.

Through simulations, the agreement of the obtained closed form expressions with the

performance of the proposed network coded system is demonstrated in a wide SNR

range. As one of the initial studies from the communication theory window in the

field of NC, the proposed system model and the analysis techniques are expected to

serve as the building blocks for the design and the performance analysis of general

network coded systems with larger number of nodes and practical considerations like

channel coding, resource reuse, channel estimation, multi-user interference manage-

ment, etc.

Keywords: Wireless network coding, linear block codes, detect-and-forward, unicast

transmission, sum-product decoding, fading channels, BER analysis, Q-function.
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ÖZ

BİRDEN ÇOK TEKEGÖNDERİM İÇİN KABLOSUZ AĞ KODLAMASI

Tuğcan Aktaş,

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Ali Özgür Yılmaz

Ocak 2014, 82 sayfa

Bu çalışmanın ilk kısmında, kablosuz kanallarda sönümlemenin bozucu sonuçlarıyla

başa çıkmak için ağ kodlamayı temel alan, kolay uygulanabilir ve etkili bir işbirlikli

haberleşme tekniğini öneriyoruz. Önerilerimizin kurgusunu günümüzde kullanılan

birçok haberleşme sisteminde de doğal olarak karşılaşılan birden fazla tekegönde-

rim senaryosu üzerinde şekillendiriyoruz. Önerilen teknik, birbirini duyan ve doğru-

sal blok kodların üreteç matrislerini temel alarak dağıtık bir şekilde kodlama görevi

yapacak düğümler üzerinden elde edilecek uzamsal çeşitleme kazancından faydalan-

maktadır. Tekniğin örneklenmesinde, ikili alanda tanımlanmış greedy blok kodlarını

kullanıyoruz ve Zaman Bölümlemeli Çoklu Erişim tarzında kanal kullanımını uyarlı-

yoruz. Bu kodlar aracılığıyla, seçilen üreteç matrisine ait ayrım vektörünün belirlediği

farklı çeşitleme derecelerinin istenilen düğümlere atanabileceğini gösteriyoruz. Ağda

iletilen bilgi sembollerinin eniyi tespit kuralıyla belirlenmesi yanında, dağıtık blok

koda göre inşa edilmiş bir Tanner çizgesi üzerinde yinelemeli olarak çalışan toplam-

çarpım algoritmasına dayanan özgün bir ağ kodu çözücü yapısı sunuyoruz. Bu ağ

kod çözücünün hem düşük işlem yükü sağlaması hem de eniyi tespit kuralına ya-
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kın başarımı sergilemesi nedeniyle avantajlı olduğunu gösteriyoruz. Buna ilaveten ağ

kodlamalı tekniğin, kablosuz kanalı herhangi bir kodlamaya başvurmaksızın ardışık

olarak kullanan yalın Otomatik Tekrar İsteği (ARQ) tekniğine olan üstünlüğünü or-

taya koyuyoruz ve iki teknik arasındaki başarım farkını ilgili veri oranı - çeşitleme

derecesi ödünleşimi eğrileri ile açıklıyoruz.

İkinci kısımda, önerdiğimiz ağ kodlamalı sistem için yaklaşık ortalama bit hata ola-

sılığı ifadelerini türetiyoruz. Bu ifadelere ulaşmak için öncelikle işbirlikli sistemle-

rin anlık bit hata olasılığı ifadelerinde sıklıkla karşılaşılan ve birden fazla değişkene

bağlı Q-fonksiyonlarını ele alıyoruz. Bu Q-fonksiyonlarını içeren beklenti integral-

lerini kolaylıkla hesaplayabilmek için örnekleme özelliği adı verilen bir yöntemin

yakınsama karakteristiğini inceleyip bu özelliği birden çok değişkenin herhangi bir

fonksiyonu için geçerli olacak şekilde genelleştiriyoruz. Sonrasında analiz basitliğini

sağlamak için eş değer kanal yaklaşımını ağ kodlamalı senaryoya uyarlayıp, karşılık

gelen eniyi altı ağ kodu çözücüsünü İşbirlikli-Enbüyük Oran Birleştirmesi metodu

üzerinden tanımlıyoruz. Son aşamada, örnekleme özelliğini, eşdeğer kanal yaklaşı-

mını ve İşbirlikli-Enbüyük Oran Birleştirmesi metodunu birleştirerek kapalı formdaki

bit-hata-olasılığı ifadelerine ulaşıyoruz. Elde edilen bu kapalı form ifadelerin öneri-

len ağ kodlamalı sistemin başarımı ile geniş bir Sinyal-Gürültü-Güç Oranı aralığı

içindeki uyumu benzetimler aracılığıyla gösteriliyor. Ağ kodlaması alanındaki haber-

leşme penceresinden bakan ilkin çalışmalardan biri olarak, önerdiğimiz sistem modeli

ve analiz tekniklerinin; daha çok sayıda düğümden oluşan ve kanal kodlaması, kay-

nakların yeniden kullanımı, kanal kestirimi, çok kullanıcılı girişim yönetimi ve ben-

zeri pratik konuların değerlendirildiği daha genel ağ kodlamalı sistemlerin tasarım ve

başarım analizinde yapıtaşlarını teşkil etmesi beklenmektedir.

Anahtar Kelimeler: Kablosuz Ağ Kodlaması, doğrusal blok kodlar, tespit-et-ilet, teke-

gönderim, toplam-çarpım kod çözümü, sönülemeli kanallar, bit-hata-olasılığı analizi,

Q-fonksiyonu.
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is also supported by TÜBİTAK, I had the opportunity to collaborate with Ali Özgür
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CHAPTER 1

INTRODUCTION

Due to the multipath and shadowing effects in the radio communication medium, one

frequently observes random deviations in the amplitude of the received signal. This

effect is named as fading and can cause severe degradation in the performance of the

wireless communication systems. In order to counteract these effects of fading, many

ways of creating diversity for the transmitted data have been proposed. Utilizing

the spatial diversity resulting from the broadcast nature of the wireless communica-

tion medium, cooperative communication [41] has been of great interest in recent

years. Through cooperation between nodes, the overall reliability and the throughput

of the system can be improved by mitigating the deteriorating effects of fading. The

basic cooperation scenario assumes a dedicated relay node assisting the communica-

tion between a source and a destination node [41]. In [11, 30] three methods to be

used by relay nodes are described: amplify-forward (AF), decode-forward (DF) and

detect-forward (DetF). The AF method attains full diversity, whereas other two can-

not, unless the propagation of errors resulting from the decoding/detection operation

is avoided, for example by using a selective transmission strategy that advocates the

forwarding of only sufficiently reliable packets. One of the various ways to handle

this problem is using Cyclic Redundancy Check (CRC) based methods, which results

in loss of spectral efficiency due to drop of a packet with only a few bit errors. An

on/off weighting based on relay signal-to-noise power ratio (SNR) is given in [38].

Weighting of the signals either at the relay or at the receiver using the relay error prob-

ability is proposed in [46,47]. Yet another idea is transmitting the log-likelihood ratios

(LLR) of bits [53]. However, the soft information relaying methods in [46,47,53] suf-

fer from quantization errors and high peak to average ratio problems. In addition, the
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AF method requires hardware modifications on modern-day communications systems

and the DF method leads to high complexity decoding operations especially for the

relays. As an alternative, relays may use the low-complexity DetF method. This low

complexity takes its roots from the fact that a DetF-type relay simply hard-detects

the incoming symbols and forwards these detection results to the destination node

without any channel decoding operation [30]. If the error probabilities at relays are

known and the maximum a posteriori probability (MAP) detection is employed at the

receiver, DetF is shown to prevent error propagation in [11]. One may also adhere to

the equivalent channel approach in conjunction with the cooperative maximal-ratio

combining (C-MRC) method which reaches a decision based on a weighted sum of

observations again by utilizing the source-relay channel reliability information [46].

Both of these techniques are shown to achieve full-diversity order with DetF-type

relaying.

NC was initially proposed to enhance network throughput in wired systems with

error-free links of unit capacity [1]. In [1], authors proved that coding at the inter-

mediate (relay) nodes may improve the information flow rate in the network. Again

for wired unit capacity links assumption, the good performance of random linear NC

is exhibited [19]. Later many studies investigated the properties and limits of net-

work coding strategies for both wired and wireless operations [13]. In network coded

wireless communications, which can be seen as an extension of the basic cooperative

communication scenario, the throughput in the whole network is shown to be im-

proved by combining data packets of many sources in a single packet via Galois Field

(GF) operations at the intermediate node [28]. In this way, NC is shown to create

extra diversity, reduce routing overhead, and introduce MAC layer gains in currently

utilized wireless communication systems with small modifications. Although most

of the work in the literature concentrate on multicast transmission [13]; we deal with

a network involving multiple unicast transmissions, which is inherent in real-life sce-

narios. Hence we formulate a multiple unicast transmission problem such that each

unicast transmission observes a distinct diversity order that is to be improved via spa-

tial opportunities. Moreover, in this study, we aim to devise analysis methods for the

BER performance of wireless network coding scenarios with DetF-type intermediate

nodes under realistic quasi-static Rayleigh fading channels by starting our analysis

2



from the basic relayed communication model.

Given a intermediate node combining strategy, which we represent by a generator

matrix and a vector of transmit schedule, we investigate the diversity order for in-

formation bit of each source, which can be unequal in general. We propose a novel

method for designing the generator matrix based on linear block codes over the binary

field. The proposed method is flexible in that any set of desired diversity levels for

the sources can be achieved with the highest NC rate possible. The diversity analysis

relies on an optimal MAP decoder at the destination which employs the reliability

information of the intermediate nodes and avoids loss of diversity due to error prop-

agation [11, 21]. However, The numerical complexity of the given optimal decoder

can be impractical for increasing network size or number of transmissions. Thus we

propose a practical approximation: the sum-product (SP) network decoder, which has

been shown to perform quite close to the Shannon’s capacity limit for decoding the

family of low-density parity-check (LDPC) codes [40]. We also derive the modified

Tanner graph structure for any NC system by including the reliability information in

the observations which result from possibly incorrect network coded data bits and the

SP algorithm iterates on this graph.

A study based on flexible network codes in a two-source two-relay system with em-

phasis on unequal error protection is [22], where authors propose a suboptimal detec-

tion rule (distributed minimum distance detector) that is known to result in diversity

order loss. Our scheme captures full diversity due to the use of the SP detector with

intermediate node reliability information. In [49], a multicast scenario is investigated

(again under additive white Gaussian noise (AWGN) assumption) for obtaining an op-

timal energy allocation scheme in order to minimize bit error rate at the sink nodes.

In [50], performance of a multiple hop network without fading is analyzed in terms

of effects of the bit errors at the relays utilizing a technique known as error event

enumeration. Similarly in [51], optimal detection rule to be used at the destination

node is presented for AWGN channels in addition to the description of a genie-aided

decoder which yields a lower bound on the performance of the optimal detector. Dif-

ferent than [50] and [51], we consider faded wireless links and give optimal detection

rule corresponding to this realistic scenario. Futhermore, the operation at the inter-

mediate nodes in our scheme is DetF as opposed to the more complex DF in [50,51].

3



One of the studies closest to ours is [52], where the NC operation is fixed in construc-

tion yielding very large Galois field (GF) sizes for increasing network size and relay

nodes carry out complicated DF operation for each transmission they overhear. Sim-

ilarly in [45], DF is used in a fixed single-relay two-user scenario in order to provide

diversity-multiplexing trade-off for NC. However, our results indicate that any diver-

sity order can be achieved for any unicast transmission even with the GF of size 2 by

using linear block codes as the network codes and simple DetF. Also independently

from our work, in [20, 21], results concerning diversity analysis for a system model

resembling ours have been obtained. Similarly in a recent work [14], additional cod-

ing gain analysis is given for a multi-source multi-relay network with relays having

no data to be transmitted. Our model is more general in the sense that each node

acts both as a source node with its own data to be conveyed over the network and

as an intermediate node serving as a means for combining and relaying others’ data.

Moreover, the proposed detection rules of [14, 20, 21] result in exponential decoding

complexity in the number of transmissions, since they are based on maximum likeli-

hood sequence estimation. Recently in [32], a wireless broadcast network with block

erasures is considered and a network coding scheme is proposed for retransmissions.

The improvement in the number of retransmissions for the downlink channel with re-

spect to the conventional automatic-repeat-request mechanism is clearly shown. An-

other recent work [44] identifies the diversity-multiplexing trade-off for a NC system,

in which multiple access to the channel is allowed to be non-orthogonal. On the other

hand, our model with orthogonal access of the nodes to the channel does not require

a complex successive interference cancellation technique to be implemented at the

destination node. We should further note that we assume that the nodes access the

channel using the simple Time Division Multiple Access (TDMA) method over or-

thogonal time slots. Based on our model, it is shown in [23] that further improvements

on diversity-multiplexing trade-off are possible with GF(q) operation. In addition,

our scheme is also proved to be practical especially for the systems with no channel

state information at the transmitting nodes (no CSIT). One final note may be on the

applicability of our proposed system model to the wireless communication systems

that are currently in use. From that point of view, although we propose simple en-

coding and decoding methods with practical implementation issues in mind, one still

has to put effort on the following topics for including the ideas detailed in this work
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within a more realistic communication system. First of all, in real world, almost all

similar systems operate with the additional protection of the channel codes. Hence

one also should spend time on joint design of both the encoders and more impor-

tantly the decoders that consider the channel and the network codes simultaneously.

Especially, in the scenarios that are affected by mobility of the nodes, the temporal di-

versity within the duration of a packet may be obtained through a careful selection of

channel codes and interleaver structures. Secondly, the results obtained in this work

should also be investigated for systems that incorporate larger Galois field sizes for

NC and larger constellations for modulating the coded data with increased spectral ef-

ficiency. Moreover, we should also take the possibility of broken links between users

in a network, because in reality not every node is successfully heard by every other

node in a given network. Hence the fully-connected network assumption in this work

should be relaxed and adaptive network codes based on the instantaneous topology of

the network should be constructed. Finally, in a much larger network than the ones

considered in this work, hierarchical structures for NC operations and also re-use of

temporal resources (since now distant nodes will not create interference to each other

by simultaneous transmissions) must be adapted for improving performance. In this

sense, the results presented in this work may serve as the directions for the design of

a NC sub-network with several nodes that are quite close to each other.

Regarding performance of the equivalent channel approximation together with the C-

MRC method at the destination side, the diversity order analysis for the basic relayed

communication scenario under Rayleigh fading is made in [46] and [29], where the

authors reach the result that the related system achieves a diversity order of 2. This

result is obtained by applying a number of approximations on the end-to-end instan-

taneous and thus average BER expressions and the final average BER expressions

are very loose in general. Recently in [36], authors use C-MRC for the analysis of

single-relay network coded communication. Here, in this work, one of our goals is

deriving a closed-form approximate average BER expression for the basic relayed

communication scenario, which is tight in the mid-to-high SNR region and that gives

us the coding gain term in addition to the previously established diversity order. In

obtaining this closed-form expression, we make use of the sampling property of the

Q-function introduced in [24, 25], where the expectation integrals required for inves-
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tigating the average BER performance of cooperative systems are handled through an

approximation on the Q-function appearing in the instantaneous BER functions. We

generalize the sampling property to more general arguments of the Q-function with

possibly more than one variables [4]. Such a general form of sampling property is

avoided in [24, 25] by expressing any function of more than one variables as sum of

single-variable functions through approximations which yield coding gain offsets in

the final expression. Moreover, we try to characterize the low-SNR region approxi-

mation problem with the sampling property, which is also pointed in [26]. Different

than [26], we analyze the convergence rates for the constituent functions of the inte-

grand function in order to distinguish a threshold value above which the Q-function

related part can safely be approximated by a Dirac-delta generalized function. Finally,

we adopt the equivalent channel approach and the C-MRC technique to the network

coded scenario with multiple intermediate nodes introduced in [3, 6] and analyze the

average BER for a sample network again by using the generalized sampling property

for the Q-function that we propose. Both for the basic cooperative system and the

sample network coded cooperative system, we compare the closed-form expressions

we derived with the simulated BER curves and observe a very good agreement be-

tween them [5]. As one of the initial studies from the communication theory window

in the field of NC, the proposed system model and the analysis techniques are ex-

pected to serve as the building blocks for the design and the performance analysis of

general network coded systems.

The major goal in introducing practical NC/decoding methods is to improve the di-

versity order of a network through cooperation with the overall rate of transmission

in mind. The contributions of our work can be listed as follows.

• A generalized wireless NC scenario with nodes possessing both relay and source

roles and its diversity analysis.

• Design of novel network codes based on close-to-optimal linear block codes.

• Investigation of greedy codes and maximum code rates for desired diversity

levels.

• Application of the SP algorithm for decoding network codes with relay relia-

bility information.
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• Generalization and a detailed inspection of the Q-function’s sampling property

for approximating the expectation integrals observed in cooperative communi-

cation systems.

• Extension of the equivalent channel model and the C-MRC method from the

basic cooperative scenario to the NC scenario so that the resulting expectation

integrals are covered by the generalized sampling property.

• Derivation of the approximate closed-form average BER expressions for char-

acterizing the performance of a given NC scenario.

The rest of this work is organized as follows. In Chapter 2, we introduce the system

and the signal models for the proposed NC system in addition to the basic cooperative

scenario, which will form the basis especially in the analysis of NC system. After-

wards, we continue with the identification of the design criteria for constructing the

linear block codes that directly determine the distributed NC rules in the proposed

system in Chapter 3. We also present some asymptotic results based on the rate-

diversity order trade-off curves for the proposed NC method and make comparisons

to a network operating without NC. In addition to the MAP-based optimal and subop-

timal detection rules given in Chapter 2, we propose a novel SP network decoder with

linear complexity order in Chapter 3 and this section includes the numerical results

for the mentioned network encoding/decoding methods. In the second part, starting

with Chapter 4, we concentrate on the analysis of the end-to-BER performance of the

proposed NC scenario. Chapter 4 also demonstrates the agreement of these obtained

analytical expressions with the simulation results for a sample NC scenario. Finally,

Chapter 5 draws conclusions and poses some possible paths for future work.
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CHAPTER 2

PROPOSED DETECT-AND-FORWARD TYPE NETWORK

CODED COOPERATIVE COMMUNICATION SYSTEM

MODEL AND OPTIMAL DETECTION RULES

This section starts with a brief description of the basic cooperative scenario of a sys-

tem including a single relay node that assists the communication between a source

and a relay node. Afterwards, we give the details of the network coded cooperative

communication system with more than one source node each of which is acting as

an intermediate node to other node(s). Here the intermediate node has the function-

ality of combining other nodes’ and its own data packets through network coding

operations in addition to the simple relaying mission of the relay node in the basic

scenario. After presenting the signal model and the transmission rules for the net-

work coded scenario, we give the optimal and the suboptimal network decoders for

estimating the source data symbols individually and jointly as a sequence by making

use of the reliability information of the network coding operations carried out at the

mentioned intermediate nodes. We finally propose a heuristic improvement on the

network coding procedure, which aims that the intermediate nodes avoid combining

the estimated source data symbols that are not reliable enough in order to further di-

minish the deteriorating effects of the intermediate node errors before they propagate

to the destination node.
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2.1 Canonical Cooperative Network System Model

The cooperative communication system which is composed of a source, a destination

and a relay node assisting these nodes is referred as the canonical cooperative com-

munication system. This system and related fading coefficients assigned to the links

between the source node S, the relay node R and the destination node D are pre-

sented in Fig. 2.1. The channel fading coefficients hSR, hRD, and hSD are assumed

to be independent and to follow zero mean circularly symmetric complex Gaussian

probability distributions such that hij ∼ CN(0, σ2
ij), where (ij) ∈ {SR,RD, SD},

nodes S and R access the channel in an orthogonal fashion according to a time-

division method without loss of generality so that in the first time slot S transmits the

data symbol x and nodes R and D have respective observations

ySR = hSRx+ nSR and ySD = hSDx+ nSD, (2.1)

where nSR and nSD denote the independent white complex Gaussian noise terms at

R and D with identical distribution CN(0, N0).

S R D

: 1st slot
: 2nd slot

hSD

x

x

x̂R
hRD

hSR

Figure 2.1: Canonical cooperative communication system

As in [46], Binary Phase Shift Keying (BPSK) is assumed for transmissions for ana-

lytical tractability with x ∈ {+
√
E,−
√
E}, where E is the average bit energy. Next,

we define γ̄ = E
N0

so that the instantaneous SNR values for S-R and S-D links are

γSR = γ̄|hSR|2 and γSD = γ̄|hSD|2 respectively. These instantaneous values are

exponentially distributed with respective expectations γ̄σ2
SR and γ̄σ2

SD. When R op-

erates as a DetF-type relay, it first detects
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x̂R = argmin
x∈{+√

E,−
√
E}
|ySR − hSRx|2 (2.2)

and simply transmits x̂R, which is the optimal hard detection result for x. The ob-

servation of D after the second time slot is then yRD = hRDx̂R + nRD, where

nRD ∼ CN(0, N0) and the corresponding instantaneous SNR γRD = γ̄|hRD|2 is

also exponentially distributed.

It is given in [46] that the C-MRC method at node D has less computational com-

plexity and is analytically more tractable with respect to the optimal detection rule.

Moreover, through simulations it is shown to perform very close to the optimal rule.

By using C-MRC, detection is carried out on the weighted sum of two observation

signals (one directly from the source, the other over the relay). The weighting is done

in accordance with the reliability of the two receptions

x̂D = argmin
x∈{+

√
P ,−

√
P}
|w1ySD + w2yRD − (w1hSD + w2hRD)x|2, (2.3)

where w1 is the weight coefficient corresponding to the S − D link and is equal to

h∗
SD as in the well-known MRC method without relaying. On the other hand, for

observation yRD, which corresponds to the relayed communication over the links

S − R and R − D, the coefficient w2 should be redefined to reflect the possible

error propagation on these two hops. In [46], the authors propose a single equivalent

channel for representing these hops and approximate the equivalent instantaneous

SNR of this channel with

γeq ,
{

Q−1
([

1− P b
SR

]

P b
RD +

[

1− P b
RD

]

P b
SR

)}2
/2, (2.4)

where Q(x) =
∫∞
x

1√
2π

exp(−z2/2)dz is the well-known Q-function, Q−1 is the

inverse Q-function, P b
SR = Q(

√
2γSR) and P b

RD = Q(
√
2γRD) are the instanta-

neous BER values for S − R and R − D links respectively. Accordingly we define

w2 = γeq
γRD

h∗
RD and using this definition R decides on the transmitted symbol using

the optimal detection rule in ( 2.3). The instantaneous end-to-end BER expression for

this detection based on the equivalent channel assumption and the C-MRC operation

is derived in [46]. In Section 4.1, we start with this instantaneous BER expression and

derive the expected BER expression by presenting a detailed analysis on the sampling
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property [25] and proposing some generalizations on this property.

2.2 Cooperative Network Coded System Model and Design Issues

In this work, we analyze a wireless network in which unicast transmission of data

symbols, each belonging to a different source, is to be carried out utilizing NC at the

intermediate nodes. Under the general operation scheme, every node may act both

as a member (source or destination) of a unicast communication pair and as an inter-

mediator (relay) node for other unicast pairs. In the most general form, this network

is demonstrated in Fig. 2.2, where due to practical reasons for easing the design or

performance evaluation (as an example by limiting the maximum number of hops for

a transmission) and/or due to spatial separation between groups of nodes, the overall

network is divided into several sub-networks or clusters. Each one of these miniatur-

ized networks consists of a few nodes nl,i where the first index l denotes the cluster

number and the second index i denotes the ordering of a node in that cluster. For each

cluster, one or more of the destination nodes may possibly serve as an intermediate

node for conveying information to a neighbouring cluster. Furthermore, within each

cluster, we assume that at most two hops are to be observed for all data transmissions

for simplifying the description.

As seen in Fig 2.2, we have many clusters that are separated by thick dashed lines.

In the following sections, we are going to concentrate on one of these clusters and

propose some rules defining the operations of the member nodes together with corre-

sponding decoding techniques. When we combine these proposals with the analysis

techniques that we present for a cluster in Section 4, we reach a rigorous formulation

for the building blocks that make up the entire wireless network coded cooperative

communication system given in Fig. 2.2. This formulation is expected to supply a

basis for the design and the performance analysis of the general system in the future

studies in the field of NC from the communication theory point of view.
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...

...

n1,1

n1,3n1,2

n1,0

n3,1

n3,3n3,2

n3,0

n4,1

n4,3n4,2

n4,0

n5,1

n5,3n5,2

n5,0

n2,1

n2,3n2,2

n2,0

Figure 2.2: A huge network structure with many building block sub-networks.
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2.2.1 The Network-Coded System Model for the Building Block Sub-Network

In order to ease the explanation of system model and the roles of nodes in the net-

work, here we start a with a simple network-coded operation depicted for a cluster

(sub-network) in Fig. 2.3, which makes use of binary NC through usual binary addi-

tion operator ⊕. The sub-network of interest consists of k = 3 source nodes and a

dummy node 0. The source nodes are simply named as nodes 1, 2, and 3 by dropping

the cluster index. The dummy destination node 0 represents a hypothetical detec-

tor of source packets u1, u2, and u3 at the corresponding destination nodes. The

transmission of these 3 data packets is allowed to be completed within n = 4 or-

thogonal time slots, which form a round of NC communication with a data rate of

r = k
n
= 3

4
packets/transmission slot. The channel is assumed to be shared by a

time division multiple access technique for the sake of simplicity in model descrip-

tion and due to causality requirements forcing the intermediate nodes to listen to a

symbol before combining it through NC.

2

1

0

3

1st time slot
2nd time slot
3rd time slot
4th time slot

u1

u2

û1,2 ⊕ u2

û1,3 ⊕ u3

Figure 2.3: Sample network coded transmission scenario in a cluster.

As seen in Fig. 2.3, the first time slot is reserved for node 1 to transmit its own data

packet u1 and this transmission is overheard by source nodes 2 and 3 in addition to the

destination node 0. We assume that the links between different pairs of nodes are inde-
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pendently Rayleigh faded. The channel corresponding to a link is quasi-static (block

fading), i.e., constant over a packet and independently fading for different packets.

We further assume that there is no feedback of channel state information (CSI) within

the system in order to simplify the implementation. In this way, additional feedback

channels that carry CSI between the nodes are avoided. This corresponds to sce-

nario with no CSIT such that each receiving node, including node 0, has the perfect

knowledge of only the incoming links through measurements of the respective chan-

nels. Hence following the transmission of the packet u1, both node 2 and node 3 use

only their own incoming link measurements to obtain their own detection results on

u1. Due to the block fading assumption, we consider a single data symbol u1 and

its detection/decoding event representing all symbols in the packet. Therefore, cor-

responding to the detections of u1, each node has also a reliability information based

on the probability of error in the detection, which is in fact only a function of its

own incoming channel measurement result. In order to counteract the effects of error

propagation, this reliability information is fed forward to the destination node by an

intermediate node (node 2 or 3), whenever it combines the detected symbol shown by

û1 with its own and other nodes’ symbols.

In the second time slot, node 2 transmits its own symbol u2 and this transmission

is observed by all other nodes as well. In the following slot, a NC operation is car-

ried out by node 3, which simply combines its own symbol and its detection result

for the first time slot û1,3. This combination is in the form of an XOR operation for

GF(2) NC and can be generalized to larger GF sizes with ease. In order to inform the

destination node 0, node 3 has to append the error probability for the network coded

symbol û1,3 ⊕ u3 to the packet it formed. In the last slot, once again node 2 uses the

channel to transmit the network encoded data û1,2 ⊕ u2 which is obtained according

to its own estimate of u1 and appends the corresponding reliability information to

the transmitted packet. Hence the destination node knows only the reliability infor-

mation for the last two incoming transmissions which incorporate NC, but not the

CSI between all intermediate nodes within the system. In this manner, the amount

of CSI fed forward is kept at minimum in the network for decreasing the overhead

in the packets. Moreover, for the proposed scenario, the overhead of appending a

form of quantized reliability information to the network-coded packets on the spec-
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tral efficiency is small for large packet lengths. Therefore, the effect of sharing the the

reliability information on spectral efficiency is expected to be small. An alternative

way of totally eliminating reliability information overhead in transmissions would be

using the average reliability information at the destination node instead of the instan-

taneous ones. This method is out of the scope of this work and is only shown to result

in degraded performance with NC in Section 3.3.4.

Up to this point, the sample NC system is detailed in words. From the perspective of

destination node 0, the same system can be described formally using a generator ma-

trix G (called the transfer matrix in [52]) and a scheduling vector v. The columns of

G, g′
js, represent the combining operations at the intermediate nodes and the entries

of v give the scheduling of the nodes accessing the channel:

G =











1 0 1 1

0 1 0 1

0 0 1 0











,v = [1 2 3 2] . (2.5)

In (2.5), the jth column of G gives the network encoding to be done by the corre-

sponding node vj which is the jth entry of v. Accordingly, node vj combines the

symbols of the users for which the corresponding entries in the jth column of G are

non-zero.

The combined data vector u = [u1 u2 u3] can then be used to form the distributed

codeword: c = [c1 c2 c3 c4] = uG. The choices u, G, k, and n for the parameters

defining the operation of network are not arbitrary. They are used intentionally to

point out the analogy to regular linear block codes. However, reliable detection of

all data symbols, i.e., whole block u, originating from a single error-free source is

of interest for a regular decoder; whereas node 0 may desire to reliably detect, as an

example, only u1 under cooperative encoding. Hence we need to identify a parameter

that describes the performance for detection of a single symbol u1 as opposed to the

codeword u for our model.

One can show that the minimum distance for G is 1. However, we now establish

that an error event requires at least 2 bit errors for decoding of u1 at node 0. Let all

the data bits be equal to 0 without loss of generality, i.e., u = [0 0 0]. Hence the

transmitted codeword is expected to be c = [0 0 0 0] for the case of no intermediate
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node errors. The error event for u1 corresponds to its decoding as 1. This erroneous

decoding can occur for sequence decoding ˆ̂u ∈ {[100], [101], [110], [111]}, where

ˆ̂u denotes the decoding result at node 0. The incorrect codewords ˆ̂c corresponding

to these decoded vectors are [1011], [1001], [1110], [1100], respectively. When these

codewords are compared to the codeword [0000], it is clear that at least 2 bit errors

are needed to cause an error event. Hence the minimum distance for u1 in this set-

ting is said to be 2. The erroneous decoding for other bits can be investigated in

a similar fashion. Focusing on u3 and hypothesizing u = [0 0 0], u3 is incorrectly

decoded when ˆ̂u ∈ {[001], [011], [101], [111]}. The corresponding codewords are

[0010], [0111], [1001], [1100]. Therefore, a single bit error can cause erroneous de-

coding of u3 yielding a minimum distance of 1. As for the data bit of node 2, one can

find that the minimum distance is 2. As seen in the example, the error performance

varies from symbol to symbol. Although unimportant from the perspective of reg-

ular codes, this differentiation of reliability may be preferred in a NC setting. Next

we generalize this claim to cover arbitrary generator matrices and verify it through

simulations in Sections 2.2.3 and 3.3.3.

Now we consider a subset of nodes in which there are k nodes transmitting data to

a single destination node 0. Let the symbol transmitted by node i be denoted by

ui, for i ∈ {1, . . . , k}, and ui be an element from the Galois field of size q, GF(q).

We assume {ui} to be statistically independent and define u = [u1 u2 . . . uk] as

the combined data vector. In a given time slot j ∈ {1, . . . , n}, a transmitting node

vj ∈ {1, . . . , k} forms a linear combination of its own and other nodes’ data. If vj

detects all data to be encoded correctly, it simply forms cj = ugj , where gj is a

k × 1 network encoding vector whose entries are elements of GF(q). Let ûi denote

the estimate of the symbol of node i at node vj . Using these estimates, node vj forms

the noisy network coded symbol ĉj = ûgj that is also an element of GF(q). Then vj

modulates and transmits this symbol to receiver node 0 as:

sj = µ(ĉj), (2.6)

where µ(.) shows the mapping of a symbol to a constellation point. Although symbols

may come from any alphabet and non-binary constellations may be used, we will

focus hereafter on GF(2) and binary phase-shift keying (BPSK) with the mapping rule

sj =
√
E(1−2cj). Our assumption is that vector gj, source address vj and probability
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of error pej for the transmitted symbol are appended to the corresponding packet. We

consider transmissions with no channel coding and deal with single network coded

symbol cj which represents all symbols in a packet transmitted by vj . At the end of a

round of transmissions, if no errors occur at the intermediate nodes, the overall vector

of n symbols coded cooperatively in the network is

c = [c1 c2 . . . cn] = u [g1 g2 . . . gn] = uG. (2.7)

The generator matrix characterizes the network code together with the vector of trans-

mitting nodes

v = [v1 v2 . . . vn] . (2.8)

Equations (2.7) and (2.8) generalize the definition of the example NC in (2.5). Next,

we present Algorithm 1, which generalizes the method for finding the minimum dis-

tance for ui. In Algorithm 1, the function dec2GF2(.) returns a binary pattern corre-

Algorithm 1 Algorithm for finding the minimum distance corresponding to symbol

ui for a (n, k, d) code with given generator matrix G

mindistance← n

indexvector ← [1 2 · · · k] \ i
for j = 1 to 2k−1 do

errorpattern← dec2GF2(j − 1)

errdatavector[i]← 1

errdatavector[indexvector]← errorpattern

errcodevector ← errdatavector ∗G
errdistance← numberofnonzero(errcodevector)

mindistance← min(mindistance, errdistance)

end for

sponding to the input decimal number and the function numberofnonzero(.) returns

the number of non-zero entries in the input vector. It is assumed that the data vector

u consists of all zeros, relying on the linearity of the network code. The algorithm

first creates all possible erroneous data vectors ˆ̂u that have 1 in the ith position so that

18



all codewords leading to erroneous decoding of ui are generated by ˆ̂c = ˆ̂uG. After-

wards, we search within these codewords to find the one with the minimum distance

to the transmitted codeword of all 0s. This minimum value gives us the minimum

distance for ui and the set of minimum distances corresponding to all ui’s (separa-

tion vector [43]) is utilized in identifying the performance metrics for different nodes

under NC in Section 3.1.

2.2.2 Optimal Network Decoding Using Intermediate Node Reliability Infor-

mation

The intermediate nodes are assumed to use the DetF technique (hard decision with

no decoding operation) due to its simplicity. In a wireless network, an intermediate

node vj has a noisy detection result û of u. Let us express the resulting noisy network

coded symbol as

ĉj = cj ⊕ ej, (2.9)

where ej denotes this propagated error. We observe that a possible error in û propa-

gates to ĉj after the NC operation dictated by gj is realized. We assume that node vj

knows the probability mass function (PMF) of ej , p(ej), which we name as the inter-

mediate node reliability information. This assumption is not unrealistic as it can be

determined by the estimation of the channel gains of the links connected to vj , along

with the reliability information forwarded to vj . The received signal by node 0 at time

slot j is yj = hjsj+nj , where hj is the channel gain coefficient resulting from fading

during the jth slot and nj is the noise term for the link between vj and node 0. The

gain coefficient is circularly symmetric complex Gaussian (CSCG), zero-mean with

variance 1, i.e., it has distributionCN(0, 1). The noise term is CSCG with CN(0, N0).

The usual independence relations between related variables representing fading and

noise terms exist. The observation vector of length n at node 0 is

y = Hs+ n, (2.10)

where y = [y1 . . . yn]
T , s = [s1 . . . sn]

T = µ(ĉT ),n = [n1 . . . nn]
T and H is a

diagonal matrix whose elements are independent and perfectly known channel gains

h1, h2, . . . , hn for the links connected to node 0. Combining the coded symbols in a
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network code vector, we obtain

ĉ = c⊕ e = uG⊕ e, (2.11)

where e = [e1 . . . en] is the error vector denoting the first hop errors. We assume

that e is independent of c although dependence can be incorporated in the SP de-

coder developed in Section 3.3. This independence assumption is valid directly for

BPSK modulation, whereas in a general modulation scheme the Euclidean distances

between various constellation point pairs differ and an error term ej depends on the

symbol being transmitted. Although this dependence may be eliminated by use of

well-known Bit Interleaved Coded Modulation (BICM) technique [10] through inter-

leaving, this issue is kept out of the scope of the work here. As a result, using (2.9),

(2.10), and (2.11), we have

y = H µ(uG⊕ e)T + n. (2.12)

Thus node 0 has access to the likelihood p(y|u, e) and p(e) =
∏n

j=1 p(ej), assuming

the errors are independent. As shown in [11], in order to avoid the propagation of

errors occurring at intermediate nodes, node 0 has to utilize the reliability information

p(e). Then, the a posteriori probability of a source bit, say u1, is calculated by using

the Bayes’ rule:

p(u1|y) = α
∑

u2,...,uk

∑

e1,...,en

p(y|u, e)
n
∏

j=1

p(ej), (2.13)

where α is a constant that does not depend on u1. The MAP estimate of u1 at node 0

is denoted by ˆ̂u1 and obtained as

ˆ̂u1 =argmax
u1

p(u1|y)

= argmax
u1

∑

u2,...,uk

∑

e1,...,en

p(y|u, e)
n
∏

j=1

p(ej), (2.14)

which is the individually optimum detector for u1. The joint MAP rule detecting the

sequence u as a whole may also be preferable in terms of computational complexity

and ease of analysis:

ˆ̂u = argmax
u

∑

e1,...,en

p(y|u, e)
n
∏

j=1

p(ej). (2.15)
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The jointly optimal detector given in 2.15 is in fact the detector that we base our

minimum distance discussion on in Section 2.2.1. Hence although it is suboptimal,

it achieves the maximum diversity orders for all nodes in the network just as the

individually optimal detector presented in 2.14. As a result, for both the optimal

individual and joint detection of u1, node 0 requires the intermediate node reliability

information vector: pe = [pe1 . . . pen], where pej = P (ej = 1) depends on the

PMF of ej . These reliability values are hence assumed to be appended to the data

packets generated at the intermediate nodes. One final note ought to be made on

the use of the detection rules given in 2.14 and 2.15 for the case of a conventional

communication technique without NC such that each source node repeats its own

data for a given number of time slots. In this case for all time slots, j = 1, 2, . . . , n,

the error terms are deterministically zero, ej = 0. Moreover, the source bits are not

combined through NC and hence each observation is dependent on a single source bit

and independent of other source bits. In this way, both the individually and the joint

optimal detections rules for a source bit, as an example u1, are simplified to

ˆ̂u1 =argmax
u1

∏

j:vj=1

p(yj|u1)

= argmax
u1

∣

∣

∣

∣

∣

∣

∑

j:vj=1

h∗
jyj −

∑

j:vj=1

|hj |2u1

∣

∣

∣

∣

∣

∣

, (2.16)

which is the Maximal Ratio Combining (MRC) type detector with weighted observa-

tions corresponding to the transmissions done by node 1. We observe the performance

of these detection rules for both NC and repetition type transmissions in Section 2.2.3.

The problem related to the MAP-based detection rules of (2.14) and (2.15) is the

number of required operations, which grows exponentially both in the number of

nodes k and the number of possible error events n. This is addressed in Section 3.3,

where we suggest a practical network decoding technique.

2.2.3 Sample Network-I: Simulation Results

The results in this section are based on Sample Network-I described in (2.5), consist-

ing of 4 nodes, to observe the fundamental issues. At least 100 bit errors for each

data bit u1, u2, and u3 are collected through simulations for each SNR value. In each
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run, data bits, intermediate node errors and complex channel gains are randomly gen-

erated with their probability distributions. The solid lines in Fig. 2.4 show the BER

values for the optimal detector operating under the realistic scenario of intermedi-

ate node errors, whereas the dashed lines depict the performance of the genie-aided

no-intermediate-error network with the same optimal detection. This latter cased is

therefore named as "perfect relaying" on the legend.
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Figure 2.4: BER performance for different nodes under optimal detection with inter-
mediate node errors and with a hypothetical scenario of no intermediate node errors

It is observed in Fig. 2.4 that different diversity orders for bits of different nodes are

apparent for optimal detection under intermediate errors. The diversity order for u1

is observed to be 2 according to the slope of the corresponding BER curve. This is

in agreement with the analytical results in Section 2.2.1 where it is shown that an

error event corresponds to at least 2 bit errors for the detection of u1 and u2. It is

seen in Fig. 2.4 that the intermediate node errors cause no loss of diversity for u1 and

u2, but an SNR loss of 1.5 dB due to the decreased coding gain. Hence the optimal

detection rule of (2.14) is said to avoid the problem of error propagation in terms of

the diversity orders. The loss for u3, whose diversity order is 1, with respect to the

hypothetical no-intermediate-error network is around 3 dB.
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Figure 2.5: BER performance for different nodes under optimal detection with inter-
mediate node errors and detection with neglecting the intermediate node errors

In Fig. 2.5 the dashed lines are for the detector that totally neglects intermediate

errors, which corresponds to the scenario where the receiver assumes that all network

coded data bits in the network are correct. The performance deteriorates significantly

for especially u1 and u2 when intermediate errors are neglected in detection, i.e.,

pe3 = pe4 = 0 is assumed. Not only an SNR loss is endured but also the diversity

gains due to use of NC disappear.

One final note on Sample Network-I would be related to the suboptimal (jointly op-

timal for the sequence) detection rule given in (2.15). Through simulations we have

observed that the SNR loss endured by using this rule with respect to the optimal rule

presented by (2.14) is clearly negligible (less than 0.1 dB) for a set of BER values

ranging from 10−1 to 10−4 for Sample Network-I and also for many other larger net-

works. Therefore, we do not present any figures for comparison of these two detection

rules in this work.
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2.2.4 Selective Network Coding

The NC described in Section is a static method in the sense that the generator matrix

G is fixed. In static NC, node vj always combines (network encodes) the symbols

of a pre-determined set of users, even when it knows that the reliability for one of

those users is low. When a symbol estimate with low reliability is combined with a

symbol with high reliability, the reliability of the resulting network coded symbol is

low. Thus, it is intuitive to expect some gains in performance by forcing the interme-

diate nodes not to combine the symbols that have very low instantaneous reliability.

In [18] and [38], various forms of channel state information are used to fix thresholds

for relaying decisions. In [52] and [37], for relays assuming DF operation, successful

decoding of channel code for a source is the condition for combining its data in NC.

Here, we propose a method called Selective Network Coding (SNC) that imposes a

threshold on the reliability of the candidate symbols to be encoded at intermediate

nodes that adapt DetF. In this way, any symbol that is sufficiently reliable is included

in network encoding and the resulting encoding vector gj is appended to the trans-

mitted packet so that node 0 still has the instantaneous generator matrix G at the end

of n transmissions.

Let us demonstrate the operation under SNC on the sample network given in Fig. 2.3.

For the first two time slots SNC is equivalent to NC since no combining of other

nodes’ symbols is the case. However, in the third slot, node 3 checks the reliabil-

ity of the detection for u1 carried out following the first slot. Let us say it has ob-

served an instantaneous SNR value on the link from node 1 to 3 that is equal to γ1→3,

which is measured by node 3. This yields a probability of error pe3 = Q(
√
2γ1→3)

in detection of u1 for BPSK modulation. Here, the Q-function is defined as Q(x) =

1√
2π

∫∞
x

exp(−z2

2
)dz and the random variable γ1→3 is exponentially distributed with

mean value equal to average SNR γ̄ for a Rayleigh fading channel. Although many

other ways of setting a threshold on the reliability exists, we exemplify the technique

by using the error probability pe3 as a measure of reliability for û1 and average it over
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the distribution of γ1→3 to set a threshold:

pth3
=

∫ ∞

0

Q(
√

2γ1→3)
1

γ̄
exp

(

−γ1→3

γ̄

)

dγ1→3

=
1

2

(

1−
√

γ̄

1 + γ̄

)

, (2.17)

which is the expectation operation over γ1→3. We should also mention that after con-

ducting extensive simulations on various networks, we have observed that this method

of setting the threshold as the expected value of the reliability of the corresponding

links is very close to the optimal selection that minimizes the BER value. Therefore,

node 3 uses the threshold value pth3
to check whether the detection at that instant is

reliable. If pe3 < pth3
, the detection is decided to be reliable enough and the combina-

tion û1⊕u3 is formed just in the way declared by the generator matrix G. Otherwise,

node 3 modulates and transmits only its own symbol u3 and appends this information

to the corresponding packet. Similarly, in the last slot, node 2 checks the reliability of

its own detection of u1 and forms either û1 ⊕ u2 or simply transmits u2. Here, the re-

liability of û1⊕u2 is equal to the reliability of û1. In general, there may be more than

one symbol that an intermediate node should detect and combine according to G. In

such cases the combined instantaneous reliability of an network encoded symbol at

the time slot j can be easily obtained by

pej =
1−

∏

i∈Aj
(1− 2Pj(ûi 6= ui))

2
, (2.18)

where Aj denotes the set of sources for which vj should carry out the network coding,

i.e., Aj is the set of indices corresponding to the non-zero elements of the jth column

of G, gj . The term Pj(ûi 6= ui) in (2.18) is used to show the probability of error for

detection of ui by node vj . In Sample Network-I, when we consider the AWGN sig-

nal disturbing the observation at node vj , we find that Pj(ûi 6= ui) = Q
(
√

2γi→vj

)

with given SNR value γi→vj for the link from node i to vj in the time slot that node

i transmits its own data ui. As a result, each intermediate node calculates its net-

work encoding reliability pej by making use of only the incoming links’ CSI and then

forwards this calculation result to the destination as a single quantized value.

Clearly, SNC inherently includes usage of adaptive generator matrices. The utilized

generator matrix may assume in average a form dictated by some predetermined (and

optimal if possible) linear block code structure like the ones that are to be discussed
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in Section 3.2. However, we should stress that there are many other ways of letting a

network of nodes randomly coding their data in a distributed fashion, which requires

a more detailed code construction methodology and optimization of many parameters

(thresholds and number of packets to be combined at each intermediate node). These

latter issues are not in the scope of this work, only a special case (SNC) is investigated.

The bit error rate (BER) performance improvements owing to the use of this random

NC technique are observed in Section 3.3.4.

2.3 Discussion

We present the system model for the basic cooperative communication scenario in this

section. It includes single DetF-type relay assisting a source node which also reaches

the destination node through a direct link. The equivalent channel approach and the

C-MRC method that ease the analysis of this scenario in Section 4.1 is described.

This is followed by the NC system model which can be seen as the generalization of

the canonical scenario. This NC model includes intermediate nodes which are also

source nodes in addition to their relaying capability of more than one source symbols

simultaneously thanks to the distributed coding functionality assigned to them. This

assignment is formalized via the definition of the generator matrix and scheduling

vector definitions that uniquely identify the operations of a NC system. The algorithm

to obtain the error protection levels provided to different nodes is also given in this

section.

It is shown that the intermediate node coding reliability information is essential for

the individually and jointly optimal network decoding rules for the proposed system.

The close BER performance of these two decoders in addition to the comparison to

a genie-aided no-intermediate node error system are obtained via simulations. Both

of these rules are evaluated to satisfy the maximum achievable diversity order by

avoiding the error propagation at the destination side.

Also we further improve the NC system model by suggesting a simple control mech-

anism to be implemented at the intermediate nodes: selective network coding (SNC).

In this way, the combining of assisted packets is made conditionally based on a reli-
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ability threshold. Untrusted packets are avoided to be combined with the expectation

that the propagation of errors due to intermediate node operations is decreased. Ful-

filling this expectation, we observe improvements in coding gain for each data bit in

the network as to be given in Section 3.3.4.

One final note is that the NC signal model and the corresponding detection rules

detailed in this section should be generalized for adaptation to the entire network

of many clusters presented in Fig. 2.2. This can be accomplished by considering

the destination nodes of each cluster as the intermediator nodes for the neighbouring

clusters responsible for conveying information further. The detection results of such

a node are then attached reliability values which have to be forwarded together with

data packets within the network just as a generalization of the scenario discussed in

this section.
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CHAPTER 3

NETWORK CODE CONSTRUCTION AND SUM-PRODUCT

ALGORITHM BASED LOW-COMPLEXITY DECODING

In this section, we establish the methodology for constructing network codes by de-

scribing the basic parameter as the diversity order assigned to each node. We give

some clues on obtaining the diversity orders assigned to distinct nodes by discussing

the linear block codes that form the basis for the distributed network codes. This idea

is exemplified via a family of close-to-optimal linear block codes that are known as

greedy codes. Again by using greedy codes, we present results on the asymptotic

superiority of NC in terms of rate versus diversity trade-off and the rate advantage in

comparison to the conventional method of repeating the data packets in given time

slots without NC. In addition to these infinite-SNR theoretic results, we show the su-

periority of NC for a practical scenario of n = 4 nodes in terms of end-to-end BER

performance simulations.

The computational complexity burden of the optimal and suboptimal decoder struc-

tures described in Section 2.2.2 is reduced by a novel network decoder based on the

SP algorithm iterating on a Tanner graph that we develop for our specific NC scenario.

Then, we show nearly optimal BER performance of this SP decoder. Moreover, in

this section, we also provide performance improvement obtained by using the SNC

described in Section 2.2.4. In doing this, we also make use of various greedy codes

and SP decoding.

The final issue that is briefly discussed in this sections is the investigation of the

gains that are to be obtained by using NC under slow fading channels, which have

coherence durations on the order of several packets. From this preliminary results,
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we reach the idea that NC would be even more fruitful due to its potential to create

diversity opportunities via assisting intermediate nodes under such a setting.

3.1 Using the Separation Vector as a Performance Metric for NC

Our goal is now to explore the error performance metrics for network coding/decoding

described in Section 2.2. Our basic figure of merit will be the diversity order corre-

sponding to the source bit ui, which is an asymptotic term defined for SNR tending

to infinity:

di = − lim
SNR→∞

logPˆ̂ui 6=ui
(SNR)

log SNR
(3.1)

giving information on the slope of reliability vs SNR in log-log scale for high SNR

values. For conventional block coding, the average error performance over all data

symbols is of interest. Therefore, for a linear block code whose coded symbols are

transmitted over independent channels, the metric utilized for comparison is the min-

imum distance, which is equal to the diversity order [39]. On the other hand, there

is a vector of distinct minimum distances, i.e, separation vector, for data symbols,

whenever we are interested in performance of individual symbols that originate from

different source nodes. According to the results presented for suboptimal decoders

in [14, 20], the diversity orders for symbols in some sample NC systems are still

equal to the minimum distances in the corresponding separation vector in spite of

the inherent error propagation problem. Using the soft decoding that we propose in

(2.14) and also authors analyze in [21], one should expect better performance and

consequently diversity orders being equal to the minimum distances. A similar result

is also shown for a simpler cooperative network with possible relay errors and the

use of equivalent channel defined as the combination of the source-to-relay and the

relay-to-destination channels [46]. In [46], even a suboptimal detection rule utilizing

this equivalent channel approach is shown to attain the achievable diversity order. As

a result, supported with intermediate node reliability information, the optimal rule of

(2.14) given in Section 2.2.2 also satisfies the diversity orders dictated by the sepa-

ration vector whose entries are obtained according to Algorithm 1. Furthermore, by

generalizing the analysis made for identifying the end-to-end BER performance for
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Sample Network-I in Chapter 4, one can also reach the result that the minimum dis-

tance values resulting from the generator matrix directly give us the corresponding

diversity orders.

It should be also noted that since diversity order is an asymptotic quantity, the exact

form of v is irrelevant to the procedure used for obtaining a diversity order value. On

the other hand, it is wiser that each column gj of G is used as the encoding function

for a vj such that the jth entry is non-zero, gj(vj) 6= 0. Otherwise possibly an extra

relaying error is also included in the encoded data symbol. Therefore, v clearly affects

the coding gain corresponding to the BER versus SNR curve of ui.

3.2 An Example of Close-to-Optimal Linear Block Codes: Greedy Codes

In this study, we make use of some well-known linear block codes while constructing

network codes that are to be used for the analysis of data rate and diversity orders for

distinct symbols in Section 3.2.1 and simulation of BER in Sections 3.2.2 and 3.3.4.

However, the cooperative network coding described in this work and the resulting

performance figures for a unicast pair are more general and applicable to any linear

block code like the maximum distance separable (MDS) codes detailed in the context

of NC in [52].

In comparison with the network coded operation, we consider a case with no dis-

tributed coding (no network coding) among the nodes. For this no network coding

scenario, we should also consider that our system model does not allow feedback of

CSI within the network and that the average SNR values between all nodes are equal.

If one intends to achieve higher diversity orders, two resources are available in such

a scenario: (i) the temporal diversity resources over the faded blocks, (ii) the spa-

tial diversity resources over the intermediate nodes. Here, it is seen that the source

nodes must simply repeat their data instead of choosing a relay to convey their data

which may possibly inject errors leading to worse performance than repetition. In

conclusion, we call this method as the repetition coding scheme which is in fact a

degenerate NC scheme with no cooperation hence with reduced spatial diversity re-

sources. Moreover, this repetition method is also thought to be a good representative
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for the ARQ error control mechanism utilized in many data transmission systems. In

fact, with the repetition coding method, the destination node decides on data bits by

combining all observations different than ARQ, which considers only the latest ob-

servation. In this way, after n transmissions are completed, node 0 combines the data

received for each source symbol to optimally detect them.

On the other hand, with NC, we take the family of block codes known as greedy codes

as an example. These (n, k, d) codes are selected with the following parameters:

blocklength (number of transmission slots) n, dimension (number of unicast pairs)

k, and minimum distance (minimum diversity order) d. Greedy codes are known

to satisfy or be very close to the optimal dimensions for all blocklength-minimum

distance pairs [9] and can be generalized to non-binary fields [34] for achieving higher

diversity orders with NC as discussed in [52]. Moreover, they are readily available for

all dimensions and minimum distances unlike some other optimal codes. Hence, even

in an ad hoc wireless network with time-varying size, any desired diversity order can

be flexibly satisfied by simply broadcasting the new greedy code generator matrix G

to be utilized in subsequent rounds of communication.

As an example, consider a network that consists of k = 3 nodes transmitting their

symbols over GF(2). If a round of communication is composed of n = 6 transmis-

sions, we deal with codes of type (6, 3, d), which have a code rate of 1
2

bits/transmission.

Starting with the generator matrix and scheduling vector corresponding to the repeti-

tion coding, we have

G =











1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1











,v = [1 2 3 1 2 3] . (3.2)

It is easily observed that, since each data bit is transmitted twice over independent

channels, this method satisfies only a diversity order of 2 for all bits u1, u2, and u3.

In contrast, a diversity order of 3 for all sources can be achieved using NC, with

the same code rate. As an example, the NC that achieves this performance can be
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obtained using the (6, 3, 3) greedy code, as follows:

G1 =











1 0 0 1 1 0

0 1 0 0 1 1

0 0 1 1 0 1











,v1 = [1 2 3 1 2 3] . (3.3)

Clearly, without NC, the diversity order of 3 for all sources can only be achieved

with rate 1
3

bits/transmission. It should also be noted that greedy codes accommodate

each unicast pair with equal diversity order due to the greedy algorithm utilized in

their construction. Moreover, contrary to the findings in [52], it is easy to obtain any

required diversity order for any data bit even by using GF(2). The limitation is not due

to the number of unicast pairs but due to the number of transmission slots in general.

By increasing n, one can arrange and improve the diversity orders, if the transmissions

to each node are realized over independent channels, which is a natural assumption for

many wireless communication scenarios. If we need an increase in data rate, through

a trade-off mechanism, we can assign decreased diversity orders to the lower-priority

unicast pairs by omitting some columns of a greedy code generator matrix in order

to decrease number of transmissions. The columns to be excluded can be decided

by running Algorithm 1 in Section 2.2.1 on candidate punctured generator matrices.

As an example, the following punctured (5, 3, 2) code is obtained by omitting the

last column of G1 and has a data rate 3
5

bits/transmission that is higher than those of

above two codes:

G2 =











1 0 0 1 1

0 1 0 0 1

0 0 1 1 0











, v2 = [1 2 3 1 2] . (3.4)

The punctured network code in (3.4) satisfies a diversity order of 3 for u1 and an order

of 2 for both u2 and u3. If u1 is of higher priority, this unequal error protection would

be preferable especially when the higher rate of the code is considered. In case of a

larger diversity order need, d = 4 as an example, we may utilize the (7, 3, 4) greedy

code with rate 3
7

bits/transmission.

G3 =











1 0 0 1 1 0 1

0 1 0 0 1 1 1

0 0 1 1 0 1 1











,v3 = [1 2 3 1 2 3 1] . (3.5)
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A final problem is the selection of vector v. Our basic assumption is that v satisfies

causality so that no intermediate node vj tries to transmit another node’s symbol be-

fore hearing at least one copy of it. This causality problem can be solved trivially

by using only systematic generator matrices. For the transmitting nodes correspond-

ing to the non-systematic part of G, as described in Section 3.1, one can select each

entry vj such that gj(vj) 6= 0 for each column gj. For the columns that have more

than one non-zero entry, a random selection between candidate vj’s will merely affect

the coding gains assigned to these nodes. As a result, one can force the number of

transmissions of each node within a round to be equalized as much as possible for

similar coding gain improvements of nodes. Another approach to the problem would

be selection of the scheduling vector adaptively within in a session of communica-

tion. This makes sense particularly in a practical scenario where in the first few slots

the data for a source node is conveyed to the destination with very high reliability so

that the remaining nodes should use the channel in the subsequent slots for improving

the reliability of the remaining data bits. Hence in general, a work with focus on the

selection of the scheduling vector may be interesting.

In the way exemplified in this section, one can choose a network code satisfying

desired error protection properties for a given network size with adequate data rate

quite flexibly. This property is used in the following section for theoretical analysis

of the gains obtained by utilizing NC.

3.2.1 Theoretical Gains in Rate and Diversity for NC

In this section, we investigate the rate and diversity (asymptotic) gains of NC through

use of the family of greedy network codes detailed in Section 3.2, although the re-

sults are still valid for any other family of optimal or close-to-optimal codes. The

availability of a greedy code for a given (k, d) pair is checked using [27]. Fig. 3.1

shows the diversity gains attainable using greedy NC (with punctured codes in case

no corresponding greedy code exists) with respect to the repetition coding scenario.

We define the rate in terms of information packets transmitted per time slot or equiva-

lently the information bits transmitted per symbol transmission in the channel. In that

way, the rate for a given network code constructed for k users and n transmissions
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is calculated as r = k
n

. The rate-diversity trade-off curves of both cases are plotted

for a network of k = 3 nodes with increasing number of transmissions and hence

decreasing rate. We are interested in three types of network diversity orders; aver-

age, minimum and maximum, since the orders corresponding to each one of the three

nodes may be unequal in general. The curves with no markers represent the (average)

network diversity orders for both scenarios, which is defined as the arithmetic mean

of orders for three nodes. For n = 7, the rate is 3
7
= 0.43 bits/transmission for the

(7, 3, 4) greedy code obtained from [27]. In turn, due to symmetric construction of

greedy codes; the minimum, maximum, and average diversity orders are equal for

this case and all three nodes observe a diversity order equal to 4. Hence, the network

diversity order for this NC scenario is 4. In contrast, the repetition scheme results

in an average order of nearly 2.33 with the worst node observing a minimum order

of 2 and the best node a maximum order of 3, which would mean a high SNR loss

asymptotically for all three nodes in the network.
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Figure 3.1: Network diversity orders: Greedy NC and repetition coding.

35



In Fig. 3.2, we now fix the desired network diversity order to d = 3 and observe

the rate advantage of the NC for increasing network size. Note that for all cases

diversity orders for k users are equal to 3. For a network of k = 25 nodes, the

rate with NC is 25
30

bits/transmission (with greedy code (30, 25, 3)) and the rate of the

repetition scheme is 15
45

bits/transmission (always equal to 1
3

for a diversity order of

3). The rate advantage ratio is then 2.5. In the asymptotic case, as k → ∞ and

hence as n→∞, NC using optimal codes in construction will have a rate advantage

converging to 3 since the rate for network coded case can be shown to tend to 1

using the Gilbert-Varshamov bound [48]. In general, the rate advantage of NC over

the repetition scenario becomes simply d, the desired network diversity order. As a

result, increasing the network size improves the network coded system’s efficiency in

comparison to the repetition coding.
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Figure 3.2: Rate advantage of greedy NC for increasing network size.
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3.2.2 Sample Network-II with Greedy Codes: Simulation Results

Next, we verify the analytical results concerning the diversity orders for a set of

three nodes operating under three different network codes constructed in Section 3.2.

Moreover, the unequal error protection performance of one of these codes is identified

together with the rate advantage it provides.

Repetition method is represented by G and v in (3.2). To construct Code-1 and

Code-2, we make use of the greedy code of (3.3) and the punctured greedy code

of (3.4) respectively. Fig. 3.3 exhibits the BER curves for the repetition scenario

with n = 6 transmissions (dashed lines), for NC scenarios with Code-1 with n = 6

(solid lines) and Code-2 with n = 5 (dotted lines). The optimal detector of (2.14) is

utilized for this simulation. Clearly, Code-1 has superior performance with an average

network diversity order of 3. However, the lower rate of Code-1 (and also repetition

coding) in comparison to Code-2 should also be noted. For Code-2, on the other

hand, bits u2 and u3 observe a diversity order of 2 while u1 observes an order of 3.

With this unequal protection in mind, the average network diversity order for Code-2

is 2+2+3
3
≃ 2.33, which is higher than that of the repetition coding with order 2. In

addition to improved diversity, Code-2 has also the advantage of increased overall

rate and decreased decoding delay due to usage of 5 slots instead of 6. It is preferable

particularly for a network that puts higher priority on u1 than other two nodes’ data

and have stricter delay constraints.

3.3 Sum-Product Network Decoder

3.3.1 Sum-Product Algorithm for Decoding LDPC Codes

This section gives introductory information on the message passing and the mes-

sage initialization rules used for decoding the well-known family of LDPC codes.

In the literature, SP decoding (or more generally message passage decoding) has

been shown to perform quite close to the Shannon’s capacity limit [40] when uti-

lized on the bipartite graphs that are constructed for low-density parity-check (LDPC)

codes [15, 33]. These bipartite graphs represent the connections between the variable

37



2 4 6 8 10 12 14 16

10
−5

10
−4

10
−3

10
−2

10
−1

E
s
/N

0
 (dB)

B
E

R

 

 
u

1
 (Repetition coding)

u
2
 (Repetition coding)

u
3
 (Repetition coding)

u
1
 (Code−1)

u
2
 (Code−1)

u
3
 (Code−1)

u
1
 (Code−2)

u
2
 (Code−2)

u
3
 (Code−2)

Figure 3.3: BER performance for repetition coding and greedy NC.

nodes that originate from the codeword bits and the check nodes that take roots from

the parity check constraints of the LDPC codes. Another common naming for these

graphs over which the conditional probability information (messages) are passed it-

eratively is Tanner graphs due to [42].

In the context of LDPC decoding via sum-product (SP) algorithm, the messages that

are passed are usually the conditional probabilities of the bits to be decoded and for

easing the calculations they are stored as the log-likelihood ratio (LLR) values. As an

example the LLR corresponding to a codeword bit ci is defined as

LLR(ci) = log

(

Pr (ci = 0|channel output for ci)

Pr (ci = 1|channel output for ci)

)

. (3.6)

The LLR values for the codeword bits are input to the LDPC decoder, which carries

out iterations on the Tanner graph that is also input to the decoder in the form of

a parity check matrix for the given LDPC code. Within each iteration, firstly the

messages to be conveyed from the check nodes to the variable nodes rji are updated

38



according to the following rule.

LLR(rji) = 2 atanh





∏

i′∈Vj\i
tanh

(

LLR(qi′j)

2

)



 , (3.7)

where LLR(qi′j) is the message that is conveyed from the variable node i′ to the

check node j in the previous iteration step and Vj is the set of variable nodes that

are connected to the same check node. For the first iteration all LLR(qij) values are

initialized to the LLR(ci) values input to the decoder. Secondly, the messages from

the variable nodes to the check nodes qij are updated according to the new values

found in (3.7) as

LLR(rji) = LLR(ci) +
∑

j′∈Ci\j
LLR(rj′i), (3.8)

where Ci is the set of check nodes that are connected to the variable node i. Following

a previously determined number of iteration on the equations (3.7) and (3.8), the

intrinsic LLR values for the codeword bits are calculated at the end as follows:

LLR(Qi) = LLR(ci) +
∑

j′∈Ci

LLR(rj′i). (3.9)

At the output of the SP decoder, if the hard decision results are required, ci is esti-

mated as 0 if LLR(Qi) > 0 and 1 otherwise.

3.3.2 Extension of Sum-Product Algorithm to Tanner Graph of a Network

Code

The complexity of the optimal rule for decoding of any unicast transmission symbol

ui grows exponentially, since the number of additions and multiplications in (2.14)

increase exponentially in the number of users and transmissions. Therefore, this rule

becomes inapplicable even for moderate-size networks. Recently the SP iterative de-

coding is suggested for general linear block codes with short blocklengths as well [35]

and this section basically extends the initialization rules described in the previous sec-

tion. This extension takes care of the possible intermediate node errors by modifying

the LLR values.

For the model detailed in Section 2.2.2, we make use of SP decoding and compare its

performance with the optimal one. The aim of the decoding operation is to produce a

39



c3c2c1 c4u3u2u1

+ + ++

Figure 3.4: Tanner graph for network coded system of (2.5).

posteriori probabilities (APPs) for source symbols u1, . . . , uk. To that end, we form

a combined codeword [u1 . . . uk c1 . . . cn] and consider the parity check (PC) matrix

for this codeword, which describes the underlying linear block code structure of the

network code. On the Tanner graph, we add a variable node for each source symbol

ui, i = 1, . . . , k and each coded symbol cj , j = 1, . . . , n. Afterwards, we add check

nodes which reflect the connections between the source and the coded symbols in the

way described by the PC matrix. For the NC system of (2.5), we refer to the graph in

Fig. 3.4 for SP decoding at node 0. The PC matrix for this system becomes:



















u1 u2 u3 c1 c2 c3 c4

PC 1→ 1 0 0 1 0 0 0

PC 2→ 0 1 0 0 1 0 0

PC 3→ 1 0 1 0 0 1 0

PC 4→ 1 1 0 0 0 0 1



















=

[

GT ... In

]

, (3.10)

where GT denotes the transpose of G and In is the n × n identity matrix. For a

regular LDPC decoder, all of the variable nodes are observed through the channel and

corresponding to each channel observation an LLR is computed. For our case, the

variable nodes u1, u2, and u3 are not observed so the corresponding LLRs are set to

0. The channel LLRs for the remaining nodes (c1, . . . , c4) cannot be calculated as in

a regular LDPC decoder either, due to the intermediate node errors and by using (2.9)
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and (2.12), the channel LLR of cj is:

LLR(cj) = ln
p(yj|cj = 0)

p(yj|cj = 1)

= ln
(1− pej)p(yj|ĉj = 0) + pejp(yj|ĉj = 1)

(1− pej)p(yj|ĉj = 1) + pejp(yj|ĉj = 0)

= ln
exp(LLR(ej)) exp(LLR(ĉj)) + 1

exp(LLR(ej)) + exp(LLR(ĉj))
, (3.11)

where LLR(ej) , ln
1−pej
pej

and

LLR(ĉj) , ln
p(yj|ĉj = 0)

p(yj|ĉj = 1)
=

4Re
{

h∗
jyj
}

N0
, (3.12)

where h∗
j is the conjugated gain of the channel over which the modulated symbol

sj = µ(ĉj) is transmitted by node vj and we use the fact that wj is Gaussian dis-

tributed (see Section 2.2.2) in obtaining LLR(ĉj). Given the channel LLRs, the SP

decoder carries on iterations over the Tanner graph to generate the estimated LLRs

for the source bits. In each iteration, the messages (LLR values) are passed from the

check nodes to the variable nodes and vice versa so that each variable node updates

its belief on the value of data bit it represent. This message passing is done in parallel

fashion so that all variable nodes output their messages simultaneously as a group and

so do the check nodes just as for regular LDPC decoding with parallel implementa-

tion. If the number of iterations is fixed, the SP decoder utilized is known to have a

complexity order of O(n). In contrast, the optimal decoder has a computational load

in the order of O(2n), which makes the SP decoder a strong alternative for increasing

network size and number of transmissions. One may also note that the proposed SP

decoder works directly with GF(q), q > 2, and constellations other than BPSK. The

use of higher order fields and constellations would tremendously increase the com-

plexity of the optimal algorithm and make it impractical, whereas the SP algorithm

would still operate with reasonable complexity. The number of iterations and other

operational parameters for the SP decoder are given in Section 3.3.3, where we show

that performance figures close to that of the optimal one are possible for the network

codes investigated herein.
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3.3.3 Performance of the Sum-Product Decoding for Network Coded Systems

In this section the performance figures for the SP iterative network decoder described

in Section 3.3 are presented in comparison with the optimal detection rule of (2.14),

which has an exponential complexity order. The first network coded communication

system of interest is given in (3.3). The number of iterations for the SP type decoder

is limited to 4 and no early termination is done over parity checks. Here, a minimum

of 150 bit errors are collected for each data bit.

In Fig. 3.5, we identify the fact that the SP decoder maintains almost the same BER

performance as the optimal decoding rule. The SNR loss due to usage of the SP

decoder is less than 0.1 dB for a BER value of 10−3 for all data bits. Achieving

close-to-optimal performance with a linear complexity order, SP type decoding may

serve as an ideal method for the network coded system of (3.3) despite the fact that

the corresponding Tanner graph contains cycles. Results demonstrating the good per-

formance of SP decoding were also reported previously in [2, 12, 35] for graphs with

cycles. In fact, one may realize that the length of the shortest cycle in the correspond-

ing graph is 6, hence the graph is said to have a girth of 6. In [12] within the context

of sparse intersymbol interference (ISI) channels, it is shown that for any graph with

girth 6, the performance of the SP algorithm is practically optimal. On the other hand,

one may identify that for the family of greedy codes for k = 3 users with blocklenghts

larger than 6, the girth of the corresponding graph will always be 4. Fortunately, it

is also given in [12] that the method of stretching on girth-4 graphs yields modified

girth-6 graphs on which the SP algorithm evaluates the APPs for the data symbols

with negligible performance loss. Further details on the girth profile and degree dis-

tribution optimization procedures (like in [7] for a greedy search of LDPC codes and

like in [8] for root-check LDPC code design) and design of large blocklength MDS

network codes achieving full-diversity under SP decoding [31] are out of scope of

this work.

In order to further exemplify the effectiveness of the proposed SP network decoder,

we present the performance results for a network with more source nodes carrying

out more total number of transmissions. Utilizing the (10, 5, 4) greedy code, we con-

struct a NC system with 5 nodes whose data bits are expected to observe a diversity
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Figure 3.5: BER curves for the individual MAP decoder of (2.14) and the SP iterative
decoder for (6, 3, 3) greedy NC system

order equal to 4 following a round of communication with 10 transmissions. Accord-

ing to Fig. 3.6, where only the data bits with highest and the lowest coding gains are

included in order to ease the interpretation of the results, SP network decoder still pre-

serves its close-to-optimal BER performance if its number of iterations is increased

to 10 for this larger network.

3.3.4 Performance of Selective Network Coding (SNC) with Greedy Codes and

SP Decoding

The selective network encoding operation defined in Section 2.2.4 is applied in this

section on the Sample Network-II of Section 3.2.2. The performance improvement

for the selective encoding over the static (using fixed G with no selection of sym-

bols to be encoded) encoding method is again shown using the SP iterative decoder

of Section 3.3. The instantaneous intermediate node error probabilities are compared

with average error probabilities (dictated by G) and data of the nodes whose error

probabilities are below the corresponding average values (thresholds) are combined
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Figure 3.6: BER curves for the individual MAP decoder of (2.14) and the SP iterative
decoder for (10, 5, 4) greedy NC system

by the intermediate node. In Fig. 3.7, we observe that SNC offers an SNR improve-

ment of 0.6 dB for BER set to 10−3 over the static NC method. Before finalizing this

section, we give a simulation result for a network coded system of k = 4 source nodes

cooperatively transmitting their information bits in n = 8 orthogonal time slots. For

this purpose we utilize the following greedy code satisfying a diversity order of 4 for

each node’s bit:

G3 =

















1 0 0 0 1 1 1 0

0 1 0 0 1 1 0 1

0 0 1 0 1 0 1 1

0 0 0 1 0 1 1 1

















,v3 = [1 2 3 1 2 3 1] . (3.13)

The plotted curves are for the cases: i. Repetition coding scenario with each node

transmitting only its own bit twice, ii. Network coded scenario directly dictated by

generator matrix and scheduling vector pair given in (3.13), iii. An alternative method

which utilizes only the statistics (average BER) as the reliability information in the de-

tection rule instead of instantaneous values to decrease the overhead in the transmis-
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sion. iv. SNC utilizing the network coding rules in (3.13) with the constraint on the

reliability of each transmission as described in Section 2.2.4. One clearly observes
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Figure 3.8: Selective and static network encoding BER curves.

that SNC and direct NC satisfy the maximum achievable diversity order, whereas the

technique that uses average reliability information results in diversity loss leading to

higher SNR requirements for the same BER value. In fact, the gain by resorting to

NC under average reliability information with respect to the repetition coding case is

limited to only 0.5 dBs. Hence one should prefer to use the instantaneous reliability

information from the intermediate nodes in order to fully cover the spatial diversity

opportunities offered by the cooperative communications through NC.
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3.4 Performance of NC under Slow-Fading Channel Model

All the discussion and the results presented up until this section rely on the assumption

that all channel gain coefficients related to the observations at node 0 are independent.

Hence a block fading model over time slots is utilized. However, it is also possible

under many communication scenarios that the variation of a channel gain coefficient

is not rapid enough for such an assumption. Then it is also possible that all transmis-

sions from a selected source node to node 0 observe the same fading condition leading

to the degradation in BER performance due to loss in diversity. Therefore, we finalize

the numerical results by providing the BER curves of NC and repetition coding under

the assumption that within a round of n transmissions, only the transmissions from

distinct source nodes observe independent fading, i.e., hj and hm are independent if

vj 6= vm and otherwise hj = hm. In Fig. 3.9, we plot the BER curves for the Sample

Network-II operating under this slower fading assumption. Repetition coding is rep-

resented by (3.2) and NC is realized by (3.3). It is seen that repetition coding merely

results in a diversity order of 1 for each bit as expected. On the other hand, NC yields

an order of 2 via the cooperative diversity obtained due to intermediate nodes trans-

mitting over independent channels. The SNR losses incurred by not utilizing NC are

shown to further increase in great amounts in this slower fading scenario.

3.5 Discussion

This section starts with the fundamental performance parameter definition for the NC

system and investigates its connection with the separation vector of the underlying

linear block code. Then by the support of the family of greedy codes that are readily

available for various network sizes with various number of transmissions in order

to supply each source node with a desired level of error protection, we provide a

theoretic insight into the superiority of NC to the repetition coding method. Moreover,

we reach the result that once we fix a desired level of diversity order for each node

in a NC system, as we increase the number of nodes the rate advantage of NC gets

bigger and converges to the fixed diversity order.

According to the optimal and the suboptimal network decoding rules described in
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Figure 3.9: BER vs. SNR curves for slow fading channel.
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Section 2.2.2, the computational complexity of decoding for the proposed NC system

grows exponentially both in the size of the network and in the number of transmis-

sions. In order to decrease this complexity, we propose a novel SP network decoder

that operates on a special Tanner graph constructed according to the underlying linear

block code. It is also shown through simulations for sample networks in this section

that the proposed linear order complexity SP network decoder performs quite close to

the optimal rule. Again by operating the proposed SP decoder on two different SNC

scenarios we show the improvements obtained, which correspond to SNR gains on

the order of 0.5 up to 1 dB.

A final result on the performance improvements owing to the usage of NC idea is

presented for slow fading channels, in which the source nodes has only other nodes

as means of creating diversity. In this specific scenario, NC is seen to result in huge

SNR gains with respect to the repetition of packet with no NC.
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CHAPTER 4

EXPECTED BER ANALYSIS FOR THE CANONICAL

COOPERATIVE SYSTEM AND NETWORK CODED

COOPERATIVE SYSTEM

Our ultimate goal, in this section, is to derive closed form expected end-to-end BER

expressions for the network coded cooperative communication system for which the

signal model and related detection rules are given in Section 2.2. In order to achieve

this goal, we start with some building blocks hidden in the BER analysis of the basic

cooperative system of Section 2.1 with C-MRC type detection and equivalent channel

assumption at the destination node R. The expected BER expression for this basic

system is obtained after generalizing the sampling property introduced in [25] to more

than one variables. In addition to this generalization, we present a more complete

analysis and an SNR-based characterization of the validity of the sampling property

in this section.

4.1 Analysis of the BER Performance of the Basic Cooperative Communication

System

The instantaneous end-to-end BER expression for the canonical cooperative system

of Section 2.1 is found in [46] as
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P b =
(

1−Q(
√

2γSR)
)

Q





√
2(γSD + γeq)

√

γSD + γ2
eq/γRD





+Q(
√

2γSR)Q





√
2(γSD − γeq)

√

γSD + γ2
eq/γRD



 . (4.1)

In order to obtain the expected end-to-end BER, one has to evaluate a triple integral

for the instantaneous BER function in (4.1) over the related distributions of the ran-

dom variables γSR, γSD, γRD (here, γeq is a function of γSR and γRD). However,

accomplishing this analytically is hard and also the alternative method of resorting

to Monte Carlo simulations is time consuming in general. In [46], only the diversity

order of the average BER expression is obtained following a series of upper bound-

ing techniques and the result is 2 since two transmissions are made on independent

paths in the network and D accounts for possible relaying errors through C-MRC. In

the following sections, we develop novel closed form expressions step-by-step for the

average BER of this system in which the coding and the diversity gains are identified

separately.

4.1.1 Sampling Property of the Q-Function for Generalized Expressions

In this section, firstly, we propose a simple method in order to improve the sampling

property of the Q-function that is first presented in [24]. We continue with demonstra-

tion of the insufficiency of this sampling property particularly in the low-SNR region.

By analysis over the constituent functions involved in a basic expectation integral, we

remedy this deficiency and generalize the sampling property for low-SNR region as

well. In this way we propose a piecewise approximation to this integral that is close to

the simulation results in the low-SNR region as well as the high-SNR region. Finally,

the sampling property is further generalized to expectation integrals whose integrand

functions involve more than one variables.
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4.1.1.1 Basic Problem and its Solution

Assume that the following expectation integral of an instantaneous probability of er-

ror function Q(
√
X) is to be evaluated for a random variable X with probability

density function (pdf) fX(x) [24]:

I0 = EX

{

Q(
√
X)
}

=

∫ ∞

0

Q(
√
x)fX(x)dx. (4.2)

After the change of variables operation x → tN , we have the integrand being equal

to Q(
√
tN)NtN−1fX(t

N). Here we define the following constituent functions of the

integrand.

q(t) , Q(
√
tN), c(t) , NtN−1, f(t) , fX(t

N). (4.3)

In [24], h(tN) , q(t)c(t) is defined and claimed to be a unimodal function of t

with a critical point satisfying tN∗ = 2 and is well-approximated by a Dirac delta

as N →∞. However, that analysis does not show that h(tN) assumes the value of

zero at all other points. On the contrary, when any other finite tN value is inserted

in Eqn. (52) of [24] it is easy to show that h(tN ) assumes infinity. Moreover, the

critical point tN∗ = 2 is obtained after applying an upper bound on the Q-function.

Here, we will take a different approach without any approximations to show that

h(tN ) indeed assumes an infinite value only around the point t = 1 and converges to

0 everywhere else. In addition, we suggest an alternative way to calculate tN∗ so that

the low-SNR agreement with the simulation results is enhanced. We then propose a

piecewise sampling method on constituent functions to further improve our technique

in the subsequent section.

Let us start with the analysis of the integrand I(t) , q(t)c(t)f(t) for three distinct

regions of t:

I0 =

∫ 1−

0

I(t)dt+

∫ 1+

1−
I(t)dt +

∫ ∞

1+
I(t)dt. (4.4)

It should be emphasized that the value I0 in (4.4) is independent of N and hence we

may investigate the behaviour of I(t) asymptotically (as N →∞). In this work, we

take f(t) = 1
SNR

e−
tN

SNR due to the Rayleigh fading model assumed for the channels

in the network. However, the following steps can be generalized to other pdfs easily.
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Initially, for the 0 < t < 1 region, we reach the following asymptotic result for the

convergence of the integrand function:

lim
N→∞

I(t)

∣

∣

∣

∣

∣

∣

0<t<1

=
(

lim
N→∞

q(t)
)(

lim
N→∞

c(t)
)(

lim
N→∞

f(t)
)

=

(

1

2

)(

lim
N→∞

1

ln t(−t1−N )

)(

1

SNR

)

= 0, (4.5)

where the L’Hôpital rule is applied for limN→∞ c(t) term and the product law for

limits is utilized. As a result, the first integral in (4.4) evaluates to 0 asymptotically.

Next, for the t > 1 region, we obtain

lim
N→∞

I(t)

∣

∣

∣

∣

∣

∣

t>1

=
(

lim
N→∞

q(t)
)(

lim
N→∞

c(t)f(t)
)

= (0)



 lim
N→∞

NtN−1

exp
(

tN

SNR

)





(

1

SNR

)

= (0)



 lim
N→∞

tN−1 +N(ln t)tN−1

ln t
SNR

tN exp
(

tN

SNR

)





= (0)



 lim
N→∞

ln t
(

ln t
SNR

)2
tN exp

(

tN

SNR

)





= 0 (4.6)

following the application of the L’Hôpital rule twice. Hence, in the asymptotic sense,

the third integral in (4.4) does not contribute to the result either. Therefore, we con-

clude that

I0 =

∫ 1+

1−
lim

N→∞
I(t)dt, (4.7)

which shows us that the integrand I(t) may be well-approximated by a Dirac delta

generalized function at t = 1 for N →∞. Moreover, it can be shown that this Dirac

delta approximation also holds for the function h(tN ) , q(t)c(t) by following the

arguments utilized in reaching (4.5) and (4.6). As an example, in Fig. 4.1, we plot the

54



function h(tN ) around t = 1 for N = 100 and N = 1000. Clearly, this function is

better and better approximated by a Dirac delta as we increase N . On the other hand,

it is quite easy to reach the result that g(tN) , f(t)c(t) is also non-zero only for t = 1

as N →∞ and can be approximated by another Dirac delta. Therefore, we should

select one of the functions h(tN) and g(tN) to be approximated by a Dirac delta

according to their behaviour at points other than t = 0. This means, it is important to

characterize these functions in the regions t < 1 and t > 1 in order to select the one

with faster decay rate to zero. Next, we are going to identify two average SNR values

above and below which h(tN) and g(tN) can be safely approximated by a Dirac delta

respectively in Section 4.1.1.2.
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Figure 4.1: Convergence of h(tN ), N = 100 and 1000

4.1.1.2 Rates of Convergence for Constituent Functions

In order to approximate the basic integral of (4.2) by using the sampling property, we

need to obtain two essential parameters of the Dirac delta generalized function, which

is an approximation to one of the constituent functions h(tN ) or g(tN). The first pa-

rameter is the location of Dirac delta, tN∗ . The asymptotic (as N →∞) critical point

of the function of interest yields this parameter and the critical point can be either

found analytically or by solving a simple unconstrained optimization problem. The
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other parameter is the weight of the function c and is analytically obtained for both of

the constituent functions by integrating the related function from 0 to∞. However,

another important issue is to pick the sampling function as one of h(tN ) or g(tN)

according to their asymptotic convergence rates to the function that is approximated

by a Dirac delta at t = 1.

We start with comparing the convergence rates of h(tN) and g(tN) for 0 < t < 1

and t > 1, separately. Firstly, consider the region 0 < t < 1. For this region,

both q(t) and f(t) converge to nonzero constants in the limit. On the other hand,

the function c(t) = NtN−1 converges to 0, which means that for large N , h(tN) and

g(tN) converge to 0 with the same rate. Hence we focus on the other region: t > 1.

In this region, we compare h(tN) and g(tN) for distinct average SNR regions. Let us

start with the Chernoff upper bound on the Q-function:

q(t)

∣

∣

∣

∣

∣

∣

tN=x

= Q(
√
x) ≤ 1

2
exp

(

−x
2

)

. (4.8)

In addition, for t > 1 and SNR ≥ 2 it is easily shown that

f(t)

∣

∣

∣

∣

∣

∣

tN=x

=
exp

( −x
SNR

)

SNR
≥ 1

2
exp

(

−x
2

)

. (4.9)

Combining (4.8) and (4.9) for t > 1 and SNR ≥ 2 (in dB scale roughly for values

larger than 3 dB) we get

q(t)

∣

∣

∣

∣

∣

∣

tN=x

≤ f(t)

∣

∣

∣

∣

∣

∣

tN=x

. (4.10)

Using (4.10) we reach the result that for SNR > 2, h(tN) (including the Q-function)

is better represented by a Dirac delta with respect to g(tN) (including the exponential

pdf). This is in accordance with the previous results in [25] that for high SNR, Q-

function may be approximated by a Dirac delta well. On the other hand, for t > 1

and SNR < 1/3 (roughly less than −5 dB), one can show that

q(t)

∣

∣

∣

∣

∣

∣

tN=x

= Q(
√
x) ≥ 1

1
3

exp

(

−x1
3

)

≥ exp
( −x
SNR

)

SNR
= f(t)

∣

∣

∣

∣

∣

∣

tN=x

. (4.11)

Consequently, for lower SNR values, g(tN) is more suitable for the sampling function

definition. Firstly, the position of the Dirac delta that approximates g(tN) can be
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obtained by finding the critical point tNg . We equate the first derivative of g(tN) with

respect to t to 0:

d

dt
g(tN)

∣

∣

∣

∣

∣

∣

tN=tNg

= 0, (4.12)

whose solution is

tNg =
N − 1

N
SNR. (4.13)

Eqn. (4.13) gives us the asymptotic critical point tN∗ = limN→∞ tNg = SNR. Sec-

ond, the weight of the corresponding Dirac delta is found as 1 due to the normal-

ization property of the pdf. Hence for SNR < 1/3, we may use the approximation

I0 ≈
∫∞
0

Q(
√
x)δ(x − SNR)dx = Q

(√
SNR

)

. For SNR > 2, we write I0 ≈
∫∞
0

cδ(x− tN∗ )fX(x)dx = c
SNR

exp
(

− tN
∗

SNR

)

, where the impulse weight is found us-

ing the alternative definition of Q-function as c =
∫∞
0

h(tN )dt =
∫∞
0

Q(
√
x)dx = 1

2

analytically.
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Figure 4.2: Approximating the integral I0 using various methods

We propose a simple alternative to the method in [24] to evaluate the location of the

impulse which approximates h(tN). For a sufficiently large value of N , we pose find-

ing the critical point as an unconstrained optimization problem and employ numerical
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search to find the solution. In a narrow neighbourhood of t = 1, we search for the

critical point of h(tN), as an example by using the Optimization Toolbox function

fminsearch() of MATLAB. In MATLAB, we find tN∗ = 1.4157 just after 4 iteration

steps, whereas in [24] tN∗ = 2 was considered. The error rate curves from approxima-

tions as well as simulations are given in Fig. 4.2. According to Fig. 4.2, the methods

approximating h(tN) as a Dirac delta (one proposed in [24] with square markers, and

the one we propose with circular markers) are quite consistent for high SNR values.

However, the method using unconstrained optimization for searching the impulse lo-

cation is the better one with close approximation for SNR > 3dB as detailed in

equation (4.10). For low SNR values, on the other hand, only the method selecting

g(tN) as the sampling function (plus shaped markers) is close to the simulation result.

This shows us that for a close approximation of the integral I0 over the whole SNR re-

gion, we need to use a piecewise function. In the following sections, with integrands

of more than one variables, we are going to use only the sampling property for the

Q-function since we are mostly interested in the high SNR regime.

4.1.1.3 Two-Variable Sampling Property

In this section we base our discussion on the following integral involving two vari-

ables in the integrand.

I1 =

∫ ∞

0

∫ ∞

0

Q(
√
a1x+ a2y)fX(x)fY (y)dxdy, (4.14)

where a1 and a2 are positive constants. The form of the expectation integral given in

(4.14) is frequently observed for receivers collecting observations on two independent

channels and combining these received signals according to MRC operation. In the

scenario of basic relayed communication, similar expectation integrals are also en-

countered [24–26], however no higher dimensional generalization for sampling prop-

erty has been made in the literature as far as we know. In [25], a two-dimensional

integrand is approximated by two single variable integrands resulting in coding gain

offsets in the final expressions.

Similar to the single dimension analysis, we define a new function following the

change of variables operation h(tN , uN) , Q(
√
a1tN + a2uN)N2tN−1uN−1 based
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on the Q-function. We simply pick h(tN , uN) as the sampling function, since it is

shown to perform well in the high-SNR region in Section 4.1.1.2. Here, it is easy

to generalize the asymptotic analysis for h(tN , uN) with N → ∞ to show that it is

well-approximated by a two-dimensional Dirac delta at (t, u) = (1, 1). This is further

exemplified in Fig. 4.3 for N = 1000 and a1 = a2 = 2.

Figure 4.3: Function h(tN , uN) for N = 1000 and a1 = a2 = 2

Through the unconstrained optimization solution, the critical point of h(tN , uN) is

computed as (tN∗ , u
N
∗ ) = (0.8197, 0.8197) and the weight of the Dirac delta is an-

alytically found as c =
∫∞
0

∫∞
0

Q(
√
a1x+ a2y)dxdy = 3

4a1a2
. As an example for

a1 = a2 = 2, the approximation for I1 is

I1 ≈
3

16SNR2
exp

(

−2(0.8197)
SNR

)

. (4.15)

The result in (4.15) is in accordance with the average BER analysis result of the

MRC technique applied on two parallel branches [17] and is also very close to the

simulation result for mid- to high SNR values as given in Fig. 4.4.
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4.1.1.4 Sampling in Single Dimension for Functions of Two Variables

Unfortunately, not every integrand function can be simply approximated with a two

dimensional Dirac delta as in Section 4.1.1.3. As an example, the instantaneous BER

function Q(
√

2min{x, y}) can be investigated. This type of instantaneous BER

function prevalently occurs in relayed communication system performance analy-

sis, particularly in the works that approximate the S − R and R − D links with a

single link possessing the minimum one of the instantaneous SNR values of these

links [16, 46, 54]. Therefore, the average BER function for these systems is also im-

portant and requires the evaluation of the following integral:

I2 =EX,Y

{

Q(
√

2min{x, y})
}

=

∫ ∞

0

∫ ∞

0

Q(
√

2min{x, y})fX(x)fY (y)dxdy. (4.16)

Here, it can be shown that the constituent function related to the Q-function within

the integrand is h(tN , uN) , Q(
√

2min{tN , uN})N2tN−1uN−1 following the cor-

responding change of variables operation. One observes that h(tN , uN) diverges

also at points other than (t, u) = (1, 1) unlike the constituent function of the pre-

vious section. However, it is still possible to analyze this function using the fact

that Q(
√

2min{x, y}) ≤ Q(
√
2x) + Q(

√
2y) and the sampling property for single

variable functions given in Section 4.1.1.1. Then we can reach the following approx-

imation for this expectation integral, which is shown to perfectly fit the simulation

result in Fig. 4.4.

I2 =

∫ ∞

0

∫ ∞

0

Q(
√

2min{x, y})fX(x)fY (y)dxdy

≤
∫ ∞

0

∫ ∞

0

Q(
√

2x})fX(x)dx+

∫ ∞

0

∫ ∞

0

Q(
√

2y})fY (y)dy

≈ 1

2SNR
exp

(

−0.7079
SNR

)

. (4.17)
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4.1.2 BER analysis for the Canonical Cooperative Model

The end-to-end instantaneous BER function in (4.1) can be written as the sum of two

terms: P b = P1 + P2. Let us start with P1:

P1 =
(

1−Q(
√

2γSR)
)

Q





√
2(γSD + γeq)

√

γSD + γ2
eq/γRD



 , (4.18)

which is a function of three variables, γSR, γRD, and γSD. Similar to the analysis in

Section 4.1.1.4, function P1 can not be approximated with a Dirac delta directly, due

to the variable γeq defined over the instantaneous SNR values of the two-hop link,

γRD and γSD. Therefore, we define two terms that are asymptotic in γRD and γSD

following the approach in Eqn. (42) of [25]

P γRD

1 , lim
γRD→∞

P1 =
(

1−Q(
√

2γSR)
)

Q

[√
2(γSD + γSR)√

γSD

]

P γSR

1 , lim
γSR→∞

P1 = Q
[

√

2(γSD + γRD)
]

(4.19)

to approximate P1 with the sum of these two terms, P1 ≈ P γRD

1 + P γSR

1 . In this

way, P1 is now the sum of two functions both of which have two arguments and are

suitable for an approximation with impulse functions. It should be noted that in the

approach utilized in Section 4.1.1.4, Q(
√
2x) and Q(

√
2y) are also asymptotic terms.

Using the result of Section 4.1.1.3, taking σ2
SD = σ2

SR = σ2
RD = 1 and average SNR

as γ̄, approximate expectation of P1 is evaluated to be

I3 ≈
∫ ∞

0

∫ ∞

0

P γRD

1 fγSR
(γSR)fγSD

(γSD)dγSRdγSD

+

∫ ∞

0

∫ ∞

0

P γSR

1 fγRD
(γRD)fγSD

(γSD)dγRDdγSD

≈ 1

16γ̄2
exp

(

−1.3049
γ̄

)

+
3

16γ̄2
exp

(

−2(0.8197)
γ̄

)

. (4.20)

Defining similar asymptotic terms for P2, we reach P γRD

2 = Q(
√
2γSR)Q

[√
2(γSD−γSR)√

γSD

]

and P γSR

2 = 0. Therefore, the following integral approximation can be found for ex-

pectation of P2 by making use of 2D sampling property once more.
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I4 ≈
∫ ∞

0

∫ ∞

0

P γRD

2 fγSR
(γSR)fγSD

(γSD)dγSRdγSD

≈ 1

4γ̄2
exp

(

−1.7564 + 1.3737

γ̄

)

. (4.21)

Finally, summing the results of (4.20) and (4.21) we obtain and plot the approximate

expectation of P b as I3 + I4 in Fig. 4.4 together with the simulation result. It is seen

that the analysis proposed in this work yields an extremely good approximation to

the end-to-end average BER of the canonical cooperative communication system by

giving the closed form expression as a product of the coding and diversity gain terms.

We initially observe that the exp
( −c
SNR

)

terms will vanish as SNR tends to infinity,

where the diversity order and the coding gain are defined. Hence, firstly, the diversity

gain is taken as the exponent of the 1
γ̄

terms from (4.20) and (4.21) and is 2 as found

in [46]. Then the coding gain is calculated as the sum of the constants multiplying

the terms that are functions of SNR and is simply 1/2.
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Figure 4.4: Approximating the integrals I1, I2, and I3 + I4
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4.2 Analysis of the BER Performance of Wireless Network Coding

The procedure followed in Section 4.1.2 for the analysis of canonical cooperative

communication system is extended for the network coded system in this section. The

analysis is also based on the receiver structure which utilizes the equivalent channel

approximation for the two-hop links carrying the network coded bits. The difference

from Section 4.1.2 is that now the receiver should also decode the network code for

detecting k source bits rather than detecting a single source’s bit by applying simple

MRC method on its weighted observation signals. We start with the network coded

system description.

4.2.1 A Sample Network Coded System

The network coded communication system analyzed in this section is a sample sce-

nario selected according to the model which is detailed in [6]. In [6], source nodes

transmit in orthogonal time slots and each source node serves potentially as a relay to

the other source nodes.

2

1

0

3

1st time slot
2nd time slot
3rd time slot
4th time slot

u1

u2

û1,2 ⊕ u2

û1,3 ⊕ u3

Figure 4.5: A sample network coded wireless communication scenario.

The specified network coding scenario is depicted in Fig. 4.5. In the sample network,

k = 3 source nodes are allowed to transmit to a separate destination, node 0, following

a time-division access method with a round of communication that comprises n =
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4 time slots. The source nodes 1, 2, and 3 aim to transmit their data symbols u1,

u2, and u3 respectively. In this work, we assume ui to be binary for the sake of

a simple system description and performance analysis, although all of the following

arguments can be generalized for larger alphabets. The network coding rules followed

are prescribed by the generator matrix G and the scheduling of the nodes to use the

channel is given in the transmitting node vector v:

G =











1 0 1 1

0 1 0 1

0 0 1 0











,v = [1 2 3 2] . (4.22)

We assume that all the channels associated to the links drawn in Fig. 4.5 follow in-

dependent Rayleigh block fading (constant during a time slot) and the channel state

information is only available to the receiving end of each link without any feedback

in the network. In addition, as described in [6], the intermediate nodes help mitigate

the problem of error propagation in the subsequent hops. As an example, the trans-

mission of network coded bit û1,3 ⊕ u3 is based on a possibly erroneous detection at

the intermediate node 3. Therefore the intermediate nodes are assumed to append the

probability of error in their network coding operation to the transmitted packets so

that the destination node 0 can take the possible detection errors into consideration.

Under these assumptions, node 0, which is responsible for decoding the source nodes’

data, collects the following n = 4 observations

y1 =h1µ(u1) + n1,

y2 =h2µ(u2) + n2,

y3 =h3µ(u1 ⊕ e3 ⊕ u3) + n3,

y4 =h4µ(u1 ⊕ e4 ⊕ u2) + n4, (4.23)

where hj , j = 1, . . . , 4, denotes the independent channel gain coefficient for the

jth slot and is assumed to follow CN(0, 1). Also nj , j = 1, . . . , 4, denotes the

ZMCSCG noise signal term and is assumed to be independent from all other noise

terms, channel coefficients, and data bits. Each noise term has a variance of N0. We

use the mapping µ(ui) =
√
E(1 − 2ui) with BPSK modulation. We further define
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the average SNR as γ̄ = E
N0

and hence the instantaneous SNR corresponding to each

time slot as γj = γ̄|hj|2, j = 1, . . . , 4. Moreover, ej is the binary error term for the

network coding operation in the jth slot. As a demonstration, if node 3 has detected

u1 bit correctly in the first slot, we have e3 = 0 and e3 = 1 otherwise. Clearly, for

the first two slots in which no network coding is utilized we should have e1 = e2 = 0

deterministically.

4.2.2 BERAnalysis for the Sample SystemUsing Equivalent Channel Approach

Let us start investigating (4.23) with emphasis on the observations in the third and the

fourth time slots in which network coded cooperation is utilized. For these observa-

tions, in order to simplify both the design of the receiver and the analysis, we define

the equivalent instantaneous SNR values γeq3 = γ̄|heq3|2 and γeq4 = γ̄|heq4|2 as done

in Section 2.1.

γeq3 =

{

Q−1
[

pe3
(

1−Q
(√

2γ3
))

+ (1− pe3)Q
(√

2γ3
)]}2

2
, (4.24)

where pe3 denotes the probability that node 3 detects u1 in error (hence forwards

an erroneous network coded bit) and with BPSK modulation it is found as pe3 =

Q
(√

2γ1→3

)

with given instantaneous SNR value γ1→3 for the link from node 1 to

3 in the first time slot. Similarly, another equivalent gain γeq4 is defined and the

weighted observation signal vector at the receiver z = [z1 z2 z3 z4] is found according

to

z1 =w1y1 = h∗
1y1 = |h1|2µ(u1) + h∗

1n1,

z2 =w2y2 = h∗
2y2,

z3 =w3y3 =
γeq3
γ3

h∗
3y3,

z4 =w4y4 =
γeq4
γ4

h∗
4y4. (4.25)

In (4.25), the weights for the first two observations are exactly the same as those of the

MRC technique, since both of these are direct transmissions with no network coding.

Given the equivalent channel outputs in (4.25), one can modify both the joint and the
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individual detection rules given in Section 2.2.2 for detection of data vector u. The

individual detection rule for u1 is

ˆ̂u1 = argmax
u1∈{0,1}

∑

u2,u3∈{0,1}
p(z | u), (4.26)

while the joint detection rule for u is found as

ˆ̂u = argmax
u∈{0,1}k

p(z | u). (4.27)

Although both of these detectors are very close in terms of BER performance to

the optimal detector of (2.14) as to be shown in Section 4.3, the joint detector in

(4.27) is much simpler to analyze (and also to implement) due to absence of the

summation operation over all possible data vectors. As a consequence, we aim to

reach an expected BER expression for the joint detector using the sampling property

of the Q-function. This expression is going to be an upper bound for the optimal

detector in (2.14).

We start the analysis of the detector in (4.27) by identifying the conditional proba-

bility distributions (for given respective channel coefficients) of the weighted obser-

vations. Without loss of generality, we take N0 = 1 for the remaining part of the

paper in order to simplify the derivation. The transmissions in the first two time slots

are direct, hence the distributions of weighted observations are relatively simple. As

an example, by further conditioning the observations on the input data vector pattern

u1 = u2 = u3 = 0, one finds

(zj |u1 = u2 = u3 = 0) ∼ CN (γj , γj) , j ∈ {1, 2} , (4.28)

where the complex Gaussian distribution of the noise signal is used. These distribu-

tions are also used in the detector that makes use of the equivalent channel approach.

On the other hand, for the slots making use of network coding with possible propa-

gation of binary errors, we obtain the following conditional distribution for the given

data and error pattern u1 = u2 = u3 = e3 = e4 = 0:

(zj |u1 = u2 = u3 = ej = 0) ∼ CN

(

γeq j ,
γ2
eq j

γj

)

, j ∈ {3, 4} . (4.29)
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However, the equivalent channel detector uses the following distributions (without

any consideration on the relay error variables ej) in the construction of the detection

rules

(zj |u1 = u2 = u3 = 0) ∼ CN (γeq j , γeq j) , j ∈ {3, 4} . (4.30)

since it assumes the network coded data signals are being transmitted over the equiv-

alent channel with no relay error but decreased instantaneous SNR, γeq j . As a result,

in the analysis of the conditional BER for u1 = u2 = u3 = e3 = e4 = 0, we derive the

detection rules according to (4.30), whereas the probability of an error for a detection

rule is calculated using (4.29) for the time slots 3 and 4. Similar distributions can also

be found for the condition ej = 1.

Due to linearity of the block code used for constructing the network code in the sys-

tem, one can assume all-zero data vector transmission, u1 = u2 = u3 = 0, and find

the probability of error for a given data symbol. As an example, for u1 we have the

following upper bound for end-to-end bit error probability:

P (ˆ̂u1 6= u1) =
∑

u2,u3

P (ˆ̂u = [1 u2 u3] | u = [0 0 0])

≤
∑

u2,u3

P (peq(z | [0 0 0]) < peq(z | [1 u2 u3])), (4.31)

where we make use of the union bound in the inequality. In (4.31) peq denotes the

pdf utilized by the detector and is found for any data vector u in a similar fashion to

(4.30):

peq(z | u)) =
4
∏

j=1

exp

(

−|zj−(−1)ugj γeq j|2
γeq j

)

πγeq j
, (4.32)

where gj is the j th column of the network code generator matrix G and due to the fact

that no intermediate errors occur in direct transmissions γeq j = γj for j = 1, 2. We

then condition P (peq(z | [0 0 0]) < peq(z | [1 u2 u3])) on the intermediate node error

vectors. For the condition e3 = e4 = 0, by using (4.32), we obtain
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P
(

peq(z | [0 0 0]) < peq(z | [1 u2 u3])
∣

∣

∣
e3 = e4 = 0

)

=

P

(

4
∏

j=1

exp

(

−|zj − γeq j |2
γeq j

)

<
4
∏

j=1

exp

(

−|zj − (−1)([1u2 u3]gj) γeq j |2
γeq j

))

(4.33)

As an example, for the erroneously detected vector ˆ̂u = [1 0 0], we rewrite (4.33) as

P
(

peq(z | [0 0 0]) < peq(z | [1 0 0])
∣

∣

∣
e3 = e4 = 0

)

=P (RE {z1 + z3 + z4 } < 0)

=Q





√
2 (γ1 + γeq3 + γeq4)
√

γ1 +
γ2
eq3

γ3
+

γ2
eq4

γ4



 ,

(4.34)

where we used (4.28) and (4.29) in the last identity. In the next step of derivation for

instantaneous BER expression, we sum up the conditional probability terms for all

data vectors in error to reach the conditional version of (4.31) with e3 = e4 = 0 as

P (ˆ̂u1 6= u1

∣

∣

∣
e3 = e4 = 0) ≤Q





√
2 (γ1 + γeq3 + γeq4)
√

γ1 +
γ2
eq3

γ3
+

γ2
eq4

γ4



+Q





√
2 (γ1 + γeq4)
√
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Finally, by obtaining and weighting the conditional error probabilities for all error

vector patterns we get

P (ˆ̂u1 6= u1) ≃(1− pe4)Q





√
2 (γ1 + γeq4)
√

γ1 +
γ2
eq4

γ4


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+pe4Q


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2 (γ1 − γeq4)
√

γ1 +
γ2
eq4

γ4



+Q
(

√

2 (γ1 + γ2)
)

, (4.36)

where the terms which decrease with γ̄3 are neglected. If we use the two-dimensional

sampling property results of Section 4.1.1 in finding the expectation of the instanta-

neous BER (4.36), we approximate the average BER expression for u1 with
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Following the same procedure one can obtain the end-to-end BER expressions for u2

and u3 as well. Agreement of these derived expressions with the simulation results is

shown in Section 4.3.

4.3 Sample Network-I: Analytical Results Comparison

We present the performance figures in this section in order to validate the analysis for

the network coded cooperative communication system done in Section 2.2. We give

the results for the network coded system introduced in Section 2.2.1 with Fig. 2.3.

Initially, we observe the comparison of BER curves for three network decoders based

on simulations in Fig. 4.6: the optimal decoder of (2.14), the suboptimal equivalent

channel individual decoder of (4.26), and the suboptimal equivalent channel joint

decoder of (4.27). Based on this observation, we state that both the equivalent channel

assumption and the joint detection simplification have negligible effect on the BER

performance of network decoding operation. Thus a valid analysis for the simplest

decoder of (4.27) serves as a good performance metric for the optimal decoder of

(2.14) as well.

In Fig. 4.7, we present the agreement between the BER curves of the simulations

for the joint equivalent channel network decoder of (4.27) and the BER expressions

we derive in Section 4.2.2. The simulated performance curves for all data bits are

in good agreement with the analysis results for a wide range of SNR values. As a

result, the analysis that is using the generalized forms of the sampling property for

the Q-function perfectly fits the simulation results for this network coded system of

interest.
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Figure 4.6: Performance of the optimal and the equivalent channel decoders

2 4 6 8 10 12 14 16

10
−3

10
−2

10
−1

E
b
/N

0
 (dB)

B
E

R

 

 

u
1
 (Sim.)

u
2
 (Sim.)

u
3
 (Sim.)

u
1
 (Analysis)

u
2
 (Analysis)

u
3
 (Analysis)

Figure 4.7: Simulation and analysis results for equivalent channel joint decoder
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4.4 Discussion

This section comprises the second part of this work and deals with derivation of the

closed form approximate end-to-end expected BER expressions for both the canonical

and NC cooperative communication system models. The generalization of the sam-

pling property of the Q-function to more than one arguments that encompasses the

instantaneous BER expressions for these systems is a crucial part of derivation. Other

two important techniques worth mentioning are the equivalent channel approach and

the C-MRC method that we adopt to both the decoders and the analysis of the NC

systems. We also present a rigorous investigation of the sampling property and an

SNR-based characterization for selection of the sampling functions for an example

integral approximation problem. Finally we combine all these proposed analysis

techniques in order to reach the closed form average BER expressions for Sample

Network-I and demonstrate the accuracy of these expressions in comparison with the

simulation results. We should note that the analysis steps covered in this section may

be generalized for the analysis of a larger network with a hierarchical structure, for

which the small sub-networks can be seen as the building blocks we describe herein.

In this way, one may model and analyze structures with more than one intermediate

node being involved in the NC process before a data packet reaches its destination.

Accordingly, each new intermediate node of a level may be seen as the destination

for the previous level and analysis of the end-to-end average BER values can be done

level-by-level.

We expect that the analysis techniques utilized in this section, particularly the gener-

alized sampling property for the Q-function is applicable for the performance analy-

sis of many other systems than cooperative communications with little modifications.

The required improvements on the technique include generalization to the expectation

integrals involving correlated random variables and arbitrary fading distributions.
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CHAPTER 5

CONCLUSION AND DISCUSSION

In this work, we formulate a network coded (NC) communication system problem for

cooperative unicast transmissions carried out using orthogonal time slots in a wireless

network. The idea behind this formulation is to propose and analyze a miniaturized

network structure with a few nodes that may be useful for the design and perfor-

mance evaluation of a larger network composed of many of these building blocks.

For defining the operations realized within such a building block, a generator matrix

G and a scheduling vector v are used and this pair represents the linear combina-

tions performed at the intermediate nodes. We present a MAP-based decoding rule

utilizing G, v, and the error probabilities at the intermediate nodes. A method for

obtaining the performance determining parameter as the diversity order for individual

source nodes is proposed for any given G over the corresponding separation vector.

Through simulations we show that our decoding rule, using reliability information for

the network coded symbols, avoids the possible diversity order losses that may stem

from the error propagation effect. We present design examples for network codes

via greedy block codes, which may also provide unequal diversity orders to different

nodes with proper puncturing. Over given design examples, we obtain rate-diversity

trade-off curves and a rate advantage realized by using NC with respect to the no

NC case. Moreover, we introduce the sum-product (SP) algorithm based iterative

network decoder which has linear complexity order and performs quite close to the

optimal rule. Furthermore, the selective NC scheme that combines only the reliably

detected data at cooperating nodes is shown to yield additional coding gains.

As another important contribution, we derive some useful average BER expressions
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in closed form for both the basic relayed and the proposed network coded commu-

nication scenarios under Rayleigh block fading. In order to obtain these closed form

expressions, we generalize the sampling property of the Q-function that is frequently

observed in instantaneous BER functions of these systems. This generalization in-

cludes an insightful analysis of the applicability of the sampling property in addition

to the extension of it to integrands of more than one variables. We also propose a net-

work decoder which operates under equivalent channel assumption based on C-MRC

method. By combining two independent paths from a source and an intermediate

node to the destination under a single channel, this assumption enables both reduc-

tion in the complexity of the analysis and the decoding with a negligible loss in per-

formance. We substantiate the validity of these generalizations on sampling property

for integrals and the use of equivalent channel assumption together with C-MRC in

network coded systems through extensive simulations.

The gains obtained by using NC particularly together with the selective coding idea

are notable when the source and the intermediate nodes in the network have the

chance of transmitting their data through independently fading links. In addition,

under slower fading channels whose coherence durations are on the order of several

packets, the gains in BER performance with respect to the conventional repetition

methods similar to ARQ is shown to be even larger. On the other hand, when the

links between the destination node and the intermediate nodes are correlated, one

should expect little improvement due to NC.

Another important point is that the distributed NC described here is based on very

short blocklength codes and no channel coding is assumed. In a realistic scenario,

one can support these network codes by good channel codes. The joint decoding

of the channel and the network codes on a single graph structure by using the SP

algorithm is also possible with very low complexity. Moreover, one may also add the

effect of channel estimation errors into this graph and investigate possible interference

cancellation techniques for even more realistic scenarios. However, under a non-

orthogonal transmission model with interfering signals, the results we reach here may

change on the favour of a non-NC technique by taking the additional complexity and

decoding delay we impose on the intermediate and the destination nodes. As an

example on the delay argument, for a round of communication consisting of n =
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10 intermediate node transmissions, a destination node must wait completion of all

packet transmissions to start decoding a desired packet, which may be a problem for

delay intolerant applications.

The system model we propose for NC in this work also relies on the assumption that

every node in the network has information in its buffer to transmit whenever it is

scheduled to use the channel. However, in a scenario with some nodes having bursty

traffic for small durations and have no data for the remaining time, it may be better

to keep such nodes silent particularly if their assistance to other nodes is negligible

and energy sources are scarce. From this point of view, in order to apply NC, one has

to consider adaptively arranging the scheduling vectors and the generator matrices

in each round of communication based on the node queue lengths and energy con-

straints. Moreover, in the case that average channel strengths are not homogeneous

throughout the network, the fixed generator matrix and scheduling vector assignment

in our model should be changed as well. In order to support networks with many

nodes (on the order of hundreds), one may prefer long blocklength codes like LDPC

codes since the regular block codes discussed in this work (like greedy codes) are

NP-hard to generate for increasing number of users. One may further generalize the

model here by not only network coding within a round of communication but also

coding packets originating from different rounds, which is known in the literature as

inter-session network coding. Inter-session NC would in fact be a necessity for a real

system in which a packet that could not be delivered in a round has to be injected in

to the network once more in the consecutive round.

Identifying gains of NC for purely random G matrices in large networks, studying the

effects of imperfect information on channel gains and relay error probabilities may

be addressed in future work. It would be also interesting to operate the suggested

wireless NC methods under asymmetrical channel gains, which can be more realistic

for ad hoc networks. Finally, the adaptation of these methods to various types of

fading channels and to the scenarios including correlated channels seem to be other

open problems.

The idea of approximating some part of the integrand with a Dirac-delta for a hard-

to-evaluate expectation integral seems to be a solution more general than the one for

75



obtaining the performance figures of the cooperative NC systems defined herein. With

this reasoning and the high accuracy of the sampling property for NC system analysis

in mind, we expect that the methods presented in this work are easy to adapt to many

other communications problems. However, this adaptation requires investigation on

application of the sampling property to integrands involving joint pdfs with correlated

random variables, providing analytical ways of obtaining the impulse weights of the

sampling functions, improving the low-SNR accuracy through truncated series ap-

proximations on the sampled functions, and classifying a given function according to

its suitability of being a sampling function through rigorous analysis. Therefore, one

has to be careful in utilizing the sampling property to approximate a given integral

and check the applicability through the constraints we mentioned in this work.
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